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Abstract

The capability of next generation sequencers of emitting enormous volumes of data

at a moderate cost has changed the field of sequence based research areas, such

as metagenomics or studies estimating microbial diversity by using the 16S rRNA

gene. While early studies investigated relatively small samples in isolation, cur-

rent studies effectively target questions that require deeper sequencing of a larger

number of samples. As a consequence of this development it becomes increasingly

difficult to perform the computational component of the analysis on a desktop

computer. As a matter of fact, even if the computationally intensive parts are

outsourced to a more powerful environment, users still face datasets outgrowing

the size of their home computers.

This development disagrees with the policy of MEGAN - a widely accepted,

powerful and user-friendly tool for metagenomics - to perform qualitative anal-

ysis on local data files. To overcome this limitation, we developed MEGAN-

Server. MEGANServer allows bioinformaticians to retain data files on a server

with sufficient resources. Furthermore, we extended MEGAN to communicate

with MEGANServer and by that enable researchers to perform their analysis on

a home computer regardless the actual data size. Moreover, to overcome the

complexity introduced by the growing number of samples, selection of datasets

of interest is automated by metadata-based grouping. In addition, following the

analysis strategy of the 16S rRNA studies, datasets can be opened applying dif-

ferent strategies, for instance as merged data, in order to provide a deeper insight

on taxonomic and/or functional distribution.

Furthermore, and as a consequence of a development in which metagenomics

and 16S rRNA studies are converging, we extended MEGAN to also deal with

sequences that stem from a targeted approach. More precisely, we have developed

a pipeline that covers the entire workflow, starting from pre-processing and, in

a final step, allowing qualitative analysis using MEGAN. For that, we took ad-

vantage of a novel aligner, namely MALT, that in combination with a placement

algorithm, namely the Majority Vote LCA, introduced recently in MEGAN, is not

only capable of assigning more than 99% of reads to the correct genus, but lowers

the rate of false positives to a value close to 0%.



ii

We believe that, by the additional utilization of the different data access strate-

gies implemented in MEGANServer, MEGAN in combination with MALT and the

Majority Vote algorithm is now fully capable of serving as a powerful, yet user-

friendly analysis tool for 16S rRNA sequencing data.



Acknowledgements

My first and foremost gratitude goes to my supervisor Prof. Dr. Daniel Huson,

for accepting me as a member of his group, for the constant support and for

giving me the freedom to explore. Using this freedom with all its facets was, at

first, challenging but in retrospective I can say that this was probably the most

valuable lesson you taught me.

I also extend my thanks to my collaborators Prof. Dr. Julia-Stefanie Frick,

Prof. Dr. Barbara Stecher and Isabell Flade for the chance to take part in your

exciting projects. Thank you for helping me with all the biology-related questions

and for the discussions we had.

I also acknowledge the Bildungsministerium für Bildung und Forschung for the

funding.

The time at the office is most valuable if shared with great people. I was really

lucky to be part of a fun and stimulating environment here at the Algorithms

in Bioinformatics group. Of my colleagues one person most certainly stands out.

Cuong, thank you for the past two years and all the discussions we had. I wish

you all the best for your future.

I’m also grateful to all my friends from Tübingen, Volkach and all around the
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Chapter 1

Introduction

MEGAN is a widely accepted, powerful and user-friendly tool which allows users to

perform metagenomic analysis even on a home computer. First released in 2007 [Huson

et al., 2007] in order to facilitate taxonomic analysis of ancient mammoth bones [Poinar

et al., 2006], it is now available in its fifth version [Huson, 2014b]. In the past years,

the function pool was continuously expanded, so much so that the latest version not

only supports taxonomical but also functional analysis using the SEED [Overbeek et al.,

2005], KEGG [Kanehisa and Goto, 2000] and COG [Muller et al., 2010] classifications

[Mitra et al., 2011a]. Furthermore, and as a result of the rapid development of sequencing

technologies, reflected in plummeting prices and growing number of emitted sequences,

one can determine a change in the study layout. While early metagenomic studies

investigated single samples in isolation, in recent studies the focus is on collecting greater

number of samples in order to identify differences or similarities among their taxonomic

of functional distribution. To cope with the need of researchers, MEGAN introduced

functions that support several comparison strategies [Mitra et al., 2010; Huson et al.,

2009; Mitra et al., 2009].

The possibility to generate more and larger samples allows researchers to investigate

metagenomic datasets at a previously inaccessible depth, but also lead to data sizes which

outgrow the capacity of desktop computers of the researchers. For example, an average

sized study of 12 permafrost soil samples (see [Mackelprang et al., 2011]) includes 250

million reads and requires, after alignment, 165GB of disk space. As a consequence of

the growing sizes sharing of datasets with colleagues also becomes increasingly cumber-

some. In order to allow researchers to perform their analysis, regardless the data sizes,

on a desktop computer using MEGAN, in this thesis we present MEGANServer. With

2



CHAPTER 1. INTRODUCTION 3

MEGANServer one outsources the storage of metagenomic datasets to a different com-

puter and accesses their content via MEGAN. Furthermore, driven by the accumulated

fashion in which datasets are stored on MEGANServer, we will introduce new functions

to MEGAN. This includes the extensive usage of metadata to identify datasets of in-

terest, and using boolean expressions and different strategies to open datasets such as

merging, splitting or extracting. The development of MEGANServer is covered in Part

II.

Besides the study of metagenomics, MEGAN can also be used for studies that assess

microbial diversity by analyzing sequences originating from the bacterial 16S rRNA gene

[Mitra et al., 2011b, 2013]. The importance of supporting both study types is underlined

by the fact that ever since the Human Microbiome Project both fields are converging.

As a result, not only MEGAN but other tools that were initially developed for one field

extended their workflows to bundle both analysis types (see MG-RAST and QIIME

[Meyer et al., 2008; QIIME, 2014]) in one analysis framework.

In this thesis we will adopt the idea of Mitra et al. [2011b] of using MEGAN for

visual analysis of 16S rRNA data. However, we will develop a new pipeline that covers

the entire analysis process. For that undertaking, we first describe a routine for pre-

processing of sequencing data in Chapter 6. Then we introduce a novel approach of

accurate taxonomic placement using alignment in Chapter 7.

Additionally, and due to the nature of studies performed on sequences originating

from the 16S rRNA gene which often lead to large numbers of samples, we will show in

Part IV how analysis of 16S rRNA samples can profit from the accumulated fashion in

which datasets are stored on MEGANServer.

Before we discuss the development of MEGANServer, we will present some back-

ground information on next generation sequencing as well as introduce the field of

metagenomics in Part I.



Part I

Sequencing and Sequence

Analysis

4
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Sequencing and sequence analysis are the backbone for any metagenomic or 16S

rRNA study. In this chapter we will briefly discuss sequencing technologies as well as

introduce the goals behind metagenomics and 16S rRNA studies.



Chapter 2

Next Generation Sequencing

The advent of next generation sequencing (NGS) led to progress in metagenomics and

other previously sequencing independent fields. Contrary to automated Sanger se-

quencers, the dropping prices and the enormous volumes of data generated by NGS

sequencers allow researchers to address questions that quantitatively assess the impact

of bacterial communities in terms of diversity and functional content.

The term next generation sequencing is intrinsically tied to pyrosequencing, a tech-

nique using bioluminescence to detect nucleotide incorporation during DNA synthesis.

This methodology dates back to 1986 [Walker et al., 2007; Nyrén, 2001; Ronaghi et al.,

1998] and was taken up in 2005 [Margulies et al., 2005] marking a milestone for massive

parallel sequencing techniques. This approach was then made commercially available

by 454 Life Sciences. A concept that also takes advantage of the emission of light as a

signal for nucleotide incorporation is based on reversible dye-terminators and was made

commercially available in 2004 by Solexa [Bennett, 2004] (today Illumina).

Even though Illumina and 454 are both based on a similar concept, their techniques

and the results of sequencing vastly differ. As a consequence, Illumina is capable of

emitting large volumes of short sequences1 and is therefore the first choice for metage-

nomic studies. A 454 run, on the other hand, produces only a fraction of that data but

outperforms Illumina in terms of quality and length. As a consequence, 454 sequencers

are the first choice for amplicon sequencing.

Because later chapters will present in detail the pre-processing and an analysis

pipeline exclusively designed for data emitted by 454 sequencers, in the following we

1Illumina announced the 1 Terabase run for this year. For further information, see http:

//www.illumina.com/products/hiseq-sbs-kit-v4.ilmn

6
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would like to briefly summarize the methodology and work-flow preceding the actual

sequencing.

Emulsion PCR As a sequencing-by-synthesis platform, 454 depends on a measurable

light signal as a result of a nucleotide being incorporated. Since single fluorescence events

remain undetected by the imaging system used, amplification of templates is required.

To do so, 454 employs the emPCR [Mardis, 2008; Dressman et al., 2003] technique. First,

a single template sequence is ligated to a bead. The bead is subsequently enclosed in an

emulsion, and the amplification of the template sequence can be conducted, resulting in

a loaded bead with approximately ten million identical sequences [Sciences, 2014]. This

process is performed for the entire library in parallel, resulting in ∼1-1.6 million loaded

beads2.

Loading the PicoTiterPlateTM The loaded beads are placed on a PicoTiterPlate.

The plate contains 1.6 million wells, which are designed in such a way that exactly one

bead fits in a single well.

Sequencing & Imaging Besides the beads, each well is equipped with the necessary

reagents for synthesis, except for the nucleotides. They are not added because they

would interfere with the synchronous fashion of incorporating one specific nucleotide

and measuring the signal sequencing process. The method of sequencing is separated in

800-1,000 flows, where at each flow a new nucleotide is added to the PicoTiterPlate. Some

of these nucleotides are incorporated; the unbound ones are washed away. Incorporated

nucleotides trigger a biochemical process resulting in emission of light. The intensity

of the light signal is stronger if, in a homopolymeric region, several nucleotides are

incorporated during a single flow.

Errors It is known that homopolymeric regions increase the strength of the emitted

signal in a linear fashion only when 6 or less nucleotides are incorporated [Margulies et al.,

2005; Balzer et al., 2010]. Therefore, longer homopolymeric stretches would introduce

an accuracy bias. Nevertheless, the main source of error is introduced as a side effect of

the emPCR. The synthesis among identical sequences attached to a single bead loses its

synchrony with increasing read length, influencing light signals and results in uncertain

base-calls. This leads to a drop of accuracy at ∼400bp [Margulies et al., 2005]. To

2For further information, see http://454.com/products/technology.asp

http://454.com/products/technology.asp
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overcome this bias, by the end of 2013, Roche introduced an improved flow cycle, with

the goal to further extend sequence length.



Chapter 3

Metagenomics & 16S rRNA

Analysis

3.1 Introduction

Microbes are essential to all life. Microbes on and inside our body outnumber the number

of cells we have [Berg, 1996]. Besides covering all that is living, microbes also cover

the entire surface of the earth as well [Whitman et al., 1998]. Microbes, even though

found everywhere, are highly specialized to the environmental factors of their ecological

niche [Xie et al., 2011]. While microbes inhabiting the surface of deep-sea vents are

fueled by sulfur oxidation [Sievert et al., 2008], microbes living in the human gut take a

different role, express different genes and react differently to changes in the environment

[Arumugam et al., 2011; Ley et al., 2006; Qin et al., 2010]. What all microbes have in

common is a relatively tight relationship with their environment, other microbes and,

for example, in the human gut, with the human host [Peterson et al., 2009].

The field of traditional genomics is dependent on the ability to isolate a single organ-

ism, and to culture such an organism in the absence of other microbes. This approach

may conflicts and eventually presents a problem when considering the tight environmen-

tal relationship these microbes need to survive. Most microbes will not grow in isolation

[Rappé and Giovannoni, 2003] and, therefore, their genomic content is not accessible.

Quantitatively, this means, that more than 99% of microbes cannot be cultured with

current methods and stay beyond the reach of traditional genomic research. Nowadays,

the endeavors in research address not only true biodiversity, but also interaction patterns

9
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between microbes - issues which cannot be fully answered by genomics.

Metagenomics, on the other hand, explores the genomic content of an entire microbial

community. Being culture independent, metagenomics enables one to grasp some of the

99% of the microbes not being covered by genomics, resulting in findings of new genes

and species. For instance, one of the first large-scale metagenomics studies, conducted

by the Global Ocean Survey, led to finding six million genes. New protein families were

detected at a linear rate [Yooseph et al., 2007], implying that a deeper sequencing would

have lead to discovery of many more new families.

Another aspect of metagenomics is to unravel community dynamics at various levels.

For example, during the Human Microbiome Project, metagenomic samples have been

taken from 242 individuals from 15 different body sites to find a link between our health

and the microbiome. One of the findings of the Human Microbiome Project indicates that

there is no single human microbiome at the taxonomic level. However, at functional level

similarities across individuals were found [The Human Microbiome Project Consortium,

2012b].

Therefore, the aim of metagenomics is to study uncultured organisms in order to

draw conclusions about the true diversity of microbial communities, and to explore their

functional potential, their inter-community cooperation and their reaction to induced

environmental change.

The study of microbial diversity using the 16S rRNA gene follows, for the most

part, the same principles as metagenomics and attempts to answer similar questions.

In contrary to metagenomics, for which sequences originate from the entire genome,

for this approach, sequences only from the 16S rRNA gene are sequenced and used for

downstream analysis. Consequently, 16S rRNA analysis is generally considered to be

the first choice for taxonomic analysis, and, due to the lower costs, also used in studies

where the functional content is not of interest.

In this chapter we will describe the analysis of both study types from three view-

points. First, we will discuss typical sources of samples. Secondly, we will describe

analysis goals of both fields. Finally, we will elaborate on computational aspects of

analysis.

3.2 Sampling

Considering the spread of microbial life, an extensive number of different sources of

samples are investigated in current studies. In order to find answers to a diverse set of
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questions such as the role of microbiota in carbon fixation in permafrost [Mackelprang

et al., 2011], discovery of efficient biofuels [Hess et al., 2011], unraveling the evolutional

development of pathogens [Schuenemann et al., 2013], or the role of the human micro-

biome in disease development [The Human Microbiome Project Consortium, 2012a], a

great diversity of samples - soil, water, ancient bones, extreme environments - in combi-

nation with medical models, are studied.

However, the first step in all these studies is the retrieval of a single or a number of

samples from a particular environment. This step is followed by the extraction of DNA.

Subsequently, one of the sequencing methods, predominantly Illumina for metagenomics

and 454 for 16S rRNA, is applied. The resulting sequences serve as input for downstream

analysis.

Metadata Collection While early studies performed metagenomics or 16S rRNA

studies on single or small number of samples, there is now an increasing number of

projects that involve multiple samples collected systematically [Turnbaugh et al., 2007].

Moreover, greater attention is being paid to the general problem of recording relevant

environmental parameters (so-called metadata). The importance of metadata is under-

lined by the fact that the Genomics Standards Consortium (GSC) was established in

2005 and published a minimal set of metadata (MiMS, MiGS, MIMARKS) to be collected

for every experiment [Yilmaz et al., 2011]. Today, all major resources for metagenomic

studies and data have implementations to store metadata compliant with the conditions

of the GSC1.

However, from a researcher’s point of view, the main objective of metadata collection

is the enhanced analysis potential, especially in studies that aim at comparing a larger

number of samples. As a result one can correlate taxonomic and functional properties

such as abundance shifts between datasets with environmental factors.

3.3 Analysis Goals

Despite the variety of problems addressed by metagenomics and 16S rRNA studies, and

the differences between samples, one can condense their analysis goals to three questions.

1A positive side effect of metadata collection is to store datasets of former studies in a reusable
fashion [Vines et al., 2014].
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Who is out there? For the most part and with regard to the DNA extraction from

a whole community, the microbial diversity in a sample is unknown. Thus, the first task

is to quantitatively identify all species present in a sample.

What are they doing? The Human Microbiome Project concluded that, even

though individuals’ microbiota significantly differs at the taxonomic level, the func-

tional content seems to be stable. Hence, the second question addresses the functional

content of a sample. Due to the nature of targeted sequencing in 16S rRNA studies, this

question can only be answered by metagenomics.

How do they compare? Studies, in particular those with a medical background, are

not designed to observe samples in isolation. Instead, the focus is to identify differences

on the taxonomic and functional level in samples retrieved from, for example, both

experimental and control groups.

3.4 Computational Aspects

The advances in sequencing and thus the growing read counts in datasets lead to a variety

of strategies and computational approaches to tackle the three analysis goals. Despite

algorithmic differences, the intention is to find the correct taxonomic and functional

identity for every read. To do so, most methods use a database guided approach, taking

advantage of publicly available databases such as NCBI-NR or NCBI-NT [Benson et al.,

2006] or REFSEQ [Pruitt et al., 2007] for metagenomics and Silva [Yilmaz et al., 2013]

or Greengenes [McDonald et al., 2012] for 16S rRNA studies.

The main idea on which most methods are based is defined as follows: two sequences

that share a common ancestor will be more similar when compared to an alignment of

two sequences that do not share common ancestry. Therefore, tools usually compare

reads against a reference database to find the best possible match. To keep in pace with

the continuously growing datasets as well as reference databases it is computationally not

feasible to search for the optimal match. For this reason, new algorithms apply different

steps to lower the computation time. BLAST [Altschul et al., 1990], the gold stan-

dard for pairwise alignment for more than a decade, for example, applies a pre-filtering

step to consecutively perform an alignment on the pre-filtered reference sequences only.

Modern techniques such as Bowtie2 [Langmead and Salzberg, 2012] take advantage of

the Burrows Wheeler Transformation. The transformation supports fast identification
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of high identity matches. Hence, these methods improve runtime significantly but lack

sensitivity2. An alternative approach takes advantage of machine learning techniques to

detect species specific patterns such as GC-content or k-mer frequencies. Two imple-

mentations that fall in the machine learning category are the Naive Bayesian Classifier

[Rosen et al., 2011] for metagenomics data and the RDP classifier [Wang et al., 2007]

for 16S rRNA data. Both methods perform reasonably fast but lack specificity. For

example, the RDP classifier fails to assign reads to the species level. To overcome the

setbacks of BLAST and NBC, namely runtime and accuracy, Nico Weber proposed a

hybrid approach [Weber, 2013]. Since the performance of BLAST partly depends on the

size of the reference database, it is possible to use NBC to assign reads to phylum level

and consecutively run BLAST on the smaller reference databases in parallel.

