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ABSTRACT 

 High-resolution organic petrological analysis was carried out on more than 150 core 

bituminous shale samples of the Posidonia Shale (Toarcian, Lower Jurassic) from three 

sedimentary basins: the West Netherlands Basin, the Lower Saxony Basin and the South 

German Basin. This study is subdivided into three main parts: the identification of the organic 

microfacies variations in order to reconstruct paleoenvironmental conditions of the Posidonia 

Shale sedimentation, the maturity evaluation of the Posidonia Shale from three sedimentary 

basins and the construction of the deposition model of the Posidonia Shale. 

 The results of the organic petrography reveal that the organo-mineral microfacies 

defined by maceral composition and associated mineral groundmass show a wide range of 

variations related to the content of individual liptinite of marine origin and terrestrial macerals 

(macerals of vitrinite and inertinite groups and sporinite). The modifications in composition 

are considered as a potential indicator of different changes in depositional environments. In 

addition, much attention has been paid to the origin of the bituminite, which comprises most 

of the hydrocarbon-rich source rocks.  

 All defined organo-mineral microfacies are poorly correlated laterally between 

sedimentary basins. Only those from wells E and M (the West Netherlands Basin) show a 

resemblance. Organo-mineral microfacies from each investigated area contain a specific type 

of bituminite. Particularly, bituminite V has been observed in high concentration only in wells 

from the West Netherlands Basin, while the content of bituminite II increased significantly in 

wells from the Lower Saxony Basin, and bituminite III is well-represented in the Posidonia 

Shale from southern Germany. 

 The second part of the study evaluates the maturity of the Posidonia Shale. Vitrinite 

reflectance analysis has been used. In samples of those wells where appropriate vitrinite 

particles were not found, the Tmax parameter of Rock-Eval pyrolysis was used instead. The 

maturity of the Posidonia Shale from the West Netherlands Basin (0.4 %VRr) and southern 

Germany (0.4 %VRr) is defined as an early mature stage, whereas that of the Posidonia Shale 

from the Lower Saxony Basin (0.5–0.6 %VRr) reaches the mature stage. Exceptionally high 

vitrinite reflectance values are shown by Posidonia Shale in well B (3.2-3.6 %VRr) from the 

Lower Saxony Basin. In this case, organic matter maturity corresponds to the post-mature 

stage.  

 In order to study the changes in optical properties of the macerals from mature to post-

mature Posidonia Shale, two wells, A and B, were chosen. The distance between the two 

wells is 44 km. This part of the study demonstrates that the telalginite bodies (named post-

mature telalginite), bituminite I (post-mature bituminite I) and bituminite II (post-mature 

bituminite II), sporinite (post-mature sporinite) in post-mature Posidonia Shale are still 

recognisable on the basis of their morphology. This will help to extend the scope of 

application of maceral analysis in such post-mature black shale and will allow a better 

integration of the results of organic petrology in the field of exploration geology.  

 The third part is devoted to elaboration of a depositional model of Posidonia Shale. 

This part of the study is focused on the deposition of the organic matter and the main factors 

favouring its accumulation and preservation. 
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 To improve the quality of the interpretation, two types of graphical visualisation of the 

petrographic results are proposed, primarily based on several factors controlling the 

deposition of the organic matter. Among these, the most important are primary biomass 

productivity in the marine environment and transported adjoining terrestrial organic matter, 

biological degradation related to bacterial activity, and oxygenation of the bottom water. The 

first type of graphical representation is a ternary diagram focusing on the paleoenvironments 

in the water column. The liptodetrinite, alginite and bituminite contents have been used to 

characterise the different paleoenvironments which reflect not only the content of oxygen in 

the water column but also the dynamic conditions. 

The second type of graphical representation used is a scatter plot, assessing the 

paleoenvironmental conditions in the sediments. In order to evaluate the relationships 

between different types of organo-mineral microfacies and paleoenvironmental conditions, an 

Oxidation Index and a maceral Degradation Index are proposed. These indices display the 

degree of preservation of the macerals from the highly degraded to well preserved macerals, 

provide information on the origin of organic matter and permit recognition of the precursors 

of degraded organic matter (AOM).  

 For each of the investigated sedimentary basins, a depositional model of the organic 

matter sedimentation is proposed. These results reveal that the deposition and preservation of 

the organic matter are governed not only by the morphology of the sea floor, circulation of the 

water masses, but by changes in environments over time which enable both the biomass 

productivity and rapid burial of the organic matter in the anoxic ocean floor sediments. These 

environments are triggered not by an instant and continuous rise of the sea level, but more by 

sea-level fluctuations induced by alternate periods of dry and wet climates. 
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KURZFASSUNG 

 Hochauflösende organische petrologische Analyse wurde an mehr als 150 

verschiedenen Bohrkernproben des Posidonienschiefers (Toarcium, Unterjura) aus drei 

Sedimentbecken angewendet: dem Westniederländischen Becken, dem Niedersächsischen 

Becken und dem Süddeutschen Becken. Diese Studie ist in drei Hauptbereiche unterteilt: die 

Bestimmung der Variationen der organischen Mikrofazies, um die Ablagerungsbedingungen 

des Posidonienschiefers zu rekonstruieren, die Bestimmung des Reifegrades der 

Posidonienschiefer aus den drei Sedimentbecken und die Entwicklung des 

Ablagerungsmodells des Posidonienschiefers.  

 Das Ergebnis der organischen Petrographie zeigt, dass die organo-mineralische 

Mikrofazies, die durch die Zusammensetzung der Macerale und der dazugehörigen 

mineralischen Grundmasse gekennzeichnet ist, eine große Streuung aufweist die in 

Abhängikeit zum Gehalt einzelner Liptinite mariner Herkunft und terrestrischer Macerale 

(Macerale aus der Vitrinit- und Inertinitgruppe und Sporinit) steht. Abwandlungen in der 

Zusammensetzung sind als potentielle Indikatoren von verschiedenen Änderungen in den 

Ablagerungsmilieus zu betrachten. Zudem wurde das Augenmerk auf die Herkunft des 

Bituminits gelenkt, der in den meisten mit Kohlenwasserstoff angereicherten Muttergesteinen 

enthalten ist.  

 Alle definierten organo-mineralischen Mikrofazies lassen sich schlecht zwischen den 

Sedimentbecken korrelieren. Lediglich die Bohrungen E und M (Westniederländisches 

Becken) weisen Ähnlichkeiten auf. Die organo-mineralische Mikrofazies von allen 

untersuchten Gebieten enthalten einen speziellen Bituminit Typ. Während Bituminit V mit 

hohen Konzentrationen nur in den Bohrungen des Westniederländischen Beckens beobachtet 

wurde, stieg der Gehalt an Bituminit II erheblich in den Bohrungen des Niedersächsischen 

Beckens an. Der Bituminit III wiederum, war besonders stark im Posidonienschiefer des 

Süddeutschen Beckens vertreten.  

 Der zweite Teil der Arbeit beschäftigt sich mit der Reife des Posidonienschiefer. Die 

Analyse der Vitrinitreflexion wurde hierfür angewendet. In den Proben, in denen keine 

geeigneten Vitrinitpartikel gefunden werden konnten, wurde stattdessen der Tmax-Parameter 

der Rock-Eval Pyrolyse verwendet. Die Reife des Posidonienschiefer des 

Westniederländischen Beckens (0.4%VRr) und des Süddeutschen Beckens (0.4%VRr) sind 

gekennzeichnet durch das Stadium der beginnenden Erdöl-Enstehung wohingegen die 

organische Materie der Posidonienschiefer des Niedersächsischen Beckens (0.5-0.6%VRr) 

reif ist (Hauptstadium der Erdölgeneration). Besonders hohe Vitrinitreflexionswerte zeigt der 

Posidonienschiefer der Bohrung B (3.2-3.6%VRr) des Niedersächsischen Beckens. In diesem 

Fall entspricht die Reife des organischen Materials dem Stadium der Trockengas Bildung.  

 Um die Veränderungen der optischen Eigenschaften der Macerale des 

Posidonienschiefers von dem Hauptstadium der Edölgeneration bis zum Stadium der 

Trockengas Bildung zu studieren, wurden zwei Bohrungen A und B ausgewählt. Der Abstand 

zwischen den Bohrungen beträgt 44 km. Dieser Teil der Arbeit zeigt, dass die Telalginit-

Körper („postmature“ Telalginit genannt), Bituminit I (“postmature“ Bituminit I) und 

Bituminit II („postmature“ Bituminit II), Sporinit („postmature“ Sporinit) im Stadium der 

Trockengas Bildung des Posidonienschiefers anhand ihrer Morphologie immer noch 

erkennbar sind. Dies wird helfen, den Geltungsbereich der Maceralanalyse für solche 

Schwarzschiefer mit hohem Inkohlungsgrad zu erweitern und eine bessere Einbindung der 

Ergebnisse der organischen Petrologie im Bereich der Explorationsgeologie ermöglichen.  

 Der dritte Part widmet sich der Ausarbeitung eines Ablagerungsmodells vom 

Posidonienschiefer. Dieser Teil der Studie befasst sich mit der Ablagerung des organischen 

Materials and den Hauptfaktoren, die seine Anreicherung und Erhaltung begünstigen.  
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 Um die Qualität der Interpretation zu verbessern, wurden zwei Arten von graphischen 

Darstellungen vorgeschlagen die hauptsächlich auf einige Faktoren basieren, welche die 

Ablagerung des organischen Materials beeinflussen. Darunter die primäre Produktivität der 

Biomasse im marinen Milieu und das hinzugefügte terrestrische organische Material, die 

biologische Zersetzung abhängig von der bakteriellen Aktivität sowie die Sauerstoffzufuhr 

des Bodenwassers.  

 Die erste Art der graphischen Darstellung ist ein Ternärdiagramm, das sich auf die 

Paläoablagerungsbedingungen in der Wassersäule konzentriert. Die Gehalte an Liptodetrinit, 

Alginit und Bituminit wurden verwendet, um die verschiedenen Ablagerungsbedingungen zu 

charakterisieren, die nicht nur den Sauerstoffgehalt in der Wassersäule widerspiegeln, sondern 

auch seine dynamischen Verhältnisse.  

 Die zweite Art der graphischen Darstellung ist eine Punktwolke zur Beurteilung der 

Paläoablagerungsbedingungen in den Sedimenten. Um die Zusammenhänge zwischen den 

verschiedenen organo-mineralischen Mikrofazies und Paläoablagerungsbedingungen 

auszuwerten, wurden ein Oxidationsindex und ein Maceral-Degradationsindex vorgeschlagen. 

Diese Indexe zeigen den Erhaltungszustand der Macerale, von stark zersetzten bis gut 

erhaltenen Maceralen, geben Auskunft über die Herkunft und Aussgangsstoffe des zersetzten 

organischen Materials (AOM).  

 Für jedes untersuchte Sedimentbecken wurde ein Ablagerungsmodell vorgeschlagen. 

Diese Resultate zeigen, dass die Ablagerung und Erhaltung des organischen Materials nicht 

nur von der Morphologie des Meeresbodens und der Bewegung der Wassermassen beherrscht 

werden, sondern auch durch langfristige Veränderungen des Milieus welche die Produktivität 

der Biomasse und die schnelle Einbettung des organischen Materials in anoxischen 

Sedimenten des Meeresbodens ermöglichen. Dieses Umfeld wird nicht durch einen 

kurzfristigen und fortwährenden Anstieg des Meeresspiegels ausgelöst, sondern vielmehr 

durch Meeresspiegelschwankungen, herbeigeführt, die auf abwechselnde Trocken - und 

Feuchtklimaperioden beruhen.  
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1.1. A problem statement 

 Organic petrology is a subject with a broad scope originating from coal petrography, 

which dates back to the end of the 19th century as a branch of Earth Science (Stach et al., 

1982). With the increasing economic interest in fossil fuels, organic petrology has extended 

its application to the field of petroleum geology (Taylor et al., 1998; Suárez-Ruiz, 2012). 

Basically, the petrographic evaluation of the maturity of the source rocks and a qualitative 

description of the composition of organic matter have been used.  

 In recent decades, the role of organic petrology has increased. It is frequently used in 

conjunction with results of geochemical analysis in order to provide insight into 

understanding the composition of kerogen. The different ability of kerogen to generate 

hydrocarbon reflects the variability in chemical composition of the organic matter (Huc, 

1990). Organic matter, in terms of organic petrography, can be described by using macerals, 

which represent the highest level of chemical organisation of organic matter (Hutton and Rob, 

1994). The occurrence of the specific maceral assemblages is closely linked to the different 

paleoenvironments in which this organic matter was deposited and preserved. Using not only 

qualitative, but quantitative methods, organic petrology enables light to be shed on the origin 

of some organic components (bituminites and liptodetrinite), which are linked to the 

generation properties of the source rocks, and to reconstruct the depositional environments, 

triggering the sedimentation of organic-rich sediments. Specifically, this method is essential 

in those sediments in which sedimentological transition is not obviously marked by 

lithological differences present at subsurface cutting and logs (Leckie et al., 1990; Pasley and 

Hazel, 1989).  

 Deposition of Posidonia Shale is considered as a cause of a global oceanic anoxic 

event (OAE), which was recorded not only in Europe, but in Canada, Alaska, Japan, 

Australia, Madagascar and Argentina (Farrimond et al., 1989). In Western and Central 

Europe, the Posidonia Shale is one of the most widespread of bituminous shale formations. It 

is also known as “Schistes carton” in France (Paris Basin, Aquitaine Basin, Chalhac and 

Causses Basin), “Jet Rock” in England (Yorkshire Basin, Cleveland Basin) and 

“Posidionienschiefer” in Germany (German Basin and Swiss Basin) (Röhl and Schmid-Röhl, 

2005).  

 Many scientists have shown a particular interest in this bituminous shale formation, 

acting as an economically important source rock of the most oil and gas accumulations in 
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northern Germany, the Paris Basin, Upper Rhine Graben and the Netherlands (Littke et al., 

1991). As an understanding of the origin of organic-rich sediments during the Early Toarcian 

period requires a multidisciplinary approach, much research is devoted to the investigation of 

the Posidonia Shale from a geological, paleontological, paleoecological, sedimentological, 

geochemical point of view. However, few attempts have been successful in the detailed 

quantitative organic petrological investigation of the organic constituents of the Posidonia 

Shale. Moreover, for the first time, high-resolution organic petrography is carried out on the 

Toarcian bituminous shales from the Netherlands. 

 Although a global anoxic event resulted in the deposition of Posidonia Shale, the 

properties of the bituminous shales vary significantly from one sedimentary basin to another. 

This evidence requires more detailed understanding of the depositional environments and 

processes of organic matter deposition, accumulation and preservation.  

 This study presents a detailed description of organo-mineral microfacies of Posidonia 

Shale from the West Netherlands Basin, the Lower Saxony Basin and the South German 

Basin. For the first time, high-resolution organic petrology has been used to describe organo-

mineral microfacies, defining individual macerals which act as a sensitive indicator of 

different conditions and to define petrographic indices in order to reconstruct depositional 

environments of the Posidonia Shale. In addition, this takes the lid off the origin of 

amorphous organic matter, which is still little understood.  

1.2. Location of the studied areas 

 For this study, wells from the West Netherlands Basin (WNB), the Lower Saxony 

Basin (LSB) and the South German Basin (SGB) were selected (Fig. 1-1). The West 

Netherlands Basin is situated in the southwestern part of the Netherlands and the adjacent 

offshore areas (Wong, 2007) (Fig. 1-1). This basin is bounded to the south by the London-

Brabant Massif, forming the boundary with the Roer Balley Graben to the southeast. It 

borders the Ijmuiden High/Zandvoort Ridge, which separates WNB from the Central 

Netherlands Basin to the northeast and the Broad Fourteens Basin to the northwest (van Balen 

et al., 2000). The WNB is one of the set basins which were separated from the bigger 

extensive South Permian Basin in the Triassic time and was later inverted in the Late 

Jurassic/Early Cretaceous time (Betz et al., 1987; Ziegler, 1990; Wong, 2007). 

 The Lower Saxony Basin (LSB) is a relatively small, approximately E-W trending 

basin within the greater South Permian Basin. It is 270 km long and 70 km wide, and is 

bounded to the north by the stable Pompeckj Block and to the west by the Central Netherlands 
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High (Betz et al., 1987; Kockel et al., 1994)). To the south, the LSB is limited by the stable 

Münsterland block and the Harz mountains, and to the east it is bordered by the N-S trending 

Jurassic Gifhorn Trough (Betz et al., 1987). 

Finally, the third studied area is the Swabian Basin which belongs to the South German 

Basin. The latter is a part of an intracratonic basin, which remains an isosceles triangle (Geyer 

et al., 2011). To the west, the basin is bordered by the Upper Rhine Graben, to the northeast 

with the Tertiary vulcanites of the Vogelsberg mountains and by a NW-SE striking fault 

system. The southern border is formed by the Molasse Basin and the folded Subalpine 

molasse of the French Alps. 

 

Fig. 1-1: Location of investigated areas (Modified after McCann, 2008).  

On the map: WNB – West Netherlands Basin; LSB – the Lower Saxony Basin; SGB-SouthGerman Basin.  
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1.3. Aims and objectives of the study 

 This study is a comprehensive organic petrological characterisation of the Posidonia 

Shale and its depositional environments from three sedimentary basins: the West Netherlands 

Basin, the Lower Saxony Basin and the South German Basin. The main objectives of this 

study are the following: 

 to identify and characterise the organo-mineral microfacies in each of the 

aforementioned sedimentary basins, using high-resolution organic petrography; 

 to understand the lateral and vertical organo-microfacies variations; 

 to interpret the results obtained by organic petrography in conjunction with 

geochemical analysis;  

 to reconstruct the depositional environments and develop the hypothesis on their 

origin and evolution; 

 to construct the depositional model of sedimentation of the Posidonia Shale 

 The goals can be fulfilled by providing the results on a microscopic level, using 

qualitative and quantitative methods of high-resolution organic petrography. Petrographic 

investigations were performed on the Posidonia Shale block samples, polished perpendicular 

to the bedding in both reflected light and fluorescence mode in order to increase the quality of 

the work. To better understand the paleoenvironments which control the deposition of 

organic-rich sediments, a specific graphic representation of the results is proposed.  

1.4. Literature overview  

1.4.1. Geology of the investigated sedimentary basins 

 The geological history of the Jurassic from the West Netherlands Basin has been 

studied by Heybroek (1974), Van Wijhe (1987), Ziegler (1990) and Wong (2007). During the 

last decade, several authors have published detailed works on the Lower Jurassic source rocks 

(Bodenhausen and Ott, 1981; De Jager et al., 1996; van Balen et al., 2000). The first 

estimation of expected petroleum resources in the Netherlands was made by Muntendam-Bos 

et al. (2009).  

 General investigations on the geological evolution of Lower Saxony were undertaken 

by Boigk (1968), Stadler and Teichmüller (1971), Betz et al. (1987), Ziegler (1990), 

Baldaschuhn et al. (1991) and Kockel et al. (1994). However, most of the research was 

conducted as a consequence of increased interest in the economically profitable oil and gas 
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fields (Boigk et al., 1974; Plein, 1985; Düppenbecker and Welte, 1989; Binot et al., 1993; 

Kockel et al., 1994). Some of the workers attempted to understand the high thermal anomaly 

occurring in the vicinity of the lacoliths (Bartenstein et al., 1971; Koch and Arnemann, 1975; 

Deutloff et al., 1980; Brauckmann, 1984; Buntebarth, 1985; Teichmüller and Teichmüller, 

1985; Büchner, 1986; Littke and Rullkötter, 1987; Rullkötter et al., 1988; Schmitz and 

Wenzlow, 1990; Leischner et al., 1993). These investigations used vitrinite reflectance 

measurements as a tool for maturity assessment.  

 The geological history of southern Germany has been described by Ziegler (1990), 

Walter (2007) and Geyer et al. (2011). Detailed micropalaeontological, biostratigraphical and 

sedimentological work on Lower Toarcian core sections in southwestern Germany was 

carried out by Riegraf (1985). In his work, the author provided a detailed microfacies 

description of the Lower Toarcian, complemented with numerous paleoenvironmental data. 

More recent works by Röhl and Schmid-Röhl (2005) depicted a sequential stratigraphic 

interpretation of the deposition of the Posidonia Shale from the South German Basin, based 

on sedimentological, geochemical and paleoecological data.  

1.4.1. Petrographic and geochemical characterisation of 

organic matter in bituminous shales 

 Much work has been done on the geochemical and petrographical analysis of the 

composition of the organic matter of bituminous shaless, including the Posidonia Shale 

(Alpern and Cheymol, 1978; Kauffman, 1978; Küspert, 1983; Tissot et al., 1987; Rullkötter 

and Marzi, 1988; Leythaeuser et al., 1988; Röhl and Schmid-Röhl, 2005; Bernard et al., 

2012). Many hypotheses have been put forward regarding its origin. These hypotheses have 

been established mainly from geological, organic petrological and geochemical investigations. 

The geochemical and petrological properties of liptinite macerals, which are the dominant 

organic constituents of bituminous shaless, were reported by Stach (1953), Durand et al. 

(1972), Huc (1977), Espitalié et al. (1977), Teichmüller and Ottenjann (1977), Littke and 

Rullkötter (1987); Stasiuk and Goodarzi (1988), Peniguel et al. (1989), Hollander et al. 

(1991) and Prauss et al. (1991). Many of these studies were devoted to the petrographic 

properties of the liptinite group as a main oil-prone component in bituminous shale 

(Leythaeuser et al., 1988; Littke and Rullkötter, 1987; Stasiuk, 1994). 

 It is evident that Early Toarcian bituminous shaless seem to be well-investigated. 

However, some of the proposed theories' hypotheses of their formation and depositional 
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models have been inter-inconsistent and the factors controlling the sedimentation of Early 

Toarcian bituminous shaless are still a subject of hot debate.  

1.4.2. Existing depositional models of black shales 

 As black shales have a high oil generation potential, numerous authors have attempted 

to understand the main factors triggering the deposition of the organic-rich sediments. In the 

'70s, the point of view about the origin of black shales underwent a revolutionary change after 

the start of the Deep Sea Drilling Project (DSDP). The origin of black shales was linked to the 

global anoxic event (AOE), originally defined by Schlanger and Jenkyns (1976). Although 

this concept does not explain the variation in paleoenvironmental conditions launching the 

sedimentation of bituminous shales, it does not invalidate the concept. However, it requires 

the individual adaptation of the scenario of black shale deposition in the case of each of the 

investigated sedimentary basins (Lipson-Benitah et al., 1990). 

 Many created depositional models describe physical and chemical factors, such as sea 

bottom relief, origin of the oxygen-minimum zone, water mass distribution, position of the 

redox boundary, climate, cloud streamers indicating offshore winds. However, fewer attempts 

have been made regarding the variability of the origin of organic matter and biomass 

productivity. Some of the authors turned to the modern analogies of black shale sedimentary 

basins in order to provide insight into and understanding of black shale sedimentation. Some 

of the created models were based on a deep, enclosed basin with a positive water balance in 

the case of bituminous shale (Caspers, 1957; Degens and Ross, 1974; Demaison and Moore, 

1980); a deep borderland basin with an indicated O2 minimum (e.g. S. California) (Demaison 

and Moore, 1980; Smith and Hamilton, 1983; Thompson et al., 1985); Western continental 

slope; coastal upwelling (e. g. Peru, Namibia) (Demaison and Moore, 1980; Rosenberg et al., 

1983; Arntz et al., 1991); shallow stratified basin (e.g. Baltic Sea) (Goldman, 1924); 

Rosenberg, 1977)) and coastal/intertidal zone (e.g. lagoons, tidal flats) (Jørgensen and 

Revsbech, 1985).  

 However, some processes occurred only in the past and have no analogies in recent 

times. Although many models exist to describe the deposition and accumulation of 

bituminous shales, in this study the main focus of attention lies on the examination of four 

basic models (“silled basin” model, “irregular bottom topography” model, “expanding 

puddle” model, “upwelling” model), which were later supported or invalidated by many other 
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authors (Küspert, 1983, Riegraf, 1985; Röhl and Schmid-Röhl, 2005; Trabucho-Alexandre et 

al., 2012). 

 

1.4.2.1. “Silled basin” model 

 The “silled basin” model was proposed by Pompeckj (1901) (Fig. 1-2A). This model 

is based on the modern Black Sea deep-water basin with restricted circulation and anoxic 

bottom waters caused by a topographic barrier. This model was further developed by 

Sielacher (1982), Küspert (1983) and others. The occurrence of anoxic events in this model is 

explained only by the physical characteristics, but not necessarily by stratification of water 

masses or an euxinic water column, that causes it to fail compared to other existing models 

(Trabucho-Alexandre et al., 2012). 

 

 
Fig. 1-2: Models describing the details of the deposition of Lower Toarcian black shales. 

A) the “silled basin” model; B) The “irregular bottom topography” model; C) the “expanding puddle” model; D) 

The “upwelling” model (Modified after Röhl and Schmid-Röhl, 2005). 

 

1.4.2.2. “Irregular bottom topography” model 

 The “irregular bottom topography” model was introduced by Hallam and Bradshaw 

(1979) and demonstrates the reconstruction of a pronounced sea-floor relief in the Central 

European Basin (Fig. 1-2B). The “expanding puddle” model, as an extended version of the 

previously described model, explains progressive onlapping of black shale facies during the 

Early Toarcian transgression (Fig.1-2C). However, the authors attempted to explain the 

occurrence of black shale by one global anoxic event. Moreover, this model is an 

oversimplification of the existing variety of environments and processes which led to the 

occurrence of organic-rich sediments (Trabucho-Alexandre et al., 2012). 
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1.4.2.3. “Upwelling” model 

 Jenkyns (1985) proposed the “upwelling” model, which has been further discussed in 

the works of Jenkyns and Clayton (1997) and Jenkyns et al. (2001) (Fig. 1-2D). According to 

this model, upwelling at the northern Tethyan margin led to enhanced water surface 

productivity and caused an expansion of the oxygen-minimum layer, which spread into the 

Central European Basin during transgression and launch of black shale sedimentation.  

1.4.2.4. “Shallow water” model 

 The “shallow water” model was proposed by Schlager (1981), in which a slow rise in 

sea level led to stagnation. This model is based on the existence of a permanent stable 

stratification of the water column over the shelf and the absence of bottom currency 

(Trabucho-Alexandre et al., 2012). It was further developed by Wignall (1991), Wignall and 

Newton (2001), later by Röhl and Schmid-Röhl (2005). It was renamed the “transgressive 

chemocline” model, which explains facies distribution, more precisely, onlapping of black 

shale facies and transgressive nearshore black shales in the Central European Basin during the 

Early Toarcian period.  

 Although numerous existing published works relate to the depositional environments 

of bituminous shaless, the details and key triggers of organic-carbon deposition are still 

poorly understood. Moreover, the processes favouring the formation of the Posidonia Shale in 

each of the investigated sedimentary basins differ and should be examined individually.  
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2.1. General outline 

 In the Late Triassic-Jurassic time, the structural outline of Western and Central Europe 

changed dramatically. That reorganisation, caused by a major tectonic event — the break-up 

of the supercontinent Pangea, occurred in the course of several extension phases, followed by 

a period of tectonic quiescence (Wong, 2007).  

 The Early Jurassic period was a period of a tectonic quiescence. It is characterised by 

regional thermal subsidence, caused by salt movements, which, in turn, controlled the 

distribution of Jurassic depocentres of sedimentation (Ziegler, 1988; Wong, 2007). At that 

time, a set of smaller sedimentary basins, such as the West Netherlands Basin, the Lower 

Saxony Basin, occurred from a single extensive Southern Permian Basin in northern Germany 

and the South German Basin, which was a northern margin of paleocean Tethys, in the south. 

Contemporaneously, transgression of epicontinental seas flooded cratonic interiors during 

high stands of sea level, triggering sedimentation of the well-known source rocks Posidonia 

Shale. 

 The Toarcian time was characterised by a cyclical rise in the sea level, probably 

related to the waxing and vanishing of the ice sheets of Siberia (Littke, 1993). In Western and 

Central Europe, the facies pattern was strongly influenced by the interference of the colder, 

lower-salinity Arctic, and the warmer, higher-salinity Tethys waters, as well as by the 

continued influx of clastics from eastern sources (Fig. 2-1). This was accompanied by a 

commensurate run-off of fresh water from the land areas (Littke, 1993). This particularity 

reflected on the diversity and distribution of macro- and microfauna and, as a consequence, on 

the characteristics of the Posidonia Shale as a source rock. 

 In the investigated area, the Posidonia Shale appeared as a large outcrop in southern 

Germany, but smaller and more scattered sets of outcrops in northern Germany. However, it is 

completely overlapped by younger sediments in the Netherlands, where the Posidonia Shale 

was penetrated only by wells (Farrimond et al., 1988). The thickness of the Posidonia Shale 

also varies, depending on the area of deposition. For instance, in northern Germany, the 

thickness of the Posidonia Shale succession is much higher than in southern Germany (Littke, 

1993). Evidently, taking into account all particularities of the Posidonia Shale deposition in 

the different sedimentary basins, a description of geological, tectonic and stratigraphical 

features will be presented individually in order to avoid oversimplifications.  
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Fig. 2-1: Sinemurian-Aalenian paleogeographic map showing principal sedimentary facies distribution in 

Western and Central Europe (Modified after Ziegler, 1982; Littke, 1993). 

Emergent areas: AM-Armorican Massif; BM-Bohemian Massif; F-Fünen High: GH, Grampian Highlands; 

LBM-London-Brabant Massif; MC-Massif Central; PB-Paris Basin; PH-Pennine High; RM-Rhenish Massif; SP-

Shetland Platform; VH-Vindelician High; WH-Welsh High. Cities: A, Aberdeen; AM, Amsterdam; B, Berlin; 

BN, Bern; BO, Bonn; BR, Brussels; C, Copenhagen; H, Hamburg; HN, Hannover; L, London; M, Munich; O, 

Oslo. 

 

2.2. The West Netherlands Basin 

2.2.1. Geological setting 

 Generally, the evolution of the West Netherlands Basin (WNB) governed by tectonic 

events can be subdivided into four stages: 

 (1) Late Carboniferous–Late Permian stage. At the beginning of this stage, the basin 

was situated to the north of the London-Brabant Massif and displayed subsidence, however, 

this trend changed at the time of Variscan orogeny, which caused uplift of the area and widely 

distributed erosion. Sediments corresponding to this stage consist of basal hot shale and coal- 

bearing strata, which gave the latter a way to the younger red-beds series (van Balen et al., 

2000). 

 (2) Late Permian–Middle Jurassic stage. This stage is also well-known as the Prerift 

stage. In Late Permian, WNB formed a relatively stable block. The sedimentary succession  
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Fig. 2-2: Correlation between the Jurassic regional subdivisions of Western Europe and international 

stratigraphic chart (Modified after Brinkmann and Kayser, 1991). 
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comprises fluvial and aeolian sandstones of the Upper Rotliegend group, which was later 

followed by claystone, siltstone and carbonate of the Zechstein Group. The thickness of 

sediments increased towards the Zandvoort Ridge. The uplift event in the Late Permian period 

was changed by regional thermal subsidence in the Early Triassic period. The previous 

extensional phase in the earliest Rhaetian caused the marine transgression across large parts of 

Europe. Once, in the Earliest Hettangian to Earliest Toarcian, basin circulation became 

restricted, a dysaerobic condition governed the sedimentation. Evidently, the well-oxygenated 

condition changed into oxygen-depleted, which was re-established in the latest Toarcian and 

Aalenian, when a series of marine silty and oolitic mudstone was deposited. The next phase of 

uplift led to a decrease of the thickness of the Buntsandstein subgroup (Fig. 2-2) (Ziegler, 

1990; van Balen et al., 2000). In the Middle Triassic–Early Jurassic time, tectonic movement 

triggered the occurrence of a faulting system; this caused differential subsidence of  various 

parts of the basin. The West Netherlands Basin and Roer Valley Graben developed in NW–SE 

to NNW–SSE directions. 

 (3) Late Jurassic–Early Cretaceous stage. Rifting processes, occurring at that time, 

caused the differentiation and thickness variation in different parts of the basin. This stage 

was accompanied by repeated igneous activity, mainly occurring in the southeastern part of 

the WNB (van Balen et al., 2000; Herngreen et al., 2003; McCann, 2008). 

 (4) Late Cretaceous–Quaternary stage. The last stage of basin evolution is 

characterised by inversion of the WNB, which was governed by compressive stress. As a 

consequence of this tectonic event, numerous faults occurred in that period of basin evolution. 

The majority of those fault zones displayed reverse movements. At the beginning of the 

Paleogene period, the subsidence of the WNB increased (van Balen et al., 2000). The Roer 

Valley Graben were strongly inverted during the Late Cretaceous (Sybhercynian/Laramide 

phase), eroding most of the Jurassic and Cretaceous deposits. In the transition zones between 

the Roer Valley Graben and the WNB, distinct structural NNW–SSE and WNW–ESE fault 

directions occurred (Fig. 2-3; 2-4) (van Balen et al., 2000). 
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A B   

Fig. 2-3: Geological map (A) and tectonic map (B) of the West Netherlands Basin (Modified after Walter, 2007; McCann, 2008).  

Geological map: Salzstock-Salt stock; Paläozoicum-Paleozoic; Trias-Triassic; Mittel and Unterjura – Middle and Lower Jurassic; Unterkreide u. Oberjura – Lower and Upper 

Jurassic; Oberkreide – Upper Cretaceous. The other main tectonic elements on Map A are identical to those on Map B. 
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Fig. 2-4: Stratigraphic cross-section across the West Netherlands Basin. See Fig. 2-3 for the location of the cross-section (Modified after Ziegler, 1990).  
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2.2.2. Tectonic features 

 The West Netherlands Basin (WNB) has a Caledonian Crystalline basement, which is 

deeply buried and has been encountered only in the offshore area (van Bergen and Sissingh, 

2007; De Jager and Geluk, 2007). This basement is unconformably covered by the transitional 

complex of the Middle Devonian–Early Carboniferous deposited in horsts and grabens 

occurring in the last phase of Caledonian orogeny horsts and grabens. This transitional 

complex is covered by Late Paleozoic-Mesozoic-Cenozoic sedimentary rocks. The geological 

record comprises more than 10 km of sediments, despite numerous unconformities (De Jager 

and Geluk, 2007). 

 The WNB is fragmented by numerous smaller and bigger tectonic elements trending in 

a NW–SE direction. To the south, it is bordered by the NW–SE- to NNW–SSE-striking Roer 

Valley Graben, which developed in the Jurassic time (Fig. 2-3; Fig. 2-4). Large faults in the 

WNB occurred during the Carboniferous–Permian time and were later reactivated in the 

different phases of tectonic evolution of the basin. Salt movement events led to the 

development of depocentres of Jurassic deposition (McCann, 2008). 

2.2.3. Stratigraphy 

 The Posidonia Shale succession is the most widely distributed and important source 

rock in the Netherlands, appearing in the depth interval between 830 m and 3055 m (van 

Bergen et al., 2013). Its thickness varies from 30 to 60 m across the West Netherland Basin, 

diminishing towards the basin margins and bounding heights (Wong, 2007; Pletsch et al., 

2010). The irregular character of the Posidonia Shale distribution indicates that an erosion 

event occurred as a consequence of the Late Carboniferous inversion (Pletsch et al., 2010)  

 Generally, the Posidonia Shale is a part of the Alterna Group, represented by a dark 

grey to brownish-grey bituminous claystone (Fig. 2-5). Within this formation, the 

composition of the bituminous shaless varies, indicating different paleoenvironmental 

conditions during its deposition (van Bergen et al., 2013). Evidently, the geochemical 

properties and organic petrographic characteristic may also differ within one the Posidonia 

Shale succession.  
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Fig. 2-5: Chronostratigraphic chart and facies variations in the West Netherlands Basin (Modified after McCann, 

2008). 
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2.3. The Lower Saxony Basin 

2.3.1. Geological setting 

 The geological evolutionary history of the LSB, which can be subdivided into four 

stages, started from the Late Triassic time when the LSB separated from the South Permian.  

 (1) In the period from the Late Triassic to the Early Jurassic, the North Sea–German–

Polish Basin was differentiated into small ridges and troughs, which created smaller 

sedimentary basins, including LSB. At that stage, the territory was affected by a stress regime, 

indicating the development of the North Sea rift system. The LSB came into evidence in the 

occurring NNE–SSW trending systems (Betz et al., 1987; Kockel et al., 1994). Corresponding 

sediments consisted of terrestrial lacustrine and fluvio-deltaic clastic series. In Early Jurassic, 

the time of tectonic activity changed into a time of quiescence. Progressing subsidence of the 

basin triggered the expansion of transgression from the Scottish Highlands into northern 

Germany, which led to the re-establishment of marine conditions (Ziegler, 1990). Throughout 

the LSB, Early Jurassic sediments consist of open marine dark coloured organic-rich 

bituminous shale with interbedded limestone layers and concretions. These sediments contain 

a rich fauna of ammonites. 

 (2) The Middle Jurassic–Early Cretaceous stage was characterised by tectonically- 

induced changes of the relative sea level. At this stage, a series of WNW–ESE striking horsts 

and grabens developed. These grabens were filled with a thick series of sedimentary rocks, in 

which depositional environments changed alternatively from open marine to shallow marine, 

to hypersaline and to lacustrine (Kockel et al., 1994). The Pompeckj Block, Brabant, Rheinish 

and Bohemian massifs, which acted as a major source of clastic influx, were uplifted above 

erosional level. The marine connection between the South German Franconian Platform and 

the NW European Basin was interrupted as a consequence of wrench-induced uplift of the 

Rhenish Massif (Ziegler, 1982). The condition of sedimentation changed again to open 

marine at the end of this stage (Betz et al., 1987). 

 (3) In the Late Cretaceous time, the inversion tectonic in the LSB basin involved the 

basement and was accompanied by the uplift of the pre-Permian unconformity surface. Late 

Permian Zechstein salts (Middle-Late Permian) acted as detachment planes in which a fault 

system was developed (Betz et al., 1987). In the centre of LSB a number of Cretaceous 

plutonic laccoliths (Bramsche, Vlotho, Uchte, Nordhorn & Apeldorn) ascended at the 

beginning of the inversion, causing thermal anomalies in adjacent sediments and an injection 
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of hydrothermal fluids (Teichmüller and Teichmüller, 1950; Teichmüller and Teichmüller, 

1951; Stadler and Teichmüller, 1971; Koch and Arnemann, 1975; Deutloff et al., 1980; 

Kockel et al., 1994; Petmecky et al., 1999; Kus et al., 2005; Senglaub et al., 2005). 

 (4) The Tertiary sedimentary rocks were deposited on the northeastern and western 

margins of the LSB and were partly eroded in the Oligocence and Miocene time (Kockel et 

al., 1994). Present-day stress appears only in the Rhenish Massif and in areas adjacent to the 

LSB. Fault systems formed during this period are oriented in a NW–SE direction (Betz et al., 

1987).  

2.3.2. Tectonic features  

 The Lower Saxony Basin is a pull-apart basin with pre-Permian Caledonian-Hercynian 

basement and overlying it the Permian-Mesozoic-Cenozoic sedimentary cover with a total 

thickness of 8 000 km (Betz et al., 1987; Walter, 2007). The LSB includes numerous 

rhomboidal sub-basins, separated by NNW–SSE-trending transitional zones (Betz et al., 

1987). The complex structures and fault assemblages of this basin were formed due to 

repeated reactivations, which took place in a different time of its tectonic evolutionary history. 

The structure profile across LSB is evidently complicated by multiple tectonic elements, fault 

systems, intrusive bodies and salt diapirs (Fig. 2-6; 2-7). 

 Tectonically, the north-west of the investigated region is adjacent to the Niedersachsen 

Tectogene, which is, in turn, bordered by the Pompeckj Block to the north-east and by the 

Munster Upper Cretaceous Syncline to the west-south (Fig. 2-7; 2-8). This tectogene was 

formed in the Jurassic period and changed into a sedimentary basin (Niedersachsen Basin) in 

the Cretaceous time. In Upper Jurassic, the area of Niedersachsen Tectogene was affected by 

a salt diapir event and inverted in the Late Cretaceous period (Walter, 2007).  

 The Pompeckij Block is located between Aller-Linie in the SSE and Ringköbing-

Fünen High to the north (Fig. 2-7). It includes NNE–SSW-trending grabens filled with 

Lower–Middle Jurassic sediments and salt diapirs striking in a NW–SE or from NNE–SSW to 

N–S direction (Betz et al., 2007). Prignitz Wall is situated to the NE of the investigated area 

and bordered by the NW–SE striking Almark Horse to the south-west and S–E-striking 

Brandenburg Horse to the north-east. It is developed in a NW–SE direction and filled, as well 

as the Niedersachsen Basin, with sediments from Permian to Lower Cretaceous and was 

inverted in the Late Cretaceous (Walter, 2007). 
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 The Grimmen region is bordered to the north by the Rügen Horse, which occurred at 

the end of the Later Cretaceous period (Fig. 2-7). In the Grimmen region, sediments deposited 

up to the Cretaceous time were later eroded in Late Cretaceous, consequently, outcropping the 

Jurassic deposits  (Walter, 2007).  

 Smaller tectonic elements (fault system) are oriented in a NNE–SSW direction and, in 

places, WNW–ESE. They were formed at the time of rapid subsidence (Kimmeridgian to 

Aptian) (Petmecky et al., 1999). Fault systems appearing during inversion in the Late 

Cretaceous became reactivated by NW–SE direction convergent wrenching (Betz et al., 

1987).  

2.3.3. Stratigraphy 

 The Jurassic in northern Germany extends over an area of 100 000 km
2
. However, it 

crops out only in the southern part of the Lower Saxony Basin comprising 1 % of all Jurassic 

sediments (McCann, 2008).  

 Within a 100 m sequence of Toarcian sedimentary rocks, the Posidonia Shale has a 

thickness of 25–70 m (Kockel et al., 1994; McCann, 2008). The thickness of this succession 

increases towards the northwestern part of the LSB. The Posidonia Shale appears in the depth 

interval of between 250 and 1300 m (McCann, 2008). It is represented by open marine facies, 

nevertheless, which to the north-east is interfringed with shallow marine sand and adjacent 

terrestrial sediments (McCann, 2008). Specifically, the Posidonia Shale consists of organic-

rich mudstone or limestone of a dark grey to grey colour. The straugraphic features with 

distribution of ammonite zones are depicted in Fig. 2-2 and 2-8 
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Fig. 2-6: Geological map (A) and tectonic framework (B) of the investigated area (red square) and its vicinity (Modified after Betz et al., 1987; Walter, 2007). 

Legend: Präzechstein - Pre-Zechstein (Pre-Middle Permian); Trias - Triassic; Jura - Jurassic; Unterkreide - Lower Cretaceous; Oberkreide - Upper Cretaceous. Selected main 

tectonic structures on the map: Münsterlander Oberkreidemulde – Münster Upper Cretaceous depression; Niedersächsische Scholle (Niedersächsisches Tektogen) – 

Niedersachsen horse; Pompeckjsche Scholle – Pompeckj horse; Fünen- Moen- Hoch – Fünen- Moen High; Rügen Senke – Rügen depression; Grimmener Wall – Grimmen Wall; 

Meckenburg- Brandenburg-Senke – Meckenburg- Brandenburg Syncline; Prignitzer Wall – Prignitz Wall; Altmark- Fläming-Senke – Altmark- Fläming depression; Flechtinger 

Scholle – Flechting horse; Subherzynes Becken – Sub-Hercynian Basin. 
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Fig. 2-7: Two geological profiles across the investigated area in the Lower Saxony Basin; see Fig. 2-6 for their location (Modified after Walter, 2007).  

Legend: Präkambrisches Kristallin – Pre-Cambrian basement; Ungefaltetes Altpaläozoikum – unfolded Lower Paleozoic; Gefaltetes Paläozoikum – folded Paleozoic; 

Ungefaltetes Devon – unfolded Devonian; Ungefaltetes Unterkarbon – unfolded Lower Carboniferous; Ungefaltetes Oberkarbon – unfolded Upper Carboniferous; Rotliegendes – 

Rotliegend; Zechstein – Zechstein (Middle-Late Permian); Trias – Triassic; Jura – Jurassic; Kreide – Cretaceous; Tertiär/Quartär – Tertiary/Quaternary. For the tectonic 

structures, see Fig. 2-6.  
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Fig. 2-8: Chronostratigraphic chart illustrating the Jurassic stratigraphy and the vertical and lateral lithofacies 

variations in the Lower Saxony Basin (modified after McCann et al., 2008). 
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2.4. The South German Basin 

2.4.1. Geological setting 

 As for the previous two basins, the geodynamic evolution of southern Germany can be 

subdivided into four stages as well (Walter, 2007; McCann, 2008).  

 (1) Late Permian–Early Jurassic stage. In the Late Permian time, the area of southern 

Germany was uplifted as a consequence of the Variscan tectonic phase. Evidently, the 

corresponding sediments comprised of conglomerates, arkose sandstones and sandstones,  

were deposited in intermountain sedimentary basins. These basins were subsided under 

increasing pressure from the Bohemian massif. However, in the Stockheim and Erbendorf 

areas, the Rotliegend sediments are represented by coal seams. The total thickness of the 

Stefanian and Rotliegend deposits in southern Germany range from 100 to 2000 m in 

depressions and small basins (Walter, 2007; McCann, 2008).  

 The Late Permian Zechstein sea transgression led to sedimentation of dolomites, green 

mudstones and marls, whose thickness together varies from 200 m in the north of the South 

German Basin up to 5 m in the southwestern area (Geyer et al., 2011). Later, these marine 

sediments were changed by continental reddish sandstones and conglomerates of 

Buntsandstein series (Fig. 2-2). In the Early-Middle Triassic period, a new phase of 

transgression took place (Walter, 2007). The paleoenvironments changed from brackish 

marine to shallow marine (McCann, 2008). Accordingly, anhydride, gypsum and salt 

sediments, with an average thickness of 50 m, were covered by limestones and marls. In the 

Early Jurassic, marine transgression reached its maximum. The PSF of southern Germany was 

deposited at the peak of this transgression (Littke et al., 1991). 

 (2) Middle Jurassic–Early Cretaceous stage. In the middle of the Brown Jurassic 

(Dogger), in the Frankian Alb and eastern Swabian Alb, fine-grained brown sandstones with 

iron ooliths were deposited, which in turn, were covered by mudstones and silty marls (Table 

2-1; Fig. 2-2). In the Upper Jurassic time after a transgression, as a consequence, limestones 

and marls were deposited, and covered by coral and oolith limestones and dolomites. At the 

beginning of the Cretaceous period, these sediments were affected by karst processes. In 

addition, at that time the tectonic style of southern Germany began to change, leading to 

fragmentation of the investigated and adjacent areas. The Bohemian Massif was uplifted, 

whereby the fault systems occurred, trending in a NW–SE direction.  
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Table 2-1: Chronostratigraphic chart of Jurassic of South Germany (Modified after Beurlen et al., 1992). 

 

 (3) Late Cretaceous stage. At the beginning of the Late Cretaceous stage, sediments 

between the Frankian Alb and western part of the basin were eroded. Contemporaneously, the 

Later Upper Cretaceous sea expanded from the southern Molasse basin towards the Frankian 

Alb. The sediments deposited in the Regensburg area were composed of glauconite sands, 

whereas in the north of South Germany, fluval limnic sediments were more common. The 

latter, as a consequence of the further sea expansion, were changed by marine sandstones, 

siltstones, marls and limestones (Mc Cann, 2008). 

 (4) Tertiary–present stage. The structural configuration of the present-day southern 

Germany was formed during this stage. Eustatic sea-level fluctuation induced regression in 

the beginning, which later changed by regional transgression from the area of Frankian into 



GEOLOGICAL FRAMEWORK OF THE INVESTIGATED AREAS 

39 

 

the Swabian Alb. In the area of southern Germany, sedimentation changed from a clastic 

regime to a limnic deposition. Tertiary sediments can be observed on the peaks of the 

mountains or/and in karst gaps, including tertiary faunal remains. In addition, Upper Miocene 

limnic sandstones, mudstones and brown coals were deposited on the western side of the 

Bavarian Forest to the north of the Regensburg, Ries and Steinheimer Basins. As a final 

episode in the geological evolution of  southern Germany, regional volcanism occurred in the 

Upper Rhein Graben and Swabian Alb (Walter, 2007; Geyer et al., 2011).  

2.4.2. Tectonic features 

 Tectonically, the investigated area is limited by the following tectonic elements: to the 

north-west, it is bordered by the Stromberg and Löwensteiner Synclines, to the north-north-

west it borders with the Triassic sedimentary basin, to the north-east it is limited by the 

Steigerwald (Sattel) Anticline and, to the south, by the Swabian Alb (Fig. 2-9).  

 Specifically, the investigated area is a part of the northern edge of the mountain range 

of the Swabian Alb, which stretches across southwestern Germany over a length of 

approximately 220 km from Lake Bodensee in the south-west to the impact crater of the 

Nördlinger Ries in the north-east (Kaufmann and Romanov, 2007). It has a height of between 

700 and 1000 m (Walter, 2007). The landscape represents a tilted plateau, which gently dips 

towards the Danube River in the south. The western part of this plateau consists of the 

sedimentary rocks of White Jurassic ß and the middle and eastern parts, in turn, of White 

Jurassic ϭ and Ɛ respectively (Malm) (Table 2-1). The upper step of the Swabian Alps is 

comprised of sandstones and marls of Brown Jurassic (Dogger) (Table 2-1). At the western 

edge of the Swabian Alps, the tectonic element — namely the Hercynian Hohenzollern 

Graben — striking in a NW–SE direction, can be recognised (Fig. 2-9, 2-10). This Graben is 

30 km in length and its width comprises only 1.5 km. Another tectonic element, the Urach-

Kircheimer Volcanic domain, which occurred in Miocene, is situated in the middle of the 

Swabian Alps. It has a surface of 30x50 km. Its chimney is filled with tuff and basalts. After  

eruptions which took place several times, the paleoenvironment changed, giving way to the 

sedimentation of the marly limestones, limestones and sapropelic sedimentary rocks. These 

sediments are famous for their well-preserved plant prints.  

 Between the Swabian and the Frankian Alb, the Nördlinger Ries impact crater is 

clearly recognised (Fig.2-9, 2-10). It has a round form of 26 km in diameter. In the south, it 

reaches a height of 100 m, in the north it has the shape of a flat wall.  
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 To the south of the Triassic domain, the Frankian depression (Furche) strikes parallel 

to the Swabian Alb. It consists of narrow graben and synlines of 3 – 4 km in width. Almost 

parallel to each other, the Neckar-Jagst-Furche, the Swabian-Frankian Anticline and the 

Swabian-Frankian lineament are located to the north of the Swabian Alb. The lineament of the 

Filder Graben is situated between the Swabian-Frankian Sattel and the Swabian-Frankian 

lineament, striking in a WSW–ENE direction (Fig. 2-10). 

 In this area, anticlines and synclines are fragmented by fault systems in three different 

directions. The first fault system is oriented in a NNW–SSW direction, whereas the other 

strikes in a NW–SE direction and occurred during the Hercynian Orogeny. Finally, the third 

fault system trends in a WSW–ENE direction, fragmenting the base of the Variscan basement 

and younger overlay of sedimentary rocks. 
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Fig. 2-9: Geological map showing the main geological structures of the South German Basin (Modified after Walter, 2007).  

A), General overview; B) Detailed view. Legend: Perm/Präperm – Permian/Pre-Permian; Buntsandstein - Lower Triassic series; Muschelkalk - Middle Triassic series; Keuper - 

Upper Triassic series; Mittel-/Unterjura - Middle/Lower Jurassic; Oberjura - Upper Jurassic; Oberkreide - Upper Cretaceous; Tertiär-Vulkanite - Tertiary volcanites. Tectonic 

elements: Schwäbische Alb - Swabian Alps; Nördlinger Ries - impact crater Nördlinger Ries; Uracher Vullkangebiet - Urach volcanic area; Swäbisches Lineament – Swabian 

lineament; Swäbisch-Fränkischer Sattel - Swabian-Frankian Anticline; Fränkische Furche - Frankian depression; Stromberg Mulde - Stromberg syncline; Löwensteiner Mulde - 

Löwensteiner syncline; Steigerwald Sattel - Steigerwald Anticline. 
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Fig. 2-10: The Swabian-Franconian fault pattern with schematic location of the investigated wells (Modified after Schwarz, 2012).  
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2.4.3. Stratigraphy 

 

 The major Posidonia Shale outcrop is located in southern Germany (Figs. 2-11 – 2-

13). It became famous for well-preserved faunal remains such as ichthyosaurs, fishes, giant 

crinoid colonies, numerous cephalopods, etc. In addition, scientific attention has been 

attracted by the high concentration of coccoliths, representing the first mass bloomings of the 

coccolithophorid algae in Earth's history (McCann, 2008).  

 Generally, the PS is divided into three ammonite zones: the tenuicostatum, falciferum 

and bifrons (Fig. 2-14). These zones in turn consist of ammonite subzones. A gradual 

transition between lower zones, consisting of marls and mudstones, and bituminous shales of 

the middle falciferum zone, is defined as the consequence of a rapid transgression and 

subsidence of the basin (Riegraf, 1985). The bituminous shales of the falciferum zone grade 

into high bituminous shale of the bifrons zone and are intercalated by five carbonate beds, two 

of them (“Oberer Stein”, “Unterer Stein”) are used as stratigraphic marker beds (Figs.2-14, 2-

15) (Riegraf, 1985; Littke et al.,1991). 

 The thickness of the Posidonia Shale varies, depending on the area where it was 

deposited. The maximum thickness was observed in the Langenbrücken Syncline with an 

average of 35–40 m. In a south-westerly direction, the thickness gradually decreases to 2–5 m 

(Geyer et al., 2011). The basal contact of the Posidonia Shale with the underlying rocks is 

transitional, whereas that in northern Germany is erosional (Littke et al., 1991).  

 Lithologically, the Posidonia Shale consists of fine-grained calcareous bituminous 

shales, marls and marly limestones, yielding a low diversity of foraminifera (McCann, 2008). 

The bituminous calcareous shales have a dark colour and are finely laminated. According to 

some workers, bacterial mats and bacterial colonies generally play an important role in the 

fine lamination structure in bituminous shaless, as well as in the formation of amorphous 

organic matter (Geyer et al., 2011). Apart from the bituminous section of the Lower Toarcian 

succession, several lighter coloured beds and a bioturbated unit near the top and the bottom of 

the Posidonia Shale have been encountered as well (Littke et al., 1991). 
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Fig. 2-11: Map showing the outcrop of Lower Toarcian sediments along the Swabian/Frankian Alps and the 

location of the investigated wells (Modified after Ulrichs et al., 1979; Riegraf, 1985; Prauss et al., 1991). 

 

http://www.sciencedirect.com/science/article/pii/S0031018201002012#gr1
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Fig. 2-12: Sedimentological cross-section of the Posidonia Shale Formation across the Swabian Albs (Modified after Riegraf, 1985; Geyer et al., 2011). 

Legend: Bituminöser Tonmergelschiefer (“Ölschiefer”) – Bituminous silty marls (bituminous shaless); Bonebed (“Schlacken”) – Bonebed; Biotubationshorizont 

(“Fucoidenschiefer”) – Bioturbated horizon; Kalkbank - Limestone bed; Bivalven-Schillhorizont – Bivalvia-shell horizon; Karbonat-Konkretionen – Carbonate concretions; 

Stromatolithenbank – Stromatolite bed; Tonmergelstein-silty marls; Tonstein (“Opalinuston”) – mudstones. 

 

SW NE 
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Fig. 2-13: Generalised stratigraphic section through Triassic and Jurassic rocks of southern Germany (top) and areas of principal outcrops: quarries at Dotternhausen (lower right) 

(Modified after Kauffman, 1981). 
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Fig. 2-14: Stratigraphic cross-section of the Posidonia Shale showing the distribution of Ammonite Zones in Dotternhausen (A) and Holzmaden (B) quarries (Modified after 

Urlichs et al., 1979; Röhl et al., 2001). 
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Fig. 2-15: Lithological log with distribution of the Ammonite Zones and Subzones for Dotternhausen-1001 well, 

Bisingen-1002 well and Notzingen-1017 well (Modified after Riegraf, 1985).  

Lithology: Grabgänge (Fucoidenschiefer) – Burrows; Tonmergelstein - clayey marlstone; Kalkmergelstein – 

calcareous marlstone; Tonstein – mudstones; Bituminöse Tonmergelstein - bituminous clayey marlstone. 
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3.1. Introduction 

 The methodology used in this study can be subdivided into 4 stages (Fig. 3-1). The 

first step is the lithological description of cores followed by sampling, which provides the 

original object of the investigations. Once samples are selected, the rock samples are prepared 

for investigation using the bulk of optical and geochemical analytical methods (Fig. 3-1).  

 Organic petrology in conjunction with geochemical analyses in the third stage provide 

insight into the thermal maturity of organic matter (OM), provide its quantitative and 

qualitative assessment, molecular composition, information on the condition of sedimentation, 

degree of preservation of OM and marine productivity. In other words, it provides 

comprehensive characteristics of the organic matter obtained by analytical methods in the 

second step (Fig. 3-1).  

 

Fig. 3-1: Schematic flow chart describing the methodology of the current research.* not performed in this study. 
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 The previous steps enable the final, fourth stage to be reached — investigation of the 

deposition and paleoenvironmental conditions of sedimentation, which, in turn, helps to 

construct the final depositional models of the Posidonia Shale (Fig. 3-1).  

3.2. Sampling procedures and sample preparation 

 Analytical work was obtained from a total of 256 samples from wells, including both 

collected and incorporated data from three sedimentary basins of Western and Central Europe 

(Table 3-1). Investigated bituminous shaless from lithological successions of Lower Toarcian 

were selected by the author in two wells (E, M) from the Netherlands and three wells (A, D, 

B) from northwestern Germany, at the core storage in NAM Assen in the Netherlands (E, M 

wells) and in ExxonMobil Production GmbH Hannover, Germany (A, D, B wells). These 

wells were drilled between the years 1952 and 1981. All these core sections contain coring 

gaps in between, except the core of well D. Samples were taken at approximately equal 

intervals of approx. 2 m for samples from western Netherlands and each approx. 30 cm for 

samples from northwestern Germany. At the core storage, first the macroscopic description 

and testing with HCl of the core samples were performed to determine the carbonated 

character of the rock samples.  

Table 3-1: Sample numbers and type of performed analyses. 

maceral 

analysis

vitrinite 

reflectance

bitumen 

reflectance
Rock-Eval TOC

lipid 

biomarker

isotope 

geochemistry

1 E 20 20 - 20 20 - -

2 M 21 21 - 21 21 - -

3 A 38 38 5 - 38 38 - -

4 D 39 39 5 - 39 39 - -

5 B 39 39 5 2/5** 39 39 - -

6 Dotternhausen-1001 24 24 4 - 24 - - -

7 Bisingen/Zimmern-1002* 41 41 15 0/15 41 Küspert (1983) - Küspert (1983)

8 Notzingen-1017 34 34 34 25 Küspert (1983) - Küspert (1983)

** Bitumen reflectance on homogeneous (first number) and heterogenous (second number) types

No

the West Netherlands

Organic petrology
Number of 

samples
Sedimentary basinWell name

Organic geochemistry

* Incorporated data

Lower Saxony Basin

South German Basin

Type of analyses

 

 

 Samples from the South German well include 24 rock pieces from the Dotternhausen-

1001 well which were provided by Dr. Ligouis. Maceral analysis on samples from the 

Dotternhausen-1001 well was performed by the author. Sampling procedure and the bulk of 

organic petrological analyses, including microphotographs on the Bisingen-1002 and 

Notzingen-1017 wells, were carried out by Dr. B. Ligouis in previous studies. Rock-Eval 

pyrolysis of the Bisingen-1002 well was undertaken by Exxon Production Research – 
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European Laboratories, Bégles, France, in 1986. Geochemical results on samples from the 

Notzingen-1017 well were obtained by BEB Erdgas and Erdöl GmbH in Hannover, Germany 

in 1989. Results of isotope geochemistry for the Dotternhausen-1001 and Bisingen-1002 

wells were previously published by Küspert (1983). 

3.3. Organo-petrological methods 

3.3.1. Maceral analysis 

 The complex of organo-petrographical analyses, which includes maceral analysis and 

vitrinite/bituminite reflectance, were performed by the author at the Laboratories for Applied 

Organic Petrology (LAOP), University of Tübingen, Germany. Qualitative and quantitative 

analyses were carried out using a Leica DMRX – MPVSP microscope photometer. 

