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1. Introduction 
	
  

	
  

	
  

	
  

	
  

	
  

1.1 Mitochondria (origin, structure and function) 

Mitochondria are eukaryotic organelles that play a crucial role in many cellular 

functions like respiration, energy production, metabolism of lipids and amino acids, 

apoptosis and aging (Scheffler, 2001). It is thought that this organelle evolved from free 

living bacteria, most probably α-proteobacteria, via symbiosis within a eukaryotes host 

cell (Margulis, 1970, Yang et al., 1985, Gray, 1993). As a result of the symbiotic 

relationship between these two organisms the proto-mitochondria converted to an 

organelle and during evolutionary processes the mitochondrial genome got reduced and 

has almost completely been transferred to the host genome (Adams and Palmer, 2003). 

An import machinery that imports proteins from the cytosol to mitochondria developed 

co-evolutionary (Adams and Palmer, 2003, Dyall et al., 2004).  

Thus the mitochondrial proteome mainly consists of two set of proteins; those related to 

prokaryotic origin which have bacterial homologues and those that occur exclusively in 

eukaryotes (Gray et al., 2001). Based on proteomic analysis it has been estimated that 

mammalian or yeast mitochondria harbor about 1500 or 1000 different proteins, 

respectively. Based on their endosymbiosis origin, mitochondria encoded a limited 

amount of proteins that are mostly subunits of respiratory complexes. Thus nearly all 

mitochondrial proteins are encoded in the nuclear genome and translated as precursor 
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mitochondrial proteins by cytosolic ribosomes. Translated proteins are targeted to the 

mitochondria and subsequently imported into the organelle. 

Mitochondria, like the nucleus and chloroplasts in plants, possess two membranes. 

Within the organelle, these two membranes define four structurally and functionally 

different compartments; the mitochondrial outer membrane (MOM), the mitochondrial 

inner membrane (MIM), the mitochondrial intermembrane space (IMS) and the matrix 

(Palade, 1953). Whereas the MOM has relatively low ratio of proteins to lipids, this 

ratio is high in the MIM. Another unique feature of the MIM is the high content of the 

diphosphatidylglycerol lipid cardiolipin, which is also an abundant lipid in bacterial 

membranes (Comte et al., 1976, Scheffler, 2001). Each of the sub-compartments 

contains a diverse subset of proteins with different functions, which are encoded in the 

nucleus and are post-translationally imported into mitochondria by specialized protein 

machineries such as the TOM (translocate of outer membrane) and TIM (translocate of 

inner membrane) complexes. 

Since mitochondria constitute an intra-organeller environment, which is isolated from 

the cytosol, and nuclear encoded proteins have to be imported post-translationally, 

protein homeostasis need to be strictly maintained and controlled by regulated import 

machinery. These complexes guide mitochondrial precursors proteins to the 

corresponding mitochondrial sub-compartment and a set of molecular chaperones act to 

assist the import. 

1.2 Import pathways of mitochondrial proteins 

Most of mitochondrial proteins, which are encoded in nucleus and synthesized as 

precursor proteins in the cytosol, must be imported to different sub-compartments of the 

organelle with the help of dedicated protein translocases. For targeting to distinct 

mitochondrial sub-compartments precursor proteins contain an import signal within 

their sequences. The most frequent signal is the matrix targeting signal (MTS), a stretch 

of 15-55 amphipathic amino acid with α-helical structure enriched in positively-charged 

residues (Vogtle et al., 2009). Different kind of targeting and sorting signals direct 

mitochondrial precursor proteins to other destinations within the organelle (Fig. 1.1). 
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Fig. 1.1: Different targeting signals direct mitochondrial precursor proteins to specific 
translocation routes; After translocation of precursors through the general import pore (TOM 
complex), they are sorted to their correct location. Preproteins carrying an N-terminal signal 
interact with the TIM23 complex that either insert them into the inner membrane or translocate 
them to the matrix. Matrix proteins require the activity of the presequence translocase-
associated import motor (PAM) for translocation. Inside the matrix the presequences are finally 
proteolitcally removed by mitochondrial processing peptidase (MPP). Carrier proteins of the 
inner membrane are inserted into the lipid bilayer by the TIM22 complex. β-barrel proteins are 
inserted to the OM with the help of small TIM chaperones and TOB/SAM machinery. Proteins 
of the IMS that contain cysteine-rich signal (CxnC) are imported via the MIA pathway (Figure 
adopted from: Dudek et al. 2013). 

1.2.1 Translocase of the outer membrane (TOM complex) 

The TOM complex as the translocase of the mitochondrial outer membrane provides the 

central entry gate that mediates the transport of various mitochondrial precursor 

proteins. Upon synthesis of mitochondrial precursor proteins in the cytosol, they are 

associated with cytosolic chaperones to prevent misfolding and aggregation (Zara et al., 

2009, Bhangoo et al., 2007, Young et al., 2004). The outer membrane receptors Tom20 

and Tom70 function as a docking site for mitochondrial precursor proteins. In addition, 

they act as a quality control machinery by allowing only those mitochondrial proteins 

which harbor a proper targeting signal to cross the mitochondrial membrane (Dudek et 

al., 2013). Except for some α-helical outer membrane proteins all mitochondrial 

precursor proteins cross the outer membrane via the TOM complex. Tom40 is the 
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central unit of the TOM complex and it forms an aqueous channel in a β-barrel 

conformation (Hill et al., 1998, Model et al., 2008). Additional subunit like Tom20, 

Tom22, Tom70/71 and the small Tom proteins Tom5, Tom6 and Tom7 are also part of 

the TOM complex. These subunits support the quaternary structure and function of the 

complex (Dudek et al. 2013). 

Tom20 and Tom70/71 selectively bind to different mitochondrial precursor proteins 

(Brix et al., 1997). Tom20 can mainly interact with mitochondrial precursor proteins 

containing an N-terminal targeting signal via the hydrophobic face of the α-helical 

segment (Abe et al., 2000, Saitoh et al., 2007). Tom70/71 preferentially recognizes 

mitochondrial precursor proteins containing internal signals by binding hydrophobic 

segments of these proteins (Wiedemann et al., 2001). Tom22 has double function, it is 

needed for integrity of the TOM complex and it also interacts with precursor proteins 

(Moczko et al. 1997; Shiota et al. 2011). 

Tom5 is thought to help in precursor protein transfer from Tom22 to the Tom40 channel 

and also in the biogenesis of Tom40 (Dietmeier et al., 1997, Becker et al., 2010). Tom6 

and Tom7 work antagonistically, while Tom6 regulates the biogenesis of the TOM 

complex by association with an early intermediate, Tom7 destabilizes the TOM 

complex to facilitate assembly of newly imported subunits (Dekker et al., 1998, Becker 

et al., 2011b). 

After initial recognition of precursor proteins via the Tom20 and Tom70 receptors they 

will be transferred with the help of the cytosolic domain of Tom22 and Tom5 through 

the Tom40 pore and bind to the IMS domains of Tom40, Tom7 and Tom22 (Moczko et 

al., 1997, Komiya et al., 1998, Rapaport et al., 1998, Gessmann et al., 2011). After 

passing the TOM complex, precursor proteins are targeted to different sub-compartment 

in mitochondria (MOM, IMS, MIM and matrix) (Fig. 1.1).  

1.2.2 Biogenesis of β-barrel proteins (SAM/TOB complex) 

After passing the TOM complex, mitochondrial outer membrane proteins like Tom40, 

Porin, Tob55/Sam50 and Mdm10, which have a β-barrel structure, are handed over to 

the soluble chaperone complexes in the IMS that are formed by small Tim chaperons. 

The two complexes are Tim9-Tim10 and Tim8-Tim13. The Tim9-Tim10 complex plays 

a crucial role in translocation of β-barrel proteins to the MOM and metabolite carrier 

translocation to the MIM (Curran et al., 2002, Webb et al., 2006), whereas the Tim8-
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Tim13 complex is mainly involved in Tim23 biogenesis (Hoppins and Nargang, 2004, 

Paschen et al., 2000). 

Translocation of β-barrel proteins from the IMS to the MOM is initiated by a signal in 

the last β strand of the precursor protein that is termed β-signal. This signal consists of 

polar amino acid like lysine or glutamine, glycine and two hydrophobic amino acids 

(Kutik et al., 2008). Hence, β-barrel proteins are delivered with the help of the β-signal 

from the small Tim chaperone complex to the TOB complex (Wiedemann et al., 2003, 

Kutik et al., 2008, Gentle et al., 2004). 

The TOB complex consists of different subunits; the β-barrel protein Tob55/Sam50 

which is embedded in the outer membrane and two peripheral membrane protein, 

named Tob38/Sam35 and Mas37/Sam37 that are exposed on the cytosolic side of the 

TOB complex (Dolezal et al., 2006, Wiedemann et al., 2003, Paschen et al., 2003, 

Waizenegger et al., 2004). Tob55 is embedded in the membrane by a β-barrel domain 

and forms an aqueous pore across the membrane (Kutik et al., 2008, Paschen et al., 

2003). Tob38 imposes into this pore on the cytosolic side of the TOB complex and it is 

thought to form a binding site for precursor proteins containing the β-signal (Kutik et 

al., 2008). Finally with the help of its N-terminal polypeptide transport associated 

(POTRA) domain, Tob55 translocates the protein into the lipid bilayer (Chan and 

Lithgow, 2008, Stroud et al., 2011, Habib et al., 2007).  

The biogenesis of Tom40 requires also involvement of Mdm10 (subunit of ERMES 

complex) and Tom22 (Thornton et al., 2010). The distribution of Mdm10 between the 

TOB and ERMES complexes is arranged by Tom7 (Becker et al., 2011b, Meisinger et 

al., 2006, Yamano et al., 2010)(Fig. 1.2). The ERMES complex consists of Mdm10, 

Mdm34, and Mmm1 that integrated in ER membrane, and Mdm12 as an adaptor protein 

that forms a direct connection between mitochondria and ER (Meisinger et al., 2007, 

Boldogh et al., 2003, Kornmann et al., 2011). 

1.2.3 Biogenesis of α-helical proteins 

Different pathways for the biogenesis of OM (outer membrane) α-helical proteins have 

been identified. Tom70 and Tom20 are signal-anchored proteins that are integrated to 

the MOM by single transmembrane segment at their N-terminal domain (Dudek et al., 

2013). Mim1 supports the insertion of these proteins into the outer membrane (Popov-

Celeketic et al., 2008)(Hulett et al., 2008, Becker et al., 2008). Furthermore Mim1 plays 
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an important role in the integration of multi-span outer membrane proteins (Papic et al., 

2011, Becker et al., 2011a). So far, no insertion machinery has been identified for the 

insertion of tail-anchored membrane proteins such as Fis1 (Setoguchi et al., 2006, 

Kemper et al., 2008). It seems that the lipid composition of the target membrane may 

play a crucial role in assuring optimal targeting and membrane integration (Kemper et 

al., 2008, Krumpe et al., 2012). Both tail-signal-anchored proteins have relatively short 

transmembrane segment with mild hydrophobicity and flanking positively charged 

residues. This characteristics are thought to act as a mitochondrial import signal 

(Dukanovic and Rapaport, 2011). Tom22 as another α-helical outer membrane protein 

is inserted with the help of TOB-Mdm10 complex. In contrast to the assembly of β-

barrel proteins, no factors in the IMS are involved in the biogenesis of outer membrane 

α-helical proteins, suggesting that they are directly targeted to the cytosolic side of the 

outer membrane (Fig. 1.2) 

 

 

 

Fig. 1.2: Multiple mechanisms for inserting mitochondrial proteins into the outer 
membrane; some α-helical proteins like Fis1 seem to integrate into the outer membrane 
without any help of the translocases. Other proteins with an N-terminal α-helical membrane 
anchor like Tom20, Tom70 and multi-spanning α-helical proteins like ugo1 are dependent on 
Mim1 for membrane integration. Tom22 is recognized by receptors of the TOM complex and 
inserted into the membrane with the help of the TOB complex. The TOB complex plays also a 
crucial role in inserting β-barrel proteins into the outer membrane. These proteins are handed 
over from the TOM complex to the TOB complex via small Tim chaperones. Furthermore the 
ERMES complex is also involved in the biogenesis of β-barrel proteins. (Adopted from: Dudek 
et al. 2013). 
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1.2.4 Biogenesis of intermembrane space proteins (MIA pathway) 

Some mitochondrial IMS proteins, like Tim9, Tim10 and Cox17, contain multiple 

cysteine residues that are responsible for the formation of disulfide bridge or binding to 

metal ions (Dudek et al., 2013). The mitochondrial IMS sorting signal (MISS) around 

the cysteine-rich motif targets these proteins to the IMS via the MIA pathway 

(Milenkovic et al., 2009, Sideris et al., 2009). Mia40 as an import receptor and Erv1 as 

a sulfhydryl oxidase are the essential core components of this pathway (Chacinska et al., 

2004, Milenkovic et al., 2007). In the IMS, Mia40 makes a transient disulfide bond with 

precursor proteins as soon as they emerge from the TOM complex, thereby trapping 

client protein in the IMS (von der Malsburg et al., 2011, Chacinska et al., 2004, Muller 

et al., 2008). The initial binding of precursors occurs at a hydrophobic motif of Mia40 

with a characteristic cysteine-proline-cysteine motif (Banci et al., 2011, Banci et al., 

2009). In yeast, it has recently been shown that early substrate interactions with Mia40 

are facilitated by Fcj1 (mitofilin), which helps to position Mia40 close to the TOM 

complex for binding to the precursors (von der Malsburg et al., 2011). 

In the next step Mia40 catalyzes the interamolecular disulfide bridge in precursor 

proteins and leads to the reduction of Mia40 and the release of substrates to the IMS 

(Grumbt et al., 2007, Chacinska et al., 2004, Muller et al., 2008). Erv1 mediates re-

oxidation of Mia40 by shuttling electrons to cytochrome c. These electrons are then 

transferred to cytochrome c oxidase and utilized in the respiratory chain (Mesecke et al., 

2005, Banci et al., 2011, Bihlmaier et al., 2007, Stojanovski et al., 2008). 

1.2.5 Biogenesis of inner membrane metabolite carrier (TIM22 complex) 

Mitochondrial inner membrane proteins are integrated into the lipid bilayer in a α-

helical conformation and can be distinguished by the presence or absence of an N-

terminal signal. Multispan mitochondrial inner membrane proteins contain several 

internal import signals, which correspond to the transmembrane domains and also act as 

a targeting signal to the organelle. The vast majority of such proteins belongs to the 

carriers family like ADP/ATP carrier and phosphate carrier (PiC) (Dudek et al., 2013). 

The TIM22 complex consists of the central pore, Tim22, and other subunits like Tim54, 

Tim18 and Sdh3 (Rehling et al., 2003, Sirrenberg et al., 1996, Gebert et al., 2011). A 

large domain of Tim54 is exposed to the IMS and provides a binding site for the Tim9-

Tim10-Tim12 complex (Hwang et al., 2007, Wagner et al., 2008). Tim18 supports the 
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assembly of Tim54 into the Tim22 complex and Sdh3 interacts with Tim18 (Hwang et 

al., 2007). 

In this pathway five stages have been identified; I: Hsp70 and Hsp90 bind to the 

precursor proteins to prevent them from aggregation and also to target them to the 

MOM (Young et al., 2003, Zara et al., 2009, Rehling et al., 2003). II: Upon binding to 

the Tom70 receptor, precursor proteins are handed over to the TOM complex. III: After 

crossing the MOM, proteins bind to the small Tim chaperones, Tim9 and Tim10 in the 

IMS by specific hydrophobic segments in order to prevent their aggregation (Koehler et 

al., 1998, Truscott et al., 2002). Targeting of precursor proteins to the inner membrane 

is initiated by association of further small Tim proteins such as Tim12, which works 

with the Tim9-Tim10 complex (Sirrenberg et al., 1998, Gebert et al., 2008). IV: docking 

of substrate loaded Tim9-Tim10-Tim12 complex to the Tim54 receptor and insertion of 

the precursor into the TIM22 complex that is composed of two pores whereas each pore 

has enough space for insertion of two α-helices (Rehling et al., 2003). V: in the final 

step the precursors are released into the lipid bilayer and assembled to their mature and 

functional form.  

1.2.6 Biogenesis of proteins with N-terminal signals (TIM23 complex) 

Most mitochondrial protein carry an N-terminal presequence that targets them to the 

mitochondrial matrix or the inner membrane (Vogtle et al., 2009). For mitochondrial 

proteins with a presequence, the import through the TOM complex is tightly coupled 

with translocation across the TIM23 complex in the MIM (Dekker et al., 1998, 

Chacinska et al., 2003). After passage through the TOM complex, precursor proteins 

associate with IMS segments of the Tom22 receptor (Moczko et al., 1997, Komiya et 

al., 1998). At this early stage of import, precursor proteins are in the vicinity of the 

TIM23 complex, so transfer of proteins occurs while their N-terminal part passes the 

TIM23 complex and the rest of the precursor is still bound to the TOM complex 

(Schleyer and Neupert, 1985, Schulke et al., 1997). Upon passing the TIM23 complex, 

precursor proteins are either targeted to the mitochondrial matrix or will be assembled 

into the MIM. The latter ones contain a hydrophobic signal downstream of their N-

terminal presequence, which induces translocation arrest and consequently their lateral 

release in to the lipid bilayer (Glick et al., 1992, Bohnert et al., 2010). This pathway was 

therefore named the “stop-transfer” mechanism.  
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The TIM23 complex is composed of three integral membrane subunits: Tim23, Tim17, 

and Tim50. Tim23 forms a membrane potential dependent pore (van der Laan et al., 

2007, Truscott et al., 2001, Alder et al., 2008). The N-terminal domain of TIM23 faces 

the IMS and it functions as a preprotein receptor domain (Komiya et al., 1998, Bauer et 

al., 1996). Tim17 plays an important role in stabilizing and regulating the Tim23 

channel and in sorting of preproteins to different destinations (Chacinska et al., 2010, 

Chacinska et al., 2005, Martinez-Caballero et al., 2007). However the exact function of 

each component has not yet been understood at the molecular level. Tim50 has 

previously been proposed to keep the Tim23 channel in its closed state to prevent 

leakage of ions and potential dissipation (Meinecke et al., 2006). Previous studies also 

showed that the Tim50 interacts with precursor proteins at an early stage of import 

(Geissler et al., 2002, Yamamoto et al., 2002, Mokranjac et al., 2003).  The fact that it is 

located in the vicinity of Tom22 in the IMS points to this direction (Shiota et al., 2011). 

Tim23/Tim50 together are involved in the transfer of precursor proteins from the MOM 

to the protein-conduction channel of the MIM membrane. This transfer reaction is 

facilitated by Tim21 that is an additional membrane-integral component of the TIM23 

machinery that dynamically associates with the TIM23 core components (Chacinska et 

al., 2005, Mokranjac et al., 2005). The insertion of preproteins, which are Δψ-

dependent, is supported by the recruitment of the proton-pumping respiratory chain 

complexes III (cytochrome bc1) and IV (cytochrome c oxidase)(van der Laan et al., 

2006, Yamamoto et al., 2002, Saddar et al., 2008). Binding of this super complex to 

Tim23 is carried out with the help of Tim21 (Fig. 1.3)(van der Laan et al., 2006, 

Wiedemann et al., 2007). 