At the time BLAST was developed, the limiting factor was, even though reference

databases were considerably small, the main memory. Therefore, one of the main goals

was to develop software that would minimize the memory footprint. Surprisingly, even

though in the following years the memory prices dropped, alignment software developers

still paid too much attention to minimizing the memory footprint and thereby, artifi-

cially lowered the performance of their tools in terms of speed and/or accuracy3. In

combination with spaced-seeds techniques and using a reduced alphabet, modern map-

ping algorithms such as PAUDA [Huson and Xie, 2014], DIAMOND [Buchfink et al.,

2014], MALT [Huson, 2014a] and to some extent Rapsearch2 [Zhao et al., 2012] perform

at a reasonable speed combined with high accuracy.

In combination with tools, such as MEGAN [Huson et al., 2011], which are capable

of extracting significant information from the results of the methods introduced above,

one can identify the taxonomical and functional content and, thereby, find answers for

the first two analysis goals.

The third question, on the other hand, is concerned with the problem of detect-

ing differences between samples. Depending on the task, possible approaches include

comparing the abundances of taxonomic and functional content (MEGAN) or apply-

ing phylogenetic methods to create principal component analysis (MEGAN, R packages

such as ade4 [Dray and Dufour, 2007] or vegan [Dixon, 2003]). A relatively new method,

LEfSE [Segata et al., 2011], applies statistical tests in combination with metadata on

the taxonomic or functional content of a number of datasets determining the taxa or

2Bowtie2 can be tweaked to be more sensitive. The runtime will increase accordingly.
3The alignment problem can be described an tradeoff between accuracy, runtime and memory

footprint.
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genes which have significantly different abundances among samples.



Part II

Software for Metagenomic

Analysis
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This part focusses on the design ideas and implementation of MEGANServer.

MEGANServer is a web application created with the purpose to store, analyze, filter

and manage datasets used by the metagenomic analysis tool MEGAN. To do so, we

first introduce MEGAN and the features important to MEGANServer and run through

use cases. The use cases impact and drive the design process for the MEGANServer

software. Finally, we discuss the implementation and how to use MEGANServer for

metagenomic data.



Chapter 4

MEGAN

In this chapter we will briefly introduce MEGAN. We will walk through use cases in

order to derive data access patterns. These help to design the MEGANServer software.

4.1 Introduction

MEGAN, short for MEtaGenome ANalyzer, is software developed to provide answers

to the three metagenomic questions: Who is out there? What are they doing? and

How do they compare? The first version of MEGAN, initially developed to analyze

DNA from an ancient mammoth bone [Poinar et al., 2006], was released in 2007 [Huson

et al., 2007] and is now available in its fifth version [Huson, 2014b]. MEGAN is devel-

oped with the intention of providing an user-friendly stand-alone tool for metagenomics,

metaproteomics, metatransscriptomics and up to some degree, also targeted sequencing

analysis.

To do so MEGAN supports four classifications, namely NCBI Taxonomy [Federhen,

2012], SEED [Overbeek et al., 2005], KEGG [Kanehisa and Goto, 2000] and COG [Muller

et al., 2010]. MEGAN uses precomputed alignments from e.g. a SAM file, BLAST output

or a CSV file to map reads to nodes of a classification tree. This information is used to

grasp the taxonomical and functional potential of a metagenomic dataset. Furthermore

and concerning the third metagenomic question, additional features of MEGAN support

comparison between datasets either with regard to abundances within classifications or

by applying β-Diversity measures. To provide these features MEGAN currently stores

dataset specific information in a binary file, namely read-match-archive (RMA).

In this chapter we introduce MEGAN from the data access perspective with the

17
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goal to identify access patterns which help to design the MEGANServer software. The

RMA file, as the current data backend, is reviewed in Section 4.2. The focus is to derive

important information such as to distinguish static from dynamic data or to discover

interactions between internal data structures. We then discuss common use cases in

order to infer data access patterns.

4.2 Data Structures

The quality of software design depends significantly on the knowledge about data objects

and the connections among them. In this section we introduce the main data structures

of MEGAN.

The backbone of a metagenomic dataset is built up from a set of sequences and an

associated set of alignments. In a step performed prior to analysis, MEGAN scans the

content of every alignment with the intention of identifying correlated taxa and genes.

All data extracted from a single alignment forms a match. A read incorporates a number

of associated matches and taxonomical as well as functional identifiers. Besides reads

and matches the third data structure is the header. It contains a variety of additional

information such as metadata and global information about the dataset. Figure 4.1

depicts a sketch of the main data structures and their relations with each other.

4.2.1 Header

The header section embodies all information which is not directly associated to a match

or a read. Its main task is to store global information such as the name of the dataset,

the number of reads, the number of matches and store the metadata. Additionally,

data concerning visualization, such as which nodes are visible and which are collapsed

is included. The content of a header is highly dynamic1, so that subsets change continu-

ously. There is exactly one header per dataset and the size is limited to a few kilobytes.

Therefore, the impact of any modification to this data object on the performance, is

negligible.

1The content of dynamic data objects can be changed while using MEGAN. On the other
hand, static data objects will be read-only.
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Data

Read n

Match n.m

Match n.1

...

...

Read 1

Match 1.k

Match 1.1

...

Header

Figure 4.1: Overview of data structures: A set of matches is assigned to one read.
All reads form the data section. General information on the dataset is provided by the
header section.
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4.2.2 Read

A read incorporates all information gathered to represent a single sequence. This includes

the sequence itself, its classification identifiers, a reference to the paired sequence (if

present) and a set of associated matches as shown in Listing 4.1 and Figure 4.1. Most

fields are static and do not undergo any change after the enclosing read has been created.

The classification identifiers may be changed in the process of classification recalculation

(see Section 4.3.3).

Listing 4.1: Conceptual structure of a read� �
1 long uid; // Unique id of the read

2 String readHeader; // Sequence name

3 String readSequence; // Sequence

4

5 int taxonId; //NCBI - taxonomical id

6 int seedId; // Subsystems - functional id

7 int cogId; //Cog/Eggnog - functional id

8 int keggId; //Kegg - functional id

9

10 int readWeight; // Readweight

11 long mateReadUId; // Paired end information

12 byte mateType; // Paired end information

13 float complexity; // Sequence complexity

14

15 Match[] matches; // Matches� �
4.2.3 Match

A match contains all information extracted from a single alignment and is associated

with exactly one read. The fields mainly span classification identifiers and scores that

estimate the quality and significance of a match. All variables, as shown in Listing 4.2,

are static. Hence, they will never undergo any change after being initially created.

4.3 Use Cases

Understanding how MEGAN is being used and which data is being accessed at which

time is critical information when designing a data backend. This applies especially for

software dealing with large volumes of data, e.g. MEGAN datasets can easily exceed

50GB.
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Listing 4.2: Conceptual structure of a match� �
1 long uid; // Unique id of the match

2 String alignment; // Alignment text

3

4 int taxonId; //NCBI - taxonomical id

5 int seedId; // Subsystems - functional id

6 int cogId; //Cog/Eggnog - functional id

7 int keggId; //Kegg - functional id

8

9 float bitScore; // Quality measure

10 float expected ;; // Quality measure

11 String refSeqId; //Id of the refSeq database

12 float percentIdentity; // Alignment coverage� �
To do so the first step in software design is to analyze typical use cases for data access

patterns, for example. Use cases help to untangle what seems to be uncoordinated access

to the file system and reveal patterns. Patterns are very important in terms of prediction

of later data access. For example, with the knowledge that a data object will be requested

shortly after its first usage, it is beneficial to the overall performance to apply caching

in order to avoid a second, potentially slow, file access.

We will go through a number of typical use cases with the goal of identifying hidden

data access patterns. Additionally, for every use case in which the result size is not

predetermined, we will discuss the performance impact if the result sizes are arbitrary

large.

4.3.1 Taxonomic Overview

As discussed in the introduction of this chapter, the main visualization of MEGAN is

built of a tree derived from one of the four classifications (COG, NCBI, SEED and

KEGG). For example, Figure 4.2 depicts the distribution of reads among taxa for a

permafrost dataset [Mackelprang et al., 2011] collapsed at phylum level2. The size of

the node correlates with the number of reads assigned. For this view, MEGAN supports

typical tree operations such as collapsing and expanding of nodes to explore abundances

at different levels.

The view is composed of two data objects. First, there is the raw tree structure, not

2There are no differences among classifications at the data access level. Therefore, and for
brevity, when we discuss examples from the taxonomic point of view, the same statements apply
also to the three other classifications.
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Low complexity

No hits

Not assigned

Eukaryota

Archaea

Thermobaculum terrenum

Thermotogae <phylum>

Tenericutes

Synergistetes

Spirochaetes

Proteobacteria

Planctomycetes

Nitrospirae

Gemmatimonadetes

Fusobacteria

Firmicutes

Fibrobacteres

Acidobacteria

Elusimicrobia

Dictyoglomi

Deinococcus-Thermus

Deferribacteres <phylum>

Cyanobacteria

Chrysiogenetes <phylum>

Chloroflexi <phylum>

Verrucomicrobia

Chlamydiae

Bacteroidetes/Chlorobi group

Aquificae <phylum>

Actinobacteria <phylum>

Bacteria

cellular organisms

root

Figure 4.2: Tree representation of reads on the NCBI taxonomy on the phylum level.
The size of each node indicates the number of reads assigned. Nodes may be collapsed
or expanded to different taxonomic levels.

specific to the dataset but specific to a classification. Therefore, the tree is stored in a

file other than the actual dataset and is not of further interest.

The second object reflects the taxonomic composition of a single sample. It is com-

posed of the taxonomical information of all reads and represents the number of reads

assigned to a node (taxon). The generic structure is shown in Equation 4.1. Equation

4.2 and 4.3 depict the mapping for Actinobacteria and Chlamydiae from the permafrost
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dataset depicted in Figure 4.2.

Node→ Number of reads assigned (4.1)

Actinobacteria→ 190,092 (4.2)

Chlamydiae→ 1,735 (4.3)

MEGAN requests the mapping when opening a data file. Considering the relatively

small number of taxa present in a sample (rarely more than 1,000), the size of the

mapping rarely exceeds a few kilobytes. On the other hand considering the large number

of reads incorporated in metagenomic datasets, it is a computationally expensive step

to access the taxonomical information of all reads in order to create this mapping.

4.3.2 Inspector

The representation as a tree allows one to explore the taxonomic composition of a sample

in an aggregated fashion, omitting all read and match specific information. To explore

the content of reads and matches in a more detailed way, MEGAN provides an additional

visualization, the Inspector. After selecting a taxon, one can explore the content of

assigned reads, as seen in Figure 4.3. The structure of the view divides data access in a

sequence of three steps:

• As shown in Figure 4.3a, the initial view incorporates the read names in combi-

nation with the number of associated matches, assigned to a specific taxon, here

Arcanobacterium haemolyticum.

• On read selection all associated matches are uncollapsed and presented by the

taxon name (see Figure 4.3b).

• Finally, Figure 4.3c shows the lowest level of data access. After selecting a single

match, its alignment text is displayed.

Even though MEGAN handles these three steps as independent data requests, one

can immediately recognize a pattern. Reads are accessed and matches being counted in

a first step. A subset of these matches is accessed a second time when exploring their

taxonomic identity and individual matches are requested a third time in order to inspect

their alignment. It is beneficial to the performance to store matches, which have been

accessed in the second step, in a cache to avoid one expensive I/O request.
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(a) Reads (b) Matches

(c) Alignment

Figure 4.3: Inspection of Arcanobacterium haemolyticum: 59 reads have been
assigned to the Arcanobacterium taxon. (a) The names of the 59 reads are listed below
the taxon name. Read ‘488:2:108:1281:222’ has 13 matches. The taxon names of the
matches are listed in (b). The alignment for one match is shown together with the read
sequence in (c).
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4.3.3 (Re)calculation of Classifications

The ultimate goal of MEGAN is to find the correct taxonomic and functional identity

for every read as the quality of downstream analysis greatly profits from an accurate

assignment. To do so, MEGAN applies a two step algorithm. First, the initial taxo-

nomic and functional identity is based on the taxa and genes found in its matches. The

matches are pre-filtered by quality, so that only significant alignments will be taken to

consideration. In the second step, reads assigned to rare taxa are considered to be noise,

and are reassigned to more frequent but related taxa. Finally, the resulting taxonomic

and functional assignments for each read are written back to the data file.

Within the scope of MEGAN, this is the most resource intensive workflow, not only

in terms of main memory consumption but also in terms of runtime.

First, MEGAN retrieves all reads one by one and fetches the classification informa-

tion of their associated matches. Even though matches are pre-filtered beforehand and

therefore reduce the quantity of data to be transferred, in software design one has to

consider the worst case in which all matches have to be retrieved. After finishing the

calculation one has to update the classification identifiers in all reads.

The runtime of this task can be greatly reduced by accessing data inside reads and

matches in a selective way and only transmitting data that is needed for that specific task.

For the recalculation of classifications, only the taxonomical and functional identifiers of

each match are required. Therefore, transmitting the alignment text does not give any

additional information, but only inflates the data to be transferred.

4.3.4 Alignment Viewer

With the release version of 5, a new feature introduced to MEGAN allows one to explore

alignments in a more elaborate manner, when compared to the traditional Inspector

window (see Figure 4.3c). The Alignment Viewer is capable of visually aligning multiple

sequences to a number of references. References and sequences are extracted from reads

and their associated matches.

Similar to the routine which uses the Inspector window, reads from a taxon are re-

quested, together with a set of quality-filtered matches. Alignment text is extracted from

matches used as a reference and the read sequences are aligned against this reference.

In contrast to the previous use cases where alignment text was accessed in a selective

fashion (Inspector, see Section 4.3.2) or completely omitted (Recalculation of classifica-

tions: see Section 4.3.3), the Alignment Viewer requests and accesses alignment text for
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all matches.

Figure 4.4: Alignment Viewer for Arcanobacterium haemolyticum. Sequences are ex-
tracted from reads and aligned against references.

4.4 Conclusion

In this chapter we discussed a subset of MEGAN’s functionality with the focus on the

I/O. While programs that handle a small amount of data do not need to focus on data

access, in the case of metagenomics, considering rapidly growing read counts, efficient

I/O handling is crucial to the performance of software. With regard to the ultimate goal

of designing software capable of storing and accessing MEGAN’s datasets in an efficient

manner, we summarize lessons learned in this chapter:

Ordered vs. unordered Reads are not expected to be sorted. The order in which

they are sent to MEGAN can be arbitrary. The matches, on the other hand, must be

ordered by decreasing quality.

Aggregate The Main Viewer requires an aggregated mapping of the taxonomic iden-

tity of all reads. We expect that the performance boost of a pre-calculated mapping

outweighs the rise in complexity to maintain the mapping at an up-to-date status.
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Selectivity One paradigm when handling large quantities of data is to be as selective

as possible in order to avoid overhead. When MEGAN requests a match only to extract

the taxonomical identifier, it is not beneficial to the performance to transmit also the

alignment text. Only access and transmit data which is requested.

Caching I/O costs, even to fast database instances are expensive. The access pattern

of the Inspector shows that MEGANServer can profit from caching of previously loaded

reads and matches.
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MEGANServer

In this chapter we will introduce MEGANServer, an add-on to MEGAN that is capable

of outsourcing the often very large metagenomic datasets on to a web server environment.

5.1 Introduction

The main focus, when implementing the metagenomic analysis tool MEGAN, is on the

usability. Every user, tech savvy or not, should be capable of downloading, installing

and running the software within a couple of minutes. The same principle applies to the

implementation of the graphical user interface. Additionally and in contrary to other

tools that promise great functionality but lack usability, MEGAN is able to close the

gap between functionality and being user-friendly.

Driven by the huge success of next generation sequencing technologies leading to

large volumes of data at moderate costs, it has become a trend to apply metagenomic

sequencing to a large range of research areas (see Review Metagenomics Research Review,

[Illumina, 2012]). While an analysis pipeline could be carried to execute on a normal

home computer before, nowadays these pipelines need to be executed on hardware with

larger computing power, such as servers or clusters. As a result, plenty of metagenomic

pipelines such as MG-RAST [Meyer et al., 2008] or Camera [Seshadri et al., 2007], to

name the most popular ones, have emerged in the past few years that offer researchers

the possibility to upload their data files and perform one click begin-to-end analysis.

MEGAN, on the other hand, follows a different strategy. Analysis pipelines should

be flexible and data should remain the researcher’s property. Hence, the traditional

approach of how MEGAN handles metagenomic datasets is to perform analysis on a

28
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home computer and store data files locally. Local access is easy to implement, relatively

fault safe and enables fast access. But, there are obvious disadvantages. One has to

store and organize large datasets, often spanning several gigabytes, locally, and is forced

to duplicate data in order to share the analysis with colleagues. It is only a matter of

time, till metagenomic datasets will outgrow the researcher’s desktop computer.

To overcome this setback we introduce an add-on to MEGAN, namely MEGAN-

Server. The goal of MEGANServer is to allow users to move their datasets from their

hard drive to a web server environment without losing the comfort of accessing their

datasets in the same way as when they would be stored locally. This approach works

well, considering that, even though the average size of metagenomic data easily exceeds

several gigabytes, the actual data requests of MEGAN span between a few kilobytes to

a few megabytes.

This chapter is divided in four sections. First, we explain the ideas and the goals

behind the MEGANServer project. Secondly, we define the specifications and require-

ments. Next, we describe the design of the MEGANServer software. Finally, we show

how MEGANServer can be used as a MEGAN data backend and also, how it extends

the current functionality.

5.2 Ideas & Goals

Handling metagenomic datasets in times in which not only the number of sequences

per sample but also the number of samples are growing is challenging. To cope with

the raw quantity of data, MEGAN introduced already three data formats, each of them

replacing the biases of the former one but facing new challenges. The first version, using

cleartext as storage solution, reached its limits very early. The second version, and the

first variant of the so called read-match-archive (RMA), used compression techniques

and changed the format from cleartext to binary. The files shrunk to smaller sizes but

the file structure made updates computationally costly. For example, the recalculation

of the classifications required major reorganization of the file structure and therefore,

performed poorly in terms of runtime. The third version, the RMA2 format, removed

this bias by differentiating between static and dynamic content. Yet the performance, in

terms of creation, cannot keep up with the speed in which new aligners e.g. DIAMOND

[Buchfink et al., 2014] emit results. RMA3 is currently under development.

As a result of this development, in 2010 we started working on different strategies

to handle metagenomic datasets. In the diploma thesis (see [Ruscheweyh, 2010]) we
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presented an alternative approach using relational databases with the goal of replacing

the conventional file structure. As shown in the thesis, relational databases outperform

conventional file structures, but only under the condition that the data is relational and

dynamic. This applies only to a subset of MEGAN’s data. While the classification

identifiers, for example, profit from their relational nature, accelerating access and in-

troducing new features to MEGAN, the static data such as parts of the read object and

all data of a match object inflate the database and therefore introduce a lot of negative

side effects.

