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1. Summary

Protein transport to plant vacuoles can occur by the biosynthetic pathway, leading from
the endoplasmic reticulum (ER) via the Golgi apparatus, or by the endocytic pathway
from the plasma membrane (PM). Both routes converge in the trans-Golgi network/
early endosome (TGN/EE), from where cargo passes a multivesicular late endosome
(MVBJ/LE) before reaching the vacuole. PM proteins destined for vacuolar degradation
are internalized into the intraluminal vesicles of MVBs/LEs in a process involving recog-
nition and sorting by the ESCRT machinery. Soluble vacuolar proteins from the biosyn-
thetic pathway have to interact with vacuolar sorting receptors (VSRs) to be diverted
from the secretory pathway and sent into the vacuolar route. Regarding these transport
events, several aspects have remained unclear: how are proteins transported from the
TGN/EE to the MVB/LE, and how do they arrive in the vacuole? Where does ESCRT
recognize its cargo, and when does it initiate intraluminal sorting? What is the sorting
signal for entry into the ESCRT-mediated vacuolar pathway? Where in the endomem-
brane system do VSRs bind soluble cargo ligands and where do they release them?

In this thesis, results from two publications and a currently submitted manuscript are
presented. We established that “multivesicular bodies mature from the trans-Golgi
network/early endosome in Arabidopsis” (Scheuring et al., 2011) by capturing the
moment in which nascent MVBs/LEs bud off from the TGN/EE. Mature MVBs/LEs were
found to be non-persistent transport carriers that are steadily consumed by fusion with
the vacuole. We showed that ESCRT acts at the TGN/EE and that maturation of MVBs/
LEs and vacuolar transport fail if ESCRT functionality is blocked. ESCRT was also
found to localize to the Golgi apparatus, indicating vacuolar sorting in the stack. Trans-
lational ubiquitin fusions of a Golgi marker indeed revealed that “ubiquitin initiates
sorting of Golgi and plasma membrane proteins into the vacuolar degradation
pathway” (Scheuring et al., 2012). We then addressed the question as to where in the
endomembrane system soluble vacuolar proteins are sorted. In an in vivo analysis, all
compartments of the vacuolar route were tested individually for the ability to promote
VSR-ligand interactions. We showed that VSRs bind ligands in the ER and the Golgi,
but neither in the TGN/EE nor in the MVBJ/LE, indicating that “vacuolar sorting recep-
tors transport ligands from the ER and the Golgi to the TGN/EE” (Kinzl et al.,
submitted manuscript). Accordingly, post-TGN/EE trafficking of ligands is VSR-inde-
pendent, being supported by the observation that non-VSR-ligands are delivered from
the TGN/EE to the vacuole by default.



2. Zusammenfassung

Der Proteintransport zu pflanzlichen Vakuolen kann durch den biosynthetischen Weg
ausgehend vom Endoplasmatischen Retikulum (ER) uber den Golgi-Apparat erfolgen,
oder durch den endozytischen Weg von der Plasmamembran (PM). Beide Wege lau-
fen im trans-Golgi-Netzwerk/frihen Endosom (TGN/EE) zusammen, von wo aus die
Fracht ein multivesikulares spates Endosom (MVB/LE) durchlauft, bevor sie die Va-
kuole erreicht. PM-Proteine, die fur den vakuolaren Abbau bestimmt sind, werden in
die intraluminalen Vesikel der MVBs/LEs aufgenommen, wobei ihre Erkennung und
Sortierung durch die ESCRT-Maschinerie erfolgt. Lésliche vakuolare Proteine des bio-
synthetischen Wegs mussen mit vakuolaren Sortierungsrezeptoren (VSRs) interagie-
ren, um vom sekretorischen in den vakuolaren Weg umgeleitet zu werden. Bezuglich
dieser Transportereignisse sind einige Aspekte noch unklar: Wie werden Proteine vom
TGN/EE zum MVBJ/LE transportiert, und wie erreichen sie die Vakuole? Wo erkennt
ESCRT seine Fracht, und wann initiiert er das intraluminale Sortieren? Was ist das
Sortierungssignal fur den Eintritt in den ESCRT-vermittelten vakuolaren Weg? Wo im
Endomembransystem binden VSRs ldsliche Fracht und wo geben sie sie wieder frei?

In dieser Dissertation werden die Befunde zweier Publikationen und eines zur Pub-
likation eingereichten Manuskripts vorgestellt. Wir haben nachgewiesen, dass MVBs/
LEs aus dem TGN/EE reifen, indem wir den Moment des Knospens neu entstehender
MVBs/LEs am TGN/EE festhalten konnten. Die reifen MVBs/LEs identifizierten wir als
nicht-persistente Carrier, die durch Fusion mit der Vakuole stetig verbraucht werden.
Wir konnten zeigen, dass ESCRT am TGN/EE tatig ist und dass die Reifung von
MVBs/LEs sowie der vakuolare Transport fehlschlagen, wenn ESCRT gestort ist. Dar-
Uber hinaus lokalisierten wir ESCRT am Golgi-Apparat, was auf ein dortiges vakuola-
res Sortieren hindeutete. Durch Ubiquitinfusionen eines Golgi-Markers konnten wir
nachweisen, dass Proteine im Golgi tatsachlich dem vakuolaren Abbau zugefuhrt wer-
den. Ubiquitin identifizierten wir zudem als Sortierungssignal fur den vakuolaren Trans-
port von PM-Proteinen. Des Weiteren untersuchten wir, wo im Endomembransystem
I6sliche vakuolare Proteine sortiert werden. In vivo testeten wir alle Kompartimente des
vakuolaren Wegs individuell daraufhin, ob sie VSR-Liganden-Interaktionen zulassen.
Es zeigte sich, dass VSRs Liganden im ER und im Golgi binden, jedoch nicht im TGN/
EE und im MVB/LE, was flr einen VSR-vermittelten Transport zum TGN/EE spricht.
Dass der weiterflihrende Transport vom TGN/EE zur Vakuole VSR-unabhangig ist,
zeigten Nicht-Liganden, die vom TGN/EE passiv die Vakuole erreichten.
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5. Introduction

5.1 The plant endomembrane system

The plant endomembrane system is composed of several different membranes, which
are distributed throughout the cytosol to subdivide the cell into functionally distinct
compartments, also called organelles. Each of these compartments is characterized
by an individual composition of enzymes, lipids, and metabolites that render each of
them a specialized subcellular reaction chamber. Still, the compartments are in steady
contact and exchange material through vesicular carriers, thus constituting a dynamic
membranous continuum. Plant cellular compartments include the endoplasmic reticu-
lum (ER), the Golgi apparatus, endosomes, different types of vacuoles, and the plasma
membrane (PM). The transport processes within the endomembrane system can be
subdivided into two categories: biosynthetic (secretory) transport events provide the
proteins and lipids for the individual compartments to ensure their functional integrity,
while endocytic transport enables the internalization of plasma membrane proteins,
being important to regulate cell growth, for communication with the environment, and
to turnover proteins and lipids. As will be presented in the following sections, biosyn-
thetic and endocytic transport comprise multiple trafficking steps mediated by different
molecular machineries that have to be tightly coordinated to allow for precise targeting.
It will also become evident that important details about several of these steps are still

unclear and await further investigation.

5.1.1 Biosynthetic transport

Biosynthetic transport within the endomembrane system is initiated at the ER, where
proteins, lipids, and polysaccharides are synthesized. Upon entering the ER, proteins
are processed, which includes conformational folding and modifications such as N-
linked glycosylation (Liu and Howell, 2010). Only proteins that pass the ER quality
control mechanisms will be incorporated into vesicles for ER export (Brandizzi and
Barlowe, 2013). The vesicles deliver their cargo to the cis-cisternae of a Golgi stack,
through which secretion progresses in a polar fashion via functionally distinct medial-
and trans-cisternae (Dupree and Sherrier, 1998). While in transit through the Golgi,
proteins undergo further post-translational modifications (Strasser, 2014) and become
sorted for ongoing transport towards their final destinations. Crucial for post-Golgi
sorting steps is the trans-Golgi network (TGN), a tubulovesicular structure that is often

found closely associated with the trans-side of the Golgi stack but can also exist as an
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5. Introduction

independent, spatially separate entity (Foresti and Denecke, 2008; Viotti et al., 2010;
Kang et al., 2011; Uemura et al., 2014). From the TGN, biosynthetic transport may be
directed towards the PM or to the vacuolar compartments. Selectivity in all these
individual transport steps is achieved by distinct vesicular carriers, which differ in the
molecular composition of the coat proteins that mediate cargo sorting and vesicle bud-
ding (Hwang and Robinson, 2009). The plant endomembrane system with its different
transport routes is schematically depicted in Figure 1.

-

| A VSR 0 vacuolar protein ‘ membrane protein

Figure 1. Schematic representation of the transport processes within the plant endomembrane system. The
biosynthetic pathway starts at the endoplasmic reticulum (ER) where proteins are synthesized and packaged into
COPIl-coated vesicles for transport to the Golgi apparatus. Retrograde transport in COPI-coated vesicles ensures
the retrieval of escaped ER-resident proteins. After passage through the Golgi, secretory proteins arrive at the trans-
Golgi network/early endosome (TGN/EE) and are delivered in secretory vesicles (SVs) to the plasma membrane
(PM). Vacuolar proteins are bound in the TGN/EE by vacuolar sorting receptors (VSRs) and transported in clathrin-
coated vesicles (CCVs) to a multivesicular body/late endosome (MVB/LE). In the MVBJ/LE, vacuolar proteins are
released and the VSRs recycle to the TGN/EE in retromer-coated carriers. Vacuolar delivery finally occurs by fusion
of the MVB/LE with the vacuolar membrane. By the endocytic pathway, membrane proteins are internalized from
the PM via CCVs and transported to the TGN/EE. There, they either recycle to the PM (putatively in CCVs) or follow
the endocytic route towards the lytic vacuole. For degradation, the membrane proteins are sorted into intraluminal
vesicles of MVBs/LEs prior to vacuolar delivery. (Adapted and modified from Kiinzl et al., submitted manuscript)

Transport processes between the ER and the Golgi are collectively referred to as
the early secretory pathway, which is operating in a bidirectional manner (Robinson et
al., 2007). Forward (anterograde) transport is mediated by coat protein (COP)-II
vesicles, which form at discrete ER-export sites (daSilva et al., 2004; Yang et al., 2005)
to deliver cargo to the cis-Golgi (Takeuchi et al., 2000). For soluble proteins, ER export

is thought to occur by default in a step that does not require any sorting signals. The
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5. Introduction

proteins passively enter COPII vesicles and become part of the secretory bulk flow,
which leads via the Golgi and the PM into the extracellular space (Phillipson et al.,
2001). Secretory membrane proteins, on the contrary, leave the ER due to specific
export signals that interact with COPII coat components to facilitate vesicle formation
(Matheson et al., 2006). Soluble ER-resident proteins may nonspecifically enter the
secretory default pathway and then have to be returned from the cis-Golgi in a reverse
(retrograde) sorting step mediated by COPI-coated vesicles (Pimpl et al., 2000). In this
process, the C-terminal tetrapeptide H/KDEL functions as ER retrieval signal (Denecke
et al., 1992), which is bound by the H/KDEL receptor ERD2 (ER-RETENTION DEFEC-
TIVEZ2) in the Golgi (Boevink et al., 1998). Retrieval of ERD2, but also of several ER-
resident membrane proteins, requires dilysine motifs in their C-terminal cytosolic do-
mains (Gao et al., 2014a), which interact with the COPI coat components. Beyond ER
retrieval, COPI vesicles also mediate retrograde intra-Golgi transport, which is neces-
sary to maintain cisternal integrity (Gao et al., 2014a).

Starting from the Golgi stack, the late secretory pathway comprises all the transport
events that branch out into two main trafficking routes, leading towards the PM and to
the vacuolar compartments (see Figure 1). It is believed that de novo-synthesized
proteins pass the TGN while in transit to the PM, as was suggested for fluorescently-
tagged BRI1 (BRASSINOSTEROID INSENSITIVE1) receptors and for secretory GFP
(Viotti et al., 2010). By contrast, newly assembled cellulose synthase complexes were
proposed to circumvent the TGN, being delivered directly from the Golgi stack or other-
wise being partitioned into an undefined domain of the TGN (Crowell et al., 2009). Two
different types of vesicles have been described to form at the TGN: secretory vesicles,
whose coat components remain to be identified, and clathrin-coated vesicles (CCVs),
which are supposed to mediate vacuolar transport by targeting the multivesicular late
endosomes (Kang et al., 2011). However, it can also not be ruled out that the CCVs
formed at the TGN recycle endocytosed PM proteins rather than contributing to vacuo-

lar transport (discussed by Robinson and Pimpl, 2014a).

5.1.2 Endocytic transport

The internalization (endocytosis) of proteins from the PM is necessary for the cell to
establish and maintain polarity, to allow for cell-to-cell communication, and to respond
to environmental stimuli (Fan et al., 2015). In recent years, numerous PM proteins have
been identified as endocytic cargos, including PIN (PIN-FORMED) auxin efflux carriers

(Dhonukshe et al., 2007) and receptor-like kinases such as the brassinosteroid recep-
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5. Introduction

tor BRI1 (Russinova et al., 2004) and the flagellin receptor FLS2 (FLAGELLIN SENS-
ING2; Robatzek et al., 2006). Others include transporters like BOR1 (BORON TRANS-
PORTER1; Takano et al., 2010) or IRT1 (IRON-REGULATED TRANSPORTERT;
Barberon et al., 2011) and the aquaporin PIP2;1 (PLASMA MEMBRANE INTRINSIC
PROTEINZ2;1; Li et al., 2011), to name but a few.

The primary endocytic route into plant cells is apparently by clathrin-mediated endo-
cytosis (CME), although evidence for the existence of clathrin-independent endocytic
routes exists (Bandmann and Homann, 2012; Bandmann et al., 2012; Li et al., 2012).
CME initiates at the inner leaflet of the PM by assembly of clathrin-coated pits, in which
tetrameric adaptor protein (AP)-2 complexes capture and accumulate endocytic cargo
(Fan et al., 2015). Successive recruitment of coat components promotes invagination
of the PM and leads to the formation of CCVs, which are finally released by dynamin-
related protein (DRP)-driven membrane scission (Fujimoto et al., 2010). While the core
machinery of CME is evolutionary conserved, plants lack several accessory clathrin
adaptors known in animals (Chen et al., 2011), but they do also possess unique ones
such as the adaptin-like protein TPLATE, which was recently identified to be involved
in cytokinesis (Van Damme et al., 2011). Meanwhile, TPLATE is considered part of an
essential adaptor complex in plant CME (Gadeyne et al., 2014). Adaptors confer cargo-
sorting specificity by recognizing endocytic sorting signals in the cytosolic domains of
PM proteins, which in animals can be linear sequence motifs, structural determinants,
or post-translational modifications (Traub and Bonifacino, 2013). In plants, the sorting
signals are still poorly defined, but tyrosine-based motifs (YXX®, with @ representing
a bulky hydrophobic amino acid), as known from animals, have been identified in plant
proteins and were shown to act in endocytosis (Bar and Avni, 2009). Tyrosine-based
motifs are however also involved in other transport events such as polar localization of
BOR1, which does not depend on YXX®-mediated endocytosis but on tyrosine-based
endosomal recycling (Takano et al., 2010). Furthermore, phosphorylation was shown
to be important for the polar PM localization of PIN auxin efflux carriers (Kleine-Vehn
et al., 2009), but still a clear link to the endocytic machinery needs to be established.

Upon internalization, endocytic vesicles fuse with a compartment that is classically
defined as the early endosome (EE; Robinson et al., 2008). A tubulovesicular structure,
called partially-coated reticulum (PCR), was identified already decades ago to receive
endocytic material from the PM (Robinson and Hillmer, 1990). However, it was not until

recently that studies combining newly identified TGN markers with endocytic tracers
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5. Introduction

revealed that the EE and the TGN are in fact one and the same compartment (Dettmer
et al., 2006; Lam et al., 2007). Consequently, the TGN/EE is the point of intersection
of the biosynthetic and the endocytic pathway. It must be considered an independent
compartment that, although derived from the Golgi, becomes finally detached from the
stack but can also reassociate temporarily and homotypically interact with other TGNs/
EEs (Viotti et al., 2010; Kang et al., 2011; Uemura et al., 2014).

Within the TGN/EE, endocytosed PM proteins can be sorted in different directions:
they may be recycled back to the PM or otherwise passed on to late endosomes (LES)
for delivery to the vacuole. Circles of constitutive internalization and recycling have
been described for several PM proteins, including the PINs, BRI1, and BOR1 (Geldner
et al., 2003; Geldner et al., 2007; Takano et al., 2010). There is evidence that different
recycling pathways exist to return proteins to the PM, one of which leading via distinct
recycling endosomes. Although not identified structurally, the existence of a recycling
endosome was deduced from functional studies on the ARF-GEF (ADP-ribosylation
factor-guanine nucleotide exchange factor) GNOM, which acts to mediate the recycling
of PIN1 (Geldner et al., 2003) but does not colocalize with markers for the TGN/EE
and the LE (Chow et al., 2008). Other PM proteins were shown to recycle indepen-
dently of GNOM, indicating that more than one endosomal recycling pathway exists
(Kleine-Vehn et al., 2006). PM proteins destined for degradation are delivered to the
vacuole, but first they have to be sorted from the TGN/EE to a LE. Structurally, LEs
clearly differ from a tubulovesicular TGN/EE. They are spherical bodies characterized
by unique intraluminal vesicles and are thus also called multivesicular bodies (MVBs;
Tse et al., 2004). Endocytic cargo has been shown to successively pass the TGN/EE
and the MVB/LE while in transit to the vacuole (Tse et al., 2004; Dettmer et al., 2006;
Viotti et al., 2010), however, a transport mechanism connecting the two compartments

has remained elusive.

5.2 Plant vacuolar protein sorting

The proteins of the endomembrane system are in a dynamic equilibrium of synthesis
and degradation, which is important not only to turnover aberrant molecules, but also
to respond to changing developmental and environmental conditions. In this regard,
many of the PM-localized transporters and receptors are tightly regulated in terms of
numbers to act on nutrient availability or to finetune signaling processes (Fan et al.,
2015). For degradation, proteins are delivered via the endosomal pathway to the lytic

vacuole, where acid hydrolases confer digestion. However, the mechanisms, by which
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5. Introduction

the proteins are transported towards the vacuole differ depending on whether they are

integral membrane proteins or soluble.

5.2.1 ESCRT-mediated sorting of membrane proteins

Several PM proteins in plants have been found to localize to the intraluminal vesicles
(ILVs) of MVBs/LEs before being degraded in the lytic vacuole, including PIN1, BRI,
BOR1, and the cytokinesis-specific syntaxin KNOLLE (Reichardt et al., 2007; Spitzer
et al., 2009; Viotti et al., 2010). Sorting into the ILVs ensures clearance of the proteins
from the limiting endosomal membrane prior to fusion of the MVB/LE with the tonoplast,
which is necessary to make them accessible for vacuolar digestion (Schellmann and
Pimpl, 2009; Reyes et al., 2011). Signals are required to label membrane proteins for
intraluminal sorting, as well as the machinery that internalizes the labeled proteins into
the endosomal lumen by pinching off ILVs.

In animals and yeast, ubiquitin is the major sorting signal for the entry of membrane
proteins into the MVB/LE-mediated vacuolar degradation pathway (Hicke and Dunn,
2003). In a reaction called ubiquitination, ubiquitin is covalently linked to lysine residues
of the target proteins (Pickart and Eddins, 2004). Depending on the number of added
ubiquitin moieties and the mode of their linkage, ubiquitination can modulate a variety
of cellular processes other than MVB-mediated vacuolar sorting (Hurley et al., 2006).
In this context, the attachment of poly-ubiquitin chains to cytosolic proteins was early
identified as a signal for degradation in the 26S proteasome, while mono-ubiquitination
has been associated with the sorting of membrane proteins into the ILVs of MVBs/LEs
(Raiborg and Stenmark, 2009). Ubiquitin was also shown to function as an endocytosis
signal, acting upstream of endosomal sorting, but the exact type of ubiquitination that
triggers internalization from the PM is still under debate (Madshus, 2006). In plants,
ubiquitination of membrane proteins and its implications for intracellular sorting have
only recently gained attention. Both PIN2 and FLS2 were found to be ubiquitinated and
an involvement of ubiquitin in their turnover was suggested (Abas et al., 2006; Gohre
et al., 2008), however, a link to the MVB/LE-mediated vacuolar pathway was neither
investigated nor mentioned. During the revision and resubmission of our manuscript
“ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar
degradation pathway” (Scheuring et al., 2012), first studies on that topic appeared,
which will be discussed in the context of our findings (see chapter 7.2).

At endosomal membranes, ubiquitinated proteins are recognized by soluble sorting

complexes, which are sequentially recruited from the cytosol onto the endosomal
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5. Introduction

membrane to drive the formation of ILVs. In animals and yeast, these complexes have
been extensively studied and collectively termed ESCRT (endosomal sorting complex
required for transport) machinery, which consists of four multimeric complexes, num-
bered ESCRT-0 to ESCRT-III (Raiborg and Stenmark, 2009). First, ESCRT-0 binds
and concentrates ubiquitinated cargo before it recruits ESCRT-I and -II, which together
induce membrane curvature and confine the cargo within forming buds. Then, ESCRT-
Il is recruited to cleave the buds, giving rise to ILVs, and finally ESCRT-lll-associated
proteins trigger the release of the ESCRT complexes from the membrane (Wollert and
Hurley, 2010). Plants possess almost all components of the evolutionary conserved
ESCRT machinery, but apparently they lack orthologs of the ESCRT-I subunit MVB12
and of the two subunits constituting ESCRT-0 (Winter and Hauser, 2006; Leung et al.,
2008). Of the few plant ESCRT components that have been functionally characterized,
almost all belong to the ESCRT-Ill-associated proteins, being the AAA-ATPase SKD1
(SUPPRESSOR OF K* TRANSPORT GROWTH DEFECT1) and its positive regulator
LIPS (LYST-INTERACTING PROTEINS), the SKD1/LIPS interacting proteins CHMP1A
(CHARGED MULTIVESICULAR BODY PROTEIN/CHROMATIN MODIFYING PRO-
TEIN1A) and CHMP1B, and also the deubiquitinating enzyme AMSH3 (ASSOCIATED
MOLECULE WITH THE SH3 DOMAIN OF STAM3), which were all shown to be in-
volved in ILV formation and/or vacuolar sorting (Haas et al., 2007; Spitzer et al., 2009;
Isono et al., 2010; Shahriari et al., 2010; Katsiarimpa et al., 2011). The ESCRT-I sub-
unit VPS23 (VACUOLAR PROTEIN SORTING23) has been found to localize to endo-
somal compartments and it was assigned a role in cytokinesis, however a function in
vacuolar sorting has not been investigated (Spitzer et al., 2006). Only recently, a plant-
specific ESCRT-I subunit, called FREE1 (FYVE DOMAIN PROTEIN REQUIRED FOR
ENDOSOMAL SORTING1), was discovered that interacts with VPS23 and was shown
to be necessary for ILV formation (Gao et al., 2014Db).

5.2.2 Receptor-mediated sorting of soluble vacuolar proteins

In all eukaryotic cells, receptor-mediated sorting mechanisms exist to deliver soluble
proteins to a lytic compartment, being either the lysosome in animal cells or vacuoles
in both yeast and plant cells. Yet, sorting receptors evolved independently in the three
eukaryotic kingdoms, with the animal mannosyl 6-phosphate receptor (MPR; Braulke
and Bonifacino, 2009), the yeast receptor VPS10 (Bowers and Stevens, 2005), and
the plant vacuolar sorting receptors (VSRs; Robinson and Pimpl, 2014b) being the best

known. Among these receptors, the animal MPR was the first to be characterized (iden-
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tified by Sahagian et al., 1981) and has become a paradigm for the receptor-mediated
protein sorting in the endomembrane system.

Acid hydrolases destined for the lysosome are recognized by MPRs via specific
glycosylation patterns, which are introduced in a complex series of events: after initial
N-linked glycosylation in the ER, the oligosaccharide side chains are further modified
in the cis-Golgi, but still the lysosomal sorting signal remains cryptic. Only upon arrival
in the TGN, the so-called uncovering enzyme exposes mannose 6-phospahte residues
as the sorting signal, which is then immediately bound by the MPR. Consequently, the
hydrolases become ligands only in the TGN; a situation that does not exist in plants.
Still in the TGN, MPR-ligand complexes are packaged into CCVs and transported to
an EE, where the ligands are released due to the lower endosomal pH, and the MPRs
are returned to the TGN in tubular carriers formed by the coat proteins of the retromer
complex (McGough and Cullen, 2011). Once the ligands have entered the EE, onward
transport to the lysosome is receptor-independent, with the EE gradually maturing into
a LE that finally fuses with the lysosomal membrane to release its contents (Huotari
and Helenius, 2011).

In comparison to lysosomal proteins, sorting of soluble proteins to the plant vacuole
does not depend on post-translational modifications, but is instead determined by short
motifs within the amino acid sequence. These so-called vacuolar sorting determinants
(VSDs) are often located at the N- or C-termini of acid hydrolases and storage proteins
(Robinson et al., 2005). By the time the first VSDs were characterized (Chrispeels,
1991; Bednarek and Raikhel, 1992; Nakamura and Matsuoka, 1993), a corresponding
sorting receptor was not identified, but several vacuolar proteins were found to localize
in coated vesicles (Harley and Beevers, 1989; Robinson et al., 1989). Only then, a type
| integral membrane protein was purified from CCVs and Golgi membranes of pea
(Pisum sativum) cotyledons, as it bound at neutral pH to an affinity column prepared
with the VSD of barley (Hordeum vulgare) proaleurain, from which it was eluted at an
acidic pH (Kirsch et al., 1994). Identification of this binding protein of about 80 kDa,
called BP80, was actually the first indication that vacuolar transport of soluble proteins
is receptor-mediated also in plants.

Molecular cloning and sequence alignments eventually revealed that BP80 defines
a conserved family of vacuolar sorting receptors (VSRs) unique to plants (Paris et al.,
1997), with seven VSRs (AtVSR1-7) encoded in the genome of Arabidopsis thaliana
(Shimada et al., 2003). Localization studies in pea, tobacco (Nicotiana tabacum) and
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Arabidopsis cells demonstrated that VSRs are situated at the trans-Golgi/TGN and a
hitherto unspecified prevacuolar compartment (PVC; Paris et al., 1997; Sanderfoot et
al., 1998; Li et al., 2002). This, together with the pH dependency of BP80 to bind its
ligands in vitro, led to the postulation of a model for VSR-mediated vacuolar transport
that was back then consistent with the concept of MPR-mediated lysosomal transport
in animal cells. Accordingly, VSRs were predicted to bind their ligands in the TGN, from
where CCVs would bud off to deliver the receptor-ligand complexes to a PVC. A lower
pH in the PVC would then cause dissociation of the receptor-ligand complexes, where-
upon the discharged receptors would recycle to the TGN in retromer-coated carriers,
while the ligands would reach the vacuole by fusion of the PVC with the tonoplast (Paris
et al., 1997).

In the meantime, it was shown that the tyrosine-based sorting motif YXX®, which is
conserved in the cytosolic tails of all BP80-type VSRs, can be bound in vitro by the
medium (uA) subunit of a clathrin AP complex that localizes to the trans-Golgi/TGN in
Arabidopsis root cells (Happel et al., 2004). Moreover, mutation of the same tyrosine
motif caused the retention of AtVSR4 in the trans-Golgi/TGN and its partial mislocali-
zation to the PM in tobacco (daSilva et al., 2006). Ultrastructural studies furthermore
confirmed that AtVSR1 localizes to the trans-Golgi/TGN in developing Arabidopsis
embryos, where it was found in budding vesicles with clathrin coats (Hinz et al., 2007),
being indicative of the fact that VSR sorting probably depends on CCV-mediated
transport.

Two important discoveries eventually contributed to a better understanding of how
the compartments involved in VSR trafficking are functionally implemented in the plant
endomembrane system: the TGN, which was hitherto regarded as the cargo-sorting
terminal part of the Golgi, turned out to also receive incoming material from the PM via
endocytic CCVs, thus defining it as an EE (Dettmer et al., 2006; Dhonukshe et al.,
2007; Lam et al., 2007). Unlike the situation in animal cells, the plant TGN is considered
an independent compartment, where biosynthetic and endocytic transport pathways
intersect (Viotti et al., 2010) and should hence correctly be termed TGN/EE. Aside from
that, the PVC could be identified as a MVB, which receives endocytic cargo down-
stream of the TGN/EE and is thus the functional equivalent of a LE (Tse et al., 2004).
These findings have major implications for the interpretation of the original VSR traf-
ficking model as they necessitate that vesicular sorting of the soluble cargo occurs

between an EE and a LE, and thus on the endocytic route.
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5.2.3 Open questions

Transport of both endocytosed PM proteins and biosynthetic soluble cargo converge
in the TGN/EE while in transit towards the vacuole. However, how they are transported
further downstream to a MVBJ/LE is still unclear. If, as is presumed, transport of VSR-
ligand complexes from the TGN/EE to the MVBJ/LE is CCV-mediated, do endocytosed
PM proteins cosegregate into the same vesicles or do they arrive at MVBs/LEs by other
mechanisms? Once in the MVBJ/LE, how is the final transport step to the lytic vacuole
executed? A commonly accepted model predicts fusion of MVBs/LEs with the vacuolar
tonoplast by analogy to lysosomal delivery in animals (Luzio et al., 2007), but evidence
in favor of that assumption is still lacking.

PM proteins are found in the ILVs of MVBs/LEs prior to vacuolar delivery, being the
result of intraluminal sorting by the ESCRT machinery. Still, it is largely unknown where
and how ESCRT recognizes and sorts cargo, and when ILV budding is initiated, since
functional studies have almost exclusively focused on ESCRT-Ill-associated proteins
that act late in the process of ILV formation. Signals for entry into the MVB-mediated
vacuolar pathway have not yet been addressed in plants, and while ubiquitination may
certainly be the best candidate, a functional link between ESCRT and ubiquitinated
membrane proteins still awaits experimental confirmation. Also, it remains to be shown
whether ubiquitin can act already at the PM as a signal for internalization of proteins
into the endocytic route.

Recent work in our laboratory suggested that VSRs are recycled from the TGN/EE
rather than from the MVB/LE (Niemes et al., 2010b), which necessitates that the TGN/
EE is already the location of ligand release. Furthermore, it was shown that chimeric
VSR, if localized to the ER, cause coaccumulation of soluble vacuolar cargo (Niemes
et al., 2010a), supporting the idea that ligand binding may occur in the early secretory
pathway. However, molecular interactions between VSRs and their ligands have not
been investigated in vivo yet, hence it is still not possible to pinpoint the compartments

between which VSR-mediated sorting occurs.
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A prerequisite for unraveling the mechanisms of TGN/EE-to-MVB/LE transport is to
understand how MVBs/LEs are formed and how they receive cargo from upstream
TGNs/EEs for onward transmission to the vacuole. Hence, we planned on performing
ultrastructural analysis to gain insight into the biogenesis of MVBs/LEs, which could
give information on how they functionally interact with the TGN/EE. For these studies,
we intended to employ the V-ATPase inhibitor concanamycin A (ConcA) as a tool,
since it was recently shown that this drug affects the identity and independence of the
TGN/EE (Viotti et al., 2010). As a result, both secretory traffic to the PM and transport
of endocytosed FM4-64 from the TGN/EE to the vacuole are blocked (Dettmer et al.,
2006; Viotti et al., 2010), indicating that ConcA might be instrumental to study the mem-
brane dynamics between the TGN/EE and the MVB/LE.

The intraluminal vesicles (ILVs) are the key morphological feature of MVBs/LEs,
which makes the ESCRT machinery the prime candidate for functional studies on MVB/
LE biogenesis and the transport processes connecting it to the TGN/EE. Still, where
ESCRT recognizes its cargo and initiates ILV budding is unknown, hence we wanted
to identify the location of ESCRT assembly by tracking representative subunits of the
three ESCRT complexes. By employing dominant-negative ESCRT mutants, we also
wanted to examine how ESCRT function influences the biogenesis of the MVB/LE and
the delivery of cargo to the vacuole. As cargo-sorting signals for the MVB-mediated
vacuolar pathway have not been explored yet, we intended to investigate whether ubi-
quitination participates in this process. Accordingly, we designed translational ubiquitin
fusions based on fluorescent reporters with minimal sorting information for the PM to
solely focus on the contribution of the ubiquitin signal to vacuolar delivery.
Receptor-mediated transport of soluble vacuolar cargo is considered to occur between
the TGN/EE and the MVBJ/LE, based mainly on localization data of the VSRs rather
than on cargo-binding studies. Molecular interactions between VSRs and soluble cargo
could not be assigned to a specific compartment yet. Accordingly, we aimed at devel-
oping a strategy that would enable us to test the compartments of the vacuolar trans-
port route individually for their ability to promote VSR-ligand binding in vivo. For this,
we intended to employ state-of-the-art live cell imaging techniques (FRET-FLIM) that
would allow the identification of molecular interactions between the VSRs and their
ligands. This way, an intracellular roadmap of ligand binding and release could be pre-

pared that should help settle the controversy about VSR-mediated vacuolar sorting.
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7.1 Multivesicular bodies mature from the trans-Golgi network/early endosome
in Arabidopsis (Scheuring et al., 2011)

Transport of endocytic cargo towards the lytic vacuole was shown to involve both the
TGN/EE and the MVB/LE (Viotti et al., 2010), however, a mechanism that enables the
transition of proteins from a TGN/EE to a MVB/LE has remained elusive. We thus
wanted to investigate which influence TGN/EE functionality has on vacuolar transport
and performed drug treatments with the V-ATPase inhibitor concanamycin A (ConcA).
Recently, V-ATPase activity had been demonstrated to be essential for the formation
of the TGN/EE, as ConcA treatment led to the retention of TGN/EE-intrinsic proteins
in morphologically enlarged Golgi stacks (Viotti et al., 2010). When we applied ConcA,
a significant reduction in the number of MVBs/LEs was revealed on the ultrastructural
level. We found that endogenous BP80-type VSRs, which localize to both the TGN/EE
and the MVB/LE (Niemes et al., 2010b; Stierhof and El Kasmi, 2010; Viotti et al., 2010),
were likewise retained in Golgi stacks under ConcA treatment, as was the case for the
Rab GTPase ARAY that otherwise localizes mainly to MVBs/LEs (Haas et al., 2007;
Robinson et al., 2008). We speculated that once the membrane supply from the TGN/
EE ceases, existing MVBs/LEs would gradually disappear through fusion with the lytic
vacuole. Transmission electron microscopy in fact revealed that the limiting membrane
of the MVBJ/LE ultimately fuses with the tonoplast to release contents into the vacuolar
lumen. Reversal of V-ATPase inhibition by ConcA washout enabled us to capture the
moment when nascent MVBs/LEs formed at tubular structures of the TGN/EE. These
MVB/LE budding events were frequently seen during recovery from ConcA treatment,
which served to synchronize the biosynthesis of MVBs/LEs, however, they also occur
under physiological conditions demonstrating that the TGN/EE is the natural source for
the formation of MVBs/LEs.

The newly emerging MVBs/LEs already featured the characteristic ILVs and were
positively labeled by the Rab GTPase ARA7Y. This is in agreement with recent live cell
imaging studies suggesting that MVB/LE maturation initiates in those subdomains of a
TGN/EE where ARAYT is specifically recruited (Singh et al., 2014). Transition from early
to late endosomes in yeast and animal cells was shown to be triggered by a Rab-
conversion mechanism that replaces EE-localized Rab5-type GTPases for the LE-
characteristic Rab7-type GTPases (Rink et al., 2005). A key role in this process has
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been assigned to the Mon1/SAND-CCZ1 heterodimeric complex, which acts as a GEF
on Rab7 and simultaneously inactivates Rab5 (Nordmann et al., 2010; Poteryaev et
al., 2010; Huotari and Helenius, 2011). Recent evidence suggests that a homologous
SAND-CCZ1 complex catalyzes the same Rab5-to-Rab7 conversion in plant cells.
However, the Rab distribution on plant endosomes is notably shifted, with Rab5-type
GTPases like ARA7 mainly localizing to the MVB/LE (Haas et al., 2007; Robinson et
al., 2008), while the Rab7-type GTPases are found on MVBs/LEs and the tonoplast
(Rutherford and Moore, 2002; Geldner et al., 2009). Hence, SAND activity in plants is
required for the fusion of MVBs/LEs with the vacuole, but non-essential for early-to-
late endosome maturation, as was revealed by SAND knockouts that did not prevent
MVBJ/LE biogenesis (Cui et al., 2014; Singh et al., 2014). Whether a plant-specific
GTPase-conversion mechanism aids in the transition from the TGN/EE to the MVB/LE
still remains to be shown.

The occurrence of ILVs within the nascent MVBs/LEs furthermore suggested that
ESCRT-mediated luminal sorting should have been initiated already at the TGN/EE.
We thus investigated the subcellular distribution of the three known ESCRT complexes
in plants by focusing on one representative subunit each for ESCRT-I to -Ill. Immuno-
gold electron microscopy of endogenous ESCRT-I VPS28 revealed its localization at
the TGN/EE but not at MVBs/LEs, indicating that ILV budding and MVB formation do
indeed coincide at the TGN/EE. To our surprise, VPS28 was also found at Golgi stacks,
which is different from the situation described in animals and yeast where ESCRT is
restricted to endosomes (Hurley, 2010). Sorting of ubiquitinated membrane proteins at
the Golgi apparatus has been assigned to GGA (Golgi-localized, y-ear-containing, Arf-
binding) adapter proteins, which promote the formation of CCVs and the delivery of
cargo to EEs where ESCRT takes over (Pelham, 2004; Scott et al., 2004). However,
given the fact that discernible GGA orthologs as well as an initiating ESCRT-0 complex
do not exist in plants (Hwang, 2008; Leung et al., 2008), ubiquitin-mediated sorting at
plant Golgi stacks might have evolved differently. Evidence for the existence of a Golgi-
localized vacuolar sorting mechanism in plants was revealed by translational fusions
of ubiquitin to a Golgi marker, which caused vacuolar delivery of the protein depending
on ESCRT functionality (published by Scheuring et al., 2012; see section 7.2).