1.2.7 Translocation of preprotiens into the mitochondrial matrix 

For full translocation of soluble precursor proteins into the matrix, the Δψ-dependent 

activity of TIM23 alone is not enough. Additional driving-force, which is provided from 

ATP hydrolysis in the matrix, is required. This energy is utilized by the presequence 

translocase-associated import motor (PAM) consisting of Pam16, Pam17, Pam18 and 

the mitochondrial Hsp70 protein. mtHsp70 assists in mitochondrial protein import by its 

ATPase activity (Kang et al., 1990, Mapa et al., 2010).  In this composition, the TIM 

complex is also called TIM23PAM or TIM23MOTOR (van der Laan et al., 2010). 

Additional factors like Mge1, Tim44 and MPP have crucial role in protein import into 

the mitochondrial matrix. Mge1 mediates ATP-ADP exchange of mtHsp70 (Voos et al., 
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1994, Schneider et al., 1996). Tim44 interacts with mtHsp70 in an ATP-dependent 

manner to help the association of mtHsp70 with the TIM23 complex (D'Silva et al., 

2004, Schneider et al., 1994). There are two different models that explain the function 

of Tim23PAM and the action of mtHsp70: (I) trapping of preproteins by a Brownian 

ratchet mechanism that prevents back-sliding of the polypeptide chain, or (II) active 

pulling (force-generation) (Sato et al., 2005, Shariff et al., 2004, Geissler et al., 2002, 

Okamoto et al., 2002). When the precursors reach to the matrix, MPP cleaves the N-

terminal signal (targeting sequence) of almost all entering precursors (Hawlitschek et 

al., 1988)(Fig. 1.3). 

 

 

Fig. 1.3: TIM 23 acts as the translocase of the inner membrane for preprotiens carrying a 
presequence; The inner membrane potential (∆ψ) drives positively charged presequence 
proteins from the TOM complex to the TIM23 complex with the help of Tim21. For membrane 
integration of presequnce proteins, the Tim23-Tim21 complex in association with respiratory 
chain complexes such as cytochrome bc1 complexes and cytochrome c oxidase (COX) are 
implicated. Import of presequence proteins to the matrix requires the recruitment and activation 
of the PAM module. In this process, Pam17 displaces Tim21 and in cooperation with Tim44 
triggers the subsequent binding of Pam16 and Pam18. Pam17 is released during the assembly 
steps of PAM. mtHsp70 cooperates with Pam16–Pam18, Tim44 and Mge1 to mediate ATP 
hydrolysis for the import of preproteins into the mitochondrial matrix. TIM23 complex: 
(Adopted from: Dudek et al. 2013). 

1.3 Involvement of cytosolic factors in mitochondrial protein import 

During their synthesis on cytosolic chaperones nascent chains should be kept unfolded 

until sufficient structural information is available for folding. Thus, cytosolic 
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chaperones are required to keep the proteins in a native state. Especially in the 

molecular crowded environment of the cytoplasm, unspecific intermolecular 

interactions can lead to aggregation of nascent polypeptides. Thus newly synthesized 

proteins are dependent on the co-translational interaction with chaperones to prevent 

protein degradation, aggregation and to keep them in an import competent state (Young 

et al., 2004).  

1.3.1. Molecular chaperones 

Molecular chaperones or heat shock proteins (HSPs) have been observed in all 

organisms and they are crucial for the survival of the cell. Initially, HSPs were 

identified by induction of heat stress or other stress condition in the cell. Later it turned 

out that they are involved in or required for many cellular functions also under normal 

growth conditions. The cellular activities of molecular chaperones in both housekeeping 

tasks and stress conditions depend on their ability to interact with hydrophobic segment 

of unfolded proteins or proteins that have not yet acquired the native conformation. It 

has been shown that HSPs interact with proteins to stabilize and protect them from 

aggregation or degradation (Bukau 1998). Ribosomal translation and protein transfer in 

the cell are reactions that are prone to expose unfolded segments of proteins to the 

surrounding aqueous environment or require posttranslational folding/unfolding events 

(Hartl, 1996a, Netzer and Hartl, 1998). Hence, the essential function of molecular 

chaperones is connected to proteins and organelle biogenesis. Molecular chaperones are 

classified into four groups according to their molecular size, Hsp70s, Hsp90s, 

chaperonins and small heat shock protein (sHsp) Although their basic functions are 

similar they display completely different structures and participate in diverse cellular 

process. 

1.3.1.1 The Hsp70 family 

The Hsp70 proteins are a family of highly conserved ATPases with a molecular weight 

of approximately 70 kDa. They can be found in prokaryotes and in most compartments 

of eukaryotic cells (Hartl, 1996). In S. cerevisiae, the Hsp70 proteins are divided into 

four subfamilies; Ssa, Ssb, Sse, and Ssz (stress seventy related). The most important 

Hsp70 family in the cytosol comprises four members (Ssa1–Ssa4) and the expression of 

at least one of them is essential for viability (Werner-Washburne et al., 1987, Wegele et 

al., 2003). At physiological temperature Ssa1 is expressed at high level. At elevated 
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temperature (37°C), however, its expression is further simulated by a factor of about 10. 

In contrast, Ssa2 is expressed at the same level at all temperatures (Werner-Washburne 

et al., 1987). Ssa3 and Ssa4 are expressed at extremely low levels at physiological 

temperature, but at higher temperatures, the expression is increased (Craig et al. 1989). 

While the Ssa family members are soluble in the cytosol, Ssb1 and Ssb2 are associated 

with nascent polypeptides that emerge from translating ribosomes (Nelson et al., 1992, 

Pfund et al., 1998, Craig and Jacobsen, 1985). Ssz acts similarly. It forms a ribosome-

associated complex with Hsp40 and stimulates the mitochondrial translocation of 

ribosome-nascent chain complexes (Gautschi et al., 2001, Gautschi et al., 2002, 

Hundley et al., 2002). Finally, at physiological temperatures, Sse1 and Sse2 are 

expressed at moderate or very low levels, respectively. During heat stress conditions 

their expression is increased by several fold (Hideyuki et al., 1993).  

Hsp70 proteins consist of an N-terminal ATPase domain of about 45 kDa that is 

followed by a C-terminal peptide or substrate binding domain (SBD) of approximately 

18 kDa and a more variable segment of around 10 kDa, which ends in mammalian cells 

with conserved EEVD motif (Flaherty et al., 1991, Zhu et al., 1996, Hartl, 1996). The 

Hsp70 proteins assist in a wide range of cellular activities. They have essential roles in 

the folding of newly synthesized protein, in protein translocation across membranes, in 

preventing protein aggregation and misfolding, and in the control of the activity of 

regulatory proteins (Hartl, 1996b, Bukau et al., 2006). This versatility results from i) 

evolutionary amplification and diversification of the hsp70 gene which has produced 

special Hsp70 chaperones, ii) co-chaperones like J proteins and nucleotide exchange 

factor (NEFs) which are recruited by Hsp70 proteins to fulfill specific functions in the 

cell, and iii) cooperation of Hsp70 proteins with other chaperones (Bukau et al., 2006, 

Mayer and Bukau, 2005). 

The basic function of Hsp70 proteins is to bind and release hydrophobic segments of 

unfolded polypeptide chains by an ATP–hydrolytic reaction cycle. ATP binds to the N-

terminal domain of Hsp70, induces conformational changes in the SBD that lead to an 

opening of the substrate-binding pocket. Substrate binding, together with the action of J 

proteins, results in ATP hydrolysis and closing of the SBD. This results in trapping the 

substrate proteins (Bukau et al., 2006). 

Several findings hint that co-chaperones are required for binding of Hsp70 proteins to 

substrates or to other chaperones (Mayer and Bukau, 2005). The co-chaperones of 
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Hsp70 can be subdivided into different functional or structural classes. Members of the 

first group of co-chaperones have a conserved J-domain that mediates the interaction 

with their respective Hsp70 partner protein. Examples for these co-chaperones are 

Hsp40 in eukaryotes and DnaJ in bacteria (Mayer and Bukau, 2005, Hartl, 1996). The J-

domain of DnaJ binds to the polypeptide binding domain of DnaK, a bacterial Hsp70. 

Recruitment of DnaK to DnaJ provides a combined function of two chaperones and of 

ATP cycling (Hartl, 1996).  

Nucleotide exchange factors (NEFs) form the second group of Hsp70 co-chaperones 

and play a critical role in the functional cycle of Hsp70. They can promote the release of 

ADP from and binding of ATP to Hsp70, which results in substrate release. GrpE and 

BAG are two important NEFs. GrpE facilitates nucleotide disassociation from DnaK 

whereas BAG proteins interact with the eukaryotic, cytosolic Hsp70 (Bukau et al., 

2006, Takayama and Reed, 2001).  

Another group of Hsp70 co-chaperones contains tetratricopeptide repeat (TPR) 

dicarboxylate clamp domains that are involved in the regulation of heat shock proteins. 

This group entails co-chaperones like Hip which interacts with the ATPase domain of 

human Hsc70 (Höfeld et al., 1995). Hop (Sti1 in yeast) has been identified as a 

regulator of heat shock proteins and also as a component of the progesterone receptor 

complex (Nicolet and Craig, 1989, Smith et al., 1993). Hop interacts with the EEVD 

motif of the C-terminal domains of Hsp70 and Hsp90 (Scheufler et al., 2000, Odunuga 

et al., 2003). Additionally, studies showed that Sti1 in yeast stimulates the ATPase 

activity of yeast Hsp70, Ssa1 (Wegele et al., 2003). CHIP was discovered as a TPR 

motif-containing co-chaperone of eukaryotes (Ballinger et al., 1999). It competes with 

Hop for binding to the C-terminal domain of Hsp70 and Hsp90 (Nikolay et al., 2004). It 

also acts as E3-ubiquitin ligase ubiquitinating the Hsc70 substrate in vitro and in vivo 

and promoting the degradation of substrates by the proteasome (Meacham et al., 2001, 

Hohfeld et al., 2001, Connell et al., 2001). 

It has also been shown that Hsp70 proteins can dock onto a special TPR domain in 

Tom70 receptors at the mitochondrial outer membrane. In other words, Tom70 

functions like as a membrane-localized co-chaperone (Young et al., 2003).  



                                                                                                                                                              INTRODUCTION 

14 
	
   	
  

1.3.1.2 The Hsp90 family  

Hsp90 is one of the highly conserved and abundant heat shock proteins in eukaryotes. It 

is involved in the activation and stabilization of a wide variety of client proteins and in 

the folding of a defined set of signaling molecules like steroid-hormone receptors and 

kinases (Welch and Feramisco, 1982, Li and Buchner, 2013). Unlike Hsp70, Hsp90 is 

not required for de novo folding of proteins but it facilitates the final maturation of its 

target proteins (Nathan et al., 1997). The yeast S. cerevisiae contains two sets of related 

genes of the HSP82 family: i) HSC82 which is expressed permanently at a very high 

level and is moderately stimulated by heat stress, and ii) HSP82 which is expressed at 

low levels and is induced more strongly by heat (Borkovich et al., 1989). Both HSP82 

and HSC82 are essential for viability of yeast cells (Borkovich et al., 1989).   

Hsp90 is a flexible protein composed of three different domains (Minami et al., 1994, 

Ali et al., 2006, Hawle et al., 2006, Chacinska et al., 2005). The N-terminal domain 

contains an ATP binding site, which has interesting features. For instance, it entails 

several conserved amino acid residues, which form a lid. This lid is closed in the ATP 

bound state and is open in the ADP bound state (Ali et al., 2006). The C-terminal 

domain is required for the permanent homodimerization of Hsp90 and a conserved 

MEEVD motif in the C-terminal domain functions as a docking site for TPR domain 

containing co-chaperones (Scheufler et al., 2000). The middle domain (M-domain) is 

involved in ATP hydrolysis and in the interaction with client proteins and with some 

chaperones (Meyer et al., 2004). Hsp90 has a highly charged linker segment located 

between the N-terminal and the M-domain and the dimer association site has been 

placed at the extreme C-terminal region of the protein (Palmer et al., 1995). These 

findings show that the Hsp90 monomers are associate via their C-terminal domains and 

the middle and N-terminal domains bend in opposite direction (Maruya et al., 1999).  

The Hsp90 clients include protein kinases, steroid hormone receptors (SHRs) and 

transcription factors such as p53 (Zhao et al., 2005, McClellan et al., 2007, Picard, 

2002). Therefore, Hsp90 is important not only for protein folding but also for other 

cellular process including signal transduction, intracellular transport and protein 

degradation (Li and Buchner, 2013). 

The different cellular functions of Hsp90 are regulated by the help of co-chaperones and 

this regulation is a conserved feature of the eukaryotic Hsp90 system. Until now, 20 co-

chaperones of Hsp90 have been identified (Li et al., 2012). The co-chaperones regulate 
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the Hsp90 functions in different ways. Examples for this include inhibition or activation 

of the Hsp90 ATPase activity or recruitment of specific client proteins. The maturation 

of Hsp90 also requires different co-chaperones which work together in a cycle (Smith, 

1993). The most important co-chaperones of Hsp90, Hop/Sti1 contain a TPR motif and 

bind to the open conformation of Hsp90 inhibiting its ATPase activity (Onuoha et al., 

2008, Richter et al., 2003b). Other co-chaperones such as p23/Sba1 inhibit the Hsp90 

ATPase activity by binding preferentially to its N-terminal domain in the closed, 

nucleotide-bound state (Ali et al., 2006, McLaughlin et al., 2006). Aha1 is another 

Hsp90 co-chaperone, which has been identified as the only activator of the Hsp90 

ATPase (Nathan et al., 1999). Likewise, proteins from the peptidyl-prolyl cis-trans 

isomerase (PPIase) family, which are also termed immunophilins, can function as co-

chaperones of Hsp90 (Li et al., 2012). 

Hop/Sti1 binds on two sites on Hsp90 to prevent the N-terminal domains of the two 

monomers to close, thereby inhibiting ATP hydrolysis completely in a non-competitive 

manner (Richter et al., 2003b). Furthermore, the presence of three TPR domains in 

Hop/Sti1 allows simultaneous binding and modulation of Hsp70 and Hsp90, which 

facilitates client protein transfer between these chaperones (Chen and Smith, 1998, 

Wegele et al., 2006, Wegele et al., 2003). In the co-chaperone cycle of the Hsp90 

system, Hsp40, Hsp70 and client proteins form an early complex which then binds to 

Hsp90 via Hop/Sti1 to from an intermediate complex (Smith, 1993). Hop/Sti1 serves as 

an adaptor between Hsp70 and Hsp90 (Chen and Smith, 1998, Johnson et al., 1998, 

Wegele et al., 2006). Biochemical studies showed that the TPR1 and TPR2 domains 

bind to the EEVD-motif of Hsp70 and Hsp90, respectively (Scheufler et al., 2000, 

Brinker et al., 2002). In addition to Hop/Sti1, the third complex contains a protein of the 

PPIase family such as Cyp40/Cpr6 or Cpr7 and the co-chaperone P23/Sba1 has also 

been found in the chaperone cycle (Smith, 1993, McLaughlin et al., 2006). Hop/Sti1 

binds to the open conformation of Hsp90 and inhibits its ATPase activity. The other 

EEVD motif of Hsp90 is occupied by a PPIase protein. Hsp90 then adopts a closed 

conformation after binding of ATP. Binding of P53/Sba1 stabilizes the closed state of 

Hsp90 and promotes exit of Hop/Sti1 from the complex. Finally, in the last step another 

PPIase protein associates with Hsp90 to form the late complex. After hydrolysis of 

ATP, P23/Sba1 and the folded client are released from Hsp90 (Li et al., 2011). 
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1.3.1.3 The chaperonin system 

Chaperonins have an essential function in ATP-dependent folding of a subset of 

proteins under both normal and stress conditions. There are two distinct groups of 

chaperonins: i) members of the GroEL (or Hsp60) family and ii) TRic family 

chaperonins (Hartl, 1996). The GroEL type chaperonins in eubacteria, mitochondria and 

chloroplasts consist of two stacked seven-membered rings that functionally cooperate 

with small co-factors like Hsp10/GroES. GroEL/GroES proteins of E. coli are the best 

studied members of the Hsp60/Hsp10 chaperonin system. In contrast, the second group 

of chaperonins, the TRiC family, occurs in archaebacteria and the cytoplasm of 

eukaryotic cells. Chaperones of this family consist of eight or nine membered double 

rings that act independently of Hsp10 (Harlt, 1996; Horwich et al., 2007; Vabulas et al., 

2010). 

1.3.1.4 Small heat shock proteins 

Small heat shock proteins (sHSPs) are molecular chaperones, which are distributed, in 

different species from bacteria to humans. So far 10 proteins (HSB1-HSB10) have been 

assigned to the superfamily of sHSPs (Zeng et al., 2013). These proteins have a 

conserved C-terminal, α-crystallin domain that forms a β-sheet sandwich with a 

molecular mass of 18-24 kDa (Mymrikov et al., 2011). sHSPs act under stress 

conditions such as heat shock or protein overexpression. They form an oligomeric 

complex with 12-24 subunits that forms a hollow sphere with an opening to the inside 

(Kim et al., 1998). This complex binds specifically to non-native proteins and 

cooperates with other ATP-dependent chaperones like Hsp70 to prevent protein 

aggregation (Jakob and Buchner, 1994, Horwitz, 1992, Walter and Buchner, 2002). The 

sHSP system in S. cerevisiae consists of two proteins, Hsp26 and Hsp42. Hsp42 is 

active under all conditions tested in vitro and in vivo, whereas Hsp26 is active only 

during heat stress (Haslbeck et al., 2004, Walter and Buchner, 2002). 

1.4 Chaperones involved in delivery of nascent polypeptides to the mitochondrial 
surface 

There are two processes to minimize or prevent aggregation and misfolding of 

mitochondrial precursor proteins during their translocation in an unfolded conformation 

across mitochondrial membranes. The first is coupling of translation and translocation, 
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and the second involves recruitment of molecular chaperone complexes and cytosolic 

factors to stabilize mitochondrial precursor proteins (Beddoe and Lithgow, 2002). 

Previous studies indicated that translationally active ribosomes are present on the 

surface of mitochondria (Ades and Butow, 1980, Suissa and Schatz, 1982). It seems that 

sequences within the mRNA might act as binding sites for factors that i) target the 

mRNA to the vicinity of the mitochondria, or ii) stabilize the mRNA to increase their 

chances to reach the mitochondrial surface before being degraded (Gratzer et al., 2000). 

In this way many polysomes are targeted to the mitochondrial surface and precursor 

proteins are directly translated in the vicinity of the TOM complex without being 

exposed to the cytosol where they could aggregate (Beddoe and Lithgow, 2002). In a 

few cases, mRNAs encoding mitochondrial precursor proteins were suggested to 

contain cis sequences which target the precursor to the mitochondrial surface (Lithgow 

et al., 1997). For example, the mRNA coding for the Atm1 transporter of S. cerevisiae 

is targeted to the mitochondria (Corral-Debrinski et al., 2000). Interestingly, the β-

subunit of the F1F0-ATPase is translated close to the mitochondria, whereas the mRNA 

coding for the α-subunit of this complex is uniformly distributed in the cytosol (Egea et 

al., 1997). Since there is no absolute coupling of translation and translocation of 

mitochondrial precursor proteins, many of the mitochondrial precursor proteins are 

translated on cytosolic ribosomes that are distant from mitochondria. These precursor 

proteins can be prone to aggregation and misfolding, but different chaperones are 

known that bind and stabilize them and hence prevent their aggregation. In other words, 

by the help of these molecular chaperones, the precursor proteins are kept in an import 

competent state. 

