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Chapter 1

Introduction

The theory of corporate finance builds on two ingenious ideas. The first idea was developed

by Modigliani and Miller (1958). They prove that the firm’s value is independent of the

capital structure in a frictionless world. This result implies that firms cannot increase

their value by the means of security design and risk management. The irrelevance the-

orem seems trivial and not to have much practical relevance. However, Modigliani and

Miller devise an organizing principle for corporate finance research which still endures

until today. To explain observed capital structure choices, one must provide evidence

for a meaningful violation of Modigliani and Miller’s assumptions. Such violations

have been discovered, for example, in the form of taxes (Modigliani and Miller, 1963),

bankruptcy costs (Robichek and Myers, 1966; Baxter, 1967; Warner, 1977), transac-

tion costs (Williamson, 1981), information asymmetries (Stigler, 1961; Akerlof, 1970;

Spence, 1973) and agency conflicts (Jensen and Meckling, 1976).

The second idea was introduced almost two decades later by Merton (1974). Merton

was the first to interpret the firm’s equity position as a call option on the firm’s assets

with the strike price being equal to the face value of the firm’s debt. Or put more

generally, all contracts of a firm can be thought of as claims contingent on the firm’s

asset value process. This structural model for the firm was enabled by the development

of option pricing theory by Black and Scholes (1973) and Merton (1973b). Since then, a

rich body of literature evolved from this idea implementing various of the aforementioned

frictions (Kraus and Litzenberger, 1973; Scott Jr. 1976; Brennan and Schwartz, 1978).

In addition, the static one-period model has been further developed in a dynamic set-

ting, for example, by Leland (1994), Leland and Toft (1996), Fischer et al. (1989), and

Goldstein et al. (2001).

The first part of this dissertation follows the tradition of these two ideas by applying

the structural model in the context of the recent financial crisis. In the aftermath of

the collapse of the prominent investment bank Lehman Brothers in 2008, the financing
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and risk-taking decisions of the financial sector have come under close scrutiny. This

dissertation takes a closer look at two categories of debt contracts, which have been in

the midst of the discussions among industry professionals, policy makers, regulators and

academics. The first category, which is analyzed in chapter 2, comprises retail structured

products. The second category consisting of contingent convertible debt contracts is

evaluated in chapter 3.

Both types of debt contracts have in common that they improve the stability of the

issuer and the financial system under certain conditions, for example, by reducing the

probability of default or mitigating a credit crunch. Thus, they possess features which

are desirable from the regulator’s point of view. However, both types of debt contracts

heavily distort the risk-taking incentives of the issuing financial institution. The objective

of this thesis is to identify the conditions under which the specific contracts are beneficial

and under which they foster agency conflicts. Furthermore, the optimal product design

and regulatory recommendations are derived. Chapter 4 concludes the first part.

While this first part of the thesis applies derivative valuation techniques to consistently

determine the value of risky corporate securities, the second part of the thesis is concerned

with the origin of the risk premia which determine the prices of assets.

All asset pricing models build on the key idea that what matters for pricing is only the

covariance of an asset with the pricing factor. In the capital asset pricing model (CAPM)

developed by Markowitz (1952), Sharpe (1964), Lintner (1965), and Mossin (1966), the

risk premium of an asset is linear in the covariance of the asset’s return with the market

return. The risk arising from the portion of the asset’s return, which is uncorrelated

to the market, can be diversified in large portfolios. Hence, only the portion correlated

to the market return is relevant for pricing. Due to its elegantly simple structure, the

CAPM became the workhorse model in academia and disseminated into everyday business

practice.

The pricing relevant beta factor can be determined as the coefficient of a linear time-series

regression of the asset’s excess return on the market’s excess return. With the rising

availability of data, the empirical literature added further variables to this regression and

spotted a plethora of factors containing pricing relevant information. Harvey et al. (2015)

identify as many as 315 distinct factors. The most well-known among these factors are firm

size (Banz, 1981) and the market-to-book ratio (Basu, 1983), which led to the proposal

of the three-factor model by Fama and French (1992, 1993, 1996).

As a consequence of the joint hypothesis problem (Fama, 1991), it is impossible to dis-

tinguish whether an empirical observation arises from a violation of market efficiency or

whether the underlying asset pricing model is indeed wrong or incomplete. And albeit

some of these factors can be interpreted as state variables in the intertemporal capital asset
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pricing model of Merton (1973a), there is no economic rationale for the inclusion of most

other factors, for example, idiosyncratic volatility. As a consequence, one has to resort

to frictions, for example, which hinder investors’ ability to hold fully diversified portfolios

(Levy, 1978; Merton, 1987), or behavioral biases, for example, that investors have a prefer-

ence for lottery-like stocks with high idiosyncratic volatility (Barberis and Huang, 2008),

as potential explanations for the empirical puzzle.

Another empirical puzzle, which is in the focus of the second part of this dissertation,

results from the observation that stocks with low return volatility historically generated

higher risk-adjusted returns than stocks with high return volatility. In other words, the

return volatility contains pricing relevant information beyond the beta factor. Therefore,

this puzzle is seemingly at odds with classical asset pricing theory. The objective of the

analysis presented in chapter 5 is to reconcile this empirical puzzle with classical asset

pricing theory without having to introduce a friction or behavioral bias.

The key insight of the analysis is that assets with low volatility react differently to increases

in correlations than assets with high volatility. The beta factor of a low volatility asset,

which is typically below one, increases in response to a correlation shock, while the beta

factor of a high volatility asset, which is typically above one, decreases. When correlations

increase, all assets move more in sync with each other and, thus, the assets’ beta factors

move closer to one. When this behavior of beta factors is taken into account by investors in

a typical equilibrium setting, they demand a risk premium for holding low volatility assets

and require a lower return than predicted by the standard CAPM from high volatility

assets. Furthermore, the model is calibrated to standard market parameters. A structural

model following the idea of Merton (1974) is used to derive the prices of different claims

of the same firm. Finally, three testable hypotheses are developed. Chapter 6 concludes

the second part.

Both parts of this dissertation have in common that they provide theoretical explanations

for observed real-world behavior of financial institutions and investors. In all three anal-

yses, the classical theory for the pricing of assets and derivatives is consistently applied.

Furthermore, the structural model of the firm is used to evaluate the pricing consequences

for different types of claims issued by the same firm. There is one notable difference

between the two parts. In the first part, it is argued that a meaningful friction is required

to explain the observed behavior. In the second part, the opposite view is taken. It is

argued that the empirical puzzle can be already explained by classical theory in a setting

without frictions.
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Part I

Financial Institutions

and Derivatives





Chapter 2

Retail structured products∗

2.1 Introduction

When systemic risks are a matter of concern and banks are considered to be too big to

fail, hedging between banks does little to help restore trust. Risks are passed on from one

financial institution to another but can still spread within the financial sector. Hence,

there is a need to transfer risks outside the financial system and for products capable

of doing so. Retail structured products could be a suitable vehicle for this kind of risk

transfer.

Retail structured products, which are often advertised under the generic term certificate,

are part of the unsecured subordinated debt of a financial institution. Their repayment is

tied to the performance of an arbitrary underlying asset (mostly equities, but these can

also be commodities and interest rates). Thus, with the notable exception of the issuer’s

bankruptcy, the repayment is not linked to the issuer’s own financial performance. In

contrast to mutual funds, whose assets are separated from the assets of the managing

firm, the issuer’s use of the proceeds is not restricted or regulated, i.e., the funds can be

used for purposes other than hedging.

These derivative products, which are tailored to the needs of retail investors, have them-

selves come under scrutiny in the aftermath of the financial crisis. Retail investors incurred

significant losses from products issued by the defaulted investment bank Lehman Brothers.

Subsequently, these products and their regulation have become subject to controversial

∗This chapter is a reprint of the paper “From Wall Street to Main Street – How Banks can offload their
Asset Risk onto Retail Investors” published as Crummenerl and Koziol (2015). The authors gratefully
acknowledge the financial support of the German Research Foundation (Deutsche Forschungsgemein-
schaft, DFG) (research grant KO 4334/2-1). Part of this work was done while Marc Crummenerl was
a visiting scholar at the NYU Stern School of Business, supported by the German Academic Exchange
Service (Deutscher Akademischer Austauschdienst, DAAD).
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debate among policymakers and industry professionals, which mainly focuses on trans-

parency and risks from the retail investors’ point of view. However, the debate does not

include the more important point of the impact on the risk choice and stability of the

issuing financial institution, which is our focus in this paper.

The literature on retail structured products so far has considered these products pri-

marily as a source for profits for the issuing banks, since the products are sold

at a price well above the value from stand-alone duplication (Wilkens et al., 2003;

Stoimenov and Wilkens, 2005). We are adding two novel themes to this literature. Each

retail structured product can be decomposed into a risk-free component and a derivative

component. The first component is a valuable source of funds for the issuer’s core business.

We believe that the second component is an innovative tool for risk management.

For all standard product types, the first component is strictly positive, such that retail

structured products generate a cash surplus1. We argue that the issuing financial institu-

tion uses the cash surplus to fund its ordinary business, for example, by granting loans,

instead of purchasing risk-free government bonds. Thus, if the asset portfolio is illiquid

or subject to price shocks, then the investors in retail structured products are exposed

to the business risk of the issuer. The default by the prominent issuer Lehman Brothers

provides anecdotal evidence for this risk exposure.

The first component links the payoff of retail structured products to the financial per-

formance of the issuer; the derivative component creates an exposure to the underlying

security. On the one hand, the issuer can effectively transfer a risk exposure to the retail

investor, i.e., outside the banking system. On the other hand, the retail investor explicitly

wants to have this exposure to the underlying asset, which is usually in the focus of the

advertisements of these products. The bundle of the derivative component with a risk-free

component ensures that there is no future cash flow from the retail investor to the issuer,

i.e., from the issuer’s perspective there are no settlement costs and no counterparty risk.

Our main objective in this paper is to evaluate the conditions under which the issuers can

benefit from retail structured products as a risk management tool.

To meet our main objective, we incorporate retail structured products in a simple Merton-

type model. We focus on the two most prominent types of claims, principal-protected

notes and discount notes. The payoff of principal-protected notes is convex in the value of

the underlying asset, while the payoff of discount notes is concave. We assert that these

two claims represent the class of claims with convex or concave payoffs, respectively. We

1The German Derivative association, which represents the issuing financial institutions in Germany,
estimates a market size of EUR 90.2 bn (as end of 2013). This corresponds to 1.2% of total bank
liabilities and 24.4% of aggregated bank equity in Germany. For some banks, the market value of issued
retail structured products already exceeds the volume of equity financing.



9

use the option pricing theory developed by Black and Scholes (1973) and Merton (1973b)

for the consistent valuation of the retail structured products as well as all other claims in

the Merton model.

According to the seminal work of Modigliani and Miller (1958), the value of the issuer is

invariant to its capital structure. There is no optimal capital structure in a world without

frictions. Similarly, there is no additional value to be created by risk management. Hence,

there is no rationale for the existence of retail structured products in a frictionless world.

As a consequence of this central result of Modigliani and Miller, we have to consider

market frictions to explain the issuer’s capital structure choice. Hence, we incorporate

the classical trade-off between tax benefits of debt and bankruptcy cost.

We find that when the issuer’s assets are highly correlated with the underlying security,

retail structured products increase the value of the issuer. We show that compared to

the case of straight debt financing, a high-risk issuer can always improve its value and

simultaneously lower the default probability for any given target leverage ratio. The

opposite is true for a low-risk issuer, whose assets are uncorrelated to the underlying

security.

Nevertheless, the issuer is subject to risk-shifting and has an incentive to optimally adjust

its leverage and asset risk weight. Even when accounting for these optimal decisions,

risky issuers prefer to optimally add retail structured products to the financing mix.

Thereby, issuers with high asset risk increase the probability of default when issuing

principal-protected notes, but reduce it by issuing discount notes. The results also hold

when the issuer can optimally design the retail structured products.

This chapter is organized as follows. In section 2.2 we survey the relevant literature. In

section 2.3 we introduce the model and describe the valuation of all relevant claims. In

section 2.4 we analyze the issuer value for a given asset composition and leverage, and

evaluate the issuer’s optimal financing choice in section 2.5. In section 2.6, we analyze the

risk-taking incentives of the issuer. In section 2.7 we derive the optimal design of retail

structured products. We also discuss further product types and product complexity.

Section 2.8 concludes the chapter.

2.2 Literature review

Our work reconciles two strands of studies. First, there is a predominantly empirical lit-

erature on retail structured products. Second, our analysis is also related to the literature

dealing with the capital structure and risk management of firms and especially financial

institutions.
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The focus of the empirical literature on retail structured products is on the pricing

from the investors’ perspective. In one of the most comprehensive empirical stud-

ies of the German market, Stoimenov and Wilkens (2005) document that retail struc-

tured products are traded at a markup compared to their stand-alone duplication val-

ues. They attribute this observation to information asymmetries and retail investors’

limited market access. Their results are confirmed by many further studies, e.g.,

Wilkens et al. (2003), Baule et al. (2008), Entrop et al. (2009), and Baule (2011). In ad-

dition, Baule et al. (2008) show that the default risk of the issuer is not appropriately

reflected in the pricing of retail structured products. Henderson and Pearson (2011)

provide similar evidence for equity linked products in the U.S., which are also mainly

traded by retail investors.

Carlin’s (2009) model supplements this empirical evidence on the pricing of retail struc-

tured products. His key result is that producers of financial products can increase the

profits they make from selling these products to uninformed retail investors by making

the products more complex. Breuer and Perst (2007) make another interesting theoretical

contribution. These authors explore why utility-maximizing retail investors want to add

retail structured products to their portfolios in the first place. According to their results,

the purchase of retail structured products is particularly beneficial for investors with low

levels of competence in investing.

Our work also follows the tradition of structural models in corporate finance. Con-

sidering typical frictions such as the tax benefits of debt and bankruptcy costs, these

models are capable of deriving an optimal capital structure. One of the first mod-

els to implement the trade-off between tax benefits and bankruptcy costs is that

of Brennan and Schwartz (1978), which builds on the option theoretic approach of

Merton (1974). This approach has been further developed in continuous time by

Fischer et al. (1989), Leland (1994) and Goldstein et al. (2001). Decamps et al. (2004)

apply the framework to financial institutions and derive implications for the risk-taking

incentives and stability of banks.

Following Modigliani and Miller (1958), there is no optimal capital structure in a friction-

less world. Similarly, firms cannot add value with risk management. Hence, the need for

risk management arises when firms try to avoid the costs related to frictions; for example,

the costs of financial distress, which is also the motive for hedging in our model.

So far, the literature has not considered the linkages between these two strands. Since

issuers, however, have access to highly sophisticated financing claims such as retail struc-

tured products, it is essential to analyze the impact of issuing such products on the issuers

risk-taking incentives and stability.



11

2.3 Model

2.3.1 Investment and financing choices

We consider an initially unlevered financial institution (issuer) in a one-period setting with

initial time t= 0 and maturity time t= T . The issuer holds an asset portfolio with value

Ãt at time t. The asset structure remains static until maturity. We consider different

compositions of the issuer’s asset portfolio.

The financial institution may choose to issue zero coupon bonds and retail structured

products (RSPs). The raised capital is immediately paid out as a cash dividend to equity

holders. The demand is sufficiently large such that the issuer can raise any desired amount

of debt. We focus our analysis on the two most prominent claims, principal-protected

notes (PPNs) and discount notes (DCNs). The issuer can issue only one type of product

at a time. We do not require a specific seniority structure; we model debt as one claim.

Thus, the split among the debtors in the case of default is arbitrary and does not impact

the results.

The issuer promises holders of the bond a fixed payment of B at maturity T . The RSP

payoff is linked to the performance of an underlying security R̃, for example, a stock

market index such as the Euro STOXX 50 or the Dow Jones Industrial Average. The

promised payoff of the principal-protected note CPT at maturity T is given by

CPT =
(

1+π ·max
{

R̃T −XP
XP

,0
})

·P , (2.1)

where P denotes the minimum payment to investors (see left-hand side of figure 2.1).

Investors participate at the rate of π in the performance of the underlying asset above the

threshold XP , which usually matches the initial value of the underlying asset XP = R0.

Hence, the investor is protected against decreases in the underlying value as long as the

issuer remains solvent. The promised payoff is equivalent to that of a portfolio comprising

a risk-free zero bond with face value P and π ·P times a call option with strike price XP .

The promised payoff of the discount note CDT at maturity T is given by

CDT = min
{
1,γ · R̃T

}
·D, (2.2)

where D denotes the maximum payment to investors (see right-hand side of figure 2.1).

We define γ ≡ 1
XD

. If the price of the underlying R̃T falls below the threshold XD, then

the investors are paid the value of the underlying asset. This promised payoff can be
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Figure 2.1: Promised payoff of standard products

The graph on the left shows the promised payoff CPT of a principal-protected note
with strike price XP = R0 and participation rate π. The graph on the right shows
the promised payoff CDT of a discount note with strike price XD.

Underlying value R̃T

XP XP +1

P

(1+ π
XP

) ·P

Underlying value R̃T

XD

D

0
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duplicated with a portfolio consisting of a risk-free zero bond with face value D and γ ·D
times a short put with strike price XD.

All market participants have perfect information. Investors observe market prices as well

as the structure of the issuer’s asset portfolio. They are able to anticipate the issuer’s

decision and appropriately incorporate the information in the pricing of the claims.

The issuer is operated by managers on behalf of the equity holders. The managers choose

the face value B of the discount bond and the product parameters P and D to maximize

the value of the equity holders’ position at time t= 0. According to the well known result

of Modigliani and Miller (1958), the manager’s choice is arbitrary in a world of complete

and efficient markets. Hence, we incorporate the classical trade-off between tax benefits

of debt and bankruptcy cost.

At maturity T , the issuer repays its debt and pays taxes at rate τ > 0. The tax de-

ductibility of interest payments allows the issuer to derive value from debt financing.2

Similarly, the issuer can derive tax benefits from retail structured products, for which the

tax deductible cost of financing is equal to the difference between the repayment and the

issuance price. Since the repayment is linked to the underlying asset R̃, the size of the

tax shield also depends on the realization of the underlying asset and can possibly turn

negative in some states of the world.

The issuer defaults if the value of its debt exceeds the value of its assets. In this case,

the debt holders receive a share 1 −α of the issuer’s assets, where α ∈ (0,1] denotes the

proportional cost of bankruptcy. A potentially positive tax shield is lost.

Alternatively to the tax benefits, we could assume that the issuer has a franchise value,

i.e., the capability to generate additional revenues from business related to issuing retail

structured products. Such revenues include fees for sales, trading, and depository of the

securities. We analyze such a setup in section 2.7.4. Hence, our model framework can

accommodate a wide spectrum of market frictions.

2.3.2 Valuation of claims

We build on the approach of Merton (1974), who interprets the equity holders’ payoff at

maturity T as a call option on the issuer’s assets with the issuer’s liabilities corresponding

to the strike price. Hence, the established valuation framework for contingent claims can

2We do not consider the personal income tax of equity holders and debt holders. Their effect is
negligible if all investors pay the same tax rate on dividends, interest income, and gains in the value of
traded securities, which has been the case in Germany since 2009.
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be applied. Our model differs in one dimension: the issuer’s liability at maturity T , i.e.,

the strike price of the option, is itself contingent on the price of a risky asset.

We follow the set of assumptions provided by Black and Scholes (1973) and

Merton (1973b).3 The price of the underlying asset R̃ follows a diffusion process of the

form

dR = µRRt dt+σRRt dzR, (2.3)

where µR denotes the underlying asset’s expected rate of return, σR denotes the standard

deviation of returns, and zR is a Wiener process. The underlying asset R̃ is not paying

a dividend. The term structure of interest rates is constant and flat. The value of the

risk-free asset Ft at any point in time t is determined by the risk-free interest rate r with

Ft = F0 · ert. (2.4)

We consider two settings for the asset value Ã. In the most general case (see section 2.5),

the asset value also follows a diffusion process of the form

dA= µAAt dt+σAAt dzA, (2.5)

where µA denotes the asset’s expected rate of return, σA denotes the standard deviation

of returns, and zA is a Wiener process, which is correlated to the Wiener process zR

determining the value of the underlying, i.e., dzR dzA = ρ dt with ρ ∈ (−1,1). Using

risk-neutral valuation, the value of the issuer V0 at time t= 0 equals

V0 =D0 + e−rT

∞∫

0

∞∫

0

(AT −DT + τ (DT −D0)) ·1solvency ·fRA(RT ,AT ) dRT dAT , (2.6)

where Dt denotes the value of total debt including retail structured products at time t,

and fRA(RT ,AT ) is the joint risk-neutral probability density function of the underlying

asset R̃T and the issuer’s asset value ÃT at time T . The indicator function 1solvency for

the survival of the issuer takes the value of one for AT −DT ≥ 0 and zero otherwise.

When the issuer is able to fully repay the debt, it generates a tax benefit with present

value τ(DT −D0)e−rT . The tax benefit is lost if the issuer defaults. The bankruptcy cost

are included in the pricing of the debt claim D0. The value V0 is given by the value of

the assets A0 of the unlevered issuer plus the present value of the tax-shield minus the

present value of the bankruptcy cost.

3With the exception of taxes and bankruptcy costs, the market is free of frictions. There are no
transaction costs or bid-ask-spreads. Trading in the underlying asset is continuous and all securities are
perfectly divisible. All market prices are observable and short selling is not restricted. Investors are
assumed to be non-satiable and agree on σ, but not necessarily on µ.
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In a simplified setting (see section 2.6), we consider only one single source of uncertainty.

In this case, the asset portfolio Ã of the issuer is linked to the development of the

underlying asset R̃. The expression of the issuer value V0 simplifies to

V0 =D0 + e−rT

∞∫

0

(AT −DT + τ (DT −D0))1solvency ·fR(RT ) dRT . (2.7)

We can derive a closed-form solution for the equity holders’ claim V0 (issuer value). The

functions are piecewise defined depending on the managers’ choice of B, P , and D. To

improve readability, we present the exhaustive derivation of the formulae in appendix 2.A.

We introduce a measure for the stability of the issuer. For this purpose, we use the

risk-neutral probability of default pd, which we calculate as

pd=

∞∫

0

(
1−1solvency

)
·fRA(RT ,AT ) dRT dAT . (2.8)

Since the quotes of credit default swaps written on the issuer monotonically increase

with the risk-neutral default probability, pd is a reasonable market-oriented measure for

stability.

2.4 Constant leverage issuer

Before we take a look at the optimal financing and risk choices, we inspect the issuer

value and the probability of default depending on the leverage ratio λ= D0

V0
. By doing so

we can draw important conclusions on the value generated by RSPs and on the stability

of the issuer. We focus on two polar cases. First, we consider a high-risk issuer whose

assets are the same as the underlying asset of the RSP, i.e.,

Ãt = R̃t. (2.9)

Second, we analyze a low-risk issuer investing only in risk-free government bonds, i.e.,

Ãt = Ft. (2.10)

In addition, we restrict the issuer to issuing one single debt claim. This approach has

the advantage that the valuation formulae simplify and general results can be derived

analytically.
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2.4.1 High-risk issuer

We first consider the case of Ãt = R̃t. On the one hand, this case represents an issuer

taking the maximum amount of risk. On the other hand, this issuer also has the greatest

capability to produce RSPs, which depend on the same risky asset that is part of the

issuer’s balance sheet.

Before analyzing the issuer value, we examine the risk-neutral default probability of the

issuer, which is depicted in figure 2.2. The graph on the left shows the default probability

of an issuer financed with PPNs (solid line) and the graph on the right shows the default

probability of an issuer financed with DCNs (solid line). Both plots also show the default

probability under straight debt financing as a reference case (dashed line).

In line with our expectations, the curves monotonically increase with the leverage ratio λ.

For PPN financing, we have to distinguish two cases. For low issuance volumes P <XP ,

the issuer defaults only when the value of the underlying asset drops below the issued

principal amount, i.e., RT < P . But when the issued amount P exceeds XP , the issuer is

also not able to repay the promised participation in the underlying asset even though the

value of the underlying asset appreciates. Figure 2.2 shows that the graph has a kink at

the transition point between these two cases at P =XP .

For an issuer with DCN financing, we also observe two cases. The issuer can repay its

liabilities in all states of the world as long as the issued amountD is less than the maximum

repayment XD, i.e., we have pdDCN = 0. However, the default probability jumps up when

D exceeds XD, since the issuer is defaulting for all values of the underlying asset, RT <D.

In this case, the default probability corresponds to that of an issuer with straight debt

financing with an issued amount B =D.

The main finding from figure 2.2 is that the probability of default with RSP financing

is either equal to or strictly lower than the default probability of an issuer with straight

debt financing. This observation can be generalized due to the closed form solutions for

all claim values. We provide proofs in appendix 2.B4.

We summarize this important result as:

Proposition 2.1 (Risk reduction of high-risk issuer)

For any attainable leverage ratio λ̂ < 1, the risk-neutral default probability of a high-risk

issuer financed with RSPs never exceeds the probability of default of a high-risk issuer

financed with straight debt, i.e., pdRSP

(
λ̂
)

≤ pdB

(
λ̂
)
.

4The proof for DCN requires the technical condition N(d2(y))−N(d1(y)) ≤ ε for all y. The proof for

PPN requires P <
XP

π
for π > 1.



17

The next logical step in our analysis is to consider the issuer value, which is depicted in

figure 2.3. The graph on the left shows the value of an issuer financed with PPNs (solid

line) and the graph on the right shows the value of an issuer financed with DCNs (solid

line). Both plots also show the issuer value for straight debt financing as a reference

(dashed line).

The issuer value increases with the leverage ratio λ and then decreases to (1 − α)A0

when λ approaches one. This behavior is consistent with the results of Leland (1994).

Analogous to the corresponding graph of the default probability, the issuer value under

PPN financing has a kink at P =XD. Due to the zero default probability, the issuer value

under DCN financing increases linearly until D =XD and then drops down to the issuer

value under straight debt financing.

We observe that the issuer value under RSP financing is always equal to or higher than

the value under straight debt financing. Again, we can generalize this important result.

(See appendix 2.B for proof.)

Proposition 2.2 (Value creation of high-risk issuer)

For any attainable leverage ratio λ̂ < 1, the value of a high-risk issuer financed with RSPs

is always greater than or equal to the value of a high-risk issuer financed with straight

debt, i.e., V0,RSP

(
λ̂
)

≥ V0,B

(
λ̂
)
.

In summary, the high-risk issuer always benefits from the issuance of RSPs. Propositions

2.1 and 2.2 show that the issuer can increase its value and at the same time reduce the

probability of default for fixed leverage ratios as compared to the case of straight debt

financing.

Surprisingly, this result holds for both types of products, i.e., concave payoffs as well as

convex payoffs. The benefit of PPNs compared to straight debt financing is that given

the same probability of default, PPNs can create higher tax benefits. This increase in

tax benefits is achieved by selling a fraction of the assets only in good states R̃T > XP

at maturity time T . In contrast, the benefit of DCNs financing originates from a lower

repayment to debt holders in bad states R̃T <XD at maturity, which allows the issuer to

reduce its expected bankruptcy cost compared to straight debt financing.

This result is certainly only valid for a fixed leverage ratio. It is apparent from figure

2.3 that the optimal leverage for RSP financing is higher than that for straight debt

financing. We analyze this optimal choice in more detail in section 2.6. Nevertheless, we

can still derive an important implication here for the regulator. Due to the one-to-one

correspondence between the leverage ratio and probability of default, the regulator can

easily impose restrictions on the leverage to fit the maximum amount of risk that the

issuer should take from the social planner’s perspective.
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Figure 2.2: Probability of default depending on leverage (high-risk)

The graph on the left shows the probability of default pdP P N for an issuer with PPN
financing (solid line). The graph on the right shows the default probability pdDCN

for an issuer with DCN financing (solid line). Both graphs also show the default
probability pdB with straight debt financing (dashed line). We compute the values
using the model parameters σR = 0.2, r = 0.15, T = 1, τ = 0.5, and α = 0.25 and
product parameters XP = 100, π = 0.5, and XD = 125.
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Figure 2.3: Issuer value depending on leverage (high-risk)

The graph on the left shows the issuer value V0,P P N with PPN financing (solid
line). The graph on the right shows the issuer value V0,DCN with DCN financing
(solid line). Both graphs also show the issuer value V0,B with straight debt financing
(dashed line). We compute the values using the model parameters A0 = 100, σR = 0.2,
r = 0.15, T = 1, τ = 0.5, and α = 0.25 and product parameters XP = 100, π = 0.5,
and XD = 125.
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2.4.2 Low-risk issuer

The issuer with Ãt = R̃t considered so far is well capable to issue RSPs, due to the high

exposure to the risky underlying on the balance sheet. In this section, we evaluate the

opposite case of an issuer with no exposure to the risky underlying asset. The assets

of the issuer characterized by Ãt = Ft are completely free of risk. This asset structure

implies that the issuer could borrow a face value up to FT =A0 ·erT at the risk-free rate.

Again, we first examine the risk-neutral probability of default. The case of straight debt

financing is apparently simple. As long as the face value of the bond B is lower than

the asset payoff FT , the default probability is zero. If more debt is issued, then both the

leverage ratio and the default probability increase to one.

Figure 2.4 illustrates the default probability of RSP issuers. The graph on the left shows

the default probability of an issuer financed with PPNs and the graph on the right shows

the default probability of an issuer financed with DCNs.

