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1. Introduction  1 

1. Introduction 

Plants are constantly exposed to a variety of different pathogens. Nevertheless, most plants in 

nature look healthy which argues for an effective immune system. Plants do not have mobile 

immune cells or an adaptive immune system as animals do; instead, each cell is able to 

establish an innate immune response. The first barriers for pathogens are preformed defense 

mechanisms like the plant cell wall, the cuticle or phytoanticipins, preformed toxic 

components (Eigenbrode et al., 1991; Osbourn, 1996; Malinovsky et al., 2014a). The second 

barriers are inducible defense mechanisms such as the production of reactive oxygen species, 

cell wall fortification or the production of phytoalexins (O'Brien et al., 2012; Ellinger and Voigt, 

2014; Poloni and Schirawski, 2014). Defense mechanisms have to be adapted to the pathogens 

life style, which can be biotrophic or necrotrophic. Biotrophic pathogens colonize living plant 

tissue and feed on plant metabolites. Necrotrophic pathogens kill the plant and feed on the 

dead plant tissue. Hemibiotrophic pathogens have a biotrophic life style at the beginning of 

their life cycle and are able to switch to a necrotrophic life style at the end of their life cycle 

(Glazebrook, 2005). As the induction of defense mechanisms is energy consuming they should 

only be activated after pathogen recognition and need to be tightly controlled. 

 

1.1. The two layered plant immune system 

The first step for the induction of an immune response is the recognition of possible 

pathogens. Plant pathogens can be feeding insects, bacteria, viruses, fungi or oomycetes. 

Microbial pathogens can be recognized by microbe associated molecular patterns (MAMPs or 

PAMPs for pathogen associated molecular patterns), which are conserved structures present 

in a large group of microbes (Medzhitov and Janeway, 1997). Examples are the bacterial 

flagellin, the elongation factor TU, the fungal cell wall component chitin or nlp20, a peptide 

pattern found in ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) from different 

microbes (Felix et al., 1993; Felix et al., 1999; Kunze et al., 2004; Böhm et al., 2014b). These 

structures are indispensable for the life of microbes, therefore well conserved and cannot be 

easily mutated (Boller and Felix, 2009). MAMPs are recognized via membrane bound pattern 

recognition receptors (PRRs). PRRs belong to the class of receptor-like kinases (RLKs) or 

receptor-like proteins (RLPs) with extracellular domains composed of e.g. leucine rich repeats 

(LRR) or lysine motif (LysM) domains (Böhm et al., 2014a). Recognition of MAMPs by PRRs 

leads to the induction of a certain level of defense that is effective against most non adapted 

pathogens and is summarized as PAMP triggered immunity (PTI) (Jones and Dangl, 2006). 
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Typical responses are calcium influx, alkalization of the apoplast, production of reactive oxygen 

species (ROS), activation of mitogen-activated protein kinase (MAPK) cascades or 

transcriptional activation of pathogenesis related (PR) genes such as chitinases or glucanases 

(Zipfel, 2009). However, by recognition of MAMPs plants cannot distinguish between 

pathogenic and non-pathogenic microbes and cannot determine the pathogen´s life style. 

Plants cannot only recognize non-selves but also structures that originate from the plant 

during infection. Many plant pathogens use lytic enzymes to destroy the plant cell wall and 

invade the cells. The generated cell wall fragments can be recognized as danger signals or 

damage-associated molecular patterns (DAMPs) (Matzinger, 2002).  

During an evolutionary arms race, pathogens developed mechanisms to suppress the 

plant immune response. They secrete effector proteins via a type III secretion system directly 

into the plant cell. These effectors evolved to interrupt the signaling cascade downstream of 

MAMP perception and therefore shut off the plant defense. The microbes are able to colonize 

the now susceptible plant and are called virulent. An example is the Pseudomonas syringae 

effector HRP outer protein M1 (HopM1) that targets the A. thaliana protein HopM interactor 7 

(AtMIN7), an ADP ribosylation factor - guanine nucleotide exchange factor (ARF-GEF) protein 

involved in vesicle transport and extracellular secretion (Nomura et al., 2006). 

Effectors are specific for a species or a small group of adapted pathogens and are 

therefore a good target for recognition of specific pathogens by the host. Indeed, plants 

evolved perception systems, the resistance (R)-proteins, to specifically recognize pathogens via 

their effectors and induce specific immune responses that are summarized as effector 

triggered immunity (ETI) (Jones and Dangl, 2006). Here the effectors that were destined by 

microbes to suppress ETI become avirulence (avr) factors. ETI responses resemble MTI 

responses but are stronger and accelerated and often lead to the induction of a hypersensitive 

response (HR), a locally restricted cell death response that aims to stop the proliferation of 

biotrophic pathogens (Morel and Dangl, 1997). HR responses would be beneficial for 

necrotrophic pathogens and are therefore not part of PTI. ETI was already described decades 

ago as the gene for gene hypothesis which states that the interaction of an avr-gene product 

with a cognate R-gene product in the host plant leads to an incompatible interaction due to 

induction of host defense responses (Flor, 1971). During that time this hypothesis was 

understood as a direct interaction between the effector and the R-protein, where the effector 

is the ligand and the R-protein is the receptor. Only a few cases for such a direct interaction 

have been described so far, for example the recognition of a tobacco mosaic virus (TMV) 

helicase by the tobacco R-protein N (Ueda et al., 2006). Most effectors are sensed indirectly, 

what explains how the small number of plant R-proteins can recognize the broad diversity of 
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pathogen effectors. The Arabidopsis genome contains about 125 NB-LRR proteins but each 

strain of the plant pathogen species Pseudomonas syringae already contains 10 to 40 effectors 

(Baltrus et al., 2011). An alternative recognition concept besides direct interactions is the 

guard hypothesis, which states that R-proteins monitor or “guard” the integrity of the host 

cellular target of the effector (Jones and Dangl, 2006). The third model describes that plants 

evolved mimics of real effector targets, that have no function in MTI, but solely as effector 

targets and are called decoys (van der Hoorn and Kamoun, 2008).  

 

  

Figure 1-1: Simplified representation of the plant immune system (Dangl et al., 2013). 
Recognition of MAMPs from pathogens with different life styles leads to the initiation of MTI (1). 
Pathogens deliver effectors into the plant cell (2) to suppress MTI (3). R-proteins can sense 
effectors in three distinct ways: direct effector R-protein interaction (4a), sensing alterations of a 
decoy (4b), or sensing alterations of a virulence target (4c). Effector recognition leads to ETI (5). For 
details see text. 

 

The relatively small number of R-proteins compared to effectors can also be explained 

by the fact that effectors from different pathogens target common plant proteins and thus 

effectors converge onto plant cellular hubs, which are highly interconnected proteins (Mukhtar 

et al., 2011). For example, two different Pseudomonas syringae effector avrRPM1 and avrB 

target RIN4, a regulator of basal defense, and phosphorylate it (Mackey et al., 2002). 

Phosphorylation of RIN4 is recognized by the R-protein RPM1 and ETI is induced. But the 

pathogen strikes back: another type III effector, avrRpt2, evolved that also targets RIN4 and 

leads to proteolytic cleavage of RIN4, blocking RPM1 function (Kim et al., 2005). The plant 
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counter strikes and evolved the R-protein RPS2 which detects cleaved RIN4 (Axtell and 

Staskawicz, 2003; Mackey et al., 2003). In this way the evolutionary arms race continues, 

natural selection leads to pathogens with new effector proteins to suppress ETI and plants 

with additional R-proteins that recognize the newly evolved effectors. 

Plant R-proteins structurally belong to the class of nucleotide-binding leucine-rich 

repeat proteins (NB-LRRs) with either N-terminal coiled-coil (CC) or Toll/Interleukin1-Receptor 

(TIR) domains. These two groups of NB-LRR proteins use different downstream signaling 

components (Aarts et al., 1998). CC-type NB-LRRs signal via the GPI-anchored Non-race specific 

disease resistance 1 (NDR1) protein (Century et al., 1997), TIR-type NB-LRRs require the 

Enhanced disease susceptibility 1/ Phytoalexin deficient 4/ Senescence associated gene 101 

(EDS1/PAD4/SAG101) complex (Wiermer et al., 2005). Both signaling pathways lead to the 

accumulation of the plant defense hormone salicylic acid (SA). In general, different 

phytohormones play a key role in coordinating defense responses against different types of 

pathogens (Pieterse et al., 2009). Biotrophic pathogens are typically sensitive to immune 

responses that are regulated by salicylic acid whereas necrotrophic pathogens are sensitive to 

immune responses induced by jasmonic acid (JA) and ethylene (ET) (Penninckx et al., 1998; 

Loake and Grant, 2007). The wound response after insect feeding is regulated by JA alone 

(McConn et al., 1997). As the different lifestyles of pathogens require different defense 

strategies, coordination is needed. This is achieved through a negative crosstalk between the 

SA and JA signaling pathways (Spoel et al., 2003). Phytohormones are also involved in systemic 

defense responses. Upon induction of defense at the site of infection, a systemic defense 

response is triggered in distal parts of the plant to protect the so far undamaged tissue against 

the subsequent pathogen invasion (systemic acquired resistance, SAR) (Durrant and Dong, 

2004). 

 

1.2. Receptor-like kinases and MAMP signaling 

As described above, the first layer of plant immunity is the recognition of MAMPs by PRRs. One 

of the best studied examples is the recognition of flg22, a 22 amino acid peptide from the 

bacterial flagellum, by the receptor Flagellin sensing 2 (FLS2) (Gomez-Gomez and Boller, 2000). 

FLS2 is a leucine-rich-repeat receptor-like kinase (LRR-RLK) consisting of 24 extracellular 

leucine-rich repeats, a single transmembrane domain and an intracellular kinase domain. Flg22 

binding to FLS2 leads to rapid heterodimerization of FLS2 with the co-receptor BRI1-associated 

kinase 1 (BAK1) (Chinchilla et al., 2007; Heese et al., 2007). BAK1 is also a LRR-RLK, but with 

only 5 extracellular leucine rich repeats and was initially identified as co-receptor of the 
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brassinosteroid receptor Brassinosteroid-insensitive 1 (BRI1) and named BRI1-associated 

kinase 1 (Li et al., 2002; Nam and Li, 2002). BAK1 is important for flg22 signaling, as bak1 

knockout mutants show strongly reduced flg22 responses (Chinchilla et al., 2007). BAK1 

belongs to a family of five somatic embryogenesis receptor kinase (SERK) proteins; these have 

partially redundant function and lead to residual MAMP responses in bak1-4 mutants (Heese 

et al., 2007). Recently the co-crystal structure of BAK1 and FLS2 extracellular domains has 

shown that flg22 first binds to FLS2, creating a new interaction interface for BAK1. Flg22 serves 

as a “glue” between the two molecules and BAK1 binds to the ligand, making BAK1 a real co-

receptor (Sun et al., 2013). Binding of flg22 leads to transphosphorylation events between the 

two kinase domains within seconds (Schulze et al., 2010). This activation leads to 

phosphorylation and activation of the receptor like cytoplasmic kinase (RLCK) Botrytis-induced 

kinase 1 (BIK1) which in turn transphosphorylates FLS2 and BAK1 and leads to the dissociation 

from both RLKs (Lu et al., 2010). BIK1 transduces the signal by activating the membrane bound 

NADPH oxidase Respiratory burst oxidase homolog D (RBOHD), which leads to rapid 

generation of ROS (Kadota et al., 2014; Li et al., 2014). Independently from BIK1, mitogen- 

activated protein kinase (MAPK) cascades are activated, but the direct link between receptors 

and MAPKs is missing (Asai et al., 2002). MAPK cascades are composed of a MAPKKK or MEKK, 

a MAPKK or MKK and a MAPK which are consecutively activated. Two distinct MAPKs cascades 

are activated upon flg22 treatment. One is composed of a so far unknown MEKK, MKK4/5 and 

MPK3/6 and the other one is composed of MEKK1, MKK1/2 and MPK4 (Rodriguez et al., 2010). 

At the same time a calcium influx leads to the activation of calcium dependent protein kinases 

(CDPKs) (Boudsocq and Sheen, 2013). Therefore, flg22 signaling cannot be seen as a linear 

cascade. Activation of the MAP kinases MPK3 and MPK6 could be directly linked to activation 

of WRKY type transcription factors, here WRKY22 and WRKY29 (Asai et al., 2002). MPK4 

phosphorylates MAP kinase substrate 1 (MKS1), which leads to release of MKS1-WRKY33 

complexes and induction of PAD3, the enzyme responsible for the production of the 

antimicrobial compound phytoalexin (Qiu et al., 2008). Flg22 signaling generally leads to strong 

gene expression reprogramming and among the induced genes RLKs are overrepresented 

leading to a positive feedback loop (Zipfel et al., 2004). Other flg22 responses like ethylene 

biosynthesis or callose deposition cannot be brought in line with the known signaling cascade. 

All these responses together are thought to lead to pathogen defense, as fls2 mutants are 

more susceptible to Pto DC3000 bacteria (Zipfel et al., 2004).  

The rapid induction of these defense responses is necessary to fend off pathogens but 

tight control of FLS2 and negative regulation is as important to avoid fitness costs and damage 

from constitutive defense responses. Negative regulators are for example the kinase-
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associated protein phosphatase Kinase-associated protein phosphatase (KAPP) that interacts 

with the inactive FLS2 kinase domain and prevents unwanted phosphorylation events (Gomez-

Gomez et al., 2001). After flg22 binding BAK1 leads to recruitment of the E3 ligases Plant U-Box 

12 and 13 (PUB12 and PUB13) that poly-ubiquitinate FLS2 and lead to its degradation (Lu et al., 

2011). Moreover FLS2 undergoes ligand induced endocytosis into late endosomal 

compartments for degradation (Robatzek et al., 2006). In addition to the function of removing 

the activated receptor, endocytosed FLS2 could also have a signaling function (Robatzek, 

2007). FLS2 additionally undergoes a constitutive cycling between the plasma membrane and 

early endosomes independent of BAK1 (Beck et al., 2012). More and more components of 

flg22-mediated signaling have been identified, like the calcium dependent protein kinase 

CPK28 that negatively regulates flg22 signaling by regulating the turnover of the rate limiting 

factor BIK1 (Monaghan et al., 2014). The protein phosphatase PP2A negatively regulates 

immune signaling by controlling the phosphorylation status of the co-receptor BAK1 (Segonzac 

et al., 2014).  

In addition to flg22-FLS2, several other ligand receptor pairs have been identified. The 

leucine rich repeat-receptor kinase EF-Tu receptor (EFR) recognizes the bacterial elongation 

factor Tu or the minimal peptide elf18 (Zipfel et al., 2006). Similar to FLS2, EFR also 

heterodimerizes with BAK1 or other SERKs but has less BAK1 specificity, as bak1-4 mutants still 

show elf18 responses (Roux et al., 2011). The FLS2 and EFR signaling cascades seem to 

converge at an early step, as both lead to almost the same gene induction pattern (Zipfel et al., 

2006). The fungal cell wall component chitin was believed to be recognized by the LysM 

receptor Chitin elicitor receptor kinase 1 (CERK1) for a long time (Miya et al., 2007; Petutschnig 

et al., 2010). However, it was recently proposed that CERK1 only functions as co-receptor and 

that the LysM-RLK LysM-containing receptor-like kinase 5 (LYK5) is the major chitin binding 

protein as it shows a much higher affinity to chitin (Cao et al., 2014). The bacterial cell wall 

component peptidoglycan is also recognized by LysM receptors, in this case the LysM –RLPs 

LYM1 and LYM3 (Willmann et al., 2011). Here, CERK1 also acts as a co-receptor. Another 

structural type of receptors are RLKs with extracellular lectin-like domains. The bulb-type lectin 

S-domain-1 receptor–like kinase Lipooligosaccharide-specific reduced elicitation (LORE) 

detects mainly the lipid A moiety of lipopolysaccharides (Ranf et al., 2015). In recent years, 

more and more RLPs have been identified as PRRs. For example RLP30 recognizes a 

proteinaceous MAMP called ScFE1 from the necrotrophic fungus Sclerotinia sclerotiorum 

(Zhang et al., 2013). RLP1/ReMAX recognizes the not yet characterized MAMP eMAX from 

Xanthomonas spp. (Jehle et al., 2013). All RLPs described so far form a ligand independent 

complex with the small RLK Suppressor of BIR1 (SOBIR1) forming a structural and functional 
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equivalent of RLKs (Gust and Felix, 2014). Like most RLKs, RLP-SOBIR1 complexes are thought 

to heterodimerise with BAK1 or SERK family proteins after activation, as e.g. ScFE1 signaling is 

BAK1 dependent (Zhang et al., 2013). It is not yet understood how signaling specificity 

between different BAK1 dependent pathways is achieved or if this is actually needed. One 

exception is the chitin response pathway, as this is not BAK1 dependent. Several BAK1 

interacting RLKs phosphorylate the intracellular kinase BIK1; CERK1 is also able to 

phosphorylate BIK1 but prefers PBS1-like protein 27 (PBL27) as a target. This could distinguish 

BAK1 dependent from BAK1 independent signaling pathways (Shinya et al., 2014). Despite the 

already described PRRs, it is likely that there are more MAMPs and corresponding receptors in 

Arabidopsis and even more in other plants. The Arabidopsis genome contains 221 LRR-RLK 

genes of which 49 are transcriptionally upregulated after different pathogen or MAMP 

treatments and are therefore likely to be involved in immune responses (Postel et al., 2010). 

One pathogen is usually detected by several MAMPs. Knockout of one MAMP receptor like 

FLS2 only leads to a certain amount of increased growth of Pto DC3000 bacteria whereas the 

fls2 efr double mutant or the bak1-5 mutant shows stronger impairment in bacterial resistance 

(Schwessinger et al., 2011). 

Other receptor like kinases that regulate immune responses sense endogenous signals. 

The LRR-RLKs Pep1 receptor 1 and 2 (PEPR1 and PEPR2) sense a 23-amino acid peptide ATPep1 

and also use BAK1 as a co-receptor (Yamaguchi et al., 2006; Krol et al., 2010; Postel et al., 

2010). AtPep1 is processed from the PROPEP1 gene, which is induced after wounding, 

methyljasmonate, ethylene or flg22 (Huffaker et al., 2006). This shows that AtPep1 serves as 

an endogenous signal for stress or wounding and acts as DAMP for neighboring cells (Liu et al., 

2013; Tintor et al., 2013). The tyrosine sulfated peptides Phytosulfokine α (PSKα) and Plant 

peptide containing sulfated tyrosine 1 (PSY1) were originally described as growth promoting 

factors (Matsubayashi and Sakagami, 1996). They are recognized by PSK receptors 1 and 2 

(PSKR1 and PSKR2) and the PSY1 receptor (PSY1R), respectively, which are also LRR-RLKs. The 

PSKR1 receptor is transcriptionally upregulated after Pseudomonas infection; receptor mutants 

show higher resistance to biotrophic pathogens as well as higher SA levels. However, they are 

more susceptible to necrotrophic pathogens (Igarashi et al., 2012; Mosher et al., 2013). Thus, 

these receptors could balance defense responses against biotrophic and necrotrophic 

pathogens by regulating SA JA homeostasis.  
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1.3. Brassinosteroid signaling 

Brassinosteroids (BRs) are a class of plant hormones that regulate many developmental and 

physiological processes, for example cell elongation, vascular differentiation, root growth or 

abiotic and biotic stress (Fridman and Savaldi-Goldstein, 2013). The BR signaling pathway is 

one of the best studied signaling pathways and has been elucidated from BR recognition at the 

plasma membrane over several steps to gene induction in the nucleus. The main BR receptor 

Brassinosteroid-insensitive 1 (BRI1) was identified in different forward genetic screens for BR 

insensitive mutants, which have differentially strong dwarf phenotypes depending on the 

exact mutation (Clouse et al., 1996; Kauschmann et al., 1996). Cloning of the BRI1 gene 

showed that it is a LRR-RLK with 24 extracellular leucine-rich repeats, an island domain 

between LRR 20 and 21, a transmembrane domain and a kinase domain (Li and Chory, 1997). 

Mutation analysis revealed that the island domain and LRR 21 are sufficient to bind BRs 

(Kinoshita et al., 2005),  the crystal structure of the extracellular domain recently showed that 

BRs bind to the island domain and LRRs 21 to 25 (Hothorn et al., 2011; She et al., 2011). BL 

binding leads to a local structural rearrangement at the two loops linking the island domain 

with the flanking LRRs. The loops become ordered and form a protein-protein interaction 

platform (Hothorn et al., 2011). The protein BAK1 is a co-receptor for several ligand-binding 

receptors but was first identified as BRI1 associated kinase 1 (Li et al., 2002; Nam and Li, 2002). 

BR binding to BRI1 recruits the co-receptor BAK1 to BRI1 forming heterodimers that are 

necessary for the activation of the BRI1 kinase. Several auto- and transphosphorylation 

residues at serines, threonines and also tyrosines were identified. A sequential 

phosphorylation model is proposed, in which activated BRI1 transphosphorylates BAK1 and 

BAK1 transphosphorylates BRI1 to fully activate its kinase activity (Wang et al., 2008; Jiang et 

al., 2013). Microscopic studies have recently shown that large populations of BAK1 and BRI1 

already colocalize in live root cells and that 7% of the BRI1 pool even constitutively interact 

with BAK1. The pre-assembled BRI1-BAK1 complexes probably get activated by BR binding and 

kinase activation of BRI1 (Bücherl et al., 2013). In the BR pathway different SERK proteins, 

which are homologs of BAK1, are functionally redundant as bak1 knockouts only show a weak 

BR phenotype. The phenotype can be significantly enhanced in the bak1 serk1 knockout 

(Albrecht et al., 2008), but only serk1 bak1-4 bkk1-1 triple knockouts lead to a bri1 mimicking 

phenotype, showing that these three SERKs have partially redundant functions and that SERKs 

are necessary for BR signaling (Gou et al., 2012).  

In the absence of BR, BRI1 kinase inhibitor 1 (BKI1) additionally binds to BRI1 and 

seems to prevent interaction with BAK1 (Wang and Chory, 2006). This negative regulation 
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could be necessary if BAK1 is already in close vicinity to BRI1 in preformed receptor complexes. 

Moreover proteins of the BR signaling kinase (BSK) family of RLCKs interact with BRI1 and are 

kept inactive (Tang et al., 2008). Consequently the phosphatase bri1 suppressor 1 (BSU1), 

which interacts with BSK, is also inactive and does not inhibit Brassinosteroid insensitive 2 

(BIN2) phosphorylation (Mora-Garcia et al., 2004; Kim et al., 2009). The kinase BIN2 is active 

and able to phosphorylate the transcription factors Brassinazole resistant 1 (BZR1) and BRI1–

EMS-suppressor 1 (BES1/BZR2) (Wang et al., 2002; Yin et al., 2002). Phosphorylation of BZR1 

and BZR2 inhibits their DNA binding activity and leads to their proteasomal degradation (Yin et 

al., 2002; Vert and Chory, 2006). Moreover they are retained in the cytoplasm by binding of 

14-3-3 proteins (Gampala et al., 2007). 

