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1. Introduction 

 

1.1 Concepts of Immunity 

 

Immunity describes a state in which an organism holds enough defense 

mechanisms to protect itself from unwanted biological invasion, for example through 

harmful microorganisms. This principle is a quite ancient and concomitant 

phenomenon of life, even unicellular organisms like bacteria and archaea feature 

enzymatic systems protecting them against viruses and plasmids (Horvath and 

Barrangou 2010). 

Plants, animals and other organisms continuously need to deal with invading 

pathogens as potential disease-causing agents. Fortunately, different barriers prevent 

pathogen intrusion most commonly. Constitutively, physical (body surface and 

mucosal epithelia, epidermis and cuticle) and chemical (antimicrobial secondary 

compounds) barriers constitute a first hindrance for the pathogen. However, most of 

the host defense mechanisms are inducible through specific recognition of the 

infectious microorganism (Medzhitov and Janeway 2000). Vertebrates rely on two 

main branches of immunity, termed innate and adaptive immunity. Innate immunity is 

the more ancient one, providing germline-encoded and preformed receptors for pattern 

perception of common microbial structures referred to as pathogen- or microbe-

associated molecular patterns (PAMPs or MAMPs) (Janeway and Medzhitov 2002, 

Dempsey et al. 2003). PAMPs are often highly conserved molecular structures found 

across whole classes of microbes which feature an essential function for the 

microorganism’s lifestyle and cannot be found in the host. Thus, recognition of these 

patterns by pattern recognition receptors (PRRs) allows the host to distinguish 

between non-infectious self and infectious non-self (Medzhitov and Janeway 2002).  

Besides, endogenous molecules passively released through cellular damage like 

injury or actively secreted by living cells under stress can be sensed by PRRs as well 

and hereby induce immune responses (Matzinger 1994, Bianchi 2007). Analogous to 

the nomenclature of PAMPs or MAMPs these molecules are designated as DAMPs, 
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or damage-associated molecular patterns. Exemplary DAMPs are the High Mobility 

Group Box 1 (HMGB1), uric acid, DNA or ATP (Venereau et al. 2015). 

The adaptive immune system is evolutionarily younger and only a trait of the 

Gnathostomata. It provides specific recognition of foreign antigens and an 

immunological memory and relies on clonal expansion of antigen-specific effector cells 

selected for by gene rearrangement (Janeway and Medzhitov 2002, Dempsey, et al. 

2003). This enables the production of an unlimited number of highly variable receptor 

molecules. However, in the event of a first infection effector cells get activated 

comparatively slowly, and defects during somatic selection might lead to allergies and 

autoimmune disorders. 

Innate and adaptive immunity evolved independently, albeit adaptive immunity is 

only stimulated once a pathogen is recognized by the innate immune system 

(Medzhitov and Janeway 1998). Innate immunity is the more ancient and prevalent 

form of immunity in plants, fungi, insects and primitive multicellular organisms and can 

be mounted by each cell autonomously (Litman et al. 2005, Pancer and Cooper 2006). 

Animals and plants feature similar components of innate immunity, suggesting a 

convergent evolution of this type of immunity in the two lineages (Nürnberger et al. 

2004, Ausubel 2005, Zipfel and Felix 2005, Staal and Dixelius 2007).  

PRRs of animals and plants can be either membrane-bound for extracellular 

MAMP-recognition or localized intracellularly. In the animal system, two cytosolic 

receptor classes can be distinguished. NOD (nucleotide-binding and oligomerization 

domain)-like receptors (NLRs) contain a central nucleotide-binding oligomerization 

domain (NOD), a C-terminal LRR domain and variable N-terminal interaction domains 

like the CARD (caspase recruitment)-domain, the PYR (pyrin)-domain or baculovirus 

inhibitor repeats (BIRs) and are necessary for the regulation of inflammatory and 

apoptotic responses (Franchi et al. 2009, Barbe et al. 2014, Motta et al. 2015). Another 

class, the RIG I (retinoic acid inducible gene I)-like receptors sense viral RNA and 

consist of an N-terminal CARD-domain followed by a RNA helicase domain (Creagh 

and O'Neill 2006, Meylan et al. 2006). In plants, NBS-LRRs (nucleotide-binding site 

leucine-rich repeat) are the cytoplasmic equivalents to animal NLRs but differ 

regarding the structure of the N-terminal domains. Instead of a CARD, PYR or BIR 

domain NBS-LRRs possess a TIR (Toll/interleukin-1 receptor) or a coiled-coil (CC) 

domain (DeYoung and Innes 2006, Jones and Dangl 2006, Rosenstiel et al. 2008). 
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C-type lectin receptors (CLRs) can be soluble or membrane-bound. CLRs can be 

classified into subtypes according to their function and structure and many recognize 

their ligands through the Ca2+-dependent carbohydrate recognition domains (CRDs). 

In general these receptors serve two purposes; mediating cell-cell contact and acting 

as PRRs. Some CLRs induce signaling that directly activate nuclear factor-kappaB 

(NF-κB), others effect signaling mediated by Toll-like receptors (TLRs) (Cambi and 

Figdor 2003, Geijtenbeek and Gringhuis 2009). TLRs are a class of membrane-bound 

PRRs of animals, named after the first characterized member from Drosophila 

melanogaster, TOLL, which was shown to have a role in the fly’s innate immunity 

(Lemaitre et al. 1996). TLRs consist of an extracellular leucine-rich domain (LRR) for 

ligand binding, a class 1 transmembrane domain and a cytoplasmic TIR-domain (Gay 

and Gangloff 2007). Upon ligand binding, dimerization with adaptor proteins like 

MyD88 (Myeloid differentiation primary response gene 88) and subsequent recruitment 

of kinases like IRAK (Interleukin-1 receptor-associated kinase) leads to signal 

transduction and activation of immunity (Akira and Takeda 2004). To date, 10 (human) 

and 12 (mouse) TLRs are identified, with high conservation of TRL1-TRL9 (Kawai and 

Akira 2009). Various MAMPs of different classes are recognized by TLRs like lipids, 

lipoproteins, proteins, cell wall fragments or nucleic acids (Jin and Lee 2008, Kawai 

and Akira 2009, O'Neill et al. 2013) thus covering a broad spectrum of pathogens like 

parasites, bacteria, fungi and viruses (Akira et al. 2006). TLR9 for example recognizes 

bacterial CpG-DNA and parasitic malaria hemozoin, TLR7 viral ssRNA, 

lipopolysaccharide (LPS) of gram-negative bacteria is perceived by TLR4 and TLR2 

recognizes PGN (peptidoglycan) from gram-positive bacteria (Kawai and Akira 2009). 

TLR5 was identified as the receptor for flagellin, a highly conserved PAMP from 

bacterial flagella (Hayashi et al. 2001). Also plants are able to perceive flagellin by a 

receptor with an extracellular LRR domain, the receptor-like kinase (LRR-RK) FLS2 

(flagellin-sensing 2) (Gomez-Gomez et al. 1999, Gomez-Gomez and Boller 2000). 

Instead of the TIR domain of TLRs, FLS2 and other plant LRR-RKs feature an 

intracellular kinase domain. Actually, the only characteristic TLR5 and FLS2 do have 

in common, is the extracellular LRR domain suggesting an independent evolution of 

the flagellin perception system in plants and animals. Supportive for this hypothesis is 

the fact that TLR5 and FLS2 recognize conserved epitopes of flagellin which are 

structurally distinct from each other (Felix et al. 1999, Smith et al. 2003). 
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1.2 Plant innate immunity 

 

Plants rely on only one tier of immunity, the innate immune system. Plants need to 

deal with the biotic challenge of invading pathogens like viroids, viruses, bacteria, fungi 

and oomycetes. Physical barriers constitute a first line of defense like a rigid cell wall 

and a wax-containing hydrophobic cuticle. Chemical barriers like antimicrobial 

compounds or enzymes form another constitutive line of defense (VanEtten et al. 1994, 

Heath 2000, Dixon 2001, Reina-Pinto and Yephremov 2009, Piasecka et al. 2015). 

Once pathogens manage to overcome these constitutive barriers, they are confronted 

with the plants inducible innate immune system. In a first instance, invading pathogens 

are recognized through their PAMPs by membrane-bound plant PRRs leading to the 

activation of plant immunity called PTI (PAMP-triggered immunity). Similarly, PTI is 

activated through PRR-mediated recognition of DAMPs. Thus, PTI is a form of basal 

resistance effective against non-adapted pathogens called non-host resistance and 

limited in effectiveness against host-adapted microbes of susceptible cultivars (Dodds 

and Rathjen 2010, Böhm et al. 2014a). However, successful pathogens secrete 

effectors into host cells which promote virulence and suppress PTI, thereby 

establishing a state called ETS (effector-triggered susceptibility) (Jones and Dangl 

2006, Win et al. 2012). As a counter measure, plants evolved mechanisms to detect 

these effectors or effector-mediated host-manipulation in a co-evolutionary arms race. 

NBS-LRRs are the main class of intracellular resistance proteins (R-proteins) sensing 

effectors and thereby activating immunity (Dodds and Rathjen 2010, Elmore et al. 

2011). This kind of robust immune activation is called effector-triggered immunity or 

ETI and is proposed to be a faster, stronger and more prolonged version of PTI that 

often culminates in a hypersensitive response (HR) restricting pathogen growth (Tao 

et al. 2003, Jones and Dangl 2006, Tsuda et al. 2009, Tsuda and Katagiri 2010, Dou 

and Zhou 2012, Cui et al. 2015). However, this discrimination of ETI and PTI was 

recently challenged since several effectors and PAMPs do not match the common 

classification (Thomma et al. 2011, Shibuya and Desaki 2015). For example, some 

effectors are quite conserved and elicit defense responses, while some PAMPs are 

narrowly distributed or contribute to pathogen virulence. Also, some PAMPs elicit a 

quite strong defense response resulting in an HR, whereas some effectors are rather 

weak elicitors (Bailey et al. 1990, Wei et al. 1992, Khatib et al. 2004, Ron and Avni 

2004, Wirthmueller et al. 2007, Thomma, et al. 2011, Schwessinger and Ronald 2012). 
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Classification by division into intracellular NBS-LRR proteins mediating ETI and 

extracellular PRRs mediating PTI is also blurred, since effector recognition not only 

occurs intracellularly but also at the plasma membrane. As such, there is rather a 

continuum between ETI and PTI than a precise distinction. 

Membrane depolarization is the earliest measurable response upon PAMP 

perception. Increased influx of Ca2+ and H+ and simultaneous efflux of K+, Cl- and NO3- 

within the first minutes lead to an extracellular alkalization (Jabs et al. 1997, 

Zimmermann et al. 1997, Wendehenne et al. 2002, Garcia-Brugger et al. 2006). 

Calcium-dependent protein kinases (CDPKs) sense rapid intracellular changes of 

Ca2+-concentrations and mediate further signaling steps (Blume et al. 2000, Hrabak et 

al. 2003, Ludwig et al. 2004, Romeis and Herde 2014). The production of reactive 

oxygen species (ROS) constitutes another early response. ROS feature antimicrobial 

effects, act as signaling components and fortify the cell wall by mediating crosslinking 

events (Bradley et al. 1992, Apel and Hirt 2004, Torres et al. 2006). Activation of MAP 

kinases (mitogen-activated protein kinases) and phosphorylation cascades lead to 

regulation of transcription factors and defense gene expression (Zhang and Klessig 

2001, Asai et al. 2002, Jonak et al. 2002, Colcombet and Hirt 2008). Thus, 

transcriptional reprogramming leads for example to regulation of the phytohormone 

cross-talk between jasmonic acid (JA), salicylic acid (SA) and ethylene production 

(Feys and Parker 2000, Kunkel and Brooks 2002). Hereby, SA-signaling mainly 

mediates responses against biotrophic pathogens and is necessary to establish 

systemic acquired resistance (SAR), whereas JA and ethylene mediate signaling to 

fight necrotrophic pathogens (Glazebrook 2005). Moreover, antimicrobial substances 

like phytoalexins are produced (Tsuji et al. 1992, Mao et al. 2011). Stomata constitute 

an entry point for pathogens, which need to reach the plant apoplast to proliferate. 

Upon PAMP perception, stomatal closure takes place in a manner dependent on 

abscisic acid, SA, K+-fluxes and heterotrimeric G-proteins (Melotto et al. 2006, Zhang 

et al. 2008). Furthermore, enzymes like chitinases or glucanases directly inhibit fungal 

growth by destroying fungal cell wall components (Mauch et al. 1988, Joosten and De 

Wit 1989, van den Burg et al. 2006, van Loon et al. 2006). Deposition of callose, a β-

1,3-glucan polymer, between the plasma membrane and the cell wall is a late response 

physically reinforcing the leaf and thereby insulating the plant from invading pathogens 

(Ellinger and Voigt 2014). 

 



 Introduction  

6 

1.3 Molecular principles of plant-microbe interaction 

 

Plants need to ward off a multitude of pathogens including bacteria, oomycetes and 

fungi. As sessile organisms, plants need to induce a prompt defense response upon 

threat by potential disease-causing pathogens and unlike animals, plants lack 

specialized immune cells. Therefore, plants evolved sophisticated perception systems 

and regulatory mechanisms to initiate appropriate defense responses. 

 

1.3.1 Plant-Bacteria 

 

Plant pathogenic bacteria cause many diseases in plants all over the world. 