The default probability of the PPN issuer increases monotonically as long as P ≤ FT .

The issuer defaults for high values of the underlying asset. When more debt is issued,

i.e., for P > FT , the default probability rises to one. The DCN issuer does not default as

long as D ≤ FT . For higher debt volumes of D > FT , the default probability jumps up

and tends to one, as the issuer is now defaulting for high realizations of the underlying

asset R̃T >
FT

γD
.

Since the issuer of straight debt never defaults for λ< 1, the issuer of RSP is always worse

off. The low-risk issuer introduces a dependency to the risky asset by issuing RSPs. This

dependency increases the probability of default for some leverage ratios, but can never

decrease it. This result again can be generalized. (See appendix 2.B for proof.)

Proposition 2.3 (Risk increase of low-risk issuer)

For any attainable leverage ratio λ̂ < 1, the risk-neutral probability of default of a low-risk

issuer financed with RSP is always greater than or equal to the default probability of a

low-risk issuer financed with straight debt, i.e., pdRSP

(
λ̂
)

≥ pdB

(
λ̂
)
.

This result at first seems problematic from the regulator’s point of view, since he is

naturally concerned about increasing default probabilities. But to evaluate if the issuer

actually prefers to issue RSPs over straight debt, we again need to inspect the issuer

value. The corresponding issuer values are depicted in figure 2.5. The graph on the left

shows the value of an issuer financed with PPNs (solid line) and the graph on the right

shows the value of an issuer financed with DCNs (solid line). Both plots also show the

issuer value under straight debt financing as a reference case (dashed line).
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Figure 2.4: Probability of default depending on leverage (low-risk)

The graph on the left shows the probability of default pdP P N for an issuer with PPN
financing. The graph on the right shows the default probability pdDCN for an issuer
with DCN financing. We compute the values using the model parameters σR = 0.2,
r = 0.15, T = 1, τ = 0.5, and α = 0.25 and product parameters XP = 100, π = 0.5,
and XD = 125.
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Figure 2.5: Issuer value depending on leverage (low-risk)

The graph on the left shows the issuer value V0,P P N with PPN financing (solid
line). The graph on the right shows the issuer value V0,DCN with DCN financing
(solid line). Both graphs also show the issuer value V0,B with straight debt financing
(dashed line). We compute the values using the model parameters A0 = 100, σR = 0.2,
r = 0.15, T = 1, τ = 0.5, and α = 0.25 and product parameters XP = 100, π = 0.5,
and XD = 125.
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The issuer value under straight debt financing increases linearly with leverage λ, since

tax benefits can be generated at no additional cost. In contrast, the RSP issuer incurs an

additional bankruptcy cost when the probability of default rises. Consequently, the issuer

value with RSP financing lies below the value under straight debt financing whenever

there is a positive default probability. The issuer value with PPN financing decreases for

high leverage ratios up to P =XP . The issuer value with DCN financing agrees with the

value under straight debt financing up to D = FT . It drops down and decreases towards

(1−α)A0 when the face value D is further increased. We summarize this important result

in the following proposition. (See appendix 2.B for proof.)

Proposition 2.4 (Value destruction of low-risk issuer)

For any attainable leverage ratio λ̂ < 1, the value of a low-risk issuer financed with

RSPs never exceeds the value of a low-risk issuer financed with straight debt, i.e.,

V0,RSP

(
λ̂
)

≤ V0,B

(
λ̂
)
.

We conclude from propositions 2.3 and 2.4 that low-risk issuers never benefit from the

issuance of RSPs. The highest tax benefits are generated by issuing risk-free debt. In

contrast, the issuance of RSPs may increase the default probability. In these cases, the

bankruptcy costs eat up the tax benefits. Again, this result holds for both types of

contracts, i.e., for concave as well as for convex payoff structures. The regulator does

not have to consider the danger of RSP financing for low-risk issuers, since they do not

voluntarily issue them.

We conclude that the benefits of issuing RSPs depend critically on the risk of the issuer’s

asset portfolio. The high-risk issuer can use RSPs to reduce the probability of default,

i.e., as a form of insurance. The low-risk issuer has no need for insurance. Thus, RSPs

have the opposite effect in this case. They increase the riskiness of the issuer, since they

introduce a dependency on the risky underlying asset.

2.5 Optimal financing choice

In the next step, we evaluate the impact of RSPs on the optimal financing choice of the

bank. To accommodate a more general and realistic set of scenarios, we assume that

the bank’s assets and the underlying asset of the RSPs are not the same. Hence, the

asset portfolio is exogenous and has a constant volatility σA. However, the returns of

the assets and the underlying asset are correlated with coefficient ρ ∈ (−1,1). A perfect

correlation of ρ = 1 corresponds to the high-risk issuer described in section 2.4.1. We

resort to numerical solutions for the claim values in this section.
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Figure 2.6: Issuer value and default probability depending on correlation

The plot on the left shows the optimal issuer value V0 with PPN financing (solid black
line), with DCN financing (dashed line) and with straight debt financing (dot-dashed
line) depending on the correlation ρ. The plot on the left also shows the optimal
value when the issuer can finance itself with any mix of straight debt and DCNs
(solid gray line). The plot on the right shows the corresponding risk-neutral default
probabilities. We compute the values using the model parameters A0 = 100, σA = 0.2,
σR = 0.2, r = 0.15, T = 1, τ = 0.5, and α= 0.25 and product parameters XP = 100,
π = 0.5, and XD = 125.
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We first inspect the issuer value V0 which depends on the correlation ρ between the returns

of the assets and the underlying asset (see left-hand plot of figure 2.6). The value of an

issuer financed with only straight debt (the dot-dashed line) is obviously independent

of the risky underlying asset. The issuer values under PPN financing (solid black line)

and under DCN financing (dashed line) both increase with the correlation. For negative

and low positive correlations, financing with RSPs reduces the issuer value compared to

straight debt financing. Since the payoff of both products increases in the value of the

underlying asset, financing with RSPs is only beneficial when the correlation is high, i.e.,

when the values of the issuer’s assets and the underlying security behave similarly.

This finding is confirmed when we examine a mix of different debt contracts. The issuer

value for a financing mix consisting of straight debt and DCNs is also depicted in the

left-hand plot of figure 2.6 (solid gray line). For negative correlations, the issuer uses only

straight debt. However, the issuer always adds a strictly positive fraction of RSPs to the

financing mix when the correlation turns positive. The weight of RSPs in the financing

mix increases monotonically with the correlation up to a share of 100%. The results for

a financing mix which includes PPNs (not shown) are qualitatively the same.

Next, we evaluate the impact of RSP financing on the default risk of the issuer. We plot

the risk-neutral probability of default pd depending on the correlation ρ on the right-hand

side of figure 2.6. Again, the default risk of an issuer financed with only straight debt is

independent of the correlation. PPN financing (solid black line) turns out to reduce the

default probability of the issuer for low positive and for negative correlations. However, it

is not optimal to finance with PPNs for those correlations. But PPN financing increases

default risk for high correlations, when PPN have an advantage over straight debt in

terms of value maximization.

In contrast, for all possible correlations DCN financing reduces the default risk of the issuer

compared to straight debt financing. The effect is also large in magnitude. For example,

the default risk is reduced from 3.3% to 0.9% for a correlation of ρ = 1. The hedging

benefit is still present when we examine an optimal mix of DCNs and straight debt (solid

gray line). DCNs are not added to the financing mix for negative correlations. The default

risk of the issuer declines with an increasing share of DCNs in the financing mix and thus

with an increasing correlation. The issuer could further decrease the default probability

by issuing only DCNs, but doing so is not optimal in terms of value maximization.

Clearly, adding RSP to the financing mix is always beneficial for positive correlations

between the assets and the underlying. When issuing DCNs, the issuer can thereby

reduce its default probability. In contrast, PPN financing causes the default risk of the

issuer to increase when the correlation is high. A comparative static analysis of these

results is contained in appendix 2.C.
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2.6 Optimal risk-taking

We have shown in section 2.4 that high-risk issuers prefer RSP over straight debt. Low-

risk issuers prefer the opposite. Furthermore, we have shown in section 2.5 that issuers

optimally add RSP to their financing mix whenever the correlation between the assets

and the underlying is positive. In this section, we tackle the question of how the issuer’s

choice of asset risk is influenced when RSPs are available as an instrument for financing

and risk management.

For this purpose, we consider an asset portfolio that is a linear combination of the

underlying R̃ with weight δ ∈ [0,1] and the risk-free asset F with weight 1 − δ. Thus,

the asset value Ãt of the unlevered issuer at time t is given by

Ãt = δ · R̃t +(1− δ) ·Ft. (2.11)

The financial institution trades in securities, lends money to consumers and enterprises,

purchases government bonds, and holds central bank deposits. We assume that all such

investments are separable into a component impacted by the source of uncertainty R̃ and a

residual component F , which is free of risk. The high-risk and low-risk issuers discussed in

section 2.4 are represented by δ = 1 and δ = 0, respectively. The asset structure described

here corresponds to the case ρ = 1 discussed in the previous section 2.5, i.e., the case in

which RSPs add most value. However, the volatility of the assets is no longer constant.

The parameter δ scales the volatility of the assets such that σA = δ · Rt
At

·σR.

In the following, we analyze the issuer’s optimal financing choice for a given asset risk

weight δ as well as the optimal risk weight choice. In section 2.6.3, we consider the

risk-shifting incentives of equity holders. We use numerical optimization techniques, since

solutions for the optimal decisions cannot be obtained in closed form. We control the

optimization results for many different scenarios. The comparative static analysis can be

found in appendix 2.C.

2.6.1 Principal-protected notes

The issuer can finance with straight debt, PPNs, or a mix of both. We determine the

optimal leverage ratio λ∗ for each risk weight δ. Figure 2.7 shows the resulting optimal

issuer values on the left-hand side and the corresponding probability of default given the

optimal leverage on the right. The graphs show the values for the issuer financed with

straight debt (thin black line), for an issuer financed with PPNs only (thick gray line),

and for an issuer financed with a mix of bonds and PPNs (dashed line).
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We look first at an issuer with one single debt claim outstanding. The optimal value with

straight debt financing strictly decreases with the asset risk weight δ. The maximum is

at δ = 0. The probability of default pdB strictly increases with δ from zero for δ = 0 up

to 3.3% for δ = 1. These findings reproduce the well known results of Merton (1974) and

(Leland, 1994). We use this case as a reference to evaluate the impact of RSP financing.

We can reconcile the results shown in figure 2.7 with the findings from section 2.4. The

optimal value of a low-risk issuer with δ = 0 financed with RSPs is below the value of the

issuer financed with straight debt. The opposite is true for a high-risk issuer with δ = 1.

Hence, there must be an asset risk weight for which the issuer is indifferent between

financing with bonds and RSPs. For the chosen parameter values, this risk weight is

approximately at δ = 0.29. For lower risk weights, the issuer prefers to finance with

straight debt. For higher risk weights, the issuer prefers to finance with PPNs.

The optimal issuer value under PPN financing is a hump-shaped curve with its maximum

at δ = 0.39. For all tested scenarios, the maximum issuer value with PPN financing never

exceeds the maximum value when the issuer uses straight debt. Given the optimal choice,

the corresponding default probability decreases for low risk weights and increases sharply

around the maximum issuer value at δ = 0.39, thereby surpassing the default probability

under straight debt financing. It continues to increase up to the maximum of 5.1% for

δ = 1. At first, this finding seems to contradict proposition 2.1, which states that the

default probability with PPN financing should be reduced compared to straight debt

financing. However, the issuer has an incentive to optimally increase the leverage ratio

λ. In the case of PPN financing, this increase in leverage eats up the beneficial effect of

RSPs on the default probability.

We next consider an issuer who can choose any arbitrary mix of zero bonds and PPNs to

finance itself. Since this financing mix adds an extra degree of freedom to the optimization,

the issuer can never be worse off compared to the case of a single debt claim.

The most important finding is that the issuer always chooses to finance itself with a

positive amount of PPNs for all positive risk weights δ > 0. The low-risk issuer with δ = 0

finances itself with straight debt only as shown in propositions 2.3 and 2.4. The issuer

combines bonds and principal-protected notes for 0 < δ < 0.39. For higher risk weights,

the issuer relies only on PPNs for financing. The resulting curve for the issuer value

is a monotonically decreasing function in the risk weight δ. The maximum is at δ = 0,

i.e., the case of straight debt financing. We also observe that given optimal leverage, the

probability of default is always equal to or higher than the default probability of the bond

financed issuer.

Finally, we consider the choice of the optimal risk weight δ∗. An issuer always has the

incentive to reduce the risk weight as much as is feasible, i.e., an issuer with full flexibility
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chooses a risk weight of δ = 0. This is good news for the regulator, since the default

probability at the optimum is zero. However, should the issuer be constrained from

further reducing the risk weight, the regulator might be concerned in two cases. In the

first case, when the minimum attainable risk weight is below 0.39, the issuer optimally

chooses a mix between straight debt and PPNs. However, a financing with only PPNs

would result in a lower probability of default. In the second case, when the minimum

attainable risk weight is above 0.39, the issuer relies only on PPNs for financing. Again,

a lower probability of default can be achieved by financing with straight debt only.

As noted earlier, the regulator can exploit the one-to-one relation between the default

probability and the leverage ratio to limit the risk taking incentive of the issuer. Unfortu-

nately, this relation changes fundamentally with the risk weight δ. For example, if we look

at the issuer value under PPN financing, the value maximizing leverage ratio at δ = 0.39

is higher than the leverage ratio at δ = 1. However, the resulting probability of default at

δ = 1 is more than five times as high. Hence, the maximum leverage ratio prescribed by

the regulator should either incorporate the asset risk of the issuer or it should be geared

towards the worst-case scenario, i.e., δ = 1.

We conclude that adding PPN to the financing mix of the issuer can increase the issuer

value. However, there is also the danger that the default risk of the issuer increases. This

increase is especially severe for an issuer who inherits a high exposure to the risky asset

and is either not capable of adjusting this exposure in the short run or incurs a high cost

when doing so.

2.6.2 Discount notes

Next, we analyze an issuer who is financed with straight debt, DCNs, or a mix of both.

Again, we determine the optimal leverage ratio λ∗ for each risk weight δ. Figure 2.8

depicts the resulting optimal issuer values on the left-hand side and the corresponding

probability of default at the optimum on the right. The graphs show the values for the

issuer financed with straight debt (thin black line), for an issuer financed with DCNs only

(thick gray line), and for an issuer financed with a mix of bonds and DCNs (dashed line).

We first analyze an issuer with one single debt claim outstanding. The optimal value

with straight debt financing is still our reference scenario. Moreover, figure 2.8 mirrors

the results from section 2.4. The optimal value of a low-risk issuer with δ = 0 financed

with RSPs is below the value of the issuer financed with straight debt. The opposite

is true for a high-risk issuer with δ = 1. The issuer is indifferent at a risk weight of

approximately δ = 0.22. For lower risk weights, the issuer prefers to finance with straight

debt. For higher risk weights, the issuer prefers to finance with DCNs.
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Figure 2.7: Optimal issuer value and probability of default with PPN financing

The graph on the left shows the optimal issuer value. The graph on the right depicts
the probability of default given the optimal leverage. The plots show the values for
an issuer financed with straight debt (thin black line), for an issuer financed with
PPN only (thick gray line) and for an issuer financed with a mix of bonds and PPN
(dashed line). We compute the values using the parameters A0 = 100, σR = 0.2,
r = 0.15, T = 1, τ = 0.5, α= 0.25, XP = 100, and π = 0.5.
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Figure 2.8: Optimal issuer value and probability of default with DCN financing

The graph on the left shows the optimal issuer value. The graph on the right depicts
the probability of default given the optimal leverage choice. The plots show the values
for an issuer financed with straight debt (thin black line), for an issuer financed with
DCN only (thick gray line) and for an issuer financing with a mix of bonds and DCN
(dashed line). We compute the values using the parameters A0 = 100, σR = 0.2,
r = 0.15, T = 1, τ = 0.5, α= 0.25, and XD = 125.
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The issuer value under DCN financing increases linearly with the risk weight δ. The

maximum is at δ = 1. Remarkably, the default probability drops to zero for all risk

weights δ. This drop is due to the DCNs’ insurance property discussed earlier. The issuer

reduces the repayment in bad states of the world and consequently lowers both the default

risk and the expected bankruptcy costs.

When the issuer can mix the two debt claims, it chooses to issue a positive amount of

DCNs for all positive risk weights δ > 0. The curve slightly decreases, i.e., the optimal risk

weight δ∗ is again zero. The corresponding default probability is zero for risk weights lower

than 0.7 and then increases monotonically up to 1.5% for δ = 1. The default probability

at δ = 1 is positive, since the issuer optimally includes a small but positive fraction of

straight debt in the financing mix. Most importantly, the probability of default, given the

optimal leverage, is always lower than in the case of straight debt financing. Hence, the

issuance of DCNs is desirable from the regulatory point of view and should be actively

encouraged.

In short, low-risk issuers with δ = 0 optimally issue bonds, and risky issuers, i.e., δ > 0,

prefer to add RSPs to the financing mix. Issuers with high asset risk thereby increase the

probability of default when issuing PPNs and reduce it by issuing DCNs, compared to

the benchmark case of straight debt financing.

2.6.3 Risk-shifting incentives

We have shown that unconstrained issuers prefer to reduce their asset risk weight to δ = 0.

This result implies that only straight debt is used and RSPs are not issued. Only an issuer

constrained in the choice of the asset risk weight adds RSP to the financing mix. On the

one hand, the issuer might voluntarily keep an exposure to the underlying security, for

example, as inventory for trading or due to related businesses. On the other hand, the

issuer might not be able to adjust the asset risk weight — at least, not in the short run

— due to liquidity constraints or transactions costs.

In addition, the equity holders might not behave optimally in terms of firm value maxi-

mization when it is possible to adjust the asset risk weight after debt is issued. Our model

considers an initially unlevered issuer. The issuer pays out the value of issued debt as a

special dividend to equity holders. This setup ensures that if asset risk is contractible,

then equity holders maximize the total value of the firm, i.e., the sum of debt and equity

value. In the Merton model, the equity value of a levered firm can be thought of as a call

option on the firm’s assets with the face value of debt corresponding to the strike price.

The value of the call option increases with the volatility of the underlying asset. Hence,

once debt is issued, equity holders have an incentive to increase the asset risk.



29

Figure 2.9 shows the total shareholder wealth when the equity holders engage in risk-

shifting behavior. The issuer determines the face value of debt and the debt value, which

is paid as a special dividend to equity holders, based on an initial risk weight δ̂. After

debt is issued, equity holders are able to adjust the asset risk weight from δ̂ to δ. Debt

holders do not anticipate this behavior. The plot shows the resulting optimal shareholder

wealth, i.e., the sum of the special dividend given δ̂, and the equity value at the final risk

weight δ, for financing with a mix of straight debt and PPNs on the left and for a mix

of straight debt and DCNs on the right. We consider three different initial risk weights:

δ̂ = 0 (thick gray line), δ̂ = 0.5 (dashed line) and δ̂ = 1 (thin black line). The graphs show

the respective values for δ = δ̂ as black dots, since the functions are not continuous.

The low-risk issuer with δ̂= 0 is financed only with straight debt. The issuer has an initial

default probability of zero. Increasing the asset risk weight causes the default probability

to increase, which leads to a drop in value. Shareholder wealth increases linearly with

the final risk weight δ and surpasses the initial value for risk weights of δ > 0.47. The

maximum at δ = 1 results in a shareholder wealth of 111.16 compared to an initial value

of 106.94. Similarly, an issuer with initial risk weight δ̂ = 0.5 is willing to increase the

asset risk weight up to δ = 1. However, the magnitude of the effect is not as large as it is

for the low-risk issuer. In contrast, an issuer with initial risk weight δ̂ = 1 is not willing

to reduce the risk weight. Hence, risk-shifting is beneficial for the issuer, who in all three

cases chooses a final risk weight of δ = 1.

Because the risk-shifting phenomenon is well known, we assert that debt holders anticipate

the behavior of the issuer. Risk-shifting is to the disadvantage of debt holders, since the

subsequent increase in bankruptcy costs reduces the value of debt. Hence, debt holders

value their claims as if the issuer chooses an initial risk weight of δ̂ = 1. A lower choice

of asset risk weight by the issuer is not credible. Consequently, equity holders determine

their optimal response for an initial risk weight δ̂ = 1 and adjust the debt mix accordingly.

This debt mix includes RSPs, since RSPs are added to the financing mix for all positive

risk weights δ > 0.
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Figure 2.9: Issuer value and risk-shifting incentives

The plot on the left shows the total shareholder wealth when financing with a mix of
straight debt and PPN allowing for a change of the risk weight δ after issuance. Debt
is issued assuming at an initial risk weight of δ̂ = 0 (thick gray line), δ̂ = 0.5 (dashed
line) or δ̂ = 1 (thin black line). The plot on the right shows the total shareholder
wealth when financing with a mix of straight debt and DCN for the same initial
risk weight scenarios. The graphs show the respective values for δ = δ̂ as black dots
since the functions are not continuous. We compute the values using the parameters
A0 = 100, σR = 0.2, r = 0.15, T = 1, τ = 0.5, α = 0.25, XP = 100, π = 0.5, and
XD = 125.
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2.7 Optimal product design

Although our focus has been on RSPs with exogenous product properties, we note that

these parameters are mainly determined by the preferences of the retail investors. How-

ever, the properties of the offered product are, at least to some extent, at the discretion

of the issuer. Hence, we analyze what set of parameters the issuer optimally chooses and

how this choice affects issuer value and default probability.

2.7.1 Principal-protected notes

We first focus on an issuer financed only with PPNs. As before, the guaranteed amount

is fixed to the level XP = R0. The issuer optimizes over two parameters, the face value

P ≥ 0 and the participation rate π ≥ 0.

The optimal participation rate π∗ nearly linearly increases with the risk weight δ, whereby

we always observe π∗ ·P ∗

> δ. The issuer defaults for high realizations of the underlying

R̃T . The optimal parameter values range from π∗ = 0 for a low-risk issuer with δ = 0 up

to π∗ = 1.33 for a high-risk issuer with δ = 1.

Figure 2.10 shows the optimal issuer value on the left and the corresponding probability

of default on the right. Both plots present the values for an issuer financed with the

standard PPN contract with π = 0.5 (thick gray line) and the values for the optimally

designed PPN contract (dashed line). For comparison, we also include the issuer value

with straight debt (thin black line), which coincides with π = 0.

We examined the hump-shaped curve for PPN financing with π = 0.5 earlier in section

2.6.1. The issuer can always increase the value by adjusting the participation rate. Both

curves agree for δ = 0.4, where the optimal participation rate is approximately π∗ = 0.5.

For values below δ = 0.4, the issuer can increase the value by lowering the participation

rate. For values above δ = 0.4, the issuer is better off by increasing the participation

rate. Since the optimal participation rate is π∗ = 0 for the low-risk issuer with δ = 0,

the corresponding issuer value agrees with the case of straight debt financing. The issuer

value under the optimal participation rate declines with the risk weight δ up to values of

δ = 0.9 and then increases slightly.

The optimization over the participation rate also has important consequences on the risk

profile of the issuer. For low risk weights, the default probability is close to that of an

issuer financed with straight debt. The probability of default monotonically increases with

the risk weight δ, whereby it is always larger compared to an issuer financed purely with

straight debt. For values of δ > 0.74, the default probability of the optimally designed
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Figure 2.10: Issuer value and default probability with optimally designed PPN

The graph on the left shows the optimal issuer value. The graph on the right depicts
the probability of default given the optimal leverage. The plots show the values for
an issuer financed with straight debt (thin solid line), for an issuer financed with the
standard PPN contract (thick gray line) and for an issuer financed with the optimally
designed PPN contract(dashed line). We compute the values using the parameters
A0 = 100, σR = 0.2, r = 0.15, T = 1, τ = 0.5, α= 0.25, and XP = 100.
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Figure 2.11: Issuer value and default probability with optimally designed DCN

The graph on the left shows the optimal issuer value. The graph on the right depicts
the repayment amount XD. The plots show the values for an issuer financed with
straight debt (thin solid line), for an issuer financed with the standard DCN contract
(thick gray line) and for an issuer financed with the optimally designed DCN con-
tract(dashed line). We compute the values using the parameters A0 = 100, σR = 0.2,
r = 0.15, T = 1, τ = 0.5, and α= 0.25.
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PPN contract surpasses that of the standard PPN contract with π = 0.5. The default

probability of a high-risk issuer with δ = 1 jumps from 5.1% up to 6.7%. This value is

twice as high as the corresponding default probability of 3.3% with straight debt financing.

We conclude that allowing for optimal choice of the product parameters confirms our

verdict on PPN financing by high-risk issuers. The issuer value can be increased at the

expense of a considerably greater probability of default.

2.7.2 Discount notes

For DCN financing, the product parameter of choice is the maximum repayment XD. The

issuer simultaneously determines the optimal volume D≥ 0. We present the results of the

optimization in figure 2.11. The issuer value is shown on the left. The optimal maximum

repayment amount X∗

D is plotted on the right. Both plots present the values for an issuer

financed with the standard DCN contract with XD = 125 (thick gray line) and the values

for the optimally designed DCN contract (dashed line).

Figure 2.11 shows that the cap X∗

D of the optimally designed DCN contract increases

monotonically with δ. For δ = 0.62, the optimal cap is roughly equal to 125, which

corresponds to the parameter of the standard DCN contract discussed in the previous

sections. The maximum promised repayment is equal to 184 for the high risk issuer with

δ = 1.

The most remarkable outcome is that the issuer who uses the optimally designed DCN

contract never defaults for any given risk weight δ. So the favorable characteristic already

derived in section 2.6.2 is again observed. Consequently, the issuer value can be further

increased.

2.7.3 Further products

In this section, we test the robustness of our results for two different product types. As a

representative for products with discontinuous payoffs, we consider express notes (ENs).

In addition, we analyze short notes (SNs), whose payoff decreases when the value of the

underlying increases.

Formally, the promised payoff of an EN (see left-hand side of figure 2.12) is given by

CET =





(1+ rE) ·E if R̃T ≥XE ,

min
{
1, 1

XL
· R̃T

}
·E if R̃T <XE .

(2.12)
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Figure 2.12: Promised payoff of further products

The graph on the left shows the promised payoff CET of an express note with strike
price XE and coupon rE. The investor incurs losses for values of the underlying
below XL. The graph on the right shows the promised payoff CST of a short note
with strike price XS =R0 and upper cap XM .
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Figure 2.13: Issuer value and default probabilities of further products

The plot on the left shows the optimal issuer value V0 for straight debt financing
(dot-dashed line), for EN financing (solid black line), for SN financing (dashed line)
and for a financing mix of short notes and straight debt (solid gray line) depending
on the correlation ρ. The plot on the right shows the corresponding risk-neutral
default probabilities. We compute the values using the model parameters A0 = 100,
σA = 0.2, σR = 0.2, r = 0.15, T = 1, τ = 0.5, and α = 0.25 and product parameters
XL = 50, XE = 100, rE = 30%, XS = 100, and XM = 200.
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If the value of the underlying asset at maturity is above the lower threshold XL, then

the investor receives the nominal amount E. Should the underlying value end up above

the upper threshold XE >XL, the investor receives an additional coupon payment of rE .

Should the underlying asset fall below XL, the investor incurs a loss. Express notes can

be thought of as discount notes with strike price XL and an additional coupon payment

above the second strike XE , where the promised payoff has a jump.

We represent the promised payoff of SNs (see right-hand side of figure 2.12) as

CST = max

{
XM − R̃T

XM −XS
,0

}
·S, (2.13)

where the strike price XS is usually set equal to the initial value R0 of the underlying

asset. The promised payoff of an SN is positive as long as R̃T <XM . The investors get

the maximum payoff XM
XM −XS

·S when the value of the underlying drops to R̃T = 0.

Figure 2.13 shows the issuer value on the left and corresponding default probabilities on

the right depending on the correlation ρ for four different scenarios: straight debt financing

(dot-dashed line), financing with ENs (solid black line), financing with SNs (dashed line)

and financing with a mix of straight debt and SNs (solid gray line).

The value of an issuer financed with ENs increases monotonically with the correlation ρ.

The graph looks similar to the issuer value with DCN financing (see figure 2.6). Thus,

the findings from section 2.5 are once more confirmed. For high correlations, the issuer

can increase its value by financing with ENs. The default probability can be reduced for

any correlation. In addition, an issuer financing with a mix of straight debt and ENs (not

shown) adds a positive fraction of ENs to the financing mix for all positive correlations.

The results for SN financing reverse the results from section 2.5. Due to the negative

relation between the SN payoff and the underlying, the issuer benefits from SNs when the

correlation between the asset value return and the underlying asset’s return is negative.

The issuer value with SN financing decreases with the correlation. Issuers add SNs to a

financing mix with straight debt for all negative correlations. In addition, the default

probability can be significantly reduced for all correlations. Hence, SNs possess an

insurance property similar to that of DCNs. We conclude that our results are robust

to important variations on the payoff of RSPs.