Quantitative investigations were undertaken using the point-count method (Pelcon automatic 

point counter attached to the microscope stage) based on 1000 individual determinations of 

maceral per sample. The polished blocks (~2.5x1.5 cm in size) prepared perpendicular to the 

bedding and dry polished, were analysed in both reflected white light and fluorescent 

illumination under oil immersion at 500x magnification.  

 Optical identification of various macerals other than alginite and bituminite is based 

on the internationally accepted nomenclature described in ICCP (International Committee for 

Coal Petrology) Handbooks (ICCP, 1971; ICCP, 1975; ICCP, 1993), Stach et al., 1982 and 

Taylor et al., 1998. Alginite macerals were classified according to Hutton and Cook (1980), 

Cook et al. (1981) and Hutton (1987). These authors have developed the most widely 

accepted nomenclature for liptinite macerals in bituminous shaless.  

 The identification of bituminite I, bituminite II and bituminite III is based on the 

definitions of Teichmüller and Ottenjann (1977). Any other types of bituminite recognised in 

this study were identified and classified according to Gorbanenko and Ligouis (2014).  

3.3.1.1. Classification of organic matter in marine bituminous shales  

3.3.1.1.1. Vitrinite group 

 Vitrinite is composed of macerals derived primarily from plant tissues (e.g. stem, root, 

bark, leaf). Depending on the structure of vitrinite particles, two types of submacerals – 

homogeneous and fine heterogeneous (telinite) – are distinguished. Originally, in low mature 

and mature bituminous shales, vitrinite can be subdivided into two types: indigenous vitrinite 
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and oxidised vitrinite (Appendix A). The first type has a grey colour and sometimes a dark 

brown fluorescence that can only be observed on relatively large particles (Fig. 3-2A). 

Morphologically, indigenous vitrinite is characterised by angular forms and its generally large 

size, which excludes a strong fragmentation due to long transportation from the terrestrial 

domains (more than 50 µm; Lo, 1992; Nzoussi-Mbassani et al., 2005). This type of vitrinite 

particle is non-rounded and has a high length-to-width ratio with a wispy appearance, often 

containing pyrite framboids (Malinconico, 2000). However, indigenous vitrinite may have a 

variety of curving and rounded shapes. In contrast, oxidised vitrinite has a light grey to 

whitish colour and no fluorescence (Fig.3-2B). The particles are smaller in size, more 

equidimensional in form, commonly well-rounded and often show oxidation rims, which is 

attributable to the long transport prior to burial in sediments (Lo, 1992; Nzoussi-Mbassani et 

al., 2005).  

 

A  B  

Fig. 3-2: Photomicrographs showing examples of indigenous (A: dark grey particles) and oxidised vitrinite (B: 

light grey particles) in well A. Reflected white light, oil immersion.  

3.3.1.1.2. Liptinite group 

Alginite and liptodetrinite  

 In mature Lower Toarcian shales, alginite macerals which are derived from algae vary 

considerably with respect to size, morphology, internal structure and fluorescence intensity. 

According to their morphology and size, and the alginite classification of Hutton and Cook 

(1980), Cook et al. (1981), two alginite macerals have been distinguished: telalginite and 

lamalginite. 

 Telalginite consists of marine-derived algae as well as brackish algae (Botryococcus). 

Telalginite exhibits either a flattened disc-shaped (thick-walled algae: Tasmanites, 

Pterosphaeridia or a spindle-shaped thin-walled large algae: (Leiosphaeridia, Pleurozonaria, 

Campenia and/or Lancettopsis; see Mädler, 1963; Prauss et al., 1991). It may show a 

corroded outline or be broken, indicating high energy paleoenvironments (Fig. 3-3 A, B). The 
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length of Tasmanite-derived telalginite ranges between 60 and 120 μm and its width is about 

4–12 μm, while those derived from Campenia and/or Lancettopsis have a size of from 210 to 

300 µm. Leiosphaeridia-derived telalginite has an average size of 180 µm. In reflected white 

light, telalginite exhibits a brown to dark brown colour, and has a yellow and brown-yellow 

fluorescence of variable intensity (Fig. 3-3 C-E; 3-4 A, B).  

 In the investigated wells, Botryococcus-derived telalginite appears in two forms. One 

is probably related to Botryococcus braunii and the larger form to Botryococcus reinschia. 

The size of Botryococcus braunii is 60 µm, whereas that of the other form is 90 µm. Both 

telalginite exhibit an orange or light brown colour in reflected white light and have a yellow 

fluorescence of middle to high intensity (Fig. 3-4 B, C). 

 Lamalginite occurs from a variety of precursors such as algae, dynocysts and 

acritarchs. In the investigated bituminous shale, dynocysts were not encountered, while 

acritarchs were present in some samples. Acritarchs, which are considered by most 

palynologists to have algal affinities, are small spiny cysts. They have a yellow-green or green 

intense fluorescence and variable size (Fig. 3-3 F). In the Early Jurassic, most genera are 

regarded as indicating nearshore, estuarian to shallow lagoon and/or slightly brackish water 

environments (Prauss et al., 1991). Lamalginites are classified as discrete, filamentous and 

layered, according to Hutton and Cook (1980), Cook et al. (1981), and each category was 

counted separately (Fig. 3-3 B, E).  

 Discrete lamalginite is more common compared to filamentous lamalginite. It occurs 

as a short filament and has an average size of 4 µm. Filamentous lamalginite occurs as a thin 

filament, with no or little recognisable structure in the polished sections prepared 

perpendicular to the bedding. Layered lamalginite occurs as a lamellar lamalginite with an 

average size of 100 µm. Lamalginite exhibits a yellow fluorescence of moderate intensity 

(Fig. 3-3 B, E).  

 Liptodetrinite, which is defined as tiny fragments of liptinite macerals, occurs in 

variable concentrations scattered in the mineral groundmass and in association with bituminite 

I (Taylor et al., 1998). In the Posidonia Shale, it appears in two forms. The first form occurs 

as very short rods or filaments and is of a minute size, whereas the other form occurs as 

rounded bodies with a diameter of 4 µm. The content of liptodetrinite can be overestimated 

due to the difficulty of distinguishing it from the small spherical Nostocopsis algae (Mädler, 

1963) which is usually classified in discrete lamalginite. Liptodetrinite is barely visible in 

reflected white light and shows yellow fluorescence of middle to high intensity (Fig. 3-4 D).  
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A  B  

C  D  

E  F  

Fig. 3-3: Examples of different macerals of the liptinite group.  

A), Strong fluorescing “corroded” telalginite derived from Tasmanites; B), Strong fluorescing Tasmanite-derived 

telalginite with broken outline; yellow fluorescing layered lamalginite (ll); C), Tasmanite-(T), Campenia-(C), 

Leiosphaeridia (L)-derived telalginite; D), Pterosphaeridia-derived telalginite; E), Lancettopsis (L)-derived 

telalginite; discrete lamalginite (dl); filamentous lamalginite (fl); F), Acritarch exhibits a green-yellow 

fluorescence of high intensity;. Fluorescence mode, oil immersion. 
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A  B  

C  D  

Fig. 3-4: Photomicrographs showing different maceral examples of liptinite group.  

A), Pleurozonaria-derived telalginite (P); B), Leiosphaeridia-derived telalginite; C), Botryococcus reinschia (top 

left) and Botryococcus braunii (oval-shaped algae, bottom); D), different types of liptodetrinite: massive (white 

circles) and “classic” types (red circle). Fluorescence mode, oil immersion.  

Bituminite 

 Bituminite, defined by organic petrologists as structureless organic matter (ICCP, 

1993; Taylor et al., 1998), is commonly the major organic component in most potential source 

rocks (Teerman et al., 1995). Palynologists, who studied isolated kerogen in transmitted light, 

use the terms “amorphous”, “sapropelic” or “amorphogen” to qualify the structureless organic 

matter in sediments (Tyson, 1995; Taylor et al., 1998). It may be lenticular in shape, when 

observed in white reflected light, in a polished section perpendicular to the bedding plane, and 

has variable reflectance and fluorescence properties, depending on its origin and the maturity 

of the rock sample. In mature bituminous shales, bituminite is generally wispy, and is 

elongated to lens-shaped, with a granular to pitted or moderately homogeneous surface. 

Bituminite is associated with fine occurrences like liptodetrinite, micrinite and faunal relics 

(Teerman et al., 1995). The origin of bituminite is still uncertain and there is no widely 

accepted nomenclature for this maceral (Teerman et al., 1995).  

Bituminite (amorphous organic matter) originates from a variety of precursors, which, 

in turn, provide information on paleoenvironments. Therefore it is important to take into 

account the precursors of amorphous organic matter in studies of sedimentary organic matter. 

Structureless organic matter is not only a product of bacterial degradation of terrestrial 
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material, algae, faecal pellets or bacterial mass itself, but instead it also seems to be formed 

from dissolved organic matter, which is later absorbed by mineral matrix (Stasiuk and 

Goodarzi, 1988; Rullkötter et al., 1992; Tyson, 1995; Hutton and Rob, 1994; Taylor et al., 

1998).  

 Three types of bituminite macerals were introduced by Teichmüller and Ottenjann 

(1977) namely bituminite I, bituminite II and bituminite III, in the Toarcian Posidonia Shale 

of Germany. Later the ICCP approved their definition for rocks other than coals (ICCP, 

1993). In addition to the “classic” bituminite types, other bituminites, called bituminite IV, 

bituminite V and bituminite VI, have been encountered in the investigated samples of 

Posidonia Shale (Gorbanenko and Ligouis, 2014). These new types of bituminite have been 

described and defined on the basis of their optical properties, which are closely linked to 

different paleoenvironmental conditions.  

The following definitions of the three types of bituminite are based on the 

observations made in this study in early mature and mature bituminous shales. 

 Bituminite I has an indistinct lens shape (streaks) with a length of up to 60 μm. It is 

characterised by a mid to dark grey colour in reflected white light, a very low reflectance and 

a light brown to dark brown fluorescence of weak to moderate intensity (Fig.3-5 A, B). It 

often contains yellow fluorescent liptodetrinite inclusions. 
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A  B  

C  D  

E  F  

G  

Fig. 3-5: Examples of the different types of bituminite in mature Posidonia Shale.  

A), Bituminite I (Bit I) in the mineral bituminous groundmass rich in framboidal pyrite. Reflected white light, oil 

immersion; B), The same field of view in fluorescence mode, oil immersion. Note the bright fluorescing liptodetrinite 

inclusions in the bituminite I (Bit I). The greenish-brown fluorescing mineral bituminous groundmass contains liptodetrinite 

and lamalginite. C), D), Bituminite II (Bit II) lenses in the mineral bituminous groundmass with telalginite probably derived  

from Pleurozonaria in reflected white light, oil immersion (C) and fluorescence mode, oil immersion (D); E), Bituminite III 

(Bit III) with inclusions of zooclasts (dark brown) and light grey micrinite. Reflected white light, oil immersion; F), The 

same field of view in fluorescence mode, oil immersion. Note orange fluorescing zooclast inclusions; G), Bituminite IV (Bit 

IV) in the mineral bituminous groundmass together with bituminite I (Bit I) and bituminite II (Bit II). Fluorescence mode, 

oil immersion. 
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 Bituminite II occurs as thick elongated lenses associated with small carbonate crystals. It 

exhibits a brown colour in reflected white light and a yellowish-brown to reddish-brown fluorescence, 

often with greenish fluorescing oil expulsions (droplets) (Fig. 3-5 C, D).  

 Bituminite III is defined as thick elongated bodies often associated with fluorescent  

 

A  B  

C  D  

Fig. 3-6: Examples of bituminite V and bituminite VI in mature Posidonia Shale.  

A), B), Bituminite V (Bit V) fluorescence mode, oil immersion. Note the bright fluorescing liptodetrinite 

inclusions in parts of the bituminite V; C), D), Bituminite VI dense network in the carbonate bituminous 

groundmass. Reflected white light, oil immersion (left) and fluorescence mode, oil immersion (right).  

 

phosphate faunal remains (Fig.3-5 E, F) (Prauss et al., 1991; Teichmüller and Ottenjann, 

1977). In Fig. 3-5 E, bituminite III is filled with micrinite and contains dark brown fishbones. 

In fluorescence mode it exhibits dark brown fluorescence.  

 Bituminite IV has a few similarities to bituminite I (Fig. 3-5 G). This unstructured 

material occurs as thick lenses of irregular outline. Similarly to bituminite I, it has micrinite 

inclusions, but contains no liptodetrinite and shows green fluorescence.  

 Bituminite V has optical properties very close to the bituminite encountered in the 

bituminous shales of the Kimmeridge Clay Formation in Dorset, England (unpublished 

Vogler, 2014) and has not previously been described in Posidonia Shale (Fig. 3-6 A, B). It 
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exhibits a dark grey to grey-brown colour in reflected white light and an orange-brown or 

greenish-brown fluorescence of moderate intensity. Its size is variable and its length ranges 

from 20 to 200 μm. 

 Bituminite VI has already been defined by Creaney (1980) as a “matrix-bituminite” 

(Fig. 3-6 C, D). It consists of amorphous organic matter, which occurs as a “network” 

between the carbonate crystals of calcareous groundmass and calcareous concretions. It has an 

orange-brown or brown colour in reflected white light and an orange fluorescence. 

 

Sporinite and cutinite 

 Sporinite and cutinite are terrestrial-derived liptinite macerals (Taylor et al., 1998). 

Sporinite, which corresponds to microspores and pollen grains released by terrestrial plants, is 

rare in the investigated Posidonia Shale. In mature samples, it has a very low reflectance 

(brownish or greyish coloured) and an orange-brown fluorescence of variable intensity. 

Morphologically, two different types of sporinite have been identified. One has a smooth 

outline, whereas the other shows ornamentation (Fig. 3-7 A). Both types are of a size which 

does not exceed 30 µm. In addition, cutinite which corresponds to the cuticles of leaves, is 

identified by its typical morphology (Fig. 3-7 B). Optical properties of this maceral are similar 

to those of sporinite.  

 

A  B  

Fig. 3-7: Examples of sporinite and cutinite in the investigated Posidonia Shale. 

A), Sporinite showing ornamentation (white arrows) and variable fluorescent colour; B), Cutinite (white arrow); 

in white circles showing greeny-yellow fluorescent coatings on coccoliths;  

 

Secondary macerals: migrabitumen, exudates and oil 

 Migrabitumen or solid bitumen, which are secondary organic products generated from 

fossil organic matter during diagenesis and catagenesis (see Alpern et al., 1994; ICCP, 1993), 

are relatively rare in the investigated shales. Their shape is inherited from the form of the 

cavities they occupy, because it is a non-crystalline material (Schoenherr et al., 2007). The 

size of migrabitumen “particles” can be classified as intergranular pore fillings and reach 
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more than 200 µm in some samples of the investigated Posidonia Shale. Although 

microorganisms, for instance, algae, are the possible source material for migrabitumen, 

sporinite and bituminite might be also considered as a precursor of migrabitumen (Jacob, 

1989; ICCP, 1993). However, in addition, it may also have been formed by biodegradation of 

oil or from de-asphalting (Petersen et al., 2013). Migrabitumen may indicate oil migration of 

any distance from a micron to tens of miles (Landis and Castaño, 1995). 

 The earliest classification of bitumen originated from the materials industry (Abraham, 

1938). This primarily descriptive scheme distinguishes between bitumen by differing 

solubility in CS2. Subsequent studies related to the petroleum industry recognised the 

importance of the solubility of migrabitumen for potential geochemical applications 

(“pyrobitumen” Landis and Castaňo, 1995). The term “solid bitumen” was invented by (Hunt, 

1979), signifying secondary solid bitumen (secondary macerals) generated from fossil organic 

material during diagenesis and catagenesis. Curiale (1986) classified solid hydrocarbons with 

respect to the relative timing of oil generation based upon comprehensive biomarkers and 

bulk geochemical data. Based on petrographic techniques, the first genetic classification of 

solid bitumen was made by Abraham (1938). This has since been revised by Jacob (1989), 

who classified “migrabitumen” into 8 groups. He characterised and described them from an 

organic petrographical and geochemical point of view (Fig. 3-8 A, B). Klubov (1993) broadly 

classified solid hydrocarbons based upon the type of thermal regime and dominant 

hydrocarbon assemblages.  

 The formation of bitumen or migrabitumen (for more details, see Jacob (1989) begins 

with a vitrinite reflectance of about 0.35 – 0.60 %Rr. During processes of maturation of the 

migrabitumen, their reflectance increases and, in some cases, an increase in the intensity of 

optical anisotropy. Based on vitrinite reflectance measurements, Jacob (1989) subdivided the 

reflecting bitumen into epi-impsonite (VRr 0.7 – 2.0 %), meso-impsonite (VRr 2.0 – 3.5 %) 

and cata-impsonite (VRr 3.5 – ca. 10 %) (Fig. 3-8 B). The impsonites may be optically 

isotropic and anisotropic.  



CHAPTER 3 

64 

 

A)

Maceral group Maceral subgroup Maceral

ozocerite

asphaltite asphalt

gilsonite

glance pitch

grahamite

wurtzillite

albertite

epi-impsonite

meso-impsonite

cata-impsonite

Migrabitumen

impsonite

 

 

B)  

Fig. 3-8: Classification of migrabitumen A) petrographical, B) geochemical (Modified after Jacob, 1989). 

 With temperature increase, the migrabitumen might appear in one or two 

“generations”. One is a heterogeneous bitumen, the other, a homogeneous bitumen (Fig. 3-9 

A, B). The homogeneous type represents the “dead” carbon (Taylor et al., 1998) and loses its 

capability to generate petroleum, compared to the heterogeneous type, which can produce 

natural gas or condensate (Jacob, 1989). Landis and Castaňo (1995) define the portion (< 0.7 

%Bro – Bro=bitumen reflectance in oil immersion) of the series that yields some “bitumen”, 

known in modern petroleum geochemistry as “solid bitumen”. The migrabitumen (Bro > 0.7  

%) is characterised by a minor extractable fraction. 
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A  B  

C  D  

Fig. 3-9: Photomicrographs illustrating the different types of secondary macerals. 

A), Post-mature telalginite consisting of high reflecting homogeneous migrabitumen; B), Low reflecting 

heterogeneous migrabitumen associated with a recrystallised calcareous bioclasts; C), Phosphatic fishbones 

showing yellow fluorescing oil exudates; D), Spindle-shaped telalginite filled by calcareous and framboidal 

pyrite, showing bright yellow fluorescing oil droplets. Reflected white light (upper row), fluorescence mode 

(lower row), oil immersion.  

Another secondary maceral exudatinite appears in the Posidonia Shale as an infilling 

in the interspace of fishbones. This maceral might be considered as an asphaltic migrabitumen 

(Taylor et al., 1998). It is barely recognisable in reflected white light. However, in 

fluorescence mode it has an orange colour of high intensity (Teichmüller, 1974) (Fig. 3-9 C). 

 Oil is quite a common secondary maceral in the investigated bituminous shales of the 

mature stage. It appears as inclusions in single carbonate grains and as droplets in bituminous 

mineral groundmass or associated to alginite and bituminite II and III. Oil has a green patchy 

fluorescence of high intensity (Fig. 3-9 C, D).  

 

3.3.1.1.3. Inertinite group 

 The inertinite group in the Posidonia Shale samples is represented by the primary 

macerals, fusinite, semifusinite, secretinite, inertodetrinite, natural char and the secondary 

maceral, micrinite. Fusinite and semifusinite are strongly fragmented wood tissues (structured 

particles, isolated cell walls) and are distinguished by their variable degree of oxidation. 

Fusinite has a light grey to whitish colour in reflected white light, while semifusinite has a 
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darker colour, but is still lighter than indigenous vitrinite (Fig. 3-10 A). These macerals might 

be produced by different processes, such as forest fires, bacterial oxidation or sub-surface 

oxidation in terrestrial domains (Taylor et al., 1998). 

 Secretinite has distinct morphological (non-cellular) properties. It is composed of 

commonly round, vesicled to non-vesicled, and equant to elongate bodies without obvious 

plant structure (ICCP, 2001). It originated from secretionary canals or sacs in vascular plants 

(Taylor et al., 1998). In the Posidonia Shale, this maceral is rare. It has a light grey colour in 

reflected white light and no fluorescence. 

 Inertodetrinite consists of redeposited debris of fusinite, semifusinite, sclerotinite, and 

other small (<10 µm in size) fusinitised plant remains (Taylor et al., 1998). Many small 

fragments are probably formed through river transportation. However, small organisms might 

also contribute to the formation of this maceral.  

 

A  B  

Fig. 3-10: Photomicrographs showing different macerals of the inertinite group.  

A), Remains of semifusinite (grey colour) and inertodetrinite (light grey colour) in calcareous bituminous 

groundmass; B), Micrinite network (white arrows) replacing bituminite II in post-mature Posidonia Shale. Note 

the association of micrinite with small calcareous crystals. Reflected white light, oil immersion.  

 Natural char occurs in conditions of oxygen deficiency, where fire has taken place 

(Kwiecińska and Petersen, 2004). It is characterised by a random distribution of pores and a 

varying porosity. In well D, the Posidonia Shale contains char in a minute amount. It appears 

as particles with porous structures and a light grey colour in reflected white light and has a 

size of approximately 30x20 µm (Fig.3-11).  
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Fig. 3-11: Photomicrographs illustrating example of char in well D.  

Note the light grey colour of char particles (white arrow). Reflected white light, oil immersion.  

 Micrinite is a finely particulate secondary maceral, occurring as whitish rounded 

grains apparently about 1 µm in diameter, commonly accumulated in aggregates (Taylor and 

Liu, 1989). It has a relatively high reflectance and no fluorescence (Fig. 3-10 B). Teichmüller 

and Ottenjann (1977) described micrinite as a maturation product of bituminite in bituminous 

shales. Alpern and Cheymol (1978) stated that the micrinite percentage increases when the 

fluorescence of liptinite begins to diminish, suggesting that it occurs during maturation from 

lipoid substances. Thus, micrinite represents “dead carbon”, left over as hydrocarbon 

generation took place in organic-rich sediments and is considered to be a secondary maceral 

or a product of thermal maturation from certain vitrinite, liptinite macerals or bituminites 

(Teichmüller, 1974; Mukhopadhyay et al., 1985; Stach et al., 1982; Taylor and Liu, 1989; 

Taylor et al., 1998; Faraj and Mackinnon, 1993). 

3.3.1.2. Mineral matter in the investigated Posidonia Shale 

 Apart from the organic components in the Posidonia Shale, mineral matter was also 

identified and taken into account in the maceral analysis. Mineral matter includes detrital 

minerals (quartz and micas), glauconite, gypsum, pyrite, peloids, carbonate minerals (isolated 

carbonate crystals, dolomite), zooclasts (fishbones, shell remains and coccoliths) and different 

types of mineral groundmasses (calcareous, clayey and their transitional forms). The 

classification of the mineral matter will not be developed in this chapter, as it is not the main 

subject of the study. However, a detailed description of the mineral matter will be given in 

Chapter 4. For more details regarding zooclast nomenclature, the author advises the reader to 

consult Tyson (1995), and Boggs (2009) for mineral matter classification. 
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3.3.1.3. Limitation of the maceral analysis 

 Organic petrography, particularly, maceral analysis, is widely used in the coal and 

petroleum industries for its rapid results and a technique that does not have specific 

requirements. Although some scientists were sceptical about the resolution of organic 

petrography, this method of optical investigation of organic matter has many applications in 

different branches of science, including the petroleum industry. Nevertheless, during the 

maceral analysis procedure, the worker needs to pay attention to the evaluation of the results: 

(1) Although maceral analysis has become more accurate today compared to that 

of past decades, the risk of overestimating or/and underestimating the concentration of 

different organic components still exists and depends on the experience of the worker.  

(2) Resolution of maceral analysis is equal to the minimal scale resolution and 

makes up 2µm by using a magnification of 500x (international standard). In this case, the risk 

of overestimation of fine-dispersed particles increases rapidly. In particular, the micrinite 

definition is close to or less than, 1µm in grain size (Taylor and Liu, 1989). It is difficult or 

impossible to observe and count precisely many grains of that size. 

(3) Fluorescent organic matter is predominant in many known oil-source rocks. To 

obtain accurate and relevant results, maceral analysis, both in reflected white light and in 

fluorescent mode, is required. However, some of the macerals have no fluorescence and their 

recognition is possible only in reflected light or by use of polarised light. This evidence 

requires time resources and the extreme attention of the operator. 

(4) Oil in mature bituminous shales is quite a common component. On the one 

hand, it indicates oil expulsion and the good quality of the source rocks. However, on the 

other hand, it results in a problem of the identification of macerals and/or their description. 

Increased immersion caused by the expulsed oil exhibits a green fluorescence. This 

complicates the maceral analysis in fluorescence mode and reduces the accuracy of the 

obtained results. To avoid errors and in order to obtain appropriate results, the regular 

exchange of oil is required.  

(5) Gaps and/or lack of classification is another problem in maceral analysis. The 

nature and origin of the structured organic matter is well understood, whereas that of 

bituminite macerals or, in other words, amorphous organic matter, is still debated. Currently, 

there is no accepted classification of bituminites. Therefore, this complicates the evaluation of 

organo-petrographic results. 
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(6) Macerals and zooclasts showing similar optical properties. Together with the 

point previously described, there is still the actual problem of the recognition of some 

macerals. In bituminous shale, some zooclasts show optical properties similar to vitrinite 

particles or to bitumen. In some cases, this identification, based on morphological recognition 

and differences existing between zooclasts, vitrinite and bitumen, becomes an intractable 

issue. This is related to the experience of the analyst. In any event, these cases are so rare that 

they have no influence on the results. 

3.3.2.  Vitrinite reflectance and bitumen reflectance as 

indicators of organic matter maturity  

3.3.2.1. Vitrinite reflectance 

3.3.2.1.1. Instrumentation and operating conditions 

 Vitrinite reflectance is used as a maturation parameter in coals and other sedimentary 

rocks (Littke et al., 2012). Apart from developing technologies and problems encountered due 

to measuring procedures of vitrinite reflectance, this parameter is still considered as the most 

sensitive thermometer and widely used for basin modelling and maturity assessment of source 

rocks. 

 Generally, two main approaches are used to determine the reflectance of vitrinite in 

sediments and, consequently, to distinguish indigenous and oxidise vitrinite in immature, 

mature and post-mature oil shales. The first approach consists of measuring the random 

reflectance of about 50–100 particles, which is intended to represent the indigenous vitrinite 

in the studied sample. Usually vitrinite particles with the lowest reflectance are assumed to 

reveal the values of indigenous vitrinite. The second approach is to use the morphology of 

recycled and indigenous vitrinite as an identification parameter (Nzoussi-Mbassani et al., 

2005). In post-mature oil shales only the morphological criteria described before can be used 

to distinguish indigeneous vitrinite from recycled. It must be taken into account that vitrinite 

at high maturation level has a light colour in reflected white light, similar to fusinite. In 

addition, anisotropy of fusinite and vitrinite particles increases with temperature and becomes 

striking, as previously described. Hence, all the criteria mentioned above, especially size and 

shape, are not specific to one type of vitrinite and might depend on the particular depositional 

environment and the local maturation history (Nzoussi-Mbassani et al., 2005). 
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 Measurement of vitrinite reflectance in investigated bituminous shales was carried out 

under standard conditions (at 500x magnification, under oil immersion, using monochromatic 

light at wavelength of 546 nm and at 23°C; Taylor et al., 1998) on 5 selected samples having 

appropriate vitrinite particles of good quality (Borrego et al., 2006) from different beds of 

Posidonia Shale for each well from northwestern Germany and the western Netherlands. For 

calibration procedure, different standards were used: the higher standards (0.589 %Rr – 

“sapphire glass” for early mature bituminous shale; 1.24 %Rr – “glass prism” for mature 

bituminous shales; 3.112 %Rr – “cubic zirconia” for post-mature oil shales) to adjust the 

measuring system, whereas the lower standards (0.529 %Rr – “glass” standard for early 

mature bituminous shale; 0.589 %Rr – “sapphire glass” for mature bituminous shale; 

1.689 %Rr – “gadolinium-gallium-granat” for post-mature oil shales) to prove the quality of 

the calibration.  

3.3.2.1.2. Limitation of vitrinite reflectance method  

 Although this method of maturity assessment is considered as the most powerful tool, 

the vitrinite reflectance technique has several problems and limitations which might be 

encountered by petrographers due to the measurement procedure. The most common are 

viewed below. 

 (1) Polishing quality of samples. The poor quality of preparation can significantly 

lower the result of vitrinite reflectance (Schegg, 1993). A clean, uniformly flat and scratch-

free surface enables high-quality values of vitrinite reflectance to be obtained (Littke et al., 

2012). 

 (2) Identification of “good” vitrinite particles. Oxidised vitrinite, which reflects 

previous burial history (Nzoussi-Mbassani et al., 2005, Borrego et al., 2006), cavings and 

mud additives (in cuttings) and migrabitumens (in cuttings), are the cause of most of the 

problems (Lo, 1992) related to the recognition of the indigenous vitrinite population in mature 

and post-mature sediments. To distinguish vitrinite from other particles with similar 

morphology considerable care, interpretative skills and experience are required (Lo, 1992). 

 (3) Size of particles, quality and quantity of measurements. Taking into account the 

vitrinite in sedimentary rocks (generally smaller than or about 10 µm in size), there is 

difficulty in recognising its morphology and identifying its type (Mukhopadhyay, 1992). 

Moreover, it has been found that at least 20 measurements on indigenous vitrinite are needed 

to accurately calculate the mean reflectance (Barker and Pawlewicz, 1993). However, it is 

well recognised that some organic facies are poor in indigenous vitrinite and it is difficult to 
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obtain even 20 measurements (Malinconico, 2000). For this reason, it is better to focus the 

measurements on good quality vitrinite particles.  

 (4) Different population of the vitrinite in investigated samples. In the investigated 

samples of Posidonia shale, the existence of different populations of vitrinite particles has 

been clearly observed: vitrinite with different content of hydrogen (weathering); vitrinite-like 

particles; vitrinite impregnated with bitumen (Fang and Jianyu, 1992; Schegg, 1993). 

 (5) Vitrinite reflectance at high level of maturation. Organic petrographers can 

encounter problems measuring vitrinite reflectance in sediments with dispersed organic 

matter, especially in post-mature source rocks. As previously mentioned, with temperature 

increases, the chemical reorganisation of vitrinite begins. With a vitrinite reflectance value 

below 0.7 %, the reflectance increases slowly as a result of the limited formation of polycyclic 

aromatic molecules compared to those of 0.7 – 3.0 %VRr. For vitrinite with reflectance of 

more than 3.0  %Rr, the change in relation of aromatisation to Rr is due to the growth of 

aromatic sheets that occurs in such vitrinites of high maturity, and appears to produce a rapid 

increase in the anisotropy of the vitrinite (Carr and Williamson, 1990). According to Zilm et 

al. (1981) and Pugmire et al. (1982), in the meta-anthracite stage, the reflectance of inertinite 

is surpassed by the maximum reflectance of vitrinite. This is due to the higher hydrogen 

content and the tendency towards early pre-graphitisation (Durand et al., 1986; Taylor et al., 

1998).   

 (6) Variation of vitrinite reflectance values caused by the presence of liptinite 

macerals. Many authors mentioned in their work the phenomenon of lower vitrinite 

reflectance values than expected in samples with a high content of liptinite macerals (Hutton 

and Cook, 1980; Kalkreuth, 1982; Newman and Newman, 1982; Durand et al., 1986; Prauss 

et al., 1991; Fang and Jianyu, 1992). Some workers believe that bitumens or hydrocarbons 

impregnated into vitrinite particles can meet lower values than expected (Hutton and Cook, 

1980). This is an accepted fact by the majority of authors.  

 (7) Mineral groundmass and pyrite. The influence on vitrinite reflectance values of 

different types of mineral groundmass and pyrite framboids has been debated for a long time. 

Many scientists have stated in particular that vitrinite exhibits lower values in sandstones than 

in mudstone. This phenomenon is probably related to oxidation caused by the porosity of 

sandstones which is somewhat higher than that of argillaceous rocks (Teichmüller and 

Teichmüller, 1968).  
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 Pyrite is another important problem during the measurement procedure. This strong 

reflecting mineral increases the real values of vitrinite reflectance and complicates the 

interpretation of the data (Littke et al., 2012).   

 (8) Different tectonic history might be a cause of the variation in vitrinite reflectance 

values. Pressure may influence the Rmax and increase the anisotropy of the vitrinite particles 

and, as a consequence, its measured reflectance values (Stach et al., 1982; Littke et al., 2012).  

3.3.2.2. Bitumen reflectance 

3.3.2.2.1. General remarks and definition 

 The idea of alculating the equivalent of vitrinite reflectance arose to assess maturity in 

the sediments where vitrinite particles are of poor quality, too rare or absent, for instance, for 

carbonate and pre-Devonian rocks (Jacob, 1989; Bertrand, 1993; Schoenherr et al., 2007; 

Prauss et al., 1991). Jacob (1989) determined the stochastic relationship between the vitrinite 

reflectance and the reflectance of migrabitumen (%BRr). However, the linear relationship 

between vitrinite and migrabitumen reflectance has been verified only to a migrabitumen 

reflectance of about 3.0 %. The following formula was proposed by Jacob (1989) for the 

calculation of an equivalent of vitrinite reflectance: 

VRr=0.618*BRr+0.40 (Eq. 1) 

VRr – calculated equivalent of vitrinite reflectance; 

BRr – measured migrabitumen reflectance. 

 The idea to use migrabitumen reflectance as a thermal indicator was developed by 

Jacob (1989). Landis and Castaňo (1985) continued to develop the principle established by 

Jacob (1989). They measured a large number of samples containing particles of vitrinite and 

migrabitumen. Their results show a linear correlation between migrabitumen reflectance and 

vitrinite reflectance. The correlation equation is: 

VRr=(BRr+0.41)/1.09  (Eq. 2) 

 Schoenherr et al., (2007) combined the two formulas (1) and (2) in order to approach 

the best-fit regression equation, which can be applied to maturity studies, if migrabitumen is 

present and vitrinite is absent: 

VRr=(BRr+0.2443)/ 1.0495  (Eq. 3) 
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 Despite these aforementioned studies, no universal calibration formula between 

reflectance of migrabitumen and vitrinite can be proposed (Bertrand, 1993). Values obtained 

from reflectance of migrabitumen vary from basin to basin and are dependent on lithology 

and the bituminous character of the lithofacies (Prauss et al.,1991). It must therefore be kept 

in mind that vitrinite equivalent must be calculated individually for each sedimentary basin 

and/or can be considered as approximate values (Bertrand, 1993). 

 

3.3.2.2.2. Measuring procedures 

 The reflectance measurements of migrabitumen were obtained only on polished blocks 

of samples collected from post-mature well B. This constraint is related to the relatively high 

bitumen concentration of different types presented only in this well. 

 Measurement of migrabitumen reflectance was conducted on homogeneous 

migrabitumen in 2 samples and on heterogeneous migrabitumen in 5 selected samples. The 

number of the measurements ranges between 10 and 21, according to the abundance of 

suitable particles (with size more than 2x2 µm, with surface free from scratches and 

irregularities) for reflectance measurements. The measurement procedure was carried out 

under standard conditions similar to those used for reflectance measurements of vitrinite (at 

500x magnification, under oil immersion, under monochromatic light at a wavelength of 546 

nm and at 23 °C).  

 The calibration procedures were undertaken using different sets of standards with 

known reflectance values. With regard to the vitrinite reflectance calibration procedure, the 

first standard, which has a slightly higher value than the estimated reflectance of bitumen 

particle, was used for calibration procedure, and the other, which has lower reflectance than 

the first standard, to check the quality of the adjustment (for the name and values of standards 

see Paragraph 3.3.3.1.). 

 There are two most important considerations that must be kept in mind: 

 assurance that the migrabitumen originated from indigenous organic matter like algae 

(see Gorbanenko and Ligouis 2014); 

 absence of indicators of a secondary origin (pore, veins, etc.) (Bertrand, 1993). 
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3.3.2.2.3. Limitation of bitumen reflectance method 

 In mature and post-mature pre-Devonian source rocks and carbonate source rocks 

where there is a lack of vitrinite particles, migrabitumen forms an important part of the 

dispersed organic matter. In all these cited cases, migrabitumen becomes the best parameter to 

evaluate thermal maturation. The problems related to the technical procedure of bitumen 

measurement are similar to those cited in the paragraph: “Limitation of vitrinite reflectance 

method”. However, the author would like to point out that the specific relationship that exists 

between the reflectance of migrabitumen and that of vitrinite is a function of lithology, basin 

origin and/or the age of the sequences that contain migrabitumen (Bertrand, 1993). This 

evidence requires the establishment of an individual formula to calculate the equivalent of 

vitrinite reflectance in those sediments where both particles are available. Otherwise, using 

existing formulas to calculate the equivalent of vitrinite reflectance may only show 

approximate values of thermal maturity level (Bertrand, 1993). 

 

3.4. Bulk of organic geochemical analyses 

3.4.1. Rock-Eval Pyrolysis and Total Organic Carbon 

3.4.1.1. General remarks 

 In order to assess the quality and maturity of the kerogen, the IFP (Institut Français du 

Pétrole) developed a pyrolysis analyser instrument, the Rock Eval, which has become an 

industry standard in source rock assessment (Espitalié et al., 1977). This method enables 

researchers to estimate the petroleum potential of the rock sample by measuring the difference 

between its current total organic carbon and its residual organic carbon after pyrolysis and to 

obtain results of analysis, which would have taken millions of years in a sedimentary basin 

(Bordenave et al., 1993; McCarthy et al., 2011).  

3.4.1.2. Instrumentation and operating conditions 

 The core samples selected for this study were analysed using a Rock-Eval 6 Analyser  

equipped with a Total Organic Carbon (TOC) module at Oxford University, Department of 

Earth Science. During Rock-Eval pyrolysis, samples are heated under an inert atmosphere of 

helium and a series of peaks are delivered on the pyrogram which are expressed in mg HC/g 
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rock: 1) S1 is vaporised gaseous and liquid hydrocarbons from the rock samples without 

cracking the kerogen at approx. 300 °C (Fig. 3-12); 2) the second peak (S2) are the 

hydrocarbon results from cracking of heavy hydrocarbons and from thermal breakdown of the 

kerogen at temperatures between 300 and 600 °C; 3) S3 peak results from CO2 that is evolved 

from thermal cracking of the kerogen during pyrolysis at 600 °C. The first two peaks are 

determined by a flame ionisation detector (FID) and the third one by sensitive infrared 

detector (IR). The organic carbon remaining (S4) is measured by oxidation under air (or 

oxygen) atmosphere at 600 °C. The total organic carbon (TOC) is calculated from peaks S1, 

S2 and S4: %TOC=k(S1+S2)/10+S4/10 (Bordenave et al., 1993). Pyrolysis temperature at 

which maximum hydrocarbon generation (temperature of S2 peak) occurs is the Tmax, which 

is used as a thermal indicator of the kerogen type II and type III (Fig. 3-12) (Espitalié, 1986; 

Espitalié, 1986b).  

 

 

 

Fig. 3-12: Schematic Rock-Eval pyrogram showing the distribution of peaks S1, S2 and S3 (Modified after Tissot 

and Welte, 1978). 

3.4.1.3. Rock-Eval indices 

 The relationship between the measured compounds forms the basis of the indices used 

in the interpretation of the evaluated results (McCarthy et al., 2011). These indices are used 
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for the determination of the kerogen type, the petroleum potential and the organic matter 

maturity. 

 The Hydrogen Index (HI) is calculated as S2/TOC*100. High HI indicates a greater 

potential to generate oil.  

 The Oxygen Index (OI) is derived from the ratio of CO2 to TOC. Consequently, it is 

defined as S3*TOC/100. This index shows the amount of oxygen contained in the 

kerogen.  

 The Production Index (PI) is calculated from the relationship between hydrocarbon 

generated during the first and second pyrolysis stages and is defined as (S1+S2)/S1. 

This index is used to characterise the evolution of the organic matter. It tends to 

increase prior to hydrocarbon expulsion.  

 The petroleum potential parameter is defined as the sum of S1 and S2 peaks and shows 

the maximum quantity of hydrocarbons that the investigated source rock might 

generate (McCarthy et al., 2011).  

3.4.1.4. Limitation in evaluation of Rock-Eval pyrolysis results 

 Despite the indefeasible advantages of Rock-Eval pyrolysis, which include the 

evaluation of the petroleum potential and maturity of numerous source rocks in a short period 

of time and the relatively low costs of this method, this technique has a sufficient number of 

complexities to limit its efficiency and to complicate an interpretation of the results (Katz, 

1983).  

(1) One of the existing problems is the alteration degree of the altered samples due to 

their oxidation. Oxidised organic-rich samples tend to show lower HI and higher OI. These 

samples exhibit on a pyrogram overestimated Tmax values or are characterised by the absence 

of S2 peak (Peters, 1986).  

 (2) The complicity of pyrogram interpretation due to the similarities of some chemical 

compounds is another limitation parameter of this technique. Leventhal (1982) suggested that 

the S2 peak, obtained by FID and giving response to carbon-hydrogen bonds, carbon electrons 

and carbon mass, may show similar values for several organic chemical compounds such as 

benzene, hexane and six molecules of methane.  

 (3) Averaging of the chemical composition of the investigated kerogen. As we know, 

kerogen in investigated organic-rich sediments is composed of different types of organic 

constituents (mixture of different types of kerogen), which, in turn, have their specific 
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chemical and generation properties. Pyrolysis of powdered samples exhibits averaging results 

of HI and OI indices that complicate the identification of the type of kerogen and the 

interpretation of obtained values. 

 (4) Pyrolysis of resins and asphaltens might substantially lower the Tmax values 

(Schegg, 1993). Migrated oil is a likely explanation for immature source rocks with a high IP 

index. This problem increases with the investigation of coarse-grained or fractured organic 

lean rocks.  

 (5) Type of mineral groundmass and the contamination of samples by borehole 

lubricant may affect S1, S2 and Tmax values (Katz, 1983). The very low content of organic 

constituents (amorphous organic matter), as well as the presence of heavy hydrocarbons 

absorbed into the mineral matrix, where they are “cooked” during the heating, affect S2 and 

lead to overestimation of Tmax values (Espitalié, 1986a; Espitalié, 1986b; Peters, 1986). The 

retention will have two main effects: a decrease of S1 and S2 peaks and increase of Tmax of 

5–6 °C for type II kerogen and 10–12 °C for type III (Schegg, 1993). However, in order to 

eliminate the effect of mineral matrix on pyrolysis results, Clementz (1979) offered to wash 

the mineral matrix with an organic solvent prior to pyrolysis. 

 (6) Concentrated organic matter (coals) does not respond to pyrolysis as dispersed 

organic matter samples do (Peters, 1986). For reasons not fully understood, some types of 

coal show type II/III kerogen, whereas, according to elemental analysis and microscopy, coals 

tend to be type III (Schegg, 1993). 

 (7) Low correlation between the results of organic geochemical analysis and of 

maceral analysis. Some workers have stated in their studies that there is a low correlation 

between geochemical and organic petrographic results (Powell et al., 1982). This discrepancy 

may relate to the resolution of both mentioned methods.  

High-resolution organic petrography is a very detailed quantitative investigation of 

organic matter under microscopic level, based on the consistent counting of macerals on the 

given grid. In contrast, Rock-Eval provides average values on whole samples without 

evaluation of the generation potential quality of individual organic components. Hence, this 

method does not have such a high sensitivity compared to the high-resolution organic 

petrography technique.  
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3.4.2. Rock-Eval parameters as indicators of organic matter 

maturity 

3.4.2.1. General remarks and definition 

 As was mentioned before, parameters obtained from Rock-Eval pyrolysis are closely 

linked with increasing temperature. This evidence enables the use of these parameters and 

ratios as maturation indicators. Pyrolysis parameters indicating different maturity levels of 

source rocks are presented in Table 3-2. 

Table 3-2: Different Rock-Eval parameters indicating various maturation levels (Peters and Cassa, 1994). 

 

Immature Mature Post-mature

Tmax °C <435 435-465 >465

S1/S2 <2.0 2.0-6.0 >6.0

S2/S3 >5.0 5.0-2.5 2.5-0.0

Production 

Index
<1.0 0.1-0.4 >0.5

Rock-Eval 

parameter

Maturity (products)

 

 It is well-known that Tmax is widely used to determine the maturity level because this 

parameter increases linearly with the maturation degree of the organic matter (Barker, 1974; 

Espitalié et al., 1977). In addition, it is dependent on the cracking kinetics of the different 

types of organic matter and, as a result, is in good agreement with HI and OI indices 

(Dellisanti et al., 2010). In other words, Tmax can show various values for the same maturity 

level for different types of organic matter (Type I, Type II, Type III). However, Type III 

kerogen, which corresponds to terrestrial organic matter, is the most reliable in estimating the 

maturation degree (Espitalié, 1986a; Espitalié, 1986b).  

 Teichmüller and Durand (1983), Espitalié et al. (1984) stated good relationships 

between Tmax and vitrinite reflectance values. Specifically, for kerogen Type III, the 

beginning of the oil window is characterised by Tmax in the range of 430–435 °C, whereas 

the values for the onset in the gas window correspond to a fixed value at VRr of 1.34 % and a 

Tmax of 465 °C (Espitalié, 1986a; Espitalié, 1986b). 

 As was mentioned before, parameters such as S1, S2 and S3, more precisely, their ratios 

S1/S2 and S2/S3, can also be used in assessing the maturity level, because these parameters are 

closely linked to the type of organic matter and temperature changes (Table 3-2). 
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 The Production Index is a measure of the relative proportion of S1 and S2 pyrolysis 

peaks (S1/(S1+S2)) (Peters and Cassa, 1994). Low ratios show immature or extreme post-

mature organic matter, whereas high ratios indicate either a mature level or contamination by 

migrated hydrocarbons or drilling additives (Table 3-2). 

3.4.2.2. Limitation of the method 

 Unlike vitrinite reflectance, parameters obtained from Rock–Eval pyrolysis can 

provide information on thermal maturity of source rock older than Devonian or of those 

sediments where there are no appropriate migrabitumen particles for reflectance 

measurement. However, this method has a certain number of limitations and data 

interpretation problems.  

Most of these difficulties encountered by workers due to this analysis have already 

been cited in the paragraph devoted to Rock-Eval pyrolysis. Nevertheless, it is important to 

note that this method is inferior to vitrinite reflectance in accuracy. Tmax is not very sensitive 

to variation in thermal maturity between 440 °C and 450 °C and hence estimates of VRr based 

on Tmax values are not recommended (Riediger, 1993). Moreover, values of parameters 

obtained from Rock-Eval pyrolysis vary, depending not only on the type of organic matter, 

but on its quantity as well. 
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4.1. Maceral and mineral composition of the Posidonia 

Shale 

4.1.1. Lateral and vertical variations of organic matter in the 

Posidonia Shale  

 The proportion of previously identified organic components or macerals differs not 

only laterally from basin to basin, or from well to well, but also vertically within one well. 

Figs. 4-1 and 4-2 show variations of organic matter together with zooclasts. This relationship 

shows fairly different paleoenvironments allowing/preventing the existence of nekton and 

plankton. Using these diagrams, it is possible to define the assemblage of macerals indicating 

strong anoxic conditions, leading to the mass mortality of the fauna. Together with minerals, 

these assemblages form organo-mineral microfacies. 

 In the West Netherlands Basin, organo-mineral microfacies show a resemblance. 

However, there are some differences in maceral composition. Among the terrestrial organic 

matter, the association of sporinite-vitrinite-inertinite appears more often in well E than in 

well M. This association, together with the increasing content of zooclasts, according to 

Prauss (1996), indicates temporary oxygenation of the water column, resulting from storm 

(induced water masses' circulation) or water evaporation. Moreover, the vitrinite/inertinite 

ratio enables the reconstruction of more specific conditions. When the ratio is equal to 1 or 

more, this probably indicates those paleoenvironmental conditions in which surface water is 

oxygenated and bottom water is oxygen-depleted. Frequently, bituminite II is observed 

together with this terrestrial maceral assemblage. Evidently, oxygenation of the water column 

coincides with an algal-bloom event. In these paleoenvironments, not only the quantity, but 

also the diversity of the alginite increases. This event is clearly demonstrated in well A of the 

Lower Saxony Basin. 

 Liptodetrinite in the West Netherlands Basin appears in two different forms. It occurs 

in well M in a greater quantity than in well E. Moreover, the diversity among the lamalginite 

group is also higher in well M. The content of amorphous organic matter is greater in well E, 

among which bituminite I and bituminite V are predominant. In well M, amorphous organic 

matter is mostly represented  by bituminite II, which is predominant in the microfacies of the 

upper part of the well section, whereas, in the lower part, bituminite II is replaced by 

bituminite I and bituminite V. This coincides with oxygen–exhausted paleoenvironments.  
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 In the investigated Posidonia Shale, the specific association of organic microfacies and 

mineral matrix hosting it was not observed. However, bituminite V appeared to be formed 

more often in organic microfacies associated with marly limestone or limestone with a high 

content of dolomite crystals. 

 In the Lower Saxony Basin, bituminite II-enriched organo-mineral microfacies are 

well-represented in well A. In this well, and also in well D, not the quantity, but the diversity 

of algae is high. Particularly in well D, a higher diversity of lamalginite is observed than in 

well A, but a lower content of amorphous organic matter.  

 In the South German wells, variations in organo-mineral microfacies are higher than in 

the West Netherlands Basin and the Lower Saxony Basin. This indicates frequent changes in 

paleoenvironmental conditions. These organo-mineral microfacies from the Dotternhausen-

1001 well, Notzingen-1017 well and Bisingen-1002 well are poorly correlated. The Posidonia 

Shale from southern Germany contains a higher quantity of bituminite III than from the other 

investigated sedimentary basins. It occurs after rapid changes in paleoenvironments from 

oxygenated to oxygen-depleted, leading to mass mortality of the nekton and zooplankton 

which had suffered from oxygen-exhausted conditions. In all these wells, a high content of  

bituminite I was observed, while bituminite II is suppressed and bituminite V was not 

observed at all.  

 In addition, the dynamic of the water is reflected in the quantity of the preserved 

organic matter in the investigated areas. The results of maceral analysis reveal that, in the 

wells from the West Netherlands Basin and the Lower Saxony Basin, the Posidonia Shale 

contains a high quantity of organic matter. In wells E and M, it reaches 43.5 vol.% and 40.4 

vol.% respectively; in well A, Lias delta contains 1.6–7.8 vol.% organic matter, while Lias 

epsilon comprises 53.7 vol.%. Lias epsilon in well D reaches 43.7 vol.%.  

 In comparison, in southern Germany, the content of organic matter is lower. In Lias 

epsilon it ranges between 4.0 and 21.5 vol.%. It decreases in the low bituminous Lias zeta 

section to a low of 1.3 vol.%. 

 In the Notzingen-1017 well, the Lias delta section makes up a maximum of 6.5 vol.%. 

In Lias epsilon, the Posidonia Shale containing organic matter reaches 32.7 vol.%. In Lias 

zeta, organic matter content ranges from 5.6 to 13.8 vol.%. 

 In the Bisingen-1002 well, Lias delta organic matter ranges from 0.7 to 9.3 vol.%. In 

Lias epsilon, it reaches a high of 42.2 vol.%. However, in one sample it rapidly falls to a low 
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of 0.0 %. In Lias zeta, the amount of organic matter varies from 4.0 to 16.0 vol.%, while in 

Dogger alpha, the content of organic matter varies from 4.4 to 7.0 vol%.  

 The thickness of the Posidonia Shale section differs from one sedimentary basin to 

another. While the thickness of the Lias epsilon comprises 29.9 m in well E, 31.3 m in well 

M, 34.15 m in well A, that of the Lias epsilon in well D dropped to a low of 7 m. The 

thickness of the Lias epsilon in southern Germany is generally lower. The greatest thickness 

of the Lias epsilon succession is recorded in the Bisingen-1002 well, reaching 17.7 m. In the 

Dotternhausen-1001 well, it is decreased to 13.6 m and falls to 4.9 m in the Notzingen-1017 

well (APPENDIX B). 
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                 A B   

C   D  

Fig. 4-1: Distribution of the different macerals and zooclasts in the wells from the West Netherlands Basin and the Lower Saxony Basin.  

A), B), The West Netherlands Basin; C), D), The Lower Saxony Basin. Note that the sum of organic matter and zooclasts is 100 %. The macerals were grouped with zooclasts in 

order to show the oxygenation of the water column in the investigated sedimentary basins.  
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A B  

 

C  

Fig. 4-2: Distribution of the different macerals and zooclasts in the South German wells.  

Note that the sum of organic matter and zooclasts is 100 %. This association was taken to show oxygenation of the water column in the sedimentary basin.



CHAPTER 4 

90 

 

 

4.1.2.  Organic matter composition 

4.1.2.1. Vitrinite group 

 A minute amount of vitrinite macerals occurs in all the investigated samples of the 

Posidonia Shale (APPENDIX A). Vitrinite appears as indigenous and oxidised vitrinite. In 

polished blocks from the West Netherlands Basin (well E and well M), the content of 

indigenous vitrinite does not exceed 0.1–0.3 vol.% (APPENDIX A). This vitrinite comprises 

small elongated (5–8 µm) homogeneous grey non-fluorescent particles. Oxidised vitrinite is 

more abundant and reaches 0.4 vol.%. It is identified by a light grey colour in reflected white 

light, absence of fluorescence, rounded shape and small size (4–10 µm). In addition, in well E 

in one sample (No 2498.46), trimaceral (vitrinite+sporinite+fusinite) recycled coal particles 

were observed. They reach the size of 500 to 600 µm. 

 The content of vitrinite macerals from the Lower Saxony Basin varies from well to 

well. In well D, the quantity of indigenous vitrinite reaches 0.4 vol.%. It is found as 

equidimensional angular and/or elongated thin forms, in size ranging from 4x4 to 90x12 µm. 

Moreover, fluorescent vitrinite was recorded. Such particles, which are impregnated with 

bituminous substances during diagenesis, can be classified as a jet. These particles do not 

exceed 20 µm in size. The content of recycled vitrinite reaches 0.7 vol.%. On the contrary, in 

well A, vitrinite particles are rare. Their quantity ranges from 0.1 to 0.2 vol.% for both types 

of vitrinite.  

 In southern Germany, vitrinite is more frequent than in the other investigated areas 

(Dotternhausen-1001, Bisingen- 1002, Notzingen-1017 wells). However, in the 

Dotternhausen-1001 well, it does not exceed 0.2 vol.%. This maceral was observed mostly in 

a rounded form of recycled vitrinite, rather than in the indigenous form. In the Bisingen-1002 

well, vitrinite in Lias Ɛ was also poor represented. Indigenous vitrinite has an elongated size 

ranging from 10–250 µm and variable thickness of 5–50 µm. Oxidised vitrinite has a small 

size from 5 to 20 µm and no fluorescence. In the Notzingen-1017 well, the content of all 

vitrinites varies regarding the local biostratigraphic subdivisions. It increases in Lias delta 

(0.2–1.4 vol.%), falls in Lias epsilon (0.0–0.7 vol.%) and again increases in Lias zeta (1.4–

3.4 vol.%). 
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4.1.2.2. Liptinite group 

4.1.2.2.1. Alginite: telalginite and lamalginite 

Telalginite 

 In the studied samples, alginite is represented by telalginite and lamalginite (Fig. 4-

1A). Telalginite is observed in all samples, but in different concentrations. Contrary to 

Posidonia Shale from the Netherlands, in the Lower Saxony Basin, particularly, in well D it 

reveals a high diversity. Telalginite occurs in the form of thick-walled algae (Tasmanites, 

Pterosphaeridia) and thin-walled algae (Leiosphaeridia, Campenia and/or Lancettopsis; see 

Mädler, 1963) (Fig. 4-1A, for more examples see Chapter 3). Botryococcus-derived telalginite 

was encountered mostly in well D. 

 The content of telalginite in well D as well as in wells E and M does not exceed 1.9 

vol.%, whereas that in well A can reach 3.7 vol.% in Lias Delta, while in Lias epsilon, the 

content of telalginite does not exceed 1.6 vol.%. The size of these algae varies from 10 µm to 

80 µm for thick-walled algae and may reach 300 µm for some thin-walled species 

(APPENDIX A).  

 The diversity of the telalginite in southern Germany is lower than in northern 

Germany. In the Dotternhausen-1001 well, telalginite occurs in the form of Leiosphaeridia 

(100-130 µm), which has thin cell walls (1-2 µm), and Tasmanites (120-130µm, with cell 

walls of 2-3 µm). Telalginite is well preserved in some samples and in some of them is partly 

degraded. It has a dark-brown colour in reflected light and yellow in fluorescence mode with 

high intensity. The Posidonia Shale from the Dotternhausen-1001 well contains telalginite 

reaching 3.9 vol.% (APPENDIX A). In the Bisingen-1002 well, telalginite is comprised of 

Tasmanales and Botryococcus. Botryococcus-derived telalginite is identified in most of the 

samples of the spinatum zone and the tenuicostatum zone. Its content dips in the falciferum 

zone and increases again from the middle part of the bifrons zone into the Dogger alpha 

(Prauss et al., 1991). Telalginite exhibits a brown colour with reddish-brown internal 

reflections and green to yellow fluorescence of high intensity (Prauss et al., 1991). In the 

Notzingen-1017 well, telalginite maceral was not observed in some samples. In Lias delta, 

telalginite was not encountered, whereas in Lias epsilon, the percentage of this maceral 

reaches 1.2 vol.%. In Lias zeta, telalginite content drops to a low of 0.0 vol.%.  
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Lamalginite  

 The percentage of lamalginite varies from well to well. This maceral mainly consists 

of discrete and filamentous lamalginite in all the investigated wells, but layered lamalginite 

was also encountered in the samples from the Lower Saxony Basin. Discrete and filamentous 

lamalginite could be related to Nostocopsis algae (4–10 µm in size) and Halosphaeropsis 

algae (20–35 µm in size) respectively (Mädler, 1963). Furthermore, Prauss et al. (1991) 

pointed out the existence of a good correlation between the distribution of lamalginite and 

spheroidal palynomorphs. In the investigated bituminous shaless, acritarchs were observed in 

a minute quantity in some samples of well E (the West Netherlands Basin), well D (the Lower 

Saxony Basin) and the Dotternhausen-1001 well (the South German Basin).  

 The amount of discrete lamalginite is higher in well E, ranging between 1.1 and 

11.1 vol.% in Lias epsilon and reaching 22.4 vol.% in Lias zeta, wells M (4.5–14.8 vol.% in 

Lias epsilon) and D (0.0–19.4 vol.% in Lias epsilon). However, in well A, it comprises a 

maximum of 10.3 vol.%. It frequently appears enclosed in the mineral-bituminous 

groundmass. Percentages of filamentous lamalginite are low (0.1–2.8 vol.%) in wells E, M 

and A, but high (up to 11.3 vol.%) in well D. The quantity of layered lamalginite is relatively 

low (0.1–0.6 vol.%) in the samples of wells E, M and D, whereas it reaches 12.6 vol.% in well 

A. Layered lamalginite appears as lamellar alginite with a length of 100 µm and variable 

diameter (around 4µm). Lamalginite exhibits a yellow fluorescence of moderate intensity.  

 In the Dotternhausen-1001 well, lamalginite occurs as thin filaments with no or little 

recognisable structure in the polished sections, which exhibit a high fluorescence. Discrete 

lamalginite is more common, compared to the less frequent filamentous lamalginite. The 

content of both these types reaches 7.8 vol.% and 2.8 vol.% respectively. The content of 

layered lamalginite is low and reaches only 1.0 vol.%. In the Bisingen-1002 well, the 

percentages of lamalginite increase gradually in the tenuicostatum zone (Lias delta–Lias 

epsilon), reaching 3.3 vol.%, and reach a high of 12.2 vol.% in the falciferum and bifrons 

zones (Lias epsilon). Lamalginite appears as lamellar alginite, ranging in size from a few µm 

to about 100 µm. In some samples, it occurs as coatings on mineral grains or enclosed in the 

mineral matrix (Prauss et al., 1991). Lamalginite shows a moderately intense to intense green 

to yellow fluorescence.  

 According to Prauss et al. (1991), who carried out palynological investigations on 

samples from the Bisingen-1002 well, the acritarch assemblage is represented by only two 

genera Micrhystridium and Veryhachium. Their percentage does not exceed 7.0 vol.%. They 
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are commonly distributed outside the more bituminous intervals (Prauss et al., 1991), but 

unlike dinocysts, the latter were found in the strongly bituminous lowermost interval of the 

falciferum zone. In addition, a minute quantity of dinocysts is present in the Bisingen-1002 

well at the top of the bifrons zone and at the top of the tenuicostatum zone. However, it is not 

found within the highly bituminous falciferum zone (middle part of the Posidonia Shale 

section).  