Recently, the top 10 of pathogenic bacteria were nominated mainly based on economic 

but also on scientific importance (Mansfield et al. 2012). Pseudomonas syringae 

pathovars get to the first place, including pv. tomato, causing bacterial speck on tomato 

(Shenge et al. 2007) or pv. aesculi inducing bleeding-canker on horse-chestnut (Green 

et al. 2010). 28 different pathovars are described in the European Handbook of Plant 

Diseases, each causing disease on a different host. Ralstonia solanacearum was rated 

second, because it is probably the most destructive plant pathogenic bacterium 

worldwide. Many strains exist varying in their host range, geographical distribution and 

pathogenic behavior and these are responsible for potato brown rot, bacterial wilt of 

tomato, eggplant and tobacco as well as Moko disease of banana (Denny 2006, Genin 

2010). In the third place, Agrobacterium tumefaciens was listed. This is mainly due to 

its scientific importance through identification of the Ti-plasmid as a vector for directed 

gene transfer into plants. However, Agrobacterium causes also disease on 

economically important crops as the agent for crown gall tumors. Xanthomonas 

species come to the fourth, fifth and sixth place constituting a severe threat for many 

crop plants. Xanthomonas oryzae pv. oryzae causes bacterial leaf blight (BLB) on rice, 

Xanthomonas campestris pathovars like pv. campestris cause black rot on crucifers 

affecting all cultivated brassicas, pv. euvesicatoria induces bacterial spot on pepper 

and tomato, pv. malvacearum now X. axonopodis pv. malvacearum angular leaf spot 

of cotton and Xanthomonas axonopodis pv. manihotis causes CBB (cassava bacterial 

blight) on cassava plants. Seventhly, Erwinia amylovora is nominated causing fire 

blight disease of apple, pear, quince, raspberry, blackberry and many cultivated and 
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wild ornamentals. At place eight comes Xylella fastidiosa, the causal agent of 

grapevine Pierce’s disease, citrus variegated chlorosis and almond leaf scorch 

disease. Two Dickeya species make up position nine, Dickeya dadantii and Dickeya 

solani causing potato tuber rot. Last but not least, Pectobacterium carotovorum and P. 

atrosepticum come to place 10 of the most important plant pathogenic bacteria, 

causing soft rot disease in several crop plants and blackleg disease in potato 

respectively. 

Most of the bacteria possess structures for locomotion called flagella, which are 

made up by the protein flagellin. In plants, recognition of flagellated bacterial invaders 

is mediated by the LRR-RK FLS2, which binds a conserved 22 amino acid stretch close 

to the N-terminus of flagellin, called flg22 (Felix, et al. 1999, Chinchilla et al. 2006). 

FLS2 was first identified in Arabidopsis, but most higher plants are able to sense flg22 

and functional homologs have been identified in several other higher plants like in 

tomato (Solanum lycopersicum), rice (Oryza sativa), grapevine (Vitis vinifera) and 

Nicotiana Benthamiana (Hann and Rathjen 2007, Robatzek et al. 2007, Takai et al. 

2008, Trda et al. 2014). Interestingly, different plant species differ in ligand specificities. 

For example, Vitis vinifera FLS2 does not recognize flg22 derived from Burkholderia 

phytofirmans which can be sensed by Arabidopsis FLS2 instead (Trda, et al. 2014). 

Likewise, plants seem to be able to perceive multiple epitopes within flagellin. Several 

pathovars of Pseudomonas syringae harbor another immunogenic epitope in this 

region, referred to as flgII-28. This epitope is not the agonist of FLS2 but several 

members of the Solanaceae family are able to sense it. Results from a genomic field 

study suggest that this immunogenic pattern might be under selective pressure to avoid 

recognition by tomato (Cai et al. 2011, Clarke et al. 2013). 

Upon binding of flg22, the LRR-RK SERK3/BAK1 (somatic embryogenesis receptor 

3/BRI1-associated kinase 1) is recruited into a complex with FLS2 (Chinchilla et al. 

2007, Heese et al. 2007). BAK1 consists of a small extracellular LRR domain with 5 

repeats followed by a serine and proline reach region (SPP motif), a transmembrane 

domain and a cytoplasmic kinase domain and is member of the SERK protein family 

together with its four closest homologs (Chinchilla et al. 2009). BAK1 acts as a co-

receptor for multiple LRR-RLKs, such as the brassinosteroid (BR) receptor BRI1 

(brassinosteroid insensitive 1). Also other SERK protein family members were found 

to interact with BRI1, like SERK1 and SERK4/BKK1 (BAK1-like kinase 1) (Kinoshita et 

al. 2005). BRI1 exists as homodimers at the plasma membrane and binding of BRs 
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results in transphosphorylation and dimer stabilization, hetero-oligomerization with 

BAK1 and activation of BR-signaling (Wang et al. 2005a, Wang et al. 2005b) 

Additionally, BAK1 functions in the containment of cell death and light signaling 

(Whippo and Hangarter 2005, Kemmerling et al. 2007). 

FLS2 and most probably also BAK1 constitutively interact with soluble receptor-like 

cytoplasmic kinases (RLCKs) BIK1 (Botrytis-induced kinase 1) and the paralogous 

proteins PBS1, PBL1 (PBS1-like kinase 1) and PBL2 which have a positive regulatory 

function in PTI (Lu et al. 2010, Zhang et al. 2010, Monaghan and Zipfel 2012). BAK1 

phosphorylates BIK1 upon flg22 binding, and BIK1 subsequently transphosphorylates 

FLS2 and BAK1. Flg22 binding induces association of BAK1 and FLS2 and the fully 

activated BAK1-FLS2 complex may further phosphorylate BIK1 and other substrates. 

BIK1 most likely dissociates from the complex to induce further downstream signaling 

(Lu, et al. 2010). Recently, the NADPH oxidase AtRBOHD was identified as a direct 

phosphorylation target of BIK1 (Kadota et al. 2014). Another RLCK with positive 

regulatory function in PTI was lately identified as BSK1 (BR-signaling kinase 1), 

previously known for functioning as a positive regulator in BR-signaling (Tang et al. 

2008). BSK1 is associated with FLS2, partially dissociates after binding of flg22 and is 

required for flg22-mediated signaling except for MAP kinase activation (Shi et al. 2013).  

Phosphatases instead, can act as negative regulatory components in PTI signaling. 

The protein phosphatase 2C (PP2C) KAPP (kinase-associated protein-phosphatase) 

was found to physically interact with the kinase domain of FLS2 and to negatively 

regulate flg22-triggered responses (Gomez-Gomez et al. 2001). Further negative 

regulatory function in flg22-mediated signaling was assigned to the E3 ligases PUB12 

(plant U-Box 12) and PUB13. These molecules are present in a constitutive complex 

with BAK1, get recruited into a complex with FLS2 upon flg22 treatment and are 

phosphorylated by BAK1 (Lu et al. 2011). FLS2 gets then polyubiquitinated by 

PUB12/13, endocytosed and degraded. Thus, the cells are desensitized and 

continuous signaling is prevented by ligand-induced receptor degradation (Smith et al. 

2014). The BAK1-interacting receptor-like kinase 2, referred to as BIR2, is a LRR-RK 

constitutively interacting with BAK1 and functions as a negative regulator of PTI by 

preventing interaction of BAK1 with FLS2. Upon perception of flg22, BIR2 is released 

from BAK1 and enables FLS2 to recruit BAK1 into the signaling complex (Halter et al. 

2014). 
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Crystallization of FLS2 and BAK1 ectodomains in complex with flg22 revealed that 

the ligand mainly binds on the concave surface of FLS LRRs 3-16  (Sun et al. 2013). 

FLS2 and BAK1 directly interact at FLS2 LRRs 18-20/23-26 and BAK1 LRRs 1-5. One 

glycine residue of C-terminal flg22 solely binds to BAK1 without contacting FLS2, 

hence acting as a ‘molecular glue’ between receptor and co-receptor. (Sun, et al. 

2013). Heterodimerization of FLS2 and BAK1 is necessary for full signaling triggered 

by flg22 (Chinchilla, et al. 2007). Interestingly, a flg22-induced association of FLS2 with 

other SERK protein family members could be shown. FLS2 not only dimerizes with 

BAK1, but to the same extent also with SERK1 and SERK4/BKK1. In fact, BKK1 is 

necessary for flg22-induced signaling, suggesting that BAK1 and BKK1 complement 

each other to achieve full signaling strength (Roux et al. 2011). 

The most abundant bacterial protein is the highly conserved Ef-Tu (elongation 

factor thermo unstable), one of the prokaryotic elongation factors functioning in the 

ribosomal translation machinery. In Arabidopsis, the N-acetylated epitope elf18 (the 

first 18 amino acids of Ef-Tu) is recognized by EFR (Ef-Tu receptor) (Kunze et al. 2004, 

Zipfel et al. 2006). EFR is a LRR-RK belonging to the same clade of LRR-RK genes 

(clade XII) as does FLS2 (Shiu and Bleecker 2001, Shiu et al. 2004) and both are 

considered to function similarly. Indeed, both recruit BAK1 and other members of the 

SERK family proteins upon ligand binding and induce a similar set of defense 

responses (Roux, et al. 2011, Greeff et al. 2012). Interestingly, Ef-Tu is perceived by 

Arabidopsis and various members of the Brassicaceae family but not by other plant 

families tested (Kunze, et al. 2004, Boller and Felix 2009). Similar to the observations 

made for flg22 perception systems of Solanaceaous species, rice is able to perceive a 

different epitope within Ef-Tu than elf18. This pattern is located in the central region of 

Ef-Tu, is 50 amino acids long and is referred to as EFa50 (Furukawa et al. 2014). 

The major constituent of cell walls of Gram-positive and also of Gram-negative 

bacteria is peptidoglycan (PGN), composed of alternating β(1-4)-linked N-

acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues (Schleifer 

and Kandler 1972, Glauner et al. 1988). Binding of PGN in Arabidopsis is mediated by 

two LysM-RPs (lysin motif receptor proteins), LYM1 (lysin motif domain-containing 

glycosylphosphatidylinositol-anchored protein 1) and LYM3 (Willmann et al. 2011). 

Plant lysin-motif domain proteins consist of an ectopic LysM-domain, a transmembrane 

domain and a cytoplasmic kinase domain (LysM-RKs or LYKs) or in the case of LysM-

RPs (or LYPs) which lack the kinase domain, a GPI-anchor attaching them to the 
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plasma membrane. These receptors are implicated in symbiosis and immunity by 

recognizing GlcNAc-containing ligands such as PGN, bacterial nodulation factors (NF) 

and fungal chitin (Gust et al. 2012). Likewise, LysM-RPs OsLYP4 and OsLYP6 mediate 

PGN perception in rice (Liu et al. 2012a). PGN-induced signaling in Arabidopsis is 

dependent on a third LysM protein, the LysM-RK CERK1 (chitin elicitor receptor kinase 

1), albeit it does not directly bind PGN (Willmann, et al. 2011). 

Lipopolysaccharides (LPSs) are glucoconjugates of the outer membrane of Gram-

negative bacteria and composed of a hydrophobic lipid section referred to as lipid A, 

connecting to the core oligosaccharide by a sugar. The oligosaccharide contains some 

sugars and ends in oligosaccharide repeats called O-antigen (Raetz and Whitfield 

2002). LPS is a potent inducer of PTI in various plant species (Silipo et al. 2010, 

Newman et al. 2013). Recently, the receptor for Pseudomonas sp.- and Xanthomonas 

campestris-derived LPS was identified in Arabidopsis as LORE (Lipooligosaccharide-

specific reduced elicitation), a bulb-type (B-type) lectin S-domain (SD)-1 RLK, also 

known as SD1-29 (Ranf et al. 2015). Chemical degradation of Pseudomonas species 

LPS revealed that LORE mainly detects the lipid A moiety. 

Sulfated RaxX (required for activation of Xa21 X), a protein recently identified in 

Xanthomonas oryzae pv. oryzae, is highly conserved in many plant pathogenic 

Xanthomonas species and required for Xa21-mediated immunity (Pruitt et al. 2015). 

Flg22, Ef-Tu, PGN and LPS are generic examples for highly conserved molecular 

structures of bacteria, for which Arabidopsis and other higher plants evolved 

perception systems to ward off potential disease-causing agents. Orphan bacterial 

PAMPs for which the perception system still needs to be identified are for example 

cold-shock proteins (csp15) (Felix and Boller 2003) and bacterial DNA (Yakushiji et al. 

2009). Also, some PRRs are identified for which the specific ligand remains enigmatic 

like for the rice LRR-RK Xa26 which confers resistance to Xanthomonas oryzae pv. 

oryzae (Sun et al. 2004). In Arabidopsis, the PAMP eMax (enigmatic MAMP of 

Xanthomonas) from Xanthomonas axonopodis pv. citri and other Xanthomonas 

species is recognized by RLP1/ReMAX (receptor of eMax) together with the LRR-RLK 

SOBIR1/EVR (suppressor of BIR1-1/evershed) (Jehle et al. 2013a, Jehle et al. 2013b). 
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1.3.2 Plant-Fungi, Plant-Oomycetes 

 

Not only bacterial but also fungal and oomycete plant pathogens constitute a threat 

for many crops and are responsible for regular crop shortfalls. Phytophthora infestans 

for example is the causal agent of potato blight and accountable for the Great Irish 

Famine between 1845 and 1852 were about 1 million people died and a million more 

emigrated from Ireland. To date, Phytophthora is still a major constraint to potato 

production and was nominated for position one in the list of the 10 most important 

oomycete plant pathogens (Kamoun et al. 2015). Oomycetes superficially resemble 

filamentous fungi, but phylogenetically they are related to diatoms and brown algae in 

the stramenopiles (Thines 2014). They contain cellulose and glucans instead of chitin 

as the main cell wall polymer (Bartnicki-Garcia 1968). Hyaloperonospora arabidopsidis 

is a downy mildew within the Peronosporaceae and ranked for the second place. 

