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ZUSAMMENFASSUNG    
 

Malaria ist eine der wichtigsten Infektionskrankheiten und betrifft weltweit mehrere 

Millionen Menschen. Eine wirksame Impfung gegen Malaria ist momentan noch nicht 

verfügbar, wäre aber eine wertvolle Ergänzung zu den bereits bestehenden Malaria-

Kontroll-Strategien. Obwohl davon ausgegangen wird, dass Antikörper (AK) die 

natürlich erworbene partielle Immunität gegen den komplexen Malariaerreger 

vermitteln, bleiben der genaue AK-vermittelte Mechanismus bzw. die immunologischen 

Zusammenhänge, die zum Schutz gegen schwere Malaria führen, unklar. 

Standardisierte Versuche zur AK-Messung fehlen ebenfalls, weshalb keine Einigkeit 

darüber besteht, welche Methode am besten geeignet ist, um Antikörper gegen Malaria 

zu quantifizieren, zu beschreiben und zu interpretieren. In diesem Zusammenhang ist 

es das Ziel dieser Dissertation robuste standardisierte Verfahren für Messungen der 

Plasmodium-spezifischen AK einzuführen und die AK-Avidität als einen potenziellen 

Marker des impfvermittelten Schutzes gegen Malaria zu untersuchen.  

Im ersten Teil wird eine neue zytometriebasierte Immunfluoreszenzmethode, bei der 

ganze Parasiten verwendet werden, beschrieben. Auf diese Weise wird versucht  den 

Schutz vor Malaria mit der AK-Antwort zu erklären. Ein neu entwickelter 

Subtraktionsalgorithmus (overlap substraction algorithm (OSA)) ermöglicht die 

untersucherunabhängige Analyse der Daten. Im Rahmen der Dissertation wurden 

Messungen an Proben von Kindern und Erwachsenen, die Teilnehmer in einer 

klinischen Studie Phase I für den Malaria-Impfkandidaten GMZ2 waren, vor (D0) und 

nach (D84) der Impfung durchgeführt. Die Ergebnisse zeigen, dass Kinder, die mit der 

höchsten GMZ2-Dosis (100µg) geimpft wurden, einen 1,33-fachen Anstieg des Anteils 

fluoreszierender Zellen (percent positive fluorescent cells (PPFC; p=0,003)) an Tag 84 

im Vergleich zu Tag 0 aufweisen. An Tag 84 konnte ein impfinduzierter verstärkender 

Effekt auf die bereits existierende anti-parasitäre Immunität (1,23-facher Anstieg in der 

mittleren Fluoreszenzintensität (mean fluorescent intensity (MFI), p=0,03) in semi-

immunen Erwachsenen nachgewiesen werden. 
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Im zweiten Teil dieser Arbeit wurde eine modifizierte ELISA-basierende Methode 

implementiert, um den Aviditäts-Index (AI) von anti-Circumsporozoite Protein (CSP) AK 

von zwei unterschiedlichen Immunisierungsschemata (0-1-2 Monate und 0-1-7 Monate) 

mit dem Malariaimpfstoff RTS,S in einer Kohorte von gesunden afrikanischen 

Säuglingen zu untersuchen. Die Analysen zeigen, dass die Avidität der anti-CSP AK 

nach RTS,S Impfung wie erwartet ansteigt, die absolute AI die Impfeffektivität aber nicht 

vorhersagt. Die AIs der AK waren in beiden Immunisierungsplänen vergleichbar. 

Hervorzuheben ist, dass die Änderung der anti-CSP AK Titer (dCSP) und des Aviditäts-

Indexes (dAI) zwischen der zweiten und der dritten Immunisierung mit 77% und 54% 

Reduktion des Risikos zur Entwicklung einer Malaria, assoziiert ist. Die Entwicklung der 

Avidität von CSP-spezifischen AK sollte in weiteren Studien untersucht werden, um zu 

sehen ob sie ein Marker für die Wirksamkeit von RTS,S ist.  

Zusammenfassend lässt sich sagen, dass standardisierte neue Instrumente entwickelt 

wurden, um parasitenspezifische AK-Antworten zu untersuchen und die detaillierte 

Erforschung von anti-CSP AK-Avidität erweitert das momentane Verständnis der AK-

vermittelten Immunität gegen Malaria. Diese Untersuchungen können als Basis für 

zukünftige Arbeiten zur AK-basierter Immunität für Malaria dienen und zur Entwicklung 

und der Evaluation von funktionellen anti-Malaria Impfungen der zweiten Generation 

beitragen. 
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SUMMARY  

Malaria remains a major public health scourge affecting millions of people worldwide. 

An effective antimalarial vaccine is currently lacking and if available would add to other 

malaria control strategies. Although antibodies (Abs) are thought to mediate protective 

immunity to malaria, the exact Ab-mediated mechanisms or immunological correlates of 

protection against the complex plasmodial parasite remain unclear. Standardized 

assays for Ab measurement are also lacking and therefore no consensus exists on the 

best approach to quantitate, report and interpret antimalarial Abs. In an attempt to 

address some of these hurdles, this dissertation aims to implement robust standardized 

assays for measurements of Plasmodium-specific Abs and to investigate Ab avidity as a 

potential surrogate marker of vaccine-mediated protection against malaria. 

 

In the first study, a novel cytometric based immunofluorescence assay technique is 

described that improves the detection of anti-plasmodial Abs using whole parasites and 

may be suitable for investigating Ab-based correlates of protection. An overlap 

subtraction algorithm (OSA) developed in parallel eliminates the investigator-dependent 

effects and thus facilitates the data analysis process. The workflow was applied to pre-

(D0) and post-vaccination (D84) clinical samples from children and adult participants of 

Phase 1 trials of the malaria vaccine GMZ2. The results demonstrate that children 

vaccinated with the highest GMZ2 dose (100µg) showed a 1.33-fold increase in percent 

positive fluorescent cells (PPFC; p=0.003) on D84 compared to D0. Meanwhile, on D84, 

a vaccine-induced boosting effect of pre-existing anti-parasitic immunity (1.23-fold 

increase in mean fluorescent intensity; MFI, p=0.03) was observed in semi-immune 

adults. 

 

In a second study, a modified ELISA-based method to assess the avidity index (AI) of 

anti-circumsporozoite protein (CSP) Abs elicited by two immunization (0-1-2 month and 

0-1-7 month) schedules with the malaria vaccine RTS,S in a cohort of healthy African 

infants was used. The analyses revealed that the avidity maturation of anti-CSP Abs 

following RTS,S vaccination occurred as expected, although absolute AI did not predict 

vaccine efficacy. The AIs of Abs were found to be similar in both immunization 
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schemes. Interestingly, the change in anti-CSP Ab titer (dCSP) and avidity index (dAI) 

between second and third immunization was associated with 77% and 54% risk-

reduction to develop clinical disease, respectively. Avidity maturation of vaccine-specific 

Abs deserves further investigation as surrogate marker of protective efficacy.  

 

Together, standardized new tools for investigating parasite-specific Ab responses were 

developed and the detailed investigation of anti-CSP Ab avidity expands contemporary 

understanding of Ab-mediated indicators of protective immunity against malaria. These 

studies might serve as a basis for further work on Ab-based immunity to malaria and 

contribute to the development and evaluation of functional second-generation 

antimalarial vaccines.  
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1. GENERAL INTRODUCTION  

 

1.1 Malaria: causative agent, epidemiology and control 

Malaria is an infectious disease caused by obligate intracellular protozoal parasites 

which belong to the genus Plasmodium. The parasite is transmitted from human to 

human by infected female Anopheles mosquitoes. Currently, five plasmodial species 

are able to infect humans, namely P. falciparum, P. vivax, P. ovale, P. malariae, and P. 

knowlesi. In tropical Africa, P. falciparum is the most common species and is 

responsible for nearly 225 million cases of malaria and almost a million deaths annually, 

mostly among children below 5 years of age and pregnant women [1]. Meanwhile, in 

Asia and Latin American countries most of the remaining malaria cases are caused by 

P. vivax. The temperate regions (USA, Canada and Europe) that were also endemic for 

malaria are now free of malaria today due to successful implementation of malaria 

control including insecticide programs using dichlorodiphenyltrichloroethane (DDT) 

(Figure 1) [2].  

 

The continued large-scale implementation of malaria control strategies in Africa, such 

as insecticides-treated mosquito nets (ITNs) and highly effective artemisinin-based 

therapies, has led to a significant reduction in malaria case incidence (reviewed in [3]). 

Nevertheless, malaria transmission is difficult to control in most endemic countries, 

partly due to the rise of insecticide and antimalarial drug resistance, even to the highly 

effective artemisinin-based therapies [4, 5]. This underscores the urgent need to 

develop more reliable interventional tools, including efficacious antimalarial vaccines to 

curb the disease.  
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Figure 1. Intensity of malaria in countries with ongoing malaria transmission, 2013.  

Source: WHO World Malaria Report, 2014 [2]. 

 

1.2 Life cycle of Plasmodium spp. 
 
The malaria life cycle is complex with different parasite stages developing in both the 

human and mosquito hosts (Figure 2). The cycle begins following the mosquito’s 

injection of saliva containing infective sporozoites into human skin. The sporozoites exit 

the skin tissues and travel through the bloodstream and ultimately invade liver cells, 

multiply and differentiate asexually as exoerythrocytic stage parasites (liver-stage). 

During development in hepatocytes, the host presents no clinical symptoms of the 

disease.  

 

Depending on the parasite species, maturation of liver-stages takes five to ten days. 

One infected liver cell releases thousands of merozoites into the blood stream that 

invade erythrocytes, grow, multiply and ultimately lead to the infection of up to ten new 

erythrocytes (blood-stage). This asexual blood stage results in a feed-forward loop with 

exponential growth of the parasite population if it is not controlled by immunity, 
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metabolic restriction or antimalarial treatment. It is therefore responsible for the 

symptoms and pathology of malaria. The erythrocytic cycle follows a variable periodic 

pattern: one day for P. knowlesi; two days for P. falciparum, P. ovale and P. vivax or 

three days in the case of P. malariae (reviewed in [3]).  

 

During the erythrocytic cycle, some merozoites do not multiply but instead differentiate 

into the male and female gametocytes. When taken up by the mosquito during feeding, 

these sexual forms may fertilize within the mosquito’s midgut to form a zygote, which 

matures to become an ookinete and subsequently the oocyst, which ultimately releases 

sporozoites, the infective form of the parasite. The sporozoites migrate to the 

mosquito’s salivary glands and become available to infect the next host, thus 

completing the parasite’s transmission cycle. 

 

Figure 2. Life cycle of Plasmodium spp. in the human and mosquito hosts. Numbers in 

square boxes represent crude estimates of malaria parasites in the respective stage.  

Reprinted with permission from Elsevier Limited. 

Source: White et al. 2014 [3]. 
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1.3 Immunity to malaria 

During malaria parasite development in the vertebrate host, many antigens produced by 

the different parasite stages are capable of provoking the host’s innate, humoral and 

cellular immune responses. Successful activation of innate, humoral and cellular 

immune mechanisms can induce a complex network of defense machineries that lead 

to the release of immune mediators that can limit further growth and development of the 

parasite (reviewed in [6]) as described below or result in immunopathology including 

sepsis-like syndromes and other life-threatening complications. 

 

1.3.1 Innate immunity to malaria 

The innate immune system provides the first-line of defense against Plasmodium 

infections after the induction of non-specific immune effector cells that are capable of 

targeting and damaging the malaria parasite (reviewed in [6]). Pre-existing cells of the 

innate immune system are able to sense infection using pattern recognition receptors 

(PRRs), such as toll-like receptors (TLRs) expressed in various cell types including 

dendritic cells (DCs) [7, 8]. Once sporozoites are injected into the host’s skin, they could 

be detected and engulfed by DCs, monocytes, macrophages, natural killer (NK) cells or 

other cells of the innate immune system present near the inoculation site. The 

plasmodial antigens are processed and presented to T cells in association with MHC 

class II molecules [9, 10], which may result in proliferation of antigen-specific T cells. A 

successful immune response (i.e. a response that results in clearance of the pathogen) 

depends on multiple factors, including the strength of stimulation, type of infected cells 

and quality of the antigen recognition. Apart from resolving the infection, some immune 

cells are instrumental in fine-tuning the magnitude and quality of the ensuing antibody- 

or cellular-mediated immune responses [10-12].  

Due to the large antigen load blood-stage parasites can initiate strong innate immune 

responses via the generation of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and 

interleukin (IL)-12 by different cell types (reviewed in [6]). However, studies in animal 
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models report that the parasite’s liver-stages could equally induce potent innate immune 

responses mediated by IFN-γ secretion [13] when stimulated appropriately. 

 

1.3.2 Antibody-mediated immunity to malaria  

The humoral immune response against asexual blood stage parasites is marked by the 

generation of a large repertoire of Immunoglobulin G (IgG) secreting cells. So far, the 

role of IgM, IgA, and IgE is not well described [14]. However, antibodies are important in 

mediating protective immunity to malaria, as has been clearly shown in passive transfer 

experiments where hyper-immune serum [15] and purified total IgG [16, 17] were used 

to control blood-stage clinical malaria. Similar studies in non-human primates (NHPs) 

confirmed that protective antibodies are critical for clearance of asexual blood-stage 

malaria infections [18]. Additional studies further demonstrated that transfer of 

antibodies to the circumsporozoite protein (CSP) of P. falciparum can protect mice from 

subsequent sporozoite challenge [19-21]. 

 

The IgG-mediated protection is largely dependent on the breadth of specific cytophilic 

IgG1 and IgG3 antibodies (reviewed in [22]). Though parasite-specific IgE antibodies 

also increase during malaria infections, it is not clearly known how they contribute to 

antimalarial immunity [14].  In general, antibodies exert protective functions by inhibiting 

hepatocytes invasion (reviewed in [6]), merozoite invasion of erythrocytes [23], blocking 

parasite adherence and sequestration to host’s tissues to avoid clearance in the spleen 

[24], and elimination of parasite-infected red cells by phagocytosis [25]. Antibody-

dependent cellular inhibition (ADCI) has been proposed as a mechanism by which 

antibodies to glutamate rich protein (GLURP) and merozoite surface protein (MSP)-3 

may confer protection [26]. Although IgG1, IgG3, tumor necrosis factor (TNF) and other 

molecules have been reported to play a role in ADCI [27], the IgG3 antibodies against 

an MSP3-derived peptide (LR55) have recently been identified as the major inducer of 

ADCI activity [28]. The relative contribution of the different antibody-mediated activities 

to control malaria following naturally acquired infection and vaccine-induced immunity 

are not known. 



15 
 

1.3.3 Cell-mediated immunity to malaria  

As described earlier, during the pre-erythrocytic phase of development, neutralizing 

antibodies can block hepatocyte invasion by sporozoites. Subsequently, the parasite 

develops within liver cells, a compartment that is difficult to access by antibodies. 

Hence, parasite-infected liver cells seem to be targeted by CD8+ T cells via secretion of 

the cytolytic factors perforin and granzyme B (reviewed in [29]). This could explain why 

higher levels of granzyme B-producing CD8 T cells have been associated with 

protection from clinical malaria following challenge of human volunteers with sporozoite-

infected mosquitoes [30]. 

 

Apart from CD8+ T cells, specific CD4+ T cells are also associated with a successful 

immune response against pre-erythrocytic stages. For example, a recent study reported 

the strongest association of protection with cytotoxic CD4 T cells in humans following 

sporozoites challenge via the bites of the mosquito vector [30]. Four main subsets have 

been reported based on their cytokine patterns, namely, T helpers (Th) 1, Th2, Th17 

and Tregs. Th1 cells secrete inflammatory cytokines such as IL-2, IFN-γ, and TNF-α, 

which activate macrophages and other cells to produce their own mediators. Th2 cells 

produce mainly IL-4, IL-5 and IL-13, which regulate the humoral immune response by 

activating B cells to differentiate into antibody secreting cells (ASCs) and produce 

antibodies. In addition, CD4+ T cells potentiate and sustain CD8+ T cells responses as 

well as regulate the cytokine produced by Th1 and Th2 cells to equilibrium levels 

(reviewed in [31]), a balance that is likely to determine the immunological control of 

malaria parasites. The initial pro-inflammatory response following malaria infection is 

crucial for the control of parasite replication as well as clearance of infected red blood 

cells (RBCs). A lack of an effective pro-inflammatory response could lead to unrestricted 

proliferation of the parasite. Conversely, failure to regulate the inflammatory response 

may result in the development of severe malaria (reviewed in [32]). In addition to the 

cell-mediated responses described, antibody-mediated anti-parasitic activity is crucial 

for the final control and clearance of malaria parasites (reviewed in [6]). 
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1.3.4 Naturally acquired immunity and immunological memory to malaria 

It is generally believed that naturally-acquired immunity to malaria is short-lived and 

requires repeated exposure to parasite antigens to generate and sustain an effective 

memory response. Immunological memory, which builds up over time is orchestrated by 

memory T and B cells. These cells are known to rapidly proliferate and differentiate into 

T and B effector cells upon pathogen encounter, where they play key roles in protective 

immunity to malaria. For instance, accumulated long-lived memory B cells rapidly 

secrete specific high-affinity and high-titered antibodies to the most frequently 

encountered parasite antigens that are instrumental for control of blood-stage parasite 

load (reviewed in [6, 33]).  

 

Notwithstanding, memory responses to plasmodial antigens seem not to be very 

effective and likely attributable to the seasonal nature of malaria transmission in 

endemic areas, the complexity of the pathogen and its life cycle and the constant 

exposure of humans to persistent or intermittent malaria infection (reviewed in [34]). 