2.7.4 Product complexity

An important empirical observation is that issuers sell RSPs to retail investors at a sizable

markup. Stoimenov and Wilkens (2005) report an average markup at issuance of 3.9%

for the German market. This markup increases with the complexity of the products. In
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Figure 2.14: Issuer value with product markup

The plot on the left shows the optimal issuer value with PPN financing (solid line)
depending on the product markup ϕ. The plot on the right shows the optimal issuer
value with DCN financing (solid line). Both plots include the optimal issuer value
with straight debt financing for a high risk issuer with δ = 1 (dot-dashed horizontal
line) and a low risk issuer with δ = 0 (dashed horizontal line). Both plots also
include the issuer value for PPN financing and DCN financing for a scenario without
tax benefits (dashed line). We compute the values using the parameters A0 = 100,
σR = 0.2, r = 0.15, T = 1, τ = 0.5, α= 0.25, XP = 100, π = 0.5, and XD = 125.
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a theoretical contribution, Carlin (2009) establishes a link between product complexity

and the ability to generate profits from that particular product.

In this section, we test the robustness of our model with respect to this empirical obser-

vation. We incorporate the additional friction that the issuer is able to sell the RSP at

a markup ϕ on the fair value. Such a markup comprises fees for sales, structuring, and

depository. The markup ϕ is an upfront fee that investors have to pay at issuance. Hence,

the fair value materializes directly after issuance and the market remains free of arbitrage

opportunities. The markup directly increases the size of the special dividend to equity

holders, which is equal to (1+ϕ) ·D0.

Figure 2.14 shows the optimal issuer value (solid line) for PPN financing on the left and

DCN financing on the right. We display a high-risk issuer with δ = 1, since RSPs are used

to the maximum extent by this issuer. For comparison, figure 2.14 also shows the issuer

value under straight debt financing for a low-risk issuer with δ = 0 (dashed horizontal

line) and for a high-risk issuer with δ = 1 (dot-dashed horizontal line). Obviously, both

are independent of the product markup ϕ.

The optimal value of an issuer financed with RSPs nearly linearly increases with the

product markup ϕ. For both product types, the issuer value is greater compared to the

high-risk issuer with straight debt financing. For PPNs, a product markup of ϕ> 4.4% is

required such that PPN financing with δ = 1 is advantageous to straight debt financing

when δ = 0. Hence, the maximum value from section 2.5 is exceeded. For DCNs, a very

low markup of at least ϕ= 0.7% is required such that DCN financing is beneficial.

We regard the product markup ϕ as a substitute for the tax benefit of debt. Figure 2.14

also shows the respective issuer value for a scenario without tax benefits (dashed line),

i.e., τ = 0. For both product types, the issuer value is nearly linearly increasing in the

markup ϕ. We conclude that our results are robust to the specific implementation of the

friction. However, the financing benefit must be linked to the outstanding volume of the

RSP.

2.8 Conclusion

So far, the literature on retail structured products has focused on the profit maximizing

behavior of the issuer. We contribute two new themes to this literature. First, we argue

that RSPs are a valuable funding source for the issuer. Consequently, the investors in

RSPs are to some extent exposed to the issuer’s business risk. Second, we show that RSPs

can be used for risk management purposes. The use of RSPs as a hedging instrument

enables issuers to transfer risks outside the financial system. In this paper, we evaluate
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the conditions under which RSPs can indeed have a positive impact not only on the issuer

value, but also on the default probability.

In the context of our model, we show that low-risk issuers still use straight debt financing,

but high-risk issuers prefer RSP financing over straight debt. By holding the leverage ratio

constant, high-risk issuers can increase the firm value and at the same time decrease the

probability of default. Nevertheless, the issuer has an incentive to optimally adjust the

leverage ratio and asset risk weight. Even when accounting for these optimal decisions,

RSPs are added to the financing mix when the correlation between the issuer’s assets and

the underlying asset is positive and when the assets are risky. Issuers with high asset

risk thereby increase the probability of default when issuing PPNs, but they reduce it

by issuing DCNs. The results also hold when the issuer can optimally design the RSP.

Furthermore, our results are also robust to the empirically observed friction of a markup

on the RSP’s fair value charged by the issuer.

Adding retail structured products to the financing mix is especially beneficial when the

value of the issuer’s assets strongly depends on the value of the underlying asset of the

RSPs. The underlying asset can either be directly included in the asset portfolio as, for

example, part of direct investments, or as inventories for trading. In addition, some other

components of the asset portfolio might be highly correlated with the underlying asset.

For example, the value of a loan provided by the bank is highly correlated with the value

of the debtor’s equity, since both claims can be thought of as claims contingent on the

debtor’s assets. Hence, we conclude that the issuer’s asset portfolio can be decomposed

into a component which depends on the underlying and residual component.

Our model centers around a hedging error caused by the mismatch between the payoffs

of the issuer’s assets and liabilities. Because of the high degree of customization of retail

structured products, perfect hedges are often not feasible. In addition, hedging transac-

tions only reduce the risk exposure of the aggregated financial sector if the counterpart sits

outside the financial system. Retail investors are ideal counterparts of hedging transac-

tions, since they arguably incur lower bankruptcy cost compared to financial institutions

and because their small size limits contagion.

When a perfect hedge should indeed be feasible, the issuer can convert the liability from

RSPs into a zero bond. As we show in our analysis, the issuer actually does not choose

the perfect hedge when the asset portfolio is highly correlated to the underlying. In this

case, RSPs offer advantageous features compared to straight debt. DCNs possess the

property of a lower repayment when the issuer’s asset value declines. PPNs generate a

funding advantage over straight debt in return for sharing potential gains.
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2.A Valuation of claims

The option pricing theory developed by Black and Scholes (1973) and Merton (1973b)

provides the framework for the pricing of the claims. To improve readability, we use the

following short-hand notation throughout this section.

N1(X) =N [d1(X)], (2.14)

N−1(X) =N [−d1(X)] = 1−N1(X), (2.15)

N2(X) =N [d2(X)], (2.16)

N−2(X) =N [−d2(X)] = 1−N2(X), (2.17)

where X denotes the strike price and N [y] denotes the standard normal cumulative

distribution function. The terms d1 and d2 are defined as

d1(X) =
ln
(

R0

X

)
+
(
r+ 1

2σ
2
)
T

σ
√
T

, (2.18)

d2(X) =
ln
(

R0

X

)
+
(
r− 1

2σ
2
)
T

σ
√
T

= d1(X)−σ
√
T . (2.19)

The values of European call options c0 and put options p0 with strike price X are given

by

c0(X) =R0N1(X)−Xe−rTN2(X), (2.20)

p0(X) =Xe−rTN−2(X)−R0N−1(X). (2.21)

2.A.1 Principal-protected notes

We first examine the case of financing with bonds and principal-protected notes. There are

three conditions determining whether the issuer defaults. First, if the risk-free component

of the asset portfolio does not suffice to repay the debt’s principal, i.e., B+P > (1−δ)FT ,
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then the issuer defaults for small values of the underlying RT <X1 with

X1 =
B+P − (1− δ)FT

δ
. (2.22)

This case obviously requires δ > 0. For δ = 0, the issuer defaults independent of the

outcome of RT .

Second, in case the issuer fails to settle the liability from the option embedded in the

principal-protected note for some outcomes, i.e., δ− π
XP

·P < 0, it defaults for values of

the underlying RT >X2 with

X2 =
B+(1−π)P − (1− δ)FT

δ− π
XP

·P . (2.23)

Third, the issuer might as well default for values of RT below X2. This situation happens

when the principal amount is high, i.e., B+P > (1− δ)FT + δ ·XP , and the participation

rate is low with π < δ
P

·XP .

The following table summarizes the resulting six possible scenarios. The second column

shows for which realizations RT of the risky asset the issuer defaults. Columns 3 to 5

show for which choice of parameters B, P and δ the respective scenario occurs. The final

column shows the risk-neutral probability of default of the issuer for each scenario.

Case i Default B+P δ− π
XP

·P δ pd

1 never ≤ A0,T ≥ 0 ≥ 0 0

2 >X2 ≤ A0,T < 0 ≥ 0 N2(X2)

3 <X1 (>A0,T )∧ (≤ AXP ,T ) ≥ 0 > 0 N−2(X1)

4 (<X1)∧ (>X2) (>A0,T )∧ (≤ AXP ,T ) < 0 > 0 N2(X2)+N−2(X1)

5 <X2 >AXP ,T > 0 > 0 N−2(X2)

6 always >AXP ,T ≤ 0 ≥ 0 1

We denote the payoff of the assets for RT = 0 as A0,T = (1−δ)FT and abbreviate the payoff

of the assets for RT =XP with AXP ,T = (1−δ)FT +δ ·XP . In addition, we introduce the

following short-hand notations:

g1 =R0 · (N1(XP )−N1(X2))−XP · e−rT · (N2(XP )−N2(X2)) , (2.24)

g2 =δ ·R0 · (N1(X2)−N1(X1))+(1− δ) ·F0 · (N2(X2)−N2(X1)) , (2.25)

g3 =R0 ·N1(X2)−XP · e−rT ·N2(X2). (2.26)
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The total firm value of the issuer V i
0 (B,P ) for the respective case i is given by

V 1
0 = A0 + τ(1− e−rT )

((
B+P

)
e−rT + π

XP
P · c0(XP )

)
, (2.27)

V 2
0 = A0 + τ

(
1− e−rTN−2(X2)

)(
(B+P )e−rTN−2(X2)+ π

XP
P ·g1

)

−
(
α+(1−α)τe−rTN−2(X2)

)
(δR0N1(X2)+(1− δ)F0N2(X2)) , (2.28)

V 3
0 = A0 + τ

(
1− e−rTN2(X1)

)(
(B+P )e−rTN2(X1)+ π

XP
P · c0(XP )

)

−
(
α+(1−α)τe−rTN2(X1)

)
(δR0N−1(X1)+(1− δ)F0N−2(X1)) , (2.29)

V 4
0 = A0 + τ

(
1− e−rT (N2(X1)−N2(X2))

)

·
(
(B+P )e−rT (N2(X1)−N2(X2))+ π

XP
P ·g1

)

−
(
α+(1−α)τe−rT (N2(X1)−N2(X2))

)
·g2, (2.30)

V 5
0 = A0 + τ

(
1− e−rTN2(X2)

)(
(B+P )e−rTN2(X2)+ π

XP
P ·g3

)

−
(
α+(1−α)τe−rTN2(X2)

)
(δR0N−1(X2)+(1− δ)F0N−2(X2)) , (2.31)

V 6
0 = A0 · (1−α). (2.32)

2.A.2 Discount notes

We examine the claim values for the issuer financed with bonds and discount notes. The

issuer’s payoff is characterized by two default thresholds. First, if the risk-free portion

of the asset portfolio is exceeded by the minimum debt payment, i.e., B+D > (1−δ)FT ,

then the issuer defaults for low values of the underlying below the threshold RT < X3

with

X3 =
B− (1− δ)FT

δ−γD
. (2.33)

This case requires δ−γD > 0.

The default boundary X3 is relevant for a further scenario. If the bank issues an amount

of discount notes exceeding the value of its investment in the risky asset, i.e., δ−γD < 0,

then the bank defaults for values above the threshold RT >X3.

Second, the issuer’s liabilities are in any case limited to B+D. Thus, the issuer never

defaults for values of the underlying RT >X4 with

X4 =
B+D− (1− δ)FT

δ
. (2.34)

This case requires δ > 0. Otherwise, the default boundaries become independent of RT .

The following table summarizes the resulting 6 possible scenarios. The second column

shows for which realizations RT of the risky asset the issuer defaults. Columns 3 to 5



42

show for which choice of parameters B, D and δ the respective scenario occurs. The final

column shows the risk-neutral probability of default of the issuer for each scenario.

Case i Default B B+D δ pd

1 never ≤ A0,T ≤ AXD,T ≥ 0 0

2 (<X4)∧ (>X3) ≤ A0,T >AXD,T > 0 N2(X4)+N−2(X3)

3 >X3 ≤ A0,T >AXD,T = 0 N2(X3)

4 <X3 >A0,T ≤ AXD,T ≥ 0 N−2(X3)

5 <X4 >A0,T >AXD,T > 0 N−2(X4)

6 always >A0,T >AXD,T = 0 1

We denote the payoff of the assets for RT = 0 as A0,T = (1 − δ)FT and abbreviate the

payoff of the assets for RT = XD with AXD,T = (1 − δ)FT + δ ·XD. We introduce the

following short-hand notations:

g4 =δ ·R0 · (N1(X3)−N1(X4))+(1− δ) ·F0 · (N2(X3)−N2(X4)) , (2.35)

g5 =δ ·R0 ·N−1(X3)+(1− δ) ·F0 ·N−2(X3), (2.36)

g6 =δ ·R0 ·N−1(X4)+(1− δ) ·F0 ·N−2(X4), (2.37)

g7 =XD · e−rT · (N2(X3)−N2(XD))−R0 · (N1(X3)−N1(XD)). (2.38)

The total firm value of the issuer V i
0 (B,D) for the respective case i is given by

V 1
0 = A0 + τ(1− e−rT )

((
B+D

)
e−rT −γD ·p0(XD)

)
, (2.39)

V 2
0 = A0 + τ

(
1− e−rT (N2(X4)−N2(X3))

)

·
(
(B+D)e−rT (N2(X4)−N2(X3))−γD ·g7

)

−
(
α+(1−α)τe−rT (N2(X4)−N2(X3))

)
·g4, (2.40)

V 3
0 = A0 + τ

(
1− e−rTN−2(X3)

)(
Be−rTN−2(X3)+γD ·R0N−1(X3)

)

−
(
α+(1−α)τe−rTN−2(X3)

)
·F0N2(X3), (2.41)

V 4
0 = A0 + τ

(
1− e−rTN2(X3)

)((
B+D

)
e−rTN2(X3)−γD ·g7

)

−
(
α+(1−α)τe−rTN2(X3)

)
·g5, (2.42)

V 5
0 = A0 + τ

(
1− e−rTN2(X4)

)((
B+D

)
e−rTN2(X4)

)

−
(
α+(1−α)τe−rTN2(X4)

)
·g6, (2.43)

V 6
0 = A0 · (1−α). (2.44)
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2.B Proofs of propositions

2.B.1 High-risk issuer

PPN financing

We restrict the participation rate to the typical case of π ≤ 1. Since we would like to

compare PPN financing to straight debt financing, we consider points where the issuers

have equal probability of default under both financing choices, i.e., pdB = pdP . Under this

condition, we can express the issuer value VP,0 and the value of the principal-protected

note CP0 as

CP0(P ) =B0(B =X)+a, (2.45)

VP,0(P ) =VB,0(B =X)+a · b, (2.46)

with

X =





P for 0< P ≤XP ,

(1−π)·P

1−
π

XP
·P

for XP < P ≤ XP
π ,

(2.47)

a=





π
XP

·P · c0(XP ) for 0< P ≤XP ,

π
XP

·P ·
(
R0N1(X)−XP · e−rTN2(X)

)
for XP < P ≤ XP

π ,
(2.48)

b=τ(1− e−rTN2(X)). (2.49)

We want to show for a given probability of default at B =X and π > 0 that

λB < λP

⇐⇒ B0

VB,0
<
CP0

VP,0

⇐⇒ B0

VB,0
<

B0 +a

VB,0 +a · b
⇐⇒ b ·B0 < VB,0.

The last relation is always true, since b < 1 and by definition B0 ≤ VB,0. This directly

proves proposition 2.1 for PPN financing.

Moreover, this result also proves proposition 2.2 for PPN financing. For each value of B,

we can find a corresponding point for PPN financing with equal probability of default,

which produces a higher firm value VP,0 = VB,0 + a · b > VB,0 and also a higher leverage
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ratio λP > λB. Since this finding is true for any value of B, the graph of VP,0 has to be

strictly above the VB,0 graph for any attainable leverage ratio λ < 1.

Another way of showing this result is using the first derivatives of the issuer value VP,0

and the leverage ratio λP with respect to the participation rate π. We note that straight

debt financing can be represented by π = 0.

∂VP,0

∂π
=
a · b
π

> 0, (2.50)

∂λP

∂π
=

a

π · (VB,0 +a · b)2
· (VB,0 − b ·B0)> 0. (2.51)

Both derivatives are always positive. Hence, as long as P ≤ XP
π , an increase in the

participation rate always creates value, but does not increase the bankruptcy cost, since
∂pdP

∂π = 0. PPN financing is strictly superior to straight debt financing.

The case of P > XP
π is not of interest, since the issuer always defaults, i.e., λP = 1 and

VP,0 = CP0 = (1−α)R0. The leverage ratio of λB = 1 cannot be attained under straight

debt financing. The above outlined proof holds analogously for PPN designs with π > 1

as long as P ≤ XP
π .

DCN financing

The relevant risk-neutral default probabilities are given by

pdB

(
B
)
> 0, (2.52)

pdD

(
D
)

=





0 for D ≤XD,

pdB

(
B =D

)
for D >XD.

(2.53)

In the case of D>XD, the debt claim values are also identical, i.e., B0(B) =CD0(D=B).

The issuer values and leverage ratios agree as well. Hence, the default probability with

DCN financing is either zero or agrees with the corresponding probability under straight

debt financing. This finding proves proposition 2.1 for discount notes.

This reasoning also proves proposition 2.2 for D>XD. In the remaining case of D≤XD,

we express the issuer value under DCN financing as

V0,D (λ) =R0 · 1

1− (1− e−rT )τλ
. (2.54)
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An issuer financed only with straight debt defaults for realizations of the underlying asset

RT <B. The resulting issuer value is given by

V0,B (λ) =R0 · 1−α′N−1(B)

1− (1− e−rT (1−N−2(B)))τλ
(2.55)

with α′ = α+ τ(1−α) and τ ≤ α′ ≤ 1. The term N−2(B) corresponds to the risk-neutral

default probability pdB. To simplify the expression, we use the relation N−1(B) =

N−2(B)− ε with 0 ≤ ε≤ 1. The issuer value now reads

V0,B (λ) =R0 · 1−α′pdB +α′ε

1− (1− e−rT )τλ−pdBe−rT τλ
. (2.56)

For pdB = 0, which also implies ε= 0, the issuer value V0,B under straight debt financing

agrees with the issuer value V0,D under DCN financing. We inspect the derivative of the

issuer value with respect to the default probability given by

∂V0,B (λ)

∂pdB
=

R0

(. . .)2
·
(
−α′ +(α′ + e−rT (1−α′)))τλ+α′e−rT τλε

)
. (2.57)

The term in brackets is negative for ε = 0. Proposition 2 requires this derivative to be

negative. Hence, we need to impose a condition of the form

ε≤ ε=
α′ − (α′ + e−rT (1−α′)))τλ

α′e−rT τλ
. (2.58)

Both numerator and denominator are positive and smaller than 1. The upper boundary ε

increases with the bankruptcy cost α and decreases with the leverage ratio λ and the tax

rate τ . This restriction puts an upper boundary on σ
√
T , since N(d1) = N(d2 +σ

√
T ).

The restriction is not binding for typical parameter choices.

2.B.2 Low-risk issuer

DCN financing

The risk-neutral probability of default of the issuer financed with bonds is pdB = 0 for

all attainable leverage ratios λ < 1. This directly proves proposition 2.3 since the default

probability of an issuer financed with DCN is positive at least for some λ < 1.

The issuer value under straight debt financing is given by

V0,B (λ) = F0 · 1

1− (1− e−rT )τλ
. (2.59)
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The maximum attainable leverage ratio without default is at B = F0 · erT with

λB
max =

1

1+(1− e−rT )τ
. (2.60)

We need to consider two cases. In the first case with D ≤ F0 · erT , the issuer is not

defaulting. The issuer value is given by

V0,D (λ) = F0 · 1

1− (1− e−rT )τλ
, (2.61)

which agrees with the issuer value V0,B under straight debt financing.

The maximum attainable leverage ratio without default is at D = F0 · erT with

λD
max =

1

q+(1− e−rT )τ
. (2.62)

with q = e−rT

e−rT
−γp0(XD)

. From q > 1 follows that λD
max < λB

max.

In the second case with D > F0 ·erT , the issuer defaults for realizations of the underlying

asset above the threshold X3 = F0·erT

γD
. The issuer value is given by

V0,D (λ) = F0 · 1−pdD · τ −α(1− (τ +(1− τ)(1−pdD)))

1− (1− erT (1−pdD))τλ
. (2.63)

Since an increase in the bankruptcy cost α always leads to a decrease in the issuer value,

i.e.,
∂V0,D

∂α < 0, we can consider the limiting case of α = 0. The resulting claim value is

given by

V0,D (λ)
∣∣∣
α=0

= F0 · 1−pdD · τ
1− (1− erT )τλ−pdD · e−rT τλ

. (2.64)

For pdD = 0, the issuer value agrees with the value V0,B under straight debt financing.

We inspect the first derivative with respect to the default probability given by

∂V0,D (λ)

∂pdD

∣∣∣∣∣
α=0

= −F0 · τ(1−λ(e−rT + τ(1− e−rT )))

(. . .)2
. (2.65)

The numerator is always positive. Hence, an increase in the default probability always

results in a loss of value even for the limiting case of α = 0. This proves proposition 2.4

for DCN financing.
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PPN financing

The risk-neutral probability of default of the issuer financed with bonds is pdB = 0 for all

attainable leverage ratios λ < 1. This relation directly proves proposition 2.3, since the

default probability of an issuer financed with PPN is positive at least for some λ < 1.

We need to consider two cases. In the first case with P > FT = F0 · erT , the issuer always

defaults. For the resulting leverage ratio of λ = 1, the issuer value is independent of the

financing choice.

In the second case of P ≤ FT , the issuer defaults for realizations of the underlying above

the threshold X2 = XT

π·P
(FT − (1−π)P ). The corresponding claim value is given by

V0,P (λ) = F0 · 1−pdP · τ −α(1− (τ +(1− τ)(1−pdP )))

1− (1− erT (1−pdP ))τλ
. (2.66)

The functional form is the same as for the issuer value under DCN financing from equation

(2.63). Of course, the claim values are not the same, since pdP and pdD depend differently

on the leverage ratio λ, but the above outlined proof for DCN financing with D > FT is

valid for all positive default probabilities. Hence, the same reasoning can be applied to

prove proposition 2.4 for PPN financing.
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2.C Comparative static analysis

Figure 2.15: Comparative static analysis for constant leverage

The graphs show the issuer value V0 and the corresponding probability of default pd
of a high-risk issuer (see section 2.4.1). We compute the base case (thick solid line)
using the values A0 = 100, σR = 0.2, r = 0.15, T = 1, τ = 0.5, α= 0.25 and product
parameters XP = 100, π = 0.5, and XD = 125. The first column shows different
product designs for the PPN with π = 0.25 (dashed line) and π = 1 (dot-dashed
line) as well as for the DCN with XD = 100 (dashed line). The second column
shows two alternative scenarios for the volatility of the underlying with σR = 0.1
(dashed line) and σR = 0.3 (dot-dashed line). The third column shows two alternative
scenarios for the frictions with a tax rate of τ = 0.25 (dashed line) and bankruptcy
costs of α= 0.5 (dot-dashed line).

Product design Volatility Frictions

V0,P P N

pdP P N

V0,DCN

pdDCN

Leverage λ Leverage λ Leverage λ
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Figure 2.16: Comparative static analysis for optimal financing

The graphs show the issuer value V0 and the corresponding probability of default pd.
We compute the base case (thick solid line) using the values A0 = 100, σA = 0.2,
σR = 0.2, r = 0.15, T = 1, τ = 0.5, α = 0.25 and product parameters XP = 100,
π = 0.5, and XD = 125. The first column shows different product designs for the
PPN with π = 0.25 (dashed line) and π = 1 (dot-dashed line) as well as for the DCN
with XD = 100 (dashed line) and XD = 150 (dot-dashed line). The second column
shows two alternative scenarios for the volatility of the underlying with σR = 0.1
(dashed line) and σR = 0.3 (dot-dashed line). The third column shows two alternative
scenarios for the frictions with a tax rate of τ = 0.25 (dashed line) and bankruptcy
costs of α= 0.5 (dot-dashed line).

Product design Volatility Frictions

V0,P P N

pdP P N

V0,DCN

pdDCN

Correlation ρ Correlation ρ Correlation ρ
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Figure 2.17: Comparative static analysis for optimal risk-taking

The graphs show the issuer value V0 and the corresponding probability of default pd.
We compute the base case (thick solid line) using the values A0 = 100, σR = 0.2,
r = 0.15, T = 1, τ = 0.5, α = 0.25 and product parameters XP = 100, π = 0.5 and
XD = 125. The first column shows different product designs for the PPN with
π= 0.25 (dashed line) and π= 1 (dot-dashed line) as well as for the DCN with XD =
100 (dashed line) and XD = 150 (dot-dashed line). The second column shows two
alternative scenarios for the volatility of the underlying with σR = 0.1 (dashed line)
and σR = 0.3 (dot-dashed line). The third column shows two alternative scenarios
for the frictions with a tax rate of τ = 0.25 (dashed line) and bankruptcy costs of
α= 0.5 (dot-dashed line).

Product design Volatility Frictions

V0,P P N

pdP P N

V0,DCN

Risk weight δ Risk weight δ Risk weight δ



Chapter 3

Contingent convertible debt†

3.1 Introduction

Contingent convertible (CoCo) bonds play an important role in the debate on banking

stability. Not surprisingly, regulators favor this modern financing instrument for banks,

because the idea of CoCo bonds is that they provide banks with additional capital in

case they suffer from unfavorable economic conditions. Hence, the government and the

taxpayer do not have to bail out distressed financial institutions any more. CoCo bonds

enable banks and the capital market to take care of themselves. Furthermore, the fact

that banks’ liabilities vanish in case of financial distress seems to decrease the default

probability at first glance. A potential reduction of the default probability would be a

highly desirable property not only from the regulatory point of view.

Despite an intense public debate, rather few CoCo bonds have been issued until 2012.

Since then, regulatory pressure — especially in Switzerland — has led to a wave of new

issuances. Remarkably, a large portion of the issued contingend debt has a conversion

ratio equal to zero. This feature economically means that CoCo bond holders are left

with nothing when a conversion event occurs.

This anecdotal evidence raises three questions: (1) Why have banks been hesitant to issue

CoCo bonds in the absence of regulatory pressure? (2) Why do banks choose a low or

even zero conversion ratio? (3) What are the implications for the regulator from this

issuance behavior?

†This chapter is an updated version of the paper “Bank Financing with Structured Products – How
to make Contingent Convertibles work” published as Crummenerl and Koziol (2014). It also draws on
material from Crummenerl et al. (2014). The authors thank Erik Baas for outstanding research assis-
tance. Financial support of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
is gratefully acknowledged (research grant KO 4334/2-1).
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The objective of this chapter is to shed light on these three major questions regarding

CoCo bonds and their issuances. Several answers to the first question can already be

found in the literature. Many different aspects are discussed such as the risk-taking

behavior induced by CoCos, the interaction between a credit crunch and CoCos, the

incentives of capital market participants to manipulate prices in order to enforce or prevent

a conversion, and the uniqueness of asset prices. We aim at surveying this broad literature

and relating the main arguments for and against an issuance of CoCo bonds to each other.

In order to tackle the second and third question, we nest two aspects of the literature,

namely the risk-taking incentives of banks and the likelihood of a credit crunch. Appar-

ently, the design of CoCo bonds might drive the risk-taking and loan granting behavior of

banks. The introduction of a continuous-time framework allows us to analyze the severity

of these incentives for different CoCo bond designs. Risk taking is attractive for example

for managers who are paid with stock options or for those who are interested in empire

building if a higher risk is associated with a higher equity value.

The model explains that a high conversion ratio mitigates the bank’s risk-taking incentives

and simultaneously enhances its loan granting behavior. To accomplish this effect, the

high conversion ratio has to be combined with a sufficiently high trigger level such that

there is a wealth transfer from equity holders to debt holders at conversion. In addition,

these two parameters should be higher for banks with a high leverage ratio. For this

reason, regulators who advocate the use of CoCo bonds should also prescribe the specific

product design to avoid distorted incentives.

The remainder of the chapter is organized as follows. Section 3.2 introduces the products

and gives an overview of the issued CoCo bonds so far. Section 3.3 surveys the literature

on CoCo bonds. In section 3.4, we introduce the model and show how CoCo bonds impact

the risk-taking and loan-granting incentives of banks. Section 3.5 concludes.

3.2 Product overview

In this section, we shortly introduce how contingent capital works. CoCo bonds are

issued either with a fixed maturity or in the form of consol bonds. They pay a coupon

just like ordinary subordinated debt. In addition, CoCo bonds are equipped with a trigger

mechanism. When the predefined trigger event occurs, the debt is either converted into

equity or it is written down. There is no cash flow at conversion. The crucial difference

to ordinary convertible bonds is that the conversion is mandatory in case of the trigger

event. Flannery (2014) refers to this mechanism as pre-packaged reorganization.
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The trigger event can be defined with respect to market based capital ratios or accounting

data. In some instances, the conversion is also at the discretion of the regulatory authority.

When the CoCo bonds convert into equity, the nominal amount of outstanding shares

increases at conversion. The conversion ratio determines how many shares the CoCo

bond holders receive. There are two different mechanisms for contracts which are written

down. The face value can either be decreased by a predetermined amount. Alternatively,

the amount by which the face value is reduced can be determined at conversion. In this

case, the face value is reduced by the amount which is required to revoke the trigger

condition. In some instances, the write-down is only temporary and the face value is

restored when the bank recovers.