 

 

 

Figure 1-2: Schematic representations of the BL (A) and flg22 (B) signaling pathway (Lozano-Duran 

and Zipfel, 2015). For details see text. 
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In the presence of BRs, BKI1 gets phosphorylated by BRI1 and is released from the 

membrane (Wang and Chory, 2006). Likewise, members of the RLCK family BSKs get 

phosphorylated and released (Tang et al., 2008). This leads to interaction of BSKs with BSU1; 

now BSU1 is active and dephosphorylates BIN2 (Mora-Garcia et al., 2004). But BIN2 also 

directly interacts with BSKs and phosphorylates them, suggesting a positive feedback loop in 

the so far linear signal transduction pathway (Sreeramulu et al., 2013). BIN2 is no longer 

phosphorylating the transcription factors BZR1 and BZR2 which leads to their stabilization and 

nuclear localization. BZR1 and BZR2 directly regulate BR responsive genes (He et al., 2005; Yin 

et al., 2005). These are, for example, BL biosynthesis genes like Dwarf 4 (DWF4) or Constitutive 

photomorphism and dwarfism (CPD) which leads to a positive feedback regulation. Recently, 

an Arabidopsis-specific longer isoform of BES1 has been identified, BES1-L (Jiang et al., 2015). 

It has stronger activity than the short BES1-S form and an additional nuclear localization signal 

which also promotes nuclear localization of BES1-S and BZR1 via dimerization. 

 

1.3.1. Trade-off between BR- and immunity signaling 

In an uninfected situation plant defense responses are under negative control and 

developmental processes are favored (Huot et al., 2014). However, at the moment of 

pathogen infection, activation of defense responses has to be prioritized. This becomes visible 

as a growth inhibition of MAMP treated seedlings. The trade-off between growth and 

immunity might be achieved by a crosstalk between the corresponding signaling pathways. As 

BAK1 is the co-receptor for BL and different MAMPs it seems likely to be an interaction point. 

Indeed, overexpression of BRI1 or the BR biosynthesis enzyme DWF4 in Arabidopsis leads to 

reduced flg22 responses. The effect of BRI1 overexpression can be antagonized by 

simultaneously overexpressing BAK1-HA. Moreover, treatment with chitin, which signals 

independent of BAK1, leads to normal responses. This shows that the negative effect of BR on 

MAMP signaling is BAK1 dependent. Treatment with the BR biosynthesis inhibitor BRZ also 

leads to lower flg22 responses showing that BR homeostasis is critical for the induction of 

proper immune responses. However, flg22 signaling cannot block BR responses showing that 

the crosstalk is unidirectional (Belkhadir et al., 2012). This unidirectional crosstalk was also 

shown in another study, where pretreatment with BR led to reduced responses after flg22 or 

elf18 treatment (Albrecht et al., 2012). However, here it is stated that the crosstalk is 

independent of BAK1. In co-immunoprecipitation experiments with BAK1 and FLS2 the amount 

of BAK1-FLS2 association was not affected by treatment with BR. This shows that BAK1 is not 

titrated by active BRI1 and not rate limiting between the pathways.  
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These findings suggest that the crosstalk occurs downstream of the receptor level and 

indeed the transcriptional activator BZR has been recently described as interaction point 

(Lozano-Duran et al., 2013). BZR1 overexpression leads to impaired flg22- or chitin-induced 

ROS production, seedling growth inhibition or marker gene expression but interestingly does 

not alter BAK1-FLS2 complex formation or MAPK activation. BZR1 interacts with the WRKY 

transcription factor WRKY40 which transcriptionally inhibits MTI responses so that BZR1 and 

WRKY transcription factors co-regulate immune responses. However, BZR1 also targets WRKY 

transcription factors like WRKY11, 15 or 18 which also act as negative regulators of MAMP 

responses, and could therefore control a second wave of transcription. BZR can also be 

activated by DELLA proteins. This shows the complex hormone signaling network integrating 

another hormone, namely gibberellic acid (GA) into the model (Bai et al., 2012). GA is known 

to be involved in developmental processes like the stimulation of seed germination or 

transition from juvenile to adult leaf stage (Gupta and Chakrabarty, 2013). However, GA also 

influences the SA/JA homeostasis and thus influence defense responses (Navarro et al., 2008). 

A second BR induced transcription factor, Homolog of BEE2 interacting with IBH 1 (HBI1), was 

identified as suppressor of MTI (Fan et al., 2014; Malinovsky et al., 2014b). Both studies were 

able to show that MAMP signaling leads to a repression of HBI transcription, indicating a 

negative effect of MAMPs on BR-signaling. Two additional signaling components shared by 

MAMP and BR pathways are the RLCKs BIK1 and BSK1 that associate with BRI1 and FLS2 in the 

absence of the ligand (Lin et al., 2013; Shi et al., 2013). BIK1 acts as a positive regulator of 

MAMP signaling and negative regulator of BR signaling (Lin et al., 2013). In summary, different 

studies have identified different proteins as executioners of crosstalk between MAMP and BR 

signaling pathways. Especially in regard to BAK1 contradictory results have been published so 

that further studies are needed to show the importance of single proteins in the interaction 

network between BR and MAMP signaling pathways.  

 

1.4. Autoimmunity and cell death 

During the development of multicellular organisms not only cell division and growth is 

important but also cell death. Programmed cell death (PCD) is a genetically regulated sequence 

of events that leads to the controlled destruction of a cell (Lockshin and Williams, 1964). In 

plants, PCD is involved in developmental processes like the formation of trachea elements but 

also in defense responses against abiotic and biotic stress (Bruggeman et al., 2015). In animals, 

three cell death pathways can be distinguished and the molecular mechanisms are already well 

characterized (Lockshin and Zakeri, 2004). The first one is apoptosis, which is accompanied by 
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shrinkage of the cell, nuclear condensation and fragmentation and the breakup of the cell into 

apoptotic bodies. On the molecular level, perception of pro-death signals lead to disruption of 

the mitochondria outer membrane potential and subsequent release of cytochrome C from 

mitochondria. This leads to activation of caspases (a class of cysteine proteases) which degrade 

the cell (Adrain and Martin, 2001). The second pathway is autophagy, a “self-eating” process 

where cytoplasmic material is isolated in vesicles, known as autophagosomes, and then 

degraded through lysosomes or recycled. Therefore, autophagy is a process also needed to 

recycle nutrients during starvation. The third pathway is necrosis which is activated after 

overwhelming cellular stress, when the cell is unable to induce apoptotic pathways. It is 

accompanied by swelling of the cell because of a lack of osmoregulation (Lockshin and Zakeri, 

2004). However, there is also interplay between these three types of PCD.  

In plants, the molecular mechanisms of cell death are not that well described and the 

classification of cell death pathways is difficult. Nevertheless, homologies to the animal system 

led to the use of the same terms or terms like apoptotic like cell death (Reape et al., 2008). 

Moreover morphological criteria where used to describe plant cell death pathways that were 

named as autolytic and non-autolytic (van Doorn, 2011). Autolytic PCD is characterized by the 

formation of large lytic vacuoles, tonoplast rupture and rapid clearance of the cytoplasm. 

Autolytic PCD is comparable to animal autophagy. Non-autolytic PCD lacks rapid clearance of 

the cytoplasm and matches necrosis in animals. Autolytic PCD occurs mainly during plant 

development and non-autolytic PCD during stress responses. Despite these plant-specific 

terms, the terms autophagy and necrosis are widely used in the plant field. A core set of 

autophagy components is conserved in eukaryotes; in Arabidopsis, several ATG genes have 

been described as well with functions in development and stress responses (Hofius et al., 

2011). Interestingly, autophagy can have pro-death and pro-survival function during immune 

responses. The autophagy component Beclin1 restricts HR to the infection side of TMV in N. 

benthamiana. Beclin1-silenced N. benthamiana plants show HR lesions adjacent to the 

infection side and also in distal leaves indicating that autophagy restricts cell death in 

uninfected tissue (Liu et al., 2005). Arabidopsis atg5, atg10 and atg18 mutants show enhanced 

resistance to the hemibiotrophic pathogen Pto DC3000 and enhanced susceptibility to 

infections with necrotrophic pathogens, indicating a pro-survival role of ATG proteins as well 

(Lenz et al., 2011). In contrast to this, another study described that atg7 mutants show 

enhanced growth of Pto DC3000 and less cell death after Hyaloperonospora arabidopsidis 

(Hpa) infection, demonstrating a pro-death role of this ATG gene (Hofius et al., 2009).  

Van Doorn stated that there is no apoptotic cell death in plants, however, similarities 

between plant cell death and animal apoptosis can be observed (van Doorn, 2011). For 
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example, the potential of the outer mitochondrial membrane is changed which leads to the 

release of cytochrome c from mitochondria in cucumber (Balk et al., 1999). Plant genomes do 

not contain caspases which are key enzymes in animal apoptosis. However, caspase-like 

activity has been described (Danon et al., 2004) and the search for caspase homologues let to 

the identification of metacaspases (Uren et al., 2000). Different metacaspases such as AtMC1, 

AtMC2 and AtMC2d have now been studied and are indeed involved in plant cell death control 

(Coll et al., 2010; Watanabe and Lam, 2011). Interestingly, AtMC1 has a pro-death function, 

but AtMC2 is genetically a negative regulator of AtMC1, as AtMC2 over-expression mimics 

atmc1 mutant phenotypes (Coll et al., 2010). Crossing of atmc1 with two autophagy mutants, 

atg5 and atg18a, led to double mutants with an additive effect, showing that metacaspases 

act in a cell death pathway parallel to autophagy (Coll et al., 2014). Other plant PCD 

executioners beside metacaspases could be vacuolar processing enzymes (VPE) which have 

caspase-1 like activity and VPE deficiency prevents virus induced HR in tobacco (Hatsugai et al., 

2004).  

A prominent cell death response in plants is the hypersensitive response, which can be 

induced during immune responses against biotrophic pathogens. HR seems to be a unique 

type of cell death (Coll et al., 2011). HR leads to cytoplasmic shrinkage, chromatin 

condensation, mitochondrial swelling, and plant specific reactions like vacuolization and 

chloroplast disruption. The chloroplast is generally very important for the HR reaction as it is 

the source of ROS, nitrogen oxide intermediates (NOI), SA and JA (Coll et al., 2011). Moreover, 

light is required for HR reactions and some bacterial effectors have chloroplast localization 

signals, highlighting the importance of chloroplasts in cell death control (Jelenska et al., 2007). 

During immune responses, negative regulation of cell death is as important. Necrotrophic 

pathogens induce cell death via phytotoxins and cell wall degrading enzymes to feed on the 

dead plant material (Choquer et al., 2007; Davidsson et al., 2013). Botrytis cinerea is even able 

to trigger HR to facilitate host colonization and thus uses a host defense mechanism for its 

own pathogenicity (Govrin and Levine, 2000).  

Deregulation of cell death leads to autoimmunity, a constitutive immune response of 

plants against their own tissue. Mutants with deregulated cell death can be used to screen for 

the involved molecular components. These mutants are called lesion mimic mutants (LMMs) 

because they show either constitutive or unregulated cell death that resembles HR like lesions 

after pathogen infection (Bruggeman et al., 2015). LMMs are divided into initiation mutants 

that show HR-like lesions without pathogen infection and propagation mutants that show cell 

death spreading once it was initiated by pathogens (Lorrain et al., 2003). The identification of 

LMMs in forward genetic screens leads to the identification of proteins that are inhibitors of 
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cell death. Later on, second site mutagenesis in these LMMs in order to find suppressors of cell 

death led to the identification of positive regulators. Different LMMs revealed the novel 

cellular functions or processes during plant PCD. These are Ca2+ ion influx (defense no death 1, 

(dnd1)), ROS formation and sensing (constitutive expresser of PR 22 (cpr22) and lesions 

simulating disease resistance response 1 (lsd1) respectively), sphingolipid metabolism 

(accelerated cell death 5 (acd5) and acd11) and porphyrin/chlorophyll biosynthesis and 

catabolism (acd1, acd2, lesion initiation 2 (lin2), lethal leaf spot 1 (lls1), lesion 22 (les22) and 

fluorescent 1 (flu1)) (Moeder and Yoshioka, 2008). Many LMMs are linked to R-proteins; 

mutation of the guardee mimics the pathogen effector and leads to ETI induction by the guard. 

Another mutant that shows autoimmunity, but is no classical LMM, is mpk4 (Petersen et al., 

2000). mpk4 mutants do not exhibit necrotic lesions, have very high SA levels and block JA. 

MPK4 can be genetically seen as a negative regulator, however, it activates defense responses 

upon flg22 perception via WRKY33 and PAD3 (Droillard et al., 2004; Andreasson et al., 2005; 

Qiu et al., 2008). MPK4 is an effector target and the mpk4 mutant phenotype can be 

suppressed by mutation of the R-protein SUMM2, showing that MPK4 is a guardee and its 

absence induces ETI (Zhang et al., 2012). It was recently discovered that MPK4 interacts with 

PAT1, a component of the mRNA decapping machinery. PAT1 accumulates after flg22 

treatment, so that mRNA decay could be another mechanism by which MPK4 rapidly initiates 

defense responses.  

The small RLK BIR1 was identified to be induced after infection with Psm ES4326 and 

bir1 mutants interestingly have a seedling lethal phenotype when grown at 22°C (Gao et al., 

2009). bir1 mutants show intrinsic cell death, constitutive activation of defense responses, 

resistance against Hpa and high SA levels. BIR1 constitutively interacts with BAK1. The bir1 

mutant phenotype can be partially suppressed by eds1 and pad4 and to a lower extent by 

ndr1, showing that cell death activation in bir1 is likely via R-protein pathways. During the 

same study another small RLK was identified whose mutation suppresses the bir1 mutant 

phenotype, Suppressor of bir1 (SOBIR1). bir1 sobir1 double mutants are larger compared to 

bir1 single mutants but do not reach wildtype size. Overexpression of SOBIR1 also leads to 

constitutive activation of defense responses, showing that it is a positive regulator of cell 

death. Later studies showed that different mutations in components of the ER quality control 

can suppress cell death in bir1. SOBIR1 protein amounts are reduced in these mutants showing 

that ER quality control is important for SOBIR1 biogenesis (Sun et al., 2014). Another mutation 

in the ER quality control machinery, stt3a, also suppresses the autoimmunity phenotype of 

bir1 but does not alter SOBIR1 protein amounts (Zhang et al., 2015). This indicates that 

additional signaling components leading to cell death in bir1 are regulated by ER quality 
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control. In different studies it could be shown that SOBIR1 interacts with several RLPs to form 

PRR complexes. SOBIR1 is necessary for recognition of the MAMP ScFE1 from the necrotrophic 

fungus Sclerotinia sclerotiorum and sobir1 mutants are more susceptible to S. sclerotiorum 

infections (Zhang et al., 2013). Recognition of ScFe1 is not only dependent on SOBIR1 but also 

on BAK1. Interestingly, BAK1 also plays a role in cell death control. bak1 mutants show 

spreading cell death after pathogen infection and double mutants of BAK1 and the closest 

homologue BKK1 show spreading cell death and are seedling lethal (He et al., 2007; 

Kemmerling et al., 2007). 

Another cell death mutant showing lethality at 22°C is bonzai1 (bon1). BON1 is a 

phospholipid binding protein which locates to the plasma membrane. The mutant phenotype 

can be rescued by growth at 28°C, where BON1 is less expressed (Hua et al., 2001). The bon1 

phenotype can be rescued by mutation of the R-protein Suppressor of NPR1-1 constitutive 1  

(SNC1) (Yang and Hua, 2004). BON1 interacts with BAK1 and BIR1 which are themselves 

described to be involved in cell death regulation (Wang et al., 2011). BON1 and BIR1 have a 

synergistic effect because the double mutant shows a more severe phenotype compared to 

the single mutants. In the same study it was shown that the bir1 phenotype can also be 

attenuated by SNC1 knockout. This connection between BAK1 and the R-protein SNC1 provides 

a link between MTI and ETI.  

Another phenomenon where spontaneous cell death occurs is hybrid necrosis. To 

maintain species or sub-species, gene flow barriers need to be sustained. Species hybrids are 

often less fertile than the parental strains or even embryonic lethal showing a mechanism for 

hybrid incompatibility (Lafon-Placette and Kohler, 2015). Many plants show a common type of 

hybrid incompatibility which resembles the phenotype after pathogen attack or autoimmunity 

mutants and is therefore called hybrid necrosis (Bomblies and Weigel, 2007). After crossing of 

different Arabidopsis thaliana strains, approximately 2 % of the F1 progeny showed hybrid 

necrosis (Bomblies et al., 2007). It is caused by synergistic interactions of genes that have 

functionally diverged among the respective parents. One gene family in Arabidopsis that shows 

this high genetic variation and was shown to be involved in hybrid incompatibility is the NB-

LRR gene family. One example is the incompatibility between a strain from Poland, Landsberg 

erecta (Ler), and strains from central Asia, Kashmir 2 and Kondara (Kas2 and Kond). The 

polymorphic TIR-NB-LRR cluster RPP1 in Ler is incompatible to the RLK Strubbelig receptor 

family 3 (SRF3) in Kas and Kond causing temperature dependent autoimmunity (Alcazar et al., 

2010).  
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1.5. The multifunctional co-receptor BAK1 

In the previous chapters it became clear that BAK1 is a multifunctional co-receptor that acts in 

different signaling pathways. It was first named SERK3 as a member of the SERK protein family 

(Hecht et al., 2001). BAK1 was identified as a co-receptor of the BL receptor BRI1 and named as 

BRI1 associated kinase 1 (Li et al., 2002; Nam and Li, 2002). However, BAK1 also plays a role in 

plant immunity as it interacts with several MAMP receptors like FLS2 and EFR, the DAMP 

receptor PEPR1 and PEPR2 and the phytosulfokine receptor PSKR1 (Yamaguchi et al., 2006; 

Chinchilla et al., 2007; Heese et al., 2007; Krol et al., 2010; Postel et al., 2010; Roux et al., 2011; 

Ladwig et al., 2015). It is also assumed that BAK1 forms ligand induced complexes with RLPs 

and SOBIR1, e.g. with RLP30 that recognizes the MAMP ScFE1 from Sclerotinia sclerotiorum. An 

RLP-BAK1 interaction that is experimentally validated is the interaction with the RLP44, 

however, BAK1 and RLP44 interact constitutively. RLP44 is involved in cell wall remodeling by 

activation of BR signaling (Wolf et al., 2014). Additionally, BAK1 plays a role in cell death 

control as bak1 mutants show spreading cell death after pathogen infection and are more 

susceptible to necrotrophic pathogens. The cell death phenotype of bak1 is BL independent, as 

exogenous application of BL does not restore immunity to infection by necrotrophic fungi 

(Kemmerling et al., 2007). The cell death regulatory role of BAK1 becomes more obvious in 

double mutants with the closest homologue BAK1 like 1 (BKK1 or SERK4). bak1 bkk1 double 

mutants show constitutive activation of immune responses, display spontaneous cell death 

and are seedling lethal (He et al., 2007). The SERK family consists of 5 members that have 

partially redundant functions in somatic embryogenesis (SERK1 and SERK2), tapetum 

formation (SERK2), BR-signaling (SERK1, SERK3 and SERK4), MAMP-signaling (SERK3 and 

SERK4) and cell death (SERK3 and SERK4) (Li, 2010). Their functions overlap, but each provides 

a specific subset of signaling roles. Specific residues in the extracellular domain that can be 

assigned to one specific signaling function are conserved even if that SERK does not function in 

that pathway. For example SERK2 does not function in the brassinosteroid pathway and does 

not interact with BRI1 but is conserved in its BRI1 interaction domain (Aan den Toorn et al., 

2015). SERKs are ancient genes that have been recruited as co-receptors to newly evolved 

signaling pathways.  

The fact that BAK1 is a shared signaling component obviously leads to the question 

how signaling specificity is achieved. It was shown that signaling is indeed specific, because 

activation of BAK1 by BR treatment cannot induce typical immune responses like ROS 

production or MAPK activation and vice versa (Albrecht et al., 2012). Here it could also be 

shown that BAK1 is not rate limiting between the pathways which fits to the model of 



1. Introduction  17 

preformed receptor complexes. This means that receptors and the co-receptor BAK1 are 

already in close vicinity in distinct membrane compartments before ligand-binding, as it was 

shown for BRI1 and BAK1 (Bücherl et al., 2013). This would mean that distinct sub-pools of 

BAK1 exist that are already preassembled with a certain ligand-binding receptor and that e.g. a 

BAK1 molecule assembled with BRI1 cannot be activated by flg22 treatment. Another model 

for signaling specificity would be phospho-coding, differential phosphorylation of BAK1 by 

different ligand-binding receptors. One hint for this is the BAK1-5 allele, a point mutation of 

C408 in the kinase domain that leads to lower phosphorylation activity of BAK1 and only 

affects the MAMP signaling pathway but not BR responses or cell death (Schwessinger et al., 

2011). Another study aimed to identify BAK1 phosphorylation patterns associated with other 

RLKs (FLS2, EFR, BRI1 and BIK1) and performed different in vitro assays to quantify BAK1 

phosphorylation (Wang et al., 2014). It could indeed be shown that different RLKs lead to 

different phosphorylation patterns in BAK1. These different BAK1 phosphopatterns then lead 

to different phosphorylation of RLK targets, however, this data still has to be confirmed in 

planta. Another shared signaling component between MAMP and BL signaling is the RLCK BIK1. 

In the flg22 signaling cascade the co-receptor BAK1 phosphorylates BIK1 which leads to its 

activation and dissociation from the receptor complex. In contrast, BR perception leads to 

phosphorylation of BIK1 directly by the receptor BRI1, also leading to activation and 

dissociation of BIK1 (Lin et al., 2013). This data also points into the direction of signaling 

specificity via differential phosphorylation patterns, but the exact phosphorylation events 

need to be elucidated. 

Recently, a study used BAK1 overexpressing plants to further study the role of BAK1 in 

immunity and cell death (Dominguez-Ferreras et al., 2015). BAK1 overexpressors showed a 

stunted phenotype with leaf necrosis, 75% of the lines died prematurely, and the others 

produced less seeds. In the same study it could be shown that inducible overexpression of 

BAK1 leads to cell death, visualized by trypan blue staining in cotyledons, similar to that after 

elf18 treatment observed in this study. Overexpression of BAK1 also lead to induction of 

MAPKs and ethylene production without MAMP treatment and the plants are more resistant 

to Pto DC3000 infections. Interestingly, the BAK1 overexpression phenotype can be rescued by 

sobir1. The molecular mechanism is not further elucidated but as SOBIR1 is important for 

autoimmunity cell death, it is discussed that the extra BAK1 could be detected by R-proteins. 

These findings show that BAK1 and SOBIR1 not only act together as co-receptors for RLPs but 

also in cell death control. The fact that BAK1 overexpression leads to cell death was already 

observed before (Belkhadir et al., 2012). Here the phenotype could be rescued by 
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simultaneous overexpression of BRI1. This indicates that balanced receptor levels are crucial 

for repression of cell death.  

 

1.6. The BIR family of receptor-like kinases  

BAK1 is a central regulator of different immunity pathways and additionally controls cell death 

responses, but it is not yet clear how BAK1 itself is regulated. Therefore, a former PhD student 

Sara Mazzotta purified in vivo BAK1 complexes and identified two new interactors named as 

BAK1 interacting RLK 2 and 3 (BIR2 and BIR3) (Halter et al., 2014). BIR2 and 3 belong to a small 

family of RLKs that consists of four members and builds the subgroup Xa of Arabidopsis RLKs. 

Another family member, BIR1, was already described and plays a role in cell death control (Gao 

et al., 2009). bir1 mutants show very strong cell death, high SA levels, resistance to biotrophic 

bacteria and are seedling lethal when grown at 22°C. Crossing with pad4, eds1 or ndr1 can 

partially rescue the cell death phenotype so that the authors concluded that knocking out BIR1 

results in activation of multiple R-protein mediated resistance pathways. Analysis of BIR2 and 3 

showed that both proteins have a differential expression pattern after pathogen infection. 