We further analyzed the compartmental distribution of the ESCRT machinery by live
cell imaging of the ESCRT-Il and -lll subunits VPS22 and VPS2, respectively. In co-
expression with fluorescent markers for the Golgi, the TGN/EE, and the MVB/LE, we
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were able to demonstrate that ESCRT-Il VPS22 is almost exclusively localized to the
TGN/EE, but virtually absent from the Golgi and the MVB/LE. As opposed to this,
ESCRT-IIl VPS2 was found mostly at MVBs/LEs but to a lesser extent also at the
TGN/EE, which was further supported by immunofluorescence labeling of endogenous
VPS2. The direct comparison of ESCRT-Il VPS22 and ESCRT-III VPS2 reflected this
differential distribution in that they just partially colocalized, with only VPS2 labeling
wortmannin-sensitive MVBs/LEs. These findings indicate that the ESCRT machinery
successively assembles along the endocytic pathway, starting already at the TGN/EE
to sort cargo into the ILVs of emerging MVBs/LEs. The partial Golgi localization of the
ESCRT-I subunit VPS28 furthermore suggests that ESCRT might also sort proteins of
the Golgi stack for turnover in the lytic vacuole.

MVB/LE formation and ESCRT assembly coincided spatially at the TGN/EE, hence
we wondered if ESCRT functionality could be a prerequisite for MVB/LE maturation.
To answer that question, we generated a dominant-negative mutant of the ESCRT-I
subunit VPS2, called VPS2-DN, which is incapable of recruiting the ESCRT-associated
AAA-ATPase SKD1 that disassembles ESCRT after ILV formation. The importance of
this energy-dependent step became apparent when the constitutive overexpression of
a dominant-negative SKD1 mutant, lacking ATPase activity, turned out to be lethal in
the long term (Haas et al., 2007). In transient expression, the mutant leads to unusually
enlarged endosomes with fewer ILVs (Haas et al., 2007; Katsiarimpa et al., 2011),
which are considered to be the equivalent to what has been described as a class E
compartment in yeast ESCRT mutants (Raymond et al., 1992).

ESCRT-IIIl VPS2 had been partially found at the TGN/EE as subdomains matured
into MVBs/LEs, thus we examined what influence the VPS2-DN mutant would have on
the progression from an early to a late endosome. In transient expression, we analyzed
fluorescent markers for the TGN/EE and the MVB/LE with respect to their relative
location in a VPS2-DN overproduction background. It became apparent that TGN/EE
and MVBJ/LE markers clustered together in enlarged endosomal structures reminiscent
of class E compartments. We could show that these aberrant endosomes originate
from the TGN/EE, in which the MVB/LE markers accumulate over time as endosomal
maturation fails. These observations are in agreement with findings from animal cells
where class E compartments were shown to be of early endosomal origin (Yoshimori
et al., 2000; Doyotte et al., 2005). Spatial separation of the TGN/EE and MVB/LE

markers could be affected in a similar way if ConcA was applied, which corresponds
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to our ultrastructural data showing the ConcA-induced inhibition of MVB/LE formation.
Furthermore, colocalization of the TGN/EE and MVB/LE markers was also revealed if
a member of the annexin protein family, Arabidopsis ANNAT3, was transcriptionally
downregulated by RNAI. The closely related mammalian annexin A2 has been shown
to be required for the final budding of multivesicular LEs from EEs, in a process that
involves annexin A2-dependent actin nucleation (Mayran et al., 2003; Morel et al.,
2009). Although an equivalent role for plant annexins in MVB/LE maturation remains
to be established, our data support the idea that ANNAT3 is actively involved in this
specific transport event.

Interference with TGN/EE function either by ConcA treatment, ESCRT inhibition, or
annexin knockdown had always resulted in maturation defects and consequently in a
decrease of MVBs/LEs that would have otherwise functioned as carriers for vacuolar
transport. We thus speculated that the delivery of vacuolar proteins should be affected
in these cases. Transport analysis in protoplasts using the vacuole-targeted reporters
a-amylase-sporamin (amy-spo; Pimpl et al., 2003) and GFP-sporamin (daSilva et al.,
2005) indeed revealed a dosage-dependent misrouting into the cell culture medium if
treated with ConcA or upon VPS2-DN overproduction. Similarly, induced secretion of
amy-spo was shown in a dominant-negative SKD1 mutant background (SKD1(AQ);
Shahriari et al., 2010). The extracellular accumulation of the vacuolar proteins likewise
implied that secretion is apparently unaffected under conditions that otherwise perturb
endosomal maturation. In cases of ESCRT inhibition, this is conceivable assuming that
only those TGN/EE subdomains destined to mature into MVBs/LEs will be affected,
whereas other sorting steps at the TGN/EE may still be functioning. Transport analysis
with the secretory reporter a-amylase (amy; Pimpl et al., 2003) indeed revealed that
none of the ESCRT mutants, i.e. SKD1(AQ) and VPS2-DN, had any significant effect
on default secretion (Shahriari et al., 2010; D. Scheuring, personal communication).
ConcA treatment, we reasoned, has a more severe impact on TGN/EE functionality
and might thus influence sorting events other than vacuolar transport. Accordingly, we
analyzed the transport of secretory amy in the same ConcA background that otherwise
induces secretion of vacuolar amy-spo, but here again no changes in amy secretion
were measured (unpublished data). By contrast, secretory GFP and BRI1-YFP accu-
mulated intracellularly along the way to the PM if expressed under ConcA conditions,
and the same was true for cell wall xyloglucans that were found enriched in Golgi-

derived aggregates (Viotti et al., 2010). These contradictory results are indeed difficult
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to reconcile and may be due to the existence of different secretory routes, one of which
bypassing the TGN/EE as an intermediate way station towards the PM. Here, further
investigations will certainly be necessary to explain this discrepancy.

In summary, we provided evidence that plant MVBs/LEs originate from the TGN/EE
in a process equivalent to the endosomal maturation model described in animal cells
and yeast (Huotari and Helenius, 2011). This process requires the concerted action of
key regulatory factors including the V-ATPase (pH regulation), ESCRT (intraluminal
sorting), annexins (MVB/LE budding), and certainly many more to be identified.

7.2 Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the

vacuolar degradation pathway (Scheuring et al., 2012)

In animals and yeast, ubiquitination causes sorting of membrane proteins into the ILVs
of MVBs/LEs, but it can also induce the internalization of proteins from the PM (Raiborg
and Stenmark, 2009). In plants, this issue still needs to be addressed, so we started to
investigate whether ubiquitin is sufficient as an endocytic sorting signal for proteins at
the PM. For that purpose, we designed fluorescent reporter constructs that are post-
translationally inserted into the PM and thus not delivered by the secretory pathway.
This would have the advantage that the first possible transport step could only be the
internalization from the PM, eliminating any misinterpretation of intracellular signals.
PM-anchorage of our GFP-based reporters was ensured by addition of a short amino
acid sequence, which contains the ‘GC-CG box’ motif of a type || ROP GTPase that
undergoes S-acylation (Lavy and Yalovsky, 2006). The resulting construct, called Box-
GFP, efficiently labeled the PM in tobacco protoplasts and leaf epidermal cells but was
not found in intracellular compartments. By contrast, translational fusion to ubiquitin
(Ub) specifically caused internalization of a Box-GFP-Ub reporter, which was shown to
depend on clathrin-mediated endocytosis. The internal signals of Box-GFP-Ub could
be tracked along the endocytic pathway labeling both the TGN/EE and the MVBJ/LE,
but they were absent from the Golgi. We could thus unequivocally demonstrate that
ubiquitin is sufficient to trigger endocytosis of a PM-localized protein by recruiting the
clathrin machinery for vesicle formation.

To our surprise, internalized Box-GFP-Ub passed through the endocytic route only
until reaching the MVB/LE where transport apparently came to a halt. We have shown

previously that MVBs/LEs ultimately fuse with the vacuole (Scheuring et al., 2011; see
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section 7.1), so we actually expected Box-GFP-Ub to arrive either in the tonoplast or,
if sorted by the ESCRT machinery, within the vacuolar lumen. We could rule out that
the lack of vacuolar fluorescence results from vacuolar degradation but speculated
instead that the mode of membrane insertion might possibly not persist beyond the
MVBJ/LE. In this context, reversible S-acylation is a common mechanism by which small
GTPases are regulated in a temporospatial manner (Linder and Deschenes, 2007),
which is known to also include ROP GTPases (Yalovsky, 2015). Whether the specific
cysteine residues within the GC-CG box undergo deacylation is unclear, but it could
explain a release of Box-GFP-Ub from the membrane. Another important feature of the
sequence containing the GC-CG box is a proximal polybasic region, which is supposed
to confer membrane specificity by interacting with certain phospholipids (Lavy and
Yalovsky, 2006; Sorek et al., 2009). As the lipid composition of the compartments along
the endocytic pathway evidently changes, membrane anchorage of the Box-GFP-Ub
reporter might gradually be weakened to the point where it is finally lost into the cytosol.

To address this question, we prepared a second set of reporters which by no means
would lose membrane association as they were based on a true type | transmembrane
domain (TMD). For this, we employed the PM marker RFP-TMD23 (Brandizzi et al.,
2002), which is delivered to the PM via the secretory pathway. Once ubiquitin was
translationally fused to its cytosolic C-terminus, the resulting construct RFP-TMD23-
Ub efficiently labeled the lumen of the lytic vacuole. In order to reach the vacuole, RFP-
TMD23-Ub was transported along the endocytic pathway, passing through both the
TGN/EE and the MVBJ/LE. These findings provided evidence that ubiquitin is sufficient
to target a PM-localized transmembrane protein for vacuolar degradation. At the same
time, we could conclude that the absence of vacuolar delivery we had noticed in case
of the reporter Box-GFP-Ub (see above) was indeed most likely due to the reversibility
of its membrane anchorage.

Whenever ubiquitin is covalently bound to a target protein, it can be a substrate itself
for further ubiquitination reactions that result in specifically linked poly-ubiquitin chains
(Pickart and Eddins, 2004). Poly-ubiquitination has been originally associated with the
proteasomal degradation of cytosolic or nuclear proteins, whereas mono-ubiquitination
was assumed to be a signal for the internalization of PM proteins and their sorting to
vacuoles/lysosomes. In the meantime, however, studies of several PM proteins in both
animals and yeast could reveal that short poly-ubiquitin chains and/or multiple mono-

ubiquitinations do highly increase the efficiency of internalization (Dupre et al., 2004;
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Madshus, 2006). We addressed this issue trying to figure out whether the transport of
our recombinant ubiquitin fusion proteins is likewise influenced by subsequent post-
translational ubiquitination. Inspired by a recent publication, in which a reporter similar
to Box-GFP-Ub was used to investigate ubiquitin-dependent internalization events in
mammalian cells, we deleted two C-terminal glycine residues of ubiquitin, generating
the modified reporters Box-GFP-UbAGG and RFP-TMD23-UbAGG. In the mammalian
study mentioned, a lack of these two glycine residues evidently prevented any further
ubiquitination of a PM-anchored recombinant ubiquitin fusion protein (Chen and De
Camilli, 2005).

Expression of the Box-GFP-UbAGG construct revealed an exclusive PM localization
that was indistinguishable from the PM reporter Box-GFP. Internal endosomal signals,
as seen for the non-mutagenized Box-GFP-Ub, were missing and thus indicated that
endocytosis of the reporter strictly depends on the accessibility of the two C-terminal
glycine residues. Interestingly, the same mutation in the reporter of the mammalian
study mentioned above did not prevent its internalization in HeLa and CHO cells (Chen
and De Camilli, 2005), demonstrating that in these experimental systems, mono-
ubiquitination is sufficient to mediate sorting into the endocytic pathway. Our data, on
the contrary, suggest that effective endocytosis of PM proteins in plant cells requires
more than a single ubiquitin moiety. This is supported by recent findings showing that
translational ubiquitin fusions of an Arabidopsis PM ATPase (PMA-EGFP-Ub) are less
efficiently internalized when mutagenized to prevent poly-ubiquitination, even though
vacuolar delivery is not completely inhibited (Herberth et al., 2012). Likewise, endocytic
uptake of the auxin efflux carrier PIN2 was shown to depend on poly-ubiquitination
(Leitner et al., 2012), whereas endocytosis of the iron transporter IRT1 apparently
requires multiple mono-ubiquitinations (Barberon et al., 2011). All these observations
point to the fact that only PM proteins labeled by multiple ubiquitin signals are efficiently
recognized by the transport machinery for internalization.

Transport analysis of the other mutagenized reporter RFP-TMD23-UbAGG revealed
contradictory results at first glance. This reporter was unaffected by the deletion of the
C-terminal glycine residues, being normally delivered to the vacuole as was seen for
the non-mutagenized RFP-TMD23-Ub. We speculated that the differential behavior of
Box-GFP-UbAGG and RFP-TMD23-UbAGG could just be the result of their differential
targeting towards the PM: while the post-translationally anchored Box-GFP-UbAGG
displays its UbAGG signal exclusively at the PM, secretory RFP-TMD23-UbAGG might
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already be recognized prior to reaching the PM and redirected into the biosynthetic
vacuolar route. To clarify whether ubiquitin can indeed serve as a vacuolar sorting
signal upstream of the PM, we employed the Golgi marker RFP-TMD20, which derives
from the PM marker RFP-TMD23 by truncation of its TMD to only 20 amino acids. Due
to the shortened TMD, RFP-TMD20 does not progress to the PM but stays in the Golgi
stack instead (Brandizzi et al., 2002). By translational fusion to ubiquitin, we generated
the reporter RFP-TMD20-Ub, which was efficiently transported to the vacuole via the
endosomal route, just as seen before for RFP-TMD23-Ub. Deletion of the C-terminal
glycine residues revealed that RFP-TMD20-UbAGG was equally well delivered to the
vacuole, identical to the mutagenized TMD23-based reporter. These findings for one
thing indicate that ubiquitin does not only initiate endocytosis and vacuolar delivery of
PM proteins, but also mediates vacuolar turnover of proteins from the Golgi. On the
other hand, they suggest that depending on the reporters’ location within the pathway
(PM vs. Golgi), there are differential requirements for the accessibility of the ubiquitin
C-terminus, pointing to the fact that endocytic and biosynthetic vacuolar sorting depend
on different ubiquitination states. This interpretation is also in agreement with the men-
tioned findings for the ubiquitin-tagged PM ATPase that still weakly labeled the vacuole
if prevented from being poly-ubiquitinated (Herberth et al., 2012). In this case, smaller
amounts of the mono-ubiquitinated molecules might have been diverted from the Golgi
while in transit to the PM and sent into the vacuolar route.

Vacuolar transport of integral membrane proteins is closely linked to the activity of
the ESCRT machinery, which sorts ubiquitinated cargo into the lumen of MVBs/LEs
prior to degradation in the lytic vacuole. Since all of our TMD-based ubiquitin reporters
exclusively labeled the vacuolar lumen but not the tonoplast, we expected ESCRT to
be involved in their sorting. To test for that, we expressed both RFP-TMD20-Ub and
RFP-TMD23-Ub in a dominant-negative mutant background of the ESCRT-associated
AAA-ATPase SKD1, which is known to cause the formation of class E compartments
(Haas et al., 2007; Shahriari et al., 2010; see also section 7.1). Indeed, both ubiquiti-
nated reporters did accumulate in enlarged class E-like endosomes that were also
positively labeled by soluble vacuolar cargo. Vacuolar fluorescence was no longer ob-
served, demonstrating that functionality of the ESCRT machinery is essential for endo-
somal sorting and vacuolar delivery of the reporters.
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7.3 Vacuolar sorting receptors transport ligands from the ER and the Golgi to
the TGN/EE (Kunzl et al., submitted manuscript)

A crucial aspect in deciphering the molecular details of VSR-mediated transport is to
understand where in the endomembrane system the receptors recognize and bind their
ligands to divert them from default secretion. Ligand-binding studies, however, have
been performed almost exclusively in vitro, so it is still controversial how these data
are to be integrated into the existing model concept of VSR trafficking.

In the manuscript at hand, we developed a strategy that enabled us to test specific
compartments for VSR-ligand interactions in vivo and thus to pinpoint the location of
ligand binding and release. For this, we positioned the luminal ligand-binding domain
(LBD) of a VSR within the individual compartments along the vacuolar route by taking
advantage of marker proteins with well-defined intracellular localization. The use of full-
length VSRs seemed not promising for this purpose, as they do not reliably target only
one specific compartment. In this context, several VSR trafficking mutants have been
published that bear substitutions of key amino acid motifs within the cytosolic domain,
supposed to have sorting information for either the anterograde or retrograde transport
machinery (daSilva et al., 2006; Foresti et al., 2010; Saint-Jean et al., 2010). These
mutant VSRs reveal localization patterns that are shifted to some degree to either the
TGN/EE or the MVB/LE, but they do also partially localize to the PM or to the vacuole.
Moreover, in most of these trafficking mutants, the LBD was replaced by fluorophores,
hence they might behave differently than binding-competent full-length receptors with
the same mutations.

To overcome the problem of specifically targeting a VSR, we uncoupled the ligand-
binding properties of the receptor from its intracellular transport by only employing the
N-terminal LBD. This LBD fragment enters the secretory pathway as a soluble protein
and as such has been shown to interact with vacuolar ligands (Watanabe et al., 2004;
daSilva et al., 2005) and to cause their co-secretion (Shen et al., 2013b). In order to
position the LBD in specific compartments along the vacuolar route, we intended to
attach it to established fluorescent membrane markers. For this, translational fusions
were no option as the N-terminal LBD of the type | VSR can only be fused to type |
membrane markers (Niemes et al., 2010a), which are however not available for the
Golgi and the TGN/EE. To circumvent these topology restrictions, we took advantage
of the special properties of a llama heavy-chain antibody that was raised against the
green fluorescent protein (GFP). Heavy-chain antibodies from Camelidae species are
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unusual in that they are devoid of light chains and hence contain only a single variable
domain, referred to as VuH or nanobody, which is the smallest possible antigen-binding
fragment (Muyldermans, 2001). A GFP-specific nanobody proved to be a powerful tool
that can be recombinantly expressed in living cells to target and/or isolate GFP-tagged
proteins (Rothbauer et al., 2006; Rothbauer et al., 2008). Inspired by that, we gener-
ated a translational fusion protein consisting of the soluble LBD fragment and the anti-
GFP nanobody (abbreviated as Nb), which was named LBD-Nb.

Exploiting the high specificity and affinity of the anti-GFP nanobody, we planned on
expressing the soluble LBD-Nb with GFP-tagged membrane proteins that would serve
the dual function of being both a compartment-specific marker and a membrane anchor
for the LBD. As a key prerequisite, all the markers had to display the GFP in the lumen
of their target compartment to enable immune complex formation with the LBD-Nb.
These interactions would result in membrane-bound LBDs with well-defined intracellu-
lar locations, making them ideal tools to explore the ligand-binding potential of a VSR
within a selected compartment. The following compartmental markers were chosen for
membrane anchorage of the LBD-Nb: GFP-CNX (ER), Man1-GFP (Golgi), SYP61-
GFP (TGN/EE) and GFP-BP80 (MVB/LE). These are all single-spanning transmem-
brane proteins of either the type | (GFP-CNX and GFP-BP80) or type Il (Man1-GFP
and SYP61-GFP) and accordingly carry the GFP at their N- and C-termini, respectively.
In any case, though, post-translational binding of the LBD-Nb to an anchor exposes an
N-terminally accessible LBD, irrespective of the topology of the membrane-anchoring
marker.

We first had to establish that the GFP nanobody is able to bind the different GFP-
tagged markers, as a prerequisite for the compartment-specific positioning of the LBD.
Therefore, we expressed the LBD-Nb with each of the markers in tobacco protoplasts
and performed immunoprecipitation experiments. Pull-down of all markers resulted in
coimmunoprecipitation of the LBD-NDb, indicating that the nanobody confers membrane
anchorage. Furthermore, we ensured that interactions with the LBD-Nb do not alter the
intracellular localization of the GFP-tagged markers, as these still colocalized with their
corresponding RFP-tagged marker versions in CLSM analysis. To directly visualize the
compartmental targeting of the LBD, we generated a fluorescent version of the LBD-
Nb construct by insertion of monomeric RFP, yielding LBD-RFP-Nb. In coexpression
with either of the markers, LBD-RFP-Nb was efficiently retained from being secreted

but colocalized instead in each of the GFP-positive compartments. In summary, these
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findings confirmed that the GFP nanobody is in fact a powerful tool that enables the
precise compartment-specific positioning of the LBD within the secretory pathway.

Having established a strategy for the compartmental targeting of the LBD, we next
aimed at investigating its ligand-binding capability in each of the addressed compart-
ments. We reasoned, if a given compartment meets the environmental requirements
for receptor-ligand interactions, then a membrane-anchored LBD-Nb should be able to
retain those ligands. To test for this, we employed the fluorescent model ligand Aleu-
RFP, which contains the N-terminal vacuolar sorting signal from barley proaleurain
(Holwerda et al., 1992). We first ensured that either of the four LBD-Nb:GFP marker
complexes is capable of binding Aleu-RFP in vitro to rule out that conformational issues
might prevent LBD-ligand interactions in an otherwise favoring compartmental environ-
ment. For this, the LBD-Nb was coexpressed and coimmunoprecipitated in complex
with each of the compartmental markers, and then the preassembled complexes were
incubated with Aleu-RFP under binding conditions (Kirsch et al., 1994; Watanabe et
al., 2004; Shen et al., 2014). In all cases, coprecipitation of Aleu-RFP occurred, thus
confirming that the LBD possess binding competence if in complex with the anchors.

We then successively explored the compartments along the vacuolar route by live
cell imaging, starting with the point of origin; the ER. Expression of the marker GFP-
CNX normally had no influence on the vacuolar delivery of the ligand Aleu-RFP. Upon
coexpression of the LBD-Nb to assemble ER-anchored LBDs, however, Aleu-RFP was
effectively retained in the ER and colocalized with GFP-CNX. We tested whether this
colocalization results from interactions between Aleu-RFP and the anchored LBD by
making use of the physical principle of Forster resonance energy transfer (FRET).
FRET describes a non-radiative transfer of energy from an excited donor chromophore
to a nearby acceptor chromophore, which may occur if the emission spectrum of the
donor overlaps with the absorption spectrum of the acceptor (Clegg, 2009; Ishikawa-
Ankerhold et al., 2012). FRET strongly depends on the distance between donor and
acceptor and is consequently limited to chromophores that are in close proximity, being
separated by no more than 10 nm. These distances are comparable to the dimensions
of multimeric protein complexes, rendering FRET measurements a powerful technique
to investigate protein-protein interactions in living cells.

We utilized the GFP of the ER marker GFP-CNX as a FRET donor, while RFP in
the ligand Aleu-RFP served the function of the FRET acceptor. As these two proteins

do not interact, their fluorophores normally do not come close enough to cause FRET.
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However, by assembly of LBD-Nb:GFP-CNX complexes within the ER, we were able
to detect binding of Aleu-RFP to the LBD since this caused the two fluorophores to get
close enough for energy transfer. We took advantage of the fact that FRET decreases
the fluorescence lifetime of the donor fluorophore (here the GFP) and thus performed
fluorescence lifetime imaging microscopy (FLIM) to detect FRET (Bucherl et al., 2014).
The FRET-FLIM analysis of the LBD-Nb:GFP-CNX complexes revealed a significant
reduction of the GFP lifetime in the presence of Aleu-RFP, which did not occur in the
presence of a non-ligand (Sec-RFP) or in the absence of the LBD. This demonstrated
that Aleu-RFP indeed interacts with the anchored LBD and consequently identified the
ER as a compartment that favors VSR-ligand binding.

It has been previously suggested that receptor-mediated sorting of vacuolar proteins
is already initiated in the early secretory pathway. In this respect, soluble LBDs when
fused to the ER-retrieval signal HDEL were shown to cause ER accumulation of soluble
vacuolar proteins (Watanabe et al., 2004; daSilva et al., 2005). Although this approach
could not resolve whether ligand binding occurs already in the ER or upon arrival in
the Golgi, it became apparent that interaction should have happened at the latest in
the Golgi. More direct evidence for ligand binding within the ER was provided by LBD
fusions to ER-resident membrane proteins that likewise caused vacuolar proteins to
accumulate in the ER (Niemes et al., 2010a). Beside these localization data, however,
molecular interactions between ER-localizing receptors and ligands have never been
proven. Our FRET-FLIM data now provide clear evidence that the ligand Aleu-RFP is
bound by VSRs as early as in the ER lumen. We could further confirm these data by
immunoprecipitation experiments showing that the ER-assembled LBD-Nb:GFP-CNX
complexes coprecipitate the coexpressed Aleu-RFP. Given the fact that plant vacuolar
sorting signals do not originate from post-translational modifications (as do lysosomal
sorting signals of MPR ligands in animals; see section 5.2.2) but are encoded in the
amino acid sequence, it is reasonable to assume that vacuolar proteins are premade
ligands once they have been synthesized in the ER and can thus immediately interact
with VSRs. In this regard, AtVSR1 was recently shown to be N-glycosylated in its LBD,
which stabilizes binding of cargo ligands (Shen et al., 2014). As N-linked glycosylation
occurs in the ER lumen (Liu and Howell, 2010), VSRs putatively adopt their final ligand-
binding conformation already upon entering the ER, although it is currently unknown
whether the N-glycans undergo further modifications in the Golgi.
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Having identified the ER as the initial compartment of the secretory pathway to favor
ligand binding, we next tested the MVB/LE being the last morphologically characterized
compartment en route to the vacuole. We decided to proceed with the MVB/LE since
here, ligands should have been released at the latest, which makes the compartment
the ideal negative control to proof the concept of our FRET-FLIM analysis. The recent
postulation of a ‘late PVC’ being situated in-between the MVB/LE (or PVC) and the
vacuole (Foresti et al., 2010) was not taken into consideration here. The only evidence
in favor of its existence derives from a fluorescent VSR trafficking mutant defective in
recycling, which beside accumulating in the vacuole labels endosomal structures that
do not colocalize with markers for the TGN/EE and MVB/LE but apparently with soluble
vacuolar cargo (Foresti et al., 2010). Hence, a model was proposed in which a ‘late
PVC’ matures from a MVB/LE via retromer-mediated retrieval of the discharged VSR,
which leaves the released ligands in a ‘late PVC’ for fusion with the vacuole (Foresti et
al., 2010). In every respect, the lack of functional VSRs in the putative ‘late PVC’ would
still render the MVBJ/LE the last compartment to check for ligand interactions.

Accordingly, we expressed the LBD-Nb fusion with the marker GFP-BP80 to anchor
the LBD within the MVBJ/LE. If coexpressed, Aleu-RFP did indeed colocalize with the
LBD-Nb:GFP-BP80 complexes in the MVB/LE, however, this colocalization was also
observed in the absence of the LBD-Nb. At steady-state conditions, Aleu-RFP is
commonly found in the MVB/LE while in transit towards the vacuole, so colocalization
in this compartment cannot necessarily be interpreted as interaction. To get further
insights, we applied the drug wortmannin, which induces homotypic fusion of MVBs/
LEs and thus dramatically enlarges the compartment (Tse et al., 2004). These bloated
MVBs/LEs revealed a differential distribution, with the LBD-Nb:GFP-BP80 complexes
labeling the ring-shaped limiting membrane, while Aleu-RFP localized to the lumen of
the compartment. This luminal location indicated that the ligand is in fact not bound to
the LBD in the MVB/LE. FRET-FLIM analysis finally confirmed these observations as
Aleu-RFP did not reduce the fluorescence lifetime of the LBD-Nb:GFP-BP80 complex.
FRET could only be triggered in control experiments by assembly of a dual-fluorophore
complex consisting of GFP-BP80 and the red fluorescent LBD-RFP-Nb, which proved
that FRET-FLIM can be applied to this compartment. In conclusion, our findings for the
MVBJ/LE revealed that only the combination of localization analysis and FRET-FLIM
allows for a reliable assessment of whether a given compartment supports or restricts

ligand binding.
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It has recently been speculated that soluble vacuolar proteins interact with VSRs in
the cis-Golgi (Gershlick et al., 2014), however that still awaits experimental confir-
mation. To test this hypothesis, we coexpressed the LBD-Nb fusion with the cis-Golgi
marker Man1-GFP to anchor LBDs in the Golgi for ligand-interaction analysis. Live cell
imaging revealed that the ligand Aleu-RFP indeed colocalizes with the LBD-Nb:Man1-
GFP complexes, which was never observed in the absence of the LBD. We confirmed
that this results from binding of Aleu-RFP to the anchored LBD by measuring significant
reductions in the fluorescence lifetime of the LBD-Nb:Man1-GFP complexes, which did
not occur in the absence of the LBD. Accordingly, our data show that VSRs are already
associated with their ligands upon arrival at the Golgi apparatus and that these VSR-
ligand complexes persist while entering the Golgi and putatively also throughout the
stack.

The next compartment en route to the vacuole, the TGN/EE, still has the reputation
of being the location where ligands are bound by VSRs for vacuolar delivery, based on
the original localization data and in vitro binding studies mentioned earlier. However,
in the light of recent findings identifying the TGN/EE to be Golgi-independent and of
endosomal nature at the same time, the situation has to be carefully reassessed. With
this in mind, we continued analyzing compartmental VSR-ligand interactions and next
assembled LBD-Nb:SYP61-GFP complexes in the TGN/EE. Life cell imaging revealed
that vacuolar transport of the ligand Aleu-RFP was unaffected by the anchored LBDs,
indicating that the TGN/EE does not support VSR-ligand binding. FRET-FLIM analysis
confirmed these findings by showing no reductions in the fluorescence lifetime of the
LBD-Nb:SYP61-GFP complex when coexpressed with Aleu-RFP. To demonstrate that
positive interactions would have given perceptible readouts, we assembled SYP61-
GFP-based complexes with the red fluorescent LBD-RFP-Nb fusion. Assembly of this
dual-fluorophore complex proofed that the FRET-FLIM-based analysis is suitable to
identify protein-protein interactions in the TGN/EE. This strengthens the notion that the
absence of Aleu-RFP-triggered FRET reveals the TGN/EE as being a compartment
unfavorable for ligand binding.

Our findings with the TGN/EE-anchored LBDs suggested that ligands are released
from their receptors once the VSR-ligand complexes have arrived at the TGN/EE. To
demonstrate that ligand binding to the LBD-Nb:SYP61-GFP complex could have hap-
pened if the compartmental environment would have favored interactions, we blocked
arrival of the proteins at the TGN/EE by applying the drug brefeldin A (BFA). BFA
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caused inhibition of the ER export and consequently led to coaccumulation of the LBD-
Nb:SYP61-GFP complexes and the ligand Aleu-RFP within the ER. There, Aleu-RFP
indeed interacted with the SYP61-GFP-anchored LBDs as was confirmed by FRET-
FLIM analysis and coimmunoprecipitation experiments. Altogether, these data indicate
that VSRs bind their ligands already in the early secretory pathway and release them
upon arrival in the TGN/EE. This is in agreement with the observation that retromer,
the coat complex facilitating VSR recycling, localizes to the TGN/EE (Niemes et al.,
2010b; Stierhof et al., 2013). Furthermore, our findings showing that MVBs/LEs mature
from the TGN/EE and finally fuse with the vacuole (Scheuring et al., 2011, see section
7.1) would render a VSR-mediated vesicular sorting step at the TGN/EE redundant.

Release of ligands has been proposed to depend on acidification of the compart-
ments along the vacuolar pathway (Kirsch et al., 1994), by analogy to the concept of
receptor-mediated lysosomal sorting in animal cells. The first VSR (pea BP80) was
identified through in vitro binding to immobilized ligands at a pH of 7.1, from which it
was released when the pH was lowered to 4 (Kirsch et al., 1994). By this time, however,
pH values for the individual compartments of plant cells were still unknown. Only very
recently, experimental data have become available that provide a roadmap of the com-
partmental pH values in plants (Martiniere et al., 2013; Shen et al., 2013a; Luo et al.,
2015). These data show that the pH within the ER is the highest (pH 7.1 to 7.5), which
comes close to the value that was adjusted for binding of BP80 to its ligands in vitro.
Also the more recent ligand-binding analyses have all been performed at neutral pH
(Watanabe et al., 2004; Shen et al., 2014), which is in accordance with our findings
suggesting that the environmental conditions within the ER lumen are in favor of ligand
binding. The compartmental pH measurements furthermore revealed that starting from
the ER, pH values progressively decrease in the following compartments until reaching
the TGN/EE being the most acidic compartment (pH 5.6 to 6.3) en route to the vacuole.
Values for the downstream-situated MVB/LE were shown to be either similar (Shen et
al., 2013a) or again more alkaline (Martiniere et al., 2013) than in the TGN/EE. Hence,
if acidification is indeed the trigger for ligand release, VSR-mediated sorting is unlikely
to occur between the TGN/EE and the MVBJ/LE, but would rather be expected to take
place one step earlier, namely between the Golgi stack (pH 6.8 to 6.9) and the TGN/EE
where the greatest pH difference of two neighboring compartments exists.

An alternative idea was lately proposed trying to explain the discrepancy between

the acidification-driven sorting model and the concept of VSR-mediated TGN/EE-to-
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MVB/LE transport in the light of recent pH measurements (Reguera et al., 2015). The
authors refer to former in vitro data showing a ligand-binding optimum for pea BP80 to
be at pH 6, with a reduction to 50% at pH 5 and 7.5 (Kirsch et al., 1994). Accordingly,
they claim that the acidic conditions in the TGN/EE are close to this optimum and thus
should favor ligand binding, while the more alkaline pH in the MVBJ/LE is above the
optimum and would consequently trigger ligand release (Reguera et al., 2015). This
model view does however not explain how VSR-ligand interactions could be identified
in all the previous in vitro binding analyses applying neutral (pH 7.0 or 7.1) conditions
(Kirsch et al., 1994; Watanabe et al., 2004; Shen et al., 2014), and also why ER-
localized LBDs should influence the transport of vacuolar proteins (Watanabe et al.,
2004; daSilva et al., 2005; Niemes et al., 2010a) if the neutral pH in the ER would not
allow for ligand binding. Lastly, how could we measure interactions between Aleu-RFP
and an ER-anchored LBD via FRET-FLIM in a non-invasive approach that does not
influence the in situ pH of the ER?

Another important factor that influences VSR-ligand interactions was shown to be
the concentration of free calcium ions (Ca?*; Stael et al., 2012). It has been suggested
that binding of Ca?* to an epidermal growth factor (EGF) repeat induces conformational
changes within the LBD of the VSR, thereby modulating receptor-ligand interactions
(Cao et al., 2000; Watanabe et al., 2002). Depending on Ca?*, ligand binding was
shown to occur and persist even at a pH of 4 (Watanabe et al., 2002), indicating that
Ca?* supports ligand binding under otherwise unfavorable conditions. Our knowledge
of the Ca?* concentrations within the plant endomembrane system is still limited, but it
is generally assumed that the vacuole is the main storage compartment followed by
the ER with an estimate of 50 to 500 uM of free Ca?* (Stael et al., 2012). The following
transit compartments en route to the vacuole apparently lack comparable Ca%* concen-
trations, as was suggested by measurements of the Golgi apparatus showing Ca?*
values in the nanomolar range (Ordenes et al., 2012). Together, these data indicate
that VSR-ligand interactions are regulated by an intricate interplay between pH, free
Ca?*, and maybe other unknown factors that collectively render a given compartment
either favorable or unfavorable for ligand binding. However, since all these biochemical
properties are currently not fully understood, interpretation of data concerning single
aspects such as pH must be considered with deliberation.

Our compartment-specific ligand-binding analysis identified the ER and the Golgi as
compartments that favor VSR-ligand interactions, while the TGN/EE and the MVB/LE
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were found to restrict interactions. This implies that post-TGN/EE transport of soluble
proteins towards the vacuole does not depend on VSRs and consequently also does
not require vacuolar sorting signals from the TGN/EE onwards. In order to proof this
hypothesis, we sent soluble fluorescent reporters that lack a vacuolar sorting signal to
the TGN/EE and analyzed their transport. As these sorting signals are however neces-
sary for the VSR-mediated delivery to the TGN/EE, we took advantage of the early
endosomal properties of the TGN/EE and targeted the soluble reporters by endocytic
uptake to the TGN/EE. For this, we supplemented suspension-cultured protoplasts
with triple RFP (3xRFP)-containing culture medium and then followed endocytosis of
the reporter. Live cell imaging revealed that endocytosed 3xRFP is indeed delivered to
the vacuole where it accumulates over time. To trace its vacuolar pathway, we modified
the reporter to contain the anti-GFP nanobody, generating 3xRFP-Nb, and applied it
to cells expressing GFP anchors for either the TGN/EE (SYP61-GFP) or the MVB/LE
(GFP-BP80). Nanobody-mediated assembly in these compartments proofed that the
reporter transits through the endosomal pathway en route to the vacuole, in a process
that does not involve sorting by VSRs. Consequently, the vacuole must be considered
the default location for soluble proteins upon arrival in the TGN/EE, irrespective of

whether these proteins were delivered by the biosynthetic or the endocytic pathway.

7.4 Closing remarks

In the course of my research, different aspects of vacuolar trafficking in plant cells were
addressed, including the receptor-mediated transport of soluble proteins and ESCRT-
mediated endocytic transport for degradation of membrane proteins. We gained insight
into how these routes collectively lead from the TGN/EE to the lytic vacuole and also
identified machinery crucial for this endosomal pathway. In the following paragraphs,
our findings will be incorporated into a revised model for plant vacuolar trafficking that
is schematically depicted in Figure 2.
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Figure 2. Revised model of the vacuolar transport processes in the plant endomembrane system. Vacuolar
sorting of PM proteins is triggered by ubiquitination, which causes endocytosis in CCVs and delivery to the TGN/EE.
There, the ESCRT complexes I-1ll bind the ubiquitinated cargo and initiate sorting into intraluminal vesicles. ESCRT-
| also localizes to the Golgi, where it may sort membrane proteins of the biosynthetic pathway for degradation. At
the TGN/EE, ESCRT activity is necessary for the maturation of MVBs/LEs from a TGN/EE subdomain. The budding
MVBs/LEs are finally pinched off by annexin-driven membrane fission. Mature MVBs/LEs are non-persistent trans-
port carriers that fuse with the vacuole to deliver their cargo. Part of this cargo consists of soluble vacuolar proteins
from the biosynthetic pathway. These are bound by VSRs in the ER, as the conditions (neutral pH, high Ca?* conc.)
favor interactions. The VSR-ligand complexes are exported (putatively in COPII vesicles) and delivered to the Golgi.
While in transit through the Golgi, VSRs and ligands remain in complex until arriving at the TGN/EE where conditions
(acidic pH, low Ca?* conc.) trigger ligand release. The discharged VSRs are packaged in retromer-coated carriers
for recycling to the Golgi or the ER. The released vacuolar proteins passively enter nascent MVBs/LEs and reach
the vacuole by default. Further (non-vacuolar) transport events at the TGN/EE include secretion and recycling of
PM proteins via SVs and CCVs, respectively. (Adapted and modified from Kiinzl et al., submitted manuscript)

Upon being synthesized in the ER, soluble vacuolar cargo is recognized by VSRs,
as the present conditions (i.e. high Ca?* conc., neutral pH) favor interactions. The VSR-
ligand complexes leave the ER in COPII-coated vesicles together with secretory cargo
and are delivered to the cis-cisterna of a Golgi stack. While in transit through the stack,
the VSRs remain in complex with the ligands until they arrive at the TGN/EE, putatively
by maturation of the frans-most Golgi cisterna (Kang et al., 2011). In the TGN/EE, the
lower Ca?* concentrations and an acidifying V-ATPase provide the conditions for ligand
release, whereupon the discharged VSRs are sequestered and packaged in retromer-
coated carriers for recycling. The target compartment for VSR recycling is still unknown
and could be the Golgi, the ER, or also both. Remarkably, inhibition of retromer function
either by expression of mutant sorting nexins or gene knockdown was shown to inhibit
the ER export of newly synthesized VSRs together with cargo ligands, while the COPII-
mediated export of secretory cargo was unaffected (Niemes et al., 2010a). Retromer-
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mediated recycling apparently exhibits a specific feedback control on the ER export of
VSR-ligand complexes comparable to that observed for the COPI-/COPII-mediated
pathways in bidirectional ER-Golgi trafficking (Stefano et al., 2006). Thus, it is plausible
to assume that VSRs are finally recycled back to the ER, with the Golgi stack possibly
being a way station on the route. Moreover, the VSR-specific ER export block caused
by retromer inhibition has been considered an indication of a COPII-independent ER-
export mechanism for VSR-ligand complexes (Niemes et al., 2010a), albeit underlying
mechanisms remain unclear.

