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ZUSAMMENFASSUNG 
Killer-immunoglobulin-like Receptors (KIR) auf Natürlichen Killerzellen (NK-Zellen) und deren  

HLA-Liganden spielen eine wichtige Rolle in der Selbst-und Fremderkennung durch NK-Zellen. In 

einer inkompatiblen KIR-KIR-Liganden Konstellation (sog. „Mismatch“) wird das Gleichgewicht von 

inhibitorischen und aktivierenden Signalen zugunsten einer Zytotoxizität gegenüber der Zielzelle 

verschoben. Bisherige Studien deuten darauf hin, dass die KIR-KIR-Liganden Mismatch-Konstellation 

bei NK-Zell-basierten Therapieansätzen den Therapieerfolg bei erwachsenen Patienten mit akuter 

myeloischer Leukämie (AML) deutlich verbessern, während akute lymphatische Leukämien der B-

Zellreihe (B-ALL) relativ resistent gegenüber der Zytotoxizität durch NK-Zellen zu sein scheinen. Die 

Expression von KIR Molekülen wird über Promotormethylierung reguliert, was die Expression 

sensibel für DNA-Methyltransferase (Dnmt)-Inhibitoren macht. Mithilfe eines NOD-scid 

IL2Rgammanull (NSG) Xenotransplantationsmodels wurden in dieser Arbeit zwei Arten von NK-Zell-

basierter Therapie für die pädiatrische B-Zell-Vorläufer-Leukämie (BCP-ALL) untersucht: Erstens der 

adoptive Transfer von reifen, Zytokin-aktivierten NK-Zellen in leukämietragende Mäuse und zweitens 

Transplantat-versus-Leukämie Effekte (graft-versus-leukemia, GvL), die durch aus dem Transplantat 

entstehende NK-Zellen vermittelt werden. Experimente mit adoptivem NK-Zell-Transfer zeigen, dass 

die pädiatrische BCP-ALL in vivo durch reife NK-Zellen angreifbar ist. Darüber hinaus liefert diese 

Arbeit substantielle Hinweise dafür, dass die KIR-KIRL-Konstellation für das Ausmaß der 

Zytotoxizität eine wichtige Rolle spielt. Sortierexperimente mit NK-Zellen die einen KIR-KIRL 

Mismatch aufweisen, zeigen eine erhöhte Funktionalität von KIR+ gegenüber KIR-  NK-Zellen, was 

sich in der KIR-KIRL kompatiblen Match-Situation umkehrt. Mechanistisch lässt sich dies auf eine 

erhöhte Funktionalität der „alloreaktiven“ KIR+ NK-Zell Subpopulation zurückführen. In 

humanisierten, also stammzelltransplantierten NSG-Mäusen (huNSG) finden sich unter den sich aus 

dem Transplantat entwickelnden NK-Zellen interessanterweise hauptsächlich unreife KIR- NK-Zellen. 

Dies ähnelt daher ideal der NK-Zell-Entwicklung in Patienten nach hämatopoetischer 

Stammzelltransplantation (HSCT). Durch die Supplementation von Zytokinen können in huNSG 

Mäusen relevante GvL-Effekte gegenüber primären B-Zell-Vorläufer-Leukämiezellen nachgewiesen 

werden, was darauf hinweist, dass wahrscheinlich unreife, sich aus dem Transplantat entwickelnde 

NK-Zellen zur Alloreaktivität beitragen. Der Dnmt-Inhibitor 5-Azacytidin (5-AzaC) hat in diesem 

Modell überraschenderweise nicht die KIR-Expression auf NK-Zellen erhöht, wie dies für reife NK-

Zellen in vitro beschrieben ist, sondern zu einem erhöhten Vorhandensein von unreifen und auch 

reifen NK-Zell-Subpopulationen und einer damit einhergehenden erhöhten anti-leukämischen Antwort 

geführt. Es kann daher davon ausgegangen werden, dass eine 5-AzaC Behandlung früh nach HSCT 

die Differenzierung von NK-Zellen fördert, die wiederrum zu einem relevanten GvL-Effekt in vivo 

beitragen können. Im Ergebnis könnte die NK-Zell-vermittelte Immunantwort in der Therapie von 

rezidivierenden kindlichen BCP-ALL Patienten in Zukunft berücksichtigt werden. 
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SUMMARY 
 

Killer-immunoglobulin-like (KIR)-receptors on natural killer (NK) cells and their corresponding HLA 

ligands play an important role in self-/non-self-discrimination of NK cells. In mismatched KIR-KIR 

ligand constellations the balance of inhibitory and activating signals is shifted towards target cell lysis. 

Previous studies indicate that these KIR-KIR ligand mismatch constellations significantly increase the 

outcome for patients suffering from adult acute myeloid leukemia whereas adult acute B cell 

lymphocytic leukemia (B-ALL) seems to be relative resistant to NK cell-mediated cytotoxicity. 

Expression of KIR molecules is regulated via promoter methylation rendering expression susceptible 

for DNA methyltransferase (Dnmt) inhibitors. Using a NOD-scid IL2Rgammanull (NSG) 

xenotransplantation model two modes for NK cell-based therapies in pediatric B cell precursor ALL 

(BCP-ALL) were explored: First, the adoptive transfer of mature cytokine-activated NK cells into 

leukemia-bearing mice and second graft-versus-leukemia effects (GvL) mediated by transplant–

emerging NK cells. Adoptive transfer experiments show that pediatric BCP-ALL can be targeted by 

mature NK cells in vivo.  Furthermore, this work provides substantial evidence that mismatched KIR-

KIRL constellations are superior in this setting. Sorting experiments reveal that mismatched KIR+ NK 

cells display enhanced functionality compared to KIR- NK cells, which is reversed in matched 

constellations. Mechanistically, superior alloreactivity of KIR-KIRL mismatched compared to KIR-

KIRL matched NK cells can be attributed to the KIR+ ‘alloreactive’ subset. Considering graft-

emerging NK cells mainly immature KIR- NK-cells in stem cell transplanted NSG mice (“humanized 

NSG”) can be detected, thus ideally resembling human NK cell ontogeny of patients post 

hematopoietic stem cell transplantation (HSCT). Under cytokine support there are relevant GvL 

effects towards primary B cell precursor leukemia in huNSG mice providing evidence that also early 

graft-emerging immature NK cells might contribute to alloreactivity. The Dnmt-inhibitor 

5-azacytidine (5-AzaC) surprisingly does not increase KIR expression on NK cells as previously 

described for mature NK cells in vitro. 5-AzaC distinctly enhances immature and mature NK cell 

subsets and along with this the anti-leukemic response. It can therefore be proposed that 5-AzaC 

treatment early after HSCT promotes differentiation of NK cells which can contribute to relevant GvL 

effects in vivo. As a result, future protocols might consider exploitation of NK cell-mediated immune-

responses for relapsing pediatric BCP-ALL patients. 
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ABBREVIATIONS 
5-AzaC 5-Azacytidine, trade name Vidaza  
5-AzadC 5-Aza-2’deoxycytidine, decitabine, trade name Dacogen 
aKIR Activating KIR 
ALL Acute lymphocytic leukemia 
AML Acute myeloid leukemia 
APC Antigen-presenting cell 
Bcl-2 B cell lymphoma 2 
BCP-ALL Acute B cell precursor leukemia 
BrdU 5-Bromo-2’deoxyuridine 
CCR7 Chemokine (C-C motif) receptor 7 
CD Cluster of differentiation 
cDNA Complementary DNA 
Ct Threshold cycle 
CFSE Carboxyfluorescein diacetat succinimidyl ester 
CML Chronic myeloid leukemia 
CMML Chronic myelomonocytic leukemia 
DAP12 DNAX activation protein of 12 kDa 
DC Dendritic cell 
DLI Donor lymphocyte infusion 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
DNAM-1 DNAX accessory molecule 1 
Dnmt DNA methytransferase 
E:T ratio Effector-to-target ratio 
EMA European Medicines Agency 
ETS E26 transformation-specific 
FAB French-American-British cooperative group 
FasL Fas ligand (TNF superfamily, member 6) 
FCS Fetal calf serum 
FDA U.S. Food and Drug Administration 
FFP Fresh frozen plasma 
FLT3L FMS-like tyrosine kinase 3 ligand  
GalC Galactosylceramidase 
gDNA Genomic DNA 
GFP Green fluorescent protein 
GMP Good manufacturing practice 
GvHD graft-versus-host disease 
GvL Graft versus leukemia 
h hour/hours 
HLA Human leukocyte antigen 
HSC Hematopoietic stem cell 
HSCT Hematopoietic stem cell transplantation 
HuNSG Humanized NOD.Cg-PrkdcScidIL2RgtmWjl/Sz mice 
iKIR Inhibitory KIR 
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i.p. Intraperitoneal 
i.v. Intravenous 
IFN-γ Interferon-γ 
Ig Immunoglobulin 
IL Interleukin 
IL-15Rα IL-15 receptor α chain 
IL2R IL-2 receptor 
ILC Innate lymphoid cell 
iNK cell Immature NK cell (stage 3) 
ITIM Immune tyrosine-based inhibitory motifs 
kDa Kilo dalton 
KIR/KIRL Killer immunoglobulin-like receptor /KIR ligand 
LFA-1 Leukocyte function-associated antigen 1 
mAb Monoclonal antibody 
MDS Myelodysplastic syndrome 
MICA/MICB MHC class I polypeptide-related sequence A/B 
mNK cell Mature NK cell (stage 4) 
MRD Minimal residual disease 
NCAM Neural cell adhesion molecule 
NCR Natural cytotoxicity receptor 
NK cells Natural killer cells 
NKAES NK cell activation and expansion system 
NKAES cells NK cells expanded according to the protocol ‘NK cell activation and expansion 

system’ 
NKG2D-L NKG2D ligand 
NS mice NOD/scid mice 
NSG mice NOD.Cg-Prkdcscid IL2rgtmWjl/SzJ mice, also termed NOD-scid IL2Rgammanull mice 
o/n Overnight 
PAMP Pathogen associated molecular pattern 
PBMC Peripheral blood mononuclear cell 
PFA Paraformaldehyde 
pre-NK cell Precursor NK cell (stage 2) 
pro-NK cell Progenitor NK cell (stage 1) 
PVR Poliovirus receptor 
RNA Ribonucleic acid 
SCF Stem cell factor 
TCRαβ T cell receptor α and β chain 
Tdt Terminal deoxynucleotidyl transferase 
TLR Toll-like receptor 
Tm Melting temperature 
TNF Tumor necrosis factor 
TRAIL TNF-related apoptosis-inducing ligand 
ULBP UL16-binding protein 
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1 INTRODUCTION 
Leukemia constitutes about one third of all childhood cancers diagnosed at the age of 0-14 (Howlader 

et al., 2014). Acute lymphoblastic leukemia (ALL) is a hematologic malignancy which is 

characterized by uncontrolled proliferation of lymphoid progenitor cells, in most cases of the B cell 

lineage. ALL accounts for 81% of childhood leukemias (Howlader et al., 2014).  

Remarkable progress has been made in therapy of a subtype of ALL, the childhood acute B cell 

precursor leukemia (BCP-ALL). Current therapy protocols including combination chemotherapy has 

led to 5-year event-free survival rates of about 80% (Moricke et al., 2009; Pui and Evans, 2013; 

Freireich et al., 2014). Despite this progress further research is required to improve therapy options 

especially for children with high risk features. Patients with bone marrow relapse during conventional 

therapy have a 5-year survival estimate of only approximately 25% (Rivera et al., 2005).  

Aim of this study was to identify natural killer (NK) cell-based therapy options for high risk childhood 

BCP-ALL patients with poor prognosis. The potential of adoptive NK cell transfer has not yet been 

fully exploited, the benefit of NK cell-based therapies has been shown for acute myeloid leukemia 

(AML) but as described later, is still a matter of debate for ALL (see 1.3.1 and 1.3.2). Therefore, NK 

cell efficiency in this disease entity was exploited and criteria for beneficial NK cell donor selection 

were examined. A further focus of this work was the modulation of graft-versus-leukemia (GvL) 

effects towards BCP-ALL by the methyltransferase inhibitor 5-azacytidine (5-AzaC).  The following 

introduction will give an overview on acute childhood leukemias, NK cell biology with a focus on 

killer cell immunoglobulin-like receptors (KIRs), NK cells in leukemia therapy, as well as 

mechanisms of action and current applications of 5-AzaC. 

 

1.1 Acute childhood leukemia 
In acute leukemias immature hematopoietic precursor cells undergo malignant transformation 

resulting in maturation arrest and enhanced proliferation. These leukemic cells are released from the 

bone marrow and can accumulate in organs as for example spleen. In chronic leukemias which are rare 

in children no such clear maturation arrest occurs (Zwaan and M. van den Heuvel-Eibrink, 2011). 

Acute leukemias are subdivided in AML and ALL depending on the origin of the malignant cell. They 

make up about one third of all childhood cancers (Annesley and Brown, 2015). In current 

classification systems for acute leukemia (AML and ALL) more than 20% of cells in the bone marrow 

or peripheral blood are blasts (Vardiman et al., 2009; Abdul-Hamid, 2011). ALL is the most common 

leukemia in childhood. It can according to the WHO classification of 2008 be subdivided into 3 main 

diagnoses: acute leukemias of ambiguous lineage, B lymphoblastic leukemia/lymphoma and T 

lymphoblastic leukemia/lymphoma (Vardiman et al., 2009). T-ALL accounts for approximately 25% 

in children (Chiaretti and Foà, 2009), most ALLs are of the B cell lineage (B-ALL).  

5-year-event-free survival for childhood AML ranges between 49 and 63% (Pui et al., 2011). 

Prognosis for ALL has over the past decades improved to 5-year event-free survival rates of about 
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80% (Moricke et al., 2009; Pui and Evans, 2013; Freireich et al., 2014), but about 20% of ALL cases 

relapse leading to a poor prognosis for the affected child (Annesley and Brown, 2015). For an 

overview of acute childhood leukemias see Table 1. 

 
Table 1: Overview of acute childhood leukemias.  FAB: French-American-British cooperative group. 

 AML ALL 

Origin of 

malignant cells 

Common myeloid precursors Lymphoid progenitor cells  

Incidence in 

childhood 

10.1 per million at the age <5 (Ries, 

1999) 

 

15-20% of childhood leukemia (Zwaan 

and M. van den Heuvel-Eibrink, 2011) 

58.2 per million at the age <5 (Ries, 

1999) 

 

81% of childhood leukemias (Howlader 

et al., 2014), T-ALL accounts for 25% 

of ALLs (Chiaretti and Foà, 2009), 

most ALLs are of the B cell lineage 

Prognosis  

 

5-year-event-free survival between 49 

and 63% (Pui et al., 2011) 

5-year-event-free survival of about 80% 

(Moricke et al., 2009; Pui and Evans, 

2013; Freireich et al., 2014) 

Subclassification  Dependent on degree of maturation; 

M0-M7 (FAB classification). 

M0 AML with minimal differentiation, 

M1–2 AML with minimal or moderate 

granulocytic differentiation, M3 acute 

promyelocytic leukemia (APL), M4 

AML with mixed myelomonocytic 

differentiation, M5 acute monoblastic 

leukemia, M6 “eryhtroleukemia”, and 

M7 acute megakaryoblastic leukemia 

(Abdul-Hamid, 2011) 

Dependent on morphology (L1-L3, 

FAB) or subclassification in B-or T-

ALL with further distinction according 

to degree of maturation. 

Pro B-ALL, Common ALL, Pre B-

ALL, Mature B-ALL. Pro T-ALL, Pre 

T-ALL, Cortical T-ALL or Thymic 

ALL, mature T-ALL 

(Abdul-Hamid, 2011) 

Leukemia 

propagating 

potential 

Relatively low number of immature 

leukemia-initiating cells can be 

identified; hierarchical  model (Lapidot 

et al., 1994; Dick, 2008) 

Leukemia-propagating potential 

detected by blasts with different  stages 

of maturation, almost all blasts have 

initiating capacity (le Viseur et al., 

2008) 

Susceptible to 

NK cell-based 

therapies 

Several studies show beneficial effects, 

see section 1.3. 

Only limited data available adult B-

ALL seems to be resistant, see section 

1.3.  
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Flow cytometric analysis can help to subclassify leukemic cells to the stage of development where 

leukemia transformation happened (McGregor et al., 2012, see Table 2),  B-ALLs can be subdivided 

into 4 groups: Pro B-ALL, Common ALL, Pre B-ALL and mature B-ALL (reviewed in Abdul-Hamid, 

2011). B-ALLs of the B cell precursor subtype (BCP-ALL) are the most common type of acute 

leukemia in childhood (Pui et al., 2008). 

 
      Table 2: Immune-phenotype of B lymphocyte progenitors, modified from (McGregor et al., 2012) 

B lineage CD10 CD19 CD22 CD79a Tdt Ig 

Early precursor (pro-B) - + + + + - 

Intermediate (common) + + + + + - 

Pre-B ± + + + + C-mu 

1.1.1 Risk classification for B-ALL 

To optimally choose the treatment regimen it is important to assess and classify patients according to 

their risk for relapse. Patients suffering from low or standard risk B-ALL receive less intense treatment 

than high risk patients (Pui et al., 2008). After initial categorization of the ALL cells into B or T cell 

lineage, leukocyte count and age were shown to be a prognostic factor for patients suffering from B-

ALL (Smith et al., 1996). Patients between 1 and 9 years of age having a white blood count <50 000 

cells per µl at diagnosis can be categorized to standard risk whereas the remaining leukemias are 

categorized to be of high risk (Smith et al., 1996).  Furthermore there are cytogenetic factors that allow 

further categorization of the outcome for B-ALL patients. Chromosomal translocations can lead to 

activation of transcription factors or kinases involved in differentiation or proliferation. For example 

the Philadelphia chromosome or  t(4;11) with MLL-AF4 fusion is associated with a poor prognosis as 

well as hypodiploidy (Pui et al., 2008). Treatment response is increasingly evaluated by quantification 

of the minimal residual disease (MRD) using PCR or flow cytometry that can detect 1 ALL cell 

among 10 000 to 100 000 other cells (Campana, 2010).  Presence of MRD is the most powerful 

prognostic marker in ALL that applies to all subgroups  (McGregor et al., 2012). Hypodiploidy, 

remission induction failure or MRD >1% are associated with a poor outcome for patients (Pui et al., 

2008). For such high risk patients new therapeutic strategies as NK cell-based approaches in adjunct to 

HSCT could be a promising additive therapy approach. 
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1.2 Natural killer cells  
NK cells are part of the innate immune system that were originally named natural killer cells because 

of their ability to spontaneously kill target cells without prior priming or peptide restriction. Recent 

studies indicate that NK cells nevertheless need an education and maturation process (e.g., North et al., 

2007; Thomas et al., 2013). NK cells comprise about 10-15% of all lymphocytes and are able to 

recognize transformed or virus-infected cells by germline-encoded receptors (reviewed in Cooper et 

al., 2001; Caligiuri, 2008). They mediate direct cytotoxicity or modulate immune responses by the 

secretion of cytokines. Commonly they are defined as CD3- and CD56+ which is the 140 kDa isoform 

of neural cell adhesion molecule (NCAM) that is also present on natural killer T cells, a minority of T 

cells and some myeloid leukemias (Lanier et al., 1989). Recently, more subsets of innate lymphoid 

cells (ILCs) have been defined and conventional NK cells are part of group 1 ILCs (ILC1) which are 

producers of interferon-γ (IFN-γ) (Spits et al., 2013). The definition of NK cells has become more 

difficult due to the presence of e.g., CD56 and NKp46 (a natural cytotoxicity receptor, NCR) on 

human IL-22-producing ILCs (Spits et al., 2013).  

In the peripheral blood 90% of human NK cells have a low density expression of CD56 (CD56dim) and 

a high expression of the Fcγ receptor III (CD16) (Cooper et al., 2001). This subset has been described 

to be the main cytotoxic subset (Lanier et al., 1986), whereas the remaining 10% are 

CD56brightCD16-/dim NK cells are potent producers of IFN-γ. They are the predominant NK cell subset 

in lymph nodes (expressing high levels of L-selectin and CCR7 for homing to the lymph node and the 

high affinity receptor IL2Rαβγ), where an interaction with antigen-presenting cells/dendritic cells and 

T cells in a dynamic bidirectional manner can occur (Fehniger et al., 2003). Human NK cells seem to 

have a turnover rate of about two weeks in the peripheral blood (Zhang et al., 2007; Castillo et al., 

2009).  

 Cytotoxicity mediated by NK cells is triggered by a change in the balance of activating and inhibitory 

signals that are sensed by specific receptors on the NK cells. Inhibitory receptors as KIRs, which are 

specific for HLA class I molecules, provide an inhibitory signal for ‘self-molecules’. ‘Missing self’ 

(Karre et al., 1986) by for example virus-mediated or tumor-associated downregulation of HLA I 

molecules can change the equilibrium of signals. Activating receptors recognize e.g., stress-induced 

ligands as MICA/B or viral proteins and are necessary additional to ‘missing self’ to trigger NK cell 

cytotoxicity (Fig. 1, Raulet and Vance, 2006).  
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Fig. 1: Cytotoxicity of NK cells is triggered by a change in the balance of activating and inhibitory signals. 
Normal autologous cells are protected from killing by inhibitory interactions that dominate activating signals. In 
case of infection or transformation MHC I molecules can be downregulated (left side, ‘missing-self’) and 
inhibition by self-MHC I molecules is lost resulting in NK cell activation. Induced expression of stimulatory 
ligands can change the balance towards NK cell activation and cytotoxicity despite of self-inhibition (right side, 
‘induced-self’). Figure adapted from (Raulet and Vance, 2006). 
 

Cytotoxicity of NK cells is mainly mediated by the targeted release of vesicles containing perforin and 

granzymes. Perforin enables the entry of granzymes into the target cell, where e.g., granzyme B can 

directly activate caspases and induce apoptosis of the target cell (reviewed in Pardo et al., 2009). A 

marker to quantify granule secretion is lysosome-associated membrane glycoprotein-1 (LAMP-1 or 

CD107a). It co-localizes with perforin in secretory vesicles and can be detected at the cell surface after 

degranulation. Furthermore, NK cells are able to induce Fas or TNF-related apoptosis-inducing ligand 

(TRAIL)-dependent apoptosis (Arase et al., 1995; Kayagaki et al., 1999). The expression of Fas ligand 

or TRAIL on NK cells can, by binding to respective receptors on target cells, induce apoptosis via 

aggregation of cytoplasmic death domains, recruitment and activation of caspases (Thorburn, 2004). 

 Besides cytotoxicity, NK cells also modulate immune responses by the release of cytokines. 

They are an important source of IFN-γ and TNF. TNF e.g., activates macrophages and vascular 

endothelium and induces the production of IL-1 and IL-6 (O'Shea et al., 2002). IFN-γ production is 

mainly triggered by the release of IL-12 and IL-18 from antigen-presenting cells (APCs) and has 

direct antiviral effects as well as immune-regulatory functions. It for example enhances MHC class I 

and II antigen presentation and promotes the development of Th1 cells and leukocyte trafficking 

(Schroder et al., 2004).  
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1.2.1 NK cell receptors  

As mentioned above, NK cell effector functions are triggered by a change in the balance of activating 

and inhibitory signals that are sensed by specific receptors. The family of KIR molecules plays a 

central role in self-/non-self recognition via inhibition by HLA class I molecules. They are described 

in more detail in section 1.2.3. Before KIR expression occurs in NK cell development, the inhibitory 

receptor NKG2A is an important element for self-tolerance (see section 1.2.2, 1.2.3). Natural 

cytotoxicity receptors (NCR) are structurally unrelated but share the ability to highly activate the 

cytolytic potential of NK cells. NKp30 and NKp46 are constitutively expressed, whereas NKp44 

expression is induced after NK cell activation (Sanchez-Correa et al., 2011). The first identified NCR 

ligands were viral proteins but recently, also tumor-associated antigens have been identified to activate 

NCR (e.g., NKp30-B7-H6, Brandt et al., 2009). But still, many ligands are unknown. A further 

important activating receptor triggering blast lysis by NK cells is the C-type lectin–like homodimeric 

receptor NKG2D. 55% of AMLs were shown to express the NKG2D-Ls MICA/B (Sanchez-Correa et 

al., 2011). Also DNAM-1 and its ligands CD112 and CD155 seem to be relevant for NK cell-mediated 

cytotoxicity towards leukemia, especially for NKG2D-L-negative blasts (Pende et al., 2005). Further 

selected receptor-ligand pairs and their effect involved in target recognition and cytotoxicity of NK 

cells are shown in Table 3.  