Similar to BAK1, BIR2 is upregulated after infection with different Pseudomonas syringae 

strains whereas BIR3 is downregulated. BIR2 and 3 are structurally receptor like kinases but do 

not show kinase activity. The BIR2 crystal structure has shown that it has an occluded ATP 

binding pocket, is not able to bind ATP and execute phosphorylation activity (Blaum et al., 

2014). However, BIR2 gets phosphorylated by BAK1 and the BAK1 phosphorylation activity is 

necessary for BAK1 BIR2 interaction. BIR3 gets only weakly phosphorylated by BAK1 in in vitro 

kinase assays (Mazzotta, 2012). Functional analysis of BIR2 mutants has shown that BIR2 

differentially affects BAK1 regulated pathways. In contrast to bak1 mutants, bir2 mutants show 

hyperresponsiveness to MAMPs, they are not affected in BL signaling and show stronger cell 

death after pathogen infection. bir3 mutants do not show defects in cell death or BL sensitivity 

but BIR3 overexpressors have a very strong stunted growth phenotype and are BL insensitive. 

Moreover, 35S-BIR3 plants show stronger symptom development after A. brassicicola infection 

and less ROS production after flg22 treatment (Halter, 2014).  

 

1.7. Aim of the thesis 

BIR family proteins were identified to interact with BAK1 and to regulate different BAK1 

dependent processes. bir2 mutants are hyperresponsive to MAMPs and show stronger cell 

death after pathogen infection. BIR3 overexpressors are BL insensitive and at the same time 
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show stronger cell death and lower MAMP responses. However, the full functional potential 

and the molecular mechanisms how BIR proteins regulate BAK1 are not yet understood. 

Moreover, the relationship of the different BIR proteins, whether they are redundant or 

specify different BAK1 dependent processes, needs to be clarified. The aim of this thesis is to 

elucidate which BAK1 dependent processes are regulated by BIR2 and BIR3 and how the 

different BIR proteins exert these functions.  
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2. Materials and Methods 

2.1. Materials 

2.1.1. Plant genotypes  

Genotype Mutation Reference/Source 

Col-0 wildtype  

bak1-4 SALK_116202, T-DNA insertion in BAK1 

(At4g33430) 

(Kemmerling et al., 2007) 

bak1-3 SALK_034523, T-DNA insertion in BAK1 

(At4g33430 

(Kemmerling et al., 2007) 

bir2-1 GABI N 733599, T-DNA insertion in BIR2 

(At3g28450) 

(Halter et al., 2014) 

amiR-BIR2 artificial micro RNA against BIR2 (Halter et al., 2014) 

bir3-1 Salk_132078, T-DNA insertion in BIR3 

(At1g27190) 

(Halter, 2014) 

bir3-2 Salk_116632, T-DNA insertion in BIR3 

(At1g27190) 

(Halter, 2014) 

35S-BIR3 pB2GW7-BIR3 transformed in Col-0 (Halter, 2014) 

35S-BIR3-YFP pB7YWG2-BIR3 transformed in Col-0 (Halter, 2014) 

35S-BIR2-YFP pB7YWG2-BIR2 transformed in Col-0 (Halter et al., 2014) 

bak1-3 bir2-1 Crossing of bak1-3 with bir2-1 this work 

bak1-4 amiR-BIR2 Crossing of bak1-4 with amiR BIR2 this work 

bir2-1 bir3-2 Crossing of bak2-1 with bir3-2 this work 

bak1-3 bir3-1 Crossing of bak1-3 with bir3-1 this work 

bak1-3 bir3-2 Crossing of bak1-3 with bir3-2 this work 

bak1-4 bir3-2 Crossing of bak1-4 with bir3-2 this work 

bir1-1 WiscDsLox393-396D17, T-DNA insertion in 

BIR1 (At5g48380) 

(Gao et al., 2009) 

bak1-4 bir1-1 Crossing of bak1-4 with bir1-1 this work 

bir2-1 35S-BIR3 Crossing of bir2-1 with 35S-BIR3 this work 

bir1-1 bir3-1 Crossing of bir1-1 with bir3-1 this work 

bir1-1 35S-BIR3 Crossing of bir1-1 with 35S-BIR3 this work 

bir1-1 amiR-BIR2 Crossing of bir1-1 with amiR-BIR2 this work 

bak1-5 point mutation in BAK1 C408Y (Schwessinger et al., 2011) 

bkk1-1 SALK_057955, T-DNA insertion in BKK1 

(At2g13790) 

(He et al., 2007) 

nahG expression of the bacterial NahG gene, a 

salicylate hydroxylase  

(Lawton et al., 1995) 

pad4 point mutation in PAD4 (At3g52430) (Glazebrook et al., 1996) 
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snc1-11 SALK_047058, T-DNA insertion in SNC1 

(At4g16890) 

(Kim et al., 2010) 

bir3-2 bkk1-1 Crossing of bir3-2 with bkk1-1 this work 

bir3-2 bak1-5 Crossing of bir3-2 with bak1-5 this work 

BIR3-GFP bak1-4 bir3-2 Expression of BIR3-GFP construct under 

endogenous promotor in bak1-4 bir3-2 

background 

Sacco de Vries 

BAK1-GFP bak1-4 bir3-

2 

Expression of BAK1-GFP construct under 

endogenous promotor in bak1-4 bir3-2 

background 

Sacco de Vries 

 

2.1.2. Bacterial strains  

Strain Genotype 

Escherichia coli DH5α F-(Φ80lacZΔM15) Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, 

mK+) phoA supE44 λ– thi-1 gyrA96 relA1) 

Agrobacterium 

tumefaciens GV3101 

T-DNA- vir+ rifr, pMP90 genr 

 

2.1.3. Media and Antibiotics 

Components of the different media used in this study are given in the following table. 

Medium Components 

LB 10 g/l Bacto-Trypton, 5 g/l Bacto-Yeast extract, 5 g/l NaCl, to solidify add 15 g/l 

Agar 

King’s B 20 g/l Glycerol, 40 g/l Proteose Pepton 3, 0.1 % K2HPO4, 0.1 % MgS04,  to solidify 

add 15 g/l Agar 

½ MS 2.2 g/l MS-salts (Duchefa), 1% sucrose when indicated, set pH 5.7 with KOH, to 

solidify add 8 g/l Select-Agar 

SOC 2.0 g/l Trypton, 0.5 g/l Yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 

10 mM MgSO4, 20 mM Glucose, set pH 7 with NaOH 

YPD 20 g/l peptone, 20 g/l glucose, 10 g/l yeast extract, set pH to 6-6.3, to solidify 

add 15 g/l oxoid agar  

CSM 6.9 g/l YNB without amino acids (Formedium), synthetic complete amino acid 

drop out according to manufacturer’s instructions (Formedium), 20 g/l glucose, 

set pH to 6-6.3, to solidify add 1.5 % oxoid agar 

 

After autoclaving media were cooled to 60°C and supplemented with antibiotics in the 

following concentrations. 
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Antibiotic Stock final concentration 

Kanamycin 50 mg/ml in H2O 50 µg/ml 

Rifampicin 12.5 mg/ml in methanol 50 µg/ml 

Cycloheximide 12.5 mg/ml in H2O 50 µg/ml 

Spectinomycin 50 mg/ml in H2O 100 µg/ml 

Gentamycin 10 mg/ml in H2O 25 µg/ml 

Carbenicillin 50 mg/ml in H2O 50 µg/ml 

 

2.1.4. Antibodies 

1. Antibody Source Use Reference/Provider 

α-GFP goat 1:10000 Acris 

α-HA mouse 1:2000 Sigma-Aldrich 

α-Myc rabbit 1:5000 Sigma-Aldrich 

α-BAK1 rabbit 1:5000 Agrisera 

α-FLS2 rabbit 1:2500 Custom made 

α-BIR2 guinea-pig 1:2000 (Halter et al., 2014) 

 

2. Antibody Feature Use Reference/Provider 

α-goat HRP conjugated 1:10000 Sigma-Aldrich 

α-mouse HRP conjugated 1:10000 Sigma-Aldrich 

α-rabbit HRP conjugated 1:50000 Sigma-Aldrich 

α-guinea-pig HRP conjugated 1:5000 Santa Cruz 

 

2.1.5. Primers 

Primers were synthesized by Eurofins MWG Operon. Primer stocks were kept at a 100 μM 

concentration diluted in nuclease-free water. The sequences of primers used in this study are 

listed in the following table.  

Name sequence 5’ 3’ Characteristics 

a-N616202 TTATTGTTTGGCCGATCTTGG genotyping bak1-4, fwd 

b-N616202 ACATCATCATCATTCGCGAGG genotyping bak1-4, rev 

a-N534523 GGTGCTTCAAAGTTGGGATGC genotyping bak1-3, fwd 

N534523 CTATTTGGCGACACTACTTTCTGAC genotyping bak1-3, rev 

a-WISCP25D5 TTAAATAGGAAGTCGCTAACCATGGGAG genotyping bir2-1, fwd 
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PGL3 rev AGA AAC CAA GAA GCG GTG CT genotyping bir2-1, rev 

At1g27190R GGTAGGAGATACAAGACAAACACGAGCAC genotyping bir3-1, fwd 

At1g27190F TATTACCAGCCAACCAACCTTTCATACAA genotyping bir3-1, rev 

At1g27190R3 ACAGACAAAGGCTTTTGCCCTGTAACCA genotyping bir3-2, fwd 

At1g27190F3 CTCGCCGGTGAGATTCCTGAGTCTCTTA genotyping bir3-2, rev 

a-CS854273 GCAACTTGGACGGCTCAAAACATTCTCT genotyping  bir1-1, fwd 

b-CS854273 CGTGATGACTGTATTCTCCTCAACCAAA genotyping bir1-1, rev 

Gabi-Kat-LB CCCATTTGGACGTGAATGTAGACAC GABI LB primer 

Lba1 TGGTTCACGTAGTGGGCCATCG Salk LB primer 

p745 AACGTCCGCAATGTGTTATTAAGTTGTC WiscDSLox LB primer 

snc1-11 fwd TCTGTTGCTTTAACCTTTGCTCC genotyping snc1-11, fwd 

snc1-11 rev TGGTGATTCCGATTTTCTTCCAC genotyping snc1-11, rev 

pad4-1-PflmI-F  ATGAGTCGCATAAGACTAGCCAAG genotyping pad4-1, fwd 

pad4-1-PflmI-R CCATTTCTTTCCTAAATGAAAATCA genotyping pad4-1, rev 

NahG-F GGCTTGCGCATCGGTATCGTCGGC genotyping nahG, fwd 

NahG-R GCCATGGGCCCGATAGGCTTCTCG genotyping nahG, rev 

BAK1-dCAPs-F AAGAGGGCTTGCGTATTTAGATGATCACT genotyping bak1-5, fwd 

BAK1-dCAPs-R GAGGCCAGCAAGATCAAAAG genotyping bak1-5, rev 

a2-N557955 TTGCTACCCCGCATTTAGTCA genotyping of bkk1-1, fwd 

b2-N557955 TGGTTCACGTAGTGGGCCATCG genotyping of bkk1-1, rev 

ef1a-100-f GAGGCAGACTGTTGCAGTCG EF1α qPCR, fwd 

ef1a-100-r TCACTTCGCACCCTTCTTGA EF1α qPCR, rev 

FRK1F AGCGGTCAGATTTCAACAGT FRK1 qPCR, fwd 

FRK1R AAGACTATAAACATCACTCT FRK1 qPCR, rev 

PR1F GTGGGTTAGCGAGAAGGCTA PR1 qPCR, fwd 

PR1R ACTTTGGCACATCCGAGTCT PR1 qPCR, rev 

PDF1.2F AGGGGTTTGCGGAAACAGTAA PDF1.2 qPCR, fwd 

PDF1.2R CGTAACAGATACACTTGTGTGC PDF1.2 qPCR, rev 

EF1 a s TCACATCAACATTGTGGTCATTGG EF1α RT-PCR, fwd 

EF1a as TTGATCTGGTCAAGAGCCTCAAG EF1α RT-PCR, rev 

BAK1-q-fwd GACCTTGGGAATGCAAATCTATC BAK1 RT-PCR, fwd 

BAK1-q-rev AAAACTGATTGGAGTGAAAAGTGAAA BAK1 RT-PCR-rev 

 

2.1.6. Plasmids 

Plasmid Features reference 

pB7YWG2-BIR3 Expression of 35S-BIR3-YFP in planta Thierry Halter 

pGWB14-BRI1 Expression of 35S-BRI1-3xHA in planta This work 

pGWB14-BKK Expression of 35S-BKK1-3xHA in planta Thierry Halter 

pGWB17-FLS2 Expression of 35S-FLS2-4xMyc in planta Thierry Halter 

BAK1-pMetYC Met repressible expression of BAK1 in 

yeast with C-terminal Cub-ProteinA- LexA-

Christopher Grefen 
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VP16  

BRI1-pNubA22 Constitutive expression of BRI1 C-terminal 

NubA-3xHA in yeast  

Christopher Grefen  

pZMU-Dest Expression vector for Constitutive 

expression with C-terminal myc in yeast  

Christopher Grefen  

pZMU-BIR3 Constitutive expression of BIR3 with C-

terminal myc in yeast  

This work 

 

2.1.7. Chemicals 

Chemicals and reagents were purchased from Carl Roth, Sigma-Aldrich, Fluka, Merck, Duchefa 

or Applichem. Enzyme used for nucleic acids studies were obtained from Thermo Scientific. 

 

2.2. Methods 

2.2.1. Plant methods 

2.2.1.1. Plant growth conditions 

A. thaliana plants were grown on soil for 6 weeks in a growth chamber under short day 

conditions (8 hours light, 16 hours dark, 22 °C, 110 mEm-2s-1, 60 % relative humidity). For seed 

production plants were grown under long day conditions (16 hours light, 8 hours dark). N. 

benthamiana plants were grown in the greenhouse under long day conditions for 3 weeks.  

For CoIP experiments with A. thaliana material of sterile grown seedlings was used. Therefore, 

sterilized seeds were sown on ½ MS plates and grown for 7 days under long day conditions. 

Afterwards they were transferred into liquid ½ MS medium with 1 % sucrose. They were grown 

again for 7 days under long day conditions. One week later they were removed from the MS 

medium and incubated for 30 min in 0.1 M NaCl, 0.1 % BSA to distress them. Then they were 

induced or not for 5 min with 1 µM flg22 or other elicitors. Seedlings were dried, directly 

frozen in liquid N2 and stored at -80 °C. 

 

2.2.1.2. Crossing 

In order to obtain double mutant plants the corresponding single mutants were crossed. One 

mutant was chosen as female plant. From these plants several buds were chosen and the 

sepals, petals and stamens were removed with forceps. Only the unfertilized carpel remained 

on the flower. The other mutant was taken as male plant. From this plant several mature 

stamens were removed with forceps and spotted onto the carpel so that pollen grains 
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remained on the carpel. After successful crossing, siliques were obtained that contained the F1 

seeds. Successful crossing was verified by monitoring presence of the male T-DNA insertion in 

the F1 generation. In the F2 generation double mutants were selected by PCR-based 

genotyping. F3 plants were used for analysis. 

 

2.2.1.3. Transient transformation of N. benthamiana by Agrobacterium tumefaciens 

For protein expression in N. benthamiana transient expression via A. tumefaciens GV3101 was 

used. 5-10 ml A. tumefaciens cultures in LB medium supplemented with appropriate antibiotics 

were inoculated from LB plates and grown at 28 °C overnight. Cells were harvested the next 

morning by centrifugation at 4000 x g for 5 min. The cell pellets were resuspended in 10 mM 

MgCl2 and washing was repeated one more time. The cultures were diluted to OD600=1 with 10 

mM MgCl2. The strains were mixed to the same rate, also with the silencing inhibitor p19 

(Voinnet et al., 2003). 150 µM acetosyringone were added (from a 150 mM stock in DMSO) 

and the bacteria were incubated for 2 hours at room temperature. Tobacco leaves of 3 week 

old plants were pricked with a cannula at the infiltration side and leaves were infiltrated with a 

needleless syringe. Leaves were harvested 2-3 days after infiltration and used to confirm 

protein expression in total protein extracts and subsequent CoIP analysis. 

 

2.2.1.4. Seeds sterilization 

Seed sterilization was performed with chlorine gas. The seeds were put into microcentrifuge 

tubes and the tubes were put into a glass desiccator with open lid. In the desiccator a beaker 

with 50 ml 12 % sodium-hypochlorite solution was placed and 2 ml 37 % HCl were added. The 

desiccator was closed immediately and the seeds were incubated for 4 hours to overnight. 

After that the tubes were placed open under the sterile bench for 30 min to allow evaporation 

of remaining chlorine gas.  

 

2.2.1.5. BL and BRZ assays 

Arabidopsis seeds were surface sterilized and sawn in one row on ½ MS plates with 0.8 % 

select agar supplement with or without 10 nM Epi-Brassinolide (BL) or 1 µM Brassinazole 

(BRZ). Plates were incubated for 3 days at 4°C in the dark to promote equal germination. For 

BL assays seedlings were grown under long day conditions horizontally for 7 days and root 

length was measured. For BRZ assays seedlings were grown for 7 days in the dark and 
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hypocotyl length was measured. Plates were photographed and root or hypocotyl length was 

measured using image J software. 

 

2.2.1.6. Oxidative burst 

Production of reactive oxygen species (ROS) is measured in a luminol based assay. A 

peroxidase catalysis the oxidation of luminol to 3-aminophthalate what is accompanied by 

emission of light at 428 nm. The light emission is measured in a plate reader and proportional 

to the released ROS. For the experiment six week old A. thaliana plants were used. Leaves 

were cut into rectangular pieces and floated in petri dishes with H2O overnight, so that the 

wound response has worn off. The next day leaf pieces were put into white 96 well plates with 

20 µM luminol L-012 and 2 µg/ml peroxidase. Leaf pieces were treated with 100 nM flg22 

(Synthesized by Thermo Scientific) or elf18 (Synthesized by Sellekchem) and analyzed with the 

multiplate reader Centro LB 960 (Berthold Technologies) for 30 min. Per line 9 replicates were 

measured.  

 

2.2.1.7. MAMP-induced transcriptional changes  

A. thaliana seedlings were grown sterile on ½ MS plates with 0.8 % agar under long day 

conditions. After 5 days the seedlings were transferred into liquid ½ MS medium with 1 % 

sucrose and equilibrated overnight in the long day chamber. The seedlings were elicited with 

100 nM flg22 or elf18 for 3 hours. Seedlings were harvested, directly frozen in liquid N2 and 

stored at -80°C until RNA extraction. For one biological replicate around 20 seedlings were 

used.  

 

2.2.1.8. Infections with Alternaria brassicicola 

A. brassicicola MUCL 20297 cultivation and spore production was performed as described in 

(Thomma et al., 1999). For infection experiments 6 week old A. thaliana plants were used. A 

glycerol stock of A. brassicicola spores with of 2 * 107 spores/ml was diluted with sterile water 

to 1 x 106 spores/ml and brought to room temperature. Two leaves per plant were inoculated 

with 2-4 5 µl droplets of the spore solution. Plants were randomly distributed in a tray and 

were kept under 100 % humidity in a short day chamber. The bonitation was done after 7, 10 

and 13 days according to the following scheme: 1: no symptoms, 2: light brown spots at 

infection site, 3: dark brown spots at infection site, 4: spreading necrosis, 5: leaf maceration, 6: 
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sporulation. The disease index (DI) was calculated with the following formula: DI = Σ i * ni. ‘‘i’’ is 

the symptom category, and ‘‘ni’’ is the percentage of leaves in ‘‘i. 

For one experiment about 9 plants were used and divided into three groups for statistical 

analysis or the statistics were calculated over all values.  

2.2.1.9. Trypan blue staining 

Trypan blue staining of A. brassicicola inoculated leaves was performed as described in 

(Kemmerling et al., 2007). A. thaliana leaves were put into 6 well plate with 2 ml trypan blue 

staining solution (8 % (v/v) lactic acid, 8 % (v/v) glycerol, 8 % (v/v) Aqua-Phenol; 66 % (v/v) 

EtOH; 0.36 % (w/v) trypan blue) and incubated in a 100 °C water bath for 45 s - 1 min. The 

staining solution was then replaced with chloralhydrate solution (1 g/ml) for destaining. After 6 

hours the destaining solution was replaced with fresh solution and incubated again over night. 

The destained leaves were placed on microscope slides with 20 % glycerol and examined under 

a binocular.  

 

2.2.1.10. Hormone measurements 

The analysis of SA and JA content was performed in collaboration with the ZMBP analytics 

department at the University of Tübingen. The measurements were performed as previously 

described (Lenz et al., 2011). 

 

2.2.1.11. Bacterial growth assays 

Pseudomonas syringae pv. tomato DC3000 was grown on King’s B Agar plates with Rifampicin 

for 24 hours at 28 °C. For infection experiments overnight cultures in King’s B medium with 

Rifampicin were inoculated and grown at 28 °C. The next morning the culture was harvested 

by centrifugation at 3500 rpm, 4 °C for 10 min. The pellet was carefully resuspended in 10 mM 

MgCl2 and washing was repeated one more time. The OD600 was set to 0.2 (corresponds to 108 

cfu/ml) and the bacteria were diluted to 1 * 104 cfu/ml for infiltration. 

For infection experiments 6 week old A. thaliana plants were used and two leaves per plant 

were syringe infiltrated. Per line and time point 8 leaves were infiltrated and represent one 

biological replicate. Leaves were harvested after 0, 2 and 4 days and surface sterilized for 1 

min in 70 % EtOH and then washed in sterile H2O. Two leave discs were cut out with a cork 

borer and homogenized in 10 mM MgCl2. Dilution series of this bacterial suspension were 

plated onto LB-plates with Rifampicin and Cycloheximide and incubated for two days at 28 °C. 

After two days the number of colonies was counted and the cfu/cm2 leaf area was calculated.  
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2.2.2. Protein analysis 

2.2.2.1. Total protein extraction from plant material 

For total protein extraction from A. thaliana or N. benthamiana 100 mg leaf material were 

ground in liquid N2. The ground material was mixed with 100 µl cold extraction buffer (50 mM 

Tris/HCl pH 8.0, 150 mM NaCl, 0.5 % Nonidet P40, proteinase inhibitor cocktail (Roche)) and 

incubated for 30 min on ice with occasional mixing. Afterwards the samples were centrifuged 

for 10 min at 14000 rpm, 4 °C and the supernatant was transferred into a fresh tube. The clear 

lysates were mixed with 5 x SDS loading buffer (312.5 mM Tris/HCl pH 6.8, 10 % (w/v) SDS, 25 

% (v/v) β-mercaptoethanol, 50 % (v/v) glycerol, 0.05 % (w/v) bromphenol blue) and boiled for 

5 min at 95 °C. Samples were directly used for immunoblot analysis or stored at -20 °C.  

 

2.2.2.2. Protein concentration measurements 

For protein concentration measurements the detergent compatible kit Biorad DC protein assay 

(Biorad, Hercules, USA) was used according to the manufacturer’s instruction. All samples of 

one experiment were adjusted with extraction buffer to the sample with the lowest protein 

concentration.  

 

2.2.2.3. SDS-PAGE 

For SDS-PAGE analysis the Biorad Mini-PROTEAN Tetra Cell was used. 8% resolving gels 

consisting of 2.3 ml H2O, 1.3 ml acrylamide-bisacrylamide mix (37.5:1), 1.3 ml 1.5 M Tris pH 

8.8, 50 µl 10 % SDS, 50 µl 10 % APS and 3 µl Temed were pured between glass plates with 1 

mm spacers. The surface was covered with 50 % isopropanol and the gel was let polymerize. 

