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Abbreviations 

aLQTS Acquired long QT syndrome 

ATP Adenosine triphosphate 

Bcl-2 B-cell lymphoma 2 

BSA Bovine serum albumin 

cDNA Complementary DNA 

cNBD Cyclic nucleotide binding domain 

CR Conserved region 

CRD Cysteine-rich domain 

cRNA Complementary RNA 

C-terminus COOH-terminal domain 

ddH2O Double-distilled water 

DEPC Diethylpyrocarbonate 

DNA Deoxyribonucleic acid 

E. coli Escherichia coli 

EAG Ether-a-go-go 

EDTA Ethylenediaminetetraacetic acid 

EGFR Epidermal growth factor receptor 

ELISA Enzyme-linked immunosorbent assay 

ERK Extracellular signal-regulated kinase 

FGF23 Fibroblast growth factor 23  

FITC Fluorescein isothiocyanate 

GLUT1 Glucose transporter 1 

GTP Guanosine-5'-triphosphate 

GTPase Guanosine-5'-triphosphatase 

HEK293 cells Human embryonic kidney 293 cells 

hERG Human ether-a-go-go related gene 

hERG-HA hERG containing an extracellular hemagglutinin epitope 

HRP Horseradish peroxidase 

IGF Insulin-like growth factor 

IGF1 Insulin-like growth factor 1 

IgG Immunoglobulin G 

K2P Two-pore domain potassium channels 

KCa Calcium-activated potassium channels 

KCNH2 Human ether-a-go-go related gene 

KD Kinase domain 

Kir Inwardly rectifying potassium channels 

Km The Michaelis constant 

Kv Voltage-gated potassium channels 

Kv11.1 11th member of the voltage-gated potassium channel family 

LB agar Lysogeny broth agar 

LB medium Lysogeny broth medium 

LQT2 Long QT syndrome type 2 
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LQTS Long QT syndrome 

MAP Mitogen-activated protein 

MAPK Mitogen-activated protein kinase 

MAPK pathway Mitogen-activated protein kinase pathway 

MAPKK Mitogen-activated protein kinase kinase 

MAPKKK Mitogen-activated protein kinase kinase kinase 

MEK Mitogen/extracellular signal-regulated kinase 

NaPi-IIa Na+/phosphate cotransporter IIa 

NaPi-IIb Na+/phosphate cotransporter IIb 

NHE1 Sodium proton exchanger isoform 1 

NIS Sodium/Iodide symporter 

N-terminus NH2-terminal domain 

PAS domain Per (period circadian protein)-Arnt (aryl hydrocarbon recep-

tor nuclear translocator protein)-Sim (single-minded protein) 

domain 

PBS Phosphate-buffered saline 

Pi Phosphate 

PVDF membrane Polyvinylidene fluoride membrane 

RAF Rapidly accelerated fibrosarcoma 

RAS Rat sarcoma 

RBD RAS-binding domain 

RD cells Rhabdomyosarcoma cells 

RNA Ribonucleic acid 

RNase Ribonuclease 

rNTPs Ribonucleoside triphosphates 

SDS Sodium dodecyl sulfate 

SEM Standard error of the mean 

SGLT1 Sodium-dependent glucose cotransporter member 1 

SLC34 family Solute carrier family 34 

SLC34A1 Solute carrier family 34 member 1 

SLC34A2 Solute carrier family 34 member 2 

SLC5 The sodium/glucose cotransporter family 

SLC5A1 Sodium/glucose cotransporter 1 

TAE buffer Tris-acetate-EDTA buffer 

TBS Tris-buffered saline 

TBST Tris-buffered saline and Tween 20 

TEVC Two-electrode voltage clamp technique 

UV Ultraviolet 

VGK Voltage-gated potassium channel 

VSD Voltage sensor domain 
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1 Introduction 

1.1 RAF proteins 

RAF proteins, named for Rapidly Accelerated Fibrosarcoma, are effectors of the 

receptor tyrosine kinase and were discovered as a retroviral oncogene (1, 2). 

There are three known mammalian RAF isoforms: A-RAF, B-RAF and C-RAF. 

All three isoforms are ubiquitously expressed, although there are significant dif-

ferences in the expression levels depending on the tissue type (3). The RAF 

kinases are direct effectors of RAS. B-RAF is a serine/threonine protein kinase, 

an important component of the RAS/RAF/MEK/ERK mitogen-activated protein 

kinase (MAPK) pathway. In this cascade, B-RAF functions as a mitogen-

activated protein (MAP) kinase kinase kinase (MAPKKK). 

1.1.1  The structure of B-RAF 

B-RAF consists of three conserved regions (CRs) (Figure 1). CR1 and CR2 are 

located at the N-terminus of the protein. These domains have a negative regula-

tory role in the RAF activation (4). The CR1 domain contains a RAS-binding 

domain (RBD) and a cysteine-rich domain (CRD). The RBD and CRD are in-

volved in the interaction with the activated small GTPase RAS. The CRD also 

binds the membrane phospholipid, phosphatidylserine (5). The CR2 contains 

phosphorylation sites, participating in the RAF activation (6). The CR3 is located 

in the C-terminus of the protein and contains the kinase domain (KD). The cata-

lytic domain CR3 contains two folding domains with an adenosine triphosphate 

(ATP)-binding site and a regulatory activating loop at the mouth of the active 

side (7). The N-terminal regulatory domain controls the activity of the kinase 

domain and its removal results in the constitutive oncogenic activation (6). 
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Figure 1: Structure and regulatory phosphorylation sites of B-RAF (8) 
 

1.1.2 B-RAF activation 

In the absence of stimuli, B-RAF adopts a closed conformation, where the  

N-terminus inhibits the catalytic C-terminus (9). This inactive conformation is 

stabilized through the phosphorylation of S365 residue (10). When this residue 

is dephosphorylated, the adaptor protein 14-3-3 is displaced from CR2 and B-

RAF is activated (6). Another critical step in the B-RAF activation is an interac-

tion of the RAS-binding domain of B-RAF and the GTP-bound RAS (11). This 

recruits B-RAF to the cell membrane from the cytosol and induces an open con-

formation which disrupts autoinhibitory interactions (12, 13). The N-region of 

B-RAF is permanently negatively charged due to the presence of aspartate at 

the position DD448/9 and the constitutive phosphorylation of S446 (14). This 

charged N-terminus of B-RAF is, at least partly, responsible for the higher basal 

in vitro kinase activity compared to A-RAF and C-RAF. 

The activity of B-RAF also depends on the formation of homo- and he-

terodimers (15). It was shown that B-RAF and C-RAF heterodimerize in multiple 

cell lines in response to mitogens (16). 14-3-3 protein crosslinks these RAF iso-

forms by binding to the C-terminal sites on each kinase (16). 

1.1.3 The role of B-RAF 

B-RAF is expressed in a wide range of tissues, however the highest expression 

levels are observed in neuronal tissues and testis, hematopoietic cells, fetal 

brain and the adult cerebrum (17). 

Most of the studies focused on the functional role of B-RAF in cancer. These 

data were mainly obtained using cell culture models, which have several limita-
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tions. The further understanding of the biological role of this kinase comes from 

knockout and transgenic animal models. 

Several studies indicate an essential role of B-RAF in the embryonic develop-

ment (18-20). It was shown, that this kinase has a specific function in mediating 

the survival of sensory and motoneurons during the development (18).  

B-RAF knockout mice die of vascular defects caused by the death of endothelial 

cells during the midgestation (19, 20). These data show that B-RAF is a critical 

signalling factor in the formation of the vascular system as well as its involve-

ment in the programmed cell death (19). 

The RAF proteins and the MAPK pathway have shown to play the key role in 

various physiological processes such as cell proliferation, cell differentiation, 

apoptosis and cell cycle progression (21-23). 

 

Figure 2 illustrates the simplified RAF/MEK/ERK cascade. It was shown, that 

BRAF can phosphorylate and activate MAPKKs (MAP kinase kinases) which 

are called MEKs (MAPK or ERK kinases). MEKs in turn phosphorylate and acti-

vate MAPKs (MAP kinases) called ERKs (extracellular signal-regulated 

kinases). Activated ERKs can translocate into the nucleus where they phos-

phorylate transcription factors, by that regulating their activity (24). 

Growth factors, 

cytokines, stress, etc.Stimulus

Biological 

effects

Gene expression, 

cell repair, cell 

proliferation, 

apoptosis, etc.  

Figure 2: The RAF/MEK/ERK cascade (modified from Roberts & Der, 2007) (25) 
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This pathway can be activated by IGF, which plays an important role in the pro-

liferation of various cell types, in the growth and development of multiple tu-

mours (26). It has been shown that IGF is a potent mitogen and antiapoptotic 

factor for a variety of cells (27). 

The RAS/RAF/MEK/ERK signalling pathway is an attractive target for the treat-

ment of numerous cancers. During the last years, several selective RAF and 

MEK small molecule inhibitors have been tested in phase I and phase II of clini-

cal trials (28). Other approaches in the treatment of cancer are targeting the 

expression of RAF, using RNA interference and antisense RNA molecules, as 

well as targeting the RAS-RAF interaction (29). 

1.1.4 B-RAF in the oncogenesis 

The importance of B-RAF in the oncogenesis was shown by the finding that it is 

mutated in approximately 7% of human cancers with the highest frequencies in 

malignant melanoma (60-70%), thyroid (30-50%), ovarian (approximately 30%), 

colorectal carcinomas (5-20%) and 1-3% in a wide variety of other cancers (30). 

Interestingly, the most of these mutations occur in the kinase domain, usually 

resulting in an elevated kinase activity which leads to the constitutive activation 

of the ERK pathway (31). A single substitution of glutamate to valine at residue 

600 (formally labelled as V599E) accounts for 90% of the B-RAF mutations 

(32). 

Taking into consideration the significance of B-RAF in the tumourigenesis, the 

inhibitors targeting this kinase and, in particular, the oncogenic form of B-RAF 

became particular important for the cancer therapy. Some of them were ap-

proved for clinical studies and show promising therapeutic effects. They inhibit 

the RAF/MEK/ERK pathway as well as tumour angiogenesis and induce tumour 

cell apoptosis. Among them are vemurafenib, sorafenib and PLX-4720 (33). 

However, the effectiveness of the inhibitors is limited by the emergence of drug 

resistance. Furthermore, a series of side effects were observed in the patients, 

treated with B-RAF inhibitors. Therefore, the development of new inhibitors as 

well as combinational treatments that delay or prevent the drug-resistance is 

required (34). 
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1.1.5 B-RAF and the membrane transport regulation 

Only a limited number of the published data indicates the involvement of B-RAF 

in the regulation of the cell membrane transport. Karki et al. have shown that 

this kinase simulates the activity of the sodium proton exchanger isoforms 1 

(NHE1) (35). NHE1 is a plasma membrane protein, which is ubiquitously ex-

pressed and responsible for the intracellular pH regulation, cell migration, cell 

volume and proli-feration (35). B-RAF stimulates the activity of the exchanger 

by binding to the cytosolic regulatory tail. However, the nature of this complex 

still needs to be identified. 

In another study, the association of the common B-RAF mutation V600E and 

the overexpression of the glucose transporter 1 (GLUT1) was shown (36). In 

papillary thyroid carcinoma this association leads to an increased cells prolifera-

tion. 

Yun et al. reported that in the colorectal cancer cell lines with mutated B-RAF 

the expression of GLUT1 is also upregulated. The mutant cells exhibited an en-

hanced glucose uptake and survived in low glucose conditions (37). 

There have been several studies which showed that B-RAF V600E induced 

suppression of the sodium/iodide symporter (NIS) in papillary thyroid carcinoma 

(38-40). 

1.2 Ion channels 

Ion channels are transmembrane protein complexes that regulate the flow of 

ions across the membrane down their electrochemical gradients. They are in-

volved in a wide variety of biological processes, such as cardiac, skeletal and 

smooth muscle contraction, T-cell activation, epithelial transport of nutrients and 

ions, as well as, pancreatic ß-cell insulin release (41). 

1.2.1 The potassium ion channels 

The most diverse class of cell membrane proteins are potassium channels 

which modulate the cell membrane potential and excitability. Potassium chan-

nels can be divided into four superfamilies, including calcium-activated potas-

sium channels (KCa), inwardly rectifying potassium channels (Kir), two-pore do-
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main potassium channels (K2P) and voltage-gated potassium channels (Kv) (ac-

cording to the International Union of Basic and Clinical Pharmacology Criteria). 

Potassium channels are involved in vital cellular signalling processes in excit-

able and nonexcitable cells. These channels have been implicated in the regu-

lation of neurotransmitter release, neuronal excitability, heart rate, insulin secre-

tion, epithelial electrolyte transport, cell volume regulation, smooth muscle con-

traction and cell-cycle progression (42, 43). 

1.2.2 hERG K+ channels 

The human ether-a-go-go related gene (official name KCNH2) encodes the 

pore-forming subunit of a delayed rectifier voltage gated K+ (VGK) channel. The 

human ether-a-go-go related gene (hERG) was first cloned in 1994, by Warmke 

and Ganetzky, by screening a human hippocampal cDNA library with a mouse 

homologue of “ether-a-go-go” (EAG), a Drosophila K+ channel gene (44). 

hERG is predominantly expressed in the heart but it has also been found in 

brain regions, neuroendocrine glands and smooth muscle cells. In other spe-

cies, transcripts are expressed strongly in the brain, slightly less in the heart, 

testis and lung, and with very low expression in skeletal muscle, adrenal gland 

and thymus (45). 

hERG is the 11th member of the voltage gated K+ channel family (Kv11.1) (46). 