Llyods was the first bank to issue CoCo bonds in 2009. Only few banks followed until the

issuance of CoCo contracts finally picked up in 2013. Nordal and Stefano (2014) report a

total issuance volume of EUR 73.8 billion over the time period from January 2009 until

June 2014. Their sample contains 102 contracts issued by 37 banks. All contracts have

a trigger mechanism based on accounting ratios. In the following, we focus on the 10

biggest issuers which account for 80% of the volume.

Roughly 28% of issued CoCos convert into equity. Table 3.1 contains the key prop-

erties of these contracts. We estimate the wealth loss WL based on the approach of

Berg and Kaserer (2014) with the following formula

WL=
CRt

CR0
· n

n+m
· m ·S0

F
(3.1)

where CRt denotes the tier 1 capital ratio at which the CoCo converts, CR0 is the current

value of this ratio, m denotes the number of new shares given to the CoCo bond holders,

n denotes the number of shares outstanding before conversion, S0 denotes the current

share price and F is the face value of the CoCo. We use data as of 31/12/2014 for time

t= 0. Since the stochastic process of the capital ratio cannot be observed, we assume that

the capital ratio moves in sync with the share price. Given this simplifying assumption,

we compute a wealth loss between 33% and 98%. The wealth loss has been expressed in

terms of face value, since quoted prices of CoCos are not readily available. However, if we

assume that a CoCo is issued at par, then all CoCo bond holders incur significant losses

in case of conversion.

The remaining 72% of issued CoCos, which possess a write down mechanism, are shown

in table 3.2. Strictly speaking, write-down bonds are not convertible bonds. However,

we include these products in the overview since they rely on the same trigger mechanism

and induce similar incentives. Total-loss bonds are an extreme case of write-down bonds.

The claims are written down to zero in case of a trigger event. In other words, contingent
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Table 3.1: Overview of contingent convertible bonds

The table shows all CoCo bonds converting into equity of the 10 biggest issuers since 2009.
The table reports the following information: (1) the issuer’s name and consecutive number
of issuance, (2) the issuance date, (3) the currency abbreviated with FX, (4) the notional
in the issuance currency, (5) the coupon in percent, (6) the maturity of the bond in years
at the time of issuance, and (7) the wealth loss WL in case of conversion. The symbol ∞
indicates when the CoCo is a consol bond. CR abbreviates the tier 1 capital ratio. We
compute the wealth loss following the method proposed by Berg and Kaserer (2014) with
data as of 31/12/2014.

Issuer Date FX Notional Coupon Years Trigger WL

Lloyds 1 Nov-09 GBP 4.65bn 7.588-16.125% 10-23 CR < 5% 38%
USD 2.52bn 7.875-8.5% 11 CR < 5% 38%
JPY 37.00bn 6.75-8.07% 11-13 CR < 5% 38%
EUR 2.36bn 6.385-15% 10-11 CR < 5% 38%

Credit Suisse 1 Feb-11 USD 2.0bn 7.875% 30 CR < 7% 37%
Credit Suisse 2 Mar-12 CHF 0.75bn 7.125% 10 CR < 7% 38%
Credit Suisse 3 Jul-12 USD 1.75bn 9.5% ∞ CR < 7% 58%
BBVA 1 May-13 USD 1.5bn 9.0% ∞ CR < 5.125% 77%
Credit Suisse 6 Oct-13 CHF 2.5bn 9.0% ∞ CR < 7% 33%

USD 3.5bn 9.5% ∞ CR < 7% 33%
Barclays 3 Dec-13 EUR 1.0bn 8.0% ∞ CR < 7% 63%
BBVA 2 Feb-14 EUR 1.5bn 7.0% ∞ CR < 5.125% 71%
Lloyds 2 Apr-14 GBP 0.75bn 7.875% ∞ CR < 7% 49%

GBP 1.494bn 7.625% ∞ CR < 7% 48%
GBP 1.48bn 7.0% ∞ CR < 7% 48%
USD 0.75bn 6.375% ∞ CR < 7% 52%

Barclays 4 Jun-14 USD 1.211bn 7.0% ∞ CR < 7% 90%
GBP 0.697bn 7.0% ∞ CR < 7% 98%

Barclays 5 Jul-14 EUR 1.076bn 6.5% ∞ CR < 7% 61%
BBVA 3 Feb-15 EUR 1.5bn 6.75% ∞ CR < 5.125% 84%
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Table 3.2: Overview of contingent write-down bonds

The table shows all contingent debt contracts with a write-down feature of the 10 biggest
issuers since 2009. The table reports the following information: (1) the issuer’s name and
consecutive number of issuance, (2) the issuance date, (3) the currency abbreviated with
FX, (4) the notional in the issuance currency, (5) the coupon in percent, (6) the maturity
of the bond in years at the time of issuance, and (7) the write-down WD in percent of
the face value. The symbol ∞ indicates when the CoCo is a consol bond. CR abbreviates
the tier 1 capital ratio, ER denotes the equity ratio and SR denotes the solvency ratio.

A: Predetermined write-down
Issuer Date FX Notional Coupon Years Trigger WD

Rabobank 1 Mar-10 EUR 1.25bn 6.875% 10 ER < 7% 75%
UBS 1 Feb-12 USD 2.0bn 7.25% 10 CR < 5% 100%
UBS 2 Aug-12 USD 2.0bn 7.625% 10 CR < 5% 100%
Barclays 1 Nov-12 USD 3.0bn 7.625% 10 CR < 7% 100%
KBC Groep 1 Jan-13 USD 1.0bn 8.0% 10 CR < 7% 100%
Swiss Re Mar-13 USD 0.75bn 6.375% 11.5 SR < 125% 100%
Barclays 2 Apr-13 USD 1.0bn 7.75% 10 CR < 7% 100%
UBS 3 May-13 USD 1.5bn 7.625% 10 CR < 5% 100%
Credit Suisse 4 Aug-13 USD 2.5bn 6.5% 10 CR < 5% 100%
Credit Agricole 1 Sep-13 USD 1.0bn 8.125% 20 CR < 7% 100%
Credit Suisse 5 Sep-13 EUR 1.25bn 5.75% 12 CR < 5% 100%
Credit Suisse 7 Dec-13 USD 2.25bn 7.5% ∞ CR < 5.125% 100%
UBS 4 Feb-14 EUR 2.0bn 4.75% 12 CR < 5% 100%
UBS 5 May-14 USD 2.5bn 5.125% 10 CR < 5% 100%
Credit Suisse 8 Jun-14 USD 2.5bn 6.25% ∞ CR < 5.125% 100%
UBS 6 Feb-15 EUR 1.0bn 5.75% ∞ CR < 5.125% 100%

USD 1.25bn 7.125% ∞ CR < 7% 100%
USD 1.25bn 7.0% ∞ CR < 5.125% 100%

B: Discretionary write-down
Issuer Date FX Notional Coupon Years Trigger

Rabobank 2 Nov-11 USD 2.0bn 8.375% ∞ CR < 8%
Rabobank 3 Nov-11 USD 2.0bn 8.4% ∞ CR < 8%
Société Générale 1 Sep-13 USD 1.25bn 8.25% ∞ CR < 5.125%
Société Générale 2 Dec-13 USD 0.973bn 7.875% ∞ CR < 5.125%
Société Générale 3 Dec-13 USD 1.75bn 7.875% ∞ CR < 5.125%
Credit Agricole 2 Jan-14 USD 1.75bn 7.875% ∞ CR < 5.125%
KBC Groep 2 Mar-14 EUR 1.4bn 5.625% ∞ CR < 5.125%
Credit Agricole 3 Apr-14 GBP 0.5bn 7.5% ∞ CR < 5.125%

EUR 1.0bn 6.5% ∞ CR < 5.125%
Société Générale 4 Apr-14 EUR 1.0bn 6.75% ∞ CR < 5.125%
Deutsche Bank 1 May-14 EUR 1.75bn 6.0% ∞ CR < 5.125%

USD 1.25bn 6.25% ∞ CR < 5.125%
GBP 0.65bn 7.125% ∞ CR < 5.125%

Credit Agricole 4 Sep-14 USD 1.25bn 6.625% ∞ CR < 5.125%
Deutsche Bank 2 Nov-14 USD 1.5bn 7.5% ∞ CR < 5.125%
Rabobank 4 Jan-15 EUR 1.5bn 5.5% ∞ CR < 7%
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debt holders are left with nothing when the trigger event occurs. We can see from table

3.2 that roughly half of the CoCos with a write-down mechanism are total-loss bonds.

In all cases, bond holders incur a wealth loss. Holders of CoCos converting into equity

incur this loss by receiving a share of the firm which is worth less than the value of

the plain bond. The holders of write-down bonds incur the loss by a reduction of the

face value. Total-loss bond holders are completely wiped out. In return, debt hold-

ers demand higher coupon payments well above those of ordinary subordinated debt

(Nordal and Stefano, 2014).

Apparently, banks show a preference for low conversion ratios and a preference for issuing

total-loss bonds. In section 3.4.2, we provide a rationale for this behavior and demonstrate

the incentive effects induced by this particular design.

3.3 Recurring themes in the literature

Contingent capital has been mentioned in the literature as an effective tool to stabilize

financial markets in distress. Flannery (2005, 2010) argues in favor of contingent capital

since risk-taking costs are internalized rather than shifted towards tax payers in a public

bail-out. Acharya et al. (2009) describe CoCo bonds as “clearly a good idea”. Further-

more, we find favorable mentions of these instruments in policy recommendations such as

Stein (2004), Kaplan (2009), and Duffie (2009).

In the following, we highlight three issues, which have been in the focus of the recent litera-

ture. (See also Pazarbasioglu et al. (2011), Murphy et al. (2012), and Flannery (2014) for

different takes on this topic.) First, we discuss risk-shifting incentives as a possible threat

amplified by contingent capital. Second, we examine whether CoCo bonds can alleviate

credit crunches. And third, we analyze to what extent CoCo bonds create incentives for

either claim holder to manipulate prices and force a conversion.

3.3.1 Risk-shifting incentives

At first glance, contingent capital seems to be a universally beneficial financial instrument.

In good states of the economy, the CoCo bond holders receive a coupon just like ordinary

subordinated debt holders. In bad states of the economy, a potentially costly default

is prevented by converting the CoCo bonds into new equity. However, it is exactly this

feature which might have negative repercussions. The bank’s managers anticipate the con-

version and take it into account when making their investment decisions. Consequently,
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the managers might be inclined to increase the riskiness of the bank’s assets since the

bank has additional downside protection provided by the CoCo bonds.

Straight debt is often argued to be an optimal financing contract since it causes an

exchange of control rights in bad economic states, which equity holders prefer to avoid

(Calomiris and Kahn, 1991; Flannery, 1994). This disciplining effect of straight debt is

possibly weakened by CoCo bonds since the conversion mechanism postpones the transfer

of control rights. Both Flannery (2005) and Pennacchi et al. (2014) already hint at this

possible elimination of disciplining effects and recognize the existence of risk-shifting

incentives.

In the following, we discuss the model of Koziol and Lawrenz (2012), who use a

continuous-time framework in order to formally examine the effects of contingent capital

on banks’ risk-taking incentives. The bank’s assets follow a Geometric Brownian motion.

On the liabilities side, the bank takes government-insured deposits and issues debt, which

can be either straight debt or contingent convertible debt. Both debt contracts are consol

bonds with fixed coupon payments. The conversion trigger of the CoCo bonds is set such

that conversion occurs at the time when the default threshold of the pure debt firm would

be breached. The introduction of the classical trade-off between tax benefits of debt and

bankruptcy costs allows to derive an optimal capital structure.

Koziol and Lawrenz (2012) consider two cases. In the first case, asset risk is contractible.

If equity holders do not have discretion over the choice of risk, an issuance of CoCos

increases the bank’s debt capacity. This implies that the advantages of debt financing,

such as tax shields, can be exploited to a larger extent under CoCo financing. At the same

time, the default probability as well as the present value of distress costs are decreased by

substituting straight debt with CoCo bonds. Hence, CoCo bonds are not only individually

beneficial for the bank’s equity holders but also socially optimal for the whole economy.

In the second case, contracts are incomplete in the sense that the bank is not able to

credibly commit to a specific asset risk. As a consequence, CoCo bonds always distort

risk-taking incentives if the claims are already part of the bank’s capital structure. If the

bank faces low financial constraints, it is always willing to increase the risk both with

straight debt financing as well as with CoCo financing. If financial constraints are high,

a bank financed with non-convertible debt prefers to reduce the asset risk. However, an

issuer of CoCo bonds might still prefer to increase the asset risk. Hence, CoCo bonds

have the potential to magnify risk-taking incentives, but never reduce them.

As savvy investors anticipate such a risk increase, they will demand a compensation.

Tables 3.1 and 3.2 show that the issued CoCo bonds all pay a significantly higher coupon

compared to straight debt. So are CoCo bonds still desirable from the equity holders’

perspective? Two main effects impact the answer to this question. First, CoCo bonds
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always increase risk-taking incentives when compared to straight debt. This increases

the probability of default and thus expected distress costs. Second, contingent capital

relaxes financial constraints and enables banks to take advantage of tax benefits to a

larger extent. While the former decreases the firm value, the latter increases it. If risk-

shifting opportunities are low, a CoCo issuance might still result in a higher firm value.

If risk-taking opportunities are high, however, the effect of relaxed financial constraints is

overcompensated by higher expected distress costs and the firm value decreases.

In addition, Koziol and Lawrenz (2012) provide evidence that the issuance of CoCo bonds

can simultaneously increase the firm value as well as the probability of default. This clearly

undermines regulators’ intentions to reduce risk-taking incentives of distressed financial

institutions. In this case, the individually rational behavior of the bank has adverse,

destabilizing effects on the whole financial system.

3.3.2 Procyclicality of lending and credit crunches

Contingent convertibles are foremost discussed in the context of bank stability. However,

their use might also be able to mitigate another important problem in the financial sector:

procyclical lending and credit crunches. (See Ivashina and Scharfstein (2010) for recent

empirical evidence in the context of the 2008 financial crisis.)

Intuitively, when the state of the economy worsens, the risks of banks increase, e.g., market

volatility is soaring and non-performing loans are accumulating. In such a situation, banks

have two options to reduce their risks. They can either sell or hedge some of their risky

investments or they can constrain new business. Since the first is usually difficult and

expensive during times of economic crisis, banks regularly stick to the latter. In addition,

shrinking the bank’s assets is optimal for equity holders, since the benefits from injecting

capital into the bank primarily accrue to debt holders. This results in procyclical lending

behavior and even credit crunches, when banks fully cease lending to new customers.

How can contingent convertibles help? When the driving motive for banks not to grant

new loans in bad times is the fear of financial distress, any financial instrument which

reduces default risk or lowers costs associated to situations of financial distress also helps

regarding the credit crunch issue. Hence, contingent capital is an obvious candidate for

the solution of this problem.

In the following, we introduce the model of Crummenerl et al. (2014), who analyze a

regulated financial institution in a world without taxes and bankruptcy costs. The bank

inherits a risky loan portfolio, whose payoff depends on the realization of the future state

of the economy as either good (with probability p) or bad (with probability 1 −p). The

bank is considering to grant an additional (uncorrelated) risky loan. In doing so, the
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bank needs to take into account that it might have to recapitalize in the future to meet

a Basel-type regulatory capital requirement.

Furthermore, the model incorporates adjustment costs in case the bank needs to reduce its

debt ratio in the future due to the regulatory constraint. These costs can be interpreted

as increased search or marketing costs. They represent the fact that banks cannot readily

finance themselves in times of financial distress. Importantly, the adjustment costs do

not occur when banks convert their outstanding CoCo bonds into new equity. The CoCo

bonds have already been issued in t= 0 and, thus, there is no need for additional search

or marketing effort when conversion occurs.

The important result from Modigliani and Miller (1958) tells us that the loan decision

is independent of the economic state in a frictionless world, i.e., when recapitalization is

always available at fair terms. The adjustment costs now link the loan decision to the

economic outlook. Banks have an incentive not to grant a loan today if they thereby

reduce the likelihood of expensive capital structure adjustments tomorrow. A credit

crunch occurs when the probability 1 − p of the bad state of the economy is high and

when the bank is highly levered.

In this setup, CoCo bonds are a tool to avoid costly recapitalization. If the conversion of

the CoCo bonds is on fair terms and if a sufficient amount of CoCo bonds is available,

banks prefer to convert the CoCo bonds when the regulatory constraint is breached. In

this case, the bank never incurs the adjustment cost and consequently always provides

the additional loan. The credit crunch is successfully mitigated.

An important caveat to this finding is that it presumes that CoCo bonds are already

issued by the bank, i.e., the issuance decision is exogenous. The key question is now

whether banks want to issue them in the first place.

Crummenerl et al. (2014) model the issuance of CoCos in the following way: The bank

has an outstanding amount of debt. If it decides to issue CoCo bonds, it first has to buy

back outstanding debt at fair terms. This amount is replaced by contingent capital, which

is priced to have zero net present value (NPV). As a consequence, the nominal amount

of debt remains unchanged. It is also ensured that the amount of issued CoCo bonds is

sufficient to avoid a costly capital increase in the future. Hence, the above result holds

and banks always grant the additional loan when CoCo bonds are available. The bank

has two further choices. It can decide against CoCo bonds and still grant the loan. Or it

can decide against CoCos and against the loan, i.e., a credit crunch occurs.

There are three rationales driving the decision of the bank:

Adjustment costs: The bank saves expected adjustment costs in the case of CoCo

financing if there is a positive probability of a capital increase.
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Debt repurchase: Banks issuing CoCos have to buy back debt in t= 0 when the price

is likely to be higher than it would be in t= 1 in times of distress. For banks issuing

an additional loan, the expected necessary reduction of the debt level is higher if

regulatory capital requirements are breached due to the higher risk-weighted assets.

Risk-shifting: An additional loan decision increases the equity value due to the higher

overall risk of the bank’s loan portfolio.

The avoidance of adjustment costs benefits the issuance of CoCos, while the risk-shifting

incentives favor an affirmative loan decision. The costly debt repurchase is to the dis-

advantage of both, since the repurchase takes place based on expectations. The bank’s

decision depends on the outlook on the future state of the economy, i.e., the probability p,

and the current debt level of the bank. For very low debt levels, the bank affirms the loan

and no contingent capital is required. There are some debt levels for which the bank would

not have granted the loan, but now decides to issue CoCos. In these instances, a credit

crunch is successfully mitigated. This result contrasts the finding of Albul et al. (2013),

who argue that banks are never willing to issue contingent capital voluntarily. However,

when the debt level further increases, the bank is not willing to issue CoCos and does not

grant the loan.

In addition, the benefits of CoCo bonds vanish with an increase in the probability p of

the good state, i.e., when banks have an optimistic view of the economic development.

Hence, banks are not issuing CoCo bonds in good times or when a bubble potentially

occurs, which can both be interpreted as a high expectation of the probability p.

In summary, CoCo bonds increase the debt capacity of the financial system and they are

a well desired instrument in bad states of the economy. Despite these benefits, banks are

not willing to issue contingent capital in good times. These findings put regulators in

a dilemma. If they consider contingent capital as an appropriate instrument to prevent

credit crunches, they have to prescribe a mandatory issuance of these claims. This comes

at a cost, which has to be borne by the bank’s owners.

3.3.3 Incentives to force a conversion

The conversion trigger mechanism plays a crucial role in the design of contingent capital.

As we have seen in section 3.2, most of the CoCo issues so far have triggers based on

accounting numbers. These accounting numbers seem to be a good choice: they are

compiled based on common rules, they are not distorted by potentially irrational market

movements and they are frequently monitored by regulators. The most common measure

used to trigger the conversion of CoCo bonds is the tier 1 capital ratio, which relates the

bank’s core book equity to its risk-weighted assets.
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However, accounting numbers have two major disadvantages. First, they are backward

looking. Thus, they include information about the economic prospects of the bank only

to the extent to which this information can be inferred from the bank’s past performance.

Second, the management does have some discretion, e.g., over how and when to account

for impairment losses. Needless to say, the books can also be manipulated by the man-

agement, like in the cases of Enron and Lehman Brothers. As a consequence of these two

disadvantages, conversion might happen too late.

The alternative to using accounting numbers is to resort to market based triggers. Since

the asset value process is not directly observable, the only available measure is the bank’s

share price. When markets are efficient, the share price appropriately reflects all available

information on the future prospects of the bank. However, if the trigger mechanism is

based on the share price, which in turn is influenced by the time and terms of conversion,

distortions in the pricing of the bank’s shares might arise. This issue is highlighted by

Sundaresan and Wang (2015) as well as Albul et al. (2013).

In the following, we introduce a simple example from Sundaresan and Wang (2015) to

illustrate the impact of market based triggers on equilibrium pricing. Assuming that

conversion can only occur at maturity, they consider the conditions for conversion and

no-conversion of the CoCo bonds. The CoCo bonds are not converted if the asset value A

after all payments to non-convertible debt holders is higher than the conversion threshold

K plus the coupon payment c to CoCo bond holders, i.e., A > K+ c. When the CoCo

bonds are converted, the CoCo bond holders receive m new shares. The number of shares

prior to conversion is denoted by n. After conversion, the bank is unlevered and the share

price should be below the conversion threshold, which is equivalent to A≤ n+m
n ·K.

Sundaresan and Wang (2015) distinguish two cases. In the first case, there is a wealth

transfer at conversion towards the debt holders, i.e., m
n ·K > c. As a result, the two

above conditions can be met at the same time for some asset values. This leads to

two equilibrium prices, which depend on the beliefs of investors. In one equilibrium, all

investors believe that conversion does not occur. In the second equilibrium, all investors

believe that conversion occurs, which causes the equity value to hit the trigger threshold.

Sundaresan and Wang (2015) generalize this result in a continuous-time setting and show

that multiple equity values are possible well before a potential conversion.

In the second case, there is a wealth transfer at conversion from debt holders to equity

holders, i.e., m
n ·K < c. In this case, there exists a range of asset values for which both

of the above conditions are simultaneously not met. This result is caused by the wealth

transfer to equity holders, which causes the share price to rise at conversion. However,

if the share price is close to trigger level, the expected increase after conversion lifts the
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share price above the trigger threshold and conversion is prevented. The consequence is

that an equilibrium share price does not exist at all for some asset values.

Apparently, the issue that the equilibrium share price either has multiple solutions or no

solution at all is caused by the wealth transfer at conversion. Albul et al. (2013) propose

a constant adjustment of conversion ratios in order to ensure that the market value of the

debt claim is at any point in time equal to the market value of received shares at con-

version. However, this approach is difficult to implement. Sundaresan and Wang (2015)

propose a continuous adjustment of the coupon to the rate of short-term risky bank

obligations. Thus, the market value of the debt claim remains close to par and a conversion

ratio can be determined upon CoCo issuance. This ensures that CoCo holders receive the

equivalent of their bond market value (par) in shares when the (equity-)trigger is breached.

The avoidance of multiple equilibrium prices is important since they give rise to manip-

ulation incentives for claim holders. Albul et al. (2013) show that equity holders have

incentives to drive down the share price and force a conversion if conversion ratios are

sufficiently low. For example, managers might distribute false negative information to

lower the price. The opposite is true if there is a wealth transfer from equity holders to

CoCo bond holders at conversion. In line with Duffie (2009) and McDonald (2013), the

authors argue that CoCo bond holders might engage into short-selling activities in order

to trigger a conversion and benefit when the fair share price is restored. If wealth transfers

cannot be avoided completely, McDonald (2013) proposes to retire the outstanding CoCo

bonds gradually and randomly to limit the gains of manipulations.

We have shown that the practical implementation of the trigger mechanism is crucial and

might potentially lead to distorted equilibrium prices and manipulation incentives. The

key determinant of these incentives is the wealth transfer at conversion, which depends

on the conversion ratio as well as the conversion threshold.

3.4 Design of contingent convertible debt

We have highlighted three issues related to CoCo bonds. First, CoCo bonds induce

risk-shifting incentives for managers. Second, we have shown that it might not be optimal

for banks to issue CoCo bonds in good times even though they help to mitigate a credit

crunch in bad times. And third, situations might arise in which claim holders have an

incentive to manipulate prices. All three issues are related to the specific design of the

CoCo bonds.

Despite these concerns, we observe a wave of issuances of CoCo bonds since 2013. Some

of those CoCos have been issued voluntarily by banks in the aftermath of the financial
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crisis, i.e., in a severe state of the economy. And others have been issued more recently

to fulfill prospective regulatory requirements, e.g., in Switzerland. Many of these recent

issues have been total-loss bonds, i.e., they have a conversion ratio of zero. We now

pursue the question why banks are choosing this particular design and what the regulatory

implications from this behavior are.

In the following, we introduce a simple continuous-time framework of a bank financed

with CoCo bonds and equity. We analyze how the product design of the CoCo bonds,

i.e., the choice of the conversion ratio and the trigger level, impact the severity of the

risk-taking incentives and credit crunch effects caused by CoCo bonds.

3.4.1 Model framework

We consider a bank with assets V , which follow a diffusion process of the form

dV

V
= µ dt+σ dz, (3.2)

where µ denotes the expected return of the assets, σ is the volatility of asset returns and

z is a standard Wiener process.

The bank has two claims outstanding: contingent convertible debt and equity. As long

as the bank is solvent, the CoCo bond holders receive an instantaneous coupon payment

of c. In case the trigger event occurs, i.e., the asset value decreases below the conversion

threshold V C < V , the CoCo bonds are converted into equity and the bank continues as

an unlevered entity. At conversion, the CoCo bond holders receive a share γ of the equity

and the old equity holders retain a share 1−γ of the bank’s equity. The capital structure

is determined at time t= 0 and remains static thereafter.

Applying the pricing approach of Leland (1994), the CoCo bond value D at time t = 0

amounts to

D =
c

r
+ θ ·

(
γ ·V C− c

r

)
. (3.3)

The first term c
r gives the value of a risk-free consol bond with coupon payments c, where

r is the risk-free rate. The second term gives the value of the conversion feature. When

conversion occurs, the bond holders get a fraction γ ∈ [0,1] of the assets, which have

value V C at the time of conversion. The bond holders lose the coupon payments. Hence,

γ ·V C− c
r corresponds to the wealth transfer from equity holders to bond holders at the

time of conversion.

The factor

θ =
(
V

V C

)−
2r

σ2

(3.4)
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corresponds to the present value at t= 0 of 1 EUR paid at the time of conversion.

We can rewrite equation (3.3) as

D = (1− θ) · c
r

+ θ ·γ ·V C. (3.5)

The discount factor θ is a measure for the conversion risk. The CoCo value is equal to

the value c
r of the cash flow without conversion weighted with the factor 1 − θ plus the

value γ ·V C of the received assets at conversion weighted with the factor θ.

Since we do not consider tax-benefits of debt and bankruptcy costs, the equity value S

corresponds to

S = V −D. (3.6)

To improve comparability between banks with different CoCo designs, we keep the leverage

ratio fixed, i.e., the CoCo value D is constant across different product designs. For a given

CoCo design represented by γ and V C, the coupon rate c is determined as

c= (D− θ ·γ ·V C) · r

1− θ
. (3.7)

The coupon payment strictly increases with the bank’s leverage ratio and strictly decreases

with the conversion ratio γ. Figure 3.1 plots the coupon depending on the conversion ratio

γ for three different volatility levels. The three lines cross each other at γ̂ = D
V C , which

implies that there is no wealth transfer between the claim holders for this particular

conversion ratio, i.e., the debt holders demand the same coupon independent of the

volatility. For values of γ < γ̂, there is a wealth transfer from debt holders to equity

holders at conversion. Consequently, a higher volatility, which makes conversion more

likely, is compensated by a higher coupon payment. In the opposite case when γ > γ̂,

the bond holders benefit from conversion and a higher volatility results in a lower coupon

payment.

3.4.2 Asset substitution problem

In the first step of our analysis, we evaluate the risk-shifting incentives of the equity

holders. We have to distinguish between two fundamental cases: a bank before and after

the issuance of CoCo bonds. In our model, we assume complete and frictionless markets.

If all products are fairly priced, CoCo bond holders anticipate the behavior of banks and

price the claims accordingly. Hence, a market friction is required to explain the issuance

of CoCo bonds.
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Figure 3.1: Coupon for different volatility levels

The plot shows the instantaneous coupon payment c for a debt value D = 40 and
a trigger level of V C = 55 depending on the conversion ratio γ for three different
volatility levels of σ = 0.20 (dotted line), σ = 0.25 (solid line), and σ = 0.30 (dashed
line). The remaining parameters are V = 100 and r = 0.05.
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Of course there are reasons why the bank’s management might want to deviate from the

optimal policy for the shareholders. This can, for example, be the case when the bank

managers are paid with stock options and thus benefit from an increase of the bank’s

business risk. Furthermore, managers might be interested in empire building and acquire

more risky and even unprofitable businesses.

However, we abstract from these issues for the remainder of this analysis. We assume

that the CoCo bonds have already been issued and that the bank’s managers can alter

the riskiness of the assets, i.e., risk is not contractible by the bond holders.

We examine the resulting incentive effects of different CoCo bond designs, which crucially

depend on the associated wealth transfer at conversion. We summarize our first result in

the following proposition. (See appendix 3.A for proof.)

