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Abstract

In recent years, metabolomics has become a powerful approach to systematically study al-

terations in metabolism induced by disease, nutrition, and environmental changes. Liquid

chromatography-mass spectrometry (LC-MS) has been established as the main analytical plat-

form since it is sensitive enough to capture metabolomes’ high complexity and chemical diversity

and allows for processing biological samples in a high-throughput manner. However, rapid

evolvement of mass spectrometry (MS) technology resulted in enormous data volumes and

complexity and with that gave rise to a computational bottleneck. Computational metabolomics

strives to develop efficient algorithms and flexible workflows to meet the data analysis needs

of high-throughput metabolomics experiments. In this work, we addressed the three key prob-

lems of computational metabolomics: quantification of metabolites, their identification, and

statistical methods to reveal discriminatory metabolic patterns and novel biomarkers. Our main

design goal was to develop robust and comprehensive computational workflows to integrate

solutions to these key problems consistently instead of addressing them separately.

We developed a novel algorithm for the robust detection and quantification of metabolite

features in LC-MS data. It extracts chromatographic profiles with high sensitivity and provides

deisotoping by a novel support vector machine (SVM)-based classifier. Our algorithm was

validated both on real-world and simulated LC-MS benchmark datasets and showed an excellent

performance when compared to existing solutions. In order to identify unknown features, we

devised a comprehensive and integrative strategy that exploits as many complementary feature

characteristics as possible (e.g., relative isotopic abundance (RIA) and retention time (rt)).

These were then combined as filter criteria to yield more reliable metabolite identifications (IDs).

To this end, we implemented an accurate mass search which efficiently facilitates any number

of queries against a metabolite database. It covers a wide range of potential adducts by default

but allows for customization. We augmented it by orthogonal RIA and rt filters to considerably

reduce the number of false positive IDs. The utility of rt prediction models has been shown
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in a few stray instances, however, they were usually not built and integrated routinely in ID

pipelines as in our case. Furthermore, we provided an efficient means of matching tandem

mass spectrometry (MS/MS) spectra against a precompiled fragment database. Based on an

LC-MS/MS validation dataset, we achieved excellent ID accuracy when our accurate mass

search with orthogonal filters and spectral matching algorithms were combined.

The ultimate goal of computational metabolomics is to extract novel biological knowledge

from complex LC-MS-based metabolomics data. To this end, we designed comprehensive

analysis workflows for untargeted metabolomics data that build on robust statistical methods.

We showed their utility by answering two biologically relevant questions. The first question

involved the role of the rs7903146 polymorphism located in the transcription factor 7-like 2

(TCF7L2) gene and its impact on type 2 diabetes mellitus (T2DM). We found more than 100

potential biomarkers with some pointing out perturbations in the bile acid and androgenic

steroid biosyntheses, two well-documented complications of T2DM. Our approach outperformed

classical statistical methods such as the partial least squares discriminant analysis (PLS-DA)

which could not detect any significant differences between control and risk allele groups. The

second question revolved around finding characteristic kinetic patterns and corresponding

metabolic pathways that were perturbed during a two-hour single bout of exercise and a follow-

up three-hour recovery stage. We adapted a known clustering algorithm to condense thousands

of kinetic profiles that comprise only few and non-equidistant time points, a common scenario

in metabolomics time-course experiments. Our novel clustering approach yielded 25 distinct

clusters that were characteristic for either exercise or recovery stage. In a pathway enrichment

analysis, the two most prominent clusters suggested the involvement of amino acid, free fatty

acid (FFA), and catecholamine metabolism. Perturbations of these metabolic pathways were

reported before in the context of physical exercise and recovery. Both discovery workflows

produced biologically sound results which enabled us to construct more specific hypotheses.

Driven by these, we now can validate our results with targeted follow-up experiments while

avoiding redundant analyses, reducing time and costs.
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Zusammenfassung

In jüngster Vergangenheit hat sich die Metabolomik zu einer leistungsfähigen Methode entwi-

ckelt, mittels derer sich systematisch Veränderungen des Stoffwechsels erfassen lassen, welche

durch Krankheit, Ernährung oder Umwelteinflüsse herbeigeführt werden. Die Massenspek-

trometrie mit Flüssigkeitschromatographie-Kopplung hat sich dabei als wichtigstes analyti-

sches Instrument etabliert, da sie sowohl die hohe Komplexität und chemische Vielfalt eines

Metaboloms erfassen kann, als auch die Messung biologischer Proben im Hochdurchsatz erlaubt.

Die rasante Entwicklung in der Massenspektrometrie führte jedoch zu enormen Datenmen-

gen und erhöhter Datenkomplexität, sodass die rechnerische Auswertung schnell zu einem

Engpass führte. Das Gebiet der "Computational Metabolomics" zielt auf die Entwicklung ef-

fizienter Algorithmen und flexibler Workflows ab, um den Anforderungen an die Analyse von im

Hochdurchsatz gemessenen Metabolomikdaten gerecht zu werden. Im Rahmen dieser Arbeit

haben wir uns mit den drei Kernproblemen dieser Disziplin auseinandergesetzt. Diese umfassen

die Quantifizierung von Metaboliten, deren Identifizierung sowie statistische Methoden zur

Erkennung charakteristischer Metabolitenmuster und neuer Biomarker. Unser Hauptaugen-

merk lag dabei auf dem Design robuster und umfassender Workflows, wobei die genannten

Kernfragen nicht isoliert, sondern im Zusammenhang betrachtet wurden.

Wir entwickelten einen neuen Algorithmus, welcher eine robuste Detektierung und Quan-

tifizierung von Metabolitensignalen (Features) in LC-MS-Daten ermöglicht. Dieser extrahiert

chromatographische Profile mit hoher Sensitivität und sieht eine Auflösung von Isotopen-

mustern mittels eines neu entwickelten SVM-Modells vor. Unser Algorithmus wurde sowohl auf

echten als auch simulierten LC-MS-Benchmarkdatensätzen validiert und zeigte im Vergleich

zu bestehenden Lösungen hervorragende Ergebnisse. Zur Identifizierung von unbekannten

Features entwarfen wir eine umfassende, integrative Strategie, welche sich möglichst viele

Eigenschaften eines Features (z.B. Isotopenmuster, Retentionszeit) zu Nutze macht. Diese

wurden dann zu Filterkriterien kombiniert, um eine verlässlichere Identifikation zu erzielen. Zu
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diesem Zweck entwickelten wir ein Softwaretool, mit dem eine hohe Anzahl an Features mittels

ihrer Masse effizient gegen eine Metabolitendatenbank abfragt werden kann. Standardmäßig

deckt es eine breite Palette an potentiellen Addukten ab, kann aber auch frei konfiguriert wer-

den. Wir erweiterten unser Suchwerkzeug um einen Isotopen- und Retentionszeitfilter, mit dem

Ziel, die Zahl der falsch positiven Treffer beträchtlich zu reduzieren. Der Nutzen von Modellen

zur Vorhersage der Retentionszeit wurde zwar vereinzelt nachgewiesen, routinemäßig erstellt

und in ID-Pipelines integriert — wie in unserem Fall — wurden sie jedoch nicht. Des Weiteren

implementierten wir eine effiziente Methode zum Abgleich von MS/MS-Spektren gegen eine

eigens zugeschnittene Spektrendatenbank. Unsere Methoden wurden auf Grundlage eines

LC-MS/MS-Datensatzes validiert und erzielten in ihrem Zusammenspiel eine hervorragende

Genauigkeit.

Das übergeordnete Ziel der "Computational Metabolomics" ist es, aus komplexen LC-MS-

basierten Metabolomikdaten neue biologische Erkenntnisse zu gewinnen. Hierfür entwarfen

wir umfassende Workflows zur Analyse von globalen Metabolomikdaten, die auf robusten

statistischen Methoden aufbauten. Ihren Nutzen konnten wir zeigen, indem wir zwei biologisch

relevante Fragestellungen beantworteten. Die erste zielte auf die Rolle des rs7903146 Polymor-

phismus im TCF7L2-Gen und dessen Auswirkung auf T2DM ab. Wir entdeckten mehr als 100

potentielle Biomarker, von denen einige auf für T2DM typische Störungen in der Biosynthese von

Gallensäuren und Androgenen hinweisen. Unser Ansatz übertraf klassische statistische Metho-

den wie etwa PLS-DA, welche keinerlei signifikante Unterschiede zwischen den Kontroll- und

Risikoallelgruppen aufzeigen konnte. Die zweite Fragestellung betraf das Auffinden von charak-

teristischen Mustern und entsprechenden Stoffwechselwegen, die während einer zweistündigen

Belastungsphase und einer darauffolgenden dreistündigen Ruhephase beeinflusst wurden. Wir

adaptierten einen bekannten Clusteralgorithmus, um eine Vielzahl von solchen Zeitreihen zu

komprimieren, die aus nur wenigen und nicht gleichabständigen Zeitpunkten bestehen — ein

häufig anzutreffender Fall bei Zeitreihenanalysen auf Metabolomikdaten. Unser neuartiger

Clustering-Ansatz brachte 25 unterschiedliche Cluster hervor, die jeweils für die Belastungs-

oder Erholungsphase repräsentativ waren. Die zwei auffälligsten Cluster legten im Rahmen

einer "Pathway Enrichment" Analyse nahe, dass Aminosäure-, Fettsäure- und Katecholamin-

Stoffwechselwege involviert waren. Veränderungen innerhalb dieser Stoffwechselwege im

Zusammenhang mit körperlicher Betätigung und Erholung wurden in der Forschung bereits

diskutiert. Beide Screening-Workflows führten zu biologisch aussagekräftigen Ergebnissen,

mit Hilfe derer wir spezifischere Hypothesen aufstellen konnten. Dank dieser können wir

nun unsere Ergebnisse zielgerichtet mit weiterführenden Experimenten validieren, während

redundante Analysen vermieden und somit zeitliche und finanzielle Ressourcen eingespart

werden können.

VI



Contents

1 Introduction 1

2 Background 9

2.1 Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Liquid Chromatography Coupled to Mass Spectrometry . . . . . . . . . . . 11

2.1.2 Targeted versus Untargeted Metabolomics . . . . . . . . . . . . . . . . . . . 15

2.2 Computational Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Statistical Methods in Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Data Pretreatment Prior to the Statistical Analysis . . . . . . . . . . . . . . 27

2.3.2 Biomarker Detection with Rank Products . . . . . . . . . . . . . . . . . . . . 28

3 Automated Label-Free Quanti�cation of Metabolites from LC-MS Data 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Mass Trace Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Feature Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Quantification Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Simulated Plant Metabolites Dataset . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Quantification Linearity and Reproducibility . . . . . . . . . . . . . . . . . . 47

3.4.2 Recall, Precision, and Robustness of the Algorithm . . . . . . . . . . . . . . 50

3.4.3 Comparison to Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.4 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

VII



Contents

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Metabolite Feature Identi�cation 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 RPLC-MS/MS Validation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Accurate Mass Search with Isotope Ratios Filtering . . . . . . . . . . . . . . 58

4.2.3 Spectral Search in Fragment Spectra Databases . . . . . . . . . . . . . . . . 61

4.2.4 Exploiting the AMS and MSM Tools in a Combined Approach . . . . . . . 64

4.2.5 Prediction of Metabolite Retention Times on RPLC-MS Columns . . . . . . 66

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Individual Performance of AMS . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Individual Performance of MSM . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.3 Validation of the Combined Metabolite ID Approach . . . . . . . . . . . . . 72

4.3.4 Retention Time Prediction Models . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Analysis of Large-Scale Time-Resolved Metabolomics Data 77

5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Ethic Statement, Subjects, and Study Design . . . . . . . . . . . . . . . . . . 79

5.1.2 Metabolite Signal Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.3 Metabolite Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.4 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.5 Pathway Enrichment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.6 UPLC-qTOF-MS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Untargeted Metabolomics Analysis for Metabolic Diseases 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2 Bioinformatics Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.3 Untargeted Metabolomics Analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.4 Clinical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Conclusion 97

A Supplementary Material 101

A.1 File Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1.1 File Listing of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VIII



Contents

A.1.2 File Listing of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.1.3 File Listing of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1.4 File Listing of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B Curriculum Vitae 141

References 145

IX





List of Figures

1.1 The omics cascade of systems biology . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Central problems in computational metabolomics . . . . . . . . . . . . . . . . . . . 4

2.1 The electrospray ionization (ESI) method . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Schematics of Thermo Fisher Scientific’s Q Exactive Orbitrap platform . . . . . . 15

2.3 General computational quantification workflow . . . . . . . . . . . . . . . . . . . . 19

2.4 Outline of a typical metabolite ID workflow . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Comparison of cis-7- and cis-9-hexadecenoate with respect to MS/MS fragmentation 25

2.6 Consensus matrix layout prior to the statistical analysis . . . . . . . . . . . . . . . . 29

3.1 General procedure of feature finding . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Separation of chromatographic peaks within the same mass trace . . . . . . . . . 37

3.3 Characteristics of a metabolite isotope pattern measured in LC-MS . . . . . . . . 38

3.4 Linear regression models approximating m/z spacings within metabolite isotope

patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Relationship between Reserpine and Terfenadine concentrations and respective

feature intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Numbers of reproducible features yielded by our algorithm and XCMS/CAMERA

in the spike-in human plasma dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Intensity variation between features that were matched in at least half of the 33

spike-in human plasma measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Design of the search strategy as implemented by the AMS tool . . . . . . . . . . . 58

4.2 The mapping relation RAMS modeled by the AMS tool . . . . . . . . . . . . . . . . . 60

4.3 General data extraction strategy of the parseMassBank.py script . . . . . . . . 62

4.4 E-value computation based on an exemplary HyperScoreModified distribution . 64

4.5 KNIME workflow for the computation of molecular descriptors . . . . . . . . . . . 67

XI



List of Figures

4.6 KNIME workflow for the training of an rt model and its application . . . . . . . . 67

4.7 Heat map visualization of AMS results . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Impact of the RIA filtering on the number of candidate IDs and the percentage

of annotated features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Retention time models employed as orthogonal filters for putative IDs . . . . . . 73

4.10 Densities of candidate ID numbers per feature before and after rt filtering . . . . 74

5.1 Clusters representative for metabolite perturbations in the exercise and recovery

phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Levels of androsterone/DHT sulfate and androstanediol glucuronide with respect

to gender/group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Retention time models based on the TCF7L2 dataset . . . . . . . . . . . . . . . . . 94

A.1 Relationship between propionyl-L-carnitine-d3 and nialamide concentrations

and respective feature intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Relationship between sulfadimethoxine-d6 and hexadecanoyl-L-carnitine-d3

concentrations and respective feature intensities . . . . . . . . . . . . . . . . . . . . 106

A.3 Relationship between octadecanoyl-L-carnitine-d3 concentrations and feature

intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.4 Feature finding performance with respect to varying degrees of simulated detec-

tor noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.5 Feature finding performance comparison with respect to varying settings of the

mass_error_ppm parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.6 Feature finding performance with respect to varying settings of the chrom_fwhm

parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.7 Snapshot of the INIFileEditor window . . . . . . . . . . . . . . . . . . . . . . . . 110

A.8 UML diagram of the AccurateMassSearchResult class . . . . . . . . . . . . . . 111

A.9 Parsing of pseudo-molecular formulations in the AMS tool . . . . . . . . . . . . . . 112

A.10 Distribution of HMDB compound masses below 1,200 Da . . . . . . . . . . . . . . 112

A.11 Two-dimensional histogram of HMDB compound masses . . . . . . . . . . . . . . . 113

A.12 Distribution of positive adduct types with respect to mass error tolerance |δmAMS|114

A.13 Distribution of negative adduct types with mass error tolerance |δmAMS| ≤ 5ppm114

A.14 Clusters representative for the exercise phase (part 1) . . . . . . . . . . . . . . . . 115

A.15 Clusters representative for the exercise phase (part 2) . . . . . . . . . . . . . . . . 116

A.16 Clusters representative for the recovery phase (part 1) . . . . . . . . . . . . . . . . 117

A.17 Clusters representative for the recovery phase (part 2) . . . . . . . . . . . . . . . . 118

A.18 Profile plots of an up-regulated candidate detected in positive mode . . . . . . . . 119

A.19 Profile plots of a down-regulated candidate detected in positive mode . . . . . . 120

A.20 Profile plots of a down-regulated candidate detected in negative mode . . . . . . 121

A.21 Profile plots of a down-regulated candidate detected in negative mode . . . . . . 122

XII



List of Tables

2.1 The MSI guidelines proposed for metabolite ID . . . . . . . . . . . . . . . . . . . . . 20

3.1 Standard compounds employed in the spike-in experiments . . . . . . . . . . . . . 43

3.2 Performance scores computed on the basis of the simulated plant metabolite

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Overall statistics of AMS results from the validation dataset . . . . . . . . . . . . . 68

5.1 Significantly enriched metabolic pathways in the exercise and recovery stages . 84

A.1 Configuration of detection parameters for the MS measurements conducted in

positive ESI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Parameter configuration of MSSimulator . . . . . . . . . . . . . . . . . . . . . . . . 123

A.3 Feature intensities for spiked-in compounds . . . . . . . . . . . . . . . . . . . . . . . 124

A.4 Structure of the AMS tool’s tabular HMDB mapping file . . . . . . . . . . . . . . . 125

A.5 Example for an mzTab output file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.6 Abridged content of the KNA00121 record from MassBank . . . . . . . . . . . . . . 126

A.7 Validation dataset for our metabolite ID strategies . . . . . . . . . . . . . . . . . . . 127

A.8 Training datasets for the RPLC rt prediction models . . . . . . . . . . . . . . . . . . 131

A.9 Characteristics of the individuals participating in the one-legged knee extensor

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.10 Subject characteristics of our TCF7L2 cohort . . . . . . . . . . . . . . . . . . . . . . 132

A.11 Up-regulated metabolites detected in the TCF7L2 positive mode dataset . . . . . 133

A.12 Putative AMS IDs of up-regulated candidates from positive mode data . . . . . . 134

A.13 Down-regulated metabolites detected in the TCF7L2 positive mode dataset . . . 135

A.14 Putative AMS IDs of down-regulated candidates from positive mode data . . . . 136

A.15 Up-regulated metabolites detected in the TCF7L2 negative mode dataset . . . . . 137

XIII



List of Tables

A.16 Putative AMS IDs of up-regulated candidates from the TCF7L2 negative mode data138

A.17 Down-regulated metabolites detected in the TCF7L2 negative mode dataset . . . 139

A.18 Putative AMS IDs of down-regulated candidates from the TCF7L2 negative mode

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

XIV



Acronyms

2D two-dimensional. 32, 70

3D three-dimensional. 32

AGC automatic gain control. 57

AMS AccurateMassSearch. 6, 48, 55–61, 63–66, 68–70, 72–76, 78, 80, 83, 85, 90, 94,

98–100, 111, 112, 114, 119–122, 125, 127–131, 134, 136, 138, 140

ANOVA analysis of variance. 7, 25

ATP adenosine triphosphate. 1

BMI body mass index. 89, 131, 132

BP blood pressure. 131

CA cholic acid. 95, 131

CDCA chenodeoxycholic acid. 92, 94, 95, 140

CDK chemistry development kit. 67

CE-MS capillary electrophoresis-mass spectrometry. 10, 23, 33

CID collision-induced dissociation. 24, 25

CRP C-reactive protein. 89

CV coefficient of variation. 28, 49, 89

DB database. 6, 20, 24, 58, 65, 71, 72, 76, 99, 100

XV



Acronyms

DCA deoxycholic acid. 92, 140

DDA data-dependent acquisition. 73, 99

DG diglyceride. 138

DHT dihydrotestosterone. 92, 93, 95, 121

DIMS direct infusion mass spectrometry. 10

DNA deoxyribonucleic acid. 1, 2

DP dynamic programming. 20

EDTA ethylenediaminetetraacetic acid. 43, 90

EI electron ionization. 12

ESI electrospray ionization. 12, 22, 31, 32, 44, 75, 76, 82, 90, 91, 100, 123

FC fold change. 26, 28–30

FDR false discovery rate. 25, 30, 89

FFA free fatty acid. IV, 91, 92, 95, 98, 131

FFM FeatureFinderMetabo. 5, 6, 33, 49, 51, 52, 55, 57, 99, 100

FTICR Fourier transform ion cyclotron resonance. 10, 11, 22, 75

FWHM full width at half maximum. 40, 42

GC gas chromatography. 23, 78

GC-MS gas chromatography-mass spectrometry. 10–12, 23

GCA glycocholic acid. 131

GCDCA glycochenodeoxycholic acid. 131

GWA genome-wide association. 88

HCD higher-energy collisional dissociation. 15, 24

HILIC hydrophilic interaction chromatography. 23

HMDB Human Metabolome Database. 10, 23, 41, 48, 55, 58, 59, 69, 75, 80, 82, 85, 91–94,

112, 113, 125, 134

HOMA homeostasis assessment model. 91, 95, 132

HPLC high performance liquid chromatography. 33, 43, 57

XVI



Acronyms

ICR ion cyclotron resonance. 12

ID identification. III, IV, 5, 6, 9, 10, 12, 16, 18, 20–24, 48, 55–58, 61, 63, 65–76, 80–83, 85,

90–96, 98–100, 119–122, 127–131, 133–140

iIGT isolated impaired glucose tolerance. 89

InChI international chemical identifier. 59, 66, 67

KEGG Kyoto Encyclopedia of Genes and Genomes. 85

KNIME Konstanz information miner. 52, 66, 67

LC liquid chromatography. 11, 12, 23, 24, 75, 76, 91

LC-MS liquid chromatography-mass spectrometry. III–VI, 3–8, 10–12, 17, 18, 23, 24, 31–35,

38, 43, 45, 47, 52, 53, 62, 73, 76–79, 85, 90, 93, 97, 98, 100

limma linear models for microarray data. 26

LOD level of detection. 27, 28, 99

LOO leave-one-out. 72

LOWESS locally weighted scatterplot smoothing. 36

LPC lysophosphatidylcholine. 131, 134, 136

LPE lysophosphatidylethanolamine. 131, 134, 138

LTQ linear trap quadrupole. 14

m/z mass-to-charge ratio. 3, 5, 6, 12, 17, 24, 32–35, 37–46, 50, 57, 58, 61, 63, 65, 66, 68,

69, 79, 80, 82, 89, 90, 92, 98, 113, 123, 133–140

MCC Matthews correlation coefficient. 41

MCP Money Changing Problem. 20

MLR multiple linear regression. 23

MS mass spectrometry. III, IV, VI, 3, 5, 9–13, 16, 17, 19, 20, 22, 23, 29, 33, 35, 36, 42–45,

52, 56, 57, 60, 65, 66, 69, 75, 76, 81, 82, 89, 90, 95, 100, 123

MS/MS tandem mass spectrometry. IV, VI, XI, 3, 5, 6, 14, 15, 18, 20, 24, 25, 56, 57, 64–66,

71, 73, 75, 76, 85, 95, 99, 100, 126

MSI Metabolomics Standards Initiative. 5, 6, 18, 20, 99

MSM MetaboliteSpectralMatcher. 6, 56–58, 61, 63–66, 68, 71–76, 99, 100, 127–130

NCE normalized collision energy. 57

XVII



Acronyms

NEFA non-esterified fatty acids. 91

NIST National Institute of Standards and Technology. 76

NMR nuclear magnetic resonance. 10, 11, 18, 78

OGTT oral glucose tolerance test. 91

OPLS orthogonal partial least squares regression. 26

OPLS-DA orthogonal projections to latent structures discriminant analysis. 7, 26

PaDEL Pharmaceutical Data Exploration Laboratory. 66, 67

PC phosphatidylcholine. 93, 134, 136

PCA principal component analysis. 26, 27, 77, 95, 98

PE phosphatidylethanolamine. 134, 138

PFP percentage of false positives. 30, 89, 133, 135, 137, 139

PIC pure ion chromatogram. 32

PLS partial least squares regression. 26

PLS-DA partial least squares discriminant analysis. IV, VI, 7, 26, 77, 95, 98

QC quality control. 28, 29, 89, 91

QT quality threshold. 7, 78, 81–84, 98

QTOF quadrupole time-of-flight. 12, 22, 44, 82

RF radio frequency. 14, 15

RIA relative isotopic abundance. III, XII, 5, 6, 22, 41, 55, 56, 60, 61, 65, 68, 69, 71, 72, 74,

75, 90, 94, 98, 99

RMSE root mean squared error. 22, 41, 61, 69, 75, 93

RNA ribonucleic acid. 1, 2

RP rank product. 28–30

RPLC reversed-phase chromatography. 6, 11, 23, 56, 57, 64–66, 73, 75, 76, 81, 99, 100, 131

rt retention time. III, 3, 5, 6, 10, 12, 16, 17, 21, 23, 33–36, 38, 41–43, 45, 46, 52, 56, 65–69,

72–76, 78–80, 83, 85, 89, 90, 93, 94, 99, 131, 133–140

SAM significance analysis of microarrays. 26

SD standard deviation. 132

XVIII



Acronyms

SDF structure data format. 67

SMILES simplified molecular input line entry specification. 59

SMPDB Small Molecule Pathway Database. 78, 80, 82, 84, 85, 98

SNP single nucleotide polymorphism. 7, 88, 91

STS short time-series. 7, 78, 81, 84, 98

SVM support vector machine. III, V, 5, 33, 41, 42, 99

T1DM type 1 diabetes mellitus. 89

T2DM type 2 diabetes mellitus. IV, VI, 2, 7, 28, 87, 88, 91, 92, 94, 95, 97, 100

TCA tricarboxylic acid. 2, 57, 72, 127, 128

TCDCA taurochenodeoxycholic acid. 140

TCF7L2 transcription factor 7-like 2. IV, VI, XII, 7, 88, 94, 95, 97, 100, 132, 133, 135,

137–140

TDCA taurodeoxycholic acid. 140

TIC total ion chromatogram. 17

TOF time-of-flight. 12, 41

TOPP the OpenMS proteomics pipeline. 33, 52

TUEF Tuebingen family. 88

UML unified modeling language. 111

UPLC ultra performance liquid chromatography. 11, 43, 44, 82, 90

XIC extracted ion chromatogram. 5, 17, 90, 92

XML extensible markup language. 42, 52, 59

XIX





CHAPTER 1

Introduction

Our genetic code is the blueprint of our lives. It is thus not surprising that research has

undertaken huge efforts over the last century to understand its role. While we have made

considerable progress in this field, in particular, through deciphering the sequence of the human

genome at the outset of this century, we also came to realize that "knowing the code" alone does

not suffice to explain our genes’ implications on our lives. From the central dogma of molecular

biology, we know that there are several layers between an organism’s genetic background, the

genotype, and the actual occurrence of a biological trait, the phenotype (Figure 1.1). Each layer

comes with its own array of regulation mechanisms and level of complexity. Genes are first

copied from deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) during transcription. These

transcripts serve as templates for the biosynthesis of new proteins during the translation process.

Proteins can fulfill manifold functions in a biological system, e.g., as building blocks, molecule

transporters, cell signal carriers, or catalyzing biochemical reactions as enzymes. With these

roles, proteins have a more direct and evident impact on biological processes than the genetic

level. Hence, it is not surprising that they are studied extensively in order to explain specific

phenotypes. However, the protein level is still not the last line of players that immediately

influences a phenotype. A more complete view of a phenotype’s biological background can

be obtained if we go one step further and focus on the small molecules that are subject to

enzymatic reactions, the metabolites.

Metabolites owe their name to the Greek word metabolē (to change). Their naming reflects

the fact that they are constantly subject to breakdown and synthesis reactions that constitute a

biological system’s metabolism. The metabolism can be roughly divided into catabolism, the

breakdown and conversion of energy-rich molecules (e.g., from food) into the readily available

energy currency adenosine triphosphate (ATP), and anabolism, the synthesis of polymeric
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Figure 1.1: The omics cascade of systems biology. The connection between the domains closely
resembles the central dogma of molecular biology. We adapted the DNA and RNA graphics
from [1], the protein image from [2], and the metabolite image from [3].

molecules (proteins, lipids, carbohydrates) in order to provide and maintain cell structure and

function. Early biochemical studies were focused on very specific aspects of metabolism, for

example, to understand the utilization of glucose in the fermentation process. Long before the

first genes involved were sequenced, the glycolysis pathway and the tricarboxylic acid (TCA)

cycle were elucidated experimentally in the 1930s and 1940s, two highly conserved mechanisms

that are central to energy metabolism in most biological organisms. Since then, numerous other

functionally coherent subcomponents in metabolism were formulated as metabolic pathways

that were mapped meticulously, most prominently, in the biochemical pathways wall charts [4].

The growing understanding of the metabolism enabled us to explain various phenotypes,

particularly, those induced by disease, diet, or environmental changes. For instance, the

hereditary disease phenylketonuria was attributed to a defect in the enzyme phenylalanine

hydroxylase that caused the accumulation of phenylalanine and with that neurological damage

in newborns if not treated by a special diet. While the phenotype could be pinned down on

one specific metabolic pathway in this case, there are multifactorial diseases such as T2DM

that affect multiple pathways at the same time and thus are much more complex to study with

the classical mechanistic experiments.

Instead of focusing only on a few metabolites that could cause a disease, a more holistic

approach had to be followed in order to detect multiple factors or complex patterns. Such an

approach had to provide simultaneous measurement and analysis of the entirety of metabolites

present in a biological system, the metabolome. Analogously to how genomics was coined to

refer to the analysis of the genome [5] and later was adopted for the transcriptome and proteome,

the comprehensive and systematic analysis of the metabolome became known as metabolomics.

2



In the early years of metabolomics studies, the major challenge was the development of a

robust analytical platform that could deal with the high complexity and chemical diversity of

metabolomes [6]. For instance, the chemical analysis in proteomics experiments could focus

on peptides exclusively while metabolomics had to capture various compound classes with

different physicochemical properties such as carbohydrates, lipids, or bile acids. Furthermore,

the analytic method of choice had to be sensitive enough to capture compounds in extremely

low concentrations (e.g., signaling molecules). Both the high complexity and the wide range

of metabolite concentrations were common scenarios when complex biological samples such

as blood plasma had to be analyzed. An analytical platform meeting these requirements was

established with LC-MS.

In an LC-MS experiment, the metabolites of a complex sample are first separated by rt with

respect to their physicochemical properties and then their ionized counterparts are resolved

by mass-to-charge ratio (m/z). The mass spectrometer quantifies the numbers of ions with

the same m/z and records their intensities in a mass spectrum. In MS/MS, specific ions can be

guided into a collision cell where they are fragmented, and the resulting pattern is recorded

as a fragmentation spectrum for identification purposes. The complete set of mass spectra

collected over rt yields complex two-dimensional datasets (or LC-MS maps) that can contain

tens of thousands of signals (Figure 1.2). Recent MS technologies such as the Orbitrap mass

spectrometer can deliver very high resolutions with short cycle times per spectrum and thus

easily produce several gigabytes per LC-MS measurement. Since the manual interpretation

of such complex datasets is not timely feasible, efficient computer algorithms for automated

data processing and analysis have become indispensable and thus gave rise to the field of

computational metabolomics.

Computational metabolomics aims at the extraction of biologically relevant information from

the LC-MS data by addressing three main problems (Figure 1.2). First, the signals observed in

the LC-MS map and induced by metabolites (so-called features) must be extracted and their

concentrations quantified in a robust and reproducible manner. Second, the identities behind

these features must be revealed and validated before any biological interpretation can take place.

Third, the detection of differential metabolite patterns (e.g., induced by a disease phenotype)

and their potential biological interpretation must be assisted with sound statistical methods. The

latter usually aims at the discovery of metabolite biomarkers and mapping them to metabolic

pathways that explain the underlying mechanisms of a (patho)physiological condition and

assist with the development of novel disease diagnostics [7]. In recent years, there has been

active research addressing these central problems by many methods and algorithms. Although

considerable progress has been made in each of the areas, the presented solutions were usually

limited to the specific problem and could not be readily integrated with existing computational

pipelines. Common limitations were incompatibilities due to different implementations or

operating systems and missing or inconsistent exchange formats between software tools. Often,

solutions were implemented as standalone monolithic programs that were not modular enough

to be part of more complex automated workflows. In this work, we address the central problems

3



1 Introduction

NN

O

N

OH

NH

O

H2N

OH

O

P

O

OH

O

P
O

HO

O

P

OHHO

O

intensity

m/z

rt

MS2 fragmentation spectrum 

intensity

m/z

precursor ion m/z mfeat 

NN

O

N

OH

NH

O

H2N

OH

O

P

O

OH

O

P
O

HO

O

P

OHHO

O

metabolite quantification

metabolite identification

c = 0.15 mg/l ∝feature intensity)

metabolite feature
with m/z mfeat

mfeat

(

Feature
ID

rt m/z int
Metabolite

ID

1
2
3
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

data reduction

... ...
Feature

ID
rt m/z int

Metabolite
ID

1
2
3
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Feature
ID

rt m/z int
Metabolite

ID

1
2
3
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

condensed feature list i

n LC-MS 
measurements

biomarker discovery

condensed feature list 1 condensed feature list n

Feature
ID

rt m/z int
Metabolite

ID

25
509
198
980

...

...

...

...

...

...

...

...

...

...

...

...

...
GTP

...

...

metabolite biomarker
candidate list

pathway mapping biological interpretation
and validation

Elucidation of unknown 
(patho)physiological 

mechanisms

Development of novel 
diagnostics and 

therapies

GTP

Figure 1.2: Central problems in computational metabolomics. LC-MS yields complex data with
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of computational metabolomics with a strong focus on establishing a coherent and consistent

workflow that still allows for high customization due to its modularity. In the following, we

elaborate on each of the key problems and present our contributions, respectively.

LC-MS measurements of biological samples produce complex datasets not only with large

numbers of metabolite signals but also with signals caused by chemical noise (e.g., due to

unexpectedly fragmented compounds), technical noise, and contaminants. In order to quantify

the concentrations of metabolites, the corresponding features must be extracted robustly before

the background of noise. To this end, a typical feature detection algorithm usually attempts

to capture the bell-shaped chromatographic profiles (Figure 1.2), each induced by an analyte

ion with a specific m/z. Since MS also resolves the naturally occurring isotopes of analytes,

feature detection algorithms should also be capable of resolving isotope patterns such that

the redundancy introduced by satellite 13C isotopes is avoided. In this regard, conflicts of

overlapping isotope patterns introduced by coeluting analytes must be dealt with. Several

methods and algorithms have been proposed to cope with the feature detection problem, either

partially or completely (Section 3.1). An R package [8] widely used in the metabolomics

community is XCMS [9]. The XCMS algorithm focuses on the extraction of chromatographic

profiles or extracted ion chromatograms (XICs) only and does not provide any means to assemble

isotope patterns per se. The latter functionality is added by CAMERA, another R package

building on the XCMS results [10]. Chromatographic profiles are detected with a second order

matched Gaussian filter, that is, the profile shapes are assumed to be Gaussian. This assumption

is often violated by asymmetrical profile shapes (e.g., heavy-tailed profiles). More importantly,

the matched filter may not be sensitive enough to detect the low-intensity signals of metabolites

in extremely low concentrations, a common scenario for biological samples. In Chapter 3,

we present our novel feature detection algorithm FeatureFinderMetabo (FFM) for the

automated and label-free quantification of metabolites. In contrast to XCMS, our algorithm

makes no assumptions of the chromatographic profile shape and thus can detect low-intensity

metabolites with high sensitivity. Furthermore, it tackles the problem of deisotoping features

with a novel SVM classifier that is specifically trained to recognize valid isotope abundances

of organic small molecules. We validated the algorithm with human plasma LC-MS data and

found excellent linearity between the spike-in compound concentrations and the quantified

feature intensities. In benchmarks based on simulated LC-MS data, our algorithm clearly

outperforms the XCMS and CAMERA combination with respect to recall and precision. The

modular implementation of FFM under the OpenMS framework [11] facilitates its integration

into computational metabolomics pipelines (Section 2.2.1). Its ease of use (e.g., intuitive

parameter configuration) and efficient run-times allow the researcher to focus more on the

downstream analysis and biological interpretation of the complex LC-MS datasets.

