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5.1. Introduction 

In conventional archaeological analysis descriptions of ob- 
ject morphology normally combine a few standard size 
measurements with some qualitative or anecdotal shape 
terms. Tape measures and calipers limit us to measure- 
ments of length, width and thickness. Shape is usually de- 
scribed by picture-stereotypes — "hat-shaped, cigar-shaped, 
barrel-chested" — or by imprecise qualitative terms, such 
as, roundish, irregular, nearly smooth to slightly rough, 
indented to sinuous, etc. Often some combination of pic- 
ture-stereotypes and qualitative terms, such as "reddish, 
broad and bulbous like my Uncle Harry's nose" is used. 
When built into classification and typology, such descrip- 
tion panders to our penchant for thinking in simplistic stere- 
otypes while conscientiously ignoring individual variation. 
We revel in arguments over the reality of "types" and in the 
assignment of individual pieces to type categories based on 
the universal principle that no two classification systems 
shall ever sort an assemblage of artefacts in the same way. 
If ever in doubt, employ the universally applicable category 
"other...", or create the type category with the oxymoronic 
title "atypical..." 

Stereotypical procedures continue the obsolete logic of 
the era when biological organisms conformed to John Ray's 
divinely crafted immutable species or correlated to George 
Cuvier's perfect designs. Contemporary semantic substi- 
tutions, such as wild type, central tendency, and prototype 
improve nothing. The theoretical importance of individual 
variation, made compellingly clear by Josiah Wedgwood's 
grandson, Charles Darwin, has yet to dominate practical 
procedures of systematic classification in biology or archae- 
ology. This is due partly to the ease of creating stereotypes, 
reinforced by the virtual inability of the few conventional 
measurements to quantify individual size and especially 
individual shape easily, accurately or precisely. However, 
with the advent of compact image processing computer 
hardware and robust stereological software, the era of lim- 
ited manual measurement and conventional typology should 
come to an end quickly. 

5.2.      The IMAGEPLUS II system 

The case studies presented here were conducted using the 
(now-obsolete) IMAGEPLUS II software package, designed by 
John C. Russ of North Carolina State University, which 
operates in an enhanced past-generation Apple II series 
personal computer. The current generation of this system, 
entitled PRISM, operates exclusively on Macintosh personal 
computers and is available in the USA through Dapple Sys- 

tems, Inc. Similar IBM-based systems are available firom 
several companies such as Cambridge and Jandel. 

The IMAGEPLUS system has many functions and modes 
of image analysis applicable to aggregates, conglomerates, 
mosaics and maps. The most immediately amenable use of 
the system is in analysis of assemblages of discrete items, 
such as artefacts, subjected to morphological measurement 
of size and shape as a basis for classification and object 
recognition. To do this, IMAGEPLUS acquires and digitises 
images generated by CCD TV camera, flatbed scanner, 
videotape, or video output from electron, laser or acoustic 
microscopes. The analogue images are displayed in a 512 
X 512 pixel (picture element) TV monitor in either 256 lev- 
els of B&W grey scale or 16.3 million levels of pseudo- 
colour. The program provides several menu-driven methods 
of image processing, editing and enhancement. 

Grey scale (or pseudo-colour) discrimination is used to 
isolate objects of interest in an image field. Selected items 
(or areas) are converted from grey scale to binary (full black 
and full white) images. These may be subjected to further 
image processing and enhancement. The system offers a 
menu of 40 measured parameters up to 20 of which may be 
selected at one time for simultaneous measurement of a 
maximum of 254 discrete objects in a single field. The 
system also allow the operator to write additional, custom- 
designed measurement algorithms for the program. In re- 
ality, an image field usually consists of some 5 to 50 objects 
on which 10 to 15 different measurements will be taken. 
On average, a single skilled operator can generate from 
2,000 to 5,000 measurements per hour. Data may be sub- 
jected to statistical testing at any time within the program 
with results graphically displayed. 