Even though the software worked on a local computer, we faced numerous problems

when setting up the program on a computer cluster. For example, the lack of multi-user

functionality and the fact that the implementation lacked performance, due to complex-

ity, using ssh for remote access were major setbacks. With that in mind, we launched the

MEGANServer project. The goal was to develop software capable of storing and orga-

nizing metagenomic datasets remotely and which are exclusively accessible via MEGAN.

The performance should be comparable to that of local access. Access should be based

on modern web service technology to overcome remote access problems. MEGANServer

must be capable of handling multiple users and support some basic level of security.

Additionally, a previously unseen aspect became increasingly relevant. Metagenomic

sequencing and analysis underwent a shift from exploring single datasets in isolation to

analyzing communities over a period of time or before and after a medical treatment.

Researchers weren’t looking at individual samples anymore but rather were trying to

identify the key taxa or genes in certain scenarios. “How do the samples from the sick

individuals compare against the healthy ones?”, “Can we identify the taxa which drive

disease development?” Rare taxa or genes considered to be noise in individual samples

would be lifted above the detection limit if similar samples could be pooled.

Considering the accumulated fashion in which datasets are stored on MEGANServer

using relational database technology, merging, pooling, splitting or simply searching

would be computationally feasible. As a consequence, we decided to update the project

goal. Information collected along with the actual sequencing sample, so called metadata,

would be incorporated in MEGAN datasets. This data could consequently be used

to search for datasets of interest or applied to differentiate between different groups,

subsequently merged and then compared in MEGAN.
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5.3 Planning Phase

It is known that the quality of software depends on the time invested in the planning

phase. Even though there are approaches such as extreme programming which follow

different paradigms, the traditional strategy in software development reserves a maxi-

mum of one third of project time for coding [Brown, 2013; Anderson et al., 2010]. For the

two thirds dedicated to planning, the field of software engineering has developed a wide

range of strategies such as the prototype, the incremental model and scrum [Schwaber,

1997]. For the development of MEGANServer we decided to follow the ‘Big Design Up

Front’ (BDUF) strategy [Brown, 2013]. In contrast to other software development mod-

els, BDUF follows the principle of creating complete and well designed software all at

one go rather than starting off with a small prototype and then extending the function-

ality step by step. The obvious disadvantage of the model is the static character of the

software, and the fact that the development process causes belated deployment. On the

other hand, if the BDUF strategy is based on a working prototype, like in our case, these

biases are mostly removed.

The BDUF principle splits software development in six blocks, namely requirements,

specification, design, implementation, verification and maintenance. The two last blocks

are omitted for brevity. Since a discussion on the implementation would go beyond the

scope of this thesis, we will cover only the essentials in the design block.

5.3.1 Requirements

The purpose of the MEGANServer project is to liberate MEGAN users from the need

to store large datasets on their local computer. Data should be stored at a web server

and accessed through MEGAN. The development process starts off by defining hard and

soft criteria the software has to meet.

Accessibility & Performance MEGANServer has to grant easy and fast access

to incorporated datasets. It should not matter to the user whether the current sample is

stored on the local filesystem or it is accessed through a web service. The performance of

standard commands executed against a remote dataset must be comparable to commands

executed locally. In order to avoid firewall or proxy problems, traffic has to follow the

demands of a standard protocol and should be routed through a standard port.
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Functionality All functions implemented in MEGAN and supported by local storage

must be supported by MEGANServer as well. Additionally, due to the accumulated

fashion in which datasets are stored, new functions can be introduced. An interface to

store and utilize metadata has to be included. Merging of datasets should be supported.

Security Datasets managed by a MEGANServer instance must be secured to prohibit

unwanted access. Only dataset owners can access and/or grant access to their data.

Extendibility The program MEGAN is under ongoing development. New visualiza-

tions and analysis tools are continuously being added. MEGANServer must be extend-

able to support continuing development without large changes in design.

Fault Proof If MEGAN loses the connection to MEGANServer in the process of

transmitting data, MEGANServer should recognize the disconnection to free memory

and close connections to databases.

ACID MeganServer must be capable of handling access from multiple users. Updates

of one user should not be allowed to affect reads of other users. In computer science

the different flavors of data security are described as the ACID (Atomicity, Consis-

tency, Isolation and Durability) criteria. The first three criteria must be supported by

MEGANServer, or in other words, MEGANServer must be transactional. The fourth

criteria is the task of a database management system.

Uploading - Bypass Web services are not designed to support fast upload of large

quantities of data. To handle the sheer size of metagenomic datasets, we require an

alternative approach for the upload of datasets to a MEGANServer instance.

5.3.2 Specification

‘Don’t repeat yourself’ is one of the fundamental rules in software development. If the

result of another software project publishes a solution to a problem you are facing, why

not take advantage of that piece of software? The rule is so fundamental that entire

frameworks are wrapped around that idea, such as Ruby on Rails1. Java, undoubtably

one of the most used programming languages [TIOBE, 2014], comes with a whole variety

1http://rubyonrails.org/

http://rubyonrails.org/
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of public software packages which are free for use. For example, in the central Maven

Repository, a database that curates software packages build with Apache’s Maven2, one

can find source code from over 70,000 unique software projects [Sonatype, 2014].

In this section we will introduce a number of different libraries and frameworks which

will be used throughout the entire implementation process.

Spring Framework

One idea behind the Java language development was to take the pain out of certain

fields of software development and furthermore to create programs that would run, even

if precompiled, everywhere. Nowadays, Java runs on over 8 billion devices [Oracle, 2014]

e.g. the wrapper of the Android operating system3 is entirely written in Java. Unfortu-

nately, in the context of enterprise technology, Java offers with JavaEE4 a solution that

is considered to be rather poor:

“The projects using JavaEE technology have to place more emphasis on sat-

isfying specific API’s rather than developing actual business logic.”

[Wolff, 2010] (translation mine)

The Spring Framework5, first introduced in 2002 [Johnson, 2004], is one of the ap-

proaches which combine enterprise computing and Java. The primary concern is to be

both comprehensive and modular. Spring handles source code that is not part of the

logic as well as it offers standardized interfaces for all important business purposes e.g.

security, data access, cloud computing, integration.

We will take advantage of the Spring Framework throughout the entire implementa-

tion. However, the nature of Spring is that it serves its purpose best when it is invisible

to the actual logic, not implementing its own features but bringing many technologies

together. Even though all components we will introduce will be managed by Spring, we

will discuss its impact only where necessary.

2http://maven.apache.org/
3http://www.android.com/
4http://www.oracle.com/technetwork/java/javaee/overview/index.html
5http://spring.io/projects

http://maven.apache.org/
http://www.android.com/
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://spring.io/projects
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Servlet Container

Figure 5.1: Tomcat

The nature of Java web applications imposes the necessity

to launch these in a so-called servlet container. For this

purpose we chose Tomcat6. There are Tomcat installers for

all operating systems and the configuration process is rela-

tively simple. We want that MEGANServer can be installed

by most users. Tomcat seems to offer suitable features to

support this goal.

Storage

Since early versions relying on relational databases only proved to violate our perfor-

mance requirement, we decided to divide objects in a dataset in two groups. The first

group, mainly classification data, would remain in the relational database. The static

content of reads (see Section 4.2.2) and matches (see Section 4.2.3), on the other hand,

should be stored in a more appropriate data format.

Figure 5.2: PostgreSQL

PostgreSQL As a relational database management

system we chose PostgreSQL7. PostgreSQL is an open

source project with contributions from a huge and helpful

community. It has also proven to be a suitable solution to

store and manage large data by supporting a wide range

of tweaking parameters. For ease of use we also tried Java

database management systems, such as H28, which incorpo-

rate all logic in a Java archive thereby omitting the entire

installation process. Unfortunately, even though the devel-

opers claim differently, H2 does not seem to be designed for

large data as there is a significant drop in performance when facing the size of metage-

nomic data.

6http://tomcat.apache.org/
7http://www.postgresql.org/
8http://www.h2database.com/html/main.html

http://tomcat.apache.org/
http://www.postgresql.org/
http://www.h2database.com/html/main.html
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Figure 5.3: CouchDB

CouchDB We decided to use CouchDB9 as a stor-

age solution for the static content of reads and matches.

Additionally, we will use lightcouch10 as the Java interface.

CouchDB is a simple document orientated NoSQL database

management system. Each document, for example, a match

or a read, is transformed in JSON and subsequently stored

in a tag value manner. The tag, in our case either the read

or the match identifier, serve as input for a B+ tree index

which is used to provide ultra fast access to single documents.

Queuing

One of the main goals of MEGANServer is to provide fast access to reads and matches.

Normally, for example, following the Alignment Viewer use case (see Section 4.3.4), one

does not know the number of reads a request will return. If only a small number of reads

is requested, one can load all reads from the databases, package them in a single object

and transfer this package to MEGAN. This strategy, applied to a request that delivers a

large number of reads, has the potential to stall MEGAN and introduce memory leaks in

MEGANServer. A naive solution would be to apply streaming techniques on both sides,

transferring read by read. This conflicts with the non-negligible overhead of serializing

Java objects in order to transfer them via a web connection. The optimal solution

incorporates both approaches, supports streaming on chunks of reads.

We solved this issue by implementing an additional software, namely the JobQueue.

The input of the JobQueue is a request of MEGAN, asking for an indefinite number

of reads. The JobQueue hands out tickets under which MEGAN iteratively requests

small chunks of the reads, therefore solving both, the stalling and the memory prob-

lem. Unused tickets, for example, when a MEGAN client crashes during access, will be

automatically invalidated and the memory freed.

Metadata

MEGANServer allows to gather a larger number of datasets in one repository. Search

methods need to be installed to provide users functionality to identify datasets of interest.

Besides basic text search on names or metadata of datasets, we decided that our software

9http://couchdb.apache.org/
10http://www.lightcouch.org/

http://couchdb.apache.org/
http://www.lightcouch.org/
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would profit from a feature that allows the selection of all datasets that fall in a certain

scenario. For example, if one is interested in including all datasets that originate from

patients that are both, female and sick, one has to apply a boolean expression such as:

‘Gender’ = ‘Female’ AND ‘Health Status’ = ‘Sick’ (5.1)

For the purpose of parsing and evaluating a boolean expression we chose the Mozilla

Rhino11 library which is a Javascript engine entirely written in Java.

Web Service

Since MEGANServer and MEGAN run on different virtual machines we need to estab-

lish inter-process communication in order to transfer data between both JVMs. Java

is shipped with an inbuilt solution for that task, namely remote method invocation

(RMI)12. Using the Java serializer and its own protocol, RMI is capable of fast data

transfer at a relatively low overhead. However, RMI is not an option because it uses its

own protocol and not a standard protocol such as http. Therefore RMI is most certainly

blocked by any sensitive firewall or proxy. We believe that the traditional web services

based on the SOAP [Curbera et al., 2002] or REST [Fielding and Taylor, 2002] speci-

fications such as Axis213 or Jersey14 are no options either. Cleartext serializers would

create large overhead and thereby throttle the speed. Since the communication will be

between two Java programs, the optimal solution is to use a web service that relies on

a Java serializer (size and speed) and uses the http protocol (accessibility). Potential

candidates include Hessian215, Burlap16 and the HttpInvoker17. As seen in tests (see

[Miquel, 2014], [wuqingren2316, 2014]), the HttpInvoker achieves a performance compa-

rable to RMI, even for larger objects. The main reason seems to be that HttpInvoker

relies on the Spring Java serializer in comparison to the other two implementations that

take advantage of the standard Java serializer. Hessian2 and Burlap perform well trans-

mitting small objects but fail to efficiently serialize large objects. Therefore, we chose

11https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
12http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html
13http://axis.apache.org/axis2/java/core/
14http://jersey.java.net/
15https://github.com/takafan/hessian2
16http://www.caucho.com/resin-3.0/protocols/burlap.xtp
17http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/

html/remoting.html#remoting-httpinvoker

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html
http://axis.apache.org/axis2/java/core/
http://jersey.java.net/
https://github.com/takafan/hessian2
http://www.caucho.com/resin-3.0/protocols/burlap.xtp
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/remoting.html#remoting-httpinvoker
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/remoting.html#remoting-httpinvoker
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to use the HttpInvoker for our web service.

Security

The consequence of offering a service located on a web server is the exposure of data

and functionality to the internet. Access control such as authentication is essential.

Additionally, in order to support different types of permission, such as read/write or

read only access, an authorization process has to be employed. Spring Security18 offers

a solution to both authentication and authorization, and supports simple configuration

via annotations.

We will use Spring Security for authentication and authorization in combination with

digest authentication so that passwords are not sent in cleartext over the network.

Caching

One can significantly improve performance by caching reads and matches (see use case:

Inspector 4.3.2). There are highly advanced implementations such as Redis19, Java

Caching System20, EhCache21 or MemCached22. However, even though all of these

implementations offer striking performance, the increase of complexity these packages

would cause in our software is undesirable. We chose a simple cache implementation

distributed along with the Google Guava package23.

Transactions

The essence of server software is rooted in the idea of offering services and data to

a larger number of users. In comparison to single user software, one has to employ

additional data safety strategies. Data can be invalid and inconsistent at certain points

of its lifespan. For example, a dataset which is currently under update has an invalid

state. Parts of the dataset still carry old values whereas other parts might represent the

updated values. And what happens if the update fails? For example, blocking access

to inconsistent data or automated rollback are two aspects of transactional behavior24.

18http://projects.spring.io/spring-security/
19http://redis.io/
20http://commons.apache.org/proper/commons-jcs/
21http://ehcache.org/
22http://memcached.org/
23https://code.google.com/p/guava-libraries/
24synchronized is not transactional.

http://projects.spring.io/spring-security/
http://redis.io/
http://commons.apache.org/proper/commons-jcs/
http://ehcache.org/
http://memcached.org/
https://code.google.com/p/guava-libraries/
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For that matter we will use Spring’s own implementation, the TransactionManager25.

Additional Packages

In contrast to client software, which in case it crashes can be restarted by a user, a

server software is required to be self-governing. MEGANServer should be ideally fault

tolerant, self updating and memory consistent. Both Java and Spring ship with libraries

which support the criteria stated before. We will take advantage of aspect oriented

programming (AOP) [Kiczales et al., 1997] to apply timer functions, exception handling

and logging support without adding any line of source code.

The timer manages the caches and keeps the JobQueue free from abandoned requests

and triggers a function to frequently scan the database for recently uploaded datasets.

For logging we use the generic interface, Simple Logging Facade for Java (SLF4J)26

primarily because incorporated packages do not use a standardized logging library. Every

exception will be caught, logged and processed using the interception framework in

Spring’s AOP implementation.

5.4 Design

The process in which software packages are systematically plugged in together in such

a way that they meet the requirements, in which interfaces are defined and, scopes and

the modular structure of the software are discussed, is the design stage.

Figure 5.4 depicts the conceptual design of the MEGANServer environment. A num-

ber of MEGAN clients access a web server hosting a MEGANServer instance. Tomcat

is used as the runtime environment for MEGANServer. Communication with CouchDB

and PostgreSQL is established using additional protocols.

On a level closer to the actual implementation (see Figure 5.5) one can see the mod-

ular composition in which the software is designed. There are five programmatically

independent areas. Authentication is located at the outermost position. The creden-

tials of an incoming request are verified using information stored in the user database. A

successful request is routed to the Dispatcher. The Dispatcher evaluates the request

type and determines a suitable handler. Requests, resulting in data of undetermined

size, are forwarded to the Large Data Handler. Data requests that result in data

25http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/

html/transaction.html
26http://www.slf4j.org/

http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/transaction.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/transaction.html
http://www.slf4j.org/
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sizes transmittable in a single chunk are transferred to the Small Data Handler. Re-

quests that affect user entries, such as changing credentials, adding or removing users

are transmitted to the User Data Handler. Programmatically speaking, each handler

is the implementation of a simple interface, using the Spring Framework, translated

in an HttpInvoker servlet. All three handlers implement methods to either retrieve or

write data. To do so, all methods access the Data Access Object. Large data requests

are detoured through the JobQueue which is capable of breaking large data requests

to smaller chunks to speed up transfer without losing streaming behavior. The Data

Access Object determines the type of data and requests information either from the

PostgreSQL or from the CouchDB instance. Similar behavior is implemented in the

UserService using the UserDB as a data backend. Caches and transaction support are

omitted for brevity but belong in the Data Access Object

Figure 5.4: The MEGANServer Environment: The MEGANServer software is
embedded in the Tomcat servlet engine. Data is stored in CouchDB or PostgreSQL. A
number of MEGAN clients communicate with the web server of MEGANServer via http.
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For the communication with MEGANServer we implemented an add-on to MEGAN

(see Figure 5.6). In order to access data, MEGAN or the ServerBrowser use the uni-

versal data interface in MEGAN, the IConnector. The ConnectorFactory manages

IConnectors for all available MEGANServer instances. The IConnector delegates

method invocations to one of the three handler interfaces. The Dispatcher bundles

and translates requests to agree with the http protocol. During Authentication the

http headers of each outgoing request are enriched with credentials.

5.5 Using MEGANServer

The previous sections aimed at introducing MEGANServer from a technical point of

view. Here, we will discuss how the end-user benefits from MEGANServer. First, we

will describe how to upload datasets to a MEGANServer instance and evaluate the

performance in terms of runtime and storage usage. Secondly, we will introduce the

ServerBrowser which is the graphical front-end to the end-user of MEGAN. Through

the ServerBrowser one can easily search and access datasets present on a MEGANServer

instance. Finally, we will discuss how MEGANServer extends the repertoire of functions

of MEGAN, such as pooling of datasets or automated dataset selection using metadata.

To demonstrate features of MEGANServer we decided to use data from a typical

metagenomic study. In the study (see [Mackelprang et al., 2011]), three drill core samples

from Hess Creek, Alaska were extracted from either a permafrost or the overlaying active

soil layer. Samples from two cores were extracted, resulting in four samples, two of

each, permafrost and active layer. All samples were incubated at 5◦C for seven days.

Material was extracted at day zero, two and seven, resulting in twelve samples ready

for metagenomic sequencing. Illumina sequencing lead to 250 million reads. 420 million

matches were found using the PAUDA aligner. Alignments and reads were imported to

MEGAN and written to twelve RMA files.

5.5.1 Uploading

During early stages of MEGANServer we implemented upload functionality within

MEGAN. Datasets would be uploaded to MEGANServer, read by read, in the process

of creation, and routed through the HttpInvoker web service. However, the overhead

in terms of size and time were tremendous. Not surprisingly, creating a dataset locally,

copying it to the server on which MEGANServer is hosted and subsequently uploading
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this dataset to the databases directly, resulted in a significant speedup (100-1,000 fold).