The functional channel is a tetramer, with each subunit containing six trans-

membrane domains (S1-S6) (Figure 3) (47). The S1-S4 domains of each sub-

unit form the voltage sensor domain (VSD), while the S5-S6 domains together 

with P-loop form the pore domain (48). Additionally to the membrane-spinning 

region, hERG contains cytoplasmic NH2-terminal and COOH-terminal domains. 

The N-terminus contains a Per-Arnt-Sim (PAS) domain (about 135 amino acids) 

that defines the ether-a-go-go subfamily of voltage gated K+ channels (49). The 

C-terminus contains a cyclic nucleotide binding domain (cNBD). The function of 

this domain is not well characterized. However, mutations in the cNBD domain 

are causing trafficking defects (50). 
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Figure 3: The basic structure of Kv11.1 (48) 

 

Although hERG has a similar structure to other potassium channels, it has 

unique gating kinetics, which are characterized by slow activation and deactiva-

tion but very rapid voltage-dependent inactivation, resulting into an outflow of a 

small current through it (51) (Figure 4). This is important in regards to the main-

tenance of the plateau phase of the action potential in atrial and ventricular 

myocytes (52). During depolarization, little outward current flows through the 

channels due to the slow activation and fast inactivation. As repolarisation be-

gins, hERG channels recover from inactivation faster than they deactivate, gen-

erating an outward current. This outward current determines the termination of 

the plateau phase of the action potential. 

Figure 4: Gating of Kv11.1 (modified from Vandenberg et al., 2012) (47) 
 

1.2.3 hERG and the Long QT syndrome type 2 (LQT2) 

Kv 11.1 channels play a crucial role in cardiac repolarisation, so the mutations 

that reduce the channel function have a negative effect on the cardiac electrical 

activity. 
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The inherited long QT syndrome (LQTS) is a heart condition, characterised by a 

prolonged QT interval in the electrocardiogram, syncope and sudden cardiac 

death due to ventricular tachyarrhythmia. It has been estimated that 1 in 

2500 people worldwide is affected by congenital LQTS (53). 

To date, nearly 300 different hERG mutations have been reported with a link to 

LQTS type 2 (48). These mutations are causing a reduction or defect of the pro-

tein synthesis, defective gating of the channel, impaired trafficking from the en-

doplasmic reticulum to the plasma membrane or defective ion permeation. 

LQTS can also be acquired (aLQTS), which are associated with chronic heart 

failure or caused by a chemical blockade of the hERG channel. Many drugs 

have been removed from the market or terminated during clinical development 

due to suspected or confirmed cardiac side effects. 

hERG defects can also cause stress-mediated arrhythmias, diabetes and myo-

cardial ischemia induced arrhythmias (54). The hERG channel activators would 

accelerate the myocardial repolarisation and thus shorten the duration of the 

action potential. This can provide an alternative and more specific treatment for 

congenital and acquired LQTS. According to the latest reports, hERG activators 

may become a novel class of antiarrhythmic drugs (55). 

1.2.4 Other hERG channelopathies 

Several mutations in the KCNH2 gene can result in the shortening of the QT 

interval (short QT syndrome) (56-58). People with the short QT syndrome have 

a higher risk of sudden cardiac death compared to patients with long QT inter-

vals (59). Clinical trials of different hERG inhibitors have shown promising re-

sults in prolonging the QT interval to normal levels in patients with the short QT 

syndrome (60). 

Parkington et al. have shown that changes in the hERG channel activity con-

tribute to the electrophysiological mechanisms that produce contractions during 

labour. However, this system fails in obese women (61). 

Recent investigations indicate a link between mutations in the KCNH2 gene and 

epilepsy as well as developmental defects (62, 63). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Parkington%20HC%5BAuthor%5D&cauthor=true&cauthor_uid=24937480
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1.2.5 hERG in cancer 

The hERG channel is overexpressed in several human cancer cell lines (64). 

These include neuroblastoma, rhabdomyosarcoma, adenocarcinoma, mono-

blastic leukaemia, colon carcinoma (65-68). The hERG channel expression is 

associated with more aggressive tumours. The channel also modulates the in-

vasiveness of cancer (69). 

hERG channel blockers can reduce cell proliferation and induce apoptosis (70). 

However, only the specific targeted inhibitors should be used to reduce the side 

effects such as the prolonged QT syndrome, sudden death and cardiac ar-

rhythmias (71). 

1.3 Carrier proteins 

Carrier proteins bind the specific solutes and transfer them across the mem-

brane. This process resembles an enzyme-substrate reaction, however, the 

transported solute is not covalently modified by the carrier protein, but delivered 

unchanged to the other side of the membrane. 

1.3.1 The sodium-glucose cotransporter SGLT1 

SGLT1 is a member of the sodium/glucose cotransporter family SLC5 (72). 

There is only limited information available about the structure of SGLT1. SGLT1 

consists of 14 transmembrane α-helices, with an extracellular amino-terminus 

and an intracellular carboxyl-terminus. The COOH-terminal domain contains 

five terminal transmembrane helices, which are involved in sugar binding and 

translocation (Figure 5) (73). 

 

Figure 5: The secondary structure of SGLT1 (73) 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5137/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5838/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5717/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5438/
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SGLT1 is mainly expressed in the brush border membrane of the intestinal epi-

thelium but also in the renal proximal tubule, in the heart, trachea, prostate and 

the salivary glands (73-75). 

The sodium/glucose cotransporter SGLT1 simultaneously transports two 

Na+ ions with one sugar molecule. D-glucose and D-galactose are preferred 

substrates for this carrier, whereas mannose is only slightly transported. 

SGLT1 is responsible for the active transport of glucose across the brush bor-

der membrane of the small intestine and also plays an important role in water 

absorption either directly, as water cotransporter, or indirectly, as water channel 

(73). In the kidney, SGLT1 reabsorbs the glucose from the glomerular filtrate in 

the proximal tubule (76). SGLT1 may also behave as glucose receptor in the 

heart (73). 

The mutations in the SGLT1 gene cause glucose-galactose malabsorption, a 

rare autosomal recessive disease, which manifests within the first weeks of life 

as a life-threatening diarrhea and dehydration (77). 

Several studies indicate a functional role of SGLT1 in tumours (78-80). Cancer 

cells are well known to display an enhanced sugar uptake and consumption. 

This enhanced glucose uptake is partly is due to the induction of SGLT1 (80). 

Another study shows a correlation between high SGLT1 and Bcl-2 expression in 

pancreatic primary tumours. The authors hypothesise that this can serve as 

prognostic markers in pancreatic cancer (78). 

In another study, the link between glucose uptake by SGLT1, survival of cancer 

cells and EGFR (epidermal growth factor receptor) was revealed. Weihua et al. 

show that EGFR is able to maintain glucose uptake by cells through the SGLT1 

stabilization, which promoted by the EGFR-SGLT1 interaction (81). Therefore, 

the survival of cancer cells is promoted by maintenance of intracellular glucose 

level. 

1.3.2 The sodium-coupled phosphate cotransporters NaPi-IIa and NaPi-IIb 

Phosphorus is one of the most abundant minerals in the body. It is required for 

cell metabolism (signaling and energy production), skeletal development, pro-

tein synthesis and bone mineralization (82). 
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The extracellular and intracellular phosphate levels are maintained within a nar-

row range for an optimal cellular function. This is achieved by intestinal phos-

phate uptake, renal reabsorption and excretion as well as the exchange of 

phosphate between extracellular and bone storage pools (83). The kidney and 

the small intestine are the main organs to maintain phosphorus homeostasis. 

The Na+-coupled phosphate cotransporter NaPi-IIa belongs to the SLC34 family 

(SLC34A1) and is located at the apical membrane of renal proximal tubular cells 

(84). The NaPi-IIa protein is also detected in rat brain, osteoblast-like cells and 

osteoclasts (85-87). The amount of NaPi-IIa gradually decreases along the 

proximal tubule, with the highest level in the S1 segment. 

The Na+-coupled phosphate cotransporter NaPi-IIa mediates the electrogenic 

transport of inorganic phosphate coupled to three sodium ions. Moreover,  

NaPi-IIa prefers divalent inorganic phosphate (HPO4
2-) (84). 

The basic transmembrane transport cycle for NaPi-IIa can be described in sev-

eral steps. Firstly, two Na+ ions bind sequentially (the intrinsic charge senses 

the transmembrane field and this allows binding of the first sodium ion), then the 

binding of divalent Pi follows and finally the binding of a third Na+ ion takes 

place. The reorientation of the fully loaded carrier occurs and the substrate re-

leases to the cytosol. After all substrates have been released to the cytosol, the 

intrinsic charge senses the transmembrane field, leading to a voltage-

dependent reorientation of the empty carrier (82). 

The possible structural information for the Na+-coupled phosphate cotransporter 

NaPi-IIa is based on indirect biochemical and biophysical studies on wild-type 

and engineered mutants (84, 88). The model consists of 12 transmembrane-

spanning domains. NH2- and COOH-termini are located intracellularly and two 

N-glycosylation sites are located in a large extracellular loop (Figure 6) (84). 

The COOH terminus is important for the hormonal regulation, targeting and pro-

tein-protein interactions (82). 
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Figure 6: Topological model of NaPi-IIa (84) 

 

NaPi-IIa is assumed to be a functional monomer. However, there is evidence 

that SLC34 proteins may exist as dimers or even possibly tetramers (89, 90). 

The NaPi-IIa transporter is regulated by different factors, including dietary 

phosphate and acid–base status, parathyroid hormone, 1,25-dihydroxyvitamin 

D3, FGF23, growth hormone, insulin-like growth factor IGF1 and insulin (91, 92). 

The NaPi-IIa knockout mice display a phenotype consisting of hyperphos-

phaturia that indicates the critical role of this transporter in phosphate homeo-

stasis (93). The dysregulation of NaPi-IIa causes phosphate deficiency disor-

ders, such as X-linked hypophosphatemia and autosomal-dominant hypophos-

phatemic rickets (92). 

Several mutations in the NaPi-IIa gene were described. However, the role of 

these mutations on renal phosphate balance and kidney function remains un-

certain. Some data suggest that the mutations alone are not responsible for the 

disease in the patients (92). 

Another member of the solute carrier family SLC34 is NaPi-IIb (SLC34A2), loca-

lized in the brush-border membrane of enterocytes and in colon, lung, testes, 

liver, mammary gland, uterus and thyroid gland (94). NaPi-IIb is responsible for 

the transcellular phosphate absorption in the small intestine (95). Xu Y. et al. 
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reported the expression of NaPi-IIb in the murine epididymis and its potential 

role in the male fertility regulation (96). In the rat liver, NaPi-IIb is involved in the 

reabsorption of phosphate from the bile (97). The NaPi-IIb cotransporter is ex-

pressed apically in lactating mammary gland, which suggests its role in the milk 

secretion (98). In salivary glands, NaPi-IIb is involved in secreting Pi into saliva 

(99). 

The Na+-coupled phosphate cotransporter NaPi-IIb shares some similarities to 

NaPi-IIa. Both of them are electrogenic and transport phosphate with 

stoichiometry of 3:1 (Na+: HPO4
2−) (83). 

The bioinformatics analyses suggested that NaPi-IIb contains at least eight 

transmembrane domains with both N- and C-terminal regions located in the cy-

toplasm (100). The mass spectrometry determined the existence of monomeric 

and dimeric forms of the protein (100). It has been shown that NaPi-IIb is regu-

lated by a number of factors, including dietary phosphate load, 

1,25-dihydroxyvitamin D3, growth factors etc. (96). 

The different mutations in the SLC34A2 gene have been described, which lead 

to the accumulation of phosphate in the organs where the transporter is ex-

pressed. The most of these mutations are associated with the pulmonary alveo-

lar microlithiasis and/or testicular microlithiasis (101, 102). The altered expres-

sion of NaPi-IIb was detected in several cancers such as ovarian, papillary thy-

roid and breast cancer (103-105). 
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1.4 Aim of the study 

From the studies published so far, it became evident that B-RAF plays an es-

sential role in the activation of the RAS/RAF/MEK/ERK signalling pathway, 

which controls cellular proliferation, differentiation and survival (106). 

Dysregulated B-RAF signaling has been the subject of intense investigation in 

oncology after Davies et al. reported that this kinase is mutated in approxi-

mately 7% of human tumours (32). Moreover, B-RAF kinase represents an ex-

cellent target for anticancer drug development. However, just limited amount of 

data exist on the role of B-RAF in the regulation of the ion channels and trans-

porters. Thus, this thesis aims to identify novel ion channels and carriers that 

may be regulated by B-RAF. 

In view of the importance of hERG channels in the tumour cell proliferation and 

apoptosis and considering that B-RAF is up-regulated in tumour cells, this work 

explores whether B-RAF may participate directly in the regulation of these 

channels, by using the Xenopus oocytes expression system. Additionally, this 

thesis determines the effect of the B-RAF inhibitor PLX-4720 on the hERG-

mediated current and the hERG protein abundance in Xenopus oocytes and in 

rhabdomyosarcoma RD cells. 