When the gel was polymerized the isopropanol was removed and the 4 % stacking gel 

consisting of 1.4 ml H2O, 0.17 ml acrylamide-bisacrylamide mix (37.5:1), 0.13 ml 1M Tris pH 

6.8, 10 µl 10 % SDS, 10 µl 10 % APS and 1 µl Temed was poured on top. A comb for 10 or 15 

slots was inserted and the gel was let polymerize. The gel was placed in the running tank and 

covered with 1 x SDS-running buffer (25 mM Tris base, 192 mM glycine, 0.1 % (w/v) SDS). The 

samples and 5 µl PageRuler Prestained protein ladder (Thermo Scientific) were loaded. The 

gels were run at 100-150 V according to the size of the proteins. The gels were removed from 

the glass plates, the stacking gel was discarded and the resolving gel was used for immunoblot 

analysis. 
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2.2.2.4. Immunoblot analysis 

For immunoblot analysis the proteins were electroblotted from the SDS-gel on PVDF 

membranes (Roche) using the Biorad Tetra Blotting Module. Blotting was performed for 1 hour 

at 110V in 1 x transfer buffer (25 mM Tris base, 192 mM glycine). Afterwards the membranes 

were incubated in 5 % low fat milk powder in PBS-T (137 mM NaCl, 27 mM KCl, 10 mM 

Na2HPO4, 2 mM KH2PO4, pH 7.4, 0.1 % Tween 20) for 1 hour at RT to block unspecific binding 

sites. The membranes were incubated in the primary antibody in PBS-T with 5 % milk overnight 

at 4 °C. The next day membranes were washed 3 times for 5 min in PBS-T and the secondary 

antibody was incubated in 5 % milk in PBS-T for 1 hour at RT. Afterwards the membrane was 

again washed 3 times for 5 min in PBS-T. The signal of the horseradish peroxidase coupled 

secondary antibody was detected using ECL reagent (GE Healthcare) according to the 

manufacturer’s instructions. The signal was detected on X-ray films (CL X-posure films, Thermo 

Scientific). 

Afterwards membranes were Coomassie stained to visualize equal protein loading. 

Membranes were incubated for 5 min in Coomassie staining solution (0.025 % (w/v) 

Coomassie Brilliant Blue R-250, 45 % (v/v) methanol, 10 % (v/v) acetic acid). Afterwards 

membranes were incubated in destaining solution (45 % (v/v) methanol, 10 % (v/v) acetic acid) 

until bands became clearly visible.  

 

2.2.2.5. Co-immunoprecipitation experiments 

For CoIP experiments 200 mg leaf material of A. thaliana seedlings or N. benthamiana were 

ground in liquid N2. The powder was mixed with 200 µl extraction buffer (50 mM Tris pH 8.0, 

150 mM NaCl, 1 % (v/v) Nonidet P40, proteinase inhibitor cocktail (Roche)) and incubated for 1 

hour at 4°C with gentle shaking. In the same time 15 µl protein A agarose beads (Roche) or 

GFP-trap beads (Chromotec) were washed 3 times with the same volume of buffer (50 mM Tris 

pH 8.0, 150 mM NaCl). The antibody was added (e.g. 5 µl α-BAK1) to the protein A beads and 

the beads were incubated at 4°C with gentle shaking; The GFP-trap beads were used directly. 

The protein extracts were cleared by 2-3 times centrifugation for 10 min at 14000 rpm and 4 

°C. 20 µl protein extract was taken as input sample, mixed with 5 x SDS- loading dye and boiled 

for 5 min at 95°C. The antibody beads are added to the rest of the protein extracts and the IP is 

incubated for 1 hour at 4 °C with gentle shaking. Afterwards the beads are washed 2 times 

with 50 mM Tris pH 8.0, 150 mM NaCl and one time with 50 mM Tris pH 8.0. 10 µl 5 x SDS-

Loading buffer is added to the beads and they are boiled for 5 min at 95°C. Samples were 

directly used for immunoblot analysis or stored at -20°C.  
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2.2.3. DNA analysis 

2.2.3.1. Transformation of E. coli DH5α  

For transformation of E.coli DH5α 1 µl plasmid DNA or a cloning reaction were added to 200 µl 

of chemically competent cells. The cells were kept on ice for 5-30 min and then heat shocked 

for 90 s at 42°C in a water bath. 450 µl SOC medium was added to the cells and they were 

incubated for 1 hour at 37 °C with shaking. Afterwards 50 and 500 µl were plated on LB plates 

with appropriate antibiotics and plates were incubated over night at 37 °C. Single colonies 

were used for the inoculation of liquid LB cultures. From these cultures mini preps were 

prepared and plasmids were checked with restriction digests and glycerol stocks were 

prepared for long term storage.  

 

2.2.3.2. Transformation of Agrobacterium tumefaciens  

For transformation of A. tumefaciens 2 µl plasmid DNA were added to 200 µl electro-

competent cells. The cells were transferred into an electroporation cuvette and electroporated 

at 1500 V. 300 µl LB medium were added to the cells and they were transferred back into 

microcentrifuge tubes. Tubes were shaken at 28 °C for 1.5 hours. The cells were plated on LB 

plates with appropriate antibiotics and incubated for 2 days at 28 °C.  

 

2.2.3.3. Bacterial plasmid extraction 

For bacterial plasmid extraction by alkaline lyses 5 ml overnight cultures were harvested by 

centrifugation for 2 min at 12000 x g. Cell pellets were resuspended in 100 µl lysis buffer (50 

mM Tris/HCl pH 8, 50 mM EDTA pH 8, 15 % (w/v) sucrose, 10 µg/ml RNAse A). The suspension 

was mixed with 200 µl alkaline SDS-solution (200 mM NaOH, 1 % (w/v) SDS) and incubated for 

maximum 5 min until the lysate became clear. Lysis reaction was stopped by neutralisation 

with 150 µl potassium-acetate solution (3 M Potassium acetate, 11.5 % (v/v) acetic acid). The 

samples were incubated for 10 min on ice and then centrifuged for 10 min at 14000 rpm and 

4°C. The supernatant was transferred to a fresh microcentrifuge tube. DNA was precipitated by 

adding 0.6 volumes isopropanol and centrifugation for 15 min at 14000 rpm and 4 °C. DNA 

pellets were washed with 500 µl 70 % EtOH and centrifuged for 5 min at 13000 rpm. 

Supernatants were discarded, pellets were air dried and dissolved in 50 µl 10 mM Tris/HCl pH 

8. Plasmids were stored at -20 °C. Plasmid DNA obtained from alkaline lysis is applicable for 

restriction digests or transformation of A. tumefaciens. If cleaner DNA for sequencing was 
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needed, mini preps were performed with GeneJet plasmid mini prep kit (Thermo Scientific) 

according to manufacturer’s instructions. 

 

2.2.3.4. Plant genomic DNA extraction 

DNA isolation for plant genotyping was performed according to (Edwards et al., 1991). A small 

leaf piece was homogenized in 200 µl Edwards buffer (200 mM Tris/HCl pH 7.5, 250 mM NaCl, 

25 mM EDTA, and 0.5 % (w/v) SDS). The homogenate was centrifuged at 13000 rpm for 5 min 

and the supernatant was transferred into a fresh microcentrifuge tube. 200 µl isopropanol 

were added and the DNA was precipitated for 5 min. The samples were centrifuged 10 min at 

14000 rpm and 4 °C and the supernatant was discarded, The DNA pellet was washed with 70 % 

EtOH and centrifuged 5 min at 13000 rpm. The supernatant was discarded. The pellet was air 

dried and resuspended in 50 µl Tris/HCl pH 8.5. 2 µl were used for genotyping PCRs. 

 

2.2.3.5. Polymerase Chain Reaction (PCR) 

PCR reactions for plant genotyping were performed with a homemade Taq polymerase. The 

PCR was performed in a 20 µl mix consisting of 1 x reaction buffer (67 mM Tris, 16 mM 

(NH4)2SO4, 2.5 mM MgCl2, 0.01 % Tween, pH 8.8), 125 μM dNTPs, 0.5 μM fwd and rev primer, 

0.5 µl Taq polymerase, 2 µl DNA from Edwards protocol. The protocol was as follows: Initial 

denaturation for 3 min at 95 °C, 40 cycles of 30 s 95 °C denaturation, 30s at Tm -3 annealing, 1 

min/kb at 72 °C elongation, 5min 72 °C final elongation. 

Semiquantitative RT-PCRs were also performed with homemade Taq polymerase and the 

above described protocol. 1 µl cDNA were used per reaction and the cycle number was 

adjusted to the amplified gene.  

For cloning the proofreading polymerases Pfu or Phusion (Thermo Scientific) were used 

according to manufacturer’s instructions. 

 

2.2.3.6. Restriction enzyme digestion of DNA 

To analyze successful cloning of plasmids a restriction digest was performed using an enzyme 

that cuts at least one time in the insert and one time in the vector backbone. For the 

restriction digest about 500 ng plasmid DNA and 1 U enzyme were used as given in the 

manufacturer’s instructions (Thermo Scientific). Fragments were analyzed by agarose gel 

electrophoresis.  
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2.2.3.7. DNA agarose gel electrophoresis 

For agarose gel electrophoresis DNA samples were mixed with 5 x DNA loading buffer (10 mM 

Tris pH 7.5, 60 mM EDTA, 60 % (v/v) glycerol, 0.25 % bromphenol blue) and loaded on 1 % (or 

higher percentage if needed for short DNA fragments) agarose gels in 1 x TAE buffer (40 mM 

Tris, 1 mM EDTA, pH 8.5) with ethidiumbromide (0.5 µg/ml). Gels were run at 100 V in 1x TAE 

buffer according to the fragment size. GeneRuler 1 kb DNA ladder (Thermo Scientific) was used 

as standard. Bands were visualized using UV-Transilluminator (Infinity-3026 WL/26 MX, 

Peqlab).  

 

2.2.3.8. Purification of DNA fragments from agarose samples 

For purification of DNA from agarose gels the DNA bands were cut out and DNA was extracted 

using GeneJet Gel extraction kit (Thermo Scientific) according to manufacturer’s instructions.  

 

2.2.3.9. Gateway TOPO cloning 

For creation of vectors the Gateway system was used (Life Technologies). Entry vectors were 

created with the pCR™8/GW/TOPO®TA Cloning®Kit (Life Technologies). The exact coding 

sequence of the gene of interest was PCR amplified with proofreading enzymes (or without 

codon for use with C-terminal tags). The PCR product was purified from agarose gels. An A 

overhang was added by incubation of 7.9 µl PCR product with 0.1 µl Taq polymerase, 1 µl 10 

mM dATPs and 1 µl 10 x Taq buffer for 10 min at 72°C. 4 µl PCR fragment with A overhang 

were mixed with 1 µl salt solution and 1 µl TOPO vector (from the pCR™8/GW/TOPO®TA 

Cloning®Kit, Life Technologies) and incubated for 5 min at RT. The TOPO reaction was directly 

transformed into E. coli DH5α cells. Entry vectors were analyzed by restriction digestion and 

sequencing.  

 

2.2.3.10. Gateway LR reaction 

Expression vectors were created by LR reactions between Gateway entry and destination 

vectors using the Gateway® LR Clonase® II Enzyme mix (Life Technologies). Therefore 50-150 

ng entry and destination vector were mixed in a volume of 4 µl with TE, pH 8. 1 µl LR clonase II 

enzyme mix were added and the reaction was incubated at RT for 1 hour to overnight. The 

next morning the reaction was stopped by incubation with 0.5 µl proteinase K for 10 min at 37 

°C. The reaction was directly transformed into E.coli DH5α. Successful cloning was analyzed by 

restriction digestion.  
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2.2.3.11. DNA sequencing 

For sequencing of plasmid DNA the light run service of GATC was used. Therefore 400-500 ng 

plasmid DNA and 25 pmol primer were mixed in a total volume of 10 µl and send for 

sequencing. Sequencing results were analyzed using CLC Main workbench (CLC bio).  

 

2.2.3.12. Quantitative Real-time PCR 

For qPCR experiments the iCycler with iQ5 multicolor real-time PCR detection system (Biorad) 

was used. For the qPCR reaction 2 µl 1:10 diluted cDNA, 0.5 µM fwd and rev primer and 10 µl 

Maxima SYBR Green/Fluorescein qPCR Master Mix (2X) (Thermo Scientific) were used in a 20 

µl reaction. The PCR program was as follows: 95 °C for 10 min initial denaturation, 40 cycles of 

95 °C for 15 s denaturation, Tm - 3 for 15 s annealing, 72 °C for 1 min/kb elongation ( real 

time detection). For the melt curve samples were heated 1 min to 95 °C, 2 min cooled to Ta 

and then heated to 95 °C in 0.5 °C steps, 10 s per step ( melt curve detection after each 

step). Relative gene expression was calculated according to the 2 –Δct method (Livak and 

Schmittgen, 2001) to the housekeeping gene EF1α.  

 

2.2.4. RNA analysis 

2.2.4.1. RNA extraction 

RNA extraction from plant material was performed with TriZOL method (Chomczynski and 

Sacchi, 1987). About 100 mg ground plant material was mixed with 1 ml TriZOL reagent (380 

ml/l phenol, 0.8 M guanidinium thiocyanate, 0.4 M ammonium thiocyanate, 33.4 ml/l 3 M Na-

acetate, pH 4.5, 5 % (v/v) glycerol) and vigorously mixed until thawn. Samples were incubated 

for at least 5 min at RT. 200 µl chloroform were added, samples were vigorously mixed for at 

least 15 s and then incubated for 3 min at RT. Samples were centrifuged at 12000 x g for 15 

min at 4 °C. The aqueous phase was transferred to a fresh microcentrifuge tube. RNA was 

precipitated by adding 500 µl isopropanol and incubation for 10 min at RT. RNA was pelleted 

by centrifugation at 12000 x g for 10 min at 4 °C. Pellets were washed with 1 ml 75 % EtOH and 

centrifuged at 7500 x g for 5 min at 4 °C. Pellets were air dried and dissolved in 30 µl nuclease 

free H2O. RNA was stored at -80 °C. Concentration was determined with NanoDrop 2000 

Spectrophotometer (Peqlab).  
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2.2.4.2. DNAse treatment of RNA 

For DNAse treatment 5 µg RNA in a volume of 17 µl were used. Digestion was performed with 

1 U DNAse I (Thermo Scientific) and 2 µl of DNAse buffer for 30 min at 37°C. Reactions were 

placed on ice and stopped by adding 130 µl H2O and 150 µl Phenol/Chloroform/Isoamylacolhol 

(PCI, 25:24:1). Samples were centrifuged for 5 min at 120000 rpm and RT and the aqueous 

phase was transferred to a fresh microcentrifuge tube. RNA was precipitated with 1/10 Vol. 3 

M NaOAc pH 5.2 and 2 Vol. cold EtOH and incubation at RT for 10 min. Samples were 

centrifuged for 10 min at 12000 x g and 4°C to pellet RNA. Pellets were washed with 1 ml 75% 

EtOH and centrifugation for 5 min at 7500 x g and 4°C. Pellets were air dried and dissolved in 

15 µl H2O.  

 

2.2.4.3. Reverse transcription 

Reverse transcription (RT) of RNA into cDNA was performed with 1 µg DNAse digested RNA in 

a volume of 13 µl. The RNA was mixed with 1 µl 2.5 mM dNTPs and 1 µl 10 µM oligo-dT 

primers, incubated for 5 min at 65 °C and directly cooled on ice. To this mix 200 U RevertAid RT 

(Thermo Scientific) and 4 µl corresponding 5 x RT-buffer were added and reverse transcription 

was performed for 50 min at 42 °C and 5 min at 94 °C. cDNA was directly used in qPCR or RT-

PCR experiments or stored at -20 °C. 

 

2.2.5. Split-ubiquitin bridge assay 

The split-ubiquitin bridge assay was used to determine interactions between three proteins. 

The assay is performed in yeast and based on the reconstitution of the two artificially cleaved 

halves of ubiquitin. It enables the use of full length or membrane bound proteins. One protein 

is fused to the N-terminal half of ubiquitin (Nub) and the second protein to the C-terminal part 

(Cub) with the reporter construct PLV (ProteinA-LexA-VP16). Interaction of the tow proteins 

leads to reconstitution of the ubiquitin upon which the PLV is cleaved off by ubiquitin-specific 

proteases and thus able to switch on reporter genes. The use of a repressible promotor for the 

Cub fusion (met25) gives more reliability by decreasing the artefacts of overexpression. 

Expression of an additional protein (bridge) allows detection of facilitated or enhanced 

interaction by this protein.  

For the interaction assay the yeast THY.AP4 (S . cerevisiae MATa; ade2 − , his3 − , leu2 − ,trp1 − 

, ura3 − ; lexA::ADE2, lexA::HIS3, lexA::lacZ) was grown in 10 ml YPD shaking over night at 30 

°C. 4ml of the pre-culture were transferred into fresh 50ml YPD medium and incubated shaking 
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for 5 hours until an OD600 of 0.5 to 0.8 was reached. Cells were harvested by centrifugation for 

10 min at 2000 x g and the supernatant was discarded. The pellets were resuspended in 20 ml 

sterile H2O and centrifuged again. Cells were resuspended in 1 ml 0.1 M lithium acetate pH 7.5 

(LiAc) and transferred in a 2 ml microcentrifuge tube. The tubes were centrifuged for 2 min at 

1000 x g and the supernatant was discarded. Pellets were resuspended in 500 µl 0.1 M LiAc 

and incubated at RT for 30 min. Meanwhile sterile tubes with 9 µl 2 mg/ml ssDNA and 6 µl of 

plasmid DNA (at least 200 ng/µl, 2µl from each clone) were prepared for each transformation. 

A mastermix of 70 µl 50 % PEG 3350, 10 µl 1 M LiAc and 20 µl competent cells was prepared 

for each transformation. The mastermix was carefully mixed with the DNA and incubated for 

30 min at 30 °C. After 20 min each reaction was mixed by pipetting carefully up and down. 

Heat shock was performed for 15 min at 43 °C. Cells were centrifuged for 5 min at 2000 x g and 

the supernatant was discarded. Pellets were washed with 100 µl sterile water and again 

centrifuged. Supernatants were discarded and cells were resuspended in 100 µl sterile water. 

Cells were plated on CSM- Leu-, Trp-, Ura- plates and incubated at 30°C for 3 to 4 days.  

For growth assays 5 ml CSM- Leu-, Trp-, Ura- were inoculated with 5-10 colonies per 

transformation. Cultures were grown overnight at 30°C shaking. The OD600 was determined. 

100 µl sample were centrifuged for 2 min at 2000 x g, supernatants were discarded and pellets 

resuspended in a volume of sterile water to get an OD600 of 1.0. From this cell suspension 1:10 

and 1:100 dilutions were prepared in sterile water. 7 µl droplets of all dilutions were placed on 

CSM- Leu-, Trp-, Ura- (vector selective medium) and CSM- Leu-, Trp-, Ura-, Ade-, His- with 

increasing methionine concentration (interaction selective medium) plates. Plates were 

incubated at 30 °C until yeast growth became visible.  

 

2.2.6. Statistical analysis 

Statistical significance between two groups has been analyzed using Student’s t-test. Asterisks 

represent significant differences (*p <0.05; **p <0.01; ***p <0.001). One-way ANOVA was 

performed for multiple comparisons combined with Tukey’s honest significant difference 

(HSD) test. Different letters indicate significant differences (p < 0.05). 

All experiments were repeated at least three times with similar results, if not indicated 

otherwise.  
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3. Results  

3.1. The BAK1 interacting RLK 2 (BIR2) 

The regulatory LRR-RLK BIR2 was identified in a CoIP-MS analysis for BAK1 interaction partners. 

It was shown by Sara Mazzotta that BAK1 and BIR2 interact constitutively and that BIR2, which 

itself is kinase inactive, gets phosphorylated by BAK1. In yeast-two-hybrid assays it could be 

shown that the interaction between BAK1 and BIR2 is dependent on BAK1 kinase activity 

(Mazzotta, 2012). Thierry Halter continued the characterization of BIR2 with functional analysis 

of bir2 mutants. He could show that bir2 mutants are hyperresponsive to MAMPs, show 

stronger cell death after infection with the necrotrophic fungus A. brassicicola and are more 

resistant to infections with the hemibiotrophic bacterium Pseudomonas syringae pv. tomato 

DC3000. In contrast to bak1 mutants, bir2 mutants do not show a BL phenotype. These results 

indicate that BIR2 differentially regulates BAK1 dependent signaling pathways (Figure 3-1). 

Moreover he showed first analyses addressing how BIR2 influences BAK1 complexes with 

ligand-binding receptors (Halter, 2014).  

 

 

Figure 3-1: Summary of phenotypic analysis of bir2 mutants (Halter et al., 2014) 
The role of BAK1 and BIR2 proteins in MAMP signaling, BL signaling and cell death control is 
indicated by arrows pointing up (positive effect) or down (negative effect) or no influence (±.) 
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3.1.1. BIR2 overexpressors show stronger symptom development after A. 

brassicicola infection and less MAMP responses 

In order to further analyze the role of BIR2 in MAMP responses and cell death regulation and 

to support the data obtained with knockout mutants, BIR2 overexpressing plants were used. 

Two independent 35S-BIR2-YFP lines were used for elf18 induced ROS burst assays. Both lines 

show reduced ROS production compared to Col-0 wildtype plants (Figure 3-2 A). Thus, these 

BIR2 overexpressing plants show the opposite phenotype to bir2 mutants in ROS burst assays. 

These results confirm the negative regulatory role of BIR2 in the MAMP response pathway.  

 

Figure 3-2: Functional analysis of 35S-BIR2-YFP plants 
A: Luminol based ROS measurements over 30 min represented as relative light units (RLU) in Col-0 
and two independent BIR2 overexpressor lines on leaf discs after elicitation with 100 nM elf18. 
Values are means ± SE (n=9).  
B: Infection experiments with the necrotrophic fungal pathogen Alternaria brassicicola on Col-0 
and two independent BIR2 overexpressor lines. Bonitation of disease symptoms was done after 10 
and 13 days and the disease index was calculated. Upper chart shows the disease index as mean ± 
SE (n=3). Asterisks represent significant differences to Col-0 (*p<0.05; **p<0.01; ***p<0.001; 
Student‘s t-test). Lower part shows a picture of the symptom development on two representative 
leaves after 13 days. 

 

35S-BIR2-YFP lines were also used for further analysis of cell death regulation and subjected to 

infection experiments with the necrotrophic fungus A. brassicicola. Surprisingly, 35-BIR2-YFP 

plants showed a higher disease index and stronger symptom development compared to Col-0 
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wildtype plants (Figure 3-2 B). This is the same phenotype as bir2 mutant plants show. 

Therefore, BIR2 is a positive and negative regulator of cell death responses, likely because of 

the necessity of balanced protein amounts. The correct protein level of BIR2 or the correct 

ratio to proteins like BAK1 seems to be important for proper cell death regulation. 