Downy mildews cause harmful diseases on many crops like on brassica crops, grape 

(Plasmopara viticola, place 6), cucurbits, lettuce (Bremia lactucae), sorghum and 

maize. On the third, fourth, fifth, seventh and eighth place five Phytophthora species 

are placed; P. ramorum (sudden oak/larch death, ramorum blight), P.sojae (stem and 

root rot disease on soy bean), P.capsici (blight, stem and fruit rot on pepper and 

tomato, lima and snap beans and cucurbits), P. cinnamomi (fruit rot, dieback, broad 

host spectrum), P. parasitica (root, crown and stem rot, citrus, herbaceous, 

solanaceous crops). Pythium ultimum is on position 9, causing damping off and root 

rot on more than 300 hosts including corn, wheat and soy bean. On place 10 comes 

Albugo candida, a white rust responsible for significant crop losses of Indian mustard 

in India, Canada and Australia. 

The list for the 10 most important fungal plant pathogens (Dean et al. 2012) starts 

with Magnaporthe oryzae, due to its economic importance as the causal agent of rice 

blast disease, the most destructive rice disease worldwide. Grey mold, caused by the 

necrotroph Botrytis cinerea is listed next. It causes severe damage pre- and post-

harvest and has a broad host range. Thirdly, Puccinia spp. are placed infecting wheat 

(P. graminis (stem/black rust), P. striiformis f. sp. tritici (stripe/yellow rust) and P. 

triticina (leaf/brown rust)). On the fourth and fifth place are two Fusarium species, F. 

graminearum being highly destructive on all cereal species, and F. oxysporum causing 

vascular wilt on a wide range of plants such as tomato, cotton and banana. Blumeria 

graminis (position 6) and Mycosphaerella graminicola (place 7) both cause severe 
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damage on cereals. Eighthly, Colletotrichum spp. is placed as one of the most 

important plant pathogenic fungi causing anthracnose spots, post-harvest rots and 

blight. Virtually every crop (fruit, vegetable) is susceptible to at least one Colletotrichum 

species. Ustilago maydis and Melampsora lini fill the last positions, rather for scientific 

than economic reasons. 

The major component of fungal cell walls is chitin, a polysaccharide consisting of 

β(1-4)-linked N-acetylglucosamine (GlcNAc) residues. Chitin represents a highly 

conserved fungal molecular structure for which plants evolved perception systems to 

sense and to fend off invading fungi (Shibuya and Minami 2001, Wan et al. 2008a). In 

rice, chitin is perceived by the LysM-RP OsCEBiP (Chitin elicitor-binding protein) (Kaku 

et al. 2006). Upon chitin binding, OsCEBiP homodimerizes and forms a complex with 

OsCERK1 (Chitin elicitor receptor kinase 1) (Shimizu et al. 2010, Hayafune et al. 

2014). To form this sandwich-type receptor system and for optimum induction of PTI, 

seven to eight N-acetylated GlcNAc units are required. One ligand molecule is 

sandwiched between two OsCEBiP molecules, anchoring the GlcNAc units within 

central LysM motifs of OsCEBiP. Upon OsCEBiP homodimerization, OsCERK1 dimers 

are proposed to be recruited forming a α2β2 tetramer (Hayafune, et al. 2014). In 

Arabidopsis, the LysM-RK AtLYK5 was identified as the main chitin receptor quite 

recently, whereas AtLYK4 shows some functional redundancy (Wan et al. 2012, Cao 

et al. 2014). AtLYK1/AtCERK1 associates with AtLYK5 in a chitin-dependent manner, 

AtLYK5 binds chitin with a much higher affinity than AtCERK1 and phosphorylation 

and homodimerization of AtCERK1 is dependent on AtLYK5 what refutes previous 

findings presenting AtCERK1 as the main chitin receptor (Miya et al. 2007, Wan et al. 

2008b, Iizasa et al. 2010, Petutschnig et al. 2010, Liu et al. 2012b, Cao, et al. 2014). 

The kinase domain of AtLYK5 is not enzymatically active, but seems to function in 

protein-protein interaction with AtCERK1. As such, AtLYK5 seems to play a similar role 

as OsCEBiP as chitin-binding receptor recruiting CERK1 proteins to mediate 

downstream signaling. AtLYK5 exists as a homodimer independent of the presence of 

chitin and AtCERK1, but whether a heterotetramer of AtLYK5 and AtCERK1 proteins 

is formed comparable to the chitin α2β2 signaling complex in rice remains elusive (Cao, 

et al. 2014). AtLYM2, a homolog of OsCEBiP, is enriched in plasmodesmata, binds to 

chitin and mediates antifungal immunity. This happens independently of AtCERK1, 

suggesting two independent chitin-induced response ways in Arabidopsis (Miya, et al. 

2007, Shinya et al. 2012, Faulkner et al. 2013). 
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Besides chitin, several other fungal PAMPs and their corresponding PRRs have 

been identified. Tomato evolved an array of Cf-genes, LRR-RPs conferring resistance 

to Cladosporium fulvum. Cf-proteins recognize fungal effectors by direct binding or in 

complex with host proteins (Wulff et al. 2009, Thomma, et al. 2011). All Cf-proteins 

interact with the LRR-RK SOBIR1 (Liebrand et al. 2013). Fungal β-1-4 endoxylanase 

(EIX, ethylene-inducing xylanase), a highly purified 22 kDa protein from Trichoderma 

viride, binds to tomato (Solanum lycopersicum) LRR-RPs SlEIX1 and SlEIX2 (Dean 

and Anderson 1991, Ron and Avni 2004). SlEIX2 mediates signaling upon endocytosis 

and interacts with SlSOBIR1 (Ron and Avni 2004, Liebrand, et al. 2013). BAK1 directly 

interacts with SlEIX1, attenuating plant responses mediated by SlEIX2 (Bar et al. 

2010). Another LRR-RP of tomato, SlVe1 recognizes Ave1 (avirulence on Ve1 tomato) 

and governs resistance to Verticilium race 1 strains of V. dahliae and V. albo-atrum 

together with SlBAK1 and SlSOBIR1 (Fradin et al. 2009, de Jonge et al. 2012, 

Liebrand, et al. 2013). Ave1 is an effector protein consisting of 134 aa and a potent 

virulence factor of Verticillium. It exhibits homology to plant natriuretic peptides and to 

proteins from one bacterial and three other fungal pathogens, suggesting that Ave1 

was horizontally acquired from plants (de Jonge, et al. 2012). In Arabidopsis, the LRR-

RP RLP42/RBPG1 (Responsiveness to botrytis polygalacturonases 1) recognizes 

fungal endopolygalacturonases from the necrotroph Botrytis cinerea and interacts with 

SOBIR1 to mediate downstream signaling (Zhang et al. 2014).  

Also, oomycete-derived PAMPs and their corresponding PRRs have been 

identified. The β-glucan binding protein GBP from soybean (Glycine max) binds 

Phytophtora sojae-derived 1,6-β-linked and 1,3-β-branched heptaglucoside (HG), but 

the final signaling process and possible interactors still need to be uncovered 

(Fliegmann et al. 2004). Recently, the LRR-RP ELR (Elicitin response) from the wild 

potato Solanum microdontum was identified to mediate recognition of elicitin, a 

conserved pattern from Phytophthora species (Du et al. 2015b). ELR associates with 

BAK1 and leads to enhanced resistance against Phytophthora infestans upon transfer 

into cultivated potato. 

Moreover, some LRRs have been identified recognizing fungal patterns for which 

the specific immunogenic epitope remains to be characterized. The elicitor SCFE1 

(Sclerotinia culture filtrate elicitor 1), partially purified from the necrotrophic fungus 

Sclerotinia sclerotiorum, triggers typical immune responses in Arabidopsis. Signaling 

is mediated through the LRR-RP RLP30 and the LRR-RKs SOBIR1 and BAK1 (Zhang 
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et al. 2013). The wheat (Triticum aestivum) LRR-RP TaRLP1.1 mediates resistance to 

stripe rust disease Puccinia striiformis f. sp. tritici as well as the LRR-RKs TaRLKs R1-

3 (Zhou et al. 2007, Jiang et al. 2013). Wheat resistance against Puccinia recondita, 

the causal agent of leaf rust disease, is mediated by TaRLK10 (Feuillet et al. 1997) 

and in rice, the B-lectin-type LRR-RK OsPi-d2 is involve in resistance against 

Magnaporthe grisea (Chen et al. 2006). 

Ergosterol is a fungal-derived orphan PAMP for which the perception system still 

needs to be elucidated (Klemptner et al. 2014). Also, oomycete PAMPs have been 

identified, for which the PRRs are not found yet like arachidonic acid (Bostock et al. 

1982, Dedyukhina et al. 2014), Pep-13, a surface-exposed fragment within cell-wall 

transglutaminase (TGase) from Phytophthora species (Nürnberger et al. 1994, 

Brunner et al. 2002) and Phytophthora cellulose-binding elicitor lectin (CBEL) (Gaulin 

et al. 2006, Larroque et al. 2013). 

 

1.3.3 Plant-Plant/ DAMPs 

 

Besides the ability to sense signals of danger derived from non self-representing 

microbial PAMPs, plants can also sense self-derived molecules originated from 

pathogen recognition or tissue damage. Arabidopsis PEP1, a 23-aa peptide from the 

precursor PROPEP1 is an immune stimulating DAMP which is perceived by the LRR-

RKs PEPR1 and PEPR2 thereby interacting with BAK1 and BIK1 (Huffaker et al. 2006, 

Yamaguchi et al. 2006, Postel et al. 2010, Yamaguchi et al. 2010, Liu et al. 2013). 

Wounding, pathogen challenge, PAMP treatment and the defense hormones 

jasmonate, ethylene and salicylate transcriptionally induce expression of PROPEP1 

and its six paralogs, coupling local and systemic immunity (Ross et al. 2014). ZmPEP1, 

an AtPEP1 ortholog has been characterized in maize and orthologs from several other 

species seem to have a regulatory function in antiherbivore defense (Huffaker et al. 

2011, Huffaker et al. 2013). Another peptide, the 18-aa systemin, was first identified in 

the leaves of wounded tomato as the primary signal for systemic activation (Pearce et 

al. 1991) and is perceived by the tomato LRR-RK SR160 (Scheer and Ryan 2002). 

Cell wall integrity in plants is maintained by the pectic polysaccharide 

homogalacturonan (HGA). During fungal infection, fragments thereof named 

oligogalacturonides (OGs) are released, which induce immunity and act as DAMPs. In 

Arabidopsis, OGs are perceived by the EGF (epidermal growth factor)-motif containing 
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LRR-RK WAK1 (Brutus et al. 2010). ATP is another molecule released upon cell 

damage playing an essential role as DAMP in mammals, perceived by P2-type 

purinoceptors. AtDORN1 (does not respond to nucleotides 1), a lectin receptor kinase 

I.9 was identified to bind extracellular ATP in Arabidopsis, mediating calcium-

responses, activation of MAP kinases and gene expression (Choi et al. 2014). As such, 

DORN1 is the founding member of the new plant-specific purinoceptor subfamily P2K 

(P2 receptor kinase). Further plant DAMPs for which the perception system is not 

identified yet are NAD(P)H, DNA, sucrose, green leaf volatiles and various peptides 

(Tanaka et al. 2014). 

 

1.3.4 ETI and directed manipulation of PTI by bacteria, fungi and 

oomycetes 

 

Recognition of microbial PAMPs or plant-derived DAMPs leads to plant immune 

activation and PTI. Successful pathogens evolved effectors to suppress PTI and to 

establish ETS, thus enabling infection. Effectors are defined as secreted molecules 

altering host cell processes or structures which promote the pathogen’s lifestyle. These 

molecules do not only feature immune suppressing function, but also might enhance 

access to vital nutrients (Win, et al. 2012). Effectors are either delivered at the interface 

of the host and the pathogen as apoplastic effectors or inside the cell as cytoplasmic 

effectors. Upon delivery, effectors traffic to different compartments and bind to their 

host targets. In susceptible plants, effector binding leads to host manipulation, 

suppression of immune responses and colonization by the pathogen. Resistant 

genotypes recognize effectors via surface PRRs or intracellular NBS-LRR proteins, 

trigger immunity and ward off the pathogen. Thus, effectors can have a positive or 

negative effect (as virulence or avirulence factor respectively) on the fitness of the 

pathogen and are as such among the most rapidly evolving genes of plant-associated 

microbes (Win, et al. 2012). 

Bacterial type 3 effectors are delivered directly into to cytoplasm by a type III 

secretion system (T3SS) (Deslandes and Rivas 2012). AvrPto from Pseudomonas 

syringae pv.tomato JL1065 is a kinase inhibitor and interacts for example with the 

PRRs BAK1, FLS2 and EFR (Shan et al. 2008, Xiang et al. 2008), AvrPtoB from 

Pseudomonas syringae pv.tomato DC3000 mimics a U3 ubiquitin ligase and binds to 
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FLS2, BAK1 and CERK1 (Gohre et al. 2008, Shan, et al. 2008, Gimenez-Ibanez et al. 