Proposition 3.1 (Risk-shifting)

Equity holders have an incentive to undertake risk-shifting whenever there is a wealth

transfer from CoCo bond holders to equity holders at conversion, i.e., γ ·V C− c
r < 0.

Intuitively, when there is a wealth transfer from CoCo bond holders to equity holders, the

equity holders benefit from conversion. Hence, it becomes worthwhile for equity holders

to increase the likelihood of conversion by investing in more risky projects. In the opposite

case, conversion corresponds to a penalty for equity holders. Hence, they prefer to avoid

conversion and reduce risk.

When we hold the leverage ratio constant across different CoCo bond designs, the wealth

transfer is to the benefit of equity holders when γ < γ̂ and it is to the benefit of the CoCo

bond holders when γ > γ̂. We can conclude that the low or even zero conversion ratio

of the recently issued CoCo bonds amplify the risk-shifting incentives of equity holders.

The case of γ = 0 corresponds to the total-loss bond design discussed in section 3.2.

We further demonstrate this result by analyzing the classical asset substitution problem.

Initially, the bank’s assets have volatility σl. The bank can accept a new project with net

present value ∆V , which changes the total asset volatility to a higher volatility σh > σl.

The asset substitution problem occurs if the equity holders are willing to accept negative

NPV projects, i.e., ∆V < 0, under the new risk environment σh.

We are now solving for the critical change ∆V ∗ in the asset value, such that the equity

holders achieve exactly the same equity value as under the low risk environment, i.e.,

S (V,σl) = S (V +∆V ∗,σh) . (3.8)

Again, the occurrence of the asset substitution problem crucially depends on the wealth

transfer at conversion. (See appendix 3.A for proof.)



67

Proposition 3.2 (Asset substitution problem)

The asset substitution problem occurs whenever there is a wealth transfer from CoCo bond

holders to equity holders at conversion, i.e., γ ·V C− c
r < 0.

We illustrate this result numerically in figure 3.2. The graph shows the critical value

change ∆V ∗ for three different volatility levels σh depending on the conversion ratio γ.

All points represent CoCos with the same value D and the same conversion threshold

V C. In line with our previous finding, we see that the critical value change is negative

for conversion ratios below the threshold γ̂. The critical value change monotonically

increases with the conversion ratio and is positive for values above γ̂. The effect is more

pronounced, i.e., the curves are steeper, for high values of σh.

We have shown that the wealth transfer at conversion determines the incentives for equity

holders to increase risk and to invest in new projects. So far, we have analyzed the impact

of the conversion ratio, but the wealth transfer is also impacted by the trigger level, which

by definition coincides with the value of the assets at conversion. A higher trigger level

thus implies a shift of wealth towards the debt holders.

The trigger level also changes incentives through another channel. The likelihood of

conversion increases ceteris paribus with the trigger level, i.e., ∂θ
∂V C > 0. Whenever wealth

is transferred to debt holders at conversion, e.g., for high conversion ratios, equity holders

dislike high trigger levels since they make a conversion more likely. Whenever the wealth

transfer is to the benefit of the equity holders, e.g., for low conversion ratios, the effect

of the trigger level is ambiguous. Equity holders benefit from a higher likelihood of

conversion, but higher trigger levels also reduce the benefit when conversion occurs.

Before we continue the analysis of the asset substitution problem, we review the general

risk-shifting incentive of equity holders. When again holding the leverage ratio D
V constant,

we can rewrite the condition regarding the wealth transfer from proposition 3.1. There

is a transfer from CoCo bond holders to equity holders when γ · V C
V < D

V , i.e., when the

value promised to CoCo bond holders at conversion in percentage of today’s asset value

is smaller than the current leverage ratio of the bank. This is a convenient reformulation

of the condition, since the leverage ratio of a bank can easily be observed.

In the following, we examine the role of the trigger level in the asset substitution problem

for a bank with a low conversion ratio of γ = 0.25 and a bank with a high conversion

ratio of γ = 0.75. Figure 3.3 shows the critical asset value change ∆V ∗ depending on the

trigger level as percentage of initial assets, i.e., V C
V . The claims are priced such that the

leverage ratio D
V is held constant.

We first discuss the asset substitution for the bank with the low conversion ratio of

γ = 0.25, which is pictured on the left of figure 3.3. Consistent with our previous finding,
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Figure 3.2: Asset substitution and conversion ratio

The plot shows the critical asset value change ∆V ∗ for a debt value D = 40 and a
trigger level of V C = 55 depending on the conversion ratio γ for three opportunities to
increase the asset risk from σl = 0.25 to σh = 0.30 (dotted line), σh = 0.35 (solid line),
or σh = 0.40 (dashed line). The remaining parameters are V = 100 and r = 0.05.
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Figure 3.3: Asset substitution and trigger level

The plot shows the critical asset value change ∆V ∗ for a debt value D = 40 and two
conversion ratios of γ = 0.25 on the left and γ = 0.75 on the right. The critical asset
value is plotted depending on the relative trigger level V C

V for three opportunities to
increase the asset risk from σl = 0.25 to σh = 0.30 (dotted line), σh = 0.35 (solid line),
or σh = 0.40 (dashed line). The remaining parameters are V = 100 and r = 0.05.

Trigger level V C
V

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−15

−10

−5

0

5

Trigger level V C
V

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−15

−10

−5

0

5



69

the critical NPV is negative. It monotonically decreases with the trigger level. The low

conversion ratio ensures that the wealth transfer remains to the benefit of the equity hold-

ers even when the trigger level increases. At the same time, the likelihood of conversion

increases as well. In sum, a higher trigger level worsens the asset substitution problem.

We observe a different pattern for the bank with the high conversion ratio of γ = 0.75,

which is pictured on the right of figure 3.3. For low trigger levels, equity holders still

have the incentive to engage in asset substitution. The wealth transfer benefits the equity

holders and conversion is very unlikely. For high trigger levels, the critical asset value

increases with the trigger level. It becomes positive for values of V C above D
γ , for which

the wealth transfer changes to the benefit of the CoCo bond holders.

Regulators are interested in stabilizing financial markets in distressed situations and pro-

viding the economy with necessary liquidity when it is most needed. Contingent capital

is often praised as being the magic remedy in financial downturns. We show that this

view has to be taken with caution.

Our results show that the impact of CoCo bonds on risk-taking incentives strongly depend

on the conversion ratio and the associated wealth transfer. If banks are inclined to increase

their risk, they benefit from low conversion ratios, which imply a wealth transfer from bond

holders when conversion occurs. An increase of the asset volatility makes a conversion

more likely. Hence, equity holders have strong incentives to force a conversion.

From the regulatory point of view, this effect is rather undesired. As we have shown,

the risk-taking incentives diminish if the conversion ratio increases. For high conversion

ratios, the asset substitution problem is fully mitigated and banks have incentives to

reduce risk. Therefore, regulators should clearly prefer high conversion ratios with regard

to the stability of the financial system.

We also conclude that the interaction between the two product parameters needs to be

taken into account to mitigate the asset substitution problem. Both the conversion ratio

and the trigger level should be sufficiently high, such that there is a wealth transfer from

equity holders to CoCo bond holders at conversion. In particular, the critical trigger level

increases with the leverage ratio of the bank. Therefore, highly levered banks should issue

CoCo bonds with higher trigger levels compared to banks with low debt ratios.

Given the product parameters are fixed, equity holders can potentially increase the lever-

age of the bank, which again could make asset substitution worthwhile. This could be

prevented either by a covenant of the CoCo bond or by a regulatory restriction of the

bank’s leverage, as recently proposed by the Dodd-Frank Act in the US.
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3.4.3 Debt overhang problem

In the second step of our analysis, we focus on the loan granting behavior of banks. We

have already discussed in section 3.3.2 that CoCo bonds can help to mitigate a credit

crunch. In the following, we examine how the product design choices influence loan-

granting incentives. Again, our results show that loan granting behavior highly depends

on the wealth transfer at conversion.5

We consider the classical debt overhang problem. The equity holders are considering an

out-of-pocket investment at time t= 0, which can be interpreted as granting an additional

loan. The investment requires an upfront payment of I and increases the asset value by

(1+y) ·I, where y denotes the return of the investment. The asset risk remains unchanged.

We determine the critical required return y∗ on the investment such that equity holders

are indifferent between holding the amount I in cash and injecting the money into the

bank to finance the additional loan, i.e., we solve the condition

S (V )+ I = S (V +(1+y∗) · I) . (3.9)

We find that also the loan granting behavior depends on the wealth transfer at conversion.

(See appendix 3.A for proof.)

Proposition 3.3 (Loan granting)

A credit crunch occurs whenever there is a wealth transfer from CoCo bond holders to

equity holders at conversion, i.e., γ ·V C− c
r < 0.

The bank is only willing to grant loans with a return above y∗. A positive critical return y∗

implies that loans with a low but positive NPV, i.e., with return y ∈ (0,y∗), which should

be granted from the social planner’s perspective, are not approved by the bank. Hence, a

credit crunch occurs. In contrast, critical returns below zero indicate that equity holders

are willing to accept loans which decrease the asset value. Arguably, it is not desirable

from the social planner’s perspective that negative NPV loans are granted. However, the

bank provides sufficient liquidity to the financial system and a credit crunch does not

occur.

Figure 3.4 demonstrates the effects on lending behavior for three different volatility levels.

The plot shows the critical return y∗ depending on the conversion ratio γ. The required

critical return is positive for low conversion ratios and monotonically decreases with γ.

5In contrast, Crummenerl et al. (2014) focus on one specific CoCo bond design. The conversion ratio
is determined in t = 0 such that the expected value of the CoCo bond is the same with or without the
conversion feature.
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The critical return is zero for γ̂ = D
V C and negative for high conversion ratios. The effect

is more pronounced, i.e., the curves are steeper, for high asset volatilities σ.

The key observation is that CoCo bonds with low conversion ratios exacerbate liquidity

dry outs. Again, the critical factor is the wealth transfer from equity holders to debt

holders at conversion. For low conversion ratios below γ̂, the associated wealth transfer

is negative. Hence, it is not in the interest of equity holders to grow the assets and

thereby reduce the likelihood of conversion. Consequently, they only take on additional

investments which offer a high rate of return.

The opposite is true for high conversion ratios above γ̂. In this case, the wealth transfer is

to the benefit of the CoCo bond holders and the equity holders prefer to avoid conversion.

Hence, they inject cash into the bank to grow the asset value and thereby decrease the

likelihood of conversion. Intuitively, they prefer to lose a small amount of value today

rather than losing a large amount of value at conversion. Hence, they are even willing to

undertake negative NPV projects.

Again, we also analyze the role of the trigger level regarding the credit crunch issue.

Figure 3.5 shows the critical required return for a bank with a low conversion ratio of

γ = 0.25 and a bank with a high conversion ratio of γ = 0.75. All claims are priced such

that the leverage ratio D
V is held constant.

In the low conversion rate scenario, which is pictured on the left of figure 3.5, the credit

crunch problem always occurs and worsens with an increase in the trigger level. The

critical return increases monotonically with the trigger level. Equity holders always benefit

from conversion. The likelihood of conversion increases with the trigger level, which

equity holders like. Hence, they are not willing to grow the balance sheet of the bank,

which would increase the distance to the trigger level, and demand high returns of new

investments to be compensated for the lower likelihood of conversion.

We observe a different pattern for the high conversion rate scenario, which is pictured on

the right of figure 3.5. The credit crunch still occurs for low conversion ratios, since the

wealth transfer is to the benefit of the equity holders. With an increase of the trigger

level, the likelihood of conversion increases, which equity holders like. Hence, the critical

return increases with the trigger level. But at the same time, an increase in the trigger

level reduces the wealth transfer, which causes the critical return to decline when the

trigger level is further increased. For trigger levels above D
γ , the wealth transfer switches

to the benefit of debt holders. In this case, the equity holders dislike conversion and, thus,

prefer to grow the balance sheet. A credit crunch is successfully mitigated.

We conclude that CoCo bonds with high conversion ratios prevent a credit crunch and

should be advocated by regulators. This finding is also in line with our results on the
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Figure 3.4: Loan granting and conversion ratio

The plot shows the required critical return y∗ for a debt value D = 40 and a trigger
level of V C = 55 depending on the conversion ratio γ for three different volatility
levels of σ = 0.20 (dotted line), σ = 0.25 (solid line), and σ = 0.30 (dashed line).
The remaining parameters are V = 100 and r = 0.05.
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Figure 3.5: Loan granting and trigger level

The plot shows the required critical return y∗ for a debt value D = 40 and two
conversion ratios of γ = 0.25 on the left and γ = 0.75 on the right. The critical
return is plotted depending on the relative trigger level V C

V for three different volatility
levels of σ= 0.20 (dotted line), σ= 0.25 (solid line), and σ= 0.30 (dashed line). The
remaining parameters are V = 100 and r = 0.05.
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risk-shifting issue. A wealth transfer from equity holders to bond holders at conversion

is the key feature, which a CoCo bond should possess from the regulatory perspective.

This penalizing effect of conversion mitigates not only the risk-shifting incentive of equity

holders but also ensures the liquidity supply of the financial system.

This finding is especially striking given the empirical evidence that most of the recent

issues of contingent debt are total-loss bonds, i.e., γ = 0. At first glance, these products

have a very favorable property from the regulatory point of view, since the debt completely

vanishes in the event of default. Hence, banks with total-loss bonds cannot default.

However, it is desirable for equity holders to trigger the event which causes the wipe out

of debt holders. The result is an odd situation, in which a credit crunch occurs even

though the bank is not subject to default risk.

From a social planner’s perspective, it is desirable that positive NPV projects are always

financed. Hence, the social planner should design the CoCo bond such that the associated

wealth transfer is equal to zero, i.e., γ ·V C = c
r . This mitigates the credit crunch problem,

but also ensures that negative NPV projects are not undertaken. We have also shown in

the previous section that the asset substitution problem does not occur when there is no

wealth transfer at conversion.

3.5 Conclusion

The financial crisis emerging in 2008 illustrated the need for a more stable banking system

and gave rise to the idea of contingent convertible debt. These novel financing instruments

seem to be a universal remedy at first glance, since they prevent bankruptcy and keep

banks alive in times of financial crisis. We review the literature on CoCo bonds and

explore different rationales why banks might be reluctant to issue CoCo bonds. First,

shareholders might want to avoid risk-shifting incentives for managers. Second, we have

shown that it might not be optimal for banks to issue CoCo bonds in good times even

though they help to mitigate a credit crunch in bad times. And third, shareholders might

want to avoid situations in which claim holders have an incentive to manipulate the share

price of the bank to enforce or prevent a conversion. Nevertheless, we observe a waive of

new issuances — mainly due to regulatory pressure — in the recent years.

We also observe that the majority of the more recent issues of CoCo bonds were so

called total-loss bonds, i.e., they have a conversion ratio of zero. We introduce a simple

continuous-time framework to investigate why banks prefer this particular CoCo bond

design. In specific, we look at the choice of the conversion ratio and the trigger level

as well as the interaction between these two. We find that whenever there is a wealth
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transfer at conversion to the benefit of the equity holders, e.g., when the conversion ratio

is very low, the equity holders have an incentive to engage in risk-shifting behavior. We

conclude that the CoCo bonds might have been issued for this purpose in the first place,

since they are a good tool to eliminate the downside risk for the bank. We show that

CoCo bonds which are designed to have a wealth transfer to equity holders at conversion

also cause a reduction of credit supply, since the bank is not willing to finance all positive

NPV projects.

We finally discuss the regulatory implications regarding the design of CoCo bonds. We

find that a regulator, who is concerned with risk-shifting and who wants to prevent credit

crunches, should advocate a CoCo bond design which ensures a punitive or no wealth

transfer at conversion. This implies that the conversion ratio as well as the trigger level

should be sufficiently high. In addition, the leverage of the bank needs to be taken into

account. The conversion feature should be designed stricter for banks with high leverage

ratios. These findings are especially relevant for regulators, who plan to oblige banks

to issue CoCo bonds. Recent examples from Switzerland suggest that banks facing a

mandatory introduction are choosing the product parameters to their advantage. Hence,

mandatory introduction rules should also prescribe the specific product design to make

the CoCo bonds work.



Appendix

3.A Proofs of propositions

Risk-shifting (proposition 3.1)

Proof. The first derivative of the equity value with respect to the asset volatility is

∂S

∂σ
= −

(
γ ·V C− c

r

)
· 4θr

σ3
· ln

(
V

V C

)
. (3.10)

The second and third terms are always positive, since V C < V by definition. The first

term in brackets corresponds to the wealth transfer to debt holders at conversion and

determines the sign of the derivative. If the wealth transfer is positive, the derivative is

negative and equity holders have an incentive to avoid conversion. In the opposite case,

i.e., when the wealth transfer benefits equity holders, the derivative becomes positive and

equity holders benefit from risk-shifting.

If we assume that the debt level is fixed and plug in equation (3.7) for the coupon, the

derivative (3.10) simplifies to

∂S

∂σ
= −(γ ·V C−D) · r

1− θ
. (3.11)

Again, the term in brackets determines the sign of the derivative. This term is positive

for high conversion ratios above the threshold γ̂ = D
V C and negative for low conversion

ratios below this threshold.

Asset substitution (proposition 3.2)

Proof. We have to consider two cases. In the first case, we assume that the wealth transfer

is to the benefit of equity holders, i.e., γ ·V C− c
r < 0. So we know from proposition 3.1

that an investment with zero net present value, i.e., ∆V = 0, which increases the asset

volatility to σh, is resulting in a higher equity value.
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We next inspect the first derivative of the equity value with respect to the asset value V ,

which is continuous and given by

∂S(σh)

∂V
= 1−

(
γ ·V C− c

r

)
· ∂θ
∂V

. (3.12)

We can see from the derivative that two effects impact the equity value. First, a higher

asset value directly goes into the pocket of equity holders, since the value of coupon

payments is unchanged. Second, the likelihood of conversion is reduced, which is to the

disadvantage of equity holders. The derivative is positive, when the first effect outweighs

the second, i.e., for low absolute wealth transfers with γ ·V C− c
r ≥ σ2V

2rθ . In this case, the

critical NPV is always negative and at least some negative NPV projects are undertaken.

When the absolute wealth transfer surpasses the threshold, i.e., for γ ·V C− c
r <

σ2V
2rθ , then

the derivative becomes negative. In this case, all negative NPV projects are undertaken.

The wealth transfer at conversion is so large that the equity holders want to increase the

likelihood of conversion by reducing the asset value.

In the second case, we assume that the wealth transfer is to the benefit of CoCo bond

holders, i.e., γ ·V C− c
r > 0. We know from proposition 3.1 that an investment with zero

net present value, i.e., ∆V = 0, which increases the asset volatility to σh, is now resulting

in a lower equity value. The derivative (3.12) is now always positive. Hence, equity

holders always want to grow the asset value to make conversion more unlikely. Negative

NPV projects are never undertaken.

Loan granting (proposition 3.3)

Proof. We can rewrite condition (3.9) in the following form

y∗ =
1

I
·
(
γ ·V C− c

r

)
·
(
θ′ − θ

)
(3.13)

where θ′ denotes the discount factor after the investment, i.e., when the assets of the firm

have increased to V +(1+y) ·I. The term θ′ −θ is always negative for all admissible values

of y. Hence, the wealth transfer determines the sign of the critical return y∗. When the

wealth transfer is to the benefit of equity holders, i.e., γ ·V C− c
r < 0, the critical required

return is positive. Hence, some positive NPV projects are not financed and a credit crunch

occurs. In the opposite case, when the wealth transfer is to the benefit of CoCo holders,

i.e., when γ ·V C − c
r > 0, the critical required return is negative. Hence, also negative

NPV projects are financed and a credit crunch is mitigated.
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Synthesis (part I)

In the frictionless world of Modigliani and Miller (1958), there is no need for financial

institutions. Investors possess full information, have unrestricted access to all mar-

kets and can trade without transaction costs. The economic rationale for banks arises

from frictions. Banks can reduce monitoring and search costs (Leland and Pyle, 1977;

Diamond, 1984). Banks can provide cheap market access and liquidity. Banks can slice

and dice cash flows of different size, maturity and risk to match the preferences of investors.

(See Hellwig (1991), Bhattacharya and Thakor (1993), and Freixas and Rochet (2008) for

an overview of the related literature.) For example, retail investors are often not capable

of producing the desired payoff of an investment product themselves because of limited

market access, short-selling restrictions, and transaction costs. The offering of retail

structured products by large financial institutions addresses these frictions. Apparently,

retail investors are willing to pay a high profit margin for this service (Wilkens et al., 2003;

Stoimenov and Wilkens, 2005).

Despite all these benefits, the financial system itself is the origin of serious frictions.

Most importantly, banks are subject to considerable bankruptcy costs. The default of

Lehman Brothers, a highly levered investment bank and also prominent issuer of retail

structured products, provides ample evidence for the complexity and issues of resolving

distressed financial institutions. Furthermore, the fear of contagion surrounding the events

in 2008 led to a decline of the stock market, dry out of the interbank lending market, and

subsequent recession in the US. Therefore, bankruptcy costs have to play an important

role in the analysis of debt contracts of financial institutions such as retail structured

products. There is no need to incorporate distress costs in the context of contingent debt,

since default never occurs in the model described in chapter 3. However, the avoidance of

bankruptcy costs is the leading motive for the issuance of CoCo bonds in the first place.

The second important friction is the tax deductibility of interest payments. The

Economist, a weekly newspaper, recently labeled this subsidy of debt as “the great
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distortion” and “a dangerous flaw” (May 16th 2015, print edition). The forgone tax

revenues are estimated with USD 1,235 billion for the year 2007 alone. However, this was

before the sharp decline in interest rates succeeding the financial crisis. But even today,

the cost of the subsidy accounts for as much as 2% of GDP in the US. Consequently,

it is sensible to include this sizable friction into a model of the capital structure, as for

example, in the context of retail structured products in chapter 2. The model also proves

robust with respect to the introduction of other frictions which benefit the issuance of

structured products, for example, the empirically observed product markup.

The tax benefit of debt also plays a role in the issuance of CoCo bonds.

Avdjiev et al. (2013) reports that 64% of issued CoCo bonds enjoy a tax deduction of

coupon payments. In addition, Flannery (2014) observes that issuers try to avoid CoCo

designs which do not qualify for tax deductibility, such as the issuance in the form of

preferred shares.

In the context of these frictions, the analysis of chapter 2 shows that retail structured

products have several advantages. The issuer can acquire additional funds, which the retail

investors would otherwise invest directly into the capital market or into mutual funds.

In addition, banks can use the products for the purpose of risk management. However,

the issuance of retail structured products might also be the source of additional risks for

the bank. Gorton and Metrick (2012) and Cochrane (2014) consider the recent financial

crisis as a run on short-term bank liabilities, for example, repos. Similarly, investors can

withdraw their funds from retail structured products at any time, since the issuers also

act as market makers. This kind of run on retail structured products is special, since the

origin of the run is a decline in the value of the underlying asset and, thus, not in the

influence of the issuing financial institution.

All the analyzed debt contracts have in common that they create serious incentive prob-

lems, for example, risk-shifting behavior. As the analysis in chapter 3 shows, the incentive

problems are aggravated by CoCo bonds which transfer wealth from debt holders to equity

holders at conversion. Notably, not one single contract of those surveyed in section 3.2

provides a wealth transfer from equity holders to debt holders. Contingent debt with a

write-down feature can actually never produce such a wealth transfer. As a consequence,

the issuing banks have to pay hefty coupons to compensate the debt holders for the

expected loss.

To address this issue, Bulow and Klemperer (2015) propose a new type of contingent

debt called equity recource notes (ERNs). The trigger mechanism of ERNs is based on

the share price. When the share price drops below the trigger level at a coupon date,

the issuer makes the coupon payments with new shares instead of cash. The number of

issued new shares is determined such that their value matches exactly the omitted cash
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payment. Bulow and Klemperer (2015) show that this design solves many of the issues of

traditional CoCos. In particular, there is no wealth transfer at conversion and the ERNs

create counter-cyclical incentives to provide new loans.

Besides the described incentive problems, which mainly concern the relation between eq-

uity and debt holders, the issuance of contingent debt has also severe consequences for the

relation between equity holders and managers. Most importantly, the current managers of

the bank are entrenched when CoCo bonds are converted (French et al., 2010). Hence, the

important mechanism that managers of distressed firms are replaced in case of bankruptcy

is suspended. Furthermore, the incentive contract of managers need to incorporate the

risk-taking incentives induced by CoCo bonds. For example, Baas (2014) derives the

optimal compensation contract in the same setting as in chapter 3. Flannery (2014)

predicts a reduction of risk-taking incentives when managers are obliged to hold CoCo

bonds themselves.

In addition to analyzing risk-taking incentives, academics produced a myriad of regulatory

recommendations to improve the financial system since the crisis unfolded in the fall of

2008. Many of the proposed rules have made it into legislation, for example, as part of the

Dodd-Frank Act of 2010. The main focus of these recommendations is that banks need

to increase their equity ratios (French et al., 2010). Hence, the issuance of contingent

debt, which converts into equity in distressed times, is well in line with these proposals.

In addition, the Dodd-Frank Act introduced a restriction of banks’ leverage ratios. The

finding that retail structured products increase the stability of a high risk issuer when the

leverage ratio remains constant is in support of this regulatory measure.

However, there are also critical voices which regard the taken steps as insufficient

(Admati and Hellwig, 2013). The financial crisis demonstrated that the regulatory mech-

anisms in place failed, but these are reenforced by the recent reforms. Put metaphorically,

the old medicine did not work, so regulators simply drink more of it instead of trying a

new — potentially better — one. Along these lines, Cochrane (2014) makes the proposal

that banks should cease to issue fixed value short-term claims, such as deposits. As a

consequence, bank runs are eliminated. He also proposes to create special vehicles which

buy shares of banks and issue debt claims instead of the banks. The advantage of this

construct is that the special vehicles can be resolved easily in case of bankruptcy.

In summary, the regulatory supervision and attention has increased sharply after

the financial crisis. However, it needs to be seen whether the modified regula-

tory scheme will succeed to prevent future crisis or whether the critical thoughts of

Admati and Hellwig (2013) or Cochrane (2014) should have received more attention.
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Part II

Asset Pricing

and Derivatives





Chapter 5

Low volatility puzzle and beta

contraction‡

5.1 Introduction

According to the capital asset pricing model (CAPM) developed by Markowitz (1952),

Sharpe (1964), Lintner (1965), and Mossin (1966), an investor purchasing two different

portfolios, which have the same beta factor, should expect the same return from both

positions. However, empirical research shows that a levered position of stocks with low

return volatility historically generated higher returns than stocks with high return volatil-

ity, even though both positions carry the same systematic risk as measured by the beta

factor (Haugen and Heins, 1975; Blitz and Van Vliet, 2007). We show that neither fric-

tions (Black, 1972; Boehme et al., 2009; Baker et al., 2011; Frazzini and Pedersen, 2014)

nor exotic investor preferences (Barberis and Huang, 2008; Han and Kumar, 2013) are

required to explain the low volatility puzzle. A simple extension of the CAPM framework

incorporating stochastic correlations is sufficient to bring the — at first glance contradic-

tory — empirical evidence in line with classical asset pricing theory.

Our analysis proceeds in two major steps. First, we show that the beta factors of low

and high volatility assets behave differently. When correlations increase, the beta factor

of low volatility assets increases, while the beta factor of high volatility assets decreases.

We refer to this behavior as beta contraction. Since correlation shocks also increase the

volatility of the market portfolio, the systematic risk borne by an investor of low volatility

assets is more sensitive to changes in correlations compared to high volatility assets.

‡This chapter is based on the working paper “The Risk of Low Volatility Stocks: A Theoretical
Explanation for an Empirical Puzzle” (Crummenerl, 2015).
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In the second step, we evaluate the pricing consequences of this mechanism. In equi-

librium, investors anticipate the higher sensitivity of low volatility stocks and demand a

premium compared to the expected return predicted by the standard CAPM. In contrast,

high volatility stocks offer a lower expected return than predicted. We calibrate the model

to a standard set of parameters and show that the effect is robust and sizable. A zero-beta

portfolio, which is constructed by purchasing a levered position of low volatility assets

and a short position in high volatility assets, is generating a risk premium between 0.72%

and 2.46% per year relative to the standard CAPM risk premium.

Our findings analogously apply to two related empirical puzzles. Since assets with low

volatility usually also have a low beta factor, the empirical puzzle is also obtained

by comparing the returns of stocks with low and high beta factors (Black et al., 1972;

Asness et al., 2012; Frazzini and Pedersen, 2014). Furthermore, we can regard the id-

iosyncratic return volatility of an asset. Any pricing relevant factor, for example, the

sensitivity of an asset to correlation shocks, which is not accounted for in the benchmark

asset pricing model, appears in the idiosyncratic volatility term. Ang et al. (2006) are

the first to document that high idiosyncratic volatility is related to low historical returns.

In summary, there are three ways to measure the risk of an asset. In the context of our

model, all three perspectives agree.

Our work is further motivated by the empirical literature on correlation risk.

Goetzmann et al. (2005) show that correlations vary significantly over time and are there-

fore stochastic in nature. In addition, Ang and Chen (2002), Longin and Solnik (2001),

and Hong et al. (2007) provide evidence that increases in correlations frequently occur in

market downturns. Hence, the beta factor of low volatility assets tends to increase exactly

in times when investors do not want to have a high systematic risk exposure. At the same

time, high beta assets provide a hedge against correlation increases. This evidence is

further underpinned by Krishnan et al. (2009) and Driessen et al. (2009), who find that

that correlation risk empirically carries a significant market price. However, these studies

fail to detect the systematic pattern of beta factor movements in response to correlation

shocks.