5.3.      Morphometry 

Object morphometry and object recognition are achieved 
using five parameter categories: dimension of size, 
dimensionless ratio of shape, harmonic analysis, fractal 
dimension and topology (Russ, 1992, pp. 175-318). 

IMAGEPLUS offers both conventional and unconventional 
size measurements which often have subtle but critical dif- 
ferences when compared to manual measurements of the 
same name. "Length" in IMAGEPLUS, for example, is the 
longest chord within the object perimeter regardless of ob- 
ject orientation (Fig. 5.1). This inelastic measurement is 
not dependent on arbitrary orientation on an X-Y co-ordi- 
nate grid which can result in systematic bias and error. 
Actually, IMAGEPLUS also measures orientation-dependent 
values, X- and Y-Feret's (horizontal and vertical distances), 
as well. If the longest chord within an object's perimeter is 
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Width 

Fiber Length 

Breadth 

Figure 5.1: Examples of basic computer measurements of 
distance sizes. 

oriented along the X axis, then length and X-Feret are equal. 
Such conventions in manual measurement would be no prob- 
lem if everything in archaeology were square or round or 
rectangular, but clearly artefacts and fossils are notoriously 
irregular in shape. This gives great significance to arbi- 
trary orientation in manual measurement while the compu- 
ter always measures the longest length dimension of an 
object regardless of irregularity or orientation. 

The literal rules of computer measurement treat regu- 
lar and irregular objects with equal facility. The computer 
can calculate the area of a digitised map of Great Britain as 
easily as it can that of a simple square. In addition the 
computer measures attributes that are difficult or impossi- 
ble to derive manually, especially in cases of irregular ob- 
jects. These include area, perimeter, "fibre length" (the 
total lineal distance down the centre line of an object), curl, 
radius of curvature and a host of other such dimensions 
(Fig. 5.1). When measuring the area of a doughnut, is the 
area of the hole included in the whole? If you wish to know 
how many doughnuts will fit on a plate, the answer is yes 
(Figs. 5.2a-b). If you wish to know how much sugar you 
need to coat the doughnut, the answer is no (Figure 5.2c). 
IMAGEPLUS can calculate it either way. The situation is no 
more complex for the computer if you are measuring Swiss 
cheese, the effect of yeast in a slice of bread, or the extent of 
osteoporosis in a bone specimen. 

Dimensions of size are relatively easy to understand; 
but, for purposes of object recognition, they suffer from the 
fact that objects with obviously different shapes can yield 
the same size dimensions. To rectify this problem, 
IMAGEPLUS uses its several measurements of size to create 
dimensionless ratios that measure, that is, quantify, spe- 
cific attributes of shape. This is possible because change in 
an aspect of shape directly influences changes in (ratios of) 
size dimensions as dependent variables. Archaeologists 
should be familiar with a shape factor of long standing; 
namely cephalic index or head shape. This is the 
dimensionless ratio of skull width divided by skull length 
xlOO. IMAGEPLUS arbitrarily calculates the reciprocal of this 

(a) (b) (c) 

Figure 5.2: Three ways to measure area of an irregular 
object, (a.) The convex or "taut string" area; (b.) the 
externally occupied area with interior holes "filled"; and, 
(c.) the "true" area. 

ratio under the name, 'aspect ratio', providing a simple and 
straightforward index of elongation. 

The utility of shape factors in describing object at- 
tributes is seen in comparing values for 6 different objects 
of identical area in Fig. 5.3 which shows values of form- 
factor (4TC X area / perimeter squared) and roundness (4 x 
area /n x length squared). For a perfect circle, the values of 
both shape factors equal 1. In squaring the perimeter meas- 
urement, form-factor values are very sensitive to changes 
in the shape of the perimeter but insensitive to elongation. 
Form-factor groups the three objects in the left column from 
the three in the right column. Roundness, which squares 
the dimension of length, is sensitive to elongation but in- 
sensitive to perimeter. Thus, roundness values group the 
horizontal adjacent pairs, while differentiating between the 
pairs vertically. 