2009). HopF2, another effector from PstDC3000 interacts with BAK1, BIK1 and some 

homologs and is able to attenuate multiple MAP kinases, like MKK5 through its mono-

ADP-ribosyltransferase acitivity (Wang et al. 2010, Zhou et al. 2014). AvrPto, AvrPtoB 

and HopF2 are all effectors interacting with RIN4 (RPM1-interacting protein 4), a 

plasma membrane-anchored protein with negative regulatory function in PTI 

(Deslandes and Rivas 2012). RIN4 is exemplary for the ‘guard’-hypothesis, the indirect 

perception of effectors through surveillance of their targets. AvrRPM1 and AvrB from 

P. syringae pv. glycinea phosphorylate RIN4 leading to activation of RPM1 (Mackey et 

al. 2002). TAL (transcription activator-like) effectors of Xanthomonas species and 

Ralstonia solanacearum are DNA-binding proteins (Scholze and Boch 2011). By 

mimicking eukaryotic transcription factors TAL effectors bind to promoter regions and 

activate transcription of certain host genes that are beneficial for the pathogen. PthXo1 

for example induces the expression of OsSWEET11, a sugar transporter supposed to 

mediate sugar efflux to feed the bacteria (Chen et al. 2010). 

Unlike bacteria, fungi and oomycetes do not feature a T3SS for effector delivery 

into the cell. Oomycetes and fungal germ tubes form appressoria, which directly pierce 

the cuticle and cell wall by enzymatic softening and mechanical force (Dou and Zhou 

2012). Through invagination of the host plasma membrane, haustoria are formed 

which deliver effectors into the apoplast, some of which are further translocated inside 

the cell. Fungal LysM-type effectors like ECP6 from Cladosporium fulvum or Slp1 from 

Magnaporthe oryzae are apoplastic effectors, competing with chitin receptors for chitin 

binding (de Jonge et al. 2010, Mentlak et al. 2012). Effectors can also target hormone 

signaling, as does Cmu1, a cytoplasmic chorismate dismutase produced by Ustilago 

maydis. Cmu1 reduces chorismate levels, a precursor molecule for salicylic acid 

biosynthesis (Djamei et al. 2011). 

Oomycete RXLR effectors are cytoplasmic effectors characterized by their highly 

invariant sequence RXLR, serving as translocation signal into the cell. Avr3a for 

example is a RXLR effector from Phytophthora infestans interacting with CMPG1, an 

E3 ubiquitin ligase which negatively regulates HR (Bos et al. 2010). Another class of 

oomycete effectors are the Crinklers or crinkling and necrosis (CRN) effectors, 

featuring a LXLFLAK motif for translocation into the host cell (Schornack et al. 2010). 

CRN proteins localize to and target nuclear compartments and some trigger cell death 

(Schornack, et al. 2010, Stam et al. 2013). Apoplastic oomycete effectors include 
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glucanase and protease inhibitors, which interfere with cell wall-degrading proteins 

produced by the host (Kamoun 2006). Next to hydrolytic proteins like proteases or 

glycanases, hemibiotrophic and necrotrophic oomycetes utilize toxins like PcF proteins 

to enhance invasion success (Wawra et al. 2012).  

 

1.3.5 Phytotoxins 

 

Phytotoxins are produced by pathogens to directly destroy plant cells or manipulate 

biochemical metabolic processes, leading to beneficial conditions for pathogen 

proliferation (Bender et al. 1999). Toxins can be classified into low-molecular toxins 

like terpenoids, polyketides and peptides and into high-molecular-weight molecules 

like proteins. Host-selective toxins (HSTs) produced by Alternaria alternate have 

diverse target sites in the cell such as the plasma membrane (AK-, AF-, ACT- toxin), 

the chloroplast (AM-toxin), mitochondria (AT-, ACR-toxin) and the endoplasmic 

reticulum (AAL-toxin) (Tsuge et al. 2013), suggesting selective binding of HSTs to host 

receptors. Receptors for HSTs could be identified including ToxABP1 (ToxA binding 

protein 1) from wheat which recognizes Ptr ToxA from Pyrenophora tritici-repentis 

(Manning et al. 2007), maize URF13 binding Cochliobolus heterostrophus T-toxin 

(Dewey et al. 1988) and oat VBP (victorin binding protein) the receptor for victorin 

produced by Cochliobolus victoriae (Wolpert and Macko 1989). 

Coronatine is a non-HST chlorosis-inducing polyketide produced by Pseudomonas 

syringae with a molecular structure resembling methyl jasmonate and is involved in 

stomatal re-opening (Melotto et al. 2008). Oxalic acid is secreted by various 

phytopathogenic fungi and presumably promotes disease on various hosts by 

sequestering Ca2+, favouring polygalacturonase activity and occluding xylem vessels 

through calcium oxalate crystal formation leading to wilt (Ferrar and Walker 1993). 

Another non-HST protein family is the NEP1 (necrosis and ethylene-inducing peptide 

1)-like or NLP protein family, that comprises conserved virulence factors which can be 

found in bacteria, oomycetes and fungi causing cytolysis by plasma membrane 

disruption (Ottmann et al. 2009). 
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1.4 NEP1-like proteins  

 

The first characterized member of the NEP1-like protein family was isolated from 

Fusarium oxysporum culture filtrates and named after its ability to induce necrosis and 

ethylene in dicot plant species (Bailey 1995). NLPs are secreted proteins with an 

approximate size of 24-26 kDa exhibiting a high degree of sequence conservation. 

Several NLPs have been identified and characterized so far, secreted by various 

oomycetes like Phytophthora species (Fellbrich et al. 2002, Qutob et al. 2002, Feng et 

al. 2014), Pythium aphanidermatum (Veit et al. 2001), Hyaloperonospora arabidopsidis 

(Cabral et al. 2012), the bacterium Pectobacterium carotovorum (Mattinen et al. 2004) 

and the fungi Botrytis cinerea (Schouten et al. 2008), Moniliophthera perniciosa 

(Garcia et al. 2007), Mycosphaerella graminicola (Motteram et al. 2009), Sclerotinia 

sclerotiorum (Dallal Bashi et al. 2010) and Verticillium dahliae (Zhou et al. 2012). 

Structural analysis of an NLP from Pythium aphanidermatum revealed similarities 

to pore-forming toxins from marine invertebrates called actinoporins, such as 

equinatoxin II from Actinia equina and sticholysin produced by Stichodactyla helianthus 

(Küfner et al. 2009, Ottmann, et al. 2009). Also, structural similarities to fungal lectins 

like XCL from Xerocomus chrysenteron and ABL from Agaricus bisporus could be 

found (Fig. 1-1). The crystal structure of PyaNLP revealed a single-domain molecule 

with a central β-sandwich, one sheet with three strands and an antiparallel second 

sheet with 5 strands (Figure 1-1 A). At the top of the sandwich are three helices, and 

three broad loops form the base (L1-L3). L1 is anchored to the central sheet core by 

two cysteine residues building a disulfide bridge. Above L2/L3 a negatively charged 

cavity binds a divalent cation involving residues D93, D104, E106, H159 and H101 

stabilizing the water network (Ottmann, et al. 2009). A groove at the bottom of lectins 

and actinoporins targets carbohydrates and sphingomyelin respectively (Mancheño et 

al. 2003, Birck et al. 2004, Bakrač et al. 2008), suggesting that also the groove of 

PyaNLP might target specific components of the plasma membrane. The negatively 

charged cavity of PyaNLP contains the hepta-peptide motif GHRHDWE, which is 

highly conserved among NLPs. Mutational analysis of PyaNLP revealed that residues 

H101, D104 and E106 within the hepta-peptide motif and residue D93 are crucial for 

cytotoxic activity and for the coordination of the ion inside the cavity (Ottmann, et al. 

2009).  
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Figure 1-1: 3D structures of PyaNLP, the actinoporin sticholysin and the fungal lectin ABL. 

Ribbon plot of PyaNLP (A), the actinoporin sticholysin (B) and the fungal lectin ABL (C). Helices are 

shown in blue, β-strands in green. The bound magnesium atom is shown as a blue sphere (A). 

Adopted from Ottmann, et al. (2009). 

 

 

Previously, the presence of either two or four conserved cysteine residues classified 

NLPs as type 1 or type 2 NLPs respectively (Gijzen and Nurnberger 2006). More 

recently, phylogenetic analysis revealed a third type which only occurs in fungi (Oome 

and Van den Ackerveken 2014). Moreover, a non-toxic subgroup of type 1 NLPs was 

identified (type 1a), which lack the cation-binding pocket required for cytotoxicity. Also 

the classification by the number of disulfide bridges seems to be blurred, since 

members of type 1 and type 2 NLPs harbor additional disulfide bridges, most probably 

serving stabilization purposes upon secretion (Oome and Van den Ackerveken 2014). 

NLPs are virulence-promoting toxins, as overexpression of FoNLP in a hypovirulent 

strain of Colletotrichum coccodes resulted in increased virulence towards Abutilon 

theophrasti (Amsellem et al. 2002). Virulence-promoting function could also be 

assigned to bacterial PccNLP, and oomycete-derived PyaNLP and PpNLP, restoring 

aggressiveness of a Pcc nlp--deficient Pectobacterium carotovorum strain (Ottmann, 

et al. 2009). In contrast, no virulence-promoting function could be shown for MygNLP, 

a NLP from the monocot-specific pathogen Mycosphaerella graminicola. A Myg nlp--

deficient strain neither lost aggressiveness in infection analysis on susceptible wheat 

cultivars, nor gained virulence under overexpression conditions (Motteram, et al. 

2009). Purified MygNLP is able to exert toxin activity on the dicot Arabidopsis but not 

on its host wheat, although it is highly expressed during onset of the necrotrophic stage 

(Motteram, et al. 2009). Similarly, BeNLP1 and BeNLP2 from Botrytis elliptica do 

neither induce necrosis on lily nor are these NLPs essential virulence factors during lily 
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infection (Staats et al. 2007). Moreover, disrupted expression of FoNLP  in Fusarium 

oxysporum f. sp. erythroxyli did not result in reduced aggressiveness on Erythroxylum 

coca (Bailey et al. 2002).  

Interestingly, a growing number of secreted NLPs can be classified as non-toxic, 

giving rise to new questions concerning the functionality of this protein family. 

Especially oomycetes encode a large number of NLPs like Phytophthora infestans 

encoding for almost 70 NLPs, including non-toxic ones. In Phytophthora sojae, only 

eight out of 19 representative NLPs were found to be toxic whereas the rest lacked 

necrosis-inducing activity (Dong et al. 2012). Similarly, only two out of seven 

Verticillium dahliae NLPs exhibited necrotic activity (Santhanam et al. 2013). More 

importantly, the obligate biotroph Hyaloperonospora arabidopsidis encodes 12 NLP 

genes, 10 of which were tested for necrosis-inducing activity and shown to be non-

toxic (Cabral, et al. 2012). NLP expression profiling of hemibiotrophic pathogens 

revealed an upregulation of non-toxic NLPs in early infection stages like in germinating 

cysts, whereas toxic NLPs are expressed during transition from biotrophic to 

necrotrophic infection stages (Qutob, et al. 2002, Kanneganti et al. 2006, Santhanam, 

et al. 2013). This suggests an additional role for NLPs apart from their function as 

virulence factors in hemibiotrophic and necrotrophic pathogens operating in early 

infection stages. Expansion, pseudogenization, positive selection, varying expression 

patterns and existence of non-toxic versions suggests that NLPs have diversified in 

function most possibly due to different lifestyles of the pathogens, and these alternative 

roles remain to be elucidated (Dong, et al. 2012, Santhanam, et al. 2013). 

Immune stimulation by NLPs reflects typical responses observed during PTI, such 

as induction of ion fluxes, activation of MAP kinases, production of reactive oxygen 

species and phytoalexins, defense gene induction and deposition of callose (Küfner, 

et al. 2009). However, elicitor active epitopes could not be identified so far (Fellbrich, 

et al. 2002, Schouten, et al. 2008). Instead, immunogenic activity exerted by bacterial 

PccNLP (Pectobacterium carotovorum subsp. carotovorum) could be linked to the 

membrane disintegrating activity suggesting that plants sense the toxin activity but not 

an immunogenic epitope within NLPs (Ottmann, et al. 2009).  
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1.5 Aims of the thesis               

 

NEP1-like proteins exert cytotoxic activity on dicot plant species, fulfill a role as 

virulence factors and are, concurrently, potent inducers of plant immunity. Aim of this 

work was to gain deeper insight into how NLPs induce plant immune signaling and to 

hereby attain better understanding of the biological significance of such diverse 

features within one protein. Identification and characterization of immunogenic 

molecules directly connected to NLP activity should shed light on how this protein 

family triggers immune responses in plants. 
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2. Materials and Methods 

 

2.1 Materials 

 

2.1.1 Chemicals 

 

Chemicals were purchased in standard purity from Sigma-Aldrich (Taufkirchen), Carl 

Roth (Karlsruhe), Merck (Darmstadt), Qiagen (Hilden), Invitrogen (Karlsruhe), Duchefa 

(Haarlem, The Netherlands), Molecular Probes (Leiden, The Netherlands), Fluka 

(Buchs, Switzerland) and BD (Sparks, USA). Restriction enzymes, ligase and DNA 

modification enzymes were purchased from Thermo Fisher Scientific (St. Leon-Rot) 

and New England Biolabs (Beverly, USA). Oligonucleotides were received from 

Eurofins MWG Operon (Ebersberg). Primary antibodies were purchased from Cell 

Signaling Technology (Phospho p44/42 MAPK (Erk1/2)), Sigma-Aldrich (α-Myc, α-HA), 

Sicgen (α-GFP) and Agrisera (α-BAK). Alkaline phosphatase conjugated secondary 

antibodies α-rabbit lgG, α-goat lgG and α-mouse lgG were purchased from Sigma-

Aldrich. Synthetic peptides were purchased from Genscript Inc., dissolved in 100 % 

DMSO as 10mM stock solutions and working dilutions thereof were prepared with 

water prior to use.  
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2.1.2 Media and Antibiotics  

 

Media used in this study are listed in table 2-1. 