The aforementioned asset pricing puzzles are well documented for stocks. We show

that the price deviation compared to the standard CAPM carries over to other types

of securities, i.e., derivatives and risky corporate bonds. For this purpose, we derive

the prices of European options in the equilibrium setting with stochastic correlations.

Based on this pricing framework, we formulate testable empirical hypothesis on (1) the

cross-section of beta factors, (2) the beta factors of sorted portfolios, and (3) the beta

factors of different types of securities issued by the same firm.
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The remainder of the chapter is structured as follows. The relevant literature is discussed

in section 5.2. In section 5.3, we develop an illustrative portfolio setting and analyze the

impact of correlation shocks on both the beta factor and the systematic risk. In section

5.4, we incorporate stochastic correlations into an equilibrium pricing model and derive

return differences relative to the standard CAPM pricing formula. The prices of European

options and a structural model of the firm are developed in section 5.5. We outline an

empirical design based on this structural model in section 5.6. Section 5.7 concludes.

Proofs and technical developments are in the appendix.

5.2 Literature review

Our work is related to two strands of the literature. First, there is a broad empirical

literature focusing on the detection of asset pricing puzzles. The typical line of argument

of these studies is to suggest a factor, which is not captured by either the standard

CAPM or the model of Fama and French (1992, 1993), and to show that this factor has

price implications for the cross-section of expected returns either using portfolio sorts or

Fama and MacBeth (1973) regressions.

The particular factor of interest in the context of this work is the return volatility. The em-

pirical fact that stocks with low volatility offer a higher risk-adjusted return compared to

stocks with high volatility has first been documented by Haugen and Heins (1975). More

recent empirical evidence is provided by Blitz and Van Vliet (2007) and Li et al. (2014).

Two further empirical puzzles are closely related to this low volatility puzzle. We can

decompose the total return volatility into a systematic risk component and an idiosyn-

cratic component. Stocks with low volatility typically exhibit also a low beta factor. And

similarly to low volatility stocks, also stocks with low beta factors have higher risk-adjusted

returns compared to high beta stocks (Black et al., 1972; Asness et al., 2012). In other

words, the empirical security market line is flatter than theory predicts.

In case there is a factor, which is pricing relevant but not included in the asset

pricing model, it should empirically appear in the idiosyncratic volatility component.

Ang et al. (2006) report a staggering 106 basis points per month excess return of a

low idiosyncratic volatility portfolio over a high idiosyncratic volatility portfolio, while

both carry the same systematic risk. The effect is confirmed by many other studies

such as Zhang (2006), Ang et al. (2009), Jiang et al. (2009), Guo and Savickas (2010),

Chen and Gallmeyer (2010), and Huang et al. (2011). However, the low idiosyncratic

volatility puzzle has turned out to be much more sensitive to changes in the applied

empirical methods (Fu, 2009; Bali and Cakici, 2008; Huang et al., 2011).
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Some studies also try to identify fundamental factors, e.g., volatility of fundamental cash

flows (Irvine and Pontiff, 2009), growth options of the firm (Barinov, 2011) or intensity

of product market competition (Gaspar and Massa, 2006), which are correlated to or

predicted by idiosyncratic volatility. Therefore, the low idiosyncratic volatility puzzle

might be caused by these factors being priced in the cross section of returns.

In summary, this empirical strand of the literature has established solid evidence that

the low volatility puzzle is persistent and of considerable magnitude. The resulting risk

premium is negative, i.e., stocks with higher volatility have on average lower risk-adjusted

returns. However, these studies lack an explanation for why these factors should be

uncorrelated to market risk and thus end up in the idiosyncratic volatility term. Hence,

we have to consider a second strand of the literature, which attempts to provide theoretical

explanations for the puzzle. Blitz et al. (2014) review this literature in great detail. We

identify two lines of reasoning.

The first line of reasoning is to propose frictions, which do not originate from the firm,

but cause a shift of demand from low volatility stocks to high volatility stocks. In the

context of such limitations to arbitrage, Black (1972) and Frazzini and Pedersen (2014)

analyze leverage and margin constraints, while Boehme et al. (2009) discuss short-selling

restrictions. Baker et al. (2011) propose investment restrictions, e.g., caused by the use

of benchmarks for portfolio managers. For example, if mutual funds can only invest a

restricted amount into risky stocks but want to increase the portfolio’s systematic risk

exposure, high volatility stocks are better suited for this purpose than low volatility stocks.

The second line of reasoning considers investor preferences. Barberis and Huang (2008)

mention the higher skewness of high volatility stocks as an attractive characteristic in the

context of the cumulative prospect theory proposed by Tversky and Kahneman (1992).

Han and Kumar (2013) find related empirical evidence for such volatility seeking retail

investors.

Our work differs from the aforementioned literature in several aspects. First, we do not

introduce an additional risk-factor besides market risk. Even though we consider two

sources of uncertainty, the result is a one-factor model with varying exposures to this

single risk factor. Second, we do not require market frictions. And third, we do not

consider exotic investor preferences. Hence, we offer a parsimonious explanation for the

low volatility puzzle, which brings classical asset pricing theory in line with the empirical

evidence.
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5.3 Illustrative portfolio setting

The objective of this section is to provide an intuitive understanding for the key mechanism

of our model. To identify this mechanism, it is sufficient to focus on the risk characteristics

of assets and to abstract from the implications on the asset’s return. Hence, we first

analyze the consequences of correlation changes for a single asset within a simple portfolio

setting. In particular, we evaluate whether a low volatility asset is impacted differently

than a high volatility asset when correlations rise.

5.3.1 Framework

Our framework bases on a classical portfolio context with N assets. The return of each

asset has identical correlation ρ ≥ 0 with the return of any other asset. Asset i has

return volatility σi. We think of the remaining N−1 assets as a representative group

of homogeneous assets with identical return volatility σ−i. For tractability reasons, we

assume that all N assets have the same weight in the market portfolio. Asset i is a low

volatility asset when σi < σ−i and it is a high volatility asset when σi > σ−i.

We compute several risk properties of asset i and the market portfolio m. All these

representations result from the linearity and additivity properties of covariance and from

the relationship between covariance and correlation.

The variance σ2
m of the return of the market portfolio amounts to

σ2
m =

1

N2

(
σ2

i +(N−1)σ2
−i +2(N−1)σiσ−iρ+(N−1)(N−2)σ2

−iρ
)
. (5.1)

Accordingly, we can represent the beta factor βi as

βi =
cov (ri, rm)

σ2
m

=
N ·

(
σ2

i +(N−1)σiσ−iρ
)

σ2
i +(N−1)σ2

−i +2(N−1)σiσ−iρ+(N−1)(N−2)σ2
−iρ

. (5.2)

Furthermore, we measure idiosyncratic volatility εi as the standard deviation of the return

residuals net of systematic risk according to the standard CAPM pricing, i.e.,

ε2
i = σ2

i −β2
i ·σ2

m

= σ2
i −

(
σ2

i +(N−1)σiσ−iρ
)2

σ2
i +(N−1)σ2

−i +2(N−1)σiσ−iρ+(N−1)(N−2)σ2
−iρ

. (5.3)
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In the empirical literature, idiosyncratic volatility is frequently defined as the residual of a

time-series regression of the asset’s return on the market portfolio return and the factors

for the size effect and value effect derived by Fama and French (1993). Since we do not

want to mix theoretical frameworks, we prefer the consistent definition of idiosyncratic

volatility in the context of our model.

The question how a higher volatility σi of asset i affects its beta factor βi is not trivial,

because both the covariance cov (ri, rm) in the numerator and the variance σ2
m of the

market portfolio return in the denominator of representation (5.2) increase with the

volatility σi. Similarly, the effect of the asset volatility σi on the idiosyncratic volatility

εi is not obvious. We summarize the relationship in the following two propositions. (See

appendix 5.A for proofs.)

Proposition 5.1 (Beta factor and volatility)

The beta factor βi strictly increases with the volatility σi of the considered asset.

Proposition 5.2 (Idiosyncratic volatility and volatility)

The idiosyncratic volatility εi strictly increases with the volatility σi of the considered

asset.

In the context of our theoretical analysis, a low (high) total volatility is always equivalent

to both a low (high) idiosyncratic volatility and a low (high) beta factor. Thus, low

volatility assets have a low beta factor βi < 1, while high volatility assets have a high

beta factor βi > 1. For the remainder of our analysis, we will only use the terms low

and high volatility, but still have in mind that they can also be interpreted as low (high)

idiosyncratic volatility and low (high) systematic volatility, i.e., low (high) beta factors,

respectively.

5.3.2 Sensitivity of beta factor

In the following, we follow the typical CAPM notion and think of an investor holding a

well diversified portfolio, which only consists of the market portfolio and a risk-free asset.

The relevant risk of a single asset for this particular investor originates only from the risk

contribution to the market portfolio, which is measured by the systematic risk βi ·σm.

The asset-specific risk is fully eliminated when holding a well diversified portfolio and has

therefore no impact on the risk borne by the investor.

We consider an investor who — in line with classical portfolio theory and the standard

CAPM — naively regards the correlation ρ as deterministic. This is the ex ante view.

However, the true correlation realizing ex post might differ from the ex ante belief of the
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investor. We denote this case, in which the ex ante presumed correlation differs from the

ex post correlation, as a correlation shock.

In the first step, we analyze the impact of correlation shocks on the beta factor βi. The

key finding is summarized in the following proposition. (See appendix 5.A for proof.)

Proposition 5.3 (Beta factor and correlation)

The beta factor βi of a low (high) volatility asset with σi < σ−i (σi > σ−i) increases

(decreases) with the correlation ρ.

The property described in proposition (5.3) is illustrated in figure 5.1. It depicts the beta

factor βi as a function of the correlation ρ for both the case in which asset i is a low

volatility asset (solid line) and the case in which asset i is a high volatility asset (dashed

line). The beta factor of the high volatility asset declines from 1.8 for low correlations

to 1.35 for correlations close to one. The beta factor of the low volatility asset increases

from 0.3 for low correlations to 0.55 for high correlations. Since the beta factors of low

and high volatility stocks move closer to each other in response to a correlation shock, we

denote this behavior as beta contraction.

Even though not at the core of our analysis, we also want to analyze what happens to the

beta factor when the average asset volatility increases. In contrast to proposition 5.1, we

consider the case when the volatility of all N assets change simultaneously by the same

amount ∆σ. The result is summarized in the following proposition. (See appendix 5.A

for proof.)

Proposition 5.4 (Beta factor and average volatility)

The beta factor βi of a low (high) volatility asset with σi < σ−i (σi > σ−i) increases

(decreases) when all asset volatilities simultaneously increase.

A numerical example for this property is presented in figure 5.2. The plot shows the effect

on the beta factor βi of a simultaneous change of all asset volatilities by the same amount

∆σ. The pattern is similar to figure 5.1. The beta factor of the low volatility asset (solid

line) strictly increases. For the case of ∆σ = −0.1, the low volatility asset has a resulting

volatility of σi = 0. Hence, it is risk-free and the beta factor becomes zero. The beta

factor increases up to 0.7 for an upward shift of all volatilities by 10 percentage points.

In contrast, the beta factor of the high volatility asset (dashed line) is strictly decreasing

from 1.8 to 1.3.

Figures 5.1 and 5.2 underline the important characteristic of high volatility assets com-

pared to low volatility assets. The exposure to the market portfolio, captured by the beta

factor βi, declines when a correlation shock or a volatility shock occurs for high volatility

assets but rises for low volatility assets.
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Figure 5.1: Beta factor depending on correlation

The graph shows the beta βi of a low volatility asset (solid line) with σi = 0.1 and
of a high volatility asset (dashed line) with σi = 0.3 depending on the correlation ρ
between each pair of assets. The remaining parameters are σ−i = 0.2 and N = 5.
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Figure 5.2: Beta factor depending on average volatility

The graph shows the beta factor βi of a low volatility asset (solid line) with initial
volatility σi = 0.1 and of a high volatility asset (dashed line) with initial volatility
σi = 0.3 when all asset volatilities simultaneously change by the amount ∆σ. The
remaining parameters are σ−i = 0.2 and N = 5.
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5.3.3 Sensitivity of systematic risk exposure

So far, we have analyzed the impact of a correlation shock on the beta factor in isolation.

However, since a correlation shock also implies a higher risk σm of the market portfolio

return, we need to consider the combined effect on the systematic risk borne by the

investor.

In the second step, we analyze the systematic risk βi ·σm of the considered asset i, i.e.,

the only risk for which investors obtain an extra reward in a classical CAPM world. We

summarize our finding in the following proposition.

Proposition 5.5 (Systematic risk and correlation)

The increase of the systematic risk βi ·σm in percentage terms for a rise of the correlation

ρ is higher (lower) for low (high) volatility assets compared to that of the market portfolio.

Proposition 5.5 is a direct consequence of the property derived in proposition 5.3. The

market portfolio has a beta factor equal to one regardless of the correlation and its return

volatility is strictly increasing with ρ. The percentage increase of a low volatility asset’s

systematic risk exposure βi ·σm when a correlation shock occurs is higher than for the

market portfolio, because both the volatility σm and the beta factor βi increase with

ρ. In contrast, the beta factor of a high volatility asset declines with ρ. Therefore, the

percentage increase of the systematic risk βi ·σm of a high volatility asset is lower than

that of the market portfolio.

We further illustrate this result by comparing two investments, which are constructed such

that they have the same systematic risk exposure. In a CAPM world, such two investments

with identical beta factors should provide the same expected return. Hence, from the

investor’s perspective, both positions must be equally attractive marginal investments.

The first investment is an unlevered position in a high volatility asset with beta factor

βh
i . The second investment is a levered position in a low volatility asset with beta factor

βl
i. To bring this second investment to the same systematic risk exposure as the first

investment, we need to create a portfolio investing of a fraction ψ = βh
i /β

l
i in the low

volatility asset and a fraction 1 −ψ in the risk-free asset. The latter corresponds to a

credit, since ψ > 1. Since the risk-free asset has a beta factor of zero, the portfolio beta

is equal to ψ ·βl
i +(1−ψ) ·0 = βh

i .

In figure 5.3, we plot the systematic risk exposure for these two investments. The portfolio

weight ψ = 3.9 has been determined such that the systematic risk is the same for both

investments for an initial correlation of ρ = 0.3. The systematic risk of both the low

volatility asset (solid line) and the high volatility asset (dashed line) increases with the
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Figure 5.3: Systematic risk depending on correlation

The graph shows the systematic risk ψ ·βl
i ·σm of a levered low volatility asset (solid

line) with σl
i = 0.1 in comparison to the systematic risk βh

i ·σm of an unlevered high
volatility asset (dashed line) with σh

i = 0.3 depending on the correlation ρ between
each pair of assets. The low volatility asset is levered by the factor ψ = 3.91, such
that it bears the same systematic risk as the high volatility asset for a correlation of
ρ= 0.3. The remaining parameters are: σ−i = 0.2 and N = 5.
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correlation ρ. Importantly, the sensitivity of the systematic risk βi ·σm for a correlation

shock is lower in the case of a high volatility asset. In particular, the systematic risk for

a low volatility asset varies from 0.09 to 0.39, while the corresponding range for the high

volatility asset is narrower, i.e., between 0.18 to 0.30.

In this section, we have compared two investments, which carry the same systematic risk

exposure. We have shown that the pricing relevant risk measures crucially depend on the

ex post realized correlation and they do so in a systematic manner. In particular, the risk

properties of a low volatility asset react differently to changes in correlations compared

to those of a high volatility asset. As a consequence, a levered position in a low volatility

asset behaves differently than a high volatility asset, even though both positions carry

the same systematic risk.

5.4 Equilibrium model

Since investors only care for the ex post borne systematic risk, the analysis of the previous

section reveals the advantage of a high volatility asset compared to a levered investment

into a low volatility asset. Correlation shocks more strongly impact the relevant risk of

a low volatility asset than that of a high volatility asset. In other words, high volatility

assets provide a better protection against increases of systematic risk than low volatility

assets.

The standard CAPM, which regards correlations as deterministic, predicts that invest-

ments with the same systematic risk exposure should have the same expected return.

However, this major implication of the standard CAPM does no longer hold when we

allow for changes of the correlation ρ between the returns of any two assets. To evaluate

the pricing consequences of beta contraction, we incorporate stochastic correlations into

an equilibrium pricing model. Our objective is to obtain endogenous effects on market

prices and expected returns when investors anticipate and correctly account for the effect

of changing correlations.

5.4.1 Framework

The setup exhibits several parallels to the one described in section 5.3. The discrete-time,

one-period economy has N assets. The asset j has a payoff Ỹj at the end of the considered

period with mean equal to one. The current price of the asset is denoted by Y0j . The

market portfolio contains all assets. Thus, it has an expected payoff equal to N . We

denote the payoff of the market portfolio with M̃ and its price with M0.
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We again single out the asset i, whose volatility δi of the terminal payoff is different from

the other assets. The remaining N − 1 assets have payoffs with volatility δ−i. As before,

we call asset i a low volatility asset when δi < δ−i, and we call it a high volatility asset

when δi > δ−i.

The returns of asset j and the market portfolio are denoted with rj and rm, respectively.

The corresponding expected returns are labeled as µj and µm, respectively. Moreover, a

risk-free asset exists, which yields a return equal to rf . In this setup, payoffs and their

distributions are exogenous, while prices, returns and expected returns are endogenous.

(See appendix 5.B.1 for detailed representations of these items.)

For pricing purposes, we regard a representative investor having a Bernoulli utility func-

tion u(z) in terminal wealth z. We make use of the well known pricing relationship in

discrete-time financial economics between the expected return µi of a single asset and the

expectation µm of the return of the market portfolio. (See appendix 5.B.2 for a detailed

derivation.)

µi = rf +
(
µm − rf

)
·
cov

(
ri, u

′(M̃)
)

cov
(
rm, u′(M̃)

) . (5.4)

The fundamental relationship (5.4) only requires the existence of a representative investor

and knowledge of the distribution of the asset payoffs Ỹi. When imposing special assump-

tions for the utility function u(z) and the distribution of the asset payoffs, the CAPM

pricing equation can be obtained, but it does not hold in general. We choose a utility

function u(z) with constant absolute risk aversion

u(z) = − 1

λ
exp(−λ · z) . (5.5)

We finally introduce the distribution assumptions for the two sources of uncertainty, i.e.,

for the asset payoffs and the correlations. The correlation between each pair of two

different assets’ payoffs is ρk. To keep the model as simple as possible, we consider only

two states k ∈ {u,d}, with ρu > ρd. State u has probability π and state d has probability

1−π. In other words, either all pairs of asset payoffs have a high correlation ρu or a

low correlation ρd. The asset payoffs in both states u and d are multivariate normally

distributed.

Notably, that all assumptions of the CAPM world are satisfied in this setup when cor-

relations are non-stochastic. Thus, the only reason for potential pricing deviations must

come from stochastic correlations.

Now we have all the required ingredients to derive the pricing equation with stochastic

correlations. We obtain a pricing equation for asset i relative to the pricing of the market
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portfolio. We take the price M0 or equivalently the expected return µm > rf of the market

portfolio as given and focus on the endogenous expected return µi of asset i.1 Applying

the law of total covariance and Stein’s lemma to expression (5.4), we obtain the following

tractable representation for the expected return. (See appendix 5.B.3 for a comprehensive

derivation.)

µi = rf +
(
µm − rf

)
· M0

Y0i
· π · em(ρu) · ci(ρu)+(1−π) · em(ρd) · ci(ρd)

π · em(ρu) ·vm(ρu)+(1−π) · em(ρd) ·vm(ρd)
(5.6)

with

ci(ρ) := δ2
i +(N−1) · δiδ−iρ, (5.7)

vm(ρ) := δ2
i +(N−1) · δ2

−i +(N−1)δ−i · (2 · δi +(N−2)δ−i)ρ, (5.8)

em(ρ) := λ · exp
(
−λ ·N + 1

2λ
2 ·vm(ρ)

)
. (5.9)

The term ci(ρ) denotes the covariance between the payoff Ỹi of asset i and the market

portfolio M̃ conditional on the correlation ρ. The term vm(ρ) is a short-hand for the

conditional variance of the market portfolio payoff M̃ depending on ρ. And the term

em(ρ) is the expectation of −u′′(M̃) conditional on ρ.

To identify pricing deviations from the standard CAPM prediction, we compute the re-

lated expected return µi of asset i when the traditional CAPM pricing equation is applied

to those asset prices arising from the equilibrium model with stochastic correlation.

Due to the additional correlation risk, the standard CAPM pricing is no longer valid.

Consequently, the expected return µ̂i predicted by the standard CAPM differs from the

true expected return in equilibrium. For given market prices Y0i and M0, the expected

return of asset i predicted by the standard CAPM amounts to

µ̂i = rf +
(
µm − rf

)
· M0

Y0i
· π · ci(ρu)+(1−π) · ci(ρd)

π ·vm(ρu)+(1−π) ·vm(ρd)
. (5.10)

Representation (5.6) for the true return expectation differs from the CAPM prediction

(5.10) in that it has an additional weighting term em(ρk) for the covariance and variance

terms for given correlations ρk in state k. The impact of this weighting term em is

examined more detail in the following section.

1With further assumptions, such as the knowledge of initial wealth, one might also obtain the endoge-
nous value of the market portfolio. This procedure would, however, require the numerical evaluation of
an additional equation and disguise the view on the important pricing difference between the true model
with stochastic correlations and the standard CAPM pricing formula.
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5.4.2 Effect of stochastic correlations on equilibrium pricing

The key objective of this work is to derive pricing implications from incorporating stochas-

tic correlations in an equilibrium framework. In the previous section, we have derived rep-

resentation (5.6) for the expected return µi in the true model with stochastic correlations.

We have also derived representation (5.10) for the expected return µ̂i, which results from

applying the well-known CAPM formula without correlation risk on the prices resulting

from the true model. In this section, we analyze under which conditions the true expected

return µi in the model with correlation risk is higher or lower than the expected return

µ̂i predicted by the standard CAPM pricing formula. The result is summarized in the

following proposition. (See appendix 5.B.4 for proof.)

Proposition 5.6 (Expected return and volatility)

Low volatility assets (δi < δ−i) have an expected return above the CAPM prediction, i.e.,

µi > µ̂i, while high volatility assets (δi > δ−i) have a return expectation below the CAPM

prediction, i.e., µi< µ̂i. There is no price deviation in the special case of identical volatility

(δi = δ−i).

As a result, we have a simple relationship for price deviations compared to the CAPM

prediction which originates from the relation between the volatility δi of the considered

asset i relative to the volatility δ−i of the other assets. This finding is consistent with

empirical observations that low volatility stocks yield higher risk-adjusted returns than

high volatility stocks. Since in the real world, the correlation must be considered as

stochastic rather than deterministic, our model provides a meaningful explanation for an

— at first glance — empirical mispricing of the standard CAPM.

In the following, we provide an economic intuition as well as a technical reasoning for this

key finding. The proposition generally confirms the intuition gained from the analysis

of beta factors in the previous section 5.3. We have shown that the ex post realized

systematic risk of low volatility assets is more sensitive to a correlation increase than

that of high volatility assets. Investors dislike ex post increases in realized market risk.

Hence, the higher sensitivity of low volatility assets must be compensated in the form of

an additional premium compared to the standard CAPM prediction.

When comparing representations (5.6) and (5.10) for the expected return under both

regimes, it is apparent that the price deviation is rooted in the additional weighting term

em. This weigh is monotonically increasing with the correlation, i.e., ∂em/∂ρ > 0. In

consequence, the investor puts a higher emphasis on the state in which correlations are

high. Since market risk as measured by vm is also increasing with the correlation, investors

appreciate the fact that the beta factor of high volatility assets is decreasing. Hence,
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high volatility assets provide a hedge against increases in the correlation and subsequent

increases of the market risk. Hence, high volatility assets offer a lower expected return

compared to low volatility assets.

Following this technical line of thought, we can generalize our result for a larger class

of utility functions. Given that asset payoffs are jointly normally distributed, which is

a condition for the application of Stein’s lemma, all utility functions for which marginal

utility evaluated at the market portfolio declines with increases in the correlation, i.e.,

∂E(u′′(M))/∂ρ < 0, reproduce the finding from proposition 5.6.

Notably, the findings do not hold for the well known quadratic utility representation. In

this case, the second derivative of the utility function, and thus also the weighting term

em, is constant. The resulting expected return in both models is the same. Consequently,

if one believes that the low volatility puzzle is caused by stochastic correlations, one has

to dismiss the notion that investors’ utility has a quadratic functional form.

We have already highlighted in proposition 5.1 that beta factors also contract in response

to simultaneous shocks on all volatilities. In addition, market volatility is also increasing

when the average volatility increases. Even though our model does not explicitly consider

stochastic volatility, we can evaluate the pricing consequences of ex post increases in

the average volatility by inspecting the weighting term em. Similarly to the effect of

correlation increases, the weight also increases with the volatility level, i.e., ∂em/∂δ > 0.

(See appendix 5.B.3 for proof.) Hence, investors also overweight states of the world with

high volatility levels. We conclude that the effect described in proposition 5.6 is magnified

when considering also the volatility as stochastic.

We have assumed the simplest possible distribution for the correlations. But since the

pattern described in proposition 5.6 does not depend on the probability π, we can gen-

eralize the findings to any arbitrary discrete distribution. When we regard a correlation

distribution with a total number of states K, we can easily see that the numerator

in equation (5.6) becomes
∑K

k=1πk · em(ρk) · ci(ρk). The corresponding denominator is

given by
∑K

k=1πk · em(ρk) · vm(ρk). Since the general additive form of equation (5.6) is

preserved and the pattern originates from the weighting term em(ρk), which increases in

the correlation, we can conclude that the low volatility puzzle is robust with respect to

the distribution assumption. Needless to say, the magnitude of the effect does depend on

the specific functional form of the distribution.
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5.4.3 Model calibration

We have established that there is a price deviation between the model incorporating

stochastic correlations and the prediction of the standard CAPM. In this subsection,

we analyze the magnitude of the observed price deviation of stocks explained by our

equilibrium model compared to the standard CAPM.

We estimate the correlation distribution from daily return data of S&P 500 stocks between

January 1998 and June 2012 using the following simple method. We first calculate the

mean correlation ρt at each point in time. The average over time of these mean correlations

is denoted as µρ. We next calculate the average of all mean correlations above µρ and

the average of all mean correlations below µρ, which we use as estimates for ρu and ρd,

respectively. Finally, the probability π is determined such that the expected value equals

the empirical average, i.e., E(ρ) = µρ. This leads to the following relationship

π =
µρ −ρd

ρu −ρd
. (5.11)

The estimates of the correlation distribution, which are robust with respect to the used

estimation window, are presented in table 5.1. The estimate for the probability π varies

between 0.425 and 0.444. The estimate deviates from 0.5 since the empirical correlation

distribution is slightly skewed. The correlation in the down state ranges from 0.188 to

0.205, while it is between 0.422 and 0.445 for the up state. The correlation distribution

is designed to preserve the empirical mean. But also the standard deviation Std(ρ) with

values between 0.113 and 0.127 is very close to the empirically observed standard deviation

of 0.137.

In the following, we use the correlation estimates based on the 1 month estimation window,

i.e., π= 0.425, ρu = 0.445 and ρd = 0.188. The parameters are summarized in table 5.2. We

consider N = 5 assets, which we — in line with the empirical literature (Ang et al., 2006;

2009) — interpret as 5 portfolios of stocks.

For the market risk premium, we adopt the long-term average µm −rf = 0.06 determined

by Welch (2000) for short investment horizons. The risk-free rate of rf = 0.05 roughly

corresponds to the long-term average 3-month Treasury Bill rate of 5.13% between 1962

and 2012.

We choose δ−i = 0.20 approximately matching the historical volatility of 0.214 of the S&P

500 index. In the following, we use δl
i = 0.1 and δh

i = 0.4 to illustrate the effects for low

volatility and high volatility assets, respectively.



99

Table 5.1: Distribution of correlations

The table shows estimates for the parameters π, ρu and ρd of the correlation distribu-
tion and the corresponding standard errors SE of the estimation. The four columns
show the results for rolling estimation windows for the correlation of 1 month, 3
months, 6 months and 1 year. All estimates marked by ∗∗∗ are statistically different
from zero at the 1% significance level. The table also reports the expected value E(ρ)
and standard deviation Std(ρ) of the correlation distribution based on the estimates
for π, ρu and ρd.

Estimation window

1 month 3 months 6 months 1 year

Observations 3759 3715 3651 3520

π 0.425 ∗∗∗ 0.444 ∗∗∗ 0.432 ∗∗∗ 0.429 ∗∗∗

SE(π) 0.010 0.010 0.010 0.010

ρu 0.445 ∗∗∗ 0.422 ∗∗∗ 0.433 ∗∗∗ 0.442 ∗∗∗

SE(ρu) 0.003 0.003 0.003 -0.120

ρd 0.188 ∗∗∗ 0.194 ∗∗∗ 0.201 ∗∗∗ 0.205 ∗∗∗

SE(ρd) 0.001 0.001 0.001 0.123

E(ρ) 0.297 0.295 0.301 0.307

Std(ρ) 0.127 0.113 0.125 0.117

Table 5.2: Parameters for base case

The table shows the parameter choices for the base case calibration. The values of
the correlation distribution correspond to the estimates using the 1 month estimation
window in table 5.1.