Hsp70 is one of the important molecular chaperones, which are involved in this process. 

In Mammalian cells, Hsc70 acts co-translationally to prevent aggregation or misfolding. 

It has been shown that it interacts with nascent chains of mitochondrial and non-

mitochondrial proteins (Beckmann et al., 1990, Frydman et al., 1994). In yeast, different 

isoforms of Hsp70 work in this way. Ssb1 associates with ribosome and then interacts 

with newly translated mitochondrial protein to stimulate their import into mitochondria. 

Ssz1 can promote import of mitochondrial precursor protein that are bound to 

ribosomes (Gautschi et al., 2001). Ssa1 also stimulates the import of precursor proteins 

into isolated mitochondria.  
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Another molecular chaperone, Hsp40/Ydj1 seems to act in the import of mitochondrial 

precursor proteins by cooperating with Hsp70/Ssa1 (Becker et al., 1996, Cyr et al., 

1992). A previous study has suggested that Ydj1 has a farnesyl moiety attached to its C-

terminal domain, allowing the protein to be localized to intracellular membranes 

(Caplan et al., 1992). 

The nascent-chain associated complex (NAC) also plays an important role in 

mitochondrial protein import (Funfschilling and Rospert, 1999). NAC is a 

heterodimeric protein complex that associates with ribosomes and can be cross-linked to 

different nascent chains including mitochondrial precursor proteins (Wiedmann et al., 

1994). Similarly, the ribosome-associated complex (RAC) is a heterodimeric protein 

complex consisting of Ssz1 and Zuo1 that keeps client proteins in an import component 

state (Gautschi et al., 2001). 

Additionally, the mitochondrial import-stimulating factor (MSF) was shown in 

mammalian cells to specifically recognize aggregated mitochondrial precursor proteins 

and to restore their solubility and import capability (Hachiya et al., 1993, Komiya et al., 

1997). Additionally, the analysis of the in vitro import of mitochondrial precursor 

protein suggested that MSF binds to the Tom70 receptor. The precursor proteins were 

then transferred to the Tom20 receptor upon ATP hydrolysis (Komiya et al., 1996, 

Hachiya et al., 1995). Human Tom20 consists of five segments: an N-terminal 

membrane anchor, a linker segment with charged amino acid, a TPR motif, a glutamine 

rich segment and a C-terminal segment (Goping et al., 1995). In mammalian cells, the 

arylhydrocarbon receptor-interacting protein (AIP) was identified as a Tom20-

interacting protein which plays an important role in mitochondrial import of Tom20-

dependent preproteins (Yano et al., 2003). It belongs to the PPIase family that is 

ubiquitous in prokaryotes and eukaryotes (Galat and Metcalfe, 1995). AIP contains 

three TPR motifs that facilitate binding to Hsp90 (Young et al., 1998, Bell and Poland, 

2000). A previous study indicates that AIP binds specifically to mitochondrial 

presequence containing proteins and also to the Tom20 receptor. It has been suggested 

that AIP, with the help of Hsc70, might keep presequence containing proteins in an 

unfolded state. This complex is then targeted to Tom20 and finally forms a ternary 

complex comprised of Tom20, AIP, Hsc70 and the precursor protein (Yano et al., 

2003). Moreover other studies identified Djp1 as a cytosolic co-chaperone mediates the 
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import of Mim1 in mitochondrial outer membrane by the help of Tom70 receptor (Papic 

et al., 2013).  

Until now, only a few cytosolic factors involved in mitochondrial protein import were 

identified and functionally characterized. It is still unclear whether cytosolic factors 

interact with all precursor proteins to protect them from aggregation and misfolding or 

whether they are specific for just a small subset of mitochondrial precursor proteins. So 

far, the direct interaction between molecular chaperones and the mitochondrial import 

machinery has only been shown in the import of metabolite carrier proteins of the inner 

mitochondrial membrane. 

The molecular chaperones that is involved in the import of metabolite carrier proteins of 

the inner membrane seems to have a passive function in keeping the precursor proteins 

in an unfolded state and an active role in targeting the precursor to the mitochondrial 

receptors. Cytosolic Hsp70 is generally involved in the folding of proteins and in 

preventing the proteins from aggregation. It could be that the role of Hsp70 in 

mitochondrial protein import is an extension of this activity. The cytosolic domain of 

Tom70 contains seven TPR motifs. The C-terminal part of this domain is responsible 

for the recognition of internal sequences within precursor proteins (Brix et al., 2000). 

Interestingly, the N-terminal segment of Tom70 has a similar function as the TPR 

domain-containing co-chaperones (Hop/sti1) of Hsp70 and Hsp90 (Scheufler et al., 

2000). This means that Tom70 is a membrane-localized co-chaperone recognizing 

Tom70-dependent precursor proteins in the cytosol that are associated with a multi-

chaperone complex including Hsp90 and Hsp70 in mammals or only Hsp70 in yeast. 

Docking of the chaperone-precursor complex to Tom70 is necessary for the recognition 

of internal targeting signals within the precursor protein by the core portion of Tom70. 

Subsequently, multiple Tom70 dimers are recruited to form a high molecular weight 

complex. The Hsp70 and Hsp90 chaperones remain bound to help Tom70 in preventing 

the aggregation. Finally ATPase cycling by the chaperone complex induces the transfer 

of precursor proteins from Tom70 to the import pore. ATPase cycling, which is 

mediated by the chaperone complex, induces the transfer of preproteins from Tom70 to 

the import pore (Fig. 1.4). 
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Fig. 1.4: Role of Hsp70/Hsp90 complex in import of mitochondrial metabolite carrier 
precursor proteins in mammalian cells; Tom70 receptor acts as a membrane co-chaperone 
and recognizes the internal signal of metabolite carrier precursor proteins, while the latter is 
associated with a multi-chaperone complex including Hsp90 and Hsp70 in mammals or only 
Hsp70 in yeast. Docking of the chaperone complex to Tom70 is necessary for recognition of 
internal targeting signals by the core portion of Tom70. Subsequently, multiple Tom70 dimers 
are recruited to form a high molecular weight complex. Hsp70 and Hsp90 remain bound to help 
Tom70 in preventing the aggregation and ATPase cycling. Finally ATPase cycling induces the 
transfer of preproteins from Tom70 to the import pore (Adopted from: Young et al., 2003). 

1.5 Aim of this study  

The involvement of the cytosolic factors Hsp70 and Hsp90 in the targeting of 

mitochondrial proteins was demonstrated so far only for precursors with internal 

signals. However, it is still unclear which cytosolic factors are involved in targeting 

presequence-containing mitochondrial proteins to the Tom20 receptor. The general aim 

of this study was to identify such cytosolic factors, to characterize their involvement in 

stabilization and targeting of precursor proteins, and to study the physiological role they 

play in mitochondrial biogenesis. 
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2. Materials and Methods 
 
 
 
	
   	
  

2.1 Materials 

2.1.1 E. coli and yeast strains 

E. coli cells of the strain XL1-Blue and BL-21(DE3) were used for cloning and 
expression of recombinant proteins, respectively. Yeast strains used in this study are 
listed in Table 1. 

Table 2.1. List of yeast strains 

Strain Genotype  Reference 
W303α MATα; ade2-­‐1, can1-­‐100, his3-­‐11, 

leu2-­‐3, leu2-­‐112, trp1-­‐1, ura3-­‐1 
Rothstein, 1989 

YPH449 MATa; ade2-10, his3-200, leu2-1, 
trp1-63, ura3-52, lys2-801 

Sikorski and Hieter, 1989 

JSY7452 MATα; ade2-1, leu2-3, his3-11.15, 
trp1-1, ura3-1, can1-100 

Kondo-Okamoto, 2006 

sti1Δ W303α, sti1::HIS3 Strain collection, Rapaport 
group 

sti1Δ YPH499, sti1::HIS3 Strain collection, Rapaport 
group 

tom20∆ W303α, sti1::KanMX4 Müller et al., 2011 
tom20∆sti1Δ W303α, sti1::HIS3, tom20::Kan This study 
tom70/71∆ JSY7452, 

tom70::TRP1,tom71::HIS3 
 

Kondo-Okamoto et al., 2006 
 

mim1∆ W303α, mim1::KanMX4 Dimmer et al.  
   
mim1∆ YPH499, mim1::HIS3 Popov-Celektic et al. 2008 
mim2∆ W303α, mim2::HIS3 Dimmer et al. 
mim1∆sti1∆  YPH499, sti1::Kan, mim1::HIS3 Strain collection, Rapaport 

group 
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2.1.2 Media 

The most frequently used media in this study for E. coli and yeast strains are listed in 
Table 2.2 and Table 2.3, respectively. All media were autoclaved before use and 
antibiotics were filtered before adding to the media.   

Table 2.2. Media for E. coli 

Media Composition 
LB media 1% (w/v) bacto tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) 

NaCl, pH 7.0 
 

LB solid media 
 

Liquid LB medium supplemented with 1.5 % (w/v) agar. 

LB + Amp LB media (liquid or solid) supplemented with Ampicillin (100 
µg/ml) 

 
 

Table 2.3. Media for yeast  

Media Composition 
 
 

YP media 
 

 

2% (w/v) bacto peptone, 1% (w/v) yeast extract, pH 
5.5. 

Carbon sources were added from separately 
autoclaved stock solutions to a final concentration 
of 2% (w/v) glucose (YPD) or 3% (w/v) glycerol 

(YPG). 
YP agar YP liquid medium supplemented with 1.5% (w/v) 

agar. 
 

 
 

S media (Synthetic medium) 
 
 

0.17% (w/v) yeast nitrogen base, 0.5% (w/v) 
ammonium sulfate, 0.3 µM adenine, 0.5 µM uracil 

(uracil is not added for S-­‐Ura media), 1% (v/v) 
amino acid solution, carbon sources (2% (w/v) 

glucose (SD) or 3% (w/v) glycerol (SG)). 
 

S agar media 
 

S liquid media supplemented with 1.5 (w/v) agar 

D-Glucose stock solution 
 

40% (w/v) D-glucose 

Glycerol stock solution 
 

100% glycerol 

 
100 × stock amino acid 

0.2% (w/v) arginine, 0.4% (w/v) tryptophan, 1% 
(w/v) leucine, 0.4% (w/v) lysine, 0.2% (w/v) 

histidine, 0.6% (w/v) phenylalanine, 0.2% (w/v) 
methionine. 

2.4 M sorbitol 437.2 g/l sorbitol. 
 

 
Sporulation medium 

1% (w/v) potassium acetate, 0.1% (w/v) bacto-yeast 
extract, 0.05% (w/v) glucose, 2% (w/v) bacto agar 

supplemented with; Leu, Trp, Ura, Ade 
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2.1.3 Buffers 

2.1.3.1 Buffers for molecular biology  

Table 2.4. Buffers for agarose-gel electrophoresis. 

Buffer Composition 

TAE buffer 
40 mM Tris-Base, 1.14 ml/l acetic acid, 

1 mM EDTA, pH 8.0 
 

DNA loading buffer 

6% (v/v) glycerol, 0.05% (w/v) 
bromophenol-blue, 0.05% (w/v) xylene 

cyanol. 
 

 

Table 2.5. Buffers for small scale plasmid isolation from E. coli. 

Buffer Composition 
 

E1 
50 mM Tris-HCl, 10 mM EDTA, 100 

µg/ml RNase A. 
 

E2 200 mM NaOH, 1% (w/v) SDS in 
water. 

 
 

E3 
3 M potassium acetate, pH 5.5, adjusted 

with acetic acid. 
 

 

Table 2.6. Buffers for PCR. 

Buffer Composition 
 

10 × Pfu buffer with MgSO4 
 

100 mM (NH4)2SO4, 100 mM KCl, 1% 
(v/v) Triton X-100, 1 mg/ml BSA, 20 

mM MgSO4, 200 mM Tris, pH 8.8 
 

 
10 × Taq buffer with (NH4)2SO4 

200 mM (NH4)2SO4, 0.1% (v/v) Tween 
20, 750 mM Tris-Hcl, pH 8.8 

 
 

Table 2.7. Buffers for preparation of chemical competent E. coli cells. 

Buffer Composition 
 

TfbI buffer 
30 mM potassium acetate, 100 mM 

RbCl, 100 mM CaCl2, 50 mM, MnCl2, 
15% (v/v) glycerol, pH adjusted to 5.8 

with acetic acid. 
 

TfbII buffer 
100 mM MOPS, 75 mM CaCl2, 10 mM 
RbCl, 15% (v/v) glycerol, pH adjusted 

to 6.5 with NaOH.  
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2.1.3.2 Buffers for isolation of mitochondria 

Table 2.8. Buffers used for mitochondrial isolation. All buffers were freshly prepared.  

Buffer Composition 
 

Resuspension buffer 
100 mM Tris, 10 mM DTT, without pH 

adjusting. 
 

 
Spheroblasting Buffer 

1.2 M Sorbitol, 20 mM potassium 
phosphate buffer, pH 7.2. 

 
 

Homogenization buffer 
0.6 M sorbitol, 1 mM EDTA, 1 mM 

PMSF, 0.2% (w/v) fatty acid free BSA, 
10 mM Tris adjusted to pH 7.4 with 

HCl. 
 

 
SEM buffer 

250 mM sucrose, 1 mM EDTA, 10 mM 
MOPS, pH adjusted to 7.4 with KOH. 

 
 

	
  

2.1.3.3 Buffers for protein analysis 

Table 2.9. Buffers for SDS-PAGE. 

Buffer Composition 
 
 

2 × Laemmli loading buffer 

4% (w/v) SDS, 20% (v/v) glycerol, 
0.02% (w/v) bromophenol-blue, 5% 

(v/v) 2-mercaptoethanol, 160 mM Tris, 
pH adjusted to 6.8 with HCl. 

 
 

Running buffer 
 

50 mM Tris, 380 mM glycine, 0.1 % 
(w/v) SDS. 

 
1.0 M Tris-HCl, pH 6.8 

 
 

1.0 M Tris-HCl, pH 8.8 
 

 

 

Table 2.10. Buffer for Western blotting. 

Buffer Composition 
 

Blotting buffer 
 

20 mM Tris, 150 mM glycine, 0.02% 
(w/v) SDS, 20% (v/v) methanol. 
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Table 2.11. Buffers for immunodetection. 

Buffer Composition 
 

Ponceau staining buffer 
0.4 g Ponceau S, 8.5 ml 72% (w/v) 

TCA in 200 ml cold H2O 
 

 
TBS buffer 

5 mM Tris, 150 mM NaCl, pH adjusted 
to 7.5 with HCl. 

 
TBS buffer + 0.05% (v/v) Triton X-100 TBS buffer + 0.05% (v/v) Triton X-

100. 
 

Blocking buffer 5% (w/v) dry skim milk in TBS buffer. 
 

 
 

ECL 

0.2 mM p-coumaric acid, 1.25 mM 
Luminol, 100 mM Tris, pH adjusted to 

8.5 with HCl; H2O2 30% (w/v) was 
mixed before usage with ECL solution 

in ratio 1:1000. 
 

 

Table 2.12. Buffers for in vitro import of proteins into isolated mitochondria. 

Buffer Composition 
 

                      
                      F5-import buffer 

250 mM sucrose, 10 mM MOPS, 80 
mM KCl, 5 mM MgCl2×6H2O, 3% 

(w/v) fatty acid free BSA, pH adjusted 
to 7.2 with KOH. 

 
SEM-K80 buffer SEM buffer + 80 mM KCl 

 
 

 Table 2.13. Buffers For in vivo pulse-chase experiment 

Buffer Composition 
 

4 × TENN 
 

200 mM Tris, pH 8, 20 mM EDTA, 2% 
(v/v) NP40 

600 mM NaCl 
 

 
TENNS 

 

5% (w/v) sucrose, 1% (v/v) NP40, 0.5 
M NaCl, 

50 mM Tris, pH 7.5, 5 mM EDTA 
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Table 2.14.  Buffers for stripping of nitrocellulose and PVDF membranes. 

Buffer Composition 
 

Stripping buffer 
86 mM Tris-HCl (pH 6.8), 2.9 % (w/v) 

SDS, 1% (v/v) β-mercaptoethanol. 
 

 
TBST buffer 

TBS buffer supplemented with 0.05% 
(v/v) Tween-20. 

 
 

2.1.3.4 Buffers for purification of proteins and pull-down experiments 

Table 2.15. Buffers for purification of proteins with GST-tag.  

Buffer Composition 
 

GST basic buffer 
20 mM HEPES-NaOH (pH 7.25), 100 

mM NaCl, 1.5 mM MgCl2. 
 

 
 

GST lysis buffer 

0.2 mg/ml Lysozyme, 2 mM PMSF, 1 
mM DTT, 3 mM EDTA, 1% Triton X-

100, EDTA-free Complete protease 
inhibitors (Roche) in GST basic buffer. 

 
 

GST elution buffer 
15 mM reduced L-Glutathione in GST 
basic buffer, pH adjusted to 7.25 with 

NaOH. 
 

 

Table 2.16. Buffers for pull-down with Ni-nitrilotriacetic acid (Ni-NTA) agarose beads.  

Buffer Composition 
 
 

lysis buffer 

20 mM sodium phosphate buffer, 300 
mM NaCl, 2 mM PMSF, EDTA-free 
Complete protease inhibitors (Roche), 

10 mM imidazole, pH 7.5. 
 

 
Wash buffer 

20 mM sodium phosphate buffer, 300 
mM NaCl, 50 mM imidazole, pH 7.5. 

 
 

2.1.4 Chemicals and stock solutions 

Table 2.17. Chemicals and stock solutions. 

Chemical Concentration Solvent Company 
Ampicillin 100 mg/ml H2O Sigma 

ATP 0.2 M H2O Sigma 
BSA 1 mg/ml H2O Sigma 
DTT   Gerbu 
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PEG 50% (w/v) H2O Sigma 
EDTA   Roth 

Geneticindisulfate (G418) 100 mg/ml 1 mg/ml Roth 
L-Glutathione, reduced 15 mM GST-buffer Sigma 

IPTG 1 M H2O Gerbu 
Luminol 4.4% DMSO Sigma 

Protein ladder   Fermentas 

DNA ladder   Thermo scientific 

Midori green   Nippon genetic, 

PMSF 0.2 M Ethanol Serva 
Complete protease 

inhibitors 
 H2O Roche 

RNase inhibitor 40 U/µl  Promega 
SDS 10% (w/v) H2O Roth 

Salmon sperm DNA 10 mg/ml H2O Roth 
Triton X-100 20% (v/v) H2O Roth 

Cycloheximide 100 µg/ml H2O Sigma 
Bradford reagent  SEM buffer Roth 

Panceau  H2O Serva 
p-Coumaric acid 1.5% DMSO Sigma 

 

2.1.5 List of plasmids 

Table 2.18. Plasmids used in this study. Selection in E. coli was resistance to ampicillin. 