 

Table 3: Selected overview of receptors expressed on NK cells, their respective ligands, and effect of the 
interaction. 21spe-MLL5: Exon 21spe-containing isoform (21spe) of mixed lineage leukemia-5 (MLL5) 
protein; AICL: activation-induced C-type lectin; DNAM-1: DNAX accessory molecule 1; N.D. not determined; 
PAMP: pathogen associated molecular pattern, PVR: Poliovirus receptor; TLR: toll-like receptor; ULBP: UL16-
binding protein. Modified from (Sivori et al., 2014; Raulet and Vance, 2006). 
Receptor Ligand(s) Ligand expressing cells Effect 
KIR-family 
members 

Various MHC class I 
molecules 
(see also 1.2.3) 

Almost all nucleated 
cells of the body 

Inhibitory and activating 
family members 

LFA-1 ICAM-1, ICAM-2 
(Bryceson et al., 2005) 
 

Target cells Adhesion, polarization of 
granules (prerequisite for 
effector functions) 

DNAM-1 
(CD226) 

CD112 (Nectin-2), CD155 
(PVR) 
(Bottino et al., 2003) 

Tumor and infected cells, 
stress-induced  

Activation 

NKp30 
(NCR) 

B7-H6 
(Brandt et al., 2009) 

Tumor cells (membrane)  Activation  

Viral heamagglutinin 
(Jarahian et al., 2011) 

Infected cells 
(ecteromelia virus)  

Inhibition 

NKp44 
(NCR) 

21spe-MLL5 
(Baychelier et al., 2013) 

Tumor cells  Activation  

Viral heamagglutinin 
(Arnon et al., 2001) 

Infected cells  Activation  

NKp46 
(NCR) 

N.D. (Sivori et al., 1999) Tumor cells Activation 
(cytokine/cytotoxicity) 

Viral heamagglutinin Infected cells  Activation  
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(Mandelboim et al., 2001) 
NKp80 
(C-type lectin–
like 
homodimeric 
receptor) 

AICL  
(Welte et al., 2006) 
 

Myeloid-specific 
receptor expressed by 
monocytes, macrophages 
and granulocytes  

Involved in the activating 
crosstalk between NK 
cells and myeloid cells 
 
 

NKG2D 
(C-type lectin– 
like 
homodimeric 
receptor) 

ULBPs, MICA/MICB 
Reviewed in (Huergo-
Zapico et al., 2014) 

Ligands induced by 
stress and/or DNA 
damage (transformed and 
infected cells) 
 

Activation 

CD94-NKG2 
heterodimer 

HLA-E (Braud et al., 1998) HLA-E binds peptides 
cleaved from the signal 
peptides of many 
classical MHC I 
molecules  

NKG2A- Inhibition 
NKG2C,E – Activation 

FcγRIII 
(CD16) 

IgG 
(Perussia et al., 1989) 

Antibody-coated target 
cells 

Activation/antibody-
dependent cytotoxicity 
(ADCC) 

2B4 (CD244) CD48 (Brown et al., 1998) Normal hematopoietic 
and target cells, role in 
self-tolerance 

Inhibition or stimulation, 
dependent on associated 
signaling molecules 

TLR 
(2,3,5,7/8,9) 

PAMPs 
(Reviewed in Sivori et al., 
2014) 

Bacterial/viral structures 
 

Activation/synergy with 
cytokines 

1.2.2 NK cell development 

NK cells are lymphoid cells that are derived from hematopoietic stem cells (CD34+). The main side of 

NK cell maturation is thought to be the bone marrow (Colucci et al., 2003). The cytokine milieu and 

stromal cells are able to provide the microenvironment for the first steps of maturation. Precursor NK 

(pre-NK) cells but probably also other NK cell stages may traffic to other tissues (spleen, lymph 

nodes, (fetal) thymus, (fetal) liver) for further maturation (Freud and Caligiuri, 2006; Huntington et 

al., 2007).  

Freud and colleagues defined four main functionally distinct successive developmental stages that give 

rise to mature CD56+ NK cells in the secondary lymphoid tissue (SLT; see Table 4; Freud and 

Caligiuri, 2006; Freud et al., 2006).  

 
Table 4: Developmental NK cell stages. Summarized are stages of NK cell development as defined by Freud 
and colleagues (Freud and Caligiuri, 2006; Freud et al., 2006). Note that the CD markers mentioned here are 
only a minimal panel for discrimination of the stages. 

Developmental stage Surface antigen expression 
Stage 1 Progenitor NK cells (pro-NK cells) CD34+ CD117- CD94- CD56- 
Stage 2 Precursor NK cells (pre-NK cells) CD34+ CD117+ CD94- CD56(+)/- 

Stage 3 Immature NK cells (iNK cells) CD34- CD117+ CD94- CD56(+)/- 
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Stage 4 
 

Mature CD56bright NK cells (mNK 
CD56bright cells) 

CD34-CD117+/-CD94+CD56bright 
Nkp46+CD16- 

Mature CD56dim NK cells (mNK 
CD56dim cells) 

CD34-CD117+/-CD94+/-CD56dim 
Nkp46+CD16+ 

 

For the first commitment of stage 1 cells, stromal cells or cytokines such as stem cell factor (SCF, also 

c-KIT ligand), fetal liver kinase 2 ligand also known als FMS-like tyrosine kinase 3 ligand (FLT3L) 

and IL-7 are necessary (Colucci et al., 2003). Commitment to the NK cell lineage goes along with 

expression of the IL-2Rβ chain (CD122), thereby inducing IL-2 and IL-15 responsiveness. The E26 

transformation specific (ETS) family member PU.1, E4BP4 and later EOMES, ID2 (inhibitor of DNA 

binding) and T-bet are important transcription factors in NK cell development (Yokota et al., 1999; 

Colucci et al., 2001; Gordon et al., 2012; Male et al., 2014). PU.1 regulates early commitment of the 

myeloid and lymphoid lineage, e.g., c-KIT is a molecular target of PU.1 (Colucci et al., 2003). E4BP4 

directly regulates Eomes and ID2 expression (Male et al., 2014) that play an important role in iNK to 

mNK cell transition.  

NK cell development from stage 2 on is driven by IL-15 and IL-2, but IL-2 seems to be dispensable as 

for example in IL-2-deficient patients and mice NK cell numbers are normal and NK cell-mediated 

cytotoxicity is lower but inducible (DiSanto et al., 1990; Kundig et al., 1993). IL-15 is commonly 

presented in trans as complex of IL-15/IL-15Rα to cells expressing the IL-2Rβ-γc complex (Dubois et 

al., 2002) and is essential for NK cell development, expansion, and homeostasis via the anti-apoptotic 

factor Bcl-2 in vivo (Kennedy et al., 2000; Ranson et al., 2003).  

In contrast to pro-NK and pre-NK cells, stage 3 iNK cells have lost the developmental potential for 

T cell or DC development. Despite the commitment to the NK cell lineage iNK cells seem neither to 

display perforin-dependent cytotoxic activity nor to produce IFN-γ. These functions are acquired at 

stage 4 (mature NK cells) along with the expression of other NK cell receptor such as NKG2D or 

Nkp46 (Freud and Caligiuri, 2006). 

In stage 4 expression of CD94 (which forms a heterodimer with NKG2 receptors) occurs earlier in 

development than KIR expression. For the final maturation steps it is assumed that CD56dimNKG2A-

KIR+ are the most mature NK cells and that they develop from CD56dim NKG2A+ KIR- cells to 

CD56dim NKG2A+ KIR+ cells and finally to CD56dim NKG2A- KIR+ cells (Miller and McCullar, 2001). 

In this sequence self-tolerance via inhibition of NKG2A by HLA-E is achieved before KIRs are 

expressed. 

1.2.3 Killer Ig-like receptors 

Killer Ig-like receptors (KIRs) play a central role in NK cell recognition and self-inhibition. In case of 

‘missing-self’, e.g., caused by virally or tumor-associated MHC-I downregulation to escape from 

CD8+ T cell recognition, inhibition by self-KIRs and NKG2A is lost. NKG2A recognizes a conserved 

signal sequence of most HLA class I molecules which are bound to HLA-E. KIRs are a highly 
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polymorphic receptor family that bind specific HLA class I alleles or HLA class I determined binding 

motifs (reviewed in Vilches and Parham, 2002). An overview of KIRs and their respective ligands is 

shown in Table 5. 

 
Table 5: KIR family members and their respective HLA ligands. The HLA-C group 2 epitope contains 
lysine in position 80, whereas HLA-C group 1 epitopes share an asparagine in position 80.  *note: KIR2DL4 
transduces activating signals despite of its long cytoplasmic tail (Rajagopalan et al., 2001). #KIR2DL5 gene is 
encoded by two separate loci (duplication). KIR2DP1 and KIR3DP1are pseudogenes and not explicitely 
mentioned in the table. Adapted from (Campbell and Purdy, 2011). 
 Gene name CD 

designation 
Number 
of alleles 

Recognition motif on HLA ligands 

In
hi

bi
to

ry
 r

ec
ep

to
rs

 

KIR2DL1 CD158a 26 HLA-C group 2 
KIR2DL2 CD158b1 15 HLA-C group 1 and some HLA-C group 2 

and HLA-B 
KIR2DL3 CD158b2 11 HLA-C group 1 and some HLA-C group 2 

and HLA-B (weaker affinity than 2DL2) 
KIR3DL1 CD158e1 59 Bw4 epitopes among HLA-B allotypes and 

some HLA-A: A*23, A*24, A*32 (Stern et 
al., 2008) 
KIR3DL1*004 is retained intracellularly 
(Pando et al., 2003) 

KIR3DL2 CD158k 25 Certain HLA-A allotypes: A*03, A*11 
KIR3DL3 CD158z 56 Unknown 
KIR2DL5A# CD158f 10 Unknown 
KIR2DL5B# CD158f 21 Unknown 

A
ct

iv
at

in
g 

re
ce

pt
or

s KIR2DL4* CD158d 27 HLA-G 
KIR2DS1 CD158h 15 HLA-C group 2 (low affinity) 
KIR2DS2 CD158j 20 HLA-C group 1 (low affinity) 
KIR2DS3 No CD 

assigned 
12 HLA-C group 1 (low affinity) 

KIR2DS4 CD158i 30 HLA-C (some group 1 and 2), A*11 
KIR2DS5 CD158g 14 Unkown 
KIR3DS1 CD158e2 16 HLA-Bw4?  

 

KIRs are classified into different groups depending on their structural features. KIRs containing two or 

three extracellular Ig-like domains are referred to as KIR2D or KIR3D. In addition to a stem and a 

transmembrane region KIRs either contain a short or long cytoplasmic tail. KIRs containing a short 

cytoplasmic tail (S, e.g., KIR2DS1) transduce activating signals (aKIR) via the DAP12 adapter 

molecule (Lanier et al., 1998). KIRs containing a long cytoplasmic tail (L, e.g., KIR2DL1) possess 

immune tyrosine-based inhibitory motifs (ITIMs) allowing the recruitment of protein tyrosine 

phosphatases containing a SH2-motif that leads to inhibition of the NK cell (iKIR, Olcese et al., 1996). 

An exception is KIR2DL4 that, despite of its long cytoplasmic tail, contains arginine in the 

transmembrane region allowing the transduction of activating signals (Rajagopalan et al., 2001).  
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The KIR genes are encoded on chromosome 19q13.4 in the leukocyte receptor complex and display a 

high degree of sequence homology (Wende et al., 1999). But still, genetic diversity is enormous due to 

allelic polymorphism (see Table 5) and the inheritance as haplotypes that exhibit a high variability in 

number and combination of KIR alleles (Uhrberg et al., 1997; Valiante et al., 1997). KIR3DL3, 

KIR3DP1 (pseudogene), KIR2DL4 and KIR3DL2 are present in all haplotypes. KIR haplotypes A 

share the inhibitory receptors KIR2DL3, KIR2DL1, KIR3DL1 and KIR3DL2. KIR2DS4 is the only 

aKIR present within haplotype A. Despite of this defined KIR content, haplotypes A have allelic 

variation leading to diversity. Haplotypes B are even more variable and include KIR genes that are not 

present in haplotype A, including several activating genes (reviewed in Parham and Moffett, 2013). 

1.2.3.1 Regulation of KIR expression 

The high level of conservation within the putative promoter regions of KIR genes led the Uhrberg 

group to the hypothesis that epigenetic mechanisms might play an important role in the regulation of 

KIR expression (Santourlidis et al., 2002). Indeed, it has been shown that methylation of respective 

CpG islands correlates with inhibition of KIR expression, and treatment with the DNA 

methyltransferase inhibitor 5-AzaC induces KIR expression. Silent KIR genes display a high level of 

CpG methylation whereas actively transcribed KIR genes are largely unmethylated (Santourlidis et al., 

2002; Chan et al., 2003; Chan et al., 2005). Furthermore, often only one allele, not both, are expressed 

within one individual (Chan et al., 2003). 

Since direct DNA methylation may influence histone modifications or vice versa, it seems reasonable 

that also histone modifications and other epigenetic mechanisms play a role in KIR expression. Indeed, 

chromatin accessibility determines transcriptional activity for the KIR locus (Chan et al., 2003; 

Santourlidis et al., 2008). Currently, it is proposed that demethylation of DNA is not required for the 

acquisition of histone modifications (Santourlidis et al., 2008). Cells that are not expressing KIRs 

display low levels of active histone marks as acetylated lysine 8 of histone 4 (H4K8ac) and a high 

level of repressive H3K9 dimethylation. Acquisition of an active histone signature at the KIR locus is 

followed by CpG methylation not vice versa. Probably active histone marks are necessary to poise 

cells for rapid CpG demethylation and KIR expression (Santourlidis et al., 2008). Besides epigenetic 

regulation, differences in individual KIR expression on cell surfaces can largely not be explained by 

differences in RNA expression levels and therefore also post-transcriptional mechanisms are supposed 

to be involved in expression of KIR genes (McErlean et al., 2010). 

 

Extending the view from single cells to the NK cell pool within one individual, varying KIR 

expression between NK cells can be observed. In vitro studies have shown that single HSCs lead to 

NK cell progeny with polyclonal KIR expression patterns that display plasticity for further KIR 

expression (Miller and McCullar, 2001). In combination with variegated expression of further NK cell 

receptors this leads to a high number of diverse NK cell subsets within one human individual.   
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There are indications for KIR expression during NK cell development being a random process not 

influenced by the HLA genotype (Miller and McCullar, 2001; Andersson et al., 2009). Still, self-

tolerance has to be achieved even in NK cells that do not express any KIR for self-HLA class I. This is 

in part achieved by a process called education. 

1.2.3.2 NK cell education 

In order to achieve full functionality, NK cells have to undergo a process called ‘education’. This is an 

MHC class I-dependent process resulting in enhanced responsiveness to activating ligands. It has been 

shown that NK cells not expressing KIRs for self-MHC class I molecules display a mature phenotype, 

but are functionally hyporesponsive to diverse stimuli as MHC class I-deficient target cells (Anfossi et 

al., 2006). Thereby autoreactivity is prevented.  

In mice, functional competence of uneducated NK cells can be induced by transfer of uneducated 

mature NK cells from a MHC class I-deficient host into wild-type hosts, whereas the transfer of 

educated functional NK cells leads to a loss of responsiveness in MHC class I-deficient hosts (Elliott 

et al., 2010; Joncker et al., 2010). This shows the relevance of MHC class I molecules for functional 

competence and also the plasticity (‘re-education’) of mature NK cells.  

The relevance of education can also be seen in the human setting which was for example explicitly 

shown for KIR3DL1 by Kim and colleagues: KIR3DL1 recognizes HLA class I molecules containing 

the Bw4 epitope. Educated KIR3DL1+ NK cells from HLA Bw4-homozygous donors display 

increased responsiveness compared to uneducated KIR3DL1+ NK cells from donors with only one 

HLA Bw4 allele or without HLA Bw4 genes (Kim et al., 2008). 

 

Education occurs during NK cell development, but due to the lack of surface markers to identify 

educated NK cells, the exact stage where this process occurs is unclear. Currently, two possible 

mechanisms for NK cell education are proposed (reviewed in Bessoles et al., 2014): 

- ‘Disarming’ hypothesis: 

Initially responsive NK cells are chronically stimulated in the absence of inhibitory receptors 

for self-MHC class I molecules. Chronic activation without neutralizing inhibitory signals 

leads to hyporesponsiveness.  

- ‘Arming’ hypothesis1: 

In this model NK cells are initially poorly responsive to activating signals. Engagement of 

inhibitory receptors by self-MHC class I molecules induces responsiveness. 

 

Regardless of the respective model it is possible that not only trans interactions but also cis 

interactions (on the NK cell itself) might play a role in education (Bessoles et al., 2013). It furthermore 

                                                   
1 Sometimes the terminus ‚licensing‘ is used in the literature when referring to the arming hypothesis. Others use 
the term ‘licensing’ without preference for one of the two models (e.g., Orr et al., 2010, Bessoles et al., 2014). 
Here in this work the term licensing is also used as synonym for ‘education’. 
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seems that education is not an ‘on-off’ process but rather a step-wise process (‘rheostat model’). 

According to the ‘rheostat model’ more possible inhibitory interactions of KIRs with self-MHC class I 

molecules result in higher responsiveness of the respective NK cell (Brodin et al., 2008; Brodin et al., 

2009; Joncker et al., 2009). 

 

Regarding the molecular mechanism of education or licensing it has been shown that the ITIM 

signaling motif of Ly49A, which is a murine functional KIR homologue, and therefore also the 

receptor itself is necessary for education (Kim et al., 2005). There are contradicting reports whether 

the phosphatase SHP-1 downstream of the ITIM is also involved in this process (Lowin-Kropf et al., 

2000; Kim et al., 2005). One functional effect of education might be a change in inside-out signaling 

of LFA-1 leading to less stable NK cell-target conjugates of unlicensed NK cells (Thomas et al., 

2013). 

1.2.4 KIR-KIRL mismatch and alloreactive NK cell subsets 

As mentioned in section 1.2.3, KIR genes and KIR expression on NK cell subsets varies considerably 

among individuals. Diverse combinations of KIRs are present on various NK cell subsets leading to a 

complex NK cell repertoire. NK cell education by KIR-HLA class I interactions and further inhibitory 

receptors (e.g., NKG2A) ensure self-tolerance. Transfer of NK cells into a HLA-disparate host can 

lead to alloreactivity of NK cell subsets due to missing inhibition (KIR-KIRL mismatch, see also Fig. 

2). This is the case in the setting of hematopoietic stem cell transplantation (HSCT) when NK cells are 

transferred into a KIR-KIRL mismatched recipient. 

 

 

Fig. 2:  KIR-KIRL match and mismatch 
constellations. Shown is an exemplary 
constellation of a KIR2DL2/L3+ NK cell. Left 
side: KIR2DL2/L3 interaction with HLA-C1 in 
a HLA-C1/C1 individual (KIR-KIRL match) 
leads to NK cell inhibition. On normal cells, 
KIR-mediated inhibition overrides activating 
receptor-ligand interactions. Right side: 
KIR2DL2/L3 do not find a ligand in a HLA-
C2/C2 individual (KIR-KIRL mismatch), the 
inhibiting signal is lost, activation predominates 
(idea for figure from Parham, 2005). 

 

Since HLA class I genes and KIR genes are not located on the same chromosome, an individual might 

also express KIRs for non-self HLA class I molecules. The process of education leads to 

hyporesponsiveness of NK cells not expressing any self-HLA class I inhibitory receptor. The educated 

alloreactive NK cell subset is not hyporesponsive and expresses activating receptors but no inhibitory 

receptors that find a ligand on the respective target cell (Pende et al., 2005; Babor et al., 2013). Taking 
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this into account, the alloreactive subset can theoretically be predicted as shown in Table 6 for 

HLA-C-determined KIR ligands. Although the clinical relevance of these considerations has until now 

only been proven in specific disease entities (as described later in section 1.3.1), studies of KIR-KIRL 

constellations might help to extend NK cell-mediated GvL effects to further contexts.  

 

Table 6: Exemplified alloreactive NK cell subsets in the context of HLA-C determined KIR-KIRL 
interactions. aKIRs and other KIR-KIRL pairs are not considered. Modified from (Babor et al., 2013). 
Donor 
KIRL 

Education Recipient 
KIRL 

Alloreactive NK cells 
Licensed Unlicensed Licensed Unlicensed 

C1/C1 KIR2DL2/L3 KIR2DL1 C1/C1 - KIR2DL1 
C1/C2 KIR2DL1 

KIR2DL2/L3 
- C1/C1 KIR2DL1 - 

C2/C2 KIR2DL1 KIR2DL2/L3 C1/C1 KIR2DL1 - 
C1/C1 KIR2DL2/L3 KIR2DL1 C1/C2 - - 
C1/C2 KIR2DL1 

KIR2DL2/L3 
- C1/C2 - - 

C2/C2 KIR2DL1 KIR2DL2/L3 C1/C2 - - 
C1/C1 KIR2DL2/L3 KIR2DL1 C2/C2 KIR2DL2/L3 - 
C1/C2 KIR2DL1 

KIR2DL2/L3 
- C2/C2 KIR2DL2/L3 - 

C2/C2 KIR2DL1 KIR2DL2/L3 C2/C2 - KIR2DL2/L3 

 

1.3 NK cells in leukemia therapy 
NK cells are able to lyse malignant cells similar to cytotoxic T cells. Unfortunately, after HSCT 

T cells from the graft can also attack healthy tissue within the recipient and are a main cause of graft-

versus-host disease (GvHD).  In contrast, NK cells mediate beneficial anti-leukemic effects (GvL) 

without causing GvHD (Ruggeri et al., 1999; Ruggeri et al., 2002).  Strategies using T cell depletion 

(CD3, CD3/19 or TCRαβ depletion) from the graft allow co-transplantation of beneficial NK and other 

effector cells with HSCs which enhances GvL effects, but reduces the GvHD risk (reviewed in 

Handgretinger, 2012). GvHD can be initiated by stimulation of donor T cells by allogeneic MHC 

antigens on recipient APCs. But also recipient alloproteins (minor histocompatibility antigens) might 

be presented by APCs on MHC class I molecules to CD8+ T cells (‘cross-priming’) and thereby 

initiating  GvHD (reviewed in Auchincloss Jr and Sultan, 1996). Alloreactive NK cells from the graft 

are able to reduce the GvHD risk by depletion of recipient DCs that are able to trigger GvHD via the 

mentioned mechanisms (Ruggeri et al., 2002).  

Donor selection in HSCT can influence the efficiency of GvL effects mediated by graft-emerging NK 

cells. For example KIR haplotype B donors seem to be superior compared to KIR haplotype A donors 

(Oevermann et al., 2014), but more criteria for optimal donor selection need to be defined. NK cells 

within the graft can also mediate GvL effects; here also donor selection might play an important role. 

Strategies as CD3/19-depletion from the graft in combination with ex vivo IL-15 stimulation could 

enhance GvL effects from graft-immanent NK cells (Pfeiffer et al., 2012). Adoptive NK cell transfer 
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includes ex vivo NK cell expansion and activation leading to highly potent NK cells which can be 

transferred to the patient in high numbers. Donor selection and NK cell expansion protocols play an 

important role for optimal alloreactivity. Clinical data for adoptive NK cell transfer is still very limited 

and mainly restricted to feasibility studies as described later in section 1.3.2. Another strategy is to 

enhance endogenous NK cell responses. For example blockade of (inhibitory) KIRs by a monoclonal 

antibody (1-7F9) might increase the NK cell-mediated anti-leukemic response (Romagné et al., 2009). 

Drugs and antibodies enhancing NK cell alloreactivity need to be further explored. 

1.3.1 NK cell-mediated GvL effects in AML and B-ALL 

Donor-recipient HLA matching in HSCT reduces the risk for GvHD (Petersdorf, 2004). But in most 

cases patients do not have an HLA matched sibling donor and also an unrelated HLA matched donor 

cannot easily be found (Schipper et al., 1996; Kekre and Antin, 2014). Therefore, haploidentical 

related donors (up to 50% HLA mismatch) or partially HLA mismatched unrelated donors have to be 

considered. Under these conditions, enhancing GvL effects by defined KIR-KIRL mismatching is a 

promising strategy. However, despite the theoretical assumptions shown in the previous section, the 

benefit of KIR-KIRL mismatched HSCT in leukemia therapy has mainly been shown for AML, but 

not for ALL.  

The prerequisite for NK cell-mediated GvL effects upon HSCT is the observation that KIR expression 

on NK cells, but probably also education, is donor type-like in the haploidentical setting (Leung et al., 

2004; Pende et al., 2009). NK cells developing in a KIR-KIRL mismatched recipient that express 

KIRs not engaged by the patients KIRLs are surprisingly not hyporesponsive. The presence of this 

alloreactive subset might be explained by the high number of cells infused upon haploidentical HSCT 

leading to a primarily donor type shaped bone marrow microenvironment (Pende et al., 2009). 

In an initial study by Ruggeri et al. 0 of 8 AML, 0 of 5 chronic myeloid leukemia (CML) but 5 of 7 

ALL patients relapsed within 6 months after KIR-KIRL mismatched T cell depleted HSCT (Ruggeri et 

al., 1999). In further in vitro experiments lower surface expression of the adhesion molecule LFA-1 on 

NK cell-resistant ALLs compared to NK cell-susceptible AML or CML was observed. Despite the 

KIR-KIRL mismatched constellation which could potentially promote GvHD, no such effect was 

observed after T cell-depleted HSCT. This finding was confirmed in further studies showing a survival 

benefit of KIR-KIRL-mismatched HSCT in adult AML, but not for ALL, compared to KIR-KIRL 

matched constellations without increased occurrence of GvHD (Ruggeri et al., 2002; Hsu et al., 2005; 

Clausen et al., 2007; Ruggeri et al., 2007; Zhou et al., 2014). 

In contrast to adult ALL, there is evidence that pediatric ALL is susceptible to NK cell-mediated 

cytotoxicity (Leung et al., 2004; Pfeiffer et al., 2007; Pende et al., 2009; Pfeiffer et al., 2010). 