Vacuolar sorting of proteins from the PM is triggered by ubiquitination, which causes
internalization via clathrin-coated vesicles and delivery of the ubiquitin-tagged proteins
to the TGN/EE. Here, the complexes of the ESCRT machinery bind and sequester the
ubiquitinated cargo and initiate sorting into intraluminal vesicles. Notably, the ESCRT-
| complex is also localizing to the Golgi, where it may bind to membrane proteins of the
biosynthetic pathway that are destined for vacuolar degradation. This is supported by
the observation that a ubiquitin-tagged Golgi marker is sorted in the endosomal route,
with ESCRT functionality being a prerequisite for its vacuolar delivery. At the TGN/EE,
the joint activity of the three ESCRT complexes is necessary for the formation of the
MVB/LE, which matures from a TGN/EE subdomain via budding. The nascent MVB/LE
is finally pinched off from the TGN/EE by annexin-driven membrane fission, giving rise
to an independent compartment. Mature MVBs/LEs act as vacuolar transport carriers
that are consumed by fusion with the tonoplast to deliver their cargo. Part of this cargo
consists of the soluble proteins that have been transported by VSRs from the early
secretory pathway. Once released from the receptors in the TGN/EE, the soluble cargo
becomes passively incorporated into the nascent MVBs/LEs and reaches the vacuole
by default. This notion is supported by our findings showing that endocytosed soluble
proteins lacking any sorting information whatsoever arrive at the vacuole after being
internalized into the TGN/EE.

The suggested model may explain how vacuolar transport of both biosynthetic and
endocytic cargo converge in the TGN/EE before jointly proceeding to the vacuole. Still,
transport steps other than MVB/LE maturation and retromer-mediated VSR recycling
occur at the TGN/EE which need to be included. Recycling of internalized PM proteins
can be explained by the existence of TGN/EE-derived CCVs, which probably sort the
constitutively cycling PM receptors and transporters, rather than delivering VSR-ligand

complexes to a prevacuolar MVB/LE as suggested originally. Yet, it is possible that
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7. Results and Discussion

more than one type of CCVs is formed at the TGN/EE: beside the AP1 complex that
evidently localizes to the TGN/EE (Teh et al., 2013) and is the prime candidate to
assemble CCVs for recycling membrane proteins to the PM (discussed by Robinson
and Pimpl, 2014a), AP3 complexes have been speculated to localize at least partially
to the TGN/EE (Lee et al., 2007). More recent findings however argue for an AP3-
mediated sorting step at the Golgi, as the tonoplast sucrose transporter SUC4 specifi-
cally accumulated in the cis-Golgi if the AP3 B-subunit was knocked out (Wolfenstetter
et al., 2012). The same B-subunit was shown to localize to the periphery of FM4-64-
labeled BFA compartments, which also suggests a localization at the Golgi rather than
at the TGN/EE (Feraru et al., 2010). Hence, AP3 might facilitate vacuolar transport of
certain tonoplast-localized proteins in a pathway that bypasses endosomal compart-
ments, being delivered directly from the Golgi as by analogy to AP3-mediated traffick-
ing in yeast (Dell'Angelica, 2009).

Moreover, secretory cargo is thought to pass the TGN/EE before reaching the PM
(Viotti et al., 2010). A point in favor of this idea is the occurrence of secretory vesicles
at the TGN/EE that contain complex polysaccharides of the cell wall (Kang et al., 2011).
If the suggested secretory bulk flow of soluble proteins (Phillipson et al., 2001) includes
the TGN/EE, then it is difficult to reconcile how soluble vacuolar cargo is prevented
from being secreted once it was released from the VSRs in the TGN/EE. An explana-
tion for this apparent discrepancy may be given by the observation that the TGN/EE
exists in two different types: a Golgi-associated or ‘early’ TGN/EE, and a Golgi-inde-
pendent or ‘late’ TGN/EE (Kang et al., 2011; Uemura et al., 2014). It has been noticed
that the Golgi-associated ‘early’ TGNs/EEs are rich in budding secretory vesicles but
not in clathrin-coated vesicles, which often arise only on more mature (‘late’) TGNs/
EEs (Kang et al., 2011). These ‘late’ TGNs/EEs are however predominantly labeled by
the a1-subunit of the endosomal V-ATPase (VHA-a1-GFP), which is less frequently
found at the ‘early’ TGN/EE (Kang et al., 2011). It is thus tempting to speculate that
‘early’ TGNs/EEs mainly fulfill secretory functions and still maintain VSR-ligand inter-
actions, until they mature into ‘late’ TGNs/EEs that mainly receive endocytic cargo and
become increasingly acidified by the V-ATPase, which finally triggers the release of
the vacuolar cargo ligands. Certainly, further experimental work will be necessary to
fully unravel the complex sorting events that take place at the TGN/EE, but with the
current knowledge and the molecular tools and markers at hand, we will probably soon

gain a better understanding of the post-Golgi trafficking in plants.
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SYNOPSIS

We have examined the origin and fate of multivesicular bodies/late endosomes
(MVBI/LE). We have traced their formation back to the trans-Golgi network/early
endosome (TGN/EE) and show that their maturation into MVBs requires V-ATPase
activity and ESCRT for the formation of the intraluminal vesicles, and annexins for
the release of MVBs from the TGN as transport carriers that fuse with the vacuole.

ABSTRACT

The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory
and endocytic trafficking with complex molecular mechanisms controlling sorting and
transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late
endosomes (MVBSs/LES) is assumed to occur via clathrin-coated vesicles (CCVs);
here, we present evidence that post-TGN transport towards lytic vacuoles occurs
independently of clathrin and that MVBSs/LEs are derived from the TGN/EE through
maturation. We show that the V-ATPase-inhibitor concanamycin A significantly
reduces the number of MVBs and causes TGN- and MVB-markers to colocalize in
Arabidopsis roots. Ultrastructural analysis reveals the formation of MVBs from the
TGN/EE and their fusion with the vacuole. The localization of the ESCRT-
components VPS28, VPS22 and VPS2 at the TGN/EE and MVBSs/LEs indicates that
the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a
dominant-negative mutant of VPS2 causes TGN- and MVB-markers to colocalize and
blocks vacuolar transport. RNAi-mediated knock-down of the annexin ANNAT3 also
yields the same phenotype. Together, these data indicate that MVBs originate from
the TGN/EE via maturation that requires the action of ESCRT for the formation of
intraluminal vesicles and annexins for the final step of releasing MVBs as a transport
carrier to the vacuole.

INTRODUCTION

The endomembrane system of eukaryotic cells provides the spatial and temporal
separation required for the sequence of steps involved in protein trafficking. The flux
of membranes and cargo through the post-Golgi compartments is enormous and,
although substantial progress has been made in the identification of the different
endosomal compartments in plants, we know very little about their biogenesis and
their highly dynamic spatio-temporal relationships. In mammalian cells endocytic
cargo proteins are first delivered to early endosomes (EE) (van Meel and
Klumperman, 2008; Jovic et al., 2010), compartments that typically have two
structurally distinct domains: a central more-or-less spherical structure with a few 50
nm diameter intraluminal vesicles (ILV), and an extensive network of tubules
projecting outwardly into the cytoplasm (Griffiths and Gruenberg, 1991; Tooze and
Hollinshead, 1991). The tubular extensions of the EE bear clathrin-coated buds
(Stoorvogel et al., 1996), which are positive for the two adaptor complexes AP-1 and
AP-3 (Peden et al., 2004). The small (sorting nexins 1 and 2) and large subunits of
retromer are also present on these tubules (Carlton et al., 2005; Mari et al., 2008).
According to Mari et al. (2008), EE in mammalian cells are defined as compartments
accessible to internalized transferrin, and have 1-8 ILV. By contrast, the LE is more
or less spherical, contains at least 9 ILV and is devoid of transferrin.

Endocytosed cargo destined for degradation becomes ubiquitinated at the PM, and
this signal causes them to be sorted into the ILV (Polo et al., 2002). This step, which
effectively segregates ligand-receptor complexes from the cytoplasm, is critical for



the cessation of signaling cascades which continue even after internalization of the
receptor-ligand complex (Taub et al., 2007). Sorting into the ILV involves recognition
of the ubiquitin tag by the first of four ESCRT complexes which associate with the
surface of the endosomal membrane. ESCRT-0 associates with the membrane of the
endosome through an interaction of the FYVE (named after the four cysteine-rich
proteins: Fabl, YOTB, Vacl and EEA1) domain of HRS (hepatocyte growth factor
regulated Tyr-kinase substrate) with PIsP (phosphatidylinositol 3-phosphate). It
sequesters ubiquitinated cargo molecules into double-layered clathrin microdomains
(Clague, 2002). These domains are visible at the surface of both EE and LE (Sachse
et al., 2002; Murk et al., 2003). ESCRT-I and —II complexes then deform the limiting
membrane into inwardly directed buds, and recruit the ESCRT-0 + attached
ubiquitinated cargo into the necks of the buds. ESCRT-III, in collaboration with a
deubiquitinating enzyme (Doa4) then releases the ubiquitin and causes a scission of
the buds (Wollert and Hurley, 2010). Finally, the activity of an AAA-ATPase (Vps4)
leads to dissociation of the ESCRT-complexes. Delivery of the ILV to the lysosome
interior then occurs by fusion of the LE with the lysosome (Luzio et al., 2009).

In mammalian cells it is generally regarded that the movement of molecules along the
biosynthetic-endocytic pathways to the lysosome is accompanied by a maturation of
endosomal organelles. Many of the key factors in this process have now been
identified. In addition to the ESCRT complexes, both COPI (Aniento et al., 1996;
Gabriely et al., 2007; Razi et al., 2009) and annexin A2 are specifically required
(Mayran et al., 2003; Futter and White, 2007; Morel and Gruenberg, 2009). Also
critical for the transition EE to LE are the proteins SAND-1/Monl, which appear to be
responsible for the exchange of Rab GTPases, from Rab5 (EE) to Rab 7 (LE)
(Poteryaev et al., 2010).

The organelles of the plant endocytic pathway have both similarities and differences
to those present in mammalian cells. Perhaps the greatest similarity lies in the
morphology of the LE, occasionally termed the pre-vacuolar compartment in the plant
literature (Lam et al., 2007; Miao et al., 2008). This is spherical, contains ILV, and
also bears a plaque on its surface and is often named a multivesicular body (MVB)
(Tse et al., 2004; Otegui and Spitzer, 2008; Viotti et al., 2010). However, unlike the
situation in animal cells, several studies have shown that higher plants do not have
separate TGN and EE compartments (Dettmer et al., 2006; Lam et al., 2007,
Reichardt et al., 2007; Otegui and Spitzer, 2008; Robinson et al., 2008; Toyooka et
al., 2009; Viotti et al., 2010). The TGN in plants appears to be synonymous with the
“partially coated reticulum” (Pesacreta and Lucas, 1984; Hillmer et al., 1988; Tanchak
et al., 1988), and is a tubular/vesicular structure bearing CCVs (Kang and Staehelin,
2008; Toyooka et al., 2009). The recent demonstration that plant retromer is present
at the TGN rather than the MVB (Niemes et al., 2010b), is therefore in agreement
with the location of this recycling coat complex to the tubular extensions of the EE in
mammalian cells. Thus, at the morphological level, the higher plant TGN shares
many features with the mammalian EE.

Based on studies with the brassinosteroid receptor BRI1, it has been established that
plants also show endosomal-based signaling which appears to cease when the
receptor reaches the LE (Geldner et al., 2007). Plants also possess ESCRT proteins
(Winter and Hauser, 2006; Schellmann and Pimpl, 2009, Shahriari et al., 2011), but
there are no clear homologs to the ESCRT-0 complex (Leung et al., 2008), and the
exact location of the other complexes is unclear. Nevertheless, several studies with
mutated ESCRT proteins point to their presence at least at the LE. Expression of a



mutant form of Vps4 (SKD1) leads to the missorting of vacuolar proteins (Shahriari et
al., 2010), as well as to an enlargement of MVBs with fewer ILV (Haas et al., 2007). A
reduction in number of ILV and a displacement of cargo molecules destined for
vacuolar degradation to the boundary membrane of the MVB was also observed after
expression of mutated forms of the ESCRT-related CHMP1A /B proteins (Spitzer et
al., 2009).

In this paper we present evidence that in plants the MVB/LE is derived from the
TGN/EE through a process of maturation and finally mediates vacuolar delivery by
fusing with the tonoplast. Proceeding from our previous observation that vacuolar
sorting receptors (VSRs) recycle from the TGN and thus do not contribute to post-
TGN transport of soluble vacuolar proteins (Niemes et al., 2010a), we now show that
inhibition of clathrin-mediated transport does not prevent the arrival of soluble cargo
molecules, carrying vacuolar sorting determinants, in the vacuole. This raises
guestions about the mechanism of TGN to MVB/LE transport. Based on the
observation that the V-ATPase inhibitor concanamycin A (ConcA) causes the
incorporation of TGN proteins into the Golgi stack in Arabidopsis root cells (Viotti et
al., 2010), we now show that this treatment also leads to a drastic reduction in MVBs.
We have been able to capture the moment of MVB formation at the TGN, an event
that can also be observed during the recovery of the Golgi apparatus upon ConcA
washout. This data is supported by a series of experiments in which the separation of
signals for fluorescent TGN and MVB marker proteins was prevented by ConcA and
a dominant-negative mutant of ESCRT-IIl as well as the knockdown of an
Arabidopsis annexin ANNAT3. Moreover, we show that ESCRT-I, -Il and —Ill show a
differential distribution between TGN and MVB and that ESCRT-III is required for
vacuolar transport.

RESULTS

GFP-Hubl inhibits endocytosis but not transport to the lytic vacuole

We wanted to investigate whether CCVs contribute to the delivery of soluble cargo
molecules to the vacuole. The expression of the C-terminal third of the clathrin heavy
chain — also known as the clathrin hub — inhibits CCV formation and thus clathrin-
mediated transport events (Liu et al., 1995; Liu et al., 1998; Dhonukshe et al., 2007).
It was recently shown that expression of a fluorescently tagged clathrin Hub (GFP-
Hubl) in Arabidopsis protoplasts inhibits the endocytic uptake of the amphiphilic
styryl dye FM4-64 (Dhonukshe et al.,, 2007). We have now utilized this inhibitory
effect on FM4-64 uptake as a positive control for the inhibition of clathrin-mediated
trafficking. In control protoplasts, the dye stained the PM instantly after addition
(Figure 1A) and internalized signals were detectable 30 min later (Figure 1B). When
GFP-Hubl was expressed, an inhibition of FM4-64 uptake was observed (Figure 1C).
To quantify this effect we have counted and compared the number of internal FM4-64
signals in protoplasts in the presence and absence of GFP-Hubl. For this, 20
protoplasts showing an observable amount of cytoplasm were considered. In control
protoplasts the number of internal FM4-64 signals was 37+12, but the number of
signals in protoplasts expressing GFP-Hubl dropped to 7+3 (Figure 1D). To test
whether clathrin is required for transport to the lytic vacuole, we carried out
coexpression experiments of GFP-Hubl with the soluble, vacuolar reporter spRFP-
AFVY (Hunter et al., 2007). This reporter is efficiently transported to the vacuole,



even if coexpressed with fluorescent cytosolic proteins (cytGFP, Figure 1E). The
expression of GFP-Hub1 does not change the intensity of the vacuolar signal pattern
of spRFP-AFVY (Figure 1F), indicating that the reporter still reaches the lumen of the
vacuole under these conditions.

V-ATPase activity is required for MVB biogenesis

To examine the function of the TGN for vacuolar transport, we have analyzed the
effect of the V-ATPase inhibitor ConcA. Transmission electron microscopy (TEM)
analysis revealed that the number of MVBs decreased significantly upon ConcA
treatment. In one hundred sectioned cells, the number of MVBs is 220+30, whereas it
is ca. 5 fold lower (40+£15) after ConcA treatment (Figure 2A). We have shown
previously that ConcA leads to morphological changes of both the Golgi apparatus
and the TGN and causes intrinsic TGN-membrane proteins to locate to the Golgi
stack (Viotti et al., 2010). We thus decided to investigate the behavior of MVB-
markers upon ConcA treatment using immunogold electron microscopy. In
Arabidopsis roots the endogenous VSR BP80 localizes to both the TGN and the MVB
(Figure 2C), (Niemes et al., 2010b; Stierhof and El Kasmi, 2010; Viotti et al., 2010),
while upon ConcA treatment BP80 locates mainly to the Golgi stack (Figures 2B, 2D
and 2E). The same result was obtained with the Rab GTPase ARA7 which in
untreated cells is localized on the limiting membrane of MVBs (Figure 2F) (Haas et
al., 2007; Robinson et al., 2008), while it locates to the Golgi stack in ConcA treated
cells (Figures 2B and 2G). Interestingly, both BP80 and ARA7 are still detectable to
the limiting membrane of the remaining MVBs after ConcA treatment (Figures 2E and
2G). These data have been confirmed by confocal laser scanning microscopy
(CLSM) analysis of transgenic Arabidopsis seedlings expressing the TGN-marker
VHA-al-GFP and the MVB-marker mRFP-ARAY. In order to quantify colocalization
results, we have calculated the linear Pearson (rp) and the non-linear Spearman’s
rank (rs) correlation coefficient (PSC) for the pixels representing the fluorescence
signals in both channels. Levels of colocalization can range from +1 for positive
correlation to -1 for negative correlation (French et al., 2008). The fluorescence
values of pixels across the two channels were additionally depicted in an intensity
scatter plot. In untreated cells the VHA-al-GFP and mRFP-ARA7 signals were
mostly separate (Supplemental Figure 1A and 1B online; r,=0.22 and rs=0.19), but
colocalization increased upon 30 min ConcA treatment (Supplemental Figure 1C and
1D online, r,=0.45 and rs=0.43).

Together, these findings show that V-ATPase activity is required not only for the
functionality of the TGN but also for the occurrence of MVBs.

Inhibition of TGN function by ConcA inhibits protein export from the TGN but also
reduces the overall number of MVBs per cell. This suggests that MVBs that once
existed can disappear if the vacuolar transport route is perturbed at this step. One
explanation for this could be that they are consumed in the process of vacuolar
transport by fusion with the vacuole. The analysis of untreated high pressure frozen
Arabidopsis root cells confirmed that MVBs indeed fuse with the tonoplast to deliver
their content into the vacuolar lumen (Figure 3A to 3D).

We then used TEM to investigate the origin of MVBs. Mature MVBs have an almost
spherical shape (Figures 4A and 4B). TEM analysis of high pressure frozen
Arabidopsis root cells revealed nascent MVBs still being connected to tubular
structures, indicating their TGN-based biogenesis (Figures 4C and 4D). However,
after ConcA-treatment followed by a short recovery period in the absence of the



inhibitor, we detected multiple examples of MVBs of unusual size and form, often with
bottleneck terminations indicating that they are still connected to tubular structures of
the TGN (Figures 4E to 4H). A clear connection between nascent MVBs and TGN-
like structures is shown in Figures 41 and 4K. Finally, we tested the identity of these
multivesiculated compartments with IEM of mRFP-ARA7 in ConcA-treated cells.
Indeed, we were able to detect ARA7 to the limiting membrane of MVBs displaying
bottleneck terminations (Figure 4K).

The ESCRT-components VPS28, VPS22 and VPS2 are differentially distributed
between the TGN/EE and the MVB/LE

If MVBs are indeed derived from the TGN/EE via maturation, it has to be assumed
that the ESCRT-mediated formation of ILVs starts already at the TGN/EE. Therefore,
we examined the subcellular distribution of the ESCRT machinery.

We generated antibodies against VPS28-1 (one of the two Arabidopsis VPS28
isoforms, hereafter referred to as VPS28), a subunit of ESCRT-I, the potentially
initiating complex in plants. To determine the specificity of the antiserum we
performed immunoblot analysis on total extracts from 7 day old Arabidopsis plants
and expressed a fluorescent fusion of VPS28 (VPS28-GFP) in protoplasts derived
from suspension cultivated Arabidopsis cells. The antibody recognizes an
endogenous protein in the total extracts, which correlates well with the calculated
MW of 23.5 kDa for VPS28, and an about 50 kDa protein, representing VPS28-GFP
(Figure 5A). Immunogold electron microscopy of the endogenous VPS28 using high-
pressure frozen and freeze-substituted roots from Arabidopsis revealed a specific
labeling of the TGN and the Golgi, but not the MVB (Figure 5B, 5C and 5D for
guantitative analysis). The unexpected TGN localization of VPS28 was confirmed by
immuno colocalization in an Arabidopsis line, expressing a TGN marker (SYP61-
CFP) under the control of the endogenous promoter (Figure 5E) and the detection of
VPS28 in the core of the BFA compartment in root cells of wild-type Arabidopsis
plants (Figure 5F).

To determine the localization of other putative ESCRT complexes, we analyzed
VPS22, representing ESCRT-Il and VPS2.1 (one of the three Arabidopsis VPS2
isoforms, hereafter referred to as VPS2), representing ESCRT-IIl, in coexpression
studies with marker proteins for different compartments in tobacco protoplasts.
Coexpression of VPS22-GFP with the TGN/EE marker YFP-SYP61 reveals
significantly higher values of the PSC coefficients than for VPS22-GFP coexpressed
with the MVB/LE marker mRFP-VSR2 (Figures 6A to 6C and Supplemental Figures
2A to 2D online), indicating that the ESCRT-II component mainly localizes to the
TGN/EE. In contrast, the values of the PSC coefficients of VPS2-GFP and YFP-
SYP61 are lower than for VPS2-GFP coexpressed with the MVB/LE marker mRFP-
VSR2 (Figures 6D to 6F and Supplemental Figures 2E to 2H online).

Both VPS22-GFP and VPS2-GFP, when coexpressed with the Golgi marker Man1-
RFP, have very low or even negative rp and rs values (Supplemental Figures 3A to 3F
online). Immunolabeling using VPS2 antibodies also confirmed that endogenous
VPS2 is not present at the Golgi stack but partially localizes to the MVB/LE
(Supplemental Figures 3J to 3L online). In agreement with the differential distribution
of VPS22-GFP and VPS2-GFP, coexpression of these two ESCRT-components
resulted in PSC coefficients of r,=0.61 and rs=0.20 (Figures 6G and 6l, Supplemental
Figures 21 and 2J online). Treatment with wortmannin (WM) showed that only VPS2-
RFP signals, but not VPS22-GFP signals were sensitive to WM, judged by the



appearance of typical ring-like structures (magnified insert, Figure 6G). The number
of VPS2-RFP signals exceeded that of VPS22-GFP (21.5+5.5 for VPS2-RFP and
12.2+3.4 for VPS22-GFP, Figure 6H). It is therefore likely that VPS22-GFP and
VPS2-RFP colocalize at the TGN/EE but not at the MVB/LE. However, due to the
cytosolic nature and the resulting background of the analyzed fluorescent ESCRT
proteins, all of the r, and rs values are relatively low. Even if fusions of VPS2 with
different fluorescent proteins are coexpressed, the values for the PSC coefficients do
not exceed r,=0.66 and rs=0.44 (VPS2-GFP and VPS2-RFP, Supplemental Figure
3G and 3l online). These combined findings indicate that the ESCRT-II component
VPS22 and the ESCRT-III component VPS2 are gradually distributed along the
vacuolar route.

VPS2-DN and treatment with Concanamycin A prevents the arrival of soluble
reporter molecules in the vacuole

We next asked whether ESCRT function is required for vacuolar transport. To answer
this, we used a dominant-negative VPS2-mutant (VPS2-DN) which was generated by
deleting the C-Terminal MIT-interacting motif (MIM) responsible for the interaction
with SKD1 (Obita et al., 2007; Hurley and Yang, 2008). Vacuolar transport of the
reporter a—amylase-sporamin (amy-spo) was measured as the secretion index (SI)
given by the ratio of amy-spo detected in the culture medium and within the cells
(Pimpl et al., 2003). Coexpression of VPS2-DN caused dosage-dependent induced
secretion of amy-spo indicating that vacuolar transport was blocked (Figure 7A). A
comparable dosage-dependent misrouting of vacuolar cargo was also caused by
ConcA treatment (Figure 7B). In order to biochemically compare the effects of VPS2-
DN and ConcA we used protein gel blots and analyzed the processing of the soluble
cargo GFP-sporamin in the vacuole. Only a faint GFP-sporamin signal was detected
in the medium whereas two strong bands corresponding to GFP-sporamin and the
processed form of GFP (vacuolar form) were detectable in the cell fraction (Figure
7C). Treatment with 0.3 uM ConcA showed an increase of the signal detected in the
medium, and increasing concentrations of VPS2-DN also showed increasing signal
strength in the medium together with a loss of the vacuolar form of GFP in the cells
(Figure 7C).

VPS2-DN induces increased colocalization of TGN/EE and MVB/LE markers

Since VPS2-DN affects vacuolar transport, we analyzed its effects on the localization
of YFP-SYP61 and mRFP-VSR2 as markers for the TGN/EE and the MVB/LE.
During transient expression in protoplasts, fluorescent signals of both markers first
became detectable 6h after transfection. At this early time point, both markers mainly
colocalized but the signals of the markers separate steadily over time (Supplemental
Figure 4A to 4C online), until they reach their typical distribution (Figure 8A,
Supplemental Figures 5A and 5B online).

To observe the spatio-temporal effect of VPS2-DN on the distribution of the MVB/LE
marker mRFP-VSR2 and the TGN/EE marker YFP-SYP61, we have analyzed
different time points post transfection. After 14 h coexpression, VPS2-DN causes
enlargement of the YFP-SYP61 signals but TGN/EE and MVB/LE markers were still
found to be separate (Figure 8B). However, 18 h after transfection, mMRFP-VSR2 was
mainly found to localize to the enlarged structures of the TGN (Figures 8C and 8D,



Supplemental Figures 5C and 5D online). Comparable effects were observed when
VPS2-DN was coexpressed with YFP-SYP61 and the MVB/LE markers mRFP-ARA7
(Figures 8E to 8H, Supplemental Figures 5E to 5H) or ARA6-mRFP (Figures 8l to 8L,
Supplemental Figures 51 to 5L online). The effect of VPS2-DN expression on YFP-
SYP61 and ARA6-mRFP distribution resulted in the highest observed r, and rs
values, leaving almost no signals uncorrelated (Figure 8L and Supplemental Figure
5L online; for comparison of all values see Supplemental Figure 5M online). This
temporal progression shows that VPS2-DN affects the TGN/EE first and suggests
that the accumulation of the MVB/LE marker in the enlarged TGN/EE is due to
perturbed MVB/LE maturation.

To demonstrate that the observed effects are specific for an inhibition of MVB
maturation, we used an RNAi-based knock-down of the retromer-component sorting
nexin 2a (RNAI-SNX2a). It was recently shown that RNAi-based SNX knock-down
results in a change of VSR2 localization but does not affect vacuolar transport
(Niemes et al., 2010a). In accordance with this, we could detect changes in the
distribution of YFP-SYP61 and mRFP-VSR2 resulting in a four-fold increase of the r,
and rs values (Supplemental Figures 6A to 6D online). Moreover, no VPS2-DN-like
effect was observed when RNAI-SNX2a was coexpressed with other markers for the
MVB/LE. The distribution of YFP-SYP61 and mRFP-ARA7 (Supplemental Figures 6E
to 6H online) and YFP-SYP61 and ARA6-mRFP (Supplemental Figures 61 to 6L
online) remain unaltered when coexpressed with RNAi-SNX2a (for comparison the
values for all PSC coefficients are shown in Supplemental Figure 6M).

ConcA treatment and RNAi-mediated knockdown of the annexin ANNAT3 both
causes increased colocalization of TGN/EE and MVB/LE markers

In mammals it has been shown that Annexin A2, a calcium-dependent phospholipid-
binding protein, is involved in the last step of endosomal maturation in which the MVB
is pinched off and released from the early endosome (Mayran et al., 2003). Therefore
we investigated if members of the plant annexin family might serve a similar function.
The Arabidopsis genome encodes eight annexins (ANNAT1-8) and based on
phylogenetic analysis ANNAT3, 4, 5 and 8 are more closely related to human
annexins. However, ANNAT5 and 8 are only expressed during pollen and embryo
development and were thus excluded from further analysis (Supplemental Figures 7A
and 7B online). The potential function of ANNAT3 in MVB maturation was analyzed
by RNA interference in protoplasts expressing YFP-SYP61 as TGN/EE and mRFP-
VSR2 as MVB/LE markers. Coexpression of both markers with RNAI-ANNATS3
increases the values of the PSC coefficients from r,=0.14 and rs=-0.09 to r,=0.51 and
rs==0.28 (compare Figures 9A to 9C with 9G to 9lI), as a result of the reduced
transcript level of the endogenous annexin (Supplemental Figure 7C) online). ConcA
treatment also results in increased values of the PSC coefficients (Figures 9D to 9F)
which is in agreement with the observed effect of ConcA on the TGN/MVB marker
distribution in stably transformed plants (Supplemental Figure 1 online).



DISCUSSION

V-ATPase activity and TGN integrity are required for vacuolar transport and
MVB formation

Binding of the vacuolar-sorting receptor BP80 to an affinity column using the vacuolar
sorting motif NPIR from barley (Hordeum vulgare) proaleurain as bait occurred at
neutral pH and was abolished at acidic pH (Kirsch et al., 1994). Based on this finding
and the progressive acidification in the secretory and endocytic pathway of
mammalian cells (Mellman et al., 1986), it has been postulated that binding of
vacuolar cargo to VSRs takes place in the TGN whereas dissociation would take
place in the more acidic MVBs (Paris et al., 1997). However, it is important to note
that — at least to our knowledge — pH has neither been measured directly for the
TGN/EE nor the MVB/LE of plant cells. The finding that a high density of V-ATPase
complexes is found in the TGN/EE rather than at the MVB/LE (Dettmer et al., 2006)
suggests that the TGN is an acidic compartment making it unfavorable for the binding
of vacuolar cargo to VSRs. A more appropriate upstream location for receptor-ligand
interaction could be the ER, since vacuolar cargo is retained in the ER when the
luminal domain of VSRs is anchored to an ER membrane protein (Niemes et al.,
2010a). On the other hand, the relative lack of V-ATPase complexes in MVBJ/LEs
(Dettmer et al., 2006) does not necessarily mean that the pH in MVBs is any less
acidic than the TGN. If, as we postulate, the TGN/EE matures into the MVB/LE the
pH in the TGN, once established would not change during the maturation process.
Although a role for the V-PPase or a P-type H*-ATPase in the MVBs can at the
present not be excluded; several lines of evidence indicate that V-ATPase dependent
acidification is required for the structure and function of the TGN/EE. ConcA inhibits
the V-ATPase and blocks vacuolar transport (Matsuoka et al., 1997; Dettmer et al.,
2006). This treatment prevents the formation of the TGN/EE and causes the retention
of TGN/EE proteins into an enlarged Golgi stack (Dettmer et al., 2006; Viotti et al.,
2010). In contrast, V-ATPase proteins are not detectable in MVBs by immuno
staining either in the CLSM or the electron microscope, and the structure of MVBs
remains unchanged after ConcA treatment. However, the number of MVBs was
found to be drastically reduced after short-term inhibition of the V-ATPase. The
decreased number suggests that MVB/LEs are non-persistent transport carriers
which are continuously formed at the TGN/EE, and as the ultrastructural analysis
shows, are ultimately consumed through fusion with the vacuole. It also means that
V-ATPase activity at the TGN/EE is required for MVB/LE biogenesis.

As suggested by our ultrastructural analysis of TGN regeneration after ConcA wash-
out, MVB formation and separation from the TGN appears to be a rapid event, and
therefore difficult to capture under normal conditions. However, budding of MVBs
from tubular, putative TGN structures is not restricted to recovery from drug treatment
situations, but can also be seen under physiological conditions. This is in agreement
with earlier observations, that dilations of the partially coated reticulum (Pesacreta
and Lucas, 1984; Hillmer et al., 1988), contain intralumenal vesicles (Tanchak et al.,
1988). A recent electron tomographic analysis of the TGN (Kang et al., 2011) failed to
provide evidence for the formation of MVBs, although it was speculated that the
membrane fragments that arise as a result of TGN fragmentation “may become
precursors of MVBs”. According to Kang et al. (2011), the TGN dissociates from the
stack and disintegrates into 3 parts: smooth vesicles (SV), CCV and tubules, which
connected both putative carriers prior to fragmentation. The SV are considered to
carry secretory cargo but also recycle receptors to the PM; in contrast the CCV would



10

transport endocytosed PM receptors destined for degradation first to MVBs and then
to the vacuole. However, there are several problems with this model. First, it
excludes entirely a role for the TGN in the transport of anterograde cargo proteins to
the vacuole. Second, it goes against the well-established fact that in mammalian cells
PM receptors are recycled from the EE by CCV and not SV (Stoorvogel et al., 1996;
van Dam and Stoorvogel, 2002). Third, it does not take into account the dynamics of
the relationship between the TGN and the Golgi as previously observed by Viotti et
al. (2010) in a live cell imaging analysis.

MVB/LE maturation: An alternative model for transport towards the lytic
vacuole

According to current concepts, lytic enzymes are recognized by VSRs at the TGN
and become packaged into CCVs for anterograde transport to the MVB (Foresti et
al., 2010; Kim et al., 2010; Saint-Jean et al., 2010; Zouhar et al., 2010). This model is
based on analogy to mammalian cells, in which lysosomal acid hydrolases are
recognized in the TGN by mannosyl 6-phosphate receptors (MPRS), then
sequestered into CCVs and transported to the EE (Braulke and Bonifacino, 2009).
After ligand dissociation the MPRs are returned to the TGN with the help of sorting
nexins (SNXs) and retromer (Bonifacino and Hurley, 2008; Mari et al., 2008).
However, the EE of mammalian cells characteristically has extensive tubular
protrusions, many of which end in CCVs in which internalized PM receptors collect to
be recycled to the PM (van Meel and Klumperman, 2008). Thus, in mammalian cells,
CCVs are formed at both the TGN and the EE with different functions at each
compartment. Does the TGN/EE hybrid in plants have two different classes of CCVs?
A final decision on this cannot be taken at the present: not only do we lack evidence
for CCV-mediated transport to the PM from so-called recycling endosomes, but even
more importantly in this context, there is no unequivocal proof that TGN-derived
CCVs in plants carry VSRs. Indeed, the recent reports of VSRs at the PM (Saint-
Jean et al., 2010; Wang et al., 2011) suggests that the VSRs originally isolated from
fractions enriched in CCVs (Kirsch et al., 1994) may actually have been present in
endocytic CCVs. Our experiments with clathrin hub expression strengthen the notion
that anterograde traffic to the vacuole does not require the participation of CCVs, and
as a consequence occurs without the recycling of receptors from a post-TGN
compartment as recently proposed by Niemes et al. (2010a).

A widely-accepted feature of the mammalian endocytic pathway is that transport of
lysosomal acid hydrolases after entry into the EE is receptor-independent and occurs
by gradual maturation of the EE into the LE followed by fusion with the lysosome
(Piper and Katzmann, 2007; van Weering et al., 2010). The notion that a similar
maturation-based sorting process may take place in the plant endocytic pathway has
only recently been considered by plant scientists (Niemes et al., 2010b), and the data
presented here indicates that the mechanism and the molecular machinery involved
in endosomal maturation might be conserved between animals and plants.

Molecules involved in MVB-maturation: Rabs, ESCRT and Annexins

In mammalian cells, maturation of LE from EE is triggered by a Rab-conversion
mechanism in which the EE-localized Rab5 is replaced by SAND-1/Mon1, which in
turn recruits Rab7, resulting in a Rab7 positive LE (Rink et al., 2005; Poteryaev et al.,
2010). Whether a comparable mechanism also functions in plants is a matter for
speculation. Plant MVB/LE posses the Rab5 type GTPases ARA6/7 (Haas et al.,
2007), while Rabl11l type class A/B Rabs are found at the TGN/EE (Chow et al.,



11

2008). However, a protein with similarity to the Rab exchange protein SAND-1/Monl
is encoded in the Arabidopsis genome and its functional analysis will hopefully reveal
if a similar mechanism is indeed operational in plants. Nevertheless, when MVB
maturation is blocked, an MVB/LE marker should become detectable at the TGN/EE,
and this does indeed occur. We have shown that the ConcA-induced inhibition of
protein transport at the TGN (Dettmer et al., 2006; Viotti et al., 2010) markedly shifts
the steady-state distribution of the predominantly MVB/LE-localized proteins mRFP-
ARA7 and ARA6-mRFP towards the TGN/EE.

The characteristic internal vesicles of MVBs originate as a result of ESCRT-mediated
vesicle budding from the limiting membrane into the lumen of endosomes (Hurley
and Hanson, 2010). In this process, ESCRT-O0 clusters cargo, ESCRT-I and -Il induce
the formation of buds and sequester cargo into them, and ESCRT-III finally mediates
vesicle fission (Hurley and Hanson, 2010; Wollert and Hurley, 2010). Our EM data,
showing the formation of MVB/LE at the TGN/EE, suggests that the ESCRT
machinery might already act at this early developmental stage. To test for this, we
have ultrastructurally analyzed the localization of VPS28 in high pressure frozen
Arabidopsis root cells This ESCRT-I component localizes to the Golgi and the
TGN/EE but not to the MVBJ/LE, demonstrating that ESCRT-mediated sorting and
thus the formation of ILVs is not restricted to the MVB/LE.

