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9.1    Introduction 

When studying lithic remains, archaeologists need to 
determine whether these remains have been used as 
tools for some specific task. The best way to arrive at 
this goal is through the analysis of macro- and micro- 
scopic traces generated by the tools' use. We should 
investigate, therefore, the formation process, that is, 
the relationship between the actual state of the mate- 
rial we are observing, and what produced that state. 

Although the history of use-wear analysis is not 
very long, its has generated much debate, not only 
concerning technical questions, but also its applica- 
tion and results. Very often, this debate has been 
based on irrational hopes in magical methods. There 
are not universal answers for ascertaining 'use' from a 
set of descriptive features, but there has been a great 
deal of work trying to relate how specific descriptive 
features are related to specific uses of lithic tools. 

Some authors have tried to quantify the descrip- 
tion of use-wear evidence, starting from the processing 
of macro- or microscopic images (see, among others 
Grace et al. 1985, 1987; Rees et al. 1988; Yamada & 
Sawada 1993)). We have also used this approach (Vila 
& Gallart 1993), obtaining interesting results by quan- 
tifying and discriminating among images. The poten- 
tial of image processing to use wear is, therefore, well 
understood and does not need more discussion here. 

However, it seems obvious that any image of 
macro- or microscopic use-wear traces contains some 
level of redundancy. This redundancy is so great that 
most image discrimination methods cannot develop all 
their potential. Standard image processing methods 
are based on the correlation of all features in the im- 
age, those that are the result of the artifact's use, and 
those that have been produced by other kinds of pro- 
cesses (naturally induced wear, degree of preservation, 
post-depositional alterations, etc.). Furthermore, it is 
inappropriate that any discrimination method should 
be based on the assumption that all observed traces 
(whatever the scale, macro- or microscopic) have equal 
relevance or that they contribute in the same way to 
discriminating between different uses. 

To change data (micro- and macroscopic images, 
use-wear trace descriptions) into knowledge we need 

ways to discern the useful information from the useless 
information. In this paper, we propose a mathemat- 
ical methodology, inspired by Artificial Intelligence 
research, to discriminate between variables, and not 
only between images. The final goal is to obtain a set 
of probabilistic estimates of the differential contribu- 
tion of each variable to each action performed with 
that tool. 

9.2    Unsupervised v. supervised 
learning: the rôle of 
archaeological 
experimentation 

Use-wear traces have been studied by means of var- 
ious statistical classification methods. The purpose 
has been to produce a set of different possible uses for 
a lithic tool, and then to decide which one is appropri- 
ate for a tool with a specific set of descriptive features 
(use-wear traces). 

These 'classifications' proceed by detecting statis- 
tical regularities within set of objects in a feature 
space, where every object is described in terms of these 
features. The purpose is to obtain a classification of 
objects according to the statistical pattern of regu- 
larity discovered. Usually archaeologists divide the 
population of objects into classes using a polithetic 
approach, that is: tools that have been used for a spe- 
cific purpose have a lot of features in common with 
all tools that have been used for the same activity, but 
not any single feature appears simultaneously in all 
objects. As a direct consequence of such an axiom, all 
features should have exactly the same relevance, be- 
cause there is not any single attribute, or attribute set 
that discriminates better between tool-sets. 

How are the different classes, and therefore possi- 
ble uses, calculated? It is achieved by generating a 
partition in the original data set in such a way that 
all objects used for the same activity are in a sin- 
gle class whose internal variance is lesser than the 
variance among different classes.   The output of the 
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partition algorithm are usually fuzzy or continuous 
classes (De Gruijter &: McBratney 1988), whose essen- 
tial characteristic is that the membership is a continu- 
ous function of the descriptive features used to define 
individuals. The centre of gravity of such classes gives 
a summary of their meaning, given the fact that this 
centre is constituted by the most repetitive pattern of 
descriptive features. Statistical techniques like Corre- 
spondence Analysis, Principal Component Analysis, 
and others have been used to reduce the dimensional- 
ity in the original data set, allowing a more structured 
description of the centre of gravity in any class. 