Differential expression of adhesion molecules and HLA class I molecules are hypothesized to be 

responsible for these differences. Pediatric ALLs express adhesion molecules such as members of the 

β1 (CD29, CD49d) and β2 (LFA-1) integrin family and the Ig superfamily (ICAM-1, LFA-3) 

(Mengarelli et al., 2001) leading to efficient NK cell-target conjugate formation (Ruggeri et al., 1999). 
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Furthermore, pediatric blasts with low HLA expression are targeted more efficiently compared to 

blasts with high HLA expression (Pfeiffer et al., 2007).   

Besides in vitro experiments showing a relevance of KIR-KIRL constellations for NK cell-mediated 

cytotoxicity towards pediatric BCP-ALL (Pfeiffer et al., 2007; Feuchtinger et al., 2009) there is only 

limited clinical data available. Upon haploidentical HSCT Leung and colleagues showed an increased 

probability of relapse for KIR-KIRL matched donor-recipient pairs in a small cohort of 19 pediatric 

patients with lymphoid malignancies (Leung et al., 2004). The Perugia group identified alloreactive 

NK cells that persisted long after transplantation in 10 BCP-ALL patients that underwent 

haploidentical KIR-KIRL mismatched HSCT (Pende et al., 2009). In this study alloreactivity towards 

HLA-C1/C1 blasts was mediated by the respective KIR-KIRL mismatched NK cell subset whereas for 

HLA-C2/C2 blasts the presence of activating KIR2DS1 was relevant.  

In line with this data it can be assumed that the disease entity of pediatric BCP-ALL might in contrast 

to adult B-ALL indeed be a target of NK cell-mediated cytotoxicity and that further investigations are 

necessary to verify the relevance of KIR-KIRL mismatched constellations.   

1.3.2 Adoptive NK cell transfer  

Besides GvL effects of graft-emerging NK cells, adoptive transfer of NK cells in therapy was shown 

to be feasible and safe. Nevertheless, first studies with autologous HLA-matched NK cells were not 

very promising. In the 1980’s, adoptive transfer of autologous lymphokine-activated killer cells in 

combination with high-dose IL-2 in advanced cancers showed (complete or partial) responses in only 

about 20% of the cases (Rosenberg et al., 1987). In a further study administration of autologous IL-2 

activated NK cells in metastatic breast cancer and lymphoma patients did not lead to an increased 

survival (Burns et al., 2003). In order to enhance NK cell responses Miller and coworkers transfused 

haploidentical ex vivo stimulated NK cells in immunosuppressed adult AML patients with poor 

prognosis (Miller et al., 2005). Despite the low amount of T cells that were co-transfused, no signs of 

GvHD were observed. 3 of 4 patients with a KIR-KIRL mismatch achieved complete remission, 

whereas only 2 of 13 achieved remission in the KIR-KIRL matched group. They applied a high-dose 

conditioning regimen and IL-2 administrations leading to in vivo expansion of the transferred NK cells 

that was accompanied with a significant increase in plasma IL-15. In this study the high-dose 

conditioning and cytokine regimen led to side effects such as pancytopenia or fever. Rubnitz and 

coworkers therefore applied lower doses of immunosuppressive conditioning and IL-2 doses in 

pediatric patients (Rubnitz et al., 2010). The infusion of haploidentical KIR-KIRL mismatched NK 

cells was shown to be feasible and safe in 10 patients in first remission of AML. All 10 patients 

displayed an event-free survival of at least two years. The Campana group established an efficient NK 

cell activation and expansion system (‘NKAES’; Imai et al., 2005; Fujisaki et al., 2009) to generate 

highly potent NK cells for future adoptive transfer therapy. K562 feeder cells expressing both, 

membrane-bound IL-15 and 4-1BBL in combination with soluble IL-2 during culture lead to very 

efficient expansion and activation of NK cells. 4-1BB engagement by its ligand 4-1BBL was shown to 
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inhibit activation-induced cell death and co-stimulates activation and proliferation in T cells (Cannons 

et al., 2001; Habib-Agahi et al., 2007). 4-1BB is also expressed on activated NK cells and 4-1BB 

stimulation is assumed to enhance anti-tumor activity of NK cells (Dowell et al., 2012). The NKAES 

protocol constitutes a very promising strategy to generate highly potent alloreactive NK cells for 

clinical applications (Imai et al., 2005; Fujisaki et al., 2009). For this work NK cells were expanded 

according to a modified protocol from Fujisaki and colleagues and are in the following termed 

‘NKAES cells’. Recently, it has been demonstrated that application of in vitro IL-15-stimulated 

CD3/19-depleted haploidentical stem cell boosts in relapsed pediatric patients is safe (Pfeiffer et al., 

2012). 8 children with AML, BCP-ALL, or T-ALL in relapse after HSCT were included, IL-15 ex vivo 

stimulation led to proliferation and activation of NK cells within the graft. These NK cells showed an 

expansion with a maximum at day 10 after infusion and were undetectable at day 30. 

In summary, only very limited clinical data is available for children and restricted to feasibility studies 

mainly performed in AML patients. Ex vivo expansion and administration of partially HLA 

mismatched NK cells does not seem to induce GvHD, and in line with these findings the strategy of 

adoptive KIR-KIRL mismatched NK cell transfer might be a promising therapy strategy in BCP-ALL. 

  

1.4 The NOD.Cg-PrkdcScidIL2RgtmWjl/Sz mouse strain 
Immune-deficient mice allow the engraftment of human cells and tissue and are therefore an elegant 

model to study human cells and complex biological processes in vivo. One breakthrough was the 

establishment of NOD/scid (NS) mice that lack mature T and B cells and display impairments in 

innate immunity (Shultz et al., 1995). But the engraftment of human HSCs or PBMCs is hampered by 

residual murine NK cell activity and the decreased lifespan of these mice due to the development of 

thymic lymphomas. These drawbacks were tackled by the development of the NOD.Cg-

PrkdcScidIL2RgtmWjl/Sz mouse strain (also termed NOD-scid IL2Rgammanull mice, NSG) that has an 

additional homozygous targeted null mutation of the IL-2 receptor common γ-chain locus (IL2rg) 

(Shultz et al., 2005). The common γ-chain is crucial for high-affinity binding and signaling of several 

cytokines (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) (Sugamura et al., 1996) and mutation of IL2rg  in NSG 

mice prevents any murine NK cell development. The combination of absent mature B and T cells, 

absence of NK cells, and longer lifespan (NSG mice do not develop thymic lymphomas) leads to a 

promising mouse model with much better engraftment of human HSCs compared to NS mice (Shultz 

et al., 2005; Shultz et al., 2007).  

Despite IL-7 supplementation and vivid multilineage differentiation of HSCs in sublethally irradiated 

NSG mice (Shultz et al., 2005), our group demonstrated that there are deficiencies in NK and T cell 

development in humanized NSG (huNSG) mice (André et al., 2010). Please note that the terminus 

‘humanized mouse’ in this work refers to mice transplanted with human HSCs which is to be 

distinguished from mice transplanted with human leukemic samples. In huNSG mice developing T 

cells were mainly CD4+ with a high percentage of CD45RO+ (memory phenotype) while CD8+ T cells 

were almost absent (André et al., 2010). NK cells did not display KIR expression on the protein level 
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although mRNA was detectable. In line with these findings the majority of NK cells were of the 

CD56brightCD16- subset. Despite this phenotype NK cells did not synthesize IFN-γ upon unspecific 

stimulation and were also not able to mediate cytotoxicity towards K562 ex vivo (André et al., 2010). 

To overcome the deficiencies in NK cell function our group applied IL-15/IL-15Rα complexes 

according to a treatment regimen from Huntington and colleagues who were able to induce CD16 and 

KIR expression in humanized Rag2-/-γc-/- mice (Huntington et al., 2009). Indeed IL-15/IL15Rα 

treatment induced functional competence in huNSG mice, but the majority of NK cells still had the 

immature CD56brightCD16-KIR- phenotype (André et al., unpublished data). This might be explained 

by the generation of ‘pseudomature lytic NK’ cells which can be generated by prolonged culturing of 

HSCs in the presence of IL-15 and absence of stroma cells (Colucci et al., 2003). These in vitro-

generated NK cells express CD56 and CD94, but no KIRs analogous to the NK cells generated in 

huNSG mice. 

Besides the generation of NK cells in huNSG mice, NSG mice also readily engraft with primary 

pediatric leukemic samples. Our group was able to show that leukemic cells retain their characteristic 

immune-phenotype and gene-expression profile upon transplantation into NSG mice. Furthermore, the 

clinical outcome of the patients correlates with engraftment rates in NSG mice upon transplantation of 

low blast numbers (Woiterski et al., 2013). 

In summary the NSG mouse strain provides an ideal basis to study donor-patient specific GvL effects 

and to evaluate the potential of adoptively transferred NK cells in vivo. 

 

1.5 5-Azacytidine 
5-Azacytidine (5-AzaC) is a cytosine analogue (Fig. 3) that was first synthesized about 50 years ago 

(Pískala and Šorm, 1964) as direct cytostatic drug acting as nucleoside antimetabolite. Soon it was 

shown that 5-AzaC is able to inhibit direct DNA methylation leading to the current use as ‘epigenetic 

drug’.  

5-AzaC is currently under defined criteria approved for the treatment of the myelodysplastic syndrome 

(MDS), chronic myelomonocytic leukemia (CMML), and AML by the European Medicines Agency 

(EMA) and for MDS by the U.S. Food and Drug Administration (FDA) (Kaminskas et al., 2005; 

Derissen et al., 2013). The KIR locus was shown to be methylated as described above (1.2.3.1) and 

there is some limited data linking NK cell alloreactivity and 5-AzaC treatment (see 1.5.2). 
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Fig. 3: Structure of cytidine, 
5-azacytidine (5-AzaC) and 
5-aza-2’-deoxycytidine (5-
AzadC). (A) Cytidine (B) 5-
AzaC (C) 5-AzadC, which is a 
metabolite of 5-AzaC.  

 

After triphosphorylation 5-AzaC can be incorporated into DNA and RNA (after reduction by 

ribonucleotide reductase) leading to inhibition of DNA, RNA, and protein synthesis including tRNA 

and rRNA processing (reviewed in Christman, 2002). This can lead to DNA damage, cell cycle arrest, 

and apoptosis. Epigenetic effects of 5-AzaC are mediated by direct irreversible inhibition of DNA 

methyltransferases (Dnmt); the covalent intermediate product of 5-AzaC and enzyme cannot be 

released leading to Dnmt depletion (Christman, 2002; Stresemann and Lyko, 2008). Mammalian 

maintenance methyltransferase Dnmt1, which is assumed to be the major target of 5-AzaC, induces 

methylation of hemimethylated DNA after replication. Therefore, inhibition of Dnmt1 leads to 

hemimethylated DNA after one round of replication and at least two cell divisions are necessary to 

induce demethylation (passive demethylation, Christman, 2002). Low doses of 5-AzaC are sufficient 

to induce DNA hypomethylation without direct suppression of DNA synthesis (Kaminskas et al., 

2005).   

1.5.1 Methyltransferase inhibition in cancer therapy 

In general, epimutations seem to play an important role in cancer development, for example silencing 

of the tumor suppressor gene p16ink4A is a common event (reviewed in Jones and Baylin, 2007; Issa, 

2007). Re-expression of tumor suppressor genes by Dnmt-inhibitors can lead to beneficial effects in 

cancer treatment. In MDS higher levels of DNA methylation seem to correlate with a worse clinical 

outcome (Shen et al., 2010) and epimutations in differentiation-associated genes seem to play a role 

(Issa, 2013).  

Linking the tumor-focused concept to immune therapy, it has been speculated that the beneficial effect 

of combined donor-lymphocyte infusions (DLI) and 5-AzaC treatment in patients with AML/MDS is 

mediated by epigenetic upregulation of HLA molecules or cancer testis antigens on blasts leading to 

higher susceptibility to the DLI (Lubbert et al., 2010). Another link is the observation that NKG2D 

ligands are induced upon 5-AzaC treatment, leading to higher susceptibility of AML cells to NK 

cell-mediated cytotoxicity (Rohner et al., 2007; Tang et al., 2008).  
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1.5.2 5-AzaC and NK cell function 

As mentioned in section 1.2.3.1 it has been described that KIR genes are epigenetically regulated by 

direct DNA methylation of CpG islands in promoter regions. Demethylation can be induced by 

5-AzaC and is correlated with increased KIR expression (Santourlidis et al., 2002; Chan et al., 2003).  

NK cell treatment with 1-5 µM 5-AzaC for 72 h induced demethylation-dependent iKIR expression 

and suppressed cytolytic function of NK92-MI cells towards K562 in vitro (Gao et al., 2009). The 

viability of NK cells was not significantly changed at a dose of 2.5 µM. The induction of iKIR 

expression seems to contribute to suppressed cytotoxicity since the 5-AzaC-treated KIR3DL1+ subset 

showed much lower cytotoxicity compared to the KIR3DL1- subset. 

During short term treatment without IL-2, 5-AzaC also significantly decreased cytotoxicity towards 

K562 and Raji cells (Schmiedel et al., 2011). 5-AzadC, the deoxy-analogue of 5-AzaC which cannot 

be incorporated into RNA, induced cytotoxicity and cytokine release but not KIR expression. 

Schmiedel and colleagues applied non-proliferating conditions without IL-2 supplementation for 24 h 

and in line with the epigenetic mechanism these effects were probably demethylation-independent. 

 

In these studies only HLA class I-deficient target cell lines were used and the potentially increased 

expression of aKIRs was not investigated. Specific KIR-KIRL mismatched constellations in 

combination with aKIR-KIRL interactions might lead to different 5-AzaC effects on cytotoxicity. 

Furthermore, the effect on of 5-AzaC on NK cell precursors has not been studied yet.  

  



    20  

2 AIM OF THIS WORK 
 

Since a beneficial effect of NK cells in the therapy of BCP-ALL has long been neglected, the purpose 

of this work was to investigate the potential of NK cell-mediated anti-leukemic effects towards 

pediatric BCP-ALL. Following verification that pediatric BCP-ALL can indeed be a target of NK 

cells, the aim was to optimize NK cell-based therapeutic strategies. In this regard, systematic NK cell 

donor selection based on the KIR-KIRL constellation should influence the efficacy of adoptively 

transferred NK cells in pediatric BCP-ALL. This hypothesis should be examined by exploiting a 

human-murine NSG xenotransplantation model and by performing NK cell subset analyses. As the 

KIR locus has been described to be regulated via DNA methylation, the effect of the Dnmt-inhibitor 

5-AzaC on NK cell cytotoxicity should additionally be investigated. By using primary leukemic 

samples, NK cells and hematopoietic stem cells from hypothetical donors, analysis of donor-patient-

specific anti-leukemic responses should be performed. 
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3 MATERIALS AND METHODS 
For specific materials not separately mentioned in this section, standard labware was used. 

 

3.1 Cell culture 

3.1.1 Cell lines 

CELL LINE DESCRIPTION2 MEDIA 

K562 
Human CML in blast crisis, established 
from a 53-year old woman in 1970. 
MHC class I expression negative. 

RPMI 1640 complete medium
  

K562-mbIL15-4-1BBL3 

Generated by transduction of K562 cells 
with constructs encoding a ‘membrane-
bound’ form of IL-15 (IL-15 + CD8α 
transmembrane domain) and human 
41BB ligand (both containing GFP) by 
the Campana group (Imai et al., 2005; 
Fujisaki et al., 2009). 
Feeder cell line for NKAES cell 
expansion. 

RPMI 1640 complete medium 

Kasumi-1 AML, established from a 7-year-old 
Japanese boy in 1989. 

RPMI 1640 complete medium 
with 20% FCS 

Nalm-16 

B cell precursor leukemia, established 
from a 12-year-old girl with ALL. Cells 
are described to carry a near haploid 
karyotype. 

RPMI 1640 complete medium 

SEM 
B cell precursor leukemia, established 
from a 5-year-old girl with ALL in 
1990. 

90% Iscoves MDM, 10% FCS, 
penicillin/streptomycin 

MHH-cALL4 
B cell precursor leukemia established 
from a 10-year-old Caucasian boy in 
1993. 

RPMI 1640 complete medium 
with 20% FCS 

 

 

                                                   
2 Information according to the DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) 
www.dsmz.de 
3 Generously provided from D. Campana, University Children’s Hospital, Singapore. 
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3.1.2 Culturing media 

MEDIUM     INGREDIENTS 

RPMI 1640 complete medium   10% FCS  

      100 U/mL penicillin  

      100 μg/mL streptomycin  

      2 mM L-glutamine  

      in RPMI 1640 medium  

 

Freezing medium:     20% DMSO 

      80% human albumin solution 5% w/v  

      mixed 1:1 with cells in RPMI 1640 complete medium 

      (10% final concentration of DMSO) 

 

NKAES medium    10% fresh frozen plasma 

      100 U/mL penicillin 

      100 μg/mL streptomycin 

      2 mM L-glutamine  

      in RMPI 1640 medium 

3.1.3 Reagents 

REAGENT/PRODUCT   PROVIDER 

Cell culture dishes    Corning, USA 

Cryogenic vials     Corning, USA 

Dulbecco’s phosphate buffered saline (PBS) Sigma Aldrich, Taufkirchen, Germany 

Mr. Frosty freezing container   Nalgene/Thermo Fisher Scientific,   

      Waltham, USA 

Penicillin/Streptomycin    Biochrom AG, Berlin, Germany 

RPMI 1640     Biochrom AG, Berlin, Germany 

FCS       Biochrom AG, Berlin, Germany 

L-glutamine      Biochrom AG, Berlin, Germany 

Venor®GeM classic kit    Minerva Biolabs, Berlin, Germany 

DMSO       AppliChem, Darmstadt, Germany 

Human albumin solution 5% w/v   CSL Behring GmbH, King of Prussia,   

      USA 

Fresh frozen plasma (FFP)   Centre for Clinical Transfusion    

      Medicine Tuebingen 



    23  

IL-2       (Proleukin®) Novartis Pharma, Basel,   

      Switzerland 

NK cell isolation kit human   Miltenyi Biotec, Bergisch Gladbach,    

      Germany 

CD56 microbeads, human   Miltenyi Biotec, Bergisch Gladbach,    

      Germany  

CD34 microbeads, human   Miltenyi Biotec, Bergisch Gladbach,    

      Germany 

5-AzaC      Sigma Aldrich, Taufkirchen, Germany 

3.1.4 Experimental procedures in cell culturing 

3.1.4.1 Mycoplasma detection  

All cell lines used were tested negative for mycoplasma. Testing was performed with the Minerva 

Biolabs Venor®GeM classic kit according to the manufacturer’s instructions.  

3.1.4.2 Isolation of human PBMCs 

Blood samples were obtained from healthy volunteers or from the Center for Clinical Transfusion 

Medicine (University of Tuebingen, Germany) either as whole blood or leukocyte concentrates from 

healthy blood donors. Before density gradient centrifugation on Ficoll/Paque, whole blood sample 

were diluted 1:1 or 1:4 for leukocyte concentrates with room temperature PBS. After centrifugation at 

800 g without brake, the PBMC layer was carefully isolated and PBMCs were washed two times with 

PBS, counted and further processed or frozen until usage. 

3.1.4.3 Magnetic cell isolation  

Isolation of cells (NK cells, CD34+ HSCs) with magnetic beads was performed according to the 

manufacturer’s instructions (see above). Purity was measured by flow cytometry using anti-CD34 

mAbs after HSC isolation or anti-C56 and anti-CD3 mAbs after NK cell isolation. 

3.1.4.4 Expansion of NKAES cells 

Expansion of NK cells was performed according to a modified protocol from Imai and colleagues 

(NKAES cells – expanded according to the modified ‘NK cell activation and expansion system’ 

protocol, Imai et al., 2005). Briefly, freshly isolated or thawed PBMCs were incubated with 100 Gy-

irradiated K562-mbIL15-4-1BBL (kind gift of D. Campana, University Children’s Hospital 

Singapore) at a ratio of 1 : 1.5 in the presence of 100 IU/ml IL-2 in NKAES medium in a humidified 

incubator at 37 °C, 5% CO2. When isolated NK cells were used for expansion, K562-mbIL15-4-1BBL 

feeder cells were added at a ratio of 1:10 (NK cells : feeder). Cells were splitted every 2-3 days by 



    24  

adding one volume of fresh medium containing 100 IU/ml IL-2. Cells were harvested after 14 days of 

expansion and frozen or directly used for experiments. After thawing, NKAES cells were allowed to 

recover for approximately 20 h in the presence of 100 IU/ml IL-2 before use. 

3.1.4.5 5-AzaC treatment in vitro 

5-AzaC was prepared as a stock solution of 25 mg/ml in PBS and was stored at -80 °C. Aliquots were 

handled on ice and were not refrozen after they were thawed. For 5-AzaC in vitro treatment of 

NKAES cells, 1 µM 5-AzaC was added to the cell culture at d7, d9 or d10 and d13 of the NKAES 

expansion period and harvested at d14 (see 3.1.4.4). 

3.1.4.6 Freezing of cells  

Up to 50 x 106 cells per cryotube in 0.5 ml in RPMI 1640 complete medium were pre-cooled on ice 

and mixed with 0.5 ml pre-cooled freezing medium. Cryotubes were immediately transferred into pre-

cooled freezing containers with a defined cooling rate of -1 °C/minute. After storage at -80 °C o/n, 

cells were long-term stored in liquid nitrogen. Cryotubes with frozen cells were handled on dry ice.  

3.1.4.7 Thawing of cells 

Frozen cells were thawed in a 37 °C water bath until only small ice crystals were present. Per 1 ml cell 

suspension 10 ml of room temperature cell culture medium (depending on cell type) were slowly 

added, and then cells were spun down for 10 min at 400 g or at 350 g for NK cells. For thawing of 

CD34+ stem cells, 2 ml of media was added drop-wise to the thawed cell suspension over a period of 2 

minutes. Then 8 ml of media was added in 1 ml aliquots, followed by a 35 min resting phase at room 

temperature before centrifugation. Cells were counted and used for further purposes.  

 

3.2 Q-RT-PCR 

3.2.1 Reagents and equipment 

REAGENT       PROVIDER 

Nanodrop       Peqlab, Erlangen, Germany 

RNeasy Mini kit       Qiagen, Hilden, Germany 

Qiamp DNA Mini kit      Qiagen, Hilden, Germany 

Quantitect Reverse Transcription Kit    Qiagen, Hilden, Germany 

KAPA SYBR FAST Biorad iCycler 2x qPCR Mastermix Peqlab, Erlangen, Germany  

Real-time cycler CFX-96     Biorad, Hercules, USA 

Reaction dishes (flat cap strips + tube strips white)  Biorad, Hercules, USA 

PCR-Cycler for RT reaction     GeneAmp PCR System 9700 
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        Applied Biosystems/Thermo Fisher 

        Scientific, Waltham, USA 

3.2.2 Oligonucleotides 

Primer sequences for KIR detection were taken from the literature (Vilches et al., 2007; Alves et al., 

2008). Due to extensive polymorphism of the KIR locus, where applicable, two primers for one 

direction were used in a 1:1 mixture to detect all KIR alleles. For KIR2DS3 the sequence from Vilches 

and colleagues was used (Vilches et al., 2007). 

DENOTATION SEQUENCE 5’- 3’ Forward  SEQUENCE 5’- 3’ Reverse 

KIR2DL1 GTTGGTCAGATGTCATGTTTGAA CCTGCCAGGTCTTGCG 

KIR2DL2 AAACCTTCTCTCTCAGCCCA GCCCTGCAGAGAACCTACA 

KIR2DL3 AGACCCTCAGGAGGTGA CAGGAGACAACTTTGGATCA 

KIR2DL4 TCAGGACAAGCCCTTCTGC GGACAGGGACCCCATCTTTC 

KIR2DL5 ATCTATCCAGGGAGGGGAG CATAGGGTGAGTCATGGAG 

KIR2DP1 CGACACTTTGCACCTCAC GGGAGCTGACAACTGATG 

KIR2DS1 
TCTCCATCAGTCGCATGAG 

TCTCCATCAGTCGCATGAA 
GGTCACTGGGAGCTGAC 

KIR2DS2 TGCACAGAGAGGGGAAGTA CCCTGCAAGGTCTTGCA 

KIR2DS3 CTTGTCCTGCAGCTCCT  GCATCTGTAGGTTCCTCCT 

KIR2DS4 GGTTCAGGCAGGAGAGAAT CTGGAATGTTCCGTKGATG 

KIR2DS5 AGAGAGGGGACGTTTAACC CTGATAGGGGGAGTGAGT 

KIR3DL1 
CCATYGGTCCCATGATGCT 

TCCATCGGTCCCATGATGTT 
CCACGATGTCCAGGGGA 

KIR3DL2 CATGAACGTAGGCTCCG GACCACACGCAGGGCAG 

KIR3DL3 AATGTTGGTCAGATGTCAG GCYGACAACTCATAGGGTA 

KIR3DPf1 GTGTGGTAGGAGCCTTAG GAAAACGGTGTTTCGGAATAC 

KIR3DP1f2 GTACGTCACCCTCCCATGATGTA GAAAACGGTGTTTCGGAATAC 

KIR3DS1 
CATCGGTTCCATGATGCG 

CATCAGTTCCATGATGCG 
CCACGATGTCCAGGGGA 

Control1 

(Necdin) 
GGCTGCACCTGAGGCTAA GCCCCAAAAGAACTCGTATTC 

Control2 

(GALC) 
TTACCCAGAGCCCTATCGTTCT GTCTGCCCATCACCACCTATT 
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3.2.2.1 DNA-Isolation, RNA isolation, and reverse transcription 

DNA or RNA was isolated according to the manufacturer’s instructions (see above), quality and 

concentration of DNA and RNA was analyzed using a nanodrop. 