 

3.1.2. BIR2 is released from BAK1 after MAMP treatment 

It was shown in phenotypic analyses that BIR2 is a negative regulator of MAMP responses. We 

were therefore interested how BIR2 acts mechanistically and continued with a molecular 

analysis of receptor complexes. It was shown that BIR2 and BAK1 interact constitutively and 

that BAK1 forms complexes with ligand-binding receptors such as FLS2 only after ligand-

binding (Chinchilla et al., 2007; Halter et al., 2014). We hypothesized that BAK1 gets released 

from BIR2 after flg22 treatment to be able to interact with FLS2. To proof this hypothesis Co-IP 

experiments were performed, analyzing the interaction of BIR2 with BAK1 after flg22 

treatment. Immunoprecipitation of BAK1 with specific antibodies in Col-0 plants leads to 

coimmunoprecipitation of BIR2, detected with specific BIR2 antibodies, showing the strong 

interaction of both proteins in wildtype Arabidopsis plants. Treatment with flg22 leads to 

reduced BAK1 BIR2 complex formation compared to the mock treated control showing release 

of BIR2 from the complex with BAK1 (Figure 3-3 A). Flg22 treatment leads to only about 30% 

release of BAK1 from BIR2. In parallel Thierry Halter has shown that treatment with other 

ligands, like BL or Atpep1, for which BAK1 is the co-receptor, also leads to only partial release 

of BAK1 from BIR2. We asked whether this is an effect of accessibility or if specific ligands can 

address specific subpools of BAK1 that exist in preformed complexes with specific ligand- 

binding receptors. The latter is indeed the case. The same Co-IP experiment was performed 

treating plants with a cocktail of different MAMPs and BL. This treatment with a cocktail of 

different ligands leads to strongly increased release of BAK1 from BIR2 compared to single 

treatments (Figure 3-3 B). This indicates that individual BAK1 molecules can be specifically 

addressed by specific ligands and that BAK1 that is in complex with a ligand-binding receptor is 

not accessible by a different ligand. 
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Figure 3-3: BAK1 is released from BIR2 after ligand perception 
Two week old Arabidopsis seedlings of the indicated genotypes were treated with different 
elicitors. Immunoprecipitation (IP) was performed with specific α-BAK1 antibody. Precipitated BAK1 
and coimmunoprecipitated BIR2 were detected with specific α-BAK1 and α-BIR2 antibodies 
respectively. Protein input is shown with Western blot (WB) analysis of protein extracts before IP 
and specific α-BAK1 and α-BIR2 antibodies. Coomassie brilliant blue (CBB) staining shows protein 
loading. 
A: Seedlings were treated for 5 min with 1 µM flg22 (+) or with H2O (-).  
B: Seedlings were treated with a cocktail of 1 µM flg22, 1 µM elf18 and 1 µM Atpep1 for 5 min and 
10 nM Epi-BL for 90 min (+) or with H2O (-). 
 

3.1.3. BIR2 regulates BAK1 FLS2 complex formation 

BIR2 interacts with BAK1 in the absence of ligands and gets released upon activation of BAK1 

after ligand binding, but what is the molecular mechanism underlying the negative regulation 

of MAMP responses? Does BIR2 directly affect complex formation of BAK1 and PRRs? To 

further analyze if BIR2 is really able to regulate complex formation between BAK1 and ligand-

binding receptors we analyzed BAK1 FLS2 complex formation in the presence or absence of 

BIR2. CoIP experiments were performed analyzing the interaction of BAK1 with FLS2. FLS2 

could be coimmunoprecipitated with BAK1 only after flg22 treatment in Col-0 plants showing 

the ligand induced interaction of both proteins. The same experiment was performed in plants 

lacking BIR2 (amiR-BIR2) and plants overexpressing BIR2 (35S-BIR2-YFP). In amiR-BIR2 lines 

more FLS2 can be coimmunoprecipitated with BAK1 after flg22 treatment as compared to wt 

plants while in 35S-BIR2-YFP overexpressing lines lower interaction of BAK1 with FLS2 was 

detected (Figure 3-4 A). This shows that BIR2 is indeed able to influence MAMP responses 

directly at the receptor level by negatively regulating the interaction between BAK1 and FLS2.  
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FLS2 protein levels seem to be enhanced in amiR-BIR2 plants. Therefore, increased 

complex formation between BAK1 and FLS2 could also be caused by differential expression of 

FLS2 in the BIR2 mutant lines. In order to test this possibility, FLS2 expression in amiR-BIR2 and 

35S-BIR2-YFP lines was analyzed by qRT-PCR. amiR-BIR2 lines show indeed increased FLS2 

expression levels but FLS2 expression is not altered in 35S-BIR2-YFP lines (Figure 3-4 B). This 

data shows that the reduced BAK1 FLS2 complex formation in 35S-BIR2 lines is indeed caused 

by a negative effect of BIR2 on the BAK1 FLS2 interaction and not by reduced FLS2 expression. 

The enhanced FLS2 expression in bir2 mutant plants could be a secondary effect of the 

enhanced MAMP responses in bir2 leading to induction of PRRs.  

 

 

Figure 3-4: BIR2 regulates BAK1 FLS2 complex formation 
A: Arabidopsis seedlings of the indicated genotype were treated for 5 min with 1 µM flg22 (+) or 
H2O (-). Immunoprecipitation (IP) was performed with specific α-BAK1 antibody. Precipitated BAK1 
and coimmunoprecipitated FLS2 were detected with specific α-BAK1 and α-FLS2 antibodies 
respectively. Protein input is shown with Western blot analysis of protein extracts before IP and 
specific α-BAK1 and α-FLS2 antibodies. Coomassie brilliant blue (CBB) staining shows protein 
loading. 
B: qRT-PCR analysis of FLS2 expression in the indicated genotypes. FLS2 expression was normalized 
to the housekeeping gene EF1α and plotted relative to expression in Col-0. Results are mean ± SD 
(n=8). Asterisks represent significant differences according to Student‘s t-test (**p<0.01).  
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receptors such as FLS2, EFR and BRI1 compared to BAK1 wildtype protein (Schwessinger et al., 

2011). We therefore analyzed how the BAK1-5 mutation behaves concerning its interaction 

with BIR2 and performed CoIP experiments of BAK1 with BIR2 in wildtype plants compared to 

bak1-5 mutants. bak1-5 mutants still show wildtype BAK1 protein levels that can be detected 

by α-BAK1 antibodies. BIR2 showed strongly reduced interaction with BAK1-5 compared to the 

BAK1 wildtype protein (Figure 3-5). This shows that weaker interaction of BAK1 with BIR2 

correlates with stronger interaction of BAK1 with FLS2. It was shown by Sara Mazzotta that 

kinase dead BAK1 does not interact with BIR2 in yeast-two-hybrid assays. The bak1-5 mutant is 

additionally interesting because it shows reduced phosphorylation activity (Schwessinger et al., 

2011) supporting a correlation of BAK1 kinase activity and interaction of BIR2 and BAK1 in vivo. 

 

 

Figure 3-5: BIR2 interacts less with BAK1-5 compared 
to BAK1 wildtype protein 
Untreated Arabidopsis seedlings of the indicated 
genotype were used for immunoprecipitation 
experiments with specific α-BAK1 antibody. 
Coimmunoprecipitated BIR2 was detected with 
specific α-BIR2 antibody. Protein input is shown with 
Western blot analysis of protein extracts before IP and 
specific α-BAK1 and α-BIR2 antibodies. Coomassie 
brilliant blue (CBB) staining shows protein loading. 

 

 

 

3.1.4. BAK1 functions downstream of BIR2 in the MAMP pathway 

In order to analyze the relationship of BAK1 and BIR2, double mutants of both proteins were 

generated. Different allele combinations of the respective single mutants were crossed and 

double mutants were isolated in the F2 generation by PCR based genotyping in case of bak1-3, 

bak1-4 and bir2-1 or Basta selection in case of amiR-BIR2. Homozygous bir2-1 bak1-3 and 

bak1-4 amiR-BIR2 were used for functional analysis. In the MAMP response pathway BAK1 and 

BIR2 have opposite functions, thus epistasis experiments were performed to analyze which 

component is upstream in the signaling cascade. In ROS burst assays after flg22 treatment 

bir2-1 bak1-3 mutants show the same reduced ROS production as the bak1-3 single mutants 

(Figure 3-6 A). This shows that BAK1 acts downstream of BIR2 in the MAMP response pathway. 

The result was confirmed with bak1-4 amiR-BIR2 double mutants (Figure 3-6 B). Here, the ROS 
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production in bak1-4 and bak1-4 amiR-BIR2 is even lower compared to wildtype as in bak1-3 

single and double mutants, most likely because of remaining transcript in bak1-3 mutants.  

 

Figure 3-6: BIR2 functions upstream of BAK1 in the MAMP response pathway 
A, B: ROS production was measured with a luminol based assay on leaf discs of the indicated 
Arabidopsis lines over a period of 30 min after elicitation with 100 nM flg22. ROS production is 
represented as relative light units (RLU) and results are mean ± SE (n=9).  

 

3.1.5. Cell death in bir2 mutants is not altered by bak1  

bak1 and bir2 mutants both show enhanced cell death after infection with pathogens. We 

therefore analyzed the cell death phenotype of the double mutant. The morphological 

phenotype of bir2-1 already shows weak cell death symptoms without infection, which are 

decreased size and early senescence of older leaves. bak1 mutants show shorter and wider 

leaves due to partial BL insensitivity. The bir2-1 bak1-3 double mutant is even a bit smaller 

than bir2-1 and also shows chlorosis in older leaves. In contrast, bak1-4 amiR-BIR2 mutants 

have an intermediate size between bak1-4 and amiR-BIR2 single mutants (Figure 3-7 A). In 

order to analyze cell death in these mutants they were inoculated with the necrotrophic 

fungus A. brassicicola and the symptom development was analyzed. bak1 single mutants show 

a significant higher disease index compared to Col-0 and bir2-1 mutants show even stronger 

symptom development. bak1-3 bir2-1 single mutants show a disease index comparable to bir2-

1, indicating that bir2-1 already shows the highest disease index and bak1 mutation has no 

additive effect (Figure 3-7 B). bak1-4 amiR-BIR2 double mutants show infections comparable 

to both single mutants (Figure 3-7 C). These results again indicate that cell death regulation 

depends on BIR2 protein amounts and probably balanced amounts compared to BAK1 and 
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thus BAK1 BIR2 complex integrity. These results also indicate that BIR2 and BAK1 are not acting 

up- or downstream from each other in a probable cell death regulating pathway but more 

likely as one complex.  

 

Figure 3-7: Cell death analysis with bir2 bak1 mutants 
A: Morphological phenotype of different allele combinations of bak1 bir2 double mutants and the 
respective single mutants.  
B, C: Infection experiments with the necrotrophic fungal pathogen Alternaria brassicicola on bak1 
bir2 double mutants and the respective single mutants. Upper chart shows the disease index after 
7 and 10 days as mean ± SE (n=16). Different letters indicate significant differences according to 
one-way ANOVA. 
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3.1.6. Analysis of possible downstream regulators of BIR2 in the cell death control 

pathway 

In many cell death mutants cell death is induced by activated R-proteins (Shirano et al., 2002; 

Zhang et al., 2003). Also for BIR1 a guarding model was proposed, because eds1, pad4 and to a 

lower extend ndr1 could partially rescue the bir1 mutant phenotype (Gao et al., 2009). 

Additionally the mutation of one special R-protein, SNC1, can rescue the bir1 mutant 

phenotype (Wang et al., 2011). Another player in cell death regulation is the phytohormone 

salicylic acid (SA), as SA is induced by R-gene signaling and many autoimmunity mutants show 

elevated SA levels (Alvarez, 2000). To analyze if cell death in bir2 can be linked to any of these 

cell death signaling components different double mutants were generated. bir2 was crossed to 

nahG, a transgene that degrades SA (Lawton et al., 1995), pad4, a protein that acts 

downstream of TIR-type NB-LRR proteins (Zhou et al., 1998; Zhang et al., 2003) and a knockout 

of the R-protein SNC1, snc1-11 (Kim et al., 2010). The morphological phenotype of all double 

mutants resembles bir2-1 single mutants (Figure 3-8 A). To analyze if any of these mutations 

can block the pathogen induced cell death in bir2-1, infection experiments with A. brassicicola 

were performed. bir2-1 mutants show a much higher disease index compared to Col-0 and 

nahG single mutants show an even lower disease index. nahG expression in bir2-1 mutants 

brings the bir2-1 phenotype almost back to nahG levels showing that the cell death in bir2-1 is 

mainly dependent on SA. pad4 single mutants are also resistant to A. brassicicola infections 

but pad4 does not alter the cell death of bir2-1. Therefore, bir2-1 cell death seems not to be 

induced by TIR-type NB-LRR proteins. Likewise snc1-11 does not change the cell death in bir2-1 

mutants showing that bir2-1 cell death is independent of SNC1 (Figure 3-8 B). In summary, it 

could be shown that cell death in bir2-1 is partially dependent on SA but a dependency on TIR-

type NB-LRR proteins could not be shown. Further analysis with ndr1 crosses are needed to 

investigate if bir2-1 cell death is dependent on CC-type NB-LRR proteins. The fact that cell 

death in bir1 can be suppressed by mutations in the R-protein signaling pathway but not the 

cell death in bir2 indicates that cell death is regulated differently by different BIR proteins.  
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Figure 3-8: Analysis of possible downstream regulators of BIR2 in cell death induction 
A: Morphological phenotype of different bir2 double mutants and the respective single mutants.  
B: Infection experiments with the necrotrophic fungal pathogen Alternaria brassicicola on different 
bir2 double mutants and the respective single mutants. Upper chart shows the disease index after 
10 days as mean ± SE (n=3) Letters indicate significant differences according to one-way ANOVA 
(p<0.05). Lower part shows a picture of the symptom development on two representative leaves 
after 10 days. 
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3.2. The BAK1-interacting RLK 3 (BIR3) 

In the same BAK1 CoIP-MS analysis in which BIR2 was identified, we could also identify the 

closely related protein BIR3. BIR3 could also be confirmed as constitutive interactor of BAK1. 

BIR3 is, opposite to BIR2, transcriptionally downregulated after pathogen infection (Halter et 

al., 2014). BIR3 is also kinase dead and get only weakly phosphorylated by BAK1 in in vitro 

kinase assays (Mazzotta, 2012).  

 

Figure 3-9: Summary of phenotypic analysis of 35S-BIR3 plants (Halter, 2014) 
A: Morphological phenotype of hetero- and homozygous BIR33 overexpressing plants.  
B: The role of BAK1 and BIR3 proteins in MAMP signaling, BL signaling and cell death control is 
indicated by arrows pointing up (positive effect) or down (negative effect). 
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The functional analysis of bir3 mutants showed no impact on cell death regulation or the BL 

pathway. The weak hyperresponsiveness to MAMPs shown by Thierry Halter could not be 

shown to be significant in this work. The lack of altered phenotypes in bir3 mutants could be 

due to redundancy with other BIR proteins so that BIR3 overexpressing plants were generated. 

These BIR3 overexpressors show, interestingly, a very strong growth phenotype resembling 

bri1 mutants and it was shown that 35S-BIR3 plants are indeed BL insensitive (Figure 3-9 A). 

35S-BIR3 plants show less ROS production after elf18 treatment and stronger symptom 

development after A. brassicicola infection (Figure 3-9 B). Moreover it could be shown that 

BIR2 and BIR3 interact with each other indicating that they could act together in regulating 

BAK1 dependent signaling pathways (Halter, 2014).  

 

3.2.1. BIR3 directly interacts with BRI1 

35S-BIR3 plants show a severe growth phenotype and are insensitive to BL treatment. This 

phenotype could be explained mechanistically by regulation of BAK1, but BIR3 could also have 

a direct effect on BRI1. From our cooperation partner Steve Clouse we kindly got the result 

that simultaneous overexpression of BRI1 in a 35S-BIR3 background rescues the 35S-BIR3 

growth phenotype (Figure 3-8). This points into the direction of a direct effect of BIR3 on BRI1.  

 

 

Figure 3-10: Overexpression of BRI1 rescues the 35S-BIR3 phenotype 
Morphological phenotype of plants expressing 35S-BIR3 in wildtype of 35S-BRI1 background. 
Picture kindly provided by Steve Clouse.  
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Figure 3-11: BIR3 directly interacts with BRI1 
A: Indicated constructs were transiently expressed in N. benthamiana leaves and 
immunoprecipitation was performed with GFP-trap beads. Precipitated BIR3 and co-
immunoprecipitated BRI1 were detected with α-GFP and α-HA antibodies respectively. Protein 
input is shown with Western blot analysis of protein extracts before IP and α-GFP and α-HA 
antibodies. Coomassie brilliant blue (CBB) staining shows protein loading. 
B: Growth assay of yeast containing two plasmids (“bait” and “prey”, ev = empty vector). Yeast was 
dropped at three different dilutions on medium selecting for vector transformation (CSM-Leu−, 
Trp−) and on medium selecting for interaction (CSM-Leu−, Trp−, Ade−, His−, with increasing 
methionine concentrations). Growth was monitored after 1 day for the vector-selective control 
plates and after 3 days for the actual interaction plates, respectively. Experiment B was repeated 2 
times with identical results. 
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It was therefore analyzed if BIR3 is able to directly interact with BRI1. 35S-BIR3-YFP and 35S-

BRI1-HA constructs were transiently expressed in Nicotiana benthamiana and 

immunoprecipitation was performed using GFP-trap beads. After immunoprecipitation of 

BIR3-GFP coimmunoprecipitated BRI1-HA was detected showing the interaction of both 

proteins (Figure 3-11 A). This indicates that BIR3 might have not only an effect on BAK1 but 

also directly on BRI1. However, in this transient expression system it cannot be excluded that 

other proteins like the N. benthamiana homologue of BAK1 influences the complex formation. 

Thus the interaction of BIR3 with BRI1 could also be indirect via BAK1. To confirm that the 

interaction between BIR3 and BRI1 is direct, a yeast split ubiquitin assay was used. In this assay 

full length constructs of membrane proteins are expressed in yeast and interaction of the 

proteins leads to reporter gene activation that allows growth on selective medium. Negative 

controls of co-expression of one protein and an empty vector does not lead to significant yeast 

growth on medium that selects for interaction. As positive control BAK1 and BIR3 were used 

that show strong interaction and thus functionality of the constructs. Co-expression of BAK1 

and BRI1 also leads to weak yeast growth showing the interaction of both proteins in this 

system already without BL treatment. Co-expression of BIR3 with BRI1 also leads to yeast 

growth confirming the direct interaction of both proteins (Figure 3-11 B). 

As BIR3 is able to interact with both BAK1 and BRI1 it should be tested if these proteins build a 

tripartite complex. A split-ubiquitin bridge assay was used that allows testing the interaction of 

three proteins. Transformation of yeast with BAK1 and BRI1 constructs allows growth on 

medium that selects for interaction, showing again that BAK1 and BRI1 interact in this yeast 

system already without BL treatment. Additional expression of BIR3 as bridge between the two 

proteins does not enhance the growth of yeast cells and thus the interaction of BAK1 and BRI1 

(Figure 3-12). Therefore, existence of a tripartite complex of BAK1-BIR3-BRI1 could not be 

shown. Further analyses are needed to elucidate the composition of receptor complexes 

containing BRI1, BAK1 and BIR3. 
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Figure 3-12: Analyses of a possible tripartite complex of BRI1, BIR3 and BAK1 
Growth assay of yeast containing three plasmids (“bait,”“bridge,” and “prey”, ev = empty vector). 
Yeast was dropped at three different dilutions on medium selecting for vector transformation 

(CSM-Leu−, Trp−, Ura−) and on medium selecting for interaction (CSM-Leu−, Trp−, Ura−, Ade−, His−, 
with increasing methionine concentrations). Growth was monitored after 1 day for the vector-
selective control plates and after 3 days for the actual interaction plates, respectively. The 
experiment was repeated two times with identical results.  

 

3.2.2. BIR3 shows interaction with other ligand-binding receptors such as FLS2 

As it was shown that BIR3 is able to directly interact with BRI1 it was tested if BIR3 also 

interacts with other ligand-binding receptors from other pathways like the MAMP receptor 

FLS2. 35S-BIR3-YFP and 35S-FLS2-Myc constructs were transiently expressed in N. 

benthamiana and BIR3-YFP was immunoprecipitated with GFP-trap beads. 

Coimmunoprecipitated FLS2-myc could be detected using α-myc antibodies showing the 

interaction of BIR3 with FLS2 (Figure 3-13). These findings indicate that BIR3 is not only able to 

directly interact with BRI1 but also interacts with another ligand-binding receptor involved in a 

different pathway. 

 

Figure 3-13: BIR3 interacts with FLS2 
Indicated constructs were transiently expressed in N. 
benthamiana leaves and immunoprecipitation was 
performed with GFP-trap beads. Precipitated BIR3-YFP 
and co-immunoprecipitated FLS2-myc were detected 
with α-GFP and α-Myc antibodies respectively. Protein 
input is shown with Western blot analysis of protein 
extracts before IP and α-GFP and α-Myc antibodies. 
Coomassie brilliant blue (CBB) staining shows protein 
loading. Blots in one row show cutouts from the same 
Western blot film.  
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3.2.3. BIR3 overexpressors show less MAMP responses but are not affected in 

susceptibility to Pto DC3000 

The results, that BIR3 interacts with FLS2 indicates that BIR3 not only regulates BL responses 

but is also involved in regulation of MAMP responses. Moreover, Thierry Halter has already 

shown that 35S-BIR3 plants show reduced ROS production after treatment with the MAMP 

elf18. To support this finding we performed ROS burst assays with the MAMP flg22 and tested 

also a second readout - FRK1 marker gene expression. For ROS burst assays hetero- and 

homozygous plants of two independent 35S-BIR3 lines were used and elicited with the MAMP 

flg22. Heterozygous 35S-BIR3 plants already show reduced MAMP responses compared to Col-

0 wildtype. In homozygous plants the ROS production is even lower but the plants are not as 

insensitive as the bak1-4 control (Figure 3-14 A). This shows a quantitative negative effect of 

BIR3 on flg22 signaling. As an independent readout expression of the marker gene FRK1 was 

analyzed in homozygous 35S-BIR3 plants. flg22 treatment leads to induction of FRK1 in Col-0 

wildtype plants. In 35S-BIR3 plants the induction is significantly lower, however, again not as 

low as in bak1-4 control plants (Figure 3-14 B). With two independent methods we have 

shown that BIR3 is indeed a negative regulator of flg22 responses. It was further analyzed how 

the reduced MAMP responses influence the resistance against infection with bacterial 

pathogens. Heterozygous 35S-BIR3 plants were inoculated with the virulent hemibiotrophic 

pathogen Pseudomonas syringae pv. tomato DC3000 and bacterial growth was monitored 2 

and 4 days after inoculation. At both time points 35S-BIR3 plants do not show significant 

differences compared to growth in wildtype (Figure 3-14 C). This could be explained by the fact 

that BIR3 overexpressors show reduced MAMP responses favoring growth of biotrophic 

pathogens but stronger cell death that antagonizes growth of these pathogens. As a result the 

growth of Pto DC3000 bacteria would not be altered in 35S-BIR3 plants, as it was described for 

bak1 mutants (Kemmerling et al., 2007).  
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Figure 3-14: BIR3 is a negative regulator of MAMP responses 
A: ROS production measured over a period of 30min with Col-0, bak1-4 and two hetero- and 
homozygous 35S-BIR3 lines, represented as relative light units (RLU) after elicitation with 100 nM 
flg22. Results are means ± SE (n=9). 
B: FRK1 marker gene expression in Col-0, bak1-4 and homozygous 35S-BIR3 plants was measured 
by qRT-PCR analysis 3 hours after flg22 treatment. FRK1 expression was normalized to EF1α and 
plotted relative to Col-0 untreated. Results are mean ± SE (n=8). Asterisks represent significant 
differences to wildtype (**p<0.01; ***p<0.001; Student‘s t-test). 
C: Col-0, bak1-4 and two heterozygous 35S-BIR3 lines were infiltrated with 104 cfu/ml of the 
virulent bacterial pathogen Pto DC3000. Growth of bacteria was monitored at the indicated time 
points. Results are mean ± SE (n=8). No significant differences according to Student‘s t-test. 
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3.2.4. BIR3 influences BAK1-FLS2 complex formation 

BIR3 negatively regulates MAMP responses but the molecular mechanism underlying this 

phenomenon was unclear. BIR3 negatively regulates MAMP responses after flg22 treatment 

and interacts with BAK1, thus it could influence complex formation between FLS2 and BAK1. 