 In the Notzingen-1017 well, in Lias delta, lamalginite was counted only in one sample 

and its content does not exceed 2.3 vol.%. In Lias epsilon, it was observed in almost all 

samples. Its content ranges from 0.0 to 12.8 vol.%. In Lias zeta, lamalginite reaches 4.1 vol.%.  

4.1.2.2.2. Liptodetrinite 

 Liptodetrinite occurs in variable concentrations (0.4–28.7 vol.%) scattered in the 

mineral-bituminous groundmass and in association with bituminite I. However, the content of 

this maceral can be overestimated due to the difficulty of distinguishing liptodetrinite from 

discrete lamalginite. Liptodetrinite in wells E and A reaches 15.2 vol.% and 14.1 vol.% 

respectively, whereas that in wells M and D increases and comprises 18.8 vol.% and 

28.8 vol.% respectively. Liptodetrinite consists of two forms. The first form is of a minute 

size, whereas the other occurs as rounded bodies with a diameter of 4 µm size. The latter are 

possibly related to Nostocopsis algae (Mädler, 1963). Both types show a yellow colour in 

fluorescence mode of high intensity (Fig. 3-4D).  

 The content of liptodetrinite in the Dotternhausen-1001 well ranges between 0.3 and 

10.7 vol.% in Lias epsilon and between 0.0 and 9.6 vol.% in Lias zeta. On the contrary, in the 

Notzingen-1017 well, the percentage of liptodetrinite is higher. In Lias delta, it ranges from 

0.0 to 2.8 vol.% and reaches 17.0 vol.% in Lias epsilon. In Lias zeta, the content of 

liptodetrinite varies from 2.1 to 5.5 vol.%. In the Bissingen-1002 well, liptodetrinite is found 

mainly in the Lias epsilon and the Dogger alpha. In a bituminous bed close to the 

“Steinplatte”, it reaches a high of 30.3 vol.%. However, it gradually decreases in the upper 

part of the falciferum zone and in the bifrons zone. 

4.1.2.2.3. Bituminites 

 Bituminite comprises bituminite I, bituminite II, bituminite III, bituminite IV, 

bituminite V and bituminite VI (Fig.4-3B, E, F; for more examples see Chapter 3 and 

Gorbanenko and Ligouis, 2014). All these types were identified in all the studied samples, 

except bituminite V, which was not observed in well D. 
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Bituminite I 

 Bituminite I (up to 10.6 vol.% in wells E and A, but decreases to 1.0–3.0 vol.% in the 

other wells) shows the optical properties described by Teichmüller and Ottenjann (1977). 

Nevertheless, in wells E and M, it was observed with inclusions of sporinite and without 

fluorescence, with inclusions of short lamalginite and telalginite (Fig. 4-3A-C). In the 

Dotternhausen-1001 well, the content of bituminite I reaches 4.0 vol.%, while in the Bisingen-

1002 well it reaches a high of 28.5 vol.%. 

Bituminite II  

 The lowest content of bituminite II was recorded in well D (0.0–0.4 vol.%). It 

increases in well E (max. 5.3 vol.%) and well M (max. 5.3 vol.%) and reaches 59.0 vol.% in 

well A. In the Dotternhasuen-1001 well, bituminite II does not exceed 3.3 vol.%, while in 

Bisingen-1002 its quantity ranges from 0.0 to 0.1 vol.%. 

Bituminite III 

 Bituminite III was only counted in the Dotternhausen-1001 and Bisingen-1002 wells 

in the South German Basin. Nevertheless, its content does not exceed 0.2 vol.%. 

Bituminite IV 

 The quantity of bituminite IV is low in all the investigated wells in the West 

Netherlands Basin and the Lower Saxony Basin. Its content does not exceed 0.5 vol.%. On the 

contrary, in the Dotternhausen-1001 well, bituminite IV may reach 3.8 vol.% (APPENDIX 

A).  

Bituminite V 

 The percentage of bituminite V is low in wells A, D, M and in the wells of the South 

German Basin, while in well E it reaches 13.2 vol.%.  

Bituminite VI 

 Bituminite VI is well represented only in well A, reaching 18.9 vol.%. However, in 

well D, its content can reach 1.2 vol.%. 

 In the Notzingen-1017 well, the content of all bituminites is low. It reaches 1.1 vol.% 

in Lias delta. In Lias epsilon, the percentage ranges from 0.0 to 26.1 vol.%.  

 In addition, the relationships between different types of bituminites and alginite 

macerals were encountered due to maceral analysis. In samples enriched in telalginite, the 

content of the bituminites is low. Simultaneously, the Posidonia Shale enriched in bituminites 

contains a low quantity of alginite, as shown in Fig.4-3 C, D. 
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A  B  

C  D  

Fig. 4-3: Photomicrographs illustrating different macerals of the liptinite group.  

A), Bituminite I with sporinite inclusions; B), Bituminite I with telalginite, liptodetrinite, lamalginite and 

sporinite inclusions; C), Telalginite-dominated samples: mostly Tasmanite- (T) and Pterosphaeridia-derived 

algae (P); D), Bituminite-dominated samples: bituminite I (B I) and bituminite II (B II). Fluorescence mode, oil 

immersion. 

4.1.2.2.4. Sporinite 

 Macerals of the liptinite group are predominant in almost all the investigated samples. 

Their content varies according to the organo-mineral microfacies from 6.0 to 46.7 vol.% and 

with a maximum of 71.0 vol.% in well A. Macerals of this group are represented by sporinite, 

alginite, liptodetrinite, different types of bituminites. Oil droplets were counted in addition in 

the liptinite group. In wells E and M, sporinite is well-represented (0.3–4.5 vol.%) and 

appears in two different types (APPENDIX A). One has a smooth outline, whereas the other 

shows ornamentations (Fig. 3-7 A). Both types are of a size not exceeding 30 µm. Sporinite 

was seldom found in sporangia of variable size exceeding 200 µm. Sporinite is well-

recognised by its orange fluorescence of moderate intensity. In addition, Posidonia Shale from 

the Netherlands contains cutinite, which was identified by its typical morphology (Fig. 3-7 B). 

The optical properties of this maceral are similar to those of sporinite.  

 In the Lower Saxony Basin, sporinite was only found in well D. Its content does not 

exceed 0.5 vol.% and decreases at the top of the Lias epsilon (Fig. 4-4).  
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Fig. 4-4: Photomicrograph showing sporinite (white arrows) in well D. Fluorescence mode, oil immersion. 

 The Posidonia Shale from the Dotternhausen-1001 well contains 0.1 vol.% sporinite. It 

is characterised by a dark brown colour in reflected white light and shows a brown colour in 

fluorescence mode of weak intensity. In the Bisingen-1002 well, sporinite is rust-brown in 

reflected white light. It shows yellow, orange-brown and brown fluorescent colours of weak 

intensity. In this well, sporinite mainly occurs in the non-bituminous claystones of the Dogger 

alpha, reaching 1.3 vol.% (Prauss et al., 1991). In the Notzingen-1017 well, sporinite is more 

frequent than in the Dotternhausen-1001 well. While sporinite has not been observed in 

samples from Lias delta, in Lias epsilon, it was encountered in most of the investigated 

samples, ranging between 0.0 and 0.8 vol.%. In Lias zeta, the quantity of this maceral dips to 

a low of 0.0 vol.%. 

 

4.1.2.2.5. Migrabitumen and oil droplets 

 Migrabitumens in all the investigated samples occur as minor constituents mainly in 

Lias epsilon in a few samples in well A, Dotternhausen-1001 well, Notzingen-1017 well and 

Bisingen-1002 well. However, it is more frequent in post-mature well B (for more details see 

Chapter 5). Migrabitumen in mature bituminous shaless shows a dark grey colour in reflected 

white light and dark brown fluorescence.  

 Oil droplets, indicating an initial phase of oil generation, occur as inclusions in 

telalginite bodies and calcareous grains. They were identified by a green-yellow fluorescence 

of high intensity. The content of oil droplets is higher in northern Germany and the 

Netherlands than in southern Germany. 
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4.1.2.3. Inertinite group 

 In all the studied wells, the content of inertinite macerals (inclusive of secondary 

maceral micrinite) ranges between 0.1 and 5.6 vol.%. Macerals of the inertinite group are 

represented in almost all investigated samples (APPENDIX A) and comprise fusinite, 

semifusinite, secretinite, inertodetrinite and the secondary maceral–micrinite, which is a 

dehydrated residue from oil and gas generation (Teichmüller and Ottenjann, 1977).  

 In the Dotternhausen-1001 well, macerals of the inertinite group occur primarily as 

fusinite and semifusinite, which are very rare in the Posidonia Shale, reaching only 0.1 vol.% 

and 0.3 vol.% respectively. The more widespread maceral is inertodetrinite (0.3 vol.%). The 

secondary maceral-micrinite reaches a maximum of 0.7 vol.%. All inertinite macerals are 

characterised by a homogeneous structure, light grey colour in reflected light and no 

fluorescence. In the Bisingen-1002 well, the inertinite is represented by inertodetrinite and 

less by fusinite. Its content is higher in the spinatum zone, but lower in the tenuicostatum 

zone. It dips in the falciferum and bifrons zones as well as in the Lias zeta and lower Dogger 

(Prauss et al., 1991). In the Notzingen-1017 well, in Lias delta the percentage of the inertinite 

group reaches 1.6 vol.%, in Lias epsilon it ranges from 0.0 to 1.9 vol.%. In Lias zeta, the 

content of macerals in the inertinite group decreases to a low of 1.0 vol.%. Among all the 

investigated wells, the increasing content of macerals of the vitrinite and inertinite groups 

correlates well with a rising percentage of faunal remains, indicating, probably, dry climatic 

conditions.  

 Among all the investigated mature Posidonia Shale samples, micrinite content is 

highest in well A and makes up a maximum of 4.6 vol.%. Moreover, relationships between 

micrinite and oil droplets show a positive trend in that well. In wells M and D, percentages of 

this material diminish to 0.0–0.4 vol.% and 0.0–0.9 vol.% respectively (APPENDIX A). The 

reflectance of these macerals is high and their morphologies are distinctive (see Taylor et al., 

1998).  

4.1.2.4. Summary 

4.1.2.4.1. Macerals of vitrinite group 

 The Posidonia Shale contains a low percentage of macerals of the vitrinite group in the 

West Netherlands Basin and the Lower Saxony Basin. In the South German Basin, the 

vitrinite content varies from well to well. While in the Dotternhausen-1001 well, the amount 

of macerals of the vitrinite group is low, reaching only 0.1 vol.%, in the Notzingen-1017 well, 



CHAPTER 4 

98 

 

it increases to 5.1 vol.% in Lias delta, makes up 0.7 vol.% in Lias epsilon and 3.0 vol.% in 

Lias Zeta. In the Bisingen-1002 well, macerals of the vitrinite group were not observed in 

Lias delta. In Lias epsilon, the vitrinite content increased marginally to 1.8 vol.% and reached 

2.0 vol.% in Dogger alpha. 

4.1.2.4.2. Macerals of liptinite group 

 Each investigated sedimentary basin is characterised by a specific assemblage of 

macerals of the liptinite group. Among all the investigated wells, the sporinite content is 

higher in wells E and M, reaching 4.5 and 3.0 vol.% respectively. The content of telalginite 

does not vary significantly. However, its diversity increases in wells A and D. The quantity of 

liptodetrinite varies, depending on the paleoenvironmental conditions. It reaches a high when 

the dynamic of the water column masses increases.  

 The Posidonia Shale from the West Netherlands Basin, the Lower Saxony Basin and 

the South German Basin is characterised by the occurrence of specific types of bituminite. In 

the West Netherlands Basin, the Posidonia Shale contains high quantities of bituminite V 

reaching 13.2 and 4.4 vol.% in wells E and M respectively. Investigated samples from well A 

contain the greatest quantity of bituminite II making up 59.0 vol.%. Well D is characterised 

by a relatively low content of bituminites.  

 Bituminous shales from the South German Basin contain bituminite III which is a 

particularity of this sedimentary basin. However, its content does not exceed 1.0 vol.% 

4.1.2.4.3. Macerals of inertinite group 

 Primary macerals of the inertinite groups are rare in Posidonia Shale from the West 

Netherlands and the Lower Saxony Basin. In wells E, M and D, fusinite is the most frequent 

inertinite maceral. In those wells, it does not exceed 1.0 vol.%. In well A, the content of 

inertodetrinite is slightly higher than that of fusinite and it reaches 1.4 vol.%. 

 Among the wells from the South German Basin, the Dotternhausen-1001 well has the 

lowest content of primary macerals of the inertinite group, which does not exceed 1.0 vol.%. 

In the Bisingen-1002 well, Posidonia Shale of the Lias delta contains the highest amount of 

inertinite macerals, reaching 1.9 vol.%. In the Lias epsilon, its content decreases to 1.4 vol.% 

and reaches only 0.8 vol.% in Dogger alpha. In the Notzingen-1017 well, the quantity of 

primary macerals of the inertinite group is highest in Lias epsilon, reaching 2.0 vol.%. 
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 In wells M, D and the wells from the South German Basin, the content of secondary 

maceral micrinite does not exceed 1.0 vol.%. However, in wells E and A, it increases to 2.2 

and 4.6 vol.% respectively. 

4.1.3. Features of the Posidonia Shale lithology 

4.1.3.1. Mineral groundmass 

 Generally, the mineral groundmass of wells E and M has a lower bituminous character 

compared to that of wells A and D. This is due to a higher amount of bituminous substances 

scattered in the mineral groundmass of the wells in the Lower Saxony Basin (APPENDIX A).  

 The mineral groundmass of non- or low-bituminous and bituminous samples is 

represented by clayey-calcareous and calcareous-clayey groundmasses. The calcareous 

groundmass of non-bituminous samples exhibits a light beige colour in reflected white light 

and has green diffuse fluorescence of weak intensity. The clayey groundmass of non-

bituminous microfacies reveals a grey colour in reflected white light and a pale green 

fluorescence. The calcareous and clayey groundmasses of bituminous shales show a brown to 

dark brown colour in reflected white light and have a yellow-brown to brown fluorescence of 

moderate intensity.  

4.1.3.1.1. The West Netherlands Basin 

In the West Netherlands Basin in well E, Posidonia Shale contains a maximum of 

44.6 vol.% of calcareous bituminous groundmass, but the clayey bituminous fraction reaches 

a maximum of 39.3 vol.%. One sample comprises 78.1 vol.% of non-bituminous groundmass. 

On the contrary, in well M, the content of carbonate increases up to a maximum of 

57.7 vol.%, while clayey bituminous is only 11.0 vol.%. Low bituminous groundmass may 

contain 67.7 vol.% of calcareous fraction, but in non-bituminous samples it reaches 

79.9 vol.%. 

4.1.3.1.2. The Lower Saxony Basin 

 In the Lower Saxony Basin in well A, the content of bituminous groundmass increases 

among all wells up to a high of 68.8 vol.%, but the clayey bituminous fraction reaches 

35.4 vol.%. In non-bituminous samples, the content of calcareous fraction increases to a high 

of 75.2 vol.%. In well D, the percentage of calcareous bituminous groundmass slightly 

decreases to a value of 51.8 vol.%, however, the content of bituminous clay increases up to a 
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high of 39.0 vol.%. The non-bituminous calcareous fraction can reach a maximum of 

91.3 vol.%. 

 

4.1.3.1.3.  The South German Basin 

 In the Dotternhausen-1001 well, the non-bituminous groundmass has no lamination 

and consists of mostly crystallised calcareous mineral matter, showing a beige to light brown 

colour in reflected white light and with green fluorescence of weak or moderate intensity 

(APPENDIX A).  

 Bituminous groundmass has a brown-grey colour in reflected white light with 

moderate to intense brown fluorescence.  

 Clayey groundmass (bituminous and non-bituminous) is found as thin laminae and 

occurs in alternation with calcareous groundmass. Clayey bituminous groundmass has a 

brown to dark brown colour in reflected white light and dark brown fluorescence of weak 

intensity. It can reach a maximum of 65.7 vol.%. Non-bituminous clayey groundmass has a 

grey colour in reflected light and green fluorescence. It reaches 32.9 vol.%.  

 In bioturbated bituminous beds in the Dotternhausen-1001 well, and also in the 

Bisingen-1002 well, mineral matrices have different optical properties within and outside the 

burrows (Prauss et al., 1991). The mineral matrix outside the burrow is similar to that of the 

other part of the bituminous shales, while that within the burrow shows a striking resemblance 

to non-bituminous groundmass. These differences are caused by biochemical oxidation 

catalysed by burrowing organisms (Prauss et al., 1991). 

 The total percentage of mineral groundmass in the Notzingen-1017 well varies from 

93.4–96.7 vol.% in Lias delta, 67.1 to 96.5 vol.% in Lias epsilon and from 86.1 and 

94.3 vol.% in Lias zeta. In the Bisingen-1002 well, clayey groundmass is predominant in Lias 

delta, reaching 91.7  vol.%. In Lias epsilon, the proportion of clayey and calcareous fraction 

varies, indicating unstable paleoenvironments. In Lias zeta in almost all samples, the content 

of calcareous groundmass increases to a high of 97.3 vol.%, while later in Dogger alpha, the 

content of clayey groundmass reaches a high of 96.7 vol.% (APPENDIX A). 

 In the mineral groundmass of bituminous, non-bituminous, low-bituminous shales, 

scattered faunal zooclasts, faecal pellets, coccoliths, detrital minerals (quartz and micas), and 

syngenetic as well as epigenetic pyrite (framboids and isolated microcrystals) were recorded. 

Their content varies regarding the organo-mineral microfacies. Each of these components, 
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which have been incorporated in the sediment, might act as an indicator for specific 

depositional events (Taylor et al., 1998).  

4.1.3.2. Minerals 

4.1.3.2.1.  Detrital minerals 

 The predominant detrital constituents of the Posidonia Shale are quartz and micas, 

which could provide information on the distance between the investigated areas and the 

landmasses (Fig. 4-5 A, B). It is particularly important to pay attention to the size of the 

grains and their morphology (Dias et al., 1984). These minerals can be transported from the 

land by wind or by water prior to their incorporation in the sediments (Taylor et al., 1998). 

For instance, the size of the mica flakes are the hydraulic equivalent of clay-sized material 

(Dias et al., 1984). The rate of mica settling takes place more slowly than that of quartz grain. 

Therefore it might be transported for a longer distance. 

 In the investigated samples, the quantity and size of detrital minerals increase in the 

West Netherlands Basin compared to the Lower Saxony Basin. However, the content of 

quartz in well D can reach 8.1 vol.% (APPENDIX A).  

In well E, the Posidonia Shale contains a maximum of 2.8 vol.% of quartz, but in well 

M it reaches only 1.6 vol.%. The content of the mica flakes in wells A and D is 0.1 vol.% and 

0.4 vol.% respectively. In wells E and M it is 0.7 vol.% and 1.6 vol.% respectively. The 

broken outline of the mica flakes and their smaller size in well M than in well E indicate 

transportation over a longer distance. 

 In the Dotternhausen-1001 well, Posidonia Shale contains a higher quantity of quartz 

than of mica. The content of quartz reaches 5.8 vol.%, while the percentage of mica does not 

exceed 0.8 vol.%. 

Dolomite 

 Dolomite deposits occur in restricted environments where evaporation has produced 

saline brines, for instance, in lagoons where water circulation is restricted or in the pore 

waters of deposits on broad mud flats (Williams et al., 1982). Posidonia Shale from the West 

Netherlands Basin contains the highest percentage of dolomite crystals among all the 

investigated wells. Its content reaches a significant 55.5 vol.% in well E and 22.3 vol.% in 

well M. This indicates specific paleoenvironments which favour the occurrence of bituminites 

(APPENDIX A). 
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In the Lower Saxony Basin in well A, dolomite generally occurs in microfacies where 

calcareous groundmass is predominant and can make up a maximum of 9.4 vol.%. It is easily 

recognisable in fluorescent light, where dolomite has a milky colour with a characteristic 

zonated appearance (Fig. 4-5 B). In well D, dolomite crystals are rare. The amount of 

dolomite reaches only 0.2 vol.%. In fluorescent mode, dolomite crystals have a greenish-

yellow colour with a characteristic zonation. 

In southern Germany, dolomite crystals have only been counted in the Dotternhausen-

1001 well. Its occurrence is limited to specific samples and reaches 7.9 vol.%. 

Gypsum 

 Gypsum is of a strictly chemical origin. It is formed as a result of evaporation 

(Williams, 1982). Gypsum was only encountered in the wells of the Lower Saxony Basin 

(APPENDIX A). In well A, gypsum can reach about 2.9 vol.% and has a round form. In 

reflected white light, it has a beige colour and a milky colour in fluorescence mode. However, 

in well D it is relatively abundant in the investigated samples. It occurs as a filling of the 

cavities and cracks in the mineral groundmass and has a secondary origin. The content of 

secondary gypsum reaches 6.8 %. In reflected white light, it has a whitish colour and a milky-

white colour in fluorescence mode (Fig. 4-5 C, D, E).  

Glauconite 

 Glauconite is a hydrous potassium aluminium silicate containing both ferrous and 

ferric iron and some magnesium. It is a typical sedimentary mineral, formed by marine 

authigenesis (Williams et al., 1982). In reflected light, glauconite is found as green sand-size 

pellets which have a green fluorescence of moderate intensity. This mineral was only 

observed in well D and the Dotternhausen-1001 well (Fig. 4-6 A, B).  
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A  B  

C  D  

E  

Fig. 4-5: Photomicrographs showing examples of quartz, dolomite grains, gypsum (in the center) and glauconite 

(Gl) grains in the Posidonia Shale. 

A), A medium to coarse-grained carbonate-clay lens rich in quartz (white arrows show examples of quartz). 

Reflected white light, cross polars, lambda plate, oil immersion; B), Dark green to black micas (top) and 

deformed by a crystal of dolomite (white arrow). Fluorescence mode, oil immersion. C), Gypsum grain showing 

milky colour in reflected white light, oil immersion; D), Same view in fluorescence mode, oil immersion; E), 

Secondary gypsum filling the cavities (white arrows). Fluorescence mode, oil immersion 

Pyrite 

 Pyrite generally forms in sedimentary deposits in relatively stagnant oxygen-depleted 

water, where the bacterial decay of organic matter prevails (Williams et al., 1982). It is 

common in organic-rich bituminous limestone and bituminous shales. It occurs as single 

crystals, with their agglomeration into spheroidal masses — framboids or epigenetic 

recrystallised forms (Fig. 4-6 C, D). Sometimes, in some investigated samples, pyrite replaces 

skeletal parts of faunal remains (Fig. 4-6 D). All types of pyrites have the same optical 
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properties such as a bright yellowish colour in reflected light and dark red colour in 

fluorescence mode intensity. 

A  B  

C  D  

Fig. 4-6: Photomicrographs showing a glauconite grain and different forms of pyrite in the Posidonia Shale.  

A), Showing the green glauconite grain in reflected white light, oil immersion; B), Same view in fluorescence 

mode, oil immersion; C), Examples of pyrite crystals (Py cr) and framboidal pyrite (Py fr). Reflected white 

light,oil immersion. D), Faunal remain partly replaced by epigenetic pyrite. Reflected white light, oil immersion. 

 

 In the West Netherlands Basin, the content of framboidal pyrite reaches 11.0 vol.% in 

well E. In well M, it is marginally decreased and does not exceed 9.9 vol.%. In the Lower 

Saxony Basin, the content of framboidal pyrite is highest among all the investigated wells. Its 

content climbs to 16.5 vol.%, but in well D it decreases and ranges between 0.0 and 1.9 vol.%. 

 In the Dotternhausen-1001 well, the percentage of framboidal pyrite reaches 7.8 

vol.%. In the Notzingen-1017 well, the total amount of pyrite ranges from 1.4  to 6.8 vol.%. 

However, in one sample, it reaches a high of 15.9 vol.%. In the Bisingen-1002 well, the 

content of pyrite does not exceed 11.0 vol.%. 

4.1.3.2.2. Radioactive minerals 

 Radioactive minerals occur in variable amounts in bituminous shales (Swanson, 1961; 

Wolf, 1966). In the investigated Posidonia Shale, a few radioactive minerals were 

encountered in wells E (West Netherlands Basin) and in wells B and D (the Lower Saxony 

Basin). They have a mid-grey colour in reflected white light and are surrounded by a diffuse 
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lighting ring (Fig.4-7). This halo, which is caused by radiation damage, is particularly visible 

in fluorescence mode (Fig. 4-7 B). In fluorescent mode, the colour and intensity of the organic 

matter are typically altered. 

 

A B  

Fig. 4-7: Photomicrographs of a radioactive mineral in the Posidonia Shale from well D.  

A), Reflected white light; B), Fluorescence mode, oil immersion. 

 

4.1.3.3. Nektonic and planktonic remains 

4.1.3.3.1. Zooclasts 

The West Netherlands Basin 

 In the West Netherlands Basin, the content of shell remains shows a resemblance 

between the wells and ranges from 0.0 to 0.8 vol.%. However, the percentage of fish remains 

is marginally higher in well E than in well M, revealing a maximum of 1.9 vol.%. The content 

of unidentified faunal remains in well M reaches 9.8 vol.%. In addition, some zooclasts show 

oil exudates of intense yellow fluorescence (Fig. 3-9C). 

The Lower Saxony Basin  

 In the Lower Saxony Basin, Posidonia Shale in well A contains a maximum of 

1.6 vol.% of zooclasts. The content of fish remains ranges from 0.0 to 1.1 vol.%, but in one 

sample its percentage reaches a high of 12.0 vol.%. By contrast, in well D, the percentage of 

zooclasts and fish remains is significantly low, but the amount of unidentified faunal remains 

shows a resemblance to that in well A (APPENDIX A). In addition, in a few samples of well 

D, cephalopod hooks (belemnites) were observed. These have a dark grey colour in reflected 

white light and no fluorescence. According to the cutting angle, several morphological types 

were recorded (Fig. 4-8). 

 Shell fragments in both wells from the Netherlands and in northern Germany show a 

brownish colour in reflected white light and greenish fluorescence of mineral origin. Fish 
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remains exhibit a light brown to dark brown colour in reflected white light with orange 

fluorescence (Fig. 4-9). Unidentified faunal remains, probably, related to recrystallised 

foraminifera chambers, have optical properties in reflected white light and fluorescence mode 

similar to those of calcareous minerals.  

The South German Basin 

 In the Dotternhausen-1001 well, faunal remains are represented by recrystallised 

foraminifera fragments of irregular form and phosphate fish remains such as scales, teeth and 

bones. In reflected white light, they show a brownish colour. Certain fragments are non-

fluorescent and others show an orange fluorescence of moderate intensity. Some faunal 

remains are found as inclusions in bituminite III. The amount of faunal remains in the 

Dotternhausen-1001 well in some samples reaches a maximum of 14.1 vol.% (APPENDIX 

A). In the Bisingen-1002 well, zooclasts are encountered in a medium to high percentage in 

the spinatum and bifrons zones. They are mainly represented by foraminifera, fragments of 

calcareous shells of microfossils, and fish fragments (scales, teeth, bones), which are common 

in the Lias epsilon. Oil exudates of intense yellow fluorescence were observed in some fish 

remains from the “Schlacken”. In the Notzingen-1017 well, the content of faunal remains is 

very low. In Lias delta, it drops to values ranging from 0.4 to 1.3 vol.%. In Lias epsilon, the 

percentage of faunal remains ranges from 0.0 to 4.7 vol.%. However, in Lias zeta it reaches 

10.4 vol.%. 

4.1.3.3.2. Faecal pellets (Peloids) 

 Faecal pellets (Boggs, 2009) are represented in all the wells (APPENDIX). They are 

of a variable size (up to more than 300 µm) and their concentration differs according to the 

organo-mineral microfacies (Fig. 4-10). The highest content was encountered in well A, 

reaching 76.2 vol.%, while in well E and well M, the content is lower and does not exceed 

15.7 vol.% and 6.6 vol.% respectively. Finally, the content of faecal pellets in well D shows a 

resemblance to that of well M. The presence of peloids of faecal origin is a further indication 

of anoxic conditions (Cuomo and Bartholomew, 1991). 
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Fig. 4-8: The main elements of the hooks and suckers of the tentacle of Onychoteuthis banksi (belemnites) (Modified after Kulicki and Szaniawski, 1972).  

Oblique section of chitinous hook (from belemnite) in the samples of well D. Reflected white light, oil immersion. 
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A B  

C D  

E  F  

Fig. 4-9: Photomicrographs showing different types of faunal relics. 

A), Shell fragments disturbing the texture of the bituminous shales, probably, indicating a storm event; B), The 

same view in fluorescence mode; C), D), “Vitrinite–like” zooclasts in reflected and fluorescence mode; E), F), 

Phosphate zooclasts. A), C), Reflected white light, B), D), E), F), Fluorescence mode, oil immersion. 
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A B  

C D  

F G  

Fig. 4-10: Photomicrographs showing some examples of peloids encountered in the Posidonia Shale.  

A), B), Peloids poor in organic matter containing rare liptodetrinite and rare lipidic substances; C), D), Bright 

peloids containing rare lamalginite and rich in oil; F), G), Peloids similar to A), B), but with yellow fluorescing 

outer rim (well-preserved faecal pellet). A), C), F), Reflected white light, oil immersion; B), D), G), 

Fluorescence mode, oil immersion.  

 

 In the Dotternhausen-1001 well, faecal pellets occur as elongated bodies having a 

beige colour in reflected white light and a green or brownish fluorescence of weak intensity. 

The size of these peloids can reach more than 200 µm and their quantity makes up 9.0 vol.% 

(APPENDIX A). In other southern German wells, faecal pellets were not taken into 

consideration in the maceral analysis. 
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 Many workers mentioned the contribution of faecal pellets in oil generation as they 

may contain a significant amount of organic matter (Cuomo and Bartholomew, 1991; 

Rullkötter et al., 1992; Boggs, 2009; Gonçalves Sá da Silva, 2014). The planktonically-

produced faecal pellets generally consist of an assortment of organic debris, skeletal material, 

bacteria. Their content may vary, depending on the different food sources (Cuomo and 

Bartholomew, 1991). Moreover, Rullkotter et al., (1992) claimed that there is a relationship 

between faecal pellet and bituminite II. However, from the paleoenvironmental point of view, 

faecal pellets indicate high biomass productivity and can exist when oxygen is available. 

However, dysoxic-anoxic conditions favour the preservation of organic matter. Therefore, a 

high content of faecal pellets enriched in organic matter possibly indicates environments with 

a stratified water column (Cuomo and Bartholomew, 1991; Tyson, 1995). 

 Apart from pellets of faecal origin, Flügel (2004) distinguished peloids of algal and 

microbial origin. These peloids also contain a high quantity of organic matter and indicate 

dysoxic-anoxic paleoenvironments with restricted circulation of the water column. 

4.1.3.3.3. Coccoliths 

The occurrence of coccoliths is frequently attributed to the sedimentation of organic-

rich sediments and provides evidence of their affinity to amorphous organic matter (Batten, 

1985). The identification of these fossils is difficult, due to their bad state of preservation, 

resulting from microbial activity and fungal attack. Therefore, some workers have not paid 

much attention to their identification and they have seldom been recognised (Batten, 1995).  

 Ecologically, some coccolithophores are largely planktonic organisms which inhabit 

oceanic, littoral, lagoonal and estuarine realms. However, some were found in fresh-water 

environments (Batten, 1985). The identification of these microfossils can provide valuable 

information on paleoenvironments. Batten (1985) claimed that the presence of coccoliths in 

sediments may suggest the marine origin of the amorphous organic matter sedimented in 

anoxic conditions. 

 In some samples of wells E and M, numerous coccoliths were encountered 

(APPENDIX A). It is common that a high number of these calcareous nannofossils is related 

to specific organo-mineral microfacies, which will be described later (Fig.3-7 B). Among 

these calcareous nannofossils, abundant Schizosphaerella showing a thin bright-yellow 

fluorescing coating of organic origin were recognised (Fg.3-7 B). Similar organic surface 

coatings have been described and studied by Godoi et al. (2009) on a modern 
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coccolithophore. These authors demonstrate the association of bacteria with the coccosphere. 

This suggests that the coating provides a physical substrate for bacterial assemblages. 

Therefore, the fluorescence observed on the surface of the coccoliths in some of the studied 

samples could be considered in part as being of bacterial origin. This suggests the 

development of strong anoxic conditions to ensure the preservation of the organic coatings 

described above. In northern and southern Germany, coccoliths were found and described in 

some samples. However, they were not counted (APPENDIX A). In addition, 

coccolithophorids can be transported to the sea bottom via faecal pellets of zooplanktonic and 

nektonic animals (Flügel, 2004). 

4.1.3.4. Summary 

 The mineral groundmass in almost all the investigated samples is bituminous, except 

for the samples which have a low content of organic matter and burrows. The ratio of clayey 

and calcareous fraction varies not only from one sedimentary basin to another, but from well 

to well. 

 Posidonia Shale from well D shows the highest values of detrital mineral content 

reaching 8.5 vol.%. Bituminous shales from the Dotternhausen-1001 well contain quartz and 

mica grains, together reaching 6.6 vol.%. By comparison, in wells E and M, the content of 

detrital minerals is lower, making up a maximum of 4.1 and 5.2 vol.% respectively.  

 The highest percentage of dolomite crystals is attained in wells E and M, reaching 55.5 

and 22.3 vol.% respectively. Gypsum is well-represented only in the Lower Saxony Basin. It 

is represented by a primary and a secondary form. The primary form occurs in well A, 

reaching 2.9 vol.%, while in well D, the bituminous shales contain a basically secondary form 

comprising a maximum of 6.8 vol.%. 

 The content of pyrite varies. In wells E, M and A, it is higher than in the other 

investigated wells. The content of framboidal pyrite in these wells reaches 11.0, 9.9 and 

16.5 vol.% respectively. 

 The type of zooclasts and their quantities differ from one sedimentary basin to another. 

While in wells E and M of the West Netherlands Basin, calcareous zooclasts are more 

frequent, reaching 7.8 and 9.3 vol.% respectively, in wells A and D of the Lower Saxony 

Basin, the content of zooclasts is lower with a slight predominance of bioclasts as well, 

comprising a maximum of 4.2 and 2.4 vol.% respectively. In the Dotternhausen-1001 well, 
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the zooclasts are basically represented by shell fragments, whose content in one sample 

reaches a high of 40.6 vol.%. 

 Coccoliths are represented in almost all the wells. However, in some wells they are 

poorly preserved (A and D wells). In wells E and M, coccoliths show a yellow-green 

fluorescing coating, probably, of bacterial origin.  

 

4.2. Identified organo-mineral microfacies 

4.2.1. The West Netherlands Basin 

4.2.1.1. OMFN 1: Low bituminous limestone with low content 

of bituminites (AOM)  

 

Maceral composition of OMFN 1 

Well E 

 This organic microfacies is characterised by a low content of bituminites (Fig. 4-11 A, 

B). Among the bituminites, bituminite I and bituminite V have the highest contents, reaching 

1.0 and 1.5  vol.% respectively. The telalginite content is low (0.1–0.3 vol.%). However, that 

of discrete lamalginite reaches a high of 22.4 vol.%, The content of filamentous lamalginite 

does not exceed 2.8 vol.% and the content of layered lamalginite dips to a low of 0.6 vol.%. 

The liptodetrinite percentage attains a maximum of 8.0 vol.%. Among the terrestrial organic 

matter, sporinite and inertinite were recorded. Sporinite shows values ranging from 0.3–

1.1 vol.%, but inertinite does not exceed 0.4 vol.% (APPENDIX B). 

 

Well M 

 In well M, a similar organic microfacies was identified (Fig.4-12 A, B). However, 

there are some slight differences in the maceral composition. The content of bituminites is 

low. However, that of bituminite I, bituminite II and bituminite V can reach a maximum of 

4.2 vol.%, 1.6 vol.% and 1.4 vol.% respectively. The quantity of telalginite and filamentous 

lamalginite shows a resemblance to well E and well M, but that of discrete lamalginite does 

not exceed 11.0 vol.%. In comparison to well E, the content of liptodetrinite in well M is two 

times higher than in well E. It rises to a maximum of 18.8 vol.% (APPENDIX B). 
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Mineral composition of OMFN 1 

The organic microfacies OMFN1 is associated with low bituminous limestones 

containing dolomite crystals. The content of clayey groundmass in wells E and M ranges from 

10.2 to 38.9 vol.% and from 0.2 to 10.7 vol.% respectively. The quantity of calcareous 

groundmass varies from 22.1 to 56.0 vol.% in well E and from 35.9 to 74.2 vol.% in well M. 

The content of coccoliths might be underestimated. It is similar in both wells and reaches 

about 4.0 vol.%. Dolomite crystals show variable percentages. The highest content reaches 

22.3 vol.% in well M. The content of quartz is higher in well E, ranging from 0.2 to 2.1 vol.%; 

in well M it reaches only 0.9 vol.%. However, in well M, the content of mica is four times 

higher than in well E and reaches 4.4 vol.%. The content of pyrite framboids is predominant 

among other forms. It ranges between 2.4 and 6.4 vol.% in well E and 0.6 and 9.9 vol.% in 

well M. 

 

A  B  

C  D  

Fig. 4-11: Microphotographs illustrating the OMFN1 in well E and some related particularities indicating 

specific events during its deposition.  

A), B), General view of OMFN1 in well E in reflected white light (A) and in fluorescence mode (B), oil 

immersion; C), Tri-maceral coal particles, transported from landmasses by wind or by water flux. Note: the good 

preservation of the particles indicates the deposition in an oxygen-depleted environment. Reflected white light, 

oil immersion; D), Zooclast, probably from Echinoderm, indicating a short-term oxygenation of the water 

column; fluorescence mode, oil immersion.  

 

 The content of zooclasts in both wells shows a resemblance of about 3.0 vol.%. 

Zooclasts are irregularly distributed and often depict a wavy particular texture, indicating a 
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short-term storm event (Fig.4-12 C). This coincides with the input of terrestrial organic 

particles such as recycled particles of carboniferous coal (Fig. 4-11C), Echinoderm (Fig. 4-11 

D), fresh-water derived algae (Botryococcus-derived algae) and a blooming event of 

Tasmanite-derived algae (Fig.4-12 D). 

4.2.1.2. OMFN 2: Bituminous marly limestone enriched in bituminite 

I  

Maceral composition of OMFN 2 

Well E 

 In well E, bituminite I is predominant among other bituminites, ranging from 3.0 to 

7.2 vol.% (Fig. 4-13 A, B). Other types of bituminite are present in low concentrations and do 

not exceed 0.8 vol.%. The percentage of liptodetrinite ranges between 4.3 and 7.9 vol.%. The 

contents of telalginite and filamentous lamalginite show similarities to those of OMFN1, 

whereas the amount of discrete lamalginite drops to a low of 5.3 vol.% (APPENDIX B). 

Among the terrestrial organic matter, vitrinite and inertinite percentages are similar, ranging 

from 0.0 to 0.6 vol.%. The sporinite content varies between 0.5 and 0.7 vol.%.  

Well M 

 In well M, the content of bituminite I reaches 4.2 vol.% (Fig. 4-13 C). The percentage 

of bituminite II and bituminite V is higher than in well E, and varies from 0.2 to 1.6 vol.% and 

from 0.5 to 1.4 vol.% respectively. While the content of telalginite and filamentous 

lamalginite does not show significant discrepancy compared to well E, the content of discrete 

lamalginite is higher, ranging from 5.2 to 11.0 vol.%. The liptodetrinite quantity is two times 

higher than that in well E, reaching 15.2 vol.%. Among the terrestrial organic matter, only 

vitrinite and sporinite are represented. Vitrinite ranges from 0.0 to 1.2 vol.% and sporinite 

reaches 3.0 vol.%. 
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A  B  

C  D  

Fig. 4-12: Microphotographs showing general views and different particularities of OMFN1 in well M.  

A), B), General view of the OMFN1 in well M in reflected white light (A) and fluorescence mode (B), oil 

immersion; C), Chaotically distributed fish bones, indicating short-term storm event. Fluorescence mode, oil 

immersion; D), Tasmanite-derived telalginite, indicating algal-bloom event. Fluorescence mode, oil immersion. 

Mineral composition of OMFN 2 

 This organic microfacies is associated with bituminous marly limestones. The quantity 

of clayey groundmass varies between 1.1 and 39.3 vol.% in well E and between 0.9 and 

5.2 vol.% in well M. The percentages of calcareous groundmass in well E range from 17.0 to 

29.8 vol.%, and in well M from 31.9 to 50.1 vol.%. The content of dolomite crystals is greater 

in well E and reaches 53.8 vol.%. The content of coccoliths is high but does not exceed 26.2 

and 21.8 vol.% in wells E and M respectively. The content of quartz grains is similar in both 

wells; however, the quantity of micas is higher in well M and reaches 1.9 vol.%. The 

percentage of pyrite framboids is in a range between 3.2 and 9.7 vol.% in well E and 4.2 and 

7.6 vol.% in well M. The content of zooclasts in both wells is similar, ranging from 2.9 to 

3.3 vol.%.  
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A  B  

C  

Fig. 4-13: Microphotographs showing general views of OMFN2 in well E (A, B) and in well M (C).  

A), Reflected white light, oil immersion; B), Same field of view as A) in fluorescence mode; C), Fluorescence 

mode, oil immersion.  

 

4.2.1.3. OMFN 3: Bituminous calcareous mudstone and marly 

limestone enriched in bituminite V  

Maceral composition of OMFN 3 

Well E 

 The maceral assemblage of this microfacies is represented by a great quantity of 

bituminite V, varying from 3.4 to 13.2 vol.% (Fig. 4-14). While the content of bituminite I 

and bituminite II reaches 10.5 and 4.1 vol.% respectively, that of the bituminite IV does not 

exceed 0.5 vol.%. Among the alginite group, telalginite reaches 0.6 vol.%, the content of 

discrete and filamentous lamalginite ranges from 3.2 to 11.1 vol.% and from 0.3 to 1.5 vol.% 

respectively. The content of liptodetrinite ranges between 2.2 and 15.2 vol.%. 

 Terrestrial organic matter is represented by a minute amount of vitrinite and inertinite, 

with the sporinite quantity reaching 1.3 vol.%. 
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A  B  

C  D  

Fig. 4-14: Microphotographs illustrating OMFN3 in well E.  

A, B), General view of OMFN3 in reflected white light (left) and in fluorescence mode (right). Bituminite V 

(white arrows). Oil immersion; C, D), Bituminite V in reflected white light (left) and fluorescence mode (right), 

oil immersion.  

 

Well M 

 By comparison, in well M bituminite V reaches only 4.4 vol.% (Fig. 4-15). The 

content of bituminite I ranges between 0.1 and 2.3 vol.%, whereas the percentage of other 

bituminites is very low. Although the contents of telalginite in wells E and well M show a 

resemblance, that of discrete and filamentous lamalginite is higher. Discrete and filamentous 

lamalginite attain a maximum of 14.8 vol.% and 3.4 vol.% respectively. The liptodetrinite 

content is in a range between 9.0 and 10.4 vol.%. 

 Terrestrial organic matter is represented by inertinite and sporinite. Inertinite content 

reaches only 0.3 vol.%, however, that of sporinite ranges between 1.6 and 2.7 vol.%. 

Mineral composition of OMFN 3 

 The organic microfacies OMFN3 occurs in association with bituminous calcareous 

mudstone and marly limestone. The amount of clayey groundmass ranges from 1.9 to 

29.3 vol.% and 2.5 to 11.0 vol.% in wells E and M respectively, while that of calcareous 

groundmass ranges from 0.9 to 36.9 vol.% and 32.3 to 52.0 vol.% in wells E and M 

respectively. The content of dolomite crystals reaches a high of 55.6 vol.% in well E. In well 

M, the dolomite crystals are represented in lower quantities. Coccoliths are better expressed in 
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well E than in well M and their percentage reaches 7.6 vol.%. While the content of quartz 

shows a resemblance in both wells, reaching about 1.6–1.9 vol.%, that of micas is higher in 

well M and reaches 1.5 vol.%. The content of framboidal pyrite is high in both wells. It ranges 

from 4.1 and 11.0 vol.% in well E and from 8.6 to 9.2  vol.% in well M.  

A  B  

Fig. 4-15: Microphotographs illustrating OMFN3 in well M.  

A), Reflected white light, oil immersion; B), Fluorescence mode, oil immersion. Note the white arrows show 

numerous sporinite examples; white circles enclose the massive liptodetrinite.  

 The content of zooclasts is low in both wells, ranging between 0.8 and 2.1 vol.% and 

1.1 and 1.6 vol.% in wells E and M respectively.  

 

4.2.1.4. OMFN 4: Low bituminous limestone rich in 

liptodetrinite and discrete lamalginite 

Maceral and mineral composition of OMFN 4 

 It is poor in organic matter and characterised by a relatively low liptodetrinite content 

(around 4.1 vol.%), discrete lamalginite (1.1 vol.%) and a few sporinites in both wells. It is 

associated with non-laminated low bituminous limestone (Fig. 4-16, 4-17). The percentage of 

clayey groundmass reaches 0.2 and 0.0 vol.% in wells E and M respectively, while calcareous 

groundmass makes up 84.2 vol.% in well E and 83.0 vol.% in well M. The content of detrital 

minerals is higher in well E than in well M. The quantity of quartz and micas ranges between 

2.0 and 4.2 vol.% respectively, whereas that in well M is 0.8 and 2.7 vol.% respectively. The 

content of pyrite framboids is low and does not exceed 0.8 vol.% in both wells. 
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A  B  

Fig. 4-16: Microphotographs illustrating OMFN4 in well E.  

A), Reflected white light, oil immersion; B), Fluorescence mode, oil immersion. Note the relatively high content 

of vitrinite (grey particles (A)) and zooclasts (white arrows). 

 

A  B  

C  

Fig. 4-17: Microphotographs showing OMFN4 in well M.  

A), Reflected white light, oil immersion. B), C), Fluorescence mode, oil immersion.  

 

4.2.1.5. OMFN 5: Bituminous calcareous mudstone and 

limestone enriched in bituminite II 

Maceral composition of OMFN 5 

Well E 

 Organic matter is represented by a high content of bituminite II. In well E it reaches 

5.3 vol.% (Fig. 4-18). However, in one sample from the lower part of the core profile, 

bituminite I is slightly predominant and makes up 5.6 vol.%. This lower part of the Posidonia 

Shale section indicates oxygen-depleted conditions, where bituminite I and bituminite V are 
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predominant. However, in this section, the increasing content of bituminite II, which reaches a 

percentage equal to that of bituminite I, indicates temporary oxygenation of the water column. 

The percentage of bituminite V ranges from 0.6 to 3.4 vol.%.  

 The quantity of telalginite is high, ranging from 0.8 to 1.2 vol.%. The content of 

discrete and filamentous lamalginite reaches 10.9 and 1.1 vol.% respectively. The 

liptodetrinite content ranges from 6.1 to 6.6 vol.%. The sporinite and inertinite contents show 

a resemblance and reach about 0.6 vol.%. 

  

A  B  

C  D  

Fig. 4-18: Microphotographs illustrating OMFN5 in well E and a few of its different particularities.  

A), B), General view of the organic microfacies in reflected white light (left) and fluorescence mode (right); C), 

D) Zooclasts showing oil exudates and obliquely oriented in the bedding plane, indicating a flux resulting from a 

storm event.  

 

Well M 

 In well M, the content of bituminite II ranges between 2.0 and 4.4 vol.%, bituminite I 

content reaches 1.3 vol.% (Fig.4-19). Telalginite in this organic microfacies constitutes a 

minute percentage, while the content of discrete and filamentous lamalginite reaches 13.9 and 

2.8 vol.%. The percentage of liptodetrinite does not exceed 14.0 vol.%. Terrestrial macerals 

are represented by sporinite and inertinite, reaching 1.9 and 1.2 vol.% respectively. 
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Mineral composition of OMFN 5 

 The organic microfacies OMNF5 is associated with bituminous calcareous mudstone 

and limestone. The content of clayey groundmass ranges from 11.6 to 29.4 vol.% in well E 

and 0.3 to 9.4 vol.% in well M, while that of calcareous groundmass varies between 13.5 and 

42.6 vol.% in well E and between 19.8 and 64.2 vol.% in well M. The percentage of dolomite 

crystals climbs to 28.5 vol.% in well E. While the content of quartz is higher in well E and 

reaches 2.8 vol.%, the content of micas is two times lower compared to well M, ranging from 

0.4 to 1.3 vol.%. The amount of pyrite framboids reaches 9.3–9.9 vol.% in both wells. The 

content of coccoliths is greater in well M and reaches 5.4 vol.%.  

 

A  B  

C  D  

Fig. 4-19: Microphotographs showing examples of OMFN5 in well M. 

 A), B), View of OMFN5 in reflected white light (left) and fluorescence mode (right); oil immersion; C), D), 

zooclasts of variable size but obviously having the same origin, embedded in bituminite III in reflected white 

light (left) and fluorescence mode (right), oil immersion. 
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4.2.2.  The Lower Saxony Basin 

4.2.2.1. Well A 

4.2.2.1.1. OMFLa1: Bituminous calcareous mudstone enriched in 

terrestrial macerals with low content of bituminites 

Maceral composition of OMFLa 1 

 Oxidised terrestrial macerals are more abundant in this microfacies than in the others. 

The inertinite content reaches 2.6 vol.%, whereas that of vitrinite does not exceed 0.4 vol.%. 

This coincides with the increased content of telalginite reaching 1.1 vol.% (Fig. 4-20, 

APPENDIX B). The percentage of discrete lamalginite in this organic microfacies reaches the 

highest values, ranging between 2.7 to 10.3 vol.%. The amount of filamentous and layered 

lamalginite is in a range between 4.0 and 1.7 vol.% respectively. Liptodetrinite varies from 

6.7 to 11.5 vol.%. 

 Amorphous organic matter is represented by bituminite I and bituminite II. OMFLa1 

contains bituminite I in a range between 0.1 and 0.6 vol.%. The bituminite content II reaches 

1.7 vol.%.  

Mineral composition of OMFLa 1 

 This organic microfacies is associated with bituminous calcareous mudstone, with a 

low percentage of coarse faecal pellets, ranging from 0.1 to 1.0 vol.%. The content of clayey 

groundmass ranges from 30.8 to 35.4 vol.%, while that of calcareous groundmass is from 4.2 

to 14.6 vol.%. The content of detrital minerals is low. The quartz quantity does not exceed 

1.3 vol.% and that of micas reaches 0.4 vol.%. The percentage of framboidal pyrite is high 

and reaches 16.5 vol.%. 
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A  B  

Fig. 4-20: Photomicrographs illustrating OMFLa1.  

Fluorescence mode, oil immersion. Note the high content of the telalginite of different fluorescence intensity. 

This evidence indicates increasing water masses' circulation leading to the spreading of the oxygen-minimum 

zone.  

 

4.2.2.1.2. OMFLa 2: Bituminous limestone enriched in bituminite II  

Maceral composition of OMFLa 2 

 In comparison with OMFLa1, the assemblage of liptinite macerals is more diverse, but 

the content of terrestrial macerals and its variations decrease (Fig. 4-21). Among alginite, 

telalginite marginally increases to a high of 1.6 vol.%. However, that of discrete lamalginite 

drops to a low of 5.6 vol.%. The quantity of layered lamalginite is in a range between 0.3 and 

10.4 vol.% and the content of layered lamalginite reaches 6.0 vol.%. Liptodetrinite, compared 

to OMFLa1, slightly increases to 12.7 vol.%. While the bituminite I quantity does not exceed 

4.7 vol.%, that of bituminite II climbs to a high of 38.8 vol.%.  

Mineral composition of OMFLa 2 

 From a lithological point of view, this organic microfacies is associated with 

bituminous limestones, in which coarse peloids, reaching 18.5 vol.%, telalginite and 

bituminite I emphasise the indistinct microlamination. The clayey groundmass reaches 

13.2 vol.%, while calcareous groundmass makes up 69.3 vol.%. The content of dolomite 

crystals does not exceed 4.0 vol.%. The amount of detrital minerals is low. The percentage of 

pyrite framboids ranges from 2.9 to 15.6 vol.%. 
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A  B  

Fig. 4-21: Photomicrographs showing examples of OMFLa2.  

A), Reflected white light oil immersion; B) Same field of view, fluorescence mode, oil immersion. Note the dark 

fluorescence of the bituminite II, probably indicating thermal transformation.  

 

4.2.2.1.3. OMFLa 3: Bituminous limestone enriched in bituminite I 

Maceral composition of OMFLa 3 

 The high content of bituminite I, ranging from 3.0 to 10.6 vol.%, is characteristic of 

this organic microfacies. The amount of bituminite II yields a maximum of 4.2 vol.%. The 

telalginite content shows a resemblance to the previous organic microfacies and reaches 

1.2 vol.%. The content of lamalginite decreases. Discrete lamalginite content comprises 

values ranging from 2.8 to 4.8 vol.%, filamentous lamalginite content reaches 1.3 vol.% and 

the amount of layered lamalginite dips to a low of 0.2 vol.%. The percentage of liptodetrinite 

increases to a high of 14.1 vol.%. 

Mineral composition of OMFLa 3 

 This organic microfacies is hosted by bituminous limestone with a low content of 

detrital minerals. The content of clayey groundmass reaches 15.1 vol.%, while calcareous 

groundmass ranges from 28.7 to 78.9 vol.%. Shell remains are chaotically distributed, 

possibly indicating a storm event (Fig. 4-22). The percentage of coarse peloids increases to 

22.4 vol.%. The quantity of pyrite framboids is high and reaches 12.4 vol.%. 
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A  B  

Fig. 4-22: Photomicrographs illustrating examples of OMFLa3.  

A), Reflected white light, oil immersion; B), Same field of view, fluorescence mode, oil immersion. Note the 

wavy microfabrics, probably indicating a short-term storm event. The dark fluorescing bituminite I emphasises 

the microfabric.  

4.2.2.1.4. OMFLa 4: Low bituminous limestone with low content of 

lamalginite 

Maceral composition of OMFLa 4 

 This microfacies is represented by a low content of lamalginite (Fig. 4-23). The 

quantity of discrete, filamentous lamalginite reaches 1.8 and 0.6 vol.% respectively. The 

telalginite content ranges between 0.0 and 3.7 vol.%. The percentage of liptodetrinite 

decreases to a low of 5.3 vol.%. The content of bituminite I and bituminite II comprises a 

maximum of 1.0 and 4.0 vol.% respectively.  

Mineral composition of OMFLa 4 

 This organic microfacies is hosted by low bituminous limestones. The content of 

clayey groundmass reaches 0.9 vol.%, while the percentage of calcareous groundmass ranges 

between 64.8 and 97.6 vol.%. The content of coarse faecal pellets reaches a high of 

76.2 vol.%. The percentage of dolomite crystals reaches 9.4 vol.%. The content of detrital 

minerals does not exceed 0.8 vol.%. The low content of organic constituents in this organo-

mineral microfacies coincides with the decreasing quantity of pyrite framboids, which reaches 

only 2.6 vol.%.  

 

 



CHAPTER 4 

126 

 

A  B  

Fig. 4-23: Photomicrographs illustrating OMFLa4 in well A. 

A), Reflected white light, oil immersion; B), Same field of view, fluorescence mode, oil immersion. Note the 

numerous yellow fluorescing liptodetrinite and discrete lamalginite (B). 

.



ORGANIC COMPOSITION AND ORGANO-MINERAL MICROFACIES VARIATIONS OF THE POSIDONIA SHALE FROM THE 

WEST NETHERLANDS BASIN, THE LOWER SAXONY BASIN AND THE SOUTH GERMAN BASIN 

127 

 

4.2.2.2. Well D 

4.2.2.2.1. OMFLd 1: Bituminous limestone enriched in bituminite II  

Maceral composition of OMFLd 1 

 The predominance of bituminite II is characteristic of this organic microfacies (Fig. 4-

24). Its content reaches 2.0 vol.%. The percentage of bituminite I is marginally lower and 

comprises 1.4 vol.%. The alginite content is generally low, except that of discrete lamalginite, 

which reaches 8.2 vol.%. The percentage of liptodetrinite is high, yielding a maximum of 

17.2 vol.%.  

Mineral composition of OMFLd 1 

 The maceral assemblage of this microfacies is associated with bituminous limestone 

with a low content of faecal pellets and zooclasts. The amount of clayey groundmass reaches 

5.0 vol.%, while that of calcareous groundmass reaches a high of 55.2 vol.%.The content of 

gypsum reaches 3.9 vol.%. The percentage of pyrite — both framboid and epeginetic form — 

does not exceed 2.0 vol.%.  

 

A  B  

Fig. 4-24:. Photomicrographs illustrating OMFLd1.  

A), Example of bituminite II showing a yellow-orange fluorescence (close to the scale bar). The wavy 

microfabric indicates an environment with a relatively high water dynamic; B), The occurrence of the belemnite 

hook cross-section demonstrates the oxygen availability in the water column. Fluorescence mode, oil immersion. 

4.2.2.2.2. OMFLd 2: Bituminous limestone enriched in bituminite I  

Maceral composition of OMFLd 2 

 By comparison, OMFLd 2 is characterised by an increasing content of bituminite I, 

ranging from 0.6 to 6.5 vol.% (Fig. 4-25). The percentage of bituminite II reaches 1.1 vol.%. 

Among the alginite group, the amount of telalginite varies between 0.3 and 1.6 vol.%. The 

content of discrete, filamentous and layered lamalginite increases, ranging from 6.3 to 

19.4 vol.%, from 0.9 to 4.2 vol.% and from 0.0 to 0.4 vol.% respectively. The quantity of 
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liptodetrinite reaches a high of 28.7 vol.%. The input of terrestrial organic matter is low, the 

percentages reaching 0.4 vol.% and 0.9 vol.% for vitrinite and inertinite respectively. 

Mineral composition of OMFLd 2 

 This organic microfacies is hosted by bituminous limestones with faecal pellets and 

zooclasts, reaching 3.2 and 2.4 vol.% respectively. The content of clayey groundmass 

increases and ranges from 6.0 to 35.8 vol.%, while that of calcareous groundmass varies from 

22.0 to 58.3 vol.%. The content of gypsum reaches 5.6 vol.%. The input of detrital minerals is 

still low. It does not exceed 0.8 vol.% for both quartz and mica. The content of framboids 

decreases to 1.0 vol.%, whereas that of epigenetic pyrite slightly increases to 2.9 vol.%. 

 

A  B  

Fig. 4-25: Photomicrographs illustrating OMFLd2.  

Note the high content of bituminite I (white arrows). Fluorescence mode, oil immersion. 

 

4.2.2.2.3. OMFLd 3: Bituminous limestone with high content of 

filamentous lamalginite and decreased content of 

bituminites 

Maceral composition of OMFLd 3 

 This organic microfacies is characterised by the highest content of filamentous 

lamalginite among all the identified organic microfacies in well D. Its content ranges from 2.9 

to 7.0 vol.% (Fig. 4-26). That of discrete lamalginite is high as well, reaching 15.7 vol.%. 

However, layered lamalginite was not observed in this microfacies. The content of telalginite 

and liptodetrinite is also high, reaching 1.9 and 17.5 vol.% respectively. Among the 

amorphous organic matter, the content of bituminite I does not exceed 1.2 vol.%. The content 

of bituminite II dips to a low of 0.3 vol.%. In comparison to other microfacies, the input of 

terrestrial macerals is relatively high. It reaches 0.4, 1.1 and 1.3 vol.% for sporinite, vitrinite 

and inertinite respectively.  
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Mineral composition of OMFLd 3 

 The lithologies associated with this organic microfacies are bituminous limestones and 

mudstones with scattered faecal pellets and zooclasts, comprising 4.7 and 0.4 vol.% 

respectively. The percentages of clayey and calcareous groundmass range from 19.7 to 

38.1 vol.% and from 18.5 to 49.4 vol.% respectively. The content of quartz reaches 8.1 vol.% 

and micas make up 1.1 vol.%. The percentages of pyrite — framboids and epigenetic form — 

are 1.8 and 2.9 vol.% respectively. 

 

A  B  

Fig. 4-26: Photomicrographs illustrating OMFLd 3.  

A), Reflected white light, oil immersion; B), Same field of view, fluorescence mode, oil immersion. Note the 

high content of the yellow fluorescing filamentous lamalginite in B. 

4.2.2.2.4. OMFLd 4: Low bituminous limestone with low diversity of 

the macerals 

Maceral and mineral composition of OMFLd 4  

 This organic microfacies is characterised by a content of discrete lamalginite and 

liptodetrinite reaching 0.9 and 2.3 vol.% respectively. This microfacies is associated with low 

bituminous limestones with scattered epigenetic pyrite, whose content climbs to a high of 

6.3 vol.%. The content of calcareous groundmass reaches 91.4 vol.% (Fig. 4-27). 