Name Promotor Marker 
(Yeast) 

References 

pES426×cyb2-DHFR-His-TAG4 ADH TRP This study 
pES426×cyb2-DHFR-His-TAG8 ADH TRP This study 
pES426×cyb2-DHFR-His-TAG10 ADH TRP This study 
pES426×cyb2-DHFR-His-TAG13 ADH TRP This study 
pES426×cyb2-DHFR-His-TAG16 ADH TRP This study 
pYX132×pSu9-DHFR-His  TPI TRP This study 
pYX132×DHFR-His TPI TRP This study 
pYX113×pSu9-DHFR-HA GAL URA This study 
pES426×Cyb2-DHFR-His6 ADH TRP This study 
pGEM4×pSu9-DHFR SP6  Pfanner et al. 1987 
pRS426×DHFR-His6 TPI URA A. Schmitt 
pRS426×pSu9-DHFR-His9 TPI URA A. Schmitt 
pYes2×Cyb2-DHFR-His6 Gal URA A. Schmitt 
pYX132×Mdm38-HA TPI TRP K.S. Dimmer 
pYX142-mt GFP TPI LEU Westermann et al. 2000 
pES426 ADH TRP Laboratory stock 
pRS426 TPI URA Laboratory stock 
pGEX-4T-1 Tac  J. Dukanovic 
pGEX-4T-1-Tom70cd Tac  J. Dukanovic 
pGEX-4T-1-Tom20cd Tac  J. Dukanovic 
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pPR1-­‐PGK1+3SUP4-­‐tRNACUA 
(= pBpa) 

TPI TRP A. Schmitt 

  

2.1.6 Oligonucleotides 

Table 2.19. Oligonucleotides used in this study. 

Name Sequence 
 
Cyb2-DHFR-His-TAG4 FW 

5´ CCC GAA TTC ATG CTA AAA 
TAG AAA CCT TTA CTA AAA ATC 
TCG AAG 3´ 

Cyb2-DHFR-His-TAG8 FW 5´ CCC GAA TTC ATG CTA AAA 
TAC AAA CCT TTA TAG AAA ATC 
TCG AAG 3´ 

Cyb2-DHFR-His-TAG10 FW 5´ CCC GAA TTC ATG CTA AAA 
TAC AAA CCT TTA CTA AAA TAG 
TCG AAG 3´ 

Cyb2-DHFR-His-TAG13/16 FW 5´ CCC GAA TTC ATG CTA AAA 
TAC AAA CCT TTA CTA AAA ATC 
TCG AAG 3´ 

Cyb2-DHFR-His TAG Rev 5´ CCC AAG CTTTTA ATG GTG 
ATG GTG ATG GTG ATG GTG 3´ 

pSu9-DHFR Fwd 5´ AAA GAA TTC ATG GCC TCC 
ACT CGT GTC 3´ 

pSu9-DHFR Rev 5´ AAA AAG CTT GTC TTT CTT 
CTC GTA GAC 3´ 

Sti1 Fwd 5´GCC GCA ATT GAC CAA ACT 
ATT G 3´ 

Sti1 Rev 5´ ATT GTT GAC GTA AAG TTG 
TGC C 3´ 

   

2.1.7 Antibodies 

All primary antibodies were diluted in TBS buffer and stored at -20°C except for α-­‐His 

(Biomol) which was diluted in PBS buffer supplemented with 0.09 % (w/v) NaN3 and 

stored at 4°C. All antibodies were raised in rabbit except for the antibody against DHFR 

(Bioscience), which was raised in mouse. The secondary antibodies goat anti-rabbit IgG 

(H+L)-HRP-conjugate and goat anti-mouse IgG (H+L)-HRP-conjugate (Biorad) were 

diluted in blocking buffer. All antibodies used in this study are listed in Table 2.20.  

Table 2.20. Primary antibodies used in this study. 

Primary antibody Marker for Dilution 
α-­‐DHFR  1:250 
α-­‐His6  1:4000 
α-­‐Tom20 MOM 1:2000 
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α-­‐Tom22 MOM 1:500 
α-­‐Tom40 MOM 1:4000 
α-­‐Tom70 MOM 1:2000 
α-­‐Aco Mitochondrial matrix 1:4000 
α-­‐Hep1 Mitochondrial matrix 1:500 
α-­‐Pic2 MIM 1:2000 
α-­‐Porin MOM 1:4000 
α-­‐Fis1 MOM 1:500 
α-­‐Fum Mitochondrial matrix 1:500 
α-­‐Hsp60 Mitochondrial matrix 1:10000 
α-­‐Yah1 Mitochondrial matrix 1:1000 
α-­‐Aha1 Cytosol 1:10000 
α-­‐Bmh1 Cytosol 1:1000 
α-­‐Hsp26 Cytosol 1:8000 
α-­‐Hsp82 Cytosol 1:20000 
α-­‐Hxk1 Cytosol 1:5000 
α-­‐Sba1 Cytosol 1:5000 
α-­‐Sti1 Cytosol 1:20000 
α-­‐Ssb2 Cytosol 1:200 
α-­‐Ydj1 Cytosol 1:50000 
α-­‐Ssa1 Cytosol 1:20000 
α-­‐Sis1 Cytosol 1:20000 
α-­‐pSu9  1:1000 

	
  

2.1.8 Enzymes 

Restriction enzymes were used in their corresponding buffer according to the 
manufacturer´s instructions. 

Table 2.21. Enzymes used in this study. 

Enzyme Source 
T4-DNA-Ligase Fermentas 

Shrimp Alkaline Phosphatase Fermentas 
Taq DNA polymerase Fermentas 
Pfu DNA polymerase Fermentas 

Proteinase K Roche 
Zymolyase 20T Seikagaku Biobusiness 

SP6 RNA polymerase Promega 
RNase A Applichem 

Restriction endonucleases (EcoRI, HindIII) New England Biolabs 
Lysozyme Serva 

  

 



	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   MATERIALS AND METHODS 

	
   30 

2.2 Methods 

2.2.1 Methods in molecular biology  

2.2.1.1 Polymerase Chain Reaction (PCR)  

PCR was used to amplify DNA fragments from yeast genomic or plasmid DNA (Saiki, 
1985). The standard PCR reaction mix was performed as described in Table 2.22 and 
2.23. 

   Table 2.22. Reaction mixture for PCR 

Component Volume 
Plasmid DNA 1 µl (1 ng) 

dNTP mix (10 mM) 2 µl 
10 × Pfu Buffer with MgSO4 10 µl 

5´ primer (20 pmol) 1 µl 
3´ primer (20 pmol) 1 µl 

H2O 83 µl 
Pfu Polymerase (2.5 U/µl) 2 µl 

 

                                   Table 2.23. Thermocycling conditions for PCR 

Step Temperature Time 
1 95°C 5´ 
2 95°C 1´ 
3 55°C 1´ 
4 75°C 1´30´´ → Step 2: × 10 
5 95°C 1´ 
6 65°C 1´ 
7 75°C 1´ 30´´ → Step 5: × 35 
8 75°C 10´ 
9 4°C Hold 

 

2.2.1.2 DNA purification and analysis 

Agarose gel electrophoresis was used to separate DNA fragments according to their 

size. For this purpose agarose gels were prepared with 0.5-2% (W/V) agarose in TAE 

buffer and 3% midori green. DNA samples were mixed with DNA Sample buffer and 

loaded on the gel. Electrophoretic separation was performed in TEA buffer at 70 or 120 

V for small or big gels, respectively. For estimating the length of DNA fragments, DNA 

ladder mix (Thermo scientific) was applied in parallel. Visualization of DNA fragments 

was performed with UV light.   
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2.2.1.3 DNA extraction from agarose gel 

To obtain purified DNA fragments, which can be used for further investigation, DNA 

fragments of interest were cut out of the agarose gel with a scalpel and subsequently 

extracted and purified using the DNA extraction kit (Fast GeneTM or PEQLAB) 

according to the manufacturer´s instructions. Finally, DNA was eluted in 30 µl of sterile 

H2O. 

2.2.1.4 Restriction digestion of DNA  

The digestion of inserts and host vectors was performed using high-fidelity restriction 

enzymes (New England Biolabs) in respective recommended buffer. For sub-cloning 3 

µg of insert and vector DNA were digested by 1 µl (20 U) of each endonucleases in a 

total volume of 20 µl. For analytical reaction, 12.5 µl plasmid DNA, which obtained 

from “mini-preparation”, was incubated with 0.25 µl (5 U) of each enzyme in final 

volume of 15 µl. The restriction digestion mixture was incubated at 37°C for one hour. 

Then, the restriction enzymes were inactivated by incubation at 65°C for 20 min. The 

resulting DNA fragments were analyzed by agarose gel electrophoresis. 

2.2.1.5 Dephosphorylating of DNA fragments 

The digested DNA typically possesses 5´-phosphate group that is required for ligation. 

To prevent self-ligation and to increase the following ligation efficiency, the phosphate 

group was removed by addition of one µl shrimp alkaline phosphates (SAP) and 

incubation for another one hour at 37°C. After inactivation of SAP for 20 min at 65°C 

both insert and vector were loaded on agarose gel electrophoresis for extraction and 

purification of the DNA fragment of interest. 

2.2.1.6 Ligation of DNA 

After purification, ligation of vector (100 ng) and insert (1.3 or 7 fold molar ratio to the 

vector) was performed using one µl T4 DNA ligase and the corresponding buffer in a 

final reaction volume of 15 µl. Reaction mixture was incubated at 4 °C overnight while 

stay afloat in the water bath. After inactivation of T4 DNA ligase for 15 min at 65°C, 

the reaction mixture was transformed into E. coli competent cells. 
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2.2.1.7 Preparation and transformation of E. coli competent cells 

Preparation of chemically competent cells 

Preparation of competent E. coli cells was performed using the strains XL1-Blue or 

BL21. An overnight pre-culture of cells was grown at 37°C in 50 ml LB medium 

without ampicillin. Then the pre-culture was diluted to an OD600=0.1 in 400 ml LB 

media and cells were incubated at 37°C till they reached an OD600=0.5. Afterward the 

culture was placed on ice to cool down and then cells were harvested by centrifugation 

(3000 g, 10 min, 4°C). The cells pellets were resuspended in 160 ml TfbI buffer and 

kept 15 min on ice. Subsequently, cells were harvested again by centrifugation (3000 g, 

10 min, 4°C), resuspended in 16 ml TfbII buffer, and kept on ice for 15 min. The 

resulting competent cells were aliquoted in samples of 200 µl in precooled Eppendorf 

tubes, snap frozen in liquid nitrogen, and stored at -80 °C. 

Tarnsformation of E. coli competent cells 

Transformation of E. coli cells with plasmid DNA was performed using the strains 

XL1-Blue or BL21. For transformation, the ligation mixture (15 µl) was added to 200 

µl of competent cells and incubated for 40 min at 4°C. Afterward, the cells were 

subjected to a heat shock at 42°C for 90 s and immediately transferred to ice for 15 min. 

Then one ml of LB medium was added to the mixture and cells were incubated for one 

hour at 37°C with slight shaking. Cells were collected by centrifugation (16000 g, 30 

sec, RT), resuspended in 100 µl LB medium, plated on LB agar medium supplemented 

with ampicillin (100 µg/ml), and finally incubated overnight at 37°C. Single colony 

were picked and incubated in liquid medium for further analysis.  

2.2.1.8 DNA isolation from E. coli cells 

For isolation of plasmid DNA, single colonies containing plasmid DNA were picked 

from solid LB supplemented with Ampicillin and applied for liquid culture. 

2.2.1.9 Small scale plasmid DNA preparation (“Mini prep”) 

To isolate small amount of plasmid DNA, alkaline lysis method was applied (Birnboim 

and Doly, 1979). Single colonies were picked and cultured for 16 h at 37°C in five ml 

LB supplemented with ampicillin. Next, one ml of culture was collected by 

centrifugation (16000 g, 30 sec, RT) and cells were resuspended in 300 µl E1 buffer. 
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Alkaline lysis performed by adding 300 µl E2 buffer and subsequent incubation for 5 

min at RT. After neutralization by adding 300 µl E3 buffer, plasmid DNA was 

separated from cell debris by centrifugation (15000 g, 15 min, RT). Subsequently 

supernatant were transferred for precipitation to a reaction tube containing 600 µl of 

96% isopropanol. Sample were centrifuged (15000 g, 15 min, 4°C), the supernatant 

discarded and DNA pellet was washed with ice-cold 70% (V/V) ethanol and dried for 5-

10 min at 50 °C. DNA plasmid was resuspended in 30 µl water and stored at -20°C. 

2.2.1.10 Medium scale plasmid DNA preparation (“Midi prep”) 

For isolation of medium amounts of plasmid DNA the Pure Yield Plasmid Midiprep 

System (Promega) was used according to the manufacturer’s instruction. After 

determination of DNA concentration, isolated plasmids were stored at -20 °C. 

2.2.2 Methods in yeast genetics 

2.2.2.1 Cultivation of S. cerevisiae cells 

Yeast cells were grown on full or selective media, with fermentable (as glucose, 

galactose, sucrose) or non-fermentable (glycerol or lactate) carbon sources. Liquid 

cultures were grown at 30°C and moderate shaking (120 rpm). The growth of cells was 

monitored by determination of OD600. Yeast cultures on solid media were stored for up 

to several weeks at 4°C. For long term storage, yeast cells were resuspended in 15% 

(v/v) glycerol and stored at -80°C.  

2.2.2.2 Transformation of yeast cells  

For the transformation of yeast cells, the lithium acetate method with slight 

modifications was used (Gietz, 1995). Cells were grown on solid YPD medium 

overnight at 37°C. A small amount of cells were scraped from the YPD plate and 

suspended in one ml H2O. After centrifugation (16000 g, 30 sec, RT), the cells were 

resuspended in one ml of 100 mM sterile lithium acetate. Cells were then incubated at 

30°C for 5 min with slight shaking (500 rpm). Afterwards, the cells were harvested 

again by centrifugation (16000 g, 30 sec, RT) and resuspended in a solution containing 

the following ingredients: 240 µl 50% (w/v) polyethylene glycol 3350, 55 µl water, 36 

µl one M lithium-acetate, 10 µl of a solution with 5 mg/ml heat-denatured salmon sperm 

DNA, and 5 µl DNA (100-600 ng/µl). After thorough mixing, the mixture was 

incubated at 42°C for 30 min with shaking at 800 rpm. Subsequently, cells were 
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sedimented by centrifuge (16000 rpm, 30 sec, RT) and streaked on a plate of the 

appropriate selective medium. Plates were incubated at 30°C for 2-5 days until colonies 

appeared. Transformed colonies were streaked on fresh plates for further experiments. 

For transformation of DNA fragments for subsequent homologous recombination, yeast 

cells from logarithmic growing liquid cultures were used instead of cells from plate. 

2.2.2.3 Mating of yeast strains and tetrad analysis 

For creating double-deletion yeast strains, two types of cells harboring each a single 

deletion and having a different mating type (MATa or MATα) were streaked on separate 

YPD plates as parallel line and incubated overnight at 30°C. Replica plating was done 

with a velvet-covered disk onto new selective medium. After the first plate was 

replicated on new selective medium, the cell lines of the second plate were replicated on 

the same new plate perpendicular to the previous cells. The new plate was incubated at 

30°C for a couple of days to allow growth of only mated diploid cells. After growing, 

the heterologous diploid knock out cells, were streaked on to a sporulation medium and 

incubated at room temperature to stimulate sporulation. The amount of sporulated cells 

was monitored by microscopy.  

Subsequently, a small amount of cells was picked from the sporulation plate and 

resuspended in solution containing 1.2 M sorbitol supplemented with 100 µg/ml 

zymolyase. Digestion of the cell wall of the asci was performed by incubation for 10 

min at 30°C. One drop of this mixture was spotted on a new YPD plate. Tetrad 

dissection was done with micromanipulator (ZEISS, Axioscope 40). Finally, single 

ascis were selected and divided into four spores and each spore was shifted by a tiny 

needle and located at a certain position on the plate. After incubation at 30°C for a few 

days the spores grew out to colonies which were then streaked on a new selective 

medium to analyze growth by auxotrophic markers. The mating type of single colonies 

was determined by mating-type-PCR (Huxley, 1990).    

2.2.3 Methods in cell biology 

2.2.3.1 Drop Dilution Assay  

Drop dilution assays were performed to compare the growth phenotype of yeast strains. 

For this assay, yeast cells were inoculated in 20 ml liquid culture of YPD or synthetic 

medium. The culture was diluted to an OD600 of 0.2 and grown further to reach to an 
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OD600 of one. The cells were harvested by centrifugation (3000 g, 5 min, RT) washed 

once with water and resuspended in sterile water to an OD600 of 2.0. The OD600 of all 

strains was adjusted to the same value with sterile water. Cell suspensions of the strains 

to be analyzed were diluted with water in a fivefold series and five µl of each dilution 

was spotted on solid media. The plates were incubated at 15°C, 30°C or 37°C for up to 

7 days.  

2.2.3.2 Isolation of crude mitochondria from yeast cells 

Yeast cells were harvested from culture at an OD600 of ca. 1.2 by centrifugation (3000 g, 

5 min, RT) and washed once with water. The cell pellets were resuspended in SEM 

buffer supplemented with 2 mM PMSF to yield a total OD600 of 270 or higher. After 

adding 600 mg glass beads to the suspension, cells were lysed by five times extensive 

vortexing for 30 seconds with pauses on ice in between. After centrifugation (1000 g, 5 

min, 4°C), the supernatant, which contains the whole cell lysate, was transferred to a 

new tube and protein concentration was determined by Bradford assay. Crude 

mitochondria were harvested from the whole cell lysate by centrifugation (13200 g, 10 

min, 4°C). The pellet contains the crude mitochondria whereas the supernatant contains 

proteins from the cytosolic and ER fractions. The mitochondrial fraction was dissolved 

directly in 2×Laemmli buffer whereas the proteins of the supernatant were precipitated 

first with trichloroacetic acid (TCA) (cf. 2.2.4.2) before addition of 2×Laemmli buffer. 

All samples were subjected to SDS-PAGE. 

2.2.3.3 Isolation of pure mitochondria from yeast cells  

Isolation of pure mitochondria from S. cerevisiae cells was performed by enzymatic 

spheroblastation according to a previously described method (Daum et al., 1982 ). Yeast 

cells were grown at different temperatures of 30°C, 37°C, or 25°C in 0.5-1 liter of 

appropriate medium (YPD, YPG, SD, SG). The cells were harvested at an OD600 of 1.2-

2.0 by centrifugation (3000 g, 5 min, 20°C), washed with water, and reisolated. 

Afterwards the pellet was weighted and resuspended in resuspension buffer (2 ml/g 

cells). After shaking for 10 min at 30°C, the cells were harvested by centrifugation 

(3000 g, 5 min, 20°C) and resuspended in 50 ml of 2.4 M sorbitol. Cells were harvested 

by centrifugation (3000 g, 5 min, 20°C), resuspended in spheroblasting buffer (6.6 ml/g 

cells) and incubated while shaking for 60 min at 30°C. The spheroblasted cells were 

harvested by centrifugation (2000 g, 5 min, 2°C) and then the pellet was resuspended in 
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homogenization buffer (6.6 ml/g cells). The cell suspension was homogenized with a 

glass dounce tissue grinder by 12 strokes in an ice-bath. The homogenized lysate was 

cleared from cell debris by two consecutive centrifugation steps (2000 g, 5 min, 4°C). 

The pellet was discarded and mitochondria were isolated from the lysate by 

centrifugation (18000 g, 15 min, 4°C). The supernatant from this step was kept if 

cytosolic proteins had to be analyzed.  