 

Medium Ingredients per 1 liter Species 

LB 
10 g Bacto-tryptone,        5 g Yeast extract,   

5 g NaCl, pH 7,0 
Escherichia coli 

YPD 
20 g Peptone, 20 g Glucose, 10 g Yeast 

extract 
Pichia pastoris 

MD 
1.34 % (w/v) YNB, 4x10-5 % (w/v) Biotin, 2 

% (w/v) Glucose 
Pichia pastoris 

BMGY /BMMY 

1 % (w/v) Yeast extract, 2 % (w/v) Peptone, 
1,34 % (w/v) YNB, 100 mM potassium 

phosphate pH 6,0, 4 x 10-5 % (w/v) Biotin, 1 
% (v/v) Glycerol for BMGY or 2 % (v/v) 

Methanol for BMMY 

Pichia pastoris 

½ MS 2,2 g MS (Duchefa), pH 5.7 (KOH) 
Arabidopsis 

thaliana 

½ PDB 
12 g PDB (Potato Dextrose Broth, Duchefa), 

pH 5.8 (NaOH) 
Botrytis cinerea 

King’s B 
20 g glycerol, 40 g Proteose Pepton No. 3,  
addition of sterile 0,1 % (v/v) MgSO4 and 

KH2PO4 after autoclaving 

Pseudomonas 
syringae 

Minimal 
medium 

1 g NaOH, 3 g  DL-malic acid, 2 g NH4NO3, 
0,1 g MgSO4 

Sclerotinia 
sclerotiorum 

Rye sucrose 
200 ml rye extract (60 g rye in 200 ml H2O, 

soaked 36-48 h, 50 °C 3h, filtered), 20 g 
saccharose, 15 g agar 

Phytophthora 
infestans 

Table 2-1: Media used 

 

 

 Antbiotics used in this study are listed in table 2-2. 

 

Antibiotics Concentration µg/µl Solvent 
Carbenicillin 100 Water 
Cycloheximid 50 Water 
Kanamycin 50 Water 
Rifampicin 50 Methanol 

Spectinomycin 100 Water 
Tetracyclin 50 Ethanol 

 Table 2-2. Antibiotics used 
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2.1.3 Vectors and constructs 

 

Vectors used in this study are listed in table 2-3. 

 

Vectors Characteristics Reference 

pCR8/GW/TOPO 
Ori Puc, rrnB, T2, rrnB,T1, 

attP1, attP2, 
ccdB, Sm/Spr 

Thermo Fisher Scientific 

pB7FWG2.0 
p35S, t35S, attR1, attR2, 

ccdB eGFP 
Karimi et al. (2002) 

pGWB14 
p35S, t35S, attR1, attR2, 
ccdB, Kanr, Hygr, 3x-HA 

Nakagawa et al. (2007) 

pGWB17 
p35S, t35S, attR1, attR2, 
ccdB, Kanr, Hygr, 4x-Myc 

Nakagawa, et al. (2007) 

pUBC-nYFP-DEST 
Smr, Hygr, Cmr, ccdB, 

pUBQ10, pBR322, pVS1, 
T35S, nYFP, attR1, attR2 

Grefen et al. (2010) 

pUBC-cYFP-DEST 
Cmr, ccdB, Barr, Smr, 

pUBQ10, pBR322, pVS1, 
T35S, cYFP, attR1, attR2 

Grefen, et al. (2010) 

   pPIC9K 
5’AOX1, α-factor, MCS, 
TT, HIS4, 3’AOX1 Ampr, 

Kanr 

Thermo Fisher Scientific 

pBluescript KS(-) 
f1(-) origin, lacZ, MCS, 
T7, T3, lac, pUC, Ampr 

  Invitrogen 

Table 2-3: Vectors used 

 

 

SERK constructs for Co-IP experiments were kindly provided by Dr. Eric Melzer 

(SERK1, SERK2, SERK4 and SERK5 in pGWB17). PpNLP_mut (H121A D124A) in 

pPIC9K was kindly provided by Dr. Isabell Albert. 

 

2.2 Organisms and cultivation conditions 

 

2.2.1 Plants 

 

Arabidopsis thaliana ecotype Columbia-0 (Col-0) was used for these studies, 135 

ecotype accessions (ordered at NASC (The European Arabidopsis Stock Centre) and 

kindly provided by the lab of Dr. Detlef Weigel, MPI Tübingen) RLP and RLK T-DNA 
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insertion mutant collections (Wang et al. 2008, Postel, et al. 2010), T-DNA insertion 

mutant lines rlp23-1 (SALK_034225), rlp23-2 (GK-738D01), sobir1-12 

(SALK_050715), sobir1-13 (SALK_009453), bak1-3 (SALK_034523), bak1-4 

(SALK_116202), bak1-5, bak1-5/bkk1-1 (Schwessinger et al. 2011), bkk1-1 

(SALK_057955), efr/fls2, PR1::GUS (Shapiro and Zhang 2001). Close relatives of 

Arabidopsis thaliana (ordered at NASC): Arabis alpina, Thlaspi arvense, Draba rigida, 

Arabidopsis lyrata, Capsella rubella. The monocot Triticum aestivum, Nicotiana 

benthamiana, Solanum lycopersicum ‘Moneymaker’, Solanum tuberosum ‘Desirée’ 

(provided by the greenhouse), Lactuca sativa, Petroselinum crispum. 

All plants were grown on soil under standard conditions (8h light, 150µmol/cm2s 

light, 40-60 % humidity, 22°C) and used for the experiments at an age of 5-6 weeks. 

Plants used for infection assays with Pseudomonas syringae and Botrytis cinerea were 

grown under translucent cover. Arabidopsis plants used for seedling growth inhibition 

were surface sterilized and grown under long-day conditions (16 h light) in ½ MS liquid 

medium supplemented with the respective peptides. 

N. benthamiana, S. lycopersicum and N. tuberosum plants were grown in the 

greenhouse (16 h light, 22°C). 

 

2.2.2 Bacteria, fungi and oomycetes 

 

Escherichia coli One Shot TOP10 (mcrA, delta (mrr-hsdRMS-mcrBC), phi, 80delta 

lac delta M15, delta lacX74, deoR, recA1, araD139 delta (ara, leu), 7697, galU, galK, 

lambda-, rpsL, endA1, mupG) or XL1 blue (recA1, endA1, gyrA96, thi-1, hsdR17, 

supE44, relA1, lac [F´ proAB, lacIqZ∆M15, Tn10 (Tetr)] were cultivated on LB-plates 

or  at 37°C in liquid LB-medium overnight at 230 rpm with the corresponding 

antiobiotics coded on the plasmids. 

Agrobacterium tumefaciens GV3103::pmP90 (T-DNA- vir+ rifr, pMP90 genr) was grown 

on LB-agar or in liquid LB-medium at 28 °C with the corresponding antiobiotics for 48 

h at 180 rpm. 

Pseudomonas syringae pv. tomato strain DC3000 (rifr) were grown for 24-48 h at 28 

°C either on King’s plates or in liquid King’s B medium at 180 rpm. For the 

determination of bacterial growth the Pseudomonas strains were re-isolated from plant 

material (see 2.5.2) and dilution series thereof plated on LB-plates containing 

cycloheximide and rifampicin. 
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Pectobacterium carotovorum subsp. carotovorum SCC3200 (Cmr) PccNLP-deficient 

strain (Mattinen, et al. 2004) was grown at 28 °C in LB-medium, 230 rpm. 

Pichia pastoris GS115 was grown in YPD-medium (30 °C, 230 rpm) to prepare 

electrocompetent cells. Transformed yeast cells were selected on MD-plates and 

grown in BMGY and BMMY for protein expression.  

Botrytis cinerea BO-10 stock solutions with 2 x 107 spores/ml in 25 % glycerol were 

prepared by Dagmar Kolb (induction of spore release with H2O from mycelium grown 

on malt tomato agar (10 g/l malt extract, 250 g/l tomato leaf extract) and kept at – 80°C. 

5x106 spores/ml in PDB were used for infection assays on Arabdiopsis. 

Sclerotinia sclerotiorum 1980 (provided by H. Stotz, University of Würzburg) was 

grown at 18 °C on minimal medium to reduce aggressiveness (Guo and Stotz 2007) 

and used for infection assays on potato. 

Phytophthora infestans 88069 was grown on rye sucrose medium at 18 °C and used 

for infection assays on potato. 

 

2.3 Methods 

 

2.3.1 General molecular biology methods 

 

PCR was performed with Taq Polymerase (Genaxxon) or Pfu Polymerase (Thermo 

Fisher Scientific) using the given primers and cycling conditions. Agarose gel 

electrophoresis to separate DNA fragments was performed with a 1 % agarose gel 

containing 0,5 µg/ml ethidium bromide in 1 x TAE buffer (4 mM Tris/acetate, 1 mM 

EDTA pH 8,0). Samples were mixed with loading dye (3 x loading dye: 87 % (v/v) 

glycerine, 30 mM Tris-HCl, 3 mM EDTA pH 8,0, 0,4 % bromphenol blue (w/v)) and 

loaded next to PstI-digested λ-DNA (100 ng/µl) used as a size marker. Electrophoresis 

was performed at an electric field strength of 5 V/cm. DNA fragments were visualized 

in a UV-transilluminator (Infinity-3026 WL/26 Mx, Peqlab) with the software InfinityCapt 

14.2 (Peqlab). DNA purification from agarose gels was performed with the GeneJet 

Gel Extraction Kit (Thermo Fisher Scientific). Nucleic acid concentrations were 

determined with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific) at 

220-340 nm and evaluated with the NanDrop Software. Sequencing of plasmid DNA 

was performed by GATC (Konstanz) and prepeared according to the company’s 
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instructions. Sequences were analyzed using the CLC Main Workbench (Qiagen). The 

enzymes were used according to the manufacturer’s protocol (Thermo Fisher 

Sientific). Plasmid isolation was performed using the GeneJET Plasmid Miniprep Kit 

(Thermo Fisher Scientific).  

 

2.3.2 Cloning 

 

Cloning of RLP23, SOBIR1 and BAK1 constructs was performed by Dr. Isabell 

Albert. Coding sequences with or without the native promoter were cloned into the 

pCR8/GW/TOPO vector (Thermo Fisher Scientific) using the primers  

PromRLP23 fwd (ATACATGTTCACTCATCTTTCC),  

RLP23 fwd (ATGTCAAAGGCGCTTTTGCATTTGC),  

RLP23revW/oStop (ACGCTTTCTGCGTTTATTCAGACC),  

SOBIR1 fwd (ATGGCTGTTCCCACGGGAAGC),  

SOBIR1revW/oStop (GTGCTTGATCTGGGACAACATGG),  

BAK1 fwd (ATGGAACGAAGATTAATGATCC),  

BAK1revW/oStop (TCTTGGACCCGAGGGGTATTCG) and recombined to 

pB7FWG2.0 (Karimi, et al. 2002) for C-terminal GFP fusion, to pGWB14 for C-terminal 

HA fusion to pGWB17 for C-terminal Myc fusion (Nakagawa, et al. 2007), to pUBC-

nYFP-DEST and pUBC-cYFP-DEST for C-terminal n- or cYFP fusions (Grefen, et al. 

2010).  

 

2.3.3 Site-directed mutagenesis 

 

For site-directed mutagenesis of PccNLP mut (mutations in H121A and D124A) 

PccNLP D124A single mutant in pBluescript KS(-) vector was taken as template. In a 

total volume of 50 µl, 20 ng of DNA was mixed in 1 x Pfu buffer containing MgCl2, 1 µl 

Pfu Polymerase (Thermo Fisher Scientific), 0,2 mM dNTPs and 0,2 µM of the fwd and 

rev mutagenesis primer respectively (PccNLP mut fwd 5’-

GGAGTAAATTCAGGCGCCCGCCATGCCTGGGAA-3’ and PccNLP mut rev 5’-

TTCCCAGGCATGGCGGGCGCCTGAATTTACTCC-3’). Initial denaturation was done 

at 95 °C for 1 min, followed by 18 cycles of 50 s at 95 °C, annealing at 60 °C for 50 s 
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and elongation at 68 °C for 10 min. A final elongation was done for 7 min at 68 °C. 

Methylated template DNA was digested with DpnI (Thermo Fisher Scientific). 

 

2.3.4 Transformation of bacteria 

 

Chemical competent Escherichia coli XL1-blue were prepared according to 

Sambrook and Russel (2001). Escherichia coli One Shot TOP10 were acquired from 

Thermo Fisher Scientific. Plasmid DNA was added to 200 µl of competent cells, 

incubated for 30 min on ice and heat-shocked for 30 sec at 42 °C. 800 µl LB-medium 

were added to the cells, shaken at 37 °C for 1 h and plated on LB plates with the 

corresponding antiobotics for selection. 