The greatest challenge in computational metabolomics is the reliable identification of metabo-

lites from LC-MS data. According to the guidelines proposed by the Metabolomics Standards

Initiative (MSI), a metabolite feature’s ID is considered as confident if at least two orthogonal

properties (e.g., m/z, RIA, and rt) and its MS/MS fragmentation pattern can be matched to the
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corresponding authentic standard [12]. While several computational methods and algorithms

to provide metabolite ID based on these criteria have been proposed (Section 2.2.2), the

actual problem lies in the lack of comprehensive, consistent, and readily available resources of

orthogonal metabolite data based on LC-MS. Both the unknown compounds and the authentic

standards must be measured under identical conditions (i.e., experimental setup, measurement

protocol). Consequently, a representative database (DB) of authentic standards must be built

first before any comprehensive metabolite ID can take place. Such an endeavor is usually very

expensive and time-consuming due to high costs of standard compounds and numerous LC-MS

and MS/MS measurements. Thus, it is only feasible for a small subset of metabolites (e.g., for

the targeted analysis of lipids). Since such compound DBs are built on very specific analytical

setups, their transferability to other LC-MS platforms is rather limited. For example, the rt

information and fragmentation spectra of metabolites are hardly comparable if they were mea-

sured with different LC-MS columns (high variability between manufacturers and even between

batches) and fragmentation setups (distinct collision cells and energies), respectively. The

availability of public databases is crucial particularly for untargeted metabolomics experiments

(Section 2.1.2). Here, the putative identification of metabolite patterns is essential to generate

novel hypotheses even if the IDs are considered incomplete or less confident according to the

MSI guidelines. Follow-up experiments can then address these hypotheses in a targeted fashion,

reducing time and cost for the validation of metabolite IDs. In this work, we approached these

problems and developed a computational metabolite ID workflow that leverages and combines

all sources of orthogonal information that is extractable from untargeted LC-MS data to boost

both the number of IDs and their confidence (Chapter 4). It readily integrates with our quan-

tification pipeline and provides the automated annotation of metabolite features detected by

our FFM algorithm. We implemented AccurateMassSearch (AMS), an efficient and flexible

software tool for the rapid detection of a wide range of potential metabolite adducts based

on a feature’s m/z (Section 4.2.2). With the integrated RIA filter, AMS significantly reduces

the number of incorrectly assigned metabolite adducts. This number can be further decreased

by the application of an rt filter. We developed a computational method that automatically

generates an rt prediction model based on the computed molecular properties of candidate

IDs that were confirmed by two or more orthogonal criteria. By comparing the observed and

predicted rt, candidate IDs with unrealistic rt differences are discarded. Such an rt filter can be

a powerful criterion since it combines chemical knowledge with the otherwise mass-centric

AMS approach. If MS/MS spectra are present, they can be matched against the MassBank

spectral repository [13] with our MetaboliteSpectralMatcher (MSM) tool. MSM was

designed to compute the spectral matching of thousands of fragmentation spectra efficiently

and to provide reliable matching and confidence scores. Both the AMS and MSM results are

reported in the mzTab standard [14] and are merged in a final step to achieve the consensus IDs.

Based on a reversed-phase chromatography (RPLC)-MS/MS validation dataset, we could show

that the identification rates of our combined approach were considerably better than the tools’

individual performances.
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The ultimate goal of a complete computational metabolomics workflow is to turn the in-

formation gained from the metabolite quantification and identification into novel biological

knowledge. Due to the complexity and size of such datasets, sound statistical methods are

necessary to extract metabolite patterns that are predictive of the phenotype of interest. In

general, statistical methods must be sensitive enough to detect subtle fold changes of metabolite

levels between treatment groups and must deal with strong intra-group variations [15]. Proper

treatment of data before statistical analysis is equally important. It comprises handling of

missing values, inter-sample intensity normalization, and removal of noisy or spurious ob-

servations. Univariate statistics such as the t-test, the nonparametric Wilcoxon test, or the

analysis of variance (ANOVA) are inadequate to detect significant metabolite patterns in high-

dimensional datasets if no measures to deal with the problem of multiple hypothesis testing

are taken [16]. Furthermore, statistical tests such as the t-test are not readily applicable to

time-course data since the assumption of independence between time points is usually not

reasonable. Several multivariate methods such as the prominent PLS-DA and its variants were

studied extensively for metabolomics biomarker discovery (Section 2.3). PLS-DA has become

a standard tool to rapidly visualize the differences between treatment groups and to extract

the metabolite patterns responsible for the separation. However, PLS-DA models must be

validated carefully to avoid overfitting. Depending on the diagnostic statistics employed for the

model validation, the PLS-DA computation may prefer models with low complexity instead of

building on metabolites with very small inter-group differences [17]. As a part of this work,

we developed a robust biomarker discovery pipeline that is specifically geared towards the

detection of low-concentration metabolite changes and easily integrates with our quantification

and identification workflows (Section 6.2.2). It provides means to perform inter-sample normal-

ization and to reduce data complexity by filtering out observations with high variation and low

signal-to-noise ratio [15]. The statistical analysis is based on the nonparametric rank product

test [18] which we adapted for the robust detection of significant fold changes in metabolomics

data. With our discovery pipeline, we studied the relevance of the TCF7L2 rs7903146 single

nucleotide polymorphism (SNP) for T2DM based on an LC-MS dataset of 30 individuals (15

controls versus 15 SNP carriers) (Chapter 6). In contrast to former studies where no significant

differences between the groups were detected with the application of orthogonal projections to

latent structures discriminant analysis (OPLS-DA) [19], we could extract 108 potential biomark-

ers with our pipeline. From these, we could find strong indications for the impairment of bile

acid synthesis and differing testosterone levels in the TCF7L2 group, both known symptoms of

T2DM [20, 21, 22]. In order to address the necessity to analyze time-resolved metabolomics

data, we developed a novel computational approach that condenses thousands of time profiles

into a few kinetic patterns. Our pipeline is based on an adapted version of the quality threshold

(QT) clustering algorithm [23] for which we implemented the short time-series (STS) distance

function [24]. This adapted version was particularly strong in clustering short time series with

time points not being equidistant, a common scenario in metabolomics time-course studies.

We validated our approach with LC-MS data that was collected at several time points during

a single bout of exercise in male subjects. Based on this dataset, we performed a pathway
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enrichment analysis of the most interesting clusters (kinetic patterns with peaks during the

exercise or recovery phase of the study) and identified several metabolic pathways. We assume

that these pathways might play an important role during the exercise and recovery phases and

thus we would suggest these as worthwhile subjects in a targeted metabolomics analysis.

In summary, this thesis makes valuable contributions to computational metabolomics by estab-

lishing a comprehensive workflow for the analysis of untargeted LC-MS data that addresses

the central problems of metabolite quantification, identification, and biomarker discovery

consistently. Instead of spending time on the details of the individual processing steps (e.g., due

to cumbersome configuration or missing interfaces), metabolomics researchers can now focus

more on the biological interpretation of their data and generate novel working hypotheses

more quickly, hereby reducing overall time and costs of metabolomics studies.
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CHAPTER 2

Background

This chapter introduces the main concepts of this work as much as the current state of the art.

First, we give an overview of metabolomics and mass spectrometry (MS), its most common

analytical platform. This is followed by a summary of current computational methods that were

developed for the quantification and identification (ID) of metabolite signals in metabolomics

datasets. We conclude the chapter with the presentation of a robust statistical analysis pipeline

for the discovery of novel metabolite biomarkers.

2.1 Metabolomics

During the initial studies on the human genome mapping, researchers established the term

genomics to refer to the systematic analysis of all genes [5]. Consequently, the comprehensive

studies of the transcriptome and proteome in molecular biology were named in the same

fashion, i.e., transcriptomics and proteomics. In close resemblance to the central dogma of

molecular biology, the term "omics cascade" was coined to point out the relationship between

the various omics levels [6] (Figure 1.1). Of particular interest to this work is metabolomics,

the systematic study of all metabolites (the metabolome) found in a biological system. The

link between the metabolomics and the other omics levels is given by the fact that metabolites

are synthesized by metabolic reactions that are catalyzed and regulated by enzymes from the

proteome. These enzymes, in turn, are tightly controlled by the genomic and transcriptomic

levels (i.e., via gene expression). Changes on the metabolome level (e.g., increase/decrease

of metabolite concentrations) usually show immediate effects on the organism’s phenotype,

whereas changes on the upstream levels (e.g., distinct gene expression profiles) may not directly
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result in phenotypic alterations. For this reason, metabolomics has become an indispensable

tool to study phenotypic changes induced by disease, environmental influences, diet, or physical

exercise.

While the analytical methods to study the genome, transcriptome, and proteome are well-

established, the comprehensive analysis of an organism’s metabolome with a single standardized

analytical platform still remains a challenge. This is mainly due to the high chemical diversity

of metabolomes. In contrast to proteomics, where the analytical method can be optimized to

capture peptides only, metabolomics experiments must deal with a broad range of different com-

pound classes (e.g., sugars, amino acids, or lipids) [25]. This is aggravated by the sheer number

of different metabolites that can occur in complex samples such as blood plasma. In 2009,

the Human Metabolome Database (HMDB) reported about 6,800 experimentally validated

metabolites, many of which could be detected in human biofluids [26]. A more recent release

of the HMDB database from the year 2013 that additionally integrated metabolites from exoge-

nous sources (e.g, food, drugs) increased this number to more than 40,000 compounds [27].

More than 200,000 metabolites were estimated to exist in the plant kingdom [28]. The highly

dynamic nature of the human metabolism facilitates the quick adaptation to different situations

and external stimuli (e.g., physical activity, fasting, food intake, or medication) but also renders

accurate and reliable measurements of its current state very difficult. The analytical method of

choice must offer a broad dynamic range in order to capture the wide spectrum of metabolite

concentrations and, in particular, must be sensitive enough to detect metabolites in extremely

low concentrations (e.g., signaling molecules).

Early metabolomics studies made extensive use of nuclear magnetic resonance (NMR) technol-

ogy as primary analytical platform [29]. Biological samples need no special preparation prior

to the analysis, and thus the chance of unwanted contaminations or chemical reactions is low.

By interpreting the NMR spectra, hundreds of metabolites can be quantified and identified in

an automated fashion. However, the more complex a biological sample, the more difficult the

interpretation of NMR spectra becomes. Furthermore, the NMR platform may fail to detect

metabolites in very low concentrations, a scenario frequently encountered when working with

biological samples. In order to complement the information missed by NMR and to facilitate a

more comprehensive analysis of a biological sample, analytical methods based on MS were

studied as an alternative. MS offers a higher sensitivity than NMR and is usually coupled to

orthogonal separation techniques such as chromatography or electrophoresis. The upstream

separation process results in time-resolved spectral information with lower complexity that

is easier to interpret than a single spectrum containing the entirety of measured signals. The

analytes’ rts are characteristic for their physicochemical properties and may be exploited for

compound ID (Section 4.2.5). Widely used MS-based analytical platforms are coupled either to

gas chromatography (GC-MS), liquid chromatography (LC-MS), or capillary electrophoresis

(CE-MS) [30]. In case of ultra-high resolutions as delivered by Orbitrap or Fourier transform

ion cyclotron resonance (FTICR) MS, complex samples can be introduced directly into the

mass spectrometer (direct infusion mass spectrometry (DIMS)) and analyzed on the basis of
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a single spectrum. Although these platforms offer higher sensitivity than NMR, each has its

own limitations and thus does not cover the whole range of metabolites present in a complex

biological sample [6]. For example, the GC-MS platform is limited to volatile compounds or

those that can be modified accordingly by derivatization (e.g., by silylation [31]). In this work,

we focus exclusively on LC-MS-based methods.

2.1.1 Liquid Chromatography Coupled to Mass Spectrometry

Technological advances in the field of high-resolution MS brought great benefits for metabolomics

studies of complex biological samples [32]. High resolutions in the seven-figure range and mass

accuracies below 1 ppm as provided by FTICR mass spectrometers facilitated the interpretation

of both full-scan and tandem MS spectra by reducing the number of putative empirical formulas

encountered with the annotation of spectral peaks. However, high operational and maintenance

costs of such mass spectrometers limited their applicability for metabolomics studies. The

FTICR mass analyzer employs a strong magnetic field (3–15 T) provided by superconducting

magnets in order to trap ions in an orbital trajectory [33]. With the introduction of the Orbitrap

mass analyzers, the high maintenance costs of cooling superconducting magnets could be

circumvented by replacing the magnetic by an electric field [34]. Due to this cost-effective

solution, Orbitrap-based mass spectrometers have become affordable to a wider audience and

thus are now the analytical method of choice for many metabolomics studies. In the following,

we present the principles of a liquid chromatography (LC)-coupled Orbitrap MS platform.

Reversed-Phase Liquid Chromatography

Prior to the actual MS measurement, biological samples are usually subjected to an LC separation

step. The direct injection of complex samples into the mass spectrometer’s ionization interface

bears the risk of ion suppression effects [35] and often leads to overloaded spectra that are

difficult to interpret. Instead, the sample complexity is resolved over time such that the mass

spectrometer is confronted gradually with less complex fractions. In RPLC, the sample is

mixed with an aqueous organic solvent (mobile phase) and pumped through a chromatographic

column filled with hydrophobic material (stationary phase) [36]. Most often, a C18 column is

employed as a stationary phase which contains silica with hydrophobic octadecanoyl (C18H37)

chains on their surface. During the chromatographic run, the mobile phase is changed gradually

in its water and organic solvent composition according to the elution gradient. By linearly

increasing the organic solvent proportion over time, hydrophobic compounds strongly binding

to the stationary phase will be carried away eventually. Another key factor of chromatographic

separation is the flow rate of the mobile phase and the respective pumping pressure. Recent LC

systems allow us to apply extremely high pressures yielding high flow rates on ultra performance

liquid chromatography (UPLC) columns with minimal particle sizes. The advantage of these

developments is reduced separation time while maintaining a high separation efficiency. In
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metabolomics studies, elution gradients in a range of 20 to 30 min are quite common. We refer

to Section 6.2.3 for a detailed example of such a separation protocol. Each compound interacts

specifically with both phases and thus travels at a distinct velocity. The time from a compound’s

injection to its appearance at the column’s other end is called retention time (rt). Since the rt is

characteristic of a compound’s physicochemical properties and molecular structure, it provides

valuable information to assist the ID of metabolites (Section 4.2.5).

Electrospray Ionization

The LC column is connected to the inlet of the mass spectrometer’s ion source. Most of the

incoming chemical compounds do not have an intrinsic charge and would not be detectable by

MS without prior ionization. There are several methods that can be roughly classified by hard

and soft ionization. As a classical hard ionization method, electron ionization (EI) generates

ions from gas-phase molecules by pounding them with high-energy electrons. This usually

results in the fragmentation of the original molecules, an issue that must be addressed when

interpreting their spectra. EI is the method of choice for GC-MS experiments. Soft ionization

methods on the contrary attempt to keep the molecule structure intact. One such method that

proved itself invaluable when working with biomolecules in a LC-MS setting is electrospray

ionization (ESI) [37]. Here, the sample liquid is sprayed through a thin capillary at atmospheric

pressure to form an aerosol of charged droplets. When a high voltage is applied between the

capillary and the mass spectrometer’s inlet, a Taylor cone forms at the capillary’s tip with charges

aligning on the surface. Subsequently, charged droplets are sprayed from this cone into the ESI

chamber. Heating can be applied to accelerate the solvent evaporation from these droplets; the

droplets shrink until they burst into finer droplets due to charge-charge repulsions (Coulomb

fission). The relationship between a droplet’s size and its maximum capacity of charges is

described by the Rayleigh limit [38]. Finally, when the solvent is completely evaporated, analyte

ions remain that are directed into the mass spectrometer. ESI produces pseudo-molecular ions,

that is, adducts that are formed by the interaction of uncharged polar molecules and small ions

(e.g., proton or sodium ions) (Section 2.2.2).

Orbitrap Mass Analyzer

Aside from the ionization source and a mass detector, the central component of a mass spectro-

meter is the mass analyzer that provides us with an analyte’s m/z. In the history of MS, several

types of mass analyzers were developed, e.g., magnetic sector field, quadrupole, time-of-flight

(TOF), ion trap, ion cyclotron resonance (ICR), or hybrids hereof such as the quadrupole time-of-

flight (QTOF) analyzer [39]. For example, the quadrupole comprises four parallel cylindrical

electrodes with oscillating electrostatic fields. By varying the electrode voltages, the quadrupole

acts as a mass filter since only ions with a specific m/z or within a specific m/z range will have a

stable trajectory to reach the quadrupole’s other end without hitting the rods. The most recent
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Figure 2.1: The electrospray ionization (ESI) method.

addition is the Orbitrap mass analyzer [34], a further development of the Kingdon [40] and

Knight ion traps [41]. In a Kingdon trap, a central wire electrode is surrounded by a coaxial

cylinder electrode. With voltage applied between the isolated electrodes, a radial electrostatic

potential is built that can capture ions in a stable orbit if they enter the trap perpendicularly to

the central axis and with the right velocity. The Knight trap introduced changes to the shape of

the outer electrode such that the radial potential was extended by an axial quadrupole term,

that is,

Φ(r, z) = A · (z2 −
r2

2
+ B · ln r) (2.1)

with r and z representing the cylindrical coordinates and A and B being constants reflecting

the Kingdon trap geometry and voltage setup [34]. Neither the Kingdon nor the Knight trap

were considered for potential applications in MS. Makarov further developed on these concepts

to build a novel mass analyzer, the Orbitrap, with its applicability in MS in mind. Similar to

the Knight trap, this mass analyzer builds an electrostatic potential that combines a radial

logarithmic with an axial quadrupole component, that is,

Φ(r, z) =
k
2

�

z2 −
r2

2

�

+
k
2
· R2

m · ln
�

r
Rm

�

+ C (2.2)

with r and z being the cylindrical coordinates, k the field curvature, Rm the characteristic

radius, and C a constant. Ions that are directed into the Orbitrap (Figure 2.2) adopt an orbiting
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trajectory around the inner electrode in r direction while oscillating in the z direction. The

axial ion motion along z can be described independently from the radial motion as given by

z(t) = z0 · cos(ωt) +

√

√(2Ez)
k
· sin(ωt) (2.3)

where

Ez =
m
2
· z2

0 (2.4)

corresponds to the potential of a simple harmonic oscillator and

ω=
s

q
m
· k (2.5)

to the frequency of oscillation along the z axis [42]. Determining this frequency ω facilitates

to compute an ion’s mass m and its charge q. This can be achieved by amplifying the induced

image current on the split outer electrodes (Figure 2.2).

Q Exactive Orbitrap platform

Since the introduction of the first mass spectrometer based on the Orbitrap mass analyzer in

2005, the linear trap quadrupole (LTQ) Orbitrap, Thermo Fisher Scientific marketed several

improved Orbitrap instruments. In general, these mass spectrometers were hybrid since they

combined different types of mass analyzers in one device. For example, while the LTQ Orbitraps

were prepended by a linear ion trap, the Q Exactive family employs a quadrupole mass analyzer

as a mass filter [43]. Furthermore, the Orbitrap platforms differ in their ion optics responsible

for the transfer of ions from the ionization source to the mass analyzer. We chose the Q Exactive

benchtop platform as a new generation device to sketch the functioning of Orbitrap-based mass

spectrometers (Figure 2.2).

Ions produced in the ion source are pushed through a heated ion transfer capillary to further

support complete desolvation. The radio frequency (RF) lens, an array of thin plates with

an RF voltage applied, focuses the ion beam and guides it through a metal aperture into

the injection flatapole. This and the following bent flatapole are RF-only multipoles serving

mainly for ion transportation. Furthermore, the bent flatapole’s curvature facilitates a compact

construction of the Q Exactive, but also filters out neutral molecules that may otherwise

cause measurement noise. The ion beam reaches the quadrupole mass analyzer that allows to

selectively analyze mass ranges (e.g., precursor selection for MS/MS) instead of being restricted

to all-ion analysis [43]. After that, the filtered ion beam is guided by the following octopole

into the C-trap. The C-trap, a curved linear trap, stores ions for specific time frames before

releasing them into the Orbitrap mass analyzer. RF voltages on the trap’s rods confine the ions
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Figure 2.2: Schematics of Thermo Fisher Scientific’s Q Exactive Orbitrap platform. This figure
was drawn based on the schematics found in the operating manual for the Q Exactive [45].

to a back-and-forth movement along the longitudinal axis. Furthermore, the C-trap is filled

with nitrogen to slow down ions with high kinetic energy incoming from the upstream octopole.

Ions are delivered to the Orbitrap mass analyzer as packets by pulsing them in regular intervals.

For this, the RF voltage along the axis is switched off and an extraction voltage is applied to

transmit the ions perpendicularly to the trap axis. Intermittent lenses provide that the ions are

focused and deflected to minimize gas carryover into the mass analyzer.

MS/MS Fragmentation

In case of an MS/MS experiment, the precursor ion of interest is first selected by the quadrupole

mass filter, and then guided over the C-trap into the higher-energy collisional dissociation

(HCD) cell [44]. This cell consists of a multipole embedded in a high-pressure gas chamber

(e.g., helium or nitrogen). Upon entry, the precursor ions are accelerated along the multipole

axis and fragmented through collisions with the inert gas molecules. The resulting fragment

ions are redirected into the C-trap, from where they are pulsed into the Orbitrap the same way

as described before.

2.1.2 Targeted versus Untargeted Metabolomics

Metabolomics experiments can be classified as either untargeted or targeted approaches [46].

In untargeted metabolomics, a mass spectrometric snapshot of a whole metabolome is taken

to answer the biological question in interest. Since there is no prior knowledge about the

compounds present in the sample, statistical methods are employed on all unknown metabolite
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signals to either classify the sample (e.g., healthy versus disease state) or to extract metabolic

patterns characteristic for a specific physiological state (metabolic fingerprinting [46]). The

identity of potentially interesting metabolites remains unknown until further experiments for

their structural elucidation are conducted or computational methods are employed to annotate

the unknowns with putative IDs (Chapter 4). For this reason, untargeted metabolomics can

be regarded as the hypothesis-generating approach that is employed for screening or discovery

purposes. In later chapters of this work, we present examples for such experiments (Chapters 5

and 6).

Contrary to the untargeted case, targeted metabolomics is hypothesis-driven. In this case, the

analysis is directed towards a well-characterized subset of metabolites (e.g., key players in

central metabolism) while other signals from the measurement are ignored. The metabolites’

identity can be determined immediately with the help of authentic standards (e.g., with industri-

ally manufactured standard kits, see Section 2.2.2). By focusing on specific metabolic pathways,

direct interpretation of the data in the context of physiology is possible and thus particularly

suitable to validate given hypotheses [46]. Although both the targeted and untargeted strategy

begin with different premises, they can be combined to complement each other. For example,

preliminary working hypotheses could be generated by an initial untargeted screening and

then validated by more specific targeted experiments.

2.2 Computational Metabolomics

The technological advancement in MS facilitated the simultaneous measurement of hundreds

or thousands of metabolites in a single experiment. The overwhelming complexity of such

datasets increased the demand of efficient quantification algorithms and workflows to facilitate

their processing in an automated and high-throughput manner. This bottleneck was addressed

in recent years by active research and development of several computational strategies for

quantification. However, the ID of these metabolites has turned out to be the next time-

consuming step in untargeted metabolomics workflows.

2.2.1 Quanti�cation

Quantification aims at the robust and reproducible extraction of the measured analytes’ quan-

tities from an MS experiment. It is usually the first step in a metabolomics workflow and

thus its accuracy has a high impact on the quality of subsequent analyses. Analytical methods

employed for quantification are coarsely categorized by labeled and label-free approaches. In

general, labeling approaches introduce reference compounds into the sample that simplify the

detection and quantification of target analytes. The labeled variants differ from their targets

by a characteristic mass distance, but otherwise, behave chemically identical (particularly,

show the same rt). The labeling process can be carried out in many ways, e.g., by adding
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stable isotopes as internal standards prior to the measurement [47], feeding the organism

under study with stable isotope labeled nutrients [48], or targeting analytes with specific

functional groups [49]. Based on the measured intensity ratio between the labeled variant

and its target analyte, a relative or absolute quantification can be achieved. Although these

techniques are appealing due to improved sensitivity in quantification, they also suffer from

several drawbacks. Sample preparation is complex, time-consuming, and very expensive with

regard to sample material and labeling compounds. In many metabolomics studies, sample

material is usually very scarce (e.g., tissue biopsies) and may not suffice for the high demands of

labeling approaches. Moreover, high purchase prices along with high consumption of labeling

compounds (e.g., due to low efficiency of the chemical labeling process) raise the overall costs

of metabolomics studies. For these reasons, labeling approaches might be feasible solely for

small-scale metabolomics experiments.

In recent years, label-free quantification methods have been studied extensively as an alternative

to labeling approaches. Simpler sample preparation protocols, reduced time and cost, better

scalability, and easier to achieve results have made this alternative very attractive for large-scale

proteomics as well as metabolomics experiments [50, 51]. A basic approach to quantifying

analytes is first to detect their chromatographic peak profiles in a total ion chromatogram

(TIC) and then to compute their peak areas, either manually or with computer assistance. In a

classical differential analysis, these quantities can be matched between control and treatment

groups in order to compute the analytes’ fold change [50]. While this works well for samples

with low complexity, the TIC becomes very difficult to analyze in case of complex biological

samples (e.g., blood plasma with thousands of metabolites). This can be addressed by resolving

the TIC in the m/z dimension in order to detect XICs; the peak area is then computed under

the XIC profiles instead [9]. Here, the main difficulty for computational methods lies in the

accurate detection and integration of chromatographic peaks since peak profiles are rarely

Gaussian-shaped but rather exhibit heavy fronting and tailing [52]. Due to naturally occurring

stable isotopes (e.g., 13C and 15N), MS resolves isotope patterns or features (series of coeluting

ion chromatograms) rather than a single ion mass. We use the term feature to describe the total

mass spectrometric signal that was caused by a specific analyte [11]. In order to reduce data

redundancy and to increase the accuracy of quantification, feature detection algorithms are

required to robustly detect the individual ion chromatograms (or mass traces) of an analyte’s

isotope pattern, reassemble them (deisotoping), and finally report a condensed representation

of the feature (data reduction) [53].

Aside from feature detection, computational quantification methods usually comprise general

signal processing (e.g., centroiding of profile mode data, noise and baseline reduction), cor-

rection of rt shifts [54], and linking features that coincide between LC-MS measurements to

consensus features [55]. To this end, software packages have been developed that addressed

most or all of these steps simultaneously in order to provide an all-in-one solution for com-

putational quantification [9]. However, one severe drawback of such comprehensive tools is

the missing flexibility when novel algorithms need to be integrated or existing components
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to be exchanged. This can be avoided if the individual processing tasks are implemented as

self-contained modules, as in the case of the OpenMS framework [56]. The quantification

strategy is then implemented as a workflow of such modules, offering both flexibility and

robustness (Figure 2.3).

2.2.2 Identi�cation

LC-MS-based metabolomics studies of complex samples (e.g., blood plasma) yield hundreds or

thousands of signals that must be first annotated before any meaningful biological knowledge

can be extracted. The efforts that have to be made for metabolite ID strongly depend on

whether a targeted or untargeted approach is chosen. In a targeted approach, the analysis is

restricted to a subset of metabolites that can be quickly identified with the help of reference

standards. Manufactured assays facilitate the targeted quantification and ID of up to 190

metabolites that cover several compound classes [59]. Here, the investigation aims at testing

specific hypotheses, for instance, if a pathophysiological condition is reflected by abnormal

changes in one or more key metabolites from central metabolism [60].

In untargeted metabolomics experiments, however, no prior knowledge about the metabolites

measured in a sample is available and there are usually only vague hypotheses to start with.

Mass spectrometric signals with different intensities between two states (e.g., healthy versus

diseased) can be detected with statistical methods as potential biomarker candidates. However,

without any metabolite annotation, the biological interpretation of the experiment is delayed

until further ID experiments have been conducted [61]. On the one hand, comprehensive

annotation of hundreds or thousands of signals with experimental means is infeasible due

to time and cost. On the other hand, although several computational methods have been

developed to solve this problem in an automatic and efficient manner, metabolites identified

merely by computational means are still regarded as unreliable. Thus, the untargeted approach

is often employed as a screening or discovery tool to help with the design of more specific

targeted metabolomics experiments.

The MSI proposed guidelines for reporting metabolite IDs in the literature [12]. Metabolite

IDs are classified by their level of confidence: The more orthogonal data sources have been

used for the ID process, the more reliable it will be considered. The classification levels

proposed by the MSI are summarized in Table 2.1. Additional to the orthogonality criterion,

the MSI guidelines require the confirmation of putative metabolite IDs through comparisons

with authentic standards measured under identical conditions. For these comparisons, either

authentic standard compounds must be spiked into the measurements or further MS/MS, MSn,

or even NMR experiments must be conducted. This validation process is often time-consuming

and expensive (depending on the number of authentic standards to purchase) and thus most

metabolomics studies are restricted to the ID of the most promising candidates.
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Figure 2.3: General computational quantification workflow. Commonly, measurements are
stored by the MS software in a vendor-specific binary format. These binary files must first be
converted to the open data standard mzML [57] (e.g., by the Proteowizard software [58])
before the data processing and analysis with the OpenMS framework may commence. After
data conversion, a typical quantification pipeline starts with signal processing (e.g., centroid-
ing of profile data, noise and baseline reduction). Feature detection algorithms extract the
essential analyte signals against the background of noise and store them in condensed feature
lists (featureXML files [11]). With map alignment and feature linking, coinciding features
from theses lists are merged into a consensus matrix (single consensusXML file). Both the
featureXML and consensusXML files can be exported to tabular text that is readily readable
by most statistical packages such as the R framework [8].
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Level of confidence Requirements

1 (confident) at least two orthogonal criteria are in accordance to
an authentic standard; spectral match to in-house
DB of authentic standards (measured under identi-
cal conditions)

2 (putative ID) physicochemical properties or spectral information
match to external metabolite DBs; no authentic
standards used

3 (putative class) physicochemical properties or spectral information
match to a specific compound class (e.g., phospho-
lipids)

4 (unknown) merely quantified metabolite features; interesting
due to their differential expression

Table 2.1: The MSI guidelines proposed for metabolite ID. To confidently confirm a metabolite
ID, the application of authentic standard compounds is essential.

According to the MSI guidelines, the bare minimum for confidence levels 1 and 2 is MS/MS

information to match against spectral databases. ID workflows that are purely based on compu-

tational methods without MS/MS data are considered unreliable or unidentified. Consequently,

the main purpose of such computational workflows is limited to filtering the number of false

positive IDs and thus reducing time and costs of expensive follow-up experiments. A general

outline of ID workflows for metabolite data is given by Figure 2.4 and parts of it are discussed

in more detail in the next sections.

Accurate Mass Search

The first step in metabolite ID involves the calculation of empirical formulas from observed

masses. An empirical formula represents the elemental composition of a molecule; in case of

organic small molecules, the most common elements are C, H, O, N, P, and S. The problem of

finding suitable empirical formulas for a given mass can be described as the NP-hard Money

Changing Problem (MCP) [62]: Given a molecular mass M , a weighted alphabet containing

k elements, and their associated atomic masses as weights m1, . . . , mk, the problem is to find

compositions (i.e., empirical formula strings) of non-negative integers c1, . . . , ck such that

M =
∑k

i ci ·mi . One classical approach to solve this problem is a dynamic programming (DP)

algorithm which first precomputes a table data structure and then enumerates all empirical

formulas matching the mass M [63]. However, the DP algorithm’s running time and space

requirements directly depend on the input size of M . More recently, an efficient algorithm for

mass decomposition was proposed that is independent of input size M both in running time

and computation space [64]. Nowadays, the automatic annotation of spectra with empirical

formulas is considered as a standard feature in MS-related software packages.

The successful annotation of an unknown mass with its empirical formula highly depends on
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Figure 2.4: Outline of a typical metabolite ID workflow. Based on the feature information from
the quantification workflow (Figure 2.3), an accurate mass search determines all empirical
formulas that match a specific feature mass within the given error margin. These formulas are
then matched against a metabolite database to retrieve candidate structures. Orthogonal filter
criteria such as rt and isotope abundance filtering are applied to further reduce the number
of false positive candidates. In the final stage, the putatively identified structure is confirmed
through spectral matching between the observed and the corresponding authentic standard’s
fragment spectrum.
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its measurement accuracy. The advent of high-resolution mass spectrometers (e.g., FTICR or

Orbitrap MS) promised to literally "read an analyte’s empirical formula off its monoisotopic

mass". However, it has been shown that even with a mass accuracy as high as 1 ppm the

assignment of a unique empirical formula is only feasible for small molecules up to 200 Da [65].

The authors found that filtering out potential empirical formulas with non-matching relative

isotopic abundances (RIAs) was a powerful orthogonal criterion that reduced the search space

even more effectively than increasing the mass spectrometer’s mass accuracy. In contrast to

a significantly more expensive FTICR mass spectrometer with a below 1 ppm mass accuracy,

a modern QTOF mass spectrometer (3 ppm mass accuracy and RIAs within 2 % root mean

squared error (RMSE)) was adequate to assign unique empirical formulas even up to 300 Da

when RIA filtering was applied. The likelihood of false positive annotations could be decreased

even further by incorporating chemical knowledge into the filtering process. In their follow-up

work, the same authors proposed a set of heuristic filtering rules commonly known as the Seven

Golden Rules [66]. By removing empirical formulas that were unlikely in a chemical sense

(e.g., showing unrealistic element ratios), these rules enabled the correct annotation with 98 %

probability given that the empirical formula could be found in small molecule databases. With

this example it became clear that sophisticated computational strategies exploiting orthogonal

information from MS data offered a more powerful approach than relying on advances in mass

accuracy alone.

Generally, it is assumed that the observed mass can be explained by a proton adduct [M+H]+

in positive mode or a deprotonated ion [M −H]− in negative mode. Although these adduct

ions are believed to be the most common ones, the formation of other adducts (e.g., with

sodium or potassium ions in positive mode) is also observed frequently [67]. This must be

taken into account when the alphabet for the mass decomposition is specified; otherwise,

it could result in false annotations. Additionally, the observed mass might be the result of

a double-charged ion (e.g., [M + 2 H]2+). An alternative approach is to convert the adduct

mass to a hypothetical neutral mass (e.g., in case of [M+Na]+ by subtracting the mass of a

sodium ion); the empirical formulas are then reconstructed based on this neutral mass instead.

This neutral mass could also be directly queried against a metabolite database (for details,

see Section 4.2.2). Contrary to a single adduct hypothesis, a set of several hypothetical adduct

ions considered for a specific ion mass might also generate significantly more false positive

IDs. The ionization behavior of small molecules in the ESI ion source is difficult to predict, but

it is generally accepted that some adduct ions occur more often than others (e.g., [M+H]+

versus [M+C2H3N+H]+). The computational annotation tool MZedDB incorporates ionization

behavior rules to predict the most likely adduct ions formed and thus improves the annotation

of unknown ion masses [68].

Apart from the formation of distinct adducts, a metabolite ion may be fragmented in the

ion source and thus yield several distinct signals. Characteristic mass differences found in

spectra reveal frequently occurring neutral losses (e.g., H2O, CO, CO2, or NH3) [67]. These

neutral losses are commonly caused by chemical transformations such as decarboxylation or
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deamination. This chemical relationship between two spectral signals can be exploited to

further rule out false positive IDs [32, 69, 70, 71].