We have furthermore analyzed tobacco protoplasts, transiently coexpressing the
fluorescently-tagged ESCRT-Il or -lll subunits VPS22-GFP or VPS2-GFP with
fluorescent markers for the TGN/EE and MVB/LE. The majority of fluorescent signals
of VPS22-GFP colocalized with the TGN/EE marker, while colocalization with the
MVB/LE marker was low. In contrast, VPS2-GFP signals were found to colocalize
mainly with the MVB/LE marker, but occasionally also with the TGN marker.
However, almost all ESCRT-Il VPS22 signals colocalized with the ESCRT-IIl VPS2,
supporting the participation of ESCRT in the early development of MVB/LE. The
reason for this differential distribution of ESCRT subunits could be explained by
different requirements for their release from membranes. This has indeed been
shown for yeast ESCRTs, where the disassembly of ESCRT-III, but not of earlier
ESCRTSs, is strictly dependent on the AAA ATPase Vps4 (Nickerson et al., 2010).
SKD1, the Arabidopsis homolog of Vps4, localizes to MVB/LE (Haas et al., 2007) and
interacts with ESCR-IIl and ESCRT-associated proteins, but not with ESCRT-I or -l
subunits (Spitzer et al., 2009; Shahriari et al., 2010). Therefore, the localization of the
ESCRT-III subunit VPS2 at the MVB/LE is in agreement with the localization of the
ESCRT-associated AAA ATPase.

To understand better the role of the ESCRT machinery for the transport of vacuolar
cargo between the TGN/EE and the MVB/LE, we have generated a VPS2-mutant
(VPS2-DN). Expression of this mutant in tobacco protoplasts blocks transport of the
soluble vacuolar reporter molecules amy-spo or GFP-spo in a dose-dependent
manner. This effect is comparable to that of an ATP hydrolysis-deficient mutant of
SKD1 (Shabhriari et al., 2010). Coexpression of the mutant with the TGN/EE marker
YFP-SYP61 and the MVB/LE cargo mRFP-VSR2 yielded their colocalization in large
structures, indicating that protein transport from the TGN/EE to the MVBI/LE is
blocked. Interestingly, the loss of Class E vps (vacuolar protein sorting) genes
(Raymond et al., 1992), all of which encode for ESCRT and ESCRT-related proteins
(Katzmann et al., 2001; Babst et al.,, 2002a; Babst et al., 2002b; Bilodeau et al.,
2002), results in the formation of exaggerated prevacuolar organelles, termed class E
compartment (Raymond et al., 1992). In mammalian cells, these compartments are
of early endosomal origin, accumulate EE marker, endocytosed receptors and
lysosomal proteins (Yoshimori et al., 2000; Doyotte et al., 2005) and have therefore
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been referred to as multicisternal early endosomes (Doyotte et al., 2005).

VSR-based MVB/LE cargo molecules accumulate at the TGN/EE, when retromer-
mediated recycling is perturbed after RNAi knockdown of the sorting nexin SNX2a
(Niemes et al., 2010b). However, in this situation vacuolar transport via the MVB/LE
is not blocked. Therefore, we considered it necessary to determine whether the
VPS2-DN induced transport inhibition between TGN and MVB/LE was indeed due to
a block in the transport route, rather than to an interaction between mRFP-VSR2 and
the ESCRT machinery. Coexpression of VPS2-DN with the MVB/LE markers ARAG6-
mRFP or mRFP-ARA7, which are recruited from the cytosol onto their target
membranes, also resulted in their colocalization with the TGN/EE marker in enlarged
structures, suggesting inhibited maturation of the MVB/LE. Similar effects were seen
during RNAi-induced knockdown of the annexins ANNAT3. In mammalian cells,
annexin Il has been shown to be required for the fission of MVBs from the EE in a
process downstream of the ESCRT-mediated budding of intralumenal vesicles
(Mayran et al.,, 2003). This process requires the Annexin A2-dependent
polymerization of actin (Morel and Gruenberg, 2009). On the basis of our EM data,
showing MVB/LE containing bottleneck structures after ConcA washout, it is tempting
to speculate that such structures might be a target for annexin action. However, the
function of plant annexins with respect to the modulation of membrane dynamics
remains to be established (Laohavisit and Davies, 2011).

In the past, post-Golgi protein trafficking to the vacuole in plants has been considered
to occur through vesicles moving between stable compartments: the TGN/EE and the
MVBJ/LE. Although a fusion of the MVB/LE with the vacuole has been previously
discussed, the consequence of this event, i.e. the replenishment of the MVB/LE
population has not been addressed. Here, we have provided evidence pointing to a
continual non-vesicular flux of membrane from the TGN to the MVB. Thus, when the
structure and integrity of the TGN is perturbed, MVB formation is inhibited. As in
mammals, the endosomal system of plants is not a static set of clearly separable
structures but characterized by the dynamic generation and consumption of
membrane compartments that are derived from each other by maturation (Figure 10).

METHODS

Plant Materials and Growth Conditions

Tobacco plants (Nicotiana tabacum var. SR1) were grown as previously described
(Pimpl et al.,, 2006). Suspension cultures of Arabidopsis thaliana var. Landsberg
erecta PSB-D and tobacco Bright Yellow 2 (BY-2) (Nicotiana tabacum) stably
expressing GONST1-YFP or GFP-BP80 (Tse et al., 2004) were cultivated as
described (Miao et al., 2006; Miao and Jiang, 2007); and utilized 3 d after sub-
culturing. Arabidopsis thaliana ecotype Columbia-0 was used for IEM and CLSM
analysis. Arabidopsis seedlings were grown on Murashige and Skoog (MS) medium
supplemented with 1% sucrose at 22°C, with cycles of 16 h light for 4 to 5 d. For
ConcA treatments, seedlings were incubated in 1 mL of liquid medium (half-strength
MS medium with 0.5% sucrose, pH 5.8) containing 1 uM ConcA for 45 min, at room
temperature. For the wash-out, seedlings were immerged in fresh liquid medium for
15 minutes. The ConcA stock solution was 1 mM in DMSO. Wortmannin was added
1h prior to CLSM analysis in 30 pM concentration. The stock solution was 20 mM in
DMSO.
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Plasmid Constructs and Plant Transformation

Established plasmids were used encoding for markers/reporters as indicated: mRFP-
VSR2 (Miao et al., 2008), YFP-SYP61 (Uemura et al., 2004), Man1-RFP (Nebenfihr
et al., 1999), GFP—sporamin (daSilva et al., 2005), mRFP-ARA7 and ARA6-mRFP
(Ueda et al., 2004) and a-amylase-sporamin (Pimpl et al.,, 2003). For new
recombinant plasmids, all DNA manipulations were performed according to
established procedures. Coding sequences were amplified by PCR from either first-
strand cDNA prepared from 3-d-old seedlings (Pimpl et al., 2003) or existing plasmid
DNA. Recipient vectors were cut according to the restriction sites of the fragments
and dephosphorylated prior to ligation. The Escherichia coli strain MC1061
(Casadaban and Cohen, 1980) was used for the amplification of all plasmids. The
coding sequences of VPS2 and VPS22 were amplified from cDNA with Nhel and Notl
restriction sites using the VPS2-GFP.FOR and the VPS2-GFP.REV primers for VPS2
and the VPS22-GFP.FOR and the VPS22-GFP.REV primers for VPS22 and then
ligated in the accordingly cut vector pSN9 (encoding for SNX2a-GFP) (Niemes et al.,
2010b) to produce GFP fusions. For an RFP fusion of VPS2 the coding sequence
was amplified from VPS2-GFP with Bglll and Xbal restriction sites using the VPS2-
RFP.FOR and the VPS2-RFP.REV primers and then ligated in the plasmid pBP30
(Nebenfuhr et al.,, 1999) cut the same way. The truncated VPS2 (VPS2-DN) was
constructed using the VPS2-DN.FOR and VPS2-DN.REV primers for amplification
from VPS2-GFP resulting in a 41 bp shorter coding region and then ligated with Clal
and Xbal restriction sites into pSarl (Phillipson et al., 2001). To generate the RNAI
construct of ANNAT3 the wild type gene was amplified from Arabidopsis thaliana
cDNA, using the primers ANNAT3-WT.FOR and ANNAT3-WT.REV. The primers
created an N-terminal Nhel and a C-terminal Sall restriction site for insertion into the
pSN13 donor vector (Niemes et al., 2010b). The RNAI construct was then generated
by cloning a C-terminal 178bp fragment (from C754 to C932) of the ANNEXIN wild
type construct in sense and antisense orientations, linked by the PDK intron of
pHannibal, into pGD5 (Niemes et al.,, 2010b). All constructs were verified by
sequencing.

For the generation of a stably transformed Arabidopsis line expressing mRFP-ARA7,
the coding sequence of ARA7 was amplified using primers mRFP-ARA7.FOR and
MRFP-ARA7.REV. This fragment was then cloned into the Bglll/BamHI sites of
pURTkan, a derivative of pJHA212 (Yoo et al.,, 2005), containing the Ubiquitin 10
promoter and the mRFP coding sequence. The resulting binary plasmid was
introduced into Agrobacterium tumefaciens strain GV3101:pMP90 and selected on 5
mg/mL rifampicin, 10 mg/mL gentamycin and 100 mg/mL spectinomycin. Col-0 plants
were transformed according to Clough and Bent, 1998, and transgenic plants were
selected on MS medium with 1% sucrose and 50 mg/mL kanamycin. All primers used
for cloning are shown in Supplemental Table 1 online. The stably transformed
Arabidopsis line expressing SYP61-CFP under the endogenous promoter (Robert et
al., 2008) was kindly provided by Natasha Raikhel.

Generation of Antibodies

The coding sequence of Arabidopsis VPS28 and VPS2 were amplified from cDNA
using the primer pairs VPS28.FOR / VPS28.REV and VPS2.FOR / VPS2.REV,
respectively and then ligated into the GST expression vector pGEX-4T3 (accession
U13855) previously cut with EcoRI/Sall. The GST fusion proteins were expressed for
3 hin E. coli BL21 after induction with 1 mM IPTG. Inclusion bodies containing GST—
VPS28 or GST-VPS2 were solubilized using an established protocol with N-
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laurylsarcosine (Frangioni and Neel, 1993). The recombinant proteins were then
affinity purified with GST—sepharose. For further purification, SDS-PAGE was
performed and the protein bands of interest were excised and electroeluted from the
gel using an Elutrap Electroelution System (www.whatman.com) at 4°C with 50 mA
for 16h. Eluted proteins were dialysed 3 times for 2 h against TBS (50 mM Tris, 152
mM NaCl, pH 7.4) prior to lyophilization. Three hundred milligrams of each lyophilized
GST—fusion protein was used for commercial immunization of rabbits (Eurogentec,
Belgium). All primers used for cloning are shown in Supplemental Table 1 online.

Protein extraction and Gel Blot Analysis

7 day old Arabidopsis plants were frozen in liquid N, and homogenized with glass
beads in a TissueLyser Il (Qiagen, www.giagen.com) in extraction buffer containing
100 mM Tris pH 7.8, 200 mM NaCl, 1 mM EDTA, 2 % (v/v) B-Mercaptoethanol and
0.2 % (v/v) Triton X-100. Protein gel blots and immunodetection were performed on
total cell extracts processed as described previously (Pimpl et al., 2006). The
polyclonal antiserum raised against VPS28 was used in a 1:10.000 dilution, the
VPS2 antiserum was diluted 1:2500. Monoclonal antibodies against GFP (Roche,
www.roche-applied-science.com) were diluted 1:1000.

Isolation of Protoplasts and Transient Gene Expression

Tobacco mesophyll protoplasts were isolated from leaves of 6-8 week-old plants and
subsequently transfected via electroporation as described previously (Bubeck et al.,
2008). Unless otherwise stated, 10 pg of plasmid DNA were use for transfection and
protoplasts were incubated for 16-24 h. Arabidopsis protoplasts were generated from
cell suspension cultures 3 days after sub-cultivation and subsequently transformed
either via PEG mediated transformation as described before (Negrutiu, 1987) or via
electroporation as previously described (Niemes et al. 2010a). 20 ug of plasmid DNA
were used for each transformation. Afterwards, the protoplasts were incubated in the
dark at 26 °C for a minimum of 20 hours.

Fluorescence assisted cell sorting (FACS) and RT-PCR

Tobacco protoplasts expressing cytosolic GFP alone or coexpressing the RNAI-
ANNAT3 plasmid for 24 h were subjected to fluorescence assisted cell sorting
(FACS) using a MoFlo flow cytometer (Beckman-Coulter). 70,000 fluorescent
Protoplasts were sorted for each condition using a 100 pM nozzle. The sheath
solution was PBS at pH 7.0 and the core/sheath was operated at 30.7 psi / 30.0 psi,
respectively. GFP fluorescence was excited with a standard 488 nm Argon laser
powered to 50 mW. Emission was detected in FL1 (504-522nm) and plotted against
FL2 (565-605nm) to spread signals derived from GFP and autofluorescence.
Autofluorescence signals were gated out by analyzing a mock transfected protoplast
population. Data acquisition and analysis were performed using the MOFLO Summit
4.3 software. For each condition, total RNA from 70,000 sorted protoplasts was
extracted using the RNeasy Plant Mini Kit (Qiagen, www.giagen.com) according to
the instructions of the manufacturer and 250 ng of the total RNA was used for the
synthesis of first-strand cDNA (RevertAid™ H Minus First Strand cDNA Synthesis Kit,
Fermentas, www.fermentas.com). RT-PCR for ANNEXIN1 or ANNEXIN3 from
Nicotiana tabacum was performed with the primer pairs NtAnx1.FOR / NtAnx1.REV
or NtAnx3.FOR / NtAnx3.REV. Actin was amplified as a control using the primer pair
Actin.FOR / Actin.REV.
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Confocal Microscopy and Immunofluorescence Labeling

Imaging was performed using a Zeiss Axiovert LSM 510 meta confocal laser
scanning microscope (http://www.zeiss.com/) and C-Apochromat 63 x/1.2 W corr
water immersion objective. At the Metadetector, main beam splitters (HFT) 405/514,
458/514 and 488/543 were used. The following fluorophores (excited and emitted by
frame switching in the multitracking mode) were used: GFP, 488 nm/496-518 nm;
YFP, 514 nm/529-550 nm; RFP, 543 nm/593-636 nm. Pinholes were adjusted to 1
Airy unit for each wavelength. Post-acquisition image processing was performed
using the Zeiss LSM 510 image browser (4.2.0.121) and Corel-DrawX4 (14.0.0.567)
(Corel, http://www.corel.com).

For immunofluorescence analysis, BY-2 cells were fixed and processed as previously
described (Ritzenthaler et al., 2002). Samples were incubated overnight at 4°C with
the VPS2 antibodies diluted at 1:200. The Alexa-Fluor® 546 conjugate (Invitrogen,
http://www.invitrogen.com) was used as secondary antibody.

Statistical Analysis of CLSM localization data

For statistical analysis the Pearson and Spearman correlation (PSC) colocalization
plug-in (French et al., 2008) for ImageJ (Abramoff, 2004) was used to calculate the
linear Pearson correlation coefficient (r,) and the non-linear Spearman’s rank
correlation coefficient (rs) of red and green fluorescent signals. Values between -1
(negative correlation) and +1 (positive correlation). The fluorescence values of all
pixels across the two channels of all analyzed signals were depicted in a scatter plot.
Masking of areas of was carried out with the ImageJ brush tool as described in
French et al., 2008. For every analyzed image punctuate signals were selected and
the threshold level, under which pixels were treated as background noise, was set to
10. At least 10 individual cells and a minimum of 200 signals were considered for
every experiment.

Quantification of intrinsic FM4-64 signals in Arabidopsis protoplasts
FM4-64 uptake assays in Arabidopsis protoplasts were carried out in double blind
experiments. For every condition 20 individual pictures were captured 30 minutes
after the addition of FM4-64. All intracellular FM4-64 signals were considered as
intrinsic signals. Standard errors were calculated using Excel (Microsoft).

High Pressure Freezing and Immunogold Electron Microscopy

Four- to five-day-old Arabidopsis root tips were cut from the seedling, submerged in
140 mM sucrose, 7 mM trehalose and 7 mM Tris buffer (pH 6.6), transferred into
planchettes (Wohlwend GmbH, Sennwald, Switzerland; type 241 and 242) and
frozen in a high-pressure freezer (HPMO10; Bal-Tec). Freeze substitution was
performed in a Leica EM AFS2 freeze substitution unit (Leica; Germany) in dry
acetone supplemented with 0.4% uranyl acetate at-85°C for 16 h before gradually
warming up to-50°C over an 5 -h period. After washing with 100% ethanol for
60 min, the roots were infiltrated and embedded in Lowicryl HNIROC at
(intermediate steps of 30, 50, 75 % HM20 in ethanol, 1 h each), and polymerized for
3 days with ultraviolet (UV) light in the freeze substitution apparatus. Ultrathin
sections were cut on a Leica Ultracut S (Leica) and incubated with antibodies against
BP80 (1: 50, Niemes et al., 2010b) or RFP (1: 20; Clontech, Living Colors DsRed
polyclonal rabbit antibodies), followed by incubation with 10-nm gold-coupled
secondary antibodies (BioCell GAR10; BioCell) at a dilution of 1:50 in PBS
supplemented with 1% BSA. Double immunogold labeling on the Arabidopsis
SYP61-CFP line was performed using monoclonal mouse GFP antibodies (Roche,
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www.roche-applied-science.com) diluted 1:25, followed by incubation with 5-nm gold-
coupled secondary antibodies (BioCell GAR10; BioCell). Subsequently immunogold
labeling using the polyclonal rabbit VPS28 antibody (1:600) was carried out on the
same sections, followed by incubation with 15-nm gold-coupled secondary antibodies
(BioCell GAR10; BioCell). For structural analysis, root tips were freeze substituted
(72 h, —90°C; 8 h, —60°C; 8 h, —35°C and 4 h, 0°C) in acetone containing 2% osmium
tetroxide, washed at 0°C and embedded in Spurr. Sections were examined in a
JEM1400 transmission electron microscope (JEOL, Japan) operating at 80 kV.
Micrographs were recorded with a FastScan F214 digital camera (TVIPS, Germany).

Chemical Fixation for Electron Microscopy

Arabidopsis seedlings were fixed immersed in 25 mM cacodylate (Caco) buffer pH
7.2 containing 2% (v/v) glutaraldehyde and 10% (v/v) saturated picric acid at 4°C for
16 h. After four washes of 15 min each in 25 mM Caco buffer pH 7.2, seedlings were
transferred in a secondary fixative containing 2% (w/v) osmium tetroxide and 0.5%
(w/v) potassium ferrocyanid in 25 mM Caco buffer pH 7.2 for 2 h at room temperature
(RT). Seedlings were washed twice in 25 mM Caco pH 7.2, and twice in distilled
water before transferring to 2% (w/v) aqueous uranyl acetate for 16 hr at 4°C. After
four washes in water, seedlings were dehydrated in acetone 30, 50, 70, 90% in water
and twice in acetone 100% for 15 min each at RT. Root-tips were cut from the
seedlings and submerged in 25, 50, 75% Spurr in acetone and than in 100% Spurr
for 45 min each at RT and finally transferred in fresh Spurr 100% at 4°C for 16 h.
Samples were transferred in fresh Spurr 100% for 4 h, and then placed in the oven at
60°C for polymerization.

Quantification of MVBSs in root cells

The quantification was conducted on ultrathin sections of 5-day-old Arabidopsis root-
tips using a JEM 1400 transmission electron microscope (JEOL) operating at 80 kV.
The root-tips were sectioned longitudinally, close to the central axis. Multivesicular
bodies were counted in all the cell types of the meristematic zone. Standard
deviations were calculated using Excel (Microsoft).

Quantitative Analysis of IEM

The quantitative analysis was conducted on ultrathin sections previously
immunolabeled at the optimal dilution of the respective antibodies for BP80, mRFP-
ARA7 and VPS28. The sections were analyzed and every Golgi apparatus and/or
every endosomal compartment encountered during the screening of cells that did not
present folding, scratches, or any source of unspecific labeling was taken into
consideration. For the labeling density parameter the area of the single
compartments was calculated using the image processing program ImageJ
(http://rsbweb.nih.gov/ij). Standard deviations were calculated using Excel
(Microsoft).
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Supplemental Data

The following materials are available in the online version of this article.
Supplemental Figure 1. ConcA affects the distribution of marker proteins for
TGN/EE and MVBJ/LE.

Supplemental Figure 2. Differential localization of the ESCRT-components VPS22-
GFP and VPS2-GFP.

Supplemental Figure 3. VPS22-GFP and VPS2-GFP do not colocalize with Golgi
markers but VPS2 is found at the MVB/LE.

Supplemental Figure 4. Time course to study the temporal distribution of YFP-
SYP61 and mRFP-VSR2 as TGN/EE and MVB/LE makers.

Supplemental Figure 5. Expression of VPS2-DN affects the distribution of markers
for the TGN/EE and MVBJ/LE.

Supplemental Figure 6. RNAI-SNX2a prevents arrival of mRFP-VSR2 at the
MVB/LE but does not affect vacuolar transport.

Supplemental Figure 7. Relationship, expression and knockdown of plant annexins.
Supplemental Table 1. Primers used for cloning.

Accession Numbers
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FIGURE LEGENDS

Figure 1. Clathrin-Hubl expression inhibits endocytosis but not vacuolar
transport in Arabidopsis protoplasts.

(A) and (B) Staining of the PM directly after FM4-64 addition (A) and endocytic
uptake of the dye after 30 min incubation (B).

(C) Protoplasts expressing the GFP tagged clathrin-Hub1l (GFP-Hubl) were stained
with FM4-64 and incubated for 30 min. The dye is not internalized and remains at the
PM.

(D) Comparative quantification of intrinsic FM4-64 signals from 20 protoplasts either
in the presence or absence of GFP-Hubl. Error bars indicate the standard deviation
of signal numbers.
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(E) Coexpression of the soluble vacuolar marker spRFP-AFVY and cytosolic GFP
(cytGFP) in protoplasts. spRFP is efficiently transported into the lumen of the
vacuole, even if fluorescent cytosolic proteins (cytGFP) are coexpressed.

(F) Coexpression of GFP-Hubl and the soluble vacuolar marker spRFP-AFVY in
protoplasts. The presence of GFP-Hubl in the cytosol does not perturb vacuolar
transport of spRFP-AFVY (compare to (E)).

Scale bars =5 pm.

Figure 2. EM analysis of the effects of ConcA on MVBs.

(A) ConcA treatment reduces the number of MVBs in the cell. Roots of four
independent plants were analyzed either in the absence or presence of ConcA by
counting the number of MVBs in 100 sectioned cells per root. Per 100 control cells,
220+30 MVBs were identified, whereas after ConcA treatment, the number of MVBs
was five-fold lower (40£15). Error bars indicate the standard deviation.

(B) Quantitative analysis of ConcA effects on the endogenous VSR BP80 and the
Rab GTPase ARA7 in an mRFP-ARA7 expressing Arabidopsis line. The Golgi
localization of BP80 and mRFP-ARA7 was analyzed in Roots of four independent
plants ether in the absence or presence of ConcA by counting the labeling on 50
randomly chosen Golgi stacks per root. Under standard conditions, BP80 and mRFP-
ARA7 do not localize to the Golgi (114 % and 1512 % of Golgi labeling,
respectively), whereas in the presence of ConcA, both proteins also significantly
localize to the Golgi stacks (5915 % and 5814 % of Golgi labeling, respectively).
Error bars indicate the standard deviation.

(C) IEM localization of the endogenous BP80 in Arabidopsis roots after high pressure
freezing, freeze-substitution and Lowicryl HM20 resin-embedding. The VSR BP80
localizes to both the TGN (arrowheads) and MVBs (empty arrowheads).

(D) and (E) Upon ConcA treatment, BP8O is detected at the Golgi stack (arrows), and
at enlarged vesicles in the surrounding area (D; arrowheads). Although ConcA
reduces the number of MVBs, those MVBs that are still present, show unaltered
BP80 labeling (E, empty arrowheads).

(F) The Rab GTPase mRFP-ARA7 localizes to the limiting membrane of MVBs
(arrowheads).

(G) After ConcA treatment, mRFP-ARA7 localizes to both, swollen vesicles
(arrowheads) and Golgi stack (arrows).

(H) In the presence of ConcA, mRFP-ARA7 is detected at the limiting membrane of
the remaining MVBs (empty arrowheads).

Scale bars = 200 nm

Figure 3. Multivesicular bodies fuse with the vacuole.

Fusion of MVBs with the vacuole in sections of cells from high pressure frozen
Arabidopsis roots.

(A) and (B) The limiting membrane of an MVB (arrow) has fused with the Tonoplast,
resulting in the merge of the lumen of both compartments. In (B) additionally, internal
vesicles are recognizable in the lumen of the vacuole (arrowheads), sharing shape
and size with ILVs, typically seen in MVBs (courtesy of York-Dieter Stierhof).

(C) An MVB (arrow) almost entirely fused with a small vacuole.

(D) An MVB (arrow), entirely fused with a small vacuole, shows a polarized
distribution of the inner vesicles, suggesting that the fusion occurred shortly before
freezing of the cells. Note that there is another MVB in the vicinity (arrowhead).

V = vacuole; Scale bars = 200 nm
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Figure 4. MVBs mature from tubular-vesicular structures.

(A) and (B) Mature MVBs in sections from high pressure frozen untreated (untr) root
cells typically have an almost perfect circular profile. Depending upon the plane of
section, a plaque (arrow in B) is occasionally visible.

(C) An MVB (arrow) attached to a tubular-vesicular structure (arrowhead) in
untreated Arabidopsis root-tip cells.

(D) An MVB showing a tubular connection (arrow) and bottleneck terminations
(arrowheads) in untreated Arabidopsis root-tip cells.

(E) to (H) MVBs seen in Arabidopsis root-tip cells during recovery from ConcA-
treatment (45 min ConcA; followed by 15 min wash-out) are pleiomorphic, often with
bottle-neck terminations. In (E) and (F), MVBs (arrows) are attached to tubular
structures (arrowheads) in the area of the TGN; in (G) and (H), pleiomorphic MVBs
display bottle-neck terminations (arrowheads), indicating a possible connection to
tubular structures above or beneath the plane of section.

() and (J) MVBs (arrows) directly connected to TGN-like structures (arrowheads). In
(J), root-tip cells were chemically fixed.

(K) mRFP-ARAY localization to the limiting membrane of these unusually shaped
(compared to (A) and (B)) multivesiculated structures, confirms their identity as
MVBs.

G = Golgi; Scale bars = 200 nm.

Figure 5. The ESCRT-I component VPS28 localizes to the Golgi and the TGN

(A) Immunodetection of VPS28 in total protein extracts from 7 day old Arabidopsis
plants (left) using antibodies against VPS28 (aVPS28) and VPS28-GFP transiently
expressed in protoplasts isolated from Arabidopsis suspension cultures (middle and
right). Protoplasts were transfected with 3, 10, 30 or 100 pg plasmid DNA encoding
for VPS28-GFP or mock-transfected (-). Total protein extracts from protoplasts were
probed with antibodies against VPS28 (aVPS28) and antibodies against GFP
(aGFP).

(B) Immunogold electron microscopy (IEM) analysis using the aVPS28 antibody on
high pressure frozen Arabidopsis WT root cells shows that the endogenous VPS28
localizes to the Golgi stacks and the TGN (arrows).

(C) IEM of the endogenous VPS28 shows that VPS28 localizes to the Golgi stack
and the TGN (arrows) but is not detected on the multivesicular body

(D) Quantitative analysis of VPS28 IEM. The labeling density, expressed as the
number of gold particles per micrometer® (gold/um?), is significantly higher for the
TGN and the Golgi apparatus (18.8 and 11.1 gold/um?, respectively) respect to the
MVBs (3.1 gold/um?) or plastids/mitocondria (1.4 gold/um?). N°= number of
compartments encountered; N° lab.= number of compartments labeled; pm?= total
area considered; gold= total number of gold particles detected; gold/um“= labeling
density.

(E) Double immunolocalization of VPS28 in an Arabidopsis line expressing the TGN
marker SYP61-CFP under the control of the endogenous promoter, using the
polyclonal aVPS28 antibodies from rabbit in combination with 15-nm (arrowheads)
gold-coupled secondary antibodies and monoclonal aGFP antibodies from mouse in
combination with 5-nm (arrows) gold-coupled secondary antibodies. Both, the TGN-
marker and VPS28 localize to the same tubular-vesicular structure, immediately
adjacent to the Golgi stacks.

(F) In BFA treated Arabidopsis plants, VPS28 labels the core of the BFA-
compartment, confirming TGN localization of this ESCRT-I subunit.

G = Golgi; T = TGN; M = MVB/LE; B = BFA compartment; Scale bars = 200 nm.
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Figure 6. Gradual distribution of the ESCRT-II component VPS22 and the
ESCRT-IlIl component VPS2.

Tobacco mesophyll protoplasts were transfected with plasmids encoding fluorescent
markers/reporters as indicated below. Proteins were expressed for 18-24 h prior to
CLSM analysis. White arrows indicate colocalization. For quantification, the Pearson
and Spearman correlation (PSC) coefficients (rp, and rs) were calculated after analysis
of at least 10 individual protoplasts and a minimum of 200 signals. The level of
colocalization ranges from +1 for perfect correlation to -1 for negative correlation. For
the corresponding scatter plots of the fluorescence values of pixels across the two
channels see Supplemental Figure 2 online.

(A) Coexpression of VPS22-GFP and the TGN/EE marker YFP-SYP61.

(B) VPS22-GFP was coexpressed with the MVB/LE marker mRFP-VSR2.

(C) Quantification of VPS22-GFP colocalization with TGN/EE (YFP-SYP61) and
MVB/LE (mMRFP-VSR2) marker.

(D) Coexpression of VPS2-GFP and YFP-SYP61.

(E) VPS2-GFP and mRFP-VSR2 were coexpressed.

(F) Quantification of VPS2-GFP colocalization with TGN/EE and MVB/LE marker.

(G) Coexpression of VPS22-GFP and VPS2-RFP. Some VPS2-RFP signals do not
colocalize (white arrowheads). Only VPS2-RFP signals localize to wortmannin (WM)-
sensitive compartments as indicated by the magnified ring-like structure.

(H) Quantitative comparison of the number of VPS2-RFP and VPS22-GFP signals.
Error bars indicate the standard deviation of numbers of signals.

(I) Quantification of VPS22-GFP and VPS2-RFP colocalization.

Scale bars =5 pm.

Figure 7. Effects of ConcA and the ESCRT-IIl mutant VPS2-DN on vacuolar
transport.

Tobacco mesophyll protoplasts were transfected with plasmids encoding for
reporters/effectors as indicated below. Proteins were expressed for 18-24 h prior to
analysis.

For analyzing vacuolar transport the a-amylase derivative amylase-sporamin (amy-
spo) was used. The secretion index (Sl) is calculated as the ratio of the activity of
amy-spo secreted to the culture medium and the activity of amy-spo within the cells.
(A) VPS2-DN causes a dosage-dependent missorting of the vacuolar reporter amy-
spo and subsequent secretion into the culture medium. Error bars indicate standard
deviation of 5 individual experiments.

(B) Treatment with increasing concentrations of ConcA leads to the same effect than
described in (C) but stronger (ten-fold increase of the Sl). Error bars indicate
standard deviation of 5 individual experiments.

(C) Immunoblot analysis of protein transport after transient expression of the soluble
vacuolar reporter GFP-sporamin in the presence of ConcA (left panel) or
coexpression with VPS2-DN (right panel), using GFP-antibodies for immuno-
detection of the reporter. (-) mock-transfection, (+) positive control of GFP-sporamin
expression without effector.

Figure 8. VPS2-DN causes marker proteins for TGN/EE and MVBI/LE to
colocalize.

Tobacco mesophyll protoplasts were transfected with plasmids encoding for
fluorescent markers/reporters as indicated below. Proteins were expressed for 18 h
prior to CLSM analysis. For quantification, the Pearson and Spearman correlation
(PSC) coefficients (r, and rs) were calculated after analysis of at least 10 individual
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protoplasts and a minimum of 200 signals. The level of colocalization ranges from +1
for perfect correlation to -1 for negative correlation. For the corresponding scatter
plots of the fluorescence values of pixels across the two channels see supplemental
figure 5.

(A) Coexpression of TGN/EE and MVB/LE markers YFP-SYP61 and mRFP-VSR2
18 h after transfection.

(B) Effect of VPS2-DN on the distribution of TGN/EE and MVB/LE marker 14 h after
transfection.

(C) Analysis 18 h after transfection: VPS2-DN causes a change in the signal pattern
of the marker proteins. The signals accumulate in bigger but fewer structures.

(D) Quantification of the marker colocalization. The r, and rs values increase when
VPS2-DN is expressed.

(E) Coexpression of TGN/EE and MVB/LE markers YFP-SYP61 and mRFP-ARA7
18 h after transfection.

(F) Effect of the VPS2-DN coexpression with YFP-SYP61 and mRFP-ARA7 14 h post
transfection.

(G) When expressed for 18 h, VPS2-DN increases colocalization of YFP-SYP61 and
MRFP-ARAY. As observed in (C) the signals change structurally.

(H) Quantification revealed higher r, and rs values for the marker proteins when
VPS2-DN was expressed.

() to (L) An experiment as described in (E) to (H) was carried out, except ARAG-
MRFP was used as MVB/LE marker. Here, the highest increase of r, and rs values
was found (L).

Scale bars =5 pm.

Figure 9. RNAI knockdown of the annexin ANNAT3 increases colocalization of
TGN/EE and MVB/LE marker proteins.

Tobacco mesophyll protoplasts were transfected with plasmids encoding for
fluorescent markers/reporters as indicated below. Proteins were expressed for 18-
24 h prior to CLSM analysis. For quantification, the Pearson and Spearman
correlation (PSC) coefficients (r, and rs) were calculated after analysis of at least 10
individual protoplasts and a minimum of 200 signals. The level of colocalization
ranges from +1 for positive correlation to -1 for negative correlation,and the
fluorescence values of pixels across the two channels are depicted in an intensity
scatter plot.

(A) Tobacco protoplast expressing YFP-SYP61 as TGN/EE marker and mRFP-VSR2
as MVBJ/LE marker.

(B) Intensities of fluorescent signals from (A), representing YFP-SYP61 (green) and
MRFP-VSR2 (red), are depicted in a scatter plot. The calculated PSC values are
given in the upper right corner.

(C) Bar chart to illustrate the PSC coefficients from (B).

(D) Protoplasts from (A) were incubated for 1 h in the presence of 1 uM ConcA (E)
Intensities of fluorescent signals from (D), representing YFP-SYP61 (green) and
MRFP-VSR2 (red), are depicted in a scatter plot. The calculated PSC values are
given in the upper right corner.

(F) Bar chart to illustrate the PSC coefficients from (E).

(G) RNAi-based knockdown of ANNAT3 by cotransfection of plasmid DNA encoding
for RNAI-ANNATS3 and the markers YFP-SYP61 and mRFP-VSR2.

(H) Intensities of fluorescent signals from (G), representing YFP-SYP61 (green) and
MRFP-VSR2 (red), are depicted in a scatter plot. The calculated PSC values are
given in the upper right corner. The r, and rs values are considerably higher
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compared to the control (B).
(I) Bar chart to illustrate the PSC coefficients from (H)
Scale bars =5 pm.

Figure 10. Model illustrating TGN to MVB maturation.

According to this model, the TGN is continually formed and released from the Golgi
stack. It also functions as an EE and receives incoming cargo from the plasma
membrane (PM) via clathrin coated vesicles (CCVs). As it differentiates, the TGN
probably subdivides into domains where secretory vesicles (SV) are released to the
PM, into domains releasing CCVs for recycling to the PM (recycling endosomes) and
into a domain which matures into a multivesicular body (MVB). Patrticipating in the
latter process, as indicated, are the ESCRT complexes I, Il and Ill, as well as
annexin. As in mammalian cells, we postulate that post-TGN trafficking of soluble
proteins to the lytic compartment (vacuole) occurs receptor-independently and is
accompanied by a gradual transformation of part of the EE (TGN) into the LE (MVB),
which ultimately fuses with the vacuole membrane.
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Figure 1
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Figure 1. Clathrin-Hub1 expression inhibits endocytosis but not vacuolar transport in Arabidopsis
protoplasts. (A) and (B) Staining of the PM directly after FM4-64 addition (A) and endocytic uptake of the
dye after 30 min incubation (B). (C) Expression of the GFP tagged clathrin-Hub1 (GFP-Hub1) inhibits
endocytic uptake of FM4-64. (D) Comparative quantification of intrinsic FM4-64 signals from at least 10
protoplasts either in the presence or absence of GFP-Hub1. (E) The soluble vacuoclar marker spRFP-AFVY
is efficiently transported into the lumen of the vacuole, even if fluorescent cytosolic proteins (cytGFP) are
coexpressed. (F) Inhibition of clathrin-mediated transport by the expression of GFP-Hub1 does not perturb

vacuolar transport of spRFP-AFVY. Scale bars =5 pm.
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Figure 2

A 0 B 100 BP80| mRFP-ARA7

240 A
80

200 A
160 4

MVBs

120 4
80 4

% labeled Golgi

40

ConcA - 4+ ConcA ’

Figure 2. EM analysis of the effects of ConcA on MVBs. (A) ConcA treatment reduces the number of MVBs in the cell.
Roots of four independent plants were analyzed either in the absence or presence of ConcA by counting the number of MVBs
in 100 sectioned cells per root. Per 100 control cells, 220+£30 MVBs were identified, whereas after ConcA treatment, the
number of MVBs was five-fold lower (40+15). (B) Quantitative analysis of ConcA effects on the endogenous VSR BP80 and
the Rab GTPase ARA7 in an mRFP-ARA7 expressing Arabidopsis line. The Golgi localization of BP80 and mRFP-ARA7 was
analyzed in roots of four independent plants either in the absence or presence of ConcA by counting the labeling on 50
randomly chosen Golgi stacks per root. Under standard conditions, BP80 and mRFP-ARA7 do not localize to the Golgi
(1124 % and 15+2 % of Golgi labeling, respectively), whereas in the presence of ConcA, both proteins also significantly
localize to the Golgi stacks (59+5 % and 584 % of Golgi labeling, respectively). (C) IEM localization of the endogenous BP80
in Arabidopsis roots after high pressure freezing, freeze-substitution and Lowicryl HM20 resin-embedding. The VSR BP80
localizes to both the TGN (arrowheads) and MVBs (empty arrowheads), but is rarely detected at the Golgi stacks. (D) and (E)
Upon ConcA treatment, BP80 is detected at the Golgi stack (arrows), and at enlarged vesicles in the surrounding area (D;
arrowheads). Athough ConcA reduces the number of MVBs, those MVBs that are still present, show unaltered BP80 labeling
(E, empty arrowheads). (F) The Rab GTPase mRFP-ARA7 localizes to the limiting membrane of MVBs (arrowheads). (G)
After ConcA treatment, mMRFP-ARA7 localizes to both, swollen vesicles (arrowheads) and Golgi stack (arrows). (H) In the
presence of ConcA, mRFP-ARAY is detected at the limiting membrane of the remaining MVBs (empty arrowheads). Scale bars
=200 nm.
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Figure 3

Figure 3. Multivesicular bodies fuse with the vacuole. Fusion of MVBs with the vacuole in sections of
cells from high pressure frozen Arabidopsis roots. (A) and (B) The limiting membrane of an MVB (arrow) has
fused with the Tonoplast, resulting in the merge of the lumen of both compartments. In (B) additionally,
internal vesicles are recognizable in the lumen of the vacuole (arrowheads), sharing shape and size with
ILVs, typically seen in MVBs (courtesy of York-Dieter Stierhof). (C) An MVB (arrow) almost entirely fused
with a small vacuole. (D) An MVB (arrow), entirely fused with a small vacuole, shows a polarized distribution
of the inner vesicles, suggesting that the fusion occurred shortly before freezing of the cells. Note that there
is another MVB in the vicinity (arrowhead). V = vacuole; Scale bars = 200 nm.
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Figure 4. MVBs mature from tubular-vesicular structures.