Furthermore, this approach is driven by the fact that new aligners, such as MALT, are

capable of emitting MEGAN files directly.

The MSUploader tool is shipped along with MEGANServer. MSUploader takes any

of the three MEGAN filetypes as input and moves their data directly to both databases.

In Table 5.1 one can see the performance of MSUploader for the twelve datasets. The

250 million reads, together with their associated 420 million matches, being copied in

roughly 40 hours resulting in a performance of 17 million entries27 per hour. If reads and

matches are not of interest, one can translate a MEGAN file to a summary file, leading

to a constant upload time of two seconds.

Sample Reads Matches Size(GB) Time (hh:mm)
RMA Summary DB Summary DB

1 12,116,336 16,566,839 6.8 0.0001 13.5 00:02 01:31
2 14,733,774 34,957,415 13.0 0.0001 25.9 00:02 03:12
3 35,550,968 71,340,056 27.3 0.0001 54.3 00:02 06:45
4 11,466,987 16,604,831 6.0 0.0001 11.9 00:02 01:30
5 33,687,302 67,614,854 25.9 0.0001 51.5 00:02 06:10
6 15,725,557 14,132,054 6.5 0.0001 12.9 00:02 01:50
7 33,376,178 59,334,732 23.0 0.0001 45.8 00:02 05:43
8 16,419,468 18,705,234 8.0 0.0001 15.9 00:02 02:00
9 15,564,330 21,713,772 8.9 0.0001 17.7 00:02 01:55
10 11,697,059 16,955,173 6.9 0.0001 13.7 00:02 01:36
11 14,026,860 29,380,225 11.1 0.0001 22.1 00:02 02:43
12 32,117,490 52,984,661 21.1 0.0001 41.9 00:02 05:08
all 246,482,309 420,289,846 165.5 0.001 330.1 00:20 39:03

Table 5.1: Upload to MEGANServer: Twelve samples incorporate ∼250 million
reads and ∼420 million matches. The size of rma type doubles the size compared with
the file structure and takes roughly one hour for 17 million entries (reads+matches).
Upload time and space consumption of samples with the summary option is constant and
negligible.

As shown in Table 5.1, storage inside a MEGANServer instance doubles the space

requirements compared to an RMA file. The alignment text, as a part of each match,

constitutes ∼80-90% of the size. In order to lower disk space required we apply com-

pression. To do so we merge alignment text from all matches of a read and compress

27An entry is either a read or a match.
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the result. Since, the performance of compression algorithms depend on the input text

size28, larger texts are compressed more efficiently, therefore leading to a smaller data

object. For metagenomic datasets, where reads often have no or few matches, our ap-

proach to merge alignment texts for each read and subsequently apply compression does

not show its true potential. However, if applied to datasets where reads have tens to the

hundreds of matches, e.g. in amplicon sequencing datasets, we can show that the size of

MEGANServer datasets drops under the size of the initial MEGAN file (see Chapter 8).

5.5.2 ServerBrowser

Not only in bioinformatics and many other research fields which depend on software, but

also in our daily life, we use programs in order to facilitate workflows that we would not

be able to perform without the help of a computer. Among others, two factors seem to be

critical when deciding if software is useful to us or not. First, functionality defines which

set of functions software can offer and with what performance. Secondly, the usability

defines how easy it is to handle and access the functionality of a program. However,

these factors often contradict each other. Hence, if a program has a high functionality

letting the user decide about a large set of parameters, it is likely that most users will

be overstrained by the complexity. As a result researchers will take advantage of simpler

tools which are easier to use but are more likely to give results of a lower quality.

MEGAN stands out as a metagenomic software filling the gap between these conflict-

ing factors by offering an easy-to-use and understand graphical interface and also a wide

variety of functions. With this in mind, we added a window in MEGAN, facilitating the

access to datasets that are hosted on a MEGANServer instance.

The ServerBrowser as depicted in Figure 5.7 is partitioned in three sub-windows.

On the left, one can select, edit, delete and add existing MEGANServer instances. The

center view shows datasets as found on the MEGANServer instance. Furthermore one

can search for datasets with two different filtering functions, either by name or by meta-

data. Datasets selected in the center window appear on the rightmost view. MEGAN-

Server supports merging, transforming, comparing, grouping or solely opening datasets.

Datasets affected by these operations are shown in this part of the window.

A typical MEGAN analysis begins with selecting one or a number of datasets of

interest by hand and individually inspecting their content. In a next step, these datasets

28There performance also depends on the text structure. But we cannot influence the text
structure.
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Figure 5.7: The Server Browser: On the left one chooses, adds or edits MEGAN-
Server instances. The view in the center shows the main data representation of MEGAN-
Server, a file system like structure. On the right one can see selected datasets which can
subsequently be opened in MEGAN.

are compared to, for example, estimate β-Diversity in between samples. Selection by

hand is cumbersome, especially if the number of samples is large or the selection criteria

are complex. Also, MEGAN treats each dataset individually. The merging of datasets

is not supported, or at least not achievable without reimporting entire alignment files.

With MEGANServer we aim at automating the selection of datasets. Furthermore

we extend the functionality by enabling merging of datasets in such a way that MEGAN

recognizes the result as an individual dataset. By that we support the idea that analysis

of scenarios has a higher chance to reveal information rather than analysis of single

datasets. For both undertakings - first, automation of selection and second, merging of

datasets - metadata plays a significant role. In order to demonstrate the functionality we

will take advantage of the permafrost data that comes along with a small set of metadata

(see Table 5.2).

Automated Selection In order to automate selection we take advantage of boolean

expressions such as those shown in the Equations 5.2, 5.3 or 5.4. The ServerBrowser

parses one expression and results to a list of datasets which meet this criteria (see Figure

5.8).
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Sample Core Soil Day

1 1 activelayer 0
2 2 permafrost 2
3 2 permafrost 0
4 1 activelayer 7
5 2 activelayer 2
6 1 permafrost 0
7 2 activelayer 7
8 1 permafrost 7
9 1 permafrost 7
10 1 activelayer 2
11 2 permafrost 7
12 2 activelayer 0

Table 5.2: Metadata: Three types of metadata collected along with the metagenomic
samples. ’Core’ distinguishes between the different sampling sites whereas the ’Soil’
describes at which depth the sample has been collected. ’Day’ shows the time elapsed
since incubation start of the samples

‘Core’ = ‘1’ (5.2)

‘Core’ = ‘1’ AND ‘Soil’ = ‘activelayer’ (5.3)

‘Core’ = ‘1’ AND ‘Soil’ = ‘permafrost’ (5.4)

Automated Projection After selection, the user can decide how to open datasets

of interest. Currently there are five options:

• Individual: Open selected datasets individually with one MEGAN window per

dataset. When browsing through the data, for example using the Inspector, miss-

ing data will be loaded from the MEGANServer instance.

• Summary: Extract a summary from each dataset and store individually to the

local hard drive. Then open each dataset in MEGAN. These datasets contain no

reference to MEGANServer and can later be used in offline mode.

• Compare: Perform the Summary command and subsequently compare the

datasets using MEGAN’s inbuilt algorithm which supports three modes, namely
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Figure 5.8: Metadata usage: (a) shows all twelve datasets present in the MEGAN-
Server instance. In (b) one applies a boolean expression on the metadata, selecting only
datasets of interest. As a result only datasets that satisfy the criteria stated in the boolean
expression are visible (c).

absolute, normalized and sub-sampled.

• Merge: Selected datasets are merged in such a way that MEGAN recognizes them

as a single dataset. To do so MEGANServer creates an artificial dataset on the fly

at no additional memory or cpu costs. To MEGAN it is a normal dataset of the

RMA type, supporting inspection of reads and matches or visualizing alignments.

• Group: Selected datasets are grouped based on metadata (see Figure 5.9). The

resulting groups can then be opened with either of the previous commands.

Figure 5.9: Grouping: (a) Previously selected datasets. (b) Group datasets based on
metadata. (c) The view containing initial datasets has been replaced with a view con-
taining the merged datasets.
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Figure 5.10: Selection - Projection: (a) All datasets present on a MEGANServer
instance. (b) Use a boolean expression to choose datasets of interest. (c) Open the
selection in different ways.

5.6 Big Data - Challenging Software Design

The goal was and is to implement a data repository that not only offers access as fast

as the file system and implements multi-user capabilities but also is space efficient.

These are ambitious goals, yet, when implementing software handling small sized data,

the complexity overhead is not visible to the end-user. Whether an operation takes 0.5

seconds to perform due to introduction of routines that guarantee transactional behavior

or it takes 0.1 seconds otherwise, will remain unnoticed by the user. On the other hand,

if one operation usually takes 5 minutes and with a server version requires 25 minutes,

the user might stick to the version using local access. However, the implementation of

routines that guarantee data validity at all times is essential for a multi-user environment.

Unfortunately, this, in combination with the fact that MEGAN deals with datasets of

arbitrary sizes, adds up to a significant performance drain.

For the developer this means that MEGANServer must be designed in such way that

the implementation compensates for the loss of performance. To do so we experimented

with a number of implementations and database backends. The final solution in which

we introduced a blocked streaming behavior in combination with extensive caching seems

to offer the best performance in terms of memory use and cpu cost. Tests prove that the
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retrieval of data via MEGANServer can compete and even outperform the traditional

approach when neglecting biases introduced by, for example, a slow internet connection.

5.7 Conclusion

In this chapter we introduced MEGANServer, a software with which one can store

MEGAN files on a web server without losing the comfort of using MEGAN. Datasets are

stored using modern database technologies offering striking performance and being fault

proof. Access to MEGANServer is granted via MEGAN only and secured using basic

authentication and authorization schemes, thereby, preventing illegal access. Besides

providing a powerful storage for datasets, we were also able to extend the function pool.

To do so, we picked up ideas that originate from 16S rRNA analysis. There, large

numbers of datasets are not stored individually but in one file and metadata is used

to divide or merge datasets of interest. Therefore, we implemented methods that allow

metadata guided merging of datasets to overcome the limitation of comparing single

datasets to support the goal of comparing scenarios such as healthy vs. sick.



Part III

MEGAN for Targeted Sequencing
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This part focusses on the development of a 16S rRNA sequence analysis pipeline

which, in contrast to the typical pipeline, employs alignment in combination with the

metagenomics analysis tool MEGAN and a new taxonomic placement algorithm, namely

Majority Vote LCA. We will show that this approach assigns more than 99% of sequences

to the correct genus and compare β-Diversity plots generated in MEGAN with plots

created by typical 16S rRNA analysis pipelines, such as mothur or QIIME.



Chapter 6

16S rRNA Pre-processing

The rapid development of sequencing technologies, reflected in plummeting prices and

growing number of emitted sequences has lead to a large number of projects that use

DNA or RNA sequences to answer a diverse range of questions. Despite the variety of

technologies, what all next (and third) generation sequencers have in common is the

production of erroneous and short sequences. Therefore, when it comes to sequence

length and quality, Sanger is still considered to be the gold standard [Technologies,

2014]. With Sanger sequencing one can emit high quality sequences with a length up to

1,000 base pairs. The number of emitted sequences is, however, small compared to the

numbers produced by next generation sequencing technologies such as 454 or Illumina.

In general, one can say that sequencing is a tradeoff between price, length, accuracy and

emitted volume.

For the projects in which we have taken part, the main focus is on the analysis of

the prokaryotic small subunit of ribosomal RNA (short 16S rRNA). We decided to use

Roche’s 454 sequencer. This technology offers a higher quality and length compared to

the typical sequencing technology for metagenomic samples, namely Illumina, but emits

a smaller number of sequences for a higher price. However, the main goal when applying

targeted sequencing is to unravel the “true” taxonomical diversity [Hughes et al., 2001]

within a sample and for that task, a smaller number of sequences is generally considered

to be sufficient:

The advantages of having large numbers of samples at shallow coverage

(∼1,000 sequence per sample) clearly outweigh having a small number of

samples at greater coverage for many datasets, suggesting that the focus for

52
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future studies should be on broader sampling that can reveal association with

key biological parameters rather than on deeper sequencing.

[Kuczynski et al., 2010]

Furthermore, greater sequence length is favorable in order to distinguish different

species based on sequence similarity. In fact, over the past years and even though the

technology was initially developed to facilitate assembly [Rothberg and Leamon, 2008],

454 was the quasi standard for sequencing of the 16S rRNA gene1. This is underlined

by the fact that major analysis pipelines, such as QIIME or mothur, were exclusively

developed for 454 data.

Currently, 454 Life Sciences offers two sequencers, the GS Junior System and the GS

FLX+ System; of these two the latter is advertised to be capable of emitting “Sanger-like

read length” [Roche Diagnostics GmbH, 2014] if the newest Titanium reagents are used.

However, even though the new flow cycle produces longer reads, it does not change the

fact that the data is still erroneous. Assembly can, as the research field for which 454

was initially developed, due to increased coverage, deal with sequencing errors very well.

However, for 16S rRNA analysis, sequence errors introduce a large variety of problems.

For example, clustering, a step in which the diversity of a sample is estimated by bundling

similar sequences in so-called OTUs or Phylotypes, e.g at 97% to achieve species level

resolution, is largely affected by sequence errors, resulting in an estimation of a wrong

and a much higher number of species, which will ultimately influence the outcome of

the downstream analysis. As a consequence, the impact of sequencing errors led to a

debate about if or how errors are responsible for species assigned to the so-called “rare

biosphere” [Kunin et al., 2010; Sogin et al., 2006; Huse et al., 2007, 2010; Lynch et al.,

2012].

In general, the Phred Score [Ewing and Green, 1998; Ewing et al., 1998] is used to

describe sequence quality, which estimates the correctness of a base-call by a probability.

As shown in Table 6.1, a score of 10 estimates that the assigned base has a 90% chance

to be correct, or that the chances of the assigned base to be incorrectly introduced are

1 in 10. In this manner, a stretch of 100 bases incorporates 10 false base-calls.

For the 454 technology it is known that sequence quality is negatively correlated to

proceeding sequence length, introduced by a lack of synchrony among incorporation of

nucleotides to an amplified template sequence as described in Chapter 2. Having this

evidence as a rationale, numerous quality control tools [Schmieder and Edwards, 2011;

1454 is currently losing its leading role to Illumina and PacBio.
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Phred Score Base-call accuracy

10 90%
20 99%
30 99.9%
40 99.99%

Table 6.1: Phred Score as the probability if a base is correct.

Patel and Jain, 2012; Gordon and Hannon, 2010; Andrews, 2010] were developed, all

promising to clear the input sequencing data of erroneous sequences or/and to cut off

the low quality tail stretch of the input sequencing data. Naive approaches consist of

arbitrarily picking one quality score, parsing every sequence from beginning to end and,

once one base under the threshold is found, it is assumed that the rest of the sequence

is of low quality and is disposed off.

This action results in short sequences, but more importantly, it ignores the fact that

the low quality base could have been an outlier followed by a number of higher quality

bases. Because of the shortcomings of this approach a new one was developed. The

principle behind the sliding windows concept is: if the average score inside a sequence

window drops under a threshold, the sequence is cut at the beginning of the sliding

window, resulting in longer sequences and solving the outlier problematic. An alternative

to the sliding window approach was introduced by Robert Edgar who argues that average

quality scores are not a good indicator to distinguish correct base-calls from incorrect

ones [Edgar, 2014].

However, the approaches mentioned above are based on the assumption that quality

scores reasonably reflect the correctness of a base-call. A more advanced error-correction

approach circumvents Phred Scores and evaluates the underlying flowgrams directly.

During sequencing at each flow, one of the four nucleotides is added to the sequenc-

ing plate. If the nucleotide can be incorporated, light is emitted and optics measure

the intensity. If more than one nucleotide is incorporated light of a higher intensity

is emitted. Ideally, as seen in Table 6.2a the values are well distinguishable (resulting

sequence: >Seq1:CTTG). However, the real output data contains floats rather than inte-

gers leading to a more complex base-calling process. The table with the idealized values

translates Sequence 2 to ACCTTT whereas a naive translation of the realistic values leads
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to a sequence ACCTT2. The standard base-call protocol performs base-calls naively and

quality values represent the deviation from the closest integer3. In order to optimize

the base-calling process by applying advanced statical methods, Christopher Quince de-

veloped tools such as PyroNoise and AmpliconNoise [Quince et al., 2011] that use the

expectation maximization algorithm leading to statistically more probable base-calls.

A C T G

>Seq1 0 1 2 1
>Seq2 1 2 3 0

(a) Idealized flow

A C T G

>Seq1 0.2 1.3 1.7 0.6
>Seq2 0.65 1.6 2.4 0.3

(b) Realistic flow

Table 6.2: Idealized and realistic flows resulting from 454 sequencing

Application of either of these tools drastically improves sequence quality by removing

three of the four potential error sources listed below:

1. PCR applied before sequencing introduces substitution errors [Cline et al., 1996].

2. Platform specific errors. 454 sequencers struggles with longer stretches of ho-

mopolymers [Margulies et al., 2005].

3. Asynchrony of polymerase positions among an amplified template sequence.

4. 16S rRNA sample preparation is prone to chimeras formation [Haas et al., 2011].

Since chimeric sequences are not a product of poor sequencing performance or low

quality but are introduced at a step prior to sequencing, they remain undetectable by

either of the methods previously introduced. Chimeras are sequences that originate

from two or more different sequences and are usually introduced during PCR as a result

of an incomplete extension [Smyth et al., 2010]. The removal of chimeric sequences is

challenging and no method has been developed yet that successfully removes all chimeric

sequences from a sample. However, there are a number of tools that focus on the removal

of chimeric sequences such as ChimeraSlayer [Haas et al., 2011], Bellerophon [Huber

et al., 2004] or Decipher [Wright et al., 2012]. The UCHIME [Edgar et al., 2011; Edgar,

2013] algorithm embedded the major 16S rRNA analysis pipelines QIIME [Caporaso

2Or, if it translates to the correct sequence, than low Phred Scores are assigned to the critical
areas.

3The explanation is a vast oversimplification.
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et al., 2010b] and mothur [Schloss et al., 2009] argues that it outperforms all other

tools in terms of sensitivity and speed. In order to detect chimeric sequences, UCHIME

cuts reads in shorter sub-sequences and aligns these against a reference database. If

the resulting alignments are assigned to different taxa, the read is considered to be an

offspring of a chimeric formation.

In order to prepare sequences for downstream analysis and to remove as many errors

as possible without losing too much of sequence length, we decided to follow the guideline

of the mothur 454 pre-processing SOP and apply adaptions where required. The pipeline

is based on the evidence found in a study [Schloss et al., 2011] that performed an in-detail

error analysis:

• Input Data: Two files serve as input for the mothur pipeline. First, the stan-

dard flowgram format (SFF) file and a file with barcodes and names of samples

incorporated in a sequencing run.