Other challenges include the fact that naturally-induced responses are mostly antigen- 

and stage-specific, the difficulty of inducing high amounts of antibodies of the required 

quality and the development of parasites in different intracellular host’s systems shields 

them from recognition and attack by antibody-mediated mechanisms further limit the 

generation of potent long-term memory responses to malaria (reviewed in [6]). 

 

The provision of long-lasting protection is important for successful immunization 

programmes and many vaccines are optimized to generate a robust, long-lived 

immunologic memory. In this light, successful vaccines, such as those against yellow 

fever, smallpox, polio, tetanus toxoid and measles are prime examples as they provide 

up to lifelong protection against re-infection through antibody- and cell-mediated 

mechanisms ([35], reviewed in [36]).  

Although no vaccine is currently licensed for use against malaria, an efficient 

antimalarial vaccine may need to induce robust and strong immune responses in order 

to confer protection against clinical malaria [37]. Antibodies alone may not suffice to 

achieve high levels of protective efficacy. Hence, the induction of potent vaccine-
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specific T cell responses may also be crucial to confer protective immunity to malaria 

(reviewed in [6]), especially when the pre-erythrocytic stages of the plasmodial life-cycle 

is targeted.  

 

1.4 Malaria vaccine development 

Throughout history, vaccination has been one of the most successful strategies of 

controlling human and animal diseases. Until today, all successful vaccines were 

developed empirically, with limited understanding of how they induce protective 

immunity. This makes it very difficult nowadays to apply the same approach to design 

highly efficacious vaccines for emerging diseases [38]. The same is true for malaria 

vaccine development, where so far no reliable protective mechanisms or immune 

correlates of protection have been identified. Compared with some viruses and bacteria 

that are controllable through vaccination, malaria parasites are much larger and 

complex, as the parasite contains approximately 5000 diverse proteins, some of them 

highly polymorphic. This complicates the task of developing highly protective subunit 

malaria vaccines and further explains why until date no malaria vaccine is available for 

clinical use (reviewed in [6, 39, 40]). Notwithstanding, intensive research is ongoing to 

develop stage-specific vaccines targeting the three major parasite developmental 

stages; sporozoites and infected hepatocytes (pre-erythrocytic stage), merozoites and 

infected erythrocytes (asexual blood stage), as well as gametocytes (Figure 3). The 

results so far are promising, as a good number of candidates described below are 

currently in clinical development (Figure 4). The present work will focus on the RTS,S 

and GMZ2 vaccine candidates since the author took part in their development.   
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Figure 3. Malaria vaccine approaches: aims and required immune responses. TEM, 

effector memory T cells; TCM, central memory T cells.  

Reprinted with permission from Nature Publishing Group. 

Source: Riley and Stewart, 2013 ([6]). 
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Figure 4. Global malaria vaccine development pipeline.  

Source: WHO, 2015 [41]. 

 

1.4.1 Pre-erythrocytic stage vaccines 

As depicted in Figure 3, the pre-erythrocytic stage vaccines are designed to block 

infection of liver cells by sporozoites as well as prevent completion of their development 

within hepatocytes, if infection occurs [6]. Targeting these parasite forms is 

advantageous but also difficult as only few sporozoites are normally transmitted to 

humans when the vector takes a blood meal [42]. To be efficacious, a pre-erythrocytic 

malaria vaccine must entirely block transition of parasites to the asexual blood stage 

parasites. If successful, this would also prevent transmission and hence could be used 

in malaria elimination programs [39]. On the other side, only one successful passage 

through the liver suffices to cause disease since the mechanism of pre-erythrocytic 
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immunity is different from the naturally acquired immunity against asexual blood stage 

parasites (reviewed in [43]). The feasibility of a pre-erythrocytic vaccine stem from 

studies where experimental vaccines based on radiation-attenuated Plasmodium 

sporozoites conferred sterile protection against malaria in different host systems (for 

example, [44-46]). Parasite-specific neutralizing antibodies as well as T cells (CD4+ and 

CD8+ T cells) have been identified as major players mediating protection to the pre-

erythrocytic parasite-stages in experimental animals ([47]; reviewed in [6, 48, 49]). 

 

More than 10 pre-erythrocytic vaccine candidates have progressed through preclinical 

studies and are being tested in clinical trials (reviewed in [50]; Figure 4). The most 

successful candidate so far is RTS,S. It targets an immunodominant fragment of P. 

falciparum circumsporozoite protein (CSP), which is composed of the central repeat 

region (R) that contains the B-cell and T-cell epitopes (T) of CSP. In RTS,S CSP is 

fused to the hepatitis B virus (HBV) surface (S) antigen and co-expressed in 

Saccharomyces cerevisiae with an additional HBV S-antigen, hence the name “RTS,S” 

(Figure 5). This means that RTS,S is a combination vaccine against malaria and 

hepatitis B. RTS,S is adjuvanted with the liposome-based Adjuvant System (AS) 01, 

which contains the immunostimulants monophosphoryl lipid A and a purified Quillaja 

saponaria saponin (QS-21) (reviewed in [51, 52]).  

 

After many years of clinical development and extensive testing of RTS,S in populations 

living in different transmission settings, the vaccine was found to be safe, well tolerated 

and efficacious. It consistently showed moderate protective efficacy against infection 

and clinical disease over one year (for example, reviewed in [6, 39, 40, 50-52]). These 

findings constituted the driving force behind the implementation of large scale phase III 

efficacy trials in seven African countries [39]. The results from such trials have shown 

that RTS,S is able to reduce the rates of clinical as well as severe malaria by about 30% 

in African infants 6-12 weeks old [53]. Earlier findings from the same trials in children of 

aged 5–17 months reported that the protective efficacies of RTS,S against both clinical 

and severe malaria vaccine ranged from 50 to 56% [54].  With protective efficacy of 30-

50%, RTS,S may be licensed and deployed as the world’s first generation malaria 
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vaccine for use in sub-Saharan Africa where the disease burden remains relatively high 

(reviewed in [39]). Notwithstanding, research is on-going to improve the efficacy of 

RTS,S by including additional antigens in order to create a multi-stage, multi-antigen 

RTS,S-based vaccine [55].  

 

            

 

Figure 5: The CSP of P. falciparum and the protein region incorporated into the RTS,S 

vaccine.   

Reprinted with permission from the American Society for Clinical Investigation. 

Source: Crompton  et al. 2010 [52]. 

 

1.4.2 Blood-stage vaccines 

The scientific rationale for developing blood-stage vaccines stem from the fact that 

clinical illness, complications and fatality associated with malaria occurs during blood-

stage infection. As such, an effective blood-stage vaccine would have the greatest 

impact by reducing malaria parasitemia, clinical symptoms and complications, hence 

such vaccines are intended for use in reducing morbidity due to malaria in endemic 

areas [56].  
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This vaccination approach is based on the concept that following repeated malaria 

attacks, persons living in malaria-endemic countries often develop acquired immunity 

that often targets blood-stage antigens. Infected persons are therefore able to control 

parasite density to below fever thresholds [57]. It may therefore be possible to mimic 

and accelerate the development of anti-disease immunity through a blood-stage malaria 

vaccine [52].  

Several blood-stage vaccines are composed of merozoite surface-derived antigens 

(reviewed in [58]) that lead to the production of antibodies that block invasion and 

replication of merozoites within red cells (Figure 3). Such neutralizing antibodies may 

also target parasite-infected red cells preventing their adherence to different host 

tissues and reducing their numbers to levels that do not cause clinical disease or death 

(reviewed in [6, 39, 40]). 

 

Clinical evaluation of previous candidates, such as merozoite surface protein (MSP)1-, 

MSP2- and apical membrane antigen (AMA)1-based vaccines, showed no protective 

efficacy, although some showed signs of allele-specific protection (reviewed in [6]). As a 

consequence, further clinical development of these candidates slowed down (reviewed 

in [40, 59]). The lack of MSP1-based vaccine efficacy may be due to genetic diversity of 

MSP1 protein (reviewed in [39]) and for the AMA1-based vaccine candidate, efficacy 

was mostly strain-specific [60]. Currently, a few other promising candidates (Figure 4) 

are being evaluated in field trials, including the erythrocyte-binding protein 175 

(EBA175), MSP3181-276, and GMZ2 (reviewed in [59]).  

With advances in knowledge and technology, new antigens are being discovered and 

further developed as blood-stage vaccines candidates [61, 62]. One such antigen is the 

P. falciparum reticulocyte-binding protein homologue 5 (PfRH5). PfRH5, a merozoite 

protein located in the neck of rhoptries has been identified as essential for erythrocyte 

invasion [63]. PfRH5-induced inhibitory antibodies have been shown to block the 

invasion of RBCs in animal models as well protect NHPs against clinical disease 

following challenge with a heterologous P. falciparum strain [62, 64].  

Although the antigen is not a major target of naturally acquired antibodies to P. 

falciparum, naturally acquired anti-PfRH5 antibodies have been shown to predict 
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protection from clinical malaria [65]. Thus, PfRRH5 constitute an attractive blood-stage 

vaccine candidate [62], and two PfRH5–based vaccine candidates (ChAd63 RH5 and 

MVA RH5) are currently undergoing human Phase 1a clinical trials [66]. 

 

Among those, GMZ2 is the most advanced candidate. It is a combination vaccine 

composed of the N-terminal region of glutamate rich protein (GLURP27–500) (non-repeat 

R0 region and major B-cell epitope) and the conserved C-terminal fragment of MSP3212-

380 and expressed in Lactococcus lactis [67].  

The discovery and further clinical development of GMZ2 was based on the ability of 

MSP3 and GLURP to induce high titers functional antibodies assessed by antibody 

growth inhibition assay (GIA) and ADCI [26, 68]. GIA measures the ability of purified 

IgG or serum antibodies to inhibit the invasion and subsequent growth of malaria 

parasites in human red cells in vitro. On the other hand, the ADCI assesses the 

antibody-dependent cellular activity of monocytes against malaria parasites (reviewed in 

[69]). 

In pre-clinical studies, GMZ2 induced broader antibodies to both GLURP and MSP3 

than co-administration of the antigens alone or a mix of both. The protective effects of 

anti-GMZ2 IgG antibodies was demonstrated by in vitro parasite-growth inhibition [67]. 

In further studies in NHPs, the vaccine was found to induce partial protection against P. 

falciparum [70]. These findings showed that GMZ2 could be a valuable malaria vaccine 

candidate and pave the way for its further clinical development [67, 70]. 

In Phase I trials of GMZ2 adjuvanted with aluminium hydroxide, high levels of vaccine 

antigen-induced antibodies and GMZ2-specific memory B-cells were detected in 

malaria-naive Germans as well as in malaria-exposed adults and children. The vaccine 

was found to be safe and well tolerated. These results supported further clinical testing 

of GMZ2 in a much larger population (reviewed in [59]). The recently completed multi-

center Phase IIb efficacy trials enrolled almost 2000 children aged 1-5 years in study 

sites in Burkina Faso, Gabon, Ghana and Uganda.  
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1.4.3 Transmission blocking vaccines 

As the name suggests, such vaccines are designed to target the gametocytes, gametes 

and ookinetes, preventing them from maturing, infecting and developing in the mosquito 

vector. Such candidates are not meant to provide individual level protection, as in the 

case of pre-erythrocytic and blood-stage vaccines, but instead to stop malaria 

transmission at the community level. The hope is that in the long-term this approach 

could be helpful in the elimination and even eradication of malaria from certain areas 

(reviewed in [71]). Knowledge about how this type of vaccine induces immunity is very 

limited, but it is widely believed that antibodies, cytokines and complement taken up by 

the vector in the course of feeding on blood hamper the development of sexual stages 

into infective sporozoites (reviewed in [6, 40]). 

 

The development of malaria transmission blocking vaccines proceeds at a slower pace 

compared with the other types of malaria vaccines. However, two major gametocyte-

specific surface antigens, Pfs48/45 and Pfs230, and two ookinete-specific surface coat 

proteins, Pfs25 (P. falciparum) and Pvs25 (P. vivax), constitute the main focus of anti-

transmission vaccines (reviewed in [72]). So far, the leading candidates (Pfs25 and 

Pfvs25), formulated in Montanide ISA 51, have been tested in Phase I trials. Safety 

concerns led to modification of the Pfs25 vaccine antigen, as well as replacement of the 

adjuvant. Use of the reformulated Pfs25 conjugated to recombinant Pseudomonas 

aeruginosa ExoProtein A (Pfs25-EPA) and adjuvanted with alhydrogel has given 

satisfactory results in Phase 1a trials (reviewed in [59]). 

 

1.4.4 Multi-stage, multi-antigen and whole parasite vaccines 

Most current candidate vaccines under development aim to target just one stage of the 

parasite's life cycle. Considering the vast number of antigens expressed by the four 

human parasite stages (sporozoites, liver stage, merozoites and gametes), it is 

proposed that next-generation malaria vaccines be designed to have wider coverage by 

targeting multiple parasite developmental stages (reviewed in [73, 74]), and as such 

could induce multi-immune responses to many different parasite antigens that may 



25 
 

provide better protection [75].  The greatest challenge of this strategy is to identify and 

choose the optimal antigen combination that would induce the most robust and desired 

immune responses. However, adding other components (FMP1; falciparum malaria 

protein 1) to the most clinically advanced malaria vaccine (RTS,S/AS02A) did not show 

an improvement in the level of protection [55]. Other multi-component vaccines, for 

example the multiple-epitope–thrombospondin-related adhesion protein (ME-TRAP) and 

polyepitope DNA-based vaccines have also been developed and are currently been 

tested in field trials (reviewed in [59]).  

 

Apart from multistage and multi-antigen vaccines, developing a whole parasite vaccine 

based on attenuated sporozoites is been actively pursued. The approach had proved to 

be highly successful since the 1970s [76]. Whole organism vaccines are so far the only 

vaccines that have reached >90% protective efficacy against malaria in humans [44, 77, 

78]. The downside of this approach is the need for hundreds of infected mosquitoes for 

vaccination. Sanaria Inc., an U.S. based company has recently developed methods to 

purify and cryopreserve fully infectious and attenuated P. falciparum sporozoites 

(PfSPZ). Vaccination by intravenous injection of radiation-attenuated PfSPZ (PfSPZ 

Vaccine) led up to 100% protective efficacy in a small number of human volunteers 

receiving controlled human malaria infection (CHMI) [79], which further confirms the 

potency of this vaccination concept. However, the issue of the need of intravenous 

administration, scalability and maintenance of cold chain are critical issues that still may 

limit the large-scale applicability of this strategy for immunization of infants, should the 

PfSPZ vaccine becomes adopted in future as a vaccine against malaria.  

 

 

1.5 Antibodies as correlate or surrogate markers of protection  

An immune correlate of protection as defined by Plotkin [36] is an immune response 

closely related to protection or that provides protection. Immune correlates are 

considered to be of prime importance during efficacy trials of vaccine candidates 

(reviewed in [36]).  
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In circumstances where the exact correlates of protective immunity are unknown, 

unavailable or hard to measure, useful surrogate or substitute markers - mostly serum 

antibodies - are measured mostly by enzyme-linked immunosorbent assay (ELISA) and 

associated with vaccine-induced protection in clinical studies (reviewed in [36]). Plotkin 

[80] further defined a surrogate marker as an immune response that substitutes for the 

true immunologic correlate of protection, which may be unknown or not easily 

measurable. In general, most successful vaccines are known to induce high levels of 

antigen-specific neutralizing antibodies of defined protective threshold which serve as 

biomarkers of protection against disease (reviewed in [38, 80]).   

 

A direct cause-and-effect relationship between vaccine-induced antimalarial antibodies 

and protection from malaria disease is yet to be established. As a consequence, there 

are currently no validated immunological markers or correlates of protection against 

malaria, either by naturally-acquired anti-disease immunity or elicited by the most 

advanced malaria vaccine candidate RTS,S [55]. Studies have shown that the induction 

of robust CSP-specific antibodies by the RTS,S vaccine is associated with better 

protection from clinical malaria (reviewed in [6, 81]), although the data are inconsistent.  

 

In the case of blood-stage vaccines where antibodies are considered as the effective 

agent or crucial for protection against disease, two promising candidates (AMA-1 and 

FMP-1) both failed to provide a meaningful protective immunity [82, 83]. Nevertheless, 

certain neutralizing antibodies subclasses (IgG1 and IgG3) specific for some blood-

stage vaccine antigens have been associated with protection against malaria disease 

[84]. As such, malaria-specific antibody responses are frequently considered as 

surrogate marker of protection to malaria disease [85].  
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2. AIMS OF THE PRESENT WORK 
 

Our research team has over the years been involved in the clinical development of 

different malaria vaccine candidates, including the most advanced pre-erythrocytic 

vaccine (RTS,S) and blood-stage vaccine (GMZ2) candidates. With the aim to expand 

current knowledge of vaccine immunogenicity and contribute to the search for antibody-

based correlates of protection against malaria, I worked on serum samples collected 

from three clinical trials of the afore-mentioned vaccine candidates to characterize the 

development of antibody-based immune responses in different populations of vaccinees 

presented in this dissertation.  

In order to achieve these goals, two separate but related immunological studies were 

performed. First, a cytometry-based immunoassay was set up to standardize the 

quantification of anti-plasmodial IgG antibodies in the serum of GMZ2-vaccinees. 

Second, the avidity index (AI) of antibodies to the CSP repeats induced by RTS,S was 

evaluated in vaccine recipients. 

The specific objectives of the work presented in this dissertation are as follows:  

� To develop and implement a quantitative flow cytometry based assay for high 

throughput measurement of anti-plasmodial and vaccine-induced IgG 

antibodies to whole malaria parasite antigens (Paper I). 

