
26

Compacting Anglo-Saxon cemetery data
Jeremy Huggett

Research Centre for Computer Archaeology, North Staffordshire Polytechnic

26.1 Introduction

This paper is not about databases as such, nor is it simply an account of a data management
system produced as part of a research project designed to record Anglo-Saxon cemeteries
although this will be referred to in passing. Instead, this paper is concerned with the way in
which data m general is handled within a machine-based environment. The aim is to discuss the
ways m which archaeological data may be recorded and stored more efficientiy on computer
and to descnbe the benefits, as well as some of the disadvantages, that can result.

I start from the premise that archaeological data are not always recorded on computer as
efficienüy as they might be. When the inevitable happens and disc space runs out. the tendency
IS to upgrade the storage capacity rather than to make better use of existing faculties Rather
than list specific occasions when this has happened, this paper will argue that anyone who
includes character or text string entries in their database is unlikely to be making best use of
their disc space.

The rapidly falling price of storage media, and hardware in general, is often cited as a reason
against the need for compact data storage, but efficient storage is notYhe only recommendation
for data compaction. Reducing the amount of disc space required by a data set can have
a knock-on effect on such factors as processing time and ultimately means that much larger
quantities of data can be recorded and manipulated without upgrading the hardware

Two main levels of data compaction may be defined: substitution, and compression To
some extent these are organised in ascending order of programming complexity, but these
techmques may be employed individuaUy or in combination with an increasing saving in storage
requirements. If both techniques are employed together the savings may be quite dramatic To
use my own system as an example, it is estimated that the entire Anglo-Saxon burial data set
consisnng of around 30,000 burials could be held in approximately 800 kUobytes of disc space
By way of companson, if the same data set were to be held on disc in its expanded fonn it
would require something in the order of 30,000 kilobytes or 30 megabytes.

26.2 Substitution

The substitution of data by a code is a feature of some archaeological data recording systems
with Dommic Powlesland's excavation recording system being peihaps the most obvious exam-
ple (Powlesland 1985). A recent book on archaeological data processing describes three types
of code-the fiill keyword, the abbreviated keyword, and the numeric code (Richards & Ryan
1985, p. 122). Of these, only the numeric code offers a real saving in ternis of disc space.

269

JEREMY HUGGETT

There are also the additional benefits which accompany the use of a numeric code: rapid sorting
and processing of data, speed of entry, and the facility to use the number system for statistical
analyses for instance.

Replacing a character string, which might correspond to a site name or a descriptive category,
with a single number can result in a substantial reduction of the size of the record. A 30 character
string which would occupy 30 bytes of storage space can easily be replaced with a single 2-byte
integer.

However, there are problems with codes, particularly because they may be difficult to
remember and require a code reference book. In addition, once coded, the data may be difficult
to verify. In fact, such criticisms are very minor, and with some care at the design stage need
not apply. To illustrate this, the process developed to record an Anglo-Saxon burial will be
briefly described.

The fields are defined at the initialisation stage, as is usual, and during a recording session
they appear as 'questions' which have to be answered by the user. Data substitution occurs
at this stage, since rather than entering a text description for each field, the user enters the
corresponding numeric code. An expert user will know the codes, but if required, each question
will appear on screen accompanied by a menu listing the various options along with their
numeric code. Thus, there is no need for a code book, since the program itself is able to prompt
the user if necessary and the codes remain transparent to the user. Each set of numeric codes
is only unique within the field—a number T may be entered in any of the fields, but it will
have a different meaning depending on the context. Some fields have too many options to be
conveniently displayed on screen—the artefact name, for instance. In this case, a keyword entry
system is used, whereby the user enters the keyword, or an abbreviation of it, and the system
places the unique number associated with that entry into the record. One side-benefit of this
approach is that it acts as an automatic spelling checker.

These menu options could be entered in advance, along with the field names, at the initialisa-
tion stage. This assumes that all the possible options are known before,data capture commences,
and that the descriptions of all graves and their contents could easily be reduced to a fixed set of
templates. However, this would be an extremely inflexible approach since no allowance would
be made for burials which did not fit conveniently into any of the pre-set categories. It would
also mean that a large number of possible options would have to entered, many of which might
never be used.