Structural Elucidation

Even if a unique empirical formula was found for a given mass, this information alone does

not result in an immediate metabolite ID. Many potential metabolite structures may match

the same empirical formula; for example, searching for C6H12O6 in the HMDB yields more

than a dozen matching molecule structures [27]. On the other hand, C10H17N3O6S results

in one single hit, namely glutathione (Figure 2.4). To resolve this ambiguity, it is required

to incorporate structure-based information into the ID process. In chromatography-coupled

MS, an analyte’s retention behavior is dictated by its chemical structure. For this reason, its rt

may serve as a powerful orthogonal criterion to filter out ambiguous IDs. While it is common

practice to exploit the rt information in GC-MS experiments (usually by comparing retention

indices) [72, 73, 74, 75], this is less well-established in LC-MS studies. Contrary to the high

robustness and reproducibility of gas chromatography (GC), rt information obtained with LC

techniques is much more variable due to changes in the manufacturing process of LC columns

(e.g., differing stationary phases), varying elution gradients (e.g., differing solvent mixes), or

external conditions (e.g., temperature). This is aggravated by the high chemical diversity of

metabolites; for peptides, rt prediction models can be restricted to the small set of 20 amino

acids with well-characterized physicochemical properties and thus are more accessible [76, 77].

Nonetheless, the recent development of rt models geared towards small molecules showed

promising results. In case of hydrophilic interaction chromatography (HILIC), a multiple linear

regression (MLR) model was presented that could predict rts on the basis of six physicochemical

properties [78]. Applied as a filter criterion orthogonal to the accurate mass search, the

number of false positive IDs could be reduced by up to 40 %. However, the model gave reliable

predictions only for small molecules up to 400 Da. Molecules with molecular weights higher

than 400 Da are expected to come from hydrophobic compound classes such as lipids where it

is more common to use RPLC instead of the HILIC technique. Furthermore, a common essential

requirement of LC-MS-based prediction approaches is that they are not directly interchangeable

between labs and thus must be first measured and trained on a lab’s individual setup. In case

of CE-MS, an artificial neural network was presented to predict the migration times of cationic

metabolites [79].

Although the number of false positive candidates can be reduced considerably by rt filtering,

it does not guarantee a unique ID. Small molecules that are structurally distinct may still

be identical in their elemental compositions and not significantly different in their rts. Such

molecules can be found frequently in compound classes that contain unsaturated acyl moieties

(e.g., phospholipids, mono-, di-, or triacylglycerids). For example, the unsaturated fatty acids

cis-7- and cis-9-hexadecenoate differ in the position of their double bond but otherwise are

identical in both their elemental compositions and molecular weights. Such ambiguities can be
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resolved through MS/MS. Here, the fragmentation of an unidentified ion is induced on purpose

to gain further structural information by its fragmentation pattern. Depending on the type

and degree of fragmentation, such patterns can be very characteristic for the underlying ion’s

structure. The isobaric compounds cis-7- and cis-9-hexadecenoate from our previous example

can be clearly distinguished by their MS/MS spectra (Figure 2.5). A widely used fragmentation

technique in MS/MS experiments is collision-induced dissociation (CID) [80]. With the advent

of the modern Orbitrap mass spectrometers, higher-energy collisional dissociation (HCD) was

introduced as a novel fragmentation technique (Section 2.1.1). Although very similar to CID in

principle, it may produce significantly different fragmentation spectra.

The fragment masses and interjacent m/z intervals observed in an MS/MS spectrum are the

result of specific gas phase fragmentation reactions. These can be interpreted by the chemist to

draw conclusions about the underlying molecule structure. However, doing so is often tedious

and time-consuming since typical LC-MS/MS experiments generate thousands of fragmentation

spectra. This problem was addressed by efficient spectral matching algorithms that compare the

spectrum of interest against a DB of known compounds. In classical approaches, the fragments

observed in an MS/MS spectrum are compared against spectra from a fragment database, and

the matching score is computed as the dot product of the matched fragment intensities [81].

Other algorithms employ scores that are more tailored to the compound classes of interest, e.g.,

the HyperScore [82] in the X!Tandem software [83] to score peptide fragmentation patterns

or the X-Rank score geared towards small molecules [84]. In recent years, a huge effort has

been made to build representative DBs with fragmentation data of metabolites. Common

public fragment data repositories are MassBank [13] and METLIN [85]. Although these public

resources assist greatly in the computational ID of metabolites (Section 4.2.3), they still suffer

from problems such as incompleteness or data heterogeneity due to different LC-MS platforms

and operating parameters (e.g., varying collision energies). Many research labs tend to build

private in-house DBs with fragment spectra acquired from authentic standard compounds.

However, the high cost of authentic standards and the acquisition of their spectra only allow

for very small and specific subsets of metabolites. Furthermore, the willingness to make such

valuable data public is rather low. To remedy the situation of incomplete metabolite fragment

DBs, computational methods for the prediction of fragmentation patterns were proposed.

For example, some methods precalculate fragmentation patterns for a large comprehensive

chemical database and match these against the experimentally observed spectra [86, 87].

2.3 Statistical Methods in Metabolomics

Over the last years, several statistical methods were proposed for analyzing metabolomics

datasets [88]. In general, the main aim of such methods is to detect distinctive metabolite

patterns or biomarkers between sample groups (e.g., healthy versus diseased state) that help to

understand the pathophysiological mechanisms and to develop novel marker-based diagnostics.
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Figure 2.5: Comparison of cis-7- and cis-9-hexadecenoate with respect to MS/MS fragmentation.
Both compounds (deprotonated) have the same elemental composition C16H29O2 and with
that the same molecular weight of 253.40092 Da. While it is not possible to distinguish these
isomers by the means of an accurate mass search with orthogonal filter criteria, they exhibit
characteristic differences in their CID fragmentation behavior.

The right choice of these methods is particularly important for the analysis of complex untar-

geted metabolomics datasets where we commonly have to cope with an enormous number of

unidentified metabolite features. Differences in metabolite levels are often subtle (i.e., small

fold changes between groups) and obfuscated due to strong biological variation within the

groups (Chapter 6). This raises the need for proper pretreatment of the data (e.g., handling

missing values, inter-sample normalization, data reduction) together with statistical techniques

that are adequately robust and sensitive to detect subtle metabolite perturbations.

In a univariate setting, classical methods for biomarker detection comprise the t-test, Wilcoxon

rank sum test, and ANOVA. These tests are applied to each metabolite feature independently

and candidates are selected if they fall below a predefined significance level (e.g., α= 0.05).

For the most common metabolomics studies, one has to deal with the problem of multiple

hypothesis testing. Metabolomics datasets (in particular, from untargeted analyses) comprise

several dozens to hundreds of observations (samples) and hundreds to thousands of attributes

(metabolite features) such that differences between groups might occur just by chance and

result in a differentiation based on a few falsely accepted tests. To account for these errors in

multiple testing scenarios, methods such as the Bonferroni correction or the concept of the false

discovery rate (FDR) [16] were proposed.

In most cases, metabolic perturbations occur not isolated but as patterns of concertedly regulated
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metabolites. Since univariate methods do not take the dependencies between metabolite

features into account, multivariate methods such as principal component analysis (PCA) and

PLS-DA have been established as a quasi-standard for metabolomics biomarker studies. PCA is

considered as a first-level exploratory tool to detect hidden structures in the data (e.g., if sample

groups separate into distinct clusters). This method represents the data in a new orthogonal

basis which is then rotated such that most of the data’s variance is explained by a few principal

components. For example, it was successfully employed to distinguish between urine profiles of

controls and patients with renal cell carcinoma [89]. In contrast to PCA, PLS-DA is a supervised

method that depends on a class information vector (e.g., control versus disease) in addition to

the descriptor matrix. PLS-DA aims at transforming both matrices into a new space in order to

reveal hidden structures in the descriptor matrix correlating well with the response. Due to

the danger of overfitting, it is recommended to assess the predictive power of such model via

cross validation techniques. In this context, it has been shown that the choice of the validation

diagnostic dictates whether the final model favors low complexity or emphasizes metabolites

with very small inter-group differences [17]. A PLS-DA model found its application in predicting

kidney cancer on the basis of 30 metabolite markers [90]. In another study, the technique was

employed for the discovery of biomarkers that were characteristic for a high-fat diet [15]. A

further development of the partial least squares regression (PLS) concept is the orthogonal

partial least squares regression (OPLS) model where the notion of noise is introduced [91].

The variation in the data is explained by two components: the variance correlated with the

response and the orthogonal signal which is considered as noise. In recent years, OPLS-DA

models have become popular in the metabolomics community due to a clear visualization

and easy interpretability of their results. For instance, an OPLS-DA was employed to classify

esophageal carcinoma with urine metabolite profiles [92]. However, some criticism has been

raised about the practical use of OPLS-DA versus the classical PLS-DA [93].

Several novel statistical methods were developed to specifically meet the needs of omics studies.

Although they were initially not designed for the analysis of metabolomics experiments, their

concepts can easily be applied on such data as well. One of the earliest approaches to determine

genes differentially expressed between sample groups was the simple computation of fold

changes (FCs) and the application of arbitrary FC thresholds [94]. However, without any

information about their statistical significance, one could not prove whether these reflected

real differences or were merely observed by chance. The significance analysis of microarrays

(SAM) was developed to detect statistically significant changes in gene expression measured

with microarray technology and was made available as an R package [95]. Biomarker detection

is achieved by correlating a test statistic (usually, the t-test) determined for each observation

with the response and then computing their significance through repeated permutations of the

data. As an example for its application in metabolomics research, the SAM was employed to

detect key players in the metabolism of hepatitis C-infected tree shrews [96]. Another widely

used R package implements the linear models for microarray data (limma) method [97]. In this

approach, linear models are fitted to the expression profiles of each gene in order to explain
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the variability in the data. The method was also adapted for metabolomics studies, e.g., for the

investigation of the metabolism in cystic fibrosis [98].

In the following sections, we discuss general strategies for the data pretreatment prior to the

statistical analysis, i.e., intensity normalization and the filtering of irrelevant observations. We

then detail the non-parametric statistical procedure of rank products, a robust tool to detect

significant fold changes between the sample groups of interest [18].

2.3.1 Data Pretreatment Prior to the Statistical Analysis

Before any meaningful comparison between the samples’ metabolite features can be conducted,

the normalization of feature intensities is a crucial first step to reduce the technical inter-

sample variation while preserving the biological differences. A popular method developed for

microarray analysis is the quantile normalization [99]. It transforms each sample’s individual

feature intensities such that all the n samples share the same intensity distribution. In an

imaginary quantile plot with n dimensions, the authors described this as a projection fk of the

p intensity quantiles qk = (qk1, . . . , qkn) (k = 1, . . . , p) onto the unit diagonal d =
�

1p
n , . . . , 1p

n

�

.

The projection fk for an individual quantile qk has the form

fk =

 

1
n

n
∑

j=1

qk j , . . . ,
1
n

n
∑

j=1

qk j

!

(2.6)

i.e., the corresponding values of qk in each of the n sample datasets are replaced by the mean

quantile value. As an algorithm to compute the normalized intensity matrix X ′ from the matrix

X of p× n dimensions, the authors proposed to sort the quantile values of each column, apply

projection fk to each row, and finally restore the original order of each column as it was before

the sorting step. The algorithm is implemented and offered as an R package [100] and integrates

well with downstream statistical analysis packages. Compared to conventional methods (e.g.,

total sum normalization), quantile normalization showed the strongest reduction of systematic

errors while improving the data’s interpretability in PCA analyses [101].

Consensus data matrices, as built by the feature linking step of our quantification workflow

(Section 2.2.1), often show a high proportion of missing values. Such missing values may

occur either due to failures of the quantification algorithm to detect features in the individual

sample measurements or if the chromatographic peak intensity is below the level of detection

(LOD). Consensus features with only few real values may originate from spuriously detected

features (e.g., from noise or contaminants) and could hamper the subsequent statistical analysis

if they are numerous. For this reason, special care should be taken when dealing with such

irreproducible and (most likely) irrelevant metabolite features. In this regard, some filtering

strategies were proposed for metabolomics data that aim at removing non-informative features

and reducing the total number of missing values [15].
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The first of the proposed filtering rules, the "80 % rule", drops all features that do not contain

real values in at least 80 % of all samples. If the study involves more than one sample group,

this rule is applied to each group, respectively. A feature is then dropped if none of the sample

groups fulfills this requirement. In an experimental setup with two sample groups (e.g., ten

control versus ten treatment samples), the group-wise application would avoid dropping a

feature although the total number of real values happens to be low (e.g., eight real values

exclusively in control group, 8
20 = 0.4). Such a situation may occur if a specific metabolite is

detected reproducibly in the control group but is down-regulated upon treatment and thus

falls below the LOD. The second proposed rule requires that quality control (QC) samples

were measured throughout the experiment. Based on these samples, each feature showing a

coefficient of variation (CV) higher than a predefined threshold (e.g., 30 %) is discarded. A

suitable threshold value can be estimated through the technical variation observed for spiked

standard compounds. This "CV rule" ensures that only metabolite features with reproducible

intensities are passed to the statistical analysis. Since blank samples are measured routinely in

the course of the experiment, it would be advantageous to leverage this information in another

rule. In an ideal case, features showing up in the samples of interest should not be present in

the blanks. However, due to carry-over effects, a trace amount of a specific metabolite could

still be measured. Instead of testing the presence/absence of metabolite signals, a more robust

rule should compare the median intensity level of the samples with the blank level. A feature

is then discarded if the median sample level is not at least several folds higher than the median

blank level. Such features often originate from contaminants.

For the metabolomics study of a T2DM-related polymorphism (Chapter 6), we implemented

these filtering rules as vector functions in R [8] such that they can be applied directly on the

rows (consensus features) of a normalized consensus matrix. This matrix must comprise all

sample, blank, and QC measurements to facilitate an efficient computation (Figure 2.6). A

consensus feature is accepted only if all three filter rules apply.

While the number of missing values in the dataset can be reduced tremendously by the pre-

sented filtering procedure, suitable data imputation techniques must be employed to deal

with the remaining ones (e.g, regularized expectation maximization [15]). In general, most

statistical software packages for biomarker discovery offer at least one simple data imputation

technique.

2.3.2 Biomarker Detection with Rank Products

Rank products (RPs) were designed as a robust and intuitive statistical tool that makes rather

weak assumptions about the data to analyze. In contrast to previous approaches, RPs do not

presume anything about the data’s error model, such as normality (t-test) or other symmetrical

distributions of the error [18]. The method mimics the way a biologist would evaluate lists

of genes ranked by their FCs: When a gene occupies the same or close ranks repeatedly over

several replicate experiments, the probability of this observation just occurring by chance would
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Figure 2.6: Consensus matrix layout prior to the statistical analysis. After coinciding features
from the sample, blank, and QC measurements have been merged in the feature linking stage,
the resulting consensus matrix is structured as illustrated here. Each row corresponds to
one consensus feature and is uniquely labeled with the concatenated string of its centroid
coordinates. The columns contain the feature intensities from the individual measurements.
Submatrices B and Q facilitate the efficient application of row-based filter rules on the whole
matrix (e.g., minimum signal-to-noise ratio between the individual and blank measurements).
After the filtering operations, only submatrix F and the vector of the samples’ class labels are
submitted to the statistical analysis.

be very low. Given n observations and k replicates, this probability is 1
nk if the ranking of the

k gene lists were completely random. To express this likelihood, an RP is calculated for each

gene g respectively by

RPg =
k
∏

i=1

rg,i

ni
(2.7)

where rg,i is the rank of gene g and ni the total number of genes in the list of replicate i. The

computation of RPg for up- and down-regulated genes differs such that each replicate’s gene list

must be sorted before by decreasing and increasing FCs, respectively. In case of single-channel

arrays (e.g., Affymetrix chips) or quantification data from MS experiments, the FCs ratios

between the two conditions to be compared must be computed in a pairwise fashion. Let m be

the number of samples in both conditions C and T (e.g., control versus treatment). All pairwise

comparisons yield the m×m FCs

FCg,i, j =
Ti

C j
i, j = 1, 2, . . . , m (2.8)

where Ci and T j corresponds to the expression/intensity level of control sample i and treatment

sample j [102]. Then, a ranked list of FC ratios is generated for each of the k = m×m pairwise

comparisons. The RPg of a specific gene g is finally computed with the FCg,i, j ratios from the k

ranked lists.

In order to estimate the likelihood of observing a specific RP value and below by chance, a
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reference distribution is constructed by repeated permutations of the expression/intensity levels

within the individual samples. In each permutation round, the list of RP′g is recomputed on

the shuffled data in order to refine the approximation of the reference distribution. From that,

we can determine the expected frequency to encounter a specific RP value or below randomly

with

E(RP)≈ f (RP)/p (2.9)

where p is the number of permutation rounds and f (RP) the total count of occurrences (≤ RP)

accumulated over p rounds. The authors proposed the calculation of the percentage of false

positives (PFP) that is conceptually similar to the FDR [16]. The PFP expresses how many false

discoveries are to be expected if we consider all genes (sorted by increasing RP value) below

this threshold as significant candidates. For each gene g, it can be calculated from its E(RPg)

by

qg =
E(RPg)

rankRP(g)
(2.10)

where rankRP(g) corresponds to the rank of gene g within the RP-ordered list.

The functionality for an RP analysis was implemented as an R package [102] and thus is easy

to integrate with the data preprocessing techniques as described before (Section 2.3.1). As

input, the RP method in R accepts the normalized/filtered data matrix and a vector with sample

group information. Furthermore, the number of permutations p can be configured for more

accurate PFP estimations. Optionally, missing values may be imputed with the gene-wise mean

of the existing expression/intensity values. The output is split into two tables containing the

up- and down-regulated candidates alongside with additional information such as FCs, RPs,

PFPs, and p-values.
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CHAPTER 3

Automated Label-Free Quanti�cation of Metabolites from LC-MS Data

Text and figures in this chapter were adapted with minor modifications from our work previously

published in Molecular & Cellular Proteomics [53].

3.1 Introduction

Biological samples yield complex LC-MS datasets that usually contain up to hundreds of

thousands of mass spectrometric signals [103]. Processing such complex datasets poses a

challenge in experimental studies and, aside from metabolite identification, is considered as

one of the major bottlenecks in computational metabolomics workflows [104]. For this reason,

methods for the automated label-free quantification of metabolites have been studied extensively

to meet today’s experimental requirements. Since quantification algorithms are situated very

early in computational workflows, downstream processing and analysis heavily depend on their

outcome (Figure 2.3). Algorithms for metabolite quantification must be capable of extracting

ion signals robustly from profile or centroided data against the background of measurement

noise and finally yield a condensed table of compound-specific signal intensities [105].

The extraction of LC-MS signals that correspond to true metabolites is hampered by the non-

specific nature of the ESI process, resulting in more than 90 % background signals in the spectra

[106]. Due to this fact, the challenge for a feature finding algorithm is to identify all signals

caused by true metabolites while avoiding the detection of false positives [107]. Detector noise,

poor signal-to-noise ratios for low abundance metabolites, and the presence of numerous peaks

from isotopes, contaminants, and in-source degradation products render this task difficult

[105]. Moreover, metabolites can occur in multiple charge states and form different adducts in
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ESI, giving rise to multiple features per analyte [67]. In recent years, several feature detection

algorithms were developed that pursue different strategies to overcome these difficulties. These

can be grouped into those that solely extract chromatographic peaks from the given raw data

and others that additionally perform deisotoping, i.e., assembling subsets of chromatographic

peaks into isotope patterns that most likely originate from the same compound.

A widely used tool for metabolomics data is the XCMS package implemented within the R

statistical framework [9]. XCMS implements a binning strategy in the m/z dimension and with

that avoids the problem of searching for peaks in m/z direction. Simultaneous feature detection

and noise removal is then achieved in a bin-wise manner by a second derivative Gaussian

matched filter. Other R packages are also available, such as apLCMS for LC-MS profiles with

high mass accuracy [103]. Neither of them provides built-in functionality for isotope pattern

assembly, which has to be added by other packages such as CAMERA [10, 108].

Although it has been argued that it is impossible to define optimal bins for all circumstances

[109], binning in the m/z dimension is also performed by other tools such as MZmine [110]

and MAVEN [105].

Software tools such as MEND, MapQuant, and MZmine identify chromatographic peaks by

matching them with a particular model profile such as a Gaussian or an exponentially modified

Gaussian [111, 110, 112, 113]. However, detection based on such predefined models may have

low sensitivity since the shapes of elution profiles vary greatly from one compound to another

and peaks that do not conform to the predefined shape will be discarded.

Aberg et. al. compare the two-dimensional (2D) representation of LC-MS data with the behavior

of signals and noise on a radar screen. They implemented a Kalman filter for intra-sample

tracking and alignment of mass spectra into pure ion chromatograms (PICs) [109].

In addition to the detection of chromatographic peaks, several tools such as MEND [111],

MapQuant [112], and msInspect [114] pursue different deisotoping strategies. In msInspect

[114], chromatographic peaks that coelute over time and show similar profile shapes are pooled

together and are considered as isotopes of the same compound. Another strategy is fitting a

three-dimensional (3D) model of a generic isotope pattern against the raw data and subtracting

the fit from the signal [115]. In MapQuant [112], peaks are deisotoped by fitting isotope

patterns to the observed 2D data.

In proteomics, a popular choice for many feature detection algorithms is to match the shape of

peptide isotope patterns against an "averagine" model [116, 117]. However, for non-peptide

compounds such as metabolites, the observed isotope patterns will not match, as they differ

considerably in their chemical composition as assumed by the averagine model. Many available

software solutions depend on numerous parameters that are difficult to interpret. These need

to be optimized to obtain high quality results which often proves to be challenging as their

influence on the tools’ behavior is hard to predict for the user [90, 103].
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3.2 Algorithm

In this work, we present the novel software tool FeatureFinderMetabo (FFM) for the label-

free quantification of metabolites from LC-MS data. The algorithm detects chromatographic

peaks in a robust and efficient manner without the need of binning the data in the m/z dimension.

Since there are no assumptions regarding the chromatographic peak shape, low-intensity peaks

are detected with high sensitivity. Furthermore, the algorithm comprises a new method for

model-based deisotoping of metabolite LC-MS data that is based on SVM classification. This

novel classifier is designed to capture isotopic abundances of organic molecules in general

and thus is also applicable to the wide array of small organic molecules. We designed the

algorithm to be configurable mainly by three intuitive parameters that reflect the characteristics

of typical LC-MS data. The straightforward and intuitive configuration of our software tool

allows researchers to achieve fast and high-quality results and to focus more on down-stream

analysis instead. To assess the performance of our algorithm, we examined the influence of the

adjustable parameters on a simulated benchmark dataset and the algorithm’s quantification

capability on a real-world dataset from human plasma samples. These samples were spiked

with a set of standard compounds in a wide range of concentrations to reveal the relationship

between the detected feature intensities and the actual quantities. We compared our algorithm’s

performance to that of XCMS in combination with the CAMERA package both on the simulated

and the spiked human plasma data.

While designed with applications in metabolomics in mind, the algorithm is applicable to all

small molecule data which means that it has applications beyond metabolomics (e.g., drug

substance analytics, lipidomics, peptidomics, environmental analysis). Initial experiments also

indicate that the algorithm deals well with data produced on separation technologies other than

high performance liquid chromatography (HPLC), for example with capillary electrophoresis-

mass spectrometry (CE-MS) data.

The presented algorithm is implemented as part of the OpenMS framework. The OpenMS

proteomics pipeline (TOPP) and library were designed as a versatile and functional framework

for developing MS data analysis tools, providing a rich functionality ranging from basic data

structures to sophisticated algorithms for data analysis and visualization [56, 104, 118]. It is

open source software and incorporates all steps needed for building powerful computational

metabolomics workflows.

3.2 Algorithm

Our feature finder algorithm comprises two main stages, namely the mass trace detection and the

feature assembly. In the first stage, signals in centroid LC-MS data that occur repeatedly over rt

within a machine-dependent margin of mass error are gathered in a mass trace. Initially, a mass

trace may contain signals from two different analytes (e.g., isobaric compounds overlapping in

their elution profiles). To resolve this, the algorithm performs a filtering step to split these mass

traces into individual chromatographic peaks. In the second stage, mass traces corresponding
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Figure 3.1: General procedure of feature finding. (a) Starting with the most intense peaks
(magenta crosses), potential mass traces are extended with peaks compatible with respect
to m/z back and forth in rt. (b) Each mass trace is smoothed to facilitate the determination
of chromatographic maxima. Multimodal elution profiles are split into smaller mass traces
with respect to the number of maxima. (c) Based on this set of mass traces, potential feature
hypotheses are generated and scored by their compatibility with theoretical isotope patterns.
(d) Finally, the best-scoring hypotheses are assembled into features.

to the same metabolite are assembled into features. Hypotheses sharing mass traces between

distinct analytes are resolved by a scoring procedure. An overview of the algorithm is shown

in Figure 3.1.

3.2.1 Mass Trace Detection

For mass trace detection, we assume that the LC-MS data has already been centroided (either

by the instrument software or some other peak-picking algorithm). The data then consists of

numerous spectrometric peaks P = {pk} where an individual peak pk is defined by its rt tk,

mass-to-charge ratio mk, and intensity ik:

pk = (tk, mk, ik) (3.1)

To prepare the input for the mass trace detection stage, we sort the set P by decreasing intensities

and remove peaks that do not exceed a user-defined intensity threshold. Based on the resulting

list P ′, the algorithm iterates first over the most intense peaks and considers each as a potential
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seeding point for the construction of mass traces. We define a mass trace T as a list of n mass

spectrometric peaks pk ∈ P ′ that exhibit a similar m/z and occur in adjacent survey scans of an

LC-MS run:

T = (p1, p2, . . . , pk, pl , . . . , pn) tk < t l ∀k < l (3.2)

For each peak pk ∈ P ′, we initialize an empty candidate mass trace T with pk as the seeding

point. Starting from this seeding point, the algorithm attempts to extend T along the rt axis

in both directions. This is accomplished by recruiting new peaks from P ′ that are close in

m/z to all peaks gathered so far in T and thus originate most likely from the same ion mass.

Depending on the accuracy of the underlying MS technology, mass spectrometric peaks exhibit

scan-to-scan deviations from the true mass of the measured ion. These m/z errors follow

a heteroscedastic noise model, i.e., low-intensity peaks are expected to have a less reliable

mass than higher-intensity peaks [119]. We describe this error model by an intensity-weighted

Gaussian distribution N with parameters µ (mean) and σ2 (variance). The recruitment of

suitable peaks to T depends on the accurate estimation of these parameters. To this end, we

employ an online m/z density estimator [120] that refines the mean and variance estimates for

each newly recruited peak pn+1 by the recursive expressions

µn+1 =
wn ·µn + in+1 ·mn+1

wn + in+1

σ2
n+1 =

wn ·σ2
n + in+1 · (mn+1 −µn+1)2

wn + in+1

with µn − 3 ·σn ≤ mn+1 ≤ σn + 3 ·σn (3.3)

where wn =
∑n

k ik is the accumulated weights of the preceding trace peaks and i0 = 1. Fur-

thermore, we restrict the recruitment to those peaks that are most likely under the previously

estimated m/z distribution N (µn,σ2
n). The recursion is initialized with a variance of σ2

0 that is

chosen proportionally to the expected mass error of the mass spectrometer. In most cases, this

mass error turns out to be a rough estimate, since the online density estimator yields a more

accurate estimate of σ2 after only a few recursion steps and thus avoids erroneously recruiting

potential outliers to the mass trace. Therefore, the algorithm is quite robust against incorrect

choice of this user-defined mass accuracy parameter.

The extension of mass trace T aborts as soon as a specified number of scans is observed without

finding an adequate peak. Such missing trace peaks occur more often in the fronting and tailing

regions of a chromatographic peak as the mass trace starts to fade into the noise. We define a

centroid m/z value for mass trace T by m̄ = µn where µn corresponds to the last mean estimate
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before aborting the trace extension. Trace peaks that were recruited by T are removed from

the list P ′. They can neither be used as a seeding point nor be part of other mass traces created

in the subsequent iterations.

Analytes with mass-to-charge ratios sufficiently similar to be indistinguishable at the instrument

resolution and sufficiently close rts can form overlapping elution peaks within a mass trace

(Figure 3.1, upper right). Based on the elution profiles, these mass traces need to be split. The

algorithm detects the chromatographic maxima of the respective elution profiles and minima

between them. This is complicated by the fact that peak intensities along an elution profile

tend to be noisy, in particular at low intensities. We use locally weighted scatterplot smoothing

(LOWESS) with a polynomial of degree two, which offers the advantage that there is no need for

a specific chromatographic peak shape to be defined in advance [121]. An important parameter

that influences the degree of smoothing is the window size s, which describes the number of

peaks the local polynomial fit is applied to. An optimal choice of s should roughly cover the

extent of a chromatographic peak. We found that good estimates for the window size are the

number of trace peaks that are covered within the full-width-at-half-maximum δ0.5 of a typical

chromatographic peak. LOWESS smoothing is not very sensitive to changes in the window

size. As long as the window size is reasonably close to δ0.5 of most chromatographic peaks —

a parameter, which is generally well known for the chromatographic separation system — the

smoothing will yield the desired result. Thus, we set the window size according to

s =
�

δ0.5

tscan

�

(3.4)

where tscan designates the time between two consecutive MS scans.

The mass trace detection algorithm offers the option to automatically infer a good estimate

of δ0.5 based on the data. To this end, we consider the distribution of peak widths that are

gathered throughout the mass trace extraction phase. From this distribution, we can estimate

an average peak width that is used for smoothing with good accuracy.

On the smoothed elution profiles, chromatographic peaks are detected. A mass trace peak is

regarded as a local chromatographic maximum if it has a higher intensity than at least bs/2c
trace peaks in each direction (increasing and decreasing in rt). This condition guarantees that,

to be regarded as separable, the chromatographic maxima of two consecutive overlapping

elution profiles are at least δ0.5 apart. If there are more than one chromatographic maxima

within the same mass trace, the position with minimum intensity between each pair of maxima is

determined. These minima are used as splitting points between two separable chromatographic

peaks (Figure 3.2).

The splitting of mass trace T with c chromatographic maxima results in the c shorter mass traces

T1, T2, . . . , Tc . After the splitting step, we can define the rt for each mass trace T j by the position

of the chromatographic peak maximum. Additionally, we approximate the chromatographic

peak area under the elution profile of a mass trace T j by the Riemann sum
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Figure 3.2: Separation of chromatographic peaks within the same mass trace. A smoothed
multimodal mass trace (red line) is scanned for time points corresponding to local intensity
maxima. Two vertical red lines indicate apex peaks that show higher intensity than at least
k/2 neighboring peaks. The split into two separate mass traces is done at the time point with
minimum intensity between these apeces (dashed blue line).

a j =
n−1
∑

l=0

il · (t l+1 − t l) (3.5)

Finally, each individual mass trace T j is added to a global list M that holds all detected mass

traces for the following feature assembly.

3.2.2 Feature Assembly

The goal of the feature assembly stage is to find sets of mass traces that most likely originate

from the same analyte. A set is regarded as a valid isotope pattern if its mass traces do co-elute,

have correct m/z distances with respect to charge z, and exhibit correct isotopic abundance

ratios (Figure 3.3).

The feature assembly algorithm reconstructs the isotopic patterns of multiple adduct ions

of one analyte as individual features rather than aggregate them into one single feature.

Following the modular approach of the OpenMS framework, such adduct features can be

clustered subsequently or considered for improving the results of accurate mass queries against

databases.
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Figure 3.3: Characteristics of a metabolite isotope pattern measured in LC-MS. In a typical
isotope pattern, mass traces belonging to the monoisotopic and higher isotopic ions can be
observed. The relationships between these mass traces are characteristic for any naturally
occurring isotope pattern: The m/z distances between each satellite (T1, T2) and the monoiso-
topic trace T0 (blue arrows), the coelution of trace profiles (apeces indicated as red lines), and
the intensity ratios between satellite traces and the monoisotopic trace.

We define a set of k+ 1 mass traces as a feature hypothesis

H = (T0, T1, . . . , Tk) (3.6)

where the mass trace T0 corresponds to the monoisotopic and T1, T2, . . . , Tk to higher isotopic

mass traces of an analyte. To enumerate all potential feature hypotheses in a list C , the

algorithm traverses all mass traces in M in order of ascending m/z. Each mass trace therein is

iteratively assumed to be the monoisotopic trace T0 of a candidate feature hypothesis H. After

initializing H with T0, the algorithm searches the list M for mass traces that are compatible

with T0 with respect to their rts, m/z distances, and intensity ratios. Instead of processing

the complete list, we restrict the search for candidates to a subset of mass traces that lie in

the vicinity of T0 both in m/z and rt dimension. The criteria for m/z and rt compatibility are

regarded as independent and are therefore modeled separately. Traces that fulfill these criteria

are added to the feature hypothesis H.

In contrast to proteomics, there is no general model such as the averagine that could be

employed as a filter to match m/z distances and abundance ratios of metabolite isotope

patterns. Thus, we built a comprehensive set of isotope patterns characteristic for metabolites

and studied novel models to validate our feature hypotheses H. While isotope patterns of

typical metabolites could be obtained from metabolite databases, we chose a different approach
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in order to prevent potential biases of these databases, e.g., due to limited size. To generate a

set of valid isotope patterns, we first employed the chemical formula generator program HiRes,

which has been further developed by integrating heuristics to filter out unlikely sum formulas

[66]. We generated all sum formulas based on the elements C, H, O, N, P, and S in a mass range

between 1 and 1,000 Da. This yielded about 24 million distinct sum formulas. We randomly

sampled a subset of 115,000 compositions spread evenly over the mass range of interest. We

then computed the theoretical isotope patterns of these compositions with the program emass

[122]. For each isotope pattern, we extracted the mass differences and abundance ratios

between the monoisotopic and each of the higher isotope masses. The underlying distributions

of these theoretical mass differences and abundance ratios provided the basis for novel isotope

pattern models geared towards metabolites.

For each distribution of mass differences, we computed the mean and standard deviation.

Based on the shifting elemental ratios towards higher masses and the distinct differences in

mass between isotopes of different elements, we observed that the mass differences between

isotope mass distributions were not constant but changed slightly and systematically, that is,

they increased linearly from lower to higher isotopes. Instead of using fixed Gaussian models

N (µ,σ2) for approximating each isotope mass spacing, we generalized the model generation

by the linear equations

µtheo( j) = 1.000857u · j + 0.001091u

σtheo( j) = 0.0016633u · j + 0.0004751u (3.7)

where j = 1, 2, . . . , 5 corresponds to the higher isotope peaks considered. These models were

obtained by linear regression based on the means and standard deviations of the theoretical

m/z difference distributions (up to the fifth higher isotope), respectively (Figure 3.4). This

generalization simplified the validation of feature hypotheses based on the mass differences

δm between the monoisotopic mass trace T0 and an arbitrary number of higher isotopic mass

traces T j ( j = 1, 2, . . . , k). The m/z distance δm( j) = |m̄0 − m̄ j| corresponds to the difference

of their m/z estimates computed during the mass trace detection stage.

To assess the similarity between the observed and theoretical m/z distances, we formulated the

following error model: For each pair of traces T0 and T j with m/z variances σ2
0 and σ2

j and

the hypothetical charge z, the Gaussian models Nδmz(µ( j),σ2( j)) with

µ( j) =
µtheo( j)

z

σ2( j) =
σ2

theo( j)

z
+σ2

0 +σ
2
j (3.8)
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Figure 3.4: Linear regression models approximating m/z spacings within metabolite isotope
patterns. The linear models (red dashed lines) were built on the basis of a large number of
theoretical metabolite isotope patterns and their internal m/z spacings (difference in m/z
between the monoisotopic and each of the higher isotope peaks). The linear fit was applied to
the means and standard deviations of each of the respective m/z difference distributions.

are evaluated. This leads to the following scoring function for pairwise m/z distances:

Sδm( j) =







e
−(δm( j)−µ( j))2

2σ2( j) , if µ( j)− 3 ·σ( j)≤ δm( j)≤ µ( j) + 3 ·σ( j),

0, else.
(3.9)

In a nutshell, this scoring function assesses how likely it is that a set of mass traces was caused

by the same metabolite based on a comparison to the precomputed mass difference distributions

of potential metabolite compositions. It yields scores close to one for small mass differences

and decreases with increasing deviation from µ( j). For values that lie outside the interval

defined by three times the standard deviation σ( j), the score becomes zero.