 

� To evaluate the change in the avidity of anti-CSP antibodies over time in a cohort 

of infants who underwent two separate immunization schedules of RTS,S and 

explore the effect of anti-CSP IgG avidity on RTS,S vaccine efficacy (Paper 

II). 
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3. RESULTS  
 

A summary of the results obtained in each of the papers is presented here. Reference is 

made to the tables and figures in the different publications. 

 

3.1 Paper I 
 

 
A flow cytometry-based workflow for detection and quantification of anti-

plasmodial antibodies in vaccinated and naturally exposed individuals 

 

Anthony Ajua, Thomas Engleitner, Meral Esen, Michael Theisen, Saidou Issifou and 

Benjamin Mordmüller.  

Malaria Journal 2012; 11:367. 

 

Antibodies are known to play an important role in anti-malarial immunity but the exact 

antibody-mediated correlates of protection remain elusive. Highly standardized assays 

that may allow comparability of antibody measurements are also lacking and so the best 

way to measure, report and interpret antimalarial antibody responses is unknown. 

In this study, the standard microscopy-based immunofluorescence assay (IFA) was 

transformed into a standardized, investigator- and bias-free, high throughput-amenable 

cytometry-based assay to assess antibody reactivity against whole parasites. 

The novel cytometry-based assay was validated using semi-immune serum samples 

from Gabonese adults (Figure 2, Figure 3 – Paper I) and applied to sera from adult and 

pediatric participants of two GMZ2 Phase Ib trials.  

Baseline anti-plasmodial antibodies and the effect of vaccination on the anti-GMZ2 

antibody response were evaluated. Upon vaccination, children vaccinated with the 
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highest GMZ2 dose (100µg) showed a 1.33-fold increase in percent positive fluorescent 

cells (PPFC; p=0.003) on D84 compared to D0 (Figure 7 – Paper I). Adults showed a 

boost of pre-existing anti-parasitic antibodies resulting in improved parasite recognition 

(increased MFI; 1.23-fold change; p=0.03) (Table 3 – Paper I). 

During analysis, we observed that available statistical approaches (e.g. model-based 

gating algorithms) to analyze flow cytometry data were performing worse than bias-

prone manual gating strategies (Table 1, Figure 4, Figure 5, Table 2 – Paper I). A new 

method for data-driven gating, the overlap subtraction algorithm (OSA), was developed 

and tested against other strategies. OSA-derived results correlated well with those 

derived by expert manual gating and showed improved characteristics of performance 

compared to other frequently used strategies when applied to data of the novel assay 

(Table 1, Figure 4, Figure 5, Table 2, Figure 6 – Paper I). 

Taken together, standardized new tools are presented that could be useful for 

characterizing antibody-mediated immune responses and identifying vaccine-induced 

correlates of protection against malaria. 
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3.2 Paper II 
 

 
The effect of immunization schedule with the malaria vaccine candidate 

RTS,S/AS01E on protective efficacy and anti-circumsporozoite protein antibody 

avidity in African infants 

Anthony Ajua, Bertrand Lell, Selidji Todagbe Agnandji, Kwaku Poku Asante, Seth 

Owusu-Agyei, Grace Mwangoka, Maxmilliam Mpina, Nahya Salim, Marcel Tanner, 

Salim Abdulla,  Johan Vekemans, Erik Jongert, Marc Lievens, Pierre Cambron, Chris F. 

Ockenhouse, Peter G. Kremsner and Benjamin Mordmüller. 

Malaria Journal 2015; 14:72. 

 

RTS,S is known to induce antibodies against the P. falciparum circumsporozoite protein 

(CSP). While higher levels of RTS,S-induced anti-CSP antibodies have been associated 

with protection against infection and episodes of clinical malaria, it is unknown if anti-

CSP antibody avidity (strength of antibody binding) predicts  RTS,S-induced protection. 

In this second study, anti-CSP antibody avidity was measured during two different 

three-injection vaccination schedules to assess if it predicts vaccine efficacy in infants 

immunized with RTS,S. The clinical Phase II trial included one arm receiving the 

standard regimen (0-1-2 month) and the other arm received a delayed third dose (0-1-7 

month) vaccination schedule of RTS,S/AS01E [86, 87]. 

The findings indicated that post dose 3, the antibody concentration and absolute AI 

were similar (p>0.05) in both immunization schedules (Figure 2 – Paper II). Meanwhile, 

an increase in AI (dAI) between the second and third vaccine doses was observed in 

the two different schedules, though the increment was modestly higher for the extended 

vaccination schedule (7.1-fold increase) compared to the standard schedule (4.2-fold 

increase) (Figure 3 – Paper II).  

AI, dAI and change in median anti-CSP titers (dCSP) were evaluated as biomarkers for 

RTS,S-mediated protection. It was observed that AI after the third dose was not 
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associated with a significant reduction in the risk of developing malaria. Furthermore, 

the dCSP and dAI datasets were divided on the median and volunteers classified as 

“high” and “low” responders. Compared with the “low-dCSP” group, classification as 

“high-dCSP” responder was associated with a significant risk reduction (77%) to 

develop clinical malaria. Similarly, classification as “high-dAI” group member was 

associated with a 54% risk reduction (Figure 4 – Paper II).    

This study suggests that an increase in anti-CSP IgG concentration and avidity between 

second and third vaccine injection is associated with a strong risk-reduction for malaria 

after immunization. 
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4. GENERAL DISCUSSION AND CONCLUSIONS 

 

Antibodies elicited through pathogen infection or by vaccination constitute an essential 

component of the humoral immune response in humans and anti-parasitic antibodies 

play an important role in protective immunity to malaria [15-19, 21]. Despite this fact, the 

exact antibody responses, their targets and functional activities that are required to 

mediate protection are largely unknown [85]. Moreover, there are no reliable means to 

adequately distinguish protective from non-protective antibodies [88]. These intellectual 

and experimental challenges might contribute to the multiple unsuccessful attempts to 

develop a highly potent antimalarial vaccine [89]. A clear understanding of the 

mechanisms of protective immunity and identification of immune correlates of protection 

against malaria could be a way to revolutionize the development and introduction of 

vaccines with greater efficacy [6, 89]. Such knowledge may further pave the way for 

detailed quantitative evaluation of current and next-generation vaccines as well as serve 

as a measure for estimating efficacy, duration of protection or immunological memory 

following vaccination without the need of large and expensive trials in vulnerable 

populations with the clinical endpoint malaria [90]. 

 

As malaria-specific antibodies may change following infection [88] or after immunization, 

accurate quantification becomes critical for the assessment of immunogenicity and 

investigation of antibody correlates [91]. However, there is currently no consensus on 

the choice of assay(s) that could be employed to measure antibody responses or 

investigate potential markers of protection [6, 92-94]. The development and 

implementation of standardized methods will facilitate the accurate and reproducible 

detection of specific vaccine-induced immune responses and guide the vaccine 

development process [93, 95]. Moreover, the use of robust standardized assays for 

antibodies assessment would allow better comparison of vaccine immune responses 
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especially in the context of multicenter clinical studies and might aid in the identification 

of novel correlates of protection [93].  

 

Most vaccine candidates under clinical development are evaluated for immunogenicity 

using IgG-based assays, such as ELISA and the indirect immunofluorescence assay 

(IFA), as they are considered good markers for predicting protective malaria immunity 

[93]. Although these assays are rapid and easy to perform, they have important 

limitations. For instance, coating of antigen onto a solid support, as is normally done in 

the ELISA-based system may alter the antigen structure and hence affect its reactivity 

[92, 96]. Moreover, the technique only measures the antibody response to single 

antigens at a time and thus requires larger volumes of serum [97], when antibody 

responses to multiple antigens are being tested. On the other hand, the IFA is an 

important immune-epidemiological tool [98, 99] and also has great value in vaccine-

induced antibody functionality studies [98, 100], considering that whole parasite antigen 

can be used for antibody detection. The downside of IFAs are their low throughput, 

dependence on the investigator and poor standardization, which limits their widespread 

applicability in biological and clinical research [101]. Each of the two studies presented 

in this dissertation addresses a major gap in knowledge that affects malaria research in 

general and malaria vaccine development in particular.   

 

In a first study, we developed and validated a new high throughput flow cytometry-

based IFA assay and tool for rapid and reliable measurement and analysis of anti-

plasmodial antibodies in human serum [102]. This new workflow was applied to 

evaluate the effect of vaccination on antibody responses using residual serum samples 

and clinical data from participants who completed two Phase 1 clinical trials of GMZ2 

candidate malaria vaccine [103, 104]. 

For antibody detection, matured P. falciparum schizonts served as an antigen source for 

performing the assay. Following cultivation, whole schizont parasites were fixed using a 

combination of paraformaldehyde and glutaraldehyde as described [105], which better 

preserve the antigen structure [106] and might facilitate the occurrence of an anti-

parasitic reaction. Employing fixed and intact parasites makes it possible that large 
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number of samples such as those from immune-epidemiology and multicenter clinical 

studies can be consistently analyzed over an extended time period, especially when a 

loader-equipped flow cytometer is used. A data analytical tool (OSA), developed and 

incorporated into the assay setup reduced bias and facilitated analysis of large flow 

cytometric datasets.  

 

Recent findings indicate that the host’s previous encounters with malaria antigens could 

affect the evaluation of vaccine-induced effects [85]. Similarly, maternally-derived pre-

existing antibodies have been shown to interfere with the development of antibody 

responses following immunization of mice with an MSP1-based vaccine [107]. Our 

analyses revealed an increase in vaccine-induced anti-plasmodial antibodies response 

(increase in PPFC; percent of positive fluorescent cells) in children with no prior or very 

limited pre-existing malaria immunity. In contrast, a vaccine-mediated boosting of pre-

existing anti-parasitic immune response (increase in MFI; mean fluorescent intensity) 

was observed in the semi-immune adults. The pattern of reactivity showed that the 

assay is able to capture the level and time of exposure to malaria by comparing 

baseline values of antibodies in malaria-exposed children to adults. This could help 

analysis and interpretation of immunogenicity data following vaccination in highly 

endemic regions because it allows incorporation of previous exposure into the analysis 

[85]. 

Moreover, reliable quantification of the cumulative antibody responses to all accessible 

whole parasite antigens, instead of using single parasite proteins may better predict in 

vivo protection [91]. Our assay may be very useful in this regard, as it potentially 

measures both naturally-acquired and vaccine-induced anti-plasmodial antibodies to 

parasite antigens in populations with varying degree of immunity.  

 

Efficacy studies of the RTS,S vaccine candidate have shown that the induction of high 

titers of CSP-specific antibodies partially predicts the protective efficacy of the vaccine 

[87, 108, 109]. This implies that apart from antibody amounts, other characteristics of 

antibody, such as isotype, subclass, functional properties, ability of vaccine-induced 

antibodies to bind to intact parasites, or affinity and/or avidity of antibodies, may be 
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important determinants of antibody function ([110], reviewed in [111]). It is very difficult 

to systematically investigate all these parameters in the same study, due to the 

restricted sample volumes available for immunological studies. However, high titers and 

avidity antibodies have been proposed as the leading antibody-based mechanisms 

(Figure 3, page 18) by which vaccine-induced protective immunity to malaria can be 

achieved by the different vaccine types (reviewed in [6]).  

Interestingly, antibody avidity (AI), a marker of antibody quality, has also been identified 

as an important marker of efficacy for some licensed vaccines ([112, 113], reviewed in 

[80]). So far, antibody avidity has not been extensively investigated in the framework of 

malaria vaccine development ([92]), and only very few biological studies have assessed 

the avidity of antibodies in humans [114-117] and in a mouse model of malaria [118]. 

Together, these studies have suggested that high avidity of naturally-acquired 

antibodies to blood-stage antigens could predict antimalarial immunity and protection 

from clinical disease. In terms of pre-erythrocytic stage antigens, studies in mice have 

associated high anti-CSP antibody affinity with protection from subsequent sporozoite 

challenge [21, 119].   

Although these findings may be encouraging, there are no data from clinical studies of 

malaria vaccine candidates. Therefore, I chose to explore as part of this dissertation the 

avidity of antibodies induced by the CSP-based candidate vaccine RTS,S for a number 

of reasons. First, the number of sporozoites deposited into the human skin is typically 

relatively small (median: 15 sporozoites) [42]. Moreover, sporozoites are known to be 

poorly immunogenic, as they only circulate for a brief period of time (reviewed in [6]) 

and migrate from the mosquito’s injection site on the skin to the liver in less than 15 

minutes [120]. As such, sporozoites may be less prone to exposure and damage by 

antibodies. Hence, the availability of high amounts of sporozoite-specific antibodies 

during the pre-erythrocytic infection phase (reviewed in [121]), combined with the high 

speed and strength of antibody binding to sporozoites may be critical to confer 

protection.  

 

In the second study, we evaluated the change in antibody avidity over time and 

explored the contribution of AI to the protective efficacy induced by two immunization 
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schedules of the RTS,S vaccine. For this first investigation of its kind, we used serum 

samples and clinical data from multicenter Phase 2b trials [86, 87] that evaluated the 

safety, immunogenicity and clinical efficacy of RTS,S when co-administered with 

vaccines routinely administered through the World Health Organization’s Expanded 

Program on Immunization (EPI). Antibody responses induced by the vaccine had been 

assessed by a standard ELISA technique [122]. The same assay was adapted for the 

measurement of the AI of anti-CSP antibodies in the current study. In terms of vaccine 

outcome, both the 0-1-2 month and the 0-1-7 month vaccination schedules reportedly 

showed comparable vaccine efficacy. In addition, one year after the third vaccine dose, 

high vaccine-induced anti-CSP antibody titers were associated with a significant 

reduction (48%) in the risk to develop clinical disease [87]. This therefore offered an 

excellent opportunity for us to attempt investigations of possible biomarkers to predict 

vaccination outcome. 

 

A number of factors, such as the nature and dose of vaccine antigen, certain adjuvants 

and carrier proteins as well as the interval between vaccine doses, can modulate the 

avidity of antibodies ([123, 124], reviewed in [125]). Interestingly, the analyses revealed 

that after the second and third vaccine doses, AI was similar between the two vaccine 

schedules. This implies that delaying the third vaccine dose does not improve the 

avidity of antibodies strongly as would be expected if longer interval between 

vaccination favored the induction of long-lived anti-CSP antibodies [121] and affinity 

maturation of antibodies (reviewed in [125]). Our observation is nevertheless notable as 

it supports the adoption of the 0-1-2 month vaccination schedule of RTS,S for further 

clinical evaluation, which can be easily integrated into the EPI vaccine schedules used 

in developing countries. A similar study recently reported that spacing either the second 

(0-6 month) or third (0-1-6 month) dose of the human papillomavirus (HPV) vaccine 

does not seem to increase the magnitude of antibody avidity in vaccine recipients [126]. 

As expected, avidity increased in the two vaccine groups between the second and last 

vaccine dose. This reflects the sequential acquisition of somatic mutations and hence 

affinity maturation of B cells in the germinal centers following repeated immunization 

with the same vaccine antigen [127].  
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Although antibody avidity has been proposed as an important correlate of protective 

efficacy for several vaccine types [112, 113, 128], we observed no significant 

association between the avidity of anti-CSP antibody and RTS,S-mediated protective 

efficacy, even after adjustment for possible confounding variables as site, schedule and 

anti-CSP antibody concentrations. This could mean that avidity is not an important 

determinant of RTS,S vaccine efficacy but it should be noted that analysis of the effect 

of anti-CSP antibody avidity on protective efficacy was purely exploratory and not 

prospectively planned in the original study. We were nevertheless able to demonstrate 

in this study that the increase of antibody titer (dCSP) and avidity (dAI) between the 

second and third vaccine doses greater than the median were significantly associated 

with 77% and 54% reduction in the risk to develop clinical malaria, respectively.  

 

 

CONCLUSIONS 

 
In the first part of this dissertation, the development and validation of a novel, non-

biased, cytometry-based immunoassay that improves the detection of anti-plasmodial 

antibodies in malaria-exposed and non-exposed populations is described. The new 

approach can therefore be reliably used to reproducibly assess possible antibody-

mediated correlates or surrogates of protection against clinical malaria.  

In the second study, affinity maturation of anti-CSP antibodies elicited by the RTS,S 

candidate vaccine in infants was investigated in samples from a trial designed to 

measure clinical vaccine efficacy. Avidity after three RTS,S doses did not predict 

protection, but an increase of avidity between second and third RTS,S injection greater 

than the median was associated with a 54% risk-reduction to develop malaria. 

Additional studies are proposed to further explore the suitability of anti-CSP antibody 

avidity kinetics as a surrogate marker of RTS,S-mediated protection. 

Taken together, the studies presented in this dissertation provide a reliable mean of 

quantifying antimalarial antibodies and advance current understanding of antibody-
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mediated immunity to malaria and constitute an important step towards the 

development of highly effective antimalarial vaccines. 

 

 

5. PERSONAL CONTRIBUTIONS 
 
My personal contributions to the two papers presented in this thesis are as follows: 

Paper I: (Malaria Journal Published): A flow cytometry-based workflow for detection 

and quantification of anti-plasmodial antibodies in vaccinated and naturally exposed 

individuals.  

� Contributed to the study design,  

� Established the flow cytometry-based IFA,  

� Performed the laboratory experiments,   

� Analyzed and interpreted the datasets, and  

� Drafted and reviewed the manuscript for publication. 

 

Paper II: (Malaria Journal Published): The effect of immunization schedule with the 

malaria vaccine candidate RTS,S/AS01E on protective efficacy and anti-

circumsporozoite protein antibody avidity in African infants. 