However, the resultant fuzzy classes are often dif- 
ficult to interpret conceptually, and may not reflect 
the goals we want to develop. The centre of gravity 
in a continuous class of Hthic tools (a specific activity 
performed with that tool) does not define, necessarily, 
the task undertaken with that tool, because it does not 
only contain those features related with use-wear. The 
statistically obtained relationships from the combina- 
tion of attributes do not 'explain' the potential mean- 
ing of the objects they describe. In a classification 
of lithic tools the rules of syntactic well-formedness 
(statistical partition algorithms) have less importance 
than the search for rules of semantic manipulation, to- 
gether with rules for converting between surface form 
and semantic structure. We need semantic properties 
which identify meanings, and not only syntactic prop- 
erties. Consequently, the meaning of an ordination 
(classification) depends on the goal of classification, 
which is usually not defined in the algorithm which 
produces the ordination. If we want to define differ- 
ences among tools based on their use, we need to ex- 
tract only those variables that were related with that 
activity, considering also, that those features were ir- 
regularly related with that activity: some of them were 
produced by a single action, whereas other features 
could be the result of more than one action. This is 
not exactly the classical fuzzy logic notion of 'intensi- 
ties' of objects within the same class (in terms of the 
Theory of Probabihties), but the notion of logical de- 
pendency between an action (use) and its result (trace 
produced directly or indirectly by that action — see 
Barceló 1996). 

To carry out this task, we should select the de- 
scriptive features of the analysed entities according 
to their predictive power to make useful declarative 
statements. We should reject the classical definition of 
attribute in the Numerical Taxonomy paradigm ('any 
modality of a character used to describe a set of ob- 
jects'), and prefer a more 'archaeological' definition, 
such as "any descriptive element with an 'archaeolog- 
ical' meaning" (Adams & Adams 1991; Clarke 1978; 
Klejn 1982). Therefore, use-wear traces are not a suf- 
ficient and necessary condition for the existence of the 
concept of 'use', although it is something which any 
kind of use empirically has. These sufficient and nec- 
essary conditions are not in the nature of the object, 
but in the archaeological problem we want to solve. 

These questions affect directly the purpose of our 
analysis. Statistical similarity between the image of 
macro- or microscopic use-wear traces has not any 
meaning by itself. We need to know what we are 
looking for when we try to recognise some pattern dis- 
covered in the microscope. The really difficult prob- 
lems of perception will not be solved by any simple 
classification of images; we need a generalisation of 
some empirical relationships or processes which runs 
in combination with a priori knowledge. 

There is a family of classification algorithms that 
allow such a generalisation. They are part of the su- 
pervised learning category of machine learning meth- 
ods. These systems process a preliminary data set — 
a learning set — in which the relationship between 
causes and effects is known. In our case, this is the 
action performed with a tool, and a description of use- 
wear in that tool. The purpose of a supervised classifi- 
cation is to generalise (learn) what we have discovered 
with the learning set to the entire data set — the ar- 
chaeological data. Mathematically it can be done by 
translating the information recognised in the first sam- 
ple, into a symbolic description that represents our a 
priori knowledge in an operational way. Therefore 
this approach has also been called the symbolic ap- 
proach in clustering and classification (Kodratoff 1986; 
Michalski & Stepp 1983; Weiss & Kulikowski 1989). 

In other words, we are looking for a mechanism to 
recognise patterns in data, using already stored pat- 
terns from a previous analysis of a sample of known 
cases. The method is very simple. Some learning el- 
ements are presented to the system as a positive or 
negative instance of some concept (for instance, a tool 
used to cut a piece of meat); the computer must find a 
concept description that effectively partitions all avail- 
able lithic tools in two groups: positive and negative, 
those that were used to cut meat, and those that were 
used for another purpose. All instances in the posi- 
tive region are believed by the learning system to be 
examples of the single concept. A description is con- 
sistent with the instances if it identifies all the positive 
instances and excludes all the negative ones. 

The goal is not to explain a data set by means of a 
set of statistical rules, but given a badly defined con- 
cept (to cut meat, for example), to explain it through 
a combination of its positive and negative instances 
(use-wear traces that are exclusively associated with 
tools used to cut meat). Consequently, the method we 
are looking for would use: 

• a set of lithic tools; 

• a set of attributes (use-wear traces) to charac- 
terise these tools; 

• prior knowledge:   a set of possible tasks per- 
formed by these tools. 