(A) and (B) Mature MVBs in sections from high pressure frozen untreated (untr) root cells typically have an
almost perfect circular profile. Depending upon the plane of section, a plaque (arrow in B) is occasionally
visible. (C) An MVB (arrow) attached to a tubular-vesicular structure (arrowhead) in untreated Arabidopsis
root-tip cells. (D) An MVB showing a tubular connection (arrow) and bottleneck terminations (arrowheads) in
untreated Arabidopsis root-tip cells. (E) to (H) MVBs seen in Arabidopsis root-tip cells during recovery from
ConcA-treatment (45 min ConcA followed by 15 min wash-out) are pleiomorph, often with bottle-neck
terminations. In (E) and (F), MVBs (arrows) are attached to tubular structures (arrowheads) in the area of the
TGN; in (G) and (H), pleiomorphic MVBs display bottle-neck terminations (arrowheads), indicating a possible
connection to tubular structures above or beneath the plane of section. () and (J) MVBs (arrows) directly
connected to TGN-like structures (arrowheads). In (J), root-tip cells were chemically fixed. (K) mRFP-ARA7
localization to the limiting membrane of these unusually shaped (compared to (A) and (B)) multivesiculated
structures, confirms their identity as MVBs. G = Golgi; Scale bars = 200 nm.
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Figure 5
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The ESCRT-lcomponent VPS28 localizes to the Golgi andthe TGN
(A) Immunodetection of VPS28 in total protein extracts from 7 day old Arabidopsis plants (left) using antibodies against VPS28

(aVPS28) and VPS28-GFP transiently expressed in protoplasts isolated from Arabidopsis suspension cultures (middle and right).
Protoplasts were transfected with 3, 10, 30 or 100 pg plasmid DNA encoding for VPS28-GFP or mock-transfected (-). Total protein
extracts from protoplasts were probed with antibodies against VPS28 (aVPS28) and antibodies against GFP (aGFP).

(B) Immunogold electron microscopy (IEM) analysis using the aVPS28 antibody on high pressure frozen Arabidopsis WT root cells
shows that the endogenous VPS28 localizes to the Golgi stacks and the TGN (arrows).

(C) IEM of the endogenous VPS28 shows that VPS28 localizes to the Golgi stack and the TGN (arrows) but is not detected on the
multivesicular body.

(D) Quartitative analysis of VPS28 IEM. The labeling density, expressed as the number of gold particles per micrometer® (gold/um?), is
significantly higher for the TGN and the Golgi apparatus (18.8 and 11.1 goldlumz, respectively) respect to the MVBs (3.1 go|d!um2) or
plastids/mitocondria (1.4 gold/pmz). °= number of compartments encountered; N° lab.= number of compartments labeled; pm2=total
area considered; gold= total number of gold particles detected; go fdlpm2= labeling density.

(E) Double immuno localization of VPS28 in an Arabidopsis line expressing the TGN marker SYP61-CFP under the control of the
endogenous promoter, using the polyclonal aVPS28 antibodies from rabbit in combination with 15-nm (arrowheads) gold-co upled
secondary antibodies and monoclonal aGFP antibodies from mouse in combination with 5 nm (amows) gold-coupled secondary
antibodies. Both, the TGN-marker and VPS28 localize to the same tubular-vesicular structure, immediately adjacent to the Golgi stacks.
(F) In BFA treated Arabidopsis plants, VPS28 labels the core of the BFA-compartment, confirming TGN localization of this ESCRT-
subunit. G = Golgi; T =TGN; M = MVB/LE; B = BFA compartment; Scale bars = 200 nm.
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Figure 6
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Figure 6. Gradual distribution of the ESCRT-ll component VPS22 and the ESCRT-IIl component VPS2.
Tobacco mesophyll protoplasts were transfected with plasmids encoding for fluorescent markers/reporters as
indicated below. Proteins were expressed for 18-24 h prior to CLSM analysis. White arrows indicate
colocalization. For quantification the Pearson and Spearman correlation (PSC) coefficients (r, and rs) were
calculated after analysis of at least 10 individual protoplasts and a minimum of 200 signals. The level of
colocalization ranges from +1 for perfect correlation to -1 for negative correlation. For the corresponding
scatterplots see Supplemental Figure 2 online. (A) Coexpression of VPS22-GFP and the TGN/EE marker
YFP-SYP61. (B) VPS22-GFP was coexpressed with the MVB/LE marker mRFP-VSR2. (C) Quantification of
VPS22-GFP colocalization with TGN/EE (YFP-SYP61) and MVB/LE (mRFP-VSR2) marker. (D)
Coexpression of VPS2-GFP and YFP-SYP61. (E) VPS2-GFP and mRFP-VSR2 were coexpressed. (F)
Quantification of VPS2-GFP colocalization with TGN/EE and MVB/LE marker. (G) Coexpression of VPS22-
GFP and VPS2-RFP. Some VPS2-RFP signals do not colocalize (white arrowheads). Only VPS2-RFP
signals localize to wortmannin (WM)-sensitive compartments as indicated by the magnified ring-like
structure. (H) Quantitative comparison of the number of VPS2-RFP and VPS22-GFP signals. (l)
Quantification of VPS22-GFP and VPS2-RFP colocalization. Scale bars =5 pm.
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Figure 7. Effects of ConcA and the ESCRT-Ill mutant VPS2-DN on vacuolar transport. Tobacco
mesophyll protoplasts were transfected with plasmids encoding for reporters/effectors as indicated below.
Proteins were expressed for 18-24 h prior to analysis. For analyzing vacuolar transport the a-amylase
derivative amylase-sporamin (amy-spo) was used. The secretion index (Sl) is calculated as the ratio of the
activity of amy-spo secreted to the culture medium and the activity of amy-spo within the cells. (A) VPS2-DN
causes a dosage-dependent missorting of the vacuolar reporter amy-spo and subsequent secretion into the
culture medium. (B) Treatment with increasing concentrations of ConcA leads to the same effect than
described in (C) but stronger (ten-fold increase of the Sl). (C) Western blot analysis of protein transport after
transient expression of the soluble vacuolar reporter GFP-sporamin in the presence of ConcA (left panel) or
coexpression with VPS2-DN (right panel), using GFP-antibodies for immuno-detection of the reporter. (-)

mock-transfection, (+) positive control of GFP-sporamin expression without effector.
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Figure 8. VPS2-DN causes marker proteins for TGN/EE and MVB/LE to colocalize. Tobacco mesophyll
protoplasts were transfected with plasmids encoding for fluorescent markers/reporters as indicated below.
Proteins were expressed for 18 h prior to CLSM analysis. For quantification, the Pearson and Spearman
correlation (PSC) coefficients (r, and rs) were calculated after analysis of at least 10 individual protoplasts
and a minimum of 200 signals. The level of colocalization ranges from +1 for perfect correlation to -1 for
negative correlation. For the corresponding scatterplots see supplemental figure 5. (A) Coexpression of
TGN/EE and MVB/LE markers YFP-SYP61 and mRFP-VSR2 18 h after transfection. (B) Effect of VPS2-DN
on the distribution of TGN/EE and MVB/LE marker 14 h after transfection. (C) Analysis 18 h after
transfection: VPS2-DN causes a change in the signal pattern of the marker proteins. The signals accumulate
in bigger but fewer structures. (D) Quantification of the marker colocalization. The r, and rs values increase
when VPS2-DN is expressed. (E) Coexpression of TGN/EE and MVB/LE markers YFP-SYP61 and mRFP-
ARA7 18 h after transfection. (F) Effect of the VPS2-DN coexpression with YFP-SYP61 and mRFP-ARA7
14 h post transfection. (G) When expressed for 18 h, VPS2-DN increases colocalization of YFP-SYP61 and
mRFP-ARA?7. As observed in (C) the signals change structurally. (H) Quantification revealed higher r, and rs
values for the marker proteins when VPS2-DN was expressed. (I) to (L) An experiment as described in (E) to
(H) was carried out, except ARAG-mRFP was used as MVB/LE marker. Here, the highest increase of r, and

rs values was found (L). Scale bars =5 pym.
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Figure 9
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Figure 9. RNAi knockdown of the annexin ANNATS3 increases colocalization of TGN/EE and MVB/LE
marker proteins. Tobacco mesophyll protoplasts were transfected with plasmids encoding for fluorescent
markers/reporters as indicated below. Proteins were expressed for 18-24 h prior to CLSM analysis. For
quantification, the Pearson and Spearman correlation (PSC) coefficients (r, and rs) were calculated after
analysis of at least 10 individual protoplasts and a minimum of 200 signals. The level of colocalization ranges
from +1 for perfect correlation to -1 for negative correlation. (A) Tobacco protoplast expressing YFP-SYP61
as TGN/EE marker and mRFP-VSR2 as MVB/LE marker. (B) The PSC values for YFP-SYP61 and mRFP-
VSR2 were calculated and pictured in a scatterplot. (C) Bar chart to illustrate the PSC coefficients from (B).

(D) Protoplasts from (A) were incubated for 1 h in the presence of 1 pyM ConcA (E) Calculated rp, and rs
values from (D) are pictured in a scatterplot.(F) Bar chart to illustrate the PSC coefficients from (E).(G) RNAI-
based knockdown of ANNAT3 by cotransfection of plasmid DNA encoding for RNAI-ANNAT3 and the
markers YFP-SYP61 and mRFP-VSR2.(H) Calculated PSC values from (G) are pictured in a scatterplot. The
r, and rg values are considerably higher compared to the control (B). (I) Bar chart to illustrate the PSC

coefficients from (E). Scale bars =5 pm.



38

F_igure 10

Vacuole
oG
oo
MVB/LE
_ TGN/EE
Golgi
B=cescrT-1 l=EscrT-I  [J]=ESCRT-lII C=Annexin = = trafficking M = temporal maturation

Figure 10. Model illustrating TGN to MVB maturation. According to this model, the TGN is continually
formed and released from the Golgi stack. It also functions as an EE and receives incoming cargo from the
plasma membrane (PM) via clathrin coated vesicles (CCVs). As it differentiates, the TGN probably
subdivides into domains where secretory vesicles (SV) are released to the PM, into domains releasing CCVs
for recycling to the PM (recycling endosomes) and into a domain which matures into a multivesicular body
(MVB). Participating in the latter process, as indicated, are the ESCRT complexes I, Il and lll, as well as
annexin. As in mammalian cells, we postulate that post-TGN trafficking of soluble proteins to the lytic
compartment (vacuole) occurs receptor-independent and is accompanied by a gradual transformation of part
of the EE (TGN) into the LE (MVB) which ultimately fuses with the vacuole membrane.
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Supplemental data. Scheuring et al. (2011). Plant Cell 10.1105/tpc.111.086918
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Supplemental Figure 1. ConcA affects the distribution of marker proteins for TGN/EE and
MVBJ/LE. In order to quantify colocalization results, we have calculated the linear Pearson (r,) and the
non-linear Spearman’s rank (rs) correlation coefficient (PSC) for the pixels representing the
fluorescence signals in both channels. Levels of colocalization can range from +1 for positive
correlation to -1 for negative correlation (French et al., 2008). The fluorescence values of pixels across
the two channels were additionally depicted in an intensity scatter plot. At least 20 cells and a
minimum of 400 signals were analyzed. (A) Arabidopsis seedlings expressing the TGN/EE marker
VHA-al-GFP and the MVB/LE marker mRFP-ARA7. (B) Intensities of fluorescent signals from (A),
representing VHA-al-GFP (green) and mRFP-ARA7 (red), are depicted in a scatter plot. The
calculated PSC values are given in the lower right corner. The two signals do not colocalize. (C) Upon
ConcA treatment the TGN/EE marker VHA-al-GFP and the MVB/LE marker mRFP ARA7 were in
closer proximity, showing an increased colocalization. (D) The values for the PSC coefficients of panel
(C) are the double for both r, and rs respect to the untreated cells. Scale bars =5 pm.
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Supplemental data. Scheuring et al. (2011). Plant Cell 10.1105/tpc.111.086918

A VPS22-GFP+YFP-SYP61 C vPS22-GFP+mRFP-VSR2 f
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Supplemental Figure 2. Differential localization of the ESCRT-components VPS22-GFP and
VPS2-GFP. Tobacco mesophyll protoplasts were transfected with plasmids encoding for fluorescent
markers/reporters as indicated below. Fluorescent proteins were expressed for 18 h prior to CLSM
analysis. At least 10 protoplasts and a minimum of 200 signals were used for the quantification as
described in supplemental figure 1. (A) Coexpression of the TGN/EE marker YFP-SYP61 (red) and
VPS22-GFP (green). (B) PSC coefficients and corresponding scatter plot of (A). (C) VPS22-GFP
coexpressed with mRFP-VSR2. (D) PSC coefficients and corresponding scatter plot of (C). (E)
Coexpression of the TGN/EE marker YFP-SYP61 (red) and VPS2-GFP (green). (F) PSC coefficients
and scatter plot of (E). (G) VPS2-GFP coexpressed with the MVB/LE marker mRFP-VSR2. (H) Scatter
plot and PSC coefficients of (G). (I) Coexpression of VPS22-GFP and VPS2-RFP. (J) Scatter plot and
PSC coefficients of (). Scale bars =5 pm.



41

Supplemental data. Scheuring et al. (2011). Plant Cell 10.1105/tpc.111.086918
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Supplemental Figure 3. VPS22-GFP and VPS2-GFP do not colocalize with Golgi markers but
VPS2 is found at the MVB/LE. Tobacco mesophyll protoplasts were transfected with plasmids
encoding for fluorescent markers/reporters as indicated below. Fluorescent proteins were expressed
for 18 h prior to CLSM analysis. At least 10 protoplasts and a minimum of 200 signals were used for
the quantification as described in supplemental figure 1. For immunolabeling the VPS2 antibody was
used in a 1:200 dilution. White arrows indicate colocalization. (A) Coexpression of the Golgi marker
Manl1-RFP and VPS22-GFP. (B) PSC coefficients and corresponding scatter plot of (A). (C) Bar chart
of the r, and rs values from (B). (D) VPS2 coexpressed with Man1-RFP. (E) Scatter plot and PSC
coefficients of (D). (F) Bar chart of the r, and rs values from (E). (G) To rule out different behavior of
fluorescent protein tags VPS2-RFP and VPS22-GFP were coexpressed. (H) Quantification of (G)
reveals high values of the PSC coefficients. (I) Bar chart of (H). (J) Immunolabeling of VPS2 (red) in
BY2 cells stably expressing the Golgi marker GONST1-YFP (green). (K) Immunolabeling of VPS2
(red) in BY2 cells stably expressing the MVB/LE marker GFP-BP80 (green). (L) Immunodetection of
endogenous VPS2 in total extracts from wild-type BY2 cells (right side). The antibody cross-reacts
with a protein of around 30 kDa. VPS2-GFP could also be detected with a GFP antibody in
Immunoblot analysis (left side). Scale bars =5 um.
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Supplemental data. Scheuring et al. (2011). Plant Cell 10.1105/tpc.111.086918
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Supplemental Figure 4. Time course to study the temporal distribution of YFP-SYP61 and
MRFP-VSR2 as TGN/EE and MVB/LE markers. Tobacco mesophyll protoplasts were transfected
with plasmids encoding for fluorescent markers/reporters as indicated below. Fluorescent proteins
were expressed for 6 to 18 h prior to CLSM analysis. (A) to (C) YFP-SYP61 (green) and mRFP-VSR2
(red) are coexpressed as markers for the TGN/EE and MVB/LE and their localization was analyzed in
a time dependent manner. (A) After 6h signals were detectable. (B) The signal strength increases 12 h
post transfection. (C) Typical distribution of TGN/EE and MVB/LE markers YFP-SYP61 and mRFP-
VSR2 18 h after transfection. Scale bars = 5 pum.
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Supplemental data. Scheuring et al. (2011). Plant Cell 10.1105/tpc.111.086918
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Supplemental Figure 5. Expression of VPS2-DN affects the distribution of markers for the
TGN/EE and MVB/LE. Tobacco mesophyll protoplasts were transfected with plasmids encoding for
fluorescent markers/reporters as indicated below. Fluorescent proteins were expressed for 18 h prior
to CLSM analysis. At least 10 protoplasts and a minimum of 200 signals were used for the
guantification as described in supplemental figure 1. (A) Coexpression of TGN/EE and MVB/LE
markers YFP-SYP61 (green) and mRFP-VSR2 (red). (B) Scatter plot and PSC coefficients of (A). (C)
Changed distribution of TGN/EE marker and MVB/LE marker when VPS2-DN is coexpressed. (D)
Scatter plot and PSC coefficients of (C). (E) Coexpression of the TGN/EE marker YFP-SYP61 (green)
and the MVB/LE marker mRFP-ARAY (red). (F) Scatter plot and PSC coefficients of (E). (G) Changed
distribution of TGN/EE marker and MVB/LE marker when VPS2-DN is coexpressed. (H) Scatter plot
and PSC coefficients of (G). (I) to (L) The same experiment as described in (E) to (H) was carried out,
except ARA6-mRFP was used as a marker for the MVB/LE. (M) Comparison of all obtained PSC
coefficients. Scale bars =5 pm.
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Supplemental data. Scheuring et al. (2011). Plant Cell 10.1105/tpc.111.086918
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Supplemental Figure 6. RNAi-SNX2a prevents arrival of mRFP-VSR2 at the MVB/LE but does
not affect vacuolar transport. Tobacco mesophyll protoplasts were transfected with plasmids
encoding for fluorescent markers/reporters as indicated below. Fluorescent proteins were expressed
for 18 h prior to CLSM analysis. At least 10 protoplasts and a minimum of 200 signals were used for
the quantification as described in supplemental figure 1. (A) Coexpression of TGN/EE and MVBJ/LE
markers YFP-SYP61 (green) and mRFP-VSR2 (red). (B) Scatter plot and PSC coefficients of (A). (C)
Changed distribution of TGN/EE marker and MVB/LE marker when RNAI-SNX2a is coexpressed. (D)
Scatter plot and PSC coefficients of (C). (E) Coexpression of the TGN/EE marker YFP-SYP61 (green)
and the MVB/LE marker mRFP-ARAY (red). (F) Scatter plot and PSC coefficients of (E). (G) Signal
distribution of TGN/EE marker and MVB/LE marker when RNAI-SNX2a is coexpressed. (H) Scatter
plot and PSC coefficients of (G). (I) to (L) The same experiment as described in (E) to (H) was carried
out, except ARA6-mRFP was used as a marker for the MVB/LE. (M) Comparison of all obtained PSC
coefficients. Scale bars =5 pum.
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Supplemental data. Scheuring et al. (2011). Plant Cell 10.1105/tpc.111.086918
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Supplemental Figure 7. Relationship, expression and knockdown of plant annexins.

(A) Neighbour-Joining Tree based on Geneious-Alignment of the Arabidopsis Annexins ANNAT1-8
with human Annexin A2 (P07355) and Drosophila Annexin X (AAF45380), Cost matrix: Blosum62,
Gap open penalty: 12, Gap extension penalty: 3. (B) AtGenExpress-Development Data for ANNAT3
(At2g38760), 4 (At2g38750), 5 (At1g68090) and 8 (At5g12380). (C) Analysis of the RNAi-mediated
knockdown of Nicotiana tabacum Annexin 3 (Nt ANx3). Tobacco mesophyll protoplasts were
cotransfected with plasmids encoding for RNAI-ANNAT3 and cytosolic GFP (cytGFP), allowing for
fluorescence-assisted cell sorting. This way, we took advantage of the high cotransfection efficiency of
elektrotransformation (93.6 + 3.5 % in cotransfection with two plasmids; Niemes et al., 2010a), to
monitor for cells expressing the RNAi construct. Positively sorted cells were subjected to RT-PCR
using primers specific for endogenous Nt ANx3. Non-silenced control cells (-) expressing only cytGFP
reveal an amplification product of the expected size, which is absent in the RNAi background (+). The
expression of another tobacco annexin, Nt ANx1, is not affected by RNAi-ANNAT3 showing specificity
of the knockdown. A fragment amplified from the actin coding sequence serves as an internal control.
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Supplemental Table 1: Primers used for cloning

Oligonucleotide

Sequence (5’ — 3’ direction)

Recipient vector

VPS2-GFP.FOR

VPS2-GFP.REV

VPS22-GFP.FOR

VPS22-GFP.REV

VPS2-RFP.FOR

VPS2-RFP.REV

VPS2-DN.FOR

VPS2-DN.REV

ANNAT3-WT.FOR

ANNAT3-WT.REV

MRFP-ARA7.FOR

MRFP-ARA7.REV

VPS28.FOR

VPS28.REV

VPS2.FOR

VPS2.REV

Nt ANx1.FOR

Nt ANx1.REV

Nt ANx3.FOR

Nt ANx3.REV

Actin.FOR

Actin.REV

ACCACCGCTAGCATGATGAATTCAATC
ACCACCGCGGCCGCGCATTTTTCTAAGGTT
TGGAGCTAGCTCATTTAAGTATCAGATC
ATAAGCGGCCGCAAGATGCGACGACGA
ACCACCAGATCTATGATGAATTCAATC
ACCACCTICTAGAGCGCATTTTTCTAAG
ACCACCATCGATGATGAATTCAATC
ACCACCTCTAGATTATATACCTCCACTGTC
ATTCTCGCTAGCATGGCCACCATTAGA
TCAATAGTCGACTCAGATCAGCATCTC
ATAAGATCTATGGCCTCCTCCGAGGAC
ATAAGATCTGGATCCCTAAGCACAACAAG
CTGAAAGAATTCCGTCAAGTTATGGAAT
GTGGCAGTCGACTTAATTACCAGCATT
CATGATGAATTCAATCTTCGG
ACAGGAGTCGACTCACATTTTTCTAAG
TGTTCCGGCAGAAGTTCCTT
ACCTCCACGAAGTAGTGCTC
CCAACATCTGTTCCAGAACC
AGCAATTGCACGGTCCAATG
ATTCAGATGCCCAGAAGTCTT

TCTGTGAACGATTCCTGGACCTG

pSN09
pSN09
pSN09
pSNO09
pBP30
pBP30
pSarl
pSarl
pSN13
pSN13
pJHA212
pJHA212
pGEX-4T3
pGEX-4T3
pGEX-4T3

PGEX-4T3
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Abstract

Background: In yeast and mammals, many plasma membrane (PM) proteins destined for degradation are tagged
with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to
early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex
required for transport (ESCRT) machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of
these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen.
In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be
ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary
sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of
membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma
membrane and analyzed their transport.

Results: Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco
mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly
reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain,
the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the
vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that
the vacuolar delivery of these reporters occurs via the endocytic transport route.

Conclusions: Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target
membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization
of PM reporters into the endocytic transport route, but it also mediates vacuolar delivery if displayed at the Golgi. In
both cases, ubiquitin-tagged proteins travel via early endosomes and multivesicular bodies to the lytic vacuole. This
suggests that vacuolar degradation of ubiquitinated proteins is not restricted to PM proteins but might also
facilitate the turnover of membrane proteins in the early secretory pathway.
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Background

The endocytic uptake of proteins and lipids is the driv-
ing force that establishes and maintains cellular polarity,
but also allows for intercellular communication and
facilitates interactions with the environment [1,2]. Endo-
cytosis involves invagination and fission of vesicles at
the plasma membrane (PM) and their transport to endo-
somes. Endocytosis in walled plant cells has been shown
to exist by the use of fluorescent dyes in the early 2000s
and has been confirmed by the subsequent identification
of endocytic cargo molecules like the auxin efflux facili-
tator PINFORMED 1 (PIN1) [3] or cell surface receptors
like the brassinosteroid receptor BRASSINOSTEROID
INSENSITIVE 1 (BRI1) and the flagellin receptor
FLAGELLIN-SENSING 2 (FLS2) [4-6].

In yeast and mammals, the uptake of certain membrane
proteins from the PM requires ubiquitin as an internaliza-
tion signal [7-9]. Ubiquitin is a highly conserved protein
that is found in all eukaryotes ranging from unicellular
organisms to mammals and higher plants [10]. Ubiquitina-
tion is one of the most common post-translational protein
modifications being responsible for proteasomal degrad-
ation, membrane transport events, DNA repair and other
mechanisms such as signaling and cell cycle control [11].
The C-terminus of ubiquitin is able to form covalent bonds
with other proteins and once a single ubiquitin moiety is
bound, it can be conjugated with additional ubiquitin mole-
cules in a process called poly-ubiquitination [12,13]. Here,
number and spatial orientation of added ubiquitin entities
are crucial for a protein’s destiny [8,14,15]. In this context,
poly-ubiquitination of soluble proteins results in their cyto-
solic degradation by the 26S proteasome [16,17], while the
attachment of a single ubiquitin monomer to membrane-
bound proteins facilitates sorting into intralumenal vesicles
(ILVs) of late endosomes (LEs/MVBs, multivesicular bodies)
followed by lysosomal degradation [18]. However, details
about the number of required ubiquitin moieties to trigger
internalization at the PM are still controversially discussed
[19].

In plants, FLS2 internalization at the PM is triggered by
flg22, a 22 amino acid epitope of bacterial flagellin. In the
presence of this elicitor, FLS2 was found to be ubiquitinated
[20], but it is unclear whether this ubiquitination represents
the sorting signal for its endocytic uptake. It has been
shown that down-regulation of the PM-localized iron trans-
porter IRON-REGULATED TRANSPORTER 1 (IRT1)
involves multiple mono-ubiquitinations [21]. In the case of
BORON TRANSPORTER 1 (BOR1), however, down-
regulation requires the combined action of ubiquitin and
tyrosine-based sorting signals for internalization and for
endosomal sorting [22]. Very recently, ubiquitination of
PIN2 was shown to be essential for its function in root
gravitropism [23] and translational fusion of ubiquitin to
PIN2 or to the plasma membrane ATPase PMA, which
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mimics constitutive ubiquitination, was shown to alter the
localization and stability of these proteins [23,24]. These
findings suggest that ubiquitin-dependent sorting mechan-
isms for PM proteins also exist in plants. However, vacuolar
degradation of some integral PM proteins does not neces-
sarily depend on ubiquitination as has been reported for
the RICE SECRETORY CARRIER MEMBRANE PROTEIN
1 (OsSCAMP1) and the leucine-rich repeat receptor-like
kinase AtLRR84A [25].

A common step in the vacuolar degradation pathway of
membrane proteins is their sorting into ILVs of endosomes.
This process is mediated by four ESCRT (endosomal sort-
ing complex required for transport) complexes, termed
ESCRT-0 to ESCRT-III [18]. ESCRT-0 but also ESCRT-I
and ESCRT-II recognize and concentrate ubiquitinated
cargo and recruit ESCRT-IIL. This complex recruits in turn
ESCRT-associated proteins like the deubiquitinating en-
zyme Doa4/UBPY and the AAA-ATPase Vps4/SKD1 and
drives the formation of the intralumenal vesicles, resulting
in the formation of MVBs [18]. ESCRT homologues have
been shown to exist in plants [26-31] although molecular
interactions between ubiquitinated cargo and ESCRT com-
ponents have not yet been demonstrated. Nonetheless, the
cytokinesis-specific syntaxin KNOLLE as well as PIN1,
BRI1 and the vacuolar sorting receptor BP80 all locate to
the ILVs of MVBs [32-35]. Moreover, the localization of
PIN1, PIN2 and the auxin influx carrier AUX1 was found
to be dependent on the function of the ESCRT machinery
[34]. Together, this suggests that ESCRT-mediated sorting
contributes to the regulation of membrane proteins via
vacuolar degradation.

However, degradation does not necessarily have to fol-
low endocytosis, since PIN1 and BRI1 also cycle constitu-
tively between the PM and endosomes [3,36]. The signals
that mediate protein sorting into the endocytic, the recyc-
ling or the degradation pathways in plants are not yet fully
understood. The analysis of sorting determinants for indi-
vidual transport steps within this complex network of
transport routes is further complicated by the fact that
PM proteins reach the PM via the secretory pathway
which merges with the endocytic route at the trans-Golgi
network (TGN)/early endosome (EE) [35,37,38]. Hence, it
is difficult to judge whether a given protein that localizes
to this compartment has just been internalized or is still
on its way to its primary destination. To overcome this
problem and to analyze specific sorting signals for individ-
ual transport routes, we have prepared conceptually differ-
ent fluorescent PM reporters. The first class of reporters is
post-translationally inserted into the PM, which deter-
mines the internalization at the PM as the first possible
transport step. These reporters are based on the observa-
tion that the 26 C-terminal residues of the Arabidopsis
type-1I ROP-GTPase AtROP10 are sufficient to cause PM
attachment when fused to the C-terminus of cytosolic



Scheuring et al. BMC Plant Biology 2012, 12:164
http://www.biomedcentral.com/1471-2229/12/164

GFP [39]. The respective sequence contains a 15 amino
acid polybasic domain followed by a highly conserved
motif. This motif consists of two glycine/cysteine pairs
flanking 5-6 non-specified residues and is known as the
[GC-CG] box. The post-translational PM recruitment is
supposed to occur after S-acylation of the two cysteines
[39]. The second class of reporters is based on type-I
transmembrane proteins, which are delivered to the PM
via the secretory pathway.

Here, we show, that ubiquitin is sufficient to target the
post-translationally inserted PM reporter Box-GFP-Ub
and the transmembrane protein reporter RFP-TMD23-
Ub into the endocytic pathway. Interestingly, ubiquitin
was also found to be sufficient to target the Golgi-
localized transmembrane protein RFP-TMD20 into the
lumen of the lytic vacuole. The vacuolar delivery of these
reporters can be inhibited when a mutagenized ESCRT-
associated component (AtSKD1(AQ)) is expressed. The
use of reporters carrying a mutagenized derivative of
ubiquitin furthermore reveals different ubiquitin require-
ments for the internalization at the PM compared to the
ubiquitin-mediated sorting at the Golgi. Together, these
results show that ubiquitin acts as a signal for vacuolar
degradation of membrane proteins and is not restricted
to sorting events at the PM.

Results

Ubiquitin causes internalization of a non-secretory
reporter at the PM

To analyze sorting signals for the endocytic pathway, we
have created GFP-based reporters that are post-
translationally inserted into the PM but also allow the
analysis of internalization signals by fusing the 26 C-
terminal residues of AtROP10 (hereafter named Box) to the
N-terminus of GFP (Figure 1A). To test whether ubiquitin
causes internalization of proteins from the PM, we fused
ubiquitin (Ub) to the C-terminus of Box-GFP, resulting in
the construct Box-GFP-Ub (Figure 1B). We also generated
a control construct lacking the N-terminal Box sequence
(GFP-Ub), to assess the requirement for PM insertion
(Figure 1C). Expression of these reporters in tobacco meso-
phyll protoplasts shows that Box-GFP is localized to the
PM (Figure 1D), indicating efficient recruitment from the
cytosol to the PM. It also demonstrates that the function of
the Box is independent of its C- or N-terminal position at
the reporter. In sharp contrast, the vast majority of Box-
GFP-Ub localized to discrete punctae (Figure 1E, Add-
itional file 1), indicating successful internalization of the re-
porter. Neither discrete punctae nor PM signals were
observed in case of GFP-Ub (Figure 1F). As expected for
this cytosolic reporter, fluorescence was distributed
throughout the cytoplasm and the nuclear matrix. This
suggests that the punctae of the reporter Box-GFP-Ub de-
pend on membrane association and the presence of
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ubiquitin. To rule out that the observed localization might
be due to specific properties of protoplasts, we have
expressed the reporters in tobacco leaves via Agrobacter-
ium-mediated transfection. The expression of Box-GFP in
epidermal cells revealed its localization at the PM
(Figure 1G), while Box-GFP-Ub was again found to label
numerous punctate structures (Figure 1H and I). This
shows that the localization of the reporters in protoplasts
and in planta is the same. To analyze whether the punctate
Box-GFP-Ub structures represent endosomes, we per-
formed co-expression experiments with markers for the
TGN/EE (YEP-SYP61; [4041]), the MVB/LE (Ara6-RED;
[40]) and the Golgi (Man1-RFP; [42]). In these experiments,
Box-GFP-Ub  partially colocalized with YFP-SYP61
(Figure 2A-C, Additional file 2A) and Ara6-RFP
(Figure 2D-F, Additional file 2B). LE/MVB-localization of
Box-GFP-Ub is furthermore supported by the appearance
of the fluorescent signals in ring-like structures after incu-
bation with the drug wortmannin (WM, inset in
Figure 2D), which form as a result of the drug-induced fu-
sion of LEs/MVBs [43]. Box-GFP-Ub signals did not over-
lap with the signals of the Golgi marker (Additional file
2C), suggesting that the localization of Box-GFP-Ub is
restricted to endosomes.

We next analyzed whether Box-GFP-Ub reaches its
endosomal localization via the endocytic pathway, a trans-
port that involves the formation of clathrin-coated vesicles
at the PM. It was shown that this process is inhibited by
the expression of a truncated mutant of the clathrin heavy
chain, the clathrin hub [28,44-46]. Therefore we compared
the numbers of punctate Box-GFP-Ub signals in control
cells, expressing only Box-GFP-Ub (Figure 2G), with signals
in cells coexpressing the clathrin hub (RFP-Hubl,
Figure 2H). Figure 2I shows that the number of Box-GFP-
Ub signals is significantly reduced upon RFP-Hubl coex-
pression (Figure 2H-I), confirming that the endosomal
localization of Box-GFP-UD is indeed due to internalization
at the PM via clathrin-mediated endocytosis.

Ubiquitin causes a plasma membrane protein to traffic to
the vacuole

The previous experiments showed that a PM-associated
protein can be efficiently internalized by a C-terminal
fusion to ubiquitin. However, the fluorescent reporter
was transported along the endocytic route only as far as
the MVB/LE but could not be detected in the vacuole,
even when expressed for 48 hours (data not shown).
Since fluorescent signals of GFP-based reporters can be
routinely detected in the lytic vacuole under these ex-
perimental conditions (Additional file 3, compare A and
B), we conclude that the lack of vacuolar fluorescence of
the Box-GFP-Ub is not due to vacuolar degradation, but
instead due to a failure of vacuolar delivery. One reason
for this could be that the membrane association via
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Figure 1 Expression of non-secretory reporters to analyze the endocytic pathway. A-C: schematic representation of the constructs Box-GFP
(A), Box-GFP-Ub (B) and GFP-Ub (C). D-F: tobacco mesophyll protoplasts were transfected with the corresponding plasmids as indicated below.

(D) Box-GFP is efficiently recruited onto the PM, while Box-GFP-Ub (E) predominantly localizes to punctae. F: GFP-Ub is homogenously distributed
throughout the cytoplasm and the nuclear matrix. G-I: Localization of the reporters given above in planta, confirming the results from (D-E). I: 3D

projection of a leaf epidermal cell expressing Box-GFP-Ub. Scale bars =5 pm.

J

S-acylation is not stable enough to survive MVB-
mediated sorting. Alternatively, the translational fusion
of ubiquitin to the reporter prevents deubiquitination, a
requirement for vacuolar delivery in yeast [47].

To answer this question, we have prepared a PM-
targeted ubiquitin fusion construct based on a type-I trans-
membrane protein (REP-TMD23-Ub, Figure 3A) by adding
the ubiquitin sequence to the C-terminus of the PM mar-
ker RFP-TMD23, (Figure 3B; TM23 in [48]). In contrast to
the lipid-anchored Box-GFP-Ub (see Figure 1B, E, H, I),

expression of RFP-TMD23-Ub yields a vacuolar pattern in
protoplasts and isolated vacuoles (Figure 3C, D), which
was never observed for REP-TMD23, lacking a C-terminal
ubiquitin (Figure 3e). Comparison of RFP-TMD23-Ub with
the vacuolar reporter spL-RFP [49] furthermore reveals
that both molecules are equally well delivered to the vacu-
ole (Additional file 3C, D). The same vacuolar pattern can
be seen when RFP-TMD23-Ub is analyzed in planta
(Figure 3F-H), indicating that sorting and transport
mechanisms of these reporters do not differ between both
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Figure 2 Ubiquitin-dependent internalization of Box-GFP-Ub. Expression of markers/reporters in tobacco mesophyll protoplasts as indicated
below. A-C: Box-GFP-Ub (green) and the TGN/EE marker YFP-SYP61 (red) partially colocalize (arrowheads). D-F: Box-GFP-Ub (green) and MVB/LE
marker Ara6-RFP (red) colocalize to a high degree (arrowheads). Box-GFP-Ub localizes to characteristic ring-like MVB structures after wortmannin-
treatment (+WM; inset in D). For quantitative analysis of colocalization see Additional file 2. Endosomal signals of Box-GFP-Ub (G) are significantly
reduced in quantity if coexpressed with the clathrin hub (RFP-Hub1; red, H). Arrowheads indicate remaining Box-GFP-Ub-positive endosomes. I:
Statistical analysis reveals that the punctate signals are about 57% less abundant in cells coexpressing the RFP-Hub1 (+) as compared to control
cells (). (***) p <0.0001. Scale bars=5 pm.

experimental systems. Together, this suggests that it is the  occasionally associated with organelles in the peripheral
type of membrane association rather than the requirement  cytoplasm. We therefore performed coexpression experi-
for deubiquitination that prevented the vacuolar delivery = ments with markers for TGN/EE (YFP-SYP61) and MVB/
of the Box-GFP-UDb reporter. LE (GFP-BP80; [50]). This analysis was performed with de-

The RFP-TMD23-Ub signal was not restricted to the tection parameters that reduced the strong and diffuse
vacuolar lumen but was also detected at the PM and was  vacuolar background of RFP-TMD23-Ub. A large number
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Figure 3 Ubiquitin-dependent transport of an integral PM protein to the vacuole. A-B: Schematic representation of the constructs RFP-
TMD23-Ub (A) and RFP-TMD23 (B). Localization of the constructs in tobacco mesophyll protoplasts after 36 h (C-E, to allow for vacuolar
accumulation) or 24 h (I-N, for colocalization analysis) and leaf epidermal cells (F-H). C: RFP-TMD23-Ub is targeted into the vacuolar lumen. (D)
Isolated vacuole. (E) RFP-TMD23 localizes to the PM. F-H: Localization of the reporters given above in planta, confirming the results from C-E. I-K:
RFP-TMD23-Ub (red) and YFP-SYP61 (green) partially colocalize (arrowheads). L-N: RFP-TMD23-Ub (red) and MVB/LE marker GFP-BP80 (green)
overlap in punctate structures (arrowheads). RFP-TMD23-Ub localizes to ring-like MVB structures after wortmannin-treatment (+WM; inset in L).
Scale bars=5 pum. For quantitative analysis of colocalization see Additional file 2.
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of the punctate signals overlapped with the markers for the
TGN/EE (Figure 3I-K, additional file D) and the MVB/LE
(Figure 3L-N, inset in 3 L and additional file E), both of
which are transit compartments along the vacuolar route.