� Contributed to the study conception,  

� Organized, cleaned, analyzed and interpreted the data, and 

� Prepared, revised and approved manuscript for publication. 

 

 

 

 

 

 



39 
 

 

6. REFERENCES  
 

1. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman 
N, Naghavi M, Lozano R, Lopez AD: Global malaria mortality between 1980 
and 2010: a systematic analysis. Lancet 2012, 379:413-431. 

2. WHO: World Malaria Report 2014. Geneva: World Health Organization; 2014.  
(http://www.who.int/malaria/publications/world_malaria_report_2014/en/, 
accessed on 30 March, 2015). 

3. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM: 
Malaria. Lancet 2014, 383:723-735. 

4. Carrara VI, Lwin KM, Phyo AP, Ashley E, Wiladphaingern J, Sriprawat K, Rijken 
M, Boel M, McGready R, Proux S, et al: Malaria burden and artemisinin 
resistance in the mobile and migrant population on the Thai-Myanmar 
border, 1999-2011: an observational study. PLoS Med 2013, 10:e1001398. 

5. Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, ler Moo 
C, Al-Saai S, Dondorp AM, Lwin KM, et al: Emergence of artemisinin-resistant 
malaria on the western border of Thailand: a longitudinal study. Lancet 
2012, 379:1960-1966. 

6. Riley EM, Stewart VA: Immune mechanisms in malaria: new insights in 
vaccine development. Nat Med 2013, 19:168-178. 

7. Kawai T, Akira S: The role of pattern-recognition receptors in innate 
immunity: update on Toll-like receptors. Nat Immunol 2010, 11:373-384. 

8. Iwasaki A, Medzhitov R: Regulation of adaptive immunity by the innate 
immune system. Science 2010, 327:291-295. 

9. Sinnis P, Zavala F: The skin: where malaria infection and the host immune 
response begin. Semin Immunopathol 2012, 34:787-792. 

10. Urban BC, Ing R, Stevenson MM: Early interactions between blood-stage 
plasmodium parasites and the immune system. Curr Top Microbiol Immunol 
2005, 297:25-70. 

11. Steinman RM: Dendritic cells in vivo: a key target for a new vaccine science. 
Immunity 2008, 29:319-324. 

12. Pulendran B, Ahmed R: Translating innate immunity into immunological 
memory: implications for vaccine development. Cell 2006, 124:849-863. 

13. Miller JL, Sack BK, Baldwin M, Vaughan AM, Kappe SH: Interferon-Mediated 
Innate Immune Responses against Malaria Parasite Liver Stages. Cell Rep 
2014, 7:436-447. 



40 
 

14. Dolo A, Modiano D, Maiga B, Daou M, Dolo G, Guindo H, Ba M, Maiga H, 
Coulibaly D, Perlman H, et al: Difference in susceptibility to malaria between 
two sympatric ethnic groups in Mali. Am J Trop Med Hyg 2005, 72:243-248. 

15. Cohen S, McGregor IA, Carrington S: Gamma-globulin and acquired immunity 
to human malaria. Nature 1961, 192:733-737. 

16. Sabchareon A, Burnouf T, Ouattara D, Attanath P, Bouharoun-Tayoun H, 
Chantavanich P, Foucault C, Chongsuphajaisiddhi T, Druilhe P: Parasitologic 
and clinical human response to immunoglobulin administration in 
falciparum malaria. Am J Trop Med Hyg 1991, 45:297-308. 

17. Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, 
Druilhe P: Antibodies that protect humans against Plasmodium falciparum 
blood stages do not on their own inhibit parasite growth and invasion in 
vitro, but act in cooperation with monocytes. J Exp Med 1990, 172:1633-
1641. 

18. Fandeur T, Dubois P, Gysin J, Dedet JP, da Silva LP: In vitro and in vivo 
studies on protective and inhibitory antibodies against Plasmodium 
falciparum in the Saimiri monkey. J Immunol 1984, 132:432-437. 

19. Egan JE, Weber JL, Ballou WR, Hollingdale MR, Majarian WR, Gordon DM, 
Maloy WL, Hoffman SL, Wirtz RA, Schneider I, et al.: Efficacy of murine 
malaria sporozoite vaccines: implications for human vaccine development. 
Science 1987, 236:453-456. 

20. Foquet L, Hermsen CC, van Gemert GJ, Van Braeckel E, Weening KE, 
Sauerwein R, Meuleman P, Leroux-Roels G: Vaccine-induced monoclonal 
antibodies targeting circumsporozoite protein prevent Plasmodium 
falciparum infection. J Clin Invest 2014, 124:140-144. 

21. Porter MD, Nicki J, Pool CD, DeBot M, Illam RM, Brando C, Bozick B, De La 
Vega P, Angra D, Spaccapelo R, et al: Transgenic parasites stably 
expressing full-length Plasmodium falciparum circumsporozoite protein as 
a model for vaccine down-selection in mice using sterile protection as an 
endpoint. Clin Vaccine Immunol 2013, 20:803-810. 

22. Garraud O, Mahanty S, Perraut R: Malaria-specific antibody subclasses in 
immune individuals: a key source of information for vaccine design. Trends 
Immunol 2003, 24:30-35. 

23. O'Donnell RA, de Koning-Ward TF, Burt RA, Bockarie M, Reeder JC, Cowman 
AF, Crabb BS: Antibodies against merozoite surface protein (MSP)-1(19) are 
a major component of the invasion-inhibitory response in individuals 
immune to malaria. J Exp Med 2001, 193:1403-1412. 

24. Maubert B, Fievet N, Tami G, Cot M, Boudin C, Deloron P: Development of 
antibodies against chondroitin sulfate A-adherent Plasmodium falciparum 
in pregnant women. Infect Immun 1999, 67:5367-5371. 



41 
 

25. Yoneto T, Waki S, Takai T, Tagawa Y, Iwakura Y, Mizuguchi J, Nariuchi H, 
Yoshimoto T: A critical role of Fc receptor-mediated antibody-dependent 
phagocytosis in the host resistance to blood-stage Plasmodium berghei 
XAT infection. J Immunol 2001, 166:6236-6241. 

26. Theisen M, Soe S, Oeuvray C, Thomas AW, Vuust J, Danielsen S, Jepsen S, 
Druilhe P: The glutamate-rich protein (GLURP) of Plasmodium falciparum is 
a target for antibody-dependent monocyte-mediated inhibition of parasite 
growth in vitro. Infect Immun 1998, 66:11-17. 

27. Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P: Mechanisms underlying 
the monocyte-mediated antibody-dependent killing of Plasmodium 
falciparum asexual blood stages. J Exp Med 1995, 182:409-418. 

28. Jepsen MP, Jogdand PS, Singh SK, Esen M, Christiansen M, Issifou S, 
Hounkpatin AB, Ateba-Ngoa U, Kremsner PG, Dziegiel MH, et al: The malaria 
vaccine candidate GMZ2 elicits functional antibodies in individuals from 
malaria endemic and non-endemic areas. J Infect Dis 2013, 208:479-488. 

29. Hafalla JC, Silvie O, Matuschewski K: Cell biology and immunology of 
malaria. Immunol Rev 2011, 240:297-316. 

30. Bijker EM, Teirlinck AC, Schats R, van Gemert GJ, van de Vegte-Bolmer M, van 
Lieshout L, IntHout J, Hermsen CC, Scholzen A, Visser LG, Sauerwein RW: 
Cytotoxic markers associate with protection against malaria in human 
volunteers immunized with Plasmodium falciparum sporozoites. J Infect Dis 
2014, 210:1605-1615. 

31. Zhu J, Yamane H, Paul WE: Differentiation of effector CD4 T cell populations 
(*). Annu Rev Immunol 2010, 28:445-489. 

32. Frosch AE, John CC: Immunomodulation in Plasmodium falciparum malaria: 
experiments in nature and their conflicting implications for potential 
therapeutic agents. Expert Rev Anti Infect Ther 2012, 10:1343-1356. 

33. Langhorne J, Ndungu FM, Sponaas AM, Marsh K: Immunity to malaria: more 
questions than answers. Nat Immunol 2008, 9:725-732. 

34. Krzych U, Dalai S, Zarling S, Pichugin A: Memory CD8 T cells specific for 
plasmodia liver-stage antigens maintain protracted protection against 
malaria. Front Immunol 2012, 3:370. 

35. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R: Cutting edge: 
long-term B cell memory in humans after smallpox vaccination. J Immunol 
2003, 171:4969-4973. 

36. Plotkin SA: Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis 
2008, 47:401-409. 

37. Xu Y, Xu L, Zhao M, Xu C, Fan Y, Pierce SK, Liu W: No receptor stands alone: 
IgG B-cell receptor intrinsic and extrinsic mechanisms contribute to 
antibody memory. Cell Res 2014. 



42 
 

38. Pulendran B, Ahmed R: Immunological mechanisms of vaccination. Nat 
Immunol 2011, 12:509-517. 

39. Thera MA, Plowe CV: Vaccines for malaria: how close are we? Annu Rev Med 
2012, 63:345-357. 

40. Garcia-Basteiro AL, Bassat Q, Alonso PL: Approaching the target: the path 
towards an effective malaria vaccine. Mediterr J Hematol Infect Dis 2012, 
4:e2012015. 

41. WHO: Malaria vaccine rainbow tables. 2015. 
(http://www.who.int/vaccine_research/links/Rainbow/en/index.html, accessed on 
30 March 2015). 

42. Rosenberg R, Wirtz RA, Schneider I, Burge R: An estimation of the number of 
malaria sporozoites ejected by a feeding mosquito. Trans R Soc Trop Med 
Hyg 1990, 84:209-212. 

43. Chia WN, Goh YS, Renia L: Novel approaches to identify protective malaria 
vaccine candidates. Front Microbiol 2014, 5:586. 

44. Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, Sacci J, de la 
Vega P, Dowler M, Paul C, et al: Protection of humans against malaria by 
immunization with radiation-attenuated Plasmodium falciparum 
sporozoites. J Infect Dis 2002, 185:1155-1164. 

45. Nussenzweig RS, Vanderberg J, Most H, Orton C: Protective immunity 
produced by the injection of x-irradiated sporozoites of plasmodium 
berghei. Nature 1967, 216:160-162. 

46. Chattopadhyay R, Conteh S, Li M, James ER, Epstein JE, Hoffman SL: The 
Effects of radiation on the safety and protective efficacy of an attenuated 
Plasmodium yoelii sporozoite malaria vaccine. Vaccine 2009, 27:3675-3680. 

47. Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, 
Nussenzweig V: Gamma interferon, CD8+ T cells and antibodies required for 
immunity to malaria sporozoites. Nature 1987, 330:664-666. 

48. Hafalla JC, Cockburn IA, Zavala F: Protective and pathogenic roles of CD8+ T 
cells during malaria infection. Parasite Immunol 2006, 28:15-24. 

49. Tsuji M, Zavala F: T cells as mediators of protective immunity against liver 
stages of Plasmodium. Trends Parasitol 2003, 19:88-93. 

50. Hill AV: Pre-erythrocytic malaria vaccines: towards greater efficacy. Nat Rev 
Immunol 2006, 6:21-32. 

51. Regules JA, Cummings JF, Ockenhouse CF: The RTS,S vaccine candidate for 
malaria. Expert Rev Vaccines 2011, 10:589-599. 

52. Crompton PD, Pierce SK, Miller LH: Advances and challenges in malaria 
vaccine development. J Clin Invest 2010, 120:4168-4178. 

53. Rts SCTP, Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BG, 
Kabwende AL, Adegnika AA, Mordmuller B, Issifou S, et al: A phase 3 trial of 



43 
 

RTS,S/AS01 malaria vaccine in African infants. N Engl J Med 2012, 
367:2284-2295. 

54. Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, 
Conzelmann C, Methogo BG, Doucka Y, Flamen A, Mordmuller B, et al: First 
results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N 
Engl J Med 2011, 365:1863-1875. 

55. Heppner DG, Jr., Kester KE, Ockenhouse CF, Tornieporth N, Ofori O, Lyon JA, 
Stewart VA, Dubois P, Lanar DE, Krzych U, et al: Towards an RTS,S-based, 
multi-stage, multi-antigen vaccine against falciparum malaria: progress at 
the Walter Reed Army Institute of Research. Vaccine 2005, 23:2243-2250. 

56. Richards JS, Beeson JG: The future for blood-stage vaccines against 
malaria. Immunol Cell Biol 2009, 87:377-390. 

57. Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L: The silent 
threat: asymptomatic parasitemia and malaria transmission. Expert Rev Anti 
Infect Ther 2013, 11:623-639. 

58. Cowman AF, Crabb BS: Invasion of red blood cells by malaria parasites. Cell 
2006, 124:755-766. 

59. Schwartz L, Brown GV, Genton B, Moorthy VS: A review of malaria vaccine 
clinical projects based on the WHO rainbow table. Malar J 2012, 11:11. 

60. Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Ouattara A, Kone AK, Guindo 
AB, Traore K, Traore I, Kouriba B, et al: A field trial to assess a blood-stage 
malaria vaccine. N Engl J Med 2011, 365:1004-1013. 

61. Osier FH, Mackinnon MJ, Crosnier C, Fegan G, Kamuyu G, Wanaguru M, Ogada 
E, McDade B, Rayner JC, Wright GJ, Marsh K: New antigens for a 
multicomponent blood-stage malaria vaccine. Sci Transl Med 2014, 
6:247ra102. 

62. Douglas AD, Williams AR, Illingworth JJ, Kamuyu G, Biswas S, Goodman AL, 
Wyllie DH, Crosnier C, Miura K, Wright GJ, et al: The blood-stage malaria 
antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing 
antibody. Nat Commun 2011, 2:601. 

63. Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, Ehlgen F, Ralph SA, 
Beeson JG, Cowman AF: Reticulocyte-binding protein homologue 5 - an 
essential adhesin involved in invasion of human erythrocytes by 
Plasmodium falciparum. Int J Parasitol 2009, 39:371-380. 

64. Douglas AD, Williams AR, Knuepfer E, Illingworth JJ, Furze JM, Crosnier C, 
Choudhary P, Bustamante LY, Zakutansky SE, Awuah DK, et al: Neutralization 
of Plasmodium falciparum merozoites by antibodies against PfRH5. J 
Immunol 2014, 192:245-258. 

65. Tran TM, Ongoiba A, Coursen J, Crosnier C, Diouf A, Huang CY, Li S, Doumbo 
S, Doumtabe D, Kone Y, et al: Naturally acquired antibodies specific for 



44 
 

Plasmodium falciparum reticulocyte-binding protein homologue 5 inhibit 
parasite growth and predict protection from malaria. J Infect Dis 2014, 
209:789-798. 

66. Hill AV: A Phase Ia Clinical Trial to Assess the Safety and Immunogenicity 
of New Plasmodium Falciparum Malaria Vaccine Candidates ChAd63 RH5 
Alone and With MVA RH5. 2014. 
(https://clinicaltrials.gov/ct2/show/NCT02181088, accessed on 2 April 2015).  

67. Theisen M, Soe S, Brunstedt K, Follmann F, Bredmose L, Israelsen H, Madsen 
SM, Druilhe P: A Plasmodium falciparum GLURP-MSP3 chimeric protein; 
expression in Lactococcus lactis, immunogenicity and induction of 
biologically active antibodies. Vaccine 2004, 22:1188-1198. 

68. Druilhe P, Spertini F, Soesoe D, Corradin G, Mejia P, Singh S, Audran R, Bouzidi 
A, Oeuvray C, Roussilhon C: A malaria vaccine that elicits in humans 
antibodies able to kill Plasmodium falciparum. PLoS Med 2005, 2:e344. 

69. Sheehy SH, Douglas AD, Draper SJ: Challenges of assessing the clinical 
efficacy of asexual blood-stage Plasmodium falciparum malaria vaccines. 
Hum Vaccin Immunother 2013, 9:1831-1840. 

70. Carvalho LJ, Alves FA, Bianco C, Jr., Oliveira SG, Zanini GM, Soe S, Druilhe P, 
Theisen M, Muniz JA, Daniel-Ribeiro CT: Immunization of Saimiri sciureus 
monkeys with a recombinant hybrid protein derived from the Plasmodium 
falciparum antigen glutamate-rich protein and merozoite surface protein 3 
can induce partial protection with Freund and Montanide ISA720 adjuvants. 
Clin Diagn Lab Immunol 2005, 12:242-248. 

71. Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, Duffy 
PE: Malaria: progress, perils, and prospects for eradication. J Clin Invest 
2008, 118:1266-1276. 

72. Arevalo-Herrera M, Solarte Y, Marin C, Santos M, Castellanos J, Beier JC, 
Valencia SH: Malaria transmission blocking immunity and sexual stage 
vaccines for interrupting malaria transmission in Latin America. Mem Inst 
Oswaldo Cruz 2011, 106 Suppl 1:202-211. 

73. von Seidlein L, Bejon P: Malaria vaccines: past, present and future. Arch Dis 
Child 2013, 98:981-985. 

74. Doolan DL, Hoffman SL: Multi-gene vaccination against malaria: A 
multistage, multi-immune response approach. Parasitol Today 1997, 13:171-
178. 

75. Dups JN, Pepper M, Cockburn IA: Antibody and B cell responses to 
Plasmodium sporozoites. Front Microbiol 2014, 5:625. 

76. Clyde DF, Most H, McCarthy VC, Vanderberg JP: Immunization of man against 
sporozite-induced falciparum malaria. Am J Med Sci 1973, 266:169-177. 