 

A  B  

Fig. 4-27: Photomicrographs illustrating OMFLd 4.  

A), Brownish fluorescence halos in the middle consist of bituminite VI. B), Acritarch exhibits a yellow-green 

fluorescence of high intensity surrounded by bituminite VI. Fluorescence mode, oil immersion. 
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4.2.2.2.5. OMFLd 5: Bituminous limestone with low content of 

discrete, filamentous lamalginite and bituminites 

Maceral composition of OMFLd 5 

 This organic microfacies is similar to OMFLd3, but the content of filamentous 

lamalginite dips to a low of 2.9 vol.% (Fig. 4-28). The content of discrete lamalginite is 

decreased as well, ranging from 7.1 to 9.8 vol.%. However, telalginite is present in a greater 

quantity, reaching 1.5 vol.%. Liptodetrinite percentages comprise 11.1 to 23.6 vol.%. The 

input of terrestrial macerals is relatively high. The amount of sporinite, vitrinite and inertinite 

ranges between 0.2 and 0.3 vol.%, 0.1 and 0.2 vol.% and 0.5 and 1.8 vol.%.  

Mineral composition of OMFLd 5 

 This organic microfacies is hosted by bituminous limestone and calcareous mudstone. 

The amount of clayey and calcareous groundmass ranges from 29.1 to 39.0 vol.% and 25.1 to 

33.4 vol.% respectively. The content of faecal pellets and zooclasts reaches 2.5 and 1.1 vol.% 

respectively. The amount of gypsum increases to 3.1 vol.%. The input of quartz grains reaches 

6.1 vol.%. The percentage of framboids and epigenetic pyrite ranges from 0.6 to 0.8 vol.% 

and from 0.6 to 2.5 vol.% respectively. 

 

A  B  

Fig. 4-28: Photomicrographs of OMFLd 5.  

Fluorescence mode, oil immersion. Note the presence of a bright yellow fluorescing Botryococcus-derived algae 

in B. 
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4.2.3.  The South German Basin 

4.2.3.1. Dotternhausen-1001 well  

4.2.3.1.1. OMFDot 1: Non-bituminous silty marls enriched in 

zooclasts 

Maceral composition of OMFDot 1 

 This organic microfacies is characterised by a low content of organic constituents. The 

input of terrestrial macerals is low and their quantity reaches a maximum of 0.3 vol.% for 

each of vitrinite, inertinite and sporinite. Among the alginite macerals, the telalginite content 

only reaches 0.7 vol.%. However, that of discrete lamalginite ranges from 2.1 to 18.1 vol.%. 

The quantity of filamentous lamalginite comprises a maximum of 1.0 vol.% (APPENDIX A, 

B).  

Mineral composition of OMFDot 1 

 Lithologically, the organic microfacies of OMFDot1 is associated with non-laminated 

and non-bituminous silty marls and marly shales, which are locally bioturbated. The content 

of clayey groundmass ranges from 0.7 to 14.5 vol.%, while that of calcareous groundmass 

varies from 25.3 to 85.0 vol.%. The content of scattered framboidal pyrite is low, whereas that 

of epigenetic pyrite reaches 5.2 vol.%. Among detrital minerals, micas predominate, with a 

percentage reaching 3.0 vol.%, whereas the content of quartz comprises a maximum of 

1.4 vol.%. The quantity of dolomite crystals ranges between 0.3 and 6.0 vol.%. 

A  B  

Fig. 4-29: Photomicrographs illustrating examples of OMFDot 1.  

A), Reflected white light, oil immersion; B), Same field of view, fluorescence mode, oil immersion. Note the 

high amount of the different types of the zooclasts, which are well recognisable in fluorescence mode by a 

yellow-orange and a yellow colour. 

 



CHAPTER 4 

132 

 

 This organic microfacies is associated with an extremely high content of phosphatic 

and recrystallised calcareous zooclasts. They are represented by recrystallised remains of 

foraminifera and coccoliths, fishbones and teeth, and other faunal remains of uncertain 

affinity, whose content reaches a high of 41.5 vol.% (Fig. 4-29). Shell fragments are 

irregularly oriented. Non-bituminous peloids are also observed. 

 

4.2.3.1.2. OMFDot 2: Bituminous silty marls, limestone and 

mudstone enriched in bituminite I 

Maceral composition of OMFDot 2 

 The increased content of bituminite I is characteristic of this organic microfacies (4-

30). Similar to OMFDot1, the content of vitrinite, inertinite, sporinite is low. However, the 

amount of telalginite (0.2–1.3 vol.%) increases, together with that of bituminite I (1.0–

4.0 vol.%). The percentage of discrete lamalginite marginally declines to a value of 7.8 vol.%. 

The content of filamentous lamalginite ranges from 0.6 to 1.2 %. The liptodetrinite content 

varies from 0.3 to 10.7 vol.%.  

Maceral composition of OMFDot 2 

 Lithologies associated with this organic microfacies are bituminous silty marls, 

limestones and mudstones. The content of clayey and calcareous groundmass ranges from 1.2 

to 53.9 vol.% and from 17.1 to 79.4 vol.% respectively. The amount of framboidal and 

epigenetic pyrite reaches 7.8 and 10.2 vol.% respectively. The percentage of micas does not 

exceed 0.4 vol.%, whereas that of quartz climbs to a high of 6.2 vol.%. 

 

A  B  

Fig. 4-30: Photomicrographs showing examples of bituminite I in OMFDot 2.  

A), Reflected white light, oil immersion; B), Same field of view, fluorescence mode, oil immersion. Note the 

richness of the bituminite I in lamalginite. 

 

 



ORGANIC COMPOSITION AND ORGANO-MINERAL MICROFACIES VARIATIONS OF THE POSIDONIA SHALE FROM THE 

WEST NETHERLANDS BASIN, THE LOWER SAXONY BASIN AND THE SOUTH GERMAN BASIN 

133 

 

 

4.2.3.1.3. OMFDot 3: Bituminous silty marls and limestone 

enriched in bituminite I and bituminite VI 

Maceral composition of OMFDot 3 

 This organic microfacies is represented by an increased content of bituminite I 

(3.3 vol.%) and bituminite VI (2.2 vol.%) (Fig.4-31). Among alginite, the content of discrete 

lamalginite is the highest (5.2 vol.%).  

Mineral composition of OMFDot 3 

 This organic microfacies is hosted by bituminous silty marls and limestones with 

burrows (Fig. 4-30). The amount of clayey groundmass ranges from 3.0 to 27.4 vol.%, while 

that of calcareous groundmass varies from 38.0 to 89.1 vol.%. The content of framboidal 

pyrite ranges from 0.5 to 2.6 vol.%, whereas that of epigenetic pyrite comprises from 1.9 to 

7.5 vol.%. The percentage of quartz and micas shows a resemblance, reaching 0.3 vol.%. 

A  B  

Fig. 4-31: Photomicrographs illustrating burrows in OMFDot 3.  

A), The burrows appear light grey and light brown in comparison to the dark grey mineral bituminous 

groundmass (right). Reflected white light, oil immersion; B), Fluorescence mode, oil immersion. Note the light 

fluorescence colour of the burrows and their low content in liptinite. Optical properties of the burrows are similar 

to those of the non-bituminous calcareous groundmass, poor in organic matter. 

 

4.2.3.1.4. OMFDot 4: Bituminous silty marls and limestone 

enriched in bituminite IV 

Maceral composition of OMFDot 4 

 The predominance of bituminite IV among other amorphous organic matter is 

characteristic of this organic microfacies (Fig. 4-32). Similar to the previously described 

microfacies, the content of telalginite and terrestrial organic matter reaches 0.3 vol.%. The 

discrete lamalginite content ranges from 4.2 to 4.8 vol.%, while the content of filamentous 

lamalginite reaches 0.5 vol.%. Among the amorphous organic matter, the amount of 
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bituminite I and bituminite II is low, while that of bituminite IV climbs to a high of 3.8 vol.%. 

The percentage of liptodetrinite varies from 6.7 to 7.3 vol.%. The zooclast content increases to 

a value of 4.9 vol.%.  

Mineral composition of OMFDot 4  

 This organic microfacies is associated with bituminous limestones and silty marls. The 

content of clayey and calcareous groundmass ranges from 10.8 to 22.6 vol.% and from 52.8  

to 69.0 vol.%. The percentage of framboidal pyrite ranges from 0.7 to 1.1 vol.%, but that of 

epigenetic pyrite reaches 3.0 vol.%. Among the detrital minerals, quartz is predominant and 

its percentage reaches 1.9 vol.%, whereas that of micas is suppressed. The content of 

zooclasts increases to a value of 4.9 vol.%.  

A  B  

C  D  

Fig. 4-32: Photomicrographs illustrating the particularities of OMFDot 4.  

A) Bituminite IV in reflected white light, oil immersion; B), The same view in fluorescence mode, oil 

immersion; C), General view of OMFDot4, showing the widely distributed bituminite IV in the mineral 

bituminous groundmass; D), The same view in fluorescence mode (white arrows show bituminite IV), oil 

immersion.  

 

4.2.3.1.5. OMFDot 5: Bituminous mudstone with even quantity of 

bituminite I and bituminite II  

Maceral composition of OMFDot 5 

 The OMFDot5 is composed of increasing contents of sporinite and telalginite, which 

attain 1.6 vol.% and 1.3 vol.% respectively. The content of discrete lamalginite ranges from 

1.4 to 2.3 vol.%, while the content of filamentous and layered lamalginite increases to a high 
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of 2.8 and 1.0 vol.% respectively. The amount of liptodetrinite in this organic microfacies dips 

to a low of 3.3 vol.%. Among the amorphous organic matter, the content of bituminite I (0.7–

1.5 vol.%) and bituminite II (0.7–1.0 vol.%) shows a resemblance. The bituminite III quantity 

marginally increases to 0.2 vol.%.  

Mineral composition of OMFDot 5 

 This organic microfacies is hosted by bituminous mudstone. The content of clayey 

groundmass varies from 63.7 to 70.7 vol.%, while that of calcareous groundmass ranges from 

7.0 to 13.3 vol.%. Framboidal pyrite comprises 6.4–6.8 vol.%. The content of quartz reaches 

4.5 vol.% (Fig.4-33). 

A  B  

Fig. 4-33: Photomicrographs illustrating the particularities of the OMFDot 5.  

A) Bituminite I (Bit I) and bituminite II (Bit II) in reflected white light, oil immersion. B), Same view in 

fluorescence mode, oil immersion.   
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4.2.3.2. Notzingen – 1017 well 

4.2.3.2.1. OMFNot 1: Calcareous shales with high input of 

terrestrial organic matter 

Maceral composition of OMFNot 1 

 This organic microfacies is characterised by a high input of inertinite and vitrinite 

macerals and an increased content of zooclasts (Figs. 4-34; APPENDIX B). Among the 

terrestrial organic matter, vitrinite macerals prevail, ranging from 1.4 to 3.4 vol.%, whereas 

inertinite quantity varies from 0.6 to 1.0 vol.%. Among the liptinite macerals, liptodetrinite is 

marginally predominant with percentages ranging from 2.1 to 5.5 vol.%, while the lamalginite 

content reaches 4.1 vol.%.  

Mineral composition of OMFNot 1 

 This organic microfacies is hosted by calcareous shale with scattered pyrite, whose 

content is in a range between 1.4 and 2.2 vol.%. The groundmass content reaches 90.2 vol.%. 

The percentage of zooclasts reaches 10.0 vol.%.  

A  B  

C  D  

Fig. 4-34: Photomicrographs illustrating the OMFNot 1in an organic concentrate prepared by density separation 

(A, B) and cross-section perpendicular to the bedding plane (C, D).  

A), Indigenous vitrinite (grey) and oxidised vitrinite (light grey) surrounded by inertodetrinite (white); B), 

Different examples of fusinite (white), and dark grey and light grey vitrinite particles. Reflected white light, oil 

immersion; C), OMFNot1 in cross-section, reflected white light oil immersion. Note grey reflecting vitrinite 

particles and light grey reflecting fusinite partciles; D), Same view in fluorescence mode, oil immersion.  
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4.2.3.2.2. OMFNot 2: Bituminous limestone and bituminous 

calcareous shales with low content of zooclasts and 

increased content of sporinite and telalginite 

Maceral composition of OMFNot 2 

 The increased content of sporinite, telalginite and zooclasts is the principal 

characteristic of this organic microfacies (Fig. 4-35). The content of sporinite and telalginite is 

more or less equal and may reach 0.8 vol.%. The content of zooclasts drops to a low of 

3.0 vol.%. The percentage of liptodetrinite is higher than that of lamalginite. It reaches a 

maximum of 17.0 vol.%, while lamalginite is 8.9 vol.%. In contrast to the previously 

described organic microfacies, the content of bituminite increases and reaches 2.9 vol.%. 

Inertinite macerals predominate among the terrestrial organic matter and reach 1.3 vol.%, 

while vitrinite makes up only 0.2 vol.%. 

Mineral composition of OMFNot 2 

 This organic microfacies is associated with bituminous limestones and bituminous 

calcareous shales, locally bioturbated. The content of groundmass varies from 66.4 to 

84.9 vol.%. The amount of pyrite reaches 6.9 vol.% (Fig.4-35). 

 

A  B  

Fig. 4-35: Example of bituminite II in OMFNot 2.  

A), Reflected white light, oil immersion; B), Same field of view, fluorescence mode, oil immersion. Note the 

yellow-orange fluorescence colour of the bituminite II (Bit II) with numerous liptodetrinite inclusions of a 

yellow fluorescence of high intensity. 
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4.2.3.2.3. OMFNot 3: Bituminous shales and limestone with 

increased content of liptodetrinite and bituminite 

Maceral composition of OMFNot 3 

 This organic microfacies is characterised by a decreased content of sporinite, 

telalginite and zooclasts, while that of liptodetrinite, lamalginite and bituminite increases. 

Compared to OMFNot2, the content of bituminite reaches a high of 8.0 vol.%. Liptodetrinite 

is still predominant with percentages ranging from 2.9 to 16.4 vol.%, but the quantity of 

lamalginite slightly increases to a high of 12.8 vol.%. (Fig. 4-36).  

Mineral composition of OMFNot 3 

 This microfacies occurs in association with bituminous shales and limestones with a 

low content of zooclasts, dipping to a low of 0.1 vol.%. The content of groundmass varies 

between 63.5 and 88.1 vol.%. The percentage of pyrite varies from 3.9 to 5.5 vol.%. 

 

A  B  

Fig. 4-36: General microscopic view of OMFNot 3.  

A) Reflected white light, oil immersion; B), Same field of view, fluorescence mode, oil immersion. Note the 

high content of the lamalginite well illustrated in B.  

 

4.2.3.2.4. OMFNot 4: Bituminous shales and calcareous shales 

characterised by increased content of telalginite together 

with inertinite 

Maceral composition of OMFNot 4 

 Organic matter is represented by an increased content of telalginite and inertinite, 

probably indicating  a dry climate, leading to temporary oxygenation of the water column. 

The amount of telalginite reaches 0.4 vol.%, while the inertinite percentage rises to a high of 

1.9 vol.%. The content of lamalginite and liptodetrinite is high, ranging from 0.0 to 9.7 vol.% 

and from 2.7 to 11.5 vol.% respectively. The percentage of bituminite is variable, ranging 

from 0.3 to 8.6 vol.% (Fig. 4-37).  
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Mineral composition of OMFNot 4 

 This microfacies is hosted by bituminous calcareous shales, locally bioturbated. The 

content of groundmass ranges from 60.6 to 88.1 vol.%. The percentage of pyrite ranges 

between 2.9 and 5.4 vol.%. 

A  B  

Fig. 4-37: Photomicrographs illustrating example of the bituminite I in OMFNot 4.  

A), Reflected white light, oil immersion; B), Same field of view, fluorescence mode, oil immersion. 

 

4.2.3.2.5. OMFNot 5: Bituminous shales and calcareous shales 

enriched in telalginite, bituminite and sporinite 

Maceral composition of OMFNot 5 

 An increased content of telalginite, bituminite and sporinite is characteristic of this 

microfacies. The sporinite and telalginite content reaches 0.4 and 0.5 vol.% respectively. 

Simultaneously, the percentage of inertinite increases to a high of 3.1vol.% %. The contents 

of lamalginite and liptodetrinite are equally high and reach 3.1 vol.%. Bituminite values climb 

to a high of 26.1 vol.%.  

Mineral composition of OMFNot 5 

 This organic microfacies is hosted by calcareous shales and bituminous shales, in part 

bioturbated (Fig. 4-38). The percentage of groundmass ranges from 66.2 to 88.7 vol.%. The 

content of pyrite ranges between 1.8 and 3.5 vol.%. However, in one sample its quantity 

reaches a high of 15.9 vol.%. 
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A  B  

C  D  

Fig. 4-38: Photomicrographs showing the particularities of OMFNot 5.  

A), Examples of burrows. Reflected white light, oil immersion (left); B) same field of view, fluorescence mode, 

oil immersion (right); C), Telalginite showing a yellow fluorescence of high intensity; D), Telalginite and 

bituminite I (under the scale bar) with yellow fluorescing liptodetrinite inclusions.  

 

4.2.3.2.6. OMFNot 6: Calcareous shales enriched in inertinite  

Maceral composition of OMFNot 6 

 In this organic microfacies, the terrestrial organic matter prevails (Fig.4-39). Inertinite 

content reaches 1.6 vol.%, while vitrinite content attains only 0.8 vol.%. The percentage of 

zooclasts makes up 0.4 vol.%. Amorphous organic matter reaches only 0.8 vol.%.  

 This microfacies is hosted by calcareous shales. The content of groundmass reaches 

93.8 vol.%. Its pyrite content reaches 2.5 vol.%. 

A  B  

Fig. 4-39: Photomicrographs showing the organic poor calcareous groundmass of OMFNot 6 with scattered 

numerous particles of inertodetrinite.  

A), Reflected white light, oil immersion; B), Same field of view, fluorescence mode, oil immersion. 
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4.2.3.2.7. OMFNot 7: Bituminous calcareous shales enriched in 

vitrinite 

Maceral and mineral composition of OMFNot 7 

 This microfacies is similar to OMFNot 6, however, vitrinite is the sole organic 

component which constitutes this microfacies. Its content ranges from 4.0 to 5.1 vol.%. The 

amount of zooclasts increases to 1.3 vol.%. The organic microfacies OMFNot7 is associated 

with calcareous bituminous shales locally burrowed. The content of groundmass reaches 

92.1 vol.%. The pyrite percentage is in a range between 2.5 and 4.0 vol.% (Fig.4-40). 

A  B  

Fig. 4-40: Photomicrographs showing the organic poor calcareous groundmass of the OMFNot 7 with scattered 

numerous particles of vitrinite (Vt). Note Echinoderms (Zcl) in the top - centre and top - right. 

A), Reflected white light, oil immersion. B), Same field of view, fluorescence mode, oil immersion. 

 

4.2.3.3. Bisingen-1002 well 

4.2.3.3.1. OMFBis 1: Claystones and calcareous shales with high 

input of vitrinite maceral and suppressed content of 

zooclasts 

Maceral composition of OMFBis 1 

 This organic microfacies is characterised by a high content of terrestrial organic matter 

associated with a low zooclast quantity, which does not exceed 0.7 vol.% (Fig.4-41 A, B; 

APPENDIX B). Among all the organic matter, vitrinite prevails. Its content varies from 1.4 to 

2.5 vol.%. The percentage of sporinite ranges from 0.3 to 1.2 vol.%, while that of other 

macerals of marine origin such as lamalginite, liptodetrinite, bituminite I and bituminite III, is 

suppressed.  
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Mineral composition of OMFBis 1 

 The organic microfacies OMFBis 1 is associated with claystones and calcareous 

shales. The content of clayey groundmass reaches 96.7 vol.%. The content of pyrite reaches 

only 2.0 vol.%. 

4.2.3.3.2. OMFBis 2: Calcareous shales and limestone enriched in 

vitrinite and with a high content of zooclasts 

Maceral composition of OMFBis 2 

 This organic microfacies is represented by a high content of zooclasts ranging from 

2.2 to 14.5 vol.% (Fig.4-41 C, D). Among all the organic matter, vitrinite macerals are 

predominant and reach 1.6 vol.%. The percentage of other macerals is low. In OMFBis 2 

sporinite, liptodetrinite and bituminites are also represented, but in low quantities. 

Mineral composition of OMFBis 2  

 This organic microfacies occurs in calcareous shales and limestones. The content of 

clayey groundmass varies from 4.4 to 58.5 vol.%, while that of calcareous groundmass varies 

from 35.7 to 97.3 vol.%. The percentage of pyrite is marginally higher than in OMFBis 1 and 

reaches 4.0 vol.%.  

 

4.2.3.3.3. OMFBis 3: Bituminous shales enriched in bituminite I 

with moderate content of zooclasts 

Maceral composition of OMFBis 3  

 Lamalginite, liptodetrinite, bituminite I and bituminite III are common constituents of 

this organic microfacies (Fig 4-42 A, B). Among the amorphous organic matter, bituminite I 

is predominant with percentages ranging from 0.9 to 4.3 vol.%, whereas the content of 

bituminite III only reaches a high of 0.9 vol.%. Among the terrestrial organic matter, inertinite 

is slightly dominant with percentages ranging from 0.0 to 0.8 vol.%, but the content of 

vitrinite makes up 0.4 vol.%. The sporinite quantity is relatively low, but in one sample 

reaches a high of 1.1 vol.%.  

Mineral composition of OMFBis 3 

 This organic microfacies is associated with bituminous shales. The content of clayey 

groundmass varies between 19.4 to 77.3 vol.%, that of calcareous groundmass ranges from 
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16.0 to 57.9 vol.%. The content of pyrite ranges from 2.0 to 3.0 vol.%. The percentage of 

zooclasts decreases to 9.8 vol.%.  

A  B  

C  D  

Fig. 4-41: Photomicrographs showing the organic poor calcareous groundmass of the OMFBis 1 and OMFBis 2. 

A), View of OMFBis 1 in reflected white light, oil immersion. Note small particles of recycled vitrinite; B), 

Same view in fluorescence mode, oil immersion; C), View of OMFBis 2 in reflected white light, oil immersion. 

Note the grey particle of indigenous vitrinite (Vt) and zooclasts (Zcl); D), Same view in fluorescence mode, oil 

immersion.  

 

4.2.3.3.4. OMFBis 4: Bituminous shales with high content of 

zooclasts 

Maceral and mineral composition of OMFBis 4 

  The percentage of zooclasts ranges between 17.6 and 18.3 vol.%, the content of 

telalginite marginally rises to 0.3 vol.% (Fig. 4-42 C,D). This organic microfacies occurs in 

association with bituminous shales. The content of clayey groundmass ranges from 32.7 to 

34.9 vol.%, and that of calcareous groundmass varies from 31.3 to 42.5 vol.%. The content of 

pyrite reaches 3.0 vol.%. 

 

4.2.3.3.5. OMFBis 5: Bituminous limestone poor in organic matter 



CHAPTER 4 

144 

 

Maceral and mineral composition of OMFBis 5 

 This organic microfacies has a low content of any type of organic matter and was 

identified only in one sample. The organic microfacies OMFBis5 was identified in a 

bituminous limestone bed. The percentage of calcareous groundmass reaches 96.0 vol.%, 

while the content of clayey groundmass reaches 3.0 vol.%. The content of pyrite is low, 

reaching 1.0 vol.% (Fig.4-43 A, B).  

A  B  

C  D  

Fig. 4-42: Photomicrographs showing the organic poor calcareous groundmass of the OMFBis 3 and OMFBis 4. 

A), View of OMFBis 3 in reflected white light, oil immersion. Note numerous bituminite I (Bit I); B), Same 

view in fluorescence mode, oil immersion; C), View of OMFBis 4 in reflected white light, oil immersion. Note 

the high content of shells (Sh) and bituminite I (Bit I); D), Same view in fluorescence mode, oil immersion.  

 

4.2.3.3.6. OMFBis 6: Bituminous shales enriched in bituminite I 

with low content of zooclasts 

Maceral and mineral composition of OMFBis 6 

 This marine organic matter-dominated organic microfacies is similar to that described 

as OMFBis3. However, the content of zooclasts decreases to 1.4 vol.%. The quantities of 

liptodetrinite and lamalginite are similar and reach a maximum of 9.2 vol.%. The telalginite 

content makes up only 0.2 vol.%. Among the amorphous organic matter, bituminite I prevails 

with percentages ranging between 2.9 and 9.0 vol.%, whereas the content of bituminite III 
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reaches only 0.8 vol.%. This organic microfacies is hosted by bituminous shales. The content 

of clayey groundmass ranges from 16.4 to 51.8 vol.%, while calcareous groundmass ranges 

from 29.2 to 62.0 vol.%. The percentage of pyrite comprises from 3.0 to 5.0 vol.% (Fig. 4-43 

C, D). 

A  B  

C  D  

Fig. 4-43: Photomicrographs showing the organic poor calcareous groundmass of the OMFBis 5 (Nagelkalk) 

and OMFBis 6. 

A), View of OMFBis 5 in reflected white light, oil immersion; B), Same view in fluorescence mode, oil 

immersion; C), View of OMFBis 6 in reflected white light, oil immersion. Note the high content of  bituminite I 

(Bit I); D), Same view in fluorescence mode, oil immersion.  

 

4.2.3.3.7. OMFBis 7: Bituminous limestone with high content of 

lamalginite and liptodetrinite 

Maceral composition of OMFBis 7 

 Lamalginite and liptodetrinite characterise this microfacies. The lamalginite content 

ranges from 1.8 to 2.5 vol.%, whereas that of liptodetrinite varies from 5.7 to 9.6 vol.%. 

Among the terrestrial organic matter, only the inertinite maceral is represented, the content of 

which dips to a low of 0.4 vol.%. Among the amorphous organic matter, only bituminite I is 

represented, with percentages reaching 0.5 vol.% (Fig. 4-44 A, B).  
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Mineral composition of OMFBis 7 

 Zooclasts are absent. This organic microfacies is associated with bituminous 

limestones, in which the percentage of pyrite reaches 4.0 vol.%. The content of clayey 

groundmass varies from 0.2 to 0.6 vol.%, that of calcareous groundmass ranges from 90.7 to 

93.1 vol.% 

 

4.2.3.3.8. OMFBis 8: Bituminous shales with high content of 

lamalginite, bituminite I and liptodetrinite 

Maceral composition of OMFBis 8 

 A relatively high content of lamalginite, bituminite I and liptodetrinite are the 

principal characteristics of this organic microfacies (Fig. 4-44 C, D). The lamalginite content 

reaches 12.2 vol.%, liptodetrinite 7.8 vol.% and the percentage of bituminite I ranges from 3.7 

to 28.4 vol.%. Bituminite I prevails among the amorphous organic matter. The content of 

terrestrial organic matter is low. It is dominated by inertinite, whose quantity reaches 

1.1 vol.%. The percentage of telalginite and sporinite is equally low and reaches a maximum 

of 1.1 vol.%. The amount of zooclasts ranges from 0.3 to 2.9 vol.%.  

Mineral composition of OMFBis 8 

This organic microfacies is commonly found in bituminous shales. The content of 

clayey groundmass ranges from 41.9 to 73.1 vol.%, while calcareous groundmass varies from 

6.2 to 28.1 vol.%. The content of pyrite ranges from 3.0 to 11.0 vol.%. 

 

4.2.3.3.9. OMFBis 9: Calcareous shales with high content of 

inertinite and zooclasts 

Maceral composition of OMFBis 9 

 The content of liptodetrinite falls to a low of 1.5 vol.%. The percentage of inertinite 

ranges from 0.7 to 1.5 vol.% and the amount of zooclasts reaches a maximum of 4.7 vol.% 

(Fig. 4-44 E, F).  

Mineral composition of OMFBis 9 

 This organic microfacies is associated with calcareous shales. The amount of clayey 

groundmass ranges from 67.7 vol.% to 91.7 vol.%, while calcareous groundmass varies from 
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6.0 to 21.6 vol.%. The content of pyrite reaches only 2.0 vol.%. Zooclasts and inertinite are 

the common constituents of this organic microfacies.  

A  B  

C  D  

E  F  

Fig. 4-44: Photomicrographs showing the OMFBis 7, OMFBis 8 and OMFBis 9. 

A), View of OMFBis 7 in reflected white light, oil immersion; B), Same view in fluorescence mode, oil 

immersion. Note yellow fluorescing liptodetrinite, enclosed in white circles, filamentous lamalginite (fl) and 

bituminite VI (Bit VI); C), View of OMFBis 8 in reflected white light, oil immersion. Note the high content of  

bituminite I (Bit I). D), Same view in fluorescence mode, oil immersion. Note bituminite I (Bit I), yellow 

fluorescing liptodetrinite, enclosed in white circles, and filamentous lamalginite (fl) E), View of OMFBis 9 in 

reflected white light, oil immersion. F), Same view in fluorescence mode, oil immersion. Note numerous 

zooclasts, oil immersion. 
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4.2.4. Summary 

 In the West Netherlands Basin, in wells E and M, 5 organo-mineral microfacies were 

identified. In both wells, these organo-mineral microfacies show a resemblance. However, 

those in well M contain a higher amount of liptodetrinite than in well E. A variable quantity 

of bituminite V is a particularity of the identified microfacies from this sedimentary basin.  

 In the Lower Saxony Basin, 4 and 5 organo-mineral microfacies were identified in 

wells A and D respectively. These microfacies differ from well to well and show no 

similarities. In well D, similarly to well M, Posidonia Shale samples contain a high percentage 

of liptodetrinite. In organo-mineral microfacies from well A, a high content of bituminite II 

was encountered.  

 The highest number of organo-mineral microfacies was identified in wells in the South 

German Basin. There are 5, 7 and 9 organo-mineral microfacies from the Dotternhausen-1001 

well, Notzingen-1017 well and Bisingen-1002 well respectively. These microfacies are poorly 

correlated between these wells. In addition, particularities of the organo-mineral microfacies 

are a repetition of microfacies containing burrows, the high content of specific types of 

bituminite or their enrichment in zooclasts, indicating rapid changes of paleoenvironmental 

conditions.  

4.3. Geochemical features of the defined organo-mineral 

microfacies 

4.3.1. General remarks 

 It is self-evident that petroleum generation results from the transformation of the 

kerogen buried in the sediments under the influence of temperature and pressure (Huc, 1990). 

The quality and the quantity of the generated petroleum products are controlled by different 

types of kerogen, which, in turn, are composed of variable assemblages of organic 

constituents insoluble in organic solvents (Huc, 1990). These organic constituents are formed 

under distinct environmental conditions. The properties of the kerogen within the same 

formation can significantly vary, not only from one sedimentary basin to another, but also 

within one formation itself. All these features are well-established and must be taken into 

account during the evaluation of the different source rocks (Huc, 1990).  

 As can be seen in Fig. 4-45, the HI and OI values of Posidonia Shale which derived 

from Rock Eval, plotted in a HI-OI diagram show a significant scatter. This scatter is 

determined by distinct paleoenvironmental conditions controlling the quality and quantity of 
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the preserved organic matter. Even the kerogen of one distinct type of organic matter may 

have a much higher generation potential than that of an assemblage of other different types.  

 

A  B  

Fig. 4-45: Hydrogen Index (HI) versus Oxygen Index (OI) for the Posidonia Shale samples from the investigated 

wells. 

A) The West Netherlands Basin (Well E and Well M) and the Lower Saxony Basin (Well A and Well D); B) The 

South German Basin, Notzingen-1017 well (Data from a previous unpublished study by B. Ligouis see Chapter 

3). 

 The TOC of the Posidonia Shale Formation from the West Netherlands Basin and the 

Lower Saxony Basin shows a resemblance (Table 4-1; 4-2). TOC values are slightly lower in 

the Posidonia Shale in the Notzingen-1017 well in southern Germany. While the TOC values 

of Posidonia Shale do not show significant variations, the HI values differ notably (Table 4-1, 

4-2, 4-3).  

 The highest values of HI are exhibited by bituminous shales from the West 

Netherlands Basin, while those of the Lower Saxony Basin are located lower in the diagram 

(Fig.4-45). Posidonia Shale from southern Germany contains higher values of HI than that 

from the Lower Saxony Basin, but lower than from the West Netherlands. Thus, the type of 

kerogen of Posidonia Formation from the West Netherlands and the South German Basin is 

type I/II, whereas that from the Lower Saxony Basin is type II. Nevertheless, some of the 

investigated samples fall within the area of type II/III kerogen. This indicates considerable 

oxygenation of the water column and an increasing number of scavengers (Table 4-1, 4-2, 4-

3). The OI values of the Posidonia Shale in well A are lowest among all investigated wells. It 
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increases in sediments poor in organic matter from all the investigated wells (Table 4-1, 4-2, 

4-3). 

4.3.2. The West Netherlands Basin 

 In the West Netherlands Basin, results of the Rock-Eval pyrolysis revealed that TOC 

values are in the range of 0.9 to 16.6 % with an average of 9.0 %. HI for most of samples from  

well E shows values of more than 300 mg HC/g TOC with an average of 588 mg HC/g TOC, 

indicating good oil source rock. Only one sample yields HI of 239 mg HC/g TOC. OI does 

not show high variations, however, in the microfacies poor in organic matter, it climbs to a 

high of 65 mg CO2/g TOC. 

 In well M, almost all samples show TOC values higher than 5 %, with an average of 

9.2 %. HI is higher than in well E. It reaches values of between 434 and 737 mg of HC/g TOC 

with an average of 624 mg HC/g TOC. OI in well M is marginally lower, than in well E. 

However, OI in samples poor in organic matter attain a maximum of 186 mg CO2/g TOC. 

Although organo-mineral microfacies in both wells from the West Netherlands Basin show a 

resemblance in organic matter composition, the values of geochemical indices exhibit a 

variation, indicating differences in the paleoenvironmental conditions in which these 

identified organo-mineral microfacies were deposited. 

 In well E, OMFN1 shows TOC values ranging from 3.4 to 13.3 % with an average of 

about 8.0 % . The HI is in a range between 548 and 676 mg HC/g TOC, averaging about 625 

mg HC/g TOC. OI values show a variation of between 14 and 25 mg CO2/g TOC. In OMFN 1 

and OMFN 2, average TOC values show a resemblance, whereas OMFN 2 exhibits lower 

values of HI, probably indicating oxidation of the organic matter. This is in agreement with 

the greater OI in OMFN 2 than OMFN 1, which reaches 24 mg CO2/g TOC.  

 In well M, OMFN 1 has TOC values ranging from 3.3 to 14.1 %. HI reaches a 

maximum of 728 mg HC/g TOC. OI varies between 8 and 27 mg CO2/g TOC, with an 

average of about 17 mg CO2/g TOC. OMFN 2 is characterised by higher TOC than OMFN 1. 

It reaches an average of 10.5 %. HI is in a range between 619 and 700 mg HC/g TOC, that is 

in agreement with the OI values ranging from 8 to 17 mg CO2/g TOC, averaging about 13 mg 

CO2/g TOC.  

 Thus, the event responsible for the high concentration of bituminite I in OMFN 2 in 

both wells coincides with the oxygenation of the water column in well E, whereas in well M 
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oxygen-depleted paleoenvironments were preserved. This explains the lower values of HI in 

well E than in well M. 

 

Table 4-1: Relationships between the defined organo-mineral microfacies from the West Netherlands Basin and 

the results of Rock-Eval. 

average average average

OMFN 1 3.4 13.3 8.0 548 676 625 14 25 18

OMFN 2 2.7 11.0 7.8 510 640 583 16 24 20

OMFN 3 5.2 16.6 10.5 432 689 605 9 25 17

OMFN 4 - - -

OMFN 5 7.7 13.4 9.4 583 640 610 14 22 17

OMFN 1 3.3 14.1 8.3 434 728 607 8 27 17

OMFN 2 0.5 12.4 10.5 619 700 663 8 17 13

OMFN 3 11.4 16.8 14.7 674 710 692 9 13 11

OMFN 4 - - -

OMFN 5 6.2 13.1 9.1 604 737 660 10 20 15

OI [mg CO2/g TOC]

0.9 239 65

0.9 170 186

OMFN 1: Low bituminous limestone with low content of bituminites; OMFN 2: Bituminous marly limestone enriched in 

bituminite I; OMFN 3: Bituminous calcareous mudstone and marly limestone enriched in bituminite V;  OMFN 4: Low 

bituminous limestone rich in liptodetrinite and discrete lamalginite; OMFN 5: Bituminous calcareous mudstone and limestone 

enriched in bituminite II. 

W
el

l 
M

Organo-mineral 

microfacies

TOC [%] HI [mg HC/g TOC]
Well
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E

range of values range of values range of values

 

 The OMFN 3 microfacies shows lower values of TOC in well E than in well M. In 

well E, it reaches a maximum of 10.5 % compared to 14.7 % in well M. HI in well M is also 

greater than in well E (Table 4-1). This is in agreement with the lower values of OI in well M 

than in well E, showing an average of about 17 and 13 mg CO2/g TOC respectively.

 OMFN 4 in both wells shows equal values of TOC, which reaches 0.9 %. HI in well E 

is four times lower than in well M (Table 4-1). The poor preservation of the organic matter is 

in agreement with the high values of OI, reaching 65 and 186 mg CO2/g TOC in well E and M 

respectively. 

 OMFN5 shows the same values of TOC in both wells, reaching an average about 9.4 

and 9.1 % in wells E and M respectively. However, HI values are greater in well M than in 

well E. They are in a range between 583 and 640, and 604 and 737 mg HC/g TOC 

respectively. This inconsistency is in agreement with the OI, which shows more oxidised 

conditions in well E than in well M (Table 4-1). 

4.3.3. The Lower Saxony Basin 

 In the Lower Saxony Basin, TOC values of most samples in well A are more than 

5.0 %, with an average of 7.4 %, except for some samples poor in organic matter. In these 
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samples, the TOC varies from 0.6 to 2.4 %. Organic-rich shales have HI greater than 300 mg 

HC/g TOC, varying between 340 and 539 mg HC/g TOC and averaging about 416 mg HC/g 

TOC. Sediments poor in organic matter have HI values ranging from 96 to 240 mg HC/g 

TOC. OI values are high in the organo-mineral microfacies poor in organic matter. They 

range between 20 and 84 mg CO2/g TOC.  

 In well D, TOC ranges from 7.9 and 11.3 %, with an average of 8.7 %. However, in 

one sample, the TOC decreases dramatically to values of 1.5 %. In well D, HI yields values 

higher than in well A. It varies from 401 to 663 mg HC/g TOC, with an average of 599 mg 

HC/g TOC. Only one sample in well D yields 235 mg HC/g TOC. The OI, for other organo-

mineral microfacies than those poor in organic matter, is slightly higher and reaches values 

from 14 to 20 mg CO2/g TOC, with an average of 17 mg CO2/g TOC. 

 The OMFLa 1 in well A shows the highest average values of TOC and HI, which are 

10.4 % and 479 mg HC/g TOC respectively. This coincides with the low OI, which shows a 

minimum of 4 mg CO2/g TOC, indicating strong anoxic conditions. In comparison, OMFLa 2 

shows lower values of TOC, averaging about 8.2 %. HI is marginally lower, averaging about 

457 mg HC/g TOC and OI indicates a marginal increase to a maximum of 11 mg CO2/g TOC. 

 The OMFLa 3 shows an average of TOC of about 7.9 %. HI shows values ranging 

from 296 to 535 mg HC/g TOC. The OI is similar to that of OMFLa 2.  

 The OMFLa 4 represents an organically poor microfacies. It coincides with the lowest 

TOC values among all microfacies, ranging from 0.7 to 2.5 %. The HI reaches only 340 mg 

HC/g TOC. The OI values indicate oxygenated paleoenvironments. They reach 86 mg CO2/g 

TOC.  

 In well D, OMFLd 2, OMFLd 3 and OMFLd 5 show marginal variations in TOC, HI 

and OI values. The highest values of TOC, reaching 11.3 %, were recorded in OMFLd2. HI 

yields the highest values as well, ranging from 550 to 663 mg HC/g TOC. OI reaches 17 mg 

CO2/g TOC. Similarly, TOC, HI and OI of OMFLd3 show averages of about 8.8 %, 616 mg 

HC/g TOC and 18 mg CO2/g TOC respectively. 

 OMFLd 1 and OMFLd 5 also show a resemblance in their geochemical parameters. In 

OMFLd 1, TOC reaches 8.3 %, HI, 599 mg HC/g TOC and OI, 19 mg CO2/g TOC. By 

comparison, the OMFLd5 is characterised by a TOC average of about 8.6 %, an HI of 593 mg 

HC/ g TOC and an OI of 17mg CO2/g TOC. 
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 OMFLd 4 shows the lowest values of TOC, averaging 5.0 %. HI reaches an average 

value of about 420 mg HC/g TOC, and OI increases compared to the other microfacies, 

reaching 25 mg CO2/g TOC.  

 

Table 4-2: Relationships between the organo-mineral microfacies defined in the Lower Saxony Basin and the 

results of Rock-Eval. 

average average average

OMFLa 1 8.1 11.2 10.4 456 492 479 4 6 5

OMFLa 2 5.5 14.4 8.2 406 539 454 6 11 8

OMFLa 3 5.5 9.6 7.9 396 535 449 6 10 8

OMFLa 4 0.7 2.5 1.6 95 340 201 20 84 46

OMFLd 1 - - -

OMFLd 2 7.2 11.3 9.3 550 663 617 14 21 17

OMFLd 3 7.7 9.5 8.8 565 654 616 16 20 18

OMFLd 4 1.5 8.4 5 235 606 420 22 25 23

OMFLd 5 7.8 9.3 8.6 559 627 593 14 20 17

Well A. OMFLa 1: Bituminous calcareous mudstone enriched in terrestrial macerals with low content of bituminites; OMFLa 

2: Bituminous limestone enriched in bituminite II; OMFLa 3: Bituminous limestone enriched in bituminite I; OMFLa 4: 

Bituminous limestone with low content of lamalginite.Well B. OMFLd1: Bituminous limestone enriched in bituminite II; 

OMFLd2: Bituminous limestone enriched in bituminite I; OMFLd3: Bituminous limestone with high content of filamentous 

lamalginite and decreased content of bituminites; OFLd4: Low bituminous limestone with low diversity of macerals; OMFLd5: 

Bituminous limestone with low content of discrete, filamentous lamalginite and bituminites. 
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 The post-mature oil shales in well B from the Lower Saxony Basin have TOC ranging 

from 4.8 to 7.2 % and averaging about 6.1 %. HI dips to a low of 0 to 14 with an average of 

about 5.2 mg HC/g TOC, and OI shows values of 0 to 31 mg CO2/g TOC. The results of 

organic petrological and organic geochemical investigations are discussed in more detail in  

Chapter 5.   

4.3.4.  The South German Basin 

 Posidonia Shale samples in the Notzingen-1017 well have TOC values which do not 

exceed 12 % (Table 4-3). HI ranges from 201 to 701 mg HC/g TOC. OI comprises values 

ranging from 9 to 27 mg CO2/g TOC. In this well, 7 different organo-mineral microfacies 

were identified. All organo-mineral microfacies contain a similar average of TOC reaching 

about 5.3–5.8 %. However, for these microfacies, HI shows an average in a range between 

535 and 635 mg HC/g TOC, indicating a different quality of the organic constituents. 

OMFNot4 and OMFNot5 have the highest average HI, reaching 634 and 635 mg HC/g TOC 

respectively. This coincides with the lowest values of OI, yielding 11 and 15 mg CO2/g TOC 

in OMFNot 4 and OMFNot 5 respectively. 
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 OMFNot7, which is located at the bottom of the investigated Lias delta, shows the 

lowest values of TOC and HI, and the highest OI. The TOC dips to a low of 0.7 %. It 

coincides with the low amount of HI, reaching 201 mg HC/g TOC. OI in this organo-mineral 

microfacies reaches a high of 42 mg CO2/g TOC. 

 

Table 4-3: Relationships between the defined organo-mineral microfacies in Notzingen-1017 and Bisingen-1002 

wells and the results of Rock-Eval. 

average average average

OMFNot 1 - - - - - - - - -

OMFNot 2 2.8 7.3 5.8 466 618 537 7 19 14

OMFNot 3 6.3 11.2 8.5 559 701 615 7 13 9.8

OMFNot 4 1.8 8.8 5.5 583 682 634 9 16 11

OMFNot 5 3.2 7.2 5.3 603 671 635 10 18 13

OMFNot 6 - - -

OMFNot 7 - - -

OMFBis 1 0.7 0.9 0.8 88 108 95 - - -

OMFBis 2 0.1 0.5 0.3 75 211 120 - - -

OMFBis 3 1.9 7.0 4.9 365 580 496 - - -

OMFBis 4 4.0 5.6 4.8 567 597 582 - - -

OMFBis 5 - - - - -

OMFBis 6 1.7 7.8 5.4 251 548 490 - - -

OMFBis 7 1.3 6.5 3.9 557 569 563 - - -

OMFBis 8 4.0 8.5 6.3 408 586 522 - - -

OMFBis 9 0.2 0.6 0.4 60 164 74.8 - - -

Well
Organo-mineral 

microfacies

TOC [%] HI [mg HC/g TOC] OI [mg CO2/g TOC]
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Notzingen-1017 well: OMFNot 1: Calcareous shales with high input of terrestrial organic matter; OMFNot 2: Bituminous limestone and 

bituminous calcareous shales with low content of zooclasts and increased content of sporinite and telalginite; OMFNot 3: Bituminous shales 

and limestone with increased content of liptodetrinite and bituminites; OMFNot 4: Bituminous shales and calcareous shales characterized by 

increased content of telalginite together with inertinite; OMFNot 5: Bituminous shales and calcareous shales enriched in telalginite, bituminite 

and sporintie; OMFNot 6: Calcareous shales enriched in inertinite;OMFNot 7: Bituminous calcareous shales enriched in vitrinite.

Bisingen-1002 well: OMFBis 1: Claystones and calcareous shales with high input of vitrinite maceral and suppressed content of zooclasts; 

OMFBis 2: Calcareous shales and limestone enriched in vitrinite and with a high content of zooclasts; OMFBis 3: Bituminous shales enriched 

in bituminite I with moderate content of zooclasts; OMFBis 4: Bituminous shales with high content of zooclasts; OMFBis 5: Bituminous 

limestone poor in organic matter; OMFBis 6: Bituminous shales enriched in bituminite I with low content of zooclasts; OMFBis 7: Bituminous 

limestone with high content of lamalginite and liptodetrinite; OMFBis 8: Bituminous shales with high content of lamalginite, bituminite I and 

liptodetrinite; OMFBis 9: Calcareous shales with high content of inertinite and zooclasts.
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 In the Bisingen-1002 well, the lowest TOC is recorded in the Lias delta, the Lias zeta 

and Dogger alpha. In these organo-mineral microfacies, the highest value of TOC does not 

exceed 0.9 % and HI is in the range between 60 and 211 mg HC/g TOC (Table 4-3). The 

highest HI among all identified organo-mineral microfacies was documented in OMFBis 4. 

However, TOC values range from 4.0 to 5.6 %. The highest TOC values were recorded in 

OMFBis 8. However, HI was lower than that measured in OMFBis4. 
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5.1. Maturity of the Posidonia Shale from the West 

Netherlands, the Lower Saxony Basin and the South 

German Basin. 

5.1.1.  Vitrinite reflectance and Tmax 

 The relationship between vitrinite reflectance and Tmax values has been stated by 

many workers (Teichmüller and Durand, 1983; Barker et al., 1986; Espitalié, 1986a). In their 

work, they claim that there is a fairly linear correlation between vitrinite reflectance (VRr%) 

and Tmax values obtained on coal samples. Teichmüller and Durand (1983) stated that this 

correlation, however, is noticeable only within an interval which includes the oil window 

(from 0.5 %VRr correlated to a Tmax of 425 °C and 1.5 %VRr correlated to a Tmax of 

475 °C) and that, below and above this interval, the absence of this correlation has been 

demonstrated. This inconsistency is related to the particularity of methodology for both these 

methods. While in vitrinite reflectance, measurements are obtained only on individual 

indigenous vitrinite particles, Tmax is obtained from the organic matter of a whole sample 

(Teichmüller and Durand, 1983). In organic-rich sediments, other than coals, the scattering of 

the data will be more significant due to the presence of different types of kerogen, the small 

size of the vitrinite particles and the influence of the groundmass and liptinite macerals on the 

Rock-Eval results (for more details see Chapter 3. Methodology of the research work.).  

 The Posidonia Shale from the West Netherlands Basin shows values of VRr ranging 

from 0.44 to 0.46 %Rr in well E and averaging about 0.44 %Rr. These values are in 

agreement with average Tmax values of 430 °C. In well M, however, the vitrinite reflectance 

was not measured as appropriate particles of indigenous vitrinite were not encountered. The 

Tmax of bituminous shaless in well M reaches 437 °C, with an average of 429 °C 

(APPENDIX A). These data enable the classification of the Posidonia Shale from the West 

Netherlands Basin as a source rock reaching the beginning of the oil window.  

 Vitrinite reflectance values of bituminous shaless from the Lower Saxony Basin were 

obtained in all investigated wells. However, Tmax data were only registered in wells A and D. 

Vitrinite reflectance of the Posidonia Shale from well A shows values varying from 0.54 to 

0.60 %Rr and averaging about 0.55 %Rr (APPENDIX A). In well D, vitrinite reflectance 

reaches 0.55 %. These results are in agreement with the Tmax values averaging about 435 °C 

in well D and 446 °C in well A, indicating the beginning of the oil window (APPENDIX A). 
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In well B, vitrinite reflectance shows values ranging from 3.26 to 3.66 %Rr, with an average 

of 3.46 %Rr (APPENDIX A). The organic matter of this well is considered as post-mature 

and will be discussed below.  

 In the Dotternhausen-1001 well, vitrinite reflectance reaches 0.47 %Rr, with an 

average value of 0.43 %Rr (APPENDIX A). In the Notzingen-1017 well, vitrinite reflectance 

shows values ranging from 0.42 to 0.64 %Rr, with an average of 0.53 %Rr (APPENDIX A). 

Tmax of this well reaches 433 °C with an average of 430 °C (APPENDIX A). Accordingly, 

maturation of Posidonia Shale in the Dotternhausen-1001 well is close to the margin of the 

beginning of the oil window, whereas bituminous shaless in the Notzingen-1017 well fall in 

the oil window. Vitrinite reflectance of Posidonia Shale in the Bisingen-1002 well shows 

values from 0.45 to 0.59 % and corresponds to the beginning of the oil window (Prauss et al., 

1991).  

5.1.2. Vitrinite and migrabitumen reflectance  

 Results of the migrabitumen reflectance were obtained on samples from well B and 

the Notzingen-1017 well. In post-mature well B, two generations of migrabitumen were 

distinguished  — homogeneous and heterogeneous — whereas, in the Notzingen-1017 well, 

only heterogeneous migrabitumen was recorded. Heterogeneous migrabitumen has a dark 

grey colour in reflected white light and dark brown fluorescence. It occurs as a filling of the 

cracks and grain interspaces, as well as in association with zooclasts in post-mature well B. 

The migrabitumen content in well B ranges from 1.07 to 1.21 %, whereas in the mature 

Notzingen-1017 well, it varies from 0.22 to 0.32 %. Apart from heterogeneous migrabitumen, 

in the Notzingen-1017 well, reflectance of dark indigenous vitrinite particles was measured. 

These results reveal significant lowered reflectance values ranging from 0.34 to 0.47 %Rr, 

due to the impregnation of these vitrinites by lipoidal substances. 

 Homogeneous migrabitumen was only described in well B. It has a light grey colour in 

reflected white light and no fluorescence. In addition, this type shows a weak anisotropy. 

Homogeneous migrabitumen appears as replacement and/or coating of the post-mature 

telalginite, infilling of the fusinite cells or replacement of bituminite I. The origin of  

homogeneous migrabitumen is unknown, but it is presumed to be formed by exposure to 

relatively high temperatures. In well B, homogeneous migrabitumen reflectance was obtained 

only on two samples. Its reflectance values reach 3.43 and 3.53 %Rr. 
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 The impact of the morphological type of migrabitumen on the reflectance data is 

significant. Typically, heterogeneous migrabitumen exhibits the lowest reflectance (Landis 

and Castaño, 1995). However, it should be taken into account that, for measurements, only 

migrabitumen occurring “in situ” is appropriated for providing valuable measurements.  

 Fig. 5-1 summarises the vitrinite reflectance values obtained in this study, as well as 

the calculated vitrinite-equivalent reflectance values from the migrabitumen reflectance, using 

the previously described formulas (Equation 1, Equation 2, Equation 3; for more details see 

Chapter 3. Methodology of the research work). Reflectance was measured either on vitrinite 

or migrabitumen because investigated samples do not contain both vitrinite and migrabitumen 

particles. Nevertheless, Fig. 5-1 A demonstrates the correlation trend between these two 

parameters. It is apparent that the reflectances obtained from Equation 2 and Equation 3 differ 

from those delivered by Equation 1. The difference can be explained by the regression 

equation of Jacob (1989) which includes only %BRr values with a reflectance maximum of 

2.7 %. Nevertheless, in well B, reflectance values measured on the homogeneous 

migrabitumen are very similar to those measured on vitrinite. This could be explained by the 

high maturity level, since the aromatisation degree of homogeneous bitumen and vitrinite is 

very close. 

 As can be seen in Fig. 5-1 B, in the Bisingen-1002 well, there is a good correlation 

between measured vitrinite reflectance and bituminite reflectance calculated according to 

Equation 3. Similarly, in the Notzingen-1017 well, the values of vitrinite equivalence 

calculated according to Equation 3 are in agreement with the measured vitrinite reflectance 

(5-1 C).  
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A  

B  

C  

Fig. 5-1: Plot of measured vitrinite reflectance (VRr) and vitrinite-equivalent reflectance values calculated from 

the three different equations: formulas of Jacob (1989), Landis and Castaňo (1995), Schoenherr et al. (2007).  

A), In well B. Note that the equivalent of the vitrinite reflectance has been calculated using values of 

homogeneous migrabitumen reflectance. On the contrary, in Bisingen-1002 well; (B), In the Notzingen-1017 

well; (C), Values of heterogeneous migrabitumen reflectance have been used.  

Reflectance data of vitrinite and migrabitumen in the Bisingen-1002 well, modified after Prauss et al., (1991). 

Reflectance data of vitrinite and migrabitumen in the Notzingen-1017 well, after B. Ligouis, (unpublished). 
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5.2. Changes in optical properties of selected liptinite 

macerals 
 

 Within this study, the optical properties of the macerals of the liptinite group in two wells 

A and B of different maturity located in northern Germany were characterised. The distance 

between the wells is about 44 km. The thickness of the investigated Posidonia Shale 

formation is about 35.15 m in well A and 5.2 m in well B. The bituminous shaless from the 

first well are composed of mudstone with indistinct or no lamination, marls, clayey marls and 

limestone, whereas the composition of the second well is more monotonous and composed of 

non-laminated mudstone. Our investigations show that the organic matter in well A is mature 

(Rr = 0.53 to 0.54 %), while in well B it is post-mature (Rr = 3.36 to 3.66 %).  

 The objective of this paragraph is not only to investigate the changes in the optical 

properties of liptinite macerals of mature and post-mature oil shale, but also processes leading 

to the formation of secondary macerals. In this work, the following terms: post-mature 

telalginite, post-mature bituminite I, post-mature bituminite II, and post-mature sporinite are 

used to describe the transformation “products” of these liptinite macerals at a high level of 

maturity.  

5.2.1. Meta-telalginite 

 In the post-mature Posidonia Shale of well B, the optical properties of macerals have 

changed in response to the maturation process. In particular, the reflectance of all organic 

particles has increased considerably, whereas the brightness of the mineral groundmass 

decreased with simultaneous disappearance of the fluorescence of liptinite macerals, including 

the bituminous substances in the mineral groundmass. The fluorescence observed locally in 

the mineral groundmass of the post-mature samples is related to fluorescent minerals. These 

oil shales have undergone diagenetic, catagenetic and metagenetic processes. The abundance 

of secondary carbonate crystals and epigenetic pyrite, as well as micrinite, migrabitumen, and 

the occurrence of pyrolitic carbon (Fig. 5-2), shows the extent of the transformations which 

have affected the minerals and macerals. In addition, degassing pores and fissures have 

formed in vitrinite, which reflectance is characteristic of the metagenetic stage.  

In the post-mature Posidonia Shale, relics of former telalginite, named post-mature 

telalginite, occur in three forms. These forms are identified on the basis of morphology. 
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Fig. 5-2: Pyrolytic carbon in post-mature Posidonia Shale.  

Reflected light, obliquely crossed polars, lambda plate, oil immersion. 

 Due to high temperature maturation, the transformed algal body left an empty space 

filled with secondary macerals or epigenetic minerals. Its shape is similar to that of the former 

alginite. Thus, we interpret these forms as a former alginite. 

 The first form consists of migrabitumen associated with carbonate crystals as 

described before. However, the carbonate crystals are completely or partly 

recrystallised and have increased in size. Homogeneous (Rr: 1.0–1.2 %) or 

heterogeneous (Rr: 3.4–3.5 %) migrabitumen fills the interstices between the 

carbonate crystals and/or surrounds the carbonate fillings of the former algal 

bodies (Figs. 5-3 A; B). The recorded length of the transformed algal bodies 

ranges from 80 to 150 µm and their width varies from 15 to 30 µm. This form 

of post-mature telalginite occurs during diagenesis when telalginite expels oil 

and, as a consequence, a microporosity develops in the algal bodies. In these 

new interspaces, carbonate has started to grow. Botz et al. (2011) reported that 

the evolution of carbonates can already begin at 90 °C. Our observations seem 

to support this statement, since carbonate crystals can already occupy the 

alginite bodies of early mature bituminous shale (Fig. 5-4). 
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A  B  

C  D  

Fig. 5-3: Photomicrographs of post-mature telalginite in the samples of post-mature Posidonia Shale.  

A), B), Post-mature telalginite bodies are filled with secondary carbonate crystals. Homogeneous migrabitumen 

fills the interstices between the crystals and surrounds the carbonate fillings. Note the dark colour of the 

micrinite (residual carbon) – rich mineral groundmass and the numerous pyrite framboids (bright spots); C), 

Post-mature telalginite body filled with calcareous crystals and epigenetic pyrite; D), Post-mature telalginite 

consisting of highly reflecting homogeneous migrabitumen (meta-telalginite). Reflected white light, oil 

immersion. 

 

 The second post-mature telalginite form corresponds to algal bodies derived 

from telalginite, partially or completely replaced by epigenetic pyrite (Fig. 5-3 

C). In the mature Posidonia Shale, pyrite occurs mostly as single crystals and 

framboids in the mineral bituminous groundmass and rarely as an infilling in 

lumens of telalginite. With maturation and temperature increase, pyrite 

recrystallises in the form of epigenetic pyrite (Berner, 1964; Berner, 1984), and 

its quantity and grain size expand. The presence of other sulphides usually 

allows the pyrite to recrystallise into euhedral grains (Berner, 1984). Hence, 

free sulphur and iron from silicates accompanied by high pressure and 

temperature lead to the formation of new modifications in pyrite (Berner, 1984; 

McClay and Ellis, 1983).  
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A  B  

  C  D  

E  

Fig. 5-4: Examples of telalginite in the samples of early mature Posidonia Shale.  

A), Telalginite showing variable fluorescence colour and intensity derived from Tasmanites (T), Pleurozonaria 

(P); B),C), Spindle-shaped telalginite almost entirely filled by carbonate crystals showing bright yellow 

fluorescing oil droplets; D), telalginite derived from Tasmanites filled by very fine carbonate crystals and 

showing bright yellow fluorescing oil droplets. E), Spindle-shaped telalginite filled by calcareous crystals and 

framboidal pyrite, showing bright yellow fluorescing oil droplets. Fluorescence mode, oil immersion. 

 

 The third form is rare and consists of alginite bodies partly or completely 

replaced by homogeneous migrabitumen (Fig. 5-3 D), identified as impsonite 

(Jacob, 1983, Jacob, 1989). In petroleum source rocks, migrabitumen is 

generated mostly from the liptinite macerals and redistributed by primary 

migration within the rock groundmass during late diagenesis and the early 

catagenetic stage (Mukhopadhyay, 1992). Post-mature telalginite, which 

consists of migrabitumen, corresponds to telalginite in which the processes of 
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calcification have not previously occurred. In this case, extreme increase of 

temperature increases the viscosity of the oil generated from telalginite 

kerogen. This evidence prevents fluid from migrating easily (Taylor et al., 

1998). Once the oil is generated, the migrabitumen starts to form and fills all 

the space in the former telalginite, completely replacing it. 