From these it should be able to find: 
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• a rule or discrimination function relating at- 
tributes with prior knowledge, that is to say, 
relating use-wear with categories of use. 

What we are trying to do is turning a passive descrip- 
tion of experimental data into an active classificatory 
rule that allows the correct recognition of new (non- 
experimental) data. Obviously, this will only be pos- 
sible if there is a sub-set of features defining the ex- 
perimental data. 

Consequently, the classificatory process may be 
broken down into the following tasks: 

1. definition of a description fist (attributes present 
in the set); 

2. selection of those attributes whose function is 
known; 

3. determination of the correlation level of each at- 
tribute with the function that generated it; 

4. calculation of the centre of gravity in the class 
of artifacts, based on the different contribution 
of each attribute to the discrimination function. 

It is easy to see that in this approach not all variables, 
features or attributes should contribute in exactly the 
same way to the classificatory task (explanation). 

There are several different methodologies for su- 
pervised classification (Bietti 1993; Bietti et al. 1985): 

• Fisher linear discriminant; 

• Linear maximum likelihood, minimising the Ma- 
halanobis distance between the objects of the 
set; 

• Quadratic maximum likelihood; 

• Bayes, i.e., classification according to the rules 
of Bayes theorem: one has to indicate a priori 
probabilities for each class. 

Each of these methods has its own advantages and 
disadvantages. In this paper we have decided to use 
neural networks, as a tool to implement supervised 
learning, largely because we are working with binary 
data. In this case, classic statistical programs fail be- 
cause mathematical models to fit the qualitatively de- 
scribed data are not available. Neural networks are 
therefore used here because they do not require an 
underlying prediction model. 

9.3    Neural networks and 
experimental archaeology 

Among the central problems of pattern recognition is 
the transition from a numerical to a symbolic represen- 
tation. Archaeologists usually want to group several 
different numerical representations to the same sym- 
bolic representation. However, in this paper we want 

to explain how to transform a set of symbolic descrip- 
tion terms (presence/absence of use-wear traces) into 
a series of numerical measures (the 'intensity' of each 
binary attribute helps to discriminate between differ- 
ent actions). A neural network can be trained through 
supervised learning to do this task (see, among others, 
Barceló 1995; Carpenter & Hoffman 1995; Caudill & 
Butler 1992; Kempka 1994a,b; Pao 1989; Zeidenberg 
1990). The system we want to build is a diagnosis ma- 
chine that predicts the probability that a lithic tool 
was used in some way, given a set of inputs (a binary 
description of some macro- and microscopic use-wear 
traces). This prediction does not follow a rigid algo- 
rithm in producing an answer based on a given input, 
but it is taught through training examples. 

The network consists of many simple, but individ- 
ual processing elements ('nodes') arranged in one or 
more layers, and a system of connections. These con- 
nections transmit the signals, which the nodes ma- 
nipulate. A transfer function contained in each node 
governs this manipulation. The nodes sum weight- 
adjusted inputs, add a bias value, and finally pass the 
result through an activation function (also called a 
transfer or squashing function) to be used by other 
neurons or offered as an output. 

Learning is performed in the network of connec- 
tions. Although a network's transfer functions usually 
do not change, the connection strengths do change 
during learning. These changes result from the net- 
work making predictions based on the training ex- 
amples, which contain known outputs based on real 
inputs. In our case, training examples are pairs of ar- 
chaeological experimentation results, that is, the de- 
scriptive features observed in those lithic tools that 
were used for some specific activity in the laboratory. 

Information is input to the first layer and then 
propagates through the structure of connections and 
nodes. When the information (pulses) finally reach 
the output nodes in the final layer, these units pro- 
duce an answer (a number reflecting the intensity of 
the function in each unit), which is the network's pre- 
diction of the output based on the given input data. 
The predicted output at every node in the final layer is 
then compared to the correct (known) output at every 
node. Errors are generated as the difference between 
the correct output and the network's predicted out- 
put. These errors propagate backwards through the 
network, modifying the connection weights based on a 
mathematical equation that defines what is described 
as the learning rule. This process continues until the 
user is satisfied with the accuracy of the network's 
predictions. 