 For reverse transcription of RNA, 0.5 µg of total RNA was transcribed using the Quantitect RT Kit 

with an extended 10 minute gDNA wipeout step and reverse transcription for 30 minutes. DNA and 

cDNA were stored at -20 °C, RNA at -80 °C. 

3.2.2.2 Q-PCR conditions 

Reaction composition 1x for Q-PCR reaction: 

5 µl  SYBR green stock 2x 

1 µl  0.5 µl forward + 0.5 µl reverse primer (final primer concentration of  

  0.25 µM each primer or 0.125 µM in case of two primers for one direction) 

x µl  Template cDNA (according to 25 ng RNA) or 10 ng gDNA 

in nuclease-free water to 10 µl 

 

The RT-PCR reaction was carried out using the following conditions: 

20 seconds 95 °C 

 3 seconds 95 °C 

20 seconds 64 °C  

A melting curve analysis of RT-PCR products was performed between 76 °C - 95 °C to verify product 

specificity. H2O was included as negative control, Necdin and GALC as positive controls. For 

KIR2DL2, product specificity is only guaranteed if the threshold cycle (Ct) is below or equal cycle 32 

(validation by Markus Mezger, see also Oevermann et al., 2014)  

3.2.2.2.1 KIR-typing (genomic DNA) 

GALC primers were used as internal control in a multiplex reaction. Melting curve analysis allowed 

discrimination of the presence of the specific KIR (Tm between 81-88 °C) and the internal control peak 

GALC (Tm = 75 °C). The B-content score, KIR genotype group and the centromeric and telomeric 

gene content motif were assessed as described by Cooley and colleagues (Cooley et al., 2010). 

3.2.2.2.2 Quantitative analysis of KIR expression (RNA/cDNA) 

Relative expression was quantified according to the 2-ΔΔCt (Livak) method (Livak and Schmittgen, 

2001) using GALC as reference.  Controls without reverse transcriptase (-RT control) during the 

reverse transcription reaction were included to verify the absence of genomic DNA. 

 

 

 

32-40 cycles 
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3.3 FACS analysis 

3.3.1 Reagents and equipment 

REAGENT      PROVIDER 

Polystyrene FACS tubes    Sarstedt, Nürnbrecht, Germany 

Cytometer Software     BD-FACS Diva Software 

       FCS Express 4.0.23.0 

Flow Cytometer     BD LSRII, BD Biosciences, Franklin  

       Lakes, USA 

Amine-reactive dye (ARD-)Ax350    Invitrogen, Carlsbad, USA 

BrdU Flow Kit FITC (including 7-AAD)  BD Biosciences, Franklin Lakes, USA 

Rabbit Serum      Invitrogen, Carlsbad, USA 

Privigen (human IgG) 100 mg/ml   CSL Behring GmbH, King of Prussia,  

       USA  

Fix & Perm kit      An der Grub Bio (ADG) Research  

       GmbH, Vienna, Austria 

3.3.2 Buffers and solutions 

BUFFER      COMPONENTS 

FACS buffer       2% FCS 

       0.002 M EDTA  

       in PBS  

 

Blocking buffer      10 µg/ml human IgG (Privigen) in FACS 

       buffer 

3.3.3 Antibodies 

Antibody  
(anti-human-) 

Dilution Company Reference  Isotype Clone 

BrdU FITC 1:50 
BD Biosciences, 
Franklin Lakes, 
USA 

BrdU Flow 
Kit 

mouse IgG1 B44 

CD3 PE-CF594 1:50 
BD Biosciences, 
Franklin Lakes, 
USA 

562310 mouse IgG1 UCHT1 

CD3 PerCP 1:100 BD Biosciences, 
Franklin Lakes, 

345766 mouse IgG1 SK7 
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USA 

CD9 APC 1:100 
BD Biosciences, 
Franklin Lakes, 
USA 

341638 mouse IgG1 M-L13 

CD10 PE-CF594 1:50 
BD Biosciences, 
Franklin Lakes, 
USA 

562396 mouse IgG1 HI10A 

CD10 RPE 1:50 Dako, Denmark R0848 mouse IgG1 SS2/36 
CD13 PerCp-
eFluor710 1:25 

eBioscience, 
Frankfurt, Germany 46-0138 mouse IgG1 WM15 

CD16 AF700 1:50 
BD Biosciences, 
Franklin Lakes, 
USA 

557920 mouse IgG1 3G8 

CD19 APC 1:50 Becton Dicksion 345791 mouse IgG1 SJ25C1 

CD19 Brilliant 
Violet 421 

1:25 
BD Biosciences, 
Franklin Lakes, 
USA 

562441 mouse IgG1 HIB19 

CD19 Brilliant 
Violet 785 

1:25 BioLegend, San 
Diego, USA 

302239 mouse IgG1 HIB19 

CD20 PerCp 1:50 
BioLegend, San 
Diego, USA 302324 mouse IgG2b 2H7 

CD24 PE  1:10 
BD Biosciences, 
Franklin Lakes, 
USA 

555428 mouse IgG2a ML5 

CD34 PerCP 1:100 Becton Dickinson 345803 mouse IgG1 8G12 

CD38 PE-Cy7 1:25 BioLegend, San 
Diego, USA 

303516 mouse IgG1 HIT1 

CD38 APC 1:10 BioLegend, San 
Diego, USA 

303510 mouse IgG1 HIT2 

CD45 PE-Cy7 1:100 
BD Biosciences, 
Franklin Lakes, 
USA 

557748 mouse IgG1 HI30 

CD54 (ICAM-1) 
FITC 

1:5 
Immunotech/Beckm
an Coulter, Bea, 
USA 

IM0726U mouse IgG1 84H10 

CD56 Brilliant 
Violet 421 

1:50 BioLegend, San 
Diego, USA 

318328 mouse IgG1 HCD56 

CD56 Brilliant 
Violet 711 

1:25 BioLegend, San 
Diego, USA 

318335 mouse IgG1 HCD56 

CD58 FITC 1:10 
BD Biosciences, 
Franklin Lakes, 
USA 

555920 mouse IgG2a 1C3 

CD94 FITC 1:50 
BD Biosciences, 
Franklin Lakes, 
USA 

555888 mouse IgG1 HP-3D9 

CD94 PE 1:10 BioLegend, San 305506 mouse IgG1 DX22 
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Diego, USA 

CD107a APC 1:20 
BD Biosciences, 
Franklin Lakes, 
USA 

560664 mouse IgG1 H4A3 

CD107a Brilliant 
Violet 421 1:20 

BD Biosciences, 
Franklin Lakes, 
USA 

562623 mouse IgG1 H4A3 

CD112 PE 1:50 
BioLegend, San 
Diego, USA 337409 mouse IgG1 TX31 

CD117 PE  1:10 BioLegend, San 
Diego, USA 

313204 mouse IgG1 104D2 

CD117 Brilliant 
Violet 421 

1:25 BioLegend, San 
Diego, USA 

313216 mouse IgG1 104D2 

CD155 PE 1:20 
BioLegend, San 
Diego, USA 337610 mouse IgG1 SKII.4 

CD158a/h/i FITC 
(KIR2DL1/S1/S4) 1:25 

BD Biosciences, 
Franklin Lakes, 
USA 

340531 mouse IgM HP-3E4 

CD158a/h/i PE 
(KIR2DL1/S1/S4) 1:10 

BD Biosciences, 
Franklin Lakes, 
USA 

556063 mouse IgM HP-3E4 

CD158a PerCp 
(KIR2DL1) 1:20 

R&D Systems, 
Minneapolis, USA FAB1844C mouse IgG1 #143211 

CD158b1/b2/j PE 
(KIR2DL2/L3/S2) 

1:50 
(1:25*) 

Beckman Coulter, 
Bea, USA 

PN IM2278U mouse IgG1 GL183 

CD158b1/b2/j  
APC 
(KIR2DL2/L3/S2) 

1:100 Beckman Coulter, 
Bea, USA 

A22333 mouseIgG1 GL183 

CD158b2 APC 
(KIR2DL3) 

1:10 Beckman Coulter, 
Bea, USA 

FAB2014A mouse IgG2a #180701 

CD158e1/e2 
(KIR3DL1/DS1) 
PE 

1:50 
(1:25*) 

Beckman Coulter, 
Bea, USA 

PN IM3292 mouse IgG1 Z27.3.7 

CD158e APC 
(KIR3DL1) 

1:100 
(1:20*) 

R&D Systems, 
Minneapolis, USA 

FAB1225A mouse IgG1 DX9 

CD158i 
(KIR2DS4) APC 1:50 Beckman Coulter, 

Bea, USA 41116015 mouse IgG2a FES172 

CD226 PE  
(DNAM-1) 

1:5 
Miltenyi Biotec, 
Bergisch Gladbach, 
Germany 

130-092-476 mouse IgG1 Dx11 

CD244 FITC (2B4) 1:5 
BioLegend, San 
Diego, USA 329505 mouse IgG1 C1.7 

CD304-PE  1:10 BioLegend, San 
Diego, USA 

354504 mouse IgG2a 12C2 

HLA Bw4 FITC 1:10 One Lambda FH0007 IgG2a   
HLA-A,B,C PE 1:50 BioLegend, San 311405 mouse IgG2a W6/32 
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Diego, USA 

IFN-γ BUV395 1:20 
BD Biosciences, 
Franklin Lakes, 
USA 

563563 mouse IgG1 B27 

IFN-γ PE 1:50 
BD Biosciences, 
Franklin Lakes, 
USA 

554701 mouse IgG1 B27 

NKG2a APC 1:25 Beckman Coulter, 
Bea, USA PN A60797 mouse IgG2b Z199 

NKG2A PE-Cy7 1:25 Beckman Coulter, 
Bea, USA 

B10246 mouse IgG2b Z199 

NKG2D APC 1:25 
Miltenyi Biotec, 
Bergisch Gladbach, 
Germany 

130-092-673 mouse IgG1 BAT221 

NKp30 PE 1:50 Beckman Coulter, 
Bea, USA 

PN IM 3709 mouse IgG1 Z25 

NKp44 PE 
(CD336) 

1:25 Beckman Coulter, 
Bea, USA 

PN IM 3710 mouse IgG1 Z231 

NKp46 APC 1:10 
BD Biosciences, 
Franklin Lakes, 
USA 

558051 mouse IgG1 9E2/NKp46 

Perforin Pacific 
Blue  

1:20 BioLegend, San 
Diego, USA 

308118 mouse IgG2b dG9 

TNFα Brilliant 
Violet 605 1:33 

BioLegend, San 
Diego, USA 502935 mouse IgG1 MAb11 

 
* in functional response stainings 
 

   

Antibody  
(anti-mouse-) 

Dilution Company Reference  Isotype Clone 

CD45 APC-eFluor 
780 

1:50 eBioscience, 
Frankfurt, Germany 

47-0451-80 mouse IgG2b 30-F11 

CD45 FITC 1:50 
BioLegend, San 
Diego, USA  103108 rat IgG2b 30-F11 

 

Isotype controls Company Reference  Isotype Clone 

IgG1 AF 700 ExBio, Praha, Czech Republic A7-626-
C100 

mouse IgG2a MOPC-
21 

IgG1 APC BD Biosciences, Franklin 
Lakes, USA 

555751 mouse IgG1 MOPC-
21 

IgG1 Brilliant Violet 
605 κ BioLegend, San Diego, USA 400161 

mouse(BALB/c) 
IgG1 

MOPC-
21 

IgG1 Brilliant Violet 
421 

BD Biosciences, Franklin 
Lakes, USA 

562438 mouse IgG1 X40 

IgG1 BUV395 BD Biosciences, Franklin 56356 mouse IgG1 X40 



    31  

Lakes, USA 

IgG1 FITC BD Biosciences, Franklin 
Lakes, USA 

555909 Mouse IgG1 MOPC-
21 

IgG1 κ PE BD Biosciences, Franklin 
Lakes, USA 

555749 mouse IgG1 MOPC-
21 

IgG1-PerCP 
BD Biosciences, Franklin 
Lakes, USA 550672 Mouse IgG1 

MOPC-
31C 

IgG2a APC BioLegend, San Diego, USA 400219 Mouse IgG2a MOPC-
173 

IgG2a control PE Immuno Tools  21275524 mouse IgG2a PPV-04 
IgG2b Pacific Blue κ 
Ctrl BioLegend, San Diego, USA 400331 mouse IgG2b MPC-11 

IgG2b-APC ExBio, Praha, Czech Republic 1A-801-
C020 

  PLRV219 

IgM FITC Invitrogen, Carlsbad, USA MGM01 mouse IgM CTDk 
 

Antibodies for surface staining using secondary fluorochrome-labeled antibodies 

Antibody  
(anti-human-) 

Dilu-
tion 

Company Reference  Isotype Clone 

pan-NKG2D-L:  
     

MICA 1:100 kindly provided by 
Alexander Steinle  
  
  
  

 (Welte et 
al., 2003)  

mouse IgG1 AMO1 
MICB 1:50 mouse IgG1 BMO1 
ULBP1 1:100 mouse IgG1 AUMO3 
ULBP2 1:100 mouse IgG1 BUMO1 
ULBP3 1:100 mouse IgG1 CUMO3 

      
KIR3DL2 1:5 kindly provided by 

Daniela Pende, Perugia 
  mouse IgM Q66 

      sheep-anti-mouse-
RPE F(ab)2 

1:50 Sigma Aldrich, 
Taufkirchen, Germany 

P8547   Polyclonal 

3.3.4 Antibody combinations for flow cytometry 

Selected multicolour flow cytometric antibody panels used for the respective experiments are shown 

below. Only complex antibody panels are shown in this section. All antibody panels were stained in 

combination with a live-dead-discriminating dye as described later. Antibodies have anti-human 

specificity, unless otherwise indicated (mouse). 
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Antibody panel for Fig. 7B. Detection of 
NK cells, AML and BCP-ALL cells after 
adoptive transfer in vivo 
Anti- Clone 
mouse CD45 FITC 30-F11 
CD10 RPE SS2/36 
CD13 PerCp-eFluor710 WM15 
CD45 PE-Cy7 HI30 
CD56 Brilliant Violet 421 HCD56 
CD19 Brilliant Violet 785 HIB19 

  Antibody panel for Fig. 9B. Detection of 
NK cells and BCP-ALL cells after adoptive 
transfer in vivo 
Anti- Clone 
CD45 PE-Cγ7 HI30 
mouseCD45 APC-eFluor 780 30-F11 
CD19 APC SJ25C1 
CD10 RPE SS2/36 
CD56 Brilliant Violet 421 HCD56 
CD16 AF 700 3G8 
CD3 PerCP SK7 

  Antibody panel for Fig. 11B. IPH2102 in 

vivo, detection of BCP-ALL blast (P23T) in 

huNSG (SSC18U) 

Anti- Clone 
CD38 PE-Cy7 HIT2 
mouseCD45 APC eFluor 780 30-F11 
CD304 PE (for bone marrow 
samples) 12C2 

CD24 PE (for spleen samples) ML5 
CD9 APC M-L13 
CD20-PerCp 2H7 
CD58 FITC 1C3 
CD19 Brilliant Violet 421 HIB19 
CD10 PE-CF594 HI10A 

  Antibody panel for Fig. 13, Fig. 16 
Antibodys for discrimination of the 
alloreactive/KIR subsets. In combination 
with functional response staining 
Anti- Clone 
CD56 Brilliant Violet711 HCD56 
CD3 PE-CF594 UCHT1 
NKG2A PE-Cy7 Z199 

 

CD158 a PE HP-3E4 
CD158e1/e2 (KIR3DL1/DS1) 
PE 

Z27.3.7 

CD158e APC (KIR3DL1) DX9 
CD158b1/b2/j  APC (KIR 
2DL2/L3/S2) 

GL183 

 
Antibody panel for Fig. 24C. 
Differentiation of NK cells in huNSG 
Anti- Clone 
CD94 FITC HP-3D9 
CD117 PE  104D2 
CD34 PerCP 8G12 
NKp46 APC 9E2/NKp46 
CD16 AF 700 3G8 
CD56 Brilliant Violet 421 HCD56 
CD45 PE-Cy7 HI30 

  Antibody panel for Fig. 25. Proliferation 
after 5-AzaC treatment in huNSG mice 
Anti- Clone 
BrdU-FITC B44 
CD94-PE DX22 
CD3 PE CF 594 UCHT1 
CD34 PerCP 8G12 
NKp46 APC 9E2/NKp46 
CD16 AF 700 3G8 
CD117-Brilliant Violet421 104D2 
CD45 PE-Cy7 HI30 
CD56 Brilliant Violet 711 HCD56 
mouseCD45 APC-eFluor 780 30-F11 
Rabbit Serum 10 µl/Test 

  Antibody panel for Fig. 25. Cell cycle 
analysis after 5-AzaC treatment in huNSG 
mice 
Anti- Clone 
BrdU FITC B44 
CD117 Brilliant Violet421 104D2 
CD94 PE DX22 
mouse CD45 APC-eFluor 780 30-F11 
7-AAD   
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3.3.5 Experimental procedures 

3.3.5.1 Staining of surface antigens (directly labeled antibodies), live-dead 
staining with an amine-reactive dye 

Up to 5 x 106 cells or 10 x 106 cells for FACS sorting experiments were resuspended in 50 μl FACS 

buffer containing the respective diluted antibody-fluorochrome conjugates. Cells were incubated for 

10 min at room temperature or for 20 min at 4 °C in the dark. For discrimination between live and 

dead cells, cells were afterwards washed with PBS and incubated with 39.4 µM ARD-Ax350 for 

10 min at room temperature in the dark and washed three times with FACS buffer. Cells were either 

directly analyzed or fixed with 0.5% PFA for analysis on the following day. Centrifugation steps were 

performed at 400 g for 4 min. Cells were analyzed with a BD LSR II. Live, vital cells were selected 

and doublets excluded based on scatter characteristics and low (auto-) fluorescence intensities.  

3.3.5.2 Staining of surface antigens (using secondary fluorochrome-labeled 
antibodies) 

Blocking was perfomed for 30 min at room temperature using 10 µg/ml human IgG in FACS buffer. 

Primary antibodies (for pan-NKG2D-L: combination of MICA, MICB and ULBP1-3) were stained for 

20 min at room temperature in blocking buffer. After three washing steps with FACS buffer, the 

secondary antibody was stained in FACS buffer for 15 min at room temperature in the dark. 

Optionally further surface antigens were stained as described in 3.3.5.1. Cells were either directly 

analyzed or fixed with 0.5 % PFA for analysis on the following day. Centrifugation steps were 

performed at 400 g for 4 min. Cells were analyzed at a BD LSR II. Live, vital cells were selected and 

doublets excluded based on scatter characteristics and low (auto-) fluorescence intensities.  

3.3.5.3 Functional response staining after co-culture experiments 

For co-incubation conditions see 3.4.2.4. Fluorescently labeled anti-CD107a antibody was added to 

the NK cells for 1 h at 37 °C before addition of Golgi Plug and target cells. After further 6 h of co-

culture, cells were washed twice with FACS buffer and surface antibodies were stained in 50 µl per 

well in FACS buffer for 20 min at 4 °C in the dark. After two washes with FACS buffer, cells were 

incubated with 39.4 µM ARD-Ax350 for 10 min at room temperature in the dark and washed twice 

times with FACS buffer. For fixation cells were resuspended in 100 µl Reagent A (fixation medium) 

per well and incubated for 20 min at 4 °C. After two washes with FACS buffer, intracellular epitopes 

were stained by incubating the cells with the respective antibodies in 100 µl Reagent B 

(permeabilization medium) per well for 45 min at 4 °C. After two final washes cells were either 

directly analyzed by flow cytometry or fixed with 0.5% PFA and analyzed the next day. Isotype 

controls and a baseline (NKAES cells only) as reference were always included. 
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3.3.5.4 Staining of incorporated BrdU  

BrdU staining was perfomed according to the manufacturer’s protocol (see above) with additional cell 

surface staining and live-dead staining with ARD-Ax350 as described in 3.3.5.1 before the BrdU-

staining procedure. During establishment, non-BrdU-treated cells and huNSG mice were included to 

verify the specificity of the staining. For later stainings, only isotype controls (for cell surface antigens 

and IgG1-FITC for anti-BrdU-FITC) were included. 

 

3.4 Further in vitro methods 

3.4.1 Reagents and equipment 

REAGENT     PROVIDER 

Carboxyfluorescein(diacetat)  Vybrant CFDA SE Cell Tracer Kit®, Invitrogen, Carlsbad,  

succinimidyl ester (CFSE)   USA 

Ficoll/Biocoll density 1.077 g/ml Biochrom AG, Berlin, Germany 

IPH2102    KIR-blocking mAb, clone 1-7F9, generously provided by 

     Bristol-Myers Squibb,  Princeton, USA 

Cell sorter    BD FACS Aria, BD Biosciences, Franklin Lakes, USA 

Golgi Plug    BD Biosciences, Franklin Lakes, USA 

Diaclone Perforin ELISA KIT   Active Bioscience, Hamburg, Germany 

3.4.2 Experimental procedures 

3.4.2.1 Determination of in vitro cytotoxicity  

Target cells or cell lines were labeled with 0.5 µM CFSE one day prior to the assay and cultured o/n in 

RPMI 1640 complete medium for cell lines or RPMI 1640 complete medium containing 20% FCS for 

primary leukemic cells. NKAES cells were thawed, cultivated o/n in RPMI 1640 complete containing 

100 U/ml IL-2. For primary leukemic cells a density gradient centrifugation on Ficoll/Paque was 

performed to remove dead cells directly before co-culture. Co-incubation was performed in triplicates 

at the ratios 10:1 (100 000 NK cells + 10 000 targets), 5:1 (50 000 NK cells + 10 000 targets) and 2:1 

(50 000 NK cells + 25 000 targets) in a final volume of 200 µl in RPMI 1640 complete medium for 

5 h at 37 °C in U-bottom 96-well plates. For live-dead discrimination cells were afterwards stained 

with ARD-Ax350 (as described in 3.3.5.1), washed, and analyzed directly or fixed with 0.5% PFA and 

analyzed up to one day later. In order to exclude spontaneously occurring cell death, target cell 

monoculture controls were included in every experiment. The percentage of specific target cell lysis 

was calculated as follows:  %େ୊ୗ୉శ୅ୖୈశୢୣୟୢ ୲ୟ୰୥ୣ୲ୱ ି %େ୊ୗ୉శ୅ୖୈశ ୱ୮୭୬୲ୟ୬ୣ୭୳ୱ୪୷ ୢୣୟୢ ୲ୟ୰୥ୣ୲ୱ 
(ଵ଴଴ ି %େ୊ୗ୉శ୅ୖୈశ ୱ୮୭୬୲ୟ୬ୣ୭୳ୱ୪୷ ୢୣୟୢ ୲ୟ୰୥ୣ୲ୱ) 

x 100% 
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3.4.2.2 Treatment with the KIR-blocking mAb IPH2102 

For in vitro treatment NK cells were pre-incubated with 30 µg/ml IPH2102 for 30 min at 37 °C. 

Blockade of CD158a/h/i and CD158b1/b2/j was verified via flow cytometry (see also 4.2.3).  

3.4.2.3 Sorting of KIR+ and KIR- NKAES cells 

NKAES cells were thawed, cultivated o/n in RPMI 1640 complete medium containing 100 U/ml IL-2 

or used from freshly expanded cultures at d13-d15. Cells were stained with the following antibodies: 

anti-CD3 PECF594, anti-CD56 bv711 for NK cell identification and anti-CD158a/h/i-PE (clone HP-

3E4 recognizing KIR2DL1/S1/S4), anti-CD158b1/b2/j-PE (clone GL183 recognizing 

KIR2DL2/L3/S2) and anti-CD158e-PE (clone DX9 recognizing 3DL1) to discriminate KIR+ and KIR- 

NK cells. Up to 10 x 106 cells were stained in a final volume of 50 µl containing 20% rabbit serum to 

block unspecific binding of antibodies. Sorting was performed with a BD FACS Aria cell sorter. After 

sorting, purity was analyzed (ranging between 91% and 99%); KIR+ and KIR- NK cells were cultured 

o/n in the presence of 100 IU/ml IL2 and then used for further experiments.  

3.4.2.4 Co-culture experiments for functional response staining 

Thawed NKAES cells were incubated o/n in RPMI complete + 10% human serum and 200 U/ml IL-2 

at ca. 2 x 106 cells/ml. The next day, 0.5 x 106 NKAES cells in 100 µl RPMI 1640 containing 10% 

human serum and 1% L-Gln per well were incubated with fluorescently labeled CD107a antibody for 

1h at 37 °C. Then Golgi Plug (1:250) and the respective target cells at an E:T ratio of 1:2 (1 x 106 

target cells) were added to the NKAES cells. After 6 h incubation at 37 °C the intracellular staining 

was performed as described in 3.3.5.3. Isotype controls to allow specific gating were included, all 

percentages were normalized to the baseline levels of NKAES cells cultured in medium only. 

Specificity of Perforin staining was verified by ELISA according to the manufacturer’s protocol.  

3.4.2.5 HLA-typing 

HLA class I genotyping was performed at 4-digit resolution by sequence-based typing (SBT) by the 

lab of Prof. Dr. C. Müller (University of Tuebingen, Germany). 