The shape factor known as "solidity" depends on the 
inverse relation of area to perimeter as object shape departs 
from a regular polygon or a circle, oval, etc. To calculate 
this, the computer fits a 36-sided polygon to each object, 
essenfially creating a taut string around the object (Fig. 
5.2a). The taut string is known as the "convex perimeter" 
which surrounds the "convex area". This permits calcula- 
tion of ratios of true perimeter to convex perimeter to yield 
solidity as well as true area to convex area, another shape 
factor known as Convexity. If an object is a perfect poly- 
gon, the values of solidity and convexity equal 1. However, 
if an object with constant convex perimeter value becomes 
irregular, that is, has lobes and indentations, then true pe- 
rimeter increases in direct proportion to irregularity while 
true area decreases. Ratio values departing from 1 indicate 
a quantitative measure of such irregularity. 

Dimensionless ratios effectively describe shape but at 
the level of discrete attributes. Object recognition requires 
selection and simultaneous use of multiple shape factors, 
often in conjunction with size dimensions, to create a clas- 
sification system. However, with the easy availability of 
multi-variate statistics and discriminant function analysis, 
this is a trivial problem. 

Harmonic analysis (Fig. 5.4) uses trigonometric func- 
tions and vectors to unroll a shape into a single mathemati- 
cal expression of that shape which is then subjected, for 
example, to Fourier analysis. This is an enormously effec- 
tive and successful way to quantify a shape, but it is limited 
by the fact the people do not easily "see" what the expres- 
sion means. Since the thinking of people does not relate 
well to such coding, comparisons of expressions are not 
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Fom^aaor 

A  0.311       B  0.447 

C  0.332      D 0.467 

E  0.318       F 0.477 

Roundness 

A  0.260       B  0.278 

C  0.497       D 0.502 

E   0.623       F  0.649 

Figure 5.3: Six objects of equal area grouped and 
separated by shape attributes using form-factor and 
roundness values. 

easily made. In fact, effective analysis is wholly mathemati- 
cal and computer intensive often beyond the number crunch- 
ing capability of even high-powered personal computers. 

Fractal dimension (Fig 5.5) provides values that corre- 
late with roughness measured in a self-similar way 
(Mandelbrot, 1982). The classic fractal problem asks what 
is the true length of the coastline of Great Britain. The 
answer is dependent on the scale of measurement. A satel- 
lite map, used to measure the coast in kilometres, will give 
a smaller value than that obtained if metre sticks were laid 
end to end along the high tide mark on the shore. This in 
turn would be smaller than the value obtained if a magnify- 
ing glass were used to measure along the edge of each grain 
of sand along the high tide mark, etc. A log plot of the 
length against the scale of the measuring instrument used 
shows that the fractal dimension in each case is self-simi- 
lar. Obtaining this value of roughness is actually rather 
simple and straightforward. However, not many image 
processing software packages measure it — IMAGEPLUS and 
PRISM among few others do. As with other shape factors, 
fractal dimension is an attribute-specific rather than whole- 
shape measurement. 

Topology measures the frequency of specific features 
of an object, such as the number of end points, loops, nodes 
and intersections (Fig. 5.6). This is done on the "skeleton" 
of an object; that is, the interior centre-line form of an ob- 
ject created by the computer by eroding the outside rows of 
pixels around the perimeter until the centre line (or net- 
work) of the object is reached. The numbers of points, loops 
and nodes are then counted and such values as the distribu- 
tion of internodal distances can be calculated. 

Combinations and permutations of the many ways to 
quantity attributes of size, shape, texture and topology pro- 
vide the ability to address classification problems at the level 
of individual variation. Even if no two individuals are ever 

p(d) = ao + ai cos(d) + bi sin(i5) + a2 sin(2ô) + ba cos(2ö) + ... 