250 ml of a Pectobacterium carotovorum SCC3200 culture were grown to an OD600 

of 0,5, centrifuged at 4 °C for 10 min at 4500 g and resuspended in 250 ml 

transformation buffer (272 mM saccharose, 1 mM MgCl2, 7 mM sodium phosphate 

buffer pH 7,4). The cells were centrifuged, washed and resuspended in 2,5 ml 

transformation buffer. 200 µl aliquots were mixed with 100 ng plasmid DNA in 

electroporation cuvettes, incubated on ice for 5 min and pulsed at 2500 volts, 5 ms. 

Cells were mixed with 800 µl LB-medium, incubated for 1 h at 37 °C at 750 rpm and 

plated on LB plates with the corresponding antibiotics for selection. 

 

2.3.5 Transformation of Pichia pastoris 

 

Transformation of Pichia pastoris was performed by electroporation according to 

the protocol of the Multi-Copy Pichia Expression Kit (Thermo Fisher Scientific). 

 

2.3.6 Stable transformation of plants 

 

Stable transformation of N. benthamiana, S. lycopersicum and S. tuberosum was 

performed by Caterina Brancato. N. benthamiana leaf pieces were incubated in 

Agrobacterium cell suspensions (grown as described in 2.2.2 and resuspended in LB-

medium without antibiotics) for 3 minutes, transferred to MS medium with 2 % sucrose 

and incubated for 48 hrs in the dark. Transgenic calli were selected on MS medium 
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containing BASTA. For transformation of S. lycopersicum, cotyledons were incubated 

in A. tumefaciens suspension for 2 days at room temperature in the dark and 

transferred to selection medium containing BASTA. Leaf pieces of S. tuberosum plants 

were floated in liquid 2 x MS medium containing A. tumefaciens for 3 days in the dark 

at room temperature. Subsequently, they were transferred to callus induction medium 

for 1 week and then to selection medium with BASTA. Transgenic plants selected in 

sterile culture were transferred to soil and grown in the greenhouse under long day 

conditions. Stable transformation of Arabidopsis thaliana plants was performed by Dr. 

Isabell Albert. Agrobacteria were harvested and resuspended in 5 % (w/v) sucrose, 10 

mM MgSO4 and 0.01 % (v/v) Silwet and sprayed on buds of 6 to 8-week-old rlp23-1 

and rlp23-2 mutant plants or accessions Bor-4 and Kyoto. The T1 generation was 

selected with 0.2 % BASTA. 

 

2.3.7 Transient transformation of Nicotiana Benthamiana 

 

Agrobacterium tumefaciens-mediated transient transformation of N. benthamiana 

was used for transient protein expression. The bacterial strains carrying the 

appropriate expression constructs were cultured as described in 2.2.2. After harvesting 

the cells by centrifugation for 10 minutes at 2000 g, the pellet was washed for two times 

with 10 mM MgCl2. The density of the culture was adjusted to an OD600 of 1 in 10 mM 

MgCl2 and 150 µM acetosyringone. The bacterial suspension was then incubated at 

RT for 2 hours. Afterwards, the bacteria were mixed 1:1 with a suspension of bacteria 

carrying an p19 expression construct (Voinnet et al. 2003) and adjusted to an OD600 of 

0,2. The mixture was infiltrated into the leaves of 3-week-old tobacco plants and the 

leaf tissue was analyzed 2-3 days post infection for the presence of the protein. 

 

2.3.8 Isolation and transformation of protoplasts 

 

Isolation and transformation of protoplasts was performed by Caterina Brancato 

using the standard protocol from Yoo et al. (2007) optmized by Dr. Kenneth W. 

Berendzen, ZMBP Central Facilities (unpublished). 
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2.3.9 DNA isolation 

 

Isolation of Phytophthora infestans DNA of infected potato leaves was performed 

by homogenization of the samples in lysis buffer containing 200 mM Tris-HC pH 8,0, 

100 mM NaCl, 25 mM Na2EDTA, 3 % (w/v) SDS and 125 µg/ml proteinase K (freshly 

added). After incubation for 1 h at 37 °C, the samples were mixed with 1 volume of 

extraction buffer (100 mM Tris-HCl pH 8,0, 2,5 M NaCl, 20 mM Na2EDTA, 2 % (w/v) 

CTAB and 2 % (v/v) β-mercaptoethanol) and incubated for 15 min at 65 °C. 1 volume 

of phenol-chloroform-isoamylic alcohol (25:24:1) was added and samples were 

centrifuged at 10.000 g for 10 min. The aequous phase was transferred into new tubes 

and mixed with 100 µg/ml RNase A. After incubation at 37 °C for 30 min, 0,25 volumes 

of 2 M NaCl-4 % (w/v) PEG6000 and 0,7 volumes o isopropyl alcohol were added. After 

centrifugation at 15.000 g for 20 min, the pellets were washed with 1 ml cold 70 % (v/v) 

ethanol, air-dried and resuspended in 40 µl of TE buffer pH 8,0. 

 

2.3.10 RNA isolation 

 

RNA from Arabidopsis plants was isolated using the RNeasy Plant MiniKit (Qiagen) 

according to the manufacturer’s recommended protocol and stored at -20 °C. 

 

2.3.11 qRT- PCR 

 

cDNA was synthesized with the RevertAid MulV reverse transcriptase (Thermo 

Scientific) according to the manufacturer’s protocol. PCR amplification was carried out 

in the presence of SYBR Green (Thermo Scientific) with an iQ5 iCycler (BioRad). 

Amplification of EF1-α (EF1-α fwd 5’-TCACATCAACATTGTGGTCATTGG-3’ EF1-α 

rev 5’- TTGATCTGGTCAAGAGCCTACAG-3’) served as internal standard. Primers 

used for amplification of PAD3 were PAD3 fwd 5’-CAGGGAAGATACGGATATAAAC-

3‘ and PAD3 rev 5‘-AGTGGCATTTAAGTAAAGGCC-3‘. Samples were pipetted in 

triplicates. The data was analyzed according to the 2-∆∆C(T) method (Livak and 

Schmittgen 2001). PAD3 gene induction by NLPs was calculated as fold change and 

presented as relative to the expression level induced by H2O infiltration. Cycling 

conditions were 10 min at 95 °C, 40 cycles 10 s 95 °C, 15 s 57°C and 72 °C for 1 min. 
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2.3.12 qPCR 

 

Quantification of Phytophthora infestans DNA was performed by real-time 

quantitative PCR in an iQ5 iCycler (BioRad) using 1 µl of extracted DNA (2.3.9) in 20 

µl of buffer with SYBR Green (Thermo Scientific). DNA extracts of pure Phytophthora 

infestans mycelium were used to prepare a calibration curve in a range of 100 ng to 

0,001 ng of DNA (spectrophotometric determination, NanoDrop 2000, Thermo 

Scientific) used to calculate the DNA content of the samples. Samples were pipetted 

in triplicates. Primers for amplification were chosen based on highly repetitive 

sequences from the P. infestans genome (PiO8-3-3 fwd 5′-

CAATTCGCCACCTTCTTCGA-3′, PiO8-3-3 rev 5′-GCCTTCCTGCCCTCAAGAAC-3′) 

(Llorente et al. 2010). Cycling conditions were 10 min 95 °C, 40 cycles 10 s 95 °C, 15 

s 59 °C, 20 s 72 °C.  

 

2.4 Biochemical methods 

 

2.4.1 Protein extraction from plant tissue 

 

Total protein was extracted from 250 mg of frozen leaf material and solubilized with 

1, 7 ml of solubilization buffer (25 mM Tris-HCl pH 8,0, 150 mM NaCl, 1 % (v/v) NP40, 

0,5 % (w/v) DOC, 2 mM DTT, 8 µl plant protease inhibitor cocktail (PPI, Sigma-Aldrich) 

per 250 mg leaf material) after grinding in liquid nitrogen. The samples were solubilized 

for 1 h at 4 °C by overhead shaking (5-7 rpm). Centrifugation for 1 h at 4 °C and 20.000 

g separated the soluble proteins from the cell debris and could be used for further 

analysis. 

 

2.4.2 Immunoprecipitation 

 

Leaves of transiently transformed N. benthamiana or Arabidopsis rlp23-

1/p35S::RLP23–GFP plants were either harvested directly or 3 min after infiltration of 

1 µM nlp20 (N. benthamiana) or 10 µM nlp20 (Arabidopsis). For immunoprecipitations, 

250 mg ground leaf material from N. benthamiana or 500 mg from Arabidopsis was 
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used per sample. Membrane proteins were solubilized as described (2.4.1) and 

immuno-adsorbed with prewashed and equilibrated (in solubilization buffer) GFP-tag 

to GFP-Trap beads (ChromoTek). The protein extracts were incubated with the beads 

for 1-2 h at 4 °C in an overhead rotator (5-7 rpm). By carefully sedimenting the beads 

(1000 g, 4 °C, 1 min) they were washed two times with solubilization buffer and two 

times with washing buffer (25 mM Tris-HCl pH 8,0, 150 mM NaCl, 2 mM DTT, 8 µl 

PPI/sample) and boiled with SDS loading buffer for 10 min at 95 °C. After sedimenting 

the beads at 1000 g, the samples were subjected to SDS-PAGE and western blot 

analysis. For pull-down experiments of BAK1 from Arabidopsis tissue, NaCl 

concentrations of the solubilization and the washing buffer were reduced to 20 mM. 

 

2.4.3 Heterologous protein expression in Pichia pastoris  

 

P. pastoris was precultured for 24 h in 10-20 ml BMGY-medium. Cells were 

centrifuged (5 min, 1500 g, at RT), resuspended in 100-500 ml BMMY-medium, and 

cultured for 3-4 days. After 10 min of centrifugation at 10.000 g, the supernatant was 

precipitated with 60 % (w/v) ammonium sulfate. After 15 min of centrifugation at 20.000 

g at 4 °C, the pellet was resuspended in water and dialysed in the buffer for ion 

exchange chromatography. 

 

2.4.4 Heterologous protein expression in Pectobacterium carotovorum 

 

P. carotovorum was cultured for 24 h in LB-medium containing ampicillin. To isolate 

periplasmic proteins, the bacteria were pelleted for 3 min at 6000 g (RT) and 

resuspended in 1ml of a solution containing 10 mM Tris-HCl (pH 7,5) and 30 mM NaCl 

(4 °C). After another centriguation step for 3 min at 6000 g (4 °C), the cells were 

resuspended in 200 µl 30 mM Tris-HCl pH 7,5  (RT) and 200 µl of a solution containg 

30 mM Tris-HCl pH 7,5, 40 % (w/v) saccharose and 0,2 mM EDTA were added and 

incubated for 10 min at RT. After 5 min of centrifugation, the pellet was resuspended 

in 200 µl of a 20 mM MgCl2 solution and incubated on ice for 10 min. After a 10 min 

centrifugation at 16.000 g and 4 °C, periplasmic proteins within the supernatant were 

desalted with a PD-10 column (GE Healthcare) and dialysed in the respective buffer 

for ion exchange chromatography. 
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2.4.5 Purification of recombinant proteins 

 

The proteins were purified by ion exchange chromatography and subsequent gel 

filtration. The protein solution was dialysed in buffer A and the column equilibrated with 

the threefold column volume. The dialysed sample was applied to the column (1ml/min) 

and washed with the tenfold column volume. Proteins were eluted with a gradient of 0-

100 % (10 ml) of buffer B and the collected fractions were checked for protein quantity 

via SDS-PAGE. The fractions containing most protein were united and purified by gel 

filtration (1ml/min, HiLoadTM 16/60 Superdex 75, GE Healthcare) using the buffer GF. 

Protein containing fractions were pooled and dialysed in water. UV-spectroscopy 

(wavelength λ280) was used to determine protein concentrations using the protparam 

tool (http://web.expasy.org/protparam) to determine protein-specific extinction 

coefficients ε280 for each protein. Protein concentrations were verified by SDS-PAGE 

using BSA as a standard protein. 

 

Protein Buffer A Buffer B Column Buffer GF 

PpNLP, 
PpNLP mut 

20 mM Tris  
pH 8,5 

20 mM Tris  
pH 8,5 

500 mM KCl 
HiTrap Q FF 

20 mM Tris  
pH 8,5 

150 mM KCl 

PccNLP, 
PccNLP mut 

50 mM MES 
pH 5,7 

50 mM MES 
pH 5,7 

500 mM KCl 
HiTrap SP FF 

50 mM MES 
pH 5,7 

150 mM KCl 

Table 2-4: Buffer and columns used for protein purification 

 

 

2.4.6 Determination of protein concentration 

 

The protein concentration was determined after the Bradford method (Bradford 

1976) using Roti-Quant solution (Carl Roth). A standard curve was calculated with 

bovine serum albumin (BSA). 

 

2.4.7 SDS-Page 

 

SDS polyacrylamide gel electrophoresis was performed using the protocol of 

Laemmli (1970) by the method of Sambrook and Russel (2001). The acrylamide-
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bisacrylamid mixture (37,5:1) was purchased as Rotiphorese Gel 30 (Carl Roth). 

Separating gels of 8 %, 10 % or 12 % were used with 5 % stacking gels in the gel 

chamber system of BioRad. Protein separation was performed at 20 mA and the 

prestained PageRulerTM protein ladder mix (Fermentas) was used as a protein marker. 