 

 

3.5 In vivo methods 

3.5.1 Mice 

NOD.Cg-Prkdcscid IL2rgtmWjl/SzJ, also termed NOD-scid IL2Rgammanull (NSG) mice were purchased 

at The Jackson Laboratory (Bar Harbor, ME, USA), breeded and maintained under specific pathogen-

free conditions in the research animal facilities of the University Children’s Hospital Tuebingen, 
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Germany. All animal procedures were approved and conducted according to German federal and state 

regulations (Regierungspräsidium Tuebingen, permission numbers K4/10, K3/12, K1/13 and §10a 

permission Witte 01.10.2010). 

3.5.2 Primary patient material 

HSCs and leukemic cells were obtained at the University Children’s Hospital Tuebingen as mentioned 

in the respective paragraphs. The donation was approved by the local ethics committee with the 

following project numbers: 23/2007, 199/2010BO1, 029/2013BO1, and 213/2014BO2.  

3.5.3 Buffers 

BUFFER      COMPONENTS 

ACK lysis buffer     8.29 g ammonium chloride 

       1 g potassium hydrogen carbonate 

       0.0372 g Na2EDTA .
 2H2O 

       ad 1 l 

3.5.4 Reagents and equipment 

REAGENT       PROVIDER 

ACK lysis buffer     University Pharmacy Tuebingen, Germany 
137Cs irradiator       Gammacell 1000 Elite; MDS   

       Nordion, Fleurus, Belgium 

IL-15        CellGenix, Freiburg, Germany 

IL-15Rα       R&D Systems, Minneapolis, USA 

Fc-IL-7       generously provided by Merck, Darmstadt, 

       Germany  

poly (I:C) (HMW)     Invivogen  

BrdU       Sigma Aldrich, Taufkirchen, Germany 

Glucose      Sigma Aldrich, Taufkirchen, Germany 

Cell strainer 0.45 µm     BD Biosciences, Franklin Lakes, USA 

3.5.5 Experimental procedures 

3.5.5.1 Source and mobilization of HSCs 

HSCs were either donated from parents of children diagnosed with various malignancies prior to 

planned HSCT at the University Children’s Hospital Tuebingen or were purchased from healthy 
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donors from Keybiologics (Memphis, TN, USA). The donation at the University Children’s Hospital 

was approved by the local ethics committee and parents gave informed consent to donate up to 5% for 

transplantation into NSG mice and to use leukapheresis products for research purposes in case the 

patient deceased prior to HSCT (see also 3.5.2). As described in (André et al., 2010), peripheral blood 

HSCs were mobilized by administration of 10 mg/kg/d G-CSF five days before leukapheresis.  CD34+ 

cells were selected using magnetic beads (see 3.1.4.3), purity of the HSCs was evaluated using a 

LSR II flow cytometer. 

3.5.5.2 Processing of mouse tissue 

Peripheral blood from living animals was taken from the retrobulbar venous plexus under CO2/O2 

narcosis. For lysis of erythrocytes, peripheral blood (~ 50 µl) was incubated with 5 ml ACK lysis 

buffer. After 7 min 5 ml PBS were added to stop lysis followed by two washing steps with cold PBS. 

After sacrificing mice, spleen and bone marrow were isolated. To obtain single cell suspensions, cells 

were thoroughly pressed through a 0.45 µm cell strainer and washed in cold PBS. Splenic cells were, 

in case of high erythrocyte content, subjected to 30s of incubation with ACK lysis buffer.  

3.5.5.3 Transplantation of HSCs into NSG mice 

As described in (André et al., 2010); 8- to 12-week old female NSG mice were sublethally irradiated 

(200 cGy). Four hours later, 1-2 x 106 CD34+ HSCs were transplanted via intravenous injection into 

the tail vain. To support engraftment, mice were intravenously injected with 20 mg Fc-

IL-7/week/mouse. Engraftment was regularly analyzed in the peripheral blood by flow cytometry. 

3.5.5.4 Induction of patient-specific leukemia in NSG mice 

As described in (Woiterski et al., 2013); 1-5 x 106 leukemic cells derived from bone marrow of 

children at initial diagnosis or relapse of BCP-ALL or AML were injected into NSG mice. To monitor 

and quantify leukemic engraftment, peripheral blood from the mice was analyzed via flow cytometry 

using pre-defined leukemic surface markers. Animals were sacrificed if engraftment exceeded 60% in 

the peripheral blood or animals showed signs of leukemic disease (weight loss, ruffled fur, hunched 

back). Bone marrow and spleen were flow-cytometrically analyzed for leukemic engraftment, blasts 

were retransplanted into successive mouse generations or frozen and stored in lN2 for in vitro or in 

vivo experiments. The study was approved by the local ethics committee and informed consent was 

obtained from the parents of the patients (see 3.5.2). 

3.5.5.5 Adoptive NK cell transfer in vivo 

1-2 x 106 blasts were intravenously injected into non-irradiated NSG mice on d0, followed by 

intravenous injection of 10 x 106 NKAES cells 6-8 h later. Further NKAES cell injections were 

perfomed at the time points indicated in the respective figures. NKAES cells were thawed one day 
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prior to adoptive transfer and cultured in RPMI 1640 complete medium containing 100 U/ml IL-2. 

Engraftment was monitored by flow-cytometric analysis of PBMCs using pre-defined leukemia 

specific surface markers and NK cell markers. In all experiments, the frequencies of patient-specific 

vital blasts were normalized to vital murine CD45+ cells. 

3.5.5.6 Determination of in vivo cytotoxicity  

Mice were transplanted with HSCs of the respective donor and weekly injected with Fc-IL-7 as 

described above. To obtain functional competence of the developing NK cells, 2.5 µg IL-15 and 

7.5 µg IL-15Rα in PBS were intraperitoneally injected three times (15, 10 and 5 days prior to analysis) 

according to (Huntington et al., 2009) and once with 100 µg poly (I:C) intraperitoneally one day prior 

to leukemia injection (Strowig et al., 2010). 3 x 106 blasts were intravenously injected into huNSG 

mice and the extent of blasts was determined 20 h post injection in the bone marrow using 

polychromatic (8-11) color flow cytometry. In all experiments, the frequencies of patient-specific vital 

blasts were normalized to vital murine CD45+ cells (see also Kübler et al., 2014). 

3.5.5.7 IPH2102 treatment of huNSG 

For treatment of huNSG mice, 250 µg IPH2102 in PBS was intravenously injected once one day 

before blast injection. 

3.5.5.8 In vivo treatment of huNSG mice with 5-azacytidine 

For in vivo treatment of huNSG mice with 5-AzaC, huNSG mice were randomly assigned to treatment 

or control group in week 6 (d39) post transplantation. Therapy with 5-AzaC (0.025 mg/mouse/dose 

intraperitoneally, twice a week for a total of 4 weeks) was initiated. Both groups were treated with 

IL-15/IL-15Rα and poly (I:C) as described in 3.5.5.6. 4 weeks later, 3 x 106 blasts were intravenously 

injected into 5-AzaC- or untreated animals. 20 h later, mice were sacrificed and subjected to analysis 

of NK cell phenotype and for quantification of leukemic burden as already described above (see also 

Kübler et al., 2014). 

3.5.5.9 BrdU treatment of huNSG 

For in vivo BrdU treatment of huNSG mice, 0.8 mg/ml BrdU and 1mg/ml Glucose were added to the 

drinking water 7 days before analysis. Drinking water was exchanged every 2-3 days.  

 

3.6 Statistics 
Unless mentioned otherwise, a Student’s t-test for two samples with equal variance with two-tailed 

distribution was performed. 

Effect size was calculated as follows: ୫ୣୟ୬౪౨౛౗౪౛ౚି ୫ୣୟ୬౫౤౪౨౛౗౪౛ౚ

ୱ୲ୟ୬ୢୟ୰ୢ ୢୣ୴୧ୟ୲୧୭୬౪౨౛౗౪౛ౚ ౗౤ౚ ౫౤౪౨౛౗౪౛ౚ  
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4 RESULTS 
4.1 Pediatric BCP-ALL is a target of NK cells 
Most data reporting beneficial effects of NK cells in leukemia therapy was obtained in AML patients. 

Studies from the Perugia group suggest that the differential expression of adhesion molecules leads 

either to resistance or to susceptibility of ALLs towards NK cell-mediated cytotoxicity (Ruggeri et al., 

1999; Ruggeri et al., 2002). In contrast to most adult ALLs, pediatric ALLs express adhesion 

molecules relevant for NK cell-target conjugate formation (Mengarelli et al., 2001). In line with this 

observation, preliminary data shows the anti-leukemic effects of NK cells towards pediatric B-ALL 

(Leung et al., 2004; Pende et al., 2009). As ALL, which is mainly of the B cell precursor type (BCP-

ALL), comprises 81% of childhood leukemias (Howlader et al., 2014), more data on the susceptibility 

of BCP-ALL could help to improve therapy options for children with poor prognosis. In this regard, 

the aim of this study was to evaluate the capability of expanded NK cells towards BCP-ALL cell lines 

and primary pediatric samples in vitro and in vivo.  

4.1.1 Pediatric BCP-ALL can be targeted by NKAES cells in vitro 

Since NK cell responsiveness is greatly influenced by cytokines (Bonnema et al., 1994), an efficient 

expansion and stimulation regimen was chosen to maximize anti-leukemic effects. NK cells were 

expanded according to a modified GMP (good manufacturing practice)-compatible protocol of 

(Fujisaki et al., 2009),  based on a K562-mbIL15-4-1BBL feeder cell line and low-dose recombinant 

IL-2 (see 3.1.4.4).  

To phenotypically compare expanded NKAES cells to resting NK cells, analysis of common NK cell 

receptors was performed before and after the 14 day expansion period. In line with published data 

(Fujisaki et al., 2009) NKp44 and NKG2D expression is slightly upregulated in NKAES cells (Fig. 4). 

In addition, NKAES cells show a slight increase in KIR expression and a significant increase in 

NKG2A expression. 
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Fig. 4: In vitro expanded NKAES cells 
display increases in NKG2A expression. 
NK cells were expanded from PBMCs 
according to a modified protocol from 
(Fujisaki et al., 2009). Shown is the 
percentage of receptor positive CD56+CD3- 
cells as quantified by flow cytometry; KIR: 
combined staining of KIR2DL1/S1/S4 (clone 
HP-3E4), KIR2DL2/L3/S2 (clone GL183) 
and KIR3DL1 (clone DX9); NKG2A, NKp44, 
NKG2D. (n = 3; statistics: Student’s paired t-
test with two-tailed distribution) 
 

 

Since the extent of HLA class I expression has been described to impact NK cell-mediated 

cytotoxicity (Pfeiffer et al., 2007; Feuchtinger et al., 2009), BCP-ALL cell lines with comparable 

intermediate HLA class I expression were chosen (Fig. 5; pediatric BCP-cell lines Nalm-16, 

MHH-cALL4 and SEM, the pediatric AML cell line Kasumi-1 and the HLA class I-deficient CML 

cell line K562 as a control).  

 

 
Fig. 5: Phenotypical characterization of selected cell lines by HLA class I, ICAM-1, NKG2D-L, CD112 and 
CD155 expression. Flow cytometric characterization of important molecules recognized by NK cells on the 
pediatric BCP-cell lines Nalm-16, MHH-cALL4 and SEM, the pediatric AML cell line Kasumi-1 and the HLA class 
I-deficient CML cell line K562. Pan-NKG2D-L staining was performed using a cocktail of anti-MICA, anti-MICB 
and anti-ULBP1-3 antibodies, HLA class I with clone W6/32; for others refer to section 3.3. Grey, filled: isotype; 
black line: specific antibody staining (Kübler et al., 2014)i. 
 

Comparison of the cytotoxic potential towards these cell lines shows that pediatric BCP-ALL cell lines 

can in principle be a target of NKAES cells (Fig. 6). The extent of specific lysis varies and probably 

reflects the differences in ICAM-1, CD112, CD155 and especially NKG2D-ligand expression (Fig. 5). 
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Fig. 6: Surface ligand expression influences 
killing of BCP-ALL. In vitro cytotoxicity assay 
performed with SNK15B NKAES cells at an effector 
to target ratio of 2:1. K562 and Kasumi-1 were used 
as controls. Shown is the percentage of specific 
lysis, the assay was perfomed in triplicates (Kübler 
et al., 2014) i. 

 

Therefore, in the following experiments investigating the relevance of the KIR-KIRL axis, the 

expression of ligands potentially relevant for NK cell-mediated cytotoxicity were carefully evaluated 

on leukemic cells. Furthermore, the expression of important NK cell receptors was analyzed. For all 

experiments, NK cells and leukemic samples with comparable expression levels were chosen as 

mentioned in the respective sections (see also Suppl. Fig. 1 and Suppl. Fig. 2). 

4.1.2 NKAES cells display significant alloreactivity towards pediatric 
BCP-ALL in vivo 

To establish an in vivo model of adoptive NK cell therapy a pediatric AML (P18R) and pediatric BCP-

ALL sample (P3B) that displayed robust engraftment in NSG mice (data not shown) were chosen. A 

pooled sample of both was intravenously injected into NSG mice, followed by 4 weekly injections of 

NKAES cells (for experimental setup see Fig. 7A).  

A multicolor flow-cytometric strategy using predetermined CD markers allows discrimination of NK 

cells, P18R and P3B leukemic cells in the peripheral blood. For all in vivo experiments, evaluation of 

the leukemic burden is given as the number of vital blasts normalized to vital murine CD45+ cells, 

since murine CD45+ cells are assumed to be a constant population between different mice in cases 

where the overall abundance of human CD45+ cells is low.   

NKAES cells were indeed able to target pediatric BCP-ALL in vivo as shown by a significantly 

decreased leukemic burden in the peripheral blood of NKAES cell-treated compared to untreated 

animals (Fig. 7B). For phenotypical characterization of blasts and NKAES cells, see Suppl. Fig. 1A 

and Suppl. Fig. 2. The efficiency of the NK cell-based adoptive transfer strategy is shown by a 

prolonged survival of treated animals (Fig. 7C). NKAES cells are able to target pediatric BCP-ALL in 

vivo but do not eradicate leukemia under these conditions. 
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Fig. 7: Pediatric BCP-ALL can be targeted by 
NKAES cells in vivo. (A) Experimental setup. 
Briefly: A pooled primary pediatric AML (P18R) 
and BCP-ALL (P3B) sample was injected into 
NSG mice followed by weekly injections of 
NKAES cells (donor SNK13B; n = 3 per group). 
(B) NKAES cells reduce the leukemic burden in 
the peripheral blood. Given is the number of vital 
blasts normalized to vital murine CD45+ cells as 
determined by flow cytometry. (C) Survival of 
NKAES-treated compared to untreated mice 
(Kaplan Maier Plot). 

 
 

 

 

4.2 KIR-KIRL mismatches are relevant for cytotoxicity of NK 
cells towards pediatric BCP-ALL 

After having shown that pediatric BCP-ALL can in principal be targeted by NK cells in vitro and in 

vivo, the question is whether KIR-KIRL interactions play a major role for the functional outcome of 

NK cell alloreactivity. To show the relevance of KIR-KIRL mismatches in pediatric BCP-ALL, 7 

donors that either exhibit a KIR-KIRL match or mismatch towards specific pediatric BCP-ALLs were 

chosen (Table 7). For detailed HLA and KIR-typing, see Suppl. Table 1 and Suppl. Table 2, 

phenotypical characterization of NKAES cells and blasts see Fig. 5, Suppl. Fig. 1 and Suppl. Fig. 2. 
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Table 7: KIR-KIRL constellations of selected NK cell donors and pediatric BCP-ALL samples. NK cell donors (SNK) and BCP-ALL patient samples (P) are anonymized by an 
internal code. Shown is the KIRL status, donor education of relevant iKIRs and educated KIRs specific for the missing KIRL of the target to identify the educated alloreactive subset 
towards the given BCP-ALL. The KIRL HLA-C1 is recognized by KIR2DL2/L3, HLA-C2 by KIR2DL1, HLA-Bw4 epitopes by KIR3DL1, HLA-A3 and HLA-A11 by KIR3DL2. For detailed 
HLA and KIR-typing of the respective donors and patient samples see Suppl. Table 1 and Suppl. Table 2. *the cell line NALM-16 has a near haploid genome. ** Note that this donor 
does not express KIR3DL1 on the RNA and protein level (Suppl. Fig. 1,Suppl. Table 2) (Kübler et al., 2014)i.  

Donor KIRL 

Donor education of iKIRs Educated KIRs specific for the missing KIRL in the target 

Educated Uneducated 
P3B  

Bw6/Bw6  C1/C1 

P31G 

A3/A3        Bw4/Bw6  
C2/C2 

 

Nalm-16 

Bw4  C1* 

SNK9A  Bw6/Bw6  C1/C1 2DL2, 2DL3 2DL1, 3DL1, 3DL2 / 2DL2, 2DL3 / 

SNK10P Bw6/Bw6  C1/C1 2DL2, 2DL3 2DL1, 3DL1, 3DL2 / 2DL2, 2DL3 / 

SNK21BC A3 Bw6/Bw6  C1/C1 2DL2, 2DL3, 3DL2 2DL1,  3DL1 3DL2 2DL2, 2DL3 3DL2 

SNK13B  ABw4 Bw4/Bw4  C2/C2 2DL1, ** 2DL2, 2DL3, 3DL2 2DL1, ** / 2DL1 

SNK14B ABw4 Bw4/Bw4  C2/C2 2DL1, 3DL1  2DL2, 2DL3, 3DL2 2DL1, 3DL1 / 2DL1 

SNK15B Bw4/Bw4  C2/C2 2DL1, 3DL1 2DL2, 2DL3, 3DL2 2DL1, 3DL1 / 2DL1 

SNK20B A3 Bw4/Bw4  C2/C2 2DL1, 3DL1, 3DL2 2DL2, 2DL3 2DL1, 3DL1, 3DL2 / 2DL1, 3DL2 
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4.2.1 KIR-KIRL mismatch constellations enhance cytotoxicity towards 
pediatric BCP-ALL in vitro 

To evaluate the potential of the different NK cell donor groups with given KIR-KIRL constellations towards 

selected BCP-ALLs (Table 7), specific lysis of the primary pediatric BCP-ALL sample P3B relapse 

(Bw6/Bw6 C1/C1) and P31G (A3/A3 Bw4/Bw6 C2/C2) was determined. Bw6/Bw6 C1/C1 donors (SNK9A, 

SNK10P, SNK21BC) exhibit a KIR-KIRL match towards P3B relapse and a KIR-KIRL mismatch towards 

P31G. For Bw4/Bw4 C2/C2 donors (SNK13-15B) the constellation is vice versa (for detailed information 

see Table 7).  

All donors are able to target the MHC-deficient K562 cell line to a similar extent, showing that the general 

cytotoxic potential of the NKAES cells is comparable (Fig. 8, left columns). In contrast, primary pediatric 

BCP-ALL samples are significantly better targeted by NKAES cells in the presence of a KIR-KIRL 

mismatch in comparison to the matched KIR-KIRL constellation (Fig. 8). The effect of KIR-KIRL 

mismatching is reversible within the same donor groups towards the two pediatric BCP-ALL samples (P3B 

relapse and P31G). Therefore it can be assumed that indeed KIR-KIRL interactions are relevant for increased 

alloreactivity of KIR-KIRL mismatched NK cells.  

 

 

Fig. 8: KIR-KIRL constellations are relevant for the cytotoxic 
potential of NK cells towards pediatric BCP-ALL in vitro. In vitro 
cytotoxicity of KIR-KIRL matched or mismatched NKAES cells 
against primary pediatric BCP-ALL samples, the K562 cell line was 
included as positive control. Shown is the % specific lysis at an E:T 
ratio of 10:1. For more detailed information on KIR-KIRL 
constellations of Bw6/Bw6 C1/C1 donors (SNK9A, SNK10P, 
SNK21BC) and Bw4/Bw4 C2/C2 donors (SNK13-15B) see Table 7. 
For phenotypical characterization of blasts and NKAES cells see 
Suppl. Fig. 1A and Suppl. Fig. 2, for HLA type Suppl. Table 1 and 
KIR genotype Suppl. Table 2. Data represents two independent 
experiments performed in triplicates (Kübler et al., 2014)i. 

4.2.2 KIR-KIRL mismatched NKAES cells display superior in vivo cytotoxicity 
towards BCP-ALL 

To examine the relevance of KIR-KIRL mismatches for a potential adoptive NK cell transfer therapy, naïve 

NSG mice were injected with a primary pediatric BCP-ALL sample (P3B relapse). Weekly injections of 

either KIR-KIRL matched (SNK10P) or mismatched (SNK13B) NKAES cells lead to a reduction of the 

leukemic burden in the peripheral blood of the mice (Fig. 9). The reduction is significant for KIR-KIRL 

mismatched NKAES cells but not for KIR-KIRL matched NKAES cells.  

     0.001p =

p = 0.003
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Fig. 9: KIR-KIRL mismatched NKAES cells display superior cytotoxicity towards pediatric BCP-ALL in vivo. (A) 
Experimental setting, briefly: NSG mice were injected with BCP-ALL cells (P3B relapse) followed by weekly injections of 
KIR-KIRL matched (SNK10P) or mismatched (SNK13B) NKAES cells. (B) Leukemic burden in the peripheral blood was 
determined by multicolor flow cytometry, shown is the number of vital blasts relative to vital mCD45+ cells. Mice injected 
with KIR-KIRL mismatched NKAES cells display a significantly lower leukemic burden in vivo compared to untreated 
controls. For phenotypical characterization of blasts and NKAES cells see Suppl. Fig. 1A and Suppl. Fig. 2, for HLA-type 
Suppl. Table 1 and KIR genotype Suppl. Table 2. Data represents one experiment performed with 11 mice (Kübler et al., 
2014)i. 

4.2.3 Blockade of the KIR-KIRL axis  

We next asked whether KIR blockade with a monoclonal antibody (IPH2102) would influence cytotoxicity 

against BCP-ALL. IPH2102 blocks inhibitory KIR2DL1 and KIR2DL2/L3 but also binds to activating 

KIR2DS1 and KIR2DS2 and has been shown to enhance cytotoxicity towards AML (Romagné et al., 2009). 

First, conditions for complete blockade were established and verified by flow-cytometric staining of 

CD158a/h/i (clone HP3E4, KIR2DL1/S1/S4), CD158b1/b2/j (clone GL183, KIR2DL2/L3/S2), and CD158e 

(clone DX9, KIR3DL1). When IPH2102 binds to the respective epitope, no staining with fluorescently 

labeled KIR antibodies is possible (Fig. 10). In line with published data (Romagné et al., 2009), IPH2102 

blocks CD158a/h/i and CD158b1/b2/j, but not CD158e. 

 

 
Fig. 10: CD158a/h/i and b1/b2/j are blocked by IPH2102. NKAES cells from 3 donors were incubated at 37 °C for 
30 min with 30 µg/ml IPH2102 and with 15 µg/ml for another 5 h. Shown is the flow cytometric analysis of CD158a/h/i 
(clone HP3E4, KIR2DL1/S1/S4), CD158b1/b2/j (clone GL183, KIR2DL2/L3/S2) and CD158e (clone DX9, KIR3DL1) on 
CD56+CD3- NK cells after IPH2102-treatment (grey, filled) or untreated (black line). Shown is one representative donor 
(SNK15B) out of 3. 
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4.2.3.1 KIR blocking mAb IPH2102 does not enhance GvL effects in huNSG mice 
which exhibit mainly KIR- NK cells 

HuNSG mice reconstitute diverse human lymphoid and myeloid cells from engrafted human hematopoietic 

stem cells and are therefore a complex in vivo system to study NK cell biology. After sublethal irradiation of 

NSG mice, transplanted CD34+ HSCs differentiate into the different hematopoietic lineages (Shultz et al., 

2005; André et al., 2010). IL-7 and IL-15/IL15Rα supplementation allows the generation of ‘pseudomature’ 

lytic NK cells, poly (I:C) treatment one day before injection of a leukemic sample further enhances 

stimulation of NK cells. By multicolor flow cytometry leukemic cells and cells of the normal hematopoiesis 

can be discriminated and therefore quantification of the leukemic burden is possible. After having shown that 

KIR-KIRL mismatched constellations are relevant for adoptive NK cell transfer in BCP-ALL bearing NSG 

mice, humanized NSG mice were chosen to study the relevance of the KIR-KIRL axis in GvL effects upon 

HSCT. Treatment of huNSG mice with the KIR-blocking mAb IPH2102 should lead to enhanced NK cell-

mediated cytotoxicity depending on the relevance of the KIR-KIRL axis in this setting.  

The HSC donor SSC18U was selected as the donor is KIR2DL1+ and KIR2DL3+ and should therefore be 

able to sustain receptor-ligand interactions with the KIR ligands HLA-C1 and C2 of the primary pediatric 

BCP-ALL P23T. No activating KIR2DS1 or KIR2DS2 that could be blocked by IPH2102 are present in 

donor SSC18U (for phenotypical characterization of blasts see Suppl. Fig. 2, for HLA-type Suppl. Table 1 

and KIR genotype Suppl. Table 2). Hence there are two iKIR-HLA-interactions with the primary pediatric 

BCP-ALL P23T that can potentially be blocked by IPH2102 (see also Table 8).  

 
Table 8: KIR-KIRL constellations for the experiment depicted in Fig. 11. *Note that genomic expression of 

KIR2DL2 is absent in this donor. 