The pellet was resuspended in 30 ml SEM buffer supplemented with 2 mM PMSF. The 

mitochondria were further purified by two low speed centrifugations (2000 g, 5 min, 

4°C) and finally pure mitochondria were isolated by high speed centrifugation (18000 g, 

15 min, 4°C) and resuspended in 250 µl SEM buffer. Protein concentration was 

determined by the Bradford assay. The mitochondria were then aliquoted, snap frozen 

and stored at -80°C. The supernatant which contains crude cytosolic proteins was either 

subjected to chloroform/methanol precipitation, followed by SDS-PAGE or clarified by 

another centrifuge step (18000 g, 15 min). Glycerol was added to the resulting 

supernatant to a final concentration of 10%. Aliquots of 2 ml were prepared, snap-

frozen in liquid nitrogen and stored at -80°C.  

2.2.3.4 Cycloheximide treatment of yeast cells 

To study the stability of yeast proteins, cells were treated with the protein synthesis 

inhibitor cycloheximide. Yeast cells were grown at various temperatures in 400 ml of 

appropriated culture medium to reach an OD600 of 0.8-1.0. Next, 100 µg/ml 

cycloheximide was added to the culture (time=0) and then aliquots of 100 ml were 

removed at different time points (0, 1, 2 and 4 h after addition of cycloheximide). The 

cells were harvested by centrifugation (3000 g, 5 min, RT) and the pellets were 

subjected to further analysis such as crude mitochondrial isolation or whole cell lysate 

analysis by SDS-PAGE and western blotting.  

2.2.3.5 Fluorescence microscopy of yeast cells 

To study mitochondrial morphology, yeast cells were transformed with an expression 

vector harboring GFP fused to the mitochondrial presequence of subunit 9 of F0-

ATPase of Neurospora crassa (Westermann and Neupert, 2000, Mozdy et al., 2000). 

The transformed cells were grown overnight at 30 °C or 37 °C in 20 ml of selective 

medium. The culture was diluted to an OD600 of 0.1 and incubated to reach an OD600 of 

0.6-0.8. One ml of the culture was harvested by centrifugation (8000 g, 30 sec, RT) and 
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resuspended in the fresh medium. Then, 5 µl of the cell solution sample was mixed with 

5 µl of 1% low melting point agarose (Roth), placed on a microscope slides and covered 

with a coverslip. Fluorescence microscopy was done with a ZEISS Axioscope 

microscope. Pictures were taken with an Axio Cam MRm system (Zeiss). Fluorescence 

of GFP was excited at 488 nm and its emission peak was monitored at 509 nm.  

2.2.3.6 In vivo site-directed crosslinking 

For studying the interaction of a protein of interest with other cytosolic factors site-

specific cross-linking was used according to a previously published protocol with slight 

modification (Chen S. and P.G., 2007, Carvalho P. et al., 2010, Tamura et al., 2009). 

First, yeast cells were transformed with two plasmids to introduce the photo-reactive 

cross linking residue, p-benzoyl-L-phenylalanine (Bpa, Bachem) into the protein of 

interest. One plasmid contains the coding sequence for the protein of interest which 

harbors an amber stop codon (TAG) in the desired position and the other plasmid 

contains the coding sequence of an amber suppressor tRNA and its cognate aminoacyl-

tRNA synthetase that specifically charge the suppressor tRNA with Bpa (Chin et al., 

2003b). Pre-cultures of yeast cells containing both plasmids were grown overnight at 

30°C on selective medium (SD-trp-leu-phe medium supplemented with Bpa) and 

diluted to an OD600 of 0.3 in 200 ml of the same media. Bpa was dissolved in one M 

NaOH and freshly added to the culture to a final concentration of 0.2-0.6 mM. As a 

control, a culture without Bpa was prepared. The cells were incubated at 30°C with 

slight shaking to reach to an OD600 of 1.0-1.2 and then they were harvested by 

centrifugation (3000 g, 5 min, RT). For photo-crosslinking reactions, the cell pellets 

(from both cultures with and without Bpa) were divided into two samples of 800 µl 

water each (75 OD600 units of cells per sample) and transferred to a 12-well plate 

(Becton Dickinson). The suspensions were placed on ice and one sample was exposed 

to ultraviolet light (Blak-Ray® Ultraviolet Lamp, B-100 AP; UVP, USA, λ = 365 nm) 

for one hour at 4°C (+UV). The other half of the cells sample served as a control and 

was stored at 4°C without exposure to (-UV). Next, both irradiated cells (+UV) and 

non-irradiated cells (-UV) were transferred to 2 ml microcentrifuge tubes, washed once 

with water and resuspended in 200 µl SEM buffer supplemented with 2 mM PMSF. The 

samples were subjected to whole cell protein extraction by mechanical cell disruption 

(cf.2.2.3.2). After determination of the protein concentration in the whole cell lysates, 

the samples (+/- Bpa, +/- UV) were applied to SDS-PAGE analysis. 



	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   MATERIALS AND METHODS 

	
   38 

2.2.4 Methods in protein biochemistry 

2.2.4.1 Determination of protein concentration 

Protein samples were diluted (1:5 or 1:10) in one ml Bradford reagent (original reagent 

diluted fivefold in SEM buffer). As a standard calibration samples of 200-1000 µg/ml of 

BSA (bovine serum albumin) were used. Absorbance was measured at a wavelength of 

595 nm by photometer (Eppendorf® BioPhotometer®). 

2.2.4.2 Methanol/Chloroform protein precipitation 

Soluble proteins were precipitated with chloroform and methanol precipitation method, 

as described previously (Wessel and Flügge, 1983). Protein samples were mixed by 

short vortexing with four volumes of methanol. Next, one volume of chloroform was 

added and vortexed and finally three volumes of water were added and vortexd 

extensively for 20 sec.  Precipitated proteins were harvested by centrifugation (16000 g, 

5 min, RT). The supernatant was removed as much as possible without disturbing the 

interface layer. One ml of methanol was added to the pellet and transferred to 1.5 ml 

Eppendorf tubes. After another extensive mixing, the sample was centrifuged again 

(16000 g, 2 min, RT). Supernatant was removed and the protein pellet was air-dried for 

5 min and dissolved by boiling for 10 min in 2×Laemmli buffer. 

2.2.4.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE)  

Protein samples were analyzed by discontinuous SDS-polyacrylamide electrophoresis 

as described before (Lämmli, 1970). Depending on the sizes of the proteins of interest, 

gels with polyacrylamide content between 8-15% were used. Polyacrylamide gels were 

casted between two glass plates using one mm spacers and were composed from a 

bottom gel to prevent leakage, a separating gel to separate proteins and a stacking gel on 

top. The composition of the acrylamide gels is specified in Table 2.24. Protein samples 

were dissolved in Laemmli buffer and cooked for 5 min at 95°C before their analysis by 

SDS-PAGE. Electrophoresis was performed at 25 mA in a vertical installation between 

two reservoirs of running buffer for about 2-5 hours according to the acrylamide 

percentage and the size of protein of interest. Protein ladder (PAGE Ruler™; 

Fermentas) was used as a molecular weight standard. 
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Table 2.24. Composition of polyacrylamide gels used for SDS-PAGE analysis of 
protein samples. 

 

2.2.4.4 Detection of proteins in polyacrylamide gels by Coomassie staining 

After SDS-PAGE, proteins in polyacrylamide gels were visualized by Coomassie 

staining. The gel was incubated for one hour in Coomassie staining solution. 

Subsequently was destain two times for 30 min with water and once again for 2 h in 

destaining solution (30 % (v/v) methanol, 10 % (v/v) acetic acid) to visualize the protein 

bands on a clear background. 

 
2.2.4.5 Western Blotting 

Transfer of proteins from polyacrylamide gels onto nitrocellulose membranes (Protran, 

Roth) was done using the semi-dry electroblotting method (Kyhse-Andersen, 1984). 

First two layer of filter paper (Whatman; Roth) were placed on the graphite electrode of 

a blotting chamber followed by a nitrocellulose membrane, the separating gel and 

finally additional two layers of the filter paper. Filter paper, nitrocellulose membrane 

and gel were shortly soaked in blotting buffer before assembly. Electroblotting was 

performed for one hour at 220 mA, which corresponds to approximately one mA per 

cm2 of nitrocellulose membrane. Blotting efficiency was checked by Ponceau staining. 

2.2.4.6 Immunodetection of proteins 

Proteins were transferred from polyacrylamide gel onto nitrocellulose membrane as 

described above. The membrane was incubated in blocking buffer for one hour at RT to 

block unspecific binding sites. Afterwards, the membrane was incubated with primary 

antibodies for either one hour at RT or overnight at 4°C. Next, the membrane was 

washed three times for five min in TBS, then once in TBS-Tween 20 and finally once 

again in TBS. The membrane was then incubated for one hour at RT with the secondary 

Component Stacking 
gel 

Running gel 
 

Bottom 
gel 

 - 8 % 10 % 12.5 % 15% 

40% aa / bis-aa (29:1) 563 µl 2.5 ml 3.13 ml 3.91 ml 3.75 ml 
1M Tris pH 8.8 - 4.69 ml 4.69 ml 4.69 ml 3.75 ml 
1M Tris pH 6.8 625 µl - - -  

water 3.76 ml 5.18 ml 4.55 ml 3.77 ml 2.39 ml 
10% APS 50 µl 125 µl 125 µl 125 µl 100 µl 
TEMED 4 µl 10 µl 10 µl 10 µl 8 µl 
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antibody followed by washes as described above. Finally, ECL solution was applied to 

the membrane and chemoluminescence signal was detected with X-ray films (Fuji 

Super RX films; Fujifilm) and developed using a Konica X-ray film developing 

machine SRX-101A (Konica Minolta). 

2.2.4.7 In vivo pulse chase experiment  

Pulse chase analysis was performed to examine processing of proteins over the time 

during import into mitochondria. First, cells were grown on selective medium overnight 

at 30°C and diluted to an OD600=0.6 in 25 ml culture to reach an OD600 of 1.2. Cells 

were harvested by centrifugation (3000 g, 5 min, RT) and washed twice with 2.5 ml 

sterile water to get rid of methionine. Subsequently cells were diluted in 25 ml of 

medium without methionine to make sure that the cells use hot methionine once we add 

it. The cells were starved by incubation one hour at 30°C in a shaker and harvested by 

centrifugation (3000 g, 5 min, RT). Next, cells were dissolved in 2.5 ml of media 

without methionine and incubated again 10 min at 30°C. After incubation, 7µl of 35S-

Met was added to the culture and incubated for 5 min for pulse phase. Labeling or pulse 

phase was stopped by adding 25 µl of 0.1 % (w/v) cycloheximide and in parallel 25µl of 

0.3% cold methionine was added to the culture to start the chase phase. Samples (500µl) 

were taken at different time point and added immediately to a previously prepared 1.5 

ml Eppendorf tubes already containing 50 µl of sodium azide (100 mM) solution to kill 

the cells and subsequently transferred immediately on ice. Cells were harvested by 

centrifugation (4500g, 1 min, 4°C) and washed twice with 500 µl sodium azide (10mM) 

and then dissolved in 400 µl TE Buffer supplemented with one mM PMSF. Next, 300 

µg of glass beads were added to the mixture and cells were broken by mechanical cell 

disruption. Cell debris and beads were harvested by centrifugation (1000 g, 3 min, 2°C) 

and supernatant which contain mitochondria and cytosolic protein transferred to the new 

Eppendorf tubes. To release proteins from mitochondrial protein, 100 µl of TENN×4 

buffer was added to the 300 µl of supernatant. This suspension was added to the 20 µl 

HA which previously had been washed three times with one ml TENN×1 buffer. After 

overnight incubation of mixture in 4°C, beads were sedimented and washed three times 

with TENNS buffer. Finally, the beads resuspended in 50 µl 2×Laemmli buffer. All 

samples were applied to SDS-PAGE analysis and autoradiography. 
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2.2.4.8 In vitro synthesis of radiolabeled proteins 

To synthesize 35S-radiolabeled proteins, genes of interest were cloned in the plasmid 

pGEM4 (Promega) and the gene was transcribed into mRNA by SP6-polymerase 

(Melton D.A. et al., 1984). Transcription reaction was performed for 1 h at 37 °C and 

contained the ingredients indicated in Table 2.25.  

 

Table 2.25. Composition of transcription reaction 
 
 
 
 
 
 
 
 
 

 

   

After incubation, synthesized mRNA was precipitated by adding 5 µl of 10 M LiCl and 

150 µl ethanol p.A and the reaction mixture was incubated for 3 h at -20°C or overnight 

at -80°C. Afterwards the RNA was collected by centrifugation (37000 g, 20 min, 2°C) 

and washed once with 500 µl ice-cold 70% ethanol and was isolated by centrifugation 

again (37000 g, 5 min, 2°C). The pellet was resuspended in 37 µl H2O supplemented 

with 2 µl RNase inhibitor. Aliquots (12.5 µl) were stored at -80°C.  

For translation of mRNA into 35S-labeled protein, the translation mixture was composed 

of the components indicated in Table 2.26 

 

                                            Table 2.26. Composition of translation reaction 

Component Volume 

Transcribed RNA  12.5 µl 

RNase inhibitor 0.5 µl 

Mg-acetate 15 µm 3.5 µl 

AA without met 1mM  1.75 µl 

Reticulocyte lysate 50ml 
35S-Met  6µl 

 

The reaction was incubated for one hour at 30°C. After incubation, 6 µl of methionine 

(58 mM) and 12 µl of Sucrose (1.5 M) were added to the reaction. To remove 

Component Volume 
5 × Tr-puffer 10 µl 
0.1 M DTT 5 µl 
RNase inhibitor (Promega) 2 µl 
2.5 mM rNTP-mix (GE Healthcare) 10 µl 
7 methyl- G (5´) ppp (5´) G cap (Amersham) 2.6 µl 
SP6 Polymerase 1.5 µl 
DNA Plasmid (1µg/ml) 5 µl 
H2O 13.9 µl 
Total 50 µl 
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ribosomes the reaction mixture was centrifuged (90000 g, 50 min, 4°C). The cleared 

supernatant was used for in vitro import experiments. 

2.2.4.9 In vitro import of proteins into mitochondria 

Isolated mitochondria were resuspended in import buffer (50 µg organelle/ 100 µl). 

Radiolabeled proteins (3-6 µl of lysate) were added at 25°C or 37°C to the import 

reaction and the mixture was incubated for various time periods. Import reactions were 

then inhibited by addition of 600 µl SEM-K80 buffer. Mitochondria were reisolated by 

centrifugation (13200 g, 10 min, 2°C) and subjected to PK treatment to remove 

unimported proteins. The pellets were resuspended in 2×Laemmli buffer and analysed 

by SDS-PAGE and autoradiography (c.f. 2.2.4.10). 

2.2.4.10 Proteinase K treatment of mitochondria 

Isolated mitochondria were resuspended in 100 µl SEM buffer supplemented with 

Proteinase K (200 µg/ml) and incubated on ice for 30 min. The reactions were stopped 

by adding PMSF (2 mM) and incubating the mixture for 5 min on ice. The organelles 

were re-isolated by centrifugation (13200 g, 10 min, 2°C). The pellets were resuspended 

in 2×Laemmli buffer and incubated for 5 min at 95°C before analysis by SDS-PAGE. 

2.2.4.11 Autoradiography and quantification of bands 

Radiolabeled proteins were transferred to nitrocellulose membrane and detected by X-

ray film that was exposed to the membrane (Kodak Bio Max MM). Exposure time was 

dependent on the signal intensity and varied between two to seven days. For 

quantification of autoradiography and immunodetection films, AIDA Image Analyzer 

v.4.19 software was used. 

2.2.4.12 Pull-down with Ni-nitrilotriacetic acid (Ni-NTA) agarose beads 

Whole cell lysate with or without UV treatment was resuspended in 500 µl lysis buffer 

(Table 2.15) and applied to the mechanical cell disruption with glass beads. After 

determination of protein concentration 9% (v/v) Triton X-100 was added to one mg 

protein of the lysate. The samples were incubated for 30 min at 4°C. To clarify the 

lysate from undissolved material, the mixture was centrifuged (30000 g, 30 min, 4°C). 

In parallel, 50 µl Ni-NTA agarose beads (1:1 slurry) were washed once with water and 

pre-equilibrated with lysis buffer for one hour at 4°C. The supernatant was applied to 
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the equilibrated beads and the mixture was incubated for one hour at 4°C on an 

overhead shaker. Afterward the beads were harvested by centrifugation (400 g, 2 min, 

4°C) and washed twice with wash buffer for 5 min at 4°C. Finally, the beads were 

sedimented again and resuspended in 50 µl 2×Laemmli buffer. All samples were 

applied to SDS-PAGE analysis. 

2.2.4.13 Over-expression and purification of GST-tagged proteins Expression and 
purification of recombinant proteins in E. coli 

Plasmids encoding recombinant proteins pGEX-4T-1 (GST), pGEX-4T-1-Tom70cd 

(Tom70 cytosolic domain-GST), and pGEX-4T-1-Tom20cd (Tom20 cytosolic domain-

GST) were expressed in E. coli BL-21 cells. The cells were initially cultivated in one 

liter of LB medium supplemented with 100 µg/ml ampicillin till an OD600 of 0.5-0.8. 

Then expression of the recombinant proteins was induced by adding one mM IPTG to 

the culture and cells were grown for further 4 h at 37°C. Subsequently the cells were 

harvested and stored at -20°C until further use. Expression of the desired protein was 

monitored by SDS-PAGE followed by Coomassie staining. 
The harvested cells were resuspended in GST lysis buffer (1 gr cells/10 ml buffer) and 

incubated for 45 min at 4°C with shaking (120 rpm). The resuspended cells were 

applied to a French press (Emulsifelx-C3) machine. Cell debris and unbroken cells were 

separated by centrifugation (15000 g, 15 min, 4°C). Next, the supernatant was applied 

to two ml GSH-sepharose™ 4B beads (GE Healthcare), which previously washed with 

15 ml water and equilibrated with 20 ml GST basic buffer, and incubated overnight at 

4°C on an overhead shaker. Subsequently, the mixture of lysate and beads was 

transferred to a purification column and the column was washed with 20 ml of GST 

basic buffer. Finally elution was performed with 15 ml GST elution buffer. Fractions of 

one ml were collected and protein concentration was measured by Nanodrop 

photometer (PEQLAB-nanodrop-ND). Fractions containing more than 1 mg/ml proteins 

were dialyzed three times for one hour in two liter of GST basic buffer using Slide-a-

Lyzer dialysis cassettes (Pierce/Perbio, Thermo Fisher Scientific,) and aliquoted into 

samples of 100 or 200 µg. 

2.2.4.14 Pull-down of purified GST-tagged proteins and yeast cytosol with GSH-
sepharose beads 

The GST-tagged proteins and GST alone (as control), were incubated with 100 µl of 

GSH-sepharose™ 4B beads, which were previously washed 5 times with GST basic 
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buffer for 2 h at 4°C, in a final volume of 400 µl on an overhead shaker. As Tom70cd-

GST, Tom20cd-GST, GST has a molecular weight of approximately 100, 50 and 25 

kDa, respectively, four times more Tom70cd-GST (800 µg) and two times more 

Tom20cd-GST (400 µg) were utilized in order to employ the same molar amount (8 

nmol) of all three proteins. Afterward GSH-sepharose™ beads coated proteins were 

treated with 3% TBS in cytosol lysis buffer (CLB, 0.6 M Sorbitol, 10 mM Tris-HCl, 

and pH 7.4) to block unspecific binding sites. In parallel GST-coated GSH-sepharose™ 

beads were incubated with 2 ml cytosol, (supplemented with 0.5 mM EDTA, 1 mM 

PMSF, protease inhibitor) for 2 h at 4°C. Finally the pre-cleared cytosol was incubated 

overnight at 4°C on an overhead shaker with protein-coated GSH-sepharose™ beads. 