To ensure that mass traces compatible in m/z also exhibit similar elution profiles, we imple-

mented a correlation similarity score as an orthogonal criterion. For each pair of mass traces T0

and T j , our algorithm first detects all peaks that are overlapping in both mass traces’ full width

at half maximum (FWHM) region. If this overlapping stretch comprises most of both FWHM

regions (at least 70 %), we compute the similarity score or set the score to zero, otherwise.

Given the mass traces’ T0 and T j matched peak intensities (x l , yl), respectively, we compute

their similarity with

Srt( j) =max(

∑

l x l · yl
q

∑

l x2
l ·
q

∑

l y2
l

, 0) (3.10)
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If the algorithm finds a suitable candidate mass trace T j for j = 1, the scoring procedure is

repeated to find the subsequent higher isotope traces for j = 2, . . . , 5. We restricted the size of

a feature hypothesis arbitrarily to a size of up to six isotopic traces (monoisotopic trace plus up

to five satellite traces). As soon as the list of potential candidates is exhausted, we select the

mass trace next in M as reference and construct all hypotheses supported by it. A candidate list

C keeps track of all hypotheses that have been generated throughout this iterative process.

For each hypothesis H ∈ C , we compute a combined score Scombined with

Scombined(H) =
k≤5
∑

j=1

1
∑N a j

a j · Sδm( j) · Sr t( j) (3.11)

In order to give preference to high-intensity signals over low-intensity ones, we weighed each

score with the peak area a j of mass trace T j normalized by the total sum of the N detected

mass traces in M .

We sort the candidate list C by decreasing score. Since C contains hypotheses built merely

of mass traces compatible in rt and m/z dimensions, it is very likely that co-eluting or partly

overlapping isotope patterns are merged into one single hypothesis instead of distinct ones.

Furthermore, a trace that is actually a higher isotopic trace of another pattern might erroneously

be chosen as the monoisotopic trace of a hypothesis. To filter out such invalid hypotheses, we

first consider each hypothesis by decreasing score, giving precedence to high-scoring hypotheses.

Subsequently, we apply an isotope abundance filter to reject unlikely metabolite hypotheses.

Based on the theoretical isotope abundances extracted before, we trained a support vector

machine (SVM) to distinguish typical metabolite patterns from unlikely intensity ratios. For

each of the roughly 115,000 isotope patterns, we extracted the first three isotope abundance

ratios together with the monoisotopic mass. These constituted the four features of a training

instance for the SVM classifier. Since the classifier must cope with isotope ratios from real-world

measurements that are generally prone to errors, it might misclassify measured ratios when

it is trained merely on theoretical isotope abundances. Consequently, we added Gaussian

noise to each of the theoretical abundance ratios in order to model a RMSE of 5 %. In case of

modern TOF mass spectrometers, an RMSE of 2 to 5 % is usually reported for relative isotopic

abundances (RIAs) [66]. We validated our binary classifier on a separate test dataset based

on empirical formulas from HMDB (around 7,800 metabolites with masses below 1,000 Da)

and an equally sized set of randomly sampled negative test samples. The classifier achieved an

excellent correlation between the actual and predicted classes (Matthews correlation coefficient

(MCC) [123] of 0.974).

With the SVM classifier, we evaluate each feature hypothesis H ∈ C and discard those that are

classified as invalid from C . In the final step, our algorithm traverses C sorted by descending

hypothesis scores Scombined and subsequently transfers feature hypotheses to a list of accepted

features. In order to ensure that no mass trace occurs in more than one feature, all remaining
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hypotheses containing already accepted mass traces are removed from C . Due to the mono-

tonicity of our scoring function, a feature hypothesis with n ≥ 1 higher isotope traces will

always yield a lower score than the same hypothesis extended by one or more higher isotope

traces (both hypotheses validated by our SVM classifier). As a consequence, our algorithm will

favor feature hypotheses that show the most complete isotope patterns and discard any of their

subcomponents, maximizing the overall score and yielding the optimal solution.

The final list of features is stored in an extensible markup language (XML)-based file format

(featureXML) that contains both key properties (rt, m/z, intensity, FWHM, and charge) and

potential meta-information (e.g., unique identifier). The algorithm offers the option to report

the feature intensity either as the chromatographic peak area of the monoisotopic trace alone

(default setting) or the sum of all isotopic peak areas.

3.3 Datasets

Assessing quantification algorithms is a difficult task, severely hampered by the complexity

of the data and the lack of an exact ground truth if experimental datasets are used (e.g., due

to the presence of unknown/unexpected contaminants). At the same time, there is not a

single performance measure for a quantification algorithm. It needs to be sensitive, accurate,

fast, and robust. In order to assess the different aspects of our algorithms, we devised two

complementary benchmarking strategies. For the first benchmarking setup, we conducted MS

measurements with a concentration series of standard compounds that were spiked in human

plasma. The resulting dataset allows us to assess the algorithm’s quantification accuracy on

a complex real-world sample. However, the exact number of true metabolite features in our

experimental data is not known and thus the classical assessment by sensitivity and specificity is

infeasible. Since there are only few freely available and fully annotated metabolomics datasets

that could be used as a ground truth, we computationally generated a synthetic dataset based

on a published list of 500 well-characterized plant metabolites. This ground truth provides the

basis for our second benchmarking setup where we aim to quantify the algorithms’ performance

by terms of recall and precision rates.

3.3.1 Quanti�cation Dataset

For the spike-in experiments with human plasma, we selected a set of seven standard compounds

that provide both a reasonable distribution within the experimental gradient and a good mass

coverage. The standard compounds together with their mass-to-charge ratios and rts under the

given experimental conditions are shown in Table 3.1.
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Standard CAS-RN m/z rt [min]

Propionyl-L-carnitine-d3 1182037-75-7 221.15751 1.4
Nialamide 51-12-7 299.15025 5.7
Sulfadimethoxine-d6 73068-02-7 317.11851 8.4
Reserpine 50-55-5 609.28065 10.6
Terfenadine 50679-08-8 472.32099 12.4
Hexadecanoyl-L-carnitine-d3 1334532-26-1 403.36096 16.6
Octadecanoyl-L-carnitine-d3 N.A. 431.39227 18.6

Table 3.1: Standard compounds employed in the spike-in experiments.

Sample Preparation

All following sample preparation steps were performed by Sara Forcisi and Kilian Wörmann

(Research Unit Analytic Biogeochemistry, Helmholtz-Zentrum München, Germany).

All aqueous solutions were prepared using LC-MS grade water from Chromosolv R©, Fluka Ana-

lytical (Sigma-Aldrich, Munich, Germany). LC-MS grade acetonitrile and methanol were pur-

chased from Chromosolv R©, Fluka Analytical (Sigma-Aldrich, Munich, Germany). Formic acid

UPLC-MS grade was procured from Biosolve (Valkenswaard, The Netherlands) and Sodium hy-

droxide (≥98 %) from Roth (Karlsruhe, Germany). Leucine enkephaline (≥95 % HPLC grade),

Nialamide (95 %), Reserpine (≥99 % HPLC grade), Sulfadimethoxine-d6 (VETRANALTM), and

Terfenadine were purchased from Sigma-Aldrich (Munich, Germany), [3,3,3-d3]-propionyl-L-

carnitine hydrochloride, [16,16,16-d3]-hexadecanoyl-L-carnitine hydrochloride, and [18,18,18-

d3]-octadecanoyl-L-carnitine hydrochloride were purchased from Dr. H. J. ten Brink Laboratory

(Amsterdam, The Netherlands). A stock solution for each standard was prepared at the con-

centration of 1 gL−1. Each standard was mixed at the same concentration in 20 % acetonitrile

solution. An experimental standard serial dilution at 10 mgL−1, 5 mgL−1, 2 mgL−1, 1 mgL−1,

0.5 mgL−1, 0.2 mgL−1, 0.1 mgL−1, 0.05 mgL−1, 0.02 mgL−1, and 0.01 mgL−1 was set. In ad-

dition, a non-spiked sample was included in the experiment.

Fresh EDTA blood was collected from healthy male donors. Blood plasma was prepared via

centrifugation at 2,000 g at 4 ◦C for 7 min. The resulting plasma was pooled, mixed, and

aliquoted for storage at −80 ◦C until analysis. Frozen EDTA plasma was thawed on ice and

vortex-mixed for 30 s prior treatment. The protein precipitation extraction procedure was

performed adding cold acetonitrile (1 mL) to a plasma volume (250µL). After adding the

organic solvent, the samples were vortex-mixed for 30 s at room temperature and centrifuged

at 15,294 g for 10 min at 4 ◦C. The dried samples were reconstituted in 50µL of the different

experimental standard solutions.
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UPLC-MS Analysis

The UPLC-MS analysis and data conversion steps were performed by Sara Forcisi and Kilian

Wörmann (Research Unit Analytic Biogeochemistry, Helmholtz-Zentrum München, Germany).

Sample analysis was performed using a Waters Aquity UPLC system coupled to a Synapt HDMS

oa-QTOF mass spectrometer (Waters, Mildford) equipped with an ESI operating in positive

mode. The gradient chromatographic separation was performed with a C18 Vision HT-HL

UPLC column (2× 150mm, 1.5µm, Alltech Grom GmbH, Germany). Elution buffer A was

water containing 0.1 % formic acid and elution buffer B was acetonitrile. The flow rate was

set to 0.3 mLmin−1. The linear gradient method consisted in 5 % of B over 0–1.12 min, 5 to

100 % of B over 1.12–22.27 min and held at 100 % B until 29.49 min, returned to 5 % of B at

29.56 min. In order to equilibrate the column with the initial mobile phase, 5 % B was kept

until 35 min. The column oven was set to 40 ◦C and the sample manager temperature to 4 ◦C. A

solution of leucine enkephalin (556.2771 u, 400 pgµL−1) in MeOH/H2O:1/1 containing 0.1 %

of formic acid was infused as lockmass compound at a flow rate of 5µLmin−1. The spectra

were acquired in centroid mode within an m/z range of 50–1,000. The detection parameters

are listed in table A.1.

The samples were measured in randomized triplicates and alternated with blank samples

consisting of 20 % acetonitrile. All data files were converted into mzML format [57] using the

command line tool msconvert.exe of the ProteoWizard suite (version 2.1.2464) [58].

For each measurement, we extracted metabolite features with our algorithm (see Appendix A.1.1

for the configuration file) and stored the resulting feature map in the featureXML data for-

mat [11]. For the following processing steps, we used existing software solutions from

the OpenMS framework (version 1.10). Features coinciding in at least two measurements

were aggregated to consensus features and stored in the consensusXML format by using the

FeatureLinkerUnlabeledQT software. This consensus file was then exported to a tabu-

lar text format with the TextExporter tool. All further analyses were conducted with the

MATLAB (version R2012b) [124] and R (version 2.15.2) [8] software packages.

3.3.2 Simulated Plant Metabolites Dataset

In order to determine precision and recall of our methods as well as the dependence of the

algorithm’s performance on noise and instrument accuracy, we chose to employ simulated

datasets. In case of the human plasma dataset, the computation of such metrics is infeasible

since the ground truth is unknown. Thus, we created a dataset with known ground truth

that is based on a metabolomics investigation of plant metabolites [125]. However, elution

profiles and isotope patterns were created synthetically in order to control these parameters

independently, which is not easily done in an arbitrary fashion experimentally. Even if it were

varied experimentally, for example by repeated measurements modifying instrument resolution,
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we would not be able to remove inter-sample variance. The simulation also does not contain

unknown contaminants so we can determine true recall and precision rates based on the known

(simulated) ground truth.

For the generation of synthetic LC-MS datasets, we employed the software package MSSimulator

(version 1.10) [126]. The simulator creates profile data based on the experimentally deter-

mined rt and the composition of a set of compounds. It can simulate different instrument

resolutions, noise levels, and chromatographic performance. The datasets created here are

based on experimentally identified metabolites and thus capture the complexity of a real-world

sample. At the same time, the simulator provides complete control over signal-to-noise ratio,

accuracy, and similar parameters that would be very difficult to vary independently of each

other experimentally.

The dataset is based on a list of identified plant metabolites of a rather comprehensive study

by Giavalisco et al. [125]. The authors reported the elemental composition, intensity, and

rt of hundreds of metabolites in their work in the supplementary information of their study.

This information was sufficient to simulate synthetic datasets with characteristics typical

for a complex metabolomics study. MSSimulator performed a raw signal simulation of 500

metabolites within the m/z range of 100–1,000 and with a simulated gradient runtime of 25 min.

The machine-dependent settings of MSSimulator were chosen close to our experimental MS

setup: The simulated MS resolution R was set to 20,000 and scan time to 0.25 s. The output of

MSSimulator comprised a centroided LC-MS measurement and a feature map summarizing

all simulated metabolites with theoretical rts, m/z ratios, and intensities (Appendix A.1.1).

This feature map facilitated the comparison between the ground truth (the simulator’s input)

and the features detected by our algorithm applied to the same simulated data.

To assess the influence of different sources of noise on the feature finding performance, we

conducted three series of MS simulations each affected either by detector noise, m/z variation,

or elution profile distortion. In the first series, we simulated increasing levels of detector noise

that was controlled by the Gaussian standard deviation σdet. The second series comprised two

datasets simulated with moderate and strong mass errors (Gaussian standard deviation σm/z

set to 10 ppm and 40 ppm respectively). For the third series, we simulated elution profiles with

ideal peak shape and heavily distorted shape. In MSSimulator, the degree of distortion is

controlled by the number of iterations ndist, i.e., the more iterations are performed the more

the elution profiles deviate from their smooth Gaussian shape. The configuration for each

simulation is summarized in Table A.2 and can be found under Appendix A.1.1.

For performance evaluation, we computed both the recall r and precision p based on the

number of ground truth features and the number of features found or missed by our algorithm.

These measures can be combined into the F -score [127] defined by

F -score=
2 · r · p
r + p

(3.12)
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For each of the simulated datasets, we employed our algorithm to detect a feature map

and compute its F -score. The resulting scores were plotted with respect to either varying

MSSimulator parameters (e.g., σdet) or parameters of our feature finding algorithm.

Comparison to Related Methods

We repeated the performance assessments done with our algorithm with the XCMS and CAM-

ERA packages (Bioconductor version 1.34 and 1.14, respectively) [9, 10], which are currently

considered to be among the leading feature detection algorithms. For each experiment, we

adjusted the corresponding parameter settings of the XCMS software to the best of our knowl-

edge. Since the feature set found by XCMS is not deisotoped and thus would not allow for

a fair comparison, we additionally employed the CAMERA package to detect higher isotope

masses in the XCMS output.

To allow for a direct comparison to our method, we first converted the XCMS/CAMERA output

to a compatible feature map. For each set of annotated isotope traces in the XCMS/CAM-

ERA output, we kept the rt, m/z, and intensity values of its first isotope in a tabular format

and discarded the higher ones. Since CAMERA clustered multiple adducts belonging to the

same compound together, we resolved these clusters and stored each contained feature in-

dividually. Non-annotated features were regarded as singleton mass traces and were added

to the same table. This extraction procedure resulted in condensed feature lists that were

converted to the featureXML file format with the FileConverter software [11]. We employed

the FeatureLinkerUnlabeledQT software to link features that were detected both by our

algorithm and XCMS/CAMERA.

3.4 Results

In this section, we present the results obtained from the quantification dataset as introduced

in Section 3.3.1. We assessed the performance of our algorithm from different perspectives.

First, we examined the linearity of the response observed in spike-in experiments as a measure

of quality of absolute and relative quantification. Then, we assessed the reproducibility of

the feature finding process by determining the number of features detected over technical

replicates. In order to dissect some effects of the data quality on the behavior of the algorithm

in more detail, we show results obtained on a simulated dataset. With the general quality of

the methods already demonstrated on real-world data, simulated data permit the independent

variation of certain characteristics and also the determination of an independent ground truth.

Finally, we repeated the benchmarking studies with the state-of-the-art software packages

XCMS and CAMERA and compared the results to the performance of our algorithm.
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Figure 3.5: Relationship between Reserpine and Terfenadine concentrations and respective
feature intensities. For each concentration, an error bar depicts the standard deviation of the
triplicate intensities. The solid line connects the mean intensities obtained from each of the
11 triplicates. For each compound, a line was fit by linear regression to the 33 concentration-
intensity data points with the goodness-of-fit R2 (dashed line). The inlaid plots show a close-up
of the low-concentration range between 0 and 0.5 ppm.

3.4.1 Quanti�cation Linearity and Reproducibility

Based on the spike-in series in a complex plasma background, we assessed both the linearity

(11 different concentrations spanning three orders of magnitude) and the reproducibility of

the quantification (based on triplicate measurements). With the detection of the standard

compound features for each of the human plasma spike-in experiments and their subsequent

linking, we obtained intensities for each analyte and dataset. Table A.3 lists the corresponding

mean feature intensities and standard deviations across the triplicate measurements performed

for each concentration of the analytes. We show the relationship between the analytical

concentrations and their corresponding feature intensities for two selected standard compounds

(Reserpine and Terfenadine) in Figure 3.5 and refer to Figures A.1 to A.3 for the remaining

standard compounds.

For each concentration, we found a rather small variation between the triplicates feature

intensities (in general, two orders of magnitude smaller than the mean intensity) and thus a good

reproducibility of both the LC-MS measurements and feature detection algorithm. The Pearson

correlation coefficient between each compound’s concentrations and corresponding feature

intensities revealed an excellent linear relationship (R ≥ 0.98 for all standard compounds).

This result suggested that the relative quantification of analytes with our algorithm was reliable

for a wide range of concentrations (in the presented example, about three orders of magnitude).

In the case of the propionyl-L-carnitine-d3 standard, we could not detect any signals for the
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Figure 3.6: Numbers of reproducible features yielded by our algorithm and XCMS/CAMERA
in the spike-in human plasma dataset. Each bin of the histogram plot represents a number of
measurements a feature was reproducibly detected in. The bars show the absolute numbers of
features that were detected with the respective reproducibility.

first six concentrations, neither by our algorithm nor by visual inspection of the raw data.

Apart from the standard compounds, the algorithm detected on average 2,020.0± 23.6 features

per measurement whereof 351 were singly, 12 doubly, and six triply charged. The remaining

features (on average 1,650) were singleton mass traces that exhibited no isotope pattern (e.g.,

due to low signal intensity) and thus did not allow determining the charge state. Since the

ground truth set of real metabolites was unknown for the plasma samples, the distinction

between real metabolite features and random features (e.g., noise, contaminants) was not

possible. To resolve this issue, we determined the percentage of measurements in which each

feature was detected. This detection rate is a measure of reproducibility and may serve as a

rough guide to tell randomly occurring features apart from potential metabolite features. A bar

plot shows the distribution of these detection rates (Figure 3.6).

We found a set of 1,168 features to be reproducible in at least 50 % of all measurements. We

then compared this feature set to the features detected in each individual measurement and

determined the size of the intersection. On average, we found 1,066.0± 3.6 reproducible

features in each of the 33 measurements, that is, about 53 % with respect to the average

feature number of 2,020. Querying these features against the Human Metabolome Database

(HMDB) [128] with our AccurateMassSearch (AMS) tool (mass error tolerance of 5 ppm

and default list of potential adducts), 768 of the accurate masses yielded a hit, i.e., about 74 %

could be assigned to at least one potential metabolite ID.
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Figure 3.7: Intensity variation between features that were matched in at least half of the 33
spike-in human plasma measurements. For each matched feature, we computed the intensities’
coefficient of variation (CV) over the respective measurements. All matched features were
distributed to three bins with respect to the intensity’s magnitude of order. Based on the
intensity bins’ underlying distributions, median CV values were determined and depicted in a
bar plot. We conducted one-sided Wilcoxon tests to investigate if the observed difference of
the median CV between the methods is significant. The results from the pairwise comparisons
are marked by the significance level (asterisks). To allow for a direct comparison of FFM and
XCMS/CAMERA feature intensities, we normalized all measurements by quantile normalization.

Finally, we considered the intensity variation of coinciding features between all measurements

(features corresponding to the spiked-in standard compounds were excluded). We grouped

these features into three intensity bins (i.e., magnitudes of order) to determine the dependence

of feature quantification as a function of feature intensity (Figure 3.7).

In the first intensity bin (intensities between 102 and 103), we observed a median variation of

about 16.0 %. The second intensity bin (intensities between 103 and 104) showed a median

variation of 14.9 % that finally reached 14.7 % in the highest intensity bin (intensities between

104 and 105). These findings confirm a good reproducibility in terms of feature intensity when

feature sets are compared between technical replicates even for low-intensity features.
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3.4.2 Recall, Precision, and Robustness of the Algorithm

When simulating the dataset with parameters set to mimic experimental results most closely,

we could observe excellent precision and recall of the features of 97 % and 96 %, respectively

(Table 3.2). Unsurprisingly, increasing noise levels in the simulated data decreases both precision

and recall of the method. In extreme noise settings, F -scores can thus drop to significantly

lower values. The decline in performance primarily resulted from the loss in feature recall rate

— detecting features reliably becomes more difficult as the signal-to-noise ratio decreases. In

the following, we show detailed results from each of our simulation experiments.

First, we examined the influence of the noise_threshold_int parameter by adjusting it to

each simulated detector noise levelσdet. For low detector noise levels, our algorithm achieves its

maximum F -score of 0.96 (Figure A.4). Above σdet = 5, the performance decreases moderately

until reaching 0.62 on the highest noise level σdet = 100. When filtering out mass spectrometric

peaks with increasing values of this parameter, potential feature candidates are not considered

which implies that the observed decline of the F -score results primarily from the decrease of

the feature recall rate.

We studied the impact of under- and overestimating the mass error inherent to the data by

considering two datasets each simulated with a specific mass error and varying configurations of

the mass_error_ppm parameter (Figure A.5). For a simulated m/z error σm/z of 10 ppm (Fig-

ure A.5, left), the algorithm achieves an F -score of 0.97 when the parameter is set accordingly.

In comparison, we observe a similar performance for a simulated m/z error σm/z of 40 ppm

(Figure A.5, right). The performance plots in Figure A.5 suggest that the algorithm’s perfor-

mance is insensitive to moderate underestimation of the mass_error_ppm parameter. In case

of overestimation, the performance remains stable on a high level comparable to the F -score

yielded by the optimal settings due to the dynamic re-estimation of mass_error_ppm.

Analogously, we assessed the robustness of the chrom_fwhm parameter for elution profiles

simulated with heavy distortion (Figure A.6). Based on the distribution of all simulated elution

profiles, we estimated an average chromatographic peak width of eight seconds. The algorithm

achieves its maximum performance of 0.9 with chrom_fwhm set to 8 s and remains stable

for higher settings. For settings below eight seconds, the algorithm’s performance decreases

slightly until approximately four seconds and more steeply below this mark. This drop in

performance is due to the loss of feature precision rate since very low settings of this parameter

lead to insufficient smoothing of the distorted elution profiles and thus to their fragmentation.

However, the performance plots reveal that the F -score remains insensitive to sharp changes

within a rather broad margin of values lower than the optimal chrom_fwhm setting (between

four and eight seconds). This suggests that the algorithm allows for a robust performance even

if the parameter is moderately underestimated.
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Method Recall Precision F-score

FFM 0.96 0.97 0.97
XCMS/CAMERA 0.88 0.37 0.52

Table 3.2: Performance scores computed on the basis of the simulated plant metabolite dataset.
The algorithmic parameters were set appropriately to the simulated characteristics of the data.

3.4.3 Comparison to Related Methods

By repeating the benchmarks described above with XCMS/CAMERA, we could compare the

performance of our method to the one of the current leading algorithms in the field. Results of

that comparison are summarized in Table 3.2. For each of the human plasma measurements,

XCMS/CAMERA yielded 691.0± 7.2 features. We linked the feature sets of all 33 experiments

and computed their detection rates (Figure 3.6). Features with a detection rate above 50 % were

extracted, yielding a set of 544 reproducible features. For the comparison of XCMS/CAMERA

with our algorithm in terms of performance, we considered the overlap between the reproducible

feature sets. Both methods detected a set of 361 common features, whereas XCMS/CAMERA

and our algorithm found 183 and 807 exclusive features, respectively. Thus, our algorithm

detected a substantial proportion (66 %) of the XCMS/CAMERA feature set. At the same time,

XCMS/CAMERA found only about 31 % of our algorithm’s feature set. The high number of

exclusive features indicates that our algorithm exhibits a higher sensitivity than XCMS/CAMERA.

To verify the soundness of our exclusively detected feature set, we examined its intensity

distribution and found the majority of feature intensities between 102 and 103. This suggests

that the exclusive features stem mainly from a high sensitivity in the low-intensity range.

Since we restricted this comparison to highly reproducible features, we assume our algorithm’s

exclusive features to originate from weakly concentrated analytes rather than spuriously

detected artifacts, an observation that was confirmed by visual inspection of the datasets.

With regard to intensity variation between replicate features, the comparison revealed that

our algorithm exhibited slightly lower variations (14.7 to 16.0 %) than XCMS/CAMERA (18.0

to 18.9 %) across all intensity ranges (Figure 3.7). We observed that these differences in

intensity variation were statistically significant between XCMS/CAMERA and our method, but

not between different intensity ranges (based on a Wilcoxon test with p < 0.05).

We compared the benchmarking results of XCMS/CAMERA and our algorithm in terms of

simulated mass error and chromatographic peak distortion. In both mass error simulations,

our algorithm gave higher F -scores for the complete range of tested parameter settings than

the XCMS/CAMERA counterpart (Figure A.5).

When setting the algorithms’ mass error parameters according to the simulated error of 10 ppm

(40 ppm), XCMS/CAMERA achieved an F -score of 0.52 (0.75) and our algorithm an F -score

of 0.97 (0.95). Furthermore, the performance plots revealed differences in the robustness

of the mass error parameter. While the parameter was insensitive to moderate under- and
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overestimation in our algorithm, in XCMS/CAMERA it was more susceptible to minor changes

(Figure A.5)

3.4.4 Availability

The feature detection algorithm presented in this work was implemented and integrated in the

open-source framework OpenMS (version 1.10) as the software tool FeatureFinderMetabo

(FFM). The FFM tool can be invoked from the commandline or from TOPPView, OpenMS’

graphical user interface for processing and analyzing MS data. Parameter settings are stored

in XML-based configuration files (*.ini) that can be modified by using the INIFileEditor

tool (Figure A.7).

As input file format, FFM accepts the mzML standard [57] and stores the results in the fea-

tureXML file format. FeatureXML files can be read and further processed by other OpenMS tools,

e.g., MapAlignmentPoseClustering for rt correction or FeatureLinkerUnlabeledQT for

linking coinciding features between multiple experiments. OpenMS offers functionality to build

custom processing and analysis pipelines through the graphical workflow editor TOPPAS [118].

We employed TOPPAS to construct an example workflow for label-free metabolite quantification.

This tool chain comprises feature detection, rt correction, feature linking, and the export to a

tabular text file for subsequent statistical analyses. In order to allow for easy integration of down-

stream analysis methods such as statistical learning, we implemented this workflow in Konstanz

information miner (KNIME), a powerful platform for information mining [129]. Both OpenMS

1.10 and workflows based on FFM are available online at http://www.OpenMS.de.

3.5 Discussion

The feature finding method introduced in this work, the OpenMS FeatureFinderMetabo

(FFM), is a sensitive and reliable method for identifying metabolite features in LC-MS data. It

is based on a sensitive mass trace detection and hypothesis-driven feature assembly. Model

scoring with a hybrid mass deviation and isotope profile scoring results in accurately assembled

features. An important component of the scoring function is the detection of likely metabolite

profiles by statistical learning methods.

The algorithm can determine feature intensities of metabolites with high sensitivity and speci-

ficity (above 95 % on typical data). Even in complex backgrounds (human plasma) we found

excellent linearity of the quantification based on repeated spike-in experiments. In a direct

comparison, FFM was thus able to outperform established methods for LC-MS feature detection.

Primarily in the low-intensity range, we are able to pick up signals with a poor signal-to-noise

ratio. Thus, analyzing LC-MS data with FFM might reveal interesting new metabolites or at

least expand the dynamic range of metabolomics analyses. Implementation of FFM as an

OpenMS/TOPP tool ensures platform independence and convenient availability.
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3.5 Discussion

We designed the feature assembly algorithm to reconstruct solely isotope patterns. While it is

a common strategy to also detect different adducts and charge states belonging to the same

analyte and integrate these into a unique feature, we believe that this problem should be

tackled in a separate processing step. Adducts of the same compound may show great variation

in their ionization behavior and with that are difficult to detect accurately.

Future improvements of the algorithms will include a more advanced noise estimation model

in order to increase the specificity of the algorithm. We are also exploring methods making use

of multiple (replicate) measurements that collate information across multiple LC-MS runs in

order to increase both the precision and the recall of the method.
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CHAPTER 4

Metabolite Feature Identi�cation

4.1 Introduction

It is a very common setting that untargeted metabolomics experiments yield hundreds to

thousands of features that must first be identified before any biological interpretation can

take place. While the knowledge of their identity is not a necessary requirement to take the

untargeted approach, it is instrumental to generate more specific hypotheses and thus to reduce

time and costs of targeted follow-up measurements. In this chapter, we present a comprehensive

metabolite ID pipeline combining complementary methods.

We developed the AccurateMassSearch (AMS) tool to cope with a high volume of accurate

mass search queries against the Human Metabolome Database (HMDB) efficiently and to

annotate the feature maps coming from our FeatureFinderMetabo (FFM) tool. We chose the

HMDB as our main data source since not only it covers the human metabolism comprehensively

but also integrates metabolites from external sources (e.g., food or drugs) [27]. With more than

40,000 entries, it is one of the most complete metabolite resources publicly available. One of

the main problems of accurate mass search is that the adduct behind an observed feature mass

and hence its neutral mass (i.e., an analyte’s mass in its uncharged state) is usually unknown.

While it is common practice to focus on the most probable adducts such as the proton variants

[M+H]+ or [M−H]− only, many observed masses can be explained only if a broad spectrum

of potential adducts is considered. To this end, the AMS tool was designed to be flexible in this

regard, that is, the lists of potentially formed adducts can be modified freely depending on the

experiment at hand. However, the more potential adducts are considered for the accurate mass

search, the higher is the risk of false positive IDs. Exploiting the relative isotopic abundance
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(RIA) obtained from high-resolution MS such as the recent Orbitrap devices were shown to

improve the automatic annotation of metabolite signals [130]. Thus, we integrated an RIA filter

with AMS in order to discard results with incompatible isotopic patterns. The final results are

stored according to the mzTab standard, a column-based file format for reporting quantification

and identification results [14].

The MetaboliteSpectralMatcher (MSM) tool integrates the basic functionality of spectral

matching against metabolite fragment databases into the OpenMS framework. The success of

spectral matching highly depends on the extent of metabolites covered in a spectral database.

We chose the MassBank database as our main spectral resource [13], since it was one of the

few public repositories that offered a good coverage of metabolite MS/MS spectra and that

allowed its data to be retrieved for offline usage. While the default database is assembled from

the MassBank repository, it is designed to be easily extended or replaced by in-house measured

fragmentation data (e.g., spectra of authentic standards). We developed a specialized local

data structure to hold the mass spectral information and to facilitate the efficient search of

matching spectra. Analogously to the AMS tool, the results are stored in the mzTab format

such that the coinciding IDs of both methods can be merged afterwards.

Depending on the mass error allowed and the number of hypothetical adducts considered during

the AMS, the list of matching candidate empirical formulas and metabolite structures may grow

dramatically. In order to reduce the number of false positive IDs, we studied the application

of rt prediction models as an orthogonal filter criterion. The first hurdle to clear is often to

assemble a representative training dataset preferably with a high number of metabolites that

are annotated with structure and rt information. In case of untargeted experiments, however,

there are usually either none or only a few identified metabolites to start with. We studied

the applicability of rt models as orthogonal filters based on the RPLC-MS measurements as

presented in Chapter 5. There, we experimentally validated a number of metabolites that could

be exploited as a representative training dataset.

When the metabolite ID approaches are employed individually, they are often not powerful

enough to guarantee unique IDs. In particular, the AMS tool may generate a high number

of false positive candidate metabolites per feature mass since it focuses on mass alone and

does not incorporate any chemical knowledge. To some extent, this is remedied by the RIA

filtering approach, however, complete isotope patterns are rarely observed in case of low-

abundance metabolites. For this reason, the integration of the AMS tool with the complementary

information offered by the structure-based methods such as spectral matching or rt filtering

seems particularly promising. We studied a strategy that combines the results gained from the

AMS and MSM tools to a consensus in order to further increase the confidence of computational

metabolite IDs.
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4.2 Methods

We first introduce the experimental procedure to measure an RPLC-MS/MS dataset for bench-

marking and validation purposes. Then, the ID methods and their algorithmic details are

discussed individually. Finally, we describe a novel strategy which integrates the orthogonal

information of the AMS and MSM tools to achieve more confident IDs.

4.2.1 RPLC-MS/MS Validation Dataset

The following RPLC-MS/MS analysis was performed by Christina Ranninger (Division of Chemistry

and Bioanalytics, University of Salzburg, Austria).

To validate our ID methods, a dataset was compiled from the authentic standards of all

proteinogenic amino acids, ten metabolites associated with the TCA cycle, and 24 common

metabolites (in total, 54 compounds); these were retrieved from our in-house chemicals storage

(Table A.7). All standards were dissolved in varying amounts of substance in 30 % MeOH such

that target concentrations between 10–100µL were acquired.

The RPLC-MS/MS measurements were conducted with an Accela II HPLC system (Thermo Fisher

Scientific, Bremen, Germany) coupled to an Exactive Orbitrap mass spectrometer (Thermo

Fisher Scientific, Bremen, Germany). The MS device was equipped with a heated electrospray

ion source; the spray voltage was set to 3.0 kV in both the positive and negative ion mode.

The chromatography was performed on a Hypersil Gold aQ column with 100 mm×2 mm in

dimensions and 1.9µm particle size (Thermo Fisher Scientific, MA, USA). In regard to mobile

phases, we used water with 0.1 % formic acid (A) and acetonitrile with 0.1 % formic acid (B).

The flow rate was 300µl min−1. The elution gradient was started with 100 % A for 1.5 min

and then followed by a linear gradient to 100 % B during 6.5 min; 100 % B was held for 2 min.

In the ending stage of the gradient, the column was re-equilibrated for 2 min at 0 % B. The

total gradient time amounted to 13 min. During chromatography, the column temperature was

maintained at 30 ◦C. For a single measurement, we injected 2.7µl of standard mix solution.

The MS scan (100 to 1,000 m/z) resolution was set to 70,000 with an automatic gain control

(AGC) target of 1 · 106 and a maximum injection time of 100 ms. The MS/MS experiment was

performed with a resolution of 17,500 (AGC target was set to 1 · 105 and a maximum injection

time of 50 ms). The isolation window was set to 1 Da and the applied normalized collision

energy (NCE) was stepped (17.5, 25 and 32.5). The underfill ratio was set to 0.1 %, the apex

trigger to 2–3 s, and a dynamic exclusion of 10 ms was chosen.

Both the positive and negative mode RPLC-MS/MS measurements were centroided and con-

verted to the mzML standard with the ProteoWizard software suite (version 3.0.4243) [58].