 

Donor education of iKIRs KIR2DS1, 2DS2 
expression 

iKIR-KIRL interaction blockable by 
IPH2102 

Educated Uneducated  
P23T 

A24:02   Bw4/Bw4  C2/C1 

SSC18U 2DL1, 2DL3, 3DL1, * 3DL2 / 2DL1, 2DL3 
 

Despite obvious masking of KIR2DL1/S4 and KIR2DL3 on bone marrow- and spleen-residing NK cells 

(Fig. 11B + C), leukemic burden is comparable in the IPH2102-treated and non-treated group (Fig. 11D). 
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Fig. 11: IPH2102 does not reduce leukemic burden in 
huNSG mice. (A) Experimental layout (see also 3.5.5.6 and 
3.5.5.7). (B) and (C) Flow-cytometric KIR staining in treated and 
untreated animals. The following anti-KIR mAbs were used: 
CD158a (clone HP3E4, KIR2DL1/S1/S4) and CD158b1/b2/j 
(clone GL183, KIR2DL2/L3/S2). Note: KIR2DS1, KIR2DL2/S2 
which are also recognized by the antibody clones used, are not 
present in this donor. (D) Minimal residual disease analysis of 
treated vs. untreated animals, shown is the number of vital 
blasts relative to vital mCD45+ cells. 

In summary, the preliminary data shown here provides evidence that GvL effects in huNSG mice are not 

mainly modulated by the KIR-KIRL axis. The abundance of KIR-expressing NK cells is quite low despite of 

IL-15/IL-15Rα treatment (< 3%, see Fig. 11).  In summary, the lack of substantial KIR expression makes the 

huNSG model unsuitable to investigate the relevance of KIR-KIRL interactions. 

4.2.3.2 KIR+ NKAES cells from KIR-KIRL matched donors display significantly 
enhanced cytotoxicity upon KIR blockade with IPH2102 

In line with the data obtained in huNSG mice in the previous section (4.2.3.1) it can be assumed that the 

abundance of KIR+ NK cells seems to be relevant for the overall effect of KIR blockade with IPH2102. 

Hence, a subset analysis of KIR+ NK cells might elucidate to which extent cytotoxicity towards BCP-ALL 

can be modulated by the KIR-KIRL axis. For this purpose sorting of the KIR+ and KIR- NKAES cell subsets 

was performed (anti-KIR mAbs used for sorting of KIR+ NK cells: HP-3E4 for KIR2DL1/S1/S4, GL183 for 

KIR 2DL2/L3/S2, and DX9 for KIR3DL1). 

In vitro cytotoxicity of sorted KIR+ NKAES cells from  KIR-KIRL matched donors SNK10P and SNK21BC  

is significantly enhanced in the presence of IPH2102 (Fig. 12). Cytotoxicity of KIR-KIRL mismatched 

donors is not changed (Fig. 12A) except for SNK14B, where detailed analysis of the respective donors 

shows a minor enhancement of cytotoxicity (Fig. 12B).  
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Fig. 12: KIR blocking mAb IPH2102 increases alloreactivity for KIR-KIRL matched donors against BCP-ALL. 
Specific lysis of the BCP-ALL cell line Nalm-16 after co-culture with sorted KIR+ NKAES cells of the donors SNK14B, 
SNK15B, SNK20B (KIR-KIRL mismatch) and SNK10P, SNK21BC (KIR-KIRL match) was determined (E:T ratio 2:1) in 
the presence or absence of the KIR-blocking mAb IPH2102. (A) represents five independent experiments performed in 
triplicates which are itemized in (B)(Kübler et al., 2014)ii. 

 

Looking at the KIR-KIRL constellations (Table 9) IPH2102 leads to blockade of educated KIR2DL2/L3 in 

KIR-KIRL matched constellations and blockade of uneducated KIR2DL2/L3 in KIR-KIRL mismatched 

constellations. The missing enhancement of cytotoxicity for KIR-KIRL mismatched NK cells by IPH2102 

could be explained if uneducated KIR2DL2 and KIR2DL3 are mainly expressed on NK cells that do not 

express any other self-recognizing inhibitory receptors. 

To examine this hypothesis the subset distribution within the donor cells was analyzed. For this purpose 

NKG2A+ and NKG2A- NK cells were discriminated and further subgated into KIR2DL2/L3/S2 single 

positive cells (‘others-’) or cells co-expressing at least one of the following KIRs: KIR2DL1/S1/S4, 

KIR3DL1/S1 (‘others+’). For the respective NK cell phenotype, see also Suppl. Fig. 1B. 

Indeed, the proportion of KIR2DL2/L3/S2+ others- NK cells is quite high, especially in the NKG2A+ NK cell 

subset (Fig. 13A). Taking the predominance of the KIR2DL2/L3/S2+ others- NK cell population into 

account, the responsiveness of educated and uneducated KIR2DL2/L3/S2+others- NK cells was analyzed. For 

this purpose co-culture experiments with K562 were performed. Note that the data shown in Fig. 13 and Fig. 

16 were obtained from the same experiment by differing analysis of the primary data.  

 
Table 9: KIR-KIRL constellations for the experiment depicted in Fig. 12. Note that IPH2102 binds to KIR2DL1-3 and 
KIR2DS1/2. See also supplemental tables. 

KIR-KIRL 
status 

towards 
Nalm-16 

 

Donor education of iKIRs 
KIR2DS1, 

2DS2 
expression 

possible KIR-KIRL 
interactions of NK cells with 

target 

Nalm-16 

Educated Uneducated   Bw4 C1 

 

KIR-KIRL 
match 

 

SNK10P 2DL2, 2DL3 2DL1, 3DL1, 
3DL2 / 2DL2, 2DL3, 3DL1 

SNK21BC 2DL2, 2DL3, 3DL2 2DL1,  3DL1 2DS2 2DL2, 2DL3, 3DL1, 2DS2 
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KIR-KIRL 
mismatch 

SNK14B 2DL1, 3DL1 2DL2, 2DL3, 
3DL2 2DS2 2DL2, 2DL3, 3DL1, 2DS2 

SNK15B 2DL1, 3DL1 2DL2, 2DL3, 
3DL2 / 2DL2, 2DL3, 3DL1 

SNK20B 2DL1, 3DL1, 3DL2 2DL2, 2DL3 2DS2 2DL2, 2DL3, 3DL1, 2DS2 
 

 

 
Fig. 13: The KIR2DL2/L3/S2+others- NK cell subset is predominant in KIR-KIRL mismatched donors and exhibits 
a low degranulation capacity in response to K562. (A) Shown is the NK cell subset composition with % subset size of 
KIR2DL2/L3/S2 single positive NKAES cells (‘others-’) and NKAES cells co-expressing at least one of the following KIRs: 
KIR2DL1/S1/S4, KIR3DL1/S1 (‘others+’) in the NKG2A+ and – subset of KIR-KIRL mismatched C2/C2 donors (B) Shown 
is the degranulation capacity (% CD107a+ cells after baseline correction) of NK cell subsets shown in (A). In contrast to 
KIR-KIRL matched donors, the KIR2DL2/L3/S2+others- NK cell subset degranulates poorly in response to K562 in KIR-
KIRL mismatched C2/C2 donors, even in the presence of NKG2A.  
 

Co-culture experiments with K562 show that uneducated NKG2A- KIR2DL2/L3/S2+ others- NKAES cells 

from KIR-KIRL mismatched donors indeed display a remarkably lower degranulation capacity (Fig. 13B) 

compared to educated NKG2A- KIR2DL2/L3/S2+ others+. This effect is also present in the respective 

NKG2A+ subsets. Donors with KIR-KIRL matched constellations do not show major differences in 

responsiveness of the educated NKG2A+/- KIR2DL2/L3/S2+ others- and educated NKG2A+/- 

KIR2DL2/L3/S2+ others+ NK cell subsets.  

 

In summary, KIR blockade by mAb IPH2102 increases cytotoxicitiy of the KIR+ NK cell subset from KIR-

KIRL matched but not from KIR-KIRL mismatched NK cell donors towards BCP-ALL. In KIR-KIRL 

mismatched donors the uneducated hyporesponsive KIR2DL2/L3/S2 single positive NK cell subset is 

dominant. 
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4.2.4 Subset analyses reveal functional differences between KIR-KIRL 
matched and mismatched NK cells 

4.2.4.1 The KIR+ subset of KIR-KIRL mismatched donors exerts higher 
cytotoxicity compared to KIR- NK cells 

To further dissect the relevance of KIR-KIRL constellations towards pediatric BCP-ALL, KIR+ and KIR- 

subsets of the 7 donors either exhibiting a KIR-KIRL mismatch or match (see also Table 7) towards the 

BCP-ALL cell line Nalm-16 were sorted. The KIR+ subset includes NKAES cells expressing at least one of 

the following KIRs: KIR2DL1/S1/S4 (detected by clone HP-3E4), KIR2DL2/L3/S2 (detected by clone 

GL183) or KIR3DL1 (detected by clone DX9); the KIR- subset does not express any of the mentioned KIRs. 

All KIR+ and KIR- subsets exert comparable cytotoxicity towards the HLA class I-negative K562 cell line 

(Fig. 14A, triangles), showing that there is no generally lower responsiveness of KIR+ compared to KIR- NK 

cells of the different donors. With respect to the HLA-expressing Nalm-16 cell line the KIR+ subset within 

the KIR-KIRL mismatched donor group displays a clearly superior cytotoxic potential compared to the 

corresponding KIR- subset (Fig. 14A). Interestingly, for KIR-KIRL matched NKAES cells the situation is 

reversed. This effect becomes even more evident upon normalization (Fig. 14B). Lysis of K562 was included 

as control for overall cytotoxicity (Fig. 14A and B right side). 

Despite this clear superiority of KIR+ cells in KIR-KIRL mismatched donors on specific lysis, no such 

significant effects are observed in cytokine secretion (IFN-γ, TNF), degranulation or perforin levels upon co-

culture experiments with Nalm-16 (Fig. 15, data provided by J. Woiterski, see also Kübler et al., 2014). 
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Fig. 14: Sorted KIR+ NK 
cells of KIR-KIRL 
mismatched donors but not 
from KIR-KIRL matched 
donors display higher 
cytotoxicity towards 
pediatric BCP-ALL 
compared to the 
corresponding KIR- subset. 
(A) Specific lysis of sorted 
KIR+ and KIR- NK cells of 
donors either exhibiting a KIR-
KIRL match or mismatch 
towards Nalm-16 
(characterized in Table 7) was 
determined after co-culture 
with NALM-16 or K562 cells 
as a control (E:T ratio 5:1). (B) 
Data from (A) standardized to 
the KIR- subset. Shown is the 
percentage of specific lysis of 
the sorted KIR+ subset minus 
percentage of specific lysis of 
the sorted KIR- subset. Data 
was obtained during six 
independent experiments 
performed in triplicates 
(Kübler et al., 2014)i.  
 
 

 
Fig. 15: KIR-KIRL mismatched constellations change the ability for degranulation and cytokine synthesis of KIR+ 
compared to KIR- NK cells towards pediatric BCP-ALL. Shown is the degranulation and cytokine synthesis of sorted 
KIR+ and KIR- NKAES cells of the donors SNK13-15B and SNK20B (KIR-KIRL mismatch) in response to Nalm-16 (BCP-
ALL) or K562 cells (control). The percentages of the respective CD107a, Perforin, TNF and IFN-γ positive populations 
are normalized to the respective baseline levels of NKAES cells cultured in medium only. Note the different scale of K562 
cells which evoke a distinctly higher response. The decline of intracellular perforin was validated to go along with an 
extracellular release in perforin (measured by ELISA, data not shown) (Kübler et al., 2014)i.  
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4.2.4.2 The ‘alloreactive’ subset of KIR-KIRL mismatched NK cells exhibits a 
higher degranulation capacity compared to KIR-KIRL matched NK cells 

To pinpoint differences in responsiveness within the KIR+ subsets of KIR-KIRL matched or mismatched 

donors, an antibody panel that allows assessment of the degranulation potential of KIR+ ‘alloreactive’, KIR+ 

‘non-alloreactive’, and KIR- cells was designed. According to the literature, the ‘alloreactive’ subset includes 

NK cells expressing receptors permissive for target cell lysis (aKIRs and iKIRs that do not find a ligand on 

the respective target cell). The ‘non-alloreactive’ subset contains NK cells expressing NKG2A or iKIRs 

specific for ligands expressed on the target cell (Pende et al., 2005; see also section 1.2.4). Since the 

expansion protocol highly activates NK cells and leads to expansion of the NKG2A+ subset also 

‘alloreactive’ NKG2A+ cells were considered (for the respective NK cell phenotype see also Suppl. Fig. 1B). 

The gating strategy is shown in Fig. 16A, exemplary original histogram data in (B) with Nalm-16 as target 

cells and (C) with K562 as control target. 

NK cells expressing KIR2DL1/S1/S4 and/or KIR3DS1 (y-axis) but not KIR2DL2/L3/S2 or KIR3DL1 (x-

axis) were assumed to be ‘alloreactive’ towards Nalm-16 (KIRL Bw4/C1), and indeed, the degranulation 

capacity of KIR-KIRL mismatched donors upon co-culture is significantly increased compared to the ‘non-

alloreactive’ subset (expresses at least one of the following: KIR2DL2/L3/S2 or KIR3DL1), Fig. 16D. In 

contrast, ‘alloreactive’ KIR-KIRL matched donors do not display enhanced degranulation capacity; 

‘alloreactive’ and ‘non-alloreactive’ NK cells show a similar percentage of CD107a+ cells. This difference 

can even be seen in NKG2A+ cells (Fig. 16D, right part). 

In summary, the superior alloreactivity towards BCP-ALL of KIR-KIRL mismatched compared to KIR-

KIRL matched NKAES cells can be attributed to the KIR+ ‘alloreactive’ subset. 
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Fig. 16: NK cell subset analysis shows differences in the degranulation capacity of NK cells from KIR-KIRL 
mismatched and matched donors. NKAES cells from 6 donors either exhibiting a KIR-KIRL mismatch (SNK14B, 15B, 
20B) or KIR-KIRL match (SNK9A, SNK10P, SNK21BC) towards Nalm-16 were co-cultured with Nalm-16 or K562 to 
determine the degranulation capacity of the alloreactive, non-alloreactive and KIR- subset. (A) Exemplified gating 
strategy for donor SNK15B. The theoretical alloreactive subset towards Nalm-16 (Bw4/C1) includes NK cells expressing 
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KIR2DL1/S1/S4 and/or KIR3DS1 (y-axis) but not KIR2DL2/L3/S2 or KIR3DL1 (x-axis) (upper left quadrant), whereas the 
non-alloreactive subset expresses at least one of the following: KIR2DL2/L3/S2 or KIR3DL1 (the combination of clone 
Z27.3.7 for KIR3DL1/S1 and Dx9 for KIR3DL1 allows identification of the KIR3DL1-3DS1+ subset). (B) + (C) Exemplified 
CD107a histogram data from SNK15B (KIR-KIRL mismatch) or SNK10P (KIR-KIRL match) of the respective subsets 
gated according to (A). NKAES cells were either cultured with Nalm-16 (black, open) as shown in (B) or with K562 as 
control as shown in (C). NKAES cell-only cultures (grey, open) are always included as reference population. The upper 
right pictogram in (C) (grey, filled) shows the respective isotype control. ΔCD107a is given (% CD107a+ cells in NKAES-
tumor co-cultures minus % CD107a+ cells in NKAES cell-only cultures) in each histogram. (D) Pooled data of the 
degranulation capacity of KIR-KIRL mismatched (SNK14B, SNK15B and SNK20B) or KIR-KIRL matched donors 
(SNK9A, SNK10P and SNK21BC). Data is normalized to the corresponding KIR- cells by subtracting the % CD107a+ of 
the KIR- population. Symbols: KIR+ alloreactive subset in KIR-KIRL mismatched donors: ●, KIR+ alloreactive subset in 
KIR-KIRL matched donors: ○, KIR+ non-alloreactive NK cell subset: ■. Data represents one experiment performed with 
the 6 indicated donors (Kübler et al., 2014)i. 
 
 

4.3 Effects of the Dnmt-inhibitor 5-azacytidine on NK cells 
 

The methyltransferase inhibitor 5-Azacytidine is clinically used for treatment of MDS, CMML and AML. At 

higher doses, direct cytotoxicity e.g., mediated by incorporation into RNA is predominant, whereas lower 

doses mainly induce DNA hypomethylation by inhibition of Dnmts. Since the KIR-locus has been described 

to be regulated by direct DNA methylation (Santourlidis et al., 2002), we wanted to use 5-AzaC to modulate 

NK cell reactivity towards BCP-ALL. Analyses of mature NK cells in vitro suggest that 5-AzaC might lead 

to increased KIR-expression on NK cells also in patients (Gao et al., 2009). But detailed subset analyses or 

effects on aKIRs have not yet been considered. Furthermore, it is not clear how 5-AzaC affects NK cells and 

NK cell precursors in vivo in a more complex setting including e.g., effects on bystander cells. To tackle 

these points, in vitro subset analyses and complex in vivo analyses in huNSG mice were performed.   

4.3.1 Modulating KIR expression in vitro 

For in vitro experiments a dose of 1 µM for 7 days was chosen. Doses ≥ 5 µM displayed an anti-proliferative 

effect on hepatoma cell lines (Venturelli et al., 2007), in neuroblastoma cell lines proliferation was inhibited 

with an ID50 of 10 µM while 4 µM induced demethylation-dependent gene expression (Yang et al., 2010). In 

NK cells 1 µM 5-AzaC did not affect NK cell viability, but induced KIR expression (Gao et al., 2009). Chan 

and colleagues applied 1 µM 5-AzaC for 60 h to induce KIR expression in NK cells (Chan et al., 2003). So, 

the chosen concentration of 1 µM for 7 days in the presence of cytokines should ensure enough cell divisions 

for passive demethylation without significant decrease in NK cell viability. 

4.3.1.1 5-AzaC leads to significantly increased KIR expression but also regulates 
other NK cell receptors 

To establish a suitable in vitro model system for analysis of 5-AzaC effects on mature NK cells, 5-AzaC was 

added to the culture medium at a concentration of 1 µM from d7 until d14 of the NKAES cell expansion 

protocol. Flow-cytometric analysis of common KIRs (CD158a: KIR2DL1/S1/S4, CD158b1/b2/j: 
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KIR2DL2/L3/S2, CD158e: KIR3DL1) shows that 5-AzaC leads to an increased abundance of KIR+ NKAES 

cells (Fig. 17). 

 
Fig. 17: KIR expression is upregulated by 5-AzaC treatment in vitro. NK cells were either treated with 1 µM 5-AzaC 
from d7-d14 of the NKAES cell expansion protocol (see methods section) or expanded in the absence of 5-AzaC. Shown 
is the flow cytometric analysis of CD158a/h/i (KIR2DL1/S1/S4, clone HP-3E4), b1/b2/j (KIR2DL2/L3/S2, clone GL183) 
and e (KIR3DL1, clone DX9) of two donors with different KIR genotypes.  

 

With respect to common KIR expression, the number of receptor-positive cells is significantly increased 

compared to untreated control NKAES cells (Fig. 18A) without major changes in the median fluorescence 

intensity (Fig. 18B). Varied expression of common NK cell receptors can also be observed for NKp44 and 

NKG2D (Fig. 18). The percentage of NKG2A expressing cells is not changed (Fig. 18A) but the decreased 

median fluorescence intensity shows an approximately halved receptor expression (Fig. 18B). 

In summary, 5-AzaC indeed induces KIR expression on NKAES cells at the applied treatment regimen but 

furthermore induces NKp44 expression and reduces NKG2D expression. 

 

 
Fig. 18:  The number of KIR and NKp44 expressing cells is increased by 5-AzaC whereas the percentage of 
NKG2D expressing cells and expression level are decreased in vitro. NKAES cells were treated with 1 µM 5-AzaC 
as described in 3.1.4.5. (A) Percentage of KIR, NKG2A, NKp44 or NKG2D positive NK cells is shown as determined by 
flow cytometry. (B) Median fluorescence intensity of the respective receptor expression of 5-AzaC treated cells was 
divided by the median of untreated cells to yield an x-fold regulation value. (n = 5 donors, statistics: Student’s paired t-
test with two-tailed distribution) 
 

 

-102 -101 102 103 104 105
0

935

1870

2804

3739

-102-101 102 103 104 105
0

1956

3912

5868

7824

-102100102 103 104 105
0

1412

2824

4235

5647

CD158a/h/i

-102 -101 102 103 104 105
0

935

1870

2804

3739

-102-101 102 103 104 105
0

1956

3912

5868

7824

-102100102 103 104 105
0

1412

2824

4235

5647

CD158b1/b2/j CD158e

NK cells - 5-AzaC 
Isotype

NK cells + 5-AzaC

D
on

or
 A

 
D

on
or

 B
 

C
ou

nt
s

Fluorescence intensity



    56  

4.3.1.2  Upon 5-AzaC treatment, KIR expression is increased on NKG2A+ but not 
on NKG2A- cells 

As mentioned before, the overall percentage of NKG2A-expressing NKAES cells is not changed upon 

5-AzaC treatment on total NKAES cells. But a subset analysis regarding NKG2A KIR double-positive 

NKAES cells shows that the KIR+NKG2A+ subset is significantly increased but not the KIR+NKG2A- subset 

(Fig. 19).  As shown in Fig. 19, the data suggests that KIRs are upregulated on NKG2A+ but not on NKG2A- 

NK cells. 

 

 

Fig. 19: The abundance of KIR+ NKG2A+ NKAES 
cells but not KIR+ NKG2A- NKAES cells is 
increased. NKAES cells were treated with 1 µM 5-
AzaC as described earlier. Shown is the percentage of 
NKAES cells with or without expression of KIR and/or 
NKG2A as indicated. (n = 5 donors) 

 
 

4.3.1.3 5-AzaC changes the KIR-expressing NK cell subset distribution with 
preference for CD158b1/b2/j (co-) expression 

Besides the differential effects of 5-AzaC on NKG2A+/- NK cells, the question is whether 5-AzaC also 

differentially regulates different KIRs or combinations of KIRs. Since many individuals do not express 

CD158e, 4 donors without CD158e expression and 3 donors expressing CD158e were considered separately 

(Fig. 20A or B respectively). Looking at CD158a/h/i, b1/b2/j and e, only the total expression of 

CD158b1/b2/j is significantly increased upon treatment (Fig. 20). Combinatorial subset analysis reveals that 

besides CD158a/h/i and b1/b2/j double-positive NKAES cells interestingly only the number of 

CD158b1/b2/j single positive, not of CD158a/h/i single positive NKAES cells is increased (Fig. 20A). This 

suggests that CD158b1/b2/j is preferentially upregulated on CD158a/h/i single positive cells upon 5-AzaC 

treatment as well as on KIR- NK cells. Looking at CD158e+ donors, the number of CD158b1/b2/j-expressing 

NKAES cells in total is significantly increased in contrast to CD158a/h/i and e expressing cells (Fig. 20B). 

But the effects on subsets are not significant in this preliminary data and an analysis of more donors might 

confirm the preference for CD158b1/b2/j co-expression also for CD158e+ individuals. 

In summary, the effect of 5-AzaC differentially affects the different KIR expressing subsets with a 

preference for CD158b1/b2/j (co-)expression. 
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Fig. 20: Increases in KIR expression upon 5-AzaC treatment are not randomly distributed among subsets. NK 
cells were either treated with 1 µM 5-AzaC from d7-d14 of the NKAES cell expansion protocol or expanded without 
5-AzaC treatment. Shown is the flow cytometric analysis of CD158a/h/i, b and e in combinatorial analyzes, where ‘total’ 
means the overall percentage of positive cells, ‘double’ or ‘single’ positive: exclusive expression of the mentioned KIRs. 
(A) CD158e- donors (n = 4 donors) (B) CD158e+ donors (n = 3 donors).  
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4.3.1.4 aKIR expression is increased upon 5-AzaC treatment of NK cells in vitro 

Since only a limited number of KIR-recognizing monoclonal antibodies are available, analysis of more 

detailed subset distributions is restricted. But KIR-Q-PCR allows analysis of single specific KIRs. 

As shown in Fig. 21, not only the expression of iKIRs but also aKIRs is clearly increased upon 5-AzaC 

treatment in vitro. 

 
Fig. 21: 5-AzaC increases mRNA expression not only of iKIRs, but also aKIRs. Shown is the relative mRNA 
expression (5-AzaC treated relative to untreated NKAES cells), normalized to GALC in a Box-Whisker-Tukey plot (n = 
12 donors) 

4.3.1.5 In vitro 5-AzaC treatment of mature NKAES cells decreases cytotoxicity 

5-AzaC also increases the expression of aKIRs (see Fig. 21) which in turn might influence cytotoxicity 

dependent on the KIR-KIRL constellation. In a KIR-KIRL mismatched constellation the increased 

expression of iKIRs that cannot find a ligand on the target cell should not lead to decreased cytotoxicity. 

Under these circumstances the increased expression of aKIRs might positively influence the cytotoxic 

capacity.  

For this purpose, KIR2DL1+ SNK13B NKAES cells and K562, Nalm-16, and Kasumi-1 cells were chosen as 

target cells that do not express the KIR2DL1 ligand HLA-C2. KIR2DL2 and KIR2DL3 are not subject to 

education in SNK13B and were therefore assumed to be of minor impact. Furthermore, an activating 

KIR2DS2 interaction of SNK13B NKAES cells with Nalm-1 and Kasumi-1 target cells should be possible 

(Table 10).  
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 Table 10: KIR-KIRL constellations relevant for Fig. 22. 