Figure 5.4: Harmonic analysis: shape plot of an 
"unrolled" object. 

Figure 5.5: Fractal dimensions values measuring 
marginal roughness. 

exactly alike, they may be captured into categories defined 
by objective, quantitative and reproducible standards. To 
put it simply, classification logic becomes transparent rather 
than intuitive; and transparent logic is far easier to repli- 
cate than is intuitive logic. 

To date, I have applied IMAGEPLUS to a randomised spec- 
trum of archaeological and fossil populations using rather 
simple and straightforward procedures. These tests have 
yet to challenge the capability of the system to resolve com- 
plex morphometric problems as occur in materials science 
or biomédical research. Nevertheless, even at simple lev- 
els of application the results can be overwhelming. 
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Branches 

Figure 5.6: Topological measurement of central 
"skeleton" or "skeletal network" of an irregular object, 
allowing frequency counts and measurements of nodes, 
links, ends and branches. 

Figure 5.7: Isolating aspects oflithic artefacts for 
measurement of size and shape, (a) Isolating area of 
cortex remnant on a handaxe; (b) Isolating area of a 
Levallois flake scar on a core; (c) Isolating individual 
flake scars on a biface; and, (d) Grey scale level 
differentiation of individual flake scars on biface in (c). 

5.4.      Case 1 : Looking at lithics 

The ability to discriminate pieces and parts of objects al- 
lows for some potentially useful, unconventional informa- 
tion. With respect to Stone Age artefacts, for instance, it is 
easy to differentiate between secondary flaking on a large 
cortex flake (Fig. 5.7a) and area or cortex remnant. On a 
Levallois-style core, (Figs 5.7b and 5.8) the Levallois flake 
scar can be isolated to measure the percent of surface area 
of the core removed by the flake, as well as size and shape 
of the core and the flake. For a narrow biface (Figs. 5.7c-d), 
the eleven major flake scars were isolated to allow size and 
shape measurements of each of them simultaneously. 

A slightly more involved test compared an isolated 
cache of 36 bifacial preforms with populations of standard 
projectile points from the same region. The computer was 
used to draw convex perimeters around the projectile points 
to approximate size and shape of the respective preform 
(Fig. 5.9). These reconstructions were then measured and 
compared by analysis of variance with the cache of bifaces. 
This unconventional, yet very simple way of doing typo- 
logical cross-checking helped identify which projectile point 
types were potential end-products and which were not. 

Figure 5.8: Isolating the major flake scar on a Levallois 
core for measurement of core and flake. Core area is 
47.29 square centimetres; flake carried away 53.39% of 
core surface area. 

Conventional length, width and thickness are hopelessly 
flaccid parameters inadequate to this kind of analysis. 
IMAGEPLUS is clearly an enhanced method for seriation and 
cross dating in archaeological analysis. 

5.5.      Case 2: Drawing a bead on 
teclinology 

Dr. Geraldina Santini, Institute of Asian Studies (Naples) 
faced the problem of measuring thousands of small (typi- 
cally 4-6mm in diameter) drilled stone beads, recovered 
from a Bronze Age cemetery in Oman. In less than two 
weeks, images of more than 2,000 beads were recorded for 
measuring. Subsequently over 100,000 measurements of 
size and shape were derived on bead top, bottom and side 
views, on bead attributes with the hole "filled", and on the 
drilled holes alone. 

Preliminary statistical analysis presented an intrigu- 
ing morphological pattern. When grave populations in the 
n = 30 to 90 range were plotted for distribution of aspect 
ratio values, measures which ignore the variable of drilled 
hole, the result was totally unexpected (Fig. 5.10). Instead 
of a normal, bell-shaped curve or minor departure from 
normal, the result was multimodal in the extreme — a plot 
of disconnected spikes representing 6 or 8 populations of 
up to 15 beads each. The obvious explanation is that the 
computer is reassembling beads with their neighbours cut 
from individual stone cylinders. If correct, it indicates that 
the integrity of the manufactured sets was maintained from 
the point of production to the point of deposition.  This 

34 



COMPLEX MEASUREMENTS MADE EASY 

Figure 5.9: Construction of convex perimeter and area of 
a projectile point to approximate size and shape of 
preform allowing typological comparison with unfinished 
examples and workshop rejects. 