We extracted the metabolite features from both datasets with the FFM tool (Chapter 3). For

this purpose, we chose rather lenient parameter settings in order to capture the potentially
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Feature ID RT m/z
intensity 

mono
intensity 

iso1
intensity 

iso2
F1 1027.5 496.11304 45209.8 4293.4 N.A.
F2 302.89 235.20503 8109.5 N.A. N.A.
... ... ... ... ... ...
Fn 403.25 308.09012 345923.1 44379.8 21253.7

metabolite feature list from quantification

monoisotopic mass 
(sorted increasingly) sum formula HMDB ID list

...
285.10011 C16H15NO4 HMDB30177
285.10145 C17H11N5 HMDB15141

...
307.08381 C10H17N3O6S HMDB00125

...

internal mass-to-ID mapping

m/z

in
te

ns
ity

theoretical
isotope pattern

mzTab output of results

1) load feature coordinates
from featureXML file

glutathione

6) write results in mzTab format

5) compute similarity between
theoretical and observed isotope patterns

(optional)

mM

4) retrieve empirical formulas within
[mM - ε, mM + ε] mass window (binary search)

3) convert feature mass mfeat to
candidate neutral masses mM

...

2) parse list of adduct ion
formulations

potential adduct [M+H]+:
mM = mfeat - mH+ = 307.0828 Da

potential adduct [M+Na]+:
mM = mfeat - mNa+ = 285.1009 Da

mfeat

observed
isotope pattern

Figure 4.1: Design of the search strategy as implemented by the AMS tool. (1) Feature
coordinates (monoisotopic m/z, isotopic intensities) are parsed from the featureXML or
consensusXML files. (2) A list of positive or negative adduct formulations are parsed and
interpreted as calculation rules. (3) Based on these rules, the observed feature masses are
converted to a list of putative neutral masses. (4) An internal table data structure is queried
with each neutral mass to find matching empirical formulas within a user-defined mass error ε.
(5) Optionally, isotope pattern filtering can be employed to filter out incompatible empirical
formulas. (6) The ID results are exported in the tabular mzTab reporting format.

low-signal standards (Appendix A.1.2). The mzML and featureXML files constituted the input

for the AMS and MSM ID runs described in Section 4.2.4.

4.2.2 Accurate Mass Search with Isotope Ratios Filtering

Based on a feature’s observed mass mfeat, the AMS algorithm first computes potential neutral

masses according to a predefined list of hypothetical adduct ions. This set of candidate neutral

masses are then matched against the HMDB database with a user-defined mass error window

to find compatible empirical formulas and to map these to actual metabolites. Although we

focused on the data provided by the HMDB, the AMS algorithm can work with any other DB.

The general strategy of the AMS algorithm is outlined in Figure 4.1.

The mapping between empirical formulas and matched molecule structures from the HMDB
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corresponds to the left-total relation RAMS between S, the set of empirical formulas present in

the database, and H, the set of all unique metabolite structures, such that

∀s ∈ S ∃h ∈ H : (s, h) ∈ RAMS (4.1)

holds (Figure 4.2). In order to cope with a high volume of feature mass queries efficiently

(as it is the typical scenario with feature maps from untargeted metabolomics experiments),

it was instrumental to construct a local data structure that modeled the RAMS mapping and

offered offline searching functionality (i.e., stored in the OpenMS file hierarchy). We chose the

HMDB database (version 3.5) as our default metabolite information resource [27]. First, we

retrieved the data from the online repository comprising over 40,000 records. Each record is

stored as an XML-based file containing basic information (e.g., monoisotopic mass, common

name, simplified molecular input line entry specification (SMILES) or international chemical

identifier (InChI) strings) and additional meta-data (e.g., physiological concentrations, related

literature) about a specific metabolite. We implemented the Python script parseHMDB30.py

(Appendix A.1.2) to extract those fields from each XML file that were essential for the RAMS

mapping (empirical formulas, corresponding monoisotopic masses, and record identifiers). In

Python, we modeled RAMS as a dictionary data structure with the empirical formula string as key

and a list of matching record identifiers as value; whenever a previously encountered empirical

formula was found in the dictionary, the record identifier was appended to the corresponding

list. This dictionary was finally stored in the tabular text file HMDBMappingFile.tsv where

each line corresponds to one empirical formula (Table A.4). Additionally, another dictionary

was built as a look-up table to retrieve structural information about each HMDB entry and

stored in the tabular text file HMDB2StructMappingFile.tsv. By loading the condensed

information from these two files into map objects for fast lookup operations, our algorithm

could assign structural information to observed feature masses in a fast and efficient manner.

Since the HMDB metabolites are reported as uncharged molecules by default, the observed

feature mass must first be converted to its putative neutral mass. However, it is often not

clear which specific adduct ion caused the mass observed and thus several putative adducts

must be taken into account. The AMS algorithm was designed to allow for a flexible, user-

definable list of adducts to consider. To this end, we implemented a simple parser that reads

the pseudo-molecular formulation of an adduct ion and interprets it as a calculation rule in

order to transform the adduct mass to the neutral mass. Before running the search algorithm,

these adducts are read in from the PositiveAdducts.tsv or NegativeAdducts.tsv file,

respectively. The default lists of potential adducts were adapted from the online resources of

the FiehnLab [131], the same HMDB employs in their online search [27]. In comparison to

the common writing convention of pseudo-molecular ions, we used a slightly abridged version

without the square brackets and with the charge separated by the semicolon character. These

changes simplified the parsing process since all operands (i.e., sub-molecules) could be extracted

via string splitting operations and interpreted by the OpenMS library’s EmpiricalFormula
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S H

HMDB00122

HMDB00169

...

HMDB33704

HMDB00125

C6H12O6

C10H17N3O6S

Figure 4.2: The mapping relation RAMS modeled by the AMS tool. While each metabolite
structure in H has a unique empirical formula in S, more than one distinct structure may be
associated with the same empirical formula. For example, the empirical formula C6H12O6
relates to several hexoses such as D-glucose (HMDB00122), D-mannose (HMDB00169), and D-
galactose (HMDB33704). When the HMDB is queried for the empirical formula C10H17N3O6S,
only glutathione (HMDB00125) is returned as a result.

objects to determine their monoisotopic masses (Figure A.9). Finally, the actual query mass

was calculated by solving the adduct equation by the neutral mass mM :

mM = mfeat −
3
2
·mH2O −mH +me−

= mfeat − 27.01585 Da− 1.00783 Da+ 0.00055Da (4.2)

Based on this putative query mass, the AMS algorithm employs a binary search strategy to

determine all empirical formulas of RAMS that lie within mM±ε. The mass error ε depends on the

mass accuracy provided by the MS device and can be set accordingly by a user parameter in the

AMS tool configuration (either as absolute or relative error). The algorithm tracks the matching

empirical formulas with a set of AccurateMassSearchResult objects (Figure A.8).

Even if the feature masses were measured with high mass accuracy, the AMS may yield several

distinct empirical formulas for a given feature mass [65]. Furthermore, since we consider

several putative adduct formulations simultaneously, there is a higher chance for finding distinct

empirical formulas matching the same feature mass. In order to reduce the number of false

positives, we applied an isotope pattern filter criterion as proposed in [65]. Given a feature

with k isotopes and their intensities i j , we compute the k− 1 RIAs

r j =
i j

I
∀ j = 1,2, . . . , k (4.3)

where I =
∑k−1

0 i j is the total abundance of all isotopes. Analogously, for each matched

empirical formula stored in the set of AccurateMassSearchResult objects, the ratios r ′j are
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computed from their theoretical isotope patterns. We define an empirical formula resulting

from an AMS query as valid if the condition

|r ′j − r j|< σRIA ∀ j = 1,2, . . . , k (4.4)

holds. The variable σRIA corresponds to the expected RMSE of relative isotope abundances

and can be controlled by a user-definable parameter. In some cases, this RIA error is stated in

the technical specifications of mass spectrometers and usually ranges from 2 to 5 % [66]. Sum

formulas failing this condition are discarded from the set of AMS results while valid candidates

are passed to the final report of results.

The AMS algorithm exports the putatively identified compounds according to the column-

based mzTab standard specification [14]. Each potential metabolite structure (i.e., the unique

record identifier) is written in an individual row; columns correspond to related information

(e.g., common name, empirical formula) that are mandatory and are filled out with the data

from the respective AccurateMassSearchResult object. The mzTab standard allows for

the integration of non-standard information by appending optional columns. By this means,

additional diagnostic information such as mass error and found adduct formula is exported to

the output file. In order to facilitate the back-tracking of metabolite ID to the initially observed

feature, each row is labeled by the feature index as stored in the original featureXML input

file. For an example mzTab output file, we refer to Table A.5.

4.2.3 Spectral Search in Fragment Spectra Databases

Analogously to the requirements of our AMS tool to allow for efficient and offline database

queries, our first step in implementing the MSM tool was to construct an efficient data structure.

To this end, we retrieved the complete online data repository of MassBank, a total of 30,136

records [132]. Each record is stored as an individual text file containing the fragment peak list

and additional information about how the spectrum was acquired (Table A.6). We implemented

the Python script parseMBFiles.py to extract essential information such as the precursor

mass, the product ion peak list, and metadata to classify the type of experiment (e.g., MSn level,

collision energy) from each record file (Appendix A.1.2). Both the peak and meta information

were then transcribed by the script to OpenMS-based data structures to build a local spectra

database stored in the mzML standard [57]. The general strategy of data extraction and

processing is outlined in Figure 4.3.

As a result, the parseMBFiles.py script yielded the MetaboliteSpectralDB.mzML file

that allowed us to load the spectral information from within the OpenMS file hierachy. During

its initialization, our MSM tool loads this file into an MSExperiment data structure [134]. This

map object completely resides in memory and thus facilitates fast access to individual spectra.

Apart from that, since the spectra were sorted by ascending precursor m/z, it also offers to
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MassBank

...
KNA00121.txt
KNA00122.txt
KNA00123.txt
KNA00124.txt

... (a)

precursor_mz: 308.09 

KNA00121 meta data

MSSpectrum

MSExperiment

precursor_mz: 308.09 

KNA00124 meta data

precursor_mz: 308.09 

KNA00123 meta data

precursor_mz: 308.09 

KNA00122 meta data

precursor_mz: 308.09 

KNA00121 meta data

i

i+1

i+2

i+3

...

...

(c)

(d)

precursor m/z

spectrum
index

mass query
window

i

j
mzML

(e)

(b)

precursor_mz = 308.09

peaklist = [
#(m/z, intensity)
...
(143.971436, 37489.95),
(162.011276, 328607.88),
(179.081558, 1139941.00),
...
(233.085693, 192869.59)
]

Python representation

MSExperiment
(sorted)

local DB file

Figure 4.3: General data extraction strategy of the parseMassBank.py script. (a) The Python
script parses for specific data fields such as metabolite identifier, precursor mass, or collision
energy and extracts the peak list from each MassBank record. These data fields are filled into
a temporary Python data object. (b) Using the functionality of the pyopenms package [133],
the peak and meta information is filled from the temporary object into a MSSpectrum con-
tainer [134]. (c) Each MSSpectrum object in turn is added to one MSExperiment container
M , the OpenMS kernel data structure for storing LC-MS maps. A spectrum can be accessed
efficiently via its container index. (d) The spectra contained in M are sorted by their precursor
mass. This facilitates to quickly determine the set of fragment spectra (indices from i to j) that
match a given precursor mass window. (e) The sorted data structure is stored to a local mzML
file and thus allows for fast offline database queries.
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restrict database queries only to those spectra with similar precursor masses. Given a specific

query precursor mass mp and error tolerance δmp, the MSM algorithm determines lower and

upper search boundaries, mp −δmp and mp +δmp, and their corresponding spectra indices i

and j within the map data structure via a twofold binary search (Figure 4.3). Subsequently,

spectral matching is conducted only against the fragment spectra with indices ranging from i

to j instead of processing the whole database.

To compute the spectral matching between an unidentified fragment spectrum Snew and the

spectrum from a candidate metabolite Sk (where k = i, i+1, . . . , j), we implemented a modified

version of the probabilistic spectral similarity function proposed by Fenyö and Beavis [82]. While

the original scoring function is geared towards the assessment of peptide fragmentation patterns

and models the probability of observing a specific number of matching b and y ions [135]

with a hypergeometric distribution, this was not applicable for the comparison of metabolite

fragmentation patterns. Therefore, we relaxed the assumption of specific ion types such that

all ions are treated the same and obtained the generalized score function

HyperScoreModified(Snew, Sk) = log

� n
∑

i=0

Ii · I ′i

�

+ log n! (4.5)

where Ii and I ′i correspond to the n matched product ion intensities from Snew and Sk, re-

spectively. Here, the dot product describes the correlation between product ion intensities

that match to each other within a specific mass error window. The second term models the

probabilistic contribution to the score based on the hypergeometric distribution. The more

product ions coincide between the two spectra in comparison, the less likely this spectral

matching is due to chance alone and with that the higher the contribution to the overall score.

Before a spectral matching score can be calculated, the algorithm must first determine the

matching product ion peaks. For each observed product ion peak in Snew with mass mp and

mass error δmp, the algorithm searches a peak in spectrum Sk that falls into the interval

[mp −δmp, mp +δmp] and is nearest to mp. Since the spectra peaks are sorted by their m/z,

these matchings can be computed efficiently by binary searches. The mass error δmp allowed

for product ions can be set by a user-definable parameter in the MSM tool’s configuration.

All spectra Sk yielding a positive score when compared to Snew are recorded as putative

metabolite candidates. These candidates are ranked by their score in descending order. The

MSM tool offers the option to either report solely the best hit or a list of the top three hits. In

case of multiple candidates, the algorithm assigns a group number that facilitates to track the

putative IDs back to the original Snew. Finally, these results are exported in a fashion similar to

the AMS tool as mzTab file (Table A.5).

In addition to the matching score, the algorithm allows the computation of an E-value, a measure

of the statistical significance of the result [82]. In essence, this value states how far away it

is from random spectral matches. Assuming that the positive scores follow a hypergeometric

distribution, E-values can be computed with a linear function that was fitted to the steepest
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Figure 4.4: E-value computation based on an exemplary HyperScoreModified distribution. A
regression line (red) is fitted to the data points that constitute the descending flank of the
log histogram. The threshold for scores to be regarded as significant is determined by the
regression line’s zero crossing point on the x axis. In this example, the highest score has an
E-value of e−3.554 and thus it is very unlikely to occur by chance alone.

descent of the trailing edge (Figure 4.4). For each queried fragment spectrum, the algorithm

first derives a histogram-based approximation of the scoring distribution by matching the

query spectrum against the whole database and distributing the positive-scoring results to

the histogram bins. Since there are multiple spectra recorded from the same compound that

merely differ in their scores, the algorithm merely considers the best scoring spectrum for each

metabolite structure. Based on the logarithmized counts, we determine the histogram bin

with the maximum count and the subsequent bins that are characteristic for the distribution’s

trailing flank. The algorithm then fits a linear regression model to the corresponding data

points. For each of the spectrum hits that are to be reported in the final mzTab output, an

E-value is computed and added as a further optional column.

4.2.4 Exploiting the AMS and MSM Tools in a Combined Approach

The mzML and featureXML files generated by our RPLC-MS/MS experiments (Appendix A.1.2)

constituted the input data for our MSM and AMS tools, respectively. We ran both tools separately

in order to assess the individual performances first before evaluating them in combination. In

practice, however, one could integrate both tools more tightly such that AMS acts as a prefilter

step to reduce the number of potential precursor candidates and to speed up the following

MSM run.
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In case of AMS, we conducted an experiment with a 2 × 2 factorial design in which we

studied the AMS tool’s main parameters, the list of potential adducts considered and the

mass error tolerance |δmAMS|. With respect to the adduct configuration, we investigated two

complementary scenarios. While we employed the complete adduct list as provided by default

in the first scenario, we restricted this list to the most common [M+H]+ and [M−H]− adducts

in the second scenario (for adduct configurations, see Appendix A.1.2). In each case, AMS was

run with the |δmAMS| parameter set to 5 ppm and 1 ppm. Furthermore, instead of reporting

the best or top three hits per feature, the tool was configured to report all matching results. We

investigated the frequencies of candidate IDs with respect to m/z in a heat map representation

and studied the proportions of the different adduct types. The MSM tool was employed to

match all MS/MS spectra recorded in the mzML files against the fragment database. For this

purpose, we used the default parameter settings of our MSM (precursor and fragment ion mass

error window set to 100 and 500 ppm, respectively). More details about the parameter settings

of both tools can be found in their respective configuration files (Appendix A.1.2).

In order to determine all metabolites that were identified by both the AMS and MSM methods

in an automated fashion, we implemented the Python script mergeIDs.py (Appendix A.1.2).

In the beginning, the script computes the mapping of features (AMS) to precursors (MSM)

that are closest to each other with respect to their rt and m/z coordinates. For each mapped

feature and precursor pair, the script compared the ranked lists of IDs. In the case of AMS,

the ranking was based on the increasing relative mass error between the observed feature

mass and database hits; the MSM results were ranked by their decreasing spectral matching

score (Equation (4.5)). We computed an ID consensus by matching the individual DB IDs and

reported them together with their respective ranks in a tabular output file. If this matching

was infeasible due to missing ID information, we performed a fuzzy string matching between

the metabolites’ common names instead (minimum similarity of 70 %). Although a structural

matching would have been the most reliable option, this was infeasible for several MassBank

records due to missing structure information. We confirmed the results by visually inspecting

the MS data; in particular, we examined if the precursor rt and m/z coordinates coincided with

a clear feature signal.

To assess the impact of the RIA filter on the resulting candidate numbers, we conducted several

AMS runs with differing RIA tolerances (1, 2, 5, 10, 20, 50 and 100 %). Since this filter affects

only features that exhibit an isotope pattern, we applied this analysis to a filtered featureXML

file where all singleton mass traces were excluded. Similarly, the percentage of annotated

features were determined under these parameter settings.

The validation of the combined approach was performed on the RPLC-MS/MS dataset intro-

duced in Section 4.2.1.
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4.2.5 Prediction of Metabolite Retention Times on RPLC-MS Columns

Based on the RPLC-MS dataset presented in Chapter 5, we assembled sets of 18 and 14

metabolites measured in positive and negative mode, respectively, with their rts covering the

whole range of the elution gradient (Table A.8). We confirmed these metabolites experimentally

with authentic standards or by MS/MS spectral matching. These initial datasets comprised

the metabolites’ identifiers, their m/z and rt as observed in the RPLC-MS measurement, and

structural information (i.e., InChI strings). We used these data matrices as the starting point

for the calculation of molecular descriptors.

We studied molecular descriptors that were simple and robust to compute from a compound’s

molecular structure and were predictive of their retention on RPLC columns. Intuitively,

descriptors for a compound’s hydrophobicity (expressed by the log P value [136]) were expected

to correlate well with its retention behavior. We chose the XLogP descriptor [137] to estimate

the log P for each of the training compounds. While the computations for our small dataset

were manageable, it was instrumental to have a computational workflow that would automate

these computations for a high number of unknown compounds to come. To this end, we

implemented a solution in the KNIME software [129] that could process metabolite structures

and their rts (e.g., from our AMS tool’s mzTab output), compute their XLogP values, and finally

export the descriptor matrix. The XLogP was computed with an open-source software package

provided by the Pharmaceutical Data Exploration Laboratory (PaDEL) [138]. The PaDEL

package implements a wide array of molecular descriptors and integrates this functionality into

KNIME. The resulting descriptor matrix was stored as a tabular format file.

We constructed a second workflow that imports this descriptor matrix and builds a linear model

to describe the relationship between the independent variable XLogP and dependent variable

rt. The linear regression is computed with the R integration in KNIME (Figure 4.6). The rt

prediction model was integrated in a predictor node that accepts new datasets (e.g., the mzTab

file from our AMS tool) for future predictions. Moreover, we added a filter criterion to discard

predictions that do not coincide with their observed rt values within the 95 % prediction interval,

i.e., the corresponding rows were discarded from the input matrix. To further condense the

number of overall putative IDs, we focused merely on simple adducts that occurred most likely

(e.g, [M+H]+ or [M−H]−, see AMS adduct configuration files in Appendix A.1.2). Finally, the

filtered IDs are stored in the same format as the input file.

4.3 Results

We first present the individual performances of our AMS and MSM tools. AMS detected most of

the standards measured in the validation dataset. When used with default parameter settings,

however, this came for the price of highly ambiguous IDs. This situation would curtail the

usefulness of the AMS tool, in particular, for untargeted metabolomics analyses. To this end,
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Figure 4.5: KNIME workflow for the computation of molecular descriptors. First, InChI structure
identifiers are converted to the structure data format (SDF) format (upper workflow) with the
RDKit package [139]. The compounds are then prepared by the chemistry development kit
(CDK) node [140] (e.g., generation of a valid two-dimensional molecule structure by energy
minimization). For each molecule, the XLogP value is predicted by the PaDEL node [138]. The
descriptor matrix is written out in a tabular format and is ready for training an rt predictor or
conducting new predictions.
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Figure 4.6: KNIME workflow for the training of an rt model and its application. Based on the
descriptor matrix of compounds as training dataset, the rt model was built within the R Learner
node either with ordinary or robust regression. This was feasible due to the simple integration
of R code via KNIME’s R extensions [8]. The resulting model is delivered to the R Predictor node
and thus can be used for future predictions. Furthermore, additional logic can be added to the
predictor node in order to filter out putative metabolite IDs with inadequate rts. The filtered
list of putative metabolite IDs are exported again in a tabular file format.
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positive mode negative mode

#features 6,241 211
w/isotopes 240 10

|δmAMS| ≤ 5ppm all adducts [M+H]+ only all adducts [M−H]− only

total #candidate IDs 80,757 13,258 3,306 461
#explained features 5,560 (89.1 %) 2,272 (36.4 %) 183 (86.7 %) 119 (56.4 %)

median #IDs/feature 8 3 12 3

|δmAMS| ≤ 1ppm all adducts [M+H]+ only all adducts [M−H]− only

total #candidate IDs 22,773 6,166 44 5
#explained features 2,629 (42.1 %) 895 (14.3 %) 19 (9 %) 2 (1 %)

median #IDs/feature 3 4 1 2–3

Table 4.1: Overall statistics of AMS results from the validation dataset.

we performed several analyses to assess this ambiguity and to study the impact of filtering

techniques such as RIA (Section 4.3.1). In contrast to AMS, MSM provided IDs that were

much more evident due to the low number of false positive spectral matches (Section 4.3.2).

However, it failed to detect some standard compounds partly due to the incompleteness of its

spectral resource. We show the performance of the combined approach that could alleviate the

tools’ individual shortcomings (Section 4.3.3). Finally, we conclude this section by presenting rt

models that were employed as filters of false positive AMS IDs in Chapter 5 (Section 4.3.4).

4.3.1 Individual Performance of AMS

With an AMS run performed on our metabolite feature maps, we could identify 36 out of 54

compounds (66.7 %). From these, 25 compounds were ranked as best hits (i.e., showed the

smallest difference from the observed feature mass). As expected from a common database query

based on accurate mass alone, our IDs were overshadowed by numerous other false positive hits,

rendering the interpretation of AMS results difficult. To some extent, such ambiguity is inherent

to AMS due to isobaric metabolites. However, the huge number of candidate IDs compared to

a much smaller number of metabolite features was striking (Table 4.1). For this reason, we

further investigated how AMS’ main parameter, the configuration of the adduct types to be

queried and the mass error tolerance |δmAMS|, affected the final number of candidate IDs.

As a rough estimate for the degree of ambiguity among the AMS results, we computed the

median number of candidates proposed per metabolite feature (Table 4.1). As expected, the

median number decreased considerably either when the list of adduct types was restricted or

when the mass error tolerance was tightened. To study this behavior in more detail, we broke the

candidate numbers per feature down with respect to m/z in a heat map visualization (Figure 4.7).

When all adducts were considered with |δmAMS| ≤ 5ppm, we observed a remarkably broad and

intense region extending from m/z 300 to 700 (Figure 4.7a), peaking at m/z 650 and two to
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five candidates per feature. That is, the bulk of candidate IDs were found for feature masses that

lay well beyond the mass and rt range of the measured authentic standards (Table A.7). Under

the assumption that the [M+H]+ adduct should occur most frequently, we would have expected

a hot spot between m/z 100 to 200. At least, such a region was faintly recognizable in the very

same heat map. The tightening of |δmAMS| resulted in a massive drop of candidate ID numbers

while a similar intense region as before was present (Figure 4.7c). However, its peak shifted to

below m/z 500 and one to two candidates per feature. Additionally, a second prominent hot

spot appeared peaking at m/z 300 and one to two candidates per feature that also included our

metabolite features of interest. When the list of scanned adducts was restricted, this hot spot

persisted and, with the tightest AMS configuration, became even more compact and pronounced

(Figures 4.7b and 4.7d). We found that this hot spot coincided with a high-density region

observed in the mass distribution of HMDB compounds (Figure A.10). Between m/z 100 to 500,

the HMDB showed a high density of both unique and isobaric compounds (Figure A.11) that

correlated well with the hot spot observed in Figure 4.7d. At the same time, the broad hot spot

containing the high-mass features disappeared. With respect to the AMS settings considering

the complete list of potential adducts (Figures 4.7a and 4.7c), we concluded that the hits

observed in the higher mass range were due to less common adducts without an accompanying

[M+H]+ sibling and thus most likely false positives.

Our heat map analysis confirmed that without the specific tailoring of the adduct list and

with too lenient mass error tolerance settings, there was a high risk both to generate false

positive annotations (based on spuriously detected features in the high m/z and rt ranges)

and to introduce ambiguity into IDs that were otherwise clear, although the high proportion

of seemingly explained features was tempting (Table 4.1). This was complemented by the

observation that candidate IDs were spread evenly among several less likely adduct types

instead of showing a prevalence of the most common [M+H]+ adduct (Figure A.12a). Upon

the tightening of the |δmAMS| parameter, the proportion of [M+H]+ adducts increased while

the proportions of other less common adducts decreased (Figure A.12b).

We further assessed how the situation of high ambiguity could be remedied with the orthogonal

RIA criterion. While a bulk proportion of the feature set consisted of single-trace signals as

expected, a set of 225 features were detected with an isotope pattern that allowed for RIA

filtering. With the filter option disabled, 82.7 % of these features were annotated while the list

of their putative IDs had about 2,000 entries. After an RIA filtering with 5 % RMSE, 69.8 % were

annotated and the number of candidates dropped to roughly 1,600 (25 %). The decrease in

overall putative IDs was even more pronounced for tighter settings of the RIA filter (Figure 4.8).

Apparently, for RIA error tolerance values that were typical for modern MS devices (i.e., in the

range of 2–5 %), the filtering showed its strongest impact on ID numbers. More importantly,

it had not erroneously affected any metabolite features that were expected from our list of

authentic standards (Section 4.3.3).

With regard to the AMS runs on the negative mode dataset, we observed a similar situation
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(a) all adducts, |δmAMS| ≤ 5ppm (b) [M+H]+ adducts only, |δmAMS| ≤ 5ppm

(c) all adducts, |δmAMS| ≤ 1ppm (d) [M+H]+ adducts only, |δmAMS| ≤ 1 ppm

Figure 4.7: Heat map visualization of AMS results. The heat maps show the 2D distribution of
feature mass with respect to the number of putative IDs per feature. Each heat map corresponds
to one condition of a 2× 2 factorial experiment where we varied the adducts list configuration
and the mass error tolerance |δmAMS| of our AMS tool.
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Figure 4.8: Impact of the RIA filtering on the number of candidate IDs (red line) and the
percentage of annotated features (blue line). Candidate IDs were computed on the basis of
225 metabolite features with a detectable isotope pattern.

with highly ambiguous IDs (Table 4.1). The candidate IDs list (|δmAMS| ≤ 5 ppm setting) was

dominated by [M+CH3OH−H]−, [M−H]−, and [M+C2H4OH−H]− adducts (Figure A.13).

Since there were too few cases for the RIA filtering to be applied to, the effect on ID numbers

was expected to be negligible and thus was not considered further in our analysis.

4.3.2 Individual Performance of MSM

Given a total of 5,020 MS/MS spectra from the positive mode measurement, the MSM tool

assigned 1,726 (34.4 %) to at least one positive-scoring match in the fragment DB. The median

number of candidates per precursor mass was three. According to the E-value estimation, 783

(45.4 %) of these matchings showed a significant score. Discarding the results with insignificant

scores, the median number of candidates per precursor dropped to two. We observed that the

multiple matches to one precursor were often due to fragment spectra belonging to the same

compound but yielding slightly different scores. This was expected since most compounds

were recorded with varying collision energies or were deposited multiple times by different

contributors.

MSM detected 28 out of 54 authentic standards (51.9 %). The majority of these were best-

scoring hits (Table A.7). The only exception was in case of leucine (fourth rank) which scored

slightly worse than its isomers isoleucine, norleucine, and allo-isoleucine. We computed the

E-values of the MSM scores and found that 22 (78.6 %) matching scores were significant. Two
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spectral matches had a small positive E-value exponent (aspartic acid and NADH) while in case

of the remaining four no E-value estimation was possible at all. The E-value computation can

fail if there is not a sufficient number of spectra to estimate the score distribution (Section 4.2.3).

Several compounds could not be identified since there was no detectable signal in the data.

Aside from that, some unidentified compounds had no spectra in the DB.

4.3.3 Validation of the Combined Metabolite ID Approach

By merging the ID results from both the metabolite ID approaches, we observed consensus IDs

in 27 out of the 54 cases (Table A.7). Among these, 19 (70.4 %) were ranked as the best-scoring

hits by both the AMS and MSM tools. The majority of identified authentic standards came

from the amino acids group (18 out of 20), only with glycine and alanine missing. The TCA

and common compounds group showed the fewest consensus IDs (only 4/10 and 5/24 found,

respectively).

In case of 17 standard compounds, neither AMS nor MSM could provide an ID. This agreed

with the fact that no corresponding metabolite feature and thus no potential precursor ion

selectable for fragmentation could be detected in the data. If we assume that these were true

negatives and all compounds confirmed by only one method were regarded as false IDs, the

accuracy of our combined ID approach would be 44 true assignments out of 54 (81.5 %). The

compounds exclusively detected by AMS either had no spectra with matching precursor masses

or no spectral information in MassBank at all. Some exclusive matches postulated less frequent

adducts (e.g., [M+ 3CH3CN+ 2H]2+) while precursor masses in MassBank usually originated

from the most common [M+H]+ and [M−H]− adducts. The ID accuracy of our combined ID

approach could be further increased by confirming these exclusive AMS matches with other

orthogonal criteria. However, neither RIA nor rt filtering were applicable in these cases.

4.3.4 Retention Time Prediction Models

We built two linear models rtpos and rtneg, one for each positive and negative mode data

(Figure 4.9). We found an excellent goodness of fit (leave-one-out (LOO) cross-validated

R2 of 0.93 for both models) along with high predictability power (F -statistic of 268.3 with

p-value< 2.0 ·10−11 in case of rtpos and 213.9 with p-value< 5.2 ·10−9 in case of rtpos). Based

on the 95 % prediction intervals, the error margins of rtpos ranged from ±2.5 to ±2.9 min and,

in case of rtneg, from ±2.7 to ±3.2 min. We found that both models were of excellent quality

and could be employed as rt filters for putative IDs.

We assessed the performance of our rt filters based on the datasets presented in Chapter 5.

Other than described in Section 5.1.3, we did not restrict the AMS to proton-based adducts

only but considered all potential adducts. From an effective rt filter we would expect that

it decreases the median number of ambiguous IDs per metabolite feature. Furthermore, it
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Figure 4.9: Retention time models employed as orthogonal filters for putative IDs. The linear
models rtpos and rtneg (red lines) are depicted together with their respective 95 % prediction
intervals (blue lines).

should also discard features that were spuriously annotated by chance. From our previous

observations in Section 4.3.1, we know that this chance of spurious annotations increases the

more potential adducts we consider in an AMS run. Based on the unfiltered positive mode ID

list, AMS annotated 2,998 features with a median number of four putative IDs. After filtering

these IDs with our rtpos model, 1,170 features were annotated with the median number of two

putative IDs. We further investigated this by superimposing the densities of ID numbers per

feature and found that the rt filtering clearly resulted in an enrichment of less ambiguously

annotated features (one to two putative IDs per feature) while reducing the number of features

with high ambiguity (4 to 27 putative IDs per feature) (Figure 4.10). We observed similar

results in case of the rtneg model applied on the negative mode IDs.

4.4 Discussion

We presented a novel comprehensive metabolite ID strategy for untargeted LC-MS data that

exploits several sources of orthogonal information to boost the confidence of putative IDs. Its

performance was validated on the basis of a RPLC-MS/MS dataset comprising 54 authentic

standards where we achieved an excellent ID accuracy of 81.5 % (IDs confirmed by both AMS

and MSM). The loss in accuracy was mainly caused by MSM due to missing MS/MS spectra

in MassBank. Another reason could be that the corresponding precursor ion was not selected

during data-dependent acquisition (DDA). In these cases, AMS was more sensitive since it

suggested the presence of nine other authentic standards. As we have shown in Section 4.3.1,

however, these IDs must be treated with caution since they were not confirmed by another
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Figure 4.10: Densities of candidate ID numbers per feature before (black line) and after rt
filtering (red line).

orthogonal criterion such as the RIA and rt filters. We could show in Sections 4.3.1 and 4.3.4

that these were powerful criteria to rule out false positive IDs and to reduce the high ambiguity

of AMS results. However, neither the RIA nor the rt filters were applicable to the unconfirmed

AMS results from our validation dataset. The underlying features were of low intensity and

exhibited no isotopic pattern to be assessed by the RIA filter. With respect to rt filtering,

the construction of representative prediction models was not feasible since most of the 27

concordantly confirmed compounds were strongly hydrophilic and thus covered only the first

minutes of the elution gradient. We believe that the integration of these filter criteria would

have further increased the confidence of our combined ID results.

We assessed the individual performances of AMS and MSM to learn about strengths and

weaknesses when these tools were employed separately. AMS found evidence for most of

the 54 authentic standards. However, it was very susceptible to lenient parameter settings,

in which case the actual metabolite IDs were flooded by numerous false positives. Aside

from isobaric metabolites (distinct compounds matching the same empirical formula), these

incorrect IDs often stemmed from other adducts that fell into the same mass error window as

the actual ID. This could be counteracted by stricter parameter settings, namely, a tighter mass

error tolerance and a tailored list of the most common adducts (e.g., proton-based variants

only). It has been shown before that mass accuracy alone does not guarantee a unique ID of a

metabolite feature’s empirical formula [65]. Setting the mass error window equal to the mass
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spectrometer’s reported mass accuracy (e.g., 1 ppm in case of FTICR or Orbitraps) is a common

practice, however, since it is an averaged value, AMS might miss several IDs with slightly higher

mass errors. For instance, based on our validation dataset, we observed a mean mass error

of (1.12± 1.33) ppm and thus a setting of 3–5 ppm was more adequate. An even stronger

impact on the ambiguity of AMS ID results had the list of adducts to be queried for. We showed

that relying on the default adduct lists (as employed by the HMDB online MS search) without

tailoring them increased the number of putative IDs per feature considerably (Table 4.1). Aside

from random hits due to the higher combinatorial possibilities, the co-occurrence of adduct

rules such as [M+H]+ and [M+ NH4]
+ may map different metabolites (e.g., aspartic and

fumaric acid) to the same feature mass and thus introduce further ambiguity. This problem

could be addressed by weighing all adducts by their likelihood of occurrence in ESI sources [68]

or by the strict application of orthogonal criteria such as RIA and rt filtering if applicable.

The RIA filter has been shown to be a powerful criterion to discard matches of false positive

empirical formulas [65]. However, it might not be able to separate conflicting formulas if they

differ only slightly and a typical RMSE of 2–5 % is assumed (e.g., as in case of aspartic and

fumaric acid).