45 
 

77. Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van 
de Vegte-Bolmer M, van Schaijk B, Teelen K, Arens T, et al: Protection against 
a malaria challenge by sporozoite inoculation. N Engl J Med 2009, 361:468-
477. 

78. Roestenberg M, Teirlinck AC, McCall MB, Teelen K, Makamdop KN, Wiersma J, 
Arens T, Beckers P, van Gemert G, van de Vegte-Bolmer M, et al: Long-term 
protection against malaria after experimental sporozoite inoculation: an 
open-label follow-up study. Lancet 2011, 377:1770-1776. 

79. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, Holman LA, 
James ER, Billingsley PF, Gunasekera A, et al: Protection against malaria by 
intravenous immunization with a nonreplicating sporozoite vaccine. 
Science 2013, 341:1359-1365. 

80. Plotkin SA: Correlates of protection induced by vaccination. Clin Vaccine 
Immunol 2010, 17:1055-1065. 

81. Plotkin SA: Complex correlates of protection after vaccination. Clin Infect Dis 
2013, 56:1458-1465. 

82. Sagara I, Dicko A, Ellis RD, Fay MP, Diawara SI, Assadou MH, Sissoko MS, 
Kone M, Diallo AI, Saye R, et al: A randomized controlled phase 2 trial of the 
blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. 
Vaccine 2009, 27:3090-3098. 

83. Ogutu BR, Apollo OJ, McKinney D, Okoth W, Siangla J, Dubovsky F, Tucker K, 
Waitumbi JN, Diggs C, Wittes J, et al: Blood stage malaria vaccine eliciting 
high antigen-specific antibody concentrations confers no protection to 
young children in Western Kenya. PLoS One 2009, 4:e4708. 

84. Iriemenam NC, Khirelsied AH, Nasr A, ElGhazali G, Giha HA, Elhassan AETM, 
Agab-Aldour AA, Montgomery SM, Anders RF, Theisen M, et al: Antibody 
responses to a panel of Plasmodium falciparum malaria blood-stage 
antigens in relation to clinical disease outcome in Sudan. Vaccine 2009, 
27:62-71. 

85. Greenhouse B, Ho B, Hubbard A, Njama-Meya D, Narum DL, Lanar DE, Dutta S, 
Rosenthal PJ, Dorsey G, John CC: Antibodies to Plasmodium falciparum 
antigens predict a higher risk of malaria but protection from symptoms 
once parasitemic. J Infect Dis 2011, 204:19-26. 

86. Agnandji ST, Asante KP, Lyimo J, Vekemans J, Soulanoudjingar SS, Owusu R, 
Shomari M, Leach A, Fernandes J, Dosoo D, et al: Evaluation of the safety and 
immunogenicity of the RTS,S/AS01E malaria candidate vaccine when 
integrated in the expanded program of immunization. J Infect Dis 2010, 
202:1076-1087. 

87. Asante KP, Abdulla S, Agnandji S, Lyimo J, Vekemans J, Soulanoudjingar S, 
Owusu R, Shomari M, Leach A, Jongert E, et al: Safety and efficacy of the 



46 
 

RTS,S/AS01E candidate malaria vaccine given with expanded-programme-
on-immunisation vaccines: 19 month follow-up of a randomised, open-
label, phase 2 trial. Lancet Infect Dis 2011, 11:741-749. 

88. Cohen S, Butcher GA, Crandall RB: Action of malarial antibody in vitro. 
Nature 1969, 223:368-371. 

89. Singh PP, Prakash B: The dichotomy (generation of MAbs with functional 
heterogeneity) in antimalarial immune response in vaccinated/protected 
mice: A new concept in our understanding of the protective immune 
mechanisms in malaria. Hum Vaccin Immunother 2014, 10. 

90. Dunachie SJ, Berthoud T, Keating SM, Hill AV, Fletcher HA: MIG and the 
regulatory cytokines IL-10 and TGF-beta1 correlate with malaria vaccine 
immunogenicity and efficacy. PLoS One 2010, 5:e12557. 

91. Kusi KA, Dodoo D, Bosomprah S, van der Eijk M, Faber BW, Kocken CH, 
Remarque EJ: Measurement of the plasma levels of antibodies against the 
polymorphic vaccine candidate apical membrane antigen 1 in a malaria-
exposed population. BMC Infect Dis 2012, 12:32. 

92. Chuangchaiya S, Persson KE: How Should Antibodies against P. falciparum 
Merozoite Antigens Be Measured? J Trop Med 2013, 2013:493834. 

93. consortium O, Cavanagh DR, Dubois PM, Holtel A, Kisser A, Leroy O, Locke E, 
Moorthy VS, Remarque EJ, Shi YP: Towards validated assays for key 
immunological outcomes in malaria vaccine development. Vaccine 2011, 
29:3093-3095. 

94. Staalsoe T, Giha HA, Dodoo D, Theander TG, Hviid L: Detection of antibodies 
to variant antigens on Plasmodium falciparum-infected erythrocytes by 
flow cytometry. Cytometry 1999, 35:329-336. 

95. Thakur A, Pedersen LE, Jungersen G: Immune markers and correlates of 
protection for vaccine induced immune responses. Vaccine 2012, 30:4907-
4920. 

96. Schots A, Van der Leede BJ, De Jongh E, Egberts E: A method for the 
determination of antibody affinity using a direct ELISA. J Immunol Methods 
1988, 109:225-233. 

97. Gray JC, Corran PH, Mangia E, Gaunt MW, Li Q, Tetteh KK, Polley SD, Conway 
DJ, Holder AA, Bacarese-Hamilton T, et al: Profiling the antibody immune 
response against blood stage malaria vaccine candidates. Clin Chem 2007, 
53:1244-1253. 

98. Dodoo D, Hollingdale MR, Anum D, Koram KA, Gyan B, Akanmori BD, Ocran J, 
Adu-Amankwah S, Geneshan H, Abot E, et al: Measuring naturally acquired 
immune responses to candidate malaria vaccine antigens in Ghanaian 
adults. Malar J 2011, 10:168. 



47 
 

99. Mak JW, Lim PK, Tan MA, Lam PL, Noor Rain A, Selvadurai GD, Hanjeet K: 
Parasitological and serological surveys for malaria among the inhabitants 
of an aborigine village and an adjacent Malay village. Acta Trop 1987, 44:83-
89. 

100. Esen M: Assessment of humoral immune responses in malaria vaccine 
trials. Wien Klin Wochenschr 2010, 122 Suppl 1:4-6. 

101. Lim TS: A sensitive malaria immunoperoxidase assay for the detection of 
Plasmodium falciparum antibody. Am J Trop Med Hyg 1988, 38:255-257. 

102. Ajua A, Engleitner T, Esen M, Theisen M, Issifou S, Mordmuller B: A flow 
cytometry-based workflow for detection and quantification of anti-
plasmodial antibodies in vaccinated and naturally exposed individuals. 
Malar J 2012, 11:367. 

103. Belard S, Issifou S, Hounkpatin AB, Schaumburg F, Ngoa UA, Esen M, Fendel 
R, de Salazar PM, Murbeth RE, Milligan P, et al: A randomized controlled 
phase Ib trial of the malaria vaccine candidate GMZ2 in African children. 
PLoS One 2011, 6:e22525. 

104. Mordmuller B, Szywon K, Greutelaers B, Esen M, Mewono L, Treut C, Murbeth 
RE, Chilengi R, Noor R, Kilama WL, et al: Safety and immunogenicity of the 
malaria vaccine candidate GMZ2 in malaria-exposed, adult individuals from 
Lambarene, Gabon. Vaccine 2010, 28:6698-6703. 

105. Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, 
Cowman AF, McFadden GI: Localization of organellar proteins in 
Plasmodium falciparum using a novel set of transfection vectors and a new 
immunofluorescence fixation method. Mol Biochem Parasitol 2004, 137:13-
21. 

106. Olesen CH, Brahimi K, Vandahl B, Lousada-Dietrich S, Jogdand PS, 
Vestergaard LS, Dodoo D, Hojrup P, Christiansen M, Larsen SO, et al: Distinct 
patterns of blood-stage parasite antigens detected by plasma IgG 
subclasses from individuals with different level of exposure to Plasmodium 
falciparum infections. Malar J 2010, 9:296. 

107. Stanisic DI, Martin LB, Gatton ML, Good MF: Inhibition of 19-kDa C-terminal 
region of merozoite surface protein-1-specific antibody responses in 
neonatal pups by maternally derived 19-kDa C-terminal region of merozoite 
surface protein-1-specific antibodies but not whole parasite-specific 
antibodies. J Immunol 2004, 172:5570-5581. 

108. Olotu A, Lusingu J, Leach A, Lievens M, Vekemans J, Msham S, Lang T, Gould 
J, Dubois MC, Jongert E, et al: Efficacy of RTS,S/AS01E malaria vaccine and 
exploratory analysis on anti-circumsporozoite antibody titres and 
protection in children aged 5-17 months in Kenya and Tanzania: a 
randomised controlled trial. Lancet Infect Dis 2011, 11:102-109. 



48 
 

109. Aponte JJ, Aide P, Renom M, Mandomando I, Bassat Q, Sacarlal J, Manaca MN, 
Lafuente S, Barbosa A, Leach A, et al: Safety of the RTS,S/AS02D candidate 
malaria vaccine in infants living in a highly endemic area of Mozambique: a 
double blind randomised controlled phase I/IIb trial. Lancet 2007, 370:1543-
1551. 

110. Medhane M, Tunheim G, Naess LM, Mihret W, Bedru A, Norheim G, Petros B, 
Aseffa A, Rosenqvist E: Avidity of IgG antibodies against meningococcal 
serogroup a polysaccharide and correlations with bactericidal activity in 
sera from meningitis patients and controls from Ethiopia. Scand J Immunol 
2014, 79:267-275. 

111. Siegrist C-A: Vaccine immunology. In Vaccine. 5th edition. Edited by Plotkin, 
Orenstein, Offit: PA: Saunders Elsevier; 2008: 17-36 

112. Goldblatt D, Vaz AR, Miller E: Antibody avidity as a surrogate marker of 
successful priming by Haemophilus influenzae type b conjugate vaccines 
following infant immunization. J Infect Dis 1998, 177:1112-1115. 

113. Vermont CL, van Dijken HH, van Limpt CJ, de Groot R, van Alphen L, van Den 
Dobbelsteen GP: Antibody avidity and immunoglobulin G isotype 
distribution following immunization with a monovalent meningococcal B 
outer membrane vesicle vaccine. Infect Immun 2002, 70:584-590. 

114. Tutterrow YL, Salanti A, Avril M, Smith JD, Pagano IS, Ako S, Fogako J, Leke 
RG, Taylor DW: High avidity antibodies to full-length VAR2CSA correlate 
with absence of placental malaria. PLoS One 2012, 7:e40049. 

115. Reddy SB, Anders RF, Beeson JG, Farnert A, Kironde F, Berenzon SK, 
Wahlgren M, Linse S, Persson KE: High affinity antibodies to Plasmodium 
falciparum merozoite antigens are associated with protection from malaria. 
PLoS One 2012, 7:e32242. 

116. Leoratti FM, Durlacher RR, Lacerda MV, Alecrim MG, Ferreira AW, Sanchez MC, 
Moraes SL: Pattern of humoral immune response to Plasmodium falciparum 
blood stages in individuals presenting different clinical expressions of 
malaria. Malar J 2008, 7:186. 

117. Ferreira MU, Kimura EA, De Souza JM, Katzin AM: The isotype composition 
and avidity of naturally acquired anti-Plasmodium falciparum antibodies: 
differential patterns in clinically immune Africans and Amazonian patients. 
Am J Trop Med Hyg 1996, 55:315-323. 

118. Achtman AH, Stephens R, Cadman ET, Harrison V, Langhorne J: Malaria-
specific antibody responses and parasite persistence after infection of 
mice with Plasmodium chabaudi chabaudi. Parasite Immunol 2007, 29:435-
444. 



49 
 

119. Reed RC, Louis-Wileman V, Wells RL, Verheul AF, Hunter RL, Lal AA: Re-
investigation of the circumsporozoite protein-based induction of sterile 
immunity against Plasmodium berghei infection. Vaccine 1996, 14:828-836. 

120. Sidjanski S, Vanderberg JP: Delayed migration of Plasmodium sporozoites 
from the mosquito bite site to the blood. Am J Trop Med Hyg 1997, 57:426-
429. 

121. Schwenk RJ, Richie TL: Protective immunity to pre-erythrocytic stage 
malaria. Trends Parasitol 2011, 27:306-314. 

122. Clement F, Dewar V, Van Braeckel E, Desombere I, Dewerchin M, Swysen C, 
Demoitie MA, Jongert E, Cohen J, Leroux-Roels G, Cambron P: Validation of 
an enzyme-linked immunosorbent assay for the quantification of human 
IgG directed against the repeat region of the circumsporozoite protein of 
the parasite Plasmodium falciparum. Malar J 2012, 11:384. 

123. Kenney JS, Hughes BW, Masada MP, Allison AC: Influence of adjuvants on 
the quantity, affinity, isotype and epitope specificity of murine antibodies. J 
Immunol Methods 1989, 121:157-166. 

124. Lew AM, Anders RF, Edwards SJ, Langford CJ: Comparison of antibody 
avidity and titre elicited by peptide as a protein conjugate or as expressed 
in vaccinia. Immunology 1988, 65:311-314. 

125. Manz RA, Hauser AE, Hiepe F, Radbruch A: Maintenance of serum antibody 
levels. Annu Rev Immunol 2005, 23:367-386. 

126. Boxus M, Lockman L, Fochesato M, Lorin C, Thomas F, Giannini SL: Antibody 
avidity measurements in recipients of Cervarix vaccine following a two-
dose schedule or a three-dose schedule. Vaccine 2014, 32:3232-3236. 

127. McHeyzer-Williams LJ, McHeyzer-Williams MG: Antigen-specific memory B 
cell development. Annu Rev Immunol 2005, 23:487-513. 

128. Usinger WR, Lucas AH: Avidity as a determinant of the protective efficacy of 
human antibodies to pneumococcal capsular polysaccharides. Infect Immun 
1999, 67:2366-2370. 

 



50 
 

7. ACKNOWLEDGEMENTS 

 

During the course of my PhD work, many persons have supported me in one way or 

another to accomplish this goal. I am very much appreciative of your support and 

contributions and owe many thanks to you all. Due to space limitation, it is not possible 

to mention the names of everyone in this thesis. The contributions of a few persons are 

acknowledged herein. 

I am really grateful to my supervisors and I lack words to express my appreciation. 

Special thanks and appreciations to my first supervisor PD Dr. Benjamin Mordmüller, 

first for accepting me as PhD student in his research group and for his continuous 

support, guidance, patience and encouragement. I am also thankful to my second 

supervisor, Dr. Michael Theisen, for welcoming me in his lab at the Center for Medical 

Parasitology of the University of Copenhagen during the early years of my PhD training 

and for helpful advice and support.  

I am sincerely thankful to the Director of the Institute of Tropical Medicine, Prof. Dr. 

Peter G. Kremsner, for his excellent mentorship and for providing a conducive, 

stimulating and excellent research environment at the Institute. Special recognition also 

goes to Prof. Kremsner for supporting my further research career development. 

I wish to also thank my colleagues and staff of the Institute of Tropical Medicine for the 

pleasant social environment, assistance in times of need and for providing helpful 

comments during the weekly seminars. I am thankful to the present and former lab 

members of the Mordmüller working group for sharing the fun and lab challenges. 

I must express special thanks to my beloved wife, Mrs. Shantal Ajua, for the endless 

love, support, and encouragement. I also credit her for taking excellent care of our 

lovely kids, Flavia-Petra Ajua and Bildad Ajua, when I was absent from home to 

complete my studies. I thank you and the kids for staying very positive and healthy in 

my absence. 



51 
 

I would like to acknowledge my family, friends and the Zipkins for their love and support 

during the entire process. I am particularly grateful to my mother, siblings and in-laws, 

for their understanding, encouragements and prayers, which incented me to strive 

towards my goal. I dedicate this thesis to the memory of my late father Mathias Ajua, 

who wanted me to be a doctor but unfortunately never lived to see his dream become 

true.  

Lastly, it would not have been possible for me to pursue PhD studies without the 

fellowship from the European Malaria Vaccine Development Association (EMVDA), an 

EU-funded project in the 6th Framework Programme coordinated by European Vaccine 

Initiative (EVI) in Heidelberg, Germany. I was further supported by a scholarship from 

the Faculty of Medicine of the University of Tübingen.  

 



52 
 

8. CURRICULUM VITAE 
 

Personal data 

Name: Anthony  

Surname: Ajua 

Nationality: Cameroonian 

Place of Birth: Buea, Cameoon 

 

University Education 

11/2008- 06/2014 
Doctoral student at the Institute of Tropical Medicine, Eberhard Karls Universität 
Tübingen and Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, 
Gabon. 
 
10/2001-07/2003 
M.Sc. in Medical Parasitology, Faculty of Science, University of Buea, Cameroon. 
 
10/1996- 07/1999 
B.Sc. in Life sciences (Microbiology), Faculty of Science, University of Buea, Cameroon. 
 
 
Primary, Secondary and High School Education 
 
09/1994 – 07/1996 
General Certificate of Education (GCE) Advanced level, Bilingual Grammar School 
(BGS), Molyko - Buea, Cameroon. 
 
09/1989 – 07/1994 
GCE Ordinary level, BGS, Molyko - Buea, Cameroon. 
 
09/1982 – 07/1989 
First School Leaving Certificate (FSLC), Government Practising School (GPS) Molyko - 
Buea, Cameroon. 
 