 

2.4.8 Coomassie blue stain 

 

Non-specific staining of proteins after SDS-PAGE was done using a Coomassie 

staining solution containing 0,125 % (w/v) Coomassie brilliant blue R-250, 50 % (v/v) 

MeOH and 10 % (v/v) acetic acid. The solution was heated up and shaken with the gel 

for 30 min. For destaining of the gel the solution was exchanged by 10 % (v/v) acetic 

acid, heated up and shaken until excess stain was removed. 

 

2.4.9 Westen blot analysis 

 

Western blotting was performed in a PerfectBlue semi-dry-blotting gadget (PeqLab, 

Erlangen). The SDS polyacrylamide gel was sandwiched together with a nitrocellulose 

Hybond ECL- Membrane (GE Healthcare) between three layers of whatman paper 

after all components were equilibrated in blotting buffer (25 mM Tris-HCl pH 8,3, 192 

mM glycine, 20 % (v/v)  MeOH). Blotting was performed for 1 h at 1 mA/cm2 and stained 

with Ponceau-S (0,1 % (w/v) Ponceau-S, 5 % (v/v) acetic acid) to control blotting 

efficiency and evenness. The membrane was blocked for 1-2 h in 5 % (w/v) BSA in 

TBS-T (20 mM Tris-HCl pH 7,5, 150 mM NaCl, 0,1 % (v/v) Tween-20). The membrane 

was then incubated with the first antibody in 5 % BSA in TBS-T overnight at 4 °C, 

washed with TBS-T (3 x 5 min) and incubated in the second antibody in 5 % BSA in 

TBS-T for 2 h. After three washing steps the membrane was equilibrated in alkaline 

phosphatase buffer (AP-buffer, 150 mM Tris-HCl pH 9,5, 100 mM NaCl, 5 mM MgCl2) 

and detected using either the substrates NBT (100 µg/ml) and BCIP (50 µg/ml) or by 

chemiluminescence using nitroblock solution (1:20 in AP, Thermo Fisher Scientific) to 

enhance the alkaline phosphatase signal  and CDP Star (0,25 mM in AP). The 

chemiluminescent signal was detected with a CCD camera (Viber Louromat, PeqLAB). 
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2.4.10 Activation of MAP kinases 

 

Leaves of 5 to 6-week-old Arabidopsis plants were frozen in liquid nitrogen 15 min 

after infiltration of the respective peptide solution with a needle-free syringae. The 

samples were homogenized in 100 µl extraction buffer (50 mM Tris-HCl pH 7,5, 

Complete Protease Inhibitor Cocktail (Roche), PhosStop Phosphatase Inhibitor 

Cocktail (Roche)) and centrifuged at 10.000 g and 4 °C for 20 min. The protein 

concentration was determined (2.4.6) and 30 µg of protein were subjected to a 10 % 

SDS-PAGE (2.4.7). After western blotting, activated MAP kinases 6, 3 and 4 were 

detected using the phospho p44/42 MAPK (Erk1/2) primary antibody (Cell Signaling 

Technology). 

 

2.4.11 Protein modeling 

 

The PpNLP sequence without the N-terminal signal peptide (SignalP 4.1 server, 

Petersen et al. (2011), cleavage site between position A19 and D20) was used to 

create a protein model applying the Phyre2 web portal for protein modeling, prediction 

and analysis (Kelley et al. 2015). For digital imaging, the software PyMOL (The PyMOL 

Molecular Graphics System, Version 1.7.4 Schrödinger, LLC) and Microsoft Office 

2013 was applied. 

 

2.5 Bioassays 

 

2.5.1 Priming of Arabidopsis plants 

 

5 to 6-week-old Arabidopsis plants were primed by leaf infiltration with 1 µM nlp20 

(PpNLP), flg22 or the chitin hexamer C6 (1 mM) or with 1 µM of the inactive peptides 

nlp20 (PccNLP) and nlp20_W6A or mock-treated with H2O (0,01 % DMSO) 24 hours 

prior infection with Pseudomonas syringae or Botrytis cinerea. 
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2.5.2 Infection with Pseudomonas syringae 

 

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) was grown overnight in 

King’s B medium, centrifuged, washed and diluted in 10 mM MgCl2 to a density of 104 

cfu/ml. Bacteria were pressure-infiltrated into primed Arabidopsis leaves and the plants 

were kept under translucent cover and high humidity. Leaves where harvested at day 

0 and 3, surface sterilized in 70 % EtOH and washed in ddH20 for 1 min each. Two leaf 

discs (5mm diameter) per leave were stamped out, ground in 200 µl of a 10 mM MgCl2 

solution, diluted serially 1:10 and plated on LB plates containing rifampicin and 

cycloheximide. After 2 days of incubation at 28 °C, colony-forming units were counted. 

 

2.5.3 Infection with Botrytis cinerea 

 

Spores of Botrytis cinerea isolate B0-10 were diluted to a final concentration of 

5x106 spores/ml in PDB medium. Primed Arabidopsis leaves were droplet inoculated 

with 5 µl of the spore solution and kept under translucent cover and high humidity for 

2 days. Lesion sizes were determined using the Photoshop CS6 Lasso tool. Selected 

pixels were counted and the lesion size in cm2 was calculated using a 0,5 cm2 

standard. 

 

2.5.4 Infection with Sclerotinia sclerotiorum 

 

Sclerotinia sclerotiorum strain 1980 was grown on minimal medium to reduce 

aggressiveness of the fungus as previously described (Guo and Stotz 2007). An agar 

plug (5 mm diameter) with actively growing mycelium was placed on the adaxial 

surface of potato leaves. Leaves were kept in closed boxes under high humidity and 

disease development was scored at 3-4 days after infection. Lesion sizes were 

determined using the Photoshop CS6 Lasso tool. Selected pixels were counted and 

the lesion size in cm2 was calculated using a 0,5 cm2 standard. 
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2.5.5 Infection with Phytophthora infestans 

 

Phytophthora infestans strain 88069 was maintained on plates with rye sucrose 

medium and release of spores was induced by covering 10 to 15-day-old mycelium 

with cold sterile water (4 °C) for 4 hours in the cold room. The concentration of spores 

was adjusted to 5x104 zoospores/ml and potato leaves were droplet inoculated with 10 

µl drops and kept in boxes under high humidity. Pictures were taken 4-6 days after 

infection and lesion sizes were determined using the Photoshop CS6 Lasso tool. 

Selected pixels were counted and the lesion size in cm2 was calculated using a 0,5 

cm2 standard. For quantification of the DNA, infection sites were stamped out with a 

cork borer (12 mm diameter) and DNA was extracted as described in 2.3.9 (Llorente, 

et al. 2010) and subjected to quantitative real-time PCR (2.3.12). 

 

2.5.6 Detection of reactive oxygen species 

 

For measuremt of reactive oxygen species (ROS) production, small leaf pieces (~ 

0,4 cm x 0,2 cm) of 5-week-old Arabidopsis plants were cut and floated overnight on 

ddH2O. The next day, two thereof were placed in one well of a 96-well plate containing 

100 µl of a 20 mM L-012 and 0,5 µg/ml peroxidase solution. The background was 

measured before treatment with the respective peptide solution and luminol-

chemoluminescence was quantified using a 96-well Luminometer (Mithras LB 940, 

Berthold Technologies) and the software MicroWin. 

 

2.5.7 Biosynthesis of ethylene 

 

6-week-old Arabidopsis leaves were cut into ~ 0,4 x 0,4 cm pieces and floated 

overnight in ddH20. Three thereof were transferred into glas vials (6 ml volum) with 400 

µl 20 mM MES buffer pH 5,7, treated with the corresponding protein or peptide and 

closed with rubber plugs. The samples were shaken for four hours at 170 rpm and 1 

ml of air was taken of the glas vial and injected into a gas chromatograph (Shimadzu 

GC-14A). 
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2.5.8 Extracellular medium alkalinization 

 

Alkalinization of the medium was measured as described (Felix, et al. 1999). 

Arabidopsis Col-0 cell suspension aliquots of 2,5 ml were placed in vials on a shaker 

at 120 rpm an treated with the respective peptide. The extracellular pH was measured 

continuously over a time period of 30 min using a glass electrode and a pen recorder. 

 

2.5.9 Seedling growth inhibition 

 

Arabidopsis Col-0 seeds were surface-sterilized (1 min in 50 % EtOH, 10 min in 50 

% sodium hypochlorite 0,1 % Triton-X 100, 5 x washing in ddH2O) and grown under 

long-day conditions (16 h light) in liquid ½ MS medium containing the respective 

peptide solution. After two weeks, the seedlings were transferred onto agar plates to 

determine the root length. 

 

2.5.10 Analysis of cell death 

 

Leaves of 6-week-old Arabidopsis plants were infiltrated abaxially with 0,5 µM of 

the respective protein solution or given peptide concentrations with a needle-free 

syringae. Necrotic symptoms were analyzed 2 days post treatment. 

 

2.5.11 Calcein release 

 

Isolation of plant plasma membranes from 6-week-old Arabidopsis Col-0 plants was 

done by phase partitioning of microsomal fractions using Dextran and PEG in a 

concentration of 6.4% (w/w) and 3 mM KCl  performed by Dr. Isabell Albert (Larsson 

et al. 1994). For preparation of calcein-loaded vesicles, plasma membranes (100-500 

µg protein) were sonified (30 min on ice, 20 sec pulse on, amplitude 25%, 20 sec pulse 

off) in the presence of calcein (60 mM) in calcein buffer (20 mM Tris-HCl, pH 8,5, 140 

mM NaCl, 1 mM EDTA). After incubation at RT for 30 min and centrifugation (15 min, 

16.000 g, RT) the excess calcein was removed by gel filtration using a Sephadex G-

75 medium column (Sigma) equilibrated in calcein buffer. Fractions of about 120 µl 
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were collected of which 5 µl were mixed with 195 µl of vesicle buffer (20 mM MES pH 

5,8, 140 mM NaCl) and measured with and without 0,5 % Triton X-100 in a microplate 

reader (Mithras LB 940, Berthold Technologies). The signal was excited at 485 nm 

collecting emission at 520 nm. Fractions with at least double a difference in the 

fluorescence signal between treated and untreated samples were united and protein 

concentration was determined. Measurements were performed in a total volume of 200 

µl with 1 ng/µl of plasma membrane vesicles in vesicle buffer. Vesicles were treated 

with the respective protein solution and calcein release was measured over 20 min. 

The percentage of calcein release was calculated according to the equation (Fmeas–

Finit)/(Fmax–Finit)*100, where Fmeas, Finit, and Fmax are the measured, initial, and maximal 

fluorescence, respectively. Fmax was obtained by the addition of Triton X-100 to a final 

concentration of 0.5% (v/v) at the end of each measurement. 

 

2.6 Microscopy and histochemistry 

 

2.6.1 Bimolecular fluorescence complementation 

 

Bimolecular fluorescence complementation (BiFC) was investigated in transformed 

protoplasts (2.3.8) of Arabidopsis Col-0 plants on a Leica SP2 confocal microscope 

with a 20x/0.75 water-immersion objective. The YFP signal was excited using a 514 

nm laser collecting emission between 520–560 nm. 

 

2.6.2 Aniline blue stain 

 

The induction of callose deposition was analyzed by aniline blue staining (Gomez-

Gomez, et al. 1999). Leaves were harvested 24 hours after infiltration with the 

respective peptide solution, flooded with fixing solution (1% (v/v) glutaraldehyde; 5 mM 

citric acid; 90 mM Na2HPO4 pH 7,4) in a 6-well plate and incubated for 24 hours. After 

fixation, chlorophyll was removed with 100% (v/v) EtOH for 1-2 days. The leaves were 

transferred to 50% (v/v) EtOH, subsequently equilibrated in 67 mM K2HPO4 (pH 12.0) 

and finally stained for 1 h in 0,1 % (w/v) aniline blue dissolved in 67 mM K2HPO4 (pH 

12,0).The stained leaves were transferred to a microscopic slide and covered with 70% 
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(v/v) glycerol and 30% (v/v) staining solution and examined under UV epifluorescence. 

Quantification of callose was performed by counting selected pixels and calculated in 

% relative to the respective image section of the leaf surface. Pictures were analyzed 

using the Photoshop CS6 Magic tool, hereby removing background and leaf-veins 

within a certain color range. (Use: white, Mode: normal, Opacity: 100%). 

 

2.6.3 GUS stain 

 

GUS-activity in PR1::GUS transgenic Arabidopsis plants (Shapiro and Zhang 2001) 

was histochemically determined 24 hours after leaf infiltration of the respective protein 

or peptide solution. Leaves were transferred into 2 ml Eppendorf tubes, flooded with 

X-Gluc buffer (50 mM Na3PO4 pH 7,0, 0,5 mM K4[Fe(CN)6], 0,5 mM K3[Fe(CN)6], 10 

mM EDTA pH 8,0, 0,1 % (v/v) Triton X-100, 0,05 % (w/v) 5-bromo-4-chloro-3-indolyl 

β-D-glucuronide (X-Gluc, Carl Roth), two times vacuum infiltrated and incubated 

overnight at 37 °C. Chlorophyll was removed by repeated washing with 70 % EtOH. 