We showed in Section 4.3.4 that rt prediction models offer great potential to remedy the

high ambiguity inherent to AMS results. The reason for this is that these models incorporate

knowledge of the chemical structure into the otherwise solely mass-based AMS. We devised a

novel computational workflow to automatically build rt models on the basis of IDs that were

experimentally validated or concordantly confirmed by at least two orthogonal sources. The

XLogP hydrophobicity value [137] of metabolites proved to be a robust molecular descriptor to

build reliable rt prediction models for RPLC data. We could build linear regression models with

as few as a dozen observations that showed excellent cross-validated performance. However,

as a consequence of a large standard error, the prediction intervals were rather broad (±2.5 to

±2.9 min). These could be tightened by training the models on bigger datasets to allow for

a better estimation of the standard error. Despite the large prediction intervals, our models

were still very effective in filtering out false positive IDs and with that reducing the number of

ambiguous IDs per feature considerably.

In contrast to AMS, MSM provided much clearer IDs. Most of the identified authentic standards

were placed first with a significant matching score. With respect to the compounds that were

detected exclusively by AMS, either MSM had no spectra with precursor masses compatible

to the proposed adduct, or the compounds were not present in MassBank at all. Most of the

MassBank spectra match to [M+H]+ and [M−H]− adducts only and thus the chance that the

more exotic adducts proposed by AMS (e.g., [M+ CH3CN +H]+) are confirmed by MSM is

low. The ID performance of MSM crucially depends on the completeness of the underlying

spectral resource. It has been argued that the coverage of metabolites in public databases

such as MassBank is not sufficient to allow for comprehensive ID of untargeted LC-MS/MS

data [141]. The metabolite database METLIN provides more than 10,000 MS/MS spectra each

measured in four different collision energies [142], however, is solely accessible via an online
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interface and thus can not be integrated into our MSM tool. The coverage is also essential for

the computation of E-values to assess the significance of spectral matching scores. If there is not

a sufficient number of spectra within the precursor mass error window, the accurate sampling

of the hypergeometric scoring distribution is not feasible and with that no E-value can be

estimated. This was the case for some of our compounds in our validation dataset (Table A.7).

As a scoring function for spectral matching, we generalized the HyperScore [82] to MS/MS

spectra of small molecules. In essence, it is a similarity function based on the dot product of

fragment intensities matched between two MS/MS spectra and a probabilistic contribution. The

dot product was widely used for matching fragmentation data from small molecules (e.g., by the

National Institute of Standards and Technology (NIST) MS search [81]), however, novel scoring

functions such as the X-Rank promise improved ID accuracy, in particular, when comparing

MS/MS spectra from different instruments [84]. Regardless of whether another spectral DB or

matching function is to be employed, these changes can be integrated quickly in the modular

design of our MSM algorithm.

The initial results were very promising and clearly showed that our integrative metabolite ID

approach holds great potential to address the common problem of identifying metabolites in

untargeted LC-MS data. However, we must further assess our approach with other LC-MS/MS

datasets to gain a more comprehensive picture of its performance. In particular, we would

need data where all our orthogonal criteria could be combined. In the RPLC-MS/MS dataset

presented here, the integration of the rt filter was not feasible. We believe that the overall

performance of our combined approach can be further increased by improving its individual

components. The interpretability of AMS results highly depends on the number of potential

adducts that are included in the search. AMS in its present version treats each adduct as equally

likely although they differ significantly in their ionization behavior in the ESI source and with

that they exhibit quite distinct likelihoods of occurrence [68]. In order to improve on that,

we plan to further investigate the default sets of potential positive and negative adducts as

proposed by [131] and determine adduct likelihoods as weighing factors. Based on this, we

would also like to integrate the likelihood for the co-occurrence of adducts (e.g., proton and

sodium adducts). Furthermore, we want to implement a more fine-grained control over the

various classes of metabolites to be searched for (i.e., different cell compartments, body fluids,

exogenous sources such as foods or drugs). With regard to MSM, we plan to integrate MS/MS

spectra data from other sources than MassBank. We would like to assess alternative scoring

functions for spectral matches such as the X-Rank score that was adapted by the METLIN

database [142].
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CHAPTER 5

Analysis of Large-Scale Time-Resolved Metabolomics Data

A single liquid chromatography-mass spectrometry (LC-MS) measurement reflects the metabolic

state of a biological system for a particular time point. Although such snapshots contain valuable

information to study metabolic patterns responsible for specific phenotypes (e.g., disease states),

the highly dynamic nature of the metabolome can not be captured by this approach. To elucidate

the perturbation of metabolic pathways, e.g., during a physiological process or upon external

stimuli, several timely successive snapshots must be measured in a time-series experiment.

Temporally resolved experiments have been conducted to investigate the dynamics of plant,

microbe, animal and human metabolomes [143, 144, 145, 146]. While time-series experiments,

for example, with plants and microbes allow for a high time resolution, experiments on mammal

and human samples must often rely on fewer time points due to limited material (e.g., blood,

tissue biopsies). Furthermore, such experiments could carry a risk for animals and humans

(e.g., severe injuries) and thus are strictly controlled by ethical restrictions. For instance, the

changes in the human plasma metabolome during a single bout of exercise and recovery were

investigated on the basis of only four time points [147].

Multivariate techniques such as principal component analysis (PCA) and partial least squares

discriminant analysis (PLS-DA) have become standard tools to investigate discriminant patterns

of metabolites in metabolomics data (Section 2.3). However, both methods are not readily

applicable to time-series data and thus need further adaption [148]. In contrast to these

attribute-based multivariate methods, clustering techniques exploit the inherent similarity

between observations to find recurring patterns in a dataset. The similarity between objects is

computed through a distance measure (e.g., the Euclidean norm or Pearson correlation). A

cluster of metabolite profiles might hint at a group of co-regulated metabolites or metabolic

pathways or could assist in inferring the function of unexpected pathways under the studied
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experimental conditions. Thus, clustering has become a common data reduction technique

to detect classes that exhibit a similar recurring pattern. However, the limitations of classical

clustering approaches such as the hierarchical clustering [149] and k-means algorithm [150]

fostered the development of novel clustering algorithms with parameters that were more

intuitive to set and easier to interpret in biological experiments. The quality threshold (QT)

clustering, initially developed for gene expression profile analysis [151], assembles clusters

with a guaranteed quality, i.e., the distance between each data point in a cluster and its centroid

must be lower than the predefined quality threshold. This allows filtering out clusters that are

below a required minimum size and potentially stem from noise in the data. In the original

work, the authors used jackknife correlation as a quality measure [151]; however, since the

jackknife correlation is computationally expensive, variants based on the Euclidean norm or

the Pearson correlation coefficient also exist. The QT criterion facilitates the interpretation

of the resulting clusters tremendously. A remarkable feature of the QT clustering algorithm

is its notion of noise. Data points not fulfilling the quality criterion of any potential cluster

are removed from the dataset and marked as noise. This distinguishes the QT algorithm from

classical approaches where each observation is strictly assigned to one of the clusters, even

if its similarity to the cluster center is low. Although QT clustering is readily applicable to all

kinds of temporally resolved data, it has been employed scarcely for metabolomics time-series

experiments.

Physical exercise triggers massive changes in the human plasma metabolome that particularly

reflect the energy metabolism of skeletal muscle. The detection of novel exercise-specific

biomarkers promises to elucidate how physical activity benefits human health and to assess the

risk of diseases if physical activity is lacking. Several time-series experiments have been con-

ducted to investigate the physiological basis of physical exercise both with gas chromatography

(GC)/LC-MS [147, 152, 153] and nuclear magnetic resonance (NMR) [154, 155] technologies.

In other studies, the effect of carbohydrate and protein nutrition upon exercise [145] and the

long-term changes induced by frequent physical exercise to the human metabolome [146, 156]

were investigated. This increased interest in exercise-related metabolomics experiments re-

vealed novel potential biomarkers, e.g., acylcarnitines that are assumed to support fat oxidation

during moderate intensity exercise [147].

In this work, we present a novel strategy to investigate metabolomics time-course data collected

during a single bout of exercise in male individuals. This data comprises hundreds to thousands

of time profiles that are condensed to a few kinetic patterns that are characteristic of the

metabolic changes induced by the physical exercise and the following recovery phase. To this

end, we employ a stochastic variant of the QT clustering algorithm [23] that we extended by

the short time-series (STS) distance [24]. The STS distance is particularly suited to short time

series with non-equidistant time points. Additionally, we applied our computational approach

based on AccurateMassSearch (AMS) and retention time (rt) prediction (Chapter 4) to

identify key metabolites in strongly up- or down-regulated clusters. In an enrichment analysis,

these metabolites were mapped to the Small Molecule Pathway Database (SMPDB) [157] to
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elucidate the metabolic pathways tentatively involved in exercise metabolism.

5.1 Methods

5.1.1 Ethic Statement, Subjects, and Study Design

The experimental design was published before [158] and shall be briefly recapitulated here.

The study comprised nine healthy male individuals, however, one was excluded since the

collected set of plasma samples was incomplete (i.e., missing time points). All participants

were examined medically including common blood tests which showed no peculiar deviations.

They did not engage in competitive sports but were considered as physically active (Table A.9).

We informed them about potential risks and discomfort that may come with the experimental

protocol, both orally and in writing. The protocol complied with the declaration of a Helsinki

and was approved by the local ethical commission (H-D-2007-0127). We asked the participants

to avoid exhausting exercises within the last 24 h before the experiments. After an overnight

fast, we started our studies at 7 am. First, we inserted catheters to the resting leg’s femoral

artery and took blood samples to establish a baseline. Then, all participants did a one-legged

knee extensor exercise for 2 h at 50 % of their maximum workload. We determined each

individual maximum workload in pretrial runs [159], after the participants were familiar with

carrying out the exercise. The exercise was performed on a modified Krogh ergometer. We

took blood samples at three time points, both during the 2 h exercise (0, 60, 120 min) and the

3 h recovery stage (150, 180, 300 min). Finally, the catheter was removed when the recovery

stage ended and the participants could eat and drink ad libitum.

5.1.2 Metabolite Signal Extraction

We extracted all metabolite ion signals from the LC-MS measurements with the Micromass

MarkerLynx software (version 4.1, Waters, Manchester, UK). Metabolite ions stemming from

the individual measurements were combined into one data matrix by aligning chromatographic

peaks with similar mass (m/z error tolerance set to ±0.1) and retention time (rt error window

set to ±0.2 min). The resulting data matrices (positive and negative mode, respectively) were

used as the initial inputs for the subsequent data processing steps.

For each row of the initial data matrix, we used the concatenated rt and m/z information

to uniquely label the corresponding metabolite signal (e.g., 10.95/344.2788). In order to

remove redundant isotope and adduct ion masses from our dataset, we employed our Python

script findFeatures.py that merges metabolite signals compatible with respect to rt and

m/z (Appendix A.1.3). For the detection of potential isotope masses, we scanned the list sorted

by m/z to find signals similar in their rts and showing m/z differences that are approximately

multiples of 1/z (z = 1, 2, 3). Additionally, we only grouped signals that showed a significant
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correlation between their intensities observed over all measurements (Pearson correlation

of at least 0.6 with a significance level of α = 0.05). If there were no compatible isotope

masses, the reference m/z was added as a singleton to the final list of grouped signals. To

find correlated proton, sodium, and potassium adducts in the positive mode dataset, the

sorted mass list was scanned for signals similar in rt and showing m/z differences of 21.9819

(distance between a metabolite’s proton and sodium adduct) and 37.9559 (distance between a

metabolite’s proton and potassium adduct). In case of the negative mode dataset, we searched

for chloride (m/z difference of 35.9767) and bromide (m/z difference of 79.9262) adducts. For

each of the merged ion groups, we selected the monoisotopic mass together with its observed

intensities as the representative and discarded the corresponding isotopic and adduct masses.

If the monoisotopic mass contained missing intensities, e.g. due to erroneous alignment, our

findFeatures.py script exploited the correlated intensity information of isotopic/adduct

ions to impute these. To account for the technical variation of metabolite signal intensities

between the measurements, we applied quantile normalization as implemented in the R package

preprocessCore [99].

5.1.3 Metabolite Identi�cation

In order to putatively identify the ion masses extracted in the previous step, we employed our

AMS ID workflow as presented in Section 4.2.2. The allowed m/z error window was set to

0.02. With respect to the potential adducts to be queried, we restricted AMS to search for

the most likely proton-based adducts ([M+H]+, [M+ 2H]2+, [M−H]−, and [M− 2 H]2−) in

order to keep the number of false positive IDs low. We accepted only IDs that were marked

as endogenous plasma metabolites in the Human Metabolome Database (HMDB) and were

cross-linked with pathway information from the SMPDB [157]. To further reduce the high

number of false positive IDs, we built two linear rt prediction models (for positive and negative

mode, respectively) on the basis of 32 experimentally confirmed metabolites (Section 4.2.5).

We employed these rt models as orthogonal filter criteria to remove highly unlikely results from

the AMS. If the difference between a putative ID’s predicted and the ion mass’ actually observed

rt were not within the model’s 95 % prediction interval, the putative ID was discarded from the

list. The filtered ID lists were stored as R matrices to facilitate the quick lookup of IDs with

an ion’s unique label. We implemented the R script clusterIDmapping.R (Appendix A.1.3)

that automates the matching of time profiles to our putative ID lists.

5.1.4 Cluster Analysis

The following steps were conducted within the R environment [8]. We rearranged the condensed

data matrix in such a manner that all experiments corresponding to the same time point

(t0, t1, . . . , t5) from each individual were concatenated in the same column. To avoid ambiguity

between the time profiles stemming from different individuals, the row labels were extended
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with their source (e.g., indB, indC, . . . , indI)∗. For each time profile, we computed log2 fold

changes with respect to its median intensity. Based on these fold changes, we discarded time

profiles that either showed no significant fold changes at all or had significant fold changes in

both exercise and recovery stages (i.e., log2 fold change outside of the [−1,1] interval). To

facilitate the comparison of time profiles with respect to their biological response range, each

time profile’s absolute intensities were transformed with range scaling [160].

The filtered time-series dataset was then clustered by employing the R package flexclust (version

1.3-4) [23]. This package implements a stochastic variant of the QT clustering algorithm that

considers a small randomized subset of data points as initial cluster centers and thus allows

for a considerable reduction in computation time. The Euclidean distance is offered as the

default option; however, this distance function has severe shortcomings when considering time

series with non-equidistant time points. To resolve this issue, we implemented the STS distance

function [24] and integrated it into the flexclust R package (Appendix A.1.3). Given two time

profiles f = ( f0, f1, . . . , f5) and g = (g0, g1, . . . , g5), the STS distance is defined as

d2
STS( f , g) =

nt−1
∑

k=0

�

fk+1 − fk

tk+1 − tk
−

gk+1 − gk

tk+1 − tk

�2

(5.1)

The STS distance considers the piece-wise slope differences between two time profiles and

thus implicitly takes varying time intervals into account. In the context of our RPLC-MS

experiments, the time points were at t = (0, 60, 120, 150, 180, 300) min. Contrary to common

distance measures such as the Euclidean metric, differences in short time intervals are penalized

more than in longer intervals. Applied to metabolomics time-profile data, this means that we

put emphasis on metabolic processes occurring in short time intervals, whereas in long time

intervals, we take the time profile’s greater variability into account.

We configured the qtclust function’s parameters as follows: The clusters’ radius parameter

was set to 0.5. The minimum expected number of time profiles in a cluster min.size and the

size of the randomized sample ntry were set via the control parameter to 20 and 3,000,

respectively. The STS distance function was selected via the STS parameter of qtclust. To

extract and visualize the individual clusters from the resulting qtclust object, we implemented

the R function extractClusters. This function generates plots and box plots (intensity

distribution for each time point) for a subset of clusters that accounts for 80 % of the dataset’s

time profiles. Additionally, for each individual cluster, the time profiles are extracted in

a separate tabular file to allow for metabolite ID and pathway enrichment analysis in the

subsequent analysis. Each cluster was designated by qtCl followed by its index within the

qtclust object (e.g., qtCl3). We assembled the presented functionality in the R script

qtClustPipeline.R (Appendix A.1.3).

∗Originally, the set of labels referred to nine individuals starting with "indA". Due to missing data, we excluded
"indA" but kept the labels "indB" to "indI" for the sake of simplicity.
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5.1.5 Pathway Enrichment Analysis

The enrichment analysis enabled us to further condense the list of putative metabolite IDs. The

rationale behind this was that the true metabolite IDs should show up significantly enriched in

specific pathways, whereas false positive IDs are spread randomly over all pathways without

any significant enrichment. Based on our metabolite ID table, we assigned up to three ID

candidates to each clustered time profile. We extracted all pathway information contained

in the SMPDB to facilitate the mapping of HMDB to SMPDB IDs (that is, metabolites to their

associated metabolic pathways). We implemented the Python script hmdbPathwayMapper.py

to perform the following steps (Appendix A.1.3). First, we determined an individual cluster’s

distribution of HMDB IDs over the metabolic pathways. Multiply occurring HMDB IDs were

counted once. Then, for each pathway, we applied a one-sided Fisher’s exact test to investigate

if the ratio between matched and total number of HMDB IDs was significantly greater or due

to chance. We sorted the enriched pathways by their significance and reported results with

p-values below 0.05.

5.1.6 UPLC-qTOF-MS Analysis

According to the protocol published in [161], the protein content of plasma samples were

precipitated with acetonitrile and then run to dryness. Before the analysis, the samples were

reconstituted in 100µL of a 4:1 mixture of acetonitrile and water. These were chromatographi-

cally separated with a 2.1×100 mm ACQUITYTM 1.7µm C8 column (Waters, Dublin, Ireland) at

40 ◦C operated in an ACQUITY-UPLC system (Waters Corp, Milford, USA). The elution gradient

was programmed to start with 95 % A (A = 0.1 % formic acid in water) for 0.5 min, then

to linearly increase to 100 % B (B = acetonitrile) during the next 24.5 min and to hold for

4 min, and finally to switch back to 95 % A. The column’s flow rate was set to 0.35 mLmin−1.

The UPLC system was coupled to the electrospray ionization (ESI) source of a QTOF mass

spectrometer (Micromass, Manchester, UK). MS measurements were performed in full scan

mode from m/z 80 to 1,000. The source temperature was set to 120 ◦C with a cone gas flow of

50 Lh−1. The desolvation gas temperature was at 300 ◦C and the gas flow at 500 Lh−1. In case

of the positive ion mode, the capillary voltage was set to 3,000 V. For negative ion mode, a

capillary voltage of 2,600 V was configured. For both modes, the cone voltage was at 30 V.

5.2 Results

We extracted 4,770 and 689 ion masses from the positive mode and negative mode measure-

ments, respectively. These initial matrices were condensed to 4,201 and 494 masses by filtering

out redundant isotope and adduct masses with our findFeatures.py script. We applied our

adaption of the QT clustering algorithm to the filtered and combined matrix of 8,877 time

profiles (7,854 profiles from positive and 1,023 from negative mode). This filtered dataset
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Figure 5.1: Clusters representative for metabolite perturbations in the exercise and recovery
phases. According to the QT clustering results, these were the two largest clusters (1,261
and 1,060 time profiles in qtCl1 and qtCl2, respectively). Both showed a clear increase in
metabolite levels during the respective phases.

comprised 2,925 of the original ion masses from the positive and 353 masses from the negative

mode measurements. The clustering step condensed the data to 25 distinct clusters with sizes

ranging from 54 to 1,261 profiles. About 26 % of the time profiles were not assigned to any

cluster. By visual inspection, we assigned 13 clusters to the exercise (Figures A.14 and A.15)

and 12 clusters to the recovery stage (Figures A.16 and A.17). From these, we picked the

two largest clusters qtCl2 and qtCl1 that were also the most striking representatives for the

exercise and recovery stages, respectively (Figure 5.1).

We experimentally confirmed the identity of 32 metabolites, 18 from positive and 14 from

negative mode data (Table A.8). These metabolites established the basis for two rt models

of excellent quality which then were applied on the AMS results as orthogonal filters (Sec-

tion 4.2.5). As a result, we could reduce the ambiguity introduced by false positive AMS results

significantly and increase the confidence of the remaining IDs. In case of the qtCl2 and qtCl1

clusters, we could annotate 78 and 132 time profiles, respectively.

We performed a pathway enrichment analysis on these putative ID lists and found characteristic

sets of pathways perturbed during the exercise and recovery stages (Table 5.1). Most of the

proposed pathways were related to amino acid metabolism, a prominent subject of exercise-

related research (e.g., amino acid supplementation to increase muscle protein gain [162]).

Furthermore, we found pathways related to the oxidation of fatty acids, homocysteine degra-

dation, betaine, taurine/hypotaurine, and vitamin B6 metabolism. Again, these metabolic

pathways were frequently studied with respect to exercise [163, 164, 165, 166, 167]. Most of

enriched pathways were exclusive to the exercise or recovery stage. The only exception was the
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catecholamine biosynthesis pathway that was common to both stages, although it was more

significant in the recovery stage. The level of catecholamines (i.e., adrenaline, noradrenaline,

and dopamine) were shown to be increased during exercise [168]. They are synthesized from

the amino acids tyrosine and phenylalanine whose pathways were also enriched, however, ex-

clusively in the recovery stage. The perturbation in tyrosine and phenylalanine levels might be

explained by protein degradation in the exercising muscle [169] and could fuel the biosynthesis

of catecholamines during recovery.

SMPDB pathway exercise recovery

glycine and serine metabolism **
glutamate metabolism **

betaine metabolism **
methionine metabolism *

oxidation of branched chain fatty acids *
beta oxidation of very long chain fatty acids *

homocysteine degradation *
arginine and proline metabolism *

taurine and hypotaurine metabolism *
catecholamine biosynthesis * **

tyrosine metabolism **
vitamin B6 metabolism *

phenylalanine and tyrosine metabolism *

Table 5.1: Significantly enriched metabolic pathways in the exercise and recovery stages. The
number of asterisks designates the significance of enrichment (* if p < 0.05, ** if p < 0.01).

5.3 Discussion

With our computational pipeline, we condensed thousands of time profiles to a manageable

number of clusters that were characteristic for either the exercise or recovery stages. Our

strategy was based on the stochastic QT clustering algorithm [23] which we adapted and

extended by the STS distance [24]. Our application of the STS distance was clearly geared

towards a common problem in metabolomics time-series experiments. Usually, there are only

few time points due to cost and limited sample material. Furthermore, time points are not

always equidistant and thus the clustering algorithm must deal with profiles that are highly

heterogeneous in their time intervals with respect to biological variation. For instance, we

would expect higher variability in metabolite levels in the last time interval (180 to 300 min)

than in the shorter intervals before (see high scattering of the last time point in Figure 5.1).

In such settings, we found that the STS distance was more adequate in matching metabolites

with related kinetics than the classical Euclidean distance or Pearson correlation.

The two largest clusters qtCl2 and qtCl1 showed a clear peak in metabolite levels during the

exercise and recovery phases, respectively. Since great proportions of the 8,877 time profiles
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and also the highest number of filtered putative IDs were distributed to these two clusters,

we regarded them as strongly correlating with the metabolic processes taking place during

the exercise and recovery phases. This assumption was further confirmed by assessing these

clusters’ metabolite ID in a pathway enrichment analysis. Here, we found metabolic pathways

that were frequently investigated in the context of physical exercise such as amino acid or fatty

acid metabolism [162, 163]. In summary, we found that our novel computational pipeline

was capable of condensing untargeted and timely-resolved LC-MS data to a few prominent

metabolite patterns that could be correlated with meaningful functional information from the

SMPDB.

A computational strategy to investigate the response to physical stimuli has been published

before [152]. It employed a scoring function that allowed for the prioritization of metabolites

showing significant changes throughout the exercise session. Furthermore, it allowed to infer

the network of pathway reactions. The authors proposed a list of exercise-associated metabolic

pathways that comprised the metabolism of several amino acids as in our case. However,

since the method was validated with a targeted MS/MS experiment and thus depends on

experimentally confirmed metabolite IDs, it is not clear if it is readily applicable to untargeted

metabolomics experiments as well. This sets our method apart as a screening utility that takes

all measured analytes into account and assists in the setup of targeted follow-up experiments.

While the Kyoto Encyclopedia of Genes and Genomes (KEGG) resource is widely regarded

as the reference database when dealing with metabolic pathways, we decided to exploit the

information assembled in the SMPDB instead. The SMPDB (version 2.0) covers more metabolic

pathways than KEGG, in particular, with regard to metabolite signaling and physiological

action pathways [157]. All SMPDB pathways are crosslinked with metabolites contained in the

HMDB and thus to a rich content of physiological information and literature. This additional

information assists in the physiological interpretation of the metabolites that were found by

our screening approach. Conversely, we can directly map IDs resulting from our AMS tool back

to SMPDB pathways (e.g., for the enrichment analysis).

In untargeted metabolomics workflows, the validation of metabolite IDs constitutes the most

time-consuming step and thus is often restricted to a few candidates. Since these candidates

are selected merely due to their statistical significance without knowing their identity, their

biological interpretation is postponed until further follow-up targeted experiments for structural

validation have been conducted. Our computational method integrates potential metabolite

ID in the early stages of the workflow and thus allows us to exploit biological information

before designing further experiments. Although our method can yield multiple hypothetical

IDs for each measured signal, we showed that by combining orthogonal criteria (rt filtering,

enrichment analysis) the number of false positive IDs can be cut down significantly and the

suggested pathways are reasonable within the scope of discovery studies. For instance, rt

prediction models take the physicochemical properties of candidate metabolites into account

that are otherwise neglected in an AMS search. By this means, the number of false positive IDs
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can be decreased tremendously.

In this work, we focused on the analysis of untargeted metabolomics data exclusively and

developed a discovery workflow. We plan to extend our workflow by targeted analysis to

validate the proposed results automatically.
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CHAPTER 6

Untargeted Metabolomics Analysis for Metabolic Diseases

This chapter is based on the same experimental design as previously published in Scientific Re-

ports [19].

6.1 Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disorder that may cause a multitude of compli-

cations such as cardiovascular disease, nephropathic kidney failure, blindness, and the diabetic

foot syndrome. These complications are the consequence of chronic hyperglycemia, i.e., perma-

nently elevated levels of blood sugar. Although the symptoms of T2DM are well-documented

since the ancient times, the importance of insulin in glucose homeostasis was first discovered in

the 20th century. Insulin belongs to the class of peptide hormones and is secreted by the pancre-

atic β cells to the bloodstream during the digestion of food carbohydrates. Upon binding to the

insulin receptor of most body cells (in particular, adipocytes, skeletal muscle, and liver cells), it

initiates the uptake of glucose from the bloodstream through membrane-bound transporter

proteins. Simultaneously, metabolic processes to utilize glucose such as glycolysis, glycogen

and fatty acid biosynthesis are triggered within the cell. In T2DM, either the efficacy of insulin

is decreased (e.g., insulin resistance of body cells) or the insulin production of the pancreatic β

cells is impaired, thus causing hyperglycemia. Although this indication was formerly linked to

adult humans (adult-onset diabetes), it is now known that the classification by age alone is inac-

curate since the disease is observed frequently in young humans as well. Instead, new findings

suggest that T2DM is strongly correlated with obesity and physical inactivity in consequence to

the grave lifestyle changes throughout the last century [170].
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In recent years, new evidence was found that T2DM is affected by an individual’s genetic

background as well. A single nucleotide polymorphism (SNP) located in the TCF7L2 gene

(dbSNP entry rs7903146 [171]) was shown to be strongly correlated with the disease [172]. Its

phenotype is involved in reduced insulin production [173] and impaired insulin secretion [174,

175]. Functional studies revealed the importance of TCF7L2 to the proliferation of β cells [176,

177]. Beyond its function in the pancreatic islets, TCF7L2 plays regulatory roles in a multitude

of glucose-metabolizing tissues such as the liver [178], adipoetic tissue [179], the brain, and

the intestine [180]. However, its precise mechanism of function and its influence on the human

metabolome in the light of the T2DM pathophysiology remains difficult to explain [181].

Metabolomics studies of SNP-associated disease phenotypes hold great potential to reveal

unknown factors and to elucidate the underlying pathophysiological mechanisms. This new

knowledge could then be turned into personalized therapies (e.g., lifestyle interventions) and

novel diagnostics that would confirm the risk of disease both on the genetic and metabolomic

level. In recent years, there has been great interest in integrating the information gained by

genome-wide association (GWA) studies with metabolomics data [182]. In the first of such

integrative investigations, the influence of several SNPs on the lipid metabolism was confirmed

and a potential interplay between a SNP in the FADS1 gene and several glycerophospholipids

was suggested [183, 184]. The detection of novel associations was facilitated by using the

ratios of related metabolites as estimates for enzymatic activity, effectively lowering their

p-values. These examples show that the integration of complementary omics data increases

the confidence of statistical results.

In this study, we present a complete computational workflow for the detection of novel metabo-

lite biomarkers predictive of metabolic diseases. Aside from methods for metabolite quantifi-

cation (Chapter 3) and identification (Chapter 4), our workflow employs a robust statistical

approach that is based on RankProd [18] and facilitates the sensitive detection of subtle metabo-

lite fold changes. With our computational workflow, we investigated the impact of the TCF7L2

rs7903146 polymorphism on the human plasma metabolome. To this end, we conducted

both clinical chemical and untargeted metabolomics experiments based on a cohort of 30

individuals (15 homozygous non-risk and 15 risk allele carriers). We found several promising

candidate biomarkers that suggest perturbations in the steroid and bile acids metabolisms, two

well-known implications of T2DM.

6.2 Methods

6.2.1 Study Design

The study design was adapted from our work previously published in Scientific Reports [19].

A cohort of 30 individuals was composed from a database that was previously established in

the context of the Tuebingen family (TUEF) study [185]. Our selection excluded all cases with

88



6.2 Methods

an elevated CRP level (> 0.5mg L−1), medication use, and elevated levels of type 1 diabetes

mellitus (T1DM)-related antibodies (anti-GAD2). Furthermore, only subjects showing an

isolated impaired glucose tolerance (iIGT) were picked (fasting plasma glucose ≤ 5.6mmol L−1,

120 min post-challenge glucose between 7.8 and 11.1 mmolL−1), resulting in 183 candidates.

While ensuring balanced gender numbers and matching mean age and body mass index (BMI),

we drew 15 homozygous non-risk (CC) and 15 risk allele (TT) carriers (Table A.10). Our study

protocol was approved by the institutional review board of the University of Tuebingen as

compliant to the Declaration of Helsinki. All subjects gave their written informed consent to

the study. Our investigations followed the ethical principles of good clinical practice.

6.2.2 Bioinformatics Analysis

The raw data files as recorded by the mass spectrometry (MS) software were first converted

to the open mzML data standard [57] via the ProteoWizard software (version 2.2.3036) [58].

Both sets of positive and negative mzML files were processed separately with our quantification

pipeline (Figure 2.3); the individual processing steps were configured as given by the respective

parameter files (Appendix A.1.4). The resulting consensus matrix representations were stored

as tabular text files.

All following statistical analysis steps were performed within the R environment (version

2.15.2) [8]. For each row/feature in the consensus matrix, we set a unique row label constructed

by the concatenation of the consensus feature coordinates retention time (rt), mass-to-charge

ratio (m/z), and intensity (e.g, 54.9_181.17293_1020312). Matrix columns corresponding

to the individual feature intensities were extracted, normalized, and filtered as described

in Section 2.3.1. Based on the matrix layout as presented in Section 2.3.1, we implemented

several filter functions to further condense the dataset. First, we discarded all features that did

not show at least twelve non-missing values in one of the subject groups (80 % rule) [15]. From

this prefiltered set, we further removed rows if the median level of their individual intensities

were below threefold of the corresponding blank intensities. To assess the reproducibility of

replicate feature intensities, we computed the coefficient of variation (CV) for each row based

on the quality control (QC) measurements. Features showing a CV higher than 30 % were

removed from the dataset [15]. Finally, we stripped the intensity columns corresponding to the

blanks and QC measurements, gaining the data matrix ready for statistical analysis.

This dataset was logarithmized to the base of two and processed with the RankProd R pack-

age [102] (Section 2.3.2). Class information was supplied via a vector of class labels (0 and 1

designating the non-risk and risk alleles, respectively). The number of permutations was set to

5,000. From the resulting data object, we extracted all significant features with a percentage of

false positives (PFP) (used synonymously to false discovery rate (FDR)) up to 20 % and stored

these together with additional information (e.g., p-values and fold changes) in a tabular text file.

Since in some cases the RankProd procedure did not report the fold change, we additionally

computed the ratio between the median levels of the risk and non-risk groups. Based on
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the list of the significant features’ rt and m/z coordinates, our mapCutter.sh command-line

script was employed to cut out the corresponding extracted ion chromatogram (XIC) from the

original mzML input files (see appendix A.1.4). The excised chromatographic profiles were

superimposed in R plots with respect to their class in order to compare them visually against

the blank profiles. For convenience, a group-wise box plot was generated to visualize the group

differences in a quickly accessible manner. We automated the generation of these four-panel

plots with our R script plotGroupwiseXICs.R (Appendix A.1.4).

We performed an AccurateMassSearch (AMS) run with relative isotopic abundance (RIA)

filtering to putatively identify the significant features (Section 4.2.2). Both for the positive and

negative mode data, the identification was restricted to the most common and simple adducts

(for parameter settings, see Appendix A.1.4). Putative metabolites corresponding to exogenous

sources (e.g., food or drugs) were filtered out. Each feature was checked visually in the original

data (e.g., if a clear elution profile was observable) to rule out spuriously detected features

stemming from contaminant compounds. To further confirm our putative IDs, we studied the

relationship between the compounds’ observed rts and their predicted hydrophobicity (XLogP)

values in a robust regression analysis (Section 4.2.5). The positive and negative mode IDs were

considered in separate regression analyses. Duplicate data points (i.e., identical rt and XLogP

values) were removed from the training datasets. Metabolite IDs were marked as unlikely if

they were outside the middle 95 % interval of the residual distribution.

6.2.3 Untargeted Metabolomics Analysis

The following sample preparation and ultra performance liquid chromatography (UPLC)-MS

analysis steps were performed by Jia Li (CAS Key Laboratory of Separation Science for Analytical

Chemistry, Dalian Institute of Chemical Physics, China) and were previously described in [19].

In order to prepare the ethylenediaminetetraacetic acid (EDTA) plasma for the LC-MS mea-

surements, a 200µL aliquot was deproteinized with acetonitrile (target concentration 66 %),

vortexed for 2 min, and centrifuged for 20 min at 15,700 g and 4 ◦C. The supernatant was

then dried in a vacuum centrifuge and stored at −80 ◦C. Immediately before the analysis, the

samples were reconstituted in a 200µL acetonitrile/water mix (v/v 4:1).

The metabolomics profiling experiments were performed on an AccelaTM UPLC system cou-

pled to an LTQ-Orbitrap XL mass spectrometer with an electrospray ionization (ESI) source

(Thermo Fisher, San Jose, CA, USA). For the chromatographic separation, we employed a

2.1 mm×100 mm×1.7µm C8 AQUITYTM column (Waters, Milford, MA, USA). The separation

protocol was described previously [186] and was changed slightly for our experiments. In the

positive mode analysis, we used water with 1 % formic acid (A) and acetonitrile (B) as mobile

phases. The elution gradient was initialized with 95 % A and 5 % B for 0.5 min, increased

linearly to 100 % B for the next 23.5 min, maintained for 4 min, and finally returned to 5 %

B within 0.1 min. Before the next sample injection, the column was equilibrated for 4 min.
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The chromatography runs were carried out with a flow rate of 0.35 mlmin and a column

temperature of 35 ◦C. In negative mode analysis, the mobile phases were water (A) and 95 %

MeOH/5 % H2O (B), both with 5 mmol NH4HCO3. The elution gradient began with 20 % B for

0.5 min, increased linearly to 100 % B for the next 21.5 min, maintained for 5 min, and finally

returned to 20 % B within 0.1 min. Column equilibration was performed for 5 min before the

next injection. Flow rate was set to 0.35 mlmin and the column was operated at 50 ◦C.