• SFF Extraction: The binary SFF file is translated to a human readable flow,

fasta and quality file. Reads are demultiplexed and assigned to their associated

sample.

• Trimming: Schloss et al. [2011] showed that sequences with more than two errors

in the primer sequence and/or more than one error in the barcode have an increased

potential to be erroneous. These sequences are removed together with sequences

that are suspiciously long or short.

• Denoising: Application of the PyroNoise algorithm.

• Dereplicating: Identical sequences are merged. The result is equal to a clustering

at 100%. This step is performed to lower computation time of forthcoming steps.

• Align: Sequences are aligned against the Silva reference database4. The result is

used to remove sequences that match regions other than the sequenced 16S rRNA

region.

• Pre-cluster: The dereplication step combines sequences that are identical and

count their occurrences. Normally there are some sequences with higher abun-

dance and a lot of singletons. The sequences with a higher abundance are con-

sidered to have a higher probability to be error free. Pre-clustering takes the

4A small subset of the actual Silva database formatted as a multiple sequence alignment.
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singletons and compares these against the more abundant sequences at a user de-

fined identity, for example at 99% identity, and, if successful, add the singletons

to the bigger cluster.

• Chimeras: Chimeric sequences are removed using the UCHIME algorithm.

• Contaminants: Sequences are taxonomically assigned using the RDP classifier.

Sequences that fail assignment to the kingdom level are considered to be contam-

inants and are removed.

For further analysis we do not use the mothur package. A self written script reformats

the mothur output and emits one fasta file per sample.



Chapter 7

16S rRNA Analysis using

MEGAN

7.1 Introduction

The ultimate goal when performing analysis on sequences that originate from the 16S

rRNA gene is to identify the “true” taxonomic identity for each input sequence and,

subsequently use this information to apply additional methods that, for example, calcu-

late distributions among taxa, and α- or β-Diversity. Taxonomy-dependent approaches,

for example, alignment, are generally considered to be the inferior choice for this task,

since their performance and robustness is tightly correlated to the associated reference

database and taxonomy. Therefore a taxonomy-dependent approach will struggle with

assigning taxa to sequences which are not well represented or have no close relatives

in the reference database [Armougom and Raoult, 2009; Schloss and Westcott, 2011;

Huse et al., 2008]. Consequently, the typical 16S rRNA sequence analysis toolkits

such as mothur or QIIME employ a different reference database independent approach

(taxonomy-independent), namely clustering. In clustering the similarity among all input

sequences is calculated and used to assign sequences to so-called operational taxonomic

units (OTU). Thus, sequences from yet uncultured or unannotated microbes are cap-

tured by this approach as well. The optimal outcome of clustering is to create one OTU

per species present in a sample with all sequences assigned that are likely to belong to

this species. That is why clustering is normally performed at 97% similarity1.

197% identity is the general rule of thumb to distinguish between species when comparing
two sequences. Even though this rule is widely used also for shorter sequences, it was originally
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In order to assign a taxonomic identity, one representative sequence of each OTU

is selected2 and taxonomy-dependent approaches such as alignment are applied. If the

number of OTUs is reasonably small, this approach implies a major performance boost.

However, the speed-up is impacted by the loss in resolution since the taxonomic identity

of a representative sequence is carried out to all sequences assigned to the specific OTU.

A third aspect, why clustering is considered to be a superior approach when compared

to taxonomy-dependent methods is based on the fact that distance based algorithms such

as β-Diversity, will lead to better results when applied on a tree derived from a multiple

sequence alignment of all representative sequences, hence, displaying the exact distances

among the sample, rather than on a generic tree such as the NCBI or Silva taxonomy

where sequences are assigned in the process of taxonomic binning. However, not all β-

Diversity metrics take tree distances as the base for their calculations, and taxonomies

such as Silva are known to be of high quality [Quast et al., 2013; Yilmaz et al., 2013;

Schloss, 2009].

Independent of the approach, the ultimate goal of 16S rRNA analysis is to determine

the correct taxon for each input sequence. In this chapter we will disprove the general

concerns regarding taxonomic-dependent methods and introduce an approach which is

capable of first, assigning more than 99% of the reads to the correct genus; second,

lowering the false positive rate to a value close to 0%; third, showing that alignment

is not a performance bottleneck; and finally, showing that as a consequence of our

taxonomic placement we can create β-Diversity plots comparable to those created by

taxonomy-independent approaches. To do so we apply MALT as aligner in combination

with a new taxonomic placement method, namely Majority Vote which has been recently

introduced to MEGAN.

To test the robustness of our approach we analyzed the 16s rRNA gene sequences

of mouse gut flora. The experimental setting consisted of gnotobiotic mice fed with a

defined set of bacteria. The 454 sequences from the V3-V6 region were retrieved from

28 samples consisting of feces, cecum or small intestine tissue biopsies.

defined to be true only for full length 16S rRNA sequences.
2There are more than a dozen techniques to determine which sequence is representative. For

further information see: http://qiime.org/scripts/pick_rep_set.html

http://qiime.org/scripts/pick_rep_set.html


CHAPTER 7. 16S RRNA ANALYSIS USING MEGAN 60

7.2 Material & Methods

7.2.1 Input Data & Databases

454 Sequencing Data

Twenty-eight samples were obtained from gnotobiotic mice which were initially colo-

nized with four bacterial strains and after the first sampling were fed with 10 additional

bacterial types. Sampling was performed at three time points, day 0, 10 and 20 and

three sites, feces, cecum and small intestine, as depicted in Table 7.1.

Day 0 10 20

Feces 4 4 4
Cecum 0 3 4
Small Intestine 0 5 4

Table 7.1: Sampling Dates/Body Sites

Sequencing of the V3-V6 region of the 16S rRNA gene was performed on a 454 GS

FLX sequencer at Eurofins. Following the pre-processing pipeline, described in Chapter

6, 28 fasta files, containing high quality reads (low quality reads filtered and chimeric

sequences removed) were retrieved. A total number of 349,639 reads with sequence

length ranging between 250 and 290 bp were further analyzed.

Reference Database

The reference database contains full-length 16S rRNA sequences from the twelve3 bac-

terial strains present in the mice as described above. Their identifiers are: ASF361,

ASF457, ASF519, Isol46, Isol48, KB1, YL2, YL31, YL32, YL44, YL45, YL58. The

sequences were obtained by Sanger sequencing.

Silva Database

Version 115 of the 16S rRNA Silva database was used. The database contains 479,726

quality filtered, full-length 16S rRNA sequences clustered at 99% identity and can

3Two bacterial strains did not colonize and were not found in any of the 28 samples. For
brevity we removed these references from downstream analysis.
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be downloaded, along with the taxonomy files, from: http://www.arb-silva.de/no_

cache/download/archive/release_115/Exports/.

For further information on the Material & Methods Section we provide a

flowchart depicting every step performed in this section in Figure C.1.

7.2.2 Taxonomical Classification of the Full-Length Refer-

ence Sequences

The sequences in the reference database were aligned against the Silva database, using

usearch [Edgar, 2010] and MALT [Huson, 2014a] at different percent identities. The

usearch run was performed in the search global mode resulting in a full alignment4 with

a query coverage of 100% and percent identities ranging from 100-96%. MALT alignment

was performed in semi-global mode, using the full-seed approach for percent identities

ranging between 100-96%. For every percent identity we counted the number of matches

per genus for each input sequence, once for MALT and once for usearch. The resulting

table, showing a summary of MALT alignments at genus level, is shown in Table 7.2.

Since MALT and usearch mostly agreed on which matches have been found, we skip the

usearch results for brevity (They can be found in the Appendix). In order to eliminate

the possibility of the Silva database to be biased we additionally assigned the reference

sequences using the RDP classifier, as shown in Table 7.3.

For further information one can find the exact number of matches assigned by MALT

and usearch in the Tables C.1, C.2, C.3, C.4, C.5, C.6 and C.7 which can be found in

the appendix.

7.2.3 Inferring the Correct Taxonomic Distribution

Sequences of the 28 pre-processed samples were merged to a single fasta file and compared

against the reference database. As aligners MALT and usearch were used. The MALT

run was performed in semi-global mode with identities ranging between 100% and 90%.

Usearch was used in the search global mode with a query coverage of 98% with identities

ranging between 100% and 90%. The reason why we used usearch with a query coverage

4Each query sequence is aligned against each reference sequence. Results are sorted by percent
identity.

http://www.arb-silva.de/no_cache/download/archive/release_115/Exports/
http://www.arb-silva.de/no_cache/download/archive/release_115/Exports/
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Name Taxon 100% 99% 98% 97% 96%

ASF361 Lactobacillus 100.0 100.0 100.0 100.0 100.0
ASF457 Mucispirillum 100.0 100.0 100.0 100.0 100.0
ASF519 Parabacteroides 0 100.0 100.0 100.0 100.0
ISOL46 Erysipelotrichaceae;IncertaeSedis 0 100.0 100.0 100.0 100.0
ISOL48 Bacteroides 0 100.0 100.0 100.0 100.0

KB1

Enterococcus 0 100.0 100.0 100.0 98.8
Staphylococcus 0 0 0 0 0.3
Melissococcus 0 0 0 0 0.3
Bacillus 0 0 0 0 0.3
Carnobacterium 0 0 0 0 0.3

YL2 Bifidobacterium 0 100.0 100.0 100 100

YL31
Flavonifractor 0 100.0 100.0 100.0 89.2
Pseudoflavonifractor 0 0 0 0 10.8

YL32
Lachnospiraceae;IncertaeSedis 0 100.0 100.0 100.0 99.4
Lachnospiraceae;uncultured 0 0 0 0 0.6

YL44 Akkermansia 0 100.0 100.0 100.0 100.0
YL45 Parasutterella 0 100.0 100.0 100.0 100.0
YL58 Blautia 0 0 0 0 0

Table 7.2: Percentage of matches assigned to each identified genus after alignment of
full-length reference sequences against Silva using MALT at different percent identities
(100-96). The color indicates the relationship of the genus to the most abundant genus
of each reference sequence. Yellow indicates that the genus does not agree on genus level
but on family level. Orange indicates that their taxonomic paths agree either on class or
on order level but disagree on lower levels.

lower than 100%, is due to the fact that usearch calculates a global alignment, and

subsequently cuts off terminal gaps, thus some alignments fail the 100% query coverage

condition.

If sequences aligned against more than one reference, we considered the match with

a higher percent identity to be the correct match. Table 7.4 shows the distribution

among reference sequences for both tools. Sequences which could not be aligned were

assigned to the No Hit column. Figure 7.1 depicts the distribution resulting from a

MALT alignment at 97% identity as a graph.

For further information, see the tables in the appendix. Table C.13 shows the number
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Confidence

Name Taxon Full-Length Trimmed
ASF361 Lactobacillus 1.00 0.98
ASF457 Mucispirillum 1.00 1.00
ASF519 Parabacteroides 1.00 1.00
Isol46 Erysipelotrichaceae;IncertaeSedis 1.00 0.99
Isol48 Bacteroides 1.00 1.00
KB1 Enterococcus 1.00 1.00
YL2 Bifidobacterium 1.00 1.00
YL31 Flavonifractor 1.00 1.00
YL32 Clostridium XlVa 1.00 1.00
YL44 Akkermansia 1.00 1.00
YL45 Parasutterella 1.00 0.91
YL58 Blautia 1.00 1.00

Table 7.3: Full-length and trimmed reference sequences taxonomically assigned by the
RDP classifier.

%ID Tool ASF361 ASF457 ASF519 Isol46 Isol48 KB1 YL2 YL31 YL32 YL44 YL45 YL58 No Hit

100
MALT 16 0 0 104 28 85 0 86 271 0 58 0 348,991
USEARCH 16 0 0 104 28 85 0 86 271 0 58 0 348,991

99
MALT 8,447 30 119,671 417 43,126 104 21 238 35,389 120,520 8,324 643 12,709
USEARCH 8,444 30 119,650 417 43,104 104 21 237 35,336 120,520 8,319 643 12,814

98
MALT 8,630 37 122,255 424 44,189 110 21 239 36,135 124,333 8,852 680 3,734
USEARCH 8,626 37 122,165 424 44,126 110 21 239 36,069 124,240 8,840 680 4,062

97
MALT 8,634 37 122,495 424 44,252 110 21 239 36,186 124,655 8,893 682 3,011
USEARCH 8,633 37 122,512 424 44,264 110 21 239 36,168 124,631 8,887 682 3,031

96
MALT 8,637 37 122,523 424 44,263 110 21 239 36,216 124,693 8,895 682 2,899
USEARCH 8,636 37 122,624 424 44,291 110 21 239 36,214 124,697 8,896 684 2,766

95
MALT 8,637 37 122,555 424 44,293 110 21 239 36,232 124,693 8,895 682 2,821
USEARCH 8,637 37 122,697 424 44,326 110 21 239 36,238 124,704 8,897 684 2,625

94
MALT 8,637 37 122,571 424 44,337 110 21 439 36,251 124,695 8,897 682 2,538
USEARCH 8,637 37 122,728 424 44,375 110 21 439 36,259 124,708 8,899 684 2,318

93
MALT 8,639 37 122,581 425 44,343 110 21 444 36,253 124,696 8,899 682 2,509
USEARCH 8,639 37 122,745 425 44,385 110 21 444 36,263 124,708 8,900 684 2,278

92
MALT 8,639 37 122,584 425 44,345 110 21 444 36,259 124,696 8,902 682 2,495
USEARCH 8,639 37 122,746 425 44,385 110 21 444 36,269 124,709 8,902 684 2,268

91
MALT 8,641 38 122,592 425 44,348 110 21 444 36,261 124,697 8,904 683 2,475
USEARCH 8,641 38 122,753 425 44,388 110 21 444 36,271 124,709 8,905 684 2,250

90
MALT 8,641 60 122,596 425 44,351 110 21 444 36,262 124,697 8,904 688 2,440
USEARCH 8,641 60 122,755 425 44,388 110 21 444 36,273 124,709 8,905 684 2,224

Table 7.4: Distribution among reference sequences using MALT and usearch on the input
sequences at different percent identities (100-90).

of reads that aligned or failed to align at different percent identities using the MALT

software.
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Figure 7.1: Distribution of reads among reference sequences using MALT at 97% identity
on a logarithmic scale in combination with their proposed taxonomic identity.

7.2.4 Taxonomical Classification of the Trimmed Refer-

ence Database

We determined the average alignment start position and alignment length for each of

the reference sequences by using results generated with MALT at 97% identity in the

previous section (see Figure 7.1). Then, these stretches were extracted from the reference

sequences in order to mimic typical but error-free reads.

These sequences were aligned against Silva and analyzed using the same protocol as

described in Section 7.2.2. The summarized results are shown in Table 7.5. In order to

eliminate the possibility of the Silva database to be biased we additionally assigned the

reference sequences using the RDP classifier, as shown in Table 7.3.

For further information and the exact number of matches found by MALT and

usearch see Tables C.8, C.9, C.10, C.11 and C.12.
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Name Taxon 100% 99% 98%

ASF361
Lactobacillus 100 97.9 98.1
Streptococcus 0 1.3 0.6
Allobaculum 0 0.8 0.3

ASF457 Mucispirillum 100 100 100

ASF519
Parabacteroides 100 96.2 96.5
Lachnospiraceae;IncertaeSedis 0 3.8 3.5

ISOL46 Erysipelotrichaceae;IncertaeSedis 100 100 100
ISOL48 Bacteroides 100 100 100

KB1

Enterococcus 95.6 94.2 94.3
Planomicrobium 2.2 2.3 2.3
Staphylococcus 0.7 1.7 1.4
Clostridium 0 0.5 0.5
Epulopiscium 0 0 0.5
Bacillus 1.4 1 1

YL2 Bifidobacterium 100 100 100

YL31
Flavonifractor 96.7 92.9 87
Ruminococcaceae;IncertaeSedis 3.3 3.6 1.7
Ruminococcaceae;uncultured 0 3.6 11.3

YL32

Lachnospiraceae;IncertaeSedis 97.2 96 81.5
Lachnospiraceae;uncultured 0.9 1.5 17.2
S24-7 0.9 1 0.6
Anaerolineaceae;uncultured 0.4 0.3 0.2
Roseburia 0 1 0.2
Pseudobutyrivibrio 0 0 0.2
Ruminococcus 0 0 0.2
Anaerosporobacter 0 0 0.2
Blautia 0.4 0.3 0.2

YL44 Akkermansia 100 100 100
YL45 Parasutterella 100 100 100

YL58

Blautia 0 93.1 88.2
Christensenellaceae;uncultured 0 0.3 0.3
Roseburia 0 0.3 0.3
Dorea 0 0.3 0.3
Lachnospiraceae;IncertaeSedis 0 1.9 2.8
Pseudobutyrivibrio 0 2.4 2.3
Ruminococcaceae;IncertaeSedis 0 0 0.3
Peptostreptococcaceae;IncertaeSedis 0 0.3 0.3
Lachnospiraceae;uncultured 0 0 5
S24-7 0 0.3 0.3
Ruminococcus 0 0.3 0.3

Table 7.5: Percentage of matches assigned to each identified genus after alignment of
trimmed reference sequences against Silva using MALT at different percent identities
(100-98). The color indicates the relationship of the genus to the most abundant genus
of each reference sequence. Yellow indicates that genus does not agree on genus level but
on family level. Orange indicates that they agree either on class or on order level but
disagree on lower levels. Red indicates that this genus belongs to a different phylum.
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7.2.5 Taxonomic Identity of Reference Sequences

The results retrieved in the Sections 7.2.2 and 7.2.4 were used to derive the taxonomic

identity (at genus level) for each of the 12 bacterial strains present in the reference

database. To do so, we checked results of full-length and trimmed reference alignments

against Silva and picked for each of the 12 bacterial strains the genus which lead us to

the highest number of matches (see Tables 7.5 and 7.2). Usearch and MALT agreed

at all percent identities tested, so that each reference sequence could be assigned to a

genus. We cross-validated the selected taxonomic identities by comparing these against

the RDP generated taxonomic identities for trimmed and full-length reference sequences.

The resulting taxonomic identity for each reference sequence is shown in Figure 7.1.

7.2.6 Alignment of Sequencing Data against Silva

We extracted the sequences that successfully aligned against the reference database at

percent identities ranging between 100 and 96% (see Table 7.4), for example, 648 se-

quences resulted by aligning at 100% identity against the reference, and aligned these

against the Silva database using MALT in semi-global mode, and percent identities rang-

ing between 100 and 96%. The resulting 25 alignment files were imported to MEGAN

using the SILVA taxonomy file and a mapping file generated by a self-written script.