It is assumed that mono-ubiquitination mediates in-
ternalization of PM  proteins, whereas poly-
ubiquitination serves as signal for proteasomal degrad-
ation [10,51]. However, it has also been reported that
PM proteins, with short polyubiquitin chains, are more
efficiently internalized [19,52-54]. Moreover, deletion of
the two C-terminal glycines of a recombinantly linked
ubiquitin has been shown to prevent further ubiquitina-
tion, suggesting that these glycines act as an additional
site for poly-ubiquitination [55]. Therefore, we have
deleted both terminal glycine residues of Box-GFP-Ub
(Box-GFP-UbAGG) and RFP-TMD23-Ub (RFP-TMD23-
UbAGG). Interestingly, the expression of Box-GFP-
UbAGG in both tobacco protoplasts (Figure 4A) and
leaves (Figure 4D) revealed a clear PM localization
(Figure 4A and 4D) that was indistinguishable from the
PM reporter Box-GFP (Figure 4B and 4E). Endosomal
signals, as seen with the internalized Box-GFP-Ub con-
struct (compare Figure 4A to 4C and 4D to 4F), were
never observed. This suggests that the terminal glycine
residues of ubiquitin are required for internalization of
this molecule from the PM. The differential transport
properties of Box-GFP-Ub and Box-GFP-UbAGG fur-
thermore demonstrate that ubiquitin acts as a specific
sorting signal, rather than merely triggering a degrad-
ation response due to the individual properties of the re-
porter. In sharp contrast, deletion of the terminal
glycine residues in RFP-TMD23-UbAGG did not inhibit
the ubiquitin-mediated internalization, as judged by the
unperturbed vacuolar delivery of this reporter in proto-
plasts and in planta (Figure 4G and 4J; compare 4G to
H and I and compare 4] to K and L).

Ubiquitin directs Golgi-localized proteins to the vacuole

The previous results show that the fusion of ubiquitin to
the cytosolic tail of PM reporters is sufficient for intern-
alization, but the transport of the two AGG variants dif-
fers significantly. Therefore, it seemed plausible to
assume that these differences are due to their different
transport routes towards the PM. In contrast to the dir-
ectly targeted Box-GFP-UbAGG, the RFP-TMD23-
UbAGG transits the secretory pathway. We hypothe-
sized that this reporter might already be sorted into the
vacuolar transport route from a compartment en route
to the PM. Therefore, we have used the Golgi marker
RFP-TMD20 (TM20 in [48]) (Figure 5A) to generate the
ubiquitin fusion protein RFP-TMD20-Ub (Figure 5B).
Expression of RFP-TMD20 in tobacco protoplasts
revealed a punctate pattern (Figure 5C), which showed
colocalization with the Golgi marker Manl-GFP
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(Additional file 4). In contrast, expression of the ubiqui-
tin fusion (RFP-TMD20-Ub) yielded a strong vacuolar
signal  (Figure 5D), but punctae, representing
wortmannin-sensitive LEs/MVBs (inset in Figure 5D),
could also be observed. Interestingly, the ubiquitin fu-
sion construct lacking both C-terminal glycine residues
(RFP-TMD20-UbAGG) was equally well delivered to the
vacuole (Figure 5E). The same localization patterns for
RFP-TMD20, RFP-TMD20-Ub and RFP-TMD20-
UbAGG were observed in planta (Figure 5F-H), suggest-
ing that ubiquitin-mediated vacuolar sorting exhibits dif-
ferential demands on the C-terminus of ubiquitin,
dependent on the location within the secretory pathway.

To analyze vacuolar delivery biochemically, we have
compared the GFP-based reporters with the soluble
vacuolar molecule GFP-sporamin (Figure 6A), which
yields a characteristic vacuolar degradation product of
GFP, termed GFP core [50]. Since vacuolar RFP does not
yield a degradation product, we have compared all RFP-
based reporters with the soluble vacuolar protein spRFP-
AFVY, serving as a size marker for vacuolar RFP
(Figure 6B). Protein gel blot analysis with GFP/RFP anti-
bodies reveals specific signals of the calculated molecular
weight for each of the reporters (Figure 6A and 6B). As
concluded from the CLSM results (Figure 1, 2), neither
Box-GFP-Ub, Box-GFP-UbAGG nor the cytosolic GFP-
Ub vyields a signal in size of the GFP core, as indication
for the lack of vacuolar arrival. All ubiquitin fusions
show an additional signal, which is in each case about
8 kDa smaller than the calculated weight of the fusion
protein (asterisks), approximating that of monomeric
ubiquitin. In contrast to the GFP-fusions, all RFP-
ubiquitin constructs show an additional third signal,
which is precisely the size of the vacuolar reporter
spRFP-AFVY. Together with the CLSM localization, the
appearance of this lower molecular weight form indi-
cates vacuolar arrival. This suggests that ubiquitin is
capable to target proteins from the PM into the endocy-
tic route but also targets proteins from the Golgi into
the vacuolar transport pathway.

Ubiquitin-mediated transport of membrane proteins to
the vacuole occurs via the MVB

We wanted to test whether ubiquitin-facilitated
transport from the PM and from the Golgi utilizes
the ESCRT-dependent vacuolar route. It has been
shown that expression of AtSKD1(AQ), a dominant-
negative mutant of the ESCRT-III-associated AAA-
ATPase, inhibits arrival of soluble vacuolar cargo
[56]. In control experiments, co-expression of either
of the vacuolar targeted RFP-TMD23-Ub and RFP-
TMD20-Ub with the soluble vacuolar reporter
aleurain-GFP [57] showed that both the membrane
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RFP-TMD23-UbAGG RFP-TMD23-Ub RFP-TMD23

Figure 4 The C-terminus of ubiquitin is important for PM internalization. Tobacco mesophyll protoplasts and leaf epidermal cells expressing
the plasmids indicated below. A. Box-GFP-UbAGG is not internalized and localizes to the PM like Box-GFP (B) and does not localize to punctate
structures like Box-GFP-Ub (C). D-F: Localization of the reporters given above in planta, confirming the results from (A-C). Vacuolar transport of
RFP-TMD23-UbAGG is not affected by the AGG mutation (G), compared to RFP-TMD23-Ub (H). Its phenotype thus differs from that of the PM
marker RFP-TMD23 (I). J-L: Confirmation of the localization from G-I in leaf epidermal cells. Scale bars=5 um.




Scheuring et al. BMC Plant Biology 2012, 12:164
http://www.biomedcentral.com/1471-2229/12/164

Page 9 of 17

Golgi lumen
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RFP-TMD20

RFP-TMD20

of the localization from C-E in leaf epidermal cells. Scale bars=5 pm.

RFP-TMD20-Ub

RFP-TMD20-Ub

Figure 5 Ubiquitin-dependent transport from the Golgi to the vacuole. A-B: Schematic representation of the constructs RFP-TMD20 (A) and
RFP-TMD20-Ub (B). Tobacco mesophyll protoplasts and leaf epidermal cells expressing the plasmids indicated below. RFP-TMD20 (C) exhibits a
punctate pattern, while RFP-TMD20-Ub (D) is efficiently transported into the vacuolar lumen and also accumulates in ring-like structures after
wortmannin-treatment (+WM; inset in D). Vacuolar transport of RFP-TMD20-UbAGG (E) and RFP-TMD20-Ub is indistinguishable. F-H: Confirmation

RFP-TMD20-UbAGG

RFP-TMD20-UbAGG

reporters and aleurain-GFP are delivered equally well
to the vacuole (Figure 7A-C and Figure 7D-F, re-
spectively). In the presence of AtSKD1(AQ), which
inhibits vacuolar delivery of the soluble vacuolar
protein GFP-sporamin and induces its secretion
(Figure 7G), none of these reporters reached the
vacuole but instead accumulated in intracellular
compartments (Figure 7H and 7I).

Discussion

Targeting of membrane proteins in the secretory

pathway

Secretion into the apoplast is regarded as being the “de-
fault pathway” for soluble proteins in the secretory path-
way [58,59]. For plant membrane proteins, the situation
is not that clear. It has been suggested that the tonoplast
represents the default destination for this class of
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Figure 6 Western-blot analysis to monitor for vacuolar delivery. Tobacco mesophyll protoplasts were transfected with 10, 30 or 100 pg

plasmid DNA encoding for each marker/reporter as indicated below or mock-transfected. Gel blot analysis using GFP (A) or RFP antibodies (B)
reveals signals corresponding to the calculated molecular weight of the expressed proteins. Signals which might correspond to reporters with
proteolytically cleavaged ubiquitin moiety are indicated by asterisks. Arrowheads indicate the size of the vacuolar GFP core and vacuolar RFP.

proteins [60,61] but this concept has recently been chal-
lenged. It was shown that mutants of the ER-resident p24
protein family that lack the di-lysine ER retrieval signal in
their cytosolic domain and thus escape their first instance of
sorting at the Golgi apparatus are indeed transported to the
tonoplast but are also efficiently transported to the PM [62].
This dual localization of membrane proteins at the PM and
the tonoplast is not restricted to mutants which have lost a
specific sorting signal, since it can also be observed when
fluorescent PM proteins like the plasma membrane ATPase
(PMA) or the LOW-TEMPERATURE-INDUCIBLE PRO-
TEIN (LTI6a) are analyzed [24]. The reasons for this differ-
ential localization are unclear as the sorting signals for these
proteins have not yet been deciphered. It has also to be con-
sidered that all of these functional proteins are subject to
cellular regulation mechanisms like quality control and turn-
over, which could contribute to vacuolar localization.

Although universal sorting signals for membrane pro-
teins that allow for compartment-specific targeting are
largely unknown, it has been demonstrated that the length
of the TMD provides sufficient sorting information for tar-
geting type-I proteins either to the ER, the Golgi or the PM
[48]. This property has also been applied to the plant vacu-
olar sorting receptor (VSR) BP80, which localizes to the
TGN/EE and the MVB/LE. In this case, various constructs
carrying length-modified BP80-TMDs, but lacking the cyto-
solic tail, never deviated from this “default pathway”, sug-
gesting that sorting into the vacuolar route requires
additional information [48]. These examples furthermore
show that the final location of a membrane protein is the
result of a combination of sorting signals. For these reasons,
we have decided to analyze the role of ubiquitin in protein
targeting by the use of translational ubiquitin fusions, mim-
icking constitutive ubiquitination, based on reporters like
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Figure 7 Inhibition of ESCRT function inhibits vacuolar arrival of ubiquitin-modified reporters. CLSM and western-blot analysis of tobacco
mesophyll protoplasts expressing the indicated plasmids. A-F: RFP-TMD23-Ub (A-C, red) or RFP-TMD20-Ub (D-F, green). and the soluble vacuolar
marker aleurain-GFP (green) colocalize in the vacuole. (G) The vacuolar GFP core of GFP-sporamin (open arrowhead) and the cellular transit form
(closed arrowhead) disappear when coexpressed with 10 pg plasmid DNA encoding for the dominant-negative mutant AtSKD1(AQ). (-) mock-
transfected, (+) positive control. H-I: AtSKD1(AQ) expression inhibits vacuolar delivery of RFP-TMD23-Ub (red) and aleurain-GFP (green) (H) or RFP-
TMD20-Ub (red) and aleurain-GFP (green) (1). All reporters accumulate in punctae (arrowheads) under these conditions.

.

J

Box-GFP or RFP-TMD20/23, which possess minimal
but defined sorting signals for either the PM or the
Golgi. The use of reporters that are post-translation-
ally inserted into the PM (BOX-GFP) and reporters
that are transported via the secretory pathway (RFP-
TMD23/20) permits the exposure of identical sorting
signals at different intracellular locations and thus

allows the analysis of specific sorting signals for in-
dividual transport steps within the cell.

Ubiquitin as a sorting signal for the endocytic pathway

We have addressed the question as to whether ubiquitin
functions as a sorting signal for the endocytic pathway in
plants by generating ubiquitin fusion proteins based on the
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PM-localized markers Box-GFP and RFP-TMD23. Despite
differences in their transport towards the PM — Box-GFP is
inserted post-translationally, whereas RFP-TMD23 transits
via the secretory pathway — both molecules are internalized
when fused to ubiquitin and colocalize with endosomal
markers. This demonstrates that both reporters are indeed
sorted into the endocytic transport route, which has been
suggested to comprise the TGN/EE and the MVB/LE as
transit compartments [5,37,63].

Even though both reporters undergo endocytosis, there
are differences in their final location: RFP-TMD23-Ub
yields fluorescent signals in the vacuolar lumen, while Box-
GFP-Ub only reaches the MVB/LE and is never detected in
the vacuole. One explanation for the failed vacuolar delivery
of Box-GFP-Ub could be that this reporter is released from
the MVB/LE membrane into the cytosol. This is possible,
since the attachment of proteins to membranes via the Box
sequence harbors two weak points: first, the reversibility of
the membrane anchorage [64] and second, the specific
interaction of the polybasic region with phospholipids of
the membrane, which mediates the specificity during the
recruitment [39,65]. In this regard, a gradual change in the
lipid composition of the compartments along the endocytic
route could trigger a release of the reporter from the mem-
brane into the cytosol.

A translational ubiquitin fusion protein, which is post-
translationally inserted into the PM via a lipid modifica-
tion, has previously been used as a reporter to
analyze internalization events in mammalian cells
[55]. After expression, the reporter was found to be
poly-ubiquitinated, while a derivative of the reporter that
lacked the C-terminal glycine residues was not. However,
both reporters appeared to be equally well internalized, in-
dicating that a single ubiquitin moiety is sufficient to act
as an endocytic sorting signal [55]. Inspired by this work,
we have generated reporter derivatives lacking the C-
terminal glycines of the ubiquitin. Box-GFP-UbAGG loca-
lizes exclusively to the PM and is not internalized, com-
pared to the Box-GFP-Ub. Therefore it is tempting to
speculate that in plants, a single ubiquitin may not be suf-
ficient to mediate sorting into the endocytic pathway. This
view is also in agreement with recent findings based on
translational ubiquitin fusions of the Arabidopsis plasma
membrane ATPase (PMA-EGFP-UB), mutagenized in the
ubiquitin moiety to prevent poly-ubiquitination [24]. The
mutants, some of which were also lacking both C-
terminal glycine residues, localized to the PM in addition
to the vacuole in the majority of the cells, while a non-
mutagenized ubiquitin fusion was mainly found in
vacuoles and punctae but not at the PM. This suggests
that the endocytic uptake of putatively mono-
ubiquitinated reporters was also less efficient. This inter-
pretation is also supported by the recent demonstration
that the endocytic uptake and thus the stability of PIN2
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depends on poly-ubiquitin chains [23] and the observation
that IRT1 mutants, which lack two putative ubiquitination
sides, fail to be internalized and accumulate at the PM in-
stead [21]. This furthermore indicates that both multi-
ubiquitination and poly-ubiquitination can act as internal-
ization signals. Surprisingly, the transmembrane reporter
RFP-TMD23-UbAGG is still efficiently transported to the
vacuole. At first glance, these observations are contradict-
ory and difficult to reconcile, since both reporters carry
identical sorting signals. However, in case of Box-
GFP-UbAGG, the signal is exclusively displayed at
the PM, whereas in case of RFP-TMD23-UbAGG,
the signal is displayed throughout its journey to-
wards the PM and might thus be captured and redir-
ected before reaching the PM.

The finding that fusion of ubiquitin to a post-
translationally inserted PM resident reporter is sufficient
to trigger its internalization implies that plants possess an
endogenous machinery capable of recognizing and sorting
ubiquitin-tagged cargo. This hypothesis is supported
by the recent identification of AvrPtoB, an effector of the
plant pathogenic bacterium Pseudomonas syringae pv to-
mato DC3000, that acts as an E3 ubiquitin ligase [20]. The
authors  showed that AvrPtoB catalyzes poly-
ubiquitination of FLS2. In combination with flg22, the ef-
fector induces the internalization of the receptor, leading
to the suggestion that the degradation of FLS2 might be a
mechanism of the pathogen to overcome plant innate im-
munity [20]. The demonstration that Arabidopsis lines
lacking the cytosolic deubiquitinating enzyme AMSH3 are
impaired in vacuolar biogenesis and, consequently, fail in
vacuolar delivery of PIN2 [66] supports the significance of
endogenous ubiquitin-mediated sorting processes.

Ubiquitin as a vacuolar sorting signal

Taking into consideration that the deletion of one sort-
ing signal redirects an ER-resident protein to the PM or
an MVB/LE localized VSR to the Golgi, it is plausible to
assume that the addition of a sorting signal is capable of
overriding an existing one. The fusion of UbAGG to the
cytosolic tail of PM marker RFP-TMD23 represents just
such an additional sorting signal, while it is the only
existing sorting signal in the context of the post-
translationally inserted PM reporter Box-GFP. Since
the signal UbAGG fails to drive internalization of
Box-GFP-UbAGG, it is plausible to assume that this
also occurs in case of RFP-TMD23-UbAGG. How-
ever, REP-TMD23-UbAGG was efficiently transported
to the vacuole, which was also observed for the
PMA-EGFP-UB mutants before [24], but it did not
accumulate at the PM. We therefore speculated that
a portion of the RFP-TMD23-UbAGG molecules
could have been sorted into the vacuolar pathway at
a transit compartment prior to reaching the PM. It
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was recently suggested that direct trafficking from
the Golgi to the vacuole does not significantly con-
tribute to the vacuolar transport of ubiquitinated PM
proteins, but it was also shown that a ubiquitin fu-
sion of a MVB marker (AtVSR1-EGFP-UB) is also
targeted to the vacuole [24]. If ubiquitin-dependent
sorting of membrane proteins would be restricted to
the PM, one would have to assume that ubiquitin
firstly redirects AtVSR1-EGFP-UB from the vacuolar
route towards the PM in order to trigger vacuolar
delivery via the endocytic route. To test for
ubiquitin-mediated sorting from the Golgi, we fused
ubiquitin and UbAGG to the cytosolic domain of the
Golgi marker RFP-TMD20 [48]. This marker localizes to
this compartment due to its TMD length of 20 amino acids,
and does neither progress to the PM or into the vacuolar
route. Both of the resulting reporters (RFP-TMD20-Ub and
RFP-TMD20-UbAGG) were efficiently sorted to the lytic
vacuole and did not accumulate at the PM. These
results show that ubiquitin-dependent vacuolar sorting can
occur at the Golgi. We have shown that UbAGG is insuffi-
cient to trigger the internalization at the PM. Since RFP-
TMD20-UbAGG does not accumulate at the PM, these
results show that ubiquitin-dependent vacuolar sorting of
this reporter does not occur via the PM.

The concept of ubiquitin-mediated sorting at the Golgi is
also in agreement with our previous observation that the
ESCRT-I subunit VPS28 localizes to the Golgi and the
TGN/EE in Arabidopsis root cells, but that it is absent from
MVBs/LEs, which can act as TGN-derived carriers that
connect the TGN/EE in an clathrin-independent transport
mode with the vacuole [28]. In yeast and mammals,
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ubiquitinated membrane proteins can already be recog-
nized at the TGN by GGAs (Golgi-localized, y-ear-
containing ARF-binding proteins). These clathrin adaptors
mediate protein sorting into clathrin-coated vesicles, which
deliver their cargo to EEs where it is handed over to the
ESCRT machinery [67,68]. The Arabidopsis genome, how-
ever, does not encode for GGA proteins [69]. In combin-
ation with a lack of homologous genes for ESCRT-0 and
the ESCRT-I subunit Mvb12 [70], it is plausible to assume
that the initial steps of ubiquitin-mediated sorting in plants
differ from those in mammals and yeast.

The ubiquitin-dependent vacuolar delivery of the Golgi
marker raised the question as to whether the transport of
this chimera occurs through the biosynthetic vacuolar
transport route via the TGN/EE and the MVB/LE. It was
recently shown that a dominant-negative mutant of the
ESCRT-associated AAA-ATPase SKD1 (AtSKD1(AQ)) is a
potent inhibitor of transport of the soluble vacuolar re-
porter a-amylase-sporamin [56]. This soluble reporter is
sorted into the vacuolar route via VSRs [50,71], but not via
a direct interaction with the ESCRT machinery. However,
this route collapses, if the ESCRT machinery is perturbed
[56]. We have therefore applied this tool to analyze the
transport route of the ubiquitin fusions RFP-TMD23-Ub
and RFP-TMD20-Ub in direct comparison with the trans-
port of the soluble vacuolar cargo aleurain-GFP. AtSKD1
(AQ) prevented the vacuolar arrival of aleurain-GFP and
both ubiquitin fusion proteins. This demonstrates that ubi-
quitin acts also as a sorting signal for the biosynthetic vacu-
olar route, when displayed at the surface of the Golgi/TGN.

This concept is supported by data obtained from yeast.
There, newly synthesized membrane proteins are sorted

N

TGN/EE

Vacuole

@ ubiquitin

* Membrane protein

mediated sorting is initiated at these compartments.

Figure 8 Model illustrating ubiquitin-mediated vacuolar transport of membrane proteins. Ubiquitin acts as an internalization signal at the
PM for the endocytic route but also redirects Golgi-localized membrane proteins into the vacuolar degradation pathway. Both pathways merge at
the TGN/EE. The ESCRT-I subunit VPS28 localizes to the Golgi and the TGN/EE but not to the MVB/LE [28]. This could suggest that ESCRT-
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in the TGN in a ubiquitin-based manner: proteins which
are not ubiquitinated travel to the PM, whereas those
which are, move down the endosomal pathway to the
vacuole [72,73]. This is furthermore supported by the
recent finding that the down-regulation of the PM-
localized transporter BORI1 requires the combined
action of tyrosine-based sorting signals as well as mono-
and di-ubiquitination [22]. In this scenario, it is assumed
that the tyrosine-based sorting signals confer internaliza-
tion, while ubiquitin might be employed during endoso-
mal sorting [22]. A similar role for ubiquitin has also
been shown to operate in Drosophila [74]. 1t is therefore
quite plausible that ubiquitin acts as a sorting signal
already in the Golgi/TGN of plant cells.

Conclusions

Our results show that ubiquitin acts as a sorting signal that
mediates internalization at the PM but also redirects pro-
teins from the early secretory pathway into the vacuolar
degradation route (Figure 8). This might explain how ubi-
quitin as the sole sorting signal could lead to vacuolar deliv-
ery in a transport route that spans multiple compartments.
Ubiquitin-mediated sorting at the Golgi/TGN might also
hint to the existence of a ubiquitin-mediated, ESCRT-
driven mechanism to enable the turnover of membrane
proteins in the early secretory pathway, at a location be-
yond the ER-associated degradation (ERAD) pathway.

Methods

Plant materials

Nicotiana tabacum var. SR1 was grown under sterile con-
ditions as previously described [75]. For leaf infiltrations,
Nicotiana benthamiana was grown 5-6 weeks on soil
Wortmannin-treatment (30 uM) occurred for 1 h.

Recombinant plasmid production

The following plasmids were used: Ara6-RFP [40], YFP-
SYP61 [41], Manl-RFP and Manl-GFP [42], GFP-BP80
[50], aleurain-GFP [57], spRFP-AFVY and spL-RFP [49]
and AtSKD1(AQ) [56].

Coding sequences were amplified by PCR from either
first-strand cDNA [71] or plasmid DNA. Recipient vectors
were cut according to restriction sites of fragments and
dephosphorylated prior to ligation. All primers used are
shown in Additional file 5: Table S1. The Escherichia coli
strain MC1061 [76] was used for all plasmid amplifications.
Box-GFP-Ub (pDS10) was assembled by ligating the Box
coding sequence of AtROP10 [AT3G480409] - generated
by annealed oligonucleotides -, the PCR-amplified GFP
from pSN9 [32] and ubiquitin [AT5G03240] amplified from
Arabidopsis c¢cDNA into pAmy-HDEL [58]. Box-GFP-
UbAGG (pDS21) was amplified from pDS10 and cloned
into pDS10 to replace Box-GFP-Ub. Box-GFP (pDS9) and
cytosolic GFP-Ub (pFK17) were amplified from pDS10 and
cloned into pAmy-HDEL and pPP11 ([71], respectively.
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RFP-TMD23 [77] and RFP-TMD20 (TM20 in [48]) were
first subcloned into pPP11, resulting in pFK12 and pFK23.
The coding sequence for ubiquitin and UbAGG were amp-
lified from pDS10 and ligated into pFK12 and pFK23,
resulting in RFP-TMD23-Ub (pFK13), RFP-TMD20-Ub
(pFK24), RFP-TMD23-UbAGG (pFK19) and RFP-TMD20-
UbAGG (pFK25).

For leaf infiltrations, expression cassettes were subcloned
into the binary Ti vector pGreenll 0029 [78]. This vector
was previously modified to eliminate an intrinsic Nhel site
and to introduce MCS-flanking EcoRI and HindIll sites
(pCN1). RFP-Hubl (pFK26) was generated by PCR amplifi-
cation of the C-terminal 1860 bps of CHC-1 [AT3G11130]
from ¢cDNA and ligation with the amplified RFP sequence
from pFK13 into pGD5 [32].

Transient gene expression, isolation of vacuoles, and leaf
infiltration

Mesophyll protoplasts were isolated from 6-8 week-old
plants and transfected via electroporation as described pre-
viously [77]. Unless otherwise stated, 10 pg of plasmid
DNA were used for transfection followed by incubation for
24 h. Vacuoles were isolated 36 h after transfection as
described previously [71]. Tobacco leafs were infiltrated
with  Agrobacterium tumefaciens (strain GV3101) as
described previously [79].

Protein extraction and immunoblot analysis

Cellular proteins were extracted in a final volume of 250
pL in 100 mM Tris pH 7.8, 200 mM NaCl, 1 mM EDTA,
2% (v/v) B-Mercaptoethanol and 0.2% (v/v) Triton X-100
by sonication. SDS-PAGE and immunoblot analysis were
performed as described previously [75]. Antibodies were
used as follows: anti-GFP (rabbit polyclonal [35])
1:10,000 and anti-RFP (rat monoclonal, ChromoTek)
1:5,000. Peroxidase-conjugated antibodies against rabbit
IgGs (Millipore) or rat (Sigma-Aldrich) were used
according to the manufacturer. Signals were detected by
the use of AceGlow (PEQLAB) in combination with the
Chemocam imager (Intas).

Confocal microscopy and immunofluorescence labeling
Imaging was performed using a Zeiss Axiovert LSM 510
meta CLSM as described previously [28]. Post-acquisi-
tion image processing was performed using the Zeiss
LSM image browser and Corel-DrawX4. For the quanti-
fication of Box-GFP-Ub internalization, fluorescent
punctate signals present in the cortical cytoplasm of n =
58 protoplasts were considered. Error bars were calcu-
lated as the standard deviation of the mean value and
the p-value was computed using the ¢-test calculator
from http://www.graphpad.com/.
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Statistical analysis of CLSM localization data

For statistical analysis, the PSC colocalization plug-in
[80] for Image] [81] was used to calculate the linear
Pearson correlation coefficient (rp) and the nonlinear
Spearman’s rank correlation coefficient (rs) of red and
green fluorescent signals. Values were between —1 (nega-
tive correlation) and +1 (positive correlation). The fluor-
escence values of all pixels across the two channels of all
analyzed signals were depicted in a scatterplot. Masking
of areas of was performed with the Image] brush tool as
described by French et al. (2008). For every analyzed
image, punctuate signals were selected and the threshold
level, under which pixels were treated as background
noise, was set to 10. At least 6 individual cells and a
minimum of 100 signals were considered for every
experiment.

Additional files

Additional file 1: Analysis of the Box-GFP-Ub expression pattern.
Tobacco mesophyll protoplasts were transfected with plasmids encoding
for Box-GFP-Ub. The reporter was expressed for 24 h prior to CLSM
analysis. Scale bars =5 um. Fluorescence signals of a tobacco protoplast
are shown in a cortical view (A), in an optical section (B) and in a 3D
projection (C), revealing localization of Box-GFP-Ub at the plasma
membrane and in punctae.

Additional file 2: Quantitative analysis of the localization of Box-
GFP-Ub and RFP-TMD23-Ub. Tobacco mesophyll protoplasts were
transfected with plasmids encoding for fluorescent markers/reporters as
indicated below. Fluorescent proteins were expressed for 24 h prior to
CLSM analysis. Scale bars =5 um. For quantification, the PSC coefficients
(rp and rs) were calculated after analysis of at least 6 representative
protoplasts and a minimum of 100 signals. The level of colocalization
ranges from +1 for perfect correlation to —1 for negative correlation. The
fluorescence values of all pixels across the two channels of all analyzed
signals were depicted in a scatterplot. A: Box-GFP-Ub and the TGN-
marker YFP-SYP61 show rp and rs values in a range that indicates
colocalization. B: While the same is true for coexpression of Box-GFP-Ub
and the MVB-marker Ara6-RFP, no positive correlation was observed with
the Golgi marker Man1-RFP (C). Coexpression of RFP-TMD23-Ub with the
same endosomal markers results in similar rp and rs values compared to
A-B as predicted for an endocytic cargo molecule (D-E).

Additional file 3: Comparison of the ubiquitin-modified reporters
and soluble vacuolar cargo. Tobacco mesophyll protoplasts were
transfected with plasmids encoding for fluorescent markers/reporters as
indicated below. Fluorescent proteins were expressed for 24 h prior to
CLSM analysis. Scale bars =5 um. Aleurain-GFP is delivered to the lumen
of the vacuole (A), whereas Box-GFP-Ub reveals punctuate signals in the
cortical cytoplasm (B). spL-RFP (the linker peptide from proricin fused to
RFP, (C)) and RFP-TMD23-Ub (D) give the same expression pattern being
localized to the vacuolar lumen.

Additional file 4: Analysis of Golgi markers and modified
derivatives. Tobacco mesophyll protoplasts were transfected with
plasmids encoding for fluorescent markers/reporters as indicated below.
Fluorescent proteins were expressed for 24 h prior to CLSM analysis.
Scale bars =5 pm. A-C: Coexpression of RFP-TMD20 with the Golgi
marker Man1-GFP, demonstrating colocalization of both molecules.

Additional file 5: Table S1. Primers used for cloning.
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Additional file 1
Box-GFP-Ub

Box-GFP-Ub Box-GFP-Ub

optical section

cortical view

Additional file 1. Analysis of the Box-GFP-Ub expression pattern. Tobacco mesophyll protoplasts were
transfected with plasmids encoding for Box-GFP-Ub. The reporter was expressed for 24 h prior to CLSM analysis.
Scale bars =5 pm. Fluorescence signals of a tobacco protoplast are shown in a cortical view (A), in an optical
section (B) and in a 3D projection (C), revealing localization of Box-GFP-Ub at the plasma membrane and in
punctae.



Additional file 2

Box-GFP-Ub+YFP-SYP61

Box-GFP-Ub+Ara6-RFP

Box-GFP-Ub+Man1-RFP

ol

Additional file 2. Quantitative analysis of the localization of Box-GFP-Ub and RFP-TMD23-Ub. Tobacco
mesophyll protoplasts were transfected with plasmids encoding for fluorescent markers/ reporters as indicated
below. Fluorescent proteins were expressed for 24 h prior to CLSM analysis. Scale bars =5 pym. For quantification,
the PSC coefficients (rp and rs) were calculated after analysis of at least 6 representative protoplasts and a minimum
of 100 signals. The level of colocalization ranges from +1 for perfect correlation to —1 for negative correlation. The
fluorescence values of all pixels across the two channels of all analyzed signals were depicted in a scatterplot. A:
Box-GFP-Ub and the TGN-marker YFP-SYP61 show rp and rs values in a range that indicates colocalization. B:
While the same is true for coexpression of Box-GFP-Ub and the MVB-marker Ara6-RFP, no positive correlation
was observed with the Golgi marker Man1-RFP (C). Coexpression of RFP-TMD23-Ub with the same endosomal
markers results in similar rp and rs values compared to A-B as predicted for an endocytic cargo molecule (D-E).



Additional file 3
aleurain-GFP | B Box-GFP-Ub

RFP-TMD23-Ub

Additional file 3. Comparison of the ubiquitin-modified reporters and soluble vacuolar cargo. Tobacco
mesophyll protoplasts were transfected with plasmids encoding for fluorescent markers/ reporters as indicated
below. Fluorescent proteins were expressed for 24 h prior to CLSM analysis. Scale bars =5 pm. Aleurain-GFP is
delivered to the lumen of the vacuole (A), whereas Box-GFP-Ub reveals punctuate signals in the cortical cytoplasm
(B). spL-RFP (the linker peptide from proricin fused to RFP, (C)) and RFP-TMD23-Ub (D) give the same expression
pattern being localized to the vacuolar lumen.

Additional file 4

RFP-TMD20 | B Man1-GFP| C

Additional file 4. Analysis of Golgi markers and modified derivatives. Tobacco mesophyll protoplasts were
transfected with plasmids encoding for fluorescent markers/reporters as indicated below. Fluorescent proteins were
expressed for 24 h prior to CLSM analysis. Scale bars =5 pm. A-C: Coexpression of RFP-TMD20 with the Golgi
marker Man1-GFP, demonstrating colocalization of both molecules.



Additional file 5. Table S1. Primers used for cloning.

Oligonucleotide

Sequence (5’ — 3 direction)

Template

Recipient vector

Box-GFP-Ub (pDS10):

Box_Ncol_Clal_sense

Box_Ncol_Clal_antisense

GFP_Clal_sense

GFP_Notl_antisense

Ub_Notl_sens

Ub_Xbal_antisense

Box-GFP-UbAGG (pDS21):

Box_Ncol_sense

UbAGG_BamHI_antisense

Box-GFP (pDS9):

Box_Ncol_sense

GFP_BamHI_antisense

GFP-Ub (pFK17):

GFP_Clal_sense

Ub_BamHI_antisense

RFP-TMD20 (pFK23):

SP_Clal_sense

TMD_BamHI_antisense

RFP-TMD20-Ub (pFK24):

Ub_Bglll_sense

Ub_BamHI_antisense

RFP-TMD20-UbAGG (pFK25):

Ub_Bglll_sense

UbAGG_BamHI_antisense

RFP-TMD23 (pFK12):

SP_Clal_sense

TMD_BamHI_antisense

CATGGCAGTGAAACAAAAGGAGAAGAAGAAGAAGCA
GAAGCCTCGAAGCGGATGTCTCTCAAACATTCTGTG
TGGGAAGAATGGAT
CGATCCATTCTTCCCACACAGAATGTTTGAGAGACAT
CCGCTTCGAGGCTTCTGCTTCTTCTTCTTCTCCTTTT
GTTTCACTGC
TAGTGGATCGATGGTGAGCAAGGGCGAGGA
CCTATCGCGGCCGCCCTTGTACAGCTCGTCCATGC

AGTCTAGCGGCCGCATGCAAATCTTCGTGAAAAC

CTAGTICTAGATTATCCACCACGAAGACGGA

CGAGCTCCATGGCAGTGAAACAAAAGG

CTCTAGTGGATCCTCAACGAAGACGGAGGACGAGAT

CGAGCTCCATGGCAGTGAAACAAAAGG

TCGCGGGATCCTTACTTGTACAGCTC

TAGTGCATCGATGGTGAGCAAGGGCGAGG

AGTCGCGGATCCTTAACCACCTCTTAAACGG

AGTCTAATCGATGAGGCTTTGTAAATTCACAGCTC

AGTCTAGGATCCTTAAGATCTCTTCCTGCCGACGA

AGTCTGAGATCTATGCAAATCTTCGTGAAAAC

AGTCTAGGATCCTTATCCACCACGAAGACGGA

AGTCTGAGATCTATGCAAATCTTCGTGAAAAC

AGTCTAGGATCCTCAACGAAGACGGAGGACGAGAT

AGTCTAATCGATGAGGCTTTGTAAATTCACAGCTC

AGTCTAGGATCCTTAAGATCTCTTCCTGCCGACGA

Complementary to oligo
2)

Complementary to oligo

1)

pSN9

pSN9

cDNA

cDNA

pDS10

pDS10

pDS10

pDS10

pDS10

pDS10

TM20

TM20

pDS10

pDS10

pDS10

pDS10

T™M23

T™M23

pAmy-HDEL

pAmy-HDEL

pAmy-HDEL

pAmy-HDEL

pAmy-HDEL

pAmy-HDEL

pAmy-HDEL

pAmy-HDEL

pAmy-HDEL

pAmy-HDEL

pPP11

pPP11

pPP11

pPP11

pFK23

pFK23

pFK23

pFK23

pPP11

pPP11



RFP-TMD23-Ub (pFK13):

Ub_Bglll_sense

Ub_BamHI_antisense

RFP-TMD23-UbAGG (pFK19):

Ub_Bglll_sense

UbAGG_BamHlI_antisense

REP-Hub1 (pFK26):

mRFP_Nhel_sense

mRFP_Ncol_antisense

CHub_Ncol_sense

CHub_BamHI_antisense

AGTCTGAGATCTATGCAAATCTTCGTGAAAAC

AGTCTAGGATCCTTATCCACCACGAAGACGGA

AGTCTGAGATCTATGCAAATCTTCGTGAAAAC

AGTCTAGGATCCTCAACGAAGACGGAGGACGAGAT

AGTCTAGCTAGCATGGCCTCCTCCGAGGACG

AGTCTACCATGGCTCCAGTACTGTGGC

AAGCATCCATGGGATTCAAGAAGTTTAACTTAAA

TTCCCAGGATCCTTAGTAGCCGCCCATCGGTG

Modifications in pGreenll, generating plasmid pCN1

(1) Point mutation in the nos-Kan selection cassette to remove intrinsic Nhel site:

nos_Prom_M_sense

nos_Prom_M_antisense

(2) Deletion of the multiple cloning site:

pGIIBB_Hindlll_sense

pGIIBB_EcoRI_antisense

AAGAAATATTTGCTATCTGATAGTGACCTTA

TAAGGTCACTATCAGATAGCAAATATTTCTT

CGCCACAAGCTTGGAGCTCCAGCTTTTG

GGTACGGAATTCGCCCTATAGT

pDS10 pFK12
pDS10 pFK12
pDS10 pFK12
pDS10 pFK12
pFK13 pGD5
pFK13 pGD5
cDNA pGD5
cDNA pGD5

pGreenll 0029

pGreenll 0029

pGreenll 0029, modified in (1)

pGreenll 0029, modified in (1)



9.3 Vacuolar sorting receptors transport ligands from the ER and the Golgi to
the TGN/EE

Fabian Kinzl, Simone Friholz, Florian FaRler, Beibei Li, and Peter Pimpl

(Submitted manuscript)



Vacuolar sorting receptors transport ligands from the ER and the
Golgi to the TGN/EE

Fabian Kiinzl, Simone Friiholz, Florian FaRler, Beibei Li and Peter Pimpl*

Center for Plant Molecular Biology (ZMBP), University of Tubingen, Germany

"Corresponding author:

Peter Pimpl, ZMBP, University of Tubingen, Auf der Morgenstelle 32, D-72076 Tibingen
Tel: +49-7071-2978889

Fax: +49-7071-295797

e-mail: peter.pimpl@zmbp.uni-tuebingen.de

Running title: Compartment-specific analysis of VSR-ligand interaction



Abstract

Sorting of soluble vacuolar proteins is of vital importance for plant cells and requires
that vacuolar sorting receptors (VSRs) bind and release their cargo ligands.
However, it is controversial, where in the endomembrane system these interactions
occur. Here, we present an in vivo analysis of VSR-ligand interactions for all
compartments of the vacuolar transport route. For this, we have developed
compartment-specific VSR sensors and performed FRET-FLIM analysis to monitor
for ligand binding. We show that VSRs bind ligands in the ER and in the Golgi, but
not in the trans-Golgi network/early endosome (TGN/EE) nor in multivesicular late
endosomes (MVBs/LEs). This implies that post-TGN/EE trafficking of ligands towards
the vacuole is VSR-independent. We verify this by demonstrating that also non-VSR-
ligands are delivered to the vacuole from the TGN/EE after endocytic uptake. Thus,
we postulate that vacuolar sorting receptors transport ligands from the ER and the
Golgi to the TGN/EE, followed by a VSR-independent default flow onwards to the

vacuole.