To test this hypothesis BAK1 was immunoprecipitated form Col-0 wildtype plants. 

Coimmunoprecipitated FLS2 could only be detected after flg22 treatment, showing ligand 

induced complex formation. In the absence of BIR3 (bir3-2 mutants) flg22 treatment leads to 

stronger complex formation while with higher BIR3 levels (35S-BIR3) BAK1 FLS2 interaction is 

almost abolished. This shows that BIR3 is indeed able to negatively regulate BAK1 FLS2 

complex formation (Figure 3-15). These data indicate that BIR3 regulates MAMP responses by 

preventing BAK1 FLS2 complex formation in the absence of the ligand.  

 

Figure 3-15: BIR3 regulates BAK1 
FLS2 complex formation  
Arabidopsis seedlings of the indicated 
genotypes were treated for 5 min 
with 1 µM flg22 (+) or H2O (-).  
Immunoprecipitation (IP) was 
performed with specific α-BAK1 
antibody. Precipitated BAK1 and 
coimmunoprecipitated FLS2 were 
detected with specific α-BAK1 and α-
FLS2 antibodies respectively. Protein 
input is shown with Western blot 
analysis of protein extracts before IP 
and specific α-BAK1 and α-FLS2 
antibodies. Coomassie brilliant blue 
(CBB) staining shows protein loading. 
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background were used. Immunoprecipitation was performed with GFP-trap beads against the 

BIR3-GFP protein and coimmunoprecipitated BAK1 was detected with specific BAK1 antibody. 

In the untreated state strong interaction of BAK1 with BIR3 was observed, flg22 treatment 

leads to the release of BIR3 and less complex formation with BAK1 (Figure 3-16). This suggests 

that BAK1 is indeed released from BIR3 after ligand-binding.  
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Figure 3-16: BAK1 is released from BIR3 after flg22 
treatment 
Arabidopsis seedlings of the indicated genotypes 
were treated for 5 min with 1 µM flg22 (+) or H2O (-). 
Immunoprecipitation (IP) was performed with GFP-
trap beads. Precipitated BIR3-GFP and 
coimmunoprecipitated BAK1 were detected with 
specific α-GFP and α-BAK1 antibodies respectively. 
Protein input is shown with Western blot analysis of 
protein extracts before IP and α-BAK1 and α-GFP 
antibodies. Coomassie brilliant blue (CBB) staining 
shows protein loading. 

 

 

 

 

3.2.5. BIR3 is upstream of BAK1 in the MAMP response pathway  

bak1 bir3 double mutants were used to analyze epistasis in the MAMP response pathway. 

Double mutants of bir3-2 with bak1-4 or bak1-5, an allele which is only affected in the MAMP 

response pathway, were used for flg22 induced ROS burst assays.  

 

Figure 3-17: BAK1 is downstream of BIR3 in the MAMP response pathway 
ROS production measured over 30 min represented as relative light units (RLU) in indicated bir3 
double mutant lines on leaf discs after elicitation with 100nM elf18. 
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Col-0 shows production of ROS peaking at 10 min after elicitation, bir3-2 mutants behave like 

wildtype and the bak1-4 and bak1-5 single mutants show very little ROS production and are 

thus almost insensitive to flg22 treatment. Both double mutant combinations bak1-4 bir3-2 

and bak1-5 bir3-2 behave like bak1 mutants. This indicates that BIR3 is upstream of BAK1 in 

the MAMP response pathway and acts at a very early time point in the MAMP signaling 

pathway, directly at the receptor level (Figure 3-17).  

 

3.2.6. bir2 bir3 double mutants resemble bir2 single mutants 

BIR2 and BIR3 are closely related proteins, both interact with BAK1 and regulate different 

BAK1 dependent processes. Therefore, the question arises if they have redundant functions. In 

order to analyze the relationship of BIR2 and BIR3, double mutants were generated by crossing 

of the corresponding single mutants. Homozygous bir2-1 bir3-2 mutants were used for 

different functional analyses. The bir2-1 bir3-2 mutant does not show any altered 

morphological phenotype compared to wildtype plants (Figure 3-18 A). In order to analyze 

MAMP responses the double mutants and corresponding single mutants were subjected to 

elf18 induced ROS burst assays. As described before, bir2-1 mutants show higher ROS 

production as wildtype while bir3 single mutants are not significantly different to wildtype. 

Thierry Halter has detected enhanced ROS levels in bir3 mutants. In my experiments bir3 

mutants sometimes also showed slightly altered MAMP responses but in most of the cases 

they were not significantly different from wildtype indicating that the MAMP pathway is only 

weakly affected in bir3 mutants. The bir2-1 bir3-2 double mutant shows higher ROS 

production, comparable to bir2-1 levels (Figure 3-18 B). In order to analyze resistance against 

biotrophic pathogens the mutants were inoculated with Pto DC3000 bacteria and bacterial 

growth was monitored two days after infection. bir2-1 mutants show less bacterial growth, 

bir3-2 mutants behave as wildtype and bir2-1 bir3-2 double mutants show less bacterial 

growth, comparable to bir2-1 single mutants (Figure 3-18 C). This shows that bir2-1 bir3-2 

double mutants are more resistant to infections with Pto DC3000 bacteria resembling the 

behavior of bir2-1 single mutants and showing that bir3 mutation is not blocking the bir2 

immunity phenotype. Cell death analyses were performed using infection experiments with 

the necrotrophic fungus A. brassicicola. bir3-2 single mutants behave like wildtype, bir2-1 

single mutants show higher disease index and bir2-1 bir3-2 double mutants behave like bir2-1 

single mutants (Figure 3-18 D). In summary the bir2-1 bir3-2 double mutant behaves in all 

pathogen and MAMP assays as the bir2-1 single mutant. From this data it seems that BIR2 can 

already maximally block the responses in these pathways or if they act in one pathway BIR2 
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would be downstream. However, as bir3 single mutants do not show altered phenotypes the 

conclusion from these double mutant analyses is that lack of bir3 does not enhance (or rescue) 

the bir2 phenotypes. 

 

Figure 3-18: Characterization of bir2 bir3 double mutants 
A: Morphological phenotype of Col-0, bir3-2, bir2-1 and bir2-1 bir3-2 mutant plants.  
B: ROS production measured with a luminol based assay over a period of 30min with indicated lines 
after elicitation with 100 nM elf18. Results are represented as relative light units (RLU) and are 
means ± SE (n=9).  
C: Indicated Arabidopsis lines were infiltrated with 104 cfu/ml of the virulent bacterial pathogen Pto 
DC3000. Growth of bacteria was monitored at the indicated time points. Results are mean ± SE 
(n=8).  
D: Infection experiments with the necrotrophic fungal pathogen Alternaria brassicicola on indicated 
Arabidopsis lines. The disease index after 7 and 10 days is shown as mean ± SE (n=3). Different 
letters indicate significant differences according to one-way ANOVA (p<0.05). 
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3.2.7. Analysis of bir2-1 35S-BIR3 mutant plants 

In the previous chapter bir2 bir3 double mutants were used to analyze the relationship 

between the two proteins. As bir3 single mutants are not showing a strong phenotype and 

probably therefore the double mutant behaves in all assays like bir2-1 it was difficult to draw 

conclusions. Because more drastical phenotypes were observed with BIR3 overexpressors, 

bir2-1 mutants were crossed with these BIR3 overexpressors. In the following analysis bir2-1 

mutants with heterozygous 35S-BIR3 expressing plants were used because the very small 

homozygous 35S-BIR3 lines are not accessible to infection assays. Figure 3-19 A shows the 

typical morphology of bir2-1 and 35S-BIR3 plants. bir2-1 mutants are a little bit smaller than wt 

plants with slim leaves, 35S-BIR3 plants show a more stunted phenotype with wide leaves. The 

double mutant interestingly has a comparable diameter to the small 35S-BIR3 plants but 

slimmer leaves. This could mean that mutation of BIR2 partially rescues the BL insensitivity of 

35S-BIR3 plants. On the other hand one could also conclude that overexpression of BIR3 does 

not rescue the morphological phenotype of bir2-1 mutants, which is most likely caused by cell 

death, because the double mutant does not have wildtype like morphology. These results 

show that lack of BIR2 cannot simply be replaced by overexpression of BIR3 and both proteins 

have differential functions. The double mutants were additionally used to analyze the role of 

both proteins in the MAMP response pathway. In flg22 induced ROS burst assays bir2-1 

mutants show higher ROS production and 35-BIR3 plants lower ROS production compared to 

wildtype. bir2-1 35S-BIR3 plants show also higher ROS production as wildtype but not exactly 

as high as bir2-1 (Figure 3-19 B). This could mean that BIR3 overexpression slightly reduces the 

MAMP hyperresponsiveness of bir2-1. But the ROS production in the double mutant is still 

much higher than in wildtype what could mean that BIR2 is the major MAMP response 

regulator and BIR3 only plays a minor role in the pathway. Taking into account that BIR2 and 

BIR3 can interact with each other it could mean that both proteins act in one pathway and 

BIR2 is downstream. In order to investigate the relationship of both proteins in cell death 

regulation the double mutants were used for infection experiments with A. brassicicola. bir2-1 

mutants show a much higher disease index with leaf maceration already after 10 days and 35S-

BIR3 plants also show stronger symptom development, but not as severe as in bir2-1 mutants. 

The double mutant shows slightly weaker disease symptoms than bir2-1, there is no additive 

effect in the bir2-1 35S-BIR3 plants (Figure 3-19 C).  
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Figure 3-19: Characterization of 
bir2-1 35S-BIR3 plants  
A: Morphological phenotype of 
Col-0, bir2-1, 35S-BIR3 and bir2-1 
35S-BIR3 mutant plants.  
B: ROS production measured over 
a period of 30 min with indicated 
lines, represented as relative light 
units (RLU) after elicitation with 
100 nM flg22. Results are means 
± SE (n=9).  
C: Infection experiments with 
the necrotrophic fungal 
pathogen A. brassicicola on 
indicated Arabidopsis lines. 
Upper chart shows the disease 
index after 7 and 10 days as 
mean ± SE (n=3). Different 
letters indicate significant 
differences according to one-
way ANOVA. Lower part shows a 
picture of the symptom 
development on two 
representative leaves after 10 
days.  
The experiments were repeated 
twice with similar results.  

 

Taken together it was shown that BIR2 and BIR3 are partially redundant. bir2-1 mutant plants 

have more severe MAMP and cell death phenotypes compared to bir3 mutants and also BIR3 

overexpressors. Overexpression of BIR3 partially complements the ROS burst of bir2-1 mutants 

and weakly also the cell death phenotype, supporting the model that both BIR2 and BIR3 

negatively regulate MAMP responses and that cell death is triggered by an imbalance between 

0

100

200

300

400

500

600

7 10

D
is

ea
se

 in
d

ex

time [days]

Col-0

bir2-1

35S-BIR3

bir2-1 35S-BIR3

Col-0 35S-BIR3bir2-1 bir2-1
35S-BIR3

C

A A

B

B
B

C
C

A

A B

0

50000

100000

150000

200000

250000

300000

0 10 20 30

R
LU

time [min]

Col-0

bir2-1

35S-BIR3

bir2-1 35S-BIR3

Col-0                               bir2-1     

35S-BIR3 hetero       bir2-1 35S-BIR3



3. Results  59 

BAK1 and BIR protein levels and complex formation. Therefore, BIR2 likely complements the 

function of BIR3 in a wildtype situation. Because of the partially redundant function of BIR2 

and BIR3, the function of BIR3 becomes only visible in the BIR3 overexpressing plants.  

 

3.2.8. Relationship of BIR family proteins  

All so far described BIR proteins, BIR1, BIR2 and BIR3 are involved in cell death regulation but 

each mutant shows a different cell death phenotype. bir1 mutants show strong spontaneous 

cell death and are seedling lethal when grown at 22°C. bir2 mutants only show a marginal cell 

death phenotype without infection but infection with necrotrophic pathogens leads to severe 

disease symptoms with spreading necrosis throughout the whole leaf. bir3 single mutants do 

not show a cell death phenotype, but BIR3 overexpressors show spreading cell death after 

infection. We therefore addressed the relationship of different BIR proteins in cell death 

control. bir1 shows the strongest cell death phenotype of all bir mutants. It should be analyzed 

if cell death in bir1 could be altered by mutations in BAK1 or other BIR proteins. All shown 

double mutant combinations were grown at 28°C long day conditions so that bir1 single 

mutants survive and the morphological phenotypes could be compared. Crossing with bak1-4, 

surprisingly, leads to rescue of cell death in bir1-1, the plants grow bigger and show less leaf 

necrosis (Figure 3-20 A). Thus mutation of BAK1, which normally induces cell death, leads in 

this double mutant combination with bir1 to a rescue of the cell death phenotype. Crossing of 

bir1-1 with bir3 or bir2 knockouts does not alter the bir1 mutant phenotype, there is no rescue 

and there are no additive effects (Figure 3-20 B, C). Interestingly, overexpression of BIR3 in 

bir1-1 leads to a partial rescue of the bir1 mutant phenotype (Figure 3-20 D). This points into 

the direction that BIR3 can partially take over the role of BIR1 in cell death regulation and that 

these proteins have partially redundant functions.  
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Figure 3-20: bir1 double mutants 
A to D: Morphological phenotype of different bir1 mutant combinations and the respective single 
mutants grown at 28°C long day. 
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3.2.9. bak1 bir3 double mutants show an enhanced growth phenotype  

To further analyze the function of BIR3 and the relationship between BIR3 and BAK1 double 

mutants were generated. Different allele combinations were crossed and three different 

homozygous double mutants were obtained, bak1-3 bir3-1, bak1-3 bir3-2 and bak1-4 bir3-2. 

Interestingly, these double mutants already show a severe growth phenotype. bir3 single 

mutants have wildtype like morphology, bak1 single mutants have a weak BL insensitive 

phenotype but the double mutants bak1-3 bir3-1 and bak1-4 bir3-2 are much smaller, have 

slim and curly leaves and show spontaneous necrotic lesions at later developmental stages 

(Figure 3-21). Thus, a combination of two single mutants with no or marginal growth 

phenotypes leads to a double mutant with a severe growth phenotype. This is in contrast to 

the bak1 bir1 double mutant, where bak1 can partially rescue the bir1 mutant phenotype. The 

double mutant combination of bir3-2 with the bak1-4 null allele has the most severe 

phenotype and the weaker bak1-3 bir3-2 mutant combination does not show this phenotype 

but sometimes even grows a bit bigger than wildtype. bak1-4 is a null mutant, but bak1-3 is a 

T-DNA line with an intron insertion, so that alternative splicing sometimes leads to residual full 

length transcript. This could explain why the bak1-3 mutant combination shows a less severe 

phenotype. In case of the bir3 knockout lines, both lines show residual transcript depending on 

the position of the primers used for the RT-PCR analysis, but bir3-2 shows no full length 

transcripts (Halter, 2014). 

 

 

Figure 3-21: bak1 bir3 double mutants show an enhanced growth phenotype compared to the 
single mutants 
A: Morphological phenotype of different allele combinations of bak1 bir3 double mutants and the 
respective single mutants.  

 

3.2.10. bak1 bir3 double mutants can be complemented by BAK1 or BIR3 

As bir3 single mutants were not significantly affected in MAMP or pathogen responses it was 

not possible to use these mutants for complementation assays. Therefore, the bak1 bir3 

double mutant was used and transformed with either BAK1-GFP or BIR3-GFP under their 

Col-0 bak1-4             bak1-3               bir3-1                 bir3-2 bak1-3 bir3-1    bak1-4 bir3-2 
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endogenous promotor. Expression of both constructs leads to complementation of the growth 

phenotype of bak1-4 bir3-2. Transformation with BAK1-GFP leads to plants with relatively slim 

leaves, transformation with BIR3-GFP results in a typical bak1-4 mutant phenotype (Figure 3-

22 A). Expression of the constructs was confirmed in immunoblot analysis with α-GFP antibody 

(Figure 3-22 B). The fact that both constructs alone can complement the bak1-4 bir3-2 mutant 

phenotype shows that only this mutant combination causes the severe phenotype. Moreover, 

it confirms that mutation of BIR3 has an impact on cell death control that remains hidden in 

the single mutant but becomes obvious in the double mutant combination with bak1. 

 

Figure 3-22: bak1 bir3 double mutants can be complemented by expression of BAK1 or BIR3 
A: Morphological phenotype of Col-0, bak1-4 and bir3-2 single mutants, bak1-4 bir3-2 double 
mutant and 2 lines of bak1-4 bir3-2 mutant complemented with either BAK1-GFP or BIR3-GFP.  
B: Western blot analysis of expression levels of BAK1-GFP or BIR3-GFP in bak1-4 bir3-2 in two lines. 
Expression is detected with α-GFP antibody. The blot shows cutouts from different Western blots, 
thus protein amounts cannot be compared.  
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3.2.11. bak1 bir3 double mutants show an enhanced cell death phenotype 

In order to analyze cell death regulation in bak1 bir3 mutants the double mutants and 

corresponding single mutants were inoculated with A. brassicicola. 4 days post inoculation 

infected and uninfected leaves were subjected to trypan blue staining to visualize dead cells. In 

case of bak1-3 bir3-1 and bak1-4 bir3-2 already uninfected leaves show cell death patches and 

after infection the cell death spreads through the whole leave (Figure 3-23). This shows that 

the double mutants have an enhanced cell death phenotype and show in contrast to bak1 

single mutants spontaneous cell death without infection. 

 

Figure 3-23: bak1 bir3 double mutants show enhanced cell death 
Trypan blue staining to stain dead cells of leaves of the indicated genotypes 4 days after inoculation 
with Alternaria brasscicola (+) or untreated (-).  

 

3.2.12. bak1 bir3 double mutants show higher SA and JA levels 

Cell death mutants typically show enhanced levels of the phytohormones salicylic acid and 

jasmonic acid at the same time (Mur et al., 2006). In order to confirm the enhanced cell death 

phenotype in bak1 bir3 mutants SA and JA hormone levels and gene expression of the 

respective marker genes PR1 and PDF1.2 were analyzed in untreated plants. bak1-4 single 

mutants already show moderately higher SA levels and the SA content in bak1-4 bir3-2 double 

mutants is even higher (Figure 3-24 A). This could be confirmed by enhanced PR1 marker gene 

expression in bak1-4 bir3-2 double mutants compared to bak1-4. Here the effect is even more 

pronounced compared to the total SA amounts (Figure 3-24 B). bak1 single mutants do not 

show enhanced JA levels but the bak1-3 bir3-1 and bak1-4 bir3-2 double mutants show 

enhanced JA levels (Figure 3-24 C). This phenotype correlates with enhanced PDF1.2 marker 

gene expression in bak1-4 bir3-2 (Figure 3-24 D). In summary it was shown that the severe 

morphological phenotype of bak1 bir3 double mutants is linked to spontaneous cell death with 

typically elevated SA and JA levels.  
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Figure 3-24: Hormone levels and marker gene expression in bak1 bir3 mutants 
A: and C: Gas-chromatography-MS quantification of SA and JA content in 5 week old leaves of 
untreated Arabidopsis plants of the indicated genotypes. Results are presented as mean ± SE (n=6). 
Letters indicate significant differences according to one-way ANOVA. 
B and D: qRT-PCRs to analyze PR1 and PDF1.2 marker gene expression in leaves of untreated 
Arabidopsis plants of the indicated genotypes. Gene expression was normalized to the 
housekeeping gene EF1α and is plotted relative to Col-0. Results are mean ± SE (n=6). 
Hormone levels (A and C) were measured once.  

3.2.13. bak1 bir3 mutants do not show enhanced BL insensitivity  

bak1 bir3 mutants have a severe dwarfism phenotype that correlates with spontaneous cell 

death but the severe growth phenotype could additionally be caused by defects in BL signaling. 

Therefore the mutants were subjected to different BL assays. On the one hand seedlings were 

treated with the BL biosynthesis inhibitor brassinazole (BRZ), grown in the dark and the 

hypocotyl length was measured.  
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Figure 3-25: BL and BRZ assays with bak1 bir3 mutants 
A: Indicated mutant lines were grown for 7 days in the dark vertically on ½ MS plates 
supplemented or not with 1 µM BRZ. Hypocotyl length was measured on pictures using Image J 
software and is represented as mean ± SD. 
B: Results from A are represented as ratio untreated/treated. 
C: Indicated mutant lines were grown for 8 days under long day conditions vertically on ½ MS 
plates supplemented or not with 10 nM Epi-BL. Pictures were taken and root length was measured 
using Image J software and is represented as mean ± SD. 
D: Results from C are represented as ratio treated/untreated. 
 

BRZ treatment leads to shorter hypocotyl in wildtype plants, bak1 mutants are less sensitive to 

the treatment and the hypocotyl remains relatively longer. The double mutant plants also 

show BRZ insensitivity, comparable to bak1 single mutants or a bit less (Figure 3-25 A, B). In 

the second experiment seedlings were treated with 10 nM epi-BL, grown in the light and the 

root length was measured. Epi-BL treatment at concentrations of 10 nM leads to reduced root 

growth in wildtype plants. bak1-3 mutants are insensitive to BL treatment. Roots are already 
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shorter in untreated state and there is no reduction in root length. bak1 bir3 double mutants 

have a root length between Col-0 and bak1-3 in the untreated state but show almost no 

reduction in root length after BL treatment (Figure 3-25 C, D). The experiments show that bak1 

bir3 double mutants are less sensitive to BL, comparable to bak1 single mutants indicating that 

the BL insensitivity in the double mutants is caused by bak1 mutation only. It is unlikely that 

the enhanced morphological phenotype is caused by defects in BL sensitivity.  

 

3.2.14. bir3 bkk1 double mutants are not sufficient to show enhanced cell death  

The here described bak1 bir3 double mutants resemble bak1-3 bkk1-1 double mutants with 

the stunted morphology and spontaneous cell death (Albrecht et al., 2008). In general BAK1 

and BKK1 are the two SERK family members which are involved in cell death control (He et al., 

2007). Therefore it should be analyzed how BKK1 influences cell death control by BIR3. Double 

mutants of bkk1 and bir3 were generated by crossing the respective single mutants. These 

double mutants were used to analyze if bkk1 mutation also leads to an enhanced cell death 

phenotype in double mutant combinations with bir3. bkk1-1 bir3-2 mutants do not show an 

obvious morphological phenotype (Figure 3-26 A). bak1-4 bir3-2 and bkk1 bir3-2 were 

inoculated with the necrotrophic pathogen A. brassicicola and the disease symptoms were 

monitored. bak1-4 mutants show a higher disease index compared to Col-0, and the bak1-4 

bir3-2 double mutant shows even stronger symptoms with complete leaf maceration after 13 

days. The bkk1-1 single mutant shows in this experiment also a slightly increased disease index 

after 13 days but the bkk1-1 bir3-2 double mutant does not show stronger symptoms 

compared to bkk1-1 (Figure 3-26 B). In contrast to bak1 mutants, bkk1 mutants show no cell 

death in single mutants. These results indicate that lack of BKK1 is not sufficient to show 

deregulated cell death in combination with bir3 mutants.  
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Figure 3-26: Influence of BKK1 on cell death regulation by BIR3 
A: Morphological phenotype of bir3-2 bak1-4 and bir3-2 bkk1-1 double mutants and the respective 
single mutants.  
B: Infection experiments with the necrotrophic fungal pathogen Alternaria brassicicola on different 
bir3 double mutants and the respective single mutants. Upper chart shows the disease index after 
10 and 13 days as mean ± SE (n=3). Lower part shows a picture of the symptom development on 
two representative leaves after 13 days. 
 