For taxonomic classification we applied MEGAN’s Lowest Common Ancestor algorithm

(LCA) with a minimal bitscore of 300 and set the toppercent parameter to 2%. We im-

ported the alignment files a second time and this time applied the Majority Vote LCA

algorithm at a 90% confidence for taxonomic placement.

We tried to perform the same task with usearch in usearch global mode as proposed

by the usearch developers, which uses unique k-mers as runtime reducing heuristic. The

alignment failed due to an out-of-memory exception, since only the 32-bit version is free

for academic use. As an alternative, we tried to perform the analysis using usearch in

search global mode, executing a full alignment, leading to unacceptable runtimes. We

therefore removed usearch from our analysis pipeline.

7.2.7 Alignment of Dereplicated Sequences

In order to lower the computation time we performed the MALT alignment a second

time, but this time we dereplicated the input sequences beforehand, thereby reducing

the sample size and alignment time ∼40-fold. Replication of resulting alignments after
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completion lead to the exact same result as discussed above.

7.2.8 Comparing LCA against Majority Vote LCA

For each read we extracted the taxonomic path, from the MEGAN files, generated in

Section 7.2.6, once for the normal LCA and once for the Majority Vote LCA algorithm

at different percent identities and compared the paths against the true taxonomic dis-

tribution results (see Table 7.4).

Based on the outcome of the test, taxonomic placement of a read is categorized as

follows: “Same” is designated to those reads which were successfully placed in the correct

genus; “Higher” is assigned to the reads that were mapped to a higher taxonomic level,

nevertheless they share a common path with the correct genus; “No Hit” describes all

reads that, even though they could be aligned against the reference database, could not

be aligned against the Silva database or led to low quality matches; Reads which did not

fall in any of the previous categories are false positives and are labeled as “Different”.

Examples for each category are listed in Table 7.6.

Summarized results of the genus level comparison are shown in Table 7.7.

Class Taxonomic Path

Reference Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia

Same Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia
Higher Firmicutes;Clostridia
Different Bacteroidetes;Bacteroidia;Bacteroidales;S24-7
No Hit -

Table 7.6: Example for correct or incorrect taxonomic assignment.

7.2.9 β-Diversity using QIIME and MEGAN

From each of the 28 samples, we removed sequences that did not align at 97% identity

against the reference database, and analyzed the remaining data using QIIME in de-novo

clustering mode and MALT, using 97% identity in combination with the Silva database,

MEGAN and the Majority Vote algorithm for taxonomic placement.

In QIIME, for each OTU one representative sequence was extracted, using the clus-

ter seed picking strategy. Multiple sequence alignment was performed on the set of
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Percent Identity at Alignment against Silva
100 99 98 97 96

%Id Count %Reads LCA MV LCA MV LCA MV LCA MV LCA MV

P
er

ce
n
t

Id
en

ti
ty

at
A

li
gn

m
en

t
ag

ai
n
st

R
ef

er
en

ce 100 648 0.19

Same 206 648 206 648 206 648 206 648 206 648
Higher 442 0 442 0 442 0 442 0 442 0
Different 0 0 0 0 0 0 0 0 0 0
No Hit 0 0 0 0 0 0 0 0 0 0

99 336,930 96.37

Same 120,790 121,404 300,554 336,930 180,914 336,929 180,914 336,929 180,914 336,929
Higher 615 1 36,376 0 156,016 1 156,016 1 156,016 1
Different 0 0 0 0 0 0 0 0 0 0
No Hit 215,525 215,525 0 0 0 0 0 0 0 0

98 345,905 98.93

Same 120,790 121,404 300,956 337,346 188,299 345,895 186,553 345,895 186,553 345,895
Higher 615 1 36,396 6 157,606 10 159,352 10 159,352 10
Different 0 0 1 1 0 0 0 0 0 0
No Hit 224,500 224,500 8,552 8,552 0 0 0 0 0 0

97 346,628 99.14

Same 120,790 121,404 300,956 337,346 188,575 346,172 187,037 346,606 186,989 346,607
Higher 615 1 36,397 6 157,618 18 159,588 15 159,637 15
Different 0 0 3 4 2 5 2 6 2 6
No Hit 225,223 225,223 9,272 9,272 433 433 1 1 0 0

96 346,740 99.17

Same 120,790 121,404 300,957 337,347 188,579 346,176 187,079 346,648 187,060 346,696
Higher 616 1 36,399 6 157,630 20 159,610 23 159,676 22
Different 0 1 6 9 5 18 5 23 4 22
No Hit 225,334 225,334 9,378 9,378 526 526 46 46 0 0

Table 7.7: Accuracy of Taxonomic Placement at Genus Level: Sequences that
align against the reference database at different percent identities - Rows - were ex-
tracted and aligned using MALT at different percent identities against the Silva NR99
115 database - Columns - and subsequently imported to MEGAN. The table shows that
both algorithms, Lowest Common Ancestor (LCA) and Majority Vote LCA (MV), as-
sign reads free of false positives. However, the LCA tends to place reads on the correct
taxonomic path, but on higher levels than the genus level. The MV algorithm assigns
more than 99% of reads to the correct genus.

representative sequences using the PyNast [Caporaso et al., 2010a] algorithm. The re-

sulting data served as input for the tree building tool fasttree [Price et al., 2009, 2010].

The tree served as input for the weighted Unifrac [Lozupone et al., 2006] distance metric.

The transformation of the resulting distance matrix to a β-Diversity plot was performed

using an internal QIIME routine. The resulting β-Diversity is depicted in Figures 7.2a

and 7.2b.

After import to MEGAN, we compared all samples using the sub-sampling method.

β-Diversity plots are generated using the Bray-Curtis dissimilarity metric [Bray and

Curtis, 1957]. Results are depicted in Figures 7.2c and 7.2d.
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Figure 7.2: β-diversity plots created with QIIME ((a) and (b)) and MEGAN ((c) and
(d)): Colors and shapes differentiate between sample types. Figures (a) and (c) are
colored by sample source. Figures (b) and (d) differ, additionally, between collection
dates as explained in Table 7.1.
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7.3 Results & Discussion

7.3.1 Not Under-representation but False Positives influ-

ence Taxonomic Analysis using Alignments

When using taxonomy-dependent methods for 16S rRNA sequence analysis, the as-

sumption that the taxonomic information of those sequences which have no match in

the reference database will be lost is a constant concern. As shown in Table 7.2 only two

bacterial strains out of 12 have an exact 16S rRNA sequence match in the Silva database.

However, if we perform alignment with relaxed percent identity criteria ranging from 99

to 96%, we see, as shown in Table 7.2, that although the exact sequence is not present in

the Silva database the correct taxonomy identity can be assigned. These results can be

verified by using the RDP classifier to taxonomically bin sequences, as shown in Tables

7.3.

However, due to the sequencers length limitations, the majority of studies performs

taxonomic identification not on full-length 16S rRNA sequences but on shorter stretches.

This is why we repeated the analysis, with the difference that this time we used reference

sequences trimmed to a position and length which is typical for our “real” sequencing

data. As we can see in Table 7.5, the alignment of each trimmed reference sequence

finds the same most abundant genus as the alignment of the full-length reference. For

this reason, we can say that during the downstream analysis, our taxonomic assignment

is not biased by reduced sequence length of ∼250-300bp.

Contrary to the general concern, we identified a potential source of error not in

under-representation but in false positives. We found that already at alignment with

99% identity (see Table 7.5) some sequences matched the Silva database at a phylum

different to the correct taxonomic identity (see Figure 7.1). Further relaxation of the

percent identity criteria to 98% added more false positives, thereby contradicting the rule

according to which a 97% identity distinguishes sequences at species level. However, some

reference sequences aligned to the correct genus only, and the number of cases where

sequences were correctly assigned to the matching genus were generally by one order of

magnitude higher when compared to the incorrect.

The results of the taxonomic analysis presented in this section are summarized in

Figure 7.1 where the correct identity of each input sequence is found up to genus level.

Assignment to the species level was not possible due to two reasons. First, at species

level the same input sequence matched multiple references with identical identity, score
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and alignment. Secondly, most species that were matched did not have a name but were

referenced as “uncultured species”, adding no further information.

7.3.2 Deriving “true” Taxonomic Distribution: Alignment

of 454-Sequences against the Reference Database

Unlike in mock communities which are generated in-vitro by mixing bacteria in known

proportions and are sequenced, our approach contains sequences from an in-vivo ex-

periment. As a consequence and in order to verify results presented in downstream

analysis, first, we need to derive the correct taxonomic distribution by applying align-

ment methods using the reference database and, secondly, remove sequences that have

a high chance of being contaminants, such as bacterial sequences that do not stem from

any of the sequences in the reference database.

To do so, we aligned 349,639 sequences against the reference database, using MALT

and usearch for percent identities ranging from 100-90%. Even though we would expect

that following pre-processing, sequences would be free of the majority of errors, in our

setting we saw only 648 sequences that could be aligned at 100% identity (see Table

7.4). However, the majority of sequences could be aligned at 99% identity. At 94%

identity no further significant changes in the ratio between assigned and not assigned

could be detected, implying that roughly 2,500 sequences are contaminants, originating

from different bacterial species or representing an artifact of pre-processing.

The number of reads that are assigned to each of the reference sequences in the sample

at different percent identities is depicted in Table 7.4 and Figure 7.1. Leaving results

at 100% identity aside, when using the distribution at 99% identity as a reference, one

can see in Figure 7.3, that through the course of 97 - 93% there are only minor changes

in the distribution of reads among reference sequences. Changes in the distribution

between 99% and 98% are limited to ± 3% in relation to the distribution one would

expect by adding previously unassigned reads (Example: If 10% of reads are assigned

to one reference and the number of all reads is 100, then if we add another 50 reads we

would expect, considering the initial 10% to be representative, that 5 of the 50 additional

reads are assigned to this reference sequence. On the other hand, if 10 more reads are

assigned, the ratio changes from 10% (10 of 100) to 13% (20 of 150) which is a rise

of 30%.). Despite the fact that we detected only a minor change of ± 3%, this poses

the question if sequences that stem from certain bacteria are more prone to sequencing

errors and/or if the accuracy suffers for intragenomic variation of the 16S rRNA gene
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[Coenye and Vandamme, 2003; Clayton et al., 1995]. YL31 and ASF457 have significant

changes of abundance, ranging between +20% for ASF457 at 98% identity to +80% at

94% identity for YL31. One explanation for these drastic changes might be the fact that

both taxa are relatively rare, making up for only 0.13% of all reads. In other words,

an additional 7 reads for ASF457 would result in a 20% rise in abundance. Another

explanation for the increase of 80% for YL31 at 94% identity could be the introduction

of contaminants which belong to the same genus or family. Based on the evidence

summarized in Table 7.4 and shown in Figure 7.3, we concluded that the distributions

retrieved from the alignment performed at 99% and above identity do not correctly

represent the sample distribution and that a percent identity lower than 95%, most

likely, introduces contaminants.

Furthermore, alignment performed with MALT leads to overall same results as use-

arch in full alignment mode as shown in Table 7.8. In addition, the analysis of reads that

both tools assigned to different taxa, prompts us to conclude that the deviation stems

from the methods applied to calculate the alignment using either a global or semi-global

approach (See discussion at Section 7.3.4). In the context of this study, one can say that

MALT finds, due to the nature of semi-global alignment, better and longer alignments.

%Id Same Different % Different

100 349,639 0 0
99 349,534 105 0.03
98 349,311 328 0.09
97 349,457 182 0.05
96 349,470 169 0.04
95 349,427 212 0.06
94 349,406 233 0.06
93 349,401 238 0.06
92 349,405 234 0.06
91 349,408 231 0.06
90 349,412 227 0.06

Table 7.8: Number of Reads that align to the same or different taxon using MALT and
usearch for varying percent identities.



CHAPTER 7. 16S RRNA ANALYSIS USING MEGAN 73

9
3

9
4

9
5

9
6

9
7

9
8

9
9

%
Id

en
ti

ty

9
8

1
0
0

1
0
2

1
0
4

%
C

h
an

g
e

in
A

b
u
n
d
an

ce

(a
)

9
3

9
4

9
5

9
6

9
7

9
8

9
9

%
Id

en
ti

ty
1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

%
C

h
an

g
e

in
A

b
u
n
d
an

ce

(b
)

9
3

9
4

9
5

9
6

9
7

9
8

9
9

%
Id

en
ti

ty

1
0
0

1
0
5

1
1
0

1
1
5

1
2
0

%
C

h
an

g
e

in
A

b
u
n
d
an

ce

(c
)

10
0

A
SF

36
1

A
SF

51
9

Is
ol

46

Is
ol

48
K

B
1

Y
L2

Y
L3

2

Y
L4

4

Y
L4

5

Y
L5

8
Y

L3
1

A
SF

45
7

F
ig

u
re

7
.3

:
D
is
tr
ib
u
ti
o
n

o
f
re
a
d
s
a
m
o
n
g
ta
x
a
u
si
n
g
M

A
L
T

:
T

h
e

gr
a
p
h
s

sh
o
w

h
o
w

th
e

d
is

tr
ib

u
ti

o
n

a
m

o
n

g
ta

xa
ch

a
n

ge
s

fr
o
m

9
9
-9

3
%

id
en

ti
ty

,
w

h
en

u
si

n
g

th
e

d
is

tr
ib

u
ti

o
n

a
t

9
9
%

a
s

a
re

fe
re

n
ce

a
n

d
ex

pe
ct

in
g

p
ro

po
rt

io
n

a
l

gr
o
w

th
w

it
h

th
e

gr
o
w

in
g

n
u

m
be

r
o
f

re
a
d
s,

fa
il

ed
to

a
li

gn
a
t

h
ig

h
er

pe
rc

en
t

id
en

ti
ti

es
.

(a
)

T
h

e
a
bu

n
d
a
n

ce
s

a
m

o
n

g
1
0

o
f

1
2

re
fe

re
n

ce
s

d
id

n
o
t

u
n

d
er

go
si

gn
ifi

ca
n

t
ch

a
n

ge
s

(±
3
%

).
(b

)
A

si
gn

ifi
ca

n
t

ra
is

e
o
f

a
bu

n
d
a
n

ce
fo

r
Y

L
3
1

a
t

9
4
%

id
en

ti
ty

.
(c

)
A

si
gn

ifi
ca

n
t

ch
a
n

ge
o
f

a
bu

n
d
a
n

ce
fo

r
A

S
F

4
5
7

a
t

9
8
%

id
en

ti
ty

.



CHAPTER 7. 16S RRNA ANALYSIS USING MEGAN 74

7.3.3 Taxonomic Assignment using MALT and MEGAN -

Accurate and Free of False Positives

Traditionally, MEGAN assigns reads to nodes on the taxonomy using the lowest common

ancestor algorithm (LCA). Before placement, the matches of each read are filtered to

remove those of low quality. The remaining matches are considered significant, and are

subsequently used as input for the lowest common ancestor algorithm. The algorithm is

known to be relatively robust against false positives [Huson et al., 2007], since reads are

assigned to the ancestor of all matches, as seen in Figure 7.5d. In the field of metage-

nomics, where one often finds very few matches per read that can pass the quality filter,

and alignments are created using databases not specialized for taxonomic placement but

rather to unravel the genetic content, this approach seems to be well accepted. However,

for our analysis, we believe that the standard algorithm leads to a too conservative and

thereby, to a taxonomic placement too close to the root. This assumption is fueled by

the taxonomic assignments listed in Tables 7.2 and 7.5 where already at 99% identity

reference sequences match different phyla. We assume that for real sequencing data, that

may contain errors, the rate of false matches would be even higher. For that case, the

lowest common ancestor will fail to accurately map the sequence to the correct genus.

On the other hand, the Majority Vote LCA as an alternative approach to the LCA takes

advantage of the fact that the number of matches for the correct genus is in general

much higher than the count of false positives.

Majority Vote Lowest Common Ancestor As described above, prior to taxo-

nomic placement, matches are quality filtered. This pre-processing step is performed in

order to eliminate matches considered not to be significant, with the goal of increasing

accuracy of taxonomic placement. The Majority Vote algorithm (MV) extends the func-

tionality of the traditional lowest common ancestor approach by applying an additional

filter, that eliminates matches not before but in the course of finding the LCA.

Figure 7.5 depicts the workflow of the MV. Initially, pre-filtered matches are placed

on nodes of the taxonomy tree. For example, in Figure 7.5a, 90 out of 100 matches

are placed on the Clostridia node. Parent nodes inherit the number of matches from

their subtree, resulting in assignment of 95 matches to Firmicutes. The LCA algorithm

traverses the tree leaf to root and places the read on the lowest node in which every

match is captured. As a result, applying the LCA on the example tree places the read

on the Bacteria node as seen in Figure 7.5d. The MV applies the same algorithm as
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the LCA but relaxes the condition of how many matches have to be embodied in the

subtree from all matches (in LCA) to a user defined fraction. Therefore, a fraction of

90% assigns the read to Clostridia (see Figure 7.5b), a fraction of 95% places the read

on Firmicutes (see Figure 7.5c) and a fraction of 100% leads to the same taxonomic

placement as the LCA.

The LCA is free of False Positives, the Majority Vote Algorithm is

also accurate Knowing the taxonomic identity for each reference sequence as derived

from the Silva database (see Figure 7.1) and the distribution among reads (see Table 7.4)

enables us to prove that MALT is capable of aligning most reads. Furthermore, MEGAN

is capable of assigning reads avoiding false positives (less than 0.1%) and, finally, that

the Majority Vote algorithm using a threshold of 90% of matches, assigns more than

99% of reads to the correct genus.

MV-Same LCA-Same MV-Higher LCA-Higher

LCA-Different LCA-Different

96 97 98 99
%Identity

0

20

40

60

80

100
%Reads

Figure 7.4: Accuracy of taxonomic placement using different percent identities in com-
bination with the LCA and MV algorithms.
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As shown in Table 7.7, using the LCA and the MV algorithm on reads that were

previously aligned using MALT against the Silva database, we can see that:

• MALT is capable of finding matches for most reads. The accuracy and performance

of the alignment algorithm is underlined by the fact that (see Table 7.7) the number

of reads which could not be aligned, drops to zero, if the percent identities of both

alignment steps (rows and columns) are equal. Implying that MALT is capable of

dealing with sequence errors and can still find the correct alignment.