Parameter Symbol Value

Probability π 0.425

Correlation up state ρu 0.445

Correlation down state ρd 0.188

Number of assets N 5

Market risk premium rm−rf 0.06

Risk-free rate rf 0.05

Volatility δ−i 0.20

Risk aversion parameter λ 5
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Investors are characterized by the risk-aversion parameter λ = 5, which is in the lower

range of option implied risk aversion parameters estimated from S&P 500 index op-

tions by Bliss and Panigirtzoglou (2004). The resulting relative risk aversion coefficient

in our model is 23.6. We admit that this value appears to be quite high. However,

Cochrane and Hansen (1992) find that a relative risk aversion of greater than 35 is re-

quired to explain the equity premium puzzle, which is well above our choice.2

To obtain numerical results, we assume an expected return of the market portfolio µm,

which implicitly determines the price M0 = 1
1+µm

. Using Y0i = 1
1+µi

, we evaluate equations

(5.6) and (5.10) for µi and µ̂i, respectively, and compute the spread. Figure 5.4 plots the

difference between the expected return µi of the true model with stochastic correlations

and the standard CAPM prediction µ̂i as a function of the asset volatility δi.

As figure 5.4 shows, the return spread first increases with the volatility δi and then de-

clines. Clearly, for a volatility δi close to zero, the risk premia under both representations

are close to zero, so that the difference approaches zero as well. In line with proposition

5.6, the return spread is also zero when the volatility of all assets agrees, i.e., for δi = δ−i.

For high volatility stocks, the negative return spread widens with increasing volatility δi.

The magnitude of the effect is also of economic significance. Assuming the assets are

priced using the standard CAPM model not accounting for correlation risk, an investor

knowing the true model could earn a significant positive amount by shorting the high

volatility stock and buying a levered low volatility stock, such that both stocks bear the

same systematic risk. For example, such a zero-beta portfolio consisting of a short position

in a high volatility stock with δh
i = 0.4 and a short position in a low volatility stock with

δl
i = 0.1, which is levered by the factor ψ = βh

i /β
l
i = 4.29, theoretically generates an excess

premium of µ0 = 144 basis points (bp) per year. We denote this scenario as base case in

the following.

5.4.4 Comparative static analysis

The main result that low volatility stocks earn an additional risk premium and that

high volatility stocks exhibit a negative return spread compared to the standard CAPM

prediction is quite robust to changes in the model parameters. We first test the sensitivity

with respect to the crucial correlation distribution by comparing three different scenarios,

which are depicted in figure 5.5. The solid line always represents the base case. Table 5.3

2Cochrane (2005) requires an even higher value above 50 for the relative risk aversion to explain
the equity premium puzzle and notes that it must be equal to a staggering value of 250 to explain the
correlation puzzle, i.e., the weak correlation between stock returns and consumption.
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summarizes the scenarios and also reports the premium µ0 in basis points per year of a

zero-beta portfolio constructed as described above.

First, we consider parallel shifts of the correlation in both states u and d (see plot A in

figure 5.5). The pattern is robust to such parallel shifts. The return spread is slightly more

pronounced for downward shifts. The premium µ0 of the zero-beta portfolio increases to

176.0 bp for a downward shift in correlation of 0.05 and decreases to 120.3 bp for an

upward shift of the same magnitude.

Second, we consider different spreads ρu − ρd while keeping the probability π constant

(see plot B in figure 5.5). In line with intuition, the pattern is more pronounced for

high spreads than for low spreads. The premium µ0 of the zero-beta portfolio obviously

disappears for the extreme case of ρu − ρd = 0. In our concrete example, the zero-beta

portfolio earns 211.4 bp in case of an increase in the spread ρu − ρd by 0.05 and 71.5

bp in case of a decrease by the same magnitude. However, the standard deviation of

the correlation distribution decreases to 0.078 in the latter case, which is well below the

empirically observed standard deviation of 0.137. Thus, we believe that the real world

correlation distribution provides sufficient variation, which is in line with the empirical

findings of Goetzmann et al. (2005).

Third, we consider how skewed correlation distributions affect the results (see plot C

in figure 5.5) as opposed to our almost symmetric distribution of the base case. We

know from Ang and Chen (2002), Longin and Solnik (2001), and Hong et al. (2007) that

correlations increase sharply in market downturns which usually coincide with rare events

such as recessions or financial crises. We keep the average correlation µρ constant, while

decreasing the probability π for the upward deviation ρu, which is larger in magnitude.

Thereby, we evaluate a skewed distribution with π = 0.10 and ρu = 0.6 as well as a rare

disaster-like distribution with π = 0.01 and ρu = 0.7. In both cases, the observed pattern

is much more pronounced especially for high volatility stocks. The resulting zero-beta

portfolio premium µ0 jumps to 246.1 bp and 234.1 bp, respectively. Hence, skewness

significantly magnifies the price deviation between the true model and the standard CAPM

prediction.

We conclude that the economic significance of the zero-beta portfolio return is robust to

many plausible parameter choices for the correlation distribution. The predicted pattern

is especially sensitive to the spread ρu −ρd and to the skewness of the distribution. We

derive values between 71.5 bp and 246.1 bp for the premium µ0 of the zero-beta trading

strategy.

The results are also robust to changes in the remaining model parameters. Table 5.4

summarizes the scenarios for the different parameters and reports the premium µ0 of the
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Figure 5.4: Expected return difference to CAPM prediction

The graph shows the return difference µi−µ̂i of an asset i in basis points depending
on its payoff volatility δi. Further parameter values are given in table 5.2.
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Table 5.3: Correlation distribution scenarios

The table shows different scenarios for the correlation distribution parameters π, ρu

and ρd as well as the expected value E(ρ) and the standard deviation Std(ρ) of the
resulting distribution. The last column reports the premium µ0 in basis points per
year of a zero-beta portfolio consisting of a levered long position in the low volatility
stock with δl

i = 0.1 and a short position in the high volatility stock with δh
i = 0.4.

π ρu ρd E(ρ) Std(ρ) µ0

Base case 0.425 0.445 0.188 0.297 0.127 144.0

Upward shift 0.425 0.495 0.238 0.347 0.127 120.3

Downward shift 0.425 0.395 0.138 0.247 0.127 176.0

Tighter spread 0.425 0.395 0.238 0.305 0.078 71.5

Widened spread 0.425 0.495 0.138 0.290 0.176 211.4

Skewed distribution 0.100 0.600 0.250 0.285 0.105 246.1

Disaster-like distribution 0.010 0.700 0.29 0.294 0.041 234.1



103

Figure 5.5: Return differences for various correlation scenarios

The plots show the return difference µi−µ̂i in basis points per year depending on
the return volatility δi of asset i. The solid line in all plots represents the base case
with parameter values from table 5.2. The remaining lines represent deviations with
regard to the correlation assumptions. Plot A: downward shift of correlation levels
to ρu = 0.395, ρd = 0.138 (dashed line) and upward shift of correlation levels to
ρu = 0.495, ρd = 0.238 (dot-dashed line). Plot B: widened spread of correlation
distribution to ρu − ρd = 0.357 (dashed line) and tightened spread of correlation
distribution to ρu − ρd = 0.157 (dot-dashed line). Plot C: skewed distribution
with π = 0.10, ρu = 0.60, ρd = 0.25 (dashed line) and disaster-like distribution with
π = 0.01, ρu = 0.70, ρd = 0.29 (dot-dashed line).
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zero-beta portfolio in basis points. The corresponding graphs, whose general pattern is

robust to all changes, can be found in figure 5.7 in the appendix.

We first evaluate the effect of an increase in the number of considered assets N . The

observed pattern is less pronounced for increasing N and basically disappears for very

large N . The premium of the zero-beta portfolio decreases to 139.7 bp for N=10 and

further to 91.5 for N=20. The reason for this is the simplifying assumption that there

are N−1 identical assets in the economy and only one single assets i which deviates. Of

course, the contribution of this single deviation to the market risk σm is tiny for a large

number of assets N . We prefer the interpretation of N as portfolios, which also permits

the empirical test of the pattern for large numbers of stocks.

We next test how the market properties impact the results. It is apparent from the pricing

equations (5.6) and (5.10) that the market risk premium µm − rf magnifies the observed

return spread. An increase by 0.02 leads to premium of the zero-beta portfolio of 197.8

bp, while a decrease by the same amount lowers the premium to 93.3 bp.

We find see that the results are only marginally impacted by the risk-free rate rf . We

consider changes in the risk-free rate to either rf = 0 or rf = 0.1. The premium of the

zero-beta trading strategy only changes slightly by 6.9 bp compared to the base case in

both directions.

An increase in the volatility δ−i of the N−1 other stocks shifts the graph in figure 5.4 to

the right. However, the performance of the zero-beta portfolio only changes marginally.

In contrast, the results are very sensitive to changes in the risk aversion parameter λ.

Intuitively, the lower the risk aversion, the less pronounced the pattern. In the extreme

case of a risk-neutral investor, the difference between the expected returns according to the

two models disappears, since the investor is indifferent to any source of risk. Interestingly,

the pattern does only change marginally for a value of λ above 5 given the chosen set

of parameters. We test for cases of λ = 3 and λ = 10, which leads to a premium of the

zero-beta trading strategy of 78.9 bp and 166.8 bp, respectively.

In summary, our findings are robust to different plausible parameter choices. The return

deviation disappears only in extreme cases with almost no correlation risk or risk-neutral

investors. An investor using a zero-beta trading strategy could earn 144.0 bp in our base

case. The derived bandwidth for the premium µ0 of this zero-beta portfolio ranges from

71.5 bp up to 246.1 bp. Thus, the results are also of substantial economic significance.
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Table 5.4: Scenarios for further parameters

The table shows different scenarios for the market risk premium µm−rf , the payoff
volatility δ−i of the N−1 remaining assets, the risk aversion parameter λ and the
risk-free rate rf . The last column reports the premium µ0 in basis points per year of
a zero-beta portfolio consisting of a levered long position in the low volatility stock
with δl

i = 0.1 and a short position in the high volatility stock with δh
i = 0.4.

N µm−rf rf δ−i λ µ0

Base case 5 0.06 0.20 5 0.05 144.0

Number of assets N
10 139.7

20 91.5

Market risk premium µm−rf

0.08 197.8

0.04 93.3

Risk-free rate rf

0.00 137.2

0.10 150.9

Volatility δ−i

0.25 130.2

0.15 144.8

Risk aversion parameter λ
10 166.8

3 78.9
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5.5 Structural model

We have derived a theoretical model in section 5.4 which is well capable of explaining

the low volatility puzzle. However, it is still unclear to what extent other explanations

contribute to the observed empirical pattern. To answer this question, we need to develop

a research design to distinguish the different forces at work. The objective of this chapter

is to build the methodological basis for this empirical research design.

It has to be noted that derivatives are in zero-net supply. The options are priced such

that no investor will demand them in equilibrium. Hence, they are not included in the

market portfolio and investors hold a mix of the market portfolio and the risk-free asset.

This chapter is structured as follows. First, we derive the price of European call and put

options in section 5.5.1. We also analyze the difference between the true option prices

and the prices predicted by the standard CAPM. In section 5.5.2, these pricing formulae

are used to derive a structural model to consistently value different claims issued by the

same firm.

5.5.1 Pricing of European options

We recall the equilibrium setting from the previous section 5.4. There is one asset i with

a different volatility than all other N − 1 assets. In this section, we derive the price of

European options written on this particular underlying asset i.

The payoff C̃i of a call option with strike price X and the payoff P̃i of a put option with

the same strike price X are given by

C̃i = max
{
Ỹi −X, 0

}
, (5.12)

P̃i = max
{
X− Ỹi, 0

}
. (5.13)

Given the distribution assumption from the previous section, the payoff of the underlying

asset Ỹi can become negative with a positive probability. Hence, a negative strike price

would be feasible. Even though the following valuation formulae are valid for any arbitrary

strike price, it makes sense to restrict the analysis to positive exercise prices X > 0.

We first derive the call price and later use the put-call-parity to price the put option. The

fundamental pricing equation (5.4), which is valid for any arbitrary payoff distribution

and all well defined utility functions, can be rewritten in terms of prices. (See appendix
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5.C.1 for details.) The call price C0i equals

C0i =
1

1+ rf
·

E[C̃i]−

cov
(
C̃i,u

′(M̃)
)

cov
(
M̃,u′(M̃)

) ·M0 · (µm − rf )


 (5.14)

Intuitively, the price of an asset is equal to the expected payoff discounted at the risk-free

rate minus an adjustment term. The price is reduced by the adjustment term when the

covariance between the asset payoff and the marginal utility is positive, i.e., whenever the

beta factor of the asset is positive.

In the next step, we make use of the distribution assumptions for the asset payoffs and

correlations from section 5.4.1. In addition, we recall the assumption for the representa-

tive investor’s utility function (see equation 5.5). Applying Stein’s lemma results in the

following call price. (See appendix 5.C.2 for a detailed derivation.)

C0i =
1

1+rf
·
(
E[C̃i]−

π · em(ρu) · cc(ρu)+(1−π) · em(ρd) · cc(ρd)

π · em(ρu) ·vm(ρu)+(1−π) · em(ρd) ·vm(ρd)
·mp

)
(5.15)

with

E[C̃i] = δi ·ϕ
(

X−1
δi

)
− (X−1) ·Φ

(
−X−1

δi

)
, (5.16)

cc(ρ) =
(
δ2

i +(N−1)δiδ−iρ
)

·Φ
(
−X−1

δi

)
, (5.17)

vm(ρ) = δ2
i +(N−1)δ2

−i +2(N−1)δiδ−iρ+(N−1)(N−2)δ2
−iρ, (5.18)

em(ρ) = λ · exp
(

−λ ·N +
1

2
λ2 ·vm(ρ)

)
, (5.19)

mp=M0 · (µm−rf ) = N
1+µm

· (µm−rf ), (5.20)

where ϕ denotes the probability density function of the standard normal distribution and

Φ denotes the corresponding cumulative distribution function. As in the previous section,

vm is a shorthand notation for the market variance, cc abbreviates the covariance between

the call payoff and the market portfolio, and em is the weighting term. The shorthand

mp denotes the market risk premium in dollar terms.

For comparison, the call price Ĉ0i in the standard CAPM, i.e., when using the expected

correlation for pricing, is given by

Ĉ0i =
1

1+rf
·
(
E[C̃i]−

π · cc(ρu)+(1−π) · cc(ρd)

π ·vm(ρu)+(1−π) ·vm(ρd)
·mp

)
. (5.21)

Similarly to expression (5.10) for the expected return of the underlying asset, the weighting

term em drops out of the formula.
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Given the different representations for the call price in the correlation risk model (equation

5.15) and the standard CAPM prediction (equation 5.21), it is apparent that the call

prices in the two models are different. This difference is illustrated in figure 5.6 using

the parameters from the base case calibration from section 5.4.3. The plot shows the

price difference C0i − Ĉ0i in percent of the true call price C0i for three different strike

prices depending on the volatility δi of the underlying asset. The solid line represents an

in-the-money call (with X = 0.9). The dashed line depicts the values for an at-the-money

call (i.e., X = 1.0). The dot-dashed line shows an out-of-the-money call (with X = 1.1).

The graphs show that the price of call options on low volatility assets as predicted by

the standard CAPM is lower compared to the price in the correlation risk model. The

opposite is true for call options on high volatility assets.

We have already stated in proposition 5.6 that low volatility assets have a higher risk-

adjusted return compared to the prediction by the standard CAPM. This higher return

corresponds to a lower price. Similarly, call options on low volatility assets exhibit prices

below the standard CAPM prediction. Evidently, this observation raises the question

whether the price deviation of the call option is resulting from the price deviation of

the underlying asset or whether the call option itself has a property which causes and

potentially magnifies the effect. The answer to this question is given by the following

proposition. (See appendix 5.C.3 for proof.)

Proposition 5.7 (Call pricing)

The price of a European call option written on an underlying asset with low volatility

(δi < δ−i) is lower than predicted by the standard CAPM, i.e., C0i < Ĉ0i. The European

call option on an underlying asset with high volatility (δi > δ−i) is more expensive than

predicted by the standard CAPM, i.e., C0i > Ĉ0i. The price deviation stems solely from

the different prices of the underlying asset.

To understand this result, we rearrange the expression for the call price, such that it has

the following form

C0i = Y0i ·Φ
(
−X−1

δi

)
− X

1+ rf
·Φ
(
−X−1

δi

)
+

δi

(1+ rf )
·ϕ
(

X−1
δi

)
. (5.22)

This expression of the call price resembles similarities to the well known option pricing of

Black and Scholes (1973). The call price is a function of only five variables: the underlying

asset value Y0i, the underlying asset’s volatility δi, the risk free rate rf , the strike price

X and the time to maturity, which is standardized to 1 in this setting for simplicity.

Notably, the weighting term em is only contained in the price of the underlying asset Y0i.

Hence, equation (5.22) is valid for both the call price in the correlation risk model as well
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Figure 5.6: Difference between call prices

The plot shows the price difference C0i − Ĉ0i in percent of the true call price C0i for
three different strike prices X = 0.9 (solid line), X = 1.0 (dashed line), and X = 1.1
(dot-dashed line) depending on the volatility δi of the underlying asset. The further
parameter values are given in table 5.2.

δi

C0i − Ĉ0i

C0i

0.0 0.1 0.2 0.3 0.4 0.5

+4%

+2%

0

−2%

−4%

−6%

−8%



110

as the call price in the standard CAPM. Since the weighting term and, thus, also the

correlation do not influence any other component of the call price, we conclude that the

price deviation of the call originates only from the price deviation of the underlying asset.

Next, we repeat the derivation for put options. The price of the put option can easily be

obtained by applying the put-call parity. The resulting put price is

P0i = −Y0i ·Φ
(

X−1
δi

)
+

X

1+ rf
·Φ
(

X−1
δi

)
+

δi

(1+ rf )
·ϕ
(

X−1
δi

)
. (5.23)

In analogy to proposition 5.7, we can summarize the findings regarding put options in the

following proposition. (See appendix 5.C.3 for proof.)

Proposition 5.8 (Put pricing)

The price of a European put option written on an underlying asset with low volatility

(δi < δ−i) is higher than predicted by the standard CAPM, i.e., P0i > P̂0i. The European

put option on an underlying asset with high volatility (δi > δ−i) is cheaper than predicted

by the standard CAPM, i.e., P0i < P̂0i. The price deviation stems solely from the different

prices of the underlying asset.

5.5.2 Pricing of equity and risky debt

The derived option pricing framework allows to build a structural model as proposed by

Merton (1974). In this section, we derive the values of equity and risky corporate debt

and examine the features of this structural model.

In the following, we assume that the firm’s assets correspond to the specific asset i which

was in the focus of our analysis so far. Hence, the value of the firm’s asset is equal to Y0i

and the assets have volatility δi. The firm has debt with face value F which matures at

the same time as we receive the cash flow from the assets.

The equity position is equivalent to a call option on the firm’s assets. The resulting equity

value E0 is given by

E0 = Y0i ·Φ
(
−F −1

δi

)
− F

1+ rf
·Φ
(
−F −1

δi

)
+

δi

(1+ rf )
·ϕ
(

F −1
δi

)
. (5.24)

The debt claim can be decomposed into a risk-free bond with face value F and a short

put with strike price F . The resulting risky debt value D0 is given by

D0 = Y0i ·Φ
(

F −1
δi

)
+

F

1+ rf
·Φ
(
−F −1

δi

)
− δi

(1+ rf )
·ϕ
(

F −1
δi

)
. (5.25)
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The structural model in this equilibrium setting possesses the key features of the original

Merton (1974) model. We summarize two important properties in the following proposi-

tion. (See appendix 5.C.3 for proof.)

Proposition 5.9 (Structural model)

Both equity holders and debt holders effectively hold a fraction of the firm’s asset risk.

The irrelevance theorem of Modigliani and Miller (1958) holds.

5.6 Testable hypotheses

In the equilibrium model presented in section 5.4, the change in the risk exposure is

induced by changes in the correlation. Even though the model includes only one period,

we can conclude that beta factors vary over time as correlations move over time. (See

Santos and Veronesi (2004) and Armstrong et al. (2013) for empirical evidence on time-

varying beta factors.) Moreover, the discovered mechanism of beta contraction implies

that the beta factors move in a systematic manner. The objective of this section is to

develop an empirical research design. We summarize the predictions in three hypotheses.

We first consider the cross-section of beta factors. While the mean of the beta factors of

all traded securities should always be close to one, the dispersion of the beta factors should

vary over time. The dispersion can be inspected using histograms or by introducing a

quantitative measure. We propose the standard deviation of the beta factors at one point

in time as an appropriate measure.

Hypothesis 5.1 (Cross-section of beta factors)

The dispersion of beta factors should vary over time. In particular, the dispersion should

decrease when market risk and correlations increase. In contrast, the cross-section of beta

factors should be more dispersed in times of low market risk and low correlations.

The market risk is usually measured using the standard deviation of the returns of the

market portfolio. Alternatively, we can resort to the implied volatility of traded index

options, which is reported by the volatility index VIX. Furthermore, credit spreads also

contain information on the market risk premium.

The empirical literature on asset pricing puzzles usually proceeds by sorting

stocks into portfolios based on a specific property of the stocks, for example,

based on the volatility (Haugen and Heins, 1975; Blitz and Van Vliet, 2007), idiosyn-

cratic volatility (Ang et al., 2006; 2009), or beta factor (Frazzini and Pedersen, 2014;

Asness et al., 2012). The creation of portfolios has two advantages. First, the desired
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property, for example, identifying stocks with low volatility, is held constant over time

due to frequent readjustments of the portfolios. Second, idiosyncratic risk is eliminated

by holding a well diversified portfolio. This implies that other factors, which might also

determine expected returns, but are uncorrelated to the property of interest, i.e., volatility

in our case, are randomly distributed across portfolios and do not distort the results.

It is already established in this empirical literature that portfolios of low volatility stocks

have higher risk-adjusted returns compared to portfolios of high volatility stocks, which

is in line with the key result of our model. However, we can make additional predictions

on the behavior of these sorted portfolios.

Hypothesis 5.2 (Beta factors of sorted portfolios)

The beta factor of a portfolio containing low volatility stocks should increase when market

risk and correlations increase. In contrast, the beta factor of a portfolio containing high

volatility stocks should decrease when market risk and correlations increase. Hence, the

beta factors of these two portfolios should be negatively correlated.

The development of the structural model in section 5.5 is not an end in itself. It can

be used to distinguish two competing explanations for the low volatility anomaly. Both

explanations have in common that they produce a contraction of beta factors. However,

the origin of the beta contraction is different.

The first explanation is provided by the correlation risk model from section 5.4. Beta

factors contract in response to a correlation shock. The second explanation developed

by Frazzini and Pedersen (2014) relies on a funding friction of levered investors. When

the funding restriction is binding, levered investors are adjusting their portfolios from

low beta securities to high beta securities to maintain the desired level of idiosyncrativ

risk. Hence, there is a surplus demand for high beta securities in times when the funding

restriction is binding.

Notably, the cash flows from the different types of assets in Frazzini and Petersen’s model

remain unchanged. The effect is caused by different demand for the individual securities

which depends on the securities’ beta factor. In contrast, a correlation increase has

cash flow consequences, which in turn change the risk profile of the firms’ assets. The

structural model helps to evaluate how the these cash flow consequences are transmitted

to the different types of securities issued by the firm.

Hypothesis 5.3 (Beta factors of different securities)

The correlation risk model predicts that the beta factors of all of a firm’s outstanding

securities move in the same direction when correlations increase. In contrast, the friction
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based model predicts that beta factors of all of the firm’s outstanding securities move closer

to one as a reaction to a funding shock.

We first review the prediction of the correlation risk model about what happens to the

beta factors of the respective securities in the event of beta contraction. According to the

structural model developed in section 5.5, all claim holders of the firm effectively possess

a positive fraction of the firm’s assets. So when the assets of the firm have a low volatility

and the asset’s beta factor increases in response to a correlation shock, the beta factors

of all of the firm’s claims increases as well. Conversely, when the firm’s assets have a

high volatility and the beta factor decreases after a correlation shock, the beta factors of

equity and debt decrease too. Hence, the direction of the predicted effect is determined

by whether the firm’s assets have a low or high volatility.

In contrast, the direction of the effect in the friction based model of

Frazzini and Pedersen (2014) depends on whether the individual security has a low

or high risk. The difference between the prediction by the two competing models can

best be demonstrated by considering a firm whose assets have an average volatility,

i.e., δi = δ−i in our model. The correlation risk model predicts that the beta factor of

the assets and all of the firm’s claims should remain unaffected. However, the equity

claim has a higher volatility and the debt claim has a lower volatility than the firm’s

assets. The same relation is true for the beta factors of equity and debt. So the friction

based model predicts that the beta factor of debt increases and the beta factor of equity

decreases in response to a shock with respect to the funding restriction.

Notably, the source of the shocks in the two models are different. Both models do not make

any statement on the economic origin of the shocks. Hence, it also has to be empirically

tested in what way these two shocks are related and whether they occur at the same time.

5.7 Conclusion

We study the impact of stochastic correlations on the risk characteristics of low and high

volatility assets. We find that the beta factors of low and high volatility assets react

differently to correlation increases: the beta of a low volatility asset rises whereas the

beta of a high volatility asset falls. As a consequence, the systematic risk carried by a low

volatility asset is found to be more sensitive towards correlation changes in comparison

to a high volatility asset.

In the second step of our analysis, we incorporate stochastic correlations in an equilibrium

model and derive the pricing consequences of this systematic movement of beta factors. As

a result, low volatility assets provide investors with a higher expected return compared
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to what the standard CAPM predicts. In contrast, high volatility assets offer lower

expected returns compared to the standard CAPM benchmark. We calibrate the model

to a standard set of parameters and derive the premium of a zero-beta portfolio consisting

of a levered long position in low volatility assets and short position in high volatility

assets. The comparative static analysis shows that the effect is robust to changes in the

key parameters.

Finally, we derive the prices of European options in this equilibrium setting. We find

that the price deviation compared to the standard CAPM carries over to option prices,

but stems only from the different prices of the underlying asset. The development of a

structural model of the firm is the basis for three proposed empirical tests.

The central contribution of this work is a theoretical explanation of the low volatil-

ity puzzle. The model calibration shows that the magnitude of the effect is sizable.

Furthermore, the model is parsimonious, for example, compared to the approach of

Frazzini and Pedersen (2014), since it does not require a friction to explain the puzzle.

Thus, stochastic correlations can be considered as a major cause of the low volatility

puzzle. This evidence is further supported by recent empirical findings that correlation

risk carries a significant market price (Krishnan et al., 2009; Driessen et al., 2009).

Our results apply analogously to the idiosyncratic risk puzzle. Since true idiosyncratic

risk is — by definition — not accounted for in the standard CAPM, the effects derived

in our theoretical analysis appear as part of the empirically determined idiosyncratic risk

in the data. We hold the total volatility of an asset constant in our model. Thus, an ex

post increase in the systematic risk is equivalent to a decrease in the asset’s idiosyncratic

risk. Assets with low volatility, whose beta factor is increasing in response to a correlation

shock, thus have lower idiosyncratic volatility than predicted. The sensitivity to changes

in correlations is higher for those assets with low idiosyncratic volatility, which coincides

with low total volatility.
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5.A Proofs of propositions for portfolio setting

Beta factor and volatility (proposition 5.1)

Proof. The derivative of the beta factor βi with respect to the volatility σi of the return

given by

∂βi

∂σi
=
N ·(N−1)σ−i

(
ρσ2

i +
(
2σiσ−i +(N−1)ρσ2

−i

)
(1+(N−2)ρ)

)

(
σ2

i +2(N−1)σiσ−iρ+(N−1)(1+(N−2)ρ)σ2
−i

)2 > 0 (5.26)

is always positive. Hence, sorting all assets according to their beta factor gives the same

ranking as sorting the asset according to their return volatility.

Idiosyncratic volatility and volatility (proposition 5.2)

Proof. The squared idiosyncratic volatility ε2
i is defined as

ε2
i =V ar

(
ri − (rf +βi(rm − rf ))

)
(5.27)

=V ar(ri −βirm) (5.28)

=σ2
i +β2

i σ
2
m −2βi · cov(ri, rm) (5.29)

=σ2
i −β2

i σ
2
m. (5.30)

We plug in the expression from equations (5.1) and (5.2). Taking the first derivative with

respect to σi yields

∂ε2
i

∂σi
=

2(n−1)2(1−ρ)(1+(n−1)ρ)σiσ
3
−i(σ−i +ρ(σi +(n−2)σ−i))

(σ2
i +2(n−1)ρσiσ−i +(n−1)(1+(n−2)ρ)σ2

−i)
2

> 0 (5.31)

which is always positive. Hence, sorting a portfolio using idiosyncratic volatility gives

exactly the same sort as using total volatility.
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Beta factor and correlation (proposition 5.3)

Proof. Making use of equation (5.2) and taking the derivative of βi with respect to the

correlation ρ, we obtain:

∂βi

∂ρ
= (σ−i −σi) · N · (N−1)σiσ−i (σi +(N−1)σ−i)

(
σ2

i +2(N−1)σiσ−iρ+(N−1)(1+(N−2)ρ)σ2
−i

)2 . (5.32)

Since the fraction on the right-hand-side in representation (5.32) is positive, we only need

to regard the sign of the first factor (σ−i −σi) in order to conclude about the sign of the

derivative ∂βi/∂ρ. Thus, the derivative is positive for a low volatility asset, i.e., σi < σ−i,

and negative for a high volatility asset, i.e., for σi > σ−i.