After the incubation the mixture was centrifuged (13000 g, 1 min, 4°C) and the 

supernatant was discarded. The beads were washed 3×times with CLB supplemented 

with 100 mM NaCl and then resuspended in 200 µl of 2×Laemmli buffer, heated at 

95°C for 5 min and 30 µl aliquot was analyzed by SDS-PAGE and immunodecoration.
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3. Results 
	
  

	
  

	
  

	
  

	
  

3.1 Identification of cytosolic factors that interact with presequence containing 
mitochondrial precursor proteins  

3.1.1 Optimization of the integration of a photo-reactive amino acid for in vivo 
photo-crosslinking 

So far, it is not clear which cytosolic factors assist the targeting of presequence-

containing mitochondrial precursor proteins to the Tom20 receptor. In this study, I 

wanted to identify such cytosolic factors. To this end, I used in vivo site-directed photo-

crosslinking of the model precursor protein pCyb2-DHFR-His9 to search for such 

potential interaction partners. The model protein pCyb2-DHFR-His9 consists of the N-

terminal mitochondrial targeting sequence (aa 1-87) of Cytochrome b2 (L-lactate 

cytochrome-c oxidoreductase, Cyb2), a dihydrofolate reductase (DHFR) moiety and a 

C-terminal His-tag. Cyb2 resides in the mitochondrial intermembrane space. It is 

required for lactate utilization and its expression is repressed by glucose and anaerobic 

conditions (Lodi and Guiard, 1991, Guiard, 1985). 

In vivo site-directed photo-crosslinking requires the efficient integration of the photo-

reactive, unnatural amino acid p-benzoyl-L-phenylalanine (Bpa) at a specific site of the 

protein of interest. The incorporation of Bpa is accomplished using the so-called tRNA 

suppressor method (Chin et al., 2003a, Chen et al., 2007). For this a mutant version of 
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the protein of interest containing an internal amber stop codon (TAG) at a specific 

position is co-expressed with an amber suppressor tRNA which recognizes the amber 

stop codon and an aminoacyl-tRNA synthetase which charges the suppressor tRNA 

with Bpa. In this way, the photo-reactive Bpa is incorporated into the protein in 

response to an amber stop codon during translation. Upon UV irradiation (λ = 350 nm) 

Bpa reacts preferentially with C-H bonds in its vicinity, thereby forming of a new 

covalent C-C bond (Kauer et al., 1986).  

Since in this study I was interested in interactions of the presequence part of the protein, 

Bpa was inserted into the N-terminal targeting sequence of pCyb2-DHFR-His9 (Fig. 

3.1). 

    

Fig. 3.1: Schematic representation of the photo-crosslinking method; A) Chemical structure 
of the photo-reactive diarylketone p-benzoyl-L-phenylalanine (Bpa). B) Map of the plasmid 
used for expression of the orthogonal amber suppressor tRNACUA/aaRS pair in yeast (Chen et 
al., 2007). C) Bpa is inserted into a polypeptide chain during translation using a suppressor 
tRNA system, which recognizes a specific codon. Upon UV irradiation, Bpa can react with 
molecules in its vicinity and forms a covalent bond (www.sakmarlab.org/reserach).  

To search for the optimal conditions for a high crosslinking efficiency different 

constructs of pCyb2amber-DHFR-His9, which have the amber stop codon (TAG) at 

different positions (residue 4, 8,10, 13 or 16) were expressed in yeast cells that harbor 

the orthogonal amber suppressor tRNACUA/aaRS pair which charges the tRNA with 

Bpa. The cells were grown on selective medium supplemented with 0.6 mM Bpa or 

A	
  

B	
  

C	
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without Bpa (as a control) and harvested in the logarithmic growth phase. After UV 

illumination, the cells were lysed by mechanical cell disruption and the whole cell 

extract was analyzed by SDS-PAGE and immunoblotting with antibodies against DHFR 

(Fig. 3.2). To increase the chances of the newly translated proteins to interact with 

cytosolic factors the cross-linking experiments were also performed in mim1∆ cells 

where import of mitochondrial proteins is hampered and slowed-down.  

For cells expressing pCyb2amber-DHFR-His9, immunobloting with antibodies against 

DHFR revealed additional bands when the cells were exposed to UV irradiation. From 

all the constructs tested, replacement of codon 16 by TAG (pCyb2amber16- DHFR-His9 

construct) gave rise to the highest number crosslinking bands (Fig. 3.2 E). This means 

that residue 16 is a good location for the in vivo photo-crosslinking probe. pCyb2-

DHFR-His9 alone has molecular weight of about 38 kDa. Thus, it can be assumed that 

cross-linked adducts of this protein should have a molecular mass higher than 40 kDa 

and indeed such bands were observed.  

Of note, the same band pattern and also very similar amounts of the putative cross-

linked adducts were observed in both WT and mim1∆ cells after UV treatment (Fig. 

3.2). Thus, all further photo-crosslinking experiments were performed in WT cells.  

After identifying pCyb2amber16-DHFR-His9 as the best construct for studying putative 

interaction partners of the mitochondrial presequence, this construct was used in all 

further experiments as a model precursor protein. 
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Fig. 3.2: pCyb2amber-DHFR-His9 constructs can be used for photo-crosslinking; The 
indicated pCyb2amber-DHFR-His9 constructs were expressed in WT and mim1∆ cells. The cells 
were grown in selective medium in the absence or presence of Bpa and harvested in the 
logarithmic growth phase for subsequent UV irradiation. As a control, half of the cells were not 
subjected to UV illumination. Finally, the cells were lysed and whole cell extracts were 
subjected to SDS-PAGE, western blotting, and immunodetection with antibodies against DHFR. 
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3.1.2 Identification of cytosolic factors that interact with Cyb2amber16- DHFR-His9 

To identify the aforementioned cross-linking adducts the experiments were performed 

as described above and then, the cell lysate was subjected to affinity purification of the 

His-tagged protein via Ni-NTA beads. The rational was to enrich the cross-linked 

species and to separate them from the non-relevant proteins. Samples containing cross-

linked proteins were then subjected to SDS-PAGE. Identification of the proteins that 

were cross-linked to pCyb2amber16-DHFR-His9 was achieved by immunodecroation 

using antibodies against known cytosolic factors and mitochondrial outer membrane 

proteins that are involved in the mitochondrial import process (Table 3.1) 

Table 3.1: A list of cytosolic factors and mitochondrial import receptors that were 
examined for their incorporation into cross-linking adducts.  

Cytosolic chaperones, co-chaperone and import receptors 
 

References 

Hsp82 Hsp90 chaperone in S. cerevisiae; its ATPase 
activity is regulated by various co-chaperones. 

(Finkelstein and 
Strausberg, 1983, 

Prodromou et al., 1999) 
Ssa1 Member of the Hsp70 family forms a chaperone 

complex with Ydj1; involved in protein folding 
and protein translocation 

(Kim et al., 1998b, 
Ziegelhoffer et al., 1995, 

Deshaies et al., 1988). 
Sti1 Co-­‐chaperone of Hsp90; inhibits Hsp90 ATPase; 

interacts with the Ssa group of cytosolic Hsp70 
chaperones and activates the ATPase activity of 
Ssa1; adapter protein connecting the Hsp70 and 
Hsp90 chaperone machinery; homologous to 
mammalian Hop 

(Nicolet and Craig, 1989, 
Richter et al., 2003a, 
Wegele et al., 2003) 

Ydj1 Co-­‐chaperone of cytosolic Hsp70 proteins Ssa1 
and Ssa2; belongs to Hsp40/DnaJ family; 
involved in protein translocation across 
membranes 

(Caplan et al., 1992, 
Caplan and Douglas, 

1991) 

Sba1 Co-­‐chaperone of Hsp90; homologous to 
mammalian p23 proteins  

(Fang et al., 1998) 

Aha1 Co-­‐chaperone of Hsp90; activates ATPase 
activity of Hsp90; expression is regulated by 
stress 

(Panaretou et al., 2002, 
Siligardi et al., 2004) 

Hsp26 Member of small heat shock protein family; 
suppresses aggregation of unfolded proteins; 
activity only under stress conditions; not express 

(Bentley et al., 1992, 
White et al., 2006) 

Sis1 Hsp40 co-­‐chaperone; interacts with Ssa1; has 
different substrate specificity than Ydj1 

(Luke et al., 1991, Fan et 
al., 2004) 

Tom40 MOM general import pore (Pfanner et al.1996) 

Tom22 MOM receptor (Pfanner et al.1996) 

Tom20 MOM receptor (Pfanner et al.1996) 
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Specific cross-linked bands after UV irradiation were detected for the molecular 

chaperones Hsp82 and Ssa1 as well as for the co-chaperones Ydj1 and Sti1 (Fig. 3.3). 

Of note, despite the unspecific binding of these chaperones to the Ni-NTA beads, the 

cross-linking adduct is visible only upon UV irradiation. For Sti1, more than one 

specific band was detected. This might be due to different crosslinking configurations 

that migrate at different apparent molecular weights in SDS-PAGE. However, specific 

cross-linked bands were detected neither for the other cytosolic factors nor the import 

receptors. Collectively, it can be concluded that Hsp82, Ssa1, Ydj1 and Sti1 are 

potential interaction partner of pCyb2-DHFR-His9. This indicates that these cytosolic 

factors might be involved in the import of presequence-containing mitochondrial 

proteins.  

 

 

 

 

Fig. 3.3: Sti1, Ssa1, Hsp82 and Ydj1 are potential interaction partners of pCyb2-DHFR-
His9; A) Crosslinking experiments were performed and cells lysate was affinity-purified by Ni-
NTA beads. Bound material was analyzed by SDS-PAGE and immunodecoration. The middle 
panel is immunodecorated with antibodies against the His-tag to detect all cross-linked 
products. Left panel was decorated with antibodies against Ydj1 and the right one with 
antibodies against Hsp82. Ydj1-containing photo-adduct is indicated with “x” and Hsp82-
containing one with an arrowhead. B) Experiments were performed and analyzed as described 
in Panel A. Ssa1-containing photo-adduct is indicated with an asterisk and Sti1-containing one 
with a triangle. 
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3.2 The Role of Sti1 in the import of mitochondrial proteins 

3.2.1 In vivo import of pCyb2-DHFR-His9 and pSu9-DFHR-His6 is affected upon 
deletion of STI1 

Next, I wanted to study the involvement of the candidates in biogenesis of 

mitochondrial proteins. The most straightforward method is to study the phenotypes of 

strains deleted for the candidate proteins or where these are down-regulated. However, 

since Hsp82 is an essential chaperone in yeast and acts in different cellular pathway its 

deletion strain is not viable. For Ssa1 and Ydj1, it has been already demonstrated that 

they are involved in import of mitochondrial preproteins to their organelle (Caplan. et 

al. 1992, Deshaies et al. 1988). In contrast, so far, nothing is known about interaction of 

Sti1 with mitochondrial proteins and its involvement in their targeting to mitochondria. 

To better understand the role of Sti1, we tested whether the import efficiency of 

mitochondrial preproteins is affected in vivo by the absence of Sti1. To this end, two 

sti1Δ strains and their corresponding wild types (W303α and YPH499) were 

transformed with the presequence-containing model proteins pCyb2-DHFR-His9 or 

pSu9-DHFR-His6. Cells were grown on selective medium, harvested and the 

mitochondrial and cytosolic fractions were isolated, analyzed by SDS-PAGE and 

immunoblotting. In this way the steady-state levels of the two different constructs in the 

different backgrounds can be examined (Fig.3. 4).  

The results indicate that the amount of pCyb2-DHFR-His9 detected in mitochondria of 

both Sti1 deletion strains is reduced in comparison to those in organelles from WT cells 

(Fig. 3.4 A). Of note, both the precursor and mature forms of the protein were affected. 

Interestingly, the quantity of the precursor form in the cytosol was hardly affected by 

the absence of Sti1 in the YPH499 background but was dramatically altered in the 

W303 background (Fig. 3.4 A). These results indicate that in the absence of Sti1 less 

molecules of pCyb2-DHFR-His9 are imported into the organelle and the non-imported 

ones are probably degraded.  

In contrast, the import of pSu9-DHFR-His6 into mitochondria was not affected by the 

absence of Sti1 in the YPH499 background. Surprisingly, in the W303α background, 

the precursor form of the model protein was reduced whereas the mature form had 

elevated levels in the mitochondrial fraction of sti1Δ cells when compared to control 

organelles (Fig. 3.4 B). Collectively, these observations suggest that the effect of the 

deletion of Sti1 on the in vivo import of the model proteins depends on the genetic 



                                                                                                                                                                     RESULTS 

	
   	
  52 

background and varies between the two proteins. Hence, to further analyze in vivo the 

effect of Sti1 on the import of mitochondrial proteins all further experiments and 

analysis were performed in the W303α background. 

 

 

Fig. 3.4:  Steady-state levels of pCyb2-DHFR-His9 and pSu9-DHFR-His6 in sti1Δ cells are 
altered; Wild type (WT) and sti1Δ (∆) cells from W303α and YPH499 backgrounds harboring 
a plasmid encoding pCyb2-DHFR-His9 or pSu9-DHFR-His6, were grown on selective medium. 
The mitochondrial (M) and cytosolic (C) fractions were isolated and analyzed by SDS-PAGE 
and immunodecoration with the indicated antibodies. The precursor and mature forms of the 
preproteins are indicated with p and m, respectively. Hexokinase (Hxk) and Tom40 are used as 
marker proteins for the cytosol and mitochondria, respectively. 

3.2.2 Steady-state levels of mitochondrial presequence-containing proteins are not 
affected in sti1Δ cells 

The previous experiment revealed that the biogenesis of both pCyb2-DHFR-His9 and 

pSu9-DHFR-His6 was affected in a STI1 deletion strain in the W303α background. 

Next, we tested whether the reduced amount of imported proteins is related to the 

absence of Sti1 or to the expression system. To this end, we investigated the steady-

state levels of the model proteins when they are encoded by another vector, pYX132 

instead of pES426 or pRS426. DHFR alone, pSu9-DHFR and pSu9-GFP were 

expressed in the sti1∆ and the corresponding wild type strain. Samples were prepared as 

before, analyzed by SDS-PAGE and immunodecoration (Fig. 3.5).  
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Fig. 3.5: The import of the model preproteins is not affected in sti1∆ cells; WT and sti1∆ 
cells were transformed with the pYX132 vector encoding pSu9-DHFR or pSu9-GFP or with 
pYX142-DHFR. The cells were grown on YPG medium, harvested and lysed to isolate 
mitochondrial (M) and cytosolic (C) fractions. Both fractions were subjected to SDS-PAGE and 
immunodecoration with the indicated antibodies. C1: colony 1, C2: colony 2. 
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The results show that the steady-state levels of proteins expressed from the pYX132 

vector is similar in WT and sti1Δ cells. Therefore, the previously reduced amount of 

protein in sti1Δ cells is probably related to the expression system rather than actual 

import deficiency in the deletion strain.  

3.2.3 The steady-state levels of presequence-containing proteins expressed from 
various vectors are not affected in sti1Δ cells 

To further investigate the effect of the expression vector on the steady-state levels of the 

expressed proteins, other pYX vectors and proteins were checked in the WT and sti1∆ 

strains. Since pYX132 is a centromeric plasmid and pRS426 or pEs426 are 2µ plasmid, 

we tested whether the previously observed effects on the steady-state levels of the 

expressed protein were due to the type of plasmid. WT and sti1Δ cells were transformed 

with pRS426-DHFR, pRS426-Fis1, pYX232-Oep37, pYX142-Mim1, and pYX132-

Mcr1, and whole cell lysate samples were prepared as before and analyzed by SDS-

PAGE and immunodecoration (Fig. 3.6). 

 

 

Fig. 3.6: Comparison of protein expression from vectors with different replication 
elements; The indicated constructs were expressed in WT and sti1Δ cells. Whole cell lysates 
were subjected to SDS-PAGE and decorated with corresponding antibodies.  

The Results indicated that the amount of DHFR, Fis1, and Oep37 which were expressed 

from the 2µ plasmids were reduced in the sti1∆ strain when compared to the WT while, 

the steady state levels of Mcr1 and Mim1 which were expressed from the centromeric 

vectors were similar in both strains. Hence, we can conclude that the reduced amounts 

of proteins in the sti1∆ strain is related to their higher expression level from the 
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multicopy plasmids. Since DHFR, Fis1 and Oep37 reside in the cytosol or the MOM 

this effect is not related to the presence of a presequence.  

3.3 Deletion of STI1 does not influence the levels of pSu9-DHFR-HA 

Next, we intended to analyze the influence of Sti1 on the import in vivo of precursor 

proteins by pulse-chase experiments. To this end, pYX113-pSu9-DHFR-HA was 

expressed in WT and sti1Δ cells and radiolabeled methionine (S35-Met) was added for a 

brief period. The radiolabeled methionine was then washed away and non-radiolabeled 

methionine was added to the cultures. The cells were lysed and subjected to a pull-down 

with HA beads and samples were subjected to SDS-PAGE and autoradiography. The 

experiments were performed at either 30°C or 37°C (Fig. 3.7 A and B).  

 

Fig. 3.7: Sti1 does not influence the in vivo import of pSu9-DHFR-HA; A and B) WT and 
sti1Δ cells were pulsed with radiolabeled Met at 30°C (A) or 37°C (B) and then cold Met was 
added and samples were removed after the indicated time periods. P; Precursor protein; m; 
Mature protein. 

The deletion of STI1 did not significantly decrease the import efficiency of pSu9-

DHFR-HA as reflected by the amounts of the mature form of the protein. Taken 

together, a specific and physiological role of Sti1 in the import of mitochondrial 

preproteins could not be verified by these in vivo experiments. 
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3.4 The role of Sti1 in the stability of mitochondrial precursor proteins  

To test whether Sti1 has an effect on the stability of presequence-containing 

mitochondrial precursor proteins, the life span of pSu9-DHFR or pCyb2-DHFR were 

monitored in WT and sti1∆ strains. To that goal the translation inhibitor cycloheximide 

was added to the cultures at a certain time point and samples where then removed after 

various time periods. The cells were harvested, lysed and the whole cell lysates were 

subjected to SDS-PAGE and immunodecoration with antibodies against DHFR (Fig. 