Furthermore, several studies revealed a functional role of SGLT1 in malignant 

tumours. This work investigates the role of B-RAF in the regulation of this car-

rier. 

Moreover, it was previously shown that B-RAF contributes to signalling of the 

insulin-like growth factor IGF1. The effects of IGF1 include a stimulation of the 

proximal renal tubular phosphate transport, accomplished in a large part by 

NaPi-IIa. NaPi-IIb accomplishes the transport of phosphate in the intestine and 

its altered expression was detected in several cancers. Therefore, this work ex-

plores whether B-RAF influences the protein abundance and/or activity of the 

type II sodiumcoupled phosphate cotransporters NaPi-IIa and NaPi-IIb, ex-

pressed in Xenopus oocytes. This thesis also determines the effect of the 

BRAF inhibitor PLX-4720 on the NaPi-IIa cell surface protein abundance in 

HEK293 cells. 
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2 Materials and methods 

In order to express hERG channels, SGLT1, NaPi-IIa and NaPi-IIb transporters 

in Xenopus oocytes, DNA constructs were linearized with the appropriate re-

striction enzymes. Then linearized DNA was used as a template for in vitro 

transcription using the suitable RNA polymerases. The heterologous cRNA was 

injected into prepared Xenopus oocytes and after full expression of the proteins, 

the two-electrode voltage clamp technique was used for functional studies. To 

determine the protein abundance of hERG, SGLT1, NaPi-IIa and NaPi-IIb in 

Xenopus oocytes, immunocytochemistry with confocal microscopy was used as 

well as chemiluminescence. For the experiments in mammalian cells, rhabdo-

myosarcoma RD cells and HEK293 cells were routinely cultured in the appro-

priate medium. To quantify the effect of the B-RAF inhibitor on the cell surface 

expression and the hERG mediated current, the biotinylation of the cell surface 

proteins and flow cytometry as well as whole-cell patch clamp techniques were 

employed. Additionally the effect of the B-RAF inhibitor on the NaPi-IIa cell sur-

face expression was determined by biotinylation of the cell surface proteins and 

subsequently western blot technique. 

2.1 Constructs and cRNA synthesis 

For protein expression in Xenopus laevis oocytes the following constructs were 

used: human wild-type B-RAF (Imagenes, Berlin, Germany) (107), hERG (44), 

hERG-HA (108) containing an extracellular hemagglutinin epitope, wild-type 

human SGLT1 (109) (SLC5A1), wild-type human NaPi-IIa (110), wild-type 

mouse NaPi-IIb (94) inserted into the appropriate vector. 

The plasmids were transformed into DH5α E. coli competent cells (Invitrogen, 

Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instruc-

tion. The transformation was plated onto LB agar (Carl Roth, Karlsruhe, Ger-

many) plate containing 100 µg/ml ampicillin (Carl Roth, Karlsruhe, Germany) 

and incubated overnight at 37°C. 

A single colony was inoculated in 50 ml of LB medium (Carl Roth, Karlsruhe, 

Germany) supplemented with 100 µg/ml ampicillin (Carl Roth, Karlsruhe, Ger-

many). Flask was incubated for 12-16 hours at 37°C in the incubator with vigor-
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ous shaking (220-250 rpm). The cells were centrifuged for 20 minutes 

(4000 x g) at 4°C. The plasmids were purified with NucleoBond Xtra Midi kit 

(Macherey – Nagel GmbH, Dueren, Germany) according to the manufacturer’s 

instruction. The DNA concentration was estimated by UV absorbance at 

260 nm. The plasmid purity also was checked by UV spectroscopy. A ratio 

A260/A280 between 1.8-1.9 and A260/A230 around 2.0 indicates the pure plasmid. 

The plasmid should be linearized prior its use as a template for in vitro tran-

scription with the restriction enzyme which cuts behind the 3´-end of the cloned 

cDNA fragment. The sample reaction was made in a final volume of 50 µl and 

containing 10 µg of plasmid DNA, 5 µl of 10x Reaction Buffer (New England 

Biolabs GmbH, Frankfurt am Main, Germany), 5 µl of 10x BSA (if restriction en-

zyme require) (New England Biolabs GmbH, Frankfurt am Main, Germany), 

2.5 µl of restriction enzyme (New England Biolabs GmbH, Frankfurt am Main, 

Germany). The reaction was mixed and incubated for 1-2 hours at the tempera-

ture optimal for enzyme on the thermostat. Table 1 shows the specific endonu-

cleases used for linearization of the plasmids. 

Table 1: Restriction enzymes used for linearization of the constructs 

Plasmid Vector Restriction enzyme 

human wild type 
B-RAF 

pCMV-SPORT6 XhoI 

hERG pSP64 EcoRI 

hERG-HA pSP64 EcoRI 

human SGLT1 pBluescript EcoRI 

human NaPi-IIa KSM XbaI 

mouse NaPi-IIb pSPORT1 SalI 

 

The linearized DNA was purified with NucleoSpin Extract II kit (Macherey –  

Nagel GmbH, Dueren, Germany) according to the instruction manual. The in-

tegrity and size of the linearized DNA were confirmed by agarose gel electro-

phoresis. The purity was checked by UV spectroscopy. A ratio A260/A280 be-

tween 1.8-1.9 and A260/A230 around 2.0 indicates the pure linearized DNA. 

For cRNA synthesis, it is essential to avoid RNase contamination by using 

gloves, sterile glassware and DEPC water. 
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In vitro synthesis of RNA was made by using T3 or SP6 RNA polymerases 

(New England Biolabs GmbH, Frankfurt am Main, Germany) (see Table 2). The 

sample reaction contained: 1 µg linearized DNA, 2.5 µl 10x reaction buffer (New 

England Biolabs GmbH, Frankfurt am Main, Germany), 1 µl rNTPs (Roche, 

Mannheim, Germany), 2.5 µl Cap analog m7 G(5’)ppp(5’)G (New England Bio-

labs GmbH, Frankfurt am Main, Germany), 1 µl RNase inhibitor (New England 

Biolabs GmbH, Frankfurt am Main, Germany) and 1 µl RNA polymerase in the 

final reaction volume of 25 µl. The reaction was mixed and incubated for 2-

3 hours at 37°C on the thermostat. 

To remove the plasmid DNA template after RNA synthesis 1 µl of DNaseI (New 

England Biolabs GmbH, Frankfurt am Main, Germany) was added for 

15 minutes at 37°C. 

RNA was purified using MEGAclear purification kit (Ambion, Life Technologies, 

Carlsbad, CA, USA) according to the manufacturer’s instruction. The concentra-

tion of RNA was determined by reading the absorbance in a spectrophotometer 

at 260 nm. The integrity of the transcripts was confirmed by agarose gel elec-

trophoresis (see 2.2). RNA was stored at -80°C until the injection. 

Table 2: RNA polymerases used to prepare cRNA 

Construct RNA polymerase 

human wild type 
B-RAF 

SP6 

hERG SP6 

hERG-HA SP6 

human SGLT1 T3 

human NaPi-IIa T3 

mouse NaPi-IIb SP6 

2.2 Agarose gel electrophoresis 

To prepare 100 ml of 1% agarose gel we used: 100 ml TAE buffer, 1 g agarose 

powder (Lonza, Rockland, ME, USA). The solution was microwaved for 

1-3 minutes until it was completely dissolved. The solution was cooled down for 

5 minutes and the SYBR Safe DNA gel stain (diluted 1:10000; Invitrogen, 

Eugene, OR, USA) was added. The agarose was poured into the gel tray with 

the comb in place. It was solidified at room temperature. The gel box was filled 
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with 1x TAE buffer (50x stock solution: 242 g Tris base, 57.1 ml glacial acetic 

acid, 100 ml 0.5 M EDTA, filled up to 1 litre with distilled water). The samples 

were mixed with 6x loading buffer (Carl Roth GmbH, Karlsruhe, Germany) and 

loaded on the agarose gel along with 1 kb DNA marker (Carl Roth GmbH, 

Karlsruhe, Germany). The gel was run at 100 mV until the dye line was 75-85% 

of the way down the gel. DNA fragments were visualized by analysing the gel 

on an UV transilluminator (Bio-Rad, Munich, Germany). Using the DNA ladder 

the size of separated DNA fragments was interpreted. 

2.3 Heterologous expression of the ion channels and trans-

porters in Xenopus laevis oocytes 

Xenopus laevis oocytes are widely used for the expression of mammalian 

transporters and channels due to their ability to efficiently translate exogenous 

mRNA into proteins. On the other hand, it is an inexpensive, easily manipulated 

method and large amounts of material can be readily obtained for a variety of 

experimental procedures. Xenopus laevis oocytes express only a small number 

of endogenous membrane transport systems, which give a low background to 

the heterologously expressed proteins. 

2.4 Xenopus laevis oocytes preparation and maintenance 

All animal experiments were conducted according to the recommendations of 

the Guide for Care and Use of Laboratory Animals of the National Institutes of 

Health as well as the German law for the welfare of animals. The experiments 

were reviewed and approved by the respective government authority of the 

state Baden-Württemberg (Regierungspräsidium) prior to the start of the study 

(Anzeige für Organentnahme nach §6 Tierschutzgesetz). 

The adult female Xenopus laevis frogs (NASCO, Fort Atkinson, USA) were an-

aesthetized by submersion in 0.1% Tricaine solution (ethyl 3-aminobenzoate 

methanesulfonate salt, Sigma, Steinheim, Germany) for 15-20 minutes and 

placed on ice for surgery. After confirmation of anaesthesia and disinfection of 

the skin, a small abdominal incision was made and the oocytes were removed 

carefully without injuring any blood capillaries, followed by the closure of the 
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skin by sutures. All efforts were made to minimize animal suffering. The frogs 

were kept wet but not under water until reflexes were fully recovered to prevent 

drowning. The ovarian lobes were manually separated and the oocytes were 

enzymatically defolliculated by treatment with a Ca2+-free OR2 solution (in 

mmol/l), 82.5 NaCI, 2 KCI, 1 MgCI2 and 5 HEPES, titrated to pH 7.4 with NaOH, 

200 mOsm/l, containing 1 mg/ml collagenase Type II (Worthington Biochemical 

Corporation, Lakewood, NJ, USA) for 1 hour shaken at room temperature. Then 

the collagenase solution was changed and the oocytes were incubated for an-

other hour shaking at room temperature. To remove all debris and collagenase, 

the oocytes were washed 4 to 6 times in fresh Ca2+-free OR2 solution. In order 

to stop defolliculation, the oocytes were washed 10 times with ND96 solution (in 

mmol/l) 96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2 and 5 mM HEPES, titrated to pH 7.4 

with NaOH. The oocytes on the stages V-VI were selected (sharp equatorial 

boundary can be observed between pigmented animal pole and the vegetal 

pole) and stored at 18°C in ND96 solution, supplemented with 0.11 mM tetracy-

cline (Sigma, Steinheim, Germany), 4 µM ciprofloxacin (Fresenius, Bad Hom-

burg, Germany), 0.2 mM refobacin (MerckSerono, Darmstadt, Germany), 

0.5 mM theophylline (Takeda, Singen, Germany) and 5 mM sodium pyruvate 

(Sigma, Steinheim, Germany). 

2.5 cRNA injection 

For the injection of cRNA a Nanoliter-Injector 2000 (World Precision Instru-

ments, Berlin, Germany) with glass capillaries (WPI, Sarasota, FL, USA), 

mounted in a micromanipulator, was used. The injection was performed on the 

day when the oocytes were withdrawn or the next day. To prevent a contamina-

tion with RNAases, only pipettes dedicated for RNA work as well as certified 

nuclease-free labware, sterile filter tips and DEPC treated water for dilution of 

cRNA were used. The glass capillaries were pulled using an automatic micro-

electrode puller DMZ Universal Puller (Zeitz Instruments, Augsburg, Germany). 

The tip was mechanically broken off with forceps (diameter 10-20 μm). The 

needle was backfilled with mineral oil (avoiding air bubbles) and assembled into 

the nanoinjector. Approximately 3 μl of cRNA solution were loaded into the in-
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jection capillary. The oocytes were transferred into a grid network and injected 

with a required volume of cRNA (see Table 3). After injection, the oocytes were 

kept in Petri dishes containing ND96 solution supplemented with antibiotics at 

17°C. The storage solution was exchanged on a daily basis to increase the oo-

cytes survival. 

Table 3: Amount of cRNA injected into Xenopus laevis oocytes 

Construct cRNA (ng/oocyte) Expression time (days) 

hERG 10 3 

hERG-HA 10 3 

human NaPi-IIa 10 3 

mouse NaPi-IIb 15 3-4 

human SGLT1 10 3 

human wild type B-RAF 10 3 

 

After full expression of the proteins, functional studies were performed. 

2.6 Electrophysiological measurements 

Ion channels and transporters expressed in Xenopus oocytes were studied by 

using the two-electrode voltage clamp (TEVC) technique. Two microelectrodes 

were inserted through the membrane of the oocyte. The first, voltage sensing, 

electrode monitored the voltage of the cell membrane. To keep the membrane 

potential at a desired level, a current was injected by the second electrode. This 

membrane current was recorded and reflected the ion channel activities. 