The LC capillary temperature was at 325 ◦C. In positive mode, the ESI source was operated

with a voltage of 4.5 kV, sheath gas flow at 40 arb. unit and auxiliary gas flow at 5 arb. unit.

In negative mode, the source voltage was set to 3.5 kV, the sheath gas flow to 35 arb. unit

and auxiliary gas flow to 5 arb. unit. High resolution full scans were recorded between 100–

1,000 Th and data was acquired in profile mode. Samples were measured in a randomized

order. Every fifth injection, a QC sample was analyzed to assess reproducibility [187]. After

every tenth injection, a blank sample was measured.

6.2.4 Clinical analyses

The following analyses were previously described in [19].

Following a 12 h overnight fasting, we performed a 75 g oral glucose tolerance test (OGTT)

with each subject at 8 am to investigate the kinetics of glucose, insulin, C-peptide, proinsulin,

and non-esterified fatty acids (NEFA). Blood glucose levels were measured with a bedside

glucose analyzer (YSI, Yellow Springs, CO). Insulin and C-peptide were determined on an

ADVIA Centaur XP, blood cell count on an ADVIA 2120, and the remaining routine parameters

on an ADVIA 1800 clinical chemistry system (all devices from Siemens Healthcare Systems,

Erlangen, Germany). The genotyping of the rs7903146 SNP was performed on the MassARRAY

platform (Sequenom, San Diego, USA). We calculated the insulin sensitivity from the glucose

and insulin levels with the method proposed by Matsuda and DeFronzo [188]. Insulin secretion

was estimated from glucose and C-peptide levels according to the homeostasis assessment

model (HOMA) [189] via a freely available calculator software [190].

6.3 Results

The statistical analysis of the positive mode data reported 60 features that showed significant

differences in their levels between the control and risk allele groups (35 up- and 25 down-

regulated, see Tables A.11 and A.13, respectively). Among these, we could assign a unique

empirical formula with at least one putative Human Metabolome Database (HMDB) metabolite

ID to five up-regulated and eight down-regulated candidates (Tables A.12 and A.14). The list

of putative IDs comprised lipid compounds (phospholipids, FFAs), bile acid glycine conjugates,

sugars, and the amino acid L-tyrosine. Most of these IDs were quite reasonable in the context of

T2DM and were reported in the literature (e.g., FFAs and phospholipids [191] or bile acids [20]).
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One interesting up-regulated candidate (m/z 181.07109) could be mapped to several isobaric

hexose sugars with glucose being the most prominent one. While the fold change between this

candidate’s group-wise median levels was clearly observable (see box plot in Figure A.18), the

classical approach of comparing both groups with a two-sample t-test yielded no significant

difference. We found that RankProd was still sensitive enough to detect the differences between

the groups and to rank this as a potential candidate biomarker. In general, the fold changes

reported by the RankProd function were rather small as expected for metabolites (1.20 to

1.53 for up-regulated and 0.67 to 0.86 for down-regulated candidates), and with rather high

biological variances present in the groups, common two-sample t-tests were not robust enough

to detect these subtle differences. As a counterexample, the group differences of the down-

regulated candidate putatively identified as N-undecanoylglycine (Table A.14 (3)) were much

clearer both in the corresponding group-wise XIC plots and intensity box plots (Figure A.19)

and also significant according to a t-test (p-value = 0.021, α = 0.05). The function of N-

undecanoylglycine, an odd-numbered acylglycine, is unknown in the T2DM context but might

indicate an impairment of the lipid metabolism and thus is a promising biomarker candidate.

The negative mode dataset yielded 48 candidates with significant fold changes (22 up- and

26 down-regulated, see Tables A.15 and A.17). We could assign a unique empirical formula

with at least one putative HMDB metabolite to ten up- and nine down-regulated candidates

(Tables A.16 and A.18). In particular, these putative IDs comprised several compounds from the

lipid class (di- and triglycerides, phospholipids, FFAs), bile acids (deoxycholic acid (DCA) and

chenodeoxycholic acid (CDCA)) and their conjugates, and purines. For instance, two candidates

were putatively identified as pentacosanoic and hexacosanoic acid, two FFAs (Table A.16 (4)

and (10)). FFAs are interesting markers for the lipid metabolism and were studied frequently

in the context of T2DM [192, 193, 194]. Again, we found N-undecanoylglycine as a down-

regulated candidate with a similar fold change of 0.69. More strikingly, one candidate was

identified as androsterone or dihydrotestosterone (DHT) sulfate, two isobaric sulfated breakdown

metabolites of the androgenic steroid hormone testosterone (Table A.18 (4) and Figure A.20).

In the same context, another very interesting finding was the candidate putatively identified as

androstanediol glucuronide (Table A.18 (9) and Figure A.21). Both candidates were detected as

down-regulated in the risk allele group and might be interesting biomarkers for the impairment

of testosterone metabolism, a common implication of T2DM. In the group-wise XIC plots and

intensity box plots, the difference in the group median levels was observable, however, the risk

allele groups were not significantly lower in their levels according to a one-sided Wilcoxon

rank sum test (α=0.05). To further assess the likelihood of these IDs, we broke the cohort and

the corresponding measurements down not only by genotype but also by gender. As expected,

the levels of both markers were significantly lower in the female subjects than in the male ones

(Figure 6.1). Furthermore, the difference between the non-risk and risk allele groups were

now more evident and in some cases also statistically significant. This was particularly true

for the androstanediol glucuronide marker. In case of androsterone/DHT sulfate, however, we

observed high biological variances within the risk allele groups such that the difference between
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Figure 6.1: Levels of androsterone/DHT sulfate and androstanediol glucuronide with respect
to gender/group. The box plots show the feature intensity distributions of the individuals
grouped by gender and genotype (group 1 for non-risk, group 2 for risk allele group). We
performed pair-wise one-sided Wilcoxon rank sum tests to assess if the conditions compared
are significantly different in their levels or not (see green brackets). ns: p > 0.05, *: p ≤ 0.05,
**: p ≤ 0.01.

groups could not be confirmed as statistically significant. We double-checked if a similar

dependency on gender existed for the other candidates (e.g., N-undecanoylglycine) but found

no evidence as strong as in these two cases. Based on our observations, we considered these

two IDs as highly reliable markers that should be targeted first in follow-up experiments.

With regard to the rt prediction models based on the putative IDs from positive and negative

mode, respectively, we found robust linear models that could describe the observed rts very

well (Figure 6.2). The rt model trained with the positive IDs data achieved an R2 of 0.948

and an RMSE of 2.33 min (values averaged over 500 runs of tenfold cross validation). The

underlying residual distribution revealed four outlying data points. These corresponded to 19

potentially false positive identifications of which 16 belonged to phosphatidylcholines (PCs)

isomers (Table A.14). In case of the negative mode ID, the rt model achieved a cross-validated

R2 of 0.868 and an RMSE of 2.88 min. Four data points were marked as outliers corresponding

to ten potentially false positive IDs (Tables A.16 and A.18).

6.4 Discussion

The statistical analysis of the LC-MS measurements yielded 108 potential markers suggesting

that there are differences in metabolite patterns between the non-risk and risk allele groups.

With our metabolite identification workflow, we could annotate 32 of these candidates with a

unique empirical formula and corresponding putative IDs from the HMDB database. Although

several marker masses could not be identified unambigously (i.e., not matched uniquely with
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Figure 6.2: Retention time models based on the TCF7L2 dataset. Robust regression models
were trained to explain the rts of metabolite marker candidates from the positive and negative
modes, respectively. Both models exhibit four outlier data points that most likely stem from
false positive putative IDs (Tables A.14, A.16 and A.18).

one metabolite), the isobaric alternative identifications were usually from the same compound

class and thus suggested the potential role of specific metabolic pathways. For instance, in the

negative mode dataset we found metabolite ions that were exclusively annotated with isobaric

bile acids or their conjugated derivatives (Table A.18). Other ambiguities were introduced

by isobaric lipids with varying double bonds, steroid hormons and their conjugated forms,

and hexose sugars or their breakdown products (e.g., glucose or lactic acid). By harnessing

the orthogonal information of the candidates’ observed retention times with rt prediction

models, we could rule out 29 putative HMDB IDs. In some cases, this left metabolite ions

with no ID at all. For example, heptanoylcarnitine (Table A.14 (1)) appeared less probable

according to the rt model. Since the metabolite ion had a quite high rt (14.13 min) and the

postulated adduct formation with potassium appeared quite unlikely, marking this ID as invalid

was sound. In other cases, metabolite ions could be uniquely annotated after the alternative

IDs were rendered invalid, e.g., trans-dec-2-enoic acid (Table A.14 (5) or 3,17-Androstanediol

glucuronide (Table A.18 (9)). In general, the rt models showed that most putative IDs suggested

by our AMS and RIA workflows correlated excellently with the observed metabolite features

and thus helped to improve the confidence in our computational identification results.

Under the assumption that most metabolites were correctly identified, we studied some marker

candidates and their potential role in T2DM. Several IDs suggested the involvement of the bile

acid CDCA together with its glycine and taurine conjugates. In negative mode, these markers

were found as down-regulated with similar fold changes around 0.82, i.e., the decrease of

CDCA would affect its conjugates to the same extent. The relationship between these markers

94



6.4 Discussion

might suggest that both the production of CDCA, one of the primary bile acids produced in

the human body, and its downstream conjugation might be impaired in the risk-allele group.

Another supporting evidence could be an up-regulated marker with a fold change of 1.33

(negative mode) that was putatively identified as 3a,7a-Dihydroxycholanoic acid, a precursor

bile acid upstream of the CDCA synthesis. This might indicate decreased enzyme activities

along the conversion path from cholesterol to CDCA. Since the same pool of precursors leading

to CDCA also feeds the synthesis of the other primary bile acid cholic acid (CA), we expected to

see perturbations in the levels of CA or its downstream bile acids as well. An altered CA/CDCA

ratio is believed to be associated with the T2DM disease state [20] and thus would make sense

in the context of the TCF7L2 rs7903146 polymorphism. Another common complications of

T2DM are sexual dysfunctions, usually associated with impaired levels of testosterone [22,

21]. Our negative mode data indicated the presence of two testosterone metabolites, namely

androsterone or DHT sulfate and 3,17-Androstanediol glucuronide, that were down-regulated.

3,17-Androstanediol is the major metabolite of DHT and both are known to play crucial roles

in sex drive and function [195]. When we separated the groups additionally by gender, the

expected differences between male and female androgen metabolite levels became more clear

and thus provided a strong evidence for the validity of these IDs. Finally, we found potential FFAs

markers which were increased by a factor of roughly 1.5 in the risk-allele group (Tables A.15

and A.16 (4) and (10)). Elevated FFAs plasma levels were linked to insulin resistance and

impaired β cell function [192, 193, 194]. With respect to the β cell function, we could confirm

this by a HOMA index lower in the risk-allele group than in the control group (Table A.10).

However, no significant differences regarding insulin resistance were measured in our cohort.

This study on the TCF7L2 rs7903146 polymorphism revealed several potential biomarkers that

discriminated well between the non-risk and risk allele groups. Interestingly, these differences

were often subtle since the fold changes were rather small (1.15 to 1.53 for up-regulated and

0.54 to 0.86 for down-regulated candidates). This was complicated by the fact that many of

the candidates showed a high biological variation within each group and thus the group-wise

intensity distributions were strongly overlapping. In our earlier work based on the same

dataset [19], no significant perturbations on the metabolome level could be detected. The

feature dataset was extracted with the vendor MS software SIEVE [196] and the analysis was

performed with PCA and PLS-DA, statistical tools that are very common in the metabolomics

community. However, our present work showed the RankProd method combined with our

signal processing pipeline was more adequate to detect such subtle metabolite perturbations

than the classical data processing and statistical analysis tools. Since the outcomes of our

former and latter approaches were quite different and allowed for contradicting interpretations,

this comparison clearly demonstrated the impact of data processing and statistical techniques

on the fate of biomarker studies. A preliminary interpretation of our data was facilitated by

our automated metabolite annotation workflow yielding confident IDs that could be explained

plausibly in the given biological context. Nonetheless, these IDs must be confirmed by a targeted

approach using standard compounds or MS/MS fragmentation before final conclusions about
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the pathophysiological implications can be drawn. To this end, our list of putative IDs could

guide the design of targeted follow-up experiments.

We plan to conduct targeted experiments in order to elucidate the structure of the most

promising putative IDs. Particularly, a deeper investigation of the metabolites involved in the

bile acid, steroid, and lipid metabolism seem to be most promising. Furthermore, we would

like to explore alternative parameter sets in the metabolite IDs workflows (e.g., more complex

adduct formations) since this could yield more marker candidates that were missed with our

present conservative settings. Finally, the integration of further orthogonal criteria (e.g., simple

chemical transformation rules such as water loss or decarboxylation in order to link related

adducts) might lead to more confident identifications.
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CHAPTER 7

Conclusion

As we have shown in this work, we made valuable contributions to the field of computational

metabolomics. We designed and implemented novel algorithms and data analysis workflows to

tackle its central problems: the automated quantification of metabolites, their identification,

statistical analysis, and ultimately their biological interpretation. Our main intention was to

solve these problems in a comprehensive and consistent manner rather than addressing them

separately. This high level of consistency sets our computational workflows apart from existing

solutions that usually address subproblems only and are difficult to integrate with each other.

Still, our workflows offer high flexibility due to their modular design in contrast to monolithic

all-in-one solutions. Each of our algorithms was implemented as a self-contained module that

can be easily swapped or reused in another workflows. This flexibility allows us to quickly

adapt to the rapidly evolving requirements of high-throughput metabolomics experiments.

Our computational strategies facilitate the rapid extraction of novel biological knowledge

from complex LC-MS data. We could prove this by producing biologically sound results on

the basis of the TCF7L2 polymorphism dataset (Chapter 6). We developed a comprehensive

data analysis workflow for biomarker discovery in untargeted LC-MS data that built upon

the statistically robust rank product test [18] and included a thorough data pretreatment

strategy geared towards metabolomics experiments (Section 2.3.1). In contrast to our previous

work [19], we found more than 100 potential biomarkers that suggested significant differences

between control and risk allele subjects and thus a strong involvement of the studied TCF7L2

polymorphism in T2DM. Some biomarker candidates indicated perturbations in the bile acid

and androgenic steroid biosyntheses, both of which were studied extensively in the same context

before [20, 21, 22]. We concluded from our previous and present results that the choice of data

preprocessing and statistical methods were critical to detect the subtle changes in metabolite
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levels between control and treatment groups. This was particularly true for metabolites that

exhibited strong intra-group variation [15]. In our previous work [19] we employed PLS-DA,

a popular statistical tool in the metabolomics community to detect discriminant metabolite

patterns. However, it has been shown that it might not be sensitive enough to capture small

differences in metabolite levels without proper optimization [17]. In this regard, we found

that our biomarker discover workflow was more robust and sensitive in the detection of novel

metabolite biomarkers than traditional methods such as PLS-DA.

Temporally resolved metabolomics data is another application field where classical approaches

such as PCA and PLS-DA are not readily applicable [148]. To this end, we implemented a

novel computational pipeline that boils down complex time-course metabolomics data to a

few characteristic metabolic patterns and correlates them with pathway information to assist

in biological interpretation (Chapter 5). The centerpiece of this pipeline is a variant of the

QT clustering algorithm [23] which we extended with the STS distance [24]. In contrast

to the standard Euclidean distance or Pearson correlation as employed in most clustering

approaches, the STS metric offers higher discriminatory power when comparing time series

with non-equidistant time points. Furthermore, it is particularly suited to time series with only

few time points [24]. This is a very common scenario in metabolomics studies where sample

material is often limited (e.g., human samples, biopsies). We found that our modified clustering

algorithm captured the rapid changes during short time intervals more precisely while allowing

for a bigger biological variation in longer intervals. We validated our clustering approach on

the basis of time-course data that was acquired during a single bout of exercise. Mapping the

two most prominent clusters to the SMPDB revealed several pathways related to amino acid,

FFA, and catecholamine metabolism. In literature, these pathways often occur in the context of

physical exercise [162, 163, 168]. These results clearly showed that our discovery pipeline is

a potent tool to elucidate characteristic kinetic patterns from untargeted time-series data. In

a follow-up experiment, these patterns can be further studied in a targeted approach, saving

both time and cost.

With our biomarker discovery pipelines, we achieved very promising results that allowed

for a sound biological interpretation of LC-MS data. However, this would have not been

possible without proper metabolite ID. We developed an integrative strategy for metabolite ID

that exploits all sources of orthogonal information extractable from untargeted LC-MS data

(Chapter 4). Given the m/z of an observed metabolite feature, our AMS tool can detect a wide

range of potential positive and negative adducts. We observed that the more potential adducts

were considered during an AMS run, the more the actual metabolite IDs were overshadowed

by false positives. In order to reduce the ambiguity and to increase the confidence of our ID

results, we implemented several orthogonal filter strategies. RIA filtering can significantly

lower the number of empirical formulas that were suggested by spuriously detected adducts.

The effectiveness of RIA filtering was shown before [65, 66] and could be confirmed by our

experiments (Section 4.3.1). Obviously, the presence of a metabolite’s isotope pattern is

required by the RIA filter — a condition that is rarely met for low-concentrated metabolites
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close to the LOD. Another filter criterion employs an rt prediction model to assess if proposed

candidate IDs are close to the observed feature’s rt. We devised a computational workflow

to train such rt models automatically on the basis of confirmed metabolites (Section 4.2.5).

Our experiments suggested that rt filters are very effective in discarding false positives while

increasing the confidence in the correct metabolite IDs (Section 4.3.4).

Ultimately, following the guidelines of the MSI [12], the strongest evidence of a metabolite

ID is provided by a match against a spectral database of authentic standards measured under

identical conditions. We designed the MSM tool to facilitate efficient matches against the public

fragment database MassBank. While MSM can easily be extended by fragment data other

than MassBank, the availability of public resources for offline use is very low. Common small

molecule fragment databases such as the METLIN database solely provide search functionality

via a web-based interface [85]. Although the coverage of metabolites found in MassBank is

incomplete, we observed excellent results in a RPLC-MS/MS validation dataset. In almost all

cases, MSM ranked the correct metabolite IDs as best hits (Section 4.3.2). Furthermore, the

matching scores were significant according to the background score distribution. We adapted

MSM’s scoring function from the dot product based HyperScore [82] which was employed

in the X!Tandem search engine for peptides [83]. With respect to fragment data from small

molecules, similarity measures with better discriminatory power than the dot product have

been proposed [84]. While MSM currently provides only one scoring function, it can easily be

augmented by alternative metrics.

In order to harness the advantages of both AMS with orthogonal filters and MSM, we merged the

two tools into a combined ID approach. According to our validation experiments (Section 4.3.3),

AMS tends to detect more authentic standards than MSM but for the price of less specificity. On

the contrary, MSM discriminates well between the correct and false positive IDs but strongly

depends on the metabolite coverage of its underlying spectral DB and whether a precursor ion

was selected by DDA or not. Based on our visual annotation of the validation dataset, we found

that metabolite IDs confirmed or excluded by both AMS and MSM (44 out of 54) were highly

reliable. Candidates that were proposed only by AMS could be trusted if they were confirmed

by one or more orthogonal criteria. However, none of the orthogonal filters applied in these

cases. Still, from our assessment of the individual RIA and rt filter performances we would

expect an improvement of the ID accuracy if these were applicable (Sections 4.3.1 and 4.3.4).

In an untargeted metabolomics experiment, the very first step is the quantification of all

metabolites present in a complex biological sample. Hence, this step is critical for the quality

of following analyses and ultimately for the final results. We developed the robust feature

detection algorithm FFM that is sensitive to low-intensity metabolites close to the detection

level and offers an excellent correlation between spiked concentrations and observed intensities

of authentic standards in human plasma (Chapter 3). Aside from a sensitive detection of mass

traces, we introduced a novel SVM classifier for deisotoping. Our classifier was built on the basis

of isotope patterns that were generated with computational means [66] to capture the domain
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of small organic molecules exhaustively. We evaluated its performance with data from an actual

metabolite DB and were able to differentiate between real metabolites and invalid isotope

patterns with outstanding performance. In a benchmark with simulated LC-MS datasets, we

compared the performance of FFM with one of the state-of-art algorithms XCMS/CAMERA. Our

algorithm clearly exceeded the XCMS/CAMERA performance in terms of recall and precision,

mainly due to a much higher sensitivity to low-intensity features. Implemented as a self-

contained module within the OpenMS framework, it is easy to integrate into more complex

quantification (signal preprocessing, feature linking), identification, and statistical analysis

pipelines.

In future work, we would like to take the promising results obtained with our discovery pipelines

one step further and validate them in targeted metabolomics experiments. With respect to

the TCF7L2 dataset, the confirmation of the biomarker candidates pointing at the bile acid,

steroid, and lipid metabolism could shed light on the controversy whether the rs7903146

polymorphism has a real impact on T2DM or not [19, 176]. In the same line, we plan to

experimentally validate the metabolic pathways that were revealed by our enrichment analysis

and most likely were perturbed during the exercise and recovery stages of our time-course

experiment. Metabolite ID was performed with very conservative settings in order to keep the

number of false positives low. By doing so, however, we might have missed some potential

biomarker IDs. We would like to study more relaxed parameter settings (e.g., extended range of

potential adducts) in conjunction with additional orthogonal filter criteria. Novel filters could

integrate more chemical knowledge into the identification process, e.g., common chemical

transformations (dehydration, decarboxylation, deamination). Our AMS could greatly benefit

from the integration of adduct likelihoods, that is, chances of specific adducts to be formed

during ESI ionization. With respect to metabolite ID by means of spectral matching, neither the

TCF7L2 nor the exercise dataset provided MS/MS spectra. To this end, we plan to study RPLC-

MS/MS measurement protocols that would allow for both robust quantification and confident

ID at the same time. Along that line, we would like to further improve on the MSM performance

by increasing the metabolite coverage of our spectral resource. Furthermore, the integration of

alternative scoring functions such as the X-Rank score [84] could increase the discriminatory

power of spectral matching, in particular, if the spectra are as heterogeneous as in the MassBank

case [13] (e.g., different MS platforms and fragmentation energies). Finally, we strive to

increase the specificity of our FFM algorithm which could be realized by a more sophisticated

signal-to-noise estimation. The performance of our method could be additionally improved by

taking the feature reproducibility in multiple measurements (technical and biological replicates)

into account. We plan to implement an OpenMS tool to detect and merge adduct features that

originate from the same metabolite. By this means, we could further decrease the redundancy

present in the feature lists.
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APPENDIX A

Supplementary Material

A.1 File Archive

A.1.1 File Listing of Chapter 3

Quanti�cation Dataset

./Chapter3
featlinking.ini
PlasmaData

FFM_QuantBenchmark.ini

Simulated Plant Metabolites Dataset

./Chapter3
featlinking.ini
SimData

detNoiseSim
errorPPMSim
GroundTruth.featureXML
intDistSim
mssim_template.ini
plant_mets_270212.csv
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A.1.2 File Listing of Chapter 4

RPLC-MS/MS Validation Dataset

./Chapter4
primary_data

FFM.ini

Accurate Mass Search with Isotope Ratios Filtering

./Chapter4
AMS

parseHMDB30.py

Spectral Search in Fragment Spectra Databases

./Chapter4
MSM

parseMBFiles.py

Exploiting the AMS and MSM Tools in a Combined Approach

./Chapter4
combined

mergeIDs.py
inis

ams_pos_5ppm.ini
ams_pos_1ppm.ini
ams_pos_5ppm_onlyH.ini
ams_pos_1ppm_onlyH.ini
ams_neg_5ppm.ini
ams_neg_1ppm.ini
ams_neg_5ppm_onlyH.ini
ams_neg_1ppm_onlyH.ini
ams_pos_riafilt.ini

Prediction of Metabolite Retention Times on RPLC-MS Columns

./Chapter4
rtpred

SimplePositiveAdducts.tsv
SimpleNegativeAdducts.tsv
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A.1 File Archive

A.1.3 File Listing of Chapter 5

Metabolite Signal Extraction

./Chapter5
feature_extraction

findFeatures.py

Metabolite Identi�cation

./Chapter5
metabolite_id

clusterIDmapping.R
inis

AMS_pos.ini
AMS_neg.ini
PositiveAdducts.tsv
NegativeAdducts.tsv

Cluster Analysis

./Chapter5
qt_clustering

qtClustPipeline.R
flexclust_final.zip

Pathway Enrichment Analysis

./Chapter5
enrichment

hmdbPathwayMapper.py
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A.1.4 File Listing of Chapter 6

Bioinformatics Analysis

./Chapter6
ID

AMS_neg.ini
AMS_pos.ini
NegativeAdducts.tsv
PositiveAdducts.tsv

quant
FeatureLinkerUnlabeledQT.ini
FFM_neg.ini
FFM_pos.ini
PeakPickerHiRes.ini

tools
mapCutter.sh
plotGroupwiseXICs.R

104



A.2 Figures

A.2 Figures

0 1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

concentration (stock solution) [mg/L]

in
te

ns
ity

R2 = 0.9988
Propionyl-L-carnitine-d3

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

concentration (stock solution) [mg/L]

in
te

n
s
it
y

Nialamide

R
2
 = 0.99136

Figure A.1: Relationship between propionylcarnitine-d3 and nialamide concentrations and
respective feature intensities. For each concentration, an error bar depicts the standard deviation
of the triplicate intensities. The solid line connects the mean intensities obtained from each of
the 11 triplicates. For each compound, a line was fit by linear regression to the 33 concentration-
intensity data points with the goodness-of-fit R2 (dashed line) [53].
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Figure A.2: Relationship between sulfadimethoxine-d6 and hexadecanoyl-L-carnitine-d3 con-
centrations and respective feature intensities. For each concentration, an error bar depicts the
standard deviation of the triplicate intensities. The solid line connects the mean intensities
obtained from each of the 11 triplicates. For each compound, a line was fit by linear regression
to the 33 concentration-intensity data points with the goodness-of-fit R2 (dashed line) [53].
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Figure A.3: Relationship between octadecanoyl-L-carnitine-d3 concentrations and feature
intensities. For each concentration, an error bar depicts the standard deviation of the triplicate
intensities. The solid line connects the mean intensities obtained from each of the 11 triplicates.
A line was fit by linear regression to the 33 concentration-intensity data points with the
goodness-of-fit R2 (dashed line) [53].
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Figure A.4: Feature finding performance with respect to varying degrees of simulated detector
noise. For each simulated detector noise setting, the noise_threshold_int parameter was
chosen accordingly as an optimal setting. Additionally, only mass traces with a signal-to-noise
ratio of at least 10 were accepted [53].

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

s
c
o
re

mass_error_ppm

 

 

FeatureFinderMetabo

XCMS/CAMERA

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

s
c
o
re

mass_error_ppm

 

 

FeatureFinderMetabo

XCMS/CAMERA

simulated m/z error σ
m/z

simulated m/z error σ
m/z

Figure A.5: Feature finding performance comparison with respect to varying settings of the
mass_error_ppm parameter. Feature detection runs were performed on datasets with a
simulated m/z error σm/z = 10 ppm (left plot) and σm/z = 40 ppm (right plot). Our algorithm’s
mass_error_ppm parameter and the corresponding parameter in XCMS/CAMERA were varied
between 1 and 50 ppm, respectively [53].
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Figure A.6: Feature finding performance with respect to varying settings of the chrom_fwhm
parameter. Feature detection runs were performed on a dataset with elution profiles simulated
with heavy distortion. The chrom_fwhm parameter was varied between 1 and 10 s. Since
XCMS/CAMERA does not offer a smoothing parameter corresponding to chrom_fwhm, we
conducted a single run with the parameter peakwidth set to the interval [3, 30] seconds, allowing
only chromatographic peaks within this range. The set of chromatographic peaks resulting
from our algorithm were also filtered by this criterion [53].
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Figure A.7: Snapshot of the INIFileEditor window. The parameters for the
FeatureFinderMetabo tool can be easily changed with the INIFileEditor tool of
OpenMS [53].
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Figure A.8: UML diagram of the AccurateMassSearchResult class. Instances hereof are
created by the AMS algorithm to temporarily store query hits.
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Figure A.9: Parsing of pseudo-molecular formulations in the AMS tool. Based on the adduct
string, the parser first removes the suffix beginning with the semicolon and thus determines
the adduct charge. Then, the preceding substring is split into a sequence of subcomponents
with respect to the "+" and "-" operators. After the stoichiometric coefficients has been ex-
tracted, each substring is parsed by an EmpiricalFormula object and its monoisotopic mass
is calculated [134]. Finally, solving the final equation by m(M) results in the query mass.
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Figure A.10: Distribution of HMDB compound masses below 1,200 Da.
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Figure A.11: Two-dimensional histogram of HMDB compound masses. In this hexagonal
binning plot [197], the frequencies of compounds with identical masses are visualized with
respect to m/z.
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Figure A.12: Distribution of positive adduct types with respect to mass error tolerance |δmAMS|.
The underlying numbers were taken from the adduct statistics written out by the AMS tool and
correspond to the proportions of features annotated with the respective adduct types. Fractions
below 3 % were summarized under the other adducts section.
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Figure A.13: Distribution of negative adduct types with mass error tolerance |δmAMS| ≤ 5 ppm.
Fractions below 3 % were summarized under the other adducts section.
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Figure A.14: Clusters representative for the exercise phase (part 1).
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Figure A.15: Clusters representative for the exercise phase (part 2).
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Figure A.16: Clusters representative for the recovery phase (part 1).
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Figure A.17: Clusters representative for the recovery phase (part 2).
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Figure A.18: Profile plots of an up-regulated candidate detected in positive mode. When
compared between group 1 (non-risk allele) and group 2 (risk allele), the elution peaks differed
significantly in their intensity distributions according to our RankProd analysis, however, could
not be distinguished by means of a t-test. Our AMS identification run suggested D-glucose
among other hexose sugars as potential metabolite IDs (Table A.12 (5)).
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Figure A.19: Profile plots of a down-regulated candidate detected in positive mode. When
compared between group 1 (non-risk allele) and group 2 (risk allele), the elution peaks differed
significantly in their intensity distributions according to our RankProd analysis and also to a
t-test (p-value= 0.021, α= 0.05). Our AMS identification run suggested N-undecanoylglycine
as a potential metabolite ID (Table A.14 (3)).
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Figure A.20: Profile plots of a down-regulated candidate detected in negative mode. When
compared between group 1 (non-risk allele) and group 2 (risk allele), the elution peaks differed
significantly in their intensity distributions according to our RankProd analysis, however, could
not be distinguished by means of a Wilcoxon rank sum test (α = 0.05). Our AMS identification
run suggested androsterone and DHT as potential metabolite IDs (Table A.18 (4).
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Figure A.21: Profile plots of a down-regulated candidate detected in negative mode. When
compared between group 1 (non-risk allele) and group 2 (risk allele), the elution peaks differed
significantly in their intensity distributions according to our RankProd analysis, however, could
not be distinguished by means of a Wilcoxon rank sum test (α = 0.05). Our AMS identification
run suggested androstanediol glucuronide as a potential metabolite ID Table A.18 (9).
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A.3 Tables

Detection parameters Positive ESI

Capillary voltage (kV) 3.1
Sample cone (V) 30.0

Extraction cone (V) 4.0
Source temperature (◦C) 120

Desolvation temperature (◦C) 300
Desolvation flow (L h−1) 800

Cone (Lh−1) 50
Detector (kV) 1.8

Table A.1: Configuration of detection parameters for the MS measurements conducted in
positive ESI mode [53].

MSSimulator parameter value

RT:total_gradient_time [s] 1,500
RT:sampling_rate [s] 0.25

RT:scan_window:min [s] 0
RT:scan_window:max [s] 1500

RawSignal:resolution:value 20,000
RawSignal:resolution:type constant

RawSignal:variation:intensity:scale 1
Ionization:mz:lower_measurement_limit [Da] 100
Ionization:mz:upper_measurement_limit [Da] 1,000

detector noise simulation:
RawSignal:noise:detector:stddev [counts] 0, 3, 5, 10, 12, 15, 20, 25,

30, 40, 50, 70 and 100

m/z variation:
RawSignal:variation:mz:error_stddev [ppm] 0, 5, 10, 15, 20, 25, 30, 35,

40, 45 and 50

elution profile distortion:
RT:column_condition:distortion 0 and 10

Table A.2: Parameter configuration of MSSimulator. The first nine parameters were common
to all simulated datasets. The last three parameters were specific for the simulations of detector
noise, m/z variation, and elution profile distortion, respectively [53].

123



A Supplementary Material

C
om

po
un

d
C

3-
C

ar
ni

ti
ne

N
ia

la
m

id
e

Su
lf

ad
im

et
ho

xi
ne

R
es

er
pi

ne
Te

rf
en

ad
in

e
C

16
-C

ar
ni

ti
ne

C
18

-C
ar

ni
ti

ne

C
or

re
la

ti
on

0.
99

94
0.

99
57

0.
98

7
0.

99
87

0.
99

94
0.

99
75

0.
98

03

C
on

ce
nt

ra
ti

on
[m

g/
L]

in
te

ns
it

y
m

ea
n
±

st
an

da
rd

de
vi

at
io

n

0
no

t
de

te
ct

ed
no

t
de

te
ct

ed
no

t
de

te
ct

ed
no

t
de

te
ct

ed
no

t
de

te
ct

ed
no

t
de

te
ct

ed
no

t
de

te
ct

ed
0.

01
no

t
de

te
ct

ed
6.

3×
10

1
2.

5×
10

2
8.

0×
10

1
3.

8×
10

2
2.

2×
10

2
no

t
de

te
ct

ed
±

0.
0

(*
)

±
2.

7×
10

1
±

8.
3

±
4.

3×
10

1
±

0.
0

(*
)

no
t

de
te

ct
ed

0.
02

no
t

de
te

ct
ed

1.
1×

10
2

4.
8×

10
2

1.
4×

10
2

6.
4×

10
2

3.
6×

10
2

4.
5×

10
2

±
1.

1×
10

1
±

7.
2×

10
1

±
9.

3
±

8.
4×

10
1

±
3.

4
±

7.
3

0.
05

no
t

de
te

ct
ed

2.
5×

10
2

1.
2×

10
3

3.
6×

10
2

1.
8×

10
3

6.
9×

10
2

9.
1×

10
2

±
1.

1×
10

1
±

9.
7×

10
1

±
3.

8×
10

1
±

1.
5×

10
2

±
8.

8
±

1.
9×

10
1

0.
1

no
t

de
te

ct
ed

2.
0×

10
2

2.
3×

10
3

8.
3×

10
2

3.
6×

10
3

2.
5×

10
3

3.
2×

10
3

±
1.

2×
10

2
(*

*)
±

9.
5×

10
1

±
2.

5×
10

1
±

1.
3×

10
2

±
1.

9×
10

1
±

1.
8×

10
2

0.
2

no
t

de
te

ct
ed

1.
0×

10
3

3.
8×

10
3

2.
1×

10
3

7.
7×

10
3

6.
4×

10
3

8.
0×

10
3

±
9.

9×
10

1
±

3.
3×

10
2

±
6.

7×
10

1
±

2.
7×

10
2

±
4.

7×
10

1
±

1.
2×

10
2

0.
5

no
t

de
te

ct
ed

2.
5×

10
3

8.
7×

10
3

3.
9×

10
3

1.
4×

10
4

1.
3×

10
4

1.
8×

10
4

±
1.

1×
10

2
±

7.
8×

10
2

±
3.

0×
10

2
±

5.
0×

10
2

±
1.

0×
10

2
±

2.
1×

10
2

1
3.

1×
10

2
4.

5×
10

3
1.

7×
10

4
8.

1×
10

3
2.

5×
10

4
4.

8×
10

4
5.

6×
10

4

±
1.

4×
10

1
±

1.
3×

10
2

±
1.

2×
10

3
±

7.
2×

10
2

±
1.