3.8). The results show that the stability of pSu9-DHFR was not affected in the sti1∆ 

strain (Fig. 3.8 A and B) while for pCyb2-DHFR no signal was detected in the deletion 

strain (Fig. 3.8 C). In the absence of Sti1, pCyb2-DHFR was either degraded 

immediately after translation or it was not expressed at all. Since previous experiments 

showed that the type of the vector could affect the protein expression, we suspected that 

the absence of pCyb2-DHFR in the whole cell lysate of sti1∆ cells might be related to 

the expression system rather than to enhanced protein degradation. In order to 

distinguish between these two possibilities, we tested if expression of pCyb2-DHFR 

from other vectors will result in the same result. Since pSu9-DHFR expression was 

from the pYX132 plasmid (CEN origin) and pCyb2-DHFR expressed from the pYES2 

plasmid (2µ origin), we checked other plasmid (pES426) with 2µ origin. To this end, 

WT and sti1∆ strains from two different backgrounds (W303α and YPH499) were 

transformed with pES426-pCyb2-DHFR and the protein stability at 34°C was analyzed 

as before (Fig. 3.8 D and E). The results indicate that the stability of pCyb2-DHFR is 

not affected by the absence of Sti1 in the YPH499 background, except for the time point 

one hour at which the precursor form of pCyb2-DHFR could not be detected in the 

sti1∆ cells. This result was, however, not reproducible. But in the W303α background, it 

seems that the precursor form of pCyb2-DHFR was degraded or expressed at lower 

levels in the sti1∆ strain. Unfortunately, these experiments are not conclusive enough to 

determine whether the stability of mitochondrial precursor proteins is dependent on 

Sti1. 
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Fig. 3.8: Role of Sti1 in the stability of mitochondrial precursor proteins; Yeast cells 
expressing pCyb2-DHFR or pSu9-DHFR were grown in liquid medium cycloheximide was 
added to the cultures (t=0), and cells were further incubated for the indicated time periods. Cells 
were harvested and lysed and the whole cell lysates were analyzed by SDS-PAGE. A and B) 
pYX132-pSu9-DHFR expressed in W303α cells A) at 30°C. B) at 37°C. C) pYES2-Cyb2-
DHFR expressed in W303α cells at 30°C. D) pES426-Cyb2-DHFR expressed in YPH499 cells 
at 34°C. E) pES426-Cyb2-DHFR expressed in W303α cells at 34°C. 

3.5 Deletion of STI1 affects the steady-state levels of a subset of mitochondrial 
proteins 

To further investigate the effect of the deletion of STI1 on mitochondrial proteins, 

whole cell lysates of both WT and sti1Δ strains which were grown on glucose-

containing medium (YPD or SD) were prepared and the steady-state levels of several 
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mitochondrial proteins were analyzed by SDS-PAGE and immunoblotting (Fig. 3.9 and 

Fig. 3.10). The steady-state levels of most of the examined mitochondrial proteins were 

not significantly altered upon the deletion of STI1 some proteins showed increased or 

decreased levels in sti1∆ cells. Importantly, only Fis1 and Hep1 showed a major 

decrease in their steady-state levels in sti1Δ cells on both YPD and SD medium. 

However, this effect is only seen at 37°C. Additionally, Hsp70 and Hsp60 were slightly 

decreased, but the reduction was not as pronounced as for Fis1. Taken together, we can 

conclude that only a small subset of mitochondrial proteins is affected by the absence of 

Sti1 under heat stress conditions. Since the result for other mitochondrial matrix protein 

was very variable, it is not completely clear whether Sti1 is necessary for the biogenesis 

of mitochondrial proteins containing an N-terminal targeting signal.  

 

 

 

 
 

 

 

 

 

 

 

 

 

	
  



                                                                                                                                                                     RESULTS 

	
   	
  60 

 

Fig. 3.9: Steady-state levels of various mitochondrial proteins in WT and sti1Δ cells grown 
on YPD medium; Wild type (W303α) cells as well as sti1Δ cells were cultivated in YPD 
medium at 30 or 37°C, subsequently harvested and lysed. Whole cell extracts were subjected to 
SDS-PAGE analysis and immunoblotting with antibodies against various mitochondrial matrix 
proteins as well as against Sti1 to confirm its deletion. The cytosolic proteins hexokinase and 
Bmh1 were used as loading control. A) Mitochondrial outer membrane proteins. B) 
Mitochondrial matrix proteins.  
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Fig. 3.10: Steady-state levels of mitochondrial matrix proteins in WT and sti1Δ cells grown 
on SD medium; Wild type (W303α) cells as well as sti1Δ cells were cultivated and analyzed as 
described in the legend to Fig. 3.9. A) Mitochondrial outer membrane proteins (MO). B) 
Mitochondrial matrix proteins. 
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3.6 Sti1 affects mitochondrial morphology 

In addition to the importance of Sti1 for proteins biogenesis we were interested to 

investigate the influence of the deletion of STI1 on mitochondrial morphology. To that 

goal WT and sti1Δ cells were transformed with a plasmid encoding matrix-targeted GFP 

(mt-GFP) to visualize their mitochondria. The mitochondrial morphology of these cells 

was analyzed by fluorescence microscopy (Fig. 3.11).  
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Fig. 3.11: Deletion of STI1 affects mitochondrial morphology; A) Mitochondrial 
morphology was analyzed by fluorescence microscopy in WT and sti1Δ yeast cells that were 
grown at 37°C on SD-Leu medium. B) Statistical analysis of three independent experiments. 
Fragmen. & aggregate. Fragmented and aggregated mitochondria. 

This analysis indicated that the mitochondria in the deletion strain were altered and 

fragmented as compared to the WT strain. Mitochondria of WT yeast form branched or 

tubular networks distributed around the cell but in the STI1 deletion strain they were 

mostly fragmented and aggregated. Statistical analysis of the mitochondrial morphology 

showed that most sti1Δ cells harbor mitochondria with an abnormal morphology is 

much more than normal morphology (Fig. 3.1 B). Moreover, the sti1Δ cells are larger in 

size in comparison with WT cells. Taken together, these results show that Sti1 plays an 

important role in mitochondrial and cell morphology. 

3.7 STI1 deletion affects cell growth at elevated temperature   

To further study the function of Sti1, the effect of this co-chaperone on the cell growth 

of yeast cells was investigated. WT (W303α) and sti1∆ cells were grown on liquid YPD 

or SD media at 30°C or 37°C and their growth was measured. As shown in Fig. 3.12 

A,C, the sti1Δ strain showed the same growth behavior as the WT at 30°C. However, at 
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elevated temperature the mutant strain grew slower than the WT strain (37°C) on both 

YPD and SD media (Fig. 3.12 B and D). These findings show that the deletion of STI1 

affects cell growth at elevated temperature. 

 

Fig. 3.12: Deletion of STI1 affects cell growth at elevated temperature; WT and sti1Δ cells 
were grown on YPD (A, B) or SD (C, D) at 30°C and 37°C and the growth was analyzed by 
measuring the OD600 at various time points. A) YPD medium at 30°C, B) SD at 30°C, C) YPD 
at 37°C, D) SD at 37°C. 

3.8. Genetic interaction between STI1 and MIM1 

Fluorescence microscopy and cell growth studies indicated that the absence of Sti1 

could affect mitochondrial morphology and cell growth. To better understand the 

physiological role of Sti1 the growth of sti1Δ cells was analyzed also on solid medium. 

Furthermore, the genetic interaction of STI1 with the import factor MIM1 was 

investigated. To that goal the double deletion strain mim1Δsti1Δ was created and the 

growth phenotype of the single deletion strains as well as the double deletion strain was 

monitored by drop-dilution assay (Fig. 3.13).  
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Fig. 3.13: Drop dilution assay of wild type, sti1Δ, mim1Δ and mim1Δsti1Δ cells; Drop 
dilution assay was performed using knockout strains and the corresponding wild type cells 
(W303α) on YPD and SD medium at 15°C, 30°C and 37°C. 

The results show that sti1Δ and the corresponding WT (W303α) grow equally well on 

YPD and SD medium at 30°C. However, at lower temperature (15°C) sti1Δ cells 

displayed a slightly reduced growth rate compared to the corresponding wild type strain. 

This growth defect phenotype was even more pronounced at 37°C on both SD and YPD 

media. It can be concluded that Sti1 is necessary for cells in stress conditions especially 

at elevated temperatures and on synthetic media. Moreover, the double knockout strain 

(mim1Δsti1Δ) shows severe growth defect at 37°C in both YPD and SD medium that are 

by far more elaborated than the single deletion strains. It can be concluded that MIM1 is 

a genetic interaction partner of STI1.  

3.9 Deletion of MIM components affects association of Sti1, Ssa1 and Hsp82 with 
mitochondria 

The drop dilution assay showed that there might be a genetic interaction between STI1 

and MIM1. To better understand the role of the MIM complex in relation to Sti1 and to 

other cytosolic factors strains with a deletion of Mim1 or Mim2 and wild-type cells as a 

control were grown on YPG medium. Their mitochondria were isolated and subjected to 

the SDS-PAGE and immunoblotting (Fig. 3.14).  
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Fig. 3.14: Deletion of MIM complex components affects association of cytosolic factors 
with mitochondria; mim1Δ, mim2Δ and the corresponding WT (W303α) cells were grown on 
YPG medium. Their mitochondria were isolated and analyzed by SDS-PAGE and 
immunodecoratin with the indicated antibodies. Pic2 was used as a loading control whereas 
Tom40 is known to be affected by deletion of Mim subunits. 

The results suggest that in the absence of Mim1 or Mim2, the amount of Sti1 and Ssa1 

on the mitochondrial surface is reduced in comparison to WT cells. Interestingly, in the 

absence of Mim1 the level of associated Hsp82 is dramatically increased whereas in the 

absence of Mim2 it is decreased. Taken together, the components of the MIM complex 

affect the association of these cytosolic factors with the mitochondrial surface. It seems 

that the deletion of Mim2 has a stronger effect than the deletion of Mim1.  
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3.10 The role of the import receptors Tom20 and Tom70 in the association of 
cytosolic factors with the mitochondrial surface 

3.10.1 Cytosolic factors interact differentially with Tom20 and Tom70 

It is known that cytosolic Hsp70 and Hsp90 chaperones are involved in the import of 

carrier proteins into mitochondria and are docking on the import receptor Tom70 

(Young et al, 2003). In order to screen the yeast cytosol for specific cytosolic binding 

partners of Tom20 and Tom70, pull-down experiments with N-terminally GST-tagged 

recombinant versions of the cytosolic domains (cd) of Tom70 (Tom70cd-GST) and 

Tom20 (Tom20cd-GST) were performed (Fig. 3.15). Samples representing the bound 

material were subjected to SDS-PAGE and immunodecoration with antibodies against 

different cytosolic factors (Fig. 3.15 A).  

 

Fig. 3.15: Interaction of cytosolic factors with Tom70cd-GST and Tom20cd-GST; A) The 
indicated recombinant GST-tagged proteins were incubated with GSH-sepharose beads and 
subsequently with cytosol isolated from yeast WT cells (W303α). The beads were washed and 
bound material was analyzed by SDS-PAGE and immunodecoration with the indicated 
antibodies. B) The same membrane as in part A was stained with Ponceau S to detect the GST-
tagged proteins (indicated with asterisk).  
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The results show that Sti1, Ssa1 and Hsp82 bind specifically to the Tom70 receptor. 

This was shown before in the case of Ssa1 (Young et al. 2003). On other hand, Sis1 and 

Ydj1 bind better to Tom20 receptor. Sba1 did not bind to any of the receptors and 

Hsp26 binds rather equally weak to both receptors. Hence, we can conclude that 

similarly to Ssa1, Sti1 and Hsp82 can be recognized by Tom70 while Sis1 and Ydj1 are 

recognized by Tom20. 

3.10.2 Genetic interaction of STI1 and TOM20  

The pull-down experiments showed that under in vitro conditions Sti1 binds better to 

Tom70 while so far it is known that presequence-containing mitochondrial proteins are 

recognized mainly by Tom20. If Sti1 is interacting with such preproteins, one can 

expect that Sti1 interacts also with Tom20. To test this possibility, the growth 

phenotype of cells harboring a double deletion of STI1 and TOM20 or their single 

deletion were assessed by drop-dilution assay on YPD and YPG medium at 15°C, 30°C 

or 37°C (Fig. 3.16). The results indicate that the double deletion causes a severe growth 

defect in comparison with the single deletions of either STI1 or TOM20. As functional 

mitochondria are necessary for yeast cells to utilize non-fermentable carbon sources 

such as glycerol, a reduced growth rate on YPG medium is an indicator for a defect in 

mitochondrial function and/or biogenesis. The impaired growth rate exhibited by 

sti1Δtom20Δ cells on glycerol-containing medium implies a reduced mitochondrial 

function in the double knockout strain.  
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Fig. 3.16: Double deletion of TOM20 and STI1 causes severe growth defect; A drop dilution 
assay was performed using WT, sti1Δ, tom20Δ and sti1Δtom20Δ (W303α) strains on YPD and 
YPG medium at 15°C, 30°C and 37°C. 

3.10.3 Steady state levels of mitochondrial proteins and cytosolic factors in 
sti1Δtom20Δ cells 

To further investigate the function of Sti1 in mitochondrial protein import, steady state 

levels of mitochondrial proteins and cytosolic factors associated with mitochondria 

were checked in sti1Δ, tom20Δ, sti1Δtom20Δ and the corresponding WT (W303α) 

strain. Cells were grown on YPG medium and after harvesting and lysis, mitochondrial 

and cytosolic fractions of all strains, were subjected to SDS-PAGE and 

immunodecoration with antibodies against cytosolic factors (Fig. 3.17) and 

mitochondrial proteins (Fig. 3.18). The results demonstrate that the steady state levels of 

Sba1 and Hsp82 are the same in all strains suggesting that Sti1 and/or Tom20 are not 

involved in the mitochondrial association of these chaperones. However, the steady 

state levels of some cytosolic factors like Ydj1, Sis1 and Hsp26 were elevated in sti1Δ 

or sti1Δtom20Δ. Importantly, the steady state levels of Hsp26 and Sis1 were increased 

in the mitochondrial fraction of the double deletion strain (Fig. 3.17 C and D) while the 

Ydj1 level increased in the cytosolic fraction but not in the mitochondrial one. 

However, it was also elevated in sti1Δ cells (Fig. 3.17 B).  
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Fig. 3.17: Steady state levels of cytosolic factors in cytosolic and mitochondrial fractions; 
A) Cells from the indicated strains were grown on YPG medium, harvested and lysed to 
separate cytosolic (C) and mitochondrial (M) fractions. Each fraction was subjected to SDS-
PAGE followed by immunodecoration with the indicated antibodies. Hexokinase (Hxk) was 
used as a loading control. B) Quantification of the steady state levels of Ydj1, Sis1 and Hsp26. 
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These results indicate that Hsp26, Sis1 and Ydj1 might play an important role in the 

absence of both Tom20 and Sti1 to compensate for the missing activity of the co-

chaperone and receptor. Alternatively, the steady state level of these proteins could be 

increased because of stress conditions that occur in the absence of Tom20 and Sti1. 

The steady state levels of most of the examined mitochondrial proteins did not change 

in response to the deletion of STI1 and TOM20. Only the Pic2 and Porin levels were 

significantly decreased in mitochondria from the sti1Δtom20Δ strain (Fig.3.18). Taken 

together, we could not observe major alteration in the steady-state levels of 

mitochondrial proteins in the absence of Sti1 or Tom20. Even when both proteins were 

deleted the steady state levels of only some mitochondrial proteins were affected.  

 

 

Fig. 3.18: Steady state levels of the mitochondrial proteins Pic2 and porin are reduced in 
mitochondria from sti1∆tom20∆ cells; A) Cells from the indicated strains were grown on YPG 
medium, harvested and lysed to separate cytosolic (C) and mitochondrial (M) fractions. Each 
fraction was subjected to SDS-PAGE followed by immunodecoration with the indicated 
antibodies. B) Quantification of the steady state levels of Porin and Pic2. The levels of Fis1 
were taken as loading control. (∆∆; sti1∆tom20∆). 
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3.11 Hsp90 affects in vitro import of Mpp1 into mitochondria 

To investigate the role of Hsp90 in the import of mitochondrial precursor proteins, 

radiolabeled Mpp1 was imported into isolated mitochondria in the presence or absence 

of Radicicol. Radicicol inhibits the activity of Hsp90 in the rabbit reticulocyte lysate 

and therefore enables us to analyze its role in mitochondrial protein import. Import of 

Mpp1 was analyzed by SDS-PAGE and autoradiography (Fig. 3.19).  

 

Fig. 3.19: In vitro import of Mpp1 is reduced when Hsp90 is inhibited; A) In vitro import of 
Mpp1 in the presence or absence of Radicicol. p, precursor protein; m, mature form. B) 
Statistical analysis of part A. 

The results show that the import of Mpp1 was inhibited by the presence of Radicicol. 

Thus, it appears that Hsp90 affects the import of Mpp1 at least under these in vitro 

conditions. However, since this result was not reproducible with other mitochondrial 

precursor proteins we cannot conclude that Hsp90 plays a general role in the import of 

mitochondrial precursor proteins. 
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4. Discussion   
	
  

 

 

 

	
  

4.1 Identification of molecular chaperones that interact with 
mitochondrial preproteins  

Cytosolic factors such as molecular chaperones are required to prevent mitochondrial 

precursor proteins from folding and aggregation and to keep them in an import-

competent state. Moreover, chaperones are also involved in the interaction with the 

mitochondrial import machinery. For instance, the recognition of chaperone-precursor 

molecule complexes can be mediated by the import receptor Tom70 that is known to 

have chaperone activity. So far, only little is known about the identity and the potential 

function of cytosolic chaperones assisting in import of presequence-containing 

mitochondrial proteins. Additionally, the mechanism by which newly synthesized 

precursor proteins are targeted to the surface of the organelle still remains largely 

unresolved (Beddoe and Lithgow, 2002; Young et al., 2003; Zara et al., 2009). In this 

study, cytosolic factors interacting with the presequence of the model protein pCyb2-

DHFR were identified in yeast cells by site-directed in vivo photo-crosslinking. It has 

been demonstrated that the cytosolic factors Sti1, Ssa1, Hsp82 and Ydj1 interact in vivo 

with pCyb2-DHFR.  

Ssa1, one of the cytosolic isoforms of Hsp70 was previously suggested to be involved in 

mitochondrial protein import. In fact, Ssa1 has been reported to bind to the amphiphilic 

presequences of many mitochondrial precursor proteins (Endo et al., 1996) and has been 
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shown to interact with the mitochondrial surface receptor Tom70 (Young et al., 2003). 

Ydj1, a Hsp40 co-chaperone, plays undefined role in protein import into mitochondria 

and mitochondrial protein biogenesis was defect in cells harboring mutated YDJ1. 

Interestingly, it was shown that overexpression of Sis1 (another Hsp40 co-chaperone) 

can rescue this mutation (Caplan et al., 1992). Both Ydj1 and Sis1 belong to the Hsp40 

family of co-chaperones and interact with Hsp70 family proteins (Caplan and Douglas, 

1991; Luke et al., 1991). Thus, their role in mitochondrial biogenesis might be related to 

the involvement of Hsp70 in mitochondrial protein import.  

In this study it was demonstrated that Ydj1 interacts with both mitochondrial 

preproteins and the import receptor Tom20. However, the precise role of this co-

chaperone in targeting and import of mitochondrial proteins could not be evaluated. 

Hence, at this stage, it can be concluded that Ydj1 probably functions as a regulatory 

partner protein of Ssa1. Additionally, Ydj1 was suggested to assist targeting of Hsp70 

proteins to both mitochondria and ER via its farnesyl membrane-anchor (Caplan et al., 

1992; Becker et al., 1996). Hence, Ydj1 might be involved indirectly in mitochondrial 

protein import as a co-chaperone or might assist the specific recognition of precursors 

by Tom20 receptor. 