 The second and third forms of post-mature telalginite are smaller in size compared 

with the first one and their length does not exceed 60 µm. Moreover, the shape and size of the 

former algae are more or less well preserved. 

 In considering the content of post-mature telalginite in well B and the content of 

telalginite in mature well A, both contents show a resemblance (Fig. 5-5). Therefore, the 

identification and quantification of post-mature telalginite in post-mature oil shale provide 

genetic information (traceability of telalginite), which can be used to estimate the telalginite 

content of the bituminous shale before it reached the oil death line (~1.35 %VRr). This 

approach allows for the traceability of the telalginite maceral, which is an important oil-prone 

component throughout the catagenetic and metagenetic stages. 

 

Fig. 5-5: Content of the selected liptinite macerals and their thermally altered analogies in well A and well B 

(mineral-free).  

Comparison between the contents of liptinite macerals in well A and the contents of post-mature “liptinites” in 

well B (Liptinite = 100 %; mineral-free). 

As can be seen in Fig.5-5, the abundance of telalginite in early mature Posidonia Shale 

(telalginite content = 3.9 vol.%) and the telalginite replacements in the post-mature Posidonia 

Shale (post-mature telalginite content = vol.3.3 %) are almost equivalent. The marginal 

difference observed in the percentage (Fig. 5-5) can be explained by lateral variations in the 

distribution of algae due to discrepancy in paleoenvironments.  
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5.2.2. Meta-lamalginite and meta-liptodetrinite 

 With increasing maturation, lamalginite as well as liptodetrinite lose their morphology 

due to the generation of petroleum-like substances, which are absorbed by the surrounding 

mineral groundmass. The residual products left after the hydrocarbon generation from 

lamalginite and liptodetrinite turn into fine granular micrinite (Taylor et al., 1998, 

Teichmüller and Ottenjann, 1977). This evidence explains the difficulties encountered in 

relating the micrinite content to that of lamalginite and/or liptodetrinite. However, Fig.5-5 

shows, as can be expected, a rather good correlation between the sum of the contents of 

lamalginite, liptodetrinite and “other bituminites” (76.5 vol.%; see the definition of “other 

bituminites” below) and the sum of the contents of micrinite and migrabitumen (75.7 vol.%). 

This proves that there is a clear genetic relationship between these two groups of components. 

Taking into account the labile character of bituminite and lamalginite, we assume that these 

macerals will strongly contribute to oil generation and expulsion (Bordenave et al., 1993; 

Stasiuk, 1994; Peters et al., 2005). 

5.2.3. Meta-bituminites 

 Teichmüller (1974; 1990) studied the changes in the optical properties of bituminite in 

coals and oil shales of increasing maturity, and used the term “meta-bituminite”  to classify 

the product of diagenetic transformation of bituminites, consisting of “a line of fine grain 

micrinite”.  

Based on the morphology, post-mature bituminite I (meta-bituminite I) in the 

investigated post-mature oil shales appears as light grey lenses, which consist of massive 

micrinite, or as homogeneous and non-fluorescing migrabitumen (Rr of migrabitumen: 1.0–

1.2 %) (Fig.5-6 A). Relics of bituminite II, named post-mature bituminite II, appear as lens-

shaped bodies which consist of a network of micrinite and small carbonate crystals (Fig.5-6 

B). Moreover, the shape and size of the relics of bituminite I and bituminite II are preserved, 

which facilitates their identification. 
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A  B  

C  D  

Fig. 5-6: Post-mature bituminites and examples of migrabitumen occurrences in post-mature Posidonia Shale.  

A) Post-mature bituminite I: homogeneous migrabitumen replacing bituminite I; B) post-mature bituminite II: 

micrinite network associated with small carbonate crystals forming lens-shaped bodies; C) heterogeneous 

migrabitumen associated with a recrystallised calcareous bioclasts; D) heterogeneous migrabitumen filling cell 

lumens in fusinite. Reflected white light, oil immersion. 

 

In source rocks, oil generation from bituminite begins at lower maturity level than 

from telalginite (Taylor et al., 1998). Under extreme increase of temperature caused by an 

intrusive body after the generation and expulsion of oil, no residues or only very fine 

micrinite residues, which form single tabular masses of micrinite, and/or homogeneous non-

fluorescing migrabitumen (Rr of migrabitumen: 1.0–1.2 %) are left by bituminite 

(Teichmüller and Ottenjann, 1977; Taylor et al., 1998) (Fig.5-6A, B). 

 The quantity of bituminite I is four times higher than that of post-mature bituminite I 

(Fig.5-5). This difference might be explained by the difficulties in recognising the 

morphology of post-mature bituminite I in post-mature oil shales, since it is replaced by 

micrinite. However, migrabitumen recorded in the mineral groundmass could also have been  

generated from bituminite I, as well as from the lipidic substances contained in the mineral 

bituminous groundmass of the mature Posidonia Shale. Migrabitumen was also found as a 

coating on isolated carbonate crystals in the micrinite-rich mineral groundmass, in association 

with faunal relics (Fig.5-6 C) and calcareous concretions, and as infillings of cell lumen of 

fusinite (Fig.5-6 D). The optical properties and the reflectance of the identified migrabitumen  
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indicate that the heterogeneous and homogeneous types can be assigned respectively to epi-

impsonite and cata-impsonite (Jacob, 1983, 1989). 

Taking into account the different origins of bituminite I and bituminite II, the latter is 

likely to be associated with oil exudates in mature Posidonia Shale (Teichmüller and 

Ottenjann, 1977). This oil, in turn, is absorbed by the minerals of the groundmass (Taylor et 

al., 1998). At a high level of maturation, these petroleum-like substances are converted into 

fine-grained micrinite. This micrinite, in turn, is scattered as a network between the carbonate 

grains in the post-mature bituminite II (meta-bituminite II) lenses. The rather good correlation 

between the contents of bituminite II (15.5 vol.%) and post-mature bituminite II (17.8 vol.%) 

demonstrates that the morphology and the structure (fabric) of bituminite II remain preserved 

in post-mature Posidonia Shale. Moreover, the total content of the organic matter in early 

mature oil shales is equal to that in post-mature oil shales (Fig. 5-7). 

 

 

Fig. 5-7: Relationship between the maceral composition of the mature Posidonia Shale (well A) and the 

petrographic composition (including macerals as well as the mineral replacement of sporinite and alginite 

bodies; see the text) of post-mature Posidonia Shale (well B). 

 

5.2.4. Meta-sporinite 

 In the investigated post-mature Posidonia Shale (well B), post-mature sporinite is 

filled with pyrite crystals, which emphasise the sporinite morphology. It is characterised by 

reddish orange internal reflections in reflected white light and is either non-fluorescent or 
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shows weak greenish fluorescence which results from the association of the pyrite with other 

minerals (Fig. 5-8). With regard to the secondary forms of replacement of alginite and 

bituminite (see above), bodies with contours which resemble sporinite morphologies are 

named post-mature sporinite (Gorbanenko and Ligouis, 2014).  

 

a  b  

Fig. 5-8: Photomicrographs of sporinite and post-mature sporinite in Posidonia Shale.  

A), Weak fluorescing sporinite (white arrows) in clayey lenses of early mature Posidonia Shale (fluorescence 

mode, oil immersion); B), Post-mature sporinite showing reddish internal reflections in the micrinite-rich 

mineral groundmass of the post-mature Posidonia Shale. Reflected white light, oil immersion. 
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6.1. Maceral composition in the service of 

paleoenvironmental reconstruction 

 It is self-evident that, among all the identified constituents, liptinite macerals of marine 

origin are the inalienable and major components of Posidonia Shale. Each of these macerals 

acts as an indicator of specific paleoenvironments. While the precursors of structured organic 

matter are well known, those of bituminites (AOM) are still uncertain, as well as their 

paleoenvironmental conditions (Stasiuk, 1994; Teerman et al., 1995). Obviously, bituminite is 

still a focus of the particular interest of investigation in order to shed light on 

paleoenvironments' triggered deposition of organic-rich sediments of an excellent oil 

generation potential. Therefore the main relationships between macerals and 

paleoenvironments will be discussed with an attempt to define the origin of bituminites.  

6.1.1. Terrestrial macerals (sporinite, macerals of vitrinite 

and inertinite groups) 

 A detailed overview of macerals of terrestrial origin, their concentration in the 

Posidonia Shale and the ways of their transportation were given in Chapter 3. For the 

interpretation of the results obtained by maceral analysis, it is important to take into account 

their content in the organic-rich sediments. The increasing input of these macerals may 

provide valuable information on the distance between sedimentary area and adjacent 

landmasses and climate, which was established at that time (for more details see Chapter 3). 

 Frequently, an increase in the content of allochthonous vitrinite indicates long 

transportation and, probably, a dry climate on the continent (Tyson, 1995; Traverse, 2005). 

When indigenous vitrinite is observed in the sediments as a single particle or together with 

other terrestrial macerals, it may represent nearshore location of the sedimentation area 

(Tyson, 1995; Traverse, 2005). Moreover, its presence demonstrates dysoxic-anoxic 

conditions which favour rapid burial of these particles and their good preservation.  

6.1.2.  Alginite (telalginite, lamalginite) and liptodetrinite 

6.1.2.1. Telalginite 

 A detailed description of macerals of the alginite group was given in Chapter 3. 

Taking into account the variety of existing macerals of the alginite group, it becomes apparent 

that each of them has paleoenvironmental significance. Changes in the quantity of these 
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macerals, their diversity and preservation can be used in a stratigraphic and 

paleoenvironmental approach. Specifically, in the case of telalginite, the diversity, content of 

organic-walled phytoplankton assemblages and the level of their preservation are significantly 

affected by paleoenvironmental conditions. These changes give us particular information on 

salinity, sunlight availability, nutrient supply, temperature, stability of the water column and 

an expansion of the oxygen minimum zone (Palliani and Riding, 1999). Therefore, significant 

relationships between telalginite, particularly Prasinophyceae algae, and high values of 

geochemical parameters such as TOC and HI have been discerned by many workers (Stasiuk, 

1994; Tyson, 1995; Taylor et al., 1998; Palliani and Riding, 1999; Palliani et al., 2002; 

Vigran et al., 2008). 

 In general, Posidonia Shale represents the last major Prasinophyte event (Prauss, 

1996). This event has been related to changes of paleoenvironmental conditions from a more 

strictly marine environment, dominated by dinocysts and acritarchs, to environments of 

decreasing salinity with the prevalence of Prasinophyte genera (Loh et al., 1986; Riegel et al., 

1986; Prauss, 1996; Prauss et al., 1991) (Table 6-1). Therefore, this reduced saline 

environment induced the density stratification of the water column, which led to the 

deposition of bituminous shales (Prauss et al., 1991; Prauss, 1996). Moreover, within the 

investigated Posidonia Shale, several genera such as Pterosphaeridia or Leiosphaeridia were 

observed among the Prasinophytes. In well A, for instance, the number of genera is much 

higher, whereas in other wells in the West Netherlands Basin and the South German Basin, 

only the Tasmanites genera prevail.  

 Farrimond et al. (1988) suggested that the gradual replacement of other palynomorphs 

by Tasmanites is attributed to the decreasing salinity in the photic zone, which finally led to 

density stratification and the spread of the anoxic condition at least into the lower part of the 

water column. Moreover, the rising content of Tasmanites has been related by some authors to 

the competition of nutrients that occurred when the oxygen minimum zone extended into the 

lower photic zone and enriched it in reduced nitrates. Tasmanites, which use reduced nitrates 

more efficiently than other genera, became prevalent among them (Wilde et al., 1990; Prauss, 

1996; Palliani and Riding, 1999; Palliani et al., 2002; Götz and Feist-Burkhardt, 2012). 

 Paleoecologically, Prasinophyceae, opposed to acritarchs, indicate deep basin 

paleoenvironments and represent cooling intervals close to the margin of climatic turnover 

(Prauss, 1996). Prauss (1996), who studied the Toarcian palynomorphs in the Posidonia Shale 

in Grimmen (North-East Germany), stated that, among all identified genera of Prasinophytes, 
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only a few may show relations to lithology. The Pleurozonaria genera mainly occur within 

sandy to silty horizons and outside the argillaceous horizons. Campenia has a somewhat 

stronger occurrence within the clays. In addition, Mudie (1992) indicated that Leiosphaeridia 

has its main distribution north of the 60° latitude in both neritic and estuarine environments. 

Botryococcus sp., which has been observed in a minute quantity in wells D and E, is 

considered as an indicator of a fresh-to-brackish water paleoenvironment (Hunt, 1979; Prauss 

et al., 1991).  

 Besides salinity, temperature and nutrients' supply, which Prasinophyceae indicates, its 

size may provide insight into the distribution from inner shelf to deep basin in a black shale 

lithology (Stasiuk, 1994). For instance, the size of Tasmanites is smaller in the West 

Netherlands Basin than in the Lower Saxony Basin. Stasiuk (1994) stated that the basinal 

carbonates of the Middle Devonian deep basin shale are characterised by large unicellular 

Tasmanites and Leiosphaeridia telalginite, ranging in size between 50 and 300 µm. However, 

oil shale, which has accumulated within the outer to inner shelf paleoenvironments, contains a 

smaller form of Leiosphaeridia and Tasmanites telalginite varying from 40-100 µm (Stasiuk, 

1994) (Fig. 4-3A,B).  

 

6.1.2.2.  Lamalginite  

 Lamalginite (see the classification and definition of this maceral in Chapter 3) is 

widely distributed in Posidonia Shale. It occurs in a variety of environments and is derived 

from varied groups of precursors such as algae, acritarchs and/or dynocysts indicating 

freshwater, lacustrine and marine environments (Hutton, 1987). In addition, Golubic (1976) 

attributed filamentous alginite to Nostocales because of cellular morphological similarities to 

filamentous cyanophyte, which may tolerate a relatively high fluctuation in salinity and 

appear in environments with a (pycnocline) stratified water column (Table 6-1).  

 In the investigated wells, the vertical distribution of the discrete, filamentous and 

layered lamalginite varies. Golubic (1976) stated that species diversity is inversely 

proportional to the harshness of environmental conditions. This is in agreement with the 

current study: with an increasing oxygen content, the quantity of filamentous and layered 

lamalginite also rose. In oxygen-deficient environments, only the Tasmanites genera, which 

are probably more resistant to paleoenvironmental changes, were observed. However, 

Tasmanites appear in lower quantities in microfacies with a relatively high content of 
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Table 6-1: Precursors of macerals of the liptinite group and their paleoenvironmental significance in Posidonia Shale 

 

 

Maceral  
Organic petrology 

Description (in early mature Posidonia Shale of this study) 
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Botryoccocus 

Irregular globular colonies with an average of 15-25 µm in diameter with a 

maximum of 100 µm (Stasiuk, 1994). It has a yellow colour of high intensity in 

fluorescence mode (Tyson, 1995).  
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Tasmanites 
Pterosphaeridia 

Tasmanites-derived telalginite is well distinguished by its relatively thick cell 

walls (up to 15 µm) (Stasiuk, 1994). Pterosphaeridia-derived telalginite consists 

of an agglomeration of very thin-walled(<1 µm), spheroidal chambers 

representing raised, regular reticulations (Teichmüller & Ottenjann, 1977; Prauss 

et al., 1991; Stasiuk, 1993). The particularity is the network structure of the cell 

wall. 
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 Leiosphaeridia 

Leiosphaeridia is characterised by crumbled fold structures. It has a size from less 

than 10 to 70 µm in diameter (Stasiuk, 1994).  Campenia and/or Lancettopsis  

appears as spindle-formed bodies of size varying from 210 to 300 µm.  

Campenia/ 

Lancettopsis 
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Acritarchs 

Acritarchs (akritos= uncertain, mixed and arche=origin) are small spiny cysts of 

unknown botanical affinity (5 to 150 µm) (Prauss et al., 1991). They are 

characterised by a green-yellow fluorescence whose intensity is higher than that 

of dinocysts. The great majority are marine phytoplankton. 

 

 

 

Dinoflagellate cysts 

The fossil record of dinocysts is almost entirely confined to forms that have a 

meroplanktonic life cycle. Major dinoflagellate cyst morphotypes: proximate, 

cavate and chorate (Tyson, 1995). It has a yellow-brown fluorescence of 

moderate intensity. Dinoflagellate-derived telalginite is difficult to identify in 

sections perpendicular to bedding. In the absence of data from palynomorphs 

study, sections parallel to bedding are more appropriate to prove the existence of 

dinoflagellates in bituminous shales. 
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  Nostocales is classified as a filamentous alginite.  The alginite filaments vary in 

length from less than 20 to more than 100 µm and consist of cells with a diameter 

of 2-5 µm. 

  

Nostocopsis  
(Mädler, 1968) 

Clorococcal algae 

(spaeroidal 
palynomorphs, 

Prauss et al., 1991) 

The minute sized lamalginite occur as a simple, rounded to oval body with a 

single, central fold structure (Teichmüller & Ottenjann, 1977). Chlorococcal algae 

are tiny algae (1-2 µm) which occur in marine phytoplankton (van den Hoek et 

al., 1993) All these small algae may be assigned to discrete lamalginite as well as 

in part to liptodetrinite (Prauss et al., 1991).  
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 In Posidonia Shale sporinite appeared as thick-walled strongly ornamented or 

with a smooth outline (Tyson, 1995). Cutinite is rare in the Posidonia Shale. It 

originates from leaf- or twig-covering plant cuticle. Frequently, it exhibits a 

serrated edge in sections perpendicular to the bedding plane. It shows an orange-

brown fluorescence of moderate intensity. Sporinite and cutinite have a dark 

brown colour in reflected white light and an orange brown fluorescence of 

moderate intensity.  
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Palynological subgroups Paleoenvironmental significance 
Photomicro-

graphs 
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Chlorococcales algae 

(Stasiuk, 1994) 

Botryoccocus-derived alginite is an indicator of brackish to freshwater 

lacustrine, fluvial, lagoonal and deltaic facies conditions. It is most 

abundant in coastal marine environments (Stasuik, 1994).  Unstable 

salinity regimes characterised by periodic deposition of gypsiferous or 

other shallow water evaporitic facies (Hunt, 1987). Can be transported by 

river and deposited in marine prodelta and adjaecent shelf facies.  

Fig. 3-4C 
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Perpendicular to bedding 

plane these unicellular algae 

appear as very fine, 

curvaceous disk-like bodies 

resembling microspores 

(Stasiuk, 1994). In a section 

parallel to bedding, they 

occur as  simple, rounded to 

oval bodies with a single, 

central fold structure 

(Mädler, 1963; Stasiuk, 

1994).  

Always characterise the most organic-rich  and most uranium-rich 

intervals, which were formed under starved marine conditions (Tyson, 

1995). Extremely high concentration of the Prasinophyceae indicate early 

highstand system track. Tracks with carbonate poor shaley lithology. The 

content of Tasmanites algae increasing to acritarchs indicate pelagic facies 

or stratified water column. Prasinophyceae related to cold water. Occur 

in the lower part of the transgressive system (Prauss, 1996). 
Figs. 3-3 A-F; 

Fig. 3-4 A, B 

Predominance of the thin-walled algae (Leiosphaeridia) testify to a 

nearshore, shallow-marine to brackish marine, sometimes hypersaline 

environment (Jacobson, 1979). Campenia is frequently found in facies 

hosted by clayey-dominant groundmass (Prauss, 1996). 

Fossilised cysts, 

unicellular with organic 

wall. Acritarchs have no 

formal taxonomic status 

(Tyson, 1995). 

In the Early Jurassic, most genera indicate nearshore or eustarine to 

shallow lagoon and/or slightly brackish-water environments (Wall, 

1965; Praus et al., 1991). High diversity and best preserved acritarchs 

characterized open marine facies, while sediments from marginal marine 

facies (barrier and tidal lagoon facies) are poorly preserved (Vecoli, 2000). 

Low diversity and low to moderately abundant assemblage with common 

Veryhachium and Micrhystidium indicate a nearshore; high diversity and 

moderate abundance without a single diminant taxon - offshore; low 

diversity and low to moderate abundance with a dominance of the 

spheromorph acritarchs - deeper water assemblage (Dorning, 1981).  

Fig. 3-3F 

Cell produced during the 

sexual phase of the 

dinoflagellate life cycle. The 

fossilised cysts are 

composed of sporopollenin-

like material (Tyson, 1995) 

Relative to the pelagic background sediments, deeper turbiditic 

sediments may have significantly higher proportions of dinocysts. Facies 

deposited in high-stand sea level have high concentration of dinocysts, but 

lowest concentration of total palynomorphs (Palliani and Riding, 1999). 

 

unicellular "algae" 

Relative to the pelagic background sediments, deeper turbiditic 

sediments may have significantly higher proportions of dinocysts. Facies 

deposited in high-stand sea level have high concentration of dinocysts, but 

lowest concentration of total palynomorphs (Palliani and Riding, 1999). 

Fig. 3-3E 
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Terrestrial palynomorphs 

(spores, cuticula) produced 

by Pteridophyte, Briophyte 

and Fungi; Cuticula - 

resistant to degradation leaf 

epiderma of higher plants 

(Taylor et al., 1998) 

In marine sediments shows the proximity of sedimentation area from the 

continent. Can be delivered to marine sediments by wind or by water 

fluxes (Tyson, 1995). Sporinite and cutinite with macerals of vitrinite and 

inertinite group may also indicate short-time storm events (Prauss, 1996). 

Fig. 3-7 
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A  

 

 

 B  

C  D  

E  F  

Fig. 6-1: Scatter plots indicating relationships between liptodetrinite and selected macerals.  

A), Correlation between the sum of the amounts of sporinite, vitrinite and inertinite, and the content of 

liptodetrinite. Note that sporinite+vitrinite+inertinite<1.0 [vol.%]; B), The same relationships, but 

sporinite+vitrinite+inertinite>1.0 [vol.%]; C), Correlation between alginite and liptodetrinite; D), Relationships 

between bituminites and liptodetrinite (the West Netherlands Basin and the Lower Saxony Basin); E) 

relationships between bituminites and liptodetrinite (the South German Basin); F) Correlation between 

bituminite I and liptodetrinite (samples from the West Netherlands Basin and the Lower Saxony Basin). Note 

that V+L+I+Mineral Matter=100%.  
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bituminite I and bituminite V, which indicates anoxic environments (more details below in 

paragraph 6.1.2. Bituminites).  

 

6.1.2.3. Liptodetrinite 

 Originally, Stach et al. (1982) defined liptodetrinite in coals as a maceral consisting of 

fragments and degradation remains of liptinite. However, Mädler (1963) and Teichmüller and 

Ottenjann (1977) assigned this maceral in the Posidonia Shale to the very small unicellular 

“algae” Nostocopsis (cyanobacteria) (Table 6-1). 

 Figures 6-1 A-F are the plotted data of maceral analysis, illustrating relationships 

between liptodetrinite and sporinite, macerals of vitrinite and inertinite groups, liptodetrinite 

and macerals of the alginite group, liptodetrinite and bituminites (AOM). As can be seen in 

Fig. 6-1 A, the content of liptodetrinite is in good agreement with the increasing content of 

sporinite, together with macerals of the inertinite and vitrinite groups, but only when the input 

of macerals of terrestrial origin does not exceed 1.0 vol.%. In addition, the observed positive 

correlation may also indicate that a part of the liptodetrinite is of terrestrial origin, having 

been generated by the mechanical fragmentation through the transport of the terrestrial 

liptinites. However, when the quantity of terrestrial macerals makes up more than 1.0 vol.%, it 

probably demonstrates the increasing availability of oxygen, preventing the preservation of 

the liptodetrinite, which content tends to decrease as illustrated in Fig. 6-1 B. The positive 

correlation trend between liptodetrinite and macerals of the alginite group evidences that 

either part of liptodetrinite is composed of detrital particles of algae, or it is a small algae as 

has been mentioned above (Fig. 6-1 C). Therefore, the formation of liptodetrinite is probably 

associated with oxygen availability and increased circulation of water masses.  

 Figure 6-1 D-F illustrates the correlation between bituminites and liptodetrinite 

contained in samples from the West Netherlands Basin, the Lower Saxony Basin and the 

South German Basin. This relationship between samples from the West Netherlands Basin 

and the Lower Saxony Basin illustrates the negative trend between bituminites and 

liptodetrinite (Fig. 6-1 D). However, Fig. 6-1 E shows positive relationships between these 

two macerals in samples from the South German Basin. These differences are probably 

related to the particularity of distribution of the different types of bituminites in the 

investigated sedimentary basins. In the Posidonia Shale of the South German Basin, 

bituminite I was more often observed than in the samples from the West Netherlands and the  
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Lower Saxony Basins. Moreover, it prevails among other types of bituminite in almost all 

organo-mineral microfacies enriched in amorphous organic matter. In order to confirm the 

positive trend between bituminite I and liptodetrinite, organo-mineral microfacies enriched in 

bituminite I from the West Netherlands and the Lower Saxony Basins were selected (Fig. 6-1 

F). Fig. 6-1 F verifies the positive correlation between these two macerals in samples from the 

West Netherlands and the Lower Saxony Basins as well. This prompts suggestions that  

bituminite I as well as liptodetrinite are formed in the water column. 

6.1.3.  Bituminites  

 Bituminites (AOM) appear to have originated from a variety of precursors such as 

algae, faunal plankton, bacterial bodies and bodies of higher animals (fish, crayfish, etc.), 

which in turn may provide insights into different paleoenvironments (ICCP, 1993). It is 

important to take into account that bituminites originated not only by bacterial degradation of 

these precursors, but also seem to be formed from dissolved organic matter, which is later 

absorbed by mineral matrix (?). Hence, unstructured organic matter varies in petrographic, 

physical and chemical properties and can also vary between hydrogen-rich and hydrogen-poor 

(Teerman et al., 1995) (Table 6-2; 6-3; Fig.6-2).  

 Petrographic identification of different types of amorphous organic matter and its 

characterisation is important, because of its major contribution to the high petroleum potential 

of most hydrocarbon source rocks (Masran and Pocock, 1981; Gutjahr, 1983; Loh et al., 1986; 

Shewrood and Cook, 1986; Taylor et al., 1991). Many authors have stated that bituminite is 

well known to generate oil earlier than other liptinites, including telalginite (Masran and 

Pocock, 1981; Gutjahr, 1983; Taylor et al., 1991). Alpern (1980) discerned, for instance, that 

oil generation from bituminites already starts at a vitrinite reflectance of 0.5 %. However, 

Cook (1982) later determined a vitrinite reflectance range from 0.5 to 0.9 %.  

 However, in terms of paleoenvironments, Masran and Pocock (1981) suggested that 

bituminites may be derived either from marine or terrestrial precursors, but most of them were 

formed in marine environments in oxygen-depleted conditions.  

6.1.3.1. Bituminite I 

 Bituminite I was observed in different concentrations in almost all the investigated 

samples. The origin of bituminite I is still debated. However, molecular studies have 

confirmed that originally bituminite I results from the selective preservation of resistant cell 

walls of green microalgae (Boussafir and Lallier-Vergès, 1997).  
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A B  

Fig. 6-2: Relationships between bituminites, the Total Organic Carbon and Hydrogen Index.  

A), Correlation between bituminites and the total organic carbon (TOC). B), Correlation between bituminites and 

the Hydrogen Index (HI). The graphic is based on selected data shown in Table 6-3.  

 

However, in Posidonia Shale, particularly in the investigated wells of the West Netherlands 

Basin, two types of bituminite I were observed: a “classic” type, defined by Teichmüller and 

Ottenjann (1977) and a non-fluorescent type with inclusions of sporinite. The latter type is 

probably a product of bacterial degradation of terrestrial organic matter and might already 

have been formed before its incorporation into the marine sediments (ICCP, 1993). 
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Table 6-2: Definition of the different types of bituminite and their paleoenvironmental significance. 
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Bituminite types References 
Petrographic description                                       

  (in early mature Posidonia Shale of this study) 

Bituminite I  

Teichmüller and 

Ottenjann (1977) 

It has indistinct lens shapes (streaks) with length up to 60 

µm. Bituminite I is characterised by a very low reflectance 

and a light brown to dark brown fluorescence, frequently 

contains yellow fluorescent liptodetrinite, seldom sporinite 

and discrete lamalginite.   

Bituminite II 

Bituminite II occurs as thick (around 40-100 µm) elongated 

lenses associated with small carbonate crystals. It exhibits a 

yellowish-brown to reddish-brown fluorescence, often with 

greenish fluorescing oil expulsions (droplets).  

Bituminite III 

Bituminite III is defined as thick (60-150 µm) elongated 

bodies often associated with fluorescent phosphate faunal 

remains. 

Bituminite IV 
Gorbanenko & 

Ligouis (2014)  

Bituminite IV has a few similarities to bituminite I. This 

unstructured organic matter occurs as thick (60-120µm) 

lenses of irregular outline. Similar to the bituminite I, it has 

micrinite inclusions, but contains no liptodetrinite and shows 

green fluorescence. 

Bituminite V 

Gorbanenko & 

Ligouis (2014); 

Vogel (2014, 

unpublished) 

It forms rather uniformly and strongly fluorescent cohesive 

bodies, which show relatively sharp and distinct (sometimes 

quite angular) outlines. Dark-grey to grey brown colour in 

reflected white light and an orange-brown or greenish-brown 

fluorescence of moderate intensity. Size is variable and 

length ranges from 20 to 200 μm 

Bituminite VI Creaney (1980) 

Bituminite VI is very similar to bituminite frequently 

described as a “matrix-bituminite”. It consists of amorphous 

organic matter, which occurs as a “network” between the 

carbonate crystals of calcareous groundmass and calcareous 

concretions. It has an orange-brown or brown colour in 

reflected white light and an orange fluorescence. 
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Precursors 
Paleoenvironmental significance (based on 

the results of this study) 
Photomicrographs 

mixture of marine 

algae and terrestrial 

organic matter 

(sporinite) 

shallow-water anoxic environments with 

restricted water circulation. It, probably,  

indicates sea-level rise (?). 
Figs. 3-5 A, B 

fecal pellets (Wehner 

and Hufnagel, 1986); 

Coccolithophoridaceae 

(Ramsden, 1983), 

algal and microbial 

peloids (Flügel, 

2004)? 

deep-water suboxic-anoxic environments with 

water column stratification; with lower water 

energy and circulation 
Figs. 3-5 C, D 

faunal relics, fish rests 

shallow-marine anoxic environments, occurs 

when oxic conditions turn into oxygen-

depleted, which triggers mass mortality of the 

fauna 

Figs. 3-5 E,F 

terrestrial amorphous 

organic matter or 

product of diagenetic 

transformation (?) 

shallow-marine suboxic-anoxic environments,  

presumably occurs after strong oxic conditions, 

which later gradually changed to suboxic, 

triggered by sea-level decrease, or storm/rain 

event. This led to increasing input of terrestrial 

macerals 

Fig. 3-5G 

microbial or algal-

fungal mats (Cook, 

1982) 

indicate shallow-marine anoxic harsh 

environment, probably, isolated sedimentation 

areas, when fluctuations of the sea level are 

caused by rain and evaporation; frequently 

associated with evaporites.  

Figs.3-6 A, B 

uncertain affinity 

(probable precursors: 

dissolved organic 

matter (?);  

Coccolithophoridaceae 

(Ramsden, 1983) 

bituminite VI is poorly represented in Posidonia 

Shale, that makes the interpretation 

complicated; it is presumably composed of 

bacterially degraded dissolved organic matter 

(?) or formed from bacterially produced coating 

on coccoliths. It indicates strong anoxic 

environments with low water energy 

Figs. 3-6 C, D 
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Table 6-3: The geochemical characterisation of the Posidonia Shale samples enriched in distinct types of 

bituminites (AOM). V+L+I=100 % 

TOC HI 

[%] [mg HC/g TOC]

2482.05 25.7 2.9 2.1 - 18.9 28.2 11.0 601

2485.14 5.9 0.4 13.4 - 20.5 28.7 10.9 613

2487.50 2.6 1.6 6.9 - 22.2 40.7 7.1 606

2490.35 6.3 9.3 29.8 - 12.9 34.3 13.1 671

2498.46 18.8 1.3 7.5 - 18.1 26.9 2.7 510

2503.35 14.9 6.3 40.1 - 14.4 9.9 7.9 689

2504.85 8.1 5.7 32.5 - 20.1 16.3 11.4 627

2088.30 0.8 8.4 1.7 - 27.6 48.5 6.2 604

2089.33 0.5 10.6 0.5 - 23.1 56.9 7.5 614

2090.55 4.2 9.3 2.3 - 25.1 43.4 11.1 679

2091.55 1.0 15.7 0.5 - 16.8 50.8 6.2 661

2092.43 3.6 15.8 0.7 - 18.6 50.2 8.1 668

2093.40 12.8 7.1 6.2 - 23.0 32.7 10.0 655

2095.10 1.4 4.4 1.6 - 25.5 51.5 11.4 661

2098.15 3.0 8.1 1.9 - 37.4 36.6 13.1 737

2100.49 0.3 0.3 12.3 - 41.3 29.1 11.4 679

2103.45 11.9 0.3 1.4 - 31.2 43.1 12.4 700

2345.9 0.0 0.9 - 51.8 6.3 25.9 6.4 406

2352.05 21.3 1.2 - 9.4 14.0 42.9 9.1 396

2352.15 6.1 1.4 - 52.4 13.3 13.0 10.4 410

2353.35 22.4 42.1 - 8.9 5.9 14.8 8.3 456

2355.3 8.8 41.2 - 31.1 3.2 10.2 8.9 479

2359.2 4.5 6.7 - 38.2 12.4 23.6 2.5 340

2359.65 10.5 7.5 - 30.8 15.0 13.2 11.4 534

2361.1 25.5 0.0 - 8.5 22.2 16.3 8.7 535

Well Sample Bit I Bit II

TOC-Total Organic Carbon; Bit. I - bituminite I; Bit. II - bituminite II; Bit. III - bituminite III; Bit. V - bituminite V; Bit. VI. - 

bituminite VI; Dis. Lamalg. - discrete lamalginite; Fil. Lamalg - filamentous lamalginite: Ltd. - liptodetrinite
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 The Posidonia Shale samples characterised by a high concentration of bituminite I, 

show high values of TOC and HI as illustrated in Figs. 6-2 A, B. Specifically, almost all 

samples enriched in bituminite I contain values of TOC of more than 5.0 % and HI of more 

than 500 mg HC/g TOC. However, it must be kept in mind that other macerals of the liptinite 

group can influence the geochemical results.  

6.1.3.2. Bituminite II 

 Bituminite II, defined by Teichmüller and Ottenjann (1977), is a relatively common 

constituent of the investigated organo-mineral microfacies. This maceral was originally 

attributed to faecal pellets (Littke and Rullkötter, 1987; Rullkötter et al., 1992). Faecal pellets, 

in turn, are widely considered as a significant and potential source of amorphous organic 

matter (Tyson, 1995). Because the sedimentation rate of faecal pellets is higher than that of 
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other organic particles, their sinking time through the oxygenated upper part of the water 

column into the oxygen-depleted part is faster than other organic particles (Rullkötter et al., 

1992). Therefore, good preservation of bituminite II results from a water column 

stratification: on the one hand, it provides environments for zooplankton habitation, on the 

other hand, good preservation of the organic matter within the faecal pellets. However, some 

authors are sceptical regarding faecal pellets as a precursor of bituminite II. Porter and 

Robbins (1981) stated that faecal pellets of zooplankton contain only 1–4 % organic carbon 

and it is unlikely that they are precursors of bituminite II.  

 Organo-mineral microfacies enriched in faecal pellets contain a higher percentage of 

zooclasts. Vigran et al. (2008) discerned that faecal pellets are often associated with 

Tasmanite-derived telalginite and bivalve microcoquina. Moreover, the organo-mineral 

microfacies enriched in bituminite II may contain ichnofaunal remains, as was observed in 

well E, indicating a fluctuation between anoxic and dysoxic-oxic conditions. In these 

environments, the influx of oxygenated storm water enabled the rapid colonisation of 

ichnofauna within a dominantly anoxic environment (Mørk and Bromley, 2008). The latter 

enhanced anoxia led to mass mortality of the affected fauna by oxygen-depleted conditions 

(Vigran et al., 2008).  

 In terms of organic geochemistry, organo-mineral microfacies contains relatively high 

values of TOC and HI (Figs. 6-2A, B; Table 6-3). Samples chosen for the geochemical 

analysis contain the highest amount of bituminite II, which is well represented only in well A.  

6.1.3.3. Bituminite III 

 Bituminite III was defined by Teichmüller and Ottenjann in 1977, as “unfigured 

bituminite”, fine granular, without fluorescence, occurring in association with fauna. This 

type of bituminite is characteristic of the organo-mineral microfacies of Posidonia Shale from 

southern Germany. In the Dotternhausen-1001 and Bisingen-1002 wells, it appears after the 

mass mortality of fauna, indicating significant changes in environments from oxygenated to 

dysoxic to anoxic conditions, in which the habitation of organisms becomes impossible. This 

may suggest a genetic relationship between faunal remains and bituminite III. In addition, in 

those samples in which bituminite III occurs, bituminite I is also very common. These two 

types of bituminite probably indicate anoxic bottom water conditions. 
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6.1.3.4. Bituminite IV 

 Bituminite IV is rare in the samples. It is relatively well-represented only in well M. 

Bituminite IV appears to be similar to bituminite I. However, it contains micrinite inclusions 

and shows no fluorescence (Gorbanenko and Ligouis, 2014). Due to the low concentration of 

this maceral in the investigated bituminous shales, it is difficult to assess the precursor of 

bituminite IV.  

 A minute amount of bituminite IV and the absence of fluorescence may suggest its 

genetic relation to bacterially degraded organic particles of terrestrial origin. However, the 

absence of fluorescence and the occurrence of micrinite inclusions in bituminite IV may 

suggest a diagenetic transformation of bituminite I. 

 

6.1.3.5. Bituminite V 

 Bituminite V defined in this study of the Posidonia Shale was also encountered in the 

bituminous shales of the Kimmeridge Clay formation of the Dorset coast, where this type of 

bituminite is a part of the groundmass (Boussafir and Lallier-Vergés, 1997; unpublished 

Vogler, 2014). Originally, Loh et al. (1986) assumed that there is a genetic relationship 

between lamalginite and bituminite in Posidonia Shale. However, the suppressed content of 

other organic constituents in those sediments where bituminite V is abundant may indicate 

that this bituminite V is composed of bacterial mats itself (?). This is also confirmed by the 

fact that relatively high values of  TOC and the HI (Figs.6-2 A, B) are shown in bituminite V-

dominated organo-mineral microfacies.  

 In the investigated Posidonia Shale, some relationships between the different types of 

bituminite and telalginite were identified. For instance, while the content of bituminite V 

increases, that of telalginite diminishes. In these samples, telalginite appears as small disc-

shaped bodies ranging in size between 6 and 10 µm. This evidence probably indicates specific 

environments which exclude habitation or even the permanent occurrence of algae 

(Oschmann, 2000). The probability of the preservation of microbial relics increases with the 

inhabitability of the depositional environment, because more highly evolved competitors are 

excluded, whereas certain bacteria are well-adapted to those harsh environments (Stasiuk, 

1994; Oschmann, 2000). Organo-mineral microfacies in which bituminite V is predominant 

among other organic constituents indicates strong anoxic conditions. Moreover, this oxygen-

depleted environment triggers the occurrence of certain toxic metals, such as uranium in well 
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E, which makes organic matter less susceptible to microbial attack and ensures its 

preservation (Degens and Mopper, 1976; Demaison and Moore, 1980). 

6.1.3.6. Bituminite VI 

 Bituminite VI shows similarities to bituminite IV and is rare in the studied Posidonia 

Shale. It appears between the calcareous grains in the mineral groundmass and has a strong 

fluorescence (Gorbanenko and Ligouis, 2014). This maceral is close to the “matrix 

bituminite” defined by Creaney (1980) and later described by Stasiuk and Goodarzi (1988). It 

probably represents amorphous substances of unknown affinity adsorbed by the mineral 

matrix, described by Teichmüller and Ottenjan (1977) as a “bituminous matrix”. In addition, 

the petroleum potential of bituminite VI is lower than other bituminites. It shows values of 

TOC, which usually do not exceed 10.0 %, and HI reaching 500 mg HC/g TOC, when its 

content is extremely high compared to other bituminites on the plot (Figs. 6-2A, B). 

 Bituminites (AOM) in the investigated Posidonia Shale can occur not only in 

limestones or marly limestones, but in mudstones as well. Although the generally accepted 

point of view that amorphous organic matter dominates other organic constituents deposited 

in carbonate environments (Tyson, 1995), the following examples challenge this statement 

and show the existence of correlations between distinct types of amorphous organic matter 

and hosted in mineral groundmass other than carbonate. This inconsistency is probably related 

to the different origin and variety of possible precursors of the amorphous organic matter.  

 Each individual type of bituminite can be used in a stratigraphic approach. Among all 

the defined amorphous organic matter, almost all types of bituminite show relationships 

between their type and the hosted mineral groundmass. Bituminite I and bituminite III, for 

instance, are more common bituminites in mudstones and calcareous shales, whereas the 

others are frequently found in limestones, marly limestones and marls. Among all the 

investigated wells, bituminite V is often observed in high concentration in calcareous-

dominated groundmass with a high content of dolomite crystals, whereas the content of other 

constituents is suppressed. This possibly indicates extremely harsh paleoenvironments. These 

paleoenvironments are more appropriate for the habitation of cyanobacteria than for other 

organisms. Therefore bituminite V is probably composed of bacterial mats itself (?) (Table 6-

2).  
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6.2. Depositional environments 

 Occurrence and preservation of the organic-rich sediments require oxygen-depleted 

conditions (Lipson-Benitah et al., 1990). These conditions appeared, for instance, in many 

sedimentary basins throughout Europe in the Toarcian time, triggered by the Oceanic Anoxic 

Event (OAE) (Jenkyns, 1980). High-resolution organic petrography demonstrates the 

differences appearing in the composition of individual organo-mineral microfacies. This 

indicates variations in paleoenvironmental conditions which triggered the formation of these 

organo-mineral microfacies. Indeed, the theory of globality of the Oceanic Anoxic Event is 

not a contradiction of this fact, but requires individual adjustment of the general scenario in 

each of the investigated areas (Lipson-Benitah et al., 1990).  

 To explain the occurrence of the organo-mineral microfacies, two models were 

introduced: the preservation model and the productivity model (Pratt, 1984; Zimmerman et 

al., 1987; Kauffman and Sageman, 1990; Pedersen and Calvert, 1990). The first model 

proposes that salinity stratification and stagnation enable the incorporation of organic matter 

in the sediments and its preservation, whereas the second model suggests that increased 

surface productivity and enhanced oxygen-minimum zone contributed to the deposition of the 

organic matter (Lipson-Benitah et al., 1990). Both concepts, as well as the sea-bottom relief 

and the depth of the sedimentary basin, were taken into account by many authors, when they 

reconstructed the depositional history of the organic-rich sediments using sedimentological 

and/or geochemical methods. These models were introduced and described in the 

Introduction. In the current study, usage of high-resolution organic petrography enables the 

provision of more specific details of the accumulation and preservation of the Toarcian 

Posidonia Shale and facilitates the creation of depositional models for its formation.  

6.2.1. The West Netherlands Basin 

 As was mentioned in Chapter 4, in the identified organo-mineral microfacies from the 

West Netherlands Basin, organo-mineral microfacies in well E resemble those in well M. This 

is probably caused by the existence of a communication between these two areas during 

sedimentation. However, the greater content of amorphous organic matter and 

contemporaneous suppressed amount of telalginite, lamalginite and liptodetrinite in well E 

indicate a higher isolation of this sedimentation area from others. It led to the restriction of the 

water column circulation and to the establishment of the stronger anoxic conditions with low 
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rate of organic matter sedimentation. It also confirms the thickness of the Lias epsilon in well 

E, reaching 29.9 m, whereas that in well M comprises 42.2 m. 

 Generally, a variation of the organo-mineral microfacies is caused by sea-level 

fluctuation. There is no significant difference in paleoenvironments compared to those from 

southern Germany. However, variations were recognised not only among organo-mineral 

microfacies within one well, but also between wells from the West Netherlands Basin. 

Distribution of the organo-mineral microfacies from the bottom to the top is illustrated in 

Appendix B.1. and Appendix B.2. The detailed scenarios of the deposition of the identified 

organo-mineral microfacies are represented in Fig. 6-3. It clearly appears that organo-mineral 

microfacies in well E echoes those in well M, however, with some delay. This is caused by 

the “isolation” of sedimentary sub-basins, as was previously mentioned. This also supports 

the higher diversity of macerals, the lower content of bituminites and the greater quantity of 

liptodetrinite, indicating a higher water dynamic in well M.  

 In particular, in well M, the Lias delta is composed of OMFN 4. The latter is overlaid 

by OMFN 1 and OMFN 3, indicating the sea-level fall and rise respectively. This resembles 

the developments of the sedimentation in well E, however with some delay. Precisely, early 

Lias epsilon sediments were comprised of OMFN 4 and then, directly overlaid by OMFN 3. 

At that time, these two sub-basins of well M and well E communicated. The continuing sea-

level fluctuation is indicated by the sedimentation of OMFN 3-OMFN 2-OMFN 1 in both 

wells. This succession of organo-mineral microfacies is caused by gradual sea-level fall and 

the establishment of conditions with higher oxygen availability. The constantly increasing sea 

level led to the formation of the OMFN3 in well E. Unlike well M, strong anoxic conditions 

appeared in well E and were not influenced by short-term fluctuation in sea level. These 

changes were recorded only in well M (OMFN 2). Later the continuous sea level decreased 

and led to the formation of the OMFN 5 and OMFN 1 in both wells. 

 The results of Rock-Eval analysis are in agreement with the proposed depositional 

models (Chapter 4). They reveal, for instance, that organo-mineral microfacies enriched in 

bituminite V show lowest values of OI among all the investigated microfacies (Chapter 4). In 

well E and well M, these organo-mineral microfacies contain av. 17 and av. 11 [mg. CO2/g 

TOC] respectively. Organo-mineral microfacies indicating an oxygenated water column 

contain OI 65 and 186 [mg. CO2/g TOC] in wells E and M respectively 
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Fig. 6-3: Schematic illustration of different scenarios of organic matter sedimentation for each organo-mineral microfacies from well E and well M of the West Netherlands 

Basin. 
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6.2.2. The Lower Saxony Basin 

 Well A and well D represent two different paleoenvironments. The formation of the 

organo-mineral microfacies in the first well is characterised by a slow sedimentation rate, 

water column stratification and very warm marine environment. All organo-mineral 

microfacies resemble each other. However, they indicate slight sea-level fluctuations, 

probably caused by a short-term storm event/sea-level fluctuation. Organo-mineral 

microfacies in well A were probably deposited in deeper water environments than those in 

well D. Specifically, it is possible that well D was located closer to the landmasses than well 

A. This is indicated by a greater input of terrestrial organic matter in this well. The sea water 

was oxygenated with a good water column circulation which prevented expansion of the 

anoxia. The increased content and diversity of the telalginite and lamalginite and high  

liptodetrinite content indicate good oxygenation of the water column with a high water 

dynamic. However, in some deeper parts, the still existing anoxia enabled the preservation of 

some indigenous vitrinite and bituminites and prevented the appearance of macrofauna.  

 The distribution of the organo-mineral microfacies is presented in Appendix B.3 for 

well A and in Appendix B.4 for well D. All organo-mineral microfacies in well D resemble 

OMFLa 1 in well A. However, slight differences are encountered among the identified 

organo-mineral microfacies in well D, caused by sea-level fluctuation or by a short-term 

storm event.  

 Organo-mineral microfacies with an extremely high content of bituminite II (OMFLa 

2) indicates low energetic suboxic-anoxic environments with oxygenated surface water and 

oxygen-exhausted bottom water, allowing both the habitation of algae and zooplankton and 

the preservation of the organic matter (Fig. 6-4). The increased content of  bituminite I 

(OMFLa 3) represents more dynamic environments. Enhanced anoxia into the photic zone 

caused the low bioproductivity and, as a result, lower content of the organic matter buried in 

the sediments. The evaporation of the water or the rapid fall of the sea level led to the 

increased oxygen availability in the water column (OMFLa 4). This led to the low 

preservation of organic matter.  

 The described scenarios are in agreement with the low OI which ranges from 4 to 10 

mg CO2/g TOC for organo-mineral microfacies, indicating suboxic-anoxic environments, and 

with values of OI reaching 84 mg CO2/g TOC in OMFLa4 (geochemical properties of 

identified organo-mineral microfacies described in Chapter 4).
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Fig. 6-4: Schematic illustration of different scenarios of organic matter sedimentation for each organo-mineral microfacies from well A of the Lower Saxony Basin. 
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 In well D, the water column is well oxygenated (14-25 mg CO2/g TOC) with a great 

water dynamic, which results in the low thickness of the Posidonia Shale reaching only 7 m. 

However, the low thickness of the Posidonia Shale in well D might be caused by erosion as 

well. HI and TOC do not vary significantly between the organo-mineral microfacies, 

indicating a resemblance of the environments in which they were formed. 

 

6.2.3.  The South German Basin 

6.2.3.1. Evolution of the organic microfacies 

6.2.3.1.1. Dotternhausen-1001 well 

 On the basis of organic petrography, 5 different organo-mineral microfacies were 

distinguished. The changes of organo-mineral microfacies from the bottom to the top of the 

investigated succession of Posidonia Shale indicate the variations in depositional 

paleoenvironments, which reflects the sea-level fluctuations (Fig. 6-5).  

 Organo-mineral microfacies enriched in bituminite I (OMFDot 2) was probably 

deposited in anoxic paleoenvironments, reflecting an increasing sea level with restricted water 

circulation (APPENDIX B.5). It is marked sedimentologically by the occurrence of laminated 

layers. The decreased content of zooclasts and the poor diversity of telalginite and lamalginite 

demonstrate the expansion of the oxygen-minimum zone into the photic zone. This 

microfacies is overlaid by the OMFDot1, indicating short-term oxygenated period which was 

later changed again by suboxic-anoxic environments (OMFDot 2). This organic-rich 

succession comprises a depth ranging from 47.83 to 46.15 m. It is in agreement with the 

bituminous facies A defined by Küspert (1983), which is characterised by very light δ
13

Corg 

and δ
13

Ccarb (Küspert, 1983; Röhl and Schmid-Röhl, 2005).  

 After OMFDot 2, which indicates that suboxic-anoxic conditions appeared after a 

short sea-level decrease (Fig.6-5, OMFDot 2 A and B scenarios),  the short term oxygenation 

event led to the formation of OMFDot 5, which was followed by OMFDot1. These organo-

mineral microfacies indicate oxygenated environments with increasing water column 

circulation that prevents the sedimentation of the organic matter in high amounts. Anoxic 

conditions (OMFNDot 2-3) later established led to mass mortality of the fauna. Therefore, in 

overlying organic OMFDot 2–3, bituminite III was identified in higher concentration than in 

other organo-mineral microfacies. The origin of this bituminite III is still questionable. It 
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probably occurs when well-oxygenated environments were changed by strong anoxic 

conditions. These rapid changes were only observed in the South German Basin. 

 Later, anoxic paleoenvironments were changed again by conditions corresponding to 

high oxygen availability. This is reflected in the decreased content of bituminite I and 

bituminite II (OMFDot 3 or OMFDot 4) (Fig. 6-5). This microfacies succession, ranging from 

44.38 to 38.71 m, coincides with the facies B defined by Küspert (1983).  

 Finally, the organo-mineral microfacies described above are overlaid by those which 

are enriched in zooclasts, indicating oxygenation of the water column (OMFDot 1). This part 

of the Posidonia Shale is attributed by Küspert (1983) to facies C.  
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Fig. 6-5: Schematic illustration of the different scenarios of organic matter sedimentation for each organo-mineral microfacies from the Dotternhausen-1001 well of the South 

German Basin. 
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6.2.3.1.2. Bisingen-1002 well 

 OMFBis 9 indicates that the increasing water column circulation prevented 

sedimentation of the organic matter and its subsequent incorporation in the sediments 

(Appendix B.7). This explains the low bioproductivity rate and, as a result, the low values of 

TOC and HI. The depositional conditions of OMFBis 9 were oxygenated in the long term and 

resemble those of the organo-mineral microfacies OMFDot 1 from the Dotternhausen-1001 

well (Fig. 6-5). Sedimentologically, it is marked by the high zooclast and inertinite contents, 

and the presence of burrows in the sediments. The Lias epsilon is represented by a sea-level 

rise and the establishment of anoxic conditions, which led to mass mortality of the fauna. This 

unit consists of organo-mineral microfacies enriched in lamalginite, bituminite I, and 

liptodetrinite (OMFBis 8). The following organo-mineral microfacies indicates a continuous 

rise of the sea level (OMFBis 6). This was, however, interrupted by a short-term oxygenation 

event, represented by OMFBis 1. OMFBis 3, OMFBis 6 and OMFBis 8 resemble a 

transitional stage between scenario A and scenario B of OMFDot 2. OMFBis 3 is similar to 

scenario A, whereas OMFBis 6 is similar to scenario B with low biomass productivity. 

OMFBis 8 is a transitional stage between these two organo-mineral microfacies, indicating 

the highest values of TOC (av. 6.3 %) and HI (av. 522 mg HC/g TOC) among these organo-

mineral microfacies. 

 OMFBis 1 resembles OMFDot 1. However, in the Bisingen-1002 well, the 

oxygenation event was brief, caused by a rapid sea-level fall. In these environments, anoxia 

was still present in depressions. These can explain the deposition of a greater amount of 

vitrinite. OMFBis 7 and OMFBis 5 indicate a continuous rise of the sea level and the 

expansion of the anoxia into the photic zone. The OMFBis 5 results from the maximum of the 

flooding event, coinciding with the order of falciferum and bifrons zones (Röhl and Schmid-

Röhl, 2005). This corresponds to the low TOC values reaching 0.4 %, which probably 

indicate low biomass productivity. The overlying organo-mineral microfacies indicates 

regression and changes in paleoenvironments from anoxic to dysoxic conditions. These 

changes are marked by the following organo-mineral microfacies of OMFBis 3, OMFBis 2 

and OMFBis 1, which comprise the sediments of the Dogger alpha at the top of the Posidonia 

Shale succession. OMFBis 2 and OMFBis 1 both indicate dysoxic conditions. Nevertheless, 

OMFBis 2 is characterised by higher oxygen availability, which does not allow good 

preservation of the organic matter. This is in an agreement with low TOC values (av. 0.3 %).  
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 Similarly to the Dotternhausen-1001 well, Küspert (1983) also identified three facies 

units A, B, C in the Bisingen-1002 well. These facies are in agreement with gradual changes 

of the organo-mineral microfacies, indicating anoxic to dysoxic and oxic conditions.  

6.2.3.1.3. Notzingen-1017 well 

 Similarly to the Bisingen-1002 well, the Lias delta begins with the sedimentation of 

the organo-mineral microfacies enriched in terrestrial organic matter and zooclasts (OMFNot 

7) (Appendix B.6.). However, contrary to OMFBis 9 in the Bisingen-1002 well, in OMFNot 7 

terrestrial organic matter is represented by vitrinite, indicating suboxic conditions. Due to a 

short transportation, vitrinite was incorporated into sediments in greater quantities than in the 

Bisingen-1017 well. The continued rise of the sea level led to sedimentation of the OMFNot 

4. The model of depositional environment is close to that described for OMFBis 1. The 

presence of zooclasts in the Notzingen-1017 well indicates the oxygen availability. However, 

the later oxic-suboxic conditions turned into suboxic-anoxic, indicated by the increasing 

content of the bituminite (OMFNot 5). The maximum transgression attained by OMFNot 3 

with a high bituminite and liptodetrinite content, and simultaneously low quantity of 

zooclasts. This evidence is in agreement with high TOC and HI values reaching 11.2 % and 

701 mg HC/g TOC respectively. After the maximum flooding event, the sedimentation of the 

following microfacies resulted in a gradual regression (Appendix B.6.). Increasing water 

mixing caused oxygenation of the water column. This led to decreasing content of bituminite, 

but increasing content of liptodetrinite. 

 The OI in this well indicates oxygen-depleted paleoenvironments. It does not change 

considerably through the well, showing average values from 9.8–13 [mg CO/g TOC]. The 

exception is only OMFNot7, containing a value of 42 [mg CO/g TOC] (Chapter 4). 

 



CHAPTER 6 

198 

 

6.3. Discussion of the depositional models for investigated 

sedimentary basins 

Previously proposed depositional models of the black shales are based on the 

suggestion that bituminous shales were deposited in deep-water environments in conditions of  

sediment starvation (Hallam and Bradshaw, 1979; Wignall, 1991; Hesselbo and Jenkyns, 

1995; Jenkyns et al., 2001). The occurrence of such paleoenvironments was caused by rapid 

sea-level rise or/and high basin subsidence rates. These models can explain the formation of 

organo-mineral microfacies from the West Netherlands Basin and the Lower Saxony Basin. 

However, they fail in the explanation of the occurrence of reworking layers in the South 

German Basin (Röhl and Schmid-Röhl, 2005). This confirms that deposition of the Posidonia 

Shale in southern Germany developed under shallow-water conditions. The shallow-water 

depositional model was also proposed by several authors (Wignall, 2001; Wignall and 

Newton, 2001; Röhl and Schmid-Röhl, 2005).  

The depositional features of the Posidonia Shale succession differ from area to area. In 

southern Germany, it was deposited in shallow-water environments with good communication 

between all three sedimentation basins, whereas those in the Netherlands were far more 

isolated from each other. Sub-basins of the Lower Saxony Basin represent two different 

examples of organic matter accumulation and preservation. If in well A environments more 

resemble deep-sea environments with restricted water circulation, then the scenario of well D 

is opposed to the well A scenario. In well D, the water dynamic was far greater, leading to 

oxygenation of the water column. Therefore, it increases the diversity and content of the 

telalginite and lamalginite, however, decreases the amount of amorphous organic matter, 

which remains were still preserved in depressions of the sea-bottom relief.  

None of the proposed depositional models, which were described in detail in Chapter 

1. Introduction, can totally explain all the reconstructed scenarios for each organo-mineral 

microfacies. The sedimentation of the Posidonia Shale is rather a combination of two and 

more depositional models.  

The “upwelling” model cannot explain the formation of bituminous shales within 

isolated silled basins (Röhl and Schmid-Röhl, 2005). In addition, according to Röhl and 

Schmid-Röhl (2005), it fails to explain the evidence for the extensive reworked layers 

associated with unconformities.  
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The “stagnant” depositional model cannot completely explain the occurrence of the 

highly bituminous shale. The deposition of the organo-mineral microfacies in environments 

with restricted water column circulation will lead to expansion of the anoxia into the photic 

zone and the mortality of organisms. This decreases incorporation of the organic matter in the 

sediments. Moreover, this model fails to explain the presence of burrowed sediments in 

southern Germany.  

The “expanding puddle” model is a developed version of the “irregular bottom 

topography basin”. It is the best model to explain the accumulation of the organo-mineral 

microfacies enriched in bituminite I and bituminite II. Nevertheless, it fails in the same way as 

the “stagnant” depositional model. Increasing sea level leads to the establishment of strong 

anoxic conditions, which triggers the mortality of organisms and reduces the biomass 

productivity.  

The depositional “transgressive chemoclines” model proposed by Röhl and Schmid-

Röhl (2005) is the model based on sea-level fluctuation and climatically induced variations. 

This model can explain variations in organo-mineral microfacies in all the sedimentary basins.  

 

6.4. Different types of graphic visualisation of the obtained 

organo-petrographic results 

 Graphics is one method of the visual representation of the obtained results. The choice 

of graphic is crucial for the author and the objectives of the study (Tyson, 1995). For this 

study, two types of graphic are used to illustrate two different approaches to organo-mineral 

microfacies analysis. The first is the “classic” ternary diagram, widely used in organic 

petrography to illustrate maceral composition, and the second is the scatter plot. The ternary 

diagram is based on three different selected macerals or their assemblage and represents not 

only the paleoenvironments in the sediments, but in the water column, including the dynamic. 

The scatter plot is based on the calculation of the Oxidation and Degradation Indices. It has 

been developed to show the paleoenvironments favouring the formation of bituminous shales.  