<»l 
ASPECT <m> 

1.2222 OOOO"?*— V 

Figure 5.10: Distribution of aspect ratio values of drilled 
stone beads showing pronounced shape clustering, 
possibly an indication that bead groups cut from 
individual cylindrical cores were maintained as sets. 

leaves to the archaeologist the sublime problem of trying to 
figure out and assess the implications of the data. 

5.6. Nature is not normal 

I originally applied computer image analysis to deal with 
systematics of microscopic-sized plant opal phytolith fos- 
sils (Russ and Rovner, 1989) which I have been developing 
for more than 20 years (Rovner, 1971; Rovner 1983). Seri- 
ous flaws in my own conventional classification logic were 
revealed along with other more general problems encoun- 
tered using conventional typologies (Rovner and Russ, 
1992). However, the most provocative results in 
archaeobotanical research to date were obtained recently in 
application of image analysis to identification and analysis 
of seeds. Although I had virtually no prior training or ex- 
perience, the computer and I surpassed lifelong expertise 
in the identification of archaeological seeds literally within 
minutes. 

The first test of seed identification using IMAGEPLUS 

followed a study by Decker and Wilson (1986) who used a 
somewhat simpler morphometric program to test seed 
populations of New World varieties of squash in three taxa, 
Cucurbita pepo, Curcurbita pepo var. ovifera, and 
Cucurbita taxana. Assignment of individual test seeds at 
essentially species level achieved an 86% success rate 

MIX m Blind Assemblage (n = J4) 

Variety Actual Area/perim Added 
Parameteris) 

Howding 4 4 not used 

Sugar Pie 2 2 not used 

Butternut 2 2 

Butternut or Pattypan 4 not used 

Pattypan 4 0 

Acorn 2 2 not used 

Pumpkin vs. Squash: 14 of 14 correctly classified _ 100% 

Single Variety: 10 of 14 correct as assigned 

Remainder: 4 correctly assigned to a double group 

MIX #2 Blind Assemblage (n= 15) 

Variety Actual Area/perim Added 
Parameter(s) 

Howding 2 2 not used 

Sugar Pie S 4 yes 

Butternut 3 3 yes 

Butternut or Pattypan 3 yes 

Pattypan 3 0 
Acorn 2 2 not used 

Pumpkin vs. Squash: 14 of 15 correctly classified _ 93% 

Single Variety: 11 of IS correct as assigned 

Remainder: 3 correctly assigned to a double group 

Error: 1 sugar pie pumpkin classed as squash. 

TOTAL SCORE: Pumpkin vs. Squash: 28 of 29 correct = 96% 

Subspecies assignment: 21 of 29 to single variety; 7 of 29 to two 
varieties; 1 incorrect  

Table 5.1: Results of object recognition and identification 
o/Cucurbita seeds at the subspecies level. 

Species Area Length A'Ratio R'Ndness 

T, monococcum 99.96% 91.77% 100.0% 100.0% 

T. dicoccon 99.41% 100.0% 99.99% 99.99% 

T. aestivum 80.39% 5.3% 19.32% 78.87% 

H. vulgäre 100.0% 100.0% 99.91% 99.96% 

Table 5.2: Identification of "species unknown" wheat 
seeds (n = 14) recovered from an Iron Age mortuary 
vessel, using ANOVA probability of significant difference 
values on selected size and shape parameters. 