Figure 7 illustrates the principle of TEVC. 
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Figure 7: Two-electrode voltage clamp on Xenopus oocyte (111) 

 

For all recordings with TEVC, the pipettes were filled with 3 M KCl and had the 

resistances of 0.3-3.0 MΩ. The data were filtered at 1 Hz (hERG) or 10 Hz 

(NaPi-IIa, NaPi-IIb, SGLT1) and recorded with a Digidata A/D-D/A converter 

and Clampex 9.2 software for data acquisition and analysis (Axon Instruments, 

Union City, CA, USA). The analysis of dual-electrode voltage clamp data was 

performed with Clampfit 9.2 (Axon instruments, Union City, CA, USA). To 

measure hERG channels, the holding potential was kept at -80 mV and the 

outward tail currents were elicited by voltage pulses to a potential of -60 mV for 

500 ms after the preconditioning steps to potentials between -80 and +70 mV 

for 500 ms. The leak currents estimated from the tail current measured after the 

preconditioning prepulse to -80 mV were subtracted. For normalization, the in-

dividual tail currents at +70 mV were divided by the mean tail current at +70 mV 

of Xenopus oocytes expressing hERG alone. 

The TEVC recordings of NaPi-IIa and NaPi-IIb transporters were performed at a 

holding potential of -60 mV. The control superfusate (ND96) contained (in 

mmol/l) 96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2 and 5 HEPES, titrated to pH 7.4 

with NaOH. Phosphate was added to the solutions at a concentration of 

1 mmol/l unless otherwise stated. The flow rate of the superfusion was ap-

proximately 20 ml/min, and a complete exchange of the bath solution was 

reached within about 10 seconds. 
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SGLT1 TEVC recordings were performed at a holding potential of -70 mV. The 

control superfusate (ND96) contained (in mmol/l) 96 NaCl, 2 KCl, 1.8 CaCl2, 

1 MgCl2 and 5 HEPES, titrated to pH 7.4 with NaOH. Glucose was added to the 

solutions at a concentration of 10 mmol/l unless otherwise stated. The flow rate 

of the superfusion was approximately 20 ml/min, and a complete exchange of 

the bath solution was reached within about 10 seconds. 

2.7 Whole-cell patch clamp 

The patch clamp experiments were performed at room temperature in voltage 

clamp, fast-whole-cell mode according to Hamill et al. (112). The cells were 

continuously supefused through a flow system inserted into the dish. The cur-

rents were recorded by EPC-9 amplifier (Heka, Lambrecht, Germany) using 

Pulse software (Heka) and ITC-16 Interface (Instrutech, Port Washington, NY, 

USA). The currents were elicited by voltage pulses to a potential of -120 mV for 

500 ms after preconditioning steps at potentials between -80 and +60 mV for 

2 seconds. Leak currents estimated from the tail current measured after the 

preconditioning prepulse to -80 mV were subtracted. The currents were re-

corded with an acquisition frequency of 10 kHz and 3 kHz low-pass filtered. The 

liquid junction potential ΔE, between pipette and bath solutions, was estimated 

according to Barry and Lynch (113) and corrected. The cells were superfused 

with a bath solution containing (in mmol/l): 92 NaCl, 40 KCl, 2 CaCl2, 2 MgCl2, 

5 glucose and 10 HEPES/NaOH, pH 7.4. The pipettes were filled with an inter-

nal solution at a [Ca2+]i of 10-7 M (pCa 7) containing (in mmol/l)  

120 K-gluconate, 10 NaCl, 2 MgCl2, 4 CaCl2, 10 EGTA/KOH, 10  HEPES/KOH, 

3 Mg-ATP, pH 7.3. 

2.8 Flow cytometry 

One of the widely used applications of the flow cytometry is analysis of cell sur-

face proteins. This technique allows multi-parameter analysis of a single cell 

and based on measuring the fluorescence intensity produced by fluorescent-

labelled antibodies bind to the proteins of the interest. Figure 8 illustrates the 

principle of the experiment. 
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FITC-labelled Antibody

 

Figure 8: Detection of cell surface protein expression by flow cytometry (GenWay Bio-
tech Inc., San Diego, CA, USA) 

 

The rhabdomyosarcoma RD cells were washed once with PBS, detached from 

the plates by incubation for 10 minutes with Versene solution (Life Technolo-

gies, Gibco, USA) at 37°C, 5% CO2. The cells were centrifuged for 5 minutes at 

1200 rpm. 1x106 cells in 25 µl of PBS were stained 20 minutes with 1 µl anti-

Kv11.1 (hERG, extracellular)-FITC antibody (Alamone Labs, Jerusalem, Israel). 

The forward scatter of the cells was determined and hERG-FITC fluorescence 

intensity was measured in FL-1 with an excitation wavelength of 488 nm and an 

emission wavelength of 530 nm on a flow cytometer (FACSCalibur, BD Biosci-

ences, USA). 

2.9 Biotinylation of cell surface proteins 

The biotinylation technique is used to label, isolate and analyze cell surface pro-

teins. The biotinylation reagent forms a stable complex with membrane proteins. 

Treated cells then harvested, lysed and labelled proteins are isolated using im-

mobilized avidin or streptavidin (avidin-biotin binding is the strongest known 

non-covalent interaction between a protein and ligand). 

To analyze hERG cell membrane abundance, rhabdomyosarcoma RD cells and 

to analyze NaPi-IIa cell membrane abundance HEK293, cells were washed 

twice with ice-cold PBS. Then cells were labelled with 250 µg/ml Sulfo-NHS-LC-
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biotin (Pierce, Rockford, IL, USA) in PBS for 30 minutes at 4°C. The Sulfo-NHS-

LC-biotin bound to the membrane proteins was quenched with 50 mM Tris-HCl 

buffer pH 7.4. After washing, the cells were lysed with ice-cold RIPA buffer (Cell 

Signaling, Danvers, MA, USA) supplemented with the complete protease and 

phosphatase inhibitor cocktail (Thermo Fisher Scientific, Rockford, IL, USA). 

After centrifugation at 10000 rpm for 5 minutes, protein concentration was de-

termined by Bradford assay (Bio-Rad Laboratories, Hercules, CA, USA). 200 μg 

of proteins were supplemented with 50 μl washed immobilized NeutrAvidin Aga-

rose beads (Pierce, Rockford, IL, USA) and incubated at 4°C overnight on a 

rotator. The beads were then pelleted by 1 minute centrifugation at 13000 rpm 

and washed 3 times in PBS containing 1% NP-40 / 0.1% SDS and twice in 

0.1% NP-40 / 0.5 M NaCl. The proteins were solubilised in Roti-Load1 buffer 

(Carl Roth GmbH, Karlsruhe, Germany) at 95°C for 10 minutes. 

2.10 Western blotting 

2.10.1 The SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE is used to separate the proteins according to their size. 

The 8% (for hERG) and 10% (for NaPi-IIa) separating gels were prepared ac-

cording to Table 4. 

Table 4: Composition of separating acrylamide gels 

Acrylamide percentage 8% 10% 

H2O 4.6 ml 3.8 ml 

30% Acrylamide mix 

(29:1 acrylamide:bis-acrylamide) 
2.6 ml 3.4 ml 

1.5 M Tris (pH = 8.8) 2.6 ml 2.6 ml 

10%(w/v) SDS 0.1 ml 0.1 ml 

10% (w/v) ammonium persulfate 0.1 ml 0.1 ml 

TEMED 0.01 ml 0.01 ml 

Total volume 10 ml 10 ml 

 

The separating gel was gently overlaid with 2-Propanol to shield the buffer from 

air which will inhibit the polymerization. After polymerization, the gel surface 

was rinsed with distilled water. The top of the separating gel was dried with filter 
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paper. After it was laid with 5% stacking gel (for 10 ml: 6.8 ml ddH2O, 1.7 ml 

30% acrylamide mix, 1.3 ml 1 M Tris (pH = 6.8), 0.1 ml 10%SDS, 0.1 ml 

10% APS, 0.01 ml TEMED) and a comb was placed. The gel was allowed to 

polymerize. The glass plates were assembled in the Mini-PROTEAN Tetra cell 

electrophoresis module according to the manufacturer instructions (Bio-Rad, 

Munich, Germany). The module was filled with 1x running buffer (Carl Roth 

GmbH, Karlsruhe, Germany) and the samples were loaded along with a 

prestained molecular weight marker (PEQLAB, Erlangen, Germany). Mini-

PROTEAN Tetra Tank (Bio-Rad, Munich, Germany) was assembled and the 

gels were run at 80 / 120 mV for 2-2.5 hours until the protein marker almost 

reached the foot line of the glass plate. 

2.10.2 Protein transfer to a membrane and protein detection 

The transfer buffer was prepared (10x buffer pH 8.3: 24 g Tris base, 113 g gly-

cine, fill with distilled H2O up to 1 l). The PVDF membrane was used for the pro-

teins transfer. The mini Trans-Blot Cell (Bio-Rad, Munich, Germany) was as-

sembled according to the manufacture guideline. The blot was run for 1 hour at 

100 mV. The membrane was blocked with 5% non-fat dry milk (Carl Roth 

GmbH, Karlsruhe, Germany) in TBS 0.1% Tween 20 (TBST) for 1 hour at room 

temperature. The membrane was incubated overnight at 4°C with rabbit 

anti-Kv11.1 (hERG, extracellular) antibody (diluted 1:200, Alamone Labs, Jeru-

salem, Israel) or rabbit anti-human SLC34A1 (NaPi-IIa) polyclonal antibody 

(diluted 1:500, Life Span Biosciences, WA, USA). After washing in TBST 

(10x TBS, pH = 7.4: 87.7 g NaCl, 30.3 g Tris base, fill with ddH2O up to 1 l), 

blots were incubated with anti-rabbit HRP-conjugated antibody (diluted 1:1000, 

Cell Signaling, Danvers, MA, USA) for 1 hour at room temperature. The anti-

body binding was detected with the ECL detection reagent (Amersham, 

Freiburg, Germany) and the bands were quantified with the Quantity One Soft-

ware (Bio-Rad, Munich, Germany). 
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2.11 Detection of cell surface protein expression by chemilu-

minescence 

The chemiluminescence occurs when a chemical substrate is catalyzed by an 

enzyme, such as horseradish peroxidase (HRP), and produces light as a by-

product, which can be quantified in a luminometer. This technology is adapted 

for the detection of the membrane-bounded proteins while the chemilumines-

cence uses enzyme-conjugated antibodies to activate the light signal. Figure 9 

illustrates general principal of the method. 

 

Figure 9: Detection of cell surface protein expression by chemiluminescence in 
Xenopus oocytes 

 

The oocytes expressing hERG with an external HA-tag were blocked for 

20 minutes in ND96 (see chapter 3.9) solution with 1% BSA at 4°C.The oocytes 

were incubated with 0.5 µg/ml primary rat monoclonal anti-HA antibody diluted 

in 1% BSA / ND96 (clone 3 F10, Roche, Mannheim, Germany) for 1 hour at 

4°C. After incubation with primary antibody, the oocytes were washed 3 times 

for 5 minutes at 4°C with 1% BSA / ND96. Next, the secondary HRP-conjugated 

goat anti-rat antibody (diluted 1:1000, Cell Signaling Technology, MA, USA) 

was added to the oocytes and incubated for 1 hour on ice. Then they were 
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washed 5 times for 5 minutes each in 1% BSA / ND96 and then 5 times in 

ND96 without BSA on ice. 

To detect SGLT1 cell surface expression, the oocytes were incubated with rabbit 

polyclonal anti-SGLT1 antibody (diluted1:1000, Millipore, MA, USA) and subse-

quently with secondary, HRP-conjugated anti-rabbit antibody (diluted 1:1000, Cell 

Signaling Technology, MA, USA). To determine the NaPi-IIa cell surface expres-

sion, the oocytes were incubated with primary rabbit anti-human SLC34A1 

(NaPi-IIa) polyclonal antibody (diluted 1:500, Life Span Biosciences, WA, USA) 

and after with secondary, HRP-conjugated goat anti-rabbit IgG antibody (diluted 

1:1000, Cell Signaling Technology, MA, USA). Blocking time, incubation with 

primary and secondary antibodies as well as washing step was the same in all 

three experiments. 

Individual oocytes were placed in 96 well plates with 100 μl of ND96 and 20 µl 

of the SuperSignal ELISA Femto Maximum Sensitivity Substrate (Pierce, Rock-

ford, IL, USA). The chemiluminescence of the single oocyte was quantified in 

Wallac Victor2 plate reader (Perkin Elmer, Juegesheim, Germany) by integrat-

ing the signal over a period of 1 second. The results display normalized relative 

light units. The integrity of the measured oocytes was assessed by visual con-

trol after the measurement to avoid unspecific light signals from the cytosol. 