• the rate of false positives ranges between 0 and 0.1% regardless the percent iden-

tities applied during alignment. However, as shown in Table 7.7, we can identify

a rise in false positives when allowing sequences to align against the reference

database only at 96% identity and when the criteria for alignment against Silva

are also relaxed. The analysis of reads that lead to false positives shows that false

positives are found on family level only and, that the source of errors lies in reads

that are supposed to be placed to the Lachnospiraceae;IncertaeSedis genus but

are falsely assigned to the Lachnospiraceae;uncultured genus. Another possible

explanation implies that through the relaxed percent identity criteria the reads

that we classify as false positives actually stem from different bacterial strains and

therefore represent contamination.

• the MV assigns more than 99% of reads to the correct genus, regardless of the

alignment parameters. Figure 7.4 shows the performance of the MV compared

against the LCA. The LCA assigns roughly 80% of reads to the correct genus

when using conservative alignment parameters at 99% identity but loses accuracy

when allowing matches that align at only 98%. A comparison between LCA and

MV at 97% identity after alignment against Silva is depicted in Figure 7.6 and

shows that the majority of reads which the LCA maps to a higher taxonomic

level are assigned to the Bacteria node and stem mostly from Parabacteroides and

Lachnospiraceae;IncertaeSedis, therefore distorting the entire taxonomic distribu-

tion.
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Mucispirillum; 37 37

Bifidobacterium; 21 21

Akkermansia; 124655 124655

uncultured; 1 5

Pseudobutyrivibrio; 1 1

Incertae Sedis; 7 36166

Blautia; 0 680

Lachnospiraceae; 50 14

Flavonifractor; 0 239

Ruminococcaceae; 239 0

Clostridiales; 683 0

Enterococcus; 0 110

Lactobacillus; 8628 8634

Lactobacillales; 4 0

Bacilli; 110 0

Incertae Sedis; 424 424

Firmicutes; 2 0

Parabacteroides; 120 122495

Bacteroides; 44252 44252

Parasutterella; 8893 8893

Bacteria; 158500 1

Legend:

TV28-LCA TV28-MV

Figure 7.6: Comparison of taxonomic placement methods: Lowest Common Ancestor
against Majority Vote.

7.3.4 Alignment of 16S rRNA Sequences - Semi-Global

Outperforms Local and Global

In the course of this study we proved that MALT is capable of aligning 16S rRNA

sequences in a way that MEGAN can translate the output to nearly optimal taxonomic

assignment. We believe that the rationale behind the very good performance of MALT

is in fact the semi-global alignment setting, which seems to be the superior choice as

method for alignment of 16S rRNA sequences. In this section, we will discuss why we

believe that the two other approaches often used for 16S rRNA analysis, namely local

and global alignment, may lead to less significant results.

As input data for pairwise alignment we have, as depicted in Figure 7.7a, a reference

sequence and a query sequence. Unlike in whole genome sequencing where random

pieces of DNA are sequenced, possibly stemming from two different genes, in targeted

sequencing, query sequences always stem from only one gene, or in other words, the query

is a sub-sequence of the reference. Therefore, in this case the goal of pairwise alignment
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is to create an alignment which covers the entire query sequence, thus allowing us to

retrieve only the most significant alignments.

Here, we describe three alignment methods used for 16S rRNA analysis:

• Local: Local alignment finds high-similarity regions and implicitly ignores low-

similarity ones. Therefore, local alignment on 16S rRNA sequences can result

in several alignments for one query sequence, potentially omitting subsets of the

hypervariable regions (see Figure 7.7b).

• Global: During global alignment, both sequences - reference and query - are

aligned end-to-end. This approach solves the gap problems arising in local align-

ment. Nonetheless, the alignment retrieved has terminal gaps (see Figure 7.7c)

which result in a biased percent identity and bitscore. Cutting terminal gaps away

(as done by default by certain programs) solves the problem but it might lead to

an alignment shorter than the query sequence.

• Semi-Global: Methods, such as MALT, supporting semi-global alignment, align

the entire query sequence against the reference as depicted in Figure 7.7d. Termi-

nal gaps are not cut off and may influence bitscore and percent identity negatively.

To summarize, we can say that local alignment can lead to multiple alignments per

query which have a high percent identity but omit areas used to differentiate between

species, such as variable regions. By cutting off terminal gaps located in the query,

global alignments result in a high score and a high percent identity. Since, alignment

for different query sequences may vary in the number of terminal gaps, this approach

negatively influences the credibility of the percent identity parameter. Finally, semi-

global alignment produces the most credible results even though scores and percent

identities may be lower compared to global alignment.

However, in the process of evaluating and comparing alignments produced by either

MALT with semi-global alignment and usearch with global alignment, we observed an

additional bias introduced by global alignment. Possibly due to the algorithm usearch

uses to calculate global alignments, gaps at the end of query sequences are introduced

where MALT aligned these areas avoiding gaps at all.

7.3.5 Accurately estimating β-Diversity using MEGAN

β-Diversity is an important tool to detect compositional differences between samples and

is essential for 16S rRNA analysis especially when considering the complexity introduced
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reference
query

V1 ... V3 V4 V5 ....

(a) Reference and query

reference
query

alignment

V1 ... V3 V4 V5 ....

(b) Local

alignment

trimmed

reference
query

V1 ... V3 V4 V5 ....

(c) Global

alignment

reference
query

V1 ... V3 V4 V5 ....

(d) Semi-Global

Figure 7.7: Methodologies for 16S rRNA pairwise sequence alignment.

by the large number of samples. To create plots first, distances or dissimilarities between

samples are calculated using e.g. a tree or the taxonomic distribution in combination

with a metric such as Unifrac. The resulting distance matrix accurately describes how

samples differ but due to the high dimensionality this is inaccessible to the human

eye. In the following step, the matrix undergoes a transformation in which distances

are projected to two- or three dimensional coordinates with the aim of losing as little

variance as possible. Finally, this data is plotted, displaying distances between samples.

Major 16S rRNA platforms such as QIIME or mothur but also the metagenomic

software MEGAN support β-Diversity plots. Following the plan to establish MEGAN

as a tool for 16S rRNA analysis, we will show that MEGAN is capable of accurately

describing distances between samples for 16S rRNA data.

Contrary to the taxonomic placement analysis we presented in the previous sections,

for this section we have no correct β-Diversity to which we could compare our results.

Therefore, we compare results created in MEGAN with those created in QIIME and

correlate the findings with the metadata as described in Table 7.1.



CHAPTER 7. 16S RRNA ANALYSIS USING MEGAN 81

Figure 7.2 depicts the β-Diversity plots generated with QIIME using the weighted

Unifrac distance metric and β-Diversity plots generated with MEGAN using the Bray-

Curtis dissimilarity. Both approaches lead to highly similar clustering, with sampling

time and site proving to be the discriminating metadata. First, feces samples taken at

day 0 harboring only three bacterial strains significantly differ from all other samples.

Secondly, feces samples collected at day 10 and 20 underwent a taxonomical shift, in-

duced by feeding of 10 additional bacterial strains on day 0, and consequently a notable

difference between them and day 0 samples is visible in form of an additional cluster.

Additionally, one can detect compositional differences between day 10 and 20. Further-

more, cecum samples from both, day 10 and 20 form a third cluster located in the direct

neighborhood of the feces samples. Finally, samples taken from the small intestine create

a fourth and distant cluster.

Taking the plots generated by QIIME and additional information about the samples

in account, we can most certainly say that MEGAN in combination with our taxonomic

placement approach is capable of correctly measuring distances between samples and,

therefore, of successfully discriminating sample types based on metadata.

7.3.6 Computational and Algorithmic Challenges of 16S

rRNA Analysis

The main objective of clustering, in terms of 16S rRNA analysis is to identify exactly

one OTU per species present in a sequencing sample. Knowing that the number of

species is by far smaller than the number of sequences, this approach significantly reduces

the runtime for taxonomic assignment as well as improves the accuracy of downstream

analysis which depends, in the case of β-Diversity, on a tree built from representative

sequences. However, clustering can also lead to poor results, introducing new species

originating from e.g. sequencing errors [Huse et al., 2010; Marco, 2010; Quince et al.,

2009] or falsely add rare species to clusters formed by a highly abundant species thereby

losing resolution.

Schloss analyzed factors that influence the outcome and the quality of clustering (see

[Schloss, 2010]) and, consequently, a new generation of clustering tools emerged (or was

updated), such as ESPRIT [Cai and Sun, 2011; Sun et al., 2009], uclust [Edgar, 2010],

uparse [Edgar, 2013], CROP [Hao et al., 2011], Muscle [Edgar, 2004], SLP [Huse et al.,

2010] or CD-Hit [Huang et al., 2010]. However, comparison of these tools shows that

the species richness is still overestimated 2 to 10-fold [Chen et al., 2013; Bonder et al.,
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2012]. For example, clustering, using QIIME on our data, as described in the previous

section, lead to 58 OTUs at 97% similarity, and by that, overestimating the number of

species by a factor of 5.

Nonetheless and even though alignment based methods do not suffer from similar

setbacks, clustering is still the first choice for the analysis of 16S rRNA sequences, and

the low computational cost is one of the reasons for this. Clustering and taxonomic

assignment as performed on 349,639 sequences in the previous section using QIIME,

took ∼10 minutes using a single core and 4GB of memory. Alignment and import

to MEGAN, on the other hand, took ∼2:30 hours, required 32 cores and ∼60GB of

memory. However, our approach in which we dereplicate sequences before alignment

and rereplicate alignments after computation, lowered the runtime to ∼6 minutes at

32 cores and reduced the main memory requirements to ∼40GB. We believe that both,

runtime and memory footprint can further be decreased by trimming the full-length 16S

rRNA database sequences to the area in which the query sequences are located using

V-Xtractor [Hartmann et al., 2010].

Nonetheless, the performance of clustering is greatly influenced by the complexity

of the input samples. If sequences have varying length or are biased by undetected

sequencing errors, the runtime of clustering is significantly increased whereas the runtime

of the alignment approach is relatively linear.

In other words, typical 16S rRNA analysis pipelines, such as mothur or QIIME,

are faster and less expensive approaches, however they only offer overall abundance

information among the taxa, not more, not less. On the other hand MEGAN offers a

large variety of tools, for instance, users can inspect alignments with the aim of verifying

taxonomic assignments, and with these “extra” tip the balance in favor of more accurate

results. For this reason, and considering that the computation has to be performed once

per study, computational overhead becomes somewhat less important.

7.4 Conclusion

While studying biodiversity, the key to a successful analysis and the starting point for

downstream analysis lies in the correct taxonomic assignment of input sequences. In this

chapter we introduced a new analysis approach for 16S rRNA sequences which proved

to be capable of assigning more than 99% of all input sequences to the correct genus. To

do so, we established a pipeline using MALT as aligner and Silva as reference database.

For taxonomic placement we implemented a new algorithm, namely Majority Vote, and
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added its functionality to MEGAN. We also showed that MEGAN is capable of creating

β-Diversity plots similar to those generated by QIIME, when applying our approach.

Furthermore, we believe that by enabling MEGAN to deal with 16S rRNA data, less

tech-savvy users will profit from the user-friendly graphical interface which MEGAN

offers, when compared to typical command-line based 16S rRNA pipelines.
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In this part we will show how MEGANServer, as introduced in Chapter 5, in com-

bination with MEGAN and the 16S rRNA analysis pipeline, introduced in the previous

chapter, can be combined in such way that it can serve as an accurate and user-friendly

16S rRNA analysis platform.



Chapter 8

Accurate Analysis of a

Large-Scale 16S rRNA Project

Using MEGAN and

MEGANServer

8.1 Introduction

In the previous chapter, we introduced a novel taxonomy-dependent approach for 16S

rRNA analysis for which we showed that alignment in combination with analysis in

MEGAN can lead to an accurate and performant taxonomic placement, provided it

is applied on 454-sequencing data. With MEGAN, we can open and extract relevant

information on the datasets either in isolation to derive a taxonomic profile, for example,

or compare a set of samples by measuring their β-Diversity. Contrary to the typical 16S

rRNA analysis pipeline, MEGAN offers a user-friendly graphical interface which enables

also less tech-savvy users to browse and analyze data on their own.

A feature MEGAN cannot offer but is essential to all 16S rRNA analysis tools is

the capability to utilize metadata to split, merge and/or search for datasets. This is

due to the fact that MEGAN treats and maintains datasets individually - datasets are

aligned and imported to MEGAN separately. That is why, comparative analysis of a

larger number of samples in MEGAN require additional efforts to guarantee that, for

example, all datasets underwent the exact same treatment in terms of alignment and

86
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import to MEGAN. The standardized storage, maintenance and access to datasets is,

on the other hand, one of the benefits when using MEGANServer. Taking into account

that MEGANServer is also capable of using metadata, in a way essential to 16S rRNA

analysis, we can claim that, with MEGANServer as a data backend, MEGAN’s function

pool is also suited to perform large-scale 16S rRNA analysis.

In this chapter, we present our analysis pipeline, which combines findings from previ-

ous chapters. First, sequencing data is pre-processed as discussed in Chapter 6. Secondly,

we derive the taxonomic content for each sample with the method developed in Chapter

7. Finally, we upload the resulting files to MEGANServer (see Chapter 5) and provide

access through MEGAN, in order to review their content. For demonstration, we apply

the pipeline on 16S rRNA sequencing data which stems from a study (see [Gronbach

et al., 2014]) that investigated endotoxicity of certain mouse gut flora1.

8.2 Study Background

This study investigates how the gut flora, specific bacteria and/or biological molecules

influence the development of colitis in mice. For this purpose, germ-free C57BL/6J-

Rag1tm1Mom (Rag1-/-) mice were colonized with two types of complex intestinal micro-

biota. Mice with the Endohi (high endotoxicity) microbiota developed colitis shortly

after transfer of CD4+CD62L+ T cells, whereas mice colonized with the Endolo (low

endotoxicity) microbiota maintained homeostasis. The fundamental difference between

both microbiota could be identified as a low proportion of Bacteroidetes in combination

with a high proportion of Enterobacteriaceae in Endohi and the exact opposite propor-

tions for the Endolo microbiota.

Assuming that the increased endotoxicity was caused by the lipopolysaccharide

(LPS) of Enterobacteriaceae, mice of both microbiota were administered Escherichia

coli JM83 (high endotoxic LPS as in Enterobacteriaceae, E.coliWT ) and Escherichia

coli JM83 + htrBPG (mutated, low endotoxic LPS, similar to that of Bacteroidetes,

E.coliMUT ). Regardless of the initial gut flora, treatment with E.coliWT caused colitis,

whereas mice receiving E.coliMUT preserved homeostasis. This experiment was repeated,

omitting the E.coli and directly administering either highly endotoxic LPS (LPShi) or

low endotoxic LPS (LPSlo), leading to the same results as the previous one. In a fourth

1We will not provide an in-depth analysis of the data. This is the task of another PhD
thesis. We will give a brief introduction on the data, how we analyzed the data and how to use
MEGANServer in combination with MEGAN to retrieve results.
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experiment, Bacteroides vulgatus, a bacterium that is known to protect against E.coli -

induced colitis [Waidmann et al., 2003], was administered at different time points, once

before colitis development and once during early stages of disease, to test whether the

progression of the disease is reversible.

8.3 Experimental Setup & Sequencing Data

Mice of both microbiota underwent treatment as described in the previous section and

as depicted in Figure 8.1. Treatment expected to lead to homeostasis is colored in green.

The color red indicates that these mice are expected to develop colitis. For each of these

treatments, fecal samples of mice with either Endolo or Endohi microbiota were collected

at four time points, week -1, 0, 3 and 6.

Altogether, 237 samples from 75 mice were collected and sequenced with a 454 GS-

FLX+ sequencer at Eurofins.

8.4 16S rRNA Analysis Pipeline

Six sequencing runs resulted in 2 million sequences with an average sequencing length

of 511bp. This includes 28bp for primer and barcode at the front, and the low-quality

tail at the end of the sequence.

Pre-Processing Pre-processing, as described in Chapter 6, emitted 1.3 million high

quality sequences with an average length of 281bp. Sequences that have been removed

were for the most part either too short (shorter than 200bp after quality control) or were

identified as chimeric sequences (∼20%).

The smallest sample contains 869, the largest sample 18,490 sequences, at an aver-

age of 5,394 sequences per sample. The standard deviation is σ=3,362. The shortest

sequence is 253bp, the longest sequence is 293bp with a standard deviation of σ=9.

Taxonomic Assignment For taxonomic assignment we applied the pipeline that

we introduced in Chapter 7. Before alignment we merged all input files and de-replicated

their sequences. With that step, we reduced the number of sequences to be aligned from

1.3 million to 0.2 million. Sequences were aligned using MALT in semi-global mode at

a percent identity of 95. The number of matches was restricted to 100. The alignment

required 115 minutes using 32 cores with 47GB of main memory. Subsequently, we
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Week -1 Week 0 Week 3 Week 6

(1)

Antibiotics T-Cells

Antibiotics

(2)

Antibiotics E.coliMut

(3)

Antibiotics E.coliWT

(4)

Antibiotics LPSlo

(5)

Antibiotics LPShi

(6)

Antibiotics B.vulgatus

(7)

Antibiotics B.vulgatus

Figure 8.1: Experimental Setup: Mice of both microbiota are treated with antibiotics
at week -1. At week 0, T-Cells are administered. Treatment with bacteria or LPS is
performed at either day -3 or week 3. The color indicates the expected health state
at week 6. The two colored bar at (1) indicates that the health status depends on the
microbiota.

re-replicated and demultiplexed the resulting alignment file. Import to MEGAN of 1.3

million sequences and 85.5 million matches required 86 minutes. The Majority Vote

algorithm applied at 90% confidence, mapped 95% and 98.5% of reads to genus and to

family level, respectively. Of the 1.3 million reads, 16,500 (1.26%) could not be aligned

or lead to only low quality matches. The resulting 237 MEGAN files require 39GB of

disk space.

Upload to MEGANServer The 237 MEGAN files were uploaded to a MEGAN-

Server instance. Upload of all files required 7 hours and consumed 32.2GB disk space.

If the files are uploaded in summary format, the runtime is reduced to 30 seconds and

only 3MB of disk space is required.
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Each dataset was enriched with 32 types of metadata following the recommenda-

tions of the Genomic Standards Consortium. The fields are: SampleID, BarcodeSe-

quence, LinkerPrimerSequence, MouseNumber, MouseName, SamplingTime, EndOfEx-

periment, PoolPrepProtokol, PoolPrep, SequencingDate, ExperimentNumber, AnimalFa-

cility, Supplier, Gender, Spleen, MLN, cLP, Feces, Comment, HistoScore, Healthstate-

Organ, HealthStateHisto, HealthStateEnd, ExpectedHealthEnd, Treatment, Antibiotics,

Birthday, DateTcellTransfer, Parents, CellCountMLK, CellCountcLP, cLPCD3CD4.