(Decker and Wilson, 1986, p. 601). I tested five reference 
populations at the subspecies levels, all seeds from varie- 
ties within Cucurbita pepo. Tests seeds were successfully 
assigned to squash versus pumpkin sub-categories with 96% 
accuracy (Table 5.1). More than 70% (21 of 29) of seeds in 
a blind test were correctly assigned to single cultivar varie- 
ties. Nearly 25% (7 of 29) were assigned to a double vari- 
ety category, but only one of 29 assigned incorrectly. The 
earlier level of success was substantially surpassed. 

A second opportunity to test seed identification arose 
during a resent research visit to the Archaeological Insti- 
tute in Hungary. A population of "Triticum, species un- 
known" recovered fi'om an Iron Age pottery vessel were 
digitised and measured using both size and shape param- 
eters.   Results were statistically compared, using analysis 
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Species (n) 

Imageplus 

length (mm)       mean aspect ratio 

Schenmmn Atlas 

length aspect ratio 

Cornus mas 76 -9.6914 12.1 1.50-2.50 11-16 

Gingkoloba 4 21.18-21.90 21.4 1.44-1.72 16-20 

Lupinus polyphyllus 106 -3.605 4.6 1.10-1.90 3.8-4.8 

Malus germanica 30 10.4-13.3 11.9 1.18-1.55 8-12 

Prunus spinosa 21 11.8-14.3 13.1 1.20-1.54 7-9 

Prunus spinosa 14 -8.261 9.1 1.09-1.33 

Sambucus nigra 75 2.81-4.56 3.8 1J8-2.40 3.5^.5 

Sambucus racemosa 79 3.47-4.94 4.1 1.09-1.65 2.2-3.2 

SoUmum dulcimara 132 1.98-2.97 2.5 1.00-1.56 2.2-2.6 

Sorbus acuparia 89 2.97-4.95 4.4 1.71-2.55 3.4-4.8 

Sorbus domestica 28 6.60-8.75 7.7 1.28-1.81 6-7 

niia platyphyllos 88 6.46-12.56 8.6 1.00-1.75 7-10 

Viburnum lantana 19 6.44-9.91 8.1 1.14-1.71 6-7 

2.2-3.0 

1.2-1.4 

1.5-1.8 

1.8 

1.5-1.6 

1.8-2.2 

1.8-2.2 

L5 

3.0 

1.4-1.5 

1.1 

Table 5.3: Computer 
morphometry vs. 
reference atlas data 
(Scherman 1966). 
Comparitive values 
which disagree 
substantially are shown 
in bold type. 

Species (n) Skew Kurtosis       Normal? 

Cornus mas 

Lupinus polyphyllus 

Sambucus nigra 

Sambucus racemosa 

Solanum dulcamara 

Sorbus acuparia 

Tilia pUayphllos 

76 

106 

75 

79 

132 

89 

-.182 

.208 

-.989 

.366 

-.010 

-1.30 

1.04 

2.219 

3.024 

4.776 

2.467 

2.589 

6.842 

5.650 

no 

maybe 

no! 

no 

maybe 

no! 

no! 

Table 5.4: Test of normal distribution of length in seed 
populations. 

of variance (ANOVA, f-test), to previously measured refer- 
ence seed populations of 4 cereal grain taxa (Table 5.2). 
The results, rather unequivocally, assigned the unknown to 
the species, T. aestivum, bread wheat — an inexperienced 
computer operator surpassing lifelong expertise with less 
then 15 minutes of effort. 

As impressive as such results in seed identification may 
appear, they are, in fact, misleading and subject to verifica- 
tion. ANOVA is a parametric test which assumes a normal 
distribution. In further testing of seed populations, we soon 
noted that histograms of seed size distribution were plot- 
ting strangely in spite of the fact that we were measuring 
rather large populations of seeds. Within minutes we tested 
enough seed populations to indicate, in compelling fash- 
ion, that seed size distributions are not bell-shaped or nor- 
mal (Table 5.3). Parametric tests of seed size are therefore 
inappropriate and any previous statistical studies of seed 
identification which employed parametric statistical tests 
are suspect. 