 



53 
 

List of Publications  

1. Ajua A, Lell B, Agnandji ST, Asante KP, Owusu-Agyei S, Mwangoka G, Mpina M, 
Salim N, Tanner M, Abdulla S,  Vekemans J, Jongert E, Lievens M, Cambron P, 
Ockenhouse CF, Kremsner PG and Mordmüller B. The effect of immunization schedule 
with the malaria vaccine candidate RTS,S/AS01E on protective efficacy and anti-
circumsporozoite protein antibody avidity in African infants. Malaria Journal 2015; 14:72. 

2. Ali A, Netongo PM, Ngongang EO, Ajua A, Atogho-Tiedeu B, Achidi EA,  Mbacham 
WF. Amodiaquine-artesunate versus artemether-lumefantrine against uncomplicated 
malaria in children less than 14 years in Ngaoundere, North Cameroon. Efficacy, Safety 
and Baseline drug resistant mutations in pfcrt, pfmdr1 and pfdhfr genes. Malaria 
Research and Treatment 2013; 2013:234683. 

3. Mamo H, Esen M, Ajua A, Theisen M, Mordmüller B, Petros B. Humoral immune 
response to Plasmodium falciparum vaccine candidate GMZ2 and its components in 
populations naturally exposed to seasonal malaria in Ethiopia. Malaria Journal 2013; 
12:51.  

4. Ajua A, Engleitner T, Esen M, Theisen M, Issifou S, Mordmüller B. A flow cytometry- 
based workflow for detection and quantification of anti-plasmodial antibodies in 
vaccinated and naturally exposed individuals. Malaria Journal 2012; 11:367.  

5. Esen M, Forster J, Ajua A, Spänkuch I, Paparoupa M, Mordmüller B, Kremsner PG. 
Effect of IL-15 on IgG versus IgE antibody-secreting cells in vitro. Journal of 
Immunological Methods 2012; 375(1-2): 7-13.  

6. Mbacham WF, Evehe MSB, Netongo PM, Ateh IA, Mimche PN, Ajua A, Nji AM, 
Echouffo-Tcheugui JB, Tawe B, Hallett R, Roper C, Targett G, Greenwood B. Efficacy 
of amodiaquine, sulphadoxine-pyrimethamine and their combination for the treatment of 
uncomplicated Plasmodium falciparum malaria in children in Cameroon at the time of 
policy change to artemisinin-based combination therapy. Malaria Journal 2010; 9:34.  

7. Achidi EA, Apinjoh TO, Mbunwe E, Besingi R, Yafi C, Wenjighe Awah N, Ajua A, 
Anchang JK. Febrile status, malarial parasitaemia and gastrointestinal helminthiases in 
school children resident at different altitudes, in south-western Cameroon. Annals of 
Tropical Medicine and Parasitology 2008; 102 (2): 103 -118.  

8. Achidi EA, Ajua A, Kimbi KH, Sinju CM. In vivo efficacy study of quinine sulphate in 
the treatment of uncomplicated Plasmodium falciparum malaria from South Western 
Cameroon. East African Medical Journal 2005; 82(4): 181 – 185. 

 
 



54 
 

 
 

9. APPENDIX: PUBLICATIONS I and II 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



METHODOLOGY Open Access

A flow cytometry-based workflow for detection
and quantification of anti-plasmodial antibodies
in vaccinated and naturally exposed individuals
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Abstract

Background: Antibodies play a central role in naturally acquired immunity against Plasmodium falciparum. Current
assays to detect anti-plasmodial antibodies against native antigens within their cellular context are prone to bias
and cannot be automated, although they provide important information about natural exposure and vaccine
immunogenicity. A novel, cytometry-based workflow for quantitative detection of anti-plasmodial antibodies
in human serum is presented.

Methods: Fixed red blood cells (RBCs), infected with late stages of P. falciparum were utilized to detect
malaria-specific antibodies by flow cytometry with subsequent automated data analysis. Available methods for
data-driven analysis of cytometry data were assessed and a new overlap subtraction algorithm (OSA) based on
open source software was developed. The complete workflow was evaluated using sera from two GMZ2 malaria
vaccine trials in semi-immune adults and pre-school children residing in a malaria endemic area.

Results: Fixation, permeabilization, and staining of infected RBCs were adapted for best operation in flow
cytometry. As asexual blood-stage vaccine candidates are designed to induce antibody patterns similar to those in
semi-immune adults, serial dilutions of sera from heavily exposed individuals were compared to naïve controls to
determine optimal antibody dilutions. To eliminate investigator effects introduced by manual gating, a non-biased
algorithm (OSA) for data-driven gating was developed. OSA-derived results correlated well with those obtained by
manual gating (r between 0.79 and 0.99) and outperformed other model-driven gating methods. Bland-Altman
plots confirmed the agreement of manual gating and OSA-derived results. A 1.33-fold increase (p=0.003) in the
number of positive cells after vaccination in a subgroup of pre-school children vaccinated with 100 μg GMZ2 was
present and in vaccinated adults from the same region we measured a baseline-corrected 1.23-fold,
vaccine-induced increase in mean fluorescence intensity of positive cells (p=0.03).

Conclusions: The current workflow advances detection and quantification of anti-plasmodial antibodies through
improvement of a bias-prone, low-throughput to an unbiased, semi-automated, scalable method. In conclusion,
this work presents a novel method for immunofluorescence assays in malaria research.
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Background
Malaria is a major cause of morbidity and mortality in
endemic countries with African children carrying the
major burden of the disease. An efficacious malaria vac-
cine would be a cost-effective and easy-to-implement
intervention to complement current control strategies,
but until today no malaria vaccine is registered for rou-
tine use [1], although one product – RTS,S/AS01 – has
shown promising results in a clinical phase III study [2].
In contrast to vaccines containing pre-erythrocytic anti-
gens, such as RTS,S, vaccines directed against the asex-
ual blood stage are thought to act mainly through
antibodies (Abs). Hence, it is hypothesized that anti-
plasmodial Ab concentrations similar to those acquired
upon natural exposure are required to attain semi-
immunity, a type of non-sterile but robust immunity
that protects from clinical complications and excessive
parasite replication [1,3]. The main evidence for the role
of Abs in semi-immunity comes from studies where
purified Abs from African malaria-immune adults were
successfully used to treat non-immune malaria patients
[4,5] within Africa or, as an extension of this, in South-
East Asia [5]. The mechanisms, properties, and specifici-
ties of Abs that mediate protection in malaria, however,
remain unknown [3].
During clinical development of the malaria vaccine

candidate GMZ2 [6-8], it was noted that current assays
to monitor immunogenicity and pre-existing immunity
to malaria with intact parasites are bias-prone and diffi-
cult to standardize. Conventionally, most approaches are
based on enzyme-linked immunosorbent assay (ELISA)
using recombinant proteins or synthetic peptides as bait
antigen [9]. These could differ from their corresponding
native parasite counter-parts in their folding and post-
translational modifications, potentially altering the target
protein’s antigenic properties [3]. In addition, the degree
of parasite antigen exposure to the immune system (e.g.
the effects of localization in protein complexes or orga-
nelles) may be crucial for an effective anti-parasitic reac-
tion or as a correlate for successful vaccination. This
becomes even more important as second-generation,
multi-subunit and whole cell vaccines enter clinical de-
velopment [10]. As such, the use of microscopic
immunofluorescent antibody assay (IFA) to study Ab
concentrations against total parasite proteins expressed
in mature blood stage schizonts and merozoites using
native parasites [9,11] may provide important insights
into the Ab-mediated anti-plasmodial immune response.
Microscopic IFA however, has many setbacks; quantifi-

cation is done by determination of titers and quality
control remains problematic due to poor assay
standardization and potential investigator bias. Addition-
ally, the assay is not scalable and, therefore, investigation
of larger cohorts proves prohibitive [12]. On the other

side, in skillful hands, microscopic IFA is highly sensitive
and specific and provides information about the ability
of vaccine-induced Abs to bind to native parasite mole-
cules [9]. This being known, a scalable, sensitive, repro-
ducible, and quantitative assay based on flow cytometry,
a well-established and automatable technology, which is
widely available in developing countries [13], was pro-
posed to improve microscopy-based assays and allow for
high throughput measurements [14-16]. A major draw-
back of this approach is that flow cytometry data are
routinely analysed by manual gating, which is potentially
biased and inconsistent [15]. To overcome these chal-
lenges, a data-driven algorithm was developed to auto-
matically analyse flow cytometric data and a novel
workflow for a medium-throughput, sensitive, and reli-
able flow cytometry-based immunoassay for the detec-
tion and quantification of anti-plasmodial antibodies in
human serum is presented.

Methods
Study populations and serum samples
Serum samples from Day 0 (before vaccination) and Day
84 (4 weeks after the last of three vaccine administra-
tions) were collected from two clinical trials of GMZ2.
Details of the volunteers and vaccination schedules are
described elsewhere [7,8]. In brief, two double-blind,
randomized phase Ib clinical trials of GMZ2 were per-
formed in Lambaréné, Gabon; one enrolled adults [8],
the other pre-school children [7]. The trial involving
healthy Gabonese adults took place between July 2007
and August 2008. Twenty participants received 100 μg
GMZ2 adjuvanted with aluminium hydroxide (alum)
subcutaneously on Days 0, 28 and 56, whereas the 20
participants in the control group received rabies vaccine
intramuscularly at the same time points (Days 0, 28, and
56). The pediatric trial took place from September 2008
to October 2009 and involved 30 healthy pre-school
children aged 1 to 5 years. The children received three
doses of either rabies control vaccine (n = 10), 30 μg
GMZ2 (n = 10) or 100 μg GMZ2 (n = 10). The 3 doses
were administered one month apart (Days 0, 28 and 56)
by intramuscular injection.
Both studies were reviewed by the regional ethics

committee (Comité d‘Ethique Régional Indépendant de
Lambaréné; CERIL) and followed Good Clinical Practice
guidelines as defined by the International Conference on
Harmonization. All studies were conducted according
to the principles of the Declaration of Helsinki in its
5th revision.

Plasmodium falciparum culture, synchronization and
enrichment for late stages
The laboratory-adapted P. falciparum strain 3D7A,
obtained from the Malaria Research and Reference
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Reagent Resource (ATCC, Virginia, USA) was cultured
in complete medium (RPMI 1640, 25 mM HEPES,
2.4 mM L-glutamine, 50 μg/mL gentamicin and 0.5% w/v
Albumax). Confirmatory experiments were done using
the P. falciparum strain Dd2 obtained from the same
source. All cultures were maintained at 37°C in an atmos-
phere of 5% CO2 and 5% O2, with daily changes of
medium at 5% haematocrit and dilution with red blood
cells when the parasitaemia exceeded 5%.
Parasite cultures were synchronized at early ring stage

by treatment with 5% D-sorbitol (Sigma, St. Louis, USA)
for 10 min at 37°C. Isolation of synchronized P. falcip-
arum parasites (late trophozoite and schizont) was per-
formed using LD-MACS magnetic columns (Miltenyi
Biotec, Gladbach, Germany), as described previously, at
a parasitaemia of about 5% [17]. Following enrichment,
the purity of the parasite preparation was verified by
light microscopy and by flow cytometry after DNA stain-
ing with Hoechst 33342. In later experiments, Vybrant
DyeCycle violet stain (Invitrogen, Germany) replaced
Hoechst 33342.

Flow cytometry-based immunofluorescence assay
to detect anti-plasmodial antibodies
Preparation of parasites for cytometry was based on
a previously described fixation protocol [18]. Briefly,
P. falciparum culture enriched for late developmental
parasite stages were washed once in phosphate buffered
saline (PBS) and fixed by incubation in a combination
of PBS with 4% EM grade paraformaldehyde (Merck,
Germany) and 0.0075% EM grade glutaraldehyde
(Sigma-Aldrich, Germany) for 30 min. Fixed cells were
washed again in PBS and permeabilized for 10 min
in PBS/0.1% Triton-X-100 (TX100) (Sigma-Aldrich,
Germany). After another PBS wash step, free aldehyde
groups were reduced by incubating cells for 10 min
in PBS with 0.1 mg/ml sodium borohydride (Merck,
Germany). The preparation was washed again with PBS
and cells blocked in PBS/3% BSA. The cells were counted
using a haemocytometer (Neubauer–counting chamber)
and the pellet reconstituted in PBS to standardize the
number of cells used in the assay. As a modification of
the original protocol, all subsequent handling of cells in
1.5 ml sample tubes (Eppendorf, Hamburg, Germany)
was performed in 96-well round-bottom plates (Corning,
NY, USA) instead. To detect parasite-specific immuno-
globulin G (IgG), parasite suspension (2 μl of approx.
5.0 x 107 cells per ml) was added into each well of the
96-well plate resulting in a total volume of 100 μl of test
sera and control samples (each diluted in PBS/3%BSA)
and allowed to bind for 1 h at RT on a plate shaker. After
incubation, the cells were washed thrice with 150 μl of
PBS to remove excess unbound primary antibody. Subse-
quently, pellets were resuspended in 100 μl AlexaFluor

488 goat anti-human IgG (Molecular Probes, Germany),
diluted in PBS/3%BSA, and incubated in the dark for 1
hour. Following three washes with PBS, cells were stored
at 4°C in the dark prior to cytometric analysis.
Antibody dilutions of both primary and secondary

antibodies used in the assay were pre-determined
through checkerboard titration experiments. The com-
bination of antibody dilutions that gave the best separ-
ation between negative and positive fluorescent parasites
was selected and used in subsequent experiments.
Furthermore, different dilutions of three second-step
AlexaFluor-conjugated goat anti-human IgG antibodies
as well as a non-conjugated anti-histidine rich protein 2
(HRP2) monoclonal IgM (used as positive control) were
tested. In addition, the shelf-life of parasite preparations
was estimated by re-assaying at Days 0, 3, 7, and 14,
since measurements from large clinical trials may take
more than one day and it would be preferable to be able
to use one parasite batch for such extended analyses.

Assay controls
Parasites stained i) without primary Ab and ii) with
serum from malaria naïve donors followed by the fluor-
escently labelled secondary antibody were used as nega-
tive controls. Positive control serum came from a pool
of serum from malaria-exposed semi-immune adults
living in Lambaréné, Gabon. As an additional positive
control, infected RBCs were stained for HRP2 with a
mouse monoclonal Ab (55A, anti-PfHRP2; Immunology
Consultants Laboratories, Newberg, USA) at a 20 μg/ml
concentration. Detection was performed using a 1/3,000
dilution of AlexaFluor 633 goat anti-mouse IgM (Invi-
trogen, Germany). Before analysing the cells with a flow
cytometer, fluorescence microscopy was done to verify
the effectiveness of the fluorescence stains and to verify
the cellular localization of Ab-bound parasite proteins.

Flow cytometry data acquisition and analysis
Parasite-infected cells were measured on a Becton
Dickinson FACS Canto II flow cytometer equipped with
the FACSDiva software version 6.1.2 (BD Biosciences,
San Jose, USA) and an attached Carousel loader in high
throughput mode. Relative fluorescence intensity of
each event was analysed using FACSDiva software ver-
sion 6.1.2 (BD Biosciences, San Jose, USA). Ab-reactivity
was expressed as percentage of positive fluorescent cells
(PPFC) and mean fluorescent intensity (MFI). Data
acquisition was stopped after 50,000 events for each
serum sample tested.

Model-based analysis of flow cytometry data
Several model-based algorithms have been developed to
automate the gating process thereby directly addressing
several inherent limitations in gating-based analysis [19].
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Some of these methods, including two popular model-
based approaches, k-means [20] and an implementation
of the Expectation Maximization algorithm (EM) [21] were
tested on two experimental datasets. As part of this work,
the Overlap Subtraction Algorithm (OSA) was developed
and compared with model-based approaches. All described
methods were benchmarked using manual gating as a gold
standard. The OSA is implemented in the programming
language R and is available from the authors.

Design and mode of operation of the overlap
subtraction algorithm
The algorithm effectively mimics manual gating whenever
the gate is set with respect to an internal control. It detects
overlapping areas of two datasets (e.g. between a control
and the measurement of interest) in the two-dimensional
space and sets a gate at the border of the overlap. Cur-
rently, the algorithm is able to process one colour staining,
though it can be easily extended to process multicolour
staining. The algorithm accepts files in the flow cytometry
standard (FCS) 2.0 and 3.0 formats. MFI and PPFC are
computed and reported as output.
With flow cytometry typically a fixed number of cells

(e.g. 50,000) C are measured and analysed for each sam-
ple. Depending on the nature of the experiment, for each
measured cell ci ∈ C a vector of attributes a1. . .an can be
assigned, e.g., colour intensities for different dyes, for-
ward scatter (FSC), side scatter (SSC), etc. Generally,
each cell is represented by a data point in the two-
dimensional space, defined by the attributes a1 and a2.
The algorithm starts by partitioning the whole value

range for each attribute ai of interest in β equidistant inter-
vals, resulting in the vectors A1 and A2 of length β. The
next step is to define two | A1 | x | A2 | matrices T and C

for the test and control sample respectively. Then the
values for Tij and Cij are calculated according to:

Tij ¼ cj j≥A1i∧ cj j < A1iþ1 þ cj j≥A2j∧ cj j < A2jþ1

Cij ¼ cj j≥A1i∧ cj j < A1iþ1 þ cj j≥A2j∧ cj j < A2jþ1
ð1Þ

Each entry in the matrices T and C stores the number of
data points |c| whose values for the attributes a1 and a2 lie
within a certain interval defined by the two vectors A1 and
A2. Next, the percentage of data points coming from the test
sample is determined according to the following formula:

Rij ¼ Tij= Cij þ Tij
� � ð2Þ

Following this calculation, positive entries are selected,
i.e. entries in R that exceeds a certain threshold λ. To

Day 0  Day 84  
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FITC-A FITC-A 

Figure 1 Representative overlay showing the anti-plasmodial Ab responses of a semi-immune individual vaccinated with GMZ2.
The best separation between the negative and positive fluorescent cells is obtained when serum was diluted at 1/4,000. Test and control samples
were treated as described in the methods. Note the increase in fluorescence intensity as shown by the shift to the right when parasites were
incubated with serum diluted 1/32,000 (blue curve), 1/16,000 (orange curve), 1/8,000 (light green curve), 1/4,000 (green curve) or the control
(red line) and the overall higher response after vaccination (Day 84).
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Figure 2 Dose–response relationship in pooled serum.
Dilution series using a semi-immune serum pool. Bars show mean
fluorescence intensity (MFI) and connected squares percentage of
positive fluorescent cells (PPFC).
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achieve a high specificity, λ is set to 0.99 by default,
meaning that 99 percent of the data points that were
counted for a particular entry come from the test sam-
ple. The correct gate is then set by finding the ωth occur-
rence of an entry with:

Zij≤λ ð3Þ

The parameter ω controls the sensitivity of the
method. In practice it is used to fine-tune the gate’s
distance to the negative control. By using low values
of ω the gate is set close to the border of the negative
control sample. Higher values of ω tend to produce
gates that have a bigger gap from the control sample.
After selection of relevant entries, the final gate is
determined by Loess Regression through the selected
coordinates.