Instead, the approach that was adopted was to develop a system which allowed the menus
to expand dynamically as required. Menus are initialised widî the option 'Unknown' where
applicable, and further options are only added when they are required to deal with a particular
burial. If needed, the user simply enters a number one larger than the greatest shown on the
menu, and is then prompted for the new option. The next time that menu appears on screen,
the new entry has been added to it. Similarly, if no match is found for a keyword provided,
the system checks with the user that the entry is correct before adding it to the lookup file and
assigning a new number to it. A maximum of 30 characters is allowed for each menu entry,
and these are only stored once in a lookup file rather than in every single record.

In this way, a burial record is built up, consisting of a series of numbers corresponding to
the descriptive terms and other categories (Fig. 26.1). The level of compaction in this example
may be calculated using the grave record as an example. A record with seventeen 30-byte fields
totalling 510 bytes is reduced to seventeen 2-byte integers totalling 34 bytes: a reduction of
93%.

270

26.
COMPACTING ANGLO-SAXON CEMETERY DATA

Field name Descriptive Substituted
-——— . Record Record

CEMETERY NAME Nassington 34"
GRAVE NUMBER 9 g
BURIAL RIPE Inhumation 1
GENERAL STRUCTURE Flat Burial 1
EXTERNAL STRUCTURES None 1
INTERNAL STRUCTURES None 1
GENERAL BURIAL TYPE Single Burial 1
RELATIONSHIP WITH OTHER GRAVES None
GRAVE NUMBER _
SEX

1
0

Male 2
5

315
^^^ Adult (18-40 yrs)
ORIENTATION 315

GENERAL POSITION Extended, Supine "2
HEAD POSITION Facing Up 1
LEFT ARM POSITION Along Side 1
RIGHT ARM POSITION Along Side 1
LEG POSITION Parallel (together) 1
GRAVE GOODS POINTER No Grave Goods 0

Fig. 26.1: A substituted grave record

26.3 Compression

However, storing data as 2-byte integers is stiU wasting space. Two bytes can hold a single
number ranging from 0 to 65535, yet most applications are unlikely to need numbers which
are larger than a few hundred. Since zero can be held in 1 bit, and 100 needs only 7 bits for
mstance, it can be seen that not all of the 16 bits may actually be filled. In other words a 2-byte
integer is same as a fixed-length record: more than large enough to store the biggest number
likely to be required, but consequenüy wasteful of space if only small numbere are used

The system developed uses a technique of bit-packing to compress the contents of several
fields into a single half word or 2-byte number. The number of bits required to hold each
field has to be defined at the initialisation stage. This imposes an apparent limitation in that
It assumes that the upper limit for the field is known. In other words, a decision has to be
made at the imtialisation stage as to whether there are likely t« be five categories in a particular
field or ten. However, generous limits can be set with very litüe additional cost in storage
overheads-seven bits can store numbers up to 127 for instance, but simply adding one extra
bit allows for numbers up to 255 (Fig. 26.2).

Having defined the size of each field in tenns of the number of bits required a code is
generated which is then used for the subsequent encryption of the entries. Using the number
of bits allocated to each field, the number of fields which can be compressed into each 2-byte
mteger is calculated, together with the power shift required to compress each field entry This
process is earned out once only, at the initialisation stage, and the codes are then loaded into
mernory at the start of each nm. For example, eleven bits are assigned to the cemetery name
field, aUowing for 2047 cemeteries. This leaves five bits free in the first compacted entry.
1-he next field is the grave number, which is assigned nine bits, allowing for 511 graves per
cemetery. The grave number is compressed into the remaining five bits of the first compacted
entry, with the remaining four bits carried over to the second entry. The second compacted
entry therefore has sixteen bits free less the four bits carried over fix)m the grave number- a
total of twelve bits left. Into this space is compressed the burial rite field (one bit), general

271

JEREMY HUGGETT

Bits Largest number

1 1
2 3
3 7
4 15
5 31
6 63
7 127
8 255
9 511
10 1023

11 2047
12 4095

13 8191
14 16383

15 32768
16 65535
n 2**n-l

Fig. 26.2: Upper limits for bit-packed entries

grave structure (three bits), external structures (three bits), internal structures (three bits) and
burial type (three bits, with one carried over into the third compacted entry). The end result
is that all seventeen fields, together with a pointer to the grave goods record, are compressed
into six 2-byte numbers. Ignoring the grave goods pointer, the seventeen fields, which were
originally reduced to 34 bytes, are finally reduced to ten bytes (Fig. 26.3).

The important figure is what this means in terms of an overall reduction in storage require-
ments. Compared with a fully expanded grave record, a 97% reduction is achieved using the
substitution and compression techniques described above.