Introduction

Soluble vacuolar proteins and their corresponding vacuolar sorting receptors (VSRs)
were identified in plants more than twenty years ago'™. However, the mechanism of
VSR-mediated sorting as implemented in the plant endomembrane system5 is still not
yet understood. Vacuolar sorting signals of soluble plant proteins are encoded by
short peptide motifs within the primary amino acid sequence1'3. The first VSR was
isolated from detergent-solubilised Golgi and clathrin-coated vesicle (CCV) fractions
at neutral pH using synthetic peptides containing sorting signals®. VSRs are type |
transmembrane proteins encoded by a gene family unique to plants®®. They bind
ligands via a structured N-terminal luminal binding domain (LBD) consisting of a
protease associated domain, a central domain and three epidermal growth factor
repeatsg’ ' VSRs also carry sorting signals for their own transport in the cytosolic C-
terminus’'"®. Based on assumed similarities to the lysosomal sorting machinery in
mammals concerning receptor localisation and pH dependency of ligand binding, it
was proposed almost twenty years ago that VSR-mediated sorting in plants occurs
via CCV-facilitated transport from the trans-Golgi to a prevacuolar compartment,
where ligands dissociate due to the lower pH.

In the intervening years, major discoveries have challenged this model: the trans-
Golgi network (TGN) in plants was identified as the early endosome (EE)™ *° that is
distinct from the Golgi stack'®. This hybrid structure (TGN/EE) has now been shown
to be the most acidic compartment en route to the vacuole''®. The TGN/EE
harbours the retromer complex necessary for recycling of the VSRs?® 2'. Most
important, however, was the demonstration that the TGN/EE is the source for the
biogenesis of the prevacuolar compartment, the multivesicular late endosome
(MVB/LE), which confers transport by fusion with the vacuole®?. These recent
findings still await integration into the proposed concept of VSR-mediated sorting. In
order to determine the compartments that constitute the framework for the bi-
directional receptor transport, it is of paramount importance to firstly identify the
locations at which VSRs bind or release their ligands.

To this end, we have developed genetically encoded VSR sensors that allow for non-
invasive compartment-specific detection of VSR-ligand interactions in vivo. Hereto,
we assembled VSR sensors from a soluble LBD and compartment-specific green
fluorescent protein (GFP)-containing membrane markers via a GFP-binding VyH

domain of a heavy-chain antibody from Camelidae sp., termed nanobody®. We
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monitored for VSR-ligand interaction using red fluorescent protein (RFP) ligands in a
comprehensive approach, combining localisation analysis with Forster resonance
energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM). With this
novel strategy, we were able to show that VSRs bind ligands only in the ER and in
the Golgi stack, but not in post-Golgi compartments such as the TGN/EE or the
MVBI/LE. This suggests that post-TGN/EE trafficking of soluble proteins towards the
vacuole is independent of VSR-ligand interactions. Confirmation of this conclusion
was provided by identifying the vacuole as being the default location for soluble
proteins of the endocytic route that merges with the biosynthetic vacuolar route at the
TGN/EE. Consequently, we postulate a two-stage process for vacuolar transport of
soluble proteins. Firstly, VSRs confer the transport of ligands to the TGN/EE,
followed by a VSR-independent default flow onwards to the vacuole via budding of

MVBs/LEs and their fusion with the vacuole.

RESULTS

Compartment-specific targeting via nanobody-mediated protein assembly

The challenge in using genetically encoded reporters for non-invasive compartment-
specific analysis in vivo is to achieve their precise targeting®. This is particularly true
for the analysis of the Golgi stack, the TGN/EE and the MVB/LE, since sorting signals
specific for these compartments are largely unknown. A common targeting strategy is
the use of translational fusions between reporter domains and membrane marker
proteins. This strategy is however subject to topology restrictions of the fusion
partners._In this regard, the N-terminal LBD of the type | VSRs can only be fused to
type | membrane marker proteins®, which are known only for the ER and MVB/LE
but neither for the Golgi stack nor the TGN/EE. To overcome these constraints, we
have developed a targeting strategy based on nanobody-mediated protein assembly.
To demonstrate successful targeting, we have generated a construct consisting of a
fluorescent LBD fused to an anti-GFP nanobody (Nb)®® as a soluble VSR (LBD-RFP-
Nb) that can be used in combination with epitope (GFP)-tagged membrane marker
proteins to assemble compartment-specific VSR sensors in vivo (Fig. 1a). To rule out
that the soluble VSR bears intrinsic sorting signals that compromise targeting, we first
analysed its transport properties (Fig. 1b-d). Fluorescence signals of the LBD-RFP-
Nb are largely absent in cells but appear only when secretion out of the ER is

prevented by Sec12 overproduction’’. To test for nanobody-mediated protein
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assembly in all compartments en route to the vacuole, we have expressed the
soluble VSR with membrane anchors for the ER, the Golgi, the TGN/EE and the
MVBI/LE (Fig. 1e-i). In all cases, strong red fluorescence signals from the LBD-RFP-
Nb become detectable and colocalised precisely with the respective anchor due to
nanobody-epitope interaction at the inner leaflet of the compartmental membrane.
This is most evident for the colocalising signals at the ring-shaped periphery of the
Golgi® (Fig. 1f) and at the ring-like MVB/LE structures after treatment with the drug
wortmannin (WM)? (Fig. 1i).

The nanobody-epitope interaction persisted in all compartments tested, irrespective
of their individual biochemical properties. This is even true for the vacuole. Here, the
interaction is visualised by the emergence of vacuolar signals from the MVB/LE
anchor GFP-BP80. In this case, the nanobody stabilises the GFP core, a vacuolar
degradation product of the proteolytically cleaved GFP-domain of the anchor, which

otherwise would escape detection (Supplementary Fig. 1).

Assembled VSR sensors possess ligand-binding competence

We have generated a soluble LBD-Nb fusion protein for coexpression with the GFP-
based membrane anchors. Due to the nanobody-epitope interaction, both molecules
constitute a green fluorescent membrane protein, employed as a compartment-
specific VSR sensor. Usage of these sensors together with the RFP-tagged ligand
Aleu-RFP allows to test for receptor-ligand interactions via ligand localisation and
FRET-FLIM as an intensity-independent approach to detect FRET®. In these
experiments, binding of Aleu-RFP to the LBD triggers close proximity of both
fluorophores and thus FRET becomes possible. In this situation, excited-stage
energy from the donor GFP upstream of the LBD is transferred to the acceptor RFP
of the ligand, thereby reducing the fluorescence lifetime of GFP*. Consequently, lack
of ligand binding does not alter the fluorescence lifetime (Fig. 2a).

During the course of VSR-mediated sorting, ligand binding is reversible. Therefore,
we expected to identify compartments en route to the vacuole that either support or
restrict ligand binding. To rule out that the experiments were compromised by
differences in the ligand-binding competence of the LBD-Nb in the context of different
membrane anchors, we first confirmed the ligand-binding capability of all VSR
sensors in vitro (Fig 2b). For this, we assembled the sensors in the ER, the Golgi, the

TGN/EE and the MVB/LE (Supplementary Fig. 2) and immunoprecipitated them by
5



using GFP antibodies in bead-binding assays. For direct comparison of their ligand-
binding capabilities, we incubated the bead-bound VSR sensors with the ligand Aleu-
RFP?' at binding conditions®. In all cases, Aleu-RFP was coprecipitated while
secretory Sec-RFP in control experiments was not. This demonstrates that all VSR

sensors possess ligand-binding competence.

VSR-ligand interaction occurs in the ER but not in the MVB/LE

We have recently shown that placement of LBDs in the lumen of the ER triggers
accumulation of ligands, suggesting VSR-ligand binding®. Consistently, assembly of
VSR sensors in the ER also retains the ligand Aleu-RFP, preventing its delivery to
the vacuole (Fig. 3a,b). To test whether this accumulation is indeed due to VSR-
ligand interaction, we have performed FRET-FLIM. The analysis revealed a
significant reduction of the GFP lifetime within the VSR sensor in the presence of the
ligand, as readout for the occurring VSR-ligand interaction. Fluorescence lifetime was
not influenced in control experiments either by the non-ligand Sec-RFP or in the
absence of the LBD (Fig. 3c and Supplementary Fig. 3a). This demonstrates that the
accumulation of ligands in the ER is due to interaction with the VSR sensors and thus
identifies the ER as a compartment that promotes VSR-ligand binding.
Receptor-mediated transport of ligands is completed by their release. With the
MVBI/LE being the last morphologically characterised compartment en route to the
vacuole, ligands should be released from their receptors at the latest in this
compartment. At steady-state conditions, Aleu-RFP localises to the MVB/LE in
addition to the vacuole, which is not altered by the LBD-Nb after sensor assembly
(Fig. 3d,e). Therefore, it is difficult to judge VSR-ligand interactions in this
compartment solely by localisation. FRET-FLIM analysis however revealed that these
colocalising ligands do not reduce the fluorescence lifetime of the VSR sensor (Fig.
3f and Supplementary Fig. 3b). Reduction of lifetime can only be triggered in control
experiments by the direct attachment of RFP via the nanobody (LBD-RFP-Nb,
compare to Fig. 1h). This demonstrates that the VSR sensors do not bind ligands in
this compartment. To extend the analysis, we applied the drug wortmannin (WM)
which induces enlargement of MVBs/LEs by homotypic fusion®. The resulting ring-
like structures now reveal a differential distribution of fluorescence, with signals from
the VSR sensor being present at the limiting membrane while signals from Aleu-RFP

locate to the compartmental lumen (Fig 3g). This also suggests that ligands do not
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bind to VSRs in this transit compartment towards the vacuole, since this would
indeed require colocalisation (compare to Fig. 1i). Together, these data demonstrate
that ligands do indeed interact with the VSR sensors in the ER and that they do not
interact in the MVB/LE. These findings furthermore reveal that only a combination of
localisation analysis and FRET-FLIM allows assessing whether a given compartment

supports or restricts VSR-ligand binding.

VSR-ligand interaction occurs in the Golgi but not in the TGN/EE

Having identified the ER as a compartment that supports ligand binding and the
MVB/LE as compartment that does not, we next tested the Golgi and the TGN/EE for
possible VSR-ligand interactions. The Golgi marker Man1-GFP never colocalises
with Aleu-RFP, whose punctate signals represent MVBs/LEs (Fig. 4a, compare to
Fig. 3d,g). Assembly of VSR sensors in the Golgi however causes colocalisation of
Aleu-RFP with all GFP-labelled VSR sensors (Fig. 4b). These colocalising signals
appear in addition to the RFP signals from punctate MVBs/LEs and the vacuole. The
redistribution of Aleu-RFP to the Golgi can be emphasised by the employment of
transport competitors for the endogenous VSRs*?, which reduce vacuolar delivery.
The competitor HA-BP80, a HA-epitope-tagged LBD-deletion mutant of BP80,
reduces RFP signals in the MVB/LE and in the vacuole, but does not alter the Golgi-
colocalisation of the VSR sensors with Aleu-RFP (Fig. 4c). The colocalising signals at
the inner leaflet of the Golgi membrane are similar to the signals previously seen for
the LBD-RFP-NDb targeted to this compartment (compare to Fig. 1f). This suggests an
interaction between the sensors and ligands. FRET-FLIM analysis revealed that the
ligand Aleu-RFP significantly reduces the fluorescence lifetime of the VSR sensor
(Fig. 4d and Supplementary Fig. 4a). This reduction depends on the presence of the
LBD, demonstrating that the Golgi-localisation of Aleu-RFP is caused by interaction
with the VSR sensor.

The situation in the TGN/EE yields another picture. Here, assembly of VSR sensors
does not cause colocalisation of the ligand Aleu-RFP (Fig. 5a-c), questioning the
occurrence of VSR-ligand interactions in this compartment. FRET-FLIM analysis of
the TGN/EE-localising VSR sensor revealed that Aleu-RFP did not influence the
fluorescence lifetime of the sensor, a situation identical to control experiments where
the non-ligand Sec-RFP was used instead (Fig. 5d, Supplementary Fig. 4b). FLIM

data of the assembled VSR sensors in different compartments revealed different
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lifetimes, which are longest in the ER and shortest in the TGN/EE. Fluorescence
lifetime depends on the pH33 and therefore reflects the relative compartmental pH,
which is the highest in the ER (pH 7.1-7.5) and the lowest in the TGN/EE (6.3-5.6)""
% To demonstrate that protein-protein interactions can shorten the lifetime even in
the TGN, we attached the red fluorescent LBD (LBD-RFP-Nb) via nanobody-epitope
interaction to the membrane anchor SYP61-GFP. This control confirmed the
assembly of VSR sensors in the TGN/EE as illustrated in Fig. 1g and proves that the
principle of FRET-FLIM interaction analysis is also applicable to this compartment
(Fig. 5d).

Together, these data favour the idea that VSRs and ligands do not interact in the
TGN/EE. Consequently, it is tempting to speculate that the VSRs in this compartment
have already released their ligands. This however would imply that these VSRs did
bind ligands upstream of the TGN/EE. To verify this hypothesis, we blocked the
arrival of the TGN/EE-targeted VSR sensor with the drug brefeldin A (BFA), causing
retention of sensors and ligands in the ER (Fig. 5e). BFA-induced ER localisation
causes a drastic increase of the fluorescence lifetime of SYP61-GFP-based sensors,
with values being identical to those of ER-targeted GFP-CNX-based sensors
(compare to Fig. 3c). Under these conditions, coexpressed Aleu-RFP strongly
reduced the fluorescence lifetime of the SYP61-GFP-based sensor, thus
demonstrating ligand binding. This does not occur in the presence of Sec-RFP (Fig.
5f, Supplementary Fig. 4b). The capability of the TGN/EE-targeted VSR sensor to
bind ligands in the ER was furthermore confirmed by coimmunoprecipitation
experiments (Fig. 5g). Here, only BFA-triggered ER-localisation of the VSR sensor
resulted in coimmunoprecipitation of the ligand Aleu-RFP, which does not occur if the
sensor localises to the TGN/EE. (Fig. 5g, compare to Fig.3a-c). Altogether, our data
demonstrate that VSRs bind their ligands very early in the secretory pathway and

release ligands upon arrival in the TGN/EE.

VSRs do not mediate post-TGN/EE transport of soluble proteins to the vacuole
The compartment-specific analysis identified the ER and the Golgi as compartments
that promote VSR-ligand binding while the TGN/EE and the MVBI/LE restrict this
interaction. Consequently, this suggests that VSRs do not contribute to the post-

TGN/EE transport of soluble proteins towards the vacuole. Receptor-independent



transport from the TGN/EE implies that this route does not require sorting signals and
is thus the default route for all soluble proteins.

To test for this hypothesis, we have developed a strategy to analyse post-TGN/EE
transport of soluble proteins lacking vacuolar sorting signals. Since these signals are
required for the VSR-mediated sorting to the TGN/EE via the biosynthetic pathway,
we took advantage of the early endosomal properties of the TGN/EE and targeted
soluble proteins to the TGN/EE via the endocytic route. For these experiments, we
used protoplast-secreted triple (3x) RFP from the culture medium of 3xRFP-secreting
cells as a fluorescent reporter protein for endocytic uptake. The use of a reporter that
was secreted by protoplasts ensures that this reporter does neither carry cryptic
intrinsic vacuolar sorting signals nor signs of damage that could possibly trigger
vacuolar degradation via mechanisms of quality control later on 3* %,

Incubation of cells expressing cytosolic GFP (Cyt-GFP) with the protoplast-secreted
3xRFP results in vacuolar delivery of this reporter (Fig. 6a). Consequently, the
endocytosed reporter is recovered as soluble protein from cellular extracts and does
not cofractionate with membranes (Fig 6b). To prove that the reporter reaches the
vacuole via the TGN/EE and the MVBJ/LE, we have used the protoplast-secreted anti-
GFP nanobody fusion 3xRFP-Nb, which is also delivered to the vacuole in endocytic
uptake assays (Fig. 6c¢). This time however, we used cells expressing GFP-
membrane anchors either at the cell surface (SYP132-GFP), the TGN/EE (SYP61-
GFP) or the MVB/LE (GFP-BP80). In all cases, the reporter 3xRFP-Nb colocalised
with the respective membrane anchor due to nanobody-mediated assembly (Fig. 6d-
f), demonstrating its transport via the endocytic route. Together, this shows that
soluble proteins reach the vacuole from the TGN/EE independent of sorting
receptors, defining the vacuole as being the default location of post-TGN/EE

transport of soluble proteins.

Discussion

We have developed novel VSR sensors for analysis of VSR-ligand interactions.
These sensors assemble by a nanobody-triggered interaction from a soluble LBD-
nanobody fusion protein with an epitope-tagged compartment-specific membrane
anchor. This allows for the first time the direct linkage of the type | LBD with type-ll
membrane anchors for the Golgi and the TGN/EE, thus enabling the use of the very

same sensing protein at different locations, rather than employing VSR trafficking
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mutants that exhibit altered distributions ™ '®. We demonstrate that VSR-ligand
interactions occur in the ER and in the Golgi, but do not occur in the TGN/EE nor in
the MVBJ/LE (Fig. 6g). Our data demonstrating ligand binding in the ER and in the
Golgi are in agreement with previous observations showing that LBDs, when fused to
the ER retrieval signal HDEL®* *® or to the ER-membrane protein calnexin®, cause
the accumulation soluble vacuolar proteins. Moreover, VSRs have been isolated from
solubilised Golgi fractions with immobilised sorting signals at neutral pH4 which is
also found in these compartments'” '8,

Release of ligands was suggested to occur at low pH* and in combination with the
initial localisation of VSRs at the Golgi and at prevacuoles it was suggested that the
VSR transports the ligands between these compartments’. Since then, localisation
analysis was refined and VSRs were found in trans-Golgi cisternae®” 3, the
TGN/EE? %, the MVB/LE?® 2 “° and even the PM' %', implying that location alone is
insufficient to judge the ligand-binding status of the VSR®.

Our data show ligand binding of the SYP61-GFP-based sensor in vitro and in vivo.
This however strictly depends on its intracellular localisation, with demonstrated
binding in the ER but the complete lack thereof in the TGN/EE, suggesting that
ligands have been released. Recently, the pH values of intracellular compartments

have become available'”'®

, identifying the TGN/EE with pH values ranging from 6.3 -
5.5 as being the most acidic compartment of the vacuolar route and the MVB/LE
possessing either similar'’ or slightly more alkaline pH'®. Another key factor
modulating VSR-ligand interaction is calcium®, possibly due to conformational
changes induced by Ca®"-binding to an EGF repeat within the LBD* *?. Ca*
facilitates ligand binding and prevents release, even at a pH of 4*2, showing that Ca®*
supports ligand binding at unfavourable pH®. Experimental data on compartmental
Ca?* concentrations are scarce. The presence of Ca®" pumps in the ER and the
tonoplast suggests that concentrations are the highest there, with an estimate from
50 uM to 5 mM*, falling off to the nanomolar range in compartments en route to the
vacuole like the Golgi 4 Together, this suggests that VSR-mediated sorting depends
on an intricate interplay between pH, Ca®" and possibly other factors that differ
between the compartments in order to trigger ligand binding and release.

Release of ligands in the TGN implies that further anterograde transport to the
vacuole is independent of VSRs. This is in full agreement with the TGN-localisation of

the VSR-recycling retromer complex’® ?' and the observation that MVBs/LEs
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originate at the TGN/EE* and fuse with the vacuole. This scenario does not
necessitate VSRs for the ligands to be exported from the TGN/EE. Consequently, all
soluble proteins would share the fate of passive vacuolar delivery via the MVBJ/LE.
Indeed, our endocytic uptake assays with secreted non-ligand proteins revealed
vacuolar delivery, which occurred via the TGN/EE and the MVB/LE, thus confirming
the operation of such a passive vacuolar delivery. Together with previously reported
findings that polystyrene beads also reach the vacuole via the endocytic route it
seems justified to postulate that the vacuole is the default location for soluble
proteins of the endocytic route, which consequently does not require a receptor-

mediated transport step between the TGN/EE and the MVB/LE for vacuolar delivery.

METHODS

Plant materials and growth conditions. Tobacco plants (Nicotiana tabacum L. cv.
Petit Havana SR1) were grown under sterile conditions on Murashige and Skoog
(MS) medium supplemented with 2% (w/v) sucrose in a controlled room at 22 °C and

long-day illumination (16 h light).

Drugs and cellular treatments. The following drugs were used: wortmannin (WM)
from Calbiochem (30 pM from a 20 mM DMSO stock solution), latrunculin B (LatB)
from Sigma-Aldrich (4 uM from a 4 mM DMSO stock solution) and brefeldin A (BFA)
from Life Technologies (50 uM from a 50 mM EtOH:DMSO 1:1 stock solution). WM
was applied 1 h prior to CLSM. LatB was applied to reduce Golgi and TGN/EE
movement 1 h prior to FRET-FLIM. Cells were supplemented with BFA directly after

transfection and incubated overnight.

Plasmid constructs. Established plasmids were used encoding for markers or
effectors as indicated: Cyt-GFP, ERD2-CFP “¢, Man1-RFP *' and Sec12 “¢. All DNA
manipulations were performed according to established procedures using
Escherichia coli strain MC1061 *° for plasmid amplifications. Coding sequences were
amplified by PCR or subcloned from established plasmids as indicated below.
Recipient vectors were either pUC-based 8 or pGreenll binary plasmids %5 both
driven by the 35S promoter of cauliflower mosaic virus. New strategic restriction sites
were introduced if necessary. Sites and primers used for cloning of all constructs are

listed in Supplementary Table 1. The anti-GFP nanobody (Nb) coding sequence was
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generated by reverse translation of the corresponding amino acid sequence % into
genetic code optimised for Arabidopsis thaliana-specific codon usage (EMBOSS
Backtranseq, www.ebi.ac.uk). The nucleotide sequence was chemically synthesised
to include N-terminal HA and C-terminal 6x His tags, a stop codon and flanking Kpnl
and BamHlI restriction sites (GeneArt Gene Synthesis). Based on this sequence, the
following C-terminal fusions were generated: LBD-RFP-Nb was assembled by
ligation of the N-terminal luminal binding domain (LBD) from AtVSR4 (GenBank
accession NM_127036), monomeric RFP % and the Nb sequence. The derivatives
LBD-Nb, ALBD-Nb and Cyt-RFP-Nb were generated by deletions of the RFP and/or
the LBD from LBD-RFP-Nb. For compartment-specific anchoring of the Nb fusions,
established compartmental markers were used, in which fluorophores had been
uniformly replaced by enhanced GFP (EGFP, GenBank accession BAQ19368) to
warrant comparable fluorescence lifetimes. These markers have been described
previously: GFP-CNX *2, Man1-GFP *’ and GFP-BP80 *. SYP61-GFP and SYP132-
GFP derived from YFP-SYP61 % and RFP-SYP132 *°, respectively, which were
converted to C-terminal fusions to expose the EGFP either in the TGN/EE lumen
(SYP61-GFP) or on the extracytosolic side of the plasma membrane (SYP132-GFP).
Soluble fluorescent reporters used in this study were based on monomeric RFP %
and are as follows: Sec-RFP and Cyt-RFP were amplified to either contain or lack the
N-terminal signal peptide of sweet potato sporamin 2. Aleu-RFP was generated by
exchanging fluorophores in the vacuolar ligand Aleu-GFP 3. The reporters 3xRFP
and 3xRFP-Nb were cloned for endocytic uptake experiments. They were designed
to have the N-terminal signal peptide of Sec-RFP (see above) in order to be secreted
into the culture medium for isolation. The effector molecule HA-BP80 was
constructed by replacing EGFP in GFP-BP80 (see above) for a HA tag. Fluorophores
of some established compartmental markers had to be exchanged for colocalisation
studies: GFP-CNX % was converted to RFP-CNX, YFP-SYP61 * was converted to
GFP-SYP61 and RFP-SYP61, and GFP-BP80 * was converted to RFP-BP8O0.
Correct localisation of all newly generated marker/reporter fluorophore fusions was

confirmed by coexpression with the original markers.

Isolation of protoplasts and gene expression. Tobacco mesophyll protoplasts
were isolated from leaves of 6- to 8-week-old plants and transfected via

electroporation as described previously °1 using a square wave pulse generator EPI
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2500 (Dr. L. Fischer, Heidelberg, www.electroporation.eu). Unless otherwise stated,
10-50 ng/pL plasmid DNA were used for transfection and protoplasts were incubated
for 18 to 24 h at 25 °C in the dark.

Biosynthesis of fluorescent reporters for endocytic uptake.

The reporters 3xRFP and 3xRFP-Nb were synthesised as secretory proteins by
transient gene expression in protoplasts. After expression, the reporter-containing
culture medium was harvested. To obtain reporter solutions, devoid of synthesising
cells, the medium was sonicated and cleared by centrifugation. For endocytic uptake,
populations of protoplasts expressing GFP markers were supplemented with the
cleared reporter-containing culture medium after their transfection and incubated for
24 h. This strategy warrants that detected intracellular RFP fluorescence can only
result from endocytic uptake but is not due to contamination with the synthesising cell

population.

Confocal microscopy. Imaging was performed with a Leica TCS SP8 confocal laser
scanning microscope equipped with a x63 (1.2 NA) water immersion objective. The
following fluorophores were excited (ex) and emission (em) was detected by line
switching in the sequential mode using HyD detectors: CFP (ex: 458 nm, em: 464-
525 nm), GFP (ex: 488 nm, em: 496-525 nm), and RFP (ex: 561 nm, em: 569-636
nm). Pinholes were adjusted to 1 Airy unit for each wavelength. Post-acquisition
image processing was performed using Adobe Photoshop CS3 (v10.0.1) and
CorelDraw X6 (v16.0.0.707).

Statistical analysis of CLSM localisation data. The PSC colocalisation plug-in >
for ImagedJ (v1.410) was used to calculate the linear Pearson’s correlation coefficient
(rp) and the nonlinear Spearman’s rank correlation coefficient (rs) of red and green
fluorescent signals. Both tests produce values in the range of -1 (negative
correlation) to +1 (positive correlation), with 0 indicating no discernible correlation.
Masking of regions of interest was performed with the Imaged brush tool as
described %2. The threshold level, under which pixels were treated as background
noise, was set to 10. For statistics, correlation coefficients of 10 individually analysed

cells per experiment were considered and are given as mean values with standard
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errors of the mean. Statistical significance was calculated using ANOVA, followed by
Tukey’s HSD test.

Fluorescence lifetime imaging microscopy (FLIM). Data acquisition was
performed with a Leica TCS SP8 combined with a PicoHarp 300 TCSPC module and
a PDL 808 Sepia multichannel picosecond pulsed diode laser driver (PicoQuant). For
GFP excitation, a 470-nm laser (LDH-P-C-470B) was used at a pulse frequency of 40
MHz and emission was recorded at 496-525 nm by time-correlated single photon
counting (TCSPC). Data analysis was performed with PicoQuant's SymPhoTime
software (v5.3.2.2) according to the manufacturer’'s instructions. To calculate
fluorescence lifetimes, TCSPC histograms were reconvoluted with an instrumental
response function (IRF) and fitted against a bi-exponential decay function. All
fluorescence signals of compartmental markers were specifically selected with the
software’s region of interest (ROI) selection tools to avoid potential miscalculations
caused by background noise. In case of GFP-BP80, vacuolar background
fluorescence, as seen in addition to punctate endosomal signals, was excluded from
lifetime calculations. All selected signals of a cell were recorded and calculated as
mean fluorescence lifetime. Per experimental condition, 12-20 cells were
independently analysed, thus representing a total of more than 200 individual Golgi
stacks (Man1-GFP), TGNs/EEs (SYP61-GFP) or MVBs/LEs (GFP-BP80). For
statistics, calculated fluorescent lifetimes of all cells were averaged. Error bars
indicate standard errors of the mean. Statistical significance was calculated using
ANOVA, followed by Tukey’s HSD test.

Protein extraction. Unless otherwise indicated, cell suspensions were diluted 5-fold
with 250 mM NaCl and centrifuged for 5 min at 80 g to sediment the protoplasts. After
removal of the supernatant, cells were resuspended and sonicated in a 10-fold lower
volume as the initial cell suspension using extraction buffer (100 mM Tris, pH 7.8,
200 mM NaCl, 1 mM EDTA, 2 % (v/v) B-mercaptoethanol and 0.2 % (v/v) Triton X-
100). Extracts were cleared by centrifugation for 15 min at 4 °C. If culture medium
was to be analysed, cell suspensions were centrifuged for 5 min at 80 g causing
flotation of the protoplasts, and a fraction of the underlying cleared culture medium
was removed with a syringe by puncturing the test tube. Proteins of the culture

medium were precipitated with aqueous ammonium sulphate (60% final
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concentration) in the presence of 100 ug BSA as a carrier and concentrated 10-fold
in extraction buffer. After removing culture medium, test tubes were resealed and the
remaining cells were sedimented and processed as described above. All protein
samples were finally mixed with an equal volume of 2x Xtreme loading dye ** and
incubated for 5 min at 95 °C before SDS-PAGE.

Coimmunoprecipitation. Cells were resuspended in an equal volume of non-
denaturing 2x binding buffer (40 mM HEPES, 300 mM NaCl, 2 mM CaCl,, 2 mM
MgCl,, pH 7.1) and homogenised by sonication. Protein extracts were cleared by
centrifugation for 15 min at 4 °C and incubated with anti-GFP-bound Dynabeads
Protein A (10001D, Life Technologies) overnight at 4 °C. Beads were washed three
times with binding buffer and finally boiled in a mix of equal volumes extraction buffer
(see above) and 2x Xtreme loading dye ** to elute immunoprecipitated proteins for
SDS-PAGE.

Ligand-LBD in vitro binding assay. VSR sensors were assembled in vivo by
coexpression of the LBD-Nb and either of the four compartmental anchors (GFP-
CNX, Man1-GFP, SYP61-GFP and GFP-BP80). Cells were harvested and
resuspended in binding buffer as mentioned above. Extracts were cleared by
centrifugation and VSR sensors were coupled to anti-GFP-bound Dynabeads Protein
A for 2 h at 4 °C. Beads were washed three times with binding buffer. In parallel, the
ligand Aleu-RFP was extracted in binding buffer from cells overproducing Sec12,
which inhibits ER export and thus ensures high yields of the unprocessed Aleu-RFP
transit form. The Aleu-RFP extract was equally distributed to the four bead-coupled
VSR sensors and these were incubated overnight at 4 °C. As negative control, a
Sec-RFP extract was generated as mentioned above and was added to an additional
sample of coimmunoprecipitated sensors. Beads were washed and processed for
SDS-PAGE as mentioned above.

Cellular fractionation. Cell suspensions were split into equal parts and both were
sedimented in 250 mM NaCl. One aliquot was used as total (T) and resuspended in a
fourfold volume of extraction buffer (see above), sonicated and cleared by
centrifugation for 15 min at 4 °C. The supernatant was mixed with an equal volume of
2x Xtreme loading dye ** and boiled for 5 min at 95 °C prior to SDS-PAGE. The
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second aliquot was used for cellular fractionation by osmotic shock. Cells were
resuspended in a fourfold volume of Tris buffer (50 mM Tris pH 8.0, 1 mM EDTA) and
centrifuged for 15 min at 42,000 g. After centrifugation, the supernatant (S) was
removed and mixed with an equal volume of 2x Xtreme loading dye. The membrane
pellet (P) was resuspended in extraction buffer (see above) using the same volume
as the supernatant and the suspension was sonicated and cleared by centrifugation
for 15 min at 4 °C. Both fractions were mixed with an equal volume of 2x Xtreme
loading dye and boiled for 5 min at 95 °C before SDS-PAGE.

Western blotting and antibodies. All proteins were separated by denaturing SDS-
PAGE and transferred to nitrocellulose membranes. Membranes were blocked in 5 %
(w/v) BSA in TBS + 0.05 % (v/v) Tween 20 (TBS-T), washed in TBS-T and incubated
with primary antibodies diluted in 1 % (w/v) BSA + 0.02 % (w/v) sodium azide in TBS
overnight at 4 °C. After washing in TBS-T, membranes were incubated with HRP-
conjugated secondary antibodies diluted in blocking buffer and immunodetection was
performed using enhanced chemiluminescence. Antibodies wused for
immunodetection include: mouse monoclonal anti-GFP (Roche 11814460001, clones
7.1 and 13.1; 1:1,000), rat monoclonal anti-RFP (ChromoTek, clone 5F8; 1:1,000)
and rat monoclonal anti-HA-Peroxidase (Roche 12013819001, clone BMG-3F10;
1:2,500). For immunoprecipitations, a rabbit polyclonal GFP antibody (Life
Technologies A6455) was used to saturate Protein A Dynabeads prior to precipitation

of the target antigen.
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Figure Legends and Tables

Figure 1 Compartment-specific targeting of luminal ligand-binding domains (LBDs) in
the plant endomembrane system via nanobody-epitope interactions. (a) Schematic
representation of the assembly of VSR sensors via the anti-GFP nanobody (Nb). The
soluble LBD-RFP-Nb and GFP (epitope)-tagged membrane anchors interact in the
compartmental lumen. Assembly occurs irrespective of type | or type Il topology of
the anchor. (b) Immunoblot showing the secretion of the soluble LBD-RFP-Nb.
Tobacco mesophyll protoplasts expressing LBD-RFP-Nb, either in the absence (-) or
presence (+) of ER-export-inhibiting Sec12 overproduction, were analysed 24 h after
transfection. Cells (C) were separated from the culture medium (M) and proteins
were extracted independently. Immunoblots were probed with a-HA antibodies
(detecting LBD-RFP-Nb) and a-GFP antibodies (detecting ERD2-CFP). Mock-
transfected cells served as negative control (co) to illustrate antibody specificity. The
coexpressed Golgi marker ERD2-CFP was used as a loading control. Relative
molecular masses of detected proteins are as follows: LBD-RFP-Nb, 103K; ERD2-
CFP, 52K. (c,d) Representative CLSM analysis of cells described in b. (c)
Fluorescence signals of secreted LBD-RFP-Nb are largely absent from cells. The
Golgi marker ERD2-CFP serves as an internal transfection control. (d) Signals of the
LBD-RFP-Nb emerge in the ER upon inhibition of ER export by Sec12
overproduction, which also causes coaccumulation of the Golgi marker ERD2-CFP.
(e-i) CLSM analysis of protoplasts assembling VSR sensors within the compartments
of the vacuolar pathway. Cells were transfected with plasmids encoding for the LBD-
RFP-Nb and either of the GFP-tagged membrane anchors as indicated: (e)
colocalisation with GFP-CNX (type ) in the ER, (f) colocalisation with Man1-GFP
(type 1) in the Golgi, (g) colocalisation with SYP61-GFP (type Il) in the TGN/EE, (h)
colocalisation with GFP-BP80 (type ) in the MVB/LE and the vacuole, and (i)
colocalisation with GFP-BP80 in ring-like MVB/LE structures after wortmannin (WM)
treatment (arrowheads). Inlays: magnified sections in ¢,f-i and cortical sections in

d,e. Scale bars: 5 ym and 2.5 pm (inlays).