Additionally, Sti1 and Hsp82 were identified as interaction partners of pCyb2-DHFR. 

These findings indicate that the co-chaperone Sti1 seems to be involved in import of 

preproteins into mitochondria. Since so far nothing has been reported about the role of 

this co-chaperone in mitochondrial protein import, I mainly focused in this study on this 

co-chaperone. The role of these cytosolic factors will be further discussed in section 4.2. 

In addition to cytosolic factors, we expected to find interactions of the presequence with 

components of the mitochondrial import machinery at the outer membrane such as 

Tom20, Tom40, Tom22 and Tom70. Especially interactions with the import receptors 

Tom20 and Tom22, which are known to bind presequence-containing proteins was 

anticipated. However, no cross-linked species specific for the main import receptors 

Tom70 and Tom20 were detected by immunodecoration. Only for Tom22 an interaction 

was shown, but this was not reproducible. Several reasons might be responsible for the 

absence of such detected interactions. First, the association of the hydrophobic face of 

pCyb2-DHFR with Tom20 is mediated by only short stretch of amino acids. Since the 

photo-reactive probe was located on the verge of this interacting region it might not be 

in the vicinity of Tom20. Second, the interaction of the presequence with receptors 
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might be very transient and temporary whereas the binding to the abundant cytosolic 

chaperones is probably more stable. Thus, a larger fraction of the precursor proteins are 

bound to cytosolic factors and therefore crosslinked to them. The small amount of 

precursor proteins that might be bound to outer membrane import factors and X-linked 

to them is apparently under these conditions too low to be detectable by 

immunodecoration.  

4.2 Involvement of Sti1 in mitochondrial import of preproteins 

As mentioned above, cytosolic chaperones are often involved in either binding to 

unfolded substrates keeping them in an import-competent state or in association with 

aggregate substrates to induce their refolding or degradation. My results identified Sti1 

as an interaction partner of preproteins. Thus, I had a special interest to evaluate its 

potential role in precursor targeting and in the mitochondrial import process. Sti1 is an 

Hsp90 co-chaperone, homolog of mammalian Hop that regulates spatial organization of 

amyloid-like proteins in the cytosol (Frydman and Höfeld, 1997). This protein not only 

functions as a co-chaperone but also acts as an adapter between Hsp70 and Hsp90 and 

mediates their assembly to form a functional complex. It works as a linker, which 

specifically recognizes the C-terminal end of Hsp70 and Hsp90 by its two TPR clamp 

domains. In this way Sti1 assists the substrate transfer from Hsp70 to the Hsp90 

chaperone machinery (Scheufler et al., 2000; Wegele et al., 2003). Additionally Sti1 

interacts with the Ssa group of the cytosolic Hsp70 chaperones and activates Ssa1 

ATPase activity. In contrast, upon its interactions with Hsp90 chaperones it inhibits 

their ATPase activity (Nicolet et al. 1989, Wolfe et al. 2013, Richter et al. 2003, Wegele 

et al. 2003).  

While Hsp90 null mutations are lethal, deletion of STI1 does not affect cell growth at 

25°C or 30°C, but causes a slight defect of growth at higher and lower temperatures 

(Chang et al., 1997). In the present study we could confirm this report and extend it by 

observing a slight growth defects on non-fermentable carbon source (YPG) even at 

30°C. Furthermore, we observed also alterations in mitochondrial morphology upon 

deletion of STI1. Despite these observations neither the steady-state levels of most 

mitochondrial proteins nor their in vivo import, as studied by pulse-chase experiments, 

was affected upon such a deletion. Our results indicate that among matrix proteins only 

the steady-state levels of Hep1 decreased in sti1Δ. Among the other mitochondrial 

proteins the levels of Fis1, a tail-anchored protein, was affected as well. Taken together, 
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my findings imply that Sti1 is not an essential import factor. It might be that in the 

absence of Sti1 another protein is taking over its function. Indeed, a previous study has 

suggested that Tom34 is a specific cytosolic factor for mitochondrial protein import in 

mammalian cells. The protein was found in a complex of at least five different proteins 

(Hsp90, Hsp70, Hop, Cdc37 and Tom34) and this complex associates with 

mitochondrial preproteins (Faou et al. 2011). As Hop is the mammalian homologue of 

Sti1, it seems likely that Sti1 works in mitochondrial protein import within a complex. 

Further investigation is required to find the exact role of Sti1 in mitochondrial protein 

import. 

In this study it was observed that the levels of certain proteins were affected in sti1Δ 

cells when these proteins were encoded by a high-copy plasmid (2µ). Plasmids, which 

carrying 2µ origin of replication, encode proteins that allow cells to maintain 20-50 

copies of the plasmid. Since this type of plasmids is maintained at such high copy 

numbers, they provide a convenient way to monitor the effects of overproduction of a 

particular gene product. Such a high production of a single protein puts the cell under 

high stress conditions. It seems that in the absence of Sti1 cells have difficulties to 

handle this over-production. In contrast, the amount of expressed precursor protein and 

its import efficiency were similar in WT and sti1Δ cells when the protein was encoded 

by a vector with CEN origin which provide low copy number. Therefore, the results 

obtained in this study do not allow precise conclusions concerning the exact function of 

Sti1 in mitochondrial protein import. They do however indicate that Sti1 is required to 

allow cells to deal with high amount of expressed proteins.  

Although Sti1 was reported in some cases to functionally interact with Ssa proteins 

independently of Hsp90 chaperones (Jones et al., 2004), the majority of the Sti1 

molecules in yeast cells are found in complex with Hsp90 (Chang et al., 1997; Chang 

and Lindquist, 1994). Thus, the identification of Sti1 as an interaction partner of the 

presequence of pCyb2-DHFR strongly suggests an involvement of yeast Hsp90 (Hsp82) 

as well. Hsp90 chaperones function in mammalian cells downstream of Hsp70 and have 

been reported to control the activity, turnover, and trafficking of a variety of client 

proteins (Pearl and Proromou, 2000; Zhao et al., 2005). The Hsp90 chaperone cycle 

involves highly dynamic and transient multi-chaperone complexes. Thus, the client 

proteins interact directly with several chaperones and co-chaperones (Buchner, 1999). 

Hsp82 was found in our photo-crosslinking experiments to be an interaction partner of 

pCyb2-DHFR. Moreover in vitro import experiments showed that Hsp82 might be 
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important for import of certain mitochondrial matrix protein like MPP. Conversely, 

other presequence-containing proteins like pSu9-DHFR or F1β were not affected. Thus, 

the contribution of Hsp90 might be substrate specific. 

Since both Hsp70 and Hsp90 can bind to a variety of proteins and do not specifically 

recognize mitochondrial precursor proteins, other factors like co-chaperones might play 

a crucial role in the specificity of precursor recognition and targeting to mitochondria. 

Many of these co-chaperones bind to Hsp70 and Hsp90 by the help of three or more 

TPR domain (Scheufler et al., 2000). Therefore it is possible that Sti1 functions in 

cooperation with Hsp70 and Hsp90 to mediate mitochondrial protein import. However, 

it remains still unclear if and how mitochondrial precursor proteins can be specifically 

recognized. Additional experiments have to be performed in combination of Sti1 with 

Hsp70 and Hsp90 or other co-chaperone like Ydj1 and Sis1.  

4.3. Physiological role of Sti1 in S. cerevisiae 

Beside the function of Sti1 in mitochondrial protein import, Sti1 was also observed to 

affect mitochondrial morphology and cell growth under elevated temperature 

Furthermore it was shown that Hsp90 interacts with Sti1 (Hop) in lysates of yeast and 

vertebrate cells (Chang et al.1997). The overexpression of Sti1 has allele-specific 

effects on cells carrying various hsp90ts point mutations. These genetic interactions 

provide strong evidence that Hsp90 and Sti1 interact in vivo and their functions are 

closely allied. Indeed, deletion of STI1, in vivo reduces the activity of the Hsp90 target 

protein, glucocorticoid receptor (GR). Mutations in GR that eliminate interaction with 

Hsp90 also eliminate the effects of HOP deletion. Examination of GR protein 

complexes in the STI1 deletion mutant reveals a selective increase in the concentration 

of GR-Ydj1 complexes, supporting previous hypotheses that Ydj1 functions at an early 

step in the maturation of GR and that Sti1 acts at an intermediate step. Hence, it appears 

that Sti1 is a general factor in the maturation of Hsp90 target proteins (Chang et 

al.1997). In this study we found that STI1 has genetic interaction with MIM1. Mim1 is a 

mitochondrial outer membrane protein that is required for the assembly of the TOM 

complex of mitochondria (Waizenegger et al. 2005, Ishikawa D, et al. 2004). It also 

plays an important role in import of multispan mitochondrial outer membrane proteins 

like Ugo1 and Om14 (Papic et al, 2011, Becker et al., 2011). Recently it has shown that 

Mim1 is necessary for integrating Tom20 into the Tom complex as well (Hulett JM, et 

al 2008). Since mutation in both STI1 and MIM1 genes produced growth defect 
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phenotype at elevated temperature it can conclude that there is genetic interaction 

between STI1 and MIM1 under stress conditions. This genetic interaction can reveal 

functional relationship between genes and pathways but direct physical interaction 

between these two proteins was not examined in this study.  

Moreover our observations indicate that STI1 also genetically interact with TOM20.  

Double deletion of these two genes produced a synthetic growth phenotype as well. 

However, the steady state levels of only some mitochondrial protein such as Porin and 

Pic2 were affected in this double deletion strain. Porin is a high abundance protein in 

mitochondrial outer membrane that was reported to be recognized by Tom20 (Krimmer 

et al. 2001). Pic2 is a mitochondrial copper and phosphate carrier that is located in the 

inner membrane. Usually, the targeting and translocation of such carrier proteins are 

mediated by the Tom70 import receptors. Thus, a common characteristic for both 

proteins is not obvious.  

Tom20 is the main import receptor for mitochondrial preproteins. It has no TPR clamp 

domain that can mediate the interaction between Hsp70 and Hsp90 and it binds directly 

to the mitochondrial targeting signal (Bhangoo et al., 2007; Abe et al., 2000). In 

addition, Tom20 is also involved in mitochondrial localization of mRNAs encoding 

mitochondrial proteins (Eliyahu et al., 2010). In yeast cells, an interaction of Tom20 

with other components of the chaperone-precursor complex could not be demonstrated. 

In contrast, in mammalian cells the co-chaperone AIP was found to bind directly to 

Tom20 via its TPR clamp domain and transfers preprotein-Hsc70 complexes to the 

import receptor (Yano et al., 2003). Moreover, cytosolic domains of Tom20 and Tom22 

have a chaperone-like activity (Yano et al., 2004). This might explain why the 

involvement of cytosolic chaperones in Tom20-mediated import seems to be less 

pronounced (Young et al., 2003).  

Since Sti1 has TPR domain it might also interact with Tom20 for targeting 

mitochondrial protein to the organelle. We showed in this study that Sti1 interacts in 

vitro stronger with Tom70 than with Tom20. However, other cytosolic factors like Ydj1 

and Sis1 were found to interact in vitro with Tom20. Both proteins are Hsp40 co-

chaperones. Sis1 is a Type II Hsp40 co-chaperone that interacts with the Hsp70 protein 

Ssa1. It shuttles between cytosol and nucleus to mediate delivery of misfolded proteins 

into the nucleus for degradation and is also involved in proteasomal degradation of 

misfolded cytosolic protein and protein abundance increases in response to DNA 



	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DISCUSSION 

	
   	
  79 

replication stress. Sis1 functions similar to bacterial DnaJ proteins and mammalian 

DnaJB (Luke, et al. 1991, Summers DW, et al. 2013). The second protein, Ydj1 is a 

DnaJ-like type I Hsp40 co-chaperone that is involved in regulation of Hsp90 and Hsp70 

functions. It acts as an adaptor that helps Rsp5p to recognize cytosolic misfolded 

proteins for ubiquitination after heat shock and is critical for determining cell size. 

Indeed, Ydj1 was reported to facilitate proteins translocation across different 

intracellular membranes (Caplan et al. 1992; Atencio and Yaffe 1992).  A role of Sis1 in 

mitochondrial protein import was not reported so far. 

4.4 Conclusions 

Taken together, the results of this study are not conclusive regarding a specific 

involvement of Sti1 or Hsp82 in import of mitochondrial preproteins. However, the 

current findings demonstrate that Sti1 can affect mitochondrial morphology. Moreover 

the absence of Sti1 causes growth defect in yeast cells. The slow growth of Sti1Δ cells 

on non-fermentable carbon source support the notion that absence of Sti1 can cause 

mitochondrial deficiency. The direct reason for this defect is not clear as the steady state 

level of most tested mitochondrial proteins did not changed in Sti1Δ cells. However, 

since the levels of some proteins like Hep1 and Fis1 were decreased in the absence of 

Sti1, it might be that the lower levels of only some key proteins are sufficient to cause 

such a growth phenotype. Furthermore in this study it was found that STI1 genetically 

interacts with MIM1 and TOM20 and pull-down experiment showed that Sti1 has 

physical interaction with Tom70 as well.  In summary, Sti1 plays, a yet to be defined, 

role in mitochondrial biogenesis. 

4.5 Outlook 

It might be that the in vivo conditions used in most of the assays are not optimal to 

detect a specific contribution of a single protein due to the redundancy among the 

various chaperones. Furthermore, the reticulocyte lysate that was used for in vitro 

translation and import is of mammalian origin and hence was not the best system to test 

the effect of yeast cytosolic proteins on mitochondrial import. Hence, an appropriate 

yeast system for in vitro synthesis and import of radiolabeled precursor proteins should 

be employed. Such a system could then allow the addition of recombinant Sti1, Hsp82, 

Ydj1 and Sis1or the usage of lysate from cells deleted for a certain factor. 
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Moreover to pursue the general aim of this study namely, the identification of cytosolic 

factors, which are involved in mitochondrial protein import, additional approaches 

should be considered. For example, it could be investigated whether other co-

chaperones like Sis1 or Ydj1 interact directly with mitochondrial precursor proteins. 

Furthermore, it should be examined whether such factors function within a complex 

with other chaperones. In addition, it will be better to use additional methods like mass 

spectrometry and yeast two-hybrid system, to identify with high precision cytosolic 

factors, which interact with mitochondrial preproteins. 
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5. Summary 

During the evolutionary evolvement of mitochondria, the mitochondrial genome got 
reduced and has almost completely been transferred to the host genome. Therefore most 
mitochondrial proteins are synthesized in the cytosol and delivered to the organelle by 
the help of molecular chaperones in an unfolded state. Cytosolic chaperones like Hsp90 
and Hsp70 in mammalian cells act in a large cytosolic complex that helps in the 
delivery of some mitochondrial proteins to the organelle by docking on the import 
receptor Tom70. These chaperones are abundant ones, which have many other cellular 
functions, suggesting that the specificity for the targeting of mitochondrial proteins 
probably requires addition of specific factors within the targeting complex. Most 
mitochondrial precursor proteins comprise a cleavable N-terminal targeting sequence, 
also known as presequence, that targets them to the mitochondrial import receptor 
Tom20. Many of these proteins associate during or after synthesis with cytosolic 
chaperones to keep them in an import competent state. So far, only little is known about 
the identity and the potential function of specific cytosolic chaperones assisting in 
import of mitochondrial precursor proteins containing N-terminal targeting sequence. 

The aim of this study was to identify cytosolic factors that interact with presequence-
containing mitochondrial precursor proteins, to characterize their involvement in 
stabilization and targeting of precursor proteins and to study their physiological role in 
mitochondrial biogenesis.  

To this end, in vivo site-directed photo-crosslinking method in Saccharomyces 
cerevisiae was performed. I identified the (co)-chaperones Sti1, Ssa1, Ydj1, and Hsp82 
as cytosolic factors, which interact specifically with mitochondrial precursor proteins. 
Sti1 as a co-chaperone of Hsp90/Hsp70 complex was further investigated. I could 
demonstrate that sti1Δ cells displayed a decreased growth rate in comparison to wild 
type. Additionally mitochondrial morphology was affected in cells lacking Sti1. I also 
found genetic interaction of Sti1 with the import components Tom20 and Mim1. 
Furthermore pull-down experiments with recombinant GST-tagged versions of Tom70 
and Tom20 revealed association of Sti1 with Tom70 whereas Sis1 and Ydj1 interacted 
with Tom20. Based on the results from this study, I can conclude that Sti1, Sis1, Ydj1, 
Ssa1 and Hsp82 are involved in the import of presequence-containing proteins to 
mitochondria.
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7. List of Abbreviations 
 

 
aaRS Aminoacyl-tRNA synthetase 

ADP adenosine diphosphate  

AIP Arylhydrocarbon receptor interacting protein 

Amp Ampicillin 

APS Ammonium persulfate 

ATP adenosine triphosphate  

bis-aa bis-acryl amide  

Bpa p-benzoyl-L-phenylalanine  

BSA bovine serum albumine  

DHFR Dihydrofolate reductase 

DNA deoxyribonucleic acid  

dNTP deoxyribonucleoside triphosphate  

DTT dithiotreitol  

E. coli Escherichia coli  

ECL enhanced chemoluminescence reagent  

EDTA ethylendiamine tetraacetate  

Fig. figure  

GFP green fluorescent protein  

GST Glutathion-S-transferase  

GTP  guanosine triphosphate  

HOP Hsp70 and Hsp90 organizing prtoein 

Hxk hexokinase  

His histidine  

HRP horse raddish peroxidase  

Hsc heat shock chaperone 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IMP Inner membrane peptidase 

IMS Intermembrane space 

IPTG Isopropyl β-D-1 thiogalactopyranoside 

LB Luria-Betani medium  

Leu leucine 

LiAC Lithium acetate 

M mature 

MIA Mitochondrial intermembrane space import and assembly 

MIM Mitochondrial inner membrane 

MOM Mitochondrial outer membrane 

MPP mitochondrial processing peptidase  

mtHSP mitochondrial heat shock protein  

OD optical density  

OD600  optical density at 600 nm 

Om45 outer membrane protein 45  

p Precursor 

PCR Polymerase chain reaction 

PEG polyethyleneglycol 

phe Phenylalanine 

PK Proteinase K 

PMSF Phenylmethylsulfonylfluoride 

PPIase Peptidyl-prolyl cis-trans isomerase 

pSU9-DHFR Presuequense of ATP synthetase subunit 9 dihydrofolate reductase  

RNase Ribonuclease 

S. cerevisiae Saccharomyces cerevisiae 

SAM Sorting and assembly machinery 

SAP Shrimp alkaline phosphatase 
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SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Ssa Stress-seventy subfamily A 

Sti1 Stress inducible 1 

TAG Amber stop codon 

TBS Tris buffered saline 

TEMED N,N,N´,N´-tetramethylene diamine 

TIM Translocase of the inner mitochondrial membrane 

TOB Topogenesis of outer membrane ß-barrel proteins 

TOM Translocase of the outer membrane 

TPI Triose phosphate isomerase 

TPR Tetratricopeptide repeat 

Tris Tris-(hydroxymethyl)-aminomethane 

trp Tryptophan 

ura Uracil 

UV Ultra violet 

v/v Volume per volume 

w/v Weight per volume 

WT Wild type 

α Antibody 

∆ Mutant 

h Hour 

min Minute 
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