26.4 Conclusions

The figures, I think, speak for themselves. Using compaction techniques the savings in storage
space are dramatic: in the Anglo-Saxon example, the record is reduced to 3% of its former
size. In spite of this, the process of data compaction is often viewed with suspicion, and there
seems to be a general reluctance to apply compaction techniques. The reasons for this are not
clear.

As mentioned above, the increasing availability of cheap mass storage devices is often used as
an argument against the need for efficient data storage. While there is no denying that the price
of hard disc drives is tumbUng, it should hardly need to be pointed out that data always expands
to fill the space available. The attitude that the hardware can always be expanded is extremely
short-sighted, if not reckless. Archaeology in this country is a publicly-financed business, and
has a responsibility to spend wisely what little money it has. The purchase of urmecessary
computer hardware is hardly the most serious waste of resources there is, but in many cases the
purchase of a computer represents a considerable proportion of the capital budget of a smaU
unit. In addition, running out of disc space may be a result of sloppy programming rather than
an excess of data.

272

26. COMPACTING ANGLO-SAXON CEMETERY DATA

Substituted
record

34
9

Bits per field with split
entries

Compressed
record

1
0
2

5
315

2

1
1
1
1
0

first half word 11
5

4
1
3
3 second half word
3
2 ~

18466

18736

third half word

fourth half word

16386

1071

1
3
9
3

3
9
4

3
3
3 fifth half word
3

•3

14
2 sixth half word Q

Fig. 26.3: Compression of a substituted record

585

273

JEREMY HUGGETT

A major criticism of data compaction is that it may be difficult to interpret the raw data held
on file. This is certainly the case with the techniques employed on the Anglo-Saxon burial data
set described above—^it would probably take ten minutes and several sheets of calculations to
decode a single burial record by hand. However, even a straightforward text file undergoes a
form of encryption when it is written to disc, and its subsequent interpretation is controlled by
the operating system. Coding data should hold no fear for archaeologists—^most archaeologists
do it all the time—and if anything, using a computer to code data simplifies the process. In
addition, any program which is capable of coding a record can be used to decode it again.

There is, of course, one drawback with data compaction—the actual process of encryption
and decoding requires additional processing, and therefore a small increase in time is to be
expected. In most cases, however, it is not necessary to decode a record completely. Searches,
frequency counts and other forms of statistical processing can all be carried out on the numeric
record, so that the only decoding involved is that which converts the compressed record back
into the substituted numeric record. Indeed, all such data handling techniques can be performed
more efficiently and rapidly on a numeric record rather than an expanded character record. The
only time that a record needs to be decoded completely is when it is output to the screen or
printer for validation, listing, or archiving on paper.

Any increase in processing time is limited to the input/output phases and is very small—
barely noticeable on a small micro, and on a mini or mainframe computer Üie response still
appears instantaneous. On the basis of the dramatic savings in storage alone, I would suggest
that it is a small price to pay. However, the benefits extend further than the physical reduction
in size of a data set. Processing the record in numeric form is much more efficient in terms of
computer time than handling text records. In addition, the compaction of data enables records
to be blocked together so that a number of data records may be read or written in a single
operation, thus reducing processing time by increasing the number of records held in memory
and cutting the number of disc accesses required. Consequently, any increase in processing
time resulting from the compaction of data will be vastly outweighed by the reduction of time
spent accessing the disc, since fewer disc accesses wiU be required to .transfer the same amount
of data, and by the increased efficiency in processing the data once they have been read into
memory.

hi conclusion, two fimal points may be made. First, the techniques outlined above are only two
possible ways of compacting data. For example, Dominic Powlesland employs rather different
methods of substitution and compression with similar success, although the overall level of
compaction is lower (Powlesland 1985). Finally, the advantages of data compaction are not
restricted to those who start out by compressing their data—^these techniques may be applied
retroactively to data sets which are already held on computer. Anyone facing the onset of a
data storage crisis in the future could do worse than consider a more efficient method of storage
rather than automatically move up to the next rung on the ladder of hardware escalation.

References

POWLESLAND, D. 1985. 'Random access and data compression with reference to remote
data collection: 1 and 1 = 1', in M. A. Cooper & J. D. Richards, (eds.). Current Issues
in Archaeological Computing, pp. 23-33, International Series 271, British Archaeological .
Reports, Oxford.

RICHARDS, J. D. & N. S. RYAN 1985. Data Processing in Archaeology, Cambridge University
Press, Cambridge.

274