2.12 Immunocytochemistry and confocal microscopy 

To visualize specific protein, primary antibody used against the target molecule, 

followed by binding of fluorochrome-conjugated secondary antibody. The com-

plex can be visualized on laser excitation of the fluorochrome at the certain 

wavelength. The confocal microscope detects the emission of energy at the 

given wavelength. The scheme of the experiment illustrated in Figure 10. 
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Figure 10: Detection of cell surface protein expression by immunocytochemistry and 
confocal microscopy in Xenopus oocytes 

 

To visualize the hERG-HA and NaPi-IIa protein abundance, the oocytes were 

fixated in 4% paraformaldehyde / PBS for at least 4 hours. Then the oocytes 

were cryoprotected in 30% sucrose / PBS overnight at 4°C, frozen in mounting 

medium TissueTek (Sakura, Zoeterwounde, Netherlands) and placed on a cry-

ostat. The sections were collected at a thickness of 8 µm on the coated slides 

and stored at -80°C. For immunostaining, the slides were dried at room tem-

perature, fixed in acetone / methanol (1:1) for 15 minutes, washed in PBS 

3 times and blocked for 1 hour in 5% bovine serum albumin / PBS. The primary 

antibody used was rat monoclonal anti-HA antibody (1 µg/ml, clone 3 F10, 

Roche, Mannheim, Germany) or rabbit anti-human SLC34A1 (NaPi-IIa) poly-

clonal antibody (diluted 1:100, Life Span Biosciences, WA, USA). The slides 

were incubated in a moist chamber overnight at 4°C. The binding of primary 

antibody was visualised with anti-rat Alexa488-conjugated antibody (diluted 

1:200, Invitrogen, UK) or FITC-conjugated goat anti-rabbit IgG (diluted 1:1000, 

Invitrogen, Molecular Probes, Eugene, OR, USA) for 1 hour at room tempera-

ture. The slides were mounted with ProLong Gold antifade reagent (Invitrogen, 
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UK). Images were taken on a fluorescence laser scanning microscope LSM 510 

(Carl Zeiss MicroImaging, Goettingen, Germany) with A-Plan 40x/1.2W DICIII. 

The brightness and contrast settings were kept constant during imaging of all 

oocytes in each injection series. Due to autofluorescence of the oocyte yolk, 

unspecific immunofluorescence was observed inside the Xenopus oocytes. 

For detection of SGLT1 membrane abundance, the oocytes were fixed in 

4% paraformaldehyde at room temperature for 2 hours. After washing with 

phosphate buffered saline (PBS), the oocytes were permeabilized and blocked 

at room temperature for 1 hour in TBS (Tris Buffered Saline), containing 

0.1% TritonX-100 and 10% normal goat serum. Then, the oocytes were incu-

bated overnight at 4°C with primary rabbit polyclonal anti-SGLT1 antibody (di-

luted 1:1000, Millipore, MA, USA) followed by 30 minutes incubation at 37°C 

with FITC-Goat anti-rabbit IgG (diluted 1:1000, Invitrogen, Molecular Probes, 

Eugene, OR, USA). Next, the oocytes were analyzed by a fluorescence laser 

scanning microscope LSM 510 (Carl Zeiss MicroImaging, Goettingen, Ger-

many) with A-Plan10x / 0.25. The brightness and contrast settings were kept 

constant during imaging of all oocytes in each injection series. 

2.13 Cell culture 

The rhabdomyosarcoma RD cells (ATCC, LGC Standards GmbH, Wesel, Ger-

many) were routinely cultured in Dulbecco’s Modified Eagle Medium DMEM 

containing 4.5 g/l glucose (PAA Laboratories GmbH, Germany), supplemented 

with 10% fetal bovine serum (PAA Laboratories GmbH, Germany), 

100 U/ml penicillin and 100 µg/ml streptomycin (PAA Laboratories GmbH, Ger-

many). 

The human embryonic kidney cells (HEK293) (ATCC, LGC Standards GmbH, 

Wesel, Germany) were cultured in Dulbecco’s Modified Eagle Medium DMEM 

containing 4.5 g/l glucose (Gibco, Life Technologies GmbH, Darmstadt, Ger-

many), supplemented with 2 mM L-glutamine (PAA Laboratories GmbH, Ger-

many), 10% fetal bovine serum (PAA Laboratories GmbH, Germany), 

100 U/ml penicillin and 100 µg/ml streptomycin (PAA Laboratories GmbH, Ger-

many). 
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The RD and HEK293 cells were maintained in the culture flasks at 37°C in a 

humidified atmosphere of 5% CO2. 80-90% confluent cells were splitted using 

0.25% Trypsin-EDTA solution (Life Technologies GmbH, Darmstadt, Germany). 

For the experiments, the cells were seeded into 6-well plates (BD Biosciences, 

Franklin Lakes, NJ, USA) at the density 0.2 × 106 cells / well. The cells were 

cultured overnight at 37°C in a humidified atmosphere of 5% CO2 to allow them 

to attach. After attachment, the cells were treated for 24 hours with 10 µM B-

RAF inhibitor PLX-4720 (Selleck Chemicals, Houston, TX, USA) dissolved in 

DMSO (50 mM as a stock). Equal amounts of DMSO (Carl Roth, Karlsruhe, 

Germany) were used as a control. 

2.14 Data analysis 

Data are provided as means ±SEM, n represents the number of independent 

experiments or number of Xenopus oocytes investigated. All oocytes experi-

ments were repeated with at least 3 batches of oocytes. In all repetitions, quali-

tatively similar data were obtained. Results were tested for significance by using 

non-parametric Kruskal-Wallis test, unpaired Student’s t-test or Mann-Whitney 

test, where appropriate. Only results with p < 0.05 were considered statistically 

significant. All statistical analysis was performed with GraphPad InStat ver-

sion 3.0 (GraphPad Software, La Jolla, California, USA). 
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3 Results 

3.1 B-RAF regulates hERG channels 

3.1.1 Wild-type B-RAF stimulates the hERG-mediated current in Xenopus 

oocytes 

cRNA encoding hERG was injected either alone or together with cRNA encod-

ing human wild-type B-RAF in Xenopus oocytes. As a control, the same amount 

of water was injected in Xenopus oocytes. The hERG-mediated currents were 

determined utilizing a dual-electrode voltage clamp and the channel activity was 

analyzed by depolarization from -80 mV holding potential to different voltages 

followed by a 500 ms pulse to -60 mV. As illustrated in Figure 11, the tail current 

following the injection of water in Xenopus oocytes was low in comparison with 

Xenopus oocytes injected with cRNA encoding hERG. Thus, Xenopus oocytes 

express low levels of channels displaying tail currents similar to those of hERG 

channels. However, strong tail currents were observed following the injection of 

cRNA encoding hERG in Xenopus oocytes. The hERG-mediated currents were 

significantly enhanced by additional co-expression of wild-type B-RAF in hERG-

expressing Xenopus oocytes. 

 

 

Figure 11: Coexpression of B-RAF increased the hERG current in Xenopus oocytes. 
The Xenopus oocytes were depolarized from -80 mV holding potential to different volt-
ages followed by a 500 ms repolarization to -60 mV evoking outward tail currents. A. 
Original tracings recorded in Xenopus oocytes injected with water (a), with cRNA en-
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coding hERG alone (b) or with cRNA encoding hERG together with wild-type B-RAF 
(c). B. Arithmetic means ±SEM (n = 12-47, arbitrary units) of the normalized outward 
tail current following a depolarization to +70 mV, recorded in Xenopus oocytes injected 
with water (white bar), with cRNA encoding hERG alone (light grey bar), or with cRNA 
encoding both, hERG and wild-type B-RAF (black bar). *** (p < 0.001) indicates statis-
tically significant difference from Xenopus oocytes expressing hERG channels alone 

 

3.1.2 The current-voltage relationship of hERG currents with or without 

co-expression of wild-type B-RAF 

The amplitude of the peak tail current was plotted as a function of the preceding 

test preconditioning potential. As shown in Figure 12 A, the absolute current va-

lues were up-regulated by co-expression of wild-type B-RAF. Following nor-

malization to the maximum peak tail current for each group, no significant kinet-

ics differences were apparent between Xenopus oocytes expressing hERG to-

gether with wild-type B-RAF and Xenopus oocytes expressing hERG alone 

(Figure 12 B). In other words, the voltage required for the half maximal peak tail 

currents, as well as the activation threshold were similar in Xenopus oocytes 

expressing hERG alone and in Xenopus oocytes expressing hERG together 

with wild-type B-RAF. 

 

Figure 12: The current-voltage relationship of hERG currents with or without co-
expression of wild-type B-RAF. A. Arithmetic means ± SEM (n = 12-47, nA) of the peak 
tail current as a function of voltage in Xenopus oocytes injected with water (black trian-
gles), with cRNA encoding hERG alone (white circles) or with cRNA encoding hERG 
and wild-type B-RAF (black circles). B. Arithmetic means ±SEM (n = 22-47, arbitrary 
units) of the normalized peak tail current as a function of voltage in Xenopus oocytes 
injected with cRNA encoding hERG alone (white circles) or with cRNA encoding hERG 
together with wild-type B-RAF (black circles) 
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3.1.3 Co-expression of wild-type B-RAF increases the hERG-HA protein 

abundance in the cell membrane 

At least in theory, B-RAF could up-regulate the hERG activity by increasing 

hERG channel protein abundance in the Xenopus oocytes plasma membrane. 

In order to test that possibility, immunocytochemistry and confocal microscopy 

were applied to visualize the hERG-HA protein in the cell membrane. As shown 

in  Figure 13 A, the co-expression of hERG-HA with wild-type B-RAF was fol-

lowed by an increase of hERG-HA protein abundance within the Xenopus oo-

cyte cell membrane as compared to Xenopus oocytes expressing hERG-HA 

alone. In order to quantify the hERG-HA protein abundance in the cell mem-

brane of Xenopus oocytes, chemiluminescence was employed. As compared to 

Xenopus oocytes expressing hERG-HA alone, the co-expression of wild-type 

BRAF was followed by a statistically significant increase of chemiluminescence 

reflecting the hERG-HA protein abundance within the Xenopus oocyte cell 

membrane (Figure 13 B). 

 

Figure 13: Coexpression of B-RAF increased hERG-HA protein abundance at the sur-
face of hERG-expressing Xenopus oocytes. A. Confocal images of hERG-HA protein 
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cell surface expression in Xenopus oocytes injected with water (left panel), with cRNA 
encoding hERG-HA alone (middle panel) or with cRNA encoding hERG-HA together 
with wild-type B-RAF (right panel). Images are representative of three independent 
experiments. B. Arithmetic means ±SEM (n = 81-93, arbitrary units) of hERG-HA pro-
tein abundance in the cell membrane measured by chemiluminescence in Xenopus 
oocytes injected with water (white bar), with cRNA encoding hERG-HA alone (light grey 
bar), or cRNA encoding hERG-HA and wild-type B-RAF (black bar). *** (p < 0.001) 
indicates statistically significant difference from Xenopus oocytes expressing hERG 
channels alone 

 

3.1.4 Effect of the B-RAF inhibitor PLX-4720 on the hERG-mediated cur-

rent 

Further experiments elucidated the effect of the potent B-RAF inhibitor 

PLX4720 on the hERG-mediated current in B-RAF- and hERG-expressing 

Xenopus oocytes. As illustrated in Figure 14, the hERG tail current in Xenopus 

oocytes expressing both, hERG and B-RAF, was significantly decreased by a 

treatment with 10 µM of the B-RAF inhibitor PLX-4720 for 24 hours. No statisti-

cally significant difference was observed between the hERG tail currents in 

Xenopus oocytes co-expressing hERG together with B-RAF and treated with 

10 µM PLX-4720 and Xenopus oocytes expressing hERG alone. 

 

Figure 14: B-RAF inhibitor PLX-4720 decreased hERG current in Xenopus oocytes co-
expressing hERG and B-RAF. The Xenopus oocytes were depolarized from -80 mV 
holding potential to different voltages followed by a 500 ms repolarization to -60 mV 
evoking outward tail currents. A. Original tracings recorded in Xenopus oocytes in-
jected with water (a), with cRNA encoding hERG alone (b) or with cRNA encoding 
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hERG together with wild-type B-RAF without (c) and with (d) treatment with B-RAF 
inhibitor PLX-4720 (10 µM, 24 hours). B. Arithmetic means ±SEM (n = 12-46, arbitrary 
units) of the normalized outward tail current following a depolarization to +70 mV, re-
corded in Xenopus oocytes injected with water (white bar), with cRNA encoding hERG 
alone (light grey bar), or with cRNA encoding hERG together with wild-type B-RAF 
without (black bar) and with (dark grey bar) treatment with B-RAF inhibitor PLX-4720 
(10 µM, 24 hours). *** (p < 0.001) indicates statistically significant difference from 
Xenopus oocytes expressing hERG channels alone; ### (p < 0.001) indicates statisti-
cally significant difference from Xenopus oocytes expressing hERG together with 

BRAF without treatment with PLX-4720 

 

3.1.5 Effect of the B-RAF inhibitor PLX-4720 on the hERG-HA cell surface 

protein abundance in Xenopus oocytes 

Figure 15 illustrates that treatment of hERG-HA and B-RAF expressing oocytes 

with 10 µM PLX-4720 was followed by a decreased hERG-HA cell surface pro-

tein abundance. Thus, PLX-4720 treatment fully reversed the effect of B-RAF 

on hERG cell surface protein expression and activity. 