5×
10

3
±

1.
4×

10
2

±
5.

1×
10

2

2
5.

3×
10

2
9.

7×
10

3
3.

4×
10

4
1.

9×
10

4
5.

5×
10

4
6.

9×
10

4
9.

3×
10

4

±
2.

1×
10

1
±

1.
1×

10
3

±
1.

5×
10

3
±

1.
2×

10
3

±
1.

3×
10

3
±

5.
9×

10
2

±
5.

7×
10

3

5
1.

1×
10

3
2.

2×
10

4
7.

2×
10

4
5.

7×
10

4
1.

4×
10

5
1.

5×
10

5
2.

3×
10

5

±
1.

0×
10

2
±

2.
2×

10
3

±
4.

1×
10

2
±

2.
3×

10
3

±
1.

8×
10

3
±

2.
3×

10
3

±
6.

4×
10

3

10
2.

0×
10

3
3.

7×
10

4
1.

1×
10

5
1.

0×
10

5
2.

6×
10

5
3.

2×
10

5
3.

2×
10

5

±
1.

3×
10

2
±

1.
4×

10
3

±
4.

0×
10

3
±

1.
1×

10
3

±
4.

0×
10

3
±

1.
2×

10
3

±
2.

0×
10

3

Table A.3: Feature intensities for spiked-in compounds. The first row contains the Pearson
correlations between the concentrations and the corresponding feature intensities for each
standard compound. (*) detected in one of three, (**) detected in two of three replicates [53].
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neutral mass empirical HMDB ID 1 HMDB ID 2 HMDB ID 3 ...
formula

... ... ... ... ...
136.03467 C8H8S HMDB31825 n.a. n.a.
136.03717 C4H8O5 HMDB00613 HMDB00943 n.a.
136.03804 C5H12S2 HMDB31160 HMDB33053 HMDB33054
... ... ... .. ...

Table A.4: Structure of the AMS tool’s tabular HMDB mapping file. Each row contains a unique
neutral mass/empirical formula that is extended by all matching HMDB metabolites. The
complete mapping is stored as HMDBMappingFile.tsv in the OpenMS file hierarchy.

MTD mzTab-version 1.0.0

SMH identifier unit_id chemical_formula smiles

SML HMDB00125 null C10H17N3O6S N[C@@H](CCC(=O)N...
... ... ... ... ...

inchi_key description mass_to_charge charge retention_time ...

InChI=1S/... Glutathione 308.09012 1 76.37 ...
... ... ... ... ... ...

opt_ppm_error opt_adduct_ion opt_id_group

-2.86 M+H;1+ 1042
... ... ...

Table A.5: Example for an mzTab output file. The identification result of glutathione is stored
as an individual row in an mzTab report file. While the most essential columns are shown,
some columns required by the standard were left out for the sake of clarity.
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ACCESSION: KNA00121
RECORD_TITLE: L-Glutathione (reduced form); LC-ESI-ITFT; MS; POS
DATE: 2011.08.03 (Created 2009.11.17)
AUTHORS: Takahashi H, Kanaya S, Ogasawara N, Graduate School of
Information Science, NAIST
LICENSE: CC BY-SA
CH$NAME: Glutathione
CH$NAME: 5-L-Glutamyl-L-cysteinylglycine
CH$NAME: N-(N-gamma-L-Glutamyl-L-cysteinyl)glycine
CH$NAME: gamma-L-Glutamyl-L-cysteinyl-glycine
CH$NAME: GSH
CH$NAME: Reduced glutathione
CH$NAME: L-Glutathione (reduced form)
CH$COMPOUND_CLASS: Natural Product
CH$FORMULA: C10H17N3O6S
CH$EXACT_MASS: 307.08381
CH$SMILES: OC(=O)CNC(=O)C(CS)NC(=O)CCC(N)C(O)=O
CH$IUPAC: InChI=1S/C10H17N3O6S/c11-5(10(18)19)1-2-7(14)13-6(4-20)9(17) ...
CH$LINK: CAS 70-18-8
CH$LINK: CHEBI 16856
CH$LINK: KEGG C00051
CH$LINK: KNAPSACK C00001518
CH$LINK: NIKKAJI J10.686K
CH$LINK: PUBCHEM 3353
AC$INSTRUMENT: LTQ Orbitrap XL, Thermo Scientfic
AC$INSTRUMENT_TYPE: LC-ESI-ITFT
AC$MASS_SPECTROMETRY: MS_TYPE MS
AC$MASS_SPECTROMETRY: ION_MODE POSITIVE
AC$MASS_SPECTROMETRY: COLLISION_ENERGY 35eV
AC$MASS_SPECTROMETRY: IONIZATION ESI
AC$CHROMATOGRAPHY: COLUMN_NAME TOSOH TSKgel ODS-100V 5um Part no. 21456
AC$CHROMATOGRAPHY: FLOW_GRADIENT 0min:3%, 45min:97%, 50min:97%, 50.1:3%, ...
AC$CHROMATOGRAPHY: FLOW_RATE 0.5 ml/min
AC$CHROMATOGRAPHY: RETENTION_TIME 8.858290 min
AC$CHROMATOGRAPHY: SOLVENT 0.1%formate-water / 0.1%formate-acetonitrile
MS$FOCUSED_ION: BASE_PEAK 308.091064
PK$NUM_PEAK: 87
PK$PEAK: m/z int. rel.int.
...
224.127985 2952810.250000 27
...
290.080490 2041832.000000 18
...
308.090822 110826864.000000 999
...
309.093254 14585537.000000 131
...
310.087177 4548931.000000 41
...
615.175264 6018219.500000 54
...

//

Table A.6: Abridged content of the KNA00121 record from MassBank. This record contains the
MS/MS spectrum of reduced glutathione as a peak list and information about its acquisition.
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Table A.7: Validation dataset for our metabolite ID strategies. The dataset comprises 54 authentic standard compounds ranging from all amino acids,
TCA metabolites, and more common compounds. Notes: (1) This ID was further confirmed by the presence of cystine (matches MassBank spectrum
PB000446 with a score of 24.74 and an E-value of e−4.56) (2) Leucine was ranked forth since MSM matched isoleucine, norleucine, and alloisoleucine
with slightly higher scores. (3) This potential ammonium adduct of fumarate coincided with the more likely proton adduct of aspartic acid and thus
was discarded from the list of candidate IDs. (4) This adduct collided with the more likely deprotonated citric/isocitric acid and thus was discarded.
(5) Retinoic acid shared the first AMS rank with numerous other isobaric candidates. (6) We could not observe a clear metabolite feature, however,
the MSM match indicated the presence of an [M+H]+ adduct. (7) The retention time of the matched feature seems unlikely (too high). (8) Retinal
itself was not detected but its oxidized form (4-OH-retinal).

Authentic standard Detected adduct(s) Suggested ID ID rank mass error MSM score MSM E-value Note

AMS MSM AMS MSM [ppm] exponent

Amino acids

Arginine [M+H]+ HMDB00517 PB000419 1 1 0.19 18.66 -21.13

Asparagine [M+H]+ HMDB00168 PB000458 2 1 0.95 17.93 -8.43

Aspartic acid [M+H]+ HMDB00191 PB000453 1 1 1.07 11.43 0.51

[M−H]− HMDB00191 CE000465 1 1 1.6 11.10 NA

Cysteine [M+H]+ HMDB00574 PB000438 1 1 1.90 11.27 -6.21 see (1)

Glutamine [M+H]+ HMDB00641 PB000467 1 1 0.06 14.42 -6.91

[M−H]− HMDB00641 CE000298 1 1 2.01 12.15 NA

Glutamic acid [M+H]+ HMDB00148 PB000463 1 1 0.03 12.49 -10.16

[M−H]− HMDB00148 BML01298 1 1 1.83 10.14 NA

Histidine [M+H]+ HMDB00177 PB000423 1 1 0.01 17.75 -23.34

[M−H]− HMDB00177 PB000423 2 1 2.2 17.86 NA

Isoleucine [M+H]+ HMDB00172 PB000397 1 1 1.36 9.95 -6.74

Leucine [M+H]+ HMDB00687 PB000393 1 4 1.24 9.90 -9.12 see (2)

continued on next page127
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Table A.7 – continued from previous page

Authentic standard Detected adduct(s) Suggested ID ID rank mass error MSM score MSM E-value Note

AMS MSM AMS MSM [ppm] exponent

Lysine [M+H]+ HMDB00182 PB000428 1 1 0.75 15.90 -12.21

Methionine [M+H]+ HMDB00696 PB000442 1 1 0.39 18.27 -11.99

Phenylalanine [M+H]+ HMDB00159 PB006064 1 1 0.07 9.90 -1.70

Proline [M+H]+ HMDB00162 PB000451 2 1 2.92 11.01 -11.19

Serine [M+H]+ HMDB00187 PB000400 3 1 3.84 11.03 -7.03

Threonine [M+H]+ HMDB00167 PB000405 1 1 2.12 10.32 -3.13

Tryptophan [M+H]+ HMDB00929 PB000416 1 1 0.39 17.39 -16.09

Tyrosine [M+H]+ HMDB00158 PB000412 1 1 0.18 12.52 -0.87

Valine [M+H]+ HMDB00883 PB000389 1 1 2.08 9.91 -11.05

Alanine none

Glycine none

TCA metabolites

Citric acid [M−H]− HMDB00094 PR100481 2 1 2.45 12.72 NA

DL-Isocitric acid [M−H]− HMDB00193 PR100481 4 1 2.73 14.16 -16.04

L-(-)-malic acid [M−H]− HMDB00156 PR100541 1 1 1.82 8.88 NA

Succinate [M−H]− HMDB00254 PR101002 2 1 1.23 9.91 NA

Pyruvate none not in DB

Succinyl coenzyme A none not in DB

α-Ketoglutaric acid [M+H]+, [M−H]− HMDB00208 not in DB 1 0.51

Acetyl coenzyme A none

continued on next page
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Table A.7 – continued from previous page

Authentic standard Detected adduct(s) Suggested ID ID rank mass error MSM score MSM E-value Note

AMS MSM AMS MSM [ppm] exponent

Fumarate [M+NH4]
+ HMDB00134 not in DB 2 1.23 see (3)

Oxaloacetic acid [M+C2H4O2 −H]− HMDB00223 not in DB 6 3.97 see (4)

Common compounds

AMP [M+H]+ HMDB00045 KNA00199 1 1 0.55 9.90 -5.46

[M−H]− HMDB00045 PR100515 1 1 1.2 11.08 -5.80

Hydrocortisone [M+H]+ HMDB14879 CO000223 1 1 1.05 87.68 NA

NADH [M+ 2 H]2+ HMDB01487 KNA00269 1 1 1.03 11.30 0.30

[M+H]+ HMDB01487 not found 1 0.69

[M−H]− HMDB01487 not found 1 2.58

L-ascorbic acid [M+H]+ HMDB00044 JP006292 1 1 0.20 17.51 -4.97

Pyridoxine [M−H]− HMDB00239 PR100602 2 1 1.06 10.74 NA

Imidazole [M+CH3CN+H]+ HMDB01525 not found 3 4.87

Retinoic acid [M+ 2 H]2+ HMDB01852 not found 1 -1.21 see (5)

Histamine [M+H]+ HMDB00870 not found 2 3.42

PC(16:0/16:0) none not in DB

Uric acid none not found MT000083 1 13.40 -5.15 see (6)

Spermine [M+ K]+ HMDB01256 not found 2 1.76 see (7)

Glucose-6-phosphate none

Oleic acid [M+H]+ HMDB00207 not in DB 1 -0.88

[M+CH2O2 −H]− HMDB00207 not in DB 2 2.60

continued on next page129
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Table A.7 – continued from previous page

Authentic standard Detected adduct(s) Suggested ID ID rank mass error MSM score MSM E-value Note

AMS MSM AMS MSM [ppm] exponent

Cholesterol [M+CH3OH+H]+ HMDB00067 not found 1 -1.31

Folic acid [M+ 3 CH3CN+ 2 H]2+ HMDB00121 not found 1 -0.47

UDP [2M+ 3 H2O+ 2 H]2+ HMDB00295 not in DB 2 0.83

Retinal none not in DB see (8)

NAD+ none not found

UTP none not in DB

ATP none not in DB

L-lactic acid none not in DB

ADP none not found

UMP none not in DB

L-glutathione (red.) none not found
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positive mode negative mode

Compound rt [min] XLogP Compound rt [min] XLogP

Carnitine 0.77 -1.74 Uric acid 0.84 -0.71
Acetyl-L-carnitine 0.88 -1.00 Hippuric acid 3.48 0.23
Leucine 0.89 -1.39 GCA 9.09 3.34
Proprionyl-L-carnitine 0.94 -0.75 CA 10.36 4.09
Tryptophan (kynurenate) 2.64 0.66 GCDCA 10.55 5.42
Valeryl-L-carnitine 3.46 0.39 LPE C20:5 12.59 5.48
Xanthurenic acid 4.79 0.03 LPE C18:2 13.16 5.32
Octenoyl-L-carnitine 6.36 2.48 LPC C18:2 13.23 5.76
Octanoyl-L-carnitine 7.49 2.10 LPE C16:0 13.52 5.02
Decanoyl-L-carnitine 9.39 3.23 LPE C20:3 13.79 6.13
Bilirubin 9.69 2.77 LPE C18:1 14.06 5.65
Carnitine C12:1 10.24 4.76 FFA C22:6 17.34 8.83
LPC C18:3 10.52 5.43 FFA C16:1 17.54 7.05
Dodecanoyl-L-carnitine 10.95 4.37 FFA C16:0 18.25 7.57
Acyl-L-carnitine C14:2 10.96 4.67
Tetradecenoyl-L-carnitine 11.70 5.89
LPC C16:1 12.62 4.95
LPC C20:1 14.09 7.22

Table A.8: Training datasets for the RPLC rt prediction models. Based on this list of confirmed
metabolite IDs, linear regression models were built to predict and filter out unlikely IDs from
AMS results.

Subject characteristics (n= 8)

Age yrs 20.9 ± 0.6
Weight kg 71.6 ± 3.1
Height cm 178.2 ± 1.8

BMI kg/m2 22.6 ± 1.0
Systolic BP mmHg 135.3 ± 3.3

Diastolic BP mmHg 79.1 ± 3.0
Hb mmol/L 9.6 ± 0.2

Leucocytes 109/L 5.9 ± 0.5
Trial performance W 30.3 ± 1.6

Table A.9: Characteristics of the individuals participating in the one-legged knee extensor
experiments. All values are reported as mean ± standard error of mean.
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CC (non-risk) TT (rs7903146)
(n= 15) (n= 15)

Mean±SD Mean±SD p

female/male 8/7 7/8 1
age 50.6± 6.3 50.2± 9.6 0.7
BMI 28.7± 2.3 28.6± 3.2 0.72

glucose 0 min 5.5± 0.6 5.7± 0.8 0.43
glucose 120 min 9.0± 1.1 9.1± 0.9 0.46

insulin 0 min 63.8± 28.4 63.0± 32.8 0.71
insulin 120 min 412.4± 162.3 403.3± 273.6 0.29
C-peptide 0 min 658.2± 199.4 597.9± 228.8 0.53

C-peptide 120 min 1813.7± 495.7 1677.5± 707.7 0.27
HOMA-β 102.2± 19.6 88.1± 20.7 0.04

insulin sensitivity index (Matsuda) 9.4± 3.7 10.7± 6.0 0.79

Table A.10: Subject characteristics of our TCF7L2 cohort. The subjects were selected such
that the number of males and females was balanced and the mean age and mean BMI were
comparable between both groups. The p-value indicates if there was a significant difference
between the group means (significance level α= 0.05).
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centroid rt centroid m/z fold change fold change PFP p-value ID
[min] [Th] (RankProd) (medians) index

16.99 722.50244 1.5 1.5 0.036 0.000
17.04 634.45024 1.53 1.66 0.024 0.000

17 678.4764 1.51 1.59 0.023 0.000
16.97 766.52858 1.46 1.39 0.021 0.000
17.07 590.42408 1.52 1.57 0.02 0.000
0.82 144.10113 n/a 0.97 0.039 0
17.11 546.39798 1.49 1.54 0.075 0.001
16.95 810.55473 1.41 1.28 0.07 0.001
15.82 507.32125 1.51 1.42 0.067 0.001
16.88 898.60714 1.37 1.44 0.083 0.001
12.92 450.31954 n/a 0.96 0.077 0.001
0.87 223.09133 n/a 1.33 0.083 0.001
0.72 190.91106 1.3 1.06 0.088 0.001
22.9 704.52006 1.42 1.28 0.087 0.001
10.67 338.0519 n/a 1.8 0.083 0.001
16.9 854.58087 1.37 1.3 0.081 0.001
18.33 506.25194 n/a 1.46 0.092 0.002
0.71 242.92423 1.2 1.04 0.108 0.002
14.6 476.27548 n/a 1.31 0.103 0.002 1
17.14 502.3722 1.44 1.6 0.104 0.002
22.62 678.50466 n/a 1.49 0.113 0.002 2
11.9 404.20494 1.38 1.11 0.114 0.003
15.07 304.29863 n/a 1.18 0.109 0.003
22.72 778.53573 n/a 1.3 0.107 0.003
5.7 307.1138 n/a 1.52 0.123 0.003 3
5.7 302.15845 1.3 0.99 0.125 0.003

18.33 489.22543 n/a 1.38 0.124 0.003
14.65 518.32199 n/a 1.25 0.123 0.004 4
12.84 286.14236 0.99 0.8 0.122 0.004
14.07 432.20027 1.41 1.41 0.119 0.004
18.34 534.28301 1.39 1.46 0.142 0.004
5.7 285.13195 1.33 1.41 0.167 0.005

12.59 994.39684 n/a 0.88 0.162 0.005
16.84 480.33336 1.32 1.29 0.173 0.006
0.89 181.07109 n/a 1.33 0.194 0.007 5

Table A.11: Up-regulated metabolites detected in the TCF7L2 positive mode dataset. All
candidates with a PFP of up to 20 % were extracted from the RankProd results. Fold changes
are given either as reported by RankProd or computed subsequently on the basis of the group
median levels. Grayed rows were excluded from the analysis since they exhibited invalid fold
changes (less than 1.0). For the look-up of potential metabolite identifications, the ID index
refers to the corresponding row in table A.12.
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Table A.12: Putative AMS IDs of up-regulated candidates from positive mode data. The ID
indices are linked to table A.11 for reference. In case of ID 5, the list of putative metabolites
contains further isobaric hexose sugars (C6H12O6) or three carbon molecules (C3H6O3) that
are not shown here.
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centroid rt centroid m/z fold change fold change PFP p-value ID
[min] [Th] (RankProd) (medians) index

16.55 298.3455 n/a 0.19 0.000 0.000
14.13 312.15813 n/a 0.44 0.000 0.000 1
12.47 286.14249 n/a 0.54 0.000 0.000
12.62 450.31956 0.72 0.58 0.003 0.000 2
15.95 548.33272 n/a 0.73 0.003 0.000
10.67 223.09544 n/a 1.26 0.008 0.000
10.32 244.18961 0.67 0.50 0.008 0.000 3
10.32 226.17912 0.68 0.58 0.009 0.000
12.61 432.30849 0.78 0.61 0.022 0.000
0.82 144.10113 n/a 0.97 0.023 0.000
8.4 167.99279 n/a 0.77 0.025 0.000

12.84 286.14236 0.99 0.80 0.031 0.000
15.47 296.25699 0.72 0.77 0.087 0.001 4
16.08 570.3531 n/a 0.97 0.114 0.002 5
12.63 510.26397 0.86 0.95 0.122 0.002
12.89 251.12665 0.82 1.19 0.116 0.002
14.82 287.62431 n/a 0.92 0.185 0.003
17.9 336.3249 0.78 0.66 0.177 0.003
13.84 358.29378 n/a 0.92 0.169 0.003 6
14.51 500.27525 n/a 1.07 0.162 0.003
0.83 182.08027 n/a 0.97 0.168 0.004 7
14.63 343.33057 n/a 0.80 0.174 0.004 8
12.92 450.31954 n/a 0.96 0.170 0.004
23.2 826.53285 n/a 0.74 0.199 0.005 9
0.79 302.87991 n/a 0.75 0.196 0.005

Table A.13: Down-regulated metabolites detected in the TCF7L2 positive mode dataset. All
candidates with a PFP of up to 20 % were extracted from the RankProd results. Fold changes
are given either as reported by RankProd or computed subsequently on the basis of the group
median levels. Grayed rows were excluded from the analysis since they exhibited invalid fold
changes (greater than 1.0). For the look-up of potential metabolite identifications, the ID index
refers to the corresponding row in table A.14.
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Table A.14: Putative AMS IDs of down-regulated candidates from positive mode data. The ID
indices are linked to table A.13 for reference. In the case of ID 8, the list of putative metabolites
contains another 14 isobaric PCs (C46H78NO8P) that differ in the double bond configurations
of their unsaturated acyl chains (not shown here). (*) These IDs were marked as potential
false positives by the rt model. This was true for all the alternatives of ID 8.
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centroid rt centroid m/z fold change fold change PFP p-value ID
[min] [Th] (RankProd) (medians) index

24.96 297.04649 n/a 1.58 0.001 0.000
18.89 595.49284 n/a 1.72 0.001 0.000 1
20.43 561.48768 n/a 1.45 0.041 0.000 2
19.64 577.48237 n/a 1.48 0.035 0.000
4.03 329.12355 1.41 1.54 0.038 0.000 3
21.68 381.37303 1.52 1.76 0.087 0.001 4
19.66 379.23325 n/a 1.73 0.110 0.001
17.92 474.26111 1.47 1.35 0.097 0.001 5
18.51 593.47656 1.33 1.72 0.096 0.001
3.05 165.97892 1.15 0.91 0.122 0.002
0.86 212.00209 n/a 1.24 0.142 0.002 6
18.7 573.45097 n/a 1.65 0.140 0.002 7
18.19 578.30824 1.43 1.21 0.131 0.002
4.02 283.11816 1.36 1.29 0.134 0.002
14.97 391.28474 n/a 0.79 0.127 0.002
9.67 313.1189 n/a 1.06 0.127 0.003
15.29 391.28471 n/a 1.33 0.128 0.003 8
11.43 265.10781 1.35 1.06 0.131 0.003
23.52 738.50663 1.41 1.01 0.136 0.003 9
21.97 395.38864 1.45 1.22 0.135 0.003 10
23.59 766.52214 n/a 1.12 0.173 0.005
4.88 213.02233 n/a 1.25 0.180 0.005

Table A.15: Up-regulated metabolites detected in the TCF7L2 negative mode dataset. All
candidates with a PFP of up to 20 % were extracted from the RankProd results. Fold changes
are given either as reported by RankProd or computed subsequently on the basis of the group
median levels. Grayed rows were excluded from the analysis since they exhibited invalid fold
changes (less than 1.0). For the look-up of potential metabolite identifications, the ID index
refers to the corresponding row in table A.16.
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Table A.16: Putative AMS IDs of up-regulated candidates from the TCF7L2 negative mode
data. The ID indices are linked to table A.15 for reference. In the case of IDs 2, 5, 7 and 9, the
list of putative metabolites contains other isobaric compounds that differ in the double bond
configurations of their unsaturated acyl chains (not shown here). The IDs 3 and 8 refer to other
methylguanines and a wide array of bile acid isomers, respectively. (*) These IDs were marked
as potential false positives by the rt model. This was true for all the alternatives of IDs 5 and 7.
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A.3 Tables

centroid rt centroid m/z fold change fold change PFP p-value ID
[min] [Th] (RankProd) (medians) index

1.92 239.09208 n/a 0.67 0.004 0.000
8.87 378.10088 n/a 0.48 0.002 0.000
12.28 399.22015 0.54 0.73 0.007 0.000
12.75 391.28468 n/a 0.82 0.016 0.000 1
15.05 481.27975 n/a 0.55 0.014 0.000
25.94 313.0778 n/a 0.91 0.021 0.000
1.29 172.99132 0.64 0.62 0.023 0.000
11.06 254.62258 0.64 0.68 0.057 0.001
11.86 369.17332 0.63 0.82 0.053 0.001
13.77 613.35797 n/a 0.68 0.050 0.001
17.46 445.33155 n/a 0.87 0.054 0.001 2
7.7 242.17578 0.69 0.74 0.069 0.001 3

4.88 213.02233 n/a 1.25 0.088 0.002
10.62 369.17339 0.66 0.78 0.092 0.002 4
5.93 223.13358 n/a 1.01 0.093 0.002
0.87 172.99118 n/a 0.75 0.113 0.002
5.94 267.1233 n/a 0.98 0.110 0.002
14.97 391.28474 n/a 0.79 0.107 0.003
5.76 443.1549 n/a 0.89 0.165 0.004
2.16 187.00683 0.84 0.77 0.164 0.004 5
11.27 371.18913 n/a 0.76 0.183 0.005
14.81 448.30598 0.82 0.54 0.191 0.005 6
14.73 498.28794 n/a 0.84 0.185 0.005 7
0.86 271.06951 0.76 0.85 0.199 0.006 8
15.91 449.2536 0.80 0.83 0.191 0.006 9
10.91 427.21518 0.73 0.89 0.184 0.006

Table A.17: Down-regulated metabolites detected in the TCF7L2 negative mode dataset. All
candidates with a PFP of up to 20 % were extracted from the RankProd results. Fold changes
are given either as reported by RankProd or computed subsequently on the basis of the group
median levels. Grayed rows were excluded from the analysis since they exhibited invalid fold
changes (less than 1.0). For the look-up of potential metabolite identifications, the ID index
refers to the corresponding row in table A.18.
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Table A.18: Putative AMS IDs of down-regulated candidates from the TCF7L2 negative mode
data. The ID indices are linked to table A.17 for reference. In the case of ID 1, the list of
putative metabolites contains other isobaric bile acids (not shown here). (*) These IDs were
marked as potential false positives by the rt model.

140



APPENDIX B

Curriculum Vitae

Education

07/2008 – 04/2014
PhD candidate Applied Bioinformatics (Prof. Oliver Kohlbacher), Center

for Bioinformatics, Eberhard Karls University of Tübin-
gen, Germany

06/2007 – 12/2007
Diploma thesis Simulation of Biological Systems (Prof. Oliver

Kohlbacher), Center for Bioinformatics, Eberhard Karls
University of Tübingen, Germany

10/2000 – 04/2008
Bioinformatics studies Eberhard Karls University of Tübingen, Germany

Scienti�c Work Experience

11/2012
Research visit Division of Chemistry and Bioanalytics (Prof. Christian

G. Huber), University of Salzburg, Austria

08/2012 – 12/2013
System administration Applied Bioinformatics (Prof. Oliver Kohlbacher), Center

for Bioinformatics, Eberhard Karls University of Tübin-
gen, Germany

141



B Curriculum Vitae

12/2010
Research visit Sino German Cooperation, CAS Key Laboratory of Sepa-

ration Science for Analytical Chemistry (Prof. Guowang
Xu), Dalian Institute of Chemical Physics, China

2008 – 2011
Regular research visits Research Unit Analytic Biogeochemistry, Helmholtz-

Zentrum München, Germany

07/2008 – 07/2013
Teaching assistant Tutoring of coursework accompanying lectures Compu-

tational Drug Design I & II and software engineering
practical courses, Applied Bioinformatics (Prof. Oliver
Kohlbacher), Center for Bioinformatics, Eberhard Karls
University of Tübingen, Germany

07/2008 – 07/2013
Software development
(OpenMS developer)

Applied Bioinformatics (Prof. Oliver Kohlbacher), Center
for Bioinformatics, Eberhard Karls University of Tübin-
gen, Germany

Publications

• S. Aiche, T. Sachsenberg, E. Kenar, M. Walzer, B. Wiswedel, T. Kristl, M. Boyles, A. Duschl,

C. G. Huber, M. R. Berthold, K. Reinert, and O. Kohlbacher. "Workflows for automated

downstream data analysis and visualization in large-scale computational mass spectrom-

etry". In: PROTEOMICS (2015), epub ahead of print. DOI: 10.1002/pmic.201400391.

• R. Wagner, J. Li, E. Kenar, O. Kohlbacher, F. Machicao, H.-U. Häring, A. Fritsche, G.

Xu, and R. Lehmann. "Clinical and non-targeted metabolomic profiling of homozygous

carriers of Transcription Factor 7-like 2 variant rs7903146". In: Scientific Reports 4 (2014),

article number 5296. DOI: 10.1038/srep05296.

• E. Kenar, H. Franken, S. Forcisi, K. Wörmann, H.-U. Häring, R. Lehmann, P. Schmitt-

Kopplin, A. Zell, and O. Kohlbacher. "Automated Label-free Quantification of Metabolites

from Liquid Chromatography–Mass Spectrometry Data". In: Molecular & Cellular Pro-

teomics 13 (2014), pp. 348–359. DOI: 10.1074/mcp.M113.031278.

• H. Weisser, S. Nahnsen, J. Grossmann, L. Nilse, A. Quandt, H. Brauer, M. Sturm, E. Kenar,

O. Kohlbacher, R. Aebersold, and L. Malmström. "An Automated Pipeline for High-

Throughput Label-Free Quantitative Proteomics". In: Journal of Proteome Research 12.4

(2013), pp. 1628–1644. DOI: 10.1021/pr300992u.

• E. Kenar, H. Franken, L. Rosenbaum, R. Lehmann, S. Forcisi, K. Wörmann, M. Lucio, A.

König, J. Rahnenführer, P. Schmitt-Kopplin, H.-U. Häring, A. Zell, and O. Kohlbacher. "Mit

Bioinformatik zu Biomarkern". In: Medizinische Welt 63.5 (2012), pp. 245–250.

142

http://dx.doi.org/10.1002/pmic.201400391
http://dx.doi.org/10.1038/srep05296
http://dx.doi.org/10.1074/mcp.M113.031278
http://dx.doi.org/10.1021/pr300992u


• K. Wörmann, M. Lucio, S. Forcisi, S. S. Heinzmann, E. Kenar, H. Franken, L. Rosenbaum, P.

Schmitt-Kopplin, O. Kohlbacher, A. Zell, H.-U. Häring, and R. Lehmann. "„Metabolomics“ in

der Diabetesforschung". In: Der Diabetologe 8.1 (2012), pp. 42–48. DOI: 10.1007/s11428-

011-0778-9.

Manuscripts in Preparation

• E. Kenar, J. Hansen, X. Zhao, S. Chen, X. Li, H.-U. Häring, G. Xu, B. K. Pedersen, R.

Lehmann, O. Kohlbacher, P. Plomgaard, and C. Weigert. "A combined non-targeted

metabolomics bioinformatics strategy reveals the dynamics of metabolic patterns and

affected metabolic pathways induced by one single bout of endurance exercise in healthy

men".

Posters

• E. Kenar, H. Franken, A. Fekete, S. Forcisi, K. Wörmann, Ph. Schmitt-Kopplin, R. Lehmann,

H.-U. Häring, A. Zell, and O. Kohlbacher. "Metabolomic Feature Detection in LC-MS

data — A Probabilistic Approach". Metabolomics & More Symposium (2010), Freising-

Weihenstephan, Germany.

Diploma Thesis

• E. Kenar. "Modellierung von Wechselwirkungen zwischen DNA-Aptameren und Thrombin".

Diploma thesis (2007). Simulation of Biological Systems (Prof. Oliver Kohlbacher), Center

for Bioinformatics, Eberhard Karls University of Tübingen, Germany.

143

http://dx.doi.org/10.1007/s11428-011-0778-9
http://dx.doi.org/10.1007/s11428-011-0778-9




References

[1] Comparison of a single-stranded RNA and a double-stranded DNA with their correspond-

ing nucleobases. 2010. URL: http://commons.wikimedia.org/wiki/File:

Difference%5C_DNA%5C_RNA-DE.svg.

[2] W. Bode et al. “The refined 1.9 A crystal structure of human alpha-thrombin: interac-

tion with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp

insertion segment.” In: The EMBO journal 8.11 (Nov. 1989), pp. 3467–3475. DOI:

10.2210/pdb1ppb/pdb.

[3] The Human Metabolome Database. 2014. URL: http://www.hmdb.ca.

[4] G. Michal. Biochemical Pathways: an atlas of biochemistry and molecular biology. New

York: Wiley, 1999. ISBN: 0-471-33130-9.

[5] B. Kuska. “Beer, Bethesda, and biology: how "genomics" came into being.” In: Journal

of the National Cancer Institute 90.2 (1998), p. 93. DOI: 10.1093/jnci/90.2.93.

[6] K. Dettmer, P. a. Aronov, and B. D. Hammock. “Mass spectrometry-based metabolomics”.

In: Mass Spectrometry Reviews 26.1 (2007), pp. 51–78. DOI: 10.1002/mas.20108.

[7] M. Monteiro et al. “Metabolomics Analysis for Biomarker Discovery: Advances and

Challenges”. In: Current Medicinal Chemistry 20.2 (2012), pp. 257–271. DOI: 10.2174/

0929867311320020006.

[8] R Core Team. R: A language and environment for statistical computing. R Foundation for

Statistical Computing. Vienna, Austria, 2008. ISBN: 3-900051-07-0.

[9] C. A. Smith et al. “XCMS: Processing Mass Spectrometry Data for Metabolite Profiling

Using Nonlinear Peak Alignment, Matching, and Identification”. In: Analytical Chemistry

78.3 (Feb. 2006), pp. 779–787. ISSN: 1520-6882. DOI: 10.1021/ac051437y. URL:

http://dx.doi.org/10.1021/ac051437y.

145

http://commons.wikimedia.org/wiki/File:Difference%5C_DNA%5C_RNA-DE.svg
http://commons.wikimedia.org/wiki/File:Difference%5C_DNA%5C_RNA-DE.svg
http://dx.doi.org/10.2210/pdb1ppb/pdb
http://www.hmdb.ca
http://dx.doi.org/10.1093/jnci/90.2.93
http://dx.doi.org/10.1002/mas.20108
http://dx.doi.org/10.2174/0929867311320020006
http://dx.doi.org/10.2174/0929867311320020006
http://dx.doi.org/10.1021/ac051437y
http://dx.doi.org/10.1021/ac051437y


References

[10] C. Kuhl et al. “CAMERA: An integrated strategy for compound spectra extraction and

annotation of liquid chromatography/mass spectrometry data sets”. In: Analytical

Chemistry 84.1 (2012), pp. 283–289. DOI: 10.1021/ac202450g.

[11] M. Sturm et al. “OpenMS - an open-source software framework for mass spectrometry.”

In: BMC bioinformatics 9.1 (2008), p. 163. DOI: 10.1186/1471-2105-9-163.

[12] L. W. Sumner et al. “Proposed minimum reporting standards for chemical analysis:

Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)”.

In: Metabolomics 3.3 (2007), pp. 211–221. DOI: 10.1007/s11306-007-0082-2.

[13] H. Horai et al. “MassBank: A public repository for sharing mass spectral data for life

sciences”. In: Journal of Mass Spectrometry 45.7 (2010), pp. 703–714. DOI: 10.1002/

jms.1777.

[14] J. Griss et al. “The mzTab Data Exchange Format: communicating MS-based proteomics

and metabolomics experimental results to a wider audience.” In: Molecular & cellular

proteomics : MCP (2014), pp. 1–28. DOI: 10.1074/mcp.O113.036681.

[15] S. Bijlsma et al. “Large-scale human metabolomics studies: A strategy for data (pre-)

processing and validation”. In: Analytical Chemistry 78.2 (2006), pp. 567–574. DOI:

10.1021/ac051495j.

[16] Y. Benjamini and Y. Hochberg. “Controlling the false discovery rate: a practical and

powerful approach to multiple testing.” In: Journal of the Royal Statisitical Society, Series

B 57.1 (1995), pp. 289–300. URL: http://links.jstor.org/sici?sici=0035-

9246(1995)57:1%3C289:CTFDRA%3E2.0.CO;2-E%5C&origin=MSN.
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