Once the network is satisfactorily 'trained', it is 
put into actual use. The network is fed only input 
data, preferably data it has never seen before. Feeding 
the network the exact same data that was used during 
training only tests the network's ability to 'memorise' 
data. A useful network can accurately predict output 
for data it has never seen before. 

65 



The real challenge in developing a useful neu- 
ral network system is the training process. Back- 
propagation (the learning algorithm used in this pa- 
per) represents a specific example of applied gradient 
descent to optimise a system. The training of the net- 
work is an iterative process based on large numbers 
of data samples representing the traffic flow within 
a certain region. Using standard connection weights, 
the network computes a set of outputs that is moved 
from the input layer to the hidden layer. The system 
compares this set of outputs with the input values by 
calculating a root mean square difference (or global 
error) and modifies the connection weights to displace 
the outputs toward the expected values. If the train- 
ing is successful, the global error is reduced. In over- 
simplified terms, gradient descent works to optimise a 
system by minimising a given function. In the case of 
back-propagation, network error is minimised by op- 
timising the weight values of the connections among 
nodes. Total network error is minimised by following 
the gradient (actually followed down towards a min- 
ima, hence descent). 

The neural network we use in this paper has three 
layers: the input layer transforms qualitative data 
(presence/absence of binary descriptive features) into 
numerical data (the intensity of 222 nodes or process- 
ing elements, one for each descriptive feature in the 
database). The output layer contains the predictions 
of the system in 19 nodes. In the middle, there is a 
set of 67 'hidden' nodes, whose function is to store the 
specific mapping between inputs and outputs. Each 
feature detector in the middle layer looks for a key 
feature or features in the input pattern, and reacts 
strongly when one is found. The output layer can 
then construct an appropriate output pattern based 
on the particular combination of features the middle 
layer has detected. Such an appropriateness is defined 
in terms of the quantity of input received by an out- 
put node. The functioning of a neural network can be 
seen, then, as a process establishing an appropriate 
set of feature detectors in the middle layer and the 
proper response in the output layer. 

9.4    Learning the relationship 
between quaUtative 
description of tools and 
prehistoric activities: the 
training set 

We have used the results of a previous project on ex- 
perimental archaeology {Generation, Description and 
Quantification of Use- Wear in Prehistoric Lithic Tools 
DGICYT: PB91-0130) to obtain an adequate learning 
set and generalise the differential relevance of a set 
of 222 descriptive features, including microscopic and 
macroscopic observations. 

Among these features, we can mention: 

• general information about the shape and typol- 
ogy of the tool; 

• microfiaking: regularity, location, morphology, 
and size in both the dorsal and ventral surfaces; 

• striations and linear features: location, ordering, 
shape, and length in both the dorsal and ventral 
surfaces; 

• micropolish: location, reflectivity, regularity, 
thickness, invasiveness, stage of development 
etc. in both the dorsal and ventral surfaces. 

We have randomly selected 55 experiments with tools, 
from a database with c. 1000 experiments, all of them 
undertaken with exactly the same kind of flint, and 
manufactured in our laboratory. All efforts have been 
made to ensure the right replication of these tools. 

Actions on five raw materials were experimented 
with: fresh bone, wood (soft and hard, fresh and dry), 
meat and skin (from little and big mammals, fresh and 
dried). We also controlled the duration of each exper- 
iment: 5 minutes, 15 minutes and 30 minutes for all 
materials and tools used. The 19 nodes in the output 
layer represent, consequently: 

• raw material: wood, skin, bone, meat 

• condition of raw material: fresh, dry 

• action: motion or use action undergone with 
each tool 

• angle of working edge contact: dorsal, ventral 

• time: short (1-10 minutes), medium (11-20 
minutes), long (more than 20 minutes) 

Our random sample contains a great number of exper- 
iments with wood processing, and fewer examples of 
the other raw materials. Consequently, this training 
set cannot be considered as a universal learning set, 
but a mechanism to refine some hypotheses. Specif- 
ically, that the variability among lithic tools used to 
process wood is so great that it can overlap the vari- 
ability among other kinds of tools. 

9.5    Redundancy and conflicting 
data 

Our neural network cannot be used as an Expert Sys- 
tem. It has produced around 60% correct predictions, 
and it cannot converge to an acceptable level of er- 
ror. There is something in the database or in the 
feature list (input layer) that prevents learning. And 
this 'something' is, obviously, redundancy or redun- 
dant data. 