 

 

Figure 15: B-RAF inhibitor PLX-4720 decreases hERG-HA cell surface protein abun-
dance. Confocal images of hERG-HA protein cell surface expression in Xenopus oo-
cytes injected with water (first panel), with cRNA encoding hERG-HA alone (second 
panel) or with cRNA encoding hERG-HA together with wild-type B-RAF without (third 
panel) or with (last panel) treatment with B-RAF inhibitor PLX-4720 (10 µM, 24 hours). 
Images are representative of three independent experiments 

 

3.1.6 Effect of the B-RAF inhibitor PLX-4720 on the hERG cell membrane 

protein abundance in rhabdomyosarcoma RD cells 

Another series of experiments was conducted to explore whether B-RAF simi-

larly regulates the activity of the human ether-a-go-go related gene K+ channels 

(hERG) in the rhabdomyosarcoma RD cells, which have previously been shown 



43 

to express hERG channels (65, 114). To this end, the rhabdomyosarcoma RD 

cells were treated for 24 hours with 10 µM of the B-RAF inhibitor PLX-4720 and 

the hERG cell membrane protein abundance was analysed by biotinylation of 

the cell surface proteins with subsequent western blotting. As shown in Figure 

16, the treatment of the rhabdomyosarcoma RD cells with the BRAF inhibitor 

PLX4720 was followed by a statistically significant decrease of the hERG cell 

membrane protein abundance as compared to the rhabdomyosarcoma RD cells 

treated with vehicle alone. 

 

Figure 16: B-RAF inhibitor PLX-4720 decreased hERG protein abundance at the cell 
surface in the rhabdomyosarcoma RD cells. A. Representative original western blot 
showing hERG membrane protein abundance analyzed by cell surface biotinylation in 
rhabdomyosarcoma RD cells after 24 hours treatment with vehicle alone (Control) or 
with 10 µM B-RAF inhibitor PLX-4720 (PLX-4720). B. Arithmetic means ±SEM (n = 7, 
arbitrary units) of normalized hERG membrane protein abundance analyzed by cell 
surface biotinylation in the rhabdomyosarcoma RD cells after 24 hours treatment with 
vehicle alone (white bar) or with 10 µM B-RAF inhibitor PLX-4720 (black bar). 
*(p < 0.05) indicates statistically significant difference from rhabdomyosarcoma RD 
cells treated with vehicle alone 

 

3.1.7 B-RAF inhibitor PLX-4720 decreases hERG cell membrane protein 

abundance in rhabdomyosarcoma RD cells 

The rhabdomyosarcoma RD cells were treated for 24 hours with 10 µM of the 

B-RAF inhibitor PLX-4720 and the hERG cell membrane protein abundance 

was analysed by flow cytometry experiments. As shown in Figure 17, the num-

ber of hERG-FITC positive cells, i.e. rhabdomyosarcoma RD cells expressing 

hERG K+ channels at the cell surface, was significantly decreased following the 
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treatment with PLX-4720. Thus, PLX-4720 treatment decreased the hERG cell 

membrane protein abundance in the rhabdomyosarcoma RD cells. 

 
 

Figure 17: B-RAF inhibitor PLX-4720 decreased hERG protein abundance at the cell 
surface in the rhabdomyosarcoma RD cells. A. Representative original dot plots of 
hERG-FITC positive cells at the cell surface analysed by flow cytometry in rhabdomyo-
sarcoma RD cells after 24 hours treatment with vehicle alone (Control) or with 10 µM 
B-RAF inhibitor PLX-4720 (PLX-4720); FL-1 Height: hERG-FITC fluorescence inten-
sity. B. Arithmetic means ±SEM (n = 5, %) of normalized percentage of positive cells 
showing hERG expression at the cell surface analyzed by flow cytometry in the rhab-
domyosarcoma RD cells after 24 hours treatment with vehicle alone (white bar) or with 
10 µM B-RAF inhibitor PLX-4720 (black bar). *(p < 0.05) indicates statistically signifi-
cant difference from rhabdomyosarcoma RD cells treated with vehicle alone 

 

3.1.8 B-RAF inhibitor PLX-4720 decreases the hERG-mediated tail cur-

rents in rhabdomyosarcoma RD cells 

Similar observations were made with patch clamp experiments in rhabdomyo-

sarcoma RD cells. As illustrated in Figure 18, tail currents typical for hERG K+ 

channels were indeed observed in rhabdomyosarcoma RD cells. The hERG-

mediated tail currents were significantly lower in the rhabdomyosarcoma RD 

cells treated for 24 hours with 10 µM PLX-4720 than in the rhabdomyosarcoma 

RD cells treated with vehicle alone. 
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Figure 18: B-RAF inhibitor PLX4720 decreased hERG currents in rhabdomyosarcoma 
RD cells. A. Inward currents elicited in a bath solution containing 40 mM KCl according 
to the shown protocol: the membrane potential was held at - 80 mV and then after the 
preconditioning step from -80 mV to +60 mV for 2 s stepped to the test potential of  
-120 mV for 500 ms. The currents were measured in the rhabdomyosarcoma RD cells 
after 24 hours treatment with vehicle alone (a) or with 10 µM B-RAF inhibitor PLX-4720 
(b). B. Mean peak current density ±SEM (n = 5-12) plotted against the precondition 
potential in rhabdomyosarcoma RD cells after 24 hours treatment with vehicle alone 
(white cycles) or with 10 µM B-RAF inhibitor PLX-4720 (black cycles). C. Mean peak 
current density ±SEM (n = 5-12) measured at -120 mV after the precondition potential 
to +50 mV in rhabdomyosarcoma RD cells after 24 hours treatment with vehicle alone 
(white bar) or with 10 µM B-RAF inhibitor PLX-4720 (black bar). *(p < 0.05) indicates 
statistically significant difference from rhabdomyosarcoma RD cells treated with vehicle 
alone 

 

3.2 B-RAF regulates the sodium-coupled glucose transporter 

SGLT1 

3.2.1 Wild-type B-RAF stimulates the SGLT1 mediated electrogenic glu-

cose transport 

The carrier was expressed in Xenopus oocytes with or without additional ex-

pression of the kinase. The glucose transport was estimated from the current 

generated following addition of substrate to the bath solution. The current was 
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determined utilizing a dual electrode voltage clamp. The addition of glucose 

(10 mM) to the extracellular fluid did not induce an appreciable inward current in 

water-injected Xenopus oocytes, indicating that Xenopus oocytes do not ex-

press appreciable endogenous electrogenic glucose transport (Figure 19). In 

Xenopus oocytes expressing SGLT1, however, glucose (10 mM) induced an 

inward current (Ig) reflecting electrogenic entry of Na+ and glucose. As illus-

trated in Figure 19, Ig was significantly enhanced by additional coexpression of 

B-RAF. 
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Figure 19: Coexpression of B-RAF increases electrogenic glucose transport in SGLT1-
expressing Xenopus oocytes. A. Representative original tracings showing glucose-
induced current (10 mM) (Ig) in Xenopus oocytes injected with water (a), expressing 
SGLT1 without (b) or with additional coexpression of wild-type B-RAF (c). B. Arithmetic 
means ±SEM (n =11-14, nA) of glucose (10 mM)-induced current (Ig) in Xenopus oo-
cytes injected with water (water, white bar), expressing SGLT1 without (SGLT1, grey 
bar) or with additional coexpression of wild-type B-RAF (SGLT1+B-RAF, black bar). 
***(p < 0.001) indicates statistically significant difference from Xenopus oocytes ex-
pressing SGLT1 alone 

 

3.2.2 B-RAF enhanced the maximal current 

The kinetic analysis of the glucose-induced currents in SGLT1-expressing 

Xenopus oocytes (Figure 20) yielded a maximal Ig of 58.8 ± 2.3 nA (n = 8). The 
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coexpression of B-RAF significantly enhanced the maximal Ig to 82.0 ± 0.6 nA 

(n = 8). The calculation of the glucose concentration required for half maximal Ig 

(KM) yielded values of 425 ± 77 µM (n = 8) in oocytes expressing SGLT1 alone 

and of 288 ± 88 µM (n = 8) in the oocytes expressing SGLT1 together with 

BRAF, which are not significantly different. Accordingly, the coexpression of 

BRAF enhanced the SGLT1 activity at least in part by increasing the maximal 

current. 
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Figure 20: Coexpression of B-RAF increases maximal glucose transport rate in 
SGLT1-expressing Xenopus oocytes. Arithmetic means ±SEM (n = 6, nA) of glucose 
induced current (Ip) as a function of glucose concentration in Xenopus oocytes express-
ing SGLT1 without (open circles) and with additional coexpression of wild-type B-RAF 
(closed circles). ** (p < 0.01), *** (p < 0.001) indicates statistically significant difference 
from Xenopus oocytes expressing SGLT1 alone at every glucose concentration applied 

 

3.2.3 B-RAF increases the SGLT1 protein abundance in the cell mem-

brane 

An enhanced SGLT1 activity could result from increased carrier protein abun-

dance in the plasma membrane. To test this possibility, immunocytochemistry 

and confocal microscopy were employed to quantify the SGLT1 protein abun-

dance in the cell membrane. As illustrated in Figure 21 A, the coexpression of 

B-RAF was followed by an increase of SGLT1 protein abundance within the oo-

cyte cell membrane. The protein abundance was quantified utilizing chemilumi-
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nescence experiments. As shown in Figure 21 B, the coexpression of B-RAF 

was again followed by a significant increase of cell membrane SGLT1 protein 

abundance. 
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Figure 21: Coexpression of B-RAF enhanced SGLT1 protein abundance at the cell sur-
face in SGLT1-expressing Xenopus oocytes. A. Confocal images reflecting the SGLT1 
membrane protein abundance in Xenopus oocytes injected with water (water), express-
ing SGLT1 without (SGLT1) or with additional coexpression of wild-type B-RAF 
(SGLT1+B-RAF). The images are representative of three independent experiments.  
B. Arithmetic means ±SEM (n = 43-47, arbitrary units) of the chemiluminescence of 
SGLT1 protein abundance in Xenopus oocytes injected with water (water), expressing 
SGLT1 without (SGLT1) or with additional coexpression of wild-type B-RAF 

(SGLT1+BRAF), ***(p < 0.001) indicates statistically significant difference from 
Xenopus oocytes expressing SGLT1 alone 
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3.3 B-RAF regulates the sodium-coupled phosphate cotrans-

porters NaPi-IIa and NaPi-IIb 

3.3.1 Wild-type B-RAF increased the electrogenic phosphate transport in 

NaPi-IIa-expressing Xenopus oocytes 

The cotransporter was expressed in Xenopus oocytes with or without additional 

coexpression of wild-type B-RAF. The phosphate transport was estimated from 

the current generated following the addition of phosphate to the extracellular 

fluid. The substrate-induced current was determined utilizing a dual-electrode 

voltage clamp. As illustrated in Figure 22, the addition of phosphate (1 mM) to 

the bath solution did not induce an appreciable inward current in the water-

injected Xenopus oocytes. Thus, Xenopus oocytes do not express appreciable 

endogenous electrogenic phosphate transporters. In Xenopus oocytes express-

ing NaPi-IIa, however, phosphate induced an inward current (IP) reflecting an 

electrogenic entry of Na+ and phosphate. As shown in Figure 22, IP was signifi-

cantly enhanced by the additional coexpression of wild-type B-RAF in NaPi-IIa-

expressing Xenopus oocytes. 

 

Figure 22: Coexpression of B-RAF increased the electrogenic phosphate transport in 
NaPi-IIa-expressing Xenopus oocytes. A. Representative original tracings showing 
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phosphate-induced current (1 mM) (IP) in Xenopus oocytes injected with water (Water), 
expressing NaPi-IIa without (NaPi-IIa) or with additional coexpression of wild-type 

BRAF (NaPi-IIa + B-RAF). B. Arithmetic means ±SEM (n = 14-17, arbitrary units) of 
normalized phosphate-induced current (IP) in Xenopus oocytes injected with water 
(white bar), expressing NaPi-IIa without (grey bar) or with additional coexpression of 
wild-type B-RAF (black bar). ** (p < 0.01) indicates statistically significant difference 
from Xenopus oocytes expressing NaPi-IIa alone 

 

3.3.2 Wild-type B-RAF increased the maximal phosphate transport rate in 

the NaPi-IIa-expressing Xenopus oocytes 

B-RAF could have been effective by increasing the maximal transport rate or by 

enhancing the affinity of the carrier. To distinguish between these two possibili-

ties, a kinetic analysis of the phosphate-induced currents was performed. As 

shown in Figure 23, the phosphate transport was saturable at increasing sub-

strate concentrations. The kinetic analysis yielded a maximal IP of 

16.25 ± 0.12 nA (n = 12) in the Xenopus oocytes expressing NaPi-IIa alone. 

The coexpression of wild-type B-RAF significantly enhanced the maximal IP to 

29.09 ± 0.30 nA (n = 12). The calculation of the phosphate concentration re-

quired for half maximal IP (Km) yielded values of 1046.61 ± 43.96 µM (n = 12) in 

Xenopus oocytes expressing NaPi-IIa alone and of 785.60 ± 21.94 µM (n = 12) 

in Xenopus oocytes expressing NaPi-IIa together with B-RAF, the values were 

again significantly different. As a result, coexpression of wild-type B-RAF en-

hanced the NaPi-IIa activity by increasing the maximal current and by enhanc-

ing the affinity of the carrier. 