Statistical analysis of datasets from different populations
To detect differences in the MFI between groups due to
vaccination, a linear regression model was used. To ac-
count for baseline differences on Day 0, it was included
as covariate in the model (see Formula 4). Raw MFI
measurements were log10 transformed before use in fur-
ther analysis.

MFIday84 ¼ β0þβ1 �MFIday0 þ β2 � vaccine group ð4Þ

For PPFC measurements, which cannot be assumed to
follow a normal distribution, standard transformations
to achieve normality as proposed by Ahrens et al. [22]
did not work for both datasets. Therefore, log2 fold
changes between Day 0 and Day 84 were calculated.
Between-group differences in the children dataset were

tested by a one-way ANOVA followed by contrast

Figure 3 Dose–response relationship in individual samples from semi-immune donors. A set of 40 paired Day 0 (left panel) and Day 84
(right panel) sera from the same semi-immune population as in Figure 2. Dose-dependent responses can be seen for both the mean
fluorescence intensity (MFI, upper panel) and percentage of positive fluorescent cell (PPFC, lower panel).
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extraction for comparisons of interest. Effects of vaccin-
ation within groups were tested by Student’s t-test.
Between-group comparisons and effects of vaccination

in the adult dataset were tested using a non-parametric
Wilcoxon test because even after transformation or calcu-
lation of ratios the data shows deviations from a normal
distribution. To compare results derived manually as well
as those obtained by automatic gating, Pearson’s correl-
ation coefficients were calculated using log10 transformed
Ab data measured as MFI. For PPFC comparisons Spear-
man’s rank correlation was used. Agreement between the
methods was further evaluated with the Bland-Altman
method [23]. The 95% confidence intervals for the mean
difference are indicated for all Bland-Altman plots. All ana-
lyses were done with R v.2.13.0 [24] and statistical signifi-
cance was defined as a two-sided p<0.05.

Results
Setup of assay parameters
To develop a standardized flow cytometric IFA to assess
the Ab-reactivity to fixed P. falciparum parasites, a pub-
lished fixation protocol [18] was adapted for use in flow
cytometry. The basis for optimization was the best dis-
crimination between positive and negative cells upon
incubation with a serum pool from semi-immune indivi-
duals and preserved integrity and morphology of the
cells. The final fixation and permeabilization conditions
are given in the methods. Titration experiments showed
that the use of semi-immune sera diluted at 1/4,000 fol-
lowed by a 1/3,000 dilution of AlexaFluor 488 conju-
gated goat anti-human IgG best discriminated between
negative and positive fluorescent cells (Figure 1).

Assay validation procedure
Following protocol development the new flow
cytometry-based assay was validated using African semi-
immune serum samples. These sera were selected on the
basis of high anti-GMZ2 Ab-concentrations in ELISA.
To assess concentration-dependent responses in anti-
body levels, a semi-immune serum pool diluted from 1/
1,000 to 1/128,000 was used. Staining was specific (Fig-
ure 2) with only minimal cross-reaction to negative
samples.
In addition, experiments were performed using a set of

40 Day 0 and Day 84 sera from the GMZ2 phase Ib trial
in Gabonese adults serially diluted from 1/4,000 to 1/
32,000. As expected, the PPFC and MFI values were
dependent on the serum concentration (primary anti-
body) used in the assay and showed a consistent and
obvious dose-dependent response relation on the differ-
ent time points (Figure 3).

Application of model-based algorithms in flow cytometry
data analysis
Model-based gating algorithms were tested on two
datasets. Of these, only two methods (k-means and the
EM algorithm) tend to produce results that were compar-
able to those obtained by manual gating. They were
selected and their performance was further evaluated in
comparison to the manual gating strategy. Considering the
MFI, results from the two methods do significantly corre-
late (p<0.001) with those obtained manually in both data-
sets. In contrast, k-means produced non-significant results
for PPFC on Day 0 and 84 in the population of Gabonese
adults when compared to manual gating. In the pediatric

Table 1 Correlation of the four strategies employed for gating raw flow cytometry data

Manual gating

Gabonese adults (n = 37)a MFI day 0 MFI day 84 PPFC day 0 PPFC day 84

k-means r = 0.95 r = 0.89 ρ = 0.04§ ρ = 0.14§

r2 = 0.91 r2 = 0.79

EM* r = 0.92 r = 0.89 ρ = 0.89 ρ = 0.94

r2 = 0.85 r2 = 0.80

Overlap subtraction r = 0.99 r = 0.98 ρ = 0.99 ρ = 0.99

r2 = 0.99 r2 = 0.96

Gabonese children (n = 28)b MFI day 0 MFI day 84 PPFC day 0 PPFC day 84

k-means r = 0.71 r = 0.76 ρ = −0.93 ρ = −0.88

r2 = 0.51 r2 = 0.59

EM* r = 0.61 r = 0.64 ρ = 0.78 ρ = 0.81

r2 = 0.38 r2 = 0.41

Overlap subtraction r = 0.79 r = 0.83 ρ = 0.94 ρ = 0.96

r2 = 0.62 r2 = 0.69

*Expectation Maximization. r = Pearson’s correlation coefficient. r2 = Coefficient of determination. ρ = Spearman correlation coefficient. Ab (IgG) responses are
expressed as mean fluorescence intensity (MFI) and percentage of positive fluorescent cell (PPFC). Correlations for MFI were calculated using log10 transformed
data. aData excluded for 3 participants due to problems with data acquisition and inability of some algorithms to set an appropriate gate. bTwo participants have
been excluded from analysis for the same reasons as above. All p-values are significant (p < 0.001) except for those marked with §.
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dataset, k-means-based results for PPFC measurements
were even negatively correlated with those derived by
manual gating (ρ=-0.93 on Day 0, ρ=-0.89 on Day 84, both
p<0.001) (Table 1). Figures 4 and 5 show correlation
matrices from Gabonese adults and children comparing
the different analytical approaches using Day 0 PPFC mea-
surements. Despite the significant correlation in most
comparisons, Bland-Altman analyses show considerable
lack of agreement between k-means, EM and manual
gating for both, MFI and PPFC (Table 2). In both datasets
k-means tends to under-estimate whereas EM over-

estimates the MFI using results from the manual gating as
reference. With regards to the PPFC among the children
population, k-means over-estimates it by 40% and 34%
on Day 0 and Day 84 respectively when compared to
the manual gating. The poor performance of these
methods on the datasets therefore motivated the
development of a new method for data-driven gating.
Since the different statistical approaches were not well-
suited for the data, an algorithmic approach (OSA) was
tested. In general, the algorithm produced results, which
compared well (p<0.0001) to manually gated data

Figure 4 Correlation matrix of results from different flow cytometry data analysis methods: adults. PPFC measurements for Day 84 from
Gabonese adults. The diagonal separates scatterplots (lower part) and the respective correlation coefficients (upper part).
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(Table 1). In terms of MFI and PPFC for the different
time points, the correlation appeared to be stronger for
the adults (r ≥ 0.98) than for the children (r ≥ 0.79). In
contrast to the other methods, OSA shows a high
agreement with the results obtained from manual gating
(Table 2). The expected absolute error for the PPFC in
the semi-immune adults population is 30 and 60 times
lower than for EM and k-means, respectively (Table 2).
Figure 6 shows representative Bland–Altman plots with
95% limits of agreement (LOA). From all methods
tested, OSA shows the smallest 95% LOA in terms of
PPFC and MFI (Table 2).

Application of the cytometric IFA on sera from
vaccinated subjects
The new method was applied to datasets from two
GMZ2 phase Ib trials to detect possible effects of vac-
cination on Ab response. Each dataset consists of
paired serum samples taken on Day 0 pre- and Day 84
post-vaccination. In total, 70 samples were analysed, 40
from semi-immune adults [8] and 30 from pre-school
children [7], both from Gabon. Figure 7 illustrates the
log2 fold changes in PPFC between Day 84 and Day 0
(baseline) responses of the different vaccine groups.
Among children, most volunteers in the two subgroups
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Figure 5 Correlation matrix of results from different flow cytometry data analysis methods: children. PPFC measurements for Day 84
from Gabonese children. The diagonal separates scatterplots (lower part) and the respective correlation coefficients (upper part).
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vaccinated with GMZ2 had a higher response on Day
84 (63% and 90% who received 30 μg and 100 μg
GMZ2, respectively). Out of all volunteers vaccinated
with GMZ2, only those who received 100 μg GMZ2
showed a significant increase (p=0.003) in their Ab
reactivity (1.33-fold, 95% CI: 1.15, 1.55), while no sig-
nificant increase was observed in the 30 μg group
(1.01-fold, 95% CI: 0.81, 1.27). Interestingly, 33% of all
participants in the rabies-vaccinated group had also a
higher response on Day 84. However, the remaining
six showed no or minimal increase in reactivity on
Day 84. As a consequence, no significant increase in
vaccine response was detected on Day 84 (1.09-fold,
95% CI: 0.94, 1.28). In contrast to the pre-school chil-
dren, no significant treatment effect on Day 84 was
detectable neither in the 100 μg GMZ2 (0.83-fold, 95%
CI: 0.71, 0.99) nor in the rabies control group (1.08-
fold, 95% CI: 0.97, 1.21) of the adult volunteers. In
addition, no differences between the vaccine groups
could be detected in both datasets. Interestingly, by
applying a linear regression model (Table 3) to the
log10 transformed MFI values, which adjusts for the
Ab reactivity on Day 0 (baseline), significantly higher
vaccine responses (p=0.03) were detected in the 100
μg GMZ2 group compared to the rabies group. In the
pre-school children population no significant between-
groups differences were detected.

Discussion
A well-studied reaction of the immune system to mal-
aria or vaccination with malaria vaccine candidates
is the induction of antigen-specific antibodies [25].
Implementation of assays that adequately detect levels of

antibodies induced by natural exposure or vaccination is
critical for monitoring immunogenicity. In this respect,
flow cytometric-based IFA techniques similar to the
approach described here have extensively been employed
to assess total IgG antibodies in the sera of humans
infected with protozoan parasites different from Plasmo-
dium [26-32]. With human malaria, some studies have
adapted related techniques - mainly to analyse responses
against plasmodial variant surface antigen [12,33-36],
which may have a role in parasite virulence or be used
as vaccine candidates.
Here, a novel approach for immunofluorescence

assays, which incorporates flow cytometry and offers
a rapid and reliable method of measuring total anti-
plasmodial Ab in human serum, is presented. In
contrast to conventional methods which utilize re-
combinant or synthetic peptides as antigen to assess
Ab responses [9], the improved workflow has several
advantages: i) Plasmodium parasites can be routinely
maintained in continuous in vitro cultures to produce
enough material for medium- to high-throughput
assays; ii) the use of whole-cell preparations of P. fal-
ciparum may preserve the target protein’s antigenic
properties better compared to soluble antigens [3],
which could be essential for an effective anti-parasitic
reaction to occur; and iii) the protein of interest is pre-
sented in its native context. Since fixed parasites
remained intact and stable for more than 2 weeks when
stored at 4°C, it is possible to analyse large sample
numbers over an extended period of time. Further-
more, data acquisition using a flow cytometer equipped
with a carousel or plate loader in high-throughput
mode ensures rapid and consistent analysis of samples

Table 2 Bland-Altman analyses of the different data gating strategies

Manual gating

Gabonese adults (n = 37)a MFI day 0 MFI day 84 PPFC day 0 PPFC day 84

k-means 611 600.9 −0.04 −0.06

(464.3, 757.7) (350.5, 851.3) (−0.09, 0.005) (−0.12, -0.005)

Expectation −388.3 −328.7 0.02 0.01

Maximization (−600.2, -176.4) (−604.8, -52.7) (0.004, 0.04) (−0.003, 0.03)

Overlap subtraction −124.2 −98.1 0.006 −0.004

(−160.3, -88.2) (−143.4, -52.7) (0.003, 0.009) (−0.02, 0.001)

Gabonese children (n = 28)b MFI day 0 MFI day 84 PPFC day 0 PPFC day 84

k-means 198.6 205.8 −0.4 −0.34

(166.7, 230.6) (176.8, 234.8) (−0.49, -0.31) (−0.42, -0.27)

Expectation −208.9 −171.7 0.09 0.06

Maximization (−290.4, -127.3) (−214.5, -128.9) (0.03, 0.14) (0.05, 0.08)

Overlap subtraction 39.8 56.2 −0.04 −0.05

(25.1, 54.5) (43.6, 68.9) (−0.03, -0.05) (−0.06, -0.03)

Ab reactivity is expressed as mean fluorescence intensity (MFI) and percentage of positive fluorescent cell (PPFC). Data is given as mean differences of MFI
and PPFC values (lower and upper 95% confidence interval) between the different approaches. aData excluded for 3 participants due to problems with data
acquisition and inability of some algorithms to set an appropriate gate. bTwo participants have been excluded from analysis for the same reasons as above.
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Figure 6 Representative Bland-Altman plots obtained by comparing different analytical approaches. The x-axis shows the mean of
both computationally and manually derived estimates for the PPFC and the y-axis the difference between them. The inner solid line represents
the mean difference for PPFC values while the outer dotted lines denote the lower and upper 95% limits of agreement between the
different strategies.
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thereby reducing sample processing time and handling
variations. This greatly improves the assay reliability
when compared to the microscopic IFA technique,
where the effort is limited by the microscopist’s ex-
perience and speed and where substantial variation
among microscopists is common. The level of
standardization and throughput that is possible using
fully automated synthetic or recombinant peptides
cannot be attained with such an approach.
The conventional method of manual gating of flow

cytometry data is often investigator-dependent and diffi-
cult to standardize. To overcome these shortcomings
several statistical methods have been proposed in the lit-
erature. After applying them to two study datasets, even
the best performing ones (k-means and EM) showed
high error rates when compared to expert manual
gating. This disadvantage was remedied by the develop-
ment of a new algorithm (OSA), which, in contrast to
model-based methods, does not make any assumption
on the data distribution and mimics manual gating strat-
egies. OSA-derived results correlate well with those
derived by manual gating. As a data-driven algorithm,

OSA may not perform equally well in other experimen-
tal setups as it depends heavily on the data structure.
The whole workflow (cytometric IFA plus OSA) was

validated using samples from two vaccine studies in mal-
aria exposed adults and children who profoundly differ
in their baseline anti-plasmodial immunity and showed
a significant increase in specific Ab-reactivity against
the GMZ2 vaccine after vaccination [7,8]. By applying
the workflow, a moderate but significant increase in
vaccine-induced Abs response was observed based on
the PPFC, one month after a full immunization schedule
(Day 84) in a subgroup of children who received the
highest dose of GMZ2 (100 μg). Meanwhile, the effect
induced by a lower dose of the vaccine (GMZ2 30 μg)
was small and no significant treatment effect was detect-
able with this approach. A larger sample size may be
required to detect a significant effect in this subgroup.
In contrast to GMZ2-specific ELISA, which distin-
guishes GMZ2- from control-vaccinated children con-
sistently, cytometric IFA results represent the integrated
reactivity against all accessible parasite antigens after cell
permeabilization. This decreases the ability to detect a
specific signal but adds information about the size of the
effect in the context of naturally acquired immunity and
consequently complements antigen-specific methods.
Based on the PPFC outcome measure, no treatment

effect was observed in semi-immune adults immunized
with 100 μg GMZ2 (Figure 7). In contrast, a signifi-
cant vaccination effect was detected between the two
subgroups in the adult dataset when considering the
MFI (Table 3). From the statistical point of view, a possible
explanation for the contrasting observations in the two
outcome measures (MFI and PPFC) may relate to the fact
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Figure 7 Changes in Ab levels of Gabonese adults and children following immunization with GMZ2. Data is expressed as log2 fold
change in PPFC between Day 0 and Day 84. P-values were obtained by a one-way ANOVA and the Wilcoxon test for the children and adults’
data respectively.