At the beginning of the paper we stressed the fact 
that in use-wear analysis some activities have a larger 
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influence on some wear traces than on others. Re- 
dundancy occurs when many indicators may have the 
same bad influence on the output. Determining a good 
set of indicators is crucial in generating good predic- 
tions as well as reducing training times to reasonable 
levels. 

Since many indicators at first glance appear to be 
relevant, we should perform sensitivity analysis with 
respect to the different inputs. This involves noting 
the percentage change in the output caused by a spe- 
cific percentage change in one of the inputs, keeping 
all the other inputs the same. But we have also in- 
cluded the possibility of non-linear interactions, that 
is, changes to two or more inputs in tandem can have 
a different effect from that of changes to one input 
alone. Redundancy has not been deleted, because it 
was one of the goals in our analysis to evaluate if re- 
dundancy affects the quality of the classification. We 
have carried out only a preliminary sensitivity analysis 
in order to drop features that do not produce enough 
information. We have used the results of a binary clas- 
sification of input and output units, deleting all inputs 
whose similarity with all output units was zero. This 
was achieved using Jaccard's Coefficient. 

There are, however, more problems in our neural 
network. Conflicting data appear when two identical 
or 'similar enough' input patterns have entirely differ- 
ent outputs. The neural network cannot learn both 
patterns because they are contradictory. The cause of 
this problem may be found in the modelling process. 
Our task is to map input patterns into one of the 19 
output categories. A modelling problem occurs if not 
enough fields are included in the model to distinguish 
adequately between the output categories, or if the 
output categories are correlated in some way, that is, 
a discrimination rule cannot be found to relate some 
inputs with some outputs. Programmers have tried to 
solve this problem by eliminating the conflicting pat- 
terns or by rebuilding the descriptive features and out- 
put units sets (Versaggi 1995). Once again, we have 
tried not to solve the source of data conflicts, but to 
study how those conflicts affect the relationship be- 
tween binary description and functional attribution. 

Consequently, we are not trying to automatise the 
work carried out by the expert archaeologists, but to 
study the potentials of erroneous attribution due to 
redundancy, conflicting data and modelling problems. 
Results from our research are very interesting in this 
respect. 

• It is very difficult to discriminate between ac- 
tions. Wood processing tools can have wide 
intra-group differences that mean some of them 
are like the tools used in other activities. For 
example, skin processing tools have only been 
differentiated by the high degree of wear, com- 
pared with low and middle degrees on wood, 
bone and meat processing tools. But a differ- 
ence at this level contrasts with the lack of dif- 
ference between wood and skin processing tools 

in characteristics like the degree of linkage. The 
same is true for bone processing and meat pro- 
cessing tools, although in this last case (meat), 
we have observed that the location of microfiak- 
ing tends to be different, and that striations are 
significantly shorter than in other cases. To sum 
up, variability in each functional class is so great 
that we have not yet discovered any clear dis- 
crimination between binary descriptors. 

• The condition of worked material, fresh or dry, 
is also difficult to discriminate between. Tools 
used to process fresh materials have some mi- 
nor differences {e.g., presence of negative edges, 
continuous microflaking, some specific distribu- 
tion of micropolish), but most descriptors are 
common to both conditions. 

• The other characteristics (angle of work, contact 
between tool and worked material, duration) are 
even less successfully discriminated. 

We do not pretend to say that binary descriptors are 
not correlated with activity and conditions of work, 
but that the observed variability in an experimental 
context is so great, that we cannot build then directly 
into some discrimination functions or an Expert Sys- 
tem based only on a few replications. 

9.6    Statistical analysis v. 
Artificial Intelligence 

Why are the neural network results so bad? Or we 
could ask, what is the interest in creating a computer 
program that cannot explain the use of lithic tools? 
Our intention in the first part of this project is not 
to produce a successful Expert System, but to study 
why archaeologists make mistakes, even though they 
mostly do not know that they are mistaken. 

Our neural network is a simulation of expert ar- 
chaeologists who cannot explain their data. Mistakes 
and mis-attributions made by the program are like er- 
rors made by the archaeologist. This is the interest 
of this part of the project: to simulate archeological 
reasoning in order to discover where the error is. 