6.4.1. Ternary diagram 

 The ternary diagram is a very useful tool for data visualisation. However, the 

efficiency of this type of representation of results depends on the selection of the three main 

constituents. Indeed, the common assemblage of macerals of the three main groups — 

vitrinite-liptinite-inertinite — is widely used in coals. However, this assemblage is not 
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appropriate for analysing marine organic-rich sediments. In marine sediments, opposed to 

terrestrial ones, vitrinite-inertinite groups of macerels and sporinite are transported into the 

sediments by the wind or currents. Their content is rather low in the sediments deposited 

under calm conditions, whereas it increases with the increase of water energy. In this study, 

the bituminite-liptodetrinite-alginite maceral assemblage has been selected as the main 

indicator of paleoenvironmental variations (Fig. 6-6). 

 Bituminite and alginite represent two different paleoenvironmental conditions (Fig. 6-

6). While the algenite indicates oxic conditions and, theoretically, in a maximum extreme it 

represents calm conditions with a well-oxygenated water column, the high content of 

bituminite indicates anoxic conditions. However, it is important to take into account that the 

extension of the anoxia led to reduced oxygen availability in a photic zone and mortality of 

the fauna. Once there is no more supply of organic matter, the content of the bituminite 

decreases significantly.  

 Another important issue is related to the liptodetrinite origin. Many authors did not 

pay much attention to the content of this maceral in marine sediments. The assumption that it 

is a product of bacterial degradation and/or is partly derived from minute algae, authorised 

them to group liptodetrinite together with alginite (Tyson, 1995). However, current research 

challenges this statement and shows that the liptodetrinite content decreases when that of 

bituminites (AOM) increases (Fig. 6-1D). If it is taken into account that it mostly already 

occurs in the water column, liptodetrinite more significantly indicates energetic oxygenated 

environments than those with restricted water circulation (Fig. 6-6). 
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Fig. 6-6: Schematic representation of different paleoenvironmental conditions on the ternary diagram.  

LTD: liptodetrinite; ALG: alginite; BIT: bituminite. 

6.4.1.1. Ternary diagram and organo-mineral microfacies 

 Organic petrological results, plotted into the ternary diagram are presented in Fig. 6-7 

and Fig. 6-8. These diagrams demonstrate the distribution of marine liptinites (alginite, 

liptodetrinite, bituminite) in Posidonia Shale from the West Netherlands, Lower Saxony and  

South German Basins. On these ternary diagrams, organo-mineral microfacies are illustrated 

together with characterising their composition of bituminites, depicted in pie charts. Indeed, 

the pie chart does not represent the real concentration of bituminites, but shows the 

“evolution” in the composition of the bituminite “group” depending on the distinct 

paleoenvironmental condition.  

 The scatter pattern of the identified organo-mineral microfacies is in agreement with 

the previously defined paleoenvironments. It is easily recognised that bituminous shale from 

wells E and A were deposited under more quiet oxygen-depleted environments than those in 

wells M and D (Figs. 6-7 A-D). Moreover, in bituminous organo-mineral microfacies in wells 

E and A, the distinct type of bituminites may act as an indicator of the paleoenvironments. For 

instance, organo-mineral microfacies enriched in bituminite I and bituminite II fall into the 

area, indicating suboxic paleoenvironments, whereas those rich in bituminite V demonstrate 

more oxygen-exhausted conditions than were previously discussed. Organo-mineral 

microfacies from wells M and D contain a higher amount of liptodetrinite and lower content 
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of bituminites than wells E and A. As was mentioned before, the increased content of 

liptodetrinite demonstrates the increased water column circulation. In this paleoenvironment, 

bituminites were preserved only in relief depressions, where suboxic-anoxic conditions were 

still present (Figs. 6-7 B, D).  

 Organo-mineral microfacies from wells of the South German Basin show considerable 

scatterings (Fig. 6-8). This verifies the previous suggestions that paleoenvironments vary 

considerably from oxic to suboxic-anoxic. Those organo-mineral microfacies enriched in 

zooclasts are located in the upper part of the diagram, whereas scattering, characterising 

organo-mineral microfacies rich in amorphous organic matter organisms, are shifted to the 

centre of the diagram or to the lower part. 

 The distribution of macerals of terrestrial origin (macerals of the vitrinite and inertinite 

groups and sporinite) does not contradict the defined organo-mineral microfacies and 

paleoenvironments they indicate (Fig. 6-9). However, the presence of terrestrial macerals in a 

relatively high quantity in bituminous organo-mineral microfacies, which indicates suboxic-

anoxic conditions, may demonstrate the close proximity of continental landmasses to the 

sedimentation area.  

6.4.1.2. The distribution of TOC and HI according to the maceral 

composition of the investigated Posidonia Shale 

 Organic petrography in conjunction with the results of the geochemical analysis 

provide a comprehensive characterisation of organic matter. In Fig. 6-10 and Fig. 6-11, the 

distribution of TOC and HI are illustrated according to the main maceral assemblages: 

bituminite-liptodetrinite-alginite. It is apparent that almost all investigated samples of 

Posidonia Shale contain TOC values of more than 5 %, except wells of the South German 

Basin (Fig. 6-10). It is apparent that in these wells strong anoxic conditions had never been 

established. The oxygenated water column with good water mass circulation probably did not 

favour the preservation of organic matter and increased its oxidation. 

 In addition, in Fig. 6-10 it is clearly demonstrated that TOC values increase towards 

the alginite “corner” or are concentrated in the middle of the diagram. These parts of the 

ternary diagram indicate the biomass productivity. When paleoenvironmental conditions 

allowed organic matter supply, both provided by zooplankton and algae, and its preservation, 

the organic-rich sediments contain high TOC values. 

 As illustrated in Fig. 6-11, the quality of organic matter, indicated by HI, differs 

among the investigated wells. The HI index may not be correlated to TOC values,  
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Fig. 6-7: Ternary diagrams illustrating the distribution of organo-mineral microfacies in wells of the West 

Netherlands Basin (A, B) and the Lower Saxony Basin (C, D). Pie charts show representative bituminite pattern 

within each microfacies.  

Ternary diagram: Bit (sum of all bituminites)+LTD(liptodetrinite)+ALG(telalginite and lamalginite)=100 

[vol.%]. Pie chart: Sum of all bituminites=100 [vol.%]. 
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Organo-mineral microfacies from the West Netherlands Basin. OMFN 1: Low 

bituminous limestone with low content of bituminite; OMFN 2: Bituminous marly limestone 

enriched in bituminite I; OMFN3: Bituminous calcareous mudstone and marly limestone 

enriched in bituminite V; OMFN 4: Low bituminous limestone rich in liptodetrinite and 

discrete lamalginite; OMFN 5: Bituminous calcareous mudstone and limestone enriched in 

bituminite II. Organo-mineral microfacies from the Lower Saxony Basin. Well A. OMFLa 

1: Bituminous calcareous mudstone enriched in terrestrial macerals with low content of 

bituminites; OMFLa 2: Bituminous limestone enriched in bituminite II; OMFLa 3: 

Bituminous limestone enriched in bituminite I; OMFLa 4: Bituminous limestone with low 

content of lamalginite. Well B. OMFLd 1: Bituminous limestone enriched in bituminite II; 

OMFLd 2: Bituminous limestone enriched in bituminite I; OMFLd 3: Bituminous limestone 

with high content of filamentous lamalginite and decreased content of bituminites; OFLd 4: 

Low bituminous limestone with low diversity of macerals; OMFLd 5: Bituminous limestone 

with low content of discrete, filamentous lamalginite and bituminites.  
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Fig. 6-8: Distribution of organo-mineral microfacies in the Dotternhausen-1001 well (A), Bisingen-1002 well 

(B) and Notzingen-1017 (C) of the South German Basin. 

Note: the maceral composition data of the Bisingen 1002 well after Prauss et al., (1991); maceral composition 

data of Notzingen-1017 well after Ligouis, (unpublished).  

Pie charts illustrate the distribution of the bituminites within the individual organo-mineral microfacies.  

Ternary diagram: Bit (sum of all bituminites)+LTD(liptodetrinite)+ALG(telalginite and lamalginite)=100 

[vol.%]. Pie chart: Sum of all bituminites=100 [vol.%]. 
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Organo/mineral microfacies from the South German Basin:  
 

Dotternhausen-1001 well: OMFDot 1: Non-bituminous silty marls enriched in zooclasts; 

OMFDot 2: Bituminous silty marls, limestone enriched in bituminite I; OMFDot 3: 

Bituminous silty marls and limestone enriched in bituminite I and bituminite VI; OMFDot 4: 

Bituminous silts marls and limestone enriched in bituminite IV; OMFDot 5: Bituminous 

mudstone with even quantity of bituminite I and bituminite II.  

 

Bisingen-1002 well: OMFBis 1: Claystones and calcareous shales with high input of vitrinite 

maceral and suppressed content of zooclasts; OMFBis 2: Calcareous shales and limestone 

enriched in vitrinite and with a high content of zooclasts; OMFBis 3: Bituminous shales 

enriched in bituminite I with moderate content of zooclasts; OMFBis 4: Bituminous shales 

with high content of zooclasts; OMFBis 5: Bituminous limestone poor in organic matter; 

OMFBis 6: Bituminous shales enriched in bituminite I with low content of zooclasts; 

OMFBis 7: Bituminous limestone with high content of lamalginite and liptodetrinite; 

OMFBis 8: Bituminous shales with high content of lamalginite, bituminite I and 

liptodetrinite; OMFBis 9: Calcareous shales with high content of inertinite and zooclasts. 

 

Notzingen-1017 well: OMFNot 1: Calcareous shales with high input of terrestrial organic 

matter; OMFNot 2: Bituminous limestone and bituminous calcareous shales with low content 

of zooclasts and increased content of sporinite and telalginite; OMFNot 3: Bituminous shales 

and limestone with increased content of liptodetrinite and bituminites; OMFNot 4: 

Bituminous shales and calcareous shales, characterised by increased content of telalginite 

together with inertinite; OMFNot 5: Bituminous shales and calcareous shales enriched in 

telalginite, bituminite and sporinite; OMFNot 6: Calcareous shales enriched in inertinite; 

OMFNot 7: Bituminous calcareous shales enriched in vitrinite. 
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demonstrating that the quality of the organic matter depends on the maceral type. Each of the 

distinct macerals is characterised by different generation properties.  

 The samples from the West Netherlands Basin are characterised by values of HI more 

than 500 mg HC/g TOC, indicating good quality source rocks. However, Posidonia Shale in 

well D also shows equally high values of HI. As was mentioned before, the samples from well 

D contain a large quantity of liptodetrinite, but a lower content of bituminite than the 

Posidonia Shale from wells E and M. This enables the assumption that the high generation 

properties of the source rocks are provided not only by bituminites (AOM), but probably by 

alginite and liptodetrinite, concentrated in source rocks in high quantities.  

 Posidonia Shale from well A is characterised by a high content of bituminites. 

However, it shows lower values of HI than wells E, M and D. The maturity level in samples 

from well A is higher than those from wells E and M. If it is taken into account that 

diagenetically transformed bituminite yields oil earlier than macerals of the alginite group, 

then the Posidonia Shale in well A has already undergone oil expulsion (Teichmüller and 

Ottenjann, 1977). 

 HI varies in the wells of the South German Basin. In the Bisingen-1002 well, it is 

lower than in the Notzingen-1017 well. This difference can probably be explained by a 

variation in paleoenvironmental conditions. In the Notzingen-1017 well, those were more 

oxygen-depleted than the Bisingen-1002 well. 
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Fig. 6-9: Ternary diagram showing distribution of the organic matter of terrestrial origin in wells from the West 

Netherlands Basin (A, B), the Lower Saxony Basin (C,D) and the South German Basin (E,F).  

Note that Bit (sum of all bituminites)+LTD(liptodetrinite)+ALG(telalginite and lamalginite)=100 [vol.%].  

V-macerals of vitrinite group; I-macerals of inertinite group; Sp.-sporinite. 
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Fig. 6-10: Distribution of TOC values in Posidonia Shale of the West Netherlands Basin (A,B), the Lower 

Saxony Basin (C,D) and the South German Basin (E,F).  

Note that Bit (sum of all bituminites)+LTD(liptodetrinite)+ALG(telalginite and lamalginite)=100 [vol.%]. 
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Fig. 6-11: Distribution of HI values in Posidonia Shale from the West Netherlands Basin (A, B), the Lower Saxony Basin (C, 

D) and the South German Basin (E, F).  

Note: Bit (sum of all bituminites)+LTD (liptodetrinite)+ALG(telalginite and lamalginite)=100 [vol.%]. HI [mg HC/g TOC]. 
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6.4.2.  The scatter plot 

 The other method proposed in this study for data visualisation is the scatter plot. 

Contrary to the ternary diagram, the scatter plot describes the oxidation and degradation 

processes which have already taken place in the sediments.  

 As mentioned in the Introduction, organic matter accumulation and preservation is 

controlled by biologic productivity, sediment mineralogy and oxygenation of the bottom 

water and sediments (McCarthy et al., 2011). Within depositional settings, fluctuation in 

oxygen content in the water column is perhaps the most important parameter. The increased 

availability of oxygen favours the concentration of organic matter in the sediments, while its 

deficiency ensures the preservation of organic matter (McCarthy et al., 2011).  

 Because of the thermodynamically unstable nature of organic matter, the latter suffers 

modifications caused by bacterial degradation once it has started to sink. Bacterial 

degradation proceeds quickly and efficiently in well-oxygenated water. Once the oxygen 

supply becomes exhausted, degradation of organic matter continues by anaerobic bacteria 

using sulfates as an oxygenation agent (Demaison and Moore, 1980). Anaerobic degradation 

is thermodynamically less efficient than aerobic decomposition. Moreover, it results in more 

lipid-rich substances (hydrogen-rich) than in aerobic degradation (Demaison and Moore, 

1980). In other words, macerals of the vitrinite group are more likely to be bacterially 

oxidised than those of the liptinite group. Therefore, an increased content of bituminites 

(AOM) is an indicator of enhanced anoxic environments. 

 Our study on the Posidonia Shale shows the relationships between identified organo-

mineral microfacies and four depositional areas, describing a variety of paleoenvironmental 

conditions (Fig. 6-11). These areas are empirically established according to the organo-

petrographic results. The calculation is based on the data set of quantitative and qualitative 

maceral analysis, using two indices proposed in this study: Degradation Index and Oxidation 

Index. The Degradation Index is the ratio of macerals derived by anaerobic bacteria 

degradation to those non-degraded (Eq. 1). When the Degradation Index shows values of 

more than 1, the conditions change from suboxic to anoxic. The Oxidation Index is the ratio 

between macerals, indicating oxygenated, dynamically active paleoenvironments, and those 

macerals which demonstrate quiet anoxic conditions (Eq. 2). In addition, it may provide 

information on the remoteness of the sedimentation area from landmasses. Therefore, the 

denominator includes oxidised vitrinite and liptodetrinite. Oxidised vitrinite, indeed, might 

already have been formed on the continent. However, the presence of this maceral 
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incorporated in the sediments may suggest strong currents as well as the presence of 

liptodetrinite. The relationship between liptodetrinite and alginite, liptodetrinite and 

bituminites has been demonstrated above. In Fig. 6-1 it is clearly recognisable that 

liptodetrinite acts as an indicator of oxygenated conditions.  

 The denominator of the Oxidation Index includes indigenous vitrinite and bituminites. 

As previously mentioned, vitrinite is a maceral of terrestrial origin, transported into marine 

environments. However, well-preserved indigenous vitrinite along with bituminites may 

indicate suboxic-anoxic environments. On the one hand, it indicates rather close proximity to 

the landmasses; on the other hand, it demonstrates oxygen-depleted environments favouring 

the preservation of vitrinite particles. 

 The areas distinguished in Fig. 6-12 reflect transitions between oxic and anoxic 

depositional conditions. Each of the identified areas shows paleoenvironments which favour 

the occurrence of organo-mineral microfacies with a predominance of one distinct type of 

bituminite among others (areas II, III, IV), or those organo-mineral microfacies which contain 

a low concentration of bituminites (area I). 

 

 
Fig. 6-12: Diagram showing the distribution of the organo-mineral microfacies according to the calculated 

Oxidation and Degradation Indices. 
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 (Eq. 1) 

 

 (Eq. 2). 

 

 As shown in Fig. 6-13, the distribution of the points in the diagram is in agreement 

with the previously discussed results of the maceral analysis. The low bituminous shales in 

wells M and D were deposited under oxic-suboxic paleoenvironmental conditions, while 

those in wells E and A indicate suboxic-anoxic conditions, by shifting the scatterings to the 

middle or right lower part of the diagram. The distribution of the areas is appropriate only for 

bituminous and high bituminous organic- rich sediments and in agreement with the organo-

mineral microfacies identified in wells E and A. 
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Fig. 6-13: Scatter plot illustrating the distribution of the organo-mineral microfacies of the West Netherlands (A, 

B) and Lower Saxony Basins (C, D).  

Organo-mineral microfacies from the West Netherlands Basin. OMFN 1: Low bituminous limestone with 

low content of bituminites; OMFN 2: Bituminous marly limestone enriched in bituminite I; OMFN 3: 

Bituminous calcareous mudstone and marly limestone enriched in bituminite V;  OMFN 4: Low bituminous 

limestone rich in liptodetrinite and discrete lamalginite; OMFN 5: Bituminous calcareous mudstone and 

limestone enriched in bituminite II.  

Organo-mineral microfacies from the Lower Saxony Basin. Well A. OMFLa 1: Bituminous calcareous 

mudstone enriched in terrestrial macerals with low content of bituminites; OMFLa 2: Bituminous limestone 

enriched in bituminite II; OMFLa 3: Bituminous limestone enriched in bituminite I; OMFLa 4: Bituminous 

limestone with low content of lamalginite. Well B. OMFLd 1: Bituminous limestone enriched in bituminite II; 

OMFLd 2: Bituminous limestone enriched in bituminite I; OMFLd 3: Bituminous limestone with high content of 

filamentous lamalginite and decreased content of bituminites; OFLd 4: Low bituminous limestone with low 

diversity of macerals; OMFLd 5: Bituminous limestone with low content of discrete, filamentous lamalginite and 

bituminites.  
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Fig. 6-14: Scatter plot illustrating the distribution of the organo-mineral microfacies in the Dotternhausen-1001 

well of southern Germany.  

OMFDot 1: Non-bituminous silty marls enriched in zooclasts; OMFDot 2: Bituminous silty marls, limestone 

enriched in bituminite I; OMFDot 3: Bituminous silty marls and limestone enriched in bituminite I and 

bituminite VI; OMFDot 4: Bituminous silty marls and limestone enriched in bituminite IV; OMFDot 5: 

Bituminous mudstone with even quantity of bituminite I and bituminite II.  

 In southern Germany, such a detailed maceral analysis was only done on Posidonia 

Shale samples from the Dotternhausen-1001 well. Fig. 6-14 illustrates that scatterings are 

gathered in areas indicating oxic and suboxic paleoenvironments. As was mentioned before, 

variations in organo-mineral microfacies are high compared to those from the West 

Netherlands Basin and the Lower Saxony Basin. This resulted from frequent changes in 

paleoenvironments, favouring the formation of the identified organo-mineral microfacies. 

These changes did not allow the establishment of distinct environments over a long time. 

Therefore, the organo-mineral microfacies do not show a distinct concentration within one 

specific area (Fig. 6-13).  

This diagram is crucial for the interpretation and reconstruction of paleoenvironmental 

conditions. Moreover, it is an essential clue to the understanding of the origin of bituminites. 

For instance, in high bituminous shales, organo-mineral microfacies enriched in bituminite I 

are concentrated in the middle of the plot, where the suboxic conditions favour the 

sedimentation and preservation of organic matter. This supports the suggestion by 
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Teichmüller and Ottenjann (1977) that bituminite I probably originates from the bacterial 

degradation of algae.  

Organo-mineral microfacies enriched in bituminite II are located in the middle part, 

but in a lower position than those rich in bituminite I. Rullkötter et al. (1992) stated that faecal 

pellets may act as a precursor of bituminite II. Important factors for these organo-mineral 

microfacies are both the oxygenated water surface, controlling bioproductivity, and suboxic-

anoxic conditions which govern the preservation of organic matter. Organo-mineral 

microfacies in which bituminite V prevails among other bituminites are located in the right 

lower area, in which paleoenvironmental conditions turn anoxic. In these harsh conditions, 

there is no longer a high supply of organic matter and only bacteria can survive. Therefore, 

bituminite V possibly originated from bacterial mats itself (?).  

It is clear that a better understanding of the origin of bituminites is one of the main 

challenges of organic petrology. A better understanding of the main factors controlling the 

accumulation and preservation of organic matter would certainly provide an important clue. 

For this reason, more work is required to confirm these hypotheses. 
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 It is well-known that Lower Toarcian Posidonia Shale was deposited in a wide 

epicontinental sea flooded in central and northern Europe. However, despite the widespread 

character of anoxic conditions at that time (AOE), which launched the occurrence of 

bituminous shales, organo-mineral microfacies may vary significantly. Seemingly 

homogeneous from a macroscopic point of view, Posidonia Shale is more heterogeneous on 

the microscopic scale.  

 In this PhD study, detailed high-resolution organic petrography was performed on 

Posidonia Shale from three different sedimentary basins. Posidonia Shale exhibits vertical and 

lateral organo-mineral microfacies variations that are largely related to the changes in 

paleoenvironmental conditions, which, in turn, differ from one sedimentary basin to another. 

Laterally, these patterns of organo-mineral microfacies are slightly correlated to each other, 

indicating restricted communication between the indicated basins. The paleoenvironmental 

features and reconstruction of the sedimentary model of Posidonia Shale deposition are 

summarised herein. 

 Apart from the organo-mineral microfacies and depositional paleoenvironments, the 

maturity of the bituminous shales from each of the aforementioned sedimentary basins was 

determined. Among early mature and mature levels, the post-mature Posidonia Shale was  

investigated. The thermal evolution of the macerals from the main organic groups was studied 

in particular and described in detail. 

 

7.1. Lateral and vertical organo-mineral microfacies 

variations of Posidonia Shale  
 

 All the identified organo-mineral microfacies include the specific assemblage of 

individual terrestrial and marine macerals and related minerals. These organo-mineral 

microfacies reflect sea-level fluctuation and, as a consequence, different paleoenvironmental 

conditions. However, in the paleoenvironmental reconstruction, uncertainty of bituminites 

(AOM) and liptodetrinite origin complicates the interpretation of the obtained results. 

 In the Posidonia Shale from the West Netherlands Basin, the variation of the 

telalginite and lamalginite is very low. However, the identified bituminite V in high quantities 

was represented only in this area.  

 Telalginite and lamalginite from the Lower Saxony Basin exhibit the highest 

variability among all the investigated wells. Moreover, the content of the bituminite II in well 
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A reaches a high of 58.0 vol.%. This demonstrates the quiet paleoenvironments with restricted 

water column circulation. The Posidonia Shale in well D contains the highest amount of 

liptodetrinite among all the investigated wells, probably indicating the increased water 

dynamic and oxygen availability. 

 While the organo-mineral microfacies from the West Netherlands and northwestern 

Germany are characterised by gradual vertical transition, those from southern Germany 

changed rapidly from oxic-suboxic to anoxic conditions. This led to mass mortality of the 

fauna recorded in the organo-mineral microfacies. Moreover, high input of the terrestrial 

macerals, together with the wavy fabric of the sediments emphasised by the zooclasts, 

probably indicate water currents. In addition, bituminite III was encountered in higher 

concentration only in the organo-mineral microfacies of Posidonia Shale from the South 

German Basin. 

 Some individual macerals are linked to a specific mineral groundmass. Specifically, 

bituminite I is more frequently found in the clayey-rich groundmass, whereas other 

bituminites are more common in the calcareous-rich matrix.  

 

7.2. Depositional paleoenvironments 

7.2.1.  Organo-mineral microfacies as an indicator of the 

paleoenvironmental changes and their relationship to the oil 

generation potential 

7.2.1.1. The West Netherlands Basin 

 Lateral variation in maceral assemblage comprising organo-mineral microfacies 

indicates that all three sedimentary basins were enclosed, hosting specific paleoenvironments. 

In the West Netherlands Basin, organo-mineral microfacies from well E and well M show a 

resemblance. However, oxygen availability and the water dynamic in well M is greater than in 

well E, as well as the depth. This is echoed by the increased content of liptodetrinite in well 

M, which is inversely proportional to that of the bituminite.  

 The marly groundmass in the investigated bituminous shale, probably indicates 

evaporitic environments which are characterised by high biomass productivity (Curial et al., 

1990).  Nevertheless, in an enclosed sedimentary basin, the establishment and the spread of 

anoxic events is more efficient than in well-communicated basins. This led to an increased 

amount of amorphous organic matter and suppressed organic matter variability. The 
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established oxygen-depleted paleoenvironments decreased the content of telalginite and 

lamalginite, which were represented mostly by Tasmanite-derived algae and discrete 

lamalginite respectively. In addition, these depositional environments favoured the rapid 

burial of organic matter in the sediments without major reworking (Curial et al., 1990).  

 The thickness of the Lias epsilon is high and comprises 29.91 and 31.37 m for well E 

and well M respectively, indicating a low water mass circulation and the absence of the rapid 

fluctuation of the sea level. Presumably, the water dynamic increased when a storm event 

occurred. Therefore, sub-basins of well M and well E were in communication. However, they 

were separated by a morphological barrier. 

 These are in good agreement with the geochemical results integrated in the study, 

which reveal that Posidonia Shale from the West Netherlands Basin contains the highest 

values of TOC and HI, reaching 16.6 % and 689 mg HC/g TOC and 16.8 % and 737mg HC/g 

TOC in wells E and M respectively. It is clear that bioproductivity in well M was marginally 

higher than in well E, as well as organic matter preservation. In addition, the highest quality 

of organic matter  increases significantly when the content of bituminite V rises as well. 

 

7.2.1.2. The Lower Saxony Basin 

 Wells A and D represent other depositional environments. Well A is presumed to be a 

significantly deeper sedimentary basin than all the other investigated areas. It was probably 

separated from the ocean water masses. However, an increasing water flux in storm periods  

influenced the distribution of oxygen in the water column: the water surface was more 

oxygenated than the bottom water. This can explain the high productivity of organic matter 

and its good preservation (Busson, 1979).  

 The thickness of the Lias epsilon in well A is the highest among all the investigated 

wells at 34.15 m, whereas that in well D and well B are 6.96 and 5.30 m respectively. In well 

D, thickness and microfabrics may indicate the increased circulation of the water column and 

close location to the landmasses. These environments induce the reworking of organic matter, 

prevent its rapid burial and the occurrence of amorphous organic matter as well. However, 

reduced thickness may be linked to post-sedimentation erosion as well. In the case of well B, 

it is difficult to reconstruct the depositional environments as the sediments have undergone a 

high thermal maturation, which complicates the maceral analysis and paleoenvironmental 

reconstructions in such sediments. 
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 In the Lower Saxony Basin, Posidonia Shale is characterised by a lower TOC and HI, 

comprising a maximum of 14.4 % and 539 mg HC/g TOC and 11.3 % and 654 mg HC/g TOC 

in wells A and D respectively. In these two wells, the predominant macerals are different. 

While in well A it is bituminite II, in well D it is liptodetrinite and discrete lamalginite with a 

low content of bituminite. Moreover, the optical properties of bituminite II indicate the 

thermal alteration of the sediments, which triggered the generation of oil from the amorphous 

organic matter. It is well established that oil generation from liptodetrinite and algae occurs 

under higher maturity than that of bituminites (AOM). Therefore, this evidence led to lower 

values of the HI in well D than in well A. 

7.2.1.3. The South German Basin 

 Organo-mineral microfacies from the South German Basin demonstrate rapid changes 

of the paleoenvironments from oxic to suboxic-anoxic leading to the mass mortality of the 

fauna. This is in agreement with the thicknesses in the investigated wells. These thicknesses 

are 11.38, 11.92 and 4.92 m in the Dotternhausen-1001, Bisingen-1002 Notzingen-1017 wells 

respectively. In addition, the considerable variation from one environment to another enables 

both productivity of the organic matter and its rapid burial in the sediments. Among all the 

wells from the South German Basin, the stronger anoxic conditions were observed in the 

Notzingen-1017 well.  

 The Posidonia Shale from southern Germany yields variable values of TOC and HI. In 

the Notzingen-1017 well, the TOC and HI reach 11.2 % and 701mg HC/g TOC, whereas 

those in the Bisingen-1002 well are lower, comprising 8.5 % and 586 mg HC/g TOC  

respectively. These are in agreement with the organo-mineral microfacies, which were 

discussed in Chapter 4, and the above-mentioned conclusion. 

 

7.3. Maturity and changes in optical properties of the 

macerals in the Posidonia Shale from early mature to post-

mature stage. 

The maturity of the Posidonia Shale in the investigated wells expressed by vitrinite 

reflectance varies from 0.4 to 0.5 %VRr, indicating the early mature to mature stage. 

However, the vitrinite reflectance in well B climbed to a high of 3.5 %, caused by the thermal 

influence of adjacent intrusive bodies. In order to define the optical properties of the macerals 

in the post-mature well, those were compared to the macerals from well A, which is located 



CONCLUSIONS AND PERSPECTIVES 

223 

 

44 km from well B. The results demonstrate that the telalginite bodies (named post-mature 

telalginite in this study), as well as bituminite I (named post-mature bituminite I in this study), 

bituminite II (named post-mature bituminite II in this study) and sporinite (named post-mature 

sporinite in this study) are still recognisable by their shape in the post-mature Posidonia Shale.  

The benefits of the use of these terms in the maceral analysis of post-mature oil shale 

are the following (see Gorbanenko and Ligouis, 2014): 

- Identification of carbon residues left by the hydrocarbon generation from telalginite, 

bituminite I, bituminite II, sporinite made possible by the recognition of the post-

mature telalginite, post-mature bituminite I, post-mature bituminite II and post-mature 

sporinite, based on morphological criteria of the secondary forms of replacement.  

- Appraisal of the telalginite content and of the contents of bituminite I (in part), of 

bituminite II, as well as the content in sporinite of the shale in the early mature stage. 

- Identification of the mineral phases filling the spaces in these macerals once oil 

generation is achieved and expelled. Localisation and distribution of the porosity 

associated with these mineral phases. 

- Recording of the modifications of size and morphology of these macerals resulting in 

oil generation and the crystallisation of minerals. 

- Recognition of the disappearance of primary macerals, of the appearance of secondary 

macerals. Genetic relationships between primary macerals in mature bituminous 

shales and their replacements in post-mature Posidonia Shales.  

- Characterisation of the organic-mineral fabric of the post-mature shale. 

- Recognition of the modification of the mineral contents between mature and post-

mature Posidonia Shales. Increase of the carbonate content. 

-  The secondary forms of replacement of alginite macerals in the maceral analysis of 

post-mature Posidonia Shales through the use of these terms can considerably improve 

the interpretation of the results of maceral analysis of post-mature source rocks. 

 In addition, this approach could offer new perspectives in pluridisciplinary works, by 

allowing a better integration of the results of organic petrology in a broader interpretation of 

the characteristics of oil and gas source rocks, which usually also takes into account the 

results of organic geochemistry and especially of Rock-Eval pyrolysis. 
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7.3.1. Graphical representation of the data in service of the 

depositional reconstruction 

 To ensure that the interpretation of the obtained maceral analysis results are more 

efficient, two types of diagram are proposed. The first is a ternary diagram, whereas the 

second is a scatter plot. In the ternary diagram, the interpretation was based on the fact that 

the liptodetrinite, alginite and bituminite indicate different paleoenvironments, which are 

either dynamic with increased oxygen availability or quiet with available oxygen and oxygen- 

depleted with restricted water circulation respectively. This diagram reflects the 

paleoenvironments not only regarding the sediments, but more significantly, the water column 

as well.  

In contrast, the principles of the visualisation data on the scatter diagram are based on 

the reflection of the paleoenvironments regarding the sediments. In this case, macerals were 

selectively combined in the Oxidation and Degradation Indices, which describe different 

paleoenvironmental conditions governing the deposition and preservation of organic matter. 

 These results exhibit good agreement on the distribution of organo-mineral 

microfacies and the specific assemblages of macerals. In particular, the increased content of  

liptodetrinite and zooclasts exhibits a good correlation with the increased terrestrial input. 

Whereas bituminite V, which seems to be composed of bacterial mats, indicates significant 

anoxic conditions, bituminite II is associated with a high content of coccoliths and zooclasts. 

This indicates temporary oxygenation of the water surface, probably caused by a short-term 

storm event, which increased the water column circulation. In this case, the anoxic conditions 

are still present in the bottom water, favouring the preservation of organic matter.  

Therefore, it enables the conclusion to be reached that sedimentation of Posidonia 

Shale in the Lower Saxony Basin occurred in suboxic environments, whereas those in the 

West Netherlands Basin were almost shifted to anoxic. The range of the paleoenvironments in 

South Germany is highly variable, indicating a rapid change in the paleoenvironments from 

oxic to suboxic-anoxic. 

 The variation of the organo-mineral microfacies, their deposition and preservation are 

in agreement with the model developed by Röhl and Schmid-Röhl (2005). This model 

described not only the morphological features of the sedimentary basin and the water column 

circulation as an important factor controlling the sedimentation and preservation of the 

Posidonia Shale, but more significantly, the sea-level fluctuation and climatic variations 

which promoted the changes in the deep-water redox conditions. 
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 The plotting on the diagram of the results of geochemical analysis provides insights 

into the chemical properties of each of the selected maceral assemblages. In addition, it 

evaluates the contribution of distinct macerals in the generation properties of source rocks.   

 

7.4. Perspectives and implications of high-resolution organic 

petrography 

7.4.1. Perspectives and future plans 

 This study provides insights into the main constituents of the organic-rich sediments in 

the case of Posidonia Shale, which act as the main indicators of different paleoenvironments. 

However, the uncertainty of origin of some of them, such as liptodetrinite and bituminite, 

complicates the interpretation. These macerals originated from a variety of precursors and, 

consequently, have different petrographic, physical and chemical properties. Knowing these 

precursors provides some clue to the understanding of the depositional settings which favour 

the formation of organic-rich sediments. The theories and hypothesis proposed in this work 

have a theoretical character and still require the results of the biomarker analysis to prove 

them valid or invalid.  

 

7.4.2. Implications of high-resolution organic petrography 

 Organic petrography is a fairly quick method that provides direct information on the 

organic constituents in the hydrocarbon source rocks. The use of quantitative and qualitative 

methods enables comprehensive characterisation of the organic matter, including the 

determination of the maturity of the source rocks. Moreover, this technique is crucial in the 

understanding of the relationships between the identified organo-mineral microfacies and the 

different paleoenvironmental conditions which favoured organic matter sedimentation in 

marine paleoenvironments. 

 Organic petrography is complementary to organic geochemistry. It does not replace 

the results obtained by geochemical methods, but provides considerable details. For instance, 

the results of geochemical analysis are based on the investigation of powdered samples. They 

show the average data of one selected sample. By contrast, for high-resolution organic 

petrography, pieces of rock cut perpendicular to the bedding plane are used. The results 

obtained using this technique provide information not only on the main constituents in the 
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samples, but a detailed description of sedimentological features. This increases the accuracy 

and, as a consequence, the quality of the interpretation. Moreover, organic petrography as a 

paleoenvironmental implication is widely useful in those sediments where the 

sedimentological transition is not easily recognisable. 



 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 
 

 



REFERENCES 

228 

 

Abraham, H., 1938. Asphalts and allied substances, their occurrence, modes of production, 

uses in the arts and methods of testing. D. Van Nostrand Co., New York. 

Alpern, B., 1980. Pétrographie du kérogéne, in: Durand, B. (Ed.), Kerogen: Insoluble Organic 

Matter from Sedimentary Rocks. Technip, Paris, pp. 339–371. 

Alpern, B., Cheymol, D., 1978. Réflectance et fluorescence des organoclastes du Toarcien du 

bassin de Paris en fonction de la profondeur et de la température. Rev. Inst. Fr. Pét. 33, 

515–535. 

Alpern, B., Oudin, J.L., Pinheiro, H.J., Pitton, J.-L., Zhu, X., 1994. Optical study method of 

hydrocarbon extracted and fixed by the embedding resin of polished rock samples. 

Influence of the richness in oil on the reflectance of kerogen. Bull.Centres Rech. Explor. 

15–35. 

Arntz, W.E., Tarazona, J., Gallardo, V.A., Flores, L.A., Salzwedel, H., 1991. Benthos 

communities in oxygen deficient shelf and upper slope areas of the Peruvian and Chilean 

Pacific coast, and changes caused by El Niño, in: Tyson, R. V, Pearson, T.H. (Eds.), 

Modern and Ancient Continental Shelf Anoxia. Geol. Soc. Spec. Publ., London, pp. 

131–154. 

Baldaschuhn, R., Best, G., Kockel, F., 1991. Inversion tectonics in the north-west German 

basin, in: Spencer, A.M. (Ed.), Generation, Accumulation and Production of Europe´s 

Hydrocarbons I. Spec. Publ. Eur. Assoc. Pet. Geosci., pp. 149–159. 

Barker, C., 1974. Pyrolysis techniques for source-rock evaluation. AAPG Bull. 58, 2349–

2361. 

Barker, C., Pawlewicz, M., Buntebarth, G., Stegena, L., 1986. The correlation of vitrinite 

reflectance with maximum temperature in humic organic matter. Paleogeothermics 5, 

79–93. 

Barker, C., Pawlewicz, M.J., 1993. An empirical determination of the minimum number of 

measurements needed to estimate the mean random vitrinite reflectance of disseminated 

organic matter. Org. Geochem. 20, 643–651. 

Bartenstein, H., Teichmüller, M., Teichmüller, R., 1971. Die Umwandlung der organischen 

Substanz im Dach des Bramscher Massivs. Fortschr. Geol. Rheinld. Westf. 18, 501–538. 

Batten, D.J., 1985. Coccolith moulds in sedimentary organic matter and their use in 

palynofacies analysis. J.Micropalaeontol. 4, 111–116. 

Bernard, S., Horsfield, B., Schulz, H.M., Wirth, R., Schreiber, A., Sherwood, N., 2012. 

Geochemical evolution of organic-rich shales with increasing maturity: A STXM and 

TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar. Pet. Geol. 

31, 70–89. 

Berner, R.A., 1984. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Ac. 48, 

605–615. 



REFERENCES 

229 

 

Berner, R.A., 1964. Distribution and diagenesis of sulfur in some sediments from the Gulf of 

California. Mar. Geol. 1, 117–140. 

Bertrand, R., 1993. Standartization of solid bitumen reflectance to vitrinite in some Paleozoic 

Sequences of Canada. Energy Sourc. 15, 269–287. 

Betz, D., Führer, F., Greiner, G., Plein, E., 1987. Evolution of the Lower Saxony Basin. 

Tectonophysics 137, 127–170. 

Beurlen, K., Gall, H., Schairer, G., 1992. Die Alb und ihre Fossilien. Sonderausgabe. 

Geologie und Paläontologie der Schwaben- und Frankenalb. Gondrom Verlag GmbH. 

Binot, F., Gerling, P., Hiltmann, W., Kockel, F., Wehner, H., 1993. The petroleum system in 

the Lower Saxony Basin III, in: Spencer, A.M. (Ed.), Generation, Accumulation and 

Production of Europe’s Hydrocarbons. Springer Verlag, Berlin-Heidelberg, pp. 121–139. 

Bodenhausen, J.W.A., Ott, W.F., 1981. Habitat of the Rijswijk oil province, onshore, the 

Netherlands., in: Illing, L. V, Hobson, G.D. (Eds.), Petroleum Geology of the 

Continental Shelf of North-West Europe. Institute of Petroleum, London, pp. 301–309. 

Boggs, S., 2009. Petrology of sedimentary rocks, Cambridge University Press. Cambridge. 

Boigk, H., 1968. Gedanken zur Entwicklung des Niedersächsischen Tectogens. Geol. Jahrb 

85, 861–900. 

Boigk, H., Hark, H.H., Meyer, H.J., Wehner, H., 1974. Beziehungen zwischen Gechemie, 

Migration und Lagerstättengenese im Niedersächsischen Becken (westlich der Weser). 

Erdöl Erdgas Kohle 24, 98–113. 

Bordenave, M.L., Espitalié, J., Leplat, P., Oudin, J.L., Vandenbroucke, M., 1993. Screening 

techniques for source rock evaluation, in: Bordenave, M.L. (Ed.), Applied Petroleum 

Geochemistry. Éditions technip, Paris, pp. 217–279. 

Borrego, A.G., Araujo, C.V., Balke, A., Cardott, B., Cook, A.C., David, P., Flores, D., 

Hámor-Vidó, M., Hiltmann, W., Kalkreuth, W., Koch, J., Kommeren, C.J., Kus, J., 

Ligouis, B., Marques, M., Mendonça Filho, J.G., Misz, M., Oliveira, L., Pickel, W., 

Reimer, K., Ranasinghe, P., Suárez-Ruiz, I., Vieth, A., 2006. Influence of particle and 

surface quality on the vitrinite reflectance of dispersed organic matter: Comparative 

exercise using data from the qualifying system for reflectance analysis working group of 

ICCP. Int.J.Coal Geol. 68, 151–170. 

Botz, R., Schmidt, M., Kus, J., Ostertag-Henning, C., Ehrhardt, A., Olgun, N., Garbe-

Schönberg, D., Scholten, J., 2011. Carbonate recrystallisation and organic matter 

maturation in heat-affected sediments from the Shaban Deep, Red Sea. Chem. Geol. 280, 

126–143. 

Boussafir, M., Lallier-Vergès, E., 1997. Accumulation of organic matter in the Kimmeridge 

Clay formation (KCF): an update fossilisation model for marine petroleum source-rocks. 

Mar. Pet. Geol. 14, 75–83. 



REFERENCES 

230 

 

Brauckmann, F.J., 1984. Hochdiagenese im Muschelkalk der Massive von Bramsche und 

Vlotho. Ruhr-Univ. 

Brinkmann, R., Kayser, E., 1991. Abriss der Geologie, B2 ed. Enke, Stuttgart. 

Büchner, M., 1986. Geothermisch bedingte Veränderungen in Rhät- und Jura-Gesteinen des 

Unteren Weserberlandes als Folge des Vlothoer Glutflußmassivs. Ber. Naturwiss. Ver. 

Biefeld Umgebung 28, 109–138. 

Buntebarth, G., 1985. Das Temperaturgefälle im Dach des Bramscher Massivs aufgrund von 

Inkohlungsuntersichingen im Karbon von Ibbenbüren. Fortschr. Geol. Rheinld. Westf. 

33, 255–264. 

Busson, G., 1979. Couches laminées riches en matiére organique et précédant les roches 

salines: les enseignements d´un enchalinement de faciés. Doc. des Lab. la Fac. des Sci. 

Lyon 75, 5–18. 

Carr, A.D., Williamson, J.E., 1990. The relationship between aromaticity, vitrinite reflectance 

and maceral composition of coals: Implications for the use of vitrinite reflectance as a 

maturation parameter. Org. Geochem. 16, 313–323. 

Caspers, H., 1957. Black Sea and Sea of Azov, in: Hedgepeth, J. (Ed.), Treatise of Marine 

Ecology and Paleoecology. Geol. Soc. Am. Mem., pp. 801–890. 

Clementz, D.M., 1979. Effect of oil and bitumen saturation on source rock pyrolysis. Am. 

Assoc. Pet. Geol. Bull. 63, 2227–2232. 

Cook, A., Hutton, A.C., Sherwood, N.R., 1981. Classification of oil shales. Bull. Centres 

Rech. Explor. 5, 353–381. 

Cook, A.C., 1982. Organic facies in the Eromanga Basin, in: Moore, P.S., Mount, T.J. (Eds.), 

Eromanga Basin Symposium. Geol. Soc. Austr. And Pet. Explr. Soc. Austr., Adelaide, 

pp. 234–257. 

Creaney, S., 1980. The organic peîrology ofthe Upper Cretaceous Boundary Creekformatìon, 

Beaufort-Mackenzie basin. B. Can. Pet. Geol. 28, l12–l19. 

Cuomo, M.C., Bartholomew, P.R., 1991. Pelletal black shale fabrics: their origin and 

significance. Geol. Soc. London Spec. Pub. 58, 221–232. 

Curial, A., Dumas, D., Dromart, G., 1990. Organic matter and evaporates in the Paleogene 

West European Rift: the Bresse and Valence Salt Basins (France)., in: Huc, A.Y. (Ed.), 

Deposition of Organic Facies. AAPG Stud.Geol. 30, Tulsa. Oklahoma, U.S.A., pp. 119–

132. 

Curiale, J.A., 1986. Origin of solid bitumens, with emphasis on biological marker results. 

Org. Geochem. 10, 559–580. 

De Jager, J., Doyle, M.A., Grantham, P.J., Mabillard, J.E., 1996. Hydrocarbon habitat of the 

West Netherlands Basin, in: Rondeel, H.E., Batjes, D. A. J. Nieuwenhuijs, W.H. (Eds.), 



REFERENCES 

231 

 

Geology of Gas and Oil under the Netherlands. Kluwer Academic Publishers, Dordrecht, 

pp. 191–209. 

De Jager, J., Geluk, M.C., 2007. Petroleum geology, in: Wong, T.E., Batjes, D.A.J., De Jager, 

J. (Eds.), Geology of the Netherlands. DutchAcademy of Arts and Sciences, Amsterdam, 

pp. 237–260. 

Degens, E.T., Mopper, K., 1976. Factors controlling the distribution and early diagenesis of 

organic material in marine sediments. Chem. Ocean. 6, 11–59. 

Degens, E.T., Ross, D.A., 1974. The Black Sea: Geology, chemistry, biology. AAPG Mem. 

20, 183–199. 

Dellisanti, F., Pini, G.A., Baudin, F., 2010. Use of Tmax as a thermal maturity indicator in 

orogenic successions and comparison with clay mineral evolution. Clay Miner. 45, 115–

130. 

Demaison, G.J., Moore, G.T., 1980. Anoxic environments and oil source bed genesis. Org. 

Geochem. 2, 9–31. 

Deutloff, O., Teichmüller, M., Teichmüller, R., Wolf, H., 1980. Inkohlungsuntersuchung im 

Mesozoikum des Massivs von Vlotho (Niedersächsiches Tektogen). Neues Jahrb. Geol. 

Paläontol. 321–341. 

Dias, J.M., Pilkey, O.H., Heilweil, V., 1984. Detrital mica: Environmental significance in 

north Portugal Continental Shelf sediments. Comun. Serv. Eol. Port. . 70, 93–101. 

Dorning, K.J., 1981. Silurian acritarchs distribution in the Ludlovian shelf sea of South Wales 

and the Welsh Borderland., in: Neale, J.W., Brasier, M.D. (Eds.), Microfossils from 

Recent and Fossil Shelf Seas (British Micropalaeontological Society). Ellis Horwood, 

Chichester, pp. 6–31. 

Düppenbecker, S.J., Welte, D.H., 1989. Effects of heating rates on generation and expulsion 

of hydrocarbons, Lower Saxony Basin, Federal Republic of Germany, in: 28th Int. Geol. 

Congr,. Washington D. C., pp. 228–229. 

Durand, B., Alpern, B., Pittion, J.L., Pradier, B., 1986. Reflectance of vitrinite as a control of 

thermal history of sediments, in: Burrus, J. (Ed.), Thermal Modeling in Sedimentary 

Basins. Technip, Paris, pp. 441–474. 

Durand, B., Espitalié, J., Nicaise, G., Combaz, A., 1972. Ètude de la matiére organique 

insoluble (kérogéne) des argiles du oarcien du Bassin de Paris: I. ètude par les proceeds 

optiques, analyse élémentaire, etude en microscopie et microdiffraction électoniques. 

Rev. Inst. Fr. Pét. 27, 865–884. 

Espitalié, J., 1986a. La pyrolyse rock-eval et ses application, troisiéme partie. Rev. Inst. 

Fr.Pét. 41, 73–89. 



REFERENCES 

232 

 

Espitalié, J., 1986b. Use of Tmax as a maturation index for different types of organic matter. 

Comparison with vitrinite reflectance., in: Burrus, J. (Ed.), Thermal Modelling in 

Sedimentary Basins. Technip, Paris, pp. 475–496. 

Espitalié, J., Marquis, F., Barsony, I., 1984. Geochemical logging, in: Voorhees, K.J. (Ed.), 

Analytical Pyrolysis: Techniques and Applications. Butterworth, Boston, pp. 276–304. 

Espitalié, J., Marquis, F., Sage, I., Barsony, I., 1977. Méthode rapide de caractérisation des 

roches mères, de leur potential pétrolier et de leur degré d´évolution. Rev. Inst. Franç.du 

Pétr. 32, 23–45. 

Fang, H., Jianyu, C., 1992. The cause and mechanism of vitrinite reflectance anomalies. J. 

Pet. Geol. 15, 419–434. 

Faraj, B.S.M., Mackinnon, I.D.R., 1993. Micrinite in southern hemisphere sub-bituminous 

and bituminous coals: Redefined as fine grained kaolinite. Org. Geochem. 20, 823–841. 

Farrimond, P., Eglinton, G., Brassell, S.C., Jenkyns, H.C., 1989. Toarcian anoxic event in 

Europe: An organic geochemical study. Mari. Pet. Geol. 6, 136–147. 

Farrimond, P., Eglinton, G., Brassell, S.C., Jenkyns, H.C., 1988. The Posidonia black shale 

event in northern Italy. Org. Geochem. 13, 823–832. 

Flügel, E., 2004. Microfacies of carbonate rocks: Analysis, interpretation and application. 

Springer Verlag, Berlin-Heidelberg-New-York. 

Geyer, M., Nitsch, E., Simon, T., 2011. Geologie von Baden-Württemberg. Schweizerbart, 

Stuttgart. 

Godoi, R.H.M., Aerts, K., Harlay, J., Kaegi, R., Ro, C., Chou, L., van Grieken, R., 2009. 

Organic surface coating on Coccolithophores - Emiliania huxleyi: Its determination and 

implication in the marine carbon cycle. Microchem. J. 91, 266–271. 

Goldman, M., 1924. “Black shale” formation in and about Chesapeake Bay. Am. Assoc. Pet. 

Geol. Bull. 8, 195–201. 

Golubic, S., 1976. Organisms that build stromatolites, in: Walter, M.R. (Ed.), Stromatolites. 

Developments in Sedimentology 20. Elsevier, Amsterdam, pp. 113–126. 

Gonçalves Sá da Silva, P.A., 2014. Characterisation of organic facies and identification of 

potential source rocks in Jurassic sedimentary sequences of the Lustanian Basin 

(Portugal). FCUL. 

Gorbanenko, O.O., Ligouis, B., 2014. Changes in optical properties of liptinite macerals from 

early mature to post mature stage in Posidonia Shale (Lower Toarcian, NW Germany). 

Int. J. Coal Geol. 133, 47–59. 

Götz, A.E., Feist-Burkhardt, S., 2012. Phytoplankton associations of the Anisian Peri-Tethys 

Basin (Central Europe): Evidence of basin evolution and palaeoenvironmental change. 

Palaeogeogr. Palaeocl. 337-338, 151–158. 



REFERENCES 

233 

 

Gutjahr, C.C.M., 1983. Introduction to incident light microscopy of oil and gas source rocks. 

Geol. Mijnb. 62, 417–425. 

Hallam, A., Bradshaw, M.J., 1979. Bituminous shales and oolithic ironstones as indicator of 

transgressions and regressions. Geol. Soc. London 136, 157–164. 

Herngreen, G.F.W., Kouwe, W.F.P., Wong, T.E., 2003. The Jurassic of the Netherlands. 

Geol. Surv. Denmark Greenl. Bull. 1, 217–229. 

Hesselbo, S.P., Jenkyns, H.C., 1995. A comparision of Hettangian to Bajocian successions of 

Dorset and Yorkshire., in: Taylor, P.D. (Ed.), Field Geology of the British Jurassic. Geol. 

Soc. Publishing House, Bath, UK, pp. 105–150. 

Heybroek, P., 1974. Explanation to tectonic maps of the Netherlands. Geol.Mijnbouw. 53, 

43–50. 

Hollander, D.J., Bessereau, G., Belin, S., Huc, A.Y., Houzay, J., 1991. Organic matter in the 

Early Toarcian shales, Paris Basin, France: a response to environmental changes. Rev. 

Inst. Fr. Pét. 32, 703–718. 

Huc, A.Y., 1990. Understanding organic facies: A key to improved quantitative petroleum 

evaluation of sedimentary basins, in: Huc, A.Y. (Ed.), Deposition of Organic 

Microfacies. AAPG Stud. Geol. 30, Tulsa, Oklahoma, U.S.A., pp. 1–11. 

Huc, A.Y., 1977. Contribution de la géochimie organique à une esquisse paléoécologique des 

schistes bitumineux du Toarcian de l´est du Bassin de Paris. Étude de la matiére 

organique insoluble (kérogène). Rev. Inst. Fr. Pét. 32, 703–718. 

Hunt, C.O., 1987. Dinoflagellate cyst and acritarch assemblages in shallow-marine and 

marginal-marine carbonates; the Portland Sand Portland Stone and Purbrck Formation 

(Upper Jurassic/ Lower Cretaceous) of southern England and northern France., in: Hart, 

M.B. (Ed.), Micropaleontology of Carbonate Environments. Ellis Horwood, Chichester, 

pp. 25–208. 

Hunt, J.M., 1979. Petroleum geochemistry and geology. Freeman and Co., San Francisco, 

C.A. 

Hutton, A.C., 1987. Petrographic classification of oil shales. Int. J. Coal Geol. 8, 203–231. 

Hutton, A.C., Cook, A.C., 1980. Influence of alginate on the reflectance of vitrinite from 

Joadja N.S.W. and some other coals and oil shales containing alginate. Fluel 59, 711–

714. 

Hutton, A.C., Rob, T., 1994. Chemical and petrographic classification of kerogen / macerals. 

Energ. Fuel. 1478–1488. 

ICCP, 2001. New inertinite classification (ICCP System 1994). Fuel 80, 459–471. 

ICCP, 1993. Int. Handbook Coal Petr. 3d Suppl. To 2nd Ed. . University of Newcastle , Tyne. 



REFERENCES 

234 

 

ICCP, 1975. Int. Handbook Coal Petr., 2nd Suppl. To 2nd Ed. Centre national de la 

Recherche scientifique, Paris. 

ICCP, 1971. Int. Handbook Coal Petr., 2nd Suppl. to 2nd Ed. Centre national de la Recherche 

scientifique, Paris. 

Jacob, H., 1989. Classification, structure, genesis and particles importance of natural solid oil 

bitumen (migrabitumen). Int. J. Coal Geol. 54, 125–136. 

Jacob, H., 1983. Neuere Untersuchungen zur Genesis natürlicher, fester Erdölbitumina. Geol. 

Jahrb. D, 3–61. 

Jenkyns, H.C., 1985. The early Toarcian and Cenomanian-Turonian anoxic events in Europe: 

comparisons and contrasts. Geol. Rundsch. 74, 505–518. 

Jenkyns, H.C., 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. 

London 137, 171–188. 

Jenkyns, H.C., Clayton, C.J., 1997. Lower Jurassic epicontinental arbonates and mudstones 

from England and Wales: chemostratigraphic signals and the early Toarcian anoxic 

event. Sedimentology 44, 687–706. 

Jenkyns, H.C., Gröcke, D.R., Hesselbo, S.P., 2001. Nitrogen isotope evidence for water mass 

denitrification during the early Toarcian (Jurassic) oceanic anoxic event. 

Paleoceanography 16, 593–603. 

Jørgensen, B.B., Revsbech, N.P., 1985. Diffusive boundary layers and the oxygen uptake of 

sediments and detritus. Limnol. Ocean. 30, 111–122. 

Kalkreuth, W., 1982. Prelimenary results on rank and composition of coals from the Gething 

Formation north of Peace River, northeastern British Columbia. Curr. Res. Part C. Geol. 

Surv. Can. 82, 65–69. 

Katz, B.J., 1983. Limitations of “Rock-Eval” pyrolysis for typing organic matter. Org. 

Geochem. 4, 195–199. 

Kauffman, E.G., 1981. Ecological reappraisal of the German Posidonienschiefer and the 

Stagnant Basin Model, in: Gray, J., Boucot, A.J., Berry, W.B.N. (Eds.), Communities of 

the Past. Hutchinson Ross, Stroudsburg, pp. 311–381. 

Kauffman, E.G., 1978. Benthic environments and paleoecology of the Posidonienschiefer 

(Toarcian). N. Jb. Geol. Paläont. 157, 18–36. 

Kauffman, E.G., Sageman, B.B., 1990. Biological sensing of benthic environments in dark 

shales and related oxygen-restricted facies. CRER 121–138. 

Kaufmann, G., Romanov, D., 2007. Cave development in the Swabian Alb, south-west 

Germany: A numerical perspective. J. Hydrol. 349, 302–317. 



REFERENCES 

235 

 

Klubov, B.A., 1993. A new scheme for the formation and classification of bitumens. 

J.Petrol.Geol. 16, 335–344. 

Koch, J., Arnemann, H., 1975. Die Inkohlung in Gesteinen des Rhät und Lias im südlichen 

Nordwestdeutschland. Geol. Jb. 29, 33–43. 

Kockel, F., Wehner, H., Gerling, P., 1994. Petroleum systems of the Lower Saxony Basin, 

Germany., in: Magoon, L.B.D., Dow, W.G. (Eds.), The Petroleum System-from Source 

to Trap. AAPG Mem. 60, Tulsa, Oklahoma, U.S.A., pp. 573–586. 

Kulicki, C., Szaniawski, H., 1972. Cephalopod arm hooks from Jurassic of Poland. 

Palaeontol. Pol. 17, 379–419. 

Kus, J., Cramer, B., Kockel, F., 2005. Effects of a Cretaceous structural inversion and a 

postulated high heat flow event on petroleum system of the western Lower Saxony Basin 

and the charge history of the Apeldorn gas field. Neth. J. Geosci. 84, 3–24. 

Küspert, W., 1983. Faziestypen des Posidonienschiefers Toarcium, Süddeutschland, Eine 

isotopengeologische, organisch-chemische und petrographisches Studie. Univesity of 

Tübingen. 

Kwiecińska, B., Petersen, H.I., 2004. Graphite, semi-graphite, natural coke, and natural char 

classification-ICCP system. Int. J.Coal Geol. 57, 99–116. 

Landis, C.R., Castaño, J.R., 1995. Maturation and bulk chemical properties of a suite of solid 

hydrocarbons. Org. Geochem. 22, 137–149. 

Leckie, D.A., Singh, C., Goodarzi, F., Wall, J.H., 1990. Organic-rich, radioactive marine 

shale; a case study of a shallow-water condensed section, Cretaceous Shaftesbury 

Formation, Alberta, Canada. J. Sediment. Res. 60, 101–117. 

Leischner, K., Welte, D.H., Littke, R., 1993. Fluid inclusions and organic maturity parameters 

as calibration tools in basin modeling, in: Doré, A.G., Augstson, J.H., Hermann, C., 

Steward, D.J., Sylta, O. (Eds.), Basin Modelling: Advances and Applications. Elsevier 

Science, pp. 161–172. 

Leventhal, J.S., 1982. Limitations of Rock-Eval Pyrolysis assay to characterize kerogen. 

AAPG Bul. 64, 593–598. 

Leythaeuser, D., Littke, R., Radke, M., Schaefer, R.G., 1988. Geochemical effects of 

petroleum migration and expulsion from Toarcian source rocks in the Hils syncline area, 

NW-Germany. Org. Geochem. 13, 489–502. 

Lipson-Benitah, S., Flexer, A., Rosenfeld, A., Honigstein, A., Conway, B., Eris, H., 1990. 

Dysoxic sedimentation in the Cenomanien-Turonian Daliyya Formation, Israel, in: Huc, 

A.Y. (Ed.), Deposition of Organic Facies. AAPG Stud. Geol. 30, Tulsa, Oklahoma, 

U.S.A., pp. 27–39. 

Littke, R., 1993. Deposition, diagenesis and weathering of organic matter-rich sediments, 

Lecture notes in Earth Science. Springer Verlag, Berlin-Heidelberg. 



REFERENCES 

236 

 

Littke, R., Rotzal, H., Leythaeuser, D., Baker, D.R., 1991. Lower Toarcian Posidonia Shale in 

Southern Germany (Schwäbische Alb). Organic facies, depositional environment, and 

maturity. Erdöl Kohle Erdgas 44, 407–414. 

Littke, R., Rullkötter, J., 1987. Mikroskopische und makroskopische Unterschiede zwischen 

Profilen unreifen und reifen Posidonienschiefers aus der Hilsmulde. Facies 17, 171–179. 

Littke, R., Urai, J.L., Uffmann, A.K., Risvanis, F., 2012. Reflectance of dispersed vitrinite in 

Palaeozoic rocks with and without cleavage: Implications for burial and thermal history 

modeling in the Devonian of Rursee area, northern Rhenish Massif, Germany. Int. J. 