 
Donor education of 

iKIRs 

KIR2DS1, 
2DS2 

expression 

possible KIR-KIRL interactions of NK cells with 
respective target 

 
K562 Nalm-16 Kasumi-1  

 

Educated Uneducated   
HLA class I-

negative     Bw4 C1 Bw6/Bw6 C1/C1  

SNK13B 2DL1, ** 
2DL2, 2DL3, 

3DL2 
2DS1, 
2DS2 / 

2DL2, 2DL3, 
2DS2 

2DL2, 2DL3, 
2DS2 

 

Despite these selected constellations cytotoxicity towards the pediatric BCP-ALL cell line Nalm-16 and the 

pediatric AML cell line Kasumi-1 is decreased (Fig. 22).  Cytotoxicity against the HLA class I-deficient 

K562 cell line also shows decreased cytotoxicity even though no HLA class I-determined KIRL is present.  

 

 
Fig. 22: 5-AzaC treatment of NKAES cells in vitro dampens cytotoxicity. Specific lysis upon co-culture of SNK13B 
NKAES cells and diverse cell lines: K562 (CML), Nalm-16 (ped. BCP-ALL) or Kasumi-1 (ped. AML). Shown is one 
selected experiment performed in triplicates. 
 

To conclude independent of the individual KIR-KIRL constellation cytotoxicity is reduced in 5-AzaC-treated 

NKAES cells indicating that phenomena other than KIR induction might have led to the decreased cytotoxic 

potential. 

4.3.2 Low-dose 5-AzaC treatment of huNSG mice increases GvL effects 
towards pediatric BCP-ALL in vivo 

5-AzaC treatment in vitro shows effects on isolated mature NK cells but does not reflect the very complex 

situation in a patient where bystander cells but also immature or resting NK cells are present. After HSCT 

humans first reconstitute a large pool of immature NK cells (Nguyen et al., 2005; Vago et al., 2008). KIR 

expression is a late event in NK cell development (Miller and McCullar, 2001). Also in the NSG 

xenotransplantation model established in our laboratory (André et al., 2010) only few NK cells express KIRs 

despite of IL-15/IL-15Rα supplementation (André et al., unpublished data, and Fig. 11). However, IL-15/IL-

15Rα supplementation and poly (I:C) administration in huNSG mice induces functionality of graft-emerging 
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KIR- NK cells, probably by the generation of ‘pseudomature lytic NK cells’ (Colucci et al., 2003) enabling 

the study of GvL effects in vivo. We therefore chose this model as surrogate for the early post-transplantation 

period of patients. To test whether the effect of 5-AzaC is restricted to the modulation of KIR expression on 

mature NK cells the effect of 5-AzaC in huNSG mice was assessed. 

4.3.2.1 Administration of 5-AzaC in the early post-transplantation period 
increases NK cell precursor subsets and reduces the leukemic burden in 
huNSG mice 

To investigate epigenetic modulation of KIR- NK cell precursors, huNSG mice and non-humanized control 

mice were treated with a low dose of 5-AzaC at an early time after HSC transplantation (experimental 

outline Fig. 23A). The dose of 1 mg/kg was chosen and administered i.p. twice a week for four weeks. For 

mice with an average weight of 25 g this results in a single dose of 25 µg and a cumulative dose of 200 µg 

within 4 weeks. This is in a range that has been investigated in mouse experiments in other contexts 

(1 mg/kg daily for 12 days in a mouse hepatoma model, cumulative dose of 300 µg (Venturelli et al., 2007), 

1 and 10 mg/kg twice a week, 5 times in total in a synovial sarcoma mouse model, cumulative dose 125-

1250 µg (Numoto et al., 2010), 150 µg per mouse were administered twice on day 4 and 11 in a 

mesothelioma xenograft model, cumulative dose 300 µg; Takenouchi et al., 2011). Furthermore, it was 

described that a dose of 1 mg/kg in vivo corresponds to a concentration in the range of 0.1-0.5 µM in vitro 

and yielded best results in terms of survival and GvHD prophylaxis in a GvHD mouse model (Sánchez-

Abarca et al., 2009).  Taking this into account, the chosen administration regimen should lead to a low in 

vivo dose of 5-AzaC in huNSG experiments. Thereby direct cytotoxic effects should be kept low. The long 

administration time in combination with cytokine support should additionally enable a sufficient number of 

cell divisions for epigenetic effects. 

5-AzaC treatment was stopped 3 days before injection of a primary BCP-ALL sample. Due to the very short 

half-life of 5-AzaC (less than 4 h, Troetel et al., 1972) a direct effect of the substance on leukemic cells was 

assumed to be negligible. To confirm that a direct effect can indeed be neglected, non-humanized but 

5-AzaC-treated control animals were included in the experiment. Despite the low-dose 5-AzaC induces a 

statistically not significant reduction of both human and murine CD45+ cells in the bone marrow (Fig. 23B, 

C). Using a pre-defined blast-specific antibody panel, flow cytometric quantification of the leukemic burden 

in the bone marrow was performed (exemplary gating shown in Suppl. Fig. 3). Surprisingly, and in contrast 

to in vitro experiments with expanded mature NK cells, the leukemic burden is significantly decreased in 

5-AzaC-treated huNSG mice compared to untreated control huNSG mice (Fig. 23D, F). This effect cannot be 

observed in non-humanized control mice (Fig. 23E, F) excluding a substantial direct cytotoxic effect of 

5-AzaC on leukemic cells.  

 



    61  

 
Fig. 23: Low-dose 5-AzaC early after HSC transplantation increases GvL effects towards pediatric BCP-ALL in a 
huNSG model. (A) Experimental outline, in brief: 5-AzaC treatment was started in week 6 after humanization (donor 
SSC18U) or with non-humanized control animals, injections were performed i.p. twice a week for 4 weeks before 
leukemia induction (ped. BCP-ALL P3B). For more detailed description see also section 3.5.5.6 and 3.5.5.8, for HLA 
genotype see Suppl. Table 1 and for KIR genotype Suppl. Table 2). (B), (C) 5-AzaC treatment leads to non-significant 
bone marrow cytotoxicity as shown by the percentage of human (B) or mouse (C) CD45+ cells (hCD45 or mCD45 
respectively). (D) Leukemic burden of pediatric BCP-ALL blasts (P3B) is significantly reduced upon treatment in huNSG 
mice. Shown is the number of vital blasts relative to vital mCD45+ cells. (E) In non-humanized control animals the 
leukemic burden is not significantly reduced by 5-AzaC treatment. (F) Calculated effect size of two independent sets of 
experiments (I + II), each performed in huNSG (‘Exp.’) and non-humanized control animals (‘control’). Data represents 
two independent experiments with a total of 11 huNSG mice and 14 non-humanized control NSG mice (Kübler et al., 
2014)i. 

 

In contrast to previously performed in vitro experiments, expression of common KIRs (KIR2DL1/S1/S4, 

KIR2DL2/L3/S2 and KIR3DL1) is not significantly changed on NK cells upon the low dose of 5-AzaC 

treatment applied (Fig. 24A). Expression of NKp44 and NKG2D is not increased to a significant extent (Fig. 
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24B). Interestingly, the percentage of both immature NK cell precursors (pre-NK cells CD34+CD117+ and 

iNK cells CD34-CD117lowCD94-) and mature (CD34-CD117-CD94+NKp46+ and CD34-CD117-CD94-

NKp46+) NK cell subsets (subsets as defined by Freud and Caligiuri, 2006; for exemplary gating strategy see 

also Suppl. Fig. 4), was significantly increased in the bone marrow of 5-AzaC-treated compared to untreated 

huNSG mice (Fig. 24C). This indicates that 5-AzaC might have promoted differentiation towards the mature 

NK cell subsets within the transplanted animals. 

In summary, 5-AzaC treatment clearly enhanced NK cell precursors and more mature NK cell subsets within 

the bone marrow of huNSG mice and along with this reduced the leukemic burden. 

 

 
Fig. 24: Low-dose 5-AzaC does not increase KIR expression in a huNSG model in vivo but expands NK cell 
progenitors in the bone marrow. (A) KIR expression (KIR2DL1/S1/S4, KIR2DL2/L3/S2 and KIR3DL1) is not 
significantly changed in the bone marrow upon 5-AzaC treatment of huNSG mice, as well as the percentage of NK cells 
expressing NKG2A, NKp44 or NKG2D (B). (C) Frequencies of bone marrow residing NK cell precursors as defined by 
Freud and Caligiuri, 2006 (preNK cells: CD34+CD117+, iNK cells: CD34-CD117lowCD94-, CD94+ mNK cells: CD34-
CD117-CD94+NKp46+, CD94- mNK cells: CD34-CD117-CD94-NKp46+) which are significantly increased by 5-AzaC 
treatment of huNSG mice. Data represents two independent experiments with a total of 11 huNSG mice and 14 control 
NSG mice (Kübler et al., 2014)i. 
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4.3.2.2 5-AzaC treatment increases proliferation of iNK and mNK cell subsets in 
vivo 

The increased frequencies of NK cell precursor subsets observed upon 5-AzaC treatment of huNSG mice 

(Fig. 24C) might also be a side effect of preferential cytotoxic effects of 5-AzaC on other hCD45+ 

populations. As huNSG-derived NK cell precursor cell counts had all been normalized to hCD45+ cells, a 

direct cytotoxic effect of 5-AzaC on other cell lineages would lead to a relative overestimation of NK cell 

subset numbers. To confirm that NK cell precursors are indeed more abundant upon treatment, an in vivo 

proliferation analysis was performed. As described before huNSG mice were either treated with low-dose 5-

AzaC or left untreated (for experimental layout see Fig. 25A). BrdU was added to the drinking water for 

7 days before analysis. Flow cytometric analysis of immature, mature CD94- and mature CD94+ NK cells 

displays an increased BrdU incorporation in 5-AzaC-treated huNSG mice compared to untreated controls 

(Fig. 25B). A more detailed cell cycle analysis of either CD117+ cells (Fig. 25C) or CD94+ cells (Fig. 25D)  

indicates that the increased BrdU incorporation in the NK cell subsets is indeed accompanied by a decreased 

number of cells in G0/G1 phase and an increased number of cells undergoing replication in S phase of the 

cell cycle. This data in summary suggests that the effect of 5-AzaC on NK cell ontogeny is proliferation-

dependent. 
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Fig. 25: BrdU and cell cycle analyzes show an increased proliferation of NK cell precursors upon 5-AzaC 
treatment in vivo. (A) Experimental layout. BrdU was added to the drinking water of 5-AzaC treated or non-treated 
huNSG mice for 7 days before analysis. (B) Box-Whisker-Tukey plots illustrating the percentage of BrdU+ cells of the 
respective NK cell subset (as defined by Freud and Caligiuri, 2006; iNK cells: CD34-CD117lowCD94-, CD94+ mNK cells: 
CD34-CD117-CD94+NKp46+, CD94- mNK cells: CD34-CD117-CD94-NKp46+) (C), (D) Cell cycle analysis of CD117+ (C) 
or CD94+ (D) cells using 7-AAD and BrdU to differentiate between SubG1/G0, G1/G0, S and G2 phase. Data represents 
one experiment performed with n = 4 huNSG mice per group. 
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5 DISCUSSION 
5.1 Pediatric BCP-ALL is a target of NK cells in vitro and in vivo 
The data on NK cell mediated cytotoxicity towards ALL is scarce and most adult ALLs seem to be resistant 

(Ruggeri et al., 1999; Ruggeri et al., 2002). This work shows that pediatric BCP-ALL can both in vitro and 

in vivo be target of expanded NK cells (Fig. 6, Fig. 7). The better susceptibility of the AML cell line 

Kasumi-1 compared to the BCP-ALL cell line Nalm-16 (Fig. 6) cannot per se be attributed to expression 

levels of HLA class I molecules, ICAM-1, pan-NKG2D-L, CD112 or CD155 (Fig. 5) as Nalm-16 cells 

express those ligands to a comparable extent. The different lysis efficiency of the BCP-ALL cell lines (Fig. 

6) might be explained by the differential expression of ICAM-1, NKG2D-L, and the DNAM-1 ligands 

CD112 and CD155 (Fig. 5).  

Since in vitro experiments only insufficiently reflect primary disease, primary pediatric samples in an in vivo 

xenograft model were used. NSG mice were shown to readily engraft with primary pediatric leukemia 

retaining the immunophenotype and a similar gene expression profile (Woiterski et al., 2013). Furthermore, 

the clinical outcome of pediatric patients correlates with engraftment rates in NSG mice. On this basis an in 

vivo model of adoptive NK cell transfer was established. Pediatric AML and BCP-ALL samples were chosen 

from patients that succumbed to their disease and where blasts displayed robust engraftment in previous 

transplantations in NSG mice. Adoptively transferred NKAES cells are not able to eradicate leukemia but 

lead to an increased survival and reduced leukemic burden in NKAES cell-treated mice (Fig. 7). The 

simultaneous injection of an AML (P18R) and BCP-ALL (P3B) sample shows that BCP-ALL can be a target 

of NKAES cells in vivo. Both P18R and P3B display the HLA-determined KIRL motifs Bw6/Bw6 C1/C1 

but vary in the extent of HLA class I, NKG2D-L, and DNAM-1 ligand expression. The slightly higher 

NKG2D-L expression of P3B might have caused the better susceptibility of the BCP-ALL sample P3B 

compared to AML P18R. 

In summary, pediatric BCP-ALL is shown to be a target of NKAES cells in vitro and in vivo. The extent to 

which cytotoxicity is mediated in this disease entity might be influenced by adhesion molecules, NKG2D-Ls 

and DNAM-1 ligand expression, as in part hypothesized earlier (Ruggeri et al., 2002; Leung et al., 2004). 

Therefore, for experiments in this study investigating the impact of KIR-KIRL constellations, NK cell 

receptor expression levels and the respective ligand expression on leukemic samples was carefully evaluated 

and kept at a comparable level. 

 

5.2 KIR-KIRL mismatched NKAES cells display enhanced 
cytotoxicity towards pediatric BCP-ALL in vitro and in vivo 

From a T cell perspective, donor-recipient HLA-matching reduces the risk for acute and chronic GvHD upon 

HSCT and is associated with increased survival. The focus of this work was to describe the extent to which 

donor selection might contribute to the success of adoptive NK cell transfer in pediatric BCP-ALL. Adoptive 

NK cell transfer displays the possibility to apply highly purified, expanded and activated NK cells alone or in 

addition to (haploidentical) HSCT. Using highly purified NK cells allows HLA-mismatching without 
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increasing the risk for T cell-mediated alloresponses. First studies using in vitro-stimulated autologous NK 

cells did not lead to a significant change in the clinical outcome of patients (Rosenberg et al., 1987; Burns et 

al., 2003). In contrast, there is evidence that adoptive transfer of haploidentical and therefore partially KIR-

KIRL mismatched NK cells improves the clinical prognosis of adult and pediatric AML patients (Miller et 

al., 2005; Rubnitz et al., 2010). There are contradictory in vitro reports whether KIR-KIRL constellations are 

relevant for blasts with high or low HLA class I expression (Pfeiffer et al., 2007; Feuchtinger et al., 2009). 

Therefore, cell lines and primary blasts with intermediate HLA class I expression were chosen in this study. 

After having shown that pediatric BCP-ALL can indeed be a target of NK cells in vitro and in vivo, the 

relevance of KIR-KIRL constellations in NK cell mediated cytotoxicity towards BCP-ALL was investigated 

in detail. In vitro cytotoxicity assays of KIR-KIRL matched and mismatched NKAES cell donor groups 

towards primary pediatric BCP-ALL samples clearly show enhanced specific lysis of KIR-KIRL 

mismatched BCP-ALL cells. The MHC-deficient control K562 is targeted to the same extent showing a 

similar general responsiveness of the NKAES cells in a setting where KIR-KIRL interactions are not relevant 

(Fig. 8). To further exclude other receptor-ligand interactions that might have influenced the cytotoxic 

potential, NK cell receptor expression levels were analyzed. Phenotypical characterization of NKAES cells 

does not show major differences but there are minor differences in the expression of NKG2D-L and 

DNAM-1 ligands on the BCP-ALL samples used. However, since the effect of KIR-KIRL mismatching on 

cytotoxicity is reversible by interchanging the respective target cell, it can in summary be assumed that 

indeed mismatched KIR-KIRL constellations cause enhanced NK cell-mediated cytotoxicity.  

The beneficial effect of a KIR-KIRL mismatch constellation is also observed upon adoptive NKAES cell 

transfer in vivo. NSG mice injected with a primary pediatric BCP-ALL sample display significantly 

decreased leukemic burden compared to untreated mice (Fig. 9). Adoptive transfer of KIR-KIRL matched 

NKAES cells did not lead to a significant effect on leukemic burden. 

In summary, KIR-KIRL mismatched NKAES cells display superior in vitro and in vivo alloreactivity 

towards pediatric BCP-ALL. For potential adoptive NK cell therapies, KIR-KIRL constellations play a major 

role for alloreactivity towards pediatric BCP-ALL, even in highly activated NK cells. 

5.2.1 KIR-blocking mAb IPH2102 enhances cytotoxicity of KIR+ NK cells 
towards BCP-ALL 

The KIR-blocking mAb IPH2102 is currently tested in a phase II trial in AML patients. In pre-clinical 

studies IPH2102 was shown to selectively bind KIR2DL1/L2/L3 and KIR2DS1/S2 and to increase NK cell 

alloreactivity towards HLA-matched AML blasts in vitro and in vivo (Romagné et al., 2009). Furthermore, 

administration of the mAb was shown to be safe with only limited side effects (Vey et al., 2012). 

After having shown that the KIR-KIRL axis is relevant for NK cell-mediated cytotoxicity towards pediatric 

BCP-ALL in vitro and in adoptive NK cell transfer in vivo, it is surprising that in a humanized NSG mouse 

model the KIR-blocking mAb IPH2102 does not lead to increased GvL effects (Fig. 11). Data from 

Romagné and colleagues showed significant effects towards AML cells after adoptive transfer of NK cells 

that were about 80% KIR2DL1/2/3 receptor positive (Romagné et al., 2009). Furthermore, in vitro 
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experiments in our laboratory indicates that the percentage of KIR expressing NK cells influences the net 

effect of IPH2102 on NK cell-mediated cytotoxicity (Kübler & André, unpublished data). Despite the IL-

15/IL-15Rα treatment of huNSG mice only a very low percentage of graft-emerging NK cells express KIRs 

(< 5%, see Fig. 11 and Fig. 24).  Taking this into account, the missing effect of IPH2102 can here probably 

be attributed to the low percentage of KIR-expressing NK cells in huNSG mice. This hypothesis is further 

supported by the significantly increased alloreactivity of sorted KIR+ NKAES cells from KIR-KIRL matched 

donors that display increased alloreactivity towards pediatric BCP-ALL upon IPH2102 treatment (Fig. 12). 

This observation confirms that indeed KIR-KIRL constellations play a major role for NK cell-mediated 

cytotoxicity towards BCP-ALL.  

Surprisingly, IPH2102 does not enhance in vitro cytotoxicity of sorted KIR+ NKAES cells in KIR-KIRL 

mismatched constellations (Fig. 12). The interaction of NK cells with Nalm-16 cells comprises the 

interaction of KIR2DL2/L3 receptors with HLA-C1 target cells. In KIR-KIRL matched donors the 

KIR2DL2/L3 receptors are considered to be educated and – as expected – the blockade with IPH2102 here 

promoted NK cell functionality. As opposed, KIR2DL2/L3 receptors in NK cells of KIR-KIRL mismatched 

donors have not been subject to education. Brodin and colleagues describe that the number of possible MHC 

class I - inhibitory receptor interactions quantitatively tunes the responsiveness of NK cells at a single cell 

level (Brodin et al., 2008; Brodin et al., 2009). This leads to completely hyporesponsive NK cells when no 

educating interaction is possible. The higher the inhibitory input during education the higher the resulting 

responsiveness of the NK cell will be. Thus, in order to explain the lack of an adequate IPH2102 effect it was 

at this point hypothesized that the KIR-KIRL mismatched donors must possess one large NK cell subset 

which expresses the uneducated KIR2DL2/L3 as the only inhibitory receptor group. As shown in Fig. 13A 

this indeed is the case. Furthermore, this uneducated KIR2DL2/L3 single positive subset from KIR-KIRL 

mismatched donors indeed displays a decreased degranulation potential towards K562. The presence of 

NKG2A on KIR2DL2/L3+ single KIR positive NK cells enhanced the degranulation potential, but not to the 

level of multiple-KIR positive NK cells. NKG2A therefore seems to have a minor educating effect. Thus, in 

line with the licensing theory the missing enhancement of cytotoxicity by IPH2102 for KIR-KIRL 

mismatched donors might be explained by the predominance of the uneducated KIR2DL2/L3 single positive 

subset that displays decreased responsiveness. 

In summary, KIR-blocking mAb IPH2102 might also increase NK cell-mediated cytotoxicity in the disease 

entity of pediatric BCP-ALL – especially for KIR-KIRL matched constellations. Furthermore, although 

huNSG mice are a well-suited model to investigate early stages of NK cell development, they might not be 

ideal to study the relevance of KIR receptors due to the low abundance of KIR+ NK cells. 

5.2.2 Subset analysis reveals functional differences between KIR-KIRL 
matched and mismatched NK cells 

KIR- and uneducated NK cells were described to be hyporesponsive due to the lacking interaction with MHC 

class I molecules (Kim et al., 2005; Anfossi et al., 2006; Joncker et al., 2009; Joncker et al., 2010). But it has 

been shown that MHC-dependent education might be overcome by non-specific post-receptor stimulation 
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with PMA/Ionomycin. Poly (I:C) treatment or IL-2 are able to partially reverse a deficiency in 

responsiveness in NK cells from MHC class I negative hosts (Kim et al., 2005; Yokoyama and Kim, 2006). 

Under inflammatory conditions, both educated and uneducated NK cells were shown to produce IFN-γ upon 

Listeria monocytogenes infection in vivo (Fernandez et al., 2005). In murine cytomegalovirus (MCMV) 

infection also uneducated NK cells become activated by pro-inflammatory cytokines and display even more 

proliferation than MHC class I-inhibited NK cells. Depletion experiments confirmed that indeed unlicensed 

NK cells dominate the response to MCMV infection (Orr et al., 2010). So, self-tolerance achieved by 

education and hyporesponsiveness of NK cells missing self-MHC class I inhibitory receptors might be 

overcome by pro-inflammatory cytokines. Lanier and colleagues hypothesized that educated NK cells are 

inhibited and might therefore even display less anti-viral response compared to uneducated NK cells (Orr et 

al., 2010). These cells might initially also attack healthy cells, but this needs to be confirmed. Exhaustion 

could also finally diminish the response of uneducated cells. 

Cell sorting was performed to dissect the relevance and functional capacity of KIR+ and uneducated KIR- 

NKAES cells in either KIR-KIRL matched or mismatched constellations. Sorted KIR+ NKAES cells from 

KIR-KIRL mismatched donors display higher cytotoxicity towards the BCP-ALL cell line Nalm-16 

compared to their KIR- counterparts (Fig. 14). This is reversed for KIR-KIRL matched NKAES cells where 

KIR- cells display superior cytotoxicity. The general functionality of KIR+ and KIR- NK cells from KIR-

KIRL matched and mismatched donors was comparable as seen by the specific lysis of MHC class I-

deficient K562 cells. In line with the literature, the cytokine-rich culture conditions during the NKAES 

expansion protocol leads to responsiveness of uneducated KIR- NK cells but functional differences between 

KIR+ NK cells from different donor groups can still be observed. Despite cytokine stimulation KIR+ NKAES 

cells from KIR-KIRL mismatched donors display enhanced cytotoxicity towards Nalm-16 cells compared to 

KIR- NKAES cells (Fig. 14). KIR-KIRL matched constellations lead to higher responsiveness of KIR- cells 

compared to KIR+ cells. In summary, these data indicate that the applied cytokine-rich culture conditions 

only in part reverse the effect of education by turning commonly hyporesponsive KIR- NK cells responsive. 

But the effect of KIR-KIRL mismatching is still dominant since only KIR+ NK cells from KIR-KIRL 

mismatched donors but not KIR-KIRL matched ones display increased cytotoxicity towards BCP-ALL. 

The KIR+ NK cell subset can further be divided into KIR+ ‘alloreactive’ and KIR+ ‘non-alloreactive’ NK 

cells. The alloreactive subset is commonly defined as NK cells expressing activating receptors and only 

inhibitory receptors permissive for target cell lysis. NK cells expressing KIR2DL1/S1/S4 and/or KIR3DS1 

but not KIR2DL2/L3/S2 or KIR3DL1 are assumed to be alloreactive towards Nalm-16 (Bw4/C1). Co-culture 

experiments and a complex gating strategy allow evaluating the contribution of the different NK cell subsets. 

The degranulation capacity of alloreactive KIR+ NKAES cells from KIR-KIRL mismatched donors is indeed 

superior compared to KIR-KIRL matched donors (Fig. 16).  