3.2.15. bir3 mutants show reduced BAK1 protein levels 

In previous experiments like the CoIP in Figure 3-15 it was observed that bir3 mutants show 

lower BAK1 protein levels. To confirm this observation immunoblot analysis with protein 

extracts from untreated Col-0, bir3-1 and bir3-2 plants were performed. BAK1 protein levels 

were detected using specific α-BAK1 antibody and both bir3 mutant alleles indeed showed 

lower BAK1 protein amounts (Figure 3-27 A). In order to analyze if these reduced protein 

amounts are caused by reduced BAK1 transcription semiquantitative RT-PCRs were performed. 

The RT-PCR analysis did not show altered BAK1 transcript amounts in bir3 mutants compared 
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to Col-0 (Figure 3-27 B). This indicates that altered BAK1 protein amounts are not caused by 

differential expression. In transient expression experiments in N. benthamiana it was observed 

that expression of BAK1 alone leads to protein degradation visible as several bands on 

Western blots. Co-expression of BIR proteins led to stabilization of BAK1, the truncated 

versions were no longer visible.  

 

Figure 3-27: bir3 mutants show reduced BAK1 protein levels  
A: Immunoblot analysis of BAK1 protein amounts in untreated Col-0, bir3-1 and bir3-2 plants. 
B: Semiquantitative RT-PCR analysis of BAK1 expression in Col-0 and bir3 mutants. Expression of 
the housekeeping gene EF1α is shown as loading control. 
C: Immunoblot analysis of total protein extracts from Col-0 and bir3 mutant plants after treatment 
with different chemicals. Seedlings were vacuum infiltrated with 50 µM MG 132 (from 50 mM stock 
in DMSO), 30 µM Brefeldin A (from 10 mM stock in DMSO), 30 µM Wortmannin (from 10 mM stock 
in DMSO) or mock and incubated for 4 hours. CBB staining shows equal loading. The experiment in 
C was done once.  
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Therefore, it was hypothesized that BAK1 protein amounts in bir3 may be reduced due to lack 

of stabilization and degradation. To test this hypothesis, plants were treated with the 

proteasome inhibitor MG132 to suppress proteasome mediated protein degradation. 

However, the immunoblot analysis after MG132 treatment still shows reduced BAK1 protein 

amounts in bir3. This shows that reduced BAK1 levels in bir3 mutants are not caused by 

enhanced degradation by the 26S-proteasome. As receptors undergo endocytosis after 

activation and also constant cycling between the plasma membrane and early endosomes it 

was tested if BAK1 gets endocytosed in bir3 mutants. The endocytosis inhibitor Brefeldin A 

inhibits constitutive cycling of FLS2 between plasma membrane and early endosomes and 

Wortmannin was described to prevent endocytosis of FLS2 after activation (Beck et al., 2012). 

Both treatments did not lead to rescued BAK1 protein amounts in bir3 mutants (Figure 3-27 C). 

Thus it remains unclear what causes the reduced BAK1 protein amounts in bir3 mutants and 

further analysis are needed to address this question.  

 

3.2.16. BIR3 interacts with and stabilizes BKK1 

In order to further investigate the role of BKK1 in BIR3-mediated cell death it was analyzed if 

BIR3 is able to interact with BKK1. 35S-BIR3-YFP and 35S-BKK1-HA constructs were transiently 

expressed in N. benthamiana and CoIP experiments were performed. Immunoprecipitation of 

BIR3 leads to clear coimmunoprecipitation and thus interaction with BKK1 (Figure 3-28). This 

experiment shows that BIR3 cannot only interact with BAK1 but also with the close homologue 

BKK1.  

 

 
Figure 3-28: BIR3 interacts with BKK1  
Indicated constructs were transiently expressed in N. 
benthamiana leaves and immunoprecipitation (IP) was 
performed with GFP-trap beads. Precipitated BIR3-YFP 
and co-immunoprecipitated BKK1-HA were detected 
with α-GFP and α-HA antibodies respectively. Protein 
input is shown with Western blot (WB) analysis of 
protein extracts before IP and α-GFP and α-HA 
antibodies. Coomassie brilliant blue (CBB) staining 
shows protein loading. 
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As BKK1 interacts with BIR3 it was analyzed if BKK1 gets also stabilized by BIR3. As no specific 

BKK1 antibody was available, tagged versions of both proteins were transiently expressed in N. 

benthamiana. The Western blot analysis shows that co-expression of BIR3 with BKK1 leads to 

higher BKK1 proteins amounts compared to BKK1 expression alone (figure 3-29). This 

experiment indicates that BIR3 not only stabilizes BAK1 but also BKK1.  

 
Figure 3-29: BIR3 stabilizes BKK1 

BKK1-Myc and BIR3-YFP constructs were transiently 
expressed in N. benthamiana. Western-blot analysis on 
total protein extracts with α-GFP and α-Myc antibodies 
shows BKK1-Myc and BIR3-YFP protein amounts. 
Coomassie brilliant blue (CBB) staining shows protein 
loading. 
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4. Discussion 

BAK1 is a multifunctional co-receptor that regulates BR, MAMP and DAMP signaling by 

interaction with the respective ligand-binding receptors BRI1, EFR or FLS2 and PEPR1 and 

PEPR2. Moreover, BAK1 is involved in regulation of cell death containment. However, it is 

poorly understood how BAK1 itself is regulated. Therefore in vivo BAK1 complexes were 

purified and two new interactors, BIR2 and BIR3, were identified (Halter et al., 2014). 

Functional analysis showed that BIR2 and BIR3 differentially regulate BAK1 dependent 

processes (Halter, 2014). This work focuses on the regulation of receptor complex formation 

by BIR2 and BIR3, analysis of the relationship of different BIR proteins and sheds further light 

on cell death regulation by BIR proteins.  

 

4.1. Receptor complexes in MAMP and BL signaling 

4.1.1. BIR2 influences MAMP responses by regulating BAK1-PRR complex formation  

BIR2 is a negative regulator of MAMP responses, as BIR2 mutants are hyperresponsive to 

MAMP treatment (Halter, 2014). In this work the negative regulatory role of BIR2 in the MAMP 

response pathway was confirmed using BIR2 overexpressing plants that showed reduced 

MAMP responses. We were interested how BIR2 negatively regulates MAMP responses on a 

molecular level. BIR2 constitutively interacts with BAK1 in an untreated state and treatment 

with individual ligands, for which BAK1 is the co-receptor, leads to a fast release of BAK1 from 

BIR2 (Halter, 2014). This indicates that BIR2 regulates MAMP responses by preventing 

interaction of BAK1 with ligand-binding receptors in the untreated state. But the question 

remains how this release is achieved. On the one hand it could be shown that BAK1 interacts 

with FLS2 only after ligand-binding (Chinchilla et al., 2007). Binding of flg22 to FLS2 creates an 

additional interaction interface for BAK1 and flg22 acts as “molecular glue” between BAK1 and 

FLS2 extracellular domains. There are no conformational changes in the FLS2 structure (Sun et 

al., 2013). This could mean that flg22 binding creates an additional binding site and increases 

the affinity of FLS2 to BAK1 above the affinity between BIR2 and BAK1 and this affinity shift 

leads to a preferential binding of BAK1 to FLS2. Another question is, if protein interactions can 

be seen as static as it was done here so far. BAK1 constitutively interacts with BIR2. However, 

does that mean that one specific BIR2 and BAK1 molecule are glued together? The situation 

could also be more dynamic and proteins could be under constant movement in the lipid 
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bilayer. In this model, BAK1 in the untreated state would bind preferentially or more often and 

longer to BIR2. After ligand-binding the equilibrium is shifted into the direction of FLS2. 

It could also be that BIR2 is actively released from BAK1 by e.g. phosphorylation of 

specific residues that would affect complex formation with BAK1. A phosphorylation is 

imaginable by BAK1 and/or FLS2 or even by BIK1 (Lu et al., 2010). This active release model 

would need an additional direct interaction between FLS2/BIK1 and BIR2. In our first 

experiments a direct interaction between BIR2 and FLS2 could not be shown (Halter et al., 

2014). However, this negative experimental result does not exclude an interaction between 

FLS2 and BIR2. It is probably a transient and very short interaction which is experimentally 

difficult to detect. Ligand-binding of flg22 to FLS2 could first recruit the BAK1 BIR2 complex and 

then lead to an immediate release of BIR2. The release could probably be initiated by 

phosphorylation. It should therefore be tested if FLS2 is able to phosphorylate BIR2 and if 

phosphorylation at specific residues hinders interaction of BIR2 with BAK1. This work is in 

progress by another PhD student in the group. BAK1 constitutively phosphorylates BIR2 in vitro 

and the BAK1 kinase activity seems to be necessary for the interaction (Halter et al., 2014). 

However, it could also be possible that phosphorylation of specific residues at BIR2 by BAK1 

leads to their release. Binding of flg22 to FLS2 leads to activation of FLS2 and phosphorylation 

of BAK1. This phosphorylation of BAK1 could also be a signal for BIR2 release.  

 It could be shown that BAK1 gets released from BIR2 after flg22 treatment, but only 

about 30% of the BAK1 pool was released. The plants were treated with a saturating 

concentration of flg22 (1µM), thus, this does not seem a result of partial flg22 pathway 

activation. It indeed makes sense that treatment with only flg22 does not recruit the whole 

BAK1 pool to FLS2, because BAK1 acts as co-receptor for different ligand-binding receptors. 

We therefore treated the plants with a cocktail of different ligands, for which BAK1 is the co-

receptor and this led to a drastic increase in complex release compared to the treatment with 

individual ligands. This result supports the hypothesis of preformed receptor complexes. This 

means that BAK1, individual ligand-binding receptors and probably other components already 

exist in so called nanoclusters, compartments that contain receptor complexes in close vicinity 

before ligand-binding (Bücherl et al., 2013). BAK1 is quickly released from BIR2 in a ligand 

dependent manner. Binding of flg22 to FLS2 would recruit only BAK1 within this nanocluster, it 

would be unable to recruit a BAK1 protein that is e.g. preassembled with BRI1. The interaction 

of BAK1 with FLS2 occurs within seconds (Schulze et al., 2010). This indicates that both 

proteins are already in close vicinity in the untreated state. For BAK1 and BRI1 it could be 

shown with microscopic analysis that both proteins co-localize (Bücherl et al., 2013). BAK1 

seems not to be a limiting factor between BR and flg22 signaling, as treatment with BRs or 
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overexpression of BRI1 does not influence the interaction of BAK1 with FLS2 after flg22 

treatment (Albrecht et al., 2012; Lozano-Duran et al., 2013). All these observations together 

support the theory of preformed receptor complexes.  

In the same study where BAK1-BRI1 colocalization was shown, it was also shown that 

about 7% of the BRI1 pool interacts constitutively with BAK1. Other studies also report that 

they have seen weak interaction of BAK1 with ligand-binding receptors in the untreated state 

(Schulze et al., 2010; Roux et al., 2011; Schwessinger et al., 2011). The BAK1 FLS2 co-crystal has 

also shown that the FLS2 and BAK1 extracellular domains have an interaction surface 

independent of flg22 and therefore might directly interact weakly with each other in the 

absence of the ligand. Flg22 binding simply creates an additional interaction surface and thus 

strengthens the interaction leading to activation and downstream signaling. 

bir2 mutants are hyperresponsive to MAMPs and BIR2 overexpressors show weaker 

MAMP responses showing that BIR2 has a negative regulatory role in MTI. To analyze the 

underlying molecular mechanism it was tested if BIR2 has a direct regulatory effect on the 

complex formation between BAK1 and FLS2. In CoIP experiments BIR2 overexpressing plants 

showed weaker complex formation between BAK1 and FLS2 and in the opposite experiment 

amiR-BIR2 lines showed stronger complex formation. This explains the results of the functional 

analysis, and shows that BIR2 has indeed an immediate and direct role on the receptor 

complex formation. Epistasis analyses have shown that BIR2 is upstream of BAK1 supporting 

this direct mechanism at this very early point in the signaling cascade.  

To support these results the bak1-5 mutant was used. bak1-5 is a point mutation in the 

BAK1 kinase domain that leads to stronger interaction of BAK1 with FLS2 and other ligand-

binding receptors and interaction even in the absence of the ligands. This suggests that the 

affinity of BAK1-5 to ligand-binding receptors is higher or a negative regulation is less active 

(Schwessinger et al., 2011). BAK1-5 protein showed little interaction with BIR2 compared to 

wildtype BAK1, indicating that the affinity is altered in the opposite way as compared to all 

ligand-binding receptors tested. This correlation nicely supports that BIR2 is the negative 

regulator of BAK1 that keeps BAK1 in check in the resting state, however, when the affinity to 

BIR2 is altered (in BAK1-5 and after flg22 treatment) and BAK1 binds less to BIR2 it is able to 

interact stronger with FLS2. The bak1-5 mutation is additionally interesting because it was 

shown that BAK1-5 protein is less phosphorylation active (Schwessinger et al., 2011). We could 

show that BAK1 unidirectionally phosphorylates BIR2 and that BAK1 phosphorylation activity is 

necessary for interaction in yeast-two-hybrid assays (Halter et al., 2014). The fact that BAK1-5 

which is less phosphorylation active interacts less with BIR2 compared to BAK1 wildtype 
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protein gives an in vivo hint that BAK1 kinase activity might be necessary for interaction with 

BIR2.  

During these interaction experiments it was observed that bir2 mutants show higher 

FLS2 protein levels and qPCR analysis confirmed higher expression of FLS2 in amiR-BIR2. As 

several RLKs are induced by MAMPs, this enhanced FLS2 expression could be a secondary 

effect of the enhanced MAMP responses in bir2 leading to induction of PRRs (Zipfel et al., 

2006). Thus, in case of bir2 mutants the detected higher BAK1-FLS2 complexes could also be 

caused by higher FLS2 expression. However, two other independent experiments indicate that 

BIR2 regulates MAMP responses at the level of receptor complexes. First, reduced interactions 

of FLS2 and BAK1 were observed in 35S-BIR2-YFP plants that are not altered in FLS2 

expression. Second, in bak1-5 interaction of BAK1 with BIR2 is strongly reduced mimicking the 

effect of BAK1 release from BIR2 by flg22 treatment and leading to enhanced interaction with 

ligand-binding receptors, confirming that alterations in BIR2/BAK1 interaction directly affect 

complex formation of BAK1 with FLS2. In bir2 mutants the complex formation between BAK1 

and FLS2 after ligand-binding is lower compared to wildtype, however, there is no detectable 

interaction without the ligand. This could on the one hand be explained by redundancies with 

other BIR proteins. In the absence of BIR2, BAK1 is still kept in check by other BIR proteins, 

which were shown to be able to interact with BAK1. On the other hand it seems to be not 

enough to have free BAK1 to induce MAMP responses, only flg22 binding leads to a signaling 

active complex. Negative regulation by BIR proteins in the absence of the ligand could be an 

additional backup to prevent possible low amounts of signaling from MAMP receptors without 

ligand-binding. 

BAK1 not only interacts with the different ligand-binding receptors FLS2, EFR, BRI1, 

PEPR1 and PEPR2 and the small regulatory RLKs BIR1 – BIR4 but with several other proteins. 

These are: The BRI1 homologues BRL1 and BRL3 (Fabregas et al., 2013), BIK1 and the 

homologues PBL1 and PBL2 (Zhang et al., 2010; Lin et al., 2013), BSK1 (Shi et al., 2013), IOS1 

(Chen et al., 2014), KAPP (Gomez-Gomez et al., 2001), PUB12 and PUB13 (Lu et al., 2011), PP2A 

(Segonzac et al., 2014), 14-3-3 proteins (Chang et al., 2009), the glutaredoxin AtGRXC2 (Bender 

et al., 2015). It is hard to imagine how all these proteins interact with BAK1 at the same time, 

first of all because of space reasons. Further studies are needed to analyze the time and spatial 

resolution of receptor complexes in different situations. 
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4.1.2 BIR3 interacts with BAK1 and shows additional direct interaction with PRRs and 

BRI1 

After publishing the BIR2 manuscript (Halter et al., 2014) we concentrated on the 

characterization of BIR3. BIR3 is, as BIR2, a negative regulator of BAK1 in the MAMP response 

pathway (Halter, 2014). To further support these findings different MAMP assays were 

performed with BIR3 overexpressors in this work. For ROS burst assays, a fast MAMP response 

already peaking after 10 min, hetero- and homozygous BIR3 overexpressing plants were used. 

The heterozygous plants already showed reduced MAMP responses compared to wildtype and 

the response in the homozygous plants was even lower. These results show the quantitative 

effect of BIR3 on BAK1-regulated MAMP responses. The results were confirmed by FRK1 

marker gene expression, an independent readout for MAMP responses.  

BIR3 plays additionally a role in BL responses as BIR3 overexpressors are dwarf and BL 

insensitive (Halter, 2014). The fact that the BIR3 overexpression can be rescued by BRI1 

overexpression let to the hypothesis that BIR3 might directly regulate BRI1. It was analyzed on 

the molecular level how BIR3 regulates BL responses. We have shown in CoIP experiments 

after transient expression in N. benthamiana that BIR3 is able to interact with BRI1. With this 

transient expression system it cannot be differentiated if the interaction is direct or via other 

proteins such as the N. benthamiana homologue of BAK1. Therefore, a yeast system was used, 

the split ubiquitin system, that allows the use of full length membrane proteins, to analyze if 

the interaction is direct. In this assay it could indeed be shown that BIR3 directly interacts with 

BRI1.  

Because BIR3 is able to interact with BRI1 it was tested if BIR3 is also able to interact 

with other ligand-binding receptors in other pathways and it could be shown that BIR3 can also 

interact with FLS2. BIR2 regulates receptor complexes by interaction with BAK1 (Halter et al., 

2014). The here described direct interaction of BIR3 with ligand-binding receptors adds an 

additional new regulatory mechanism by a direct molecular influence on ligand-binding 

receptors. A similar behavior was described for BIK1 that interacts with BAK1 in the MAMP 

pathway but directly interacts with BRI1 in the BL pathway and exert different functions by this 

different mechanism (Lin et al., 2013). The complementation of the BIR3 overexpression 

phenotype by overexpression of BRI1 supports the idea that BIR3 has a direct effect on BRI1 

receptor complexes and points to a competitive inhibition of BRI1 by BIR3. BIR3 has evolved an 

additional mechanism to regulate BAK1-mediated processes by directly affecting not only 

BAK1 but also the ligand-binding receptors. bak1 bir3 double mutants were used for epistasis 

experiments in the MAMP response pathway. It could be shown that BIR3 acts upstream of 
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BAK1, confirming the role of BIR3 at the very early time point in MAMP signaling, directly at 

the receptor level. 

Besides direct interaction with FLS2, BIR3 additionally regulates complex formation 

between BAK1 and FLS2. In BIR3 overexpressing plants complex formation of BAK1 and FLS2 is 

almost abolished, while in bir3 mutants the interaction is enhanced. The stronger effect of 

BIR3 overexpression compared to BIR2 overexpression can be explained by the additional 

direct effect of BIR3 on the ligand-binding receptors themselves or by the stronger interaction 

of BIR3 with BAK1. BAK1 is released from BIR3 after flg22 treatment indicating that BIR3 is not 

necessary for downstream signaling but that BAK1 is freed for stable binding to ligand-binding 

receptors. As BIR3 is not necessary for downstream signaling it is likely that it gets also 

released from FLS2, but this has to be proven experimentally. 

As BIR3 is able to interact with both BAK1 and BRI1 in the untreated state, it was 

tested with a split ubiquitin bridge assay if the proteins build a tripartite complex. In the yeast 

system BAK1 and BRI1 already showed weak interaction and additional expression of BIR3 as a 

bridge did not enhance the complex formation. This experiment indicates that BIR3 is not the 

“molecular glue” between BAK1 and BRI1 but that BIR3 interacts individually with both 

proteins. In the direct split-ubiquitin assay BRI1 and BIR3 showed weaker interaction 

compared to the other tested interactions, BRI1 - BAK1 and BAK1 - BIR3. Because of the weak 

BIR3 BRI1 interaction it is probably technically not possible to show enhancement of BAK1 BRI1 

interaction by BIR3 in the bridge assay and a tripartite complex cannot be excluded. BIR3 might 

act as a scaffold protein stabilizing preformed receptor complexes between BAK1 and PRRs. 

Ligand-binding releases BIR3 and allows direct interaction between BAK1 and the PRR. The 

actual interaction interface of BIR3 with other RLKs is so far not known.  

Taken together, it was shown that the newly identified LRR-RLK BIR3 is a constitutive 

interactor of BAK1. Functional analyses with BIR3 overexpressor lines have shown that BIR3 is 

a negative regulator of the MAMP and BL response pathways. On the molecular level BIR3 

constitutively interacts with the co-receptor BAK1 but also directly with the ligand-binding 

receptors BRI1 and FLS2. It is not yet clear if these three components build a tripartite complex 

or if different BIR3 proteins interact with either BAK1 or ligand-binding receptors (Figure 4-1, 

left part). If it is a tripartite complex, BIR3 could act as scaffold that keeps BAK1 and the ligand-

binding receptor in a preformed complex but prevents direct interaction. BIR3 has a negative 

regulatory role on MAMP and BL signaling by preventing interaction of BAK1 with the ligand-

binding receptor in the uninduced state. Ligand-binding (Figure 4-1, right part) leads to release 

of BAK1 from BIR3 and thus enables BAK1 to interact with the ligand-binding receptor and to 

induce downstream signaling.  
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Figure 4-1: Model of receptor complexes in MAMP and BL signaling 

 

 

4.2. Cell death regulation by BAK1 and BIR proteins 

4.2.1. Cell death regulation by BIR2 

BAK1 was described as a cell death regulator, because bak1 mutants show spreading cell death 

after infection with microbial pathogens (Kemmerling et al., 2007). Moreover, double mutants 

of bak1 and the closest homologue bkk1 show spontaneous cell death and are seedling lethal 

(He et al., 2007). In later studies it was described that not only BAK1 mutants but also BAK1 

overexpressing plants are defective in cell death regulation (Belkhadir et al., 2012; Dominguez-

Ferreras et al., 2015). BAK1 overexpression leads to plants similar to lesion mimic mutants with 

spontaneous cell death. The cell death phenotype could be antagonized by simultaneous 

overexpression of BRI1. This indicates that the amount of BAK1 to its interaction partners 

needs to be proportional (Belkhadir et al., 2012). Another manuscript focused on BAK1 

overexpressing plants and showed that inducible expression of BAK1 leads to activation of 

P

PRR

BIR3 

BAK1

P

PRR

BIR3 

BAK1

Downstream 
signaling

P

PRR

BIR3 

BAK1

ligand



4. Discussion  78 

defense responses and resistance against Pto DC3000 (Dominguez-Ferreras et al., 2015). These 

results indicate that cell death regulation by BAK1 is dosage dependent.  