Figure 2 Assembled VSR sensors are ligand-binding competent. (a) Schematic
representation of the strategy to test for VSR-ligand interactions in specific
compartments. A GFP-tagged membrane anchor and the soluble LBD-Nb assemble

to reconstitute a fluorescent VSR sensor. Coexpression with the red fluorescent
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ligand Aleu-RFP allows for sensing of receptor-ligand interaction via FRET-FLIM.
Binding of the ligand triggers close proximity of the fluorophores and thus FRET. This
shortens the fluorescence lifetime of the GFP, identifying compartments that promote
ligand binding. In compartments that do not provide ligand-binding conditions, Aleu-
RFP does not trigger FRET. (b) Immunoblot showing ligand-binding capability of all
VSR sensors in vitro. Protoplasts were transfected with plasmids encoding for the
soluble LBD-Nb and either of the indicated membrane anchors: GFP-CNX, Man1-
GFP, SYP61-GFP and GFP-BP80. After 24 h of expression, proteins were extracted
and VSR sensors were immunoprecipitated with anti-GFP beads (IP: a-GFP) and
incubated with Aleu-RFP in vitro. Afterwards, beads were recovered and subjected to
SDS-PAGE. Immunoblots (IB) were probed with antibodies for detection of
membrane anchors (a-GFP), the LBD-Nb (a-HA) and Aleu-RFP (a-RFP). In all cases,
coimmunoprecipitated ligands are detectable while in control experiments, the non-
ligand Sec-RFP is absent from the precipitate. Relative molecular masses of labelled
proteins are as follows: LBD-Nb, 77K; GFP-CNX, 38K; Man1-GFP, 92K; SYP61-
GFP, 55K; GFP-BP80, 38K; Aleu-RFP, 30K; Sec-RFP, 28K.

Figure 3 Analysis of VSR-ligand interaction in compartments that promote or restrict
ligand binding. (a) CLSM image of a protoplast expressing the ER marker GFP-CNX
and the soluble reporter Aleu-RFP, which is efficiently transported into the vacuole.
(b) Protoplast coexpressing the LBD-Nb to assemble VSR sensors in the ER retain
Aleu-RFP. Inlays in a,b: cortical section. (¢) FRET-FLIM analysis identifies the ER as
compartment favouring ligand binding. Binding of Aleu-RFP causes FRET,
significantly decreasing fluorescence lifetime of the GFP within the VSR sensor. This
does not occur in the presence of the non-ligand Sec-RFP or the absence of the LBD
(ALBD-Nb) as binding partner. FLIM data are presented as mean * s.e.m.
fluorescence lifetime (n = 12 measurements). Statistical significance was calculated
using ANOVA, followed by Tukey’s HSD test (*** P < 0.001 compared to every other
experimental group; NS, not significant). Right: representative FLIM image combining
fluorescence intensity and lifetime (colour-coded) of ER-localised VSR sensors in a
cortical section. (d) Protoplast expressing the MVB/LE marker GFP-BP80 and the
soluble vacuolar reporter Aleu-RFP. Aleu-RFP colocalises in the MVB/LE, the transit
compartment of the vacuolar route. (e) Coexpression of the LBD-Nb to assemble

VSR sensors in the MVB/LE does not influence the distribution of Aleu-RFP. Inlays in
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d,e: magnified section. (f) FRET-FLIM analysis of MVB/LE-localised VSR sensors
identifies the MVB/LE as a compartment that does not support ligand binding.
Fluorescence lifetime of the sensor is not affected by Aleu-RFP or the non-ligand
Sec-RFP. FRET-triggered reduction of fluorescence lifetime was confirmed to occur
in this compartment by targeting the red fluorescent LBD-RFP-Nb (see Fig. 1) to the
membrane anchor in the MVB/LE. FLIM data are presented as mean * s.e.m.
fluorescence lifetime (n = 17 measurements). Statistical significance was calculated
as in c. Right: representative FLIM image combining fluorescence intensity and
lifetime (colour-coded) of the MVB/LE-localised VSR sensors. (g) Wortmannin-
induced ring-like MVB/LE structures show differential distribution between the
membrane marker GFP-BP80 and soluble Aleu-RFP (left panel). Coexpression of the
LBD-Nb (right panel) does not change this distribution. Scale bars: 5 ym and 2.5 pm
(inlays).

Figure 4 The Golgi provides ligand-binding conditions for VSRs. (a) CLSM analysis
of protoplasts expressing the Golgi marker Man1-GFP and the soluble vacuolar
reporter Aleu-RFP. Punctate signals do not colocalise. (b) Coexpression of the LBD-
Nb to assemble VSR sensors in the Golgi leads to retention of Aleu-RFP
(arrowheads). (c) Retention in the Golgi is highlighted by coexpression of the VSR-
transport competitor HA-BP80, eliminating Aleu-RFP signals from MVBs/LEs and the
vacuole. Inlays in a-c: magnified section. (d) FRET-FLIM analysis identifies the Golgi
as compartment favouring ligand binding. Binding of Aleu-RFP causes FRET,
significantly decreasing fluorescence lifetime of the GFP within the VSR sensor. This
does not occur in the absence of the LBD (ALBD-Nb) as binding partner. FLIM data
are presented as mean = s.e.m. fluorescence lifetime (n = 12 measurements).
Statistical significance was calculated using ANOVA, followed by Tukey’s HSD test
(*** P < 0.001 compared to every other experimental group; NS, not significant).
Right: representative FLIM image combining fluorescence intensity and lifetime
(colour-coded) of Golgi-localised VSR sensors in a cortical section. Scale bars: 5 ym

and 2.5 uym (inlays).

Figure 5 The TGN/EE does not provide ligand-binding conditions for VSRs. (a)
CLSM analysis of protoplasts coexpressing the TGN/EE marker SYP61-GFP and the

vacuolar reporter Aleu-RFP. Punctate signals do not colocalise. (b) Assembled VSR
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sensors (+LBD-Nb) in the TGN/EE do not influence ligand distribution. Inlays in a,b:
magnified section. (c¢) Pearson’s (rp) and Spearman’s (rs) correlation (PSC)
coefficients calculated for punctate signals of SYP61-GFP and Aleu-RFP from cells in
a,b. Coexpression of SYP61-GFP and LBD-RFP-Nb as positive control for
colocalisation (see Fig. 1g). Coefficients are presented as mean = s.e.m (n = 10
individual cells). Statistical significance was calculated using ANOVA, followed by
Tukey’s HSD test (*** P < 0.001; NS, not significant). (d) FRET-FLIM analysis
identifying the TGN/EE as non-binding compartment. Fluorescence lifetime of
TGN/EE-localised sensors is unaffected by Aleu-RFP or Sec-RFP (non-ligand).
FRET-triggered reduction of fluorescence lifetime occurs if red fluorescent LBD-RFP-
Nb (see Fig. 1g) is coexpressed. FLIM data are presented as mean + s.e.m.
fluorescence lifetime (n = 17 measurements). Statistical significance was calculated
as in c. Right: FLIM image combining fluorescence intensity and lifetime (colour-
coded) of TGN/EE-localised VSR sensors. (e) Cells from b were treated with
brefeldin A (BFA) to cause ER-export inhibition. Inlay: cortical section. (f) FRET-FLIM
measurements of SYP61-GFP-based sensors in the absence (-) or presence (+) of
BFA. Fluorescence lifetime of ER-localised SYP61-GFP increases to the value of the
ER marker GFP-CNX (see Fig. 3c). ER-localised LBD-Nb interacts with Aleu-RFP
causing FRET and thus decreases fluorescence lifetime, in contrast to non-binding
Sec-RFP (mean = s.e.m.; n = 20 measurements). Statistical significance was
calculated as in d. Right: FLIM image of ER-localising SYP61-GFP after BFA
treatment. Scale bars: 5 um and 2.5 pym (inlays). (g) Immunoblot showing ligand-
binding capability of SYP61-GFP-based sensors. Protoplasts expressing indicated
proteins + BFA were lysed and proteins were immunoprecipitated with anti-GFP
beads. Immunoprecipitates (IP: a-GFP) were subjected to SDS-PAGE and
immunoblotted (IB) with a-GFP, a-HA (detecting LBD-Nb) and a-RFP. Samples are
shown as total (T) and immunoprecipitate (IP). SYP61-GFP-based sensors bind
Aleu-RFP only if localised to the ER (+BFA, black arrowhead), but not in the TGN/EE
(-BFA, white arrowhead).

Figure 6 Vacuolar delivery of endocytosed soluble proteins does not depend on
sorting signals. (a) Protoplasts expressing Cyt-GFP were supplemented with
protoplast-secreted 3xRFP and incubated 24 h before CLSM analysis. 3xRFP is

endocytosed and delivered to the vacuole. (b) Immunoblot of cellular extracts after
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endocytic uptake of 3xRFP. Cells were osmotically shocked and total protein extracts
(T) were separated into membrane (M) and soluble (S) fractions. After SDS-PAGE,
immunoblots were probed with a-RFP identifying 3xRFP as soluble protein (left).
Right: Cells expressing the plasma membrane marker RFP-TMD23 were used as
fractionation control. (c) Cells expressing Cyt-GFP were supplemented with the
nanobody-tagged reporter 3xRFP-Nb showing vacuolar delivery (compare to a). (d-f)
Vacuolar delivery of the endocytosed reporter 3xRFP-Nb occurs via the TGN/EE and
the MVBJ/LE. (d) Incubation of cells coexpressing the GFP epitope at the cell surface
(SYP132-GFP) with 3xRFP-Nb trap the reporter and prevent its vacuolar delivery
(compare to c). (e) Incubation of cells expressing SYP61-GFP with 3xRFP-Nb traps
the endocytosed reporter in the TGN/EE. (f) Incubation of cells expressing GFP-
BP80 with 3xRFP-Nb traps the endocytosed reporter in the MVB/LE. Inlays in e,f:
magnified section. Scale bars: 5 um and 2.5 ym (inlays). (g) Concept of sorting and
transport of soluble proteins to the vacuole. The ER and the Golgi provide binding
conditions (green) for VSR-ligand interaction, while the post-Golgi compartments
TGN/EE and MVB/LE do not (red). This suggests that VSR-mediated transport of
soluble vacuolar proteins ends in the TGN/EE by their release from the receptor.
Further transport from the TGN/EE towards the vacuole does not involve VSRs but
occurs via budding of MVBs/LEs and their ultimate fusion with the tonoplast, instead.
Consequently, vacuolar sorting signals of soluble proteins in the TGN/EE are of no
further use for onward transport. This is supported by the observation that
endocytosed soluble proteins lacking vacuolar sorting information reach the vacuole
via the TGN/EE and the MVB/LE. This identifies the vacuole as the default location

for soluble proteins of the endocytic pathway.

Supplementary Figure 1 The anti-GFP nanobody stabilises the vacuolar GFP core
of GFP-BP80. Protoplasts were transfected with plasmids encoding for the indicated
proteins and incubated 24 h before analysis. (a) The MVB/LE marker GFP-BP80
colocalises with LBD-RFP-Nb in the vacuole additionally to the MVB/LE. (b) Vacuolar
signals of GFP-BP80 are not detectable in the absence of the nanobody. (c)
Immunoblot demonstrating the nanobody-mediated accumulation of the vacuolar
GFP core. Cells were cotransfected with a constant amount of GFP-BP80 and raising
concentrations of LBD-RFP-Nb as indicated. Proteins were extracted and subjected
to SDS-PAGE. Immunoblots were probed with a-GFP and a-HA (detecting LBD-RFP-
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Nb). In contrast to the full-length transit form, the vacuolar GFP-core accumulates
dependent on the expression level of the nanobody. Mock transfected cells served as
negative control (co) to illustrate antibody specificity. Asterisk: DNA concentration of
LBD-RFP-Nb as used in a and in all other experiments of this study. Relative
molecular masses: transit form of GFP-BP80, 38K; vacuolar GFP core, =25K; LBD-
RFP-Nb, 103K. Scale bars: 5 ym.

Supplementary Figure 2 The assembly of VSR sensors does not influence the
localisation of the membrane anchors. Protoplasts were transfected with plasmids
encoding for the indicated proteins and incubated 24 h before CLSM analysis. (a-d)
Sensors were assembled from LBD-Nb and the GFP-tagged membrane anchors and
localisation was compared to RFP-tagged derivatives of the respective
compartmental marker. (a) Colocalisation with RFP-CNX in the ER, (b) colocalisation
with Man1-RFP in the Golgi, (¢) colocalisation with RFP-SYP61 in the TGN/EE and
(d) colocalisation with RFP-BP80 in the MVBJ/LE. Inlays in a-d: magnified section.
Scale bars: 5 ym and 2.5 ym (inlays). (e) Pearson’s (rp) and Spearman’s (rs)
correlation (PSC) coefficients calculated for green and red signals as shown in a-d
demonstrating colocalisation. Coefficients are presented as mean + s.em (n = 10
individual cells). Statistical significance was calculated using ANOVA, followed by
Tukey’s HSD test (*** P < 0.001).

Supplementary Figure 3 Representative CLSM images of cells analysed by FRET-
FLIM to asses VSR-ligand binding in the ER and the MVBJ/LE. (a) FLIM data for the
ER. The diagram shows the fluorescence lifetimes from Figure 3c. The different
experimental groups are represented by Latin numbers (I-V). A representative image
is given for each group ensuring expression of tested fluorescent pairs. (b) FLIM data
for the MVB/LE. The diagram shows the fluorescence lifetimes from Figure 3f. The
different experimental groups are represented by Latin numbers (I-IV). A
representative image is given for each group ensuring expression of tested

fluorescent pairs. Scale bars: 5 um.

Supplementary Figure 4 Representative CLSM images of cells analysed by FRET-
FLIM to asses VSR-ligand binding in the Golgi and the TGN/EE. (a) FLIM data for the

Golgi. The diagram shows the fluorescence lifetimes from Figure 4d. The different
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experimental groups are represented by Latin numbers (I-IV). A representative image
is given for each group ensuring expression of tested fluorescent pairs. (b) FLIM data
for the TGN/EE. The diagram shows the fluorescence lifetimes from Figure 5d,f (£
BFA) in direct comparison. The different experimental groups are represented by

Latin numbers (I-IV). A representative image is given for each group ensuring

expression of tested fluorescent pairs. Scale bars: 5 um.

Supplementary Table 1

Primers Sequence (5°-3’ direction) Template Recipient Vector
LBD-RFP-Nb (pBL14) LBD_Nhel_S AGCTGAGCTAGCATGAA pJLH21% pCN1 *;
GCAGCTTCTATGTTA modified to contain following
LBD_Sall_AS GCTGATGTCGACGCAAG strategic restriction sites:
TGTCATGGTCTCTCA P35S-Nhel-CDS-BamHI-T3nos
mRFP_Sall_S TGCCGGGTCGACATGGC | pFK12®
CTCCTCCGAGGACGT
mRFP_Kpnl_AS TCCTTAGGTACCTGCTCC
AGTGCTGTGGCGGC
PLUS: anti-GFP nanobody (Kpnl/BamHlI); chemically synthesised
LBD-Nb (pFF29) LBD_Nhel_S AGCTGAGCTAGCATGAA | pJLH21° pBL14 (see above);
GCAGCTTCTATGTTA cut Kpnl/Nhel
LBD_KpnI_AS CGTATTGGTACCGCAAGT
GTCATGGTCTCTCA
ALBD-Nb (pFK120) Nb_Nhel_S AGTCTAGCTAGCGCCATG | pBL14 (see above) RFP-TMD23 in pCN1 *°;
TATCCTTATGATGTTCC cut BamHI/Nhel to keep the N-
Nb_BamHI_AS TGCTTCGGATCCCTAATG terminal signal peptide of RFP-
AT TMD23
Cyt-RFP-Nb (pFF31) mRFP_Clal_S AGTCTAATCGATGGCCTC | pBL14 (see above) RFP-TMD23 in pCN1 *°;
CTCCGAGGACGT cut BamHI/Clal
Nb_BamHI_AS TGCTTCGGATCCCTAATG
AT
GFP-CNX (pFF4) EGFP_Nhel_S GCATGAGCTAGCGCCAT pJB13 > pFK120 (see above);
GGTGAGCAAGGGCGAGG cut BamHI/Nhel
EGFP_Notl_AS AGTCTAGCGGCCGCCCT
TGTACAGCTCGTCCATGC
CNX-TMD_Notl_S GATCCGGCGGCCGCGAA | pSLH6 *2
CTGATTGAGAAAGCCGA
CNX-CT_BamHI_AS | TGCTTCGGATCCTCTAGA
GC
GFP-BP80 (pFF3) BP80a-TMD_Notl_S AGTCTAGCGGCCGCATC pLL38 * pFF4 (see above);
AGTAAGACGGGTTCACA cut BamHI/Notl
BP80a- TGCTTCGGATCCCTTAGG
CT_BamHI_AS CA
Manl-GFP (pFF6) Manl_Nhel_S GCATGAGCTAGCATGGC | pBP30* pBL14 (see above);
GAGAGGGAGCAGATC cut BamHI/Nhel
Manl_Notl_AS AGTCTAGCGGCCGCCAC
TAGTTCTAGAAAAAGGT
EGFP_Notl_S AGTCTAGCGGCCGCATG | pJB13°
GTGAGCAAGGGCGAGGA
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EGFP_BamHI_AS AGCTGAGGATCCTTACTT
GTACAGCTCGTCCA
SYP61-GFP (pFF25) SYP61_Nhel_S AGTCTAGCTAGCATGTCT | pDS13 7 pFF6 (see above);
TCAGCTCAAGATCC cut Notl/Nhel
SYP61_Notl_AS GCTGTAGCGGCCGCCGG
TCAAGAAGACAAGAACGA
SYP132-GFP (FF13) SYP132_Nhel_S AGTCTAGCTAGCATGAAC | RFP-SYP132 ™ pFF6 (see above);
GATCTTCTGAAGGG cut Notl/Nhel
SYP132_Notl_AS GATCCGGCGGCCGCCAG
CACTCTTGTTTTTCCAAG
Cyt-RFP (pFK98) mRFP_Nhel_S AGTCTAGCTAGCATGGCC | pFK12 = pGD5
TCCTCCGAGGACG cut BamHI/Nhel
mRFP_BamHI_AS AGTCTAGGATCCTTATGC
TCCAGTACTGTGGCGGC
Sec-RFP (pFF14) SP_Xhol_Sall_S TCGAGATGAAAGCCTTCA | Complementary pCN1 *;
CACTCGCTCTCTTCTTAG oligonucleotides to modified to contain following
CTCTTTCCCTCTATCTCC assemble the coding strategic restriction sites:
TGCCCAATCCAGCCATGA | sequence of the GFP- P35S-Xhol-CDS-Spel-T3nos
CG spo N-terminal signal
SP_Sall_xhol_AS TCGACGTCATGGCTGGAT | peptide *
TGGGCAGGAGATAGAGG
GAAAGAGCTAAGAAGAG
AGCGAGTGTGAAGGCTTT
CATC
mRFP_Sall_S CTCTATGTCGACTATGGC | pFK12®
CTCCTCCGAGGACGT
mRFP_Spel_AS AGTCTAACTAGTTTATGC
TCCAGTACTGTGGCGGC
Aleu-RFP (pFF15) Aleu_Xhol_S AGTCTACTCGAGATGTCT | aleu-GFP ™' pFF14 (see above);
CGTCTGTCACTCCT cut Spel/Xhol
Aleu_Nhel_AS CATTGCGCTAGCGCTTTC
CA
mRFP_Nhel_S CTTTCTGCTAGCGCCATG | pFK12*
GC
mRFP_Spel_AS AGTCTAACTAGTTTATGC
TCCAGTACTGTGGCGGC
3xRFP (pSF70) mRFP_Sall_S TGCCGGGTCGACGATGG pFK12 ® pFF14 (see above);
CCTCCTCCGAGGACGT cut Spel/Sall to keep the N-
mRFP_Ndel_AS TTCGGACATATGTGCTCC terminal signal peptide of
AGTACTGTGGCGGC pFF14
mRFP_Ndel_S AGTCTACATATGGCCTCC | pFK12™
TCCGAGGACG
mRFP_Nhel_AS AGTCTAGCTAGCTGCTCC
AGTACTGTGGC
mRFP_Nhel_S GTTGACTGCTAGCGCCAT | pFK12®
GGCCTCCTC
mRFP_Spel_AS CTGCAACTAGTTTATGCT
CCAGTACTGTGGCGGC
3xRFP-Nb (pSF71) mRFP_Nhel_S AGTCTAGCTAGCATGGCC | pFK12* pSF70 (see above);
TCCTCCGAGGACG cut Hindlll/Nhel
mRFP_KpnI_AS TCCTTAGGTACCTGCTCC
AGTGCTGTGGCGGC
PLUS: nanobody-T3nos (Kpnl/Hindlll), subcloned from pBL14 (see above)
RFP-CNX (pLBY13) CNX-TMD_Sall_S AGTCTAGTCGACGGAACT | pSLH6 ** RFP-TMD23 in pCN1 *;
GATTGAGAAAGCCGAG cut BamHl/Sall
CNX-CT_BamHI_AS | AGTCTAGGATCCCTAATT
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ATCACGTCTCGGTT
GFP-SYP61 (pFK94) EGFP_Ncol_S AGTCTACCATGGTGAGCA | pJB13 " pDS13 #;
AGGGCGAGG cut Clal/Ncol
EGFP_Clal_AS AGTCTAATCGATGCTCCA
CCCTTGTACAGCTCGTCC
ATGC
RFP-SYP61 (pML4) mRFP_Nhel_S AGTCTAGCTAGCATGGCC | pBP30 * pGD5 *;
TCCTCCGAGGACG cut BamHI/Nhel
mRFP_Clal_AS GCTGTAATCGATGCGGC
GCCGGTGGAGTGGCGGC
PLUS: SYP61 (Clal/BamHl), subcloned from pDS13 %
RFP-BP80 (pFK121) BP80a-SP_Nhel_S TCCTTAGCTAGCATGAAG | pJLH21° pGD5 %,
CAGCTTCTGTGTTA cut BamHI/Nhel
BP80a-SP_Notl_AS AGTCTAGCGGCCGCGAG
CCTCGCTAAAAGGGGAA
mRFP_Notl_S AGTCTAGCGGCCGCATG | pBP30 ¥
GCCTCCTCCGAGGACGT
mRFP_Sall_AS AGTCTAGTCGACCGGCG
CCGGTGGAGTGGCGGC
BP80a-TMD_Sall_ S | GCTGATGTCGACTTTCAC | pLL38*
AAGTGAAATCAGCG
BP80a- TGCTTCGGATCCCTTAGG
CT_BamHI_AS CA
HA-BP80 (pFK119) SP_Clal_S CTCTATATCGATGAGGCT pFK120 (see above) pFF3 (see above);
TT cut Notl/Clal
HA_Notl_AS AGTCTAGCGGCCGCCAG
CATAATCAGGAACATCA
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Figure 1 Compartment-specific targeting of luminal ligand-binding domains (LBDs) in the plant endomembrane system via
nanobody-epitope interactions. (a) Schematic representation of the assembly of VSR sensors via the anti-GFP nanobody (Nb).
The soluble LBD-RFP-Nb and GFP (epitope)-tagged membrane anchors interactin the compartmental lumen. Assembly occurs
irrespective of type | or type Il topology of the anchor. (b) Immunoblot showing the secretion of the soluble LBD-RFP-Nb.
Tobacco mesophyll protoplasts expressing LBD-RFP-Nb, either in the absence (-) or presence (+) of ER-export-inhibiting Sec12
overproduction, were analysed 24 h after transfection. Cells (C) were separated from the culture medium (M) and proteins were
extracted independently. Immunoblots were probed with a-HA antibodies (detecting LBD-RFP-Nb) and a-GFP antibodies
(detecting ERD2-CFP). Mock-transfected cells served as negative control (co) to illustrate antibody specificity. The coexpressed
Golgi marker ERD2-CFP was used as a loading control. Relative molecular masses of detected proteins are as follows: LBD-
RFP-Nb, 103K; ERD2-CFP, 52K. (c,d) Representative CLSM analysis of cells described in b. (c) Fluorescence signals of
secreted LBD-RFP-Nb are largely absent from cells. The Golgi marker ERD2-CFP serves as an internal transfection control. (d)
Signals of the LBD-RFP-Nb emerge in the ER upon inhibition of ER export by Sec12 overproduction, which also causes
coaccumulation of the Golgi marker ERD2-CFP. (e-i) CLSM analysis of protoplasts assembling VSR sensors within the
compartments of the vacuolar pathway. Cells were transfected with plasmids encoding for the LBD-RFP-Nb and either of the
GFP-tagged membrane anchors as indicated: (e) colocalisation with GFP-CNX (type I) in the ER, (f) colocalisation with Man1-
GFP (type Il) in the Golgi, (g) colocalisation with SYP61-GFP (type Il) in the TGN/EE, (h) colocalisation with GFP-BP80 (type I)
in the MVB/LE and the vacuole, and (i) colocalisation with GFP-BP80 in ring-like MVB/LE structures after wortmannin (WM)
treatment (arrowheads). Inlays: magnified sections in ¢,f-i and cortical sections in d,e. Scale bars: 5 ymand 2.5 ym (inlays).
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Figure 2 Assembled VSR sensors are ligand-binding competent. (a) Schematic representation of the strategy to test for VSR-
ligand interactions in specific compartments. A GFP-tagged membrane anchor and the soluble LBD-Nb assemble to
reconstitute a fluorescent VSR sensor. Coexpression with the red fluorescent ligand Aleu-RFP allows for sensing of receptor-
ligand interaction via FRET-FLIM. Binding of the ligand triggers close proximity of the fluorophores and thus FRET. This
shortens the fluorescence lifetime of the GF P, identifying compartments that promote ligand binding. In compartments that do not
provide ligand-binding conditions, Aleu-RFP does not trigger FRET. (b) Immunoblot showing ligand-binding capability of all VSR
sensors in vitro. Protoplasts were transfected with plasmids encoding for the soluble LBD-Nb and either of the indicated
membrane anchors: GFP-CNX, Man1-GFP, SYP61-GFP and GFP-BP80. After 24 h of expression, proteins were extracted and
VSR sensors were immunoprecipitated with anti-GFP beads (IP: a-GFP) and incubated with Aleu-RFP in vitro. Afterwards,
beads were recovered and subjected to SDS-PAGE. Immunoblots (IB) were probed with antibodies for detection of membrane
anchors (a-GFP), the LBD-Nb (a-HA) and Aleu-RFP (a-RFP). In all cases, coimmunoprecipitated ligands are detectable while
in control experiments, the non-ligand Sec-RFP is absent from the precipitate. Relative molecular masses of labelled proteins
are as follows: LBD-Nb, 77K; GFP-CNX, 38K; Man1-GFP, 92K; SYP61-GFP, 55K; GFP-BP80, 38K; Aleu-RFP, 30K; Sec-RFP,
28K.
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Figure 3 Analysis of VSR-ligand interaction in compartments that promote or restrict ligand binding. (a) CLSM image of a
protoplast expressing the ER marker GFP-CNX and the soluble reporter Aleu-RFP, which is efficiently transported into the
vacuole. (b) Protoplast coexpressing the LBD-Nb to assemble VSR sensors in the ER retain Aleu-RFP. Inlays in a,b: cortical
section. (¢) FRET-FLIM analysis identifies the ER as compartment favouring ligand binding. Binding of Aleu-RFP causes FRET,
significantly decreasing fluorescence lifetime of the GFP within the VSR sensor. This does not occur in the presence of the non-
ligand Sec-RFP or the absence of the LBD (ALBD-Nb) as binding partner. FLIM data are presented as mean + s.e.m.
fluorescence lifetime (n = 12 measurements). Statistical significance was calculated using ANOVA, followed by Tukey's HSD
test (*** P < 0.001 compared to every other experimental group; NS, not significant). Right: representative FLIM image
combining fluorescence intensity and lifetime (colour-coded) of ER-localised VSR sensors in a cortical section. (d) Protoplast
expressing the MVB/LE marker GFP-BP80 and the soluble vacuolar reporter Aleu-RFP. Aleu-RFP colocalises in the MVB/LE,
the transit compartment of the vacuolar route. (e) Coexpression of the LBD-Nb to assemble VSR sensors in the MVB/LE does
not influence the distribution of Aleu-RFP. Inlays in d,e: magnified section. (f) FRET-FLIM analysis of MVB/LE-localised VSR
sensors identifies the MVB/LE as a compartment that does not support ligand binding. Fluorescence lifetime of the sensor is not
affected by Aleu-RFP or the non-ligand Sec-RFP. FRET-triggered reduction of fluorescence lifetime was confirmed to occur in
this compartment by targeting the red fluorescent LBD-RFP-Nb (see Fig. 1) to the membrane anchorin the MVB/LE. FLIM data
are presented as mean + s.e.m. fluorescence lifetime (n = 17 measurements). Statistical significance was calculated as in c.
Right: representative FLIM image combining fluorescence intensity and lifetime (colour-coded) of the MVB/LE-localised VSR
sensors. (g) Wortmannin-induced ring-like MVB/LE structures show differential distribution between the membrane marker
GFP-BP80 and soluble Aleu-RFP (left panel). Coexpression of the LBD-NDb (right panel) does not change this distribution. Scale
bars:5umand 2.5 ym (inlays).
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Figure 4 The Golgi provides ligand-binding conditions for VSRs. (a) CLSM analysis of protoplasts expressing the Golgi marker
Man1-GFP and the soluble vacuolar reporter Aleu-RFP. Punctate signals do not colocalise. (b) Coexpression of the LBD-Nb to
assemble VSR sensors in the Golgi leads to retention of Aleu-RFP (arrowheads). (c) Retention in the Golgi is highlighted by
coexpression of the VSR-transport competitor HA-BP80, eliminating Aleu-RFP signals from MVBs/LEs and the vacuole. Inlays
in a-c: magnified section. (d) FRET-FLIM analysis identifies the Golgi as compartment favouring ligand binding. Binding of Aleu-
RFP causes FRET, significantly decreasing fluorescence lifetime of the GFP within the VSR sensor. This does not occur in the
absence of the LBD (ALBD-Nb) as binding partner. FLIM data are presented as mean + s.e.m. fluorescence lifetime (n = 12
measurements). Statistical significance was calculated using ANOVA, followed by Tukey's HSD test (*** P <0.001 compared to
every other experimental group; NS, not significant). Right: representative FLIM image combining fluorescence intensity and
lifetime (colour-coded) of Golgi-localised VSR sensors in a cortical section. Scale bars: 5 ymand 2.5 ym (inlays).
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Figure 5 The TGN/EE does not provide ligand-binding conditions for VSRs. (a) CLSM analysis of protoplasts coexpressing the
TGN/EE marker SYP61-GFP and the vacuolar reporter Aleu-RFP. Punctate signals do not colocalise. (b) Assembled VSR
sensors (+LBD-Nb) in the TGN/EE do not influence ligand distribution. Inlays in a,b: magnified section. (c) Pearson's (r.) and
Spearman's (r;) correlation (PSC) coefficients calculated for punctate signals of SYP61-GFP and Aleu-RFP from cells in a,b.
Coexpression of SYP61-GFP and LBD-RFP-Nb as positive control for colocalisation (see Fig. 1g). Coefficients are presented
as mean t£s.e.m (n=10individual cells). Statistical significance was calculated using ANOVA, followed by Tukey's HSD test (***
P < 0.001; NS, not significant). (d) FRET-FLIM analysis identifying the TGN/EE as non-binding compartment. Fluorescence
lifetime of TGN/EE-localised sensors is unaffected by Aleu-RFP or Sec-RFP (non-ligand). FRET-triggered reduction of
fluorescence lifetime occurs if red fluorescent LBD-RFP-Nb (see Fig. 1g) is coexpressed. FLIM data are presented as mean +
s.e.m. fluorescence lifetime (n = 17 measurements). Statistical significance was calculated as in c. Right: FLIM image combining
fluorescence intensity and lifetime (colour-coded) of TGN/EE-localised VSR sensors. (e) Cells from b were treated with
brefeldin A (BFA) to cause ER-export inhibition. Inlay: cortical section. (f) FRET-FLIM measurements of SYP61-GFP-based
sensors in the absence (-) or presence (+) of BFA. Fluorescence lifetime of ER-localised SYP61-GFP increases to the value of
the ER marker GFP-CNX (see Fig. 3c). ER-localised LBD-Nb interacts with Aleu-RFP causing FRET and thus decreases
fluorescence lifetime, in contrast to non-binding Sec-RFP (mean £ s.e.m.; n = 20 measurements). Statistical significance was
calculated as in d. Right: FLIM image of ER-localising SYP61-GFP after BFA treatment. Scale bars: 5 ym and 2.5 ym (inlays).
(g) Immunoblot showing ligand-binding capability of SYP61-GFP-based sensors. Protoplasts expressing indicated proteins +
BFAwere lysed and proteins were immunoprecipitated with anti-GF P beads. Immunoprecipitates (IP: a-GFP) were subjected to
SDS-PAGE and immunoblotted (IB) with a-GFP, a-HA (detecting LBD-Nb) and a-RFP. Samples are shown as total (T) and
immunoprecipitate (IP). SYP61-GFP-based sensors bind Aleu-RFP only if localised to the ER (+BFA, black arrowhead), but not
inthe TGN/EE (-BFA, white arrowhead).
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Figure 6 VVacuolar delivery of endocytosed soluble proteins does not depend on sorting signals. (a) Protoplasts expressing Cyt-
GFP were supplemented with protoplast-secreted 3xRFP and incubated 24 h before CLSM analysis. 3xRFP is endocytosed
and delivered to the vacuole. (b) Immunoblot of cellular extracts after endocytic uptake of 3xRFP. Cells were osmotically shocked
and total protein extracts (T) were separated into membrane (M) and soluble (S) fractions. After SDS-PAGE, immunoblots were
probed with a-RFP identifying 3xRFP as soluble protein (left). Right: Cells expressing the plasma membrane marker RFP-
TMD23 were used as fractionation control. (c) Cells expressing Cyt-GFP were supplemented with the nanobody-tagged
reporter 3xRFP-Nb showing vacuolar delivery (compare to a). (d-f) Vacuolar delivery of the endocytosed reporter 3xRFP-Nb
occurs via the TGN/EE and the MVB/LE. (d) Incubation of cells coexpressing the GFP epitope at the cell surface (SYP132-
GFP) with 3xRFP-Nb trap the reporter and prevent its vacuolar delivery (compare to c). (e) Incubation of cells expressing
SYP61-GFP with 3xRFP-Nb traps the endocytosed reporter in the TGN/EE. (f) Incubation of cells expressing GFP-BP80 with
3xRFP-Nb traps the endocytosed reporter in the MVB/LE. Inlays in e,f: magnified section. Scale bars: 5 ym and 2.5 ym (inlays).
(g) Concept of sorting and transport of soluble proteins to the vacuole. The ER and the Golgi provide binding conditions (green)
for VSR-ligand interaction, while the post-Golgi compartments TGN/EE and MVB/LE do not (red). This suggests that VSR-
mediated transport of soluble vacuolar proteins ends in the TGN/EE by their release from the receptor. Further transport from the
TGN/EE towards the vacuole does not involve VSRs but occurs via budding of MVBs/LEs and their ultimate fusion with the
tonoplast, instead. Consequently, vacuolar sorting signals of soluble proteins in the TGN/EE are of no further use for onward
transport. This is supported by the observation that endocytosed soluble proteins lacking vacuolar sorting information reach the
vacuole via the TGN/EE and the MVB/LE. This identifies the vacuole as the default location for soluble proteins of the endocytic
pathway.
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Supplementary Figure 1 The anti-GFP nanobody stabilises the vacuolar GFP core of GFP-BP80. Protoplasts were
transfected with plasmids encoding for the indicated proteins and incubated 24 h before analysis. (a) The MVB/LE marker GFP-
BP80 colocalises with LBD-RFP-Nb in the vacuole additionally to the MVB/LE. (b) Vacuolar signals of GFP-BP80 are not
detectable in the absence of the nanobody. (¢) Immunoblot demonstrating the nanobody-mediated accumulation of the vacuolar
GFP core. Cells were cotransfected with a constant amount of GFP-BP80 and raising concentrations of LBD-RFP-Nb as
indicated. Proteins were extracted and subjected to SDS-PAGE. Immunoblots were probed with a-GFP and a-HA (detecting
LBD-RFP-Nb). In contrast to the full-length transit form, the vacuolar GFP-core accumulates dependent on the expression level
of the nanobody. Mock transfected cells served as negative control (co) to illustrate antibody specificity. Asterisk: DNA
concentration of LBD-RFP-Nb as used in a and in all other experiments of this study. Relative molecular masses: transit form of
GFP-BP80, 38K; vacuolar GFP core, =25K; LBD-RFP-Nb, 103K. Scale bars: 5 um.
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Supplementary Figure 2 The assembly of VSR sensors does not influence the localisation of the membrane anchors.
Protoplasts were transfected with plasmids encoding for the indicated proteins and incubated 24 h before CLSM analysis. (a-d)
Sensors were assembled from LBD-Nb and the GFP-tagged membrane anchors and localisation was compared to RFP-tagged
derivatives of the respective compartmental marker. (a) Colocalisation with RFP-CNX in the ER, (b) colocalisation with Man1-
RFP in the Golgi, (c) colocalisation with RFP-SYP61 in the TGN/EE and (d) colocalisation with RFP-BP80 in the MVB/LE.
Inlays in a-d: magnified section. Scale bars: 5 um and 2.5 um (inlays). (e) Pearson's (r,) and Spearman's (r;) correlation (PSC)
coefficients calculated for green and red signals as shown in a-d demonstrating colocalisation. Coefficients are presented as
mean +s.e.m (n=10individual cells). Statistical significance was calculated using ANOVA, followed by Tukey's HSD test (*** P<
0.001).
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Supplementary Figure 3 Representative CLSM images of cells analysed by FRET-FLIM to asses VSR-ligand binding in the
ER and the MVBJ/LE. (a) FLIM data for the ER. The diagram shows the fluorescence lifetimes from Figure 3c. The different
experimental groups are represented by Latin numbers (I-V). Arepresentative image is given for each group ensuring expression
of tested fluorescent pairs. (b) FLIM data for the MVB/LE. The diagram shows the fluorescence lifetimes from Figure 3f. The
different experimental groups are represented by Latin numbers (I-1V). Arepresentative image is given for each group ensuring
expression of tested fluorescent pairs. Scale bars: 5 um.
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Supplementary Figure 4 Representative CLSM images of cells analysed by FRET-FLIM to asses VSR-ligand binding in the
Golgi and the TGN/EE. (a) FLIM data for the Golgi. The diagram shows the fluorescence lifetimes from Figure 4d. The different
experimental groups are represented by Latin numbers (I-1V). A representative image is given for each group ensuring
expression of tested fluorescent pairs. (b) FLIM data for the TGN/EE. The diagram shows the fluorescence lifetimes from Figure
5d,f (+ BFA) in direct comparison. The different experimental groups are represented by Latin numbers (I-IV). A representative
image is given for each group ensuring expression of tested fluorescent pairs. Scale bars: 5 um.
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