 

Figure 23: Coexpression of B-RAF increased the maximal phosphate transport rate in 
NaPi-IIa-expressing Xenopus oocytes. Arithmetic means ±SEM (n = 12, nA) of phos-
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phate-induced current (IP) as a function of phosphate concentration in Xenopus oo-
cytes expressing NaPi-IIa without (open circles) and with additional coexpression of 
wild-type B-RAF (closed circles). *** (p < 0.001) indicates statistically significant differ-
ence from Xenopus oocytes expressing NaPi-IIa alone at the respective phosphate 
concentrations 

 

3.3.3 Wild-type B-RAF increased the NaPi-IIa protein abundance at the 

cell membrane of Xenopus oocytes 

The enhanced maximal NaPi-IIa activity could have been caused by the in-

creased carrier protein abundance in the plasma membrane. Thus, immunocy-

tochemistry with confocal microscopy was employed to visualize the NaPi-IIa 

protein abundance in the cell membrane. As shown in Figure 24 A, the coex-

pression of wild-type B-RAF was followed by an increase of the NaPi-IIa protein 

abundance within the oocytes’ cell membrane. The protein abundance was 

quantified utilizing chemiluminescence. Figure 24 B illustrates that the coex-

pression of wild-type B-RAF was followed by a significant increase of chemilu-

minescence. 

  

Figure 24: Coexpression of B-RAF enhanced the NaPi-IIa protein abundance at the cell 
surface in NaPi-IIa-expressing Xenopus oocytes. A. Confocal images reflecting NaPi-IIa 
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membrane protein abundance in Xenopus oocytes injected with water (Water), ex-
pressing NaPi-IIa without (NaPi-IIa) or with additional coexpression of wild-type B-RAF 
(NaPi-IIa+B-RAF). The images are representative for three independent experiments. 
B. Arithmetic means ±SEM (n = 44-63, arbitrary units) of the chemiluminescence of 
NaPi-IIa cell surface protein abundance in Xenopus oocytes injected with water (white 
bar), expressing NaPi-IIa without (grey bar) or with additional coexpression of wild-type 
B-RAF (black bar). ** (p < 0.01) indicates statistically significant difference from 
Xenopus oocytes expressing NaPi-IIa alone 

 

3.3.4 Effect of the B-RAF inhibitor PLX-4720 on NaPi-IIa protein abun-

dance at the cell surface in HEK293 cells 

Another series of experiments was conducted to explore whether B-RAF simi-

larly regulates the protein abundance of NaPi-IIa in HEK293 cells. To this end, 

HEK293 cells were treated with 10 µM of the B-RAF inhibitor PLX-4720 for 

24 hours and the NaPi-IIa cell membrane protein abundance was analysed by 

biotinylation of the cell surface proteins with subsequent western blotting. As 

illustrated in Figure 25, treatment of HEK293 cells with B-RAF inhibitor 

PLX4720 was followed by a statistically significant decrease in NaPi-IIa cell 

membrane protein abundance as compared to HEK293 cells treated with vehi-

cle alone. Thus, PLX-4720 treatment decreased the NaPi-IIa cell membrane 

protein abundance in HEK293 cells. 

 

Figure 25: B-RAF inhibitor PLX-4720 decreased the NaPi-IIa protein abundance at the 
cell surface in HEK293 cells. A. Representative original western blot showing NaPi-IIa 
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membrane protein abundance analysed by cell surface biotinylation in HEK293 cells 
after 24 hours treatment with vehicle alone (Control) or with 10 µM B-RAF inhibitor 

PLX4720 (PLX-4720). B. Arithmetic means ±SEM (n = 6, arbitrary units) of normalized 
NaPi-IIa membrane protein abundance analysed by cell surface biotinylation in 
HEK293 cells after 24 hours treatment with vehicle alone (white bar) or with 10 µM 

BRAF inhibitor PLX-4720 (black bar). * (p < 0.05) indicates statistically significant dif-
ference from HEK293 cells treated with vehicle alone 

 

3.3.5 Wild-type B-RAF increased the electrogenic phosphate transport in 

NaPi-IIb-expressing Xenopus oocytes 

Further experiments explored whether B-RAF similarly influences the activity of 

the related type II Na+-coupled phosphate cotransporter NaPi-IIb. As illustrated 

in Figure 26, addition of phosphate (1 mM) to the bath solution did not induce 

an appreciable inward current in the water-injected Xenopus oocytes. In 

Xenopus oocytes expressing NaPi-IIb, however, the phosphate induced an in-

ward current (Ip), which was significantly increased by additional coexpression 

of wild-type B-RAF. 

 

Figure 26: Coexpression of B-RAF increased the electrogenic phosphate transport in 
NaPi-IIb-expressing Xenopus oocytes. A. Representative original tracings showing 
phosphate-induced current (1 mM) (IP) in Xenopus oocytes injected with water (Water), 
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expressing NaPi-IIb without (NaPi-IIb) or with additional coexpression of wild-type 

BRAF (NaPi-IIb + B-RAF). B. Arithmetic means ±SEM (n = 14, arbitrary units) of nor-
malized phosphate-induced current (IP) in Xenopus oocytes injected with water (white 
bar), expressing NaPi-IIb without (grey bar) or with additional coexpression of wild-type 
B-RAF (black bar). *(p < 0.05) indicates statistically significant difference from Xenopus 
oocytes expressing NaPi-IIb alone 

 

3.3.6 Wild-type B-RAF increased the maximal phosphate transport rate in 

NaPi-IIb-expressing Xenopus oocytes 

Figure 27 illustrates that the phosphate transport was saturable at increasing 

substrate concentrations. The kinetic analysis yielded a maximal Ip of 

15.45 ± 0.80 nA (n = 10) in Xenopus oocytes expressing NaPi-IIb alone. The 

coexpression of wild-type B-RAF again significantly enhanced the maximal Ip to 

24.48 ± 0.93 nA (n = 8-10). The calculation of the phosphate concentration re-

quired for half maximal IP (Km) yielded values of 828.96 ± 22.83 µM (n = 10) in 

Xenopus oocytes expressing NaPi-IIb alone and of 645.40 ± 14.03 µM (n = 8-

10) in Xenopus oocytes expressing NaPi-IIb together with B-RAF, values again 

significantly different. As a result, coexpression of wild-type B-RAF enhanced 

the NaPi-IIb activity by increasing the maximal current and by enhancing the 

affinity of the carrier. 

 
Figure 27: Coexpression of B-RAF increased maximal phosphate transport rate in 
NaPi-IIb-expressing Xenopus oocytes. Arithmetic means ±SEM (n = 10, nA) of phos-
phate-induced current (IP) as a function of phosphate concentration in Xenopus oo-
cytes expressing NaPi-IIb without (open circles) and with additional coexpression of 
wild-type B-RAF (closed circles). ***(p < 0.001) indicates statistically significant differ-
ence from Xenopus oocytes expressing NaPi-IIb alone at the respective phosphate 
concentrations 
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4 Discussion 

The data regarding the role of B-RAF in the regulation of membrane transport 

are limited and mainly focused on the association between mutations of B-RAF 

and the activity of transporters in different cancers. This study identifies a novel 

role of B-RAF in the regulation of ion channels and transporters. 

The present work reveals that the serine/threonine kinase B-RAF is a powerful 

stimulator of the human ether-a-go-go related-gene K+ channels (hERG). The 

coexpression of wild-type B-RAF increases the hERG channel protein abun-

dance in the cell membrane and thus increases the respective hERG-mediated 

current across the cell membrane in Xenopus oocytes. Furthermore, the down-

regulation of the hERG channel protein abundance and the activity in rhabdo-

myosarcoma RD cells, by treatment with the B-RAF inhibitor PLX-4720, points 

out a role of B-RAF in the regulation of hERG channels in those tumour cells 

(115). It must be kept in mind, though, that the selectivity of the inhibitor may be 

limited. The experiments in Xenopus oocytes show, however, that the inhibitor 

PLX4720 reverses the effect of wild-type B-RAF coexpression and apparently 

does not influence the hERG activity by mechanisms other than B-RAF inhibi-

tion. The data obtained from Xenopus oocytes experiments indicate that wild-

type B-RAF is at least partially effective through effects on the channel insertion 

into the cell membrane and/or channel protein stability in the cell membrane 

(115). It also can be concluded that the effects may not depend on direct phos-

phorylation of the channel by B-RAF, because no putative consensus sequence 

specific for the B-RAF phosphorylation site recognition motif could be identified 

in the hERG protein sequence. Instead, B-RAF may be effective by influencing 

other regulators of hERG channels. At least in theory, the hERG expression in 

the plasma membrane can be regulated by B-RAF via Nedd4-2. It was previ-

ously shown that hERG and Nedd4-2 can interact with each other. This interac-

tion leads to ubiquitination and degradation of mature channel (116-118). More-

over, theoretically, B-RAF may be effective by influencing the activity of other 

kinases. The kinases involved in the effect of growth factors on the hERG ex-

pression include protein tyrosine kinases (119), VEGFR-2 (KDR) kinase (120), 

serum- and glucocorticoid-inducible kinase isoforms SGK1 and SGK3 (116, 
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121), AMP-activated protein kinase (114) and phosphatidylinositol-3-phosphate-

5-kinase PIKfyve (122). 

The hERG channels are also involved in the pathophysiology of cancer (70, 

123, 124). Several studies indicate that hERG controls cell proliferation, cell 

invasiveness and tumour cell neoangiogenesis (125). Thus, B-RAF-sensitive 

regulation of the hERG channel may have an impact on proliferation, survival 

and migration of tumour cells (126, 127). The regulation of channels by coex-

pressed signalling molecules in Xenopus oocytes may not necessarily reflect 

the effect of the respective signalling molecule on the channel activity in tumour 

cells. The interaction of signalling molecules with channels may depend on the 

expression level of the channel and the signalling molecule, which may be dif-

ferent in cRNA-injected Xenopus oocytes and defined mammalian cells. More-

over, the additional signalling pathways expressed differently in Xenopus oo-

cytes and mammalian cells may modify the interaction of the signalling mole-

cule with the channels. The observed effect of the B-RAF inhibitor PLX-4720 

strongly suggests, however, that the B-RAF sensitivity of hERG channels is 

relevant in rhabdomyosarcoma RD cells. Thus, B-RAF-sensitive hERG K+ 

channel up-regulation possibly contributes to cell proliferation and apoptosis of 

tumour cells. 

Considering the critical role of hERG K+ channels in the regulation of cardiac 

repolarization, the up-regulation of this channels by B-RAF, at least in theory, 

may further influence the hERG-associated cardiac repolarization disorders 

(128). B-RAF is expressed in the heart. It was previously reported that this 

kinase is involved in the regulation of cardiomyocytes survival, growth and hy-

pertrophy (129, 130). A negative influence of B-RAF inhibitors on cardiomyo-

cytes function and survival may present an important potential side effect of 

BRAF inhibitors (131). 

This work points out that wild-type B-RAF is a powerful stimulator of the 

voltage-gated hERG K+ channels and may as well participate in the 

proliferation, survival and function of tumour cells and possibly cardiomyocytes. 

Next the question of the role of B-RAF in the regulation of the Na+- coupled 

glucose transporter SGLT1 was addressed. The serine/threonine kinase B-RAF 
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enhanced the SGLT1 protein abundance in the cell membrane and thus increased 

the transport rate by this carrier. Accordingly, B-RAF significantly increased the 

maximal transport rate without significantly affecting the substrate affinity of the 

carrier (107). 

SGLT1 is well known to accomplish the Na+-coupled glucose transport across the 

brush border of the small intestine and the proximal tubule within the kidney. The 

glucose transport by SGLT1 is driven by the steep electrochemical Na+ gradient 

across the plasma membrane (72). The coupling to Na+ thus allows almost 

complete (re)absorption of luminal glucose in intestine and kidney. 

The present experiments do not attempt to define the molecular mechanism of the 

BRAF dependent regulation of SGLT1. B-RAF may influence the SGLT1 activity 

by direct phosphorylation of the carrier or by phosphorylation of other signalling 

molecules, which in turn regulate SGLT1. SGLT1 is a target of several kinases 

including the protein kinase A (PKA) (132, 133), the protein kinase C (PKC) (134), 

the serum- and glucocorticoid-inducible kinase (SGK) (135), AMP-activated 

protein kinase (AMPK) (136) and Janus kinase JAK2 (137). Those kinases 

regulate the SGLT1 activity by influencing the carrier protein abundance within the 

plasma membrane. 

Besides its well established expression and functional role in the epithelial 

transport, SGLT1 is expressed in a variety of tumour cells (78, 80, 138, 139). 