To conclude, the increased alloreactivity of KIR-KIRL mismatched NKAES cells towards BCP-ALL can be 

attributed to the increased degranulation potential of the KIR+ ‘alloreactive’ NK cell subset. 
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5.3 Modulation of NK cell functionality with the Dnmt-inhibitor 5-
AzaC 

The KIR locus was described to be regulated by methylation of CpG islands within the promoter region of 

KIR genes (Santourlidis et al., 2002; Chan et al., 2003). In line with this, DNA methyltransferase inhibition 

was shown to induce KIR expression. Until now, beneficial effects of the Dnmt-inhibitor 5-AzaC in 

treatment of AML and MDS have been attributed to the epigenetic upregulation of cancer testis antigens or 

NKG2D-L on blasts leading to higher susceptibility to NK cell-mediated cytotoxicity (Rohner et al., 2007; 

Tang et al., 2008; Lubbert et al., 2010). Furthermore, methyltransferase inhibitors in cancer therapy can 

induce the re-expression of tumor suppressor genes (Jones and Baylin, 2007). Besides this tumor-focused 

concept there is only limited data available about direct effects of 5-AzaC on NK cells. 

5.3.1 5-AzaC alters the phenotypical expression pattern of NK cells in vitro 
but decreases cytotoxicity 

As already described in the literature (Santourlidis et al., 2002; Chan et al., 2003), 5-AzaC induces KIR 

expression upon treatment of NK cells in vitro (Fig. 17). Furthermore, modulation of other NK cell receptors 

can be observed (Fig. 18). Interestingly, detailed subset analysis shows a preferential increase of KIR 

expression mainly on NKG2A+ but not on NKG2A- NK cells (Fig. 19). The inhibitory receptor NKG2A 

recognizes HLA-E, and this receptor-ligand interaction plays an important role for self-tolerance. So, 

especially in KIR- NK cells, higher frequencies of NKG2A+ cells can be observed (Andersson et al., 2009). 

From a developmental point of view it has been shown that there is a step-wise maturation process from 

CD56dim NKG2A+KIR- cells that increase KIR expression and decrease NKG2A expression to a finally fully 

competent CD56dimNKG2A-KIR+ stage (Béziat et al., 2010). The increased presence of NKG2A+KIR+ cells 

but not NKG2A-KIR+ cells shown in this work might therefore be a consequence of KIR upregulation 

occurring on the developmentally ‘appropriate’ precursor only, namely the NKG2A+ NK cells and not 

NKG2A- NK cells. 

Besides the preference for KIR induction on NKG2A+ NK cells upon 5-AzaC treatment in vitro, it was 

furthermore observed that there is a preference for CD158b1/b2/j (KIR2DL2/L3/S2) expression (Fig. 20). 

An in vitro study with single umbilical cord blood-derived CD34+/Lin-/CD38- cells, fetal liver, and adult 

bone marrow showed that these HSCs upon differentiation lead to NK cells with polyclonal KIR expression 

(Miller and McCullar, 2001). KIR expression frequency was hierarchical: KIR2DL2/L3/S2 > KIR2DL1/S1 

≥ KIR3DL1 (Miller and McCullar, 2001). Most of the cells in the study of Miller and McCullar were 

KIR+NKG2A+, only a small number of cells was KIR+NKG2A-. The analysis of sorted KIR2DL2/L3/S2+ 

NK cells revealed that KIR2DL2/L3/S2 expression remained stable and additional KIR3DL1 expression can 

be induced. The HLA type of the HSCs used did not change the preference for KIR expression. This was 

also shown by the Malmberg group (Andersson et al., 2009) that furthermore describe that the acquisition 

probability of KIRs increases with cellular KIR expression. There are further indications for preferential 

KIR2DL2/L3/S2 reconstitution after HSCT in patients (Pfeiffer et al., 2010). 



    71  

The data in Fig. 20 showing a preferential (co-)expression of KIR2DL2/L3/S2 observed during 5-AzaC 

treatment is supported by the observations of several studies (Miller and McCullar, 2001; Andersson et al., 

2009; Pfeiffer et al., 2010). At the concentrations used 5-AzaC might not lead to a randomly increased KIR 

expression, but rather to a conservation of the hierarchical KIR expression order also occurring during NK 

cell development. This might on a molecular basis be explained by the presence of specific histone 

modifications that poise KIRs for DNA demethylation and expression (Santourlidis et al., 2008). In contrast 

to KIR2DL1/S1/S4 or KIR3DL1 expression KIR2DL2/L3/S2 is in most individuals robustly expressed 

(personal observation). The open chromatin conformation needed for KIR expression and high abundance of 

mRNA transcripts might contribute to the preferential induction of KIR2DL2/L3/S2 expression upon 5-

AzaC treatment. However, these hypotheses are speculative and for confirmation further molecular-biologic 

investigation is needed.  

 

Due to the limited availability of single KIR-specific mAbs data on 5-AzaC effects on aKIR expression is 

scarce. Applying a Q-PCR-based quantification of aKIRs, this study shows the 5-AzaC-induced induction of 

inhibitory and also activating KIRs (Fig. 21). Until now the effect of 5-AzaC on NK cell function has mainly 

been studied in the context of MHC class I-deficient target cell lysis. Gao and colleagues showed a 5-AzaC 

induced KIR expression on NK cells followed by decreased cytotoxicity towards K562 cells. They attribute 

this effect to the enhanced inhibition by KIRs and decreased granzyme B and perforin release (Gao et al., 

2009). The Salih group also observed diminished cytotoxic potential and IFN-γ release upon treatment of 

NK cells with 5-AzaC (Schmiedel et al., 2011). However, in this study the exposure of NK cells to 5-AzaC 

was performed only for a short period of time under non-proliferating conditions. This did not lead to 

epigenetic modulation as seen by the lack of KIR induction. Therefore, experimental conditions cannot be 

compared. 

It has not been investigated whether under certain specific KIR-KIRL constellations the induction of aKIRs 

might be beneficial. For this purpose, a KIR-KIRL constellation where no educated iKIR-KIRL interaction 

but rather activating KIR2DS2-HLA-C2 interaction is possible was chosen (Table 10). Despite this selected 

KIR-KIRL constellation 5-AzaC-treated NKAES cells display decreased cytotoxicity towards a pediatric 

BCP-ALL and a pediatric AML cell line (Fig. 22). The cytotoxic potential towards the MHC class I-deficient 

K562 cell line was also decreased. It can therefore be assumed that under the 5-AzaC concentrations applied 

mechanisms independent of increased inhibition by KIRs lead to a reduced cytotoxic potential of NK cells. 

Furthermore, the general dampening of cytotoxicity under the given conditions might have outweighed 

potential functional consequences of aKIR upregulation. 

5.3.2 5-AzaC induces proliferation of NK cell progenitors and along with this 
reduces the leukemic burden in huNSG mice 

Low dose 5-AzaC has already been used in a so-called ‘bridging therapy’ in MDS early after HSCT (during 

the first 3 months) to prevent early occurring relapses (De Lima et al., 2010). In this study toxicity of 5-AzaC 

when given early after HSCT was acceptable as shown by de Lima and colleagues. Also in AML patients, 
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there is evidence that 5-AzaC treatment early after HSCT might induce remission (Jabbour et al., 2009). 

These studies show on one hand the feasibility of low-dose 5-AzaC treatment early after HSCT and on the 

other hand beneficial anti-leukemic effects in a ‘tumor-focused’ view.  

NK cells are one of the first cell populations recovering in humans upon HSCT and NK cells occur within 

the first month (Lamb et al., 1998). But these NK cells mainly display an immature phenotype. One month 

after HSCT, the CD56bright KIR- subset predominates and NK cell-mediated alloreactivity is impaired 

(Nguyen et al., 2005; Vago et al., 2008). Interestingly, also huNSG mice develop mainly CD56brightKIR- NK 

cells that are functionally inert (André et al., 2010). This hyporesponsiveness in huNSG mice can be 

overcome by supplementation of IL-15/IL-15Rα (André et al., unpublished data). Using this humanized 

xenotransplantation model to study GvL effects upon HSCT is technically challenging and has to our 

knowledge so far not been attempted by other groups. The application of multi-color flow cytometry-based 

MRD analysis allows the discrimination of BCP-ALL blasts and graft-emerging B cell-lineage precursors 

and therefore quantification of GvL effects (Kübler et al., 2014). By using primary patient blast samples the 

study of donor-patient-specific interactions of graft-emerging NK cells in the presence of bystander cells is 

possible.  

Administration of low-dose 5-AzaC at an early time point after humanization does not increase KIR or other 

NK cell receptor expression (NKG2D, NKp44, NKG2A) on NK cells (Fig. 24) but intriguingly reduces the 

BCP-ALL burden (Fig. 23). Non-humanized control NSG mice that received 5-AzaC treatment and blasts do 

not show a significantly reduced leukemic burden in contrast to huNSG mice. Keeping the short half-life of 

5-AzaC in mind, a direct cytotoxic effect of 5-AzaC must therefore have been negligible. The half-life of 5-

AzaC and the chosen time point of leukemia induction render it unlikely that regulation of cancer testis 

antigens or NKG2D ligands on blasts had modulated the immune response. The short time period from blast 

injection to analysis of only about 20 h should be too short to initiate a T cell-mediated adaptive immune 

response. In addition, at this early stage after humanization T cells are only present at a very low level 

(Kübler & André, unpublished data). Most likely, the GvL effect can indeed be attributed to graft-emerging 

NK cell subsets. To definitively verify this hypothesis, NK cell-depleting experiments would be required. 

Unfortunately, until now the human NK cell-depleting mAb (anti-Nkp46 mAb from the Moretta group) has 

not been available to our group. 

The observation that 5-AzaC induces clinically relevant in vivo GvL effects of NK cells is in sharp contrast 

to our own in vitro data and data published from other groups on mature 5-AzaC-treated NK cells (Gao et al., 

2009; Schmiedel et al., 2011). Unlike these studies that have exclusively been performed with mature NK 

cells, huNSG mice harbor diverse NK cell progenitor cells. 5-AzaC significantly increased the abundance of 

immature and mature NK cell subsets in the bone marrow of huNSG mice. This increased pool of NK cells 

might have caused the enhanced GvL effect. Therefore, it can be proposed that 5-AzaC differently affects 

NK cell progenitors or mature NK cells. A methylome and transcriptome analysis of isolated 5-AzaC treated 

NK cell progenitors could verify epigenetic effects and potentially identify candidate genes that for example 

might have induced proliferation or differentiation of NK cells.      
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5-AzaC was shown to induce cytopenia in a phase III study (Fenaux et al., 2009). Also in huNSG mice 5-

AzaC induces a non-significant reduction of human and murine CD45+ cells in the bone marrow (Fig. 

23B,C). Therefore, the increased abundance of cells from the NK cell lineage might have been caused by a 

cytotoxic effect on other human CD45+ populations causing an apparent increase of NK cells. But in vivo 

BrdU analysis shows an increased BrdU incorporation in iNK, CD94+ and CD94- mNK cells in 5-AzaC-

treated huNSG mice compared to untreated animals (Fig. 25). Furthermore, CD117+ and CD94+ cells in 5-

AzaC-treated huNSG mice display a percentage of cells in the S phase of the cell cycle. From these findings 

it can be assumed that 5-AzaC increases the abundance of NK cell progenitors and also mature NK cell 

subsets in huNSG mice in a proliferation-dependent manner. In conclusion, it can be hypothesized that low-

dose 5-AzaC treatment early after HSCT might induce proliferation of NK cells and NK cell progenitors, 

leading to an enhanced GvL effect.  

Mechanistically, several aspects support this hypothesis. Data from embryonal carcinoma cells (Musch et al., 

2010) or primary MDS progenitors (Curik et al., 2012) showed that 5-AzaC can indeed promote 

differentiation. Epigenetically downregulated PU.1 in high-risk MDS can be re-expressed by 5-AzaC 

treatment in vitro and especially in combination with G-CSF it induced myeloid differentiation of MDS 

blasts (Curik et al., 2012). This might also be relevant for the NK cell lineage since PU.1 -deficient fetal liver 

cells give rise to less NKPs and NK cells after transfer into Rag2/γc-/- mice compared to controls (Colucci et 

al., 2001). Since PU.1 influences the differentiation of HSCs to NK cell progenitors and NK cells, low-dose 

5-AzaC treatment might induce expression of PU.1 and thereby promote NK cell differentiation. 

The inhibition of Dnmt1 by nucleoside analogues as 5-AzaC might lead to a relatively broad and unspecific 

passive demethylation of the genome. But Hageman and colleagues showed in cancer cell lines that this is 

probably not true for all loci as 5-AzaC rather induces a highly specific non-random demethylation pattern. 

This is partly caused by targeted remethylation of only specific loci or by demethylation resistance of certain 

loci (Hagemann et al., 2011). It is possible that also transcription factors required for NK cell lineage 

decisions display specific demethylation patterns after 5-AzaC treatment. Furthermore, Hageman and 

colleagues show an increased number of cells in S phase after 5-AzaC treatment (1 µM for 24 hours), only 

higher concentrations led to arrest in G2-phase. So low-dose 5-AzaC might also promote cell cycle 

progression of NK cells or NK cell progenitors. 

Decitabine (5-AzadC) which is the deoxy-ribose analogue of 5-AzaC has been shown to have stem-cell 

renewing capacities in the context of hematopoietic precursors (Milhem et al., 2004; Hu et al., 2010). Hu and 

colleagues propose that Dnmt1 depletion before or concurrent with a differentiation-inducing stimulus 

maintains stem cell self-renewal by preventing the repression of stem cell genes by the differentiation 

stimulus. In contrast shortly after a differentiation stimulus Dnmt1 depletion augments differentiation (Hu et 

al., 2010). Taking these data into account for interpretation of the data shown in this work, it is possible that 

both enhanced stem cell renewal and enhanced terminal differentiation leads to increased NK cell 

differentiation in our huNSG model. During the first phase of 5-AzaC treatment no IL-15/IL-15Rα was 

supported which could have led to an enhanced stem cell renewal. During the second phase IL-15/IL-15Rα 

administration could have increased NK cell differentiation. 
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iNK cells are significantly enhanced upon 5-AzaC treatment in vivo (Fig. 24) and interestingly, in vitro 

generated immature NK cells (CD161+ CD56-) were found to mediate cytotoxic activity towards Jurkat and 

J23 cells (Zamai et al., 1998). Cytotoxicity of iNK cells, in contrast to mature NK cells, was shown to be 

Ca2+-independent, therefore independent from granule exocytosis, and independent of Fas/FasL interaction 

or TNF. iNK cells seem to be able to mediate TRAIL-dependent cytotoxicity. Taking this into account, the 

enhanced presence of iNK cells after 5-AzaC treatment in vivo might also have enhanced GvL effects by 

direct TRAIL-dependent iNK cell-mediated cytotoxicity. 

HuNSG mice provide the basis for multiple complex cell-cell interactions. Besides the differences observed 

in NK cell differentiation also other cell compartments or interaction partners of NK cells might have 

contributed to the increased GvL effect upon 5-AzaC treatment. In this sense mature DCs were shown to 

display varied cytokine expression and properties upon 5-AzaC treatment in vitro (Frikeche et al., 2011). 

Furthermore, it was shown in a B16-melanoma model that low-dose 5-AzadC increases macrophage 

cytotoxicity, M 1 polarization, DC activation and reduced the number of myeloid-derived suppressor cells 

(Triozzi et al., 2012).  Polarization of macrophages towards M1 can induce tumoricidal activity and prevent 

polarization to tumor-promoting M2-type (Tang et al., 2013). Effects of 5-AzadC and 5-AzaC cannot 

directly be compared, nevertheless 5-AzadC is a metabolite of 5-AzaC and also 5-AzaC treatment might also 

have influenced the myeloid compartment in the huNSG mouse model in this study. Further investigations 

are necessary to clarify the role of myeloid cell subsets. 

Taken together, the present study provides substantial evidence that low-dose 5-AzaC treatment early after 

HSCT leads to a proliferation-dependent increased abundance of immature and mature NK cell subsets. 

Along with this the leukemic burden is reduced. Considering earlier studies using 5-AzaC in so-called 

‘bridging therapies’ early after HSCT, the beneficial anti-leukemic effect in these studies might in part also 

be attributed to enhanced NK cell-mediated GvL effects. Since 5-AzaC was shown to cause little side effects 

(Jabbour et al., 2009; De Lima et al., 2010), 5-AzaC therapy early after HSCT could improve the outcome 

for BCP-ALL patients who are at high risk for relapse. 

 

5.4 Conclusion & Outlook 
This work shows that pediatric BCP-ALL is a target of NK cells in vitro and in vivo. Furthermore, 

optimization of anti-leukemic activity by selecting KIR-KIRL constellations is possible, which will be of 

high clinical interest. KIR-KIRL mismatched expanded NKAES cells displayed a higher cytotoxicity in a 

human-murine xenotransplant model of adoptive transfer as compared to KIR-KIRL matched NKAES cells. 

Sorting experiments, KIR blockade and subset analyses showed substantial functional differences of certain 

NK cell subsets and as such substantiate the superior anti-leukemic activity of KIR-KIRL mismatched NK 

cells towards BCP-ALL. These analyses provide the basis for innovative clinical adoptive NK cell transfer 

strategies for relapsing BCP-ALL patients. 

Manipulation of the KIR-KIRL axis by 5-AzaC treatment of mature NK cells led to changes in receptor 

expression patterns, but decreased in vitro cytotoxicity. However, this work provides evidence that low dose 

5-AzaC treatment early after HSCT interestingly does not increase KIR expression in a huNSG mouse model 
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but nevertheless increases GvL effects. The increased GvL effect can presumably be attributed to increased 

proliferation of immature and mature NK cell subsets resulting in a marked rise in these cell populations. In 

this regard, more basic research is envisaged such as methylome and transcriptome analyses that would 

identify transcription factors that are modulated in response to 5-AzaC exposure.  

As a consequence of these data pediatric BCP-ALL patients with high risk features (such as remission 

induction failure or high MRD load) should benefit from HSCT and early low dose 5-AzaC treatment. These 

strategies could be a promising approach in addition or as alternative to other novel concepts as in vitro 

IL-15 pretreatment of the graft (Pfeiffer et al., 2012), KIR haplotype donor selection (Oevermann et al., 

2014) or bispecific antibodies (e.g. Bargou et al., 2008). 
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6 SUPPLEMENTS 
6.1 Supplemental figures 
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Suppl. Fig. 1 (previous page): Receptor expression of selected NKAES cell donors. Expression of selected receptors 

(NKp30, NKp44, NKp46, NKG2D, LFA-1, NKG2A, DNAM-1, 2B4, CD158a/h/I, CD158b1/b2/j, CD158e) of NKAES 

cells from donors SNK13-15B, SNK20B, SNK21BC, SNK9A and SNK10P is shown as determined by flow cytometric 

analysis. Grey, filled: isotype; black line: specific antibody staining. For KIR staining the following clones were used: 

HP-3E4 (CD158a/h/i), Gl183 (CD158b1/b2/j) and Dx9 (CD158e), for others please refer section 3.3. (A) Phenotype 

data for experiments shown in Fig. 7, Fig. 8, Fig. 9, Fig. 14, Fig. 15, and SNK9A for Fig. 13, and Fig. 16. (B) 

phenotype data from NKAES cells that were expanded separately for the data shown in Fig. 13, and Fig. 16. Note that 

receptor expression differs to a certain extent, especially for Nkp44, LFA-1 and NKG2A (Kübler et al., 2014)i. 

 

 
Suppl. Fig. 2: Phenotypical characterization of HLA class I, ICAM-1, NKG2D-L, CD112 and CD155 on selected 
primary pediatric leukemia samples. Flow cytometric characterization of important molecules recognized by NK 
cells on the primary pediatric leukemia samples P18R, P3B, P3B relapse, P23T and P31G. Pan-NKG2D-L staining was 
performed using a cocktail of anti-MICA, anti-MICB and anti-ULBP1-3 antibodies, HLA class I with clone W6/32; for 
others, please refer section 3.3. Grey, filled: isotype; black line: specific antibody staining (Kübler et al., 2014)i. 
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Suppl. Fig. 3: Exemplary gating strategy for blast detection from huNSG mice. Shown is the hierarchical gating 
strategy for the 5-AzaC in vivo experiment shown in Fig. 23 by polychromatic flow cytometry using pre-defined CD 
molecules. (A) Exemplary bone marrow sample from a 5-AzaC untreated huNSG where leukemic cells were injected, 
(B) exemplary bone marrow sample from a 5-AzaC-treated huNSG that received leukemic cells. The approach shows 
the exclusion of murine hematopoietic cells and exclusion of non-malignant cells (C). 
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Suppl. Fig. 4: Exemplary gating of bone marrow-residing NK cell precursors. Gating strategy to identify NK cell 
precursors in huNSG mice (data shown in Fig. 24). (A) Hierarchical multicolour flow cytometric gating strategy to 
identify the following subsets in a 5-AzaC untreated huNSG (#592): preNK cells: CD34+CD117+, iNK cells: CD34-

CD117lowCD94-, CD94+ mNK cells: CD34-CD117-CD94+NKp46+, CD94- mNK cells: CD34-CD117-CD94-NKp46+). 
(B) exemplary plot from a 5-AzaC treated huNSG (#593), showing an increased abundance of preNK and iNK cell 
precursors compared to untreated huNSG shown in (A).  

doublet exclusion,
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6.2 Supplemental tables 
Suppl. Table 1: HLA class I genotype of NK cell donors (SNK), stem cell donors (SSC), and leukemias (P). Shown is HLA-typing data and the resulting HLA-determined KIRL 
assignment. HLA class I genotyping was performed at 4-digit resolution by sequence-based typing (SBT), except for P23T which was determined at 4-digit resolution by sequence-
specific primer typing (SSP). * Only P18R HLA-typing was determined in 2-digit resolution (Kübler et al., 2014)i. 

 HLA-A allele KIRL  HLA-B allele Supertypic specificity / KIRL HLA-C allele KIRL 

SNK9A 01:01 33:03 - - 15:25 55:01 Bw6 Bw6 03:03 07:01 C1 C1 

SNK10P 01:01 02:01 - - 08:01 40:01 Bw6 Bw6 07:01 03:04 C1 C1 

SNK21BC 02:01 03:01 - A3 07:02 08:01 Bw6 Bw6 07:02 07:01 C1 C1 

SNK13B 02:01 24:02 - Bw4 27:05 44:02 Bw4-80T Bw4-80T 02:02 05:01 C2 C2 

SNK14B 02:01 32:02 - Bw4 27:02 44:02 Bw4-80I Bw4-80T 02:02 05:01 C2 C2 

SNK15B 02:01 31:01 - - 27:05 44:02 Bw4-80T Bw4-80T 02:02 05:01 C2 C2 

SNK20B 02:01 03:01 - A3 51:01 51:05 Bw4-80I Bw4-80I 04:01 05:01 C2 C2 

SSC18U 23:01 34:02 Bw4 - 44:03 44:03 Bw4-80T Bw4-80T 04:01 07:01 C2 C1 

SSC52G 02:01 02:01 - - 15:01 18:01 Bw6 Bw6 01:02 07:01 C1 C1 

P18R* 01 02 - - 08 40 Bw6 Bw6 07 03 C1 C1 

P3B relapse 02:01 26:01 - - 18:03 14:14 Bw6 Bw6 07:01 08:02 C1 C1 

P23T 24:02 24:02 Bw4 Bw4 49:01 51:01 Bw4-80I Bw4-80I 02:02 07:01 C2 C1 

P31G 03:01 03:01 A3 A3 27:05 35:01 Bw4-80T Bw6 02:02 04:01 C2 C2 

Nalm-16 30:01 - - - 44:02 - Bw4-80T - 07:04 - C1 - 

Kasumi-1 26:01 26:02 - - 40:06 48:01 Bw6 Bw6 03:03 08:01 C1 C1 

 

  



    82  

Suppl. Table 2: KIR repertoire of NK cell donors (SNK) and stem cell donors (SSC). Shown is the KIR DNA genotype and KIR RNA expression as determined by Q-(RT)-PCR, 
and KIR3DL1 surface expression of donors included in this work. The B-content score, KIR genotype group and the centromeric and telomeric gene content motif were assessed as 
described by (Cooley et al., 2010).* indicates KIR DNA genotype (Q-PCR), ° indicates KIR RNA expression (Q-RT-PCR) and # indicates 3DL1 protein expression (flow cytometry, 
clone DX9). ■ = present, □ = absent, ND = not determined. (+): very weak, +: low, ++: positive, +++: strong and -: absent expression (Kübler et al., 2014)i. 

 

B-
content 
score 

KIR 
Geno-
type 

Cen Tel 
2DL1 2DL2 2DL3 2DL4 2DL5 3DL1 3DL2 3DL3 2DS1 2DS2 2DS3 2DS4 2DS5 3DS1 

* ° * ° * ° * ° * ° * ° # * ° * ° * ° * ° * ° * ° * ° * ° 

SNK9A 2 B/x A/B A/B 
            

+ 
                

SNK10P 0 A/A A/A A/A 
            

+ 
                

SNK21BC 1 B/x A/B A/A 
            

++ 
                

SNK13B 2 B/x A/B A/B 
            

- 
                

SNK14B 1 B/x A/B A/A 
            

++ 
                

SNK15B 0 A/A A/A A/A 
            

+ 
                

SNK20B 1 B/x A/B A/A 
            

++ 
                

SSC18U 0 A/A A/A A/A 
            

(+) 
                

SSC52G 1 B/x A/B A/A 
 

ND 
 

ND 
 

ND 
 

ND 
 

ND 
 

ND - 
 

ND 
 

ND 
 

ND 
 

ND 
 

ND 
 

ND 
 

ND 
 

ND 
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