Coal Geol. 89, 41–50. 

Lo, H.B., 1992. Identification of indigenous vitrinites for improved thermal maturity 

evaluation. Org. Geochem. 18, 359–364. 

Loh, H., Maul, B., Prauss, M., Riegel, W., 1986. Primary production, maceral formation and 

carbonate species in the Posidonia Shale of NW Germany, in: Degens, E.T., Meyers, 

P.A., Brassell, S.C. (Eds.), Biogeochemistry of Black Shales. Mitt. Geol. Paläont. Inst. 

Univ. Hamburg 60, Hamburg, pp. 397–364. 

Mädler, K., 1963. Die figurierten organischen bestandteile der Posidonienschiefer. Beih. 

Geol. Jahrb. 58, 287–406. 

Malinconico, M.L., 2000. Using reflectance crossplots and rotational polarization for 

determining first-cycle vitrinite for maturation studies. Int. J.Coal Geol. 43, 105–120. 

Masran, T., Pocock, S.A., 1981. The classification of plant-derived particulate organic matter 

in sedimentary rocks, in: Organic Maturation Studies and Fossil Fuel Exploration. 

Academic Press, London-New York, pp. 145–175. 

McCann, T., 2008. The Geology of Central Europe: Mesozoic and Cenozoic. Geol. Soc. 

London, London. 

McCarthy, K., Rojas, K., Niemann, M., Palmowski, D., Peters, K.E., Stankiewicz, A., 2011. 

Basic Petroleum Geochemistry for Source Rock Evaluation. Oilf. Rev. 23, 32–43. 

McClay, K.R., Ellis, P.G., 1983. Deformation and recrystallization of pyrite. Miner. Mag. 47, 

527–538. 

Mørk, A., Bromley, R.G., 2008. Ichnology of a marine regressive systems tract: The Middle 

Triassic of Svalbard. Polar Res. 27, 339–359. 

Mukhopadhyay, P.K., 1992. Maturation of organic matter as revealed by microscopic method: 

applications and limitation of vitrinite reflectance, and continuous spectral and pulsed 

laser fluorescence spectroscopy, in: Wolf, K.H., Chilingarin, G. V. (Eds.), Diagenesis, 

III. Elsevier, Amsterdam, pp. 435–510. 

Mukhopadhyay, P.K., Hagemann, H.W., Gormly, J.R., 1985. Characterization of kerogens as 

seen under the aspect of maturation and hydrocarbon generation. Erdöl Kohle Erdgas 38, 

7–18. 



REFERENCES 

237 

 

Muntendam-Bos, A.G., Wassing, B.B.T., ter Heege, J.H., van Bergen, F., Schavemaker, Y.A., 

van Gessel, S.F., de Jong, M.L., 2009. Inventory non-conventional gas. 

Newman, J., Newman, N.A., 1982. Reflectance anomalies in Pike River coals: evidence of 

variability in vitrinite type, with implications for maturation studies and “Suggate rank.” 

New Zeal. J. Geol. Geop. 25, 233–243. 

Nzoussi-Mbassani, P., Copard, Y., Disnar, J.R., 2005. Vitrinite recycling: Diagnostic criteria 

and reflectance changes during weathering and reburial. Int. J. Coal Geol. 61, 223–239. 

Oschmann, W., 2000. Microbes and black shales, in: Riding, R.E., Awramik, S.M. (Eds.), 

Microbial Sediments. Springer Verlag, Berlin-Heidelberg, pp. 137–148. 

Palliani, R.B., Mattioli, E., Riding, J.B., 2002. The response of marine phytoplankton and 

sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event 

in northern England. Mar. Micropaleontol. 46, 223–245. 

Palliani, R.B., Riding, J.B., 1999. Relationships between the early Toarcian anoxic event and 

organic-walled phytoplankton in Central Italy. Mar. Micropaleontol. 37, 101–116. 

Pasley, M.A., Hazel, J.E., 1989. Use of organic petrology and graphic correlation of 

biostratigraphic data in sequence stratigraphic interpretations: example from the Eocene-

Oligocene boundary section, St. Stephens Quarry, Alabama. GCAGS Trans. 40, 661–

683. 

Pedersen, T.F., Calvert, S.E., 1990. Anoxia vs. productivity: What controls the formation of 

organic- carbon-rich sediments and sedimentary rocks? AAPG Bull. 74, 454–466. 

Peniguel, G., Couderc, R., Seyve, C., 1989. Les microalgues actuelles et fossils-intérêts 

stratigraphique et pétrolier. Bull. Cent. Rech. Explor. Prod. 13, 455–482. 

Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using programmed 

pyrolysis. AAPG Bull. 70, 318–329. 

Peters, K.E., Cassa, M.R., 1994. Applied source rock geochemistry, in: The Petroleum 

System-from Source to Trap. AAPG Bull. 60, Tulsa, Oklahoma, U.S.A., pp. 93–117. 

Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. Origin of preservation of organic matter, 

in: Peters, K.E., Walters, C.C., Moldowan, J.M. (Eds.), The Biomarker Guide: Vol. 1, 

Biomarker and Isotopes in the Environments. Cambridge University Press, Cambridge, 

pp. 3–18. 

Petersen, H.I., Schovsbo, N.H., Nielsen, A.T., 2013. Reflectance measurements of zooclasts 

and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to 

vitrinite reflectance. Int. J. Coal Geol. 114, 1–18. 

Petmecky, S., Meier, L., Reiser, H., Littke, R., 1999. High thermal maturity in the Lower 

Saxony Basin: Intrusion or deep burial? Tectonophysics 304, 317–344. 



REFERENCES 

238 

 

Plein, E., 1985. Entwicklung und Bedeutung der Erdöl/Erdgasfinde zwischen Weser und Ems. 

Oldenburg. Jahrb. 85, 267–311. 

Pletsch, T., Appel, J., Botor, D., Clayton, C.J., Duin, E.J.T., Faber, E., Górecki, W., 

Kombrink, H., Kosakowski, P., Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag-

Henning, C., Papiernek, B., van Bergen, F., 2010. Petroleum generation and migration, 

in: Doornenbal, J.C., Stevenson, A.G. (Eds.), Petroleum Geological Atlas of the 

Southern Permian Basin Area. EAGE Publications, Houten, pp. 225–253. 

Pompeckj, J.F., 1901. Der Jura zwischen Regnsburg und Regenstauf. Geognost. Jahresh. 14, 

139–220. 

Porter, K.G., Robbins, E.I., 1981. Zooplankton fecal pellets link fossil fuel and phosphate 

deposits. Sci. 212, 931–933. 

Powell, T.G., Creaney, S., Snowdon, L.R., 1982. Limitations of use of organic petrographic 

techniques for identification of petroleum source rocks. AAPG Bull. 66, 430–435. 

Pratt, L.M., 1984. Influence of paleoenvironmental factors on preservation of organic matter 

in Middle Cretaceous. AAPG Bull. 68, 1146–1159. 

Prauss, M., 1996. The Lower Toarcian Posidonia Shale of Grimmen, northwest Germany. 

Neues Jahrb. Geol. P. 200, 107–132. 

Prauss, M., Ligouis, B., Luterbacher, H., 1991. Organic matter and palynomorphs in the 

“Posidonienschiefer” (Toarcian, Lower Jurassic) of southern Germany. Geolo. Soc. 

Spec. Pub. 58, 335–351. 

Pugmire, R.J., Zilm, K.W., Woolfenden, W.R., Grant, D.M., Dyrkacz, G.R., Bloomquist, 

C.A.A., Horwitz, E.P., 1982. Carbon-13 NMR spectra of macerals separated from 

individual coals. Org. Geochem. 4, 79–84. 

Ramsden, A.R., 1983. Microscopic petrography of oil shales at Julia Creek, northwestern 

Queensland. J. Geol. Soc. Aust. 30, 17–23. 

Riediger, C.L., 1993. Solid bitumen reflectance and Rock-Eval Tmax as maturation indices: 

an example from the “Nordegg Member”, Western Canada Sedimentary Basin. Int. J. 

Coal Geol. 22, 295–315. 

Riegel, W., Loh, H., Maul, B., Prauss, M., 1986. Effects and causes in a black shale event — 

the Toarcian Posidonia Shale of NW Germany, in: Walliser, O.H. (Ed.), Global Bio-

Events: A Critical Approach Proceedings of the First International Meeting of the IGCP 

Project 216. Springer, pp. 267–276. 

Riegraf, W., 1985. Mikrofauna, Biostratigraphie und Fazies im Unteren Toarcium 

Südwestdeutschlands und Vergleiche mit benachbarten Gebieten. Tüb. Mikropaläont. 

Mitt., Tübingen. 



REFERENCES 

239 

 

Röhl, H.-J., Schmid-Röhl, A., 2005. Lower Toarcian (Upper Liassic) Black Shales of the 

Central European Epicontinental Bason: A Sequence stratigrphic case study from the SW 

German Posidonia Shale. Spec. Pub.-SEPM. 82, 165–189. 

Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., Schwark, L., 2001. The Posidonia 

Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by 

sea level and palaeoclimate. Palaeogeogr. Palaeoecol. 165, 27–52. 

Rosenberg, R., 1977. Benthic macrofaunal dynamics, production, and dispersion in an 

oxygen-deficient estuary of west Sweden. J. Exp. Mar. Biol. Ecol. 26, 107–133. 

Rosenberg, R., Arntz, W.E., de Flores, E.C., Flores, L.A., Carbajal, G., Finger, I., Tarazona, 

J., 1983. Benthos biomass and oxygen deficiency in the upwelling system off Peru. J. 

Mar. Res. 41, 263–279. 

Rullkötter, J., Leythaeuser, D., Horsfield, B., Littke, R., Mann, U., Müller, P.J., Radke, M., 

Schaefer, R.G., Schenk, H.-J., Schwochau, K., Witte, E.G., Welte, D.H., 1988. Organic 

matter maturation under the influence of a deep intrusive heat source: A natural 

experiment for quantitation of hydrocarbon generation and expulsion from a petroleum 

source rock (Toarcian shale, northern Germany). Org. Geochem. 13, 847–856. 

Rullkötter, J., Littke, R., Radke, M., Disko, U., Horsfield, B., Thurow, J., 1992. Petrography 

and geochemistry of organic matter in Triassic and Cretaceous deep-sea sediments from 

the Wombat and Exmouth plateous and nearby abyssal plains off NW Australia. Proc. 

Ocean Drilli. Prog. Sci. Results 122, 317–333. 

Rullkötter, J., Marzi, R., 1988. Natural and artificial maturation of biological markers in a 

Toarcian shale from northern Germany. Org. Geochem. 13, 639–645. 

Schegg, R., 1993. Thermal maturity and history of sediments in the North Alpine Foreland 

Basin (Switzerland, France). Université de Genève, Genéve. 

Schlager, W., 1981. The paradox of drowned reefs and carbonate platforms. Geol. Soc. Am. 

Bull. 92, 197–211. 

Schlanger, S.O., Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: Causes and 

consequences. Geol. Minjnbouw 55, 179–184. 

Schmitz, U., Wenzlow, B., 1990. Maturity anomalies of the western Lower Saxony Basin in 

their regional contex. Zbl. Geol. Paläontol. Teil I, 1091–1103. 

Schoenherr, J., Littke, R., Urai, J.L., Kukla, P.A., Rawahi, Z., 2007. Polyphase thermal 

evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by 

maturity of solid reservoir bitumen. Org. Geochem. 38, 1293–1318. 

Schwarz, H.-U., 2012. Das Schwäbisch-Fränkische Bruchmuster. Z. dt. Ges. Geowiss. 163, 

411–446. 



REFERENCES 

240 

 

Senglaub, Y., Brix, M.R., Adriasola, A.C., Littke, R., 2005. New information on the thermal 

history of the southwestern Lower Saxony Basin, northern Germany, based on fission 

track analysis. Int. J. Earth. Sci. 94, 876–896. 

Shewrood, N.R., Cook, A.C., 1986. Organic matter in the Toolebuc Formation, in: 12 Proc. 

Eromanga Basin Symp. Geol. Soc. Austr. Special Publ., pp. 255–265. 

Sielacher, A., 1982. Ammonite shells as habitats in the Posidonia Shales of Holzmaden-floats 

or benthic islands? N. Jb. Geol. Paläont. 98–114. 

Smith, C.R., Hamilton, S.C., 1983. Epibenthic megafauna of a bathyal basin of Southern 

California: pattern of abundance, biomass and dispersion. Deep. Res. 30, 907–928. 

Stach, E., 1953. Der Inkohlungssprung im Ruhrkarbon. Brennst.-Chem. 34, 353–355. 

Stach, E., Mackowsky, M.-T., Teichmüller, M., Taylor, G.H., Chandra, D., Teichmüller, R., 

1982. Coal petrology. Gebrüder Borntraeger, Berlin-Stuttgart. 

Stadler, G., Teichmüller, R., 1971. Zusammenfassender Überblick über die Entwicklung des 

Bramscher Massivs und des Niedersächsischen Tektogens. Fortschr. Geol. Rheinld. 

Westf. 18, 547–564. 

Stasiuk, L.D., 1994. Oil-prone alginite macerals from organic-rich Mesozoic and Palaeozoic 

strata, Saskatchewan, Canada. Mar. Pet. Geol. 11, 208–217. 

Stasiuk, L.D., Goodarzi, F., 1988. Organic petrology of second white speckled shale, 

Saskatchewan, Canada - a possible link between bituminite and biogenic gas? B. 

Can.Petrol.Geol. 36, 397–406. 

Suárez-Ruiz, I., 2012. Organic petrology: an overview, in: Ali Ismail Al-Juboury (Ed.), 

Petrology-New Perspectives and Applications. InTech, Rijeka, pp. 199– 224. 

Swanson, V.E., 1961. Geology and geochemistry of uranium in marine black shales. A 

review. Uranium in Carbonaceous rocks. U.S. Government Printing Office, Washington 

D. C. 

Taylor, G.H., Liu, S.Y., 1989. Micrinite — its nature, origin and significance. Int. J. Coal 

Geol. 14, 29–46. 

Taylor, G.H., Liu, S.Y., Teichmüller, M., 1991. Bituminite — A TEM view. Int. J. Coal Geol. 

18, 71–85. 

Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. 

Organic petrology: a new handbook incorporating some revised parts of Stach’s 

Textbook of coal petrology. Gehrüder Borntraeger, Berlin, Stuttgart. 

Teerman, S.C., Cardott, B.J., Harding, R.W., Lemos De Sousa, M.J., Logan, D.R., Pinheiro, 

H.J., Reinhardt, M., Thompson-Rizer, C.L., Woods, R.A., 1995. Source rock/dispersed 

organic matter characterization—TSOP research subcommittee results. Org. Geochem. 

22, 11–25. 



REFERENCES 

241 

 

Teichmüller, M., 1990. The genesis of coal from the viewpoint of coal geology. Int. J.Coal 

Geol. 16, 121–124. 

Teichmüller, M., 1974. Uber Neue Macerale der Liptin-Gruppe und dei Entstehung des 

Micrinite. Fortschr. Geol. Rheinl. Westfalen 24, 37–64. 

Teichmüller, M., Durand, B., 1983. Fluorescence microscopical rank studies on liptinites and 

vitrinites in peat and coals, and comparison with results of the rock-eval pyrolysis. Int. J. 

Coal Geol. 2, 197–230. 

Teichmüller, M., Ottenjann, K., 1977. Liptinit und lipoid Stoffe in einem Erdolmuttergestein. 

Type and diagenesis of liptinites and lipoid-substances in an oil source rock on the basis 

of fluorescence microscopical studies. Erdöl, Erdgas, Kohle 30, 387–398. 

Teichmüller, M., Teichmüller, R., 1968. Geological aspects of coal metamorphism, in: 

Murchison, D.G., Westoll, T.S. (Eds.), Coal and Coal-Bearing Strata. Oliver and Boyd, 

Edinburgh, pp. 233–267. 

Teichmüller, M., Teichmüller, R., 1951. Inkohlungsfragen im Osnabrüker Raum. N. Jb. Geol. 

Pal. 69–85. 

Teichmüller, M., Teichmüller, R., 1950. Das Inkohlungsbild des Niedersächsischen 

Wealdenbeckens. Z. Dtsch. Geol. Ges. 100, 498–517. 

Teichmüller, R., Teichmüller, M., 1985. Inkohlungsgradienten in der Anthrazitfolge des 

Ibbenbürener Karbons. Fortschr. Geol. Rheinld. Westf. 33, 231–253. 

Thompson, B., Mullins, H.T., Newton, C.R., Vercoutere, T.L., 1985. Alternative biofacies 

model for dysaerobic communities. Lethaia 18, 167–179. 

Tissot, B.P., Welte, D.H., 1978. Petroleum Formation and Occurrence. Springer Verlag, 

Berlin, Heidelberg. 

Tissot, B.P., Welte, D.H., Durand, B., 1987. The role of geochemistry in exploration risk 

evaluation and decision making, in: 12th World Petroleum Congress. World Petroleum 

Congress, Houston, Texas, USA, pp. 99–112. 

Trabucho-Alexandre, J., Dirkx, R., Veld, H., Klaver, G., de Boer, P.L., 2012. Toarcian Black 

Shales In the Dutch Central Graben: Record of Energetic, Variable Depositional 

Conditions During An Oceanic Anoxic Event. J. Sediment. Res. 82, 104–120. 

Traverse, A., 2005. Sedimentation of organic particles. Cambridge University Press, 

Cambridge. 

Tyson, R. V., 1995. The nature of organic matter in sediments, in: Tyson, R. V (Ed.), 

Sedimentary Organic Matter. Charman & Hall, London, p. 615. 

Ulrichs, M., Wild, R., Ziegler, B., 1979. Fossilien aus Holzmaden. Stutt. Beitr. Naturkd. 11, 

1–34. 



REFERENCES 

242 

 

Van Balen, R.T., van Bergen, F., de Leeuw, C., Pagnier, H., Simmelink, H., van Wees, J.D., 

Verweij, J.M., 2000. Modeling the hydrocarbon generation and migration in the West 

Netherlands Basin, the Netherlands. Neth. J. Geosci. 79, 29–44. 

Van Bergen, F., Zijp, M., Nelskamp, S., Kombrink, H., 2013. Shale gas evaluation of the 

Early Jurassic Posidonia Shale Formation and the Carboniferous Epen Formation in the 

Netherlands. AAPG. Mem. 103, 1–24. 

Van Bergen, M.J., Sissingh, W., 2007. Magmatism in the Netherlands: Expression of the 

north‐west European rifting history, in: Wong, T.E., Batjes, D.A.J., De Jager, J. (Eds.), 

Geology of the Netherlands. R. Neth. Acad. of Arts and Sci., Amsterdam, p. 354. 

Van den Hoek, C., Jahns, H.M., Mann, D.G., 1993. Algen. 3. Neubearbeitete Auflage. Georg 

Thieme Verlag, Stuttgart. 

Van Wijhe, D.H., 1987. Structural evolution of inverted basins in the Dutch offshore. 

Tectonophysics 137, 171–219. 

Vigran, J.O., Mørk, A., Forsberg, A.W., Weiss, H.M., Weitschat, W., 2008. Tasmanites algae-

contributors to the Middle Triassic hydrocarbon source rocks of Svalbard and the 

Barents Shelf. Polar Res. 27, 360–371. 

Walter, R., 2007. Geologie von Mitteleuropa. Nägele u. Obermiller, Stuttgart. 

Wehner, H., Hufnagel, H., 1986. Some characteristics of the inorganic and organic 

composition of oil shales from Jordan. Mitt. Geol. Paläont. Inst. Univ. Hambg. 60, 381–

395. 

Wignall, P.B., 1991. Model for transgressive black shales? Geology 19, 167–170. 

Wignall, P.B., Newton, R., 2001. Black shales on the basin margin: A model based on 

examples from the Upper Jurassic of the Boulonnais, northern France. Sed. Geol. 144, 

335–356. 

Wilde, P., Quinby-Hunt, M., Berry, W., 1990. Vertical advection from oxic or anoxic water 

from the main pycnocline as a cause of rapid extinction or rapid radiations, in: 

Kaufmann, E.G., Walliser, O.H. (Eds.), Extinction Events in Earth History. Springer 

Verlag, Berlin, pp. 85–98. 

Williams, H., Turner, F.J., Gilbert, C.M., 1982. Petrography. An Introduction to the study of 

rocks in thin section. W.H. Freeman and Company, New-York. 

Wolf, M., 1966. Petrographische Beobachtingen an den Uran und Thorium führenden 

Bpgheadschiefern von Autun (Saȯne-et-Loire) unter besnderer Berücksichtigung von 

Ergebnissen der Fluoreszenzmikroskopie. Brennstoff-Chemie 11–14. 

Wong, T.E., 2007. Jurassic, in: Wong, T.E., Batjes, D.A.J., de Jager J (Eds.), Geology of the 

Netherlands. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp. 107–

125. 



REFERENCES 

243 

 

Ziegler, P.A., 1990. Geological atlas of Western and Central Europe, 2nd ed. Shell Int. Petrol. 

Mij. and Geol Soc., London. 

Ziegler, P.A., 1988. Evolution of the Arctic-North Atlantic and the Western Tethys, AAPG 

Mem. 

Ziegler, P.A., 1982. Triassic rifts and facies pattern in Western and Central Europe. Int. J. 

Earth Sci. 71, 747–772. 

Zilm, K.W., Pugmire, R.J., Larter, S.R., Allan, J., Grant, D.M., 1981. Carbon – 13 CP/MAS 

spectroscopy of coal macerals. Fuel 60, 717–722. 

Zimmerman, H., Boersma, A., McCoy, F.W., 1987. Carbonaceous sediments and 

paleoenvironment of the Creataceous South Antlantic Ocean, in: Brooks, J., Fleet, A.J. 

(Eds.), Marine Petroleum Source Rocks. Geol.Soc. London. Spec. Pub. 26, London, pp. 

271–286. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A. TABLES OF THE RESULTS OF ORGANO-

PETROGRAPHIC AND ORGANO-GEOCHEMICAL 

ANALYSES 

 

 

 

 

 

 

 



 

245 

 

CONTENTS 

 

Appendix A1: Well E ..................................................................................................... 246 

Appendix A2: Well M .................................................................................................... 246 

Appendix A3: Well A .................................................................................................... 247 

Appendix A4: Well B .................................................................................................... 248 

Appendix A5: Well D .................................................................................................... 249 

Appendix A6: Dotternhausen-1001 well ....................................................................... 250 

Appendix A7: Notzingen-1017 well .............................................................................. 251 

Appendix A8: Bisingen-1002 well ................................................................................ 252 

 



APPENDIX A 

246 

 

Appendix A1: Well E 

TOC S1 S2 HI OI Tmax

[%] * * ~ ~~ °C

Spor.  Liptd. Bit. I  Bit. II Bit. III Bit. IV Bit. V Bit. VI Oil drop. Fus. Semifus. Secret. Intd. Micr. F.g. pel. C.g. pel. Glauc. Gyps.

Tel. homog. heter. calcareous clayey is. cry. coccol. dol. qtz mica crys. framb. epig. shell fish r. biocl. mean s.d. n

el. eq. el. eq. el. eq. discrete fil. layered bits. l.-bits. n.-bits. bits. l.-bits. mic.-r.

2460-2461 limestone, bituminous Lias zeta - - - - 0.1 - 0.3 0.3 22.4 1.6 0.6 5.9 - 0.4 - - 1.5 - - - - - - 0.1 - - 24.4 - 1.4 11.3 - - - - 20.3 - 0.1 - - 2.1 1.3 0.9 2.4
0.9

- 0.3 1.3
- - - 3.4 0.5 18.7 548 16 434

2478.95 limestone, strong bituminous - - - - - - 0.8 1.0 7.5 1.1 - 12.1 4.6 3.3 - - 1.4 - - - 0.1 0.2 0.1 - 0.2 0.2 15.5 - - 20.7 - - 0.6 - 13.7 - 0.2 - - 2.8 1.3 6.5 3.7 1.0 - 0.6 0.8 - - - 7.7 1.5 44.7 583 18 429

2480.05

calcareous mudstone, strong 

bituminous - - - - 0.1 - 0.7 0.8 5.8 0.9 0.1 7.7 2.3 1.5 - 0.1 0.9 - - - - 0.5 0.1 - - - 12.1 - - 39.3 - - - - 10 - 0.2 - - 0.6 0.4 5.2 9.3
0.3

0.3 0.1 0.5
- - - 13.5 3.5 77.1 572 15 431

2482.05 - - - - - - 0.7 0.5 5.3 1.2 - 7.9 7.2 0.8 - - 0.6 - - - - 0.4 0.1 - - 1.6 9.6 - - 18.8 - - 5.1 0.4 14 1.3 0.5 - - 0.7 0.4 10.9 9.7 0.1 0.5 0.3 1.3 - - - 11.0 3.8 66.2 601 16 433

2482.48 - - 0.1 0.2 0.3 0.8 0.6 3.8 1.0 0.1 6.1 1.2 2.1 - 0.2 0.6 - - - - 0.6 - - 0.1 2.2 31.3 - - 20.4 - - 1.8 0.1 9.4 2.4 - - - 0.5 0.8 5.5 5.2 0.2 - 1.9 0.5 0.44 0.02 9 7.8 1.7 45.8 589 20 433

2485.14 - - 0.2 - 0.1 - 1.3 0.4 5.2 1.1 0.1 7.3 1.5 0.1 - - 3.4 - - - 0.1 0.7 0.1 - - 1.9 13.8 - - 24.8 - - 2 - 7.1 7.6 - - - 0.5 0.4 11.8 6.4 0.0 - 0.6 1.5 0.45 0.02 9 10.9 3.5 66.6 613 19 425

2487.50 - - - - - - 0.9 0.1 4.2 1.2 7.7 0.5 0.3 0.1 1.3 - - - - 0.1 0.1 0.1 1.1 44.6 - - 10.2 - - 5.2 0.5 5.7 2.6 0.2 - - 0.2 0.6 3.6 6.4 0.0 0.6 0.2 1.6 - - - 7.1 2.0 43.0 606 25 428

2488.32 0.1 - - - - - 0.5 0.2 3.4 2.3 - 4.9 5.3 0.7 - 0.5 1.7 - - - 0.2 - - - - - 10.6 - - 11.6 - - 15.7 0.1 2.4 26.2 0.2 - - 0.7 0.1 4.3 5.6 0.8 - 1.3 0.4 - - - 9.9 3.3 63.3 640 22 428

2489.13 - - - - - - 1.1 0.5 9.7 0.5 - 6.0 0.6 5.0 - 0.2 3.4 - - - 0.3 - 0.1 - 0.2 0.1 9.1 - 0.9 29.4 - - 0.6 - 10.7 - 0.4 - - - 0.3 3.9 4.6 0.0 0.1 3.7 7.8 - - - 8.3 2.6 55.4 667 22 430

2490.35 - - - - - 0.1 0.7 0.2 5.7 1.0 - 15.2 2.8 4.1 - 0.2 13.2 - - - 0.4 0.3 - - - 0.2 3.8 - - 23.3 - - 0.6 - 5.5 - - - - 1.3 0.5 10.3 8.6 0.2 0.8 0.2 0.8 - - - 13.1 5.1 88.2 671 16 431

2491.49 - - - - - - 0.3 0.1 5.6 0.4 - 8.0 1.0 0.6 - - 1.2 - - - - 0.1 - - - 0.2 8.2 - - 38.9 - - 7.8 - 6.1 4 0.2 - - 0.7 - 8.6 4.7 0.4 0.1 0.2 2.6 0.46 0.04 11 11.5 3.8 77.0 670 19 428

2494.10 0.1 - - - 0.3 0.1 0.7 0.3 11.1 0.5 - 6.3 1.8 2.0 - 0.5 4.4 - - - - 0.2 0.5 - - 0.2 3.9 - 0.9 29.3 - - 0.1 - 21.5 - 0.4 - - 0.3 0.2 6.6 6.1 0.0 - 0.5 1.1 0.43 0.01 9 8.2 2.4 48.5 594 25 429

2495.95 - - - - - - 1.1 0.3 9.2 2.8 0.1 4.4 0.3 0.2 - - 0.9 - - - - 0.1 - - 0.1 - 3.3 - - 38.1 - - 0.2 - 28.2 - 0.2 - - 0.3 0.9 5.1 3.5 0.5 - - 0.2 - - - 13.4 5.0 90.5 676 14 431

2498.46 marly limestone, strong bituminous - - - - 0.1 - 0.7 0.2 2.9 0.3 - 4.3 3.0 0.2 - - 1.2 0.1 - - 0.5 - 0.1 - - - 10.7 - 0.1 1.1 - - 0.7 - 5.6 - 53.8 - - 0.3 0.3 4.6 3.2 0.2 0.4 1.7 1.2 - - - 2.8 0.9 14.1 510 24 425

2500.47 limestone, strong bituminous - - - - - - 0.5 0.2 8.2 0.3 - 7.3 10.5 1.2 - - 10.7 - - - 0.5 - 0.1 - - - 2.8 - 2 25.1 - - 4.1 - 14.8 - 0.8 - - - 0.4 3.1 6.1 0.0 - 0.2 0.9 - - - 16.6 3.6 71.8 432 9 431

2501.43 - 0.1 - - - 0.1 1.2 0.2 10.9 0.7 - 6.6 5.6 5.3 - - 1.2 - - - 0.6 - - - - - 2 - 0.1 11.6 - - - - 11.5 - 28.3 - - 0.5 0.4 6.1 5.4 0.9 - 0.2 0.5 - - - 9.9 3.2 63.4 640 14 427

2503.35 - - - - - - 0.3 0.1 3.2 1.5 - 2.2 3.3 1.4 - - 8.9 - - - 1.1 - - - - - 1.2 - 0.1 1.9 - - - - 11.1 - 55.6 - - - - 1.6 4.1 1.4 - - 0.8 - - - 7.9 3.0 54.5 689 15 428

2504.85
calcareous mudstone, strong 

bituminous
- - - - 0.1 - 4.5 0.6 7.4 0.9 - 6.0 3.0 2.1 - - 12.0 - - - 0.1 - 0.1 - - - 4 - 0.5 26.6 - - 2.2 - 11.6 - 0.5 - - 0.6 0.4 6.6 7.7 0.3 0.4 0.1 1.6 - - - 11.4 3.8 71.5 627 19 430

2506.55 - - - - 0.1 - 1.2 0.3 7.6 0.8 - 13.2 0.7 0.1 - - 5.5 - - - 0.2 - - - - - 19 - 0.2 14 - - 4 - 12.7 - 0.1 - - 1.9 0.6 5.5 11
0.1

0.1 - 1.1
- - - 5.3 1.1 32.1 609 20 429

2508.86 - - 0.1 - - 0.1 0.2 - 1.1 0.1 - 4.1 - - - - - - - - - 0.2 - - - 0.1 - - 79.1 0.2 - - - - 5.1 0.2 - - - 2 4.2 0 0.1
0.3

0.4 0.2 2.2
0.44 0.01 8 0.9 0.2 2.3 239 65 444

Zooclasts
Lithology

Vitrinite reflection, %VRo

Age

Local 

names

L
ia

s 
ep

si
lo

n
recycled Alginite Mineral groundmass

limestone, bituminous

homogeneous lamalginite

Pyrite

Organic matter [vol.%]

Vitrinite (V) [vol.%] Liptinite (L) [vol.%] Inertinite (I) [vol.%]

autochthonous

mean-mean value; s.d.-standart deviation; n-total number of measurements.

el.-elongated; eq.-equidimensional; Spor.- sporinite;  Tel.- telalginite; fil.-filamentous; Liptd.-liptodetrinite;  Bit. I-  bituminite I; Bit. II-bituminite II; Bit. III- bituminite III; Bit. IV- bituminite IV; Bit. IV- bituminite IV; Bit.V- bituminite V;  Bit.VI- bituminite VI; homog.-homogeneous; heter.-heterogeneous; Oil drop.-oil droplets; Fus.-fusinite; Semifus.-semifusinite; Secret.-secretinite; Intd.-inertodetrinite; Micr.- micrinite; fish r.-fish remains;  biocl.-bioclasts; bits.-bituminous; l.-bits.-low bituminous; n.-bits.-non-bituminous; mic.-r.- micrinite-rich; F.g.pel.-Fine-grained peloids; C.g. pel.-Coarse-grained peloids; is. cry.-isolated crystals; coccol.-coccoliths; dol.-dolomite; Glauc.-

Glauconite; qtz.-quartz; Gyps.-Gypsum; cryst.-crystals ; framb.-framboidal; epig.-epigenetic.

ORGANIC PETROGRAPHY

Mineral matter [vol. %]

Carbonates Detrital minerals

Sample/ 

Depth, m

heterogeneous homogeneous

ORGANIC PETROGRAPHY

**Lithology has been taken from unpubleshed BEB reports

calcareous mudstone, strong 

bituminous

limestone, strong bituminous

limestone, strong bituminous

ORGANIC GEOCHEMISTRY

*-[mg HC/g],~-[mg HC/g TOC], ~~-[mg CO2/g TOC].

marly limestone, strong bituminous

Migrabitumen

ORGANIC GEOCHEMISTRY

 

Appendix A2: Well M 

TOC S1 S2 HI OI Tmax

[%] * * ~ ~~ °C

Spor.  Liptd. Bit. I  Bit. II Bit. III Bit. IV Bit. V Bit. VI Exsud. Oil drop. Fus. Semifus. Secret. Intd. Char Micr. F.g. pel. C.g.pel. Glauc. Gyps.

Tel. homog. heter. is. cry. coccol. dol. qtz micas crys. framb. epig. shell fish r. biocl. mean s.d. n

el. eq. el. eq. el. eq. discrete fil. layered bits. l.-bits. n.-bits. bits. l.-bits. mic.-r.

2074-2075 - - - - - - 0.6 0.1 8 1.5 - 15.9 - - - - - - - - - - 0.1 0.1 0.1 - - - - 61.6 - 0.3 - - 0.3 - 2.2 0.3 - - - 0.1 1.6 2.2 1.0 1.4 0.3 0.6 1.7 - - - 3.3 0.5 14.4 434 27 433

2078.23 - - - - 0.1 - 0.3 - 4.5 2.8 0.1 7.2 - 0.5 - - - - 0.1 - - - - - - - - - - 67.6 - 0.2 - - 1.9 - 4.7 0.1 - - - 0.5 3.1 0.7 0.6 2.9 - 0.5 1.6 - - - - - - - - -

2087.33 - - - - - - 1.2 0.2 8.6 0.8 - 12.2 - 0.4 - 0.1 - - 0.1 - - - - 0.1 - - - 0.1 57.3 - 0.1 1.2 - - 4.7 - 1.1 4.6 - - - 0.2 1.2 2.6 2.4 0.2 - - 0.6 - - - 4.8 1.1 26.0 547 25 428

2088.30 - - - - - - 1.0 0.10 6.60 1.6 - 11.6 0.2 2 - 0.1 0.4 - - - - 0.1 0.1 0.1 - - - - 57.7 - - 0.4 - - 3.6 - 2.9 0.9 - - - 0.1 2.1 4.2 2.0 1.2 - 0.2 0.8 - - - 6.2 1.7 37.7 604 20 427

2089.33 - - - - - - 0.7 0.2 5 0.7 - 12.3 0.1 2.3 - - 0.1 - - - - - 0.2 - - - - 0.2 55.6 - - 0.8 - - 0.5 - 5.4 1.9 - - - 0.1 1.6 6.3 4.0 0.2 0.1 1.7 - - - - 7.5 2.3 46.2 614 17 430

2090.55 - - - - - - 1.0 0.2 7.8 2.8 0.3 13.5 1.3 2.9 - 0.1 0.7 - - - - 0.1 0.1 0.1 - 0.1 0.1 0.3 43.9 - - 3.7 - - 0.6 0.6 3.5 3.5 0.2 - - 0.8 1.0 3.1 3.4 0.9 - 0.7 2.7 - - - 11.1 3.7 75.5 679 11 430

2091.55 - - - - 0.1 - 0.6 0.1 3.3 1.1 - 10 0.2 3.1 - 0.6 0.1 - - - - - 0.2 - - - 0.2 - 52.0 - - 0.5 - - 4.9 0.5 4.0 0.4 0.4 - - 0.2 0.5 3.5 2.6 0.4 - 1.1 9.3 - - - 6.3 2.1 41.6 661 16 430

2092.43 - - - - - - 0.5 0.2 5.2 1.5 - 14 1 4.4 - 0.2 0.2 - 0.1 - - 0.2 0.2 - - 0.1 0.1 - 40.4 - - 0.3 - - 6.6 0.2 3.3 7.3 1.2 - - - 0.5 4.1 4.3 0.4 0.1 0.8 2.6 - - - 8.1 3.0 54.1 668 18 429

2093.40 - - - - - - 1.3 0.3 5.2 0.9 0.2 7.4 2.9 1.6 - 0.5 1.4 - - - - 0.1 0.7 0.1 - - - 0.4 28.3 - - 4.7 - - 6.5 0.2 1.9 21.8 0.2 - - 0.9 1.0 2.7 7.6 0.1 - 0.6 0.5 - - - 10.0 3.6 65.5 655 17 427

2095.10 - - - - - - 1.5 0.1 9.3 3.5 0.1 18.8 0.5 1.6 - 0.3 0.6 - - - - - 0.2 - - - - 0.4 36.3 - - 0.9 - - 1.0 0.1 3.3 0.9 - - - 0.4 0.9 8.4 6.2 1.2 0.1 1.6 1.8 - - - 11.4 3.9 75.3 661 15 429

2096.13 - - - - - - 1.4 0.2 6.9 5.6 - 20 - - - - 0.6 - - - - - - - - 0.1 - - 45.0 - - 1.2 - - 0.2 0.2 3.5 0.1 - - - 0.4 1.5 4.3 5.6 0.4 - 0.1 2.7 - - - 14.1 4.9 102.8 728 8 429

2097.13 - - - - - - 1.5 0.4 9.9 2.9 0.1 11.7 1.7 1.2 - - 0.4 - - - - 0.3 0.4 0.1 - - - 0.1 23.7 - - 4.0 - - 5.8 0.2 2.2 15.6 0.3 - - 0.9 0.6 8.6 4.2 0.2 0.8 0.3 1.9 - - - 9.5 3.8 65.0 681 14 429

2098.15 - - - - - - 1.9 0.2 13.9 1.4 - 13.6 1.1 3 - 0.5 0.7 - - - - - 0.9 - - - - 0.3 14.6 - - 9.4 - - 1.3 0.4 3.5 16.1 - - - 1.2 2.7 4.6 7.2 0.1 - 0.2 1.2 - - - 13.1 5.4 96.6 737 10 428

2099.39 - - - - - - 3.0 0.1 8.3 0.9 - 15.5 - 0.2 - - - - - - - - 0.4 0.2 - - - 0.1 25.8 - - 10.7 - - 0.4 5.9 3.8 1.3 - - - 0.8 4.4 6.6 9.9 0.4 0.3 0.4 0.6 - - - - - - - - -

2100.49 - - - - - - 1.6 0.6 14.8 3.1 0.2 10.4 0.1 0.1 - - 4.4 - - - - 0.2 0.2 0.1 - - - - 26.2 - - 11.0 - - - 2.4 3.7 - - - 0.4 1.6 1.5 7.0 8.6 0.2 1.4 0.2 - - - - 11.4 3.6 76.9 674 13 429

2101.52 - - - - - - 1.0 0.6 8.6 2.9 0.4 8.1 1.3 0.2 - - 1.2 - - - - - 0.1 - - - - 0.1 47.7 - - 5.2 - - 0.1 0.5 1.8 7.6 - - 0.2 0.4 1.9 3.5 5.8 - - 0.4 0.4 - - - 10.1 3.6 62.5 619 14 427

2102.50 - - - - - - 1.6 2.3 7 1.9 - 9.6 0.2 0.6 - 0.1 0.8 - - - - 0.1 - - - - - - 45.6 - - 3.0 - - 0.9 0.3 3.7 4.3 0.2 - - 0.4 1.9 5.2 9.4 - 0.1 0.3 0.5 - - - 10.8 4.0 70.3 651 15 430

2103.45
marly limestone, 

bituminous
- - - - - - 1.8 - 11 2.2 - 15.2 4.2 0.1 - 0.1 0.5 - - - - 0.2 - - - - - - 21.7 - - 0.9 - - 2.7 0.1 7.4 - 16.2 - - - 1.4 5.8 6.2 1.0 - 0.1 1.2 - - - 12.5 4.6 87.3 700 8 427

2104.27 limestone, bituminous - - - - - - 2.7 0.1 8.6 3.4 0.6 9 2.3 0.9 - 0.1 2.7 - - - - 0.3 - - - - - 0.1 48.3 - - 2.5 - - - - 3.7 - 0.1 - - 0.8 0.9 2.2 9.2 0.4 - - 1.1 - - - 16.8 6.2 119.5 710 9 430

2105.37
marly limestone, 

bituminous
- - - - - - 1.2 0.6 5.5 2.5 0.1 8.4 0.8 0.6 - 0.1 0.8 - - - - 0.6 0.1 - - - - 0.1 35.7 - - 3.6 - - 0.7 0.1 5.0 - 22.3 - - 0.1 0.8 3.1 6.0 0.4 0.1 - 0.8 - - - 7.7 3.1 51.9 675 12 426

2116.2-2117.2 limestone, bituminous Lias delta - - - - - - - 0.1 1.9 0.8 - 4.5 - - - - - - - - - - - - - - 0.1 - - 79.9 - - - - 0.1 3.0 - 0.3 - - 0.8 2.7 0.5 0.8 3.2 0.1 0.2 1.0 - - - 0.9 0.2 1.6 170 186 437

Zooclasts

Mineral matter [vol. %]

ORGANIC PETROGRAPHY

Vitrinite reflection, %VRo

limestone, strong 

bituminous

Vitrinite (V) [vol.%]

Local names

L
ia

s 
ep

si
lo

n

limestone, bituminous

Liptinite (L) [vol.%] Inertinite (I) [vol.%]

autochthonous recycled Alginite Migrabitumen Pyrite

Sample/ Depth, 

m

Organic matter [vol.%]

Mineral groundmass Carbonates Detrital minerals

heterogeneous homogeneous homogeneous

ORGANIC PETROGRAPHY

el.-elongated; eq.-equidimensional; Spor.- sporinite;  Tel.- telalginite; fil.-filamentous; Liptd.-liptodetrinite;  Bit. I-  bituminite I; Bit. II-bituminite II; Bit. III- bituminite III; Bit. IV- bituminite IV; Bit. IV- bituminite IV; Bit.V- bituminite V;  Bit.VI- bituminite VI; homog.-homogeneous; heter.-heterogeneous; Oil drop.-oil droplets; Fus.-fusinite; Semifus.-semifusinite; Secret.-secretinite; Intd.-inertodetrinite; Micr.- micrinite; fish r.-fish remains;  biocl.-bioclasts; bits.-bituminous; l.-bits.-low bituminous; n.-bits.-non-bituminous; mic.-r.- micrinite-rich; F.g.pel.-Fine-grained peloids; C.g. pel.-Coarse-grained peloids; is. cry.-isolated crystals; coccol.-coccoliths; dol.-dolomite; Glauc.-Glauconite; qtz.-

quartz; Gyps.-Gypsum; cryst.-crystals ; framb.-framboidal; epig.-epigenetic.

mean-mean value; s.d.-standart deviation; n-total number of measurements.

ORGANIC GEOCHEMISTRY

*-[mg HC/g],~-[mg HC/g TOC], ~~-[mg CO2/g TOC].

clayeylamalginite calcareous

Lithology

Age

ORGANIC GEOCHEMISTRY
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Appendix A3: Well A 

TOC S1 S2 HI OI Tmax

[%] * * ~ ~~ °C

Spor.  Liptd. Bit. I  Bit. II Bit. III Bit. IV Bit. V Bit. VI Oil drop. Fus. Semifus. Secret. Intd. Micr. F.g. pel. C.g. pel. Glauc. Gyps.

Tel. homog. heter. is. cry. coccol. dol. qtz mica crys. framb. epig. shell fish r. biocl. mean s.d. n

el. eq. el. eq. el. eq. discrete fil. layered bits. l.-bits. n.-bits. bits. l.-bits. mic.-r.

2328.20 0.1 - - - - - - 0.9 10.3 4.0 1.7 11.5 0.2 - - 0.2 - 1.7 - - - - 0.1 - 0.3 2.2 4.1 - - 34.3 - - - 0.1 - - 0.2 - - 1.3 0.3 16.7 6 3.7 - - 0.1 0.54 0.03 4 10.8 4.0 52.9 488 5 449

2328.30 - - - - - 0.1 - 0.5 8.5 2.0 - 8.9 0.6 - - - - 0.3 - - - 0.1 0.1 - 0.2 0.2 6.9 - - 35.4 - - - 0.1 4.7 - - - - 0.8 0.1 18.9 6.8 4.7 - - - - - - 10.5 3.6 51.5 492 4 448

2328.60 0.1 - - - - - - 1.1 2.7 2.7 0.1 7.0 0.1 - - - - 0.1 - - - - - - 1.4 0.4 10.4 - - 31.9 - - - 0.8 5.8 - - - - 0.8 0.4 23.8 8.6 1.1 - - 0.1 - - - 11.2 3.8 54.9 491 5 450

2328.80 limestone, bituminous - - - - - - - 1.1 3.4 2.0 0.2 6.7 0.1 0.5 - - - 0.5 - - - - - - 0.2 - 41.2 - - 16.2 - - - 0.4 2.3 - - - - 0.6 0.1 17.3 6 0.9 - - - 0.6 0.5 13 8.1 3.6 38.8 482 6 448

2331.20 - - - - 0.2 0.2 - 1.1 7.0 3.8 0.3 9.1 0.5 0.1 - - - 0.3 - - - 0.1 0.1 - 0.5 0.2 5.9 - - 32.6 - - - 0.7 3.2 - - - - 0.5 - 16.4 16.5 0.3 - - 0.1 - - - 10.9 4.0 49.5 456 4 447

2331.80 - - - - - - - 1.0 7.2 2.1 - 8.4 0.5 - - - - 0.1 - - - 0.3 0.2 - 1.2 0.1 7.1 - - 30.8 - - - 1 6.5 - - - - 0.4 0.3 18.1 13.9 0.5 - - - - - - 10.7 3.7 50.3 470 6 448

2333.70 - - - - - - - 0.5 3.3 2.1 0.1 4.0 0.6 7.6 - - - - - - - 0.3 - - 0.4 0.2 64.1 - 0.4 4.5 - - - 1.2 - - - - - 0.7 0.3 5.1 4.2 0.4 - - - - - - 8.0 3.5 37.3 464 8 446

2336.05 - - - - - - - 0.9 3.9 2.2 - 3.5 0.9 3.3 - - - - - - - - - - 0.1 0.3 48.4 - - 13.2 - - - 0.2 1.6 - 0.1 - - 0.1 0.2 6.3 12.5 0.4 0.3 - 1.5 - - - 7.4 3.5 34.3 464 8 447

2337.10 - - - - - - - 1.0 3.3 1.0 0.1 4.1 0.3 1.6 - - - - - - - 0.1 - - - - 68.8 - - 4.8 - - - 0.5 0.6 - - - - 0.7 0.3 4.8 6.7 0.5 0.3 - - - - - 5.6 2.9 24.3 433 11 446

2338.20 - - - - - - - 0.4 3.7 0.8 0.1 8.7 3.1 3.1 - - - - - - 0.1 - - - 0.6 1.8 47.6 - - 4 - - - 0.5 3.8 - - - 1.6 - - 9 6.8 0.9 1.6 - 1.8 - - - 6.2 2.9 27.9 452 10 448

2339.00 - - - - 0.1 - - 0.6 4.8 1.3 - 8.0 3.0 0.6 - - - 2.2 - - - 0.1 - - 0.2 - 60.4 - - 6.5 - - - 0.7 0.6 - - - - 0.1 - 4.8 4.6 1.3 0.1 - - - - - 5.5 3.3 24.3 441 10 447

2340.30 - - - - - - - 0.5 3.5 0.5 0.2 5.9 0.2 2.9 - - - 2.3 - - - 0.1 - - 0.3 0.2 65.2 - - 1.3 - - - 2.8 1.3 - - - 0.1 0.2 - 5.9 6 0.6 - - - - - - 6.4 3.6 29.3 458 10 445

2342.40 - - - - - - - 1.0 4.8 1.7 0.2 8.6 0.1 1.9 - - - 2.9 - - - - 0.1 - 0.2 - 61.4 - - 0.7 - - - 4.6 0.5 - - - - 0.1 - 4.2 7 0 - - - - - - 7.1 3.8 31.8 448 8 449

2343.20 - - - - - - - 0.5 4.0 1.5 0.2 10.4 0.2 4.1 - - - 2.0 - - - - - - - - 64.3 - - 0.3 - - - 4.4 0.9 - - - - - - 2.8 3.8 0.6 - - - - - - 6.6 2.7 27.2 413 8 447

2344.60 - - - - - - - 0.6 2.0 2.4 0.9 7.8 0.2 11.7 - - - 3.0 - - - - - - 0.1 0.5 55.5 - - 0.5 - - - 6.2 1 - - - - - - 3.1 3.6 0.7 0.1 - 0.1 - - - 6.7 2.7 28.3 423 8 448

2345.40 - - - - - - - 0.6 2.5 1.3 - 12.7 0.5 5.5 - - - 2.5 - - - - - - 0.2 0.4 47.3 - - 2.6 - - - 8.1 2.2 - 0.2 - - - - 4 6.4 1.1 0.4 1.1 0.3 - - - 7.2 3.1 30.5 423 7 448

2345.70 0.1 - - - - - - 0.4 4.1 1.2 - 7.3 0.4 13.5 - - - 1.0 - - - 0.1 0.1 - 0.3 0.5 46.4 - 0.1 1.2 - - - 6.8 7.2 - 0.1 - - - - 2.7 4.7 0.8 0.4 0.1 0.5 0.54 0.02 15 7.6 2.8 31.3 414 8 446

2345.80 - - - - - - - 0.3 2.9 2.0 0.1 11.6 0.2 14.2 - - - 1.1 - - - - - - 0.2 1.6 39.4 - - 6.8 - - - 10.1 - - - - - - - 2.4 5.9 0.7 - 0.2 0.3 - - - 7.2 2.9 29.5 408 7 447

2345.90 - - - - - - - 0.3 0.7 0.3 - 2.9 - 0.1 - - - 5.8 - - 0.6 - - - 0.1 0.4 3.9 - - 1 - - - 0.2 12.1 - 0.1 - 60.4 - - 3.3 3.8 2.8 - 0.2 0.5 - - - 6.4 2.4 25.8 406 9 446

2346.20 - - - - - - - 0.1 1.3 0.6 - 5.3 1.0 5.2 - - - 0.5 - - - - - - 0.3 - 60.6 - - 0.9 - - - 2 2.2 - - - - - - 2 2.6 1.7 - 12 1.7 - - - 6.8 3.3 28.5 422 9 447

2350.40 - - - - - - - 0.5 4.4 1.3 0.2 12.8 4.5 0.2 - - - 2.7 - - 0.4 0.3 - - 0.5 0.4 52.5 - - 1.8 - - - 1.7 3.2 - - - 0.1 0.8 0.4 4.7 5.4 0.6 - - - - - - 9.6 2.9 39.8 416 6 446

2352.05 - - - - 0.1 - - 0.2 4.6 1.0 - 14.1 7.0 0.4 - - - 3.1 - - 0.3 0.2 - - 0.8 1.1 12.4 - - 15.1 - - - 3.2 13.1 - 0.3 - 0.1 - - 9.6 12.4 0.8 - - - - - - 9.1 2.7 36.0 396 6 445

2352.15 - - - - - - - - 4.8 3.5 0.3 4.7 2.2 0.5 - - - 18.9 - - 0.1 0.1 0.1 - 0.5 0.4 13.5 - - 8.4 - - - 8.4 10.5 - 0.1 - 0.3 - 0.2 6 15.6 0.4 0.2 - 0.2 - - - 10.4 2.9 42.6 410 6 448

2352.90 - - - - - - - 0.2 4.4 1.7 0.8 5.2 0.6 9.9 - - - 2.1 - - - 0.5 - - 0.5 4.6 52.4 - 0.2 0.4 - - - 3.9 4.3 - 0.1 - - - - 1.7 5 0.7 - - 0.8 0.55 0.03 11 8.8 3.1 43.5 494 9 446

2353.35 - - - - - - - 1.2 2.8 0.8 0.1 7.0 10.6 19.9 - - - 4.2 - - 0.1 - - - 0.4 0.2 27.3 - 0.5 1.9 - - - 6.5 5.5 - 0.2 - - - 0.1 2 8.2 0.2 - - 0.3 0.54 0.02 7 8.3 2.8 37.9 456 10 447

2353.90 - - - - - - - 1.6 3.2 1.4 0.4 3.1 2.1 59 - - - 0.7 - - - - - - 0.1 0.5 12.2 - 0.6 1.5 - - - 3.9 3.3 - 0.1 - - 0.3 - 0.9 4.6 0.2 - - 0.3 - - - 7.4 4.4 37.0 497 8 442

2355.30 - - - - - - - 0.5 1.7 1.7 0.1 5.5 4.7 22.1 - - - 16.7 - - - 0.1 - - 0.2 0.4 26.1 - 0.1 1.9 - - - 2.4 7.7 - - - - - - 3.4 2.9 0.9 0.1 0.2 0.5 - - - 8.9 3.6 42.7 479 7 447

2356.55 - - - - - - 0.1 0.5 3.0 1.3 0.0 8.8 1.8 2.6 - 0.1 - 3.8 - - - 0.1 - - 0.8 2.4 53.2 - 0.5 0.5 - - - 8.3 1.8 - 0.2 - - - 0.1 0.9 8.9 0 - - 0.3 - - - 10.7 3.5 50.0 469 7 448

2358.80 - - - - - - - 0.4 5.6 10.4 6.0 4.2 0.7 12.8 - - - 7.0 - - - - - - 0.2 0.3 36.9 - 0.1 - - - - 6.9 1.1 - - - - - 0.1 0.6 5.4 0.2 0.4 0.1 0.6 - - - 14.4 3.8 77.4 539 6 447

2359.20 - - - - - - - - 1.1 0.2 0.0 2.1 0.4 0.6 - - - 3.4 - - 0.7 - - - 0.1 0.3 1.7 - 0.9 0.3 - - - 76.2 - - 9.4 - 0.3 - - - 1.2 1 0.1 - - - - - 2.5 2.0 8.4 340 20 443

2359.65 - - - - - - - 0.1 4.0 3.8 2.0 3.5 2.8 2 - - - 8.2 - - 0.2 - - - - - 34.2 - 5.4 - - - - 18.5 3.5 - 4 - - 0.6 0.3 0.2 6.2 0.3 0.1 - 0.1 - - - 11.4 3.3 60.7 534 8 443

2361.10 - - - - - - - 0.1 3.4 3.1 1.0 2.5 3.9 - - - - 1.3 - - - - - - - - 34 - 17.8 - - - - 22.4 4.7 - 0.9 - - 0.5 0.2 - 2.9 0.6 0.2 - 0.5 - - - 8.7 2.5 46.5 535 8 447

2362.15 0.1 - - - - - - - 1.2 0.2 - 2.1 0.9 0.4 - - - 0.2 - - 0.3 0.1 0.1 - - - 73.3 - 8 - - - - 0.1 7.8 - 0.2 - - 0.2 0.3 - 1 2.8 0.2 - 0.5 - - - 1.9 0.6 5.2 270 46 445

2362.25 - - - - - - - - 1.8 0.2 - 3.0 0.8 0.1 - - - 0.2 - - 0.4 - - - 0.3 - 75.2 - 3.1 - - - - 1.9 6 - 0.4 - - 0.3 0.4 0.1 1.7 3.6 - - 0.5 - - - - - - - - -

2362.35 - - - - - - - 0.1 0.2 0.2 - 0.1 - - - - - - - - - - - - - - 50.1 - - 0.8 - - - 26.1 0.2 - - - 2.9 - - 1.2 0.1 13.5 - - 4.5 - - - 2.4 0.4 2.3 96 46 436

2366.30 - - - 0.1 - - - 3.7 2.0 0.6 0.1 - 0.6 0.2 - - - - - - 0.2 - - - 0.2 0.1 84.1 - - - - - - 0.4 5 - - - 0.1 - 0.8 0.5 0.6 0.1 - - 0.5 - - - 1.2 0.2 2.7 232 32 446

2367.40 - - - - - - - - 0.1 0.0 - 1.0 0.2 - - - - - - - 0.2 - - - 0.1 - 1.7 - 51.1 - - - - - 39 - 0.1 - 3.3 - 0.2 0.2 - 2.3 - 0.1 0.4 - - - 0.7 0.2 0.8 116 84 444

2373.00 - - - - - - - - 0.6 0.3 - 0.4 - - - - - - - - 0.1 - - - - - 0.3 - 94.6 - - - - - 2.7 - - - 0.3 0.1 0.5 - - - - - 0.1 - - - 0.9 0.1 1.5 155 50 447

Lithology
Vitrinite reflection, %VRo

L
ia

s 
ep

si
lo

n

Lias 

delta

Age

Local 

names

Alginite

clayeyhomogeneous homogeneous

Migrabitumen

ORGANIC GEOCHEMISTRY

Organic matter Mineral matter, [vol. %]

Vitrinite (V) [vol.%] Liptinite (L) [vol.%] Inertinite (I) [vol.%]

Zooclasts

ORGANIC PETROGRAPHY

*-[mg HC/g],~-[mg HC/g TOC], ~~-[mg CO2/g TOC].

Mineral groundmass Carbonates Detrital minerals Pyrite

heterogeneous

Sample/ 

Depth, 

m
autochthonous

ORGANIC GEOCHEMISTRY

ORGANIC PETROGRAPHY

recycled

calcareous mudstone, 

bituminous

calcareous mudstone 

bituminous

limestone, bituminous

el.-elongated; eq.-equidimensional; Spor.- sporinite;  Tel.- telalginite; fil.-filamentous; Liptd.-liptodetrinite;  Bit. I-  bituminite I; Bit. II-bituminite II; Bit. III- bituminite III; Bit. IV- bituminite IV; Bit. IV- bituminite IV; Bit.V- bituminite V;  Bit.VI- bituminite VI; homog.-homogeneous; heter.-heterogeneous; Oil drop.-oil droplets; Fus.-fusinite; Semifus.-semifusinite; Secret.-secretinite; Intd.-inertodetrinite; Micr.- micrinite; fish r.-fish remains;  biocl.-bioclasts; bits.-bituminous; l.-bits.-low bituminous; n.-bits.-non-bituminous; mic.-r.- micrinite-rich; F.g.pel.-Fine-grained peloids; C.g. pel.-Coarse-grained peloids; is. cry.-isolated crystals; coccol.-coccoliths; 

dol.-dolomite; Glauc.-Glauconite; qtz.-quartz; Gyps.-Gypsum; cryst.-crystals ; framb.-framboidal; epig.-epigenetic.

mean-mean value; s.d.-standart deviation; n-total number of measurements.

lamalginite calcareous
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Appendix A4: Well B 

 

TOC S1 S2 HI OI Tmax

[%] * * ~ ~~ °C

M.Spor. M. Liptd. M.Bit. I  M.Bit. II M.Bit. III M.Bit. IV M.Bit. V M.Bit. VI Oil drop. Fus. Semifus. Secret. Intd. Micr. F.g. pel. C.g. pel. Glauc. Gyps.

M.Tel. homog. heter. is. cry. coccol. dol. qtz mica crys. framb. epig. shell fish r. biocl. mean s.d. n mean s.d. n mean s.d. n

el. eq. el. eq. el. eq. discrete fil. layered bits. l.-bits. n.-bits. bits. l.-bits. mic.-r.