Tumour cells further take up glucose by the facilitative glucose transporter 

GLUT1, a carrier accomplishing the non-concentrative glucose uptake (140, 

141). The very high demand of tumour cells for nutrients may, however, require 

the additional involvement of SGLT1 (80). The glucose uptake through passive 

GLUT carriers has the advantage that it does not require energy expenditure. In 

contrast, the Na+
coupled glucose uptake eventually requires an ATP-consuming 

extrusion of the cotransported Na+ by the Na+/K+ ATPase. The pump further 

replenishes the cell with K+ as the SGLT1 induced depolarization leads to cellular 

K+ loss. Without the Na+/K+ ATPase activity, the SGLT1 activity would lead to a 

gradual dissipation of the Na+ gradient and depolarization eventually resulting in 

cell swelling (142). SGLT1 has, however, the advantage that it is able to allow a 

cellular accumulation of glucose even at a decreased extracellular glucose 
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concentration, which impairs the glucose uptake through the facilitative glucose 

carriers more profoundly than Na+-coupled glucose uptake. In contrast to the 

facilitative glucose carriers, SGLT1 accomplishes cellular glucose uptake even at 

extracellular glucose concentrations far below the intracellular concentrations. The 

ATP needed for the extrusion of the cotransported Na+ by the Na+/K+ ATPase is 

only a fraction of the ATP generated during degradation of glucose, even if 

glucose is utilized only for glycolysis without oxidative metabolism (107). 

These data demonstrate that B-RAF upregulates the protein abundance and 

activity of the Na+coupled glucose transporter SGLT1. The stimulation of 

SGLT1 may allow the maintenance of the cellular glucose delivery and thus 

confer survival of tumour cells at low local extracellular glucose concentration. 

Finally, the obtained results show that the coexpression of the wild-type 

serine/threonine kinase B-RAF enhances the NaPi-IIa phosphate-induced 

inward current (Ip) in Xenopus oocytes. Furthermore, B-RAF enhances the 

NaPi-IIa protein abundance in the cell membrane, thus increasing the maximal 

electrogenic phosphate transport rate in NaPi-IIa-expressing Xenopus oocytes. 

Additionally, B-RAF significantly modifies the substrate affinity of the carrier. 

The down-regulation of the NaPi-IIa protein abundance at the cell surface was 

observed in HEK293 cells following treatment with the B-RAF inhibitor 

PLX4720, an observation again pointing to a role of B-RAF in the regulation of 

the Na+coupled phosphate cotransporter NaPi-IIa. However, it must be kept in 

mind, that the selectivity of the inhibitor may be limited. The coexpression of 

BRAF similarly enhances the NaPi-IIb phosphate-induced inward current (Ip) 

by increasing the maximal electrogenic phosphate transport rate and by 

modifying the substrate affinity of the carrier in NaPi-IIb-expressing Xenopus 

oocytes. Thus, B-RAF regulates both members of the type II Na+-coupled 

phosphate cotransporter family (143). 

It should be noted that the present work does not directly address the molecular 

mechanism involved in the regulation of carrier affinity and protein abundance in 

the cell membrane by B-RAF as well as it does not aim to define the in vivo 

significance of the B-RAF-sensitive regulation of renal and intestinal  

type II Na+- coupled phosphate cotransporters. In theory, B-RAF could directly 
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phosphorylate the carrier or could phosphorylate other signalling molecules, 

which in turn modify carrier insertion and activity. 

B-RAF may be inhibited by AKT (protein kinase B) (144), a kinase similarly 

activated by IGF1 and stimulating the transport of glucose (135, 145, 146), 

amino acids (147, 148), Ca2+ and H+ (149), Na+ (150) as well as phosphate 

(151, 152). Guan et al. reported that AKT phosphorylates B-RAF at multiple 

residues within its amino-terminal regulatory domain (153). It was also 

described that SGK inhibits the activity of B-RAF (154). These data indicate that 

crosstalk between BRAF and other signalling pathways can be mediated by 

AKT and SGK. Clearly, additional experimentation will be required to define the 

putative role of B-RAF signalling in the regulation of renal tubular and intestinal 

phosphate transport. 

B-RAF contributes to the pathophysiology of polycystic kidney disease (PKD), a 

disorder with formation of renal cysts (144). The cysts are enlarged by cAMP, 

which is effective by stimulating epithelial cell proliferation and transepithelial 

fluid secretion (144). The influence of cAMP on cell proliferation is apparently 

secondary to stimulation of B-RAF, as AKT-dependent inhibition of B-RAF is 

disrupted in PKD (144). Whether or not B-RAF is exclusively involved in the 

regulation of cell proliferation or, in addition, participates in the regulation of 

renal tubular transport of substrates, electrolytes and fluid, requires further 

investigation.  

B-RAF increases the cell surface protein abundance and activity of the type II 

Na+-coupled phosphate transporters NaPi-IIa and NaPi-IIb. The stimulation of 

NaPi-IIa may become relevant in polycystic kidneys disease, a disorder with 

increased B-RAF activity. 

To conclude, this study improves our understanding of the involvement of 

BRAF in the regulation of the ion channels and transporters. 
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5 Summary 

B-RAF, a serine/threonine protein kinase, is an important component of the 

RAS/RAF/MEK/ERK signal transduction pathway, which controls cellular proli-

feration, survival and differentiation. This pathway plays a central role in trans-

mitting growth factor-triggered signals. An aberrant regulation of the cascade 

contributes to cancer and other human diseases. There is increasing evidence 

that the growth factors and their signalling pathways play an important role in 

the regulation of ion channels. The human ether-a-go-go (hERG) channel par-

ticipates in the repolarization of the cardiac action potential in the human heart. 

Beyond that, hERG can be considered one of the most important ion channels 

involved in the establishment and maintenance of neoplastic growth. 

The present study explores whether B-RAF influences hERG channel expres-

sion and activity. The obtained data indicate that hERG channel activity and 

hERG channel protein abundance in the cell membrane are significantly in-

creased by the coexpression of wild-type B-RAF. Moreover, treatment with the 

B-RAF inhibitor PLX4720 significantly decreases the hERG-mediated current 

and the hERG cell surface expression in Xenopus oocytes as well as in 

rhabdomyosarcoma RD cells. 

The sodium-coupled glucose transporter SGLT1 accomplishes concentrative 

cellular glucose uptake against a chemical glucose gradient. As tumour cells 

mainly utilize glucose as a fuel, their survival critically depends on their ability to 

accumulate glucose from the extracellular space. Several studies indicate a 

functional role of SGLT1 in malignant tumours. However, the mechanism ac-

counting for the SGLT1 protein expression in tumour cells has remained ill-

defined. The present study shows that the coexpression of B-RAF enhances 

SGLT1 activity and SGLT1 protein abundance in the Xenopus oocytes cell 

membrane. 

The present study further explores whether B-RAF regulates the sodium-

dependent phosphate cotransporters NaPi-IIa and NaPi-IIb. NaPi-IIa is respon-

sible for more than 90% of the phosphate reabsorption in the proximal tubule of 

the nephron. The abundance of this transporter is regulated by different factors, 

including dietary phosphate, the parathyroid hormone, the insulin-like growth 
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factor IGF1 and insulin. On the other hand, B-RAF contributes to the signalling 

of the insulin-like growth factor IGF1. NaPi-IIb accomplishes phosphate 

transport in the intestine and its altered expression was detected in several 

cancers. The present study reveals that the coexpression of B-RAF enhances 

the phosphate-induced currents in NaPi-IIa and NaPi-IIb expressing Xenopus 

oocytes. Further, B-RAF increases the NaPi-IIa protein abundance in the cell 

membrane of Xenopus oocytes. Additionally, the treatment of HEK293 cells with 

the B-RAF inhibitor PLX-4720 significantly decreases the NaPi-IIa protein 

abundance. 

To conclude, B-RAF is a novel regulator of the hERG channel, the SGLT1 

transporter and the sodium-dependent phosphate cotransporters NaPi-IIa and 

NaPi-IIb and may contribute to the pathophysiology of malignancy and de-

ranged phosphate metabolism. 
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Zusammenfassung 

Die Serin-/Threoninkinase B-RAF ist eine wichtige Komponente des 

RAS/RAF/MEK/ERK-Signalleitungspfades, der die zellulare Proliferation, das 

Überleben und die Differenzierung von Zellen kontrolliert. Dieser Signalpfad 

spielt eine zentrale Rolle in der Signaltransduktion von Wachstumsfaktoren. 

Eine gestörte Regulierung der Kaskade trägt zur Bildung von Krebs und 

anderen Krankheiten des Menschen bei. Die Hinweise mehren sich, dass die 

Wachstumsfaktoren und deren Signalpfade eine wichtige Rolle bei der 

Regulierung von Ionenkanälen spielen. Der menschliche ether-a-go-go (hERG) 

Kanal ist an der Erregungsrückbildung von Aktionspotentialen des 

menschlichen Herzens beteiligt. Darüber hinaus kann hERG als einer der 

wichtigsten Ionenkanäle angesehen werden, die in der Regulation von 

neoplastischem Wachstums beteiligt sind. 

Die vorliegende Arbeit untersucht, ob B-RAF die Expression und die Aktivität 

des hERG-Kanals beeinflusst. Die vorliegenden Daten zeigen, dass sich die 

Aktivität des hERG-Kanals und dessen Proteinmenge in der Zellmembran durch 

Koexpression von Wildtyp-B-RAF signifikant gesteigert werden. Umgekehrt 

reduziert die Behandlung mit dem B-RAF Inhibitor PLX-4720 den hERG-

mediierten Strom und die hERG Expression an der Zelloberfläche signifikant in 

Xenopus Oozyten sowie in Rhabdomyosarcoma RD Zellen. 

Auch der Natrium-gekoppelte Glukosetransporter SGLT1 ist für das 

Tumorwachstum wesentich. Er kann Glukose gegen einen chemischen 

Glukosegradienten zellulär aufnehmen. Da Tumorzellen hauptsächlich Glukose 

als Energielieferant verwenden, hängt deren Überleben wesentlich von deren 

Fähigkeit ab Glukose aus dem extrazellulären Raum aufzunehmen. Mehrere 

Studien weisen auf eine Rolle von SGLT1 bei bösartiger Tumoren hin. Dennoch 

blieben die Mechanismen der Funktion und der Proteinexpression von SGLT1 

in Tumorzellen nur unzureichend verstanden. Die vorliegende Arbeit zeigt dass 

die Koexpression von B-RAF sowohl die SGLT1-Aktivität als auch die 

Proteinmenge in der Zellmembran von Xenopus Oozyten erhöht. 

Des Weiteren untersucht die vorliegende Arbeit, ob B-RAF die 

natriumabhängigen Phosphattransporter NaPi-IIa und NaPi-IIb beeinflusst. 
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NaPi-IIa ist für mehr als 90% der Reabsorption von Phosphat im proximalen 

Tubulus des Nephrons verantwortlich. Die Menge des Transportproteins wird 

durch verschiedene Faktoren, wie diätisches Phosphat, das Parathormon, den 

insulinähnlichen Wachstumsfaktor IGF1 sowie Insulin, beeinflusst. Auf der 

anderen Seite trägt B-RAF zur Signalübertragung des insulinähnlichen 

Wachstumsfaktors IGF1 bei. NaPi-IIb bewerkstelligt den Phosphattransport im 

Darm. Seine veränderte Expression wurde bei verschiedenen Krebsarten 

gefunden. Die vorliegende Arbeit zeigt dass die Koexpression von B-RAF die 

phosphatinduzierten Ströme in NaPi-IIa und NaPi-IIb exprimiert in Xenopus 

Oozyten erhöht. Darüber hinaus erhöht B-RAF die Menge an NaPi-IIa in der 

Zellmembran von Xenopus Oozyten. Zusätzlich reduziert die Behandlung von 

HEK293 Zellen mit dem B-RAF-Inhibitor PLX-4720 die Menge von NaPi-IIa 

Proteinen signifikant. 

Zusammenfassend ist B-RAF ein neuer Regulator des hERG-Kanals, des 

SGLT1-Transporters und der natriumabhängigen Phosphattransporter NaPi-IIa 

und NaPi-IIb und trägt möglicherweise zur Pathophysiologie von 

Tumorerkrankung und gestörtem Phosphatstoffwechel bei. 
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7 Contribution 

This thesis includes the data of the three following original papers. 

In publication 1 (Pakladok et al., 2014), LF and SE designed the concept of the 

work. I performed immunostaining, confocal microscopy and chemilumines-

cence experiments in Xenopus oocytes, maintained the RD cells in culture, 

made the treatments (Fig.13 A, B and Fig.15). I also carried out the surface 

biotinylation experiments and western blotting in RD cells (Fig.16 A, B). LA ac-

complished the flow cytometry measurements (Fig.17 A, B). AA performed 

patch clamp experiments under the supervision of SE (Fig.18 A-C). HZ carried 

out the handling and injection of Xenopus oocytes as well as two-electrode volt-

age clamp recordings (Fig.11-12 A, B and Fig.14 A, B). The statistical analysis 

was performed by me under supervision of AI and SE. LF wrote the draft. I re-

vised and completed the paper with the help of AI. All the authors read and ap-

proved the manuscript. 

In publication 2 (Pakladok et al., 2012), LF and AI set up the concept of the 

work. I performed the chemiluminescence and immunofluorescence experi-

ments in Xenopus oocytes (Fig.21 A, B). HZ carried out the voltage clamp ex-

periments (Fig.19 A, B and Fig.20). The statistical analysis was accomplished 

by me with the help of AI. LF wrote the draft. I revised and completed the paper 

under supervision of AI. 

In publication 3 (Pakladok et al., 2014), I contributed to the layout of the study in 
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