More morphometric heresies appeared when computer 
generated measurements of large seed populations were 
compared against data presented in standard reference seed 
identification atlases. Comparison with the Schermann 
(1966) atlas were particularly relevant because we were 
using the same seed reference collections from the Hungar- 
ian Museum of Agriculture. In a majority of cases tested 
and compared, manual measurements of small seed sam- 
ples — usually a population of ten seeds (Montgomery, 
1978) — were wholly unreliable, badly misrepresenting in- 
dividual seed variation in a population (Table 5.4).   The 

mean size value of several computer-measured populations 
fell near or beyond, sometimes well beyond, the minimum 
or maximum range value in the reference manual. Since 
archaeological seed populations are far more likely to be 
random representations of large reference populations, size 
categories are therefore very likely to be misinterpreted. 
For example, interpretations of climatic conditions or do- 
mestication of taxa based on large seed size values are clearly 
suspect if comparisons are made with data in such standard 
seed atlases. If parametric statistical tests are employed, 
the level of suspicion increases. Clearly, a new, 
morphometric reference atlas based on size and shape meas- 
urements of far more than ten seeds in a populations is 
essential for archaeobotanic research. 

Seeds are only the beginning. There is every reason to 
expect that nature is not normal in a host of other botanical 
and zoological systems used in archaeological research. 

5.7. Conclusion 
Computer image analysis and stereological morphometry 
should substantially replace the simpler paradigms of quan- 
titative methods in critical areas of archaeological research. 
The normative type is itself typically an unreal and arbi- 
trary stereotype, an unrepresentative fraiid which should 
be relegated to the dustbin without regret. Likewise, it is 
time to stop worshipping the normative mean value and 
the Gaussian bell-shaped distribution curve. These icons 
are no longer worthy of unquestioned adoration in the mor- 
phological analysis of archaeological assemblages and fos- 
sil populations. The age of non-parametric statistical 
analysis may be at hand. 

Bibliography 
DECKER, D. & H. D. WILSON 1986. "Numerical analysis of seed 

morphology in cucurbita pepo". Systematic Botany 11(4): 
595-607. 

MANDELBROT, B. 1982. The fractal geometry of nature. W H. Free- 
man, San Francisco. 

MONTGOMERY, F. H. 1977. Seeds and fruits of plants of eastern 
Canada and northeastern United States. University of To- 
ronto Press, Toronto and Buffalo. 

36 



COMPLEX MEASUREMENTS MADE EASY 

RovNER, I. 1971. "Potential of opal phytoliths for use in 
paleoecological reconstruction". Quarterly Research 1(3). 

RovNER, 1.1983. "Major advances in archaeobotany: Archaeologi- 
cal uses of opal phytolith analysis", in Schiffer, M. (ed.). Ad- 
vances in Archaeological Method and Theory 6. Academic 
Press, New York. 

RovNER, I. & J. C. Russ 1992. "Darwin and design in phytolith 
systematics: Morphometric methods for mitigating redun- 
dancy", in Mulholland, S. C. & G. R. Rapp (eds). Phytolith 
systematics: Emerging issues. Plenum Press, New York. 

Russ, J. C. 1986. Practical stereology. Plenum Press, New York. 

Russ, J. C. 1992. Computer-assisted microscopy: The measure- 
ment and analysis of images.  Plenum Press, London. 

Russ, J. C. & I. RovNER 1989. "Stereological identification of 
opal phytolith populations from wild and cultivated Zea 
mays", American Antiquity, 54(3): 784-792. 

ScHERMANN, S. Z. 1966. A magismeret atlasza. Mezögazdasäg 
Könyvkiadó, Budapest. 

Dr Irwin Rovner 
North Carolina State University 
Box 8107 
Raleigh, NC 27695-8107 
USA 
IRV@server.sasw.ncsu.edu 

37 