8.5 MEGANServer for 16S rRNA analysis

Once the upload is completed, the taxonomical content and the differences among sam-

ples can be accessed. We will explain how the functionality of MEGANServer, in combi-

nation with the analysis capabilities of MEGAN, can help to assess underlying patterns.

Compositional Differences between Endohi and Endolo Assuming that the

taxonomic composition in the intestinal microbiota plays a major role in disease devel-

opment, a comparison of samples collected at week -1 and originating from Endohi mi-

crobiota with those which stem from Endolo microbiota should reveal differences. Since

sampling at week -1 was not performed thoroughly, we compare samples from week 0 by

estimating their β-Diversity. To select datasets, we used the metadata analyzer with the

boolean expression SamplingTime = ‘week0’ and opened resulting datasets in a com-

parison file. The β-Diversity, applying the Bray Curtis dissimilarity (see Figure 8.2a),

detects compositional differences between Endohi and Endolo. Whereas the samples that

stem from mice with an Endolo microbiota seem to cluster very well, the samples from

mice with an Endohi microbiota show a scattered pattern. That could be due to a faster

response to the different treatments at day -3.

The clear separation among microbiota using Unifrac as a β-Diversity metric (see

Figure 8.2b) suggests that there are indeed taxonomical differences between microbiota.

Since a naive comparison of all 35 samples (14 from Endohi , 24 from Endolo) would lead

to an imprecise result due to a bias introduced by sub-sampling among all 35 samples,

for example, we need to merge samples before comparison. Thereby, we extend the

functionality from the comparison of samples to the comparison of scenarios. To do so,

we merge all samples that stem from Endolo mice at week 0 in one dataset. The second

dataset incorporates all samples that stem from Endohi mice at week 0. Taxonomic

distribution of these two datasets at phylum level are shown in Figure 8.2c.
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Endolo

Endohi

(a)

Endolo

Endohi

(b)

No hits

Actinobacteria

RF9

Verrucomicrobia

Firmicutes

Chloroplast
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Bacteroidetes

Proteobacteria

Bacteria

Root

(c)

Figure 8.2: (a) and (b): β-Diversity Plots of Endohi and Endolo (regardless the treat-
ment) microbiota at week 0. In (c) the same data is grouped by microbiota and depicted
as taxonomic distribution at phylum level (log-based scale).

Development of Taxonomic Distribution after E.coliMUT Treatment Re-

gardless of the initial microbiota, the treatment with E.coliMUT resulted in mucosal

homeostasis, (see Figure 8.1 (2)). That leads to the question of if and how the treat-

ment altered the microbiota during the course of the 6 week experiment period. To

identity changes over a period of time we need to compare samples from both micro-

biota which underwent treatment with E.coliMUT at 3 time points, namely week 0, 3

and 6. The boolean expressions that need to be evaluated are shown in Figure 8.3.

For each of the expressions, the resulting samples are merged and 6 new datasets are

created. The most abundant phyla are shown in Figure 8.4 and lead to the conclusion

that, compared to the Endolo microbiota, the Endohi underwent a larger taxonomical
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shift.

‘AnimalFacility’ = ‘Endohi’ AND ‘SamplingTime’ = ‘week 0’ AND ‘Treatment’ = ‘E.coliMUT ’

‘AnimalFacility’ = ‘Endohi’ AND ‘SamplingTime’ = ‘week 3’ AND ‘Treatment’ = ‘E.coliMUT ’

‘AnimalFacility’ = ‘Endohi’ AND ‘SamplingTime’ = ‘week 6’ AND ‘Treatment’ = ‘E.coliMUT ’

‘AnimalFacility’ = ‘Endolo’ AND ‘SamplingTime’ = ‘week 0’ AND ‘Treatment’ = ‘E.coliMUT ’

‘AnimalFacility’ = ‘Endolo’ AND ‘SamplingTime’ = ‘week 3’ AND ‘Treatment’ = ‘E.coliMUT ’

‘AnimalFacility’ = ‘Endolo’ AND ‘SamplingTime’ = ‘week 6’ AND ‘Treatment’ = ‘E.coliMUT ’

Figure 8.3: Boolean expressions to extract datasets after E.coliMUT treatment at three
sampling times for both microbiota.

Figure 8.4: Development among most abundant phyla in Endohi and Endolo microbiota
after treatment with E.coliMUT .
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8.6 Conclusion

In this chapter we introduced a novel analysis pipeline for 16S rRNA sequencing data.

The pipeline covers the entire analysis process, which begins with raw input sequences

and ends with providing an accurate taxonomic description, visually accessible using

MEGAN.

The pipeline begins with pre-processing raw sequencing data, as described in Chapter

6. In this step erroneous sequences were discarded and/or low quality tails of sequences

were removed. The remaining high quality sequences were used as input for the align-

ment and taxonomic placement using MALT and the Majority Vote algorithm. The

combination of both tools led to a fast and accurate taxonomic placement as described

in Chapter 7. In order to provide enhanced capabilities in terms of comparing and to

effectively use metadata, resulting datasets were uploaded to MEGANServer. Finally,

visual inspection of data was provided using the MEGAN software.
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The capability of next generation sequencers of emitting enormous volumes of data at a

moderate cost has changed the field of metagenomics. While early studies investigated

relatively small samples in isolation, current studies effectively target questions that

require deeper sequencing of a larger number of samples. As a consequence of this

development it becomes increasingly difficult to perform the computational component

of the analysis on a desktop computer. In fact, for that reason, we can observe a change

in how studies are conducted. Bioinformaticians develop analysis tools for large-scale

sequencing data and perform the calculation of alignments, for example, on a specialized

computing environment. Furthermore, they provide resulting data files to medical staff

who then qualitatively analyses the data using MEGAN, to correlate environmental

parameters to changes in taxonomical distributions, for instance. Consequently, due

to the increasing sequencing volumes growing file sizes, qualitative analysis on desktop

computers becomes increasingly difficult. Files simply outgrow hard disks of normal

home computers. Thus a different approach is needed to organize data files. For that

reason, we developed MEGANServer. MEGANServer allows bioinformaticians to retain

data files on a server with sufficient resources. Furthermore, we extended MEGAN

to communicate with MEGANServer and by that enable researchers to perform their

analysis on a home computer regardless the actual data size. Moreover, to overcome

the complexity introduced by the growing number of samples, selection of datasets of

interest is automated by metadata-based grouping. In addition, following the analysis

strategy of the 16S rRNA studies, datasets can be opened applying different strategies,

for instance as merged data, in order to provide a deeper insight on taxonomic and/or

functional distribution.

In fact, the fields of metagenomics and microbiome studies are converging, with

respect to the 16S rRNA based analysis. They ask similar questions, rely on similar

analysis methods and base their findings on the same visualizations. Therefore, we

extended MEGAN in such a way that it can now also deal with sequences that stem

from a targeted sequencing approach. More precisely, we have developed a pipeline

that covers the entire workflow, starting at pre-processing and, in a final step, allowing

qualitative analysis using MEGAN. For that, we took advantage of a novel aligner,

namely MALT, that in combination with a placement algorithm, namely the Majority

Vote LCA, introduced recently in MEGAN, is capable of assigning more than 99% of

reads to the correct genus and lowers the rate of false positives to a value close to

0%. We believe that, by the additional utilization of the different data access strategies

implemented in MEGANServer, MEGAN is now fully capable of serving as a powerful,
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yet user-friendly analysis tool for 16S rRNA sequencing data.
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Appendix A

Contributions

MEGANServer

Hans-Joachim Ruscheweyh (HJR) and Daniel Huson (DH) contributed to this project.

HJR designed and implemented MEGANServer, the ServerBrowser and the MSUploader.

DH defined methods for the global data access interface (IConnector) and updated

MEGAN.

MEGAN for Targeted Sequencing

Hans-Joachim Ruscheweyh (HJR), Daniel Huson (DH) and Barbara Stecher (BS) con-

tributed to this project. Sequencing data and the reference database were generated

by BS. DH implemented the aligner MALT. MEGAN was implemented by DH with

additions from HJR. HJR, DH and BS conceived the study. HJR conducted the anal-

ysis, implemented the Majority Vote algorithm and wrote scripts for analysis and data

transformation.

MEGANServer for Accumulated Targeted Sequencing

Hans-Joachim Ruscheweyh (HJR), Daniel Huson (DH), Julia-Stefanie Frick (JSF) and

Isabell Flade (IF) contributed to this project. JSF and IF generated sequencing data

and conceived the study. HJR and DH conducted the analysis.
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C.1.2 Taxonomic Assignment of Full-Length Reference Se-

quences

Taxon Confidence

ASF361 Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 1.0
ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 1.0
ASF519 Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides 1.0
Isol46 Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Erysipelotrichaceae;IncertaeSedis 1.0
Isol48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides 1.0
KB1 Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus 1.0
YL2 Actinobacteria;Actinobacteria;Actinobacteridae;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium 1.0
YL31 Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Flavonifractor 1.0
YL32 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Clostridium XlVa 1.0
YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia 1.0
YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Sutterellaceae;Parasutterella 1.0
YL58 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia 1.0

Table C.1: Taxonomic assignment of full length reference sequences using the rdp clas-
sifier.

Taxon MALT USEARCH

ASF361 Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 1 1

ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 2 2

ASF519 NO HIT 0 0

ISOL46 NO HIT 0 0

ISOL48 NO HIT 0 0

KB1 NO HIT 0 0

YL2 NO HIT 0 0

YL31 NO HIT 0 0

YL32 NO HIT 0 0

YL44 NO HIT 0 0

YL45 NO HIT 0 0

YL58 NO HIT 0 0

Table C.2: Number of database matches at genus level for full-length reference sequences
against the Silva NR99 115 database using 100% identity.
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Taxon MALT USEARCH

ASF361 Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 44 42

ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 5 5

ASF519 Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides 11 9

ISOL46 Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;IncertaeSedis 6 6

ISOL48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides 8 8

KB1 Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus 107 108

YL2 Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium 1 1

YL31 Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Flavonifractor 9 9

YL32 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 0 50 50

YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia 43 42

YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Parasutterella 3 4

YL58 NO HIT 0 0

Table C.3: Number of database matches at genus level for full-length reference sequences
against the Silva NR99 115 database using 99% identity.

Taxon MALT USEARCH

ASF361 Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 73 80

ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 6 6

ASF519 Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides 21 21

ISOL46 Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;IncertaeSedis 41 37

ISOL48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides 11 12

KB1 Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus 160 161

YL2 Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium 7 7

YL31 Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Flavonifractor 39 36

YL32 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 89 90

YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia 167 165

YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Parasutterella 4 5

YL58 NO HIT 0 0

Table C.4: Number of database matches at genus level for full-length reference sequences
against the Silva NR99 115 database using 98% identity.
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Taxon MALT USEARCH

ASF361 Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 95 117

ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 6 7

ASF519 Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides 31 31

ISOL46 Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;IncertaeSedis 68 80

ISOL48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides 25 26

KB1 Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus 195 204

YL2 Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium 49 33

YL31 Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Flavonifractor 49 51

YL32 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 263 264

YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia 245 266

YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Parasutterella 6 6

YL58 NO HIT 0 0

Table C.5: Number of database matches at genus level for full-length reference sequences
against the Silva NR99 115 database using 97% identity.

Taxon MALT USEARCH

ASF361 Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 110 138

ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 10 8

ASF519 Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides 36 36

ISOL46 Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;IncertaeSedis 75 98

ISOL48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides 187 183

KB1

Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus 347 313

Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 1 1

Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Melissococcus 1 0

Firmicutes;Bacilli;Bacillales;Bacillaceae;Bacillus 1 1

Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Carnobacterium 1 2

YL2 Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium 53 54

YL31
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Flavonifractor 58 61

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Pseudoflavonifractor 7 5

YL32
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 352 345

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;uncultured 2 1

YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia 264 196

YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Parasutterella 6 6

YL58 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia 0 1

Table C.6: Number of database matches at genus level for full-length reference sequences
against the Silva NR99 115 database using 96% identity.
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Taxon

ASF361 Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus

ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum

ASF519 Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides

Isol46 Firmicutes;Erysipelotrichi;Erysipelotrichales;Erysipelotrichaceae;Eubacterium

Isol48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides

KB1 Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus

YL2 Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium

YL31 Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Oscillospira

YL32 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae

YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia

YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Sutterella

YL58 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia

Table C.7: Taxonomic assignment of full length reference sequences using QIIME.
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C.1.3 Taxonomic Assignment of Trimmed Reference Se-

quences

Taxon Confidence

ASF361 Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 0.98
ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 1.00
ASF519 Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides 1.00
Isol46 Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Erysipelotrichaceae;IncertaeSedis 1.00
Isol48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides 1.00
KB1 Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus 1.00
YL2 Actinobacteria;Actinobacteria;Actinobacteridae;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium 1.00
YL31 Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Flavonifractor 1.00
YL32 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Clostridium XlVa 1.00
YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia 1.00
YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Sutterellaceae;Parasutterella 0.91
YL58 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia 1.00

Table C.8: Taxonomic assignment of shortened reference sequences using the rdp classi-
fier.

Taxon MALT USEARCH

ASF361 Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 78 78
ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 6 6
ASF519 Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides 15 15
ISOL46 Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;IncertaeSedis 40 40
ISOL48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides 11 11

KB1

Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus 131 131
Firmicutes;Bacilli;Bacillales;Planococcaceae;Planomicrobium 3 3
Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 1 1
Firmicutes;Bacilli;Bacillales;Bacillaceae;Bacillus 2 2

YL2 Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium 5 5

YL31
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Flavonifractor 30 30
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;IncertaeSedis 1 1

YL31

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 211 212
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;uncultured 2 4
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia 1 1
Bacteroidetes;Bacteroidia;Bacteroidales;S24-7 2 1
Chloroflexi;Anaerolineae;Anaerolineales;Anaerolineaceae;uncultured 1 1

YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia 113 113
YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Parasutterella 1 2
YL58 NO HIT 0 0

Table C.9: Number of database matches at genus level for shortened reference sequences
against the Silva NR99 115 database using 100% identity.
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Taxon MALT USEARCH

ASF361
Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 144 143
Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus 2 2
Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Allobaculum 1 1

ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 6 6

ASF519
Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides 26 25
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 1 1

ISOL46 Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;IncertaeSedis 74 70
ISOL48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides 13 13

KB1

Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus 165 162
Firmicutes;Bacilli;Bacillales;Planococcaceae;Planomicrobium 4 4
Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 3 2
Firmicutes;Clostridia;Clostridiales;Clostridiaceae;Clostridium 1 1
Firmicutes;Bacilli;Bacillales;Bacillaceae;Bacillus 2 3

YL2 Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium 49 8

YL31
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Flavonifractor 52 58
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;uncultured 2 1
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;IncertaeSedis 2 1

YL32

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 312 316
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;uncultured 5 3
Bacteroidetes;Bacteroidia;Bacteroidales;S24-7 3 3
Chloroflexi;Anaerolineae;Anaerolineales;Anaerolineaceae;uncultured 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Roseburia 3 2

YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia 279 277
YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Parasutterella 6 6

YL58

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia 287 287
Firmicutes;Clostridia;Clostridiales;Christensenellaceae;uncultured 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Roseburia 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Dorea 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 6 6
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;IncertaeSedis 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Pseudobutyrivibrio 8 8
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcus 1 1
Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae;IncertaeSedis 1 1
Bacteroidetes;Bacteroidia;Bacteroidales;S24-7 1 1

Table C.10: Number of database matches at genus level for shortened reference sequences
against the Silva NR99 115 database using 99% identity.
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Taxon MALT USEARCH

ASF361
Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus 160 158
Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus 2 2
Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Allobaculum 1 1

ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum 7 7

ASF519
Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides 28 28
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 1 1

ISOL46 Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;IncertaeSedis 86 81
ISOL48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides 13 13

KB1

Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus 199 170
Firmicutes;Bacilli;Bacillales;Planococcaceae;Planomicrobium 5 5
Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 3 3
Firmicutes;Clostridia;Clostridiales;Clostridiaceae;Clostridium 1 2
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Epulopiscium 1 1
Firmicutes;Bacilli;Bacillales;Bacillaceae;Bacillus 2 2

YL2 Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium 64 10

YL31
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Flavonifractor 54 54
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;IncertaeSedis 1 1
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;uncultured 7 4

YL32

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 374 478
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;uncultured 79 108
Bacteroidetes;Bacteroidia;Bacteroidales;S24-7 3 3
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia 1 3
Chloroflexi;Anaerolineae;Anaerolineales;Anaerolineaceae;uncultured 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Anaerosporobacter 1 1
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcus 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Pseudobutyrivibrio 1 2
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Roseburia 2 2

YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia 354 345
YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Parasutterella 6 6

YL58

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia 352 1,536
Firmicutes;Clostridia;Clostridiales;Christensenellaceae;uncultured 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Roseburia 1 10
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Dorea 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;IncertaeSedis 11 52
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Pseudobutyrivibrio 9 27
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;IncertaeSedis 1 1
Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae;IncertaeSedis 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;uncultured 20 47
Bacteroidetes;Bacteroidia;Bacteroidales;S24-7 1 1
Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Coprococcus; 0 1
Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Collinsella 0 2
Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcus 1 5

Table C.11: Number of database matches at genus level for shortened reference sequences
against the Silva NR99 115 database using 98% identity.
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Taxon

ASF361 Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus
ASF457 Deferribacteres;Deferribacteres;Deferribacterales;Deferribacteraceae;Mucispirillum
ASF519 Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Parabacteroides
Isol46 Firmicutes;Erysipelotrichi;Erysipelotrichales;Erysipelotrichaceae;Eubacterium
Isol48 Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides
KB1 Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Other
YL2 Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium
YL31 Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Oscillospira
Yl32 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae
YL44 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia
YL45 Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Sutterella
YL58 Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia

Table C.12: Taxonomic assignment of shortened reference sequences using QIIME.
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C.1.4 Alignment of 454 Reads against Reference Database

% Identity Assigned % Assigned Not Assigned % Not Assigned

100 648 0.19 348,991 99.81
99 336,930 96.37 12,709 3.63
98 345,905 98.93 3,734 1.07
97 346,628 99.14 3,011 0.86
96 346,740 99.17 2,899 0.83
95 346,818 99.19 2,821 0.81
94 347,101 99.27 2,538 0.73
93 347,130 99.28 2,509 0.72
92 347,144 99.29 2,495 0.71
91 347,164 99.29 2,475 0.71
90 347,199 99.30 2,440 0.70

Table C.13: Percentage of reads that successfully align at certain percent identity using
MALT in semiglobal mode with a database created from the twelve input sequences.
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Figure C.2: Percent of reads assigned to reference sequences at different percent identities
using MALT and usearch
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