Similar phenotypes were described for BIR2. bir2 knockouts show a weak 

autoimmunity phenotype with slightly smaller morphology and early senescence. They show 

spreading cell death after infection with necrotrophic fungi, even stronger as compared to 

bak1 (Halter et al., 2014). Here, BIR2 overexpressing plants were analyzed and it could be 

shown that overexpression of BIR2 leads to loss of cell death containment, resulting in higher 

disease symptoms after Alternaria brassicicola infections. Therefore, BIR2 can also not be 

classified as a positive or negative regulator of cell death, but the relative amount of BIR2 

protein is crucial for cell death containment after infections. In order to investigate the 

relationship between BIR2 and BAK1 in cell death regulation, double mutants were subjected 

to infection experiments with A. brassicicola. Double mutants showed disease symptoms 

comparable to both single mutants, no additive effect was observed. This indicates that both 

proteins cooperate on regulating cell death. The fact that knockout or overexpression of one 

complex component leads to cell death, suggests that the proper ratio of both proteins and 

complex integrity is needed. These results would fit to a guarding model, where an R-protein 

would sense the integrity of BAK1 BIR2 complexes and triggers cell death when disturbance of 

the guardee is detected. An example for such a mechanism is the R-protein RPS2 which guards 

RIN4. The P. syringae effector AvrRpt2 is a cysteine protease that cleaves RIN4 and RIN4 

disappearance leads to activation of RPS2 and induction of defense responses (Axtell and 

Staskawicz, 2003; Mackey et al., 2003). Another example is the small LRR-RLK SRF3 that is 

structurally similar to BIR proteins and has been shown to be involved in autoimmunity cell 

death induced by the resistance protein RPP1. SRF3 exists in different variants in different 

Arabidopsis ecotypes. Some of these mutant versions are sensed by RPP1 from Ler, RPP1 gets 

activated and cell death occurs if the corresponding ecotypes are crossed. These crossings lead 

to autoimmunity cell death and hybrid incompatibility between these Arabidopsis ecotypes, 

phenotypes that are very similar to the observed bir mutant phenotypes (Alcazar et al., 2010).  

In order to analyze if BIR2 is an object of guarding and to identify possible downstream 

components in cell death regulation by BIR2, double mutants with known cell death pathway 

components were generated. Expression of nahG, a salicylate hydroxylase, led to partial rescue 

of the bir2-1 cell death phenotype. This indicates that cell death in bir2-1 depends on SA. 

Mutations in bir1 can also be partially rescued by knockout of the SA biosynthesis enzymes 

SID2 or EDS5, showing that cell death in both mutants relies on SA (Gao et al., 2009).  

Cell death in bir1 could also be partially rescued by eds1, pad4 or ndr1 (Gao et al., 

2009). These proteins act downstream of R-proteins in ETI, so that a guarding model for BIR1 
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was proposed. However, mutation of PAD4 does not rescue the bir2 mutant phenotype, 

showing that BIR2 might not be guarded by a TIR-type NB-LRR protein. As complementation of 

bir1 by the ETI mutants is only partial, the weaker cell-death phenotype in bir2 mutants might 

not allow detection of quantitative effects of these mutants on bir2-mediated cell death 

responses. Time limits prevented the analysis of the role of BIR2 in other known R-protein 

pathways. Further analysis if bir2-1 can be rescued by ndr1-1 or other known cell death 

pathways should be performed in the future to analyze if BIR2 is involved in other autoimmune 

pathways.  

bir1-1 and bon1-1, knockouts of BAK1 interactors that lead to cell death, can both be 

specifically rescued by the TIR-type NB-LRR protein SNC1 (Wang et al., 2011). BIR2 cell death is 

not dependent on SNC1, as crosses with the SNC1 knockout allele snc1-11 showed. This was 

already assumed before, because BIR2 and also BAK1 knockouts in Ws-0 background, an 

ecotype that does not contain SNC1, also show a cell death phenotype (Halter et al., 2014).  

Cell death induction by BAK1 or BIR proteins does not necessarily need guarding. BAK1 could 

also directly activate components of a cell death pathway by phosphorylation. BAK1 is a 

constitutively active kinase that could phosphorylate a downstream component of the cell 

death pathway and (in)activate it. If the phosphorylation activity is altered, e.g. by mutation or 

overexpression of BAK1 or by mutation of the BAK1 target BIR2, this could activate this cell 

death executioner. In plants different cell death pathways that control development and 

immune responses exist. It was recently suggested that HR-like cell death is induced by two 

different pathways, autophagy and the metacaspases AtMC1 (Coll et al., 2014) which might be 

further candidates to explain BIR2 mediated cell death control. 

4.2.2. Cell death regulation by BIR3 

Functional analysis of BIR3 first revealed that BIR3 does not play a role in cell death regulation, 

as bir3 mutants do not show spontaneous cell death or defects in cell death containment after 

pathogen infection. However, BIR3 overexpressors show stronger symptom development and 

cell death after A. brassicicola infection, indicating that BIR3 has a role in cell death regulation 

(Halter, 2014). One problem of analyzing cell death with BIR3 overexpressors could be the 

dwarf phenotype of these plants. The small leaves could be more susceptible to infections 

because the spore droplet for inoculation is already quite huge compared to the whole leave 

size. However, bir2-1 35S-BIR3 plants show an even higher disease index as 35S-BIR3 although 

the leaves are a bit bigger. This result shows that the altered genotype and not the leaf size 

causes cell death. Moreover, the dwarf 35S-BIR3 phenotype is caused by BL insensitivity and it 
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could be shown that BL insensitivity and the resulting morphological alterations have no 

impact on cell death after A. brassicicola infections (Kemmerling et al., 2007). 

The result that BIR3 is involved in cell death becomes more obvious in double mutants 

with bak1. Both single mutants, bak1 and bir3, do not show a severe morphological 

phenotype. Yet the double mutant shows a surprisingly severe growth phenotype with 

spontaneous lesion formation. Cell death spreading after A. brassicicola infections is strongly 

enhanced as chlorosis is spreading quickly throughout the whole leaves. Trypan blue staining 

of uninfected leaves and leaves at early time points after A. brassicicola infections, show the 

spontaneous and spreading cell death in these mutants. The cell death is accompanied by 

simultaneously elevated SA and JA levels in untreated plants. These double mutants show that 

BIR3 is indeed involved in cell death regulation, an effect that is hidden in the single mutants. 

This is similar to bkk1 mutants that do not show cell death alterations as single mutants but 

strongly enhance bak1 mediated cell death in double mutants (He et al., 2007). The strong 

phenotype of the bak1 bir3 double mutant is due to the combination of bak1 and bir3 

knockouts, as expression of either of the proteins can complement the mutant phenotype. 

These results indicate that both proteins cooperate on regulating cell death. It was tested if 

the strong growth phenotype of the double mutants is additionally caused by defects in BL 

sensitivity but this is not the case. Double mutants phenocopy bak1-4 single mutants showing 

no additional effect on the BL pathway by the additional bir3 mutation.  

We observed that bir3 mutants show reduced BAK1 protein levels. It is not yet clear 

what causes these reduced BAK1 levels, as no transcriptional repression is observed and the 

reduced protein amounts could not be rescued by inhibiting the 26S-proteasom with the 

inhibitor MG 132. Also endocytosis inhibitors such as Brefeldin A or Wortmannin, that would 

prevent faster internalization of BAK1 in the absence of BIR3, do not increase the BAK1 levels 

in bir3 mutants more than in wt plants. The lower BAK1 amounts can still be caused by other 

endocytosis routes or protein degradation pathways. One phenomenon that could explain the 

reduced BAK1 levels in bir3 is substrate stabilization. It was observed for other enzymes that 

they are stabilized by their substrate or that they are more stable in their active conformation 

(Villaume et al., 1990). As BIR proteins are a substrate for BAK1 kinase activity, binding of BIRs 

might bring BAK1 kinase domain into its active conformation and thus stabilize the protein. 

Absence of the substrate BIR3 in bir3 knockouts could lead to destabilization of BAK1. 

This protein stabilization model could help to explain the strong bak1 bir3 mutant 

phenotype. Phenotypically bak1 bir3 mutants resemble bak1-3 bkk1 mutants (Albrecht et al., 

2012). It was therefore hypothesized that BKK1 might be stabilized by BIR3 and destabilization 

of BKK1 would result in a mimic of a weak bak1 bkk1 mutant. It could be shown that BKK1 can 
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indeed interact with BIR3 and that co-expression of both proteins in N. benthamiana leads to 

BKK1 stabilization. Unfortunately no BKK1 antibody exists to test the destabilization of BKK1 in 

bir3 mutants. Moreover, we tested if bir3-2 bkk1 mutants show the same phenotype but they 

do not show enhanced cell death compared to wildtype. However, bkk1 has a weaker cell 

death phenotype than bak1, itself it has no effect in cell death and therefore reducing BKK1 

might not be enough to resemble the bak1 bir3 phenotype. Involvement of BKK1 in BIR3 

dependent cell death should be tested by analyzing if BKK1 ectopic overexpression can rescue 

the bak1 bir3 double mutant phenotype.  

4.2.3. Cell death regulation by BIR1 

BIR1 seems to be the strongest cell death regulator within the BIR family, as bir1 

mutants are very dwarf, show spontaneous cell death and are seedling lethal. Mutation of 

BIR2 or BIR3 do not enhance the cell death in bir1, thus no synergies in the lines can be 

detected. However, bir1 mutants could already show the maximum amount of cell death, so 

that additional knockout of a partially redundant protein would not enhance it. 

Overexpression of BIR3 partially rescues the bir1 mutant phenotype indicating that BIR3 can 

take over at least some functions of BIR1. The fact that bir2 shows no suppression by SNC1 or 

other TIR-type NB-LRR proteins points to different cell death pathways induced by bir1 and 

bir2 . A different molecular function of bir2 and 3 compared to bir1 is supported by the fact 

that BIR2 is kinase inactive but BIR1 is an active kinase and kinase activity is partially needed 

for cell death regulation (Gao et al., 2009).  

Double mutants of bir1 and bak1 surprisingly led to a partial rescue of the bir1 mutant 

phenotype. If BAK1 BIR1 complexes would be guarded and cell death would be activated by 

sensing imbalances of the protein complex, it would make sense that the double mutant, 

where the complex is completely missing shows less cell death compared to bir1 single 

mutants. The behavior of the bir1 bak1 single mutant is interestingly opposite to that of bak1 

bir3 double mutants. In case of bir1, knockout of bak1 rescues the phenotype, in case of bir3 it 

enhances the phenotype suggesting two different underlying mechanisms. In bir3 mutants 

destabilization of SERKs might mimicking serk double mutants in addition to a potential 

guarding of the BAK1/BIR3 complex. 
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4.2.4. Model of BIR proteins in cell death control  

In the cell death pathway different BIR proteins and BAK1 cooperate to regulate cell death 

containment (Figure 4-2). Different overexpressing lines, single and double mutants of BAK1 

and BIR proteins have shown that the correct amount and relative abundance of these 

proteins is important for cell death control. This leads to a model that complex integrity 

between different BIR proteins, BAK1 and probably also BKK1 is sensed by the plant. 

Alterations in the receptor complexes could activate a guard protein that in turn activates via 

so far unknown downstream components a cell death reaction.  

 

 

Figure 4-2: Model of receptor complexes in cell death control 

 

4.3. Relationship of different BIR proteins  

BIR2 and BIR3 are two closely related RLKs and both constitutively interact with BAK1. 

However, analysis of both proteins soon showed that they are not completely redundant. 

Microarray analysis showed that BIR1 and BIR2 are upregulated after treatment with avirulent 

or non-pathogenic Pseudomonas syringae bacteria. In contrast, BIR3 is downregulated at late 

time points after Pseudomonas infection (Halter et al., 2014). This data gave a first hint that 

there might be differences between BIR2 and BIR3. BIR1 is an active kinase and its kinase 

activity is at least partially necessary for its functions (Gao et al., 2009). In contrast to that, 

BIR2 and BIR3 are both kinase inactive. BIR2 is constitutively phosphorylated by BAK1 but BIR3 

shows only very weak phosphorylation by BAK1 (Mazzotta, 2012). Among these three BIR 
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proteins, BIR1 showed the weakest interaction, BIR2 interacted stronger, and BIR3 showed the 

strongest interaction with BAK1 in FRET-FLIM assays (Halter et al., 2014). BIR1 is the 

evolutionary oldest BIR protein; duplication events evolved BIR2 and then BIR3 and BIR4. The 

examples of interaction strength and kinase activity indicate a gradual change in the function 

of BIR proteins during evolution. The fact that BIR1 has no MAMP or BL phenotype indicates 

that the other BIR proteins evolved completely new functions. 

The BIR family analysis in this work focused on the relationship between BIR2 and 

BIR3. First bir2 bir3 double mutants were used for the functional analysis. However, these 

double mutants behaved in all assays performed as bir2 single mutants and it could only be 

concluded that mutation of bir3 does not enhance or rescue the bir2 mutant phenotype.  

Moreover, bir2 mutants were crossed with BIR3 overexpressors. Overexpression of 

BIR3 could not rescue the bir2 mutant phenotype back to wildtype levels in morphology, 

MAMP responses or cell death phenotype. This indicating that lack of BIR2 cannot be replaced 

by overexpression of BIR3 and that both proteins are not completely redundant. Nevertheless 

a more detailed view is necessary to understand the functions of both proteins. In case of the 

morphology, the slight bir2 phenotype is most likely caused by cell death as it can be 

complemented by nahG expression and thus the phenotype could be caused by enhanced SA 

dependent defense responses. The dwarf 35S-BIR3 phenotype is caused by BL insensitivity and 

is slightly reduced in the bir2-1 35S-BIR3 plants. Thus BIR2 probably also has a role in BL 

signaling, which is masked in the single mutant. This fits to the observation that BAK1 is 

released from BIR2 after BL treatment (Halter et al., 2014). In the performed ROS assays, the 

overexpression of BIR3 in the bir2 mutant background showed ROS production a little bit lower 

than bir2-1. This indicates that BIR3 overexpression can partially complement the bir2 

hypersensitive phenotype. This can be caused by the fact that BIR2 and BIR3 are not fully 

redundant and that the proteins cannot fully replaced by each other, but also by expression 

levels or functionality of the transgene. It seems that both proteins are able to execute the 

same function in regulating MAMP responses and use the same molecular mechanisms. BIR2 

and BIR3 are partially redundant with BIR2 complementing the BIR3 function in the wildtype or 

bir3 mutant situation, the BIR3 function becomes only visible in the overexpression situation. 

In case of cell death control, both single mutants, bir2-1 and 35S-BIR3, show enhanced cell 

death compared to Col-0. Again, the cell death phenotype of bir2-1 is stronger compared to 

35S-BIR3. The double mutant shows cell death comparable to bir2-1. Therefore both proteins 

could act in the same cell death pathway or there are no additive effects because bir2-1 

already shows the maximum amount of cell death. Another layer of complexity was introduced 

when it was shown that BIR2 and BIR3 can interact with each other (Halter, 2014). This data 
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indicates that both proteins really act together in one pathway. As the double knockout 

resembles bir2-1, BIR2 would be downstream and regulated by BIR3. The interaction could so 

far only be shown in overexpression systems in N. benthamiana. However, both proteins are 

expressed in all plant tissues what makes an interaction also possible in Arabidopsis. Further 

studies are needed to understand how BIR proteins cooperate on regulating different plant 

signaling pathways.  

SERK proteins are also a family of structurally redundant proteins that act in different 

pathways. SERK proteins are only partially redundant, their functions overlap but each SERK 

protein performs a specific subset of signaling roles (Aan den Toorn et al., 2015). A similar 

model could be true for BIR proteins. BIR proteins have distinct and also overlapping function, 

e.g. BIR1 is the strongest cell death regulator and BIR3 overexpressors show a significant BL 

phenotype. Within the BIR family cell death regulatory activity decreases while BAK1 

interaction and effects on BAK1 complexes increase from BIR1 to BIR3. This suggests that new 

functions have been developed during evolution within the BIR family and ancient and new 

function create partially redundant and specific function of the individual BIR proteins. 

SERKs are ancient genes and it was suggested that they have been recruited as co-

receptors to newly evolved signaling pathways. BIR1 homologues even reach back to 

Physcomitrella patens. Further analysis is needed to show what the ancient function of BIR 

proteins was and how they evolved together with SERKs.  

 BIR proteins are signaling components shared between different signaling pathways. 

Therefore, the question arises how signaling specificity is achieved. For BAK1, a model of 

preformed complexes was proposed (Bücherl et al., 2013) . BIR proteins fit into this model, 

because complexes of BAK1 with BRI1 could preferentially contain BIR3 and complexes with 

FLS2 or EFR could preferentially contain BIR2. Another question is, if BIR proteins are a point of 

crosstalk between different signaling pathways. However, some studies analyzing the role of 

BAK1 in crosstalk between BL and MAMP responses, suggest that the crosstalk takes place 

downstream of the receptor level (Lozano-Duran and Zipfel, 2015).  

BIR proteins were identified as BAK1 interactors and we so far focused on the 

regulation of BAK1 by BIR proteins. However, BIR proteins could have additional BAK1 

independent roles. BIR3 interacts with different ligand-binding receptors and could interact 

with receptors that do not use BAK1 as a co-receptor. Candidates would be CERK1 or LYK5, 

because chitin signaling is BAK1 independent.  

Taken together, it was shown that BIR proteins are a family of closely related LRR-RLKs 

that differentially regulate BAK1 dependent processes. The BIR proteins are partially 

redundant and fulfill partially overlapping functions. However, there are gradual differences in 
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the importance of BIR proteins in the different pathways and each individual BIR proteins has 

evolved a specific function (Figure 4-3).  

 

 

Figure 4-3: Gradual differences in the function of BIR family proteins in different pathways 
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5. Summary 

BAK1 is a multifunctional co-receptor that positively regulates multiple plant signaling 

pathways by interacting with the corresponding ligand-binding receptors. It plays a role in BL 

signaling by interacting with BRI1, in MAMP signaling by interacting with FLS2 or EFR and in 

DAMP signaling by interacting with PEPR1 and PEPR2. Moreover, BAK1 plays a role in cell 

death control. In order to investigate how BAK1 is regulated we purified in vivo BAK1 

complexes and identified two new BAK1 interactors, the BAK1 interacting RLKs 2 and 3 (BIR2 

and BIR3). Functional analysis of bir2 mutants showed that they are hyperresponsive to MAMP 

treatment, show cell death spreading after pathogen infection but are not impaired in BL 

signaling.  

In this study the molecular mechanism how BIR2 regulates MAMP responses was 

further investigated. With Co-IP analysis in Arabidopsis wildtype plants it was shown that 

treatment with flg22 leads to a partial release of BAK1 from BIR2. Treatment with a cocktail of 

flg22, elf18, BL and Atpep1 leads to increased release of BAK1 from BIR2 compared to single 

treatments. This indicates that BAK1 exists in preformed complexes with different ligand-

binding receptors and BIR2 prevents interaction of BAK1 with ligand-binding receptors in the 

absence of the ligand.  

Functional analyses of 35S-BIR3 plants have shown that BIR3 is a negative regulator of 

BL responses, MAMP responses and cell death. In this study the role of BIR3 in BL responses 

was further investigated and it could be shown that BIR3 not only interacts with BAK1 but also 

shows direct interaction with the ligand-binding receptor BRI1. The involvement of BIR3 in 

MAMP responses was confirmed with different functional assays. On the molecular level it was 

shown that BIR3 interacts with BAK1 and FLS2 and regulates BAK1-FLS2 complex formation.  

bak1 bir3 double mutants show a strong growth phenotype with spontaneous lesion formation 

and strong cell death spreading after A. brassicicola infections. Analysis of different bak1 bir 

double mutants and overexpressors has shown that the right amount of BAK1 and BIR proteins 

or their relative abundance and thus complex integrity seems to be important for cell death 

control.  

To investigate the relationship of the closely related proteins BIR2 and BIR3, bir2-1 

35S-BIR3 plants were used. It was shown that BIR2 and BIR3 are partially redundant but BIR2 

masks the BIR3 function in the wildtype situation and thus seems to have a stronger influence 

on the MAPMP and cell death pathway. 
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6. Zusammenfassung 

BAK1 ist ein multifunktionaler Korezeptor der mehrere pflanzliche Signalwege positiv reguliert 

indem er mit den jeweiligen Liganden-bindenden Rezeptoren  interagiert. BAK1 spielt eine 

Rolle im BL Signalweg indem es mit BRI1 interagiert, im MAMP Signalweg durch Interaktion mit 

FLS2 und EFR und im DAMP Signalweg durch Interaktion mit PEPR1 und PEPR2. Außerdem 

spielt BAK1 eine Rolle in der Zelltodkontrolle. Um zu untersuchen wie BAK1 reguliert wird 

haben wir in vivo BAK1 Komplexe aufgereinigt und konnten zwei neue BAK1 Interaktoren 

identifizieren, die BAK1 interagierenden RLKs 2 und 3 (BIR2 und BIR3). Funktionelle Analysen 

mit bir2 Mutanten haben gezeigt, dass sie hyperresponsiv gegenüber MAMPs sind, 

Zelltodausbreitung nach Pathogeninfektion zeigen aber nicht in im BL Signalweg beeinträchtigt 

sind.  

In dieser Arbeit wurde der molekulare Mechanismus wie BIR2 MAMP Antworten 

reguliert weiter untersucht. Mithilfe von Co-IP Analysen in Arabidopsis wildtyp Pflanzen konnte 

gezeigt werden, dass Behandlung mit flg22 zu einer partiellen Freisetzung von BAK1 von BIR2 

führt. Behandlung mit einer Mischung aus flg22, elf18, BL und Atpep1 führt zu einer 

verstärkten Freisetzung von BAK1 von BIR2 gegenüber der Einzelbehandlung. Dies weist darauf 

hin, dass BAK1 in vorgeformten Komplexen mit verschiedenen Liganden-bindenden 

Rezeptoren vorliegt. BIR2 verhindert die Interaktion von BAK1 mit Liganden-bindenden 

Rezeptoren in Abwesenheit des Liganden.  

Funktionelle Analyse von 35S-BIR3 Pflanzen hat gezeigt, dass BIR3 ein negativer 

Regulator von BL Antworten, MAMP Antworten und Zelltod ist. In dieser Arbeit wurde die 

Rolle von BIR3 in BL Antworten weiter untersucht. Es konnte gezeigt werden, dass BIR3 nicht 

nur mit BAK1 interagiert sondern auch direkt mit dem Rezeptor BRI1. Die Beteiligung von BIR3 

in MAMP Antworten konnte mit verschiedenen funktionellen Analysen bestätigt werden. Auf 

molekularer Ebene konnte gezeigt werden, dass BIR3 mit BAK1 und FLS2 interagiert und die 

Interaktion von BAK1 mit FLS2 reguliert. bak1 bir3 Doppelmutanten zeigen einen starken 

Wachstumsphänotypen mit spontanen Zelltod Läsionen und starker Zelltod Ausbreitung nach 

A. brassicicola Infektionen. Untersuchung verschiedener bak1 bir Dopplemutanten und 

Überexpriemierer hat gezeigt, dass die richtige Menge von BAK1 und BIR Proteinen oder ihre 

relative Häufigkeit und somit Komplexintegrität wichtig für die Zelltodkontrolle ist.  

Um das Verhältnis der eng verwandten Proteine BIR2 und BIR3 zu untersuchen, 

wurden bir2-1 35S-BIR3 Pflanzen genutzt. Es wurde gezeigt, dass BIR2 und BIR3 partiell 

redundant sind aber BIR2 in der wildtyp Situation die Funktion von BIR3 überdeckt und somit 

einen stärkeren Einfluss auf den MAMP und Zelltod Signalweg zu haben scheint.  
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