Table 3 Fold-changes in Ab reactivity after GMZ2
immunization of Gabonese adults and children

Study populations Mean (95% CI) P-value Comparison

Gabonese adults 1.23 (1.02, 1.48) 0.03 GMZ2 100 μg/Rabies

Gabonese children 1.04 (0.92, 1.17) 0.52 GMZ2 30 μg/Rabies

1.04 (0.93, 1.16) 0.48 GMZ2 100 μg/Rabies

1.0 (0.89, 1.13) 0.98 GMZ2 30 μg/100μg

Ab reactivity is presented as mean fluorescent intensity (MFI). Data is shown
as mean fold changes of the different comparisons (95% confidence interval).
P-values for MFI comparisons derived by linear regression model.
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that outlying data points have a greater influence on MFI
than PPFC. Consequently, PPFC is the more conservative
measure and should be preferred in case of discordant
results when no mechanistic explanation is present. In the
present study, two different populations, which largely dif-
fer in their response pattern after vaccination were investi-
gated. Children with no or very little immunity develop
anti-plasmodial antibodies upon vaccination (increase
in PPFC), whereas in semi-immune adults a vaccine-
mediated boost of pre-existing anti-parasitic immune
response that translates into improved parasite recogni-
tion (increased MFI) is expected. Therefore, the results
are in line with the mechanistic concept of vaccination in
naïve and pre-exposed populations, respectively.
The relatively high pre-vaccination antibody levels

with specificities to different malaria parasite antigens
reported in the adults population [8] contribute much to
the large variation in the data. Therefore it is not surpris-
ing that a response to a single antigen is difficult to de-
tect. Nevertheless, results from this investigation
illustrate that a vaccine-induced increase in Ab- binding
to fixed Plasmodium parasites is detectable by this
methodology, demonstrating their potential functional
properties [34]. However, the assay may need further
adaptation for its use in subjects with no previous expos-
ure to malaria and low immune responses as was
observed in pilot experiments. IgG subclass-specific Ab
responses, especially the cytophilic antibodies known to
be associated with reduced risk of malaria [37,38], have
not been addressed in the present study but can be inte-
grated rather easily.
In summary, a new flow cytometry-based immunofluor-

escence assay is presented. It is a cheap, reliable and rapid
method to detect and quantify anti-plasmodial antibodies
in human sera and may be of value in malaria research. As
a next step this workflow will be applied to samples from
clinical phase II/III trials of malaria vaccine candidates to
characterize Ab-mediated immune responses and identify
correlates of vaccine-induced protection against malaria.
The non-biased data-driven computational analysis tool
(OSA) integrated in this methodology will be provided
under a general public license to the scientific community.
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Abstract

Background: The malaria vaccine RTS,S induces antibodies against the Plasmodium falciparum circumsporozoite
protein (CSP) and the concentration of Immunoglobulin G (IgG) against the repeat region of CSP following vaccination
is associated with protection from P. falciparum malaria. So far, only the quantity of anti-CSP IgG has been measured
and used to predict vaccination success, although quality (measured as avidity) of the antigen-antibody interaction shall
be important since only a few sporozoites circulate for a short time after an infectious mosquito bite, likely requiring fast
and strong binding.

Methods: Quantity and avidity of anti-CSP IgG in African infants who received RTS,S/AS01E in a 0-1-2-month or a
0-1-7-month schedule in a phase 2 clinical trial were measured by enzyme-linked immunosorbent assay. Antibody
avidity was defined as the proportion of IgG able to bind in the presence of a chaotropic agent (avidity index). The
effect of CSP-specific IgG concentration and avidity on protective efficacy was modelled using Cox
proportional hazards.

Results: After the third dose, quantity and avidity were similar between the two vaccination schedules. IgG avidity after
the last vaccine injection was not associated with protection, whereas the change in avidity following second and third
RTS,S/AS01E injection was associated with a 54% risk reduction of getting malaria (hazard ratio: 0.46; 95% confidence
interval (CI): 0.22-0.99) in those participants with a change in avidity above the median. The change in anti-CSP
IgG concentration following second and third injection was associated with a 77% risk reduction of getting malaria
(hazard ratio: 0.23, 95% CI: 0.11-0.51).

Conclusions: Change in IgG response between vaccine doses merits further evaluation as a surrogate marker for
RTS,S efficacy.
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Background
Malaria has an enormous public health impact and new
preventive interventions are urgently needed. After more
than 100 years of research on malaria vaccines, RTS,S
was the first pre-erythrocytic vaccine candidate that en-
tered phase III clinical development [1-3]. RTS,S con-
tains hepatitis B surface antigen (HBsAg) together with a
fusion protein of HBsAg and a carboxy-terminal frag-
ment of Plasmodium falciparum circumsporozoite pro-
tein (CSP), co-expressed in yeast and formulated with a
proprietary adjuvant (AS01). The exact mechanism of
RTS,S-mediated protection is not known, although Im-
munoglobulin G antibodies (IgG) against the CSP repeat
region are likely to play an important role since the con-
centration of anti-CSP IgG partly explains protection in
most studies that assessed efficacy of RTS,S in African
children [4-6]. In addition, passive transfer of anti-CSP
IgG can protect animals from subsequent challenge
[7,8]. Besides concentration, many other properties de-
termine antibody function. Among them are availability
of effector molecules, post-translational modification,
isotype, subclass, affinity and avidity of antibodies. It is
difficult to measure all these characteristics in one sam-
ple, particularly in the small sample volumes obtained
during clinical trials in infants. Affinity, defined as the
strength of interaction between an epitope and an anti-
body binding site, would be a particularly interesting
variable to measure in the context of anti-CSP IgG-
mediated immunity, since the time of interaction with
the parasite is short (less than 30 minutes [9]), sporozo-
ites are strongly diluted and few. In fact, only one suc-
cessful hepatocyte infection is sufficient to initiate and
maintain blood stage infection. Studies in mice have
shown that high antibody affinity against a synthetic
CSP immunogen is positively associated with protection
[8,10] and most studies in humans indicate that anti-
CSP IgG concentration explains only parts of the
vaccine-mediated protection. Increase in antibody affin-
ity after repeated antigen exposure is the result of affin-
ity maturation due to somatic hypermutation. The rate
and extent of maturation may be influenced by several
factors, including nature, route and dose of the antigen,
adjuvants and carriers as well as the immunization
schedule. In the present study antibody avidity was mea-
sured. It is a representation of the strength of interaction
between antibodies and antigens in a complex and be-
sides antibody affinity, valences of antibodies and anti-
gens as well as structural features of the complex are
important determinants of avidity. For CSP, it has been
shown that the use of some adjuvants can increase the
avidity of anti-CSP IgG after vaccination of human vol-
unteers [11]. In this study IgG avidity against the repeat
region of CSP was measured after the second and third
injection of RTS,S/AS01E in infants that received the

vaccine as part of a phase IIb clinical trial to assess safety
and efficacy of RTS,S/AS01E in the age-group targeted by
the expanded programme on immunization (EPI) [5,12].

Methods
Clinical trial
The objective of the study was to explore the effect of
anti-CSP IgG avidity on RTS,S vaccine efficacy in naturally
exposed infants. Details of the clinical trial have been pub-
lished previously [5,12]. Briefly, safety and efficacy of RTS,
S/AS01E when given through the EPI was assessed in 511
children from Gabon, Ghana and Tanzania. Participants
were randomly assigned to one of three intervention arms:
1) RTS,S/AS01E as three injections, one month apart (0, 1,
2 months schedule [012]; n = 170), 2) RTS,S/AS01E ex-
tended schedule (0, 1, 7 months schedule [017]; n = 170)
or 3) control (EPI vaccines alone; n = 171). Malaria was
defined as parasitaemia >500 parasites per μl and an axil-
lary temperature >37°C. The efficacy of RTS,S against first
malaria episodes, detected by passive case detection, was
equivalent in the two schedules one year after the third
injection. The study followed Good Clinical Practice
guidelines, the Declaration of Helsinki (4th revision) and
received approval from the appropriate local and national
ethics committees of each site. In addition, ethical re-
view by the ethics committees of the London School of
Hygiene and Tropical Medicine Ethic Committee, the
Swiss Tropical Institute Committee and the Western
Institutional Review Board was sought. The trial is
registered with ClinicalTrials.gov (NCT00436007).

Antibody measurements
Antibodies against CSP were measured by evaluating
IgG responses against the CSP-repeat region, using a
validated enzyme-linked immunosorbent assay (ELISA)
with R32LR as the coating antigen [13]. An anti-CSP
IgG titre of 0.5 ELISA units per millilitre (EU/mL) or
greater was considered to be positive. For measurements
of avidity of IgG against the repeat region of CSP,
samples were evaluated as described [13], but in two dif-
ferent plates; one treated with a chaotropic agent and
one untreated plate. As chaotropic agent a 1 M solution
of ammonium thiocyanate (NH4SCN) was added in the
treatment plate while 0.05% Tween-20 in PBS was added
in the untreated plate and both CSP ELISA plates were
further washed and developed as described [13]. The
avidity index (AI) was calculated as the ratio of the con-
centration of anti-CSP IgG (EU/ml) that remained
bound to the coated antigen after treatment with
NH4SCN, divided by the concentration of IgG (EU/ml)
that remained bound to the coated antigen in the un-
treated plate. Anti-CSP IgG quantification and avidity
were measured at the Center for Vaccinology, Ghent
University Hospital, Belgium.
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For statistical modelling the logarithm of anti-CSP IgG
concentration was used since previous data showed that
log-transformation results in a better fit to the normal
distribution. AI was analysed in the two RTS,S-vacci-
nated arms and after the second and third vaccination.
Since the majority of infants before vaccination and
those receiving control vaccine do not have measurable
anti-CSP IgG, AI cannot be calculated. Delta AI (dAI)
was defined as the difference in AI between the second
and third vaccination. Similarly, delta CSP (dCSP) was
defined as the difference in anti-CSP IgG concentration
between the second and third vaccination.

Statistics
Analysis of the effect of IgG avidity on protective effi-
cacy was exploratory and not detailed in the statistical
analysis plan of the original study. IgG responses be-
tween the groups were analysed by descriptive statistics
and represented as boxplots together with the individual
measurements. The effect of anti-CSP IgG concentration
and AI on risk of malaria was calculated using the
according-to-protocol (ATP) dataset with a Cox propor-
tional hazards model in R v2.15.2. For statistical model-
ling antibody concentrations were log-transformed. To
calculate the effect of dAI and dCSP on the occurrence
of malaria episodes with a Cox proportional hazards
model, values were dichotomized on the median dAI or
dCSP and labelled as ‘high’ and ‘low’, respectively. All
models included the covariates schedule and site. If ap-
propriate, other covariates were added as reported in the
results section. A p-value below 0.05 was considered sig-
nificant and 95% confidence intervals (95% CI) are given
where appropriate.

Results
After screening 605 participants, 170 received RTS,S in
the standard (012) and 170 in the extended (017)
schedule, as depicted on the CONSORT flowchart of
the primary study (Figure 1). Samples from 315 (300
ATP) participants were available for immunological
analysis (012: n = 154 [148]; 017: n = 161 [152]). Paired
immunological samples to calculate dAI were available
from 187 (179 ATP) participants (012: n = 103 [100];
017: n = 84 [79]).
As reported earlier [5], high anti-CSP IgG titres after

three vaccine injections were associated with a reduc-
tion in subsequent incidence of clinical malaria: the
hazard ratio of a ten-fold increase in anti-CSP IgG was
0.52 (95% CI: 0.34-0.81), which corresponds to a 48%
risk reduction.
Absolute AI after two (012: 35.9, 017: 34.9; t-test p = 0.57)

and three (012: 41.2, 017: 39.3; t-test p = 0.22) RTS,S injec-
tions were similar between the two vaccination schedules
(Figure 2). As expected, an increase in AI between the

second and third vaccination was present (Figure 3). In-
crease in delta AI (dAI) was slightly, albeit not statistically
significant, higher in the 017 (7.1) group compared to the
012 (4.2) group (delta: 3.0; 95% CI: −0.3-6.1; t-test p = 0.08).
To explore the effect of AI, dAI and dCSP on malaria

risk, three Cox proportional hazard models were defined
and tested. AI after the third injection, corrected for site,
schedule and anti-CSP IgG concentration, did not ex-
plain a significant reduction in risk of clinical malaria
(Model 1; hazard ratio: 0.99, 95% CI: 0.97-1.02). Partici-
pants were then divided on the median in dCSP and dAI
‘high’ and ‘low’ responders and included as categorical
variable in the model. Classification as ‘high-dCSP’ was
associated with a significant risk reduction (77%) com-
pared to the ‘low dCSP’ group in a model corrected for
site and schedule (Model 2; hazard ratio: 0.23, 95% CI:
0.11-0.51). When dAI, corrected for site, schedule and
dCSP was analysed, the hazard ratio between high and
low responders separated by the median, was 0.46
(Model 3; 95% CI: 0.22-0.99; Wald test p = 0.049), hence
classification as ‘high dAI’ group member is associated
with a 54% risk reduction (Figure 4).

Discussion
The complex interplay of vaccine-primed immune medi-
ators that define a successful response upon pathogen
encounter is not well understood. Cellular and humoral
components have important roles, although in various
compositions, depending on the pathogen and the host.
Antibodies are the prototypic vaccine-induced immune
mediators and play an important role in anti-malarial
immunity during the pre-erythrocytic [8,10] as well as
the erythrocytic stage [14] of the disease, as shown by
passive transfer experiments in mice and man. The sheer
concentration of antigen-specific antibodies is normally
used to measure immunization success and serves as a
surrogate to estimate protective efficacy. The clinical de-
velopment of RTS,S is a unique opportunity to investi-
gate the effect of further variables such as antibody
avidity, isotype or subclass on vaccine efficacy, since
clinical (true) efficacy is known [5], being 57% (95% CI:
33–73) with the 012 schedule and 32% (95% CI: 16–45)
following the 017 schedule.
Here, anti-CSP IgG avidity was measured to assess if it

predicts vaccine efficacy in a phase II clinical trial of
RTS,S independent of anti-CSP IgG concentration
[5,12]. Regardless of the vaccination scheme and site,
avidity did not improve prediction over anti-CSP IgG
concentration alone. This may mean that: i) the assay is
not sensitive enough to reflect avidity; ii) collinearity be-
tween antibody concentration and avidity blurs the effect
of avidity; or, iii) that avidity is not an important deter-
minant of vaccine efficacy. In this study IgG concentra-
tion and avidity was measured after the second and third
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vaccine injection. This approach is valid to assess if the
immune system reacted to vaccination successfully.
Since kinetics of IgG vary over time and the study was
performed under natural exposure to malaria parasites,
the time of encounter with the parasite becomes an im-
portant variable. This is in contrast to controlled human

malaria infection (CHMI) studies, where the time of in-
fection is defined. Hypothetically, the difference in IgG
concentration (and avidity) between second and third
vaccination could be a better predictor of effective
antibody-mediated protection than concentration after
the third vaccine injection, because it better reflects the

Figure 1 CONSORT study flow chart.
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further evolution of antibody responses until next para-
site encounter. The present data argue for the use of this
approach since it was shown that a high dCSP predicts
protective efficacy and dAI explains part of the protec-
tion in the RTS,S vaccinated children (Model 3). How
AI evolves over time and if it is a useful predictor of

vaccine efficacy remains to be validated with further, in-
dependent and confirmatory studies.
Nevertheless, this observation adds a new component

to the search of correlates of protection and the under-
standing of the immune responses elicited by pre-
erythrocytic malaria vaccine candidates such as RTS,S.
Since adjuvants also have a profound effect on the speed
of avidity maturation [11], the effect of avidity on vac-
cine efficacy could even be analysed with interventional
studies that assess the effect of timing between immuni-
zations (as in this study) and different adjuvants on pro-
tective efficacy while direct measures of maturation of
the immune system such as single-cell based sequencing
of IgG genes of anti-CSP memory B-cells [15,16] are
performed. This may be particularly interesting for anti-
gens such as CSP that are not highly immunogenic per
se, because highly immunogenic antigens often induce
antibodies with strong avidity over a short period of time
and a threshold antibody concentration is appropriate to
predict their efficacy [17]. Other studies in the develop-
ment of RTS,S (e.g., challenge experiments [18] and the
recently completed phase III trial [1-3]) will certainly
provide additional information and may establish the
measurement of avidity as one biomarker for vaccine effi-
cacy. Additionally, such knowledge may guide the design
of next generation vaccines and administration schemes.

Conclusions
So far, the most robust correlate of protection for the mal-
aria vaccine candidate RTS,S is anti-circumsporozoite
(CSP) IgG concentration following immunization. Pre-
clinical data and theoretical considerations suggest that
avidity may have an additional impact on protective
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Figure 4 Kaplan Meier plot of malaria episodes over time in
participants classified as having high (black) or low (grey) dAI.

Figure 2 Box-plot and single measurements of absolute AI at
second and third vaccination using two vaccination schedules
(012 or 017).

Figure 3 Box-plot and single measurements of difference in AI
(dAI) between second and third vaccination using two
vaccination schedules (012 or 017). Note that for the analysis of
dAI only paired samples were used (n = 179).
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efficacy. It is shown that an increase in anti-CSP IgG con-
centration and avidity between second and third vaccine
injection is associated with a strong risk-reduction for
malaria after immunization. This finding shall influence
the way of analysis of immunological correlates of protec-
tion since using change in antibody concentration and
avidity rather than single measurements enables improved
modelling of immune-effector function at the time of
pathogen encounter and hence more powerful prediction
of vaccine efficacy.

Consent
Written informed consent was obtained from each
child’s parent(s). Illiterate parents were informed about
the study in the presence of an impartial and literate wit-
ness and informed consent was documented by thumb-
print of the parent and signature of the witness.
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