1227.10 - - - - - - 0.1 0.8 - - - - - 2.4 - - - - 1.4 0.2 - 0.2 - - 0.6 21.7 0.2 - - - - 18.8 0.2 - 37.4 - - - - 0.1 6.5 2.2 0.5 - - 6.9 3.43 0.30 19 - - - - - - 5.7 1.3 0.6 11 21 -

1227.20 - - - - - 0.2 - 0.6 - - - - 0.1 12.6 - - - - 0.3 0.0 - 0.1 - - - 12.3 0.1 - - - - 28.2 0.1 - 27.9 - - - - 0.3 11.3 3.6 0.8 1.3 - 0.4 - - - 1.10 0.10 10 - - - 5.6 1.2 0.8 14 23 -

1227.27 - - - - - - 0.1 0.8 - - - - 1.1 11.2 - - - - 0.3 0.1 - - - - - 18.1 0.1 - - - - 19.9 - - 26.2 - - - - 0.3 16.2 3.7 0.6 1.3 - - - - - - - - 3.33 0.60 100 5.7 1.2 0.6 11 20 -

1227.37 - - - - - - 0.1 1.4 - - - - 0.1 3.7 - - - - 0.8 0.4 - 0.4 - 0.1 0.1 21.7 - - - - - 24.5 0.2 - 24.5 - - - - 0.1 11.8 4.6 2.1 - - 3.4 - - - - - - - - - 5.3 0.3 0.2 5 22 -

1227.56 0.1 - - - - - - 0.5 - - - - 1.4 2.8 - - - - 0.2 - - 0.2 - - 0.2 19.9 - - - - - 30.8 - - 22.1 0.1 - - - - 15.0 1.4 3.0 1.8 - 0.6 - - - - - - - - - 4.9 0.2 0.0 1 31 -

1227.62 0.1 - - - - - - 0.3 - - - - 0.3 7.3 - - - - 0.3 - - 0.5 - - 0.1 17.1 - - - - - 26.1 - - 23.3 - - - - 0.1 14.3 6.0 1.3 2.2 - 0.7 - - - - - - - - - 5.4 0.2 0.1 1 24 -

1227.87 - - - - - - - 0.4 - - - - 0.3 1.7 - - - - 0.4 0.1 - 0.1 - 0.1 0.1 27.8 - - - - - 21.8 - - 18.6 - - - - 0.2 17.9 3.3 4.0 - - 3.2 - - - - - - - - - 5.5 0.5 0.3 5 21 -

1227.95 - - - - - - 0.1 0.9 - - - - 0.4 10.8 - - - - 0.1 - - 0.1 - - 0.2 20.2 0.1 - - - - 23.2 - - 28.2 - - - - 0.5 8.6 2.8 2.0 1.4 - 0.2 - - - - - - - - - 5.6 0.4 0.4 7 21 -

1228.02 - - - - - - - 0.2 - - - - 1.8 5.2 - - - - 0.2 - - 0.4 - - 0.1 20.4 0.1 - - - - 18.8 - - 27.7 - - - - - 13.0 5.0 3.0 - - 4.1 - - - - - - 3.52 0.36 100 5.7 0.7 0.3 6 23 -

1228.07 - - - - - - - 0.5 - - - - 0.2 0.9 - - - - 0.2 0.1 - 0.2 - - - 25.2 - - - - - 30.4 - - 19.7 - - - - - 15.0 2.3 2.7 - - 3.1 3.53 0.20 20 - - - - - - 5.6 1.2 0.6 11 18 -

1228.12 - - - - - - 0.1 1.4 - - - - 0.5 1.1 - - - - 0.2 - - 0.8 - 0.1 0.4 21.8 0.1 - - - - 27.7 - - 21.2 0.1 - - - - 15.9 3.2 1.0 - - 4.4 - - - - - - - - - 5.5 0.3 0.1 2 24 -

1228.18 - - - - - - - 1.0 - - - - 0.8 2.1 - - - - 0.7 0.1 - - - 0.1 - 21.5 - - - - - 22.2 - - 28.0 - - - - 0.2 11.0 4.4 1.4 - - 6.5 - - - - - - - - - 5.8 0.7 0.4 7 21 -

1228.25 - - - - - - 0.1 0.8 - - - - - 6.4 - - - - 0.8 - - 0.4 - 0.1 0.3 22.3 - - - - - 21.3 - - 30.8 - - - - 0.1 10.4 1.0 2.8 1.8 - 0.5 - - - - - - - - - - - - - - -

1228.34 - - - - - - 0.1 1.0 - - - - - 3.0 - - - - 0.4 - - 0.3 - - - 22.8 - - - - - 26.2 0.1 - 25.6 - - - - 0.2 12.9 2.7 0.1 0.1 - 4.5 - - - - - - - - - 5.9 0.2 0.0 1 22 -

1228.40 - - - - - - 0.1 1.1 - - - - - 8.0 - - - - 0.3 0.1 - 0.1 - - 0.1 14.0 - - - - - 13.9 - - 31.3 0.1 - - - 0.6 21.6 4.5 0.6 3.0 - 0.6 - - - - - - - - - 6.1 0.6 0.5 8 20 -

1228.64 - - - - - 0.2 0.2 0.9 - - - - 0.3 7.6 - - - - 0.2 0.3 - 0.2 - - 0.5 23.0 0.2 - - - - 22.5 0.1 - 22.1 - - - - - 13.4 3.5 2.0 0.7 - 2.0 - - - - - - - - - 6.3 0.1 0.0 0 22 -

1228.84 - - - - - - - 0.9 - - - - - 6.3 - - - - 0.4 - - 0.2 - 0.1 - 18.2 - - - - - 30.2 - - 21.3 0.1 - - - 0.1 14.5 4.7 1.5 0.9 - 0.6 - - - - - - - - - 6.7 0.4 0.3 4 21 -

1229.06 - - - - - - - 1.4 - - - - - 6.1 - - - - 1.4 0.1 - 0.2 - 0.1 0.1 10.6 - - - - - 31.1 0.2 - 26.2 - - - - 0.1 13.7 3.3 1.9 2.6 - 0.9 - - - - - - - - - 6.7 0.7 0.5 7 19 -

1229.14 - - - - - - 0.1 0.7 - - - - 0.9 10.2 - - - - 0.5 0.1 - - - - 0.3 18.2 - - - - - 17.0 - - 24.7 - - - - 0.2 15.9 4.0 3.2 1.1 - 2.9 - - - - - - - - - 6.7 0.7 0.3 5 21 -

1229.28 - - - - - 0.1 - 0.4 - - - - 0.4 5.1 - - - - 0.2 - - 0.5 - - 0.3 22.0 - - - - - 21.5 0.1 - 24.9 - - - 0.1 0.1 13.9 4.6 2.7 2.0 - 1.1 - - - - - - - - - - - - - - -

1229.43 - - - - - - 0.2 1.9 - - - - - 6.0 - - - - - - - 0.2 - - - 26.9 - - - - - 17.4 - - 29.5 0.1 - - - 0.3 9.7 3.4 1.0 2.1 - 1.2 - - - - - - - - - 6.5 0.2 0.1 2 23 -

1229.61 - - - - - - 0.6 1.8 - - - - 1.3 1.2 - - - - - - - 0.4 - 0.1 0.2 27.1 - - - - - 30.1 - - 19.8 - - - - 0.3 9.4 1.8 1.5 - - 4.4 - - - - - - - - - 6.7 0.4 0.4 5 21 -

1229.75 - - - - - - - 1.0 - - - - 3.3 0.1 - - - - - 0.4 - 0.4 - 0.1 - 32.4 2.0 - - - - 32.4 - - 13.3 - - - 0.1 0.0 4.0 1.4 4.8 0.1 - 4.2 - - - - - - 3.51 0.65 100 7.0 0.1 0.0 1 19 -

1229.83 - - - - - - - 1.0 - - - - 0.4 0.3 - - - - 0.1 - - 0.8 - - - 28.6 - - - - - 31.6 - - 19.9 - - - - - 7.0 3.6 1.9 - - 4.8 - - - - - - - - - - - - - - -

1229.93 - - - - - - - 0.9 - - - - 0.2 1.2 - - - - 0.6 - - 0.3 - 0.1 - 21.5 - - - - - 25.7 - - 29.3 - - - - 0.1 9.8 1.9 0.4 - - 8.0 - - - - - - 3.66 0.35 100 6.8 0.1 0.0 1 21 -

1230.00 - - - - - - - 0.7 - - - - 0.5 0.1 - - - - 0.4 - - 0.7 0.1 - - 31.3 - - - - - 33.4 - - 12.9 - - - - - 9.8 0.8 3.1 - - 6.2 - - - - - - - - - 7.3 1.0 0.8 11 18 -

1230.10 - - - - - - - 0.8 - - - - 0.2 1.1 - - - - 0.8 - - 0.4 - - 0.2 27.9 - - - - - 15.9 - - 19.5 - - - - - 20.7 4.3 2.1 0.1 - 6.0 - - - - - - - - - 6.7 0.4 0.3 4 19 -

1230.18 - - - - - - - 1.4 - - - - - 8.7 - - - - 0.5 - - 0.1 - - - 22.0 - - - - - 20.5 - - 24.9 - - - - 0.1 7.5 3.7 6.7 3.2 - 0.7 - - - - - - - - - 7.2 0.5 0.3 4 25 -

1230.50 - - - - - - - - - - - - 0.2 2.9 - - - - 0.5 0.3 - 0.3 - - - 18.4 - - - - - 16.3 0.1 - 22.9 - - - - 0.5 26.1 6.8 1.4 2.2 - 0.8 - - - - - - - - - 6.7 0.2 0.1 1 20 -

1230.74 - - - - - - 0.1 0.4 - - - - 0.6 7.4 - - - - 0.6 0.1 - - - - 0.1 18.4 - - - - - 17.0 - - 26.6 - - - - - 21.8 2.5 0.7 1.5 - 2.2 - - - 1.07 0.10 16 - - - 4.9 1.2 0.6 12 21 -

1230.94 - - - - - - - 0.2 - - - - - 0.6 - - - - - 0.1 - - - - - - 75.1 - - - - 4.7 - - 1.7 - - - - - 2.1 0.1 14.1 - - 1.3 - - - - - - - - - - - - - - -

1231.14 - - - - - - - 0.8 - - - - 0.6 7.5 - - - - 0.2 0.1 - 0.3 - 0.1 0.1 25.5 - - - - - 21.6 1.2 - 24.5 - - - - 0.1 8.1 5.5 0.3 - - 3.5 - - - - - - - - - 7.2 0.7 0.6 8 15 -

1231.30 - - - - - - - 0.3 - - - - 0.5 2.5 - - - - 0.3 0.1 - 0.2 - 0.2 - 22.5 0.2 - - - - 20.1 0.8 - 27.1 - - - - 0.1 13.9 4.9 4.7 0.3 - 1.3 - - - - - - - - - 6.0 0.6 0.4 6 22 -

1231.53 - - - - - - - 0.1 - - - - 0.1 7.1 - - - - 1.3 0.1 - 0.2 - 0.1 0.6 15.5 - - - - - 11.5 - - 43.1 - - - - 0.4 5.4 5.6 1.6 1.3 - 5.8 - - - - - - - - - 6.0 0.9 0.4 7 19 -

1231,73 o - - - - - - - 0.7 - - - - 0.2 1.4 - - - - 1.5 - - 0.3 - - - 20.9 - - - - - 33.5 - - 26.4 - - - - - 5.3 2.6 - - - 6.4 - - - - - - - - - 6.7 0.6 0.2 4 19 -

1231.93 - - - - - - - 0.8 - - - - 0.9 2.5 - - - - 0.3 0.5 - 0.1 - 0.1 0.0 21.8 0.1 - - - - 39.1 0.2 - 18.0 - - - 0.3 - 3.4 2.4 - 1.0 - 6.1 - - - - - - - - - 6.7 0.3 0.2 2 19 -

1231.84-1232.2 - - - - - - - 0.3 - - - - 0.1 6.3 - - - - 0.7 0.4 - - - - 1.0 20.0 - - - - - 20.1 0.2 - 29.5 - - - - 0.2 9.1 4.5 1.1 4.1 - 2.4 - - - 1.21 0.10 30 - - - 6.3 0.3 0.1 1 18 -

1231.84-1232.3 - - - - - - - 0.9 - - - - 0.3 4.5 - - - - 0.7 0.3 - 0.1 - - - 25.0 0.2 - - - - 21.5 - - 30.7 0.1 - - - 0.3 5.9 4.3 1.8 2.5 - 0.9 - - - 1.10 0.10 17 3.26 0.44 100 5.9 0.3 0.2 4 20 -

1231.84-1232.4 0.1 - - - - - - 0.9 - - - - 0.1 4.9 - - - - 0.3 0.3 - 0.3 - - - 18.0 0.2 - - - - 21.0 0.9 - 31.4 - - - - 0.2 11.9 6.5 0.9 2.0 - 0.8 - - - - - - - - - - - - - - -

mudstone, 

calcareous 

with pyrite 

inclusions, 

plant 

remains

ORGANIC PETROGRAPHY

el.-elongated; eq.-equidimensional; M.Spor.- meta-sporinite;  M.Tel.- meta-telalginite; fil.-filamentous; M.Liptd.-meta-liptodetrinite;  M.Bit. I-meta-bituminite I; M.Bit. II-meta-bituminite II; M.Bit. III-meta-bituminite III; M.Bit. IV- meta-bituminite IV; M.Bit. IV- meta-bituminite IV; M.Bit.V- meta-bituminite V;  M.Bit.VI- meta-bituminite VI; homog.-homogeneous; heter.-heterogeneous; Oil drop.-oil droplets; Fus.-fusinite; Semifus.-semifusinite; Secret.-secretinite; Intd.-inertodetrinite; Micr.- micrinite; fish r.-fish remains;  biocl.-bioclasts; bits.-bituminous; l.-bits.-low bituminous; n.-bits.-non-bituminous; mic.-r.- micrinite-rich; F.g.pel.-Fine-grained peloids; C.g. pel.-Coarse-grained peloids; is. cry.-isolated 

crystals; coccol.-coccoliths; dol.-dolomite; Glauc.-Glauconite; qtz.-quartz; Gyps.-Gypsum; cryst.-crystals ; framb.-framboidal; epig.-epigenetic.

mean-mean value; s.d.-standart deviation; n-total number of measurements.

ORGANIC GEOCHEMISTRY

*-[mg HC/g],~-[mg HC/g TOC], ~~-[mg CO2/g TOC].

L
ia

s 
ep

si
lo

n

Lithology
Bitumen

Reflection, %Ro

ORGANIC PETROGRAPHY

Age

Local 

names

recycled

Vitrinite

autochthonous homogeneous heterogeneous Mineral groundmass Carbonates Detrital minerals Zooclasts

Sample/ Depth, 

m

ORGANIC GEOCHEMISTRY

Organic matter Mineral matter, [vol. %]

Meta-vitrinite (V) [vol.%] Meta-liptinite (L) [vol.%] Inertinite (I) [vol.%]

Pyrite

heterogeneous homogeneous homogeneous M.lamalginite calcareous clayey

M.Alginite Migrabitumen
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Appendix A5: Well D 

TOC S1 S2 HI OI Tmax

[%] * * ~ ~~ °C

M.Spor. M. Liptd. M.Bit. I  M.Bit. II M.Bit. III M.Bit. IV M.Bit. V M.Bit. VI Oil drop. Fus. Semifus. Secret. Intd. Micr. F.g. pel. C.g. pel. Glauc. Gyps.

M.Tel. homog. heter. is. cry. coccol. dol. qtz mica crys. framb. epig. shell fish r. biocl. mean s.d. n mean s.d. n mean s.d. n

el. eq. el. eq. el. eq. discrete fil. layered bits. l.-bits. n.-bits. bits. l.-bits. mic.-r.

1227.10 - - - - - - 0.1 0.8 - - - - - 2.4 - - - - 1.4 0.2 - 0.2 - - 0.6 21.7 0.2 - - - - 18.8 0.2 - 37.4 - - - - 0.1 6.5 2.2 0.5 - - 6.9 3.43 0.30 19 - - - - - - 5.7 1.3 0.6 11 21 -

1227.20 - - - - - 0.2 - 0.6 - - - - 0.1 12.6 - - - - 0.3 0.0 - 0.1 - - - 12.3 0.1 - - - - 28.2 0.1 - 27.9 - - - - 0.3 11.3 3.6 0.8 1.3 - 0.4 - - - 1.10 0.10 10 - - - 5.6 1.2 0.8 14 23 -

1227.27 - - - - - - 0.1 0.8 - - - - 1.1 11.2 - - - - 0.3 0.1 - - - - - 18.1 0.1 - - - - 19.9 - - 26.2 - - - - 0.3 16.2 3.7 0.6 1.3 - - - - - - - - 3.33 0.60 100 5.7 1.2 0.6 11 20 -

1227.37 - - - - - - 0.1 1.4 - - - - 0.1 3.7 - - - - 0.8 0.4 - 0.4 - 0.1 0.1 21.7 - - - - - 24.5 0.2 - 24.5 - - - - 0.1 11.8 4.6 2.1 - - 3.4 - - - - - - - - - 5.3 0.3 0.2 5 22 -

1227.56 0.1 - - - - - - 0.5 - - - - 1.4 2.8 - - - - 0.2 - - 0.2 - - 0.2 19.9 - - - - - 30.8 - - 22.1 0.1 - - - - 15.0 1.4 3.0 1.8 - 0.6 - - - - - - - - - 4.9 0.2 0.0 1 31 -

1227.62 0.1 - - - - - - 0.3 - - - - 0.3 7.3 - - - - 0.3 - - 0.5 - - 0.1 17.1 - - - - - 26.1 - - 23.3 - - - - 0.1 14.3 6.0 1.3 2.2 - 0.7 - - - - - - - - - 5.4 0.2 0.1 1 24 -

1227.87 - - - - - - - 0.4 - - - - 0.3 1.7 - - - - 0.4 0.1 - 0.1 - 0.1 0.1 27.8 - - - - - 21.8 - - 18.6 - - - - 0.2 17.9 3.3 4.0 - - 3.2 - - - - - - - - - 5.5 0.5 0.3 5 21 -

1227.95 - - - - - - 0.1 0.9 - - - - 0.4 10.8 - - - - 0.1 - - 0.1 - - 0.2 20.2 0.1 - - - - 23.2 - - 28.2 - - - - 0.5 8.6 2.8 2.0 1.4 - 0.2 - - - - - - - - - 5.6 0.4 0.4 7 21 -

1228.02 - - - - - - - 0.2 - - - - 1.8 5.2 - - - - 0.2 - - 0.4 - - 0.1 20.4 0.1 - - - - 18.8 - - 27.7 - - - - - 13.0 5.0 3.0 - - 4.1 - - - - - - 3.52 0.36 100 5.7 0.7 0.3 6 23 -

1228.07 - - - - - - - 0.5 - - - - 0.2 0.9 - - - - 0.2 0.1 - 0.2 - - - 25.2 - - - - - 30.4 - - 19.7 - - - - - 15.0 2.3 2.7 - - 3.1 3.53 0.20 20 - - - - - - 5.6 1.2 0.6 11 18 -

1228.12 - - - - - - 0.1 1.4 - - - - 0.5 1.1 - - - - 0.2 - - 0.8 - 0.1 0.4 21.8 0.1 - - - - 27.7 - - 21.2 0.1 - - - - 15.9 3.2 1.0 - - 4.4 - - - - - - - - - 5.5 0.3 0.1 2 24 -

1228.18 - - - - - - - 1.0 - - - - 0.8 2.1 - - - - 0.7 0.1 - - - 0.1 - 21.5 - - - - - 22.2 - - 28.0 - - - - 0.2 11.0 4.4 1.4 - - 6.5 - - - - - - - - - 5.8 0.7 0.4 7 21 -

1228.25 - - - - - - 0.1 0.8 - - - - - 6.4 - - - - 0.8 - - 0.4 - 0.1 0.3 22.3 - - - - - 21.3 - - 30.8 - - - - 0.1 10.4 1.0 2.8 1.8 - 0.5 - - - - - - - - - - - - - - -

1228.34 - - - - - - 0.1 1.0 - - - - - 3.0 - - - - 0.4 - - 0.3 - - - 22.8 - - - - - 26.2 0.1 - 25.6 - - - - 0.2 12.9 2.7 0.1 0.1 - 4.5 - - - - - - - - - 5.9 0.2 0.0 1 22 -

1228.40 - - - - - - 0.1 1.1 - - - - - 8.0 - - - - 0.3 0.1 - 0.1 - - 0.1 14.0 - - - - - 13.9 - - 31.3 0.1 - - - 0.6 21.6 4.5 0.6 3.0 - 0.6 - - - - - - - - - 6.1 0.6 0.5 8 20 -

1228.64 - - - - - 0.2 0.2 0.9 - - - - 0.3 7.6 - - - - 0.2 0.3 - 0.2 - - 0.5 23.0 0.2 - - - - 22.5 0.1 - 22.1 - - - - - 13.4 3.5 2.0 0.7 - 2.0 - - - - - - - - - 6.3 0.1 0.0 0 22 -

1228.84 - - - - - - - 0.9 - - - - - 6.3 - - - - 0.4 - - 0.2 - 0.1 - 18.2 - - - - - 30.2 - - 21.3 0.1 - - - 0.1 14.5 4.7 1.5 0.9 - 0.6 - - - - - - - - - 6.7 0.4 0.3 4 21 -

1229.06 - - - - - - - 1.4 - - - - - 6.1 - - - - 1.4 0.1 - 0.2 - 0.1 0.1 10.6 - - - - - 31.1 0.2 - 26.2 - - - - 0.1 13.7 3.3 1.9 2.6 - 0.9 - - - - - - - - - 6.7 0.7 0.5 7 19 -

1229.14 - - - - - - 0.1 0.7 - - - - 0.9 10.2 - - - - 0.5 0.1 - - - - 0.3 18.2 - - - - - 17.0 - - 24.7 - - - - 0.2 15.9 4.0 3.2 1.1 - 2.9 - - - - - - - - - 6.7 0.7 0.3 5 21 -

1229.28 - - - - - 0.1 - 0.4 - - - - 0.4 5.1 - - - - 0.2 - - 0.5 - - 0.3 22.0 - - - - - 21.5 0.1 - 24.9 - - - 0.1 0.1 13.9 4.6 2.7 2.0 - 1.1 - - - - - - - - - - - - - - -

1229.43 - - - - - - 0.2 1.9 - - - - - 6.0 - - - - - - - 0.2 - - - 26.9 - - - - - 17.4 - - 29.5 0.1 - - - 0.3 9.7 3.4 1.0 2.1 - 1.2 - - - - - - - - - 6.5 0.2 0.1 2 23 -

1229.61 - - - - - - 0.6 1.8 - - - - 1.3 1.2 - - - - - - - 0.4 - 0.1 0.2 27.1 - - - - - 30.1 - - 19.8 - - - - 0.3 9.4 1.8 1.5 - - 4.4 - - - - - - - - - 6.7 0.4 0.4 5 21 -

1229.75 - - - - - - - 1.0 - - - - 3.3 0.1 - - - - - 0.4 - 0.4 - 0.1 - 32.4 2.0 - - - - 32.4 - - 13.3 - - - 0.1 0.0 4.0 1.4 4.8 0.1 - 4.2 - - - - - - 3.51 0.65 100 7.0 0.1 0.0 1 19 -

1229.83 - - - - - - - 1.0 - - - - 0.4 0.3 - - - - 0.1 - - 0.8 - - - 28.6 - - - - - 31.6 - - 19.9 - - - - - 7.0 3.6 1.9 - - 4.8 - - - - - - - - - - - - - - -

1229.93 - - - - - - - 0.9 - - - - 0.2 1.2 - - - - 0.6 - - 0.3 - 0.1 - 21.5 - - - - - 25.7 - - 29.3 - - - - 0.1 9.8 1.9 0.4 - - 8.0 - - - - - - 3.66 0.35 100 6.8 0.1 0.0 1 21 -

1230.00 - - - - - - - 0.7 - - - - 0.5 0.1 - - - - 0.4 - - 0.7 0.1 - - 31.3 - - - - - 33.4 - - 12.9 - - - - - 9.8 0.8 3.1 - - 6.2 - - - - - - - - - 7.3 1.0 0.8 11 18 -

1230.10 - - - - - - - 0.8 - - - - 0.2 1.1 - - - - 0.8 - - 0.4 - - 0.2 27.9 - - - - - 15.9 - - 19.5 - - - - - 20.7 4.3 2.1 0.1 - 6.0 - - - - - - - - - 6.7 0.4 0.3 4 19 -

1230.18 - - - - - - - 1.4 - - - - - 8.7 - - - - 0.5 - - 0.1 - - - 22.0 - - - - - 20.5 - - 24.9 - - - - 0.1 7.5 3.7 6.7 3.2 - 0.7 - - - - - - - - - 7.2 0.5 0.3 4 25 -

1230.50 - - - - - - - - - - - - 0.2 2.9 - - - - 0.5 0.3 - 0.3 - - - 18.4 - - - - - 16.3 0.1 - 22.9 - - - - 0.5 26.1 6.8 1.4 2.2 - 0.8 - - - - - - - - - 6.7 0.2 0.1 1 20 -

1230.74 - - - - - - 0.1 0.4 - - - - 0.6 7.4 - - - - 0.6 0.1 - - - - 0.1 18.4 - - - - - 17.0 - - 26.6 - - - - - 21.8 2.5 0.7 1.5 - 2.2 - - - 1.07 0.10 16 - - - 4.9 1.2 0.6 12 21 -

1230.94 - - - - - - - 0.2 - - - - - 0.6 - - - - - 0.1 - - - - - - 75.1 - - - - 4.7 - - 1.7 - - - - - 2.1 0.1 14.1 - - 1.3 - - - - - - - - - - - - - - -

1231.14 - - - - - - - 0.8 - - - - 0.6 7.5 - - - - 0.2 0.1 - 0.3 - 0.1 0.1 25.5 - - - - - 21.6 1.2 - 24.5 - - - - 0.1 8.1 5.5 0.3 - - 3.5 - - - - - - - - - 7.2 0.7 0.6 8 15 -

1231.30 - - - - - - - 0.3 - - - - 0.5 2.5 - - - - 0.3 0.1 - 0.2 - 0.2 - 22.5 0.2 - - - - 20.1 0.8 - 27.1 - - - - 0.1 13.9 4.9 4.7 0.3 - 1.3 - - - - - - - - - 6.0 0.6 0.4 6 22 -

1231.53 - - - - - - - 0.1 - - - - 0.1 7.1 - - - - 1.3 0.1 - 0.2 - 0.1 0.6 15.5 - - - - - 11.5 - - 43.1 - - - - 0.4 5.4 5.6 1.6 1.3 - 5.8 - - - - - - - - - 6.0 0.9 0.4 7 19 -

1231,73 o - - - - - - - 0.7 - - - - 0.2 1.4 - - - - 1.5 - - 0.3 - - - 20.9 - - - - - 33.5 - - 26.4 - - - - - 5.3 2.6 - - - 6.4 - - - - - - - - - 6.7 0.6 0.2 4 19 -

1231.93 - - - - - - - 0.8 - - - - 0.9 2.5 - - - - 0.3 0.5 - 0.1 - 0.1 0.0 21.8 0.1 - - - - 39.1 0.2 - 18.0 - - - 0.3 - 3.4 2.4 - 1.0 - 6.1 - - - - - - - - - 6.7 0.3 0.2 2 19 -

1231.84-1232.2 - - - - - - - 0.3 - - - - 0.1 6.3 - - - - 0.7 0.4 - - - - 1.0 20.0 - - - - - 20.1 0.2 - 29.5 - - - - 0.2 9.1 4.5 1.1 4.1 - 2.4 - - - 1.21 0.10 30 - - - 6.3 0.3 0.1 1 18 -

1231.84-1232.3 - - - - - - - 0.9 - - - - 0.3 4.5 - - - - 0.7 0.3 - 0.1 - - - 25.0 0.2 - - - - 21.5 - - 30.7 0.1 - - - 0.3 5.9 4.3 1.8 2.5 - 0.9 - - - 1.10 0.10 17 3.26 0.44 100 5.9 0.3 0.2 4 20 -

1231.84-1232.4 0.1 - - - - - - 0.9 - - - - 0.1 4.9 - - - - 0.3 0.3 - 0.3 - - - 18.0 0.2 - - - - 21.0 0.9 - 31.4 - - - - 0.2 11.9 6.5 0.9 2.0 - 0.8 - - - - - - - - - - - - - - -

mudstone, 

calcareous 

with pyrite 

inclusions, 

plant 

remains

ORGANIC PETROGRAPHY

el.-elongated; eq.-equidimensional; M.Spor.- meta-sporinite;  M.Tel.- meta-telalginite; fil.-filamentous; M.Liptd.-meta-liptodetrinite;  M.Bit. I-meta-bituminite I; M.Bit. II-meta-bituminite II; M.Bit. III-meta-bituminite III; M.Bit. IV- meta-bituminite IV; M.Bit. IV- meta-bituminite IV; M.Bit.V- meta-bituminite V;  M.Bit.VI- meta-bituminite VI; homog.-homogeneous; heter.-heterogeneous; Oil drop.-oil droplets; Fus.-fusinite; Semifus.-semifusinite; Secret.-secretinite; Intd.-inertodetrinite; Micr.- micrinite; fish r.-fish remains;  biocl.-bioclasts; bits.-bituminous; l.-bits.-low bituminous; n.-bits.-non-bituminous; mic.-r.- micrinite-rich; F.g.pel.-Fine-grained peloids; C.g. pel.-Coarse-grained peloids; is. cry.-isolated 

crystals; coccol.-coccoliths; dol.-dolomite; Glauc.-Glauconite; qtz.-quartz; Gyps.-Gypsum; cryst.-crystals ; framb.-framboidal; epig.-epigenetic.

mean-mean value; s.d.-standart deviation; n-total number of measurements.

ORGANIC GEOCHEMISTRY

*-[mg HC/g],~-[mg HC/g TOC], ~~-[mg CO2/g TOC].

L
ia

s 
ep

si
lo

n

Lithology
Bitumen

Reflection, %Ro

ORGANIC PETROGRAPHY

Age

Local 

names

recycled

Vitrinite

autochthonous homogeneous heterogeneous Mineral groundmass Carbonates Detrital minerals Zooclasts

Sample/ Depth, 

m

ORGANIC GEOCHEMISTRY

Organic matter Mineral matter, [vol. %]

Meta-vitrinite (V) [vol.%] Meta-liptinite (L) [vol.%] Inertinite (I) [vol.%]

Pyrite

heterogeneous homogeneous homogeneous M.lamalginite calcareous clayey

M.Alginite Migrabitumen
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Appendix A6:  Dotternhausen-1001 well 

Spor.  Liptd. Bit. I  Bit. II Bit. III Bit. IV Bit. V Bit. VI Oil drop. Fus. Semifus. Secret. Intd. Micr. F.g. pel. C.g. pel. Glauc. Gyps. mean s.d. n

Tel. homog. heter. is. cry. coccol. dol. qtz mica crys. framb. epig. shell fish r. biocl.

el. eq. el. eq. el. eq. discrete fil. layered bits. l.-bits. n.-bits. bits. l.-bits. mic.-r.

22-29 34.15 mudstone, dark gray - - 0.1 - 0.1 - - 0.3 0.9 - - 0.9 - - - - - - - - - - - - - - 76.1 - 8.2 2.9 0.7 - - 0.7 - - 0.3 - - 0.3 0.2 0.1 - 0.3 5.9 - 2.0 - - -

23-95 35.58 - - - - 0.1 - - - 0.5 - - 0.9 - - - - - 0.4 - - - - - - - - 7.9 - 68.4 0.7 1.0 - - - - - 6.0 - - 0.2 0.3 0.5 0.1 4.9 0.7 - 7.4
- - -

24-0.3 35.59 - - - - - - - - 0.5 0.3 - - - - - 0.1 - 0.4 - - - - - - - - 1.8 - 83.3 0.3 0.4 - - - - - 5.9 - - 0.2 0.1 - - 0.6 0.1 0.1 5.9 - - -

24-65 36.44 - - - - - - 0.1 0.4 4.6 1.0 - 9.6 0.3 0.1 - 0.1 - 0.3 - - - - 0.1 - 0.2 0.1 27.0 - 37.2 3.1 0.2 - - 0.4 - - 0.7 - - 1.4 0.1 1.5 0.1 2.6 3.4 0.1 5.3
- - -

24-82 36.45 0.1 - - - 0.1 - - 0.4 0.9 0.4 - 1.7 - - - - - 0.2 - - - - - - - - 7.3 - 57.3 4.6 0.8 - - - - - - - - 0.1 0.1 1.3 0.1 5.2 4.0 1.3 14.1 - - -

25-0.6 36.62 - 0.1 0.1 - 0.1 - - 1.3 7.8 1.2 0.8 10.7 2.3 - - 0.1 - 0.3 - - - - - - 0.2 0.4 2.7 34.5 5.0 14.3 0.5 - - 2.4 - - 0.4 - - 3.9 0.6 2.9 2.2 3.4 1.4 0.1 0.3 0.47 0.06 -

26-0.3 37.65 - - 0.1 - 0.1 - - 0.7 3.8 0.6 0.6 3.8 2.6 - - 0.3 - 0.0 - - - 0.1 - - - 0.5 20.1 - 4.9 9.3 5.2 - - 0.3 - - 0.1 - - 0.3 - 1.4 0.4 3.3 40.6 0.6 0.3 - - -

27-11 38.71 - - 0.1 - - - - 0.5 1.4 0.4 - 2.1 0.2 0.1 - 0.1 - 0.5 - - - - - - - 0.1 64.1 - 24.8 1.9 1.1 - - 0.2 - - - - - 0.1 - - 0.5 1.7 - - 0.1 - - -

28-81 40.42
limestone, 

bituminous
- - 0.1 - 0.2 - - 0.4 4.8 0.4 0.5 6.7 0.8 - 0.1 3.8 - 0.5 - - - - - - 0.2 0.7 46.7 - 2.6 13.5 1.1 - - 3.5 - - 0.1 - - 2.0 - 2.7 0.7 3.0 2.9 0.2 1.8

0.44 0.04 5

30-56 42.17
silty marls, weakly 

bituminous
- - - - - 0.2 0.1 0.4 4.2 0.5 0.7 7.3 0.7 0.9 - 1.4 - - - - 0.1 - 0.2 - 0.1 0.1 40.5 - 11.1 14.3 8.3 - - 2.7 - - - - - 1.9 0.4 1.2 1.1 1.5 - - 0.1

- - -

31-40 43.02

silty marls, 

bituminous, 

laminated

0.1 - - - 0.2 - - 1.1 5.2 1.5 0.1 8.2 2.5 0.9 - 0.4 - - - - - - 0.3 - - 0.4 21.5 - 10.8 22.7 4.7 - - 5.7 0.1 - - - - 2.5 0.3 4.8 2.6 3.2 0.1 0.1 -

- - -

31-64 43.24

limestone, 

bituminous, poor 

laminated

- - - - 0.1 - - 0.1 4.3 0.9 - 2.9 0.1 0.2 - 0.3 - 0.7 - 1.0 0.2 - - - - - 59.1 - 20.0 0.9 0.3 - - 0.3 - - 0.1 - - - - 0.7 0.1 7.5 0.2 - -

- - -

32-90 44.38

silty marls, 

bituminous, 

laminated

- - - - - - - 0.7 3.9 0.9 0.8 0.5 3.3 0.4 - - - 2.2 - - 1.8 - - - - - 40.1 - 28.7 9.2 1.6 - - 0.2 - - - - - 0.2 0.3 0.6 2.6 1.9 - - 0.1

- - -

33-21 44.82 0.1 - 0.1 - - - - 0.2 2.8 1.1 - 0.3 3.1 0.8 0.1 - - - - - - - - - - - 2.1 - 9.6 34.2 19.7 - - 7.6 - - - - - 6.2 0.4 3.7 7.2 - - 0.1 0.6

0.4 0.04 71

34-27 45.85 - - - - - - - 0.5 2.3 0.6 0.9 3.3 0.7 0.7 0.2 - - - - - - - - - - - 3.1 - 5.1 30.8 32.9 - - 5.1 0.1 - - - - 4.5 0.3 1.2 6.8 0.1 - 0.5 0.3 - - -

34-44 a 46.03 - - 0.1 - - - - 0.5 4.6 0.9 0.5 3.8 3.2 0.1 - - - - - - - - - - - - 2.9 - 5.2 36.6 15.4 - - 9.0 - - - - - 5.8 0.3 0.8 7.8 2.1 0.1 0.3 - - - -

34-44 b 46.03 0.2 - 0.1 - - - - 0.1 0.1 - - 0.7 - - - - - - - - - - - - - - 5.5 - 77.5 0.1 2.8 - - 0.2 - - 7.9 - - 0.3 0.7 0.4 0.2 0.1 0.1 2.3 0.7 - - -

34-55 46.15
silty marls, weakly 

bituminous
- - 0.1 - - - - 1.0 4.3 0.7 0.5 2.2 4.0 - 0.1 - - - - - - - - - 0.3 - 8.1 - 12.7 47.9 6.9 - - 0.8 - - - - - 2.1 0.1 2.5 2.9 0.0 2.2 0.4 0.2

- - -

34-60 46.2
silty marls, 

bituminous
0.1 - 0.1 - - - - 1.3 1.4 2.8 1.0 2.1 1.5 1.0 0.1 - - - - - - - - - 0.1 - 3.0 - 3.0 64.7 6.0 - - 1.0 - - - - - 3.1 - 0.4 6.4 - 0.9 - -

- - -

34-73 46.34
silty marls, brownish, 

bituminous
- - 0.1 - - - 0.1 1.2 5.7 0.6 0.5 6.8 1.0 - - 0.1 - - - - 0.1 - - - 0.5 - 31.2 - 5.6 19.8 2.0 - - 0.7 - - 0.1 - - 2.6 0.3 6.4 4.2 10.2 - 0.1 0.1

- - -

35-55 47.16 silty marls 0.1 0.1 0.1 - - - - 3.9 0.7 0.1 - 1.5 0.2 3.3 - - - 0.2 - - 0.1 - - - - - 47.2 - 26.7 5.6 4.6 - - 0.1 - - 2.1 - - 0.3 0.8 0.7 0.1 1.1 - - 0.4 - - -

36-27 47.83
silty marls, 

bituminous
- - 0.1 - - 0.1 0.1 0.6 4.0 1.0 0.2 5.3 2.7 0.1 - - - - - - - - 0.1 - 0.2 - 48.1 - 5.5 13.1 7.5 - - 1.0 - - 0.1 - - 2.9 0.4 3.1 1.6 2.1 0.1 - -

- - -

Sample

calcareous clayey

Carbonates

Inertinite (I) [vol.%]

Mineral groundmass Detrital minerals

marly shale, 

bituminous

L
ia

s 
ep

si
lo

n

limestone,bituminous, 

strong laminated

silty marls, 

bituminous

Local 

names

Migrabitumen

Organic matter Mineral matter, [vol. %] VR

Vitrinite (V) [vol.%] Liptinite (L) [vol.%]

Zooclasts

ORGANIC PETROGRAPHY

Pyrite
Depth, m

ORGANIC PETROGRAPHY

mean-mean value; s.d.-standart deviation; n-total number of measurements.

[%]

autochthonous recycled Alginite

L
ia

s 
ze

ta

ORGANIC GEOCHEMISTRY

*-[mg HC/g],~-[mg HC/g TOC], ~~-[mg CO2/g TOC].

heterogeneous homogeneous homogeneous lamalginite

silty marls

Lithology

Age

el.-elongated; eq.-equidimensional; Spor.- sporinite;  Tel.- telalginite; fil.-filamentous; Liptd.-liptodetrinite;  Bit. I-  bituminite I; Bit. II-bituminite II; Bit. III- bituminite III; Bit. IV- bituminite IV; Bit. IV- bituminite IV; Bit.V- bituminite V;  Bit.VI- bituminite VI; homog.-homogeneous; heter.-heterogeneous; Oil drop.-oil droplets; Fus.-fusinite; Semifus.-semifusinite; Secret.-secretinite; Intd.-inertodetrinite; Micr.- micrinite; fish r.-fish remains;  biocl.-bioclasts; bits.-bituminous; l.-bits.-low bituminous; n.-bits.-non-bituminous; mic.-r.- micrinite-rich; F.g.pel.-Fine-grained peloids; C.g. pel.-Coarse-

grained peloids; is. cry.-isolated crystals; coccol.-coccoliths; dol.-dolomite; Glauc.-Glauconite; qtz.-quartz; Gyps.-Gypsum; cryst.-crystals ; framb.-framboidal; epig.-epigenetic.
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Appendix A7: Notzingen-1017 well 

TOC S1 S2 HI OI Tmax

 (I) [%] * * ~ ~~ °C

Spor.  Liptd. Bit. Bitumen Oil d. [vol.%] Min.g. Pyrite Zooclasts

Tel. mean s.d. n mean s.d. n mean s.d. n

26.09 3.0 - - 3.7 4.1 - - - 0.7 81.1 1.4 6.0 0.22 - 1 0.42 - 2 0.54 0.20 12 - - - - - -

26.76 1.4 - - 1.1 2.1 - - - 1.1 90.2 2.2 1.9 0.32 - 1 0.44 0.02 3 0.55 0.20 6 - - - - - -

26.92
bituminous shale 

burrowed
- 0.5 0.6 8.8 15.0 3.0 0.1 - 0.5 64.4 4.0 3.1 0.24 0.50 28 0.43 0.03 11 0.56 0.20 4 1.4 0.2 5.15 348 22 431

27.05 0.2 0.6 0.5 7.3 16.6 2.8 - - 0.6 66.4 3.5 1.6 0.22 0.03 20 0.41 0.04 13 0.56 0.20 10 - - - - - -

27.55 - 0.5 0.2 9.0 10.7 0.7 - - 1.3 73.1 4.1 0.3 0.22 0.03 8 0.42 0.04 25 0.55 0.20 16 3.8 0.8 20.5 510 11 430

28.02
calcareous shale 

burrowed
0.1 0.5 0.1 7.9 9.6 2.4 - - 0.8 72.6 5.6 0.2 0.25 0.02 4 0.43 0.04 32 0.55 0.20 6 7.3 2 44.2 618 10 429

28.18 bituminous shale 0.1 0.1 - 4.0 6.7 0.1 - - 0.4 84.9 3.0 0.5 0.24 0.02 4 0.43 0.04 25 0.54 0.20 8 5.2 1.3 28.9 549 12 428

28.32 bituminous limestones - 0.1 0.1 4.6 9.0 0.9 - - 1.2 80.8 3.0 0.3 0.24 0.03 12 - - - 0.44 0.03 68 - - - - - -

28.57 bituminous shales 0.3 0.5 0.1 7.5 10.2 1.8 - - 0.9 74.3 4.3 0.2 0.24 0.03 12 - - - 0.47 0.06 38 9.9 4.1 60.2 557 7 428

28.80 bituminous limestone 0.0 0.5 - 3.0 7.1 - - - 0.8 81.7 6.9 0.0 0.22 0.03 31 0.40 0.05 23 0.53 0.02 5 2.8 0.5 15.4 527 12 431

29.05 0.3 0.3 0.4 3.1 14.9 2.2 - - 0.6 73.1 4.6 0.5 0.23 0.02 25 - - - 0.43 0.06 47 - 0.5 11.4 466 19 430

29.34 0.1 0.8 0.8 4.7 12.1 1.5 - - 0.7 73.3 5.1 0.8 0.23 0.04 26 - - - 0.44 0.05 59 - - - - - -

29.40 bituminous limestone - - 0.2 4.6 3.0 - - - 0.5 88.1 3.5 0.1 0.23 0.04 16 - - - 0.44 0.05 27 1.4 0.2 4.6 322 27 430

29.60 - 0.1 0.7 4.7 14.6 4.8 - - 0.4 69.0 5.5 0.3 0.22 0.00 1 - - - 0.42 - 2 7.8 2.4 49.8 585 7 432

29.90 - 0.2 - 6.7 13.7 8.0 - - - 67.2 4.0 0.2 0.26 0.04 36 0.39 0.02 16 0.51 0.04 10 6.3 1.9 36.2 559 10 431

30.06 bituminous limestone 0.1 - 0.1 12.8 10.9 1.9 - - - 70.0 3.9 0.2 0.21 0.03 14 0.39 0.03 28 0.49 0.02 14 11.2 5.8 66.8 615 13 430

30.25 0.1 - - 10.2 14.1 6.5 - - - 63.5 4.0 1.5 0.27 0.03 21 - - - 0.45 0.03 52 8.0 2.7 52.8 701 9 430

30.41 0.3 0.1 0.1 7.5 12.5 4.1 - - 0.1 70.2 4.2 0.9 0.25 0.02 28 0.37 0.02 25 0.44 0.02 28 9.3 5.7 63.6 615 10 429

30.54 bituminous shale/coquina 0.3 0.3 1.2 9.7 9.8 8.6 0.1 - 0.4 60.8 4.0 4.8 0.27 0.04 18 0.40 0.02 20 0.52 0.03 45 5.5 4.1 39.6 615 9 430

30.72
bituminous calcareous 

shale
0.2 - - 6.1 5.4 1.4 - - 1.8 78.5 5.4 1.2 - - - 0.37 0.00 1 0.54 0.02 4 - 3.8 60.7 626 11 427

30.80 bituminous shale 0.7 0.2 0.5 5.4 6.1 0.5 - - 2.0 81.7 2.9 - 0.26 0.03 13 - 0.47 0.04 38 8.0 3.5 51.1 668 9 431

30.90
bituminous shale 

burrowed
0.2 0.4 - 1.1 2.8 1.3 0.2 - 1.3 89.5 2.8 0.5 0.30 0.03 10 0.41 0.02 5 0.57 0.06 47 1.8 0.8 11.7 583 14 431

31.20 calcareous shale 0.7 - 0.4 - 4.1 0.4 - - 1.9 87.2 4.9 0.5 0.25 0.05 5 0.41 0.02 4 0.58 0.05 18 7.1 2.8 44.7 682 11 430

31.35
bituminous shale 

burrowed
- - 0.2 1.8 4.9 1.8 - - 0.4 85.7 4.7 0.4 0.27 0.03 8 0.41 0.02 4 0.54 0.04 30 8.8 3.8 53.5 594 10 429

31.38
calcareous bituminuos 

shale
0.2 - 0.5 5.4 4.8 0.9 - - 0.5 83.3 4.1 0.3 0.26 0.05 12 0.41 0.02 13 0.54 0.05 41 1.8 0.8 12.8 670 16 430

31.44
bituminous shale 

burrowed
- - 0.6 3.3 1.9 11.1 0.2 - 0.8 66.2 15.9 - 0.27 0.03 12 0.44 0.03 29 0.60 0.05 16 7.2 3.1 46.7 630 12 429

31.50 calcareous shale - 0.4 0.2 0.8 0.8 0.6 - - 0.6 94.7 1.8 - - - - 0.37 0.06 10 0.61 0.05 27 5.0 1.7 34.1 671 12 429

31.63
calcareous shale 

burrowed
- 0.4 0.3 1.6 2.7 5.8 0.1 - 0.6 84.6 3.5 0.3 - - - 0.40 0.09 22 0.57 0.04 45 3.2 0.8 18.8 603 18 429

31.76 bituminous shale 0.8 0.1 0.4 2.8 3.2 2.2 0.1 - 0.8 87.4 2.2 0.1 - - - 0.37 0.08 33 0.56 0.04 35 5.8 2 35.8 656 13 430

31.84
calcareous shale 

burrowed
0.5 0.3 0.3 2.4 2.6 1.2 0.2 - 0.5 88.7 3.1 0.2 - - - 0.34 0.08 31 0.56 0.03 56 - 2.6 44.3 619 10 432

32.20 calcareous shale 0.8 - - - - 0.8 - - 1.7 93.8 2.5 0.4 - - - 0.35 0.07 10 0.57 0.03 6 10.0 4.2 66.3 624 9 433

32.33
bituminous shale 

burrowed
- - - 2.3 2.8 1.2 - - 0.2 89.7 2.9 0.9 - - - 0.35 0.08 13 0.56 0.04 44 9.7 4.5 62.89 630 10 432

32.44 5.1 - - - - - - - - 89.9 4.0 1.0 - - - 0.42 0.05 10 0.62 0.04 8 - - - - - -

32.65 4.0 - - - - - - - - 92.1 2.6 1.3 - - - 0.47 0.05 2 0.64 0.03 9 0.7 0.1 1.5 201 42 431

ORGANIC PETROGRAPHY

Spor.- sporinite;  Tel.- telalginite; Lamalg.-lamalginite;Liptd.-liptodetrinite;  Bit.- sum of bituminites; Oil d.-oil droplets; I-inertinite group; Min.g.-mineral groundmass.

Age

Local names

bituminous shale

calcareous shale

ORGANIC GEOCHEMISTRY

Liptinite (L) [vol.%]

Organic matter

bituminous shale

*-[mg HC/g],~-[mg HC/g TOC], ~~-[mg CO2/g TOC].

Lamalg.

Alginite Bitumen-Jet Vitrinite

mean-mean value; s.d.-standart deviation; n-total number of measurements.

ORGANIC GEOCHEMISTRY

Lias delta

Lithology

calcareous shale

bituminous shale

L
ia

s 
ep

si
lo

n

Mineral matter, [vol. %]

bituminous shale

Sample/ 

Depth, m

ORGANIC PETROGRAPHY

Reflection, %Ro

Vitrinite (V) 

[vol.%]

Lias zeta

Bitumen
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Appendix A8: Bisingen-1002 well 

TOC S1 S2 HI Tmax

 (I) [%] * * ~ °C

Spor.  Liptd. Bit.I Bit.II Bit.III Bitumen Oil d. [vol.%] Pyrite Zooclasts

Tel. Clayey Calc. mean s.d. n mean s.d. n

343 21.22 2.0 1.3 - 0.3 - - - - - - 0.8 95.4 0.1 2.0 0.5 0.37 0.06 11 0.53 0.05 19 0.9 0.2 0.8 88 438

341 22.63 2.5 0.6 - 0.8 - - - - - - - 96.7 0.0 1.0 0.6 0.37 0.07 10 0.53 0.05 12 0.8 0.1 0.9 108 439

3a 24.61 1.5 0.3 - 0.6 1.2 0.2 - 0.5 - - - 96.4 0.0 1.0 0.9 0.43 0.06 16 0.58 0.05 10 0.7 0.2 0.6 89 436

346 25.87 1.7 - - - 0.6 0.1 - - - - 0.6 41.1 56.4 2.0 2.3 0.38 0.05 8 0.55 0.05 9 0.4 0.1 0.4 102 437

344 26.44 1.0 - - - - - - - - - - 58.5 35.7 1.0 6.0 0.37 0.04 5 0.54 0.04 11 0.3 0.1 0.3 93 437

3a1 26.83 Limestone 0.2 0.2 - 0.2 - - - - - - - 97.3 1.0 3.4 0.42 0.00 1 0.62 0.03 6 0.1 0.1 0.1 75 437

3a2 26.92

Calcareous 

shale
0.8 0.2 - - 0.2 0.2 - - - - 0.2 4.4 80.6 1.0 14.6 0.38 0.04

9 0.54 0.05 12
0.2 0.1 0.3

123 436

3a3 27.02

Bituminous 

limestone
0.5 - - - 0.2 0.1 - - - - - 22.7 65.6 4.0 13.4 - -

- - - -
0.5 0.2 1.1

211 433

3a4 27.06 0.2 0.9 - 1.4 2.9 0.9 - 0.3 - - 0.8 60.0 32.4 3.0 2.9 - - - - - - 1.9 0.4 6.8 365 435

3b 27.18 - 0.5 - 1.7 3.1 1.5 - 0.1 - - 0.5 77.3 16.0 2.0 1.3 0.38 0.05 16 0.57 0.07 33 2.7 0.6 11.0 401 433

3c 27.49 - 0.2 0.1 3.6 3.6 1.6 - 0.9 - - 0.7 60.9 28.6 2.0 1.4 - - - - - - 3.3 0.8 15.3 467 433

311 28.13 0.2 1.2 0.2 4.3 3.7 2.2 - 0.8 - - 0.2 46.3 38.2 2.0 5.3 - - - - - - 5.1 1.7 27.4 538 431

319 28.71 - - - 7.3 8.1 6.0 - 0.7 - - 0.4 58.9 21.1 2.0 4.2 - - - - - - 6.6 2.6 35.7 542 433

3d 29.14 - - 0.4 4.0 11.2 9.4 - 0.5 - - 0.4 34.9 31.3 2.0 18.4 - - - - - - 4.0 1.9 23.9 597 432

3c 29.45 0.2 - - 8.8 8.6 4.3 - 0.7 - - 0.2 33.0 51.4 4.0 1.2 - - - - - - 6.0 2.9 35.0 580 433

318 29.91 - - 0.3 3.9 3.6 2.6 - 0.2 - - 0.3 32.7 42.5 3.0 17.6 0.28 0.04 20 0.49 0.04 36 5.6 2.4 31.7 567 430

320 30.85 - - 0.4 10.6 4.8 2.9 - 0.5 - - 0.6 44.2 39.0 3.0 1.0 - - - - - - 7.0 3.3 37.7 540 432

3n 31.27

Bituminous 

limestone
- - - - - - - - - - - 3.0 96.0 1.0 - - -

- - - -
0.4 0.1 0.8

200 435

3f 31.35 0.4 0.2 0.4 9.0 3.8 2.7 - 0.3 - - 0.8 47.1 34.0 2.0 3.8 - - - - - - 6.6 2.8 35.9 548 430

3g 31.56 0.3 0.3 - 6.2 6.5 4.2 - 0.9 - - - 19.4 57.9 3.0 9.9 - - - - - - 4.8 1.7 23.1 484 429

323 31.92 - 0.2 0.2 8.6 5.4 3.3 - 0.5 - - 0.2 45.8 36.8 3.0 1.4 - - - - - - 6.1 3.0 33.6 548 429

314 32.76 0.2 0.0 0.2 9.2 6.4 4.0 - 0.7 - - 0.2 51.8 29.2 3.0 0.9 - - - - - - 7.3 3.8 39.7 542 430

312 33.62 0.3 0.3 0.3 8.4 13.4 9.0 - 0.5 - - - 38.0 38.3 4.0 0.3 - - - - - - 7.8 3.4 40.8 524 432

3m 34.09 - 0.5 0.3 8.9 7.6 4.2 - 0.6 - - - 16.4 62.0 5.0 0.3 0.27 0.06 11 0.49 0.04 58 5.2 2.2 28.1 542 431

324 34.34

Bituminous 

limestone
- - - 2.5 1.4 0.3 - - - - 0.4 0.6 93.1 4.0 - - -

- - - -
1.3 0.5 7.2

569 428

313 34.79

Bituminous 

shale
0.2 0.2 - 4.2 5.9 2.9 - 0.6 - - 0.8 53.1 31.7 4.0 0.4 - -

- - - -
4.4 1.3 23.4

538 432

322 34.98

Bituminous 

limestone
- - - 1.8 1.3 0.5 - - - - 0.3 0.2 90.7 4.0 - 0.27 0.04

21 0.45 0.06 72
6.5 2.9 36.2

557 431

315 35.66 - - - 5.4 30.3 28.5 - 0.1 - - - 41.9 13.8 5.0 0.5 0.23 0.05 117 0.45 0.04 206 11.6 6.7 67.9 586 430

317 36.73 0.3 0.3 - 10.5 7.7 5.0 - 0.1 - - - 57.1 19.0 6.0 1.5 0.26 0.04 186 0.49 0.04 267 7.7 3.4 44.8 585 431

316a 37.37 - 0.0 1.2 5.8 8.5 6.3 0.1 0.0 - - 0.2 51.9 28.1 3.0 3.0 - - - - - - 8.5 4.4 42.6 503 431

316b 37.52 0.4 0.4 0.4 12.2 6.5 3.7 - 0.1 - - 1.1 64.8 8.8 11.0 0.4 - - - - - - 4.2 1.1 22.1 531 434

342 37.95

Calcareous 

shale
0.7 - - 3.4 - - - - - - 1.4 89.0 6.0 4.0 0.7 - -

- - - -
0.8 0.2 0.8

91 430

3o 38.38

Bituminous 

shale
- 0.3 0.3 9.0 8.5 4.1 - - - - 0.6 73.1 6.2 9.0 0.9 - -

- - - -
4.0 1.0 16.3

408 430

3h 38.56

Calcareous 

shale
1.8 - - 1.1 0.6 0.1 - 0.2 - - 0.2 89.7 4.6 2.0 0.5 - -

- - - -
0.9 0.3 0.8

84 431

3i 38.79 - 0.3 - 4.5 11.5 6.1 0.1 0.9 - - 0.8 74.4 6.4 6.0 - 0.33 0.05 22 0.59 0.06 37 1.7 0.4 4.2 251 434

340 38.94 - 1.1 0.6 4.2 15.7 10.2 - - - - 0.3 69.0 7.9 5.0 0.6 - - - - - - 7.4 2.6 38.3 519 429

347 39.37

Calcareous 

shale
- - - 0.2 0.2 0.1 - - - - 1.3 91.7 6.0 1.0 1.0 - -

- - - -
0.5 0.1 0.3

62 433

3j 39.49

Bituminous 

shale
- - - 3.3 2.4 0.5 - 0.2 - - 1.2 82.0 10.7 4.0 - - -

- - - -
0.9 0.2 1.5

164 432

3k 39.64 - - - - - - - - - - 1.5 88.0 9.9 1.0 1.9 0.37 0.04 12 0.53 0.04 15 0.6 0.1 0.6 100 428

349 40.42 - - - - - - - - - - 1.9 78.3 18.7 2.0 4.7 0.38 0.05 8 0.55 0.05 15 0.2 0.1 0.1 60 430

31 41.3 - - - - - - - - - - 0.8 67.7 21.6 2.0 0.0 - - - - - - 0.3 0.1 0.2 77 439

Sample Lithology

Age

ORGANIC PETROGRAPHY ORGANIC GEOCHEMISTRY

Organic matter Mineral matter, [vol. %] Reflection, %Ro

Vitrinite 

(V) [vol.%]

Liptinite (L) [vol.%]

Local 

names

Alginite Bitumen Vitrinite

Lamalg.

Min.g.

L
ia

s 
e
p

si
lo

n

Lias delta

Depth, 

m

Claystone

Calcareous 

shale

Bituminous 

shale

Bituminous 

shale

Bituminous 

shale

*-[mg HC/g],~-[mg HC/g TOC].

ORGANIC PETROGRAPHY

Spor.- sporinite;  Tel.- telalginite; Lamalg.-lamalginite;Liptd.-liptodetrinite;  Bit I, II, III.-bituminite I, bituminite II, bituminite III; Oil d.-oil droplets; I-inertinite group; Min.g.-mineral groundmass; Calc.-calcareous.

mean-mean value; s.d.-standart deviation; n-total number of measurements.

ORGANIC GEOCHEMISTRY

Bituminous 

shale

Calcareous 

shale

Dogger 

alpha

Lias zeta
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Appendix B1: Distribution of the individual macerals' organo-mineral microfacies with the depth in well E (the West Netherlands Basin).  

On the Figure: Tel. – telalginite; Discr. – discrete lamalginite; Filam. – filamentous lamalginite; Ltd. – liptodetrinite; Bit. – bituminite; Sp. – 

sporinite; V. – vitrinite; Inert. – inertinite. 
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Appendix B2: Distribution of the individual macerals' organo-mineral microfacies with the depth in well M (the West Netherlands Basin). 

On the Figure: Tel. – telalginite; Discr. – discrete lamalginite; Filam. – filamentous lamalginite; Ltd. – liptodetrinite; Bit. – bituminite; Sp. – 

sporinite. 
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Appendix B3: Distribution of the individual macerals' organo-mineral microfacies with the depth in well A (the Lower Saxony Basin).  

Lithostratigraphic data are from unpublished BEB reports – BEB Erdöl und Erdgas GmbH. On the Figure: Tel. – telalginite; Discr. – discrete 

lamalginite; Filam. – filamentous lamalginite; Ltd. – liptodetrinite; Bit. – bituminite; Sp. – sporinite; Inert. – inertinite. 
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Appendix B4: Distribution of the individual macerals' organo-mineral microfacies with the depth in well D (the Lower Saxony Basin).  

On the Figure: Tel. – telalginite; Discr. – discrete lamalginite; Filam. – filamentous lamalginite; Ltd. – liptodetrinite; Bit. – bituminite; Sp. – 

sporinite; Inert. – inertinite. 
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Appendix B5: Distribution of the individual macerals' organo-mineral microfacies with the depth in well Dotternhausen-1001 (the South 

German Basin).  

On the Figure: Tel. – telalginite; Discr. – discrete lamalginite; Filam. – filamentous lamalginite; Ltd. – liptodetrinite; Bit. – bituminite; Sp. – 

sporinite; V. – vitrinite; Inert. – inertinite. 
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Appendix B6: Distribution of the individual macerals' organo-mineral microfacies with the depth in Notzingen-1017 well (the South German 

Basin).  

On the Figure: Tel. – telalginite; Lamalg. –  sum of lamalginite; Ltd. – liptodetrinite; Bit. – bituminite; Sp. – sporinite; V. – vitrinite; Inert. – 

inertinite. 
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Appendix B7: Distribution of the individual macerals' organo-mineral microfacies with the depth in Bisingen-1002 well (the South German 

Basin).   

On the Figure: Tel. – telalginite; Lamalg. – sum of lamalginite; Ltd. – liptodetrinite; Bit. – bituminite; Sp. – sporinite; V. – vitrinite; Inert. – 

inertinite. 