Consequently we have compared the neural net- 
work's actual state of activation (after c. 900 iter- 
ations and one modiflcation of its topology) with a 
statistically obtained fuzzy cognitive map. For practi- 
cal reasons we have only processed five output units: 
raw material worked with that tool, and condition of 
this raw material. The purpose was to investigate the 
relationship between the most relevant inputs and this 
short list of outputs, and how the relationship be- 
tween outputs affected the discrimination rule. We 
have built a hybrid neural/statistical machine, where 
the link weights have not been trained, but they have 
a fixed value: Jaccard's coefficient between every in- 
put and every output. That is to say, we have calcu- 
lated the similarity (the number of cases where both 
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features appear together) between the description and 
the experiment that would have produced that wear. 
Results are only relatively similar with those obtained 
through back-propagation. 

First of all: the neural network could not learn 
to discriminate meat processing tools because there 
were not enough cases in the random sample of ex- 
periments. The neural network has tried to discrimi- 
nate based on what it knew about other raw materials, 
but program's guesses have been demonstrated to be 
wrong. 

Secondly, there is some degree of discrimination 
between tools, although the neural network was un- 
able to discover it. The processing of wood, bone and 
skin produce different use-wear traces: 

• Wood: one edge employed only, right edge, lit- 
tle and regular microflaking, with semicircular 
shape, and single ending, some micropolish in 
edges. 

• Bone: more than one edge employed, big, irreg- 
ular and continuous microflaking, with trape- 
zoidal shape and abrupt ending, short stria- 
tions all over the tool, evidence of micropolish 
in marginal location. 

• Skin: irregular edge, distinctive microflaking, 
strong evidence of micropolish. 

Why did the neural network not discover this discrim- 
ination? It did not because units in the output layer 
are correlated. That is, because the way the action 
was performed affects the traces produced by the task 
itself. In other words, in the sub-set of results anal- 
ysed here, the variability of use-wear traces among 
tools used to process dry raw materials has no lin- 
ear discrimination between wood and bone processing 
tools. We see that some input units (descriptors) are 
positively correlated with one output unit, but when 
we analyse the binary correlation (Jaccard's coeffi- 
cient) between these input units and more than one 
input (for instance, tools used to process dry wood, or 
tools used to process fresh bone), the discrimination 
rule changes significantly. Any discrimination among 
tasks disappears when we introduces the discrimina- 
tion in other experimental conditions. These different 
sources of discrimination are not linearly separable. It 
is not the same to learn to discriminate between wood 
and bone processing as to discriminate between cut- 
ting fresh-wood during 15 minutes, and cutting dried 
wood during 30 minutes. 

9.7    Conclusions 

If we want to understand the specific relationship be- 
tween wear evidences (at the microscopic or macro- 
scopic level) and function, we have to take into ac- 
count all conditions and circumstances in which the 
tool was used, and not only the use alone.   We still 

think that a neural network approach is the best way 
to discriminate the influences of all factors aflFecting 
wear descriptors, but only if we eliminate all poten- 
tials for redundancy and conflicting data. 

It is important to realise, however, that sometimes 
the multidimensional nature of the wear/function re- 
lationship has been confused by an erroneous under- 
standing of redundancy. We think that redundancy 
exists at the level of descriptors, and not of explana- 
tions. The final version of our neural network will 
include only those binary descriptors related signifi- 
cantly with tasks, and a totally different output layer, 
where units will be unrelated. For example: 

Unit 1 experiments made on fresh meat during 30 
minutes, and in conditions x, y, and z. 

Unit 2 experiments made on fresh meat during 30 
minutes, and in conditions a, b, and c. 

Unit 3 experiments made on fresh bone during 30 
minutes, and in conditions x, y, and z. 

Unit 4 experiments made on fresh bone during 30 
minutes, and in conditions a, b, and c. 

Our research has demonstrated that we need more ex- 
perimental control among functional classes if we want 
to build efficient discrimination rules. Use-wear anal- 
ysis is more complex than we usually believe. There 
are statistical and mathematical tools to process this 
complexity, but we as archaeologists should take into 
account the potential of redundancy, conflicting data 
and modelling problems before building impressive 
but inefficient expert systems. 
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