Beta factor and average volatility (proposition 5.4)

Proof. Starting from expression (5.2), we replace σi with the term σi +∆σ and σ−i with

the term σ−i +∆σ. We then compute the first derivative with respect to ∆σ and evaluate

it at ∆σ = 0. The sign of the resulting expression

∂βi

∂(∆σ)

∣∣∣∣∣
∆σ=0

=(σ−i −σi) ·N ·(N−1)

·
(
2σiσ−i(1+(N−2)ρ)+(N−1)σ2

−iρ(1+(N−2)ρ)+σ2
i ρ
)

(
σ2

i +2(N−1)σiσ−iρ+(N−1)(1+(N−2)ρ)σ2
−i

)2 (5.33)

again depends on the term (σ−i −σi), since all other factors are positive. The derivative

is positive for a low volatility asset, i.e., σi < σ−i, and negative for a high volatility asset,

i.e., for σi > σ−i.

5.B Derivation of expected returns

5.B.1 Notation

We focus on asset i which has payoff Ỹi and current price Y0i. We denote the standard

deviation of the terminal payoff as

δi := Std
(
Ỹi

)
. (5.34)
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The N−1 other assets have a standard deviation of the terminal payoff equal to

δ−i := Std
(
Ỹj

)
, for all j 6= i. (5.35)

The current price of the market portfolio is defined as

M0 :=
N∑

j=1

Y0j (5.36)

with a payoff equal to

M̃ :=
N∑

j=1

Ỹj . (5.37)

In our notation, rj and rm denote the return of asset j and the market portfolio, respec-

tively. The returns can be represented by

rj =
Ỹj

Y0j
−1, (5.38)

rm =
M̃

M0
−1. (5.39)

The corresponding expected returns µj of asset j and µm of the market portfolio are

µj =
1

Y0j
−1, (5.40)

µm =
N

M0
−1. (5.41)

5.B.2 Fundamental pricing relation

The following derivation of the fundamental pricing equation is based on

Huang and Litzenberger (1988). We consider the one-period optimization problem of a

representative investor with a time-additive and state-independent utility function u(ct)

in consumption ct at time t. The investor consumes a fraction of his endowment at time

t= 0. The remaining fraction is invested. The payoff from the investment is consumed at

time t= 1.

The resulting pricing kernel m is given by

m=
u′(c1)

u′(c0)
. (5.42)
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The risk-free asset pays 1 unit of consumption in all states. Hence, we can express the

risk-free rate rf as

1

1+ rf
≡ E [m ·1] . (5.43)

The price Y0j of any risky asset j with payoff Ỹj is given by

Yj0 = E

[
m · Ỹj

]
. (5.44)

This expression can be modified to get the expected excess return

Y0j = E

[
m · Ỹj

]
(5.45)

⇒ 1 = E

[
m · Ỹj

Y0i

]
(5.46)

⇒ 1 = cov

(
m,

Ỹj

Y0j

)
+E [m] ·E

[
Ỹj

Y0j

]
(5.47)

⇒ 1

1+ rf
·E
[
Ỹj

Y0j

]
= 1− cov

(
m,

Ỹj

Y0j

)
(5.48)

⇒ E

[
Ỹj

Y0j

]
− (1+ rf ) = −(1+ rf ) · cov

(
m,

Ỹj

Y0j
−1

)
(5.49)

⇒ E

[
rj − rf

]
= −(1+ rf ) · cov (rj ,m) . (5.50)

The same holds for the market portfolio

E

[
rm − rf

]
= −(1+ rf ) · cov (rm,m) . (5.51)

Substituting in the expression for the expected return of asset j

E

[
ri − rf

]
=

cov (ri,m)

cov (rm,m)
·E
[
rm − rf

]
. (5.52)

Consumption at time t= 1 is equal to the payoff of the market portfolio

E

[
ri − rf

]
=

cov
(
ri,u

′(M̃)
)

cov
(
rm,u′(M̃)

) ·E
[
rm − rf

]
. (5.53)

This result holds for any well-behaved utility function and any distribution of payoffs.
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5.B.3 Equilibrium pricing with stochastic correlations

We further evaluate the right-hand side in equation (5.4). From the law of total covariance

and the representation of returns with payoffs, we can write

µi = rf +
(
µm − rf

)
·
π · cov

(
ri,u

′(M̃)
∣∣∣ρu

)
+(1−π) · cov

(
ri,u

′(M̃)
∣∣∣ρd

)

π · cov
(
rm,u′(M̃)

∣∣∣ρu

)
+(1−π) · cov

(
rm,u′(M̃)

∣∣∣ρd

) (5.54)

= rf +
(
µm − rf

)
·
π · cov

(
Ỹi
Y0i
,u′(M̃)

∣∣∣∣ρu

)
+(1−π) · cov

(
Ỹi
Y0i
,u′(M̃)

∣∣∣∣ρd

)

π · cov
(

M̃
M0
,u′(M̃)

∣∣∣∣ρu

)
+(1−π) · cov

(
M̃
M0
,u′(M̃)

∣∣∣∣ρd

) (5.55)

= rf +
(
µm − rf

)
· M0

Y0i
·
π · cov

(
Ỹi,u

′(M̃)
∣∣∣ρu

)
+(1−π) · cov

(
Ỹi,u

′(M̃)
∣∣∣ρd

)

π · cov
(
M̃,u′(M̃)

∣∣∣ρu

)
+(1−π) · cov

(
M̃,u′(M̃)

∣∣∣ρd

) (5.56)

As a result of multivariate-normally distributed payoffs for a given correlation ρ, we can

apply Stein’s lemma to evaluate the conditional covariance terms

cov
(
Ỹi,u

′(M̃)
∣∣∣ρ
)

= E

(
u′′(M̃)

∣∣∣ρ
)

· cov
(
Ỹi,M̃

∣∣∣ρ
)

(5.57)

= −em(ρ) · ci(ρ) , (5.58)

cov
(
M̃,u′(M̃)

∣∣∣ρ
)

= E

(
u′′(M̃)

∣∣∣ρ
)

· cov
(
M̃,M̃

∣∣∣ρ
)

(5.59)

= E

(
u′′

(
M̃
)∣∣∣ρ

)
·var

(
M̃
∣∣∣ρ
)

(5.60)

= −em(ρ) ·vm(ρ) . (5.61)

The covariance between the payoffs of asset i and the market portfolio is

ci(ρ) := cov
(
Ỹi,M̃

∣∣∣ρ
)

(5.62)

= cov


 Ỹi,

N∑

j=1

Ỹj

∣∣∣∣∣∣
ρ


 (5.63)

= δ2
i +(N−1) · δiδ−iρ. (5.64)

The variance of the market portfolio payoff is given by

vm(ρ) := var
(
M̃
∣∣∣ρ
)

(5.65)

= δ2
i +(N−1) · δ2

−i +2 · (N−1) · δiδ−iρ+2 · 1

2
(N−1)(N−2)δ2

−iρ (5.66)

= δ2
i +(N−1) · δ2

−i +(N−1)δ−i · (2 · δi +(N −2)δ−i)ρ. (5.67)
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Finally, the weighting term is given by

em(ρ) := −E

(
u′′(M̃)

∣∣∣ρ
)

(5.68)

= −E

(
−λ · exp(−λ ·M̃)

)
(5.69)

= λ · exp
(

−λ ·E
(
M̃
)

+
1

2
λ2 ·var

(
M̃
∣∣∣ρ
))

(5.70)

= λ · exp
(

−λ ·N +
1

2
λ2 ·vm(ρ)

)
. (5.71)

The step from (5.69) to (5.70) follows from the normal distribution of the market portfolio

payoff. The weighting term is monotonically increasing in the correlation, since

∂em(ρ)

∂ρ
=

1

2
λ3(N −1)δ−i(2δi + δ−i(N −2)) · exp(...)> 0. (5.72)

The derivative of the weighting term with respect to a simultaneous shift ∆δ in all asset

volatilities is given by

∂em(ρ)

∂(∆δ)

∣∣∣∣∣
∆δ=0

= λ3((N −1)ρ+1)(δi + δ−i(N −1)) · exp(...). (5.73)

This derivative is positive for all correlations ρ >− 1
N−1 , which is true by assumption.

5.B.4 Proofs of propositions

Expected return and volatility (proposition 5.6)

Proof. To evaluate whether the true expected return µi is above the CAPM prediction

µ̂i, we compare the true risk premium π·em(ρu)·ci(ρu)+(1−π)·em(ρd)·ci(ρd)
π·em(ρu)·vm(ρu)+(1−π)·em(ρd)·vm(ρd) from equation

(5.6) to the risk premium π·ci(ρu)+(1−π)·ci(ρd)
π·vm(ρu)+(1−π)·vm(ρd) predicted by the standard CAPM from

equation (5.10).

Both terms have the following structure

w1 · ci(ρu)+w2 · ci(ρd)

w1 ·vm(ρu)+w2 ·vm(ρd)
, (5.74)

where w1 and w2 are positive weights. These weights w1 and w2 differ for the true model

and the risk premium predicted by the standard CAPM.
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According to the mean value theorem, we can therefore write the following helpful in-

equality for the crucial risk premiums

ci(ρu)

vm(ρu)
≤ w1·ci(ρu)+w2·ci(ρd)

w1·vm(ρu)+w2·vm(ρd)
≤ ci(ρd)

vm(ρd)
, given

ci(ρu)

vm(ρu)
≤ ci(ρd)

vm(ρd)
, (5.75)

ci(ρu)

vm(ρu)
≥ w1·ci(ρu)+w2·ci(ρd)

w1·vm(ρu)+w2·vm(ρd)
≥ ci(ρd)

vm(ρd)
, given

ci(ρu)

vm(ρu)
≥ ci(ρd)

vm(ρd)
. (5.76)

A further important property is that the risk premium w1·ci(ρu)+w2·ci(ρd)
w1·vm(ρu)+w2·vm(ρd) tends to ci(ρu)

vm(ρu)

the higher the weight w1 relative to w2 is. Technically speaking, the difference ci(ρu)
vm(ρu) −

w1·ci(ρu)+w2·ci(ρd)
w1·vm(ρu)+w2·vm(ρd) has a lower absolute value, the higher w1

w1+w2
is for given values of

ci(ρu), ci(ρd), vm(ρu) and vm(ρd).

In the case of δi = δ−i, the ratio ci(ρ)
vm(ρ) simplifies to 1

N regardless of the correlation ρ.

Hence inequalities (5.75) and (5.76) show that the relevant terms for the risk premium in

both cases, the true and the CAPM prediction, must equal 1
N and are therefore identical.

For this reason, we have µi = µ̂i whenever δi = δ−i holds.

For volatility δi 6= δ−i, the ratios ci(ρ)
vm(ρ) might depend on the correlation ρ. The inequality

ci(ρu)
vm(ρu) >

ci(ρd)
vm(ρd) simplifies to

ci(ρu)

vm(ρu)
>

ci(ρd)

vm(ρd)
(5.77)

⇐⇒ δ2
i +(N −1) · δiδ−iρu

δ2
i +(N −1) · δ2

−i +(N −1)δ−i · (2 · δi +(N −2)δ−i)ρu
> .. .

δ2
i +(N −1) · δiδ−iρd

δ2
i +(N −1) · δ2

−i +(N −1)δ−i · (2 · δi +(N −2)δ−i)ρd
(5.78)

⇐⇒ 1+
(N −1) · δ2

−i +(N −1)δ−i · (δi +(N −2)δ−i)ρu

δ2
i +(N −1) · δiδ−iρu

< .. .

1+
(N −1) · δ2

−i +(N −1)δ−i · (δi +(N −2)δ−i)ρd

δ2
i +(N −1) · δiδ−iρd

(5.79)

⇐⇒ (δ2
−i + δ−i · (δi +(N −2)δ−i)ρu)(δ2

i +(N −1) · δiδ−iρd)< .. .

(δ2
−i + δ−i · (δi +(N −2)δ−i)ρd)(δ2

i +(N −1) · δiδ−iρu) (5.80)

⇐⇒ δ−i · (δi +(N −2)δ−i)ρu · δ2
i + δ2

−i · (N −1) · δiδ−iρd < .. .

δ−i · (δi +(N −2)δ−i)ρd · δ2
i + δ2

−i · (N −1) · δiδ−iρu (5.81)

⇐⇒ (δi +(N −2)δ−i)(ρu −ρd) · δi < δ2
−i · (N −1)(ρu −ρd) (5.82)

⇐⇒ δ2
i +(N −2)δ−iδi − δ2

−i · (N −1)< 0 (5.83)

⇐⇒ (δi − δ−i)(δi +(N −1)δ−i)< 0 (5.84)

⇐⇒ δi < δ−i (5.85)
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Since ci(ρu)
vm(ρu) >

ci(ρd)
vm(ρd) if and only if δi < δ−i, we only need to compare the ratio of the

weights w1

w1+w2
for the true model and the CAPM prediction to see which risk premium

term is higher. In case of the true model the ratio w1

w1+w2
amounts to

π · em(ρu)

π · em(ρu)+(1−π) · em(ρd)
(5.86)

and can be written as

π

π+(1−π)
· π · em(ρu)+(1−π) · em(ρd)

π · em(ρu)+(1−π) · em(ρd)
. (5.87)

In the representation of the CAPM prediction the weight ratio is simply

π

π+(1−π)
. (5.88)

For this reason, we can conclude that the weight ratio w1

w1+w2
in the true model always

exceeds that in the CAPM predicition. This is because the second factor in equation

(5.87) on the right-hand side is always above 1

π · em(ρu)+(1−π) · em(ρd)

π · em(ρu)+(1−π) · em(ρd)
> 1 (5.89)

⇐⇒ em(ρu)> em(ρd). (5.90)

The validity of the fact that em(ρ) is increasing in ρ directly follows from the fact that

vm(ρ) is increasing in ρ.

As a result, we can now conclude that the risk premium term of the true model is always

closer to ci(ρu)
vm(ρu) and likewise more distant to ci(ρd)

vm(ρd) than in the representation of the

CAPM prediction. Since ci(ρu)
vm(ρu) is higher than ci(ρd)

vm(ρd) if and only if a low volatility asset

is considered, i.e., δi < δ−i, we see why low volatility assets have positive excess returns

relative to the CAPM prediction and high volatility assets exhibit negative excess returns

relative to the CAPM prediction.
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5.B.5 Comparative static analysis

Figure 5.7: Comparative static analysis for further parameters

The plots show the return difference µi−µ̂i in basis points per year depending on
the volatility δi of asset i. The solid line in all plots represents the base case with
parameter values as in table 5.2. The remaining lines represent deviations with
regard to one set of parameters. Plot D: volatility of remaining assets δ−i = 0.15
(dashed line) and δ−i = 0.25 (dot-dashed line). Plot E: market risk premium µm −
rf = 0.04 (dashed line) and µm −rf = 0.08 (dot-dashed line). Plot F: risk-aversion
λ= 3 (dashed line) and λ= 10 (dot-dashed line). Plot G: number of assets N = 10
(dashed line) and N = 20 (dot-dashed line). Plot H: risk-free rate rf = 0 (dashed
line) and rf = 0.1 (dot-dashed line).
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5.C Derivation of derivatives prices

5.C.1 Fundamental pricing relation

The return of the call option is defined as

rci =
C̃i

C0i
−1 (5.91)

Applying the fundamental pricing relation derived in appendix 5.B.2 gives

E

[
rci − rf

]
=

cov
(
rci,u

′(M̃)
)

Cov
(
rm,u′(M̃)

) ·E
[
rm − rf

]
(5.92)

⇒
E

[
C̃i

]

C0i
−1− rf =

1
C0i

·Cov
(
C̃i,u

′(M̃)
)

1
M0

·Cov
(
M̃,u′(M̃)

) ·E
[
rm − rf

]
(5.93)

⇒ E

[
C̃i

]
− (1+ rf ) ·C0i =

Cov
(
C̃i,u

′(M̃)
)

Cov
(
M̃,u′(M̃)

) ·M0 ·E
[
rm − rf

]
(5.94)

⇒ C0i =
1

1+ rf
·

E

[
C̃i

]
−
Cov

(
C̃i,u

′(M̃)
)

Cov
(
M̃,u′(M̃)

) ·M0 ·E
[
rm − rf

]

 (5.95)

Again, this result holds for any arbitrary payoff and all well-behaved utility functions.

5.C.2 Pricing of European options

In the next step, we make use of the distribution assumptions for payoffs and correlations

as well as of the utlity function for the representative investor. From the law of total

covariance and Stein’s lemma follows that the true call price can be expressed as

C0i =
1

1+rf
·
(
E[C̃i]−

π · em(ρu) · cc(ρu)+(1−π) · em(ρd) · cc(ρd)

π · em(ρu) ·vm(ρu)+(1−π) · em(ρd) ·vm(ρd)
·mp

)
. (5.96)

The call price predicted by the standard CAPM is given by

Ĉ0i =
1

1+ rf
·
(
E

[
C̃i

]
− π · cc(ρu)+(1−π) · cc(ρd)

π ·vm(ρu)+(1−π) ·vm(ρd)
·mp

)
. (5.97)
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The expected payoff of the call is

E[C̃i] = E

[
max

{
Ỹi −X,0

}]
(5.98)

=
∫ +∞

−∞

max{Yi −X,0} ·fi(Yi) dYi (5.99)

=
1√
2π

∫ +∞

X−1

δi

(δi · z+1−X) · e−
1

2
z2

dz (5.100)

= δi · 1√
2π

∫
−

X−1

δi

−∞

z · e−
1

2
z2

dz+(1−X) · 1√
2π

∫
−

X−1

δi

−∞

e−
1

2
z2

dz (5.101)

= δi ·ϕ
(

X−1
δi

)
+(1−X) ·Φ

(
−X−1

δi

)
, (5.102)

where ϕ denotes the probability density function of the standard normal distribution and

Φ denotes the corresponding cumulative distribution function.

The abbreviation cc denotes the covariance between the payoffs of the call option and the

market portfolio, which can be derived as follows

cc(ρ) = Cov(C̃i,M̃ |ρ) (5.103)

= E[C̃i ·M̃ ]−E[C̃i] ·E[M̃ ] (5.104)

= E


max

{
Ỹi −X,0

}
·

Ỹi +

N−1∑

j=1

Ỹj




−N ·E[C̃i] (5.105)

= E

[
max

{
Ỹi −X,0

}
· Ỹi

]
+(N −1) ·E

[
max

{
Ỹi −X,0

}
· Ỹj

]
−N ·E[C̃i] (5.106)

=
∫ +∞

−∞

max{Yi −X,0} ·Yi ·fi(Yi) dYi

+(N −1)
∫ +∞

−∞

max{Yi −X,0} ·Yj ·fij(Yi,Yj) dYidYj −N ·E[C̃i] (5.107)

= δi ·ϕ
(

X−1
δi

)
+(1−X+ δ2

i ) ·Φ
(
−X−1

δi

)

+(N −1) · (δi ·ϕ
(

X−1
δi

)
+(1−X+ δiδ−iρ) ·Φ

(
−X−1

δi

)
)

−N ·
(
δi ·ϕ

(
X−1

δi

)
+(1−X) ·Φ

(
−X−1

δi

))
(5.108)

=
(
δ2

i +(N −1)δiδ−iρ
)

·Φ
(
−X−1

δi

)
. (5.109)

As before, vm is an abbreviation for the variance of the market portfolio payoff and em

is the weighting term. The shorthand mp denotes the market risk premium expressed in

terms of units of payoff, i.e.,

mp=M0 ·E[rm − rf ] =
N

1+µm
· (µm − rf ). (5.110)
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5.C.3 Proofs of propositions

Call pricing (proposition 5.7)

Proof. The fundamental pricing relation (5.14) is also valid for the underlying asset

Y0i =
1

1+ rf
·
(
E[Ỹi]−βi ·mp

)
(5.111)

where βi denotes the risk exposure in either model. We can solve for this risk premium

βi =
1−Y0i · (1+ rf )

mp
(5.112)

and substitute it into the formula for the call price

C0i =
1

1+ rf
·
(
E[C̃i]−βi ·Φ

(
−X−1

δi

)
·mp

)
(5.113)

=
1

1+ rf
·
(
E[C̃i]−

(
1−Y0i · (1+ rf )

)
·Φ
(
−X−1

δi

))
(5.114)

= Y0i ·Φ
(
−X−1

δi

)
− X

1+ rf
·Φ
(
−X−1

δi

)
+

δi

1+ rf
·ϕ
(

X−1
δi

)
. (5.115)

Hence, the call price is a function C0i = f
(
Y0i, δi,X,rf

)
of the underlying asset’s price, its

volatility, the strike price and the risk-free rate. In addition, both the time to maturity

and the expected payoff of the underlying asset, which have been normalized to one,

influence the call price. The call price does not depend on the properties of the other

assets, i.e., not on N , δ−i or ρ. Thus, the price deviation of the call option stems only

from the difference in the underlying asset’s price in the two models.

From proposition 5.6 follows, that the low volatility asset has a higher expected return

compared to the CAPM prediction. A higher expected return corresponds to a lower

true price as predicted by the standard CAPM. Hence, also the call price is lower than

predicted. Conversely, the call price is higher for high volatility assets. There is no

difference between the call prices in both models for δi = δ−i. Also, when we regard Y0i

as exogenous, for example, because it is observable on the stock exchange, both models

should yield the same call price.
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Put pricing (proposition 5.8)

Proof. From the put-call-parity follows

P0i =
X

1+ rf
+C0i −Y0i (5.116)

=
X

1+ rf
·Φ
(

X−1
δi

)
−Y0i ·Φ

(
X−1

δi

)
+

δi

(1+ rf )
·ϕ
(

X−1
δi

)
. (5.117)

Similarly to the call price, the put price does not depend on N , δ−i or ρ. So the only

source of a price deviation to the standard CAPM prediction is the price of the underlying

asset Y0i.

Structural model (proposition 5.9)

(i) Both equity holders and debt holders effectively hold a fraction of the firm’s

asset risk.

Proof. The risk-sharing between equity and debt holders is straightforward, since the

asset value Y0i is influencing both values. Even though it is not feasible to duplicate the

payoffs of the options in our model, we can apply the economic intuition of the duplication

portfolio to interpret the claim values of equity and debt. The equity value contains the

term Φ(−a) ·Y0i, while the debt value contains the term Φ(a) ·Y0i with a = F −1
δi

. Since

Φ(−a) + Φ(a) = 1, we can conclude that both claim holders hold a fraction of the firm’s

risk. This is in line with the traditional interpretation of Merton (1974) that equity

holders hold a fraction of the firm’s assets financed with a risk-free credit and that debt

holders hold the remaining fraction of the firm’s assets and a risk-free investment.

(ii) The irrelevance theorem of Modigliani and Miller (1958) holds.

Proof. The sum of equity value and debt value is

E0 +D0 = Y0i = const. (5.118)

and does not depend on the face value of debt F . Hence, the capital structure choice does

not influence the total firm value.
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Chapter 6

Synthesis (part II)

In his presidential address to the American Finance Association, Cochrane (2011) asserts

that much of the variation in stock prices does not stem — as one would presume — from

variation in expected cash flows, but rather from variation in discount rates. Following

this idea, a new generation of asset pricing models emerged which produce time-varying

risk premia, for example, the habit model (Campbell and Cochrane, 1999), the long-run

risk model (Bansal and Yaron, 2004) or disaster risk models (Rietz, 1988; Barro, 2006;

Gabaix, 2008). Empirical tests show that these models are indeed capable of explaining

the equity premium puzzle.

However, not all of the variation in discount rates results from variation in the mar-

ket risk premium. In addition, the exposure to the market risk, which is usually

expressed using the beta factor, varies over time as well. Empirical evidence on

time varying risk exposures is provided, for example, by Santos and Veronesi (2004),

Adrian and Franzoni (2009), Armstrong et al. (2013), and Malamud and Vilkov (2015).

Jagannathan and Wang (1996) incorporate this idea into a theoretical model. They

assume that the standard CAPM holds conditionally, i.e., every period, but beta

factors and the risk premium may change from one period to another. An un-

conditional linear two-factor model emerges, in which the second factor represents a

risk premium for beta instability. Jagannathan and Wang (1996) conclude that their

model empirically performs substantially better than the static CAPM. (See also

Lettau and Ludvigson (2001) and Santos and Veronesi (2006) for further empirical tests.)

However, Lewellen and Nagel (2006) show that the conditional CAPM does not explain

asset pricing puzzles like, for example, the value effect.

The correlation risk model presented in chapter 5 differs from the conditional CAPM of

Jagannathan and Wang (1996) in several aspects. First, the change in the risk exposure

is caused by changes in the correlation (or average volatility). Hence, it is a key result

that beta factors move over time — and not an assumption. In contrast, the origin of
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the time-variation in beta factors is not specified in the conditional CAPM. Second, the

discovered mechanism of beta contraction implies that beta factors move in a systematic

manner. The different beta sensitivity of low volatility assets and high volatility assets is

not discussed by Jagannathan and Wang (1996). Furthermore, the correlation risk model

from chapter 5 also differs from the intertemporal CAPM of Merton (1973a), since there

is only one risk factor, namely the market portfolio.

There is plenty of empirical evidence that correlations change over time and

especially in market downturns (Ang and Chen, 2002; Longin and Solnik, 2001;

Goetzmann et al., 2005; Hong et al., 2007). However, it remains unclear whether to re-

gard correlations as state variables in the sense of Merton (1973a) or whether correlations

and their time variation are the result of other economic forces at work. Given there is

such a fundamental state variable, then the observed market decline and the simultaneous

jump in correlations could both be triggered by a shock to this state variable. Conse-

quently, times in which beta contraction can be observed should coincide with times of bad

economic conditions. Similarly, Frazzini and Pedersen (2014) observe beta contraction in

times of high funding spreads of financial institutions. Since funding is usually more

constrained during recessions, the observed beta contraction might as well be caused by

this economic state variable underlying the recession. Hence, there is need for further

research to disentangle the different forces at work. The test hypotheses formulated in

section 5.6 offer a good starting point.

The simplifying assumption from chapter 5 that the correlation between each pair of

assets is the same is obviously not met in reality. Thus, the sensitivity of each asset’s beta

factor with respect to changes in correlations or other sources of uncertainty is most likely

different. Nevertheless, the pattern of beta contraction has immense practical relevance.

The starting point for the following three examples is that the crucial sensitivity can be

identified empirically.

First, the estimation of beta factors could be improved. It is already common prac-

tice to adjust the estimate of the beta factor towards one according to the method of

Vasicek (1973). The rationale for this adjustment is to correct for an estimation error,

since the unconditional estimate, i.e., without having any piece of information about the

firm, should equal the average of all beta factors, which is one by definition. Even though

the rationale is different to the mechanism developed in chapter 5, the direction of the

adjustment is the same. However, the adjustment according to the Vasicek method is

crude and the same for all assets. For example, Bloomberg reports an adjusted beta

which is calculated as two thirds times the beta estimated from a time-series regression

plus one third times one. Following the idea of beta contraction from chapter 5, one

could determine the actual sensitivity of each asset’s beta factor with respect to changes
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in correlations from the data. The group of assets with a high sensitivity should receive

a larger adjustment than the group of assets with low beta sensitivity.

Second, the variability of the beta factors also plays an important role in the design of

trading strategies. As an example, lets consider an active investor, i.e., an investor not

holding the market portfolio, who wants to maintain a predefined level of systematic

risk. Since beta factors change over time, the portfolio’s systematic risk changes as well.

Consequently, the investor needs to adjust the portfolio and incurs transaction costs.

Alternatively, the investor could determine the sensitivity of beta factors and invest only

in assets with a relatively stable — or persistent — beta factor. Doing so, the investor

can avoid costly readjustments of the portfolio.

Transaction costs also play an important role for the question why asset pricing anomalies

are not exploited and, thus, eliminated by investors (Frazzini et al., 2012). Hence, assets

offering a cost advantage should therefore exhibit a surplus demand by hedge funds and

the like, which should in turn drive up their prices and lower their expected returns

(Lenz, 2014).

Third, the mechanism of beta contraction needs to be taken into account when evaluating

the performance of portfolio managers. There is anecdotal evidence that many asset

management firms offer products investing in low volatility stocks. Due to the popularity

of the low volatility strategy, the financial data provider Standard & Poors created an

index mapping the performance of a portfolio of 100 out of the S&P 500 stocks with the

lowest volatility. Since the risk of low volatility stocks is not accounted for in the typical

linear performance measures, such as Sharpe ratio or Treynor ratio, the reported risk-

adjusted returns of these products and indeces are artificially inflated. The mechanism

behind the low volatility puzzle benefits this scam. The disadvantage of low volatility

stocks becomes only visible when correlations jump up, which empirically coincides with

sharp market downturns. Hence, portfolio managers can enjoy an extra return compared

to their competitors in good times and can attribute all losses in bad times to the overall

market decline.
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Part III

Attachments
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