 

2.7 Statistical analysis 

 

Statistical analysis was performed using Microsoft Office Excel or GraphPad 

QuickCalcs. The data represent the average of replicates with ± SD of the mean. The 

significance of the differences was calculated using the t-test. 
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3. Results 

 

3.1 Identification and characterization of the novel PpNLP-derived 

PAMP nlp20 

 

NLPs are widespread microbial virulence factors, some of which exert toxin activity 

on dicot plant species and strongly induce plant immunity (Qutob et al. 2006, Ottmann, 

et al. 2009). 

Objective of this chapter was to identify and characterize this immunogenic activity. 

Comparative analysis on recombinant PccNLP (NLP derived from Pectobacterium 

carotovorum pv. carotovorum) and PpNLP (Phytophthora parasitica-derived NLP) 

should reveal the presence of a novel immunogenic pattern. Deletion mapping and 

mutational analysis were applied to gain more insight into motif length and residues 

which are essential for elicitor activity. Moreover, studies on pattern distribution among 

microbes of different kingdoms of life and identification of sensitive plants should 

enlighten the spectrum of the novel immunogenic pattern. 

 

3.1.1 WT, mutagenized and heat-treated recombinant PccNLP and PpNLP 

show distinct behaviors regarding cytotoxicity and immunogenic 

activity in Arabidopsis 

 

Studies using recombinant PccNLP and PpNLP cytotoxins should specify the toxic 

and immunogenic avtivity of NLPs in more detail. Therefore, wild-type and modified 

non-toxic versions of both recombinant proteins were applied to define cytolytic and 

immunogenic activities in Arabidopsis. 

Mutational analysis within highly conserved amino acids of Pectobacterium 

carotovorum NLP (PccNLP) revealed that immune-associated defense responses and 

cytotoxic activity require same structural scaffolding (Ottmann, et al. 2009). Consistent 

with these findings, an exchange of two of the highly conserved amino acids within the 

hepta-peptide motif (H121A; D124A, analogous positions of PpNLP) of recombinant 

PccNLP (PccNLP_mut) led to a complete loss of cytolytic activity upon infiltration of 
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Arabidopis leaves in comparison to the wild-type protein which triggered strong leaf 

necrosis (Fig. 3-1 B). In addition, treatment of purified calcein-filled plasma membrane 

vesicles from Arabidopsis leaves with PccNLP_mut did not cause any measurable 

release of the fluorescent dye, whereas the wild-type protein triggered a strong calcein 

release within a few minutes (Fig. 3-1 A). Likewise, heat-inactivated PccNLP (PccNLP 

95 °C) could neither provoke leaf necrosis nor any quantifiable calcein release (Fig. 3-

1 A, B). In the same way, recombinant PpNLP from the oomycete Phytophthora 

parasitica triggered a fast and strong release of calcein as well as leaf necrosis upon 

infiltration though none of these effects could be observed for the mutated 

(PpNLP_mut) or heat-denatured (PpNLP 95 °C) version of this protein (Fig. 3-1 A, B). 

In agreement with the findings of Ottmann et. al., 2009, who showed that cytotoxic 

and immunogenic activities of PccNLP are based on identical structures, PccNLP_mut 

and denatured PccNLP 95 °C did not only lose their cytotoxicity, but also their capability 

to trigger immunity-associated defense responses in Arabidopsis. Gene induction in 

transgenic reporter plants carrying a fusion construct consisting of the promoter of the 

defense gene PR1 (pathogenesis-related protein1) and the reporter enzyme GUS (β-

glucuronidase) was abrogated (Fig. 3-1 C) upon leaf infiltration of both protein variants. 

Gene expression of PAD3 (phytoalexin deficient 3), a gene necessary for the 

biosynthesis of the phytoalexin camalexin, was also not induced by PccNLP_mut and 

PccNLP 95 °C, whereas the wild-type protein was able to trigger PAD3 gene 

expression in a 150-fold induction compared to the control treatment (Fig. 3-1 D). 

Moreover, the mutated and heat-inactivated PccNLP variants failed to trigger ethylene 

formation, although a high EC50 in the range of 24 ± 3 nM could be determined for the 

native protein (Fig. 3-1 E). 

Intriguingly, the oomycete-derived PpNLP variants PpNLP_mut and PpNLP 95 °C 

showed a strong induction of PR1::GUS and PAD3 gene expression comparable to 

the responses elicited by wild-type PpNLP (Fig. 3-1 C, D). Likewise, ethylene 

production was triggered not only by the native PpNLP (587 ± 231 nM), but also by the 

mutated (143 ± 21 nM) and the heat-denatured protein (72 ± 20 nM) (Fig. 3-1 E).  

These findings suggest the presence of a yet unknown immunogenic feature within 

PpNLP which can be clearly distinguished from its toxin activity. 
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Figure 3-1: Cytotoxic and immunogenic potential of Pectobacterium carotovorum (PccNLP) 

and Phytophthora parasitica (PpNLP) NLPs in Arabidopsis.  

Relative calcein release from purified Arabidopsis membrane vesicles given in % of maximum 

release after addition of Triton-X (0,5 %). Vesicles were treated with water or 333 nM of recombinant 

wild-type, heat-treated (95°C) or mutated (mut) protein (H121A D124A). Data points represent 

means of three replicates ± SD (A). Development of necrotic lesions (B) or blue stains indicating 

PR1::GUS activitiy in transgenic Arabidopsis plants (C) upon leaf infiltration of 0,5 µM recombinant 

PccNLP and PpNLP variants. Water and empty vector infiltration served as controls. Pictures were 

taken 2 dpi (B), GUS activity was histochemically visualized 1dpi (C). PAD3 gene expression 

determined by qRT-PCR 4 hrs after infiltration of 0,3 µM NLP variants. Transcript levels shown as 

fold induction compared to water control treatment and normalized to EF1-α transcript. Bars 

represent means ± SD of three replicates, significant differences over control treatment were 

determined by Student’s t test **P≤0.01 (D). EC50 value of ethylene production induced by the NLP 

variants after 4 hrs of incubation with leaf discs. n.a. = not applicable, numbers represent three 

replicates ± SD (E). All experiments were performed in triplicates with similar results. 
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3.1.2 Identification of an immunogenic core within PpNLP  

 

Immunogenic activities of microbial patterns can characteristically be traced back 

to small immunogenic epitopes (Boller and Felix 2009, Monaghan and Zipfel 2012, 

Böhm, et al. 2014a). To scan the PpNLP protein for such a pattern, 13 nested synthetic 

peptides where synthesized spanning the whole protein sequence of PpNLP (30mer 

peptides a-m, Fig. 3-2 A). Most interestingly, peptides c and j were able to trigger 

ethylene formation as well as PR1::GUS gene induction in Arabidopsis, whereas the 

other peptides did not evoke immunogenic responses (Fig. 3-2 B, C).  

Peptides c and j span residues G84 to W130 with an overlapping region from G100 to 

D113, indicating that the immunogenic centerpiece is located within this peptide 

sequence (GVYAIMYSWYFPKD, Table 3-1, peptide 1). 

 

 

Figure 3-2 Immunogenic activity of PpNLP sequence-derived synthetic peptides in 
Arabidopsis.  

Schematic presentation of 13 overlapping peptides (a-m, 30mer peptides), synthesiszed based on 

the PpNLP sequence (A). Ethylene formation 4 hours upon induction with 1 µM peptide. Water, 

0,01 % DMSO (peptide dilution) and flg22 served as controls. Bars represent means ± SD of three 

replicates, asterisks mark significant differences over DMSO control as determined by Student’s t 

test, **P≤0,01, ***P≤0,001 (B). PR1::GUS gene activation 24 hours after infiltration of 1 µM peptide 

solution (C). All experiments were performed three times with similar results. 
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3.1.3 Characterization of the minimal elicitor motif 

 

To further specify the minimal elicitor motif required for the immunogenic activity 

detected within PpNLP, N- and C-terminal extension and deletion peptide derivatives 

based on peptide 1 were synthesized and EC50 values (ethylene formation) were 

determined (Table 3-1, peptides 2-14). C-terminal deletion of the two amino acids K112 

and D113 (peptide 2) led to a drastic increase of the EC50 value (16667 ± 3055 nM), 

whereas the N-terminal deletion variant, in which amino acids G100 and V101 were 

lacking (peptide 3), did not exert such an effect on the immunogenic potential (EC50 = 

217 ± 65) when compared to peptide 1 (322 ± 165 nM). Therefore, further stepwise N-

terminal deletions were conducted (removal of 5mers, peptides 4-6), revealing a 

complete loss of the immunogenic potential (EC50 > 100000) as early as amino acids 

Y102-Y106 (peptide 4) were missing. So far, these findings indicate an essential role of 

amino acids Y102 to D113, as the key part establishing an elicitor active peptide pattern 

within PpNLP. Further analysis on the function of adjacent amino acids by C-terminal 

extensions and N-terminal single deletions respectively, revealed two peptides with a 

high immunogenic potential (peptide 9, EC50 = 14 ± 12 nM, and peptide 13, EC50 = 1,5 

± 0,7 nM). Individual step by step deletion of the N-terminal part (∆ A103, ∆ I104, ∆ M105, 

peptides 10-12 and ∆ Y104, peptide 14) led to a gradual increase of the EC50 (133 ±10 

nM, 1550 ± 328 nM, >50000 nM, >100000 nM) underlining the importance of this motif 

for elicitor activity.  

To obtain deeper insights into the significance of individual amino acids within the 

two most active peptides (peptide 9 and 13), an alanine-scanning mutagenesis was 

conducted exchanging single amino acids by alanine (peptide 16-38) or, in the case of 

peptide 15, by tryptophan. Four amino acids could be identified, whose mutagenesis 

led to a distinct loss of immunogenic activity: I104A (peptide 16, EC50 = 1567 ± 252 nM), 

Y106A (peptide 18, EC50 = 1500 ± 436 nM), W108A (peptide 20, EC50 = 2833 ± 777 nM) 

and Y109A (peptide 21, EC50 = 2633 ± 208 nM) whereas all other amino acid exchanges 

had no or significantly less impact on peptide activity. Since mutations in the C-terminal 

part of peptide 13 (peptide 35-38) revealed a rather moderate effect on the EC50 

values, all further studies were conducted with the 20mer peptide 9 

(A103IMYSWYFPKDSPVTGLGHR122).  

Thus, peptide 9 was assigned as the minimal motif of immunogenic activity in 

Arabidopisis and named nlp20 (PpNLP), based on its origin and length. 



 Results  

46 

 

 

 

Table 3-1: Ethylene-based identification of a minimum immunogenic motif within PpNLP. 
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3.1.4 Nlp20 (PpNLP) does not exert any cytotoxic activity on Arabidopsis 

  

To rule out a potential toxin activity within the nlp20 peptide pattern derived from 

the cytotoxin PpNLP, leaf infiltration of Arabidopsis plants with nlp20 (PpNLP) peptide 

was conducted. As shown in Figure 3-3 A, strong leaf necrosis developed upon 

infiltration of full-length recombinant PpNLP, whereas equimolar (1 µM) infiltration of 

synthetic nlp20 (PpNLP) let the leaf completely intact as did the control infiltration with 

water. Even peptide infiltration of a 10 µM solution did not exert any visible symptoms 

of necrosis. To quantify these observations, a calcein release assay with purified 

plasma membrane vesicles from Arabidopsis treated with native PpNLP and nlp20 

(PpNLP) peptide was conducted. While a fast and strong release of calcein could be 

measured for the vesicles treated with 333 nM PpNLP, no calcein release was 

observed for the peptide-treated vesicles, even not for those treated with a 10-fold 

higher peptide concentration (Fig. 3-3 B). 

Consequently, nlp20 (PpNLP) is not able to exert a toxic effect on Arabidopsis and 

can thus be clearly separated from toxin activity found for full-length PpNLP (see also 

3.1.1). 

 

 

Figure 3-3: Classification of nlp20 
(PpNLP) as non-toxic on 
Arabidopsis.  

Leaf necrosis 2 dpi of 1 µM 

recombinant PpNLP or 1 µM and 10 

µM nlp20 (PpNLP) peptide (A). 

Calcein release from purified plasma 

membrane vesicles upon incubation 

with 333 nM PpNLP protein or 333 nM 

and 3333 nM peptide calculated in % 

of maximum release after Triton-X 

addition (B). 
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3.1.5 PccNLP does not contain an immunogenic core orthologous to 

nlp20 (PpNLP) 

 

Based on the present findings, the immunogenic potential of PpNLP on Arabidopsis 

can not only be traced back to its cytotoxicity but also to the novel immunogenic peptide 

pattern nlp20. To complete the findings made in 3.1.1, a PccNLP peptide sequence 

orthologous to the immunogenic centerpiece within PpNLP was synthesized 

(GSFYALYFLKDQILSGVNSGHR). This peptide, called nlp20 (PccNLP), was not 

capable to activate various immune responses tested in Arabidopsis like formation of 

ethylene, induction of MAP kinases or PR1::GUS gene expression whereas nlp20 

(PpNLP) elicited all responses tested (Fig. 3-4, A-C). These results show, that PccNLP 

does not harbor an elicitor-active motif orthologous to nlp20 (PpNLP), whereby its 

immunogenic potential (Fig. 3-1) can be attributed to its cytotoxic activity. 

 

 

Figure 3-4: NLP 20 (PccNLP) does not induce immunity-associated defense responses in 

Arabidopsis.  

Ehylene formation 4 hours upon induction with different concentrations of nlp20 peptides derived 

from PpNLP and PccNLP. Data points represent means of three samples ± SD  (A). Activation of 

MAP kinases 15 minutes after infiltration of 100 nM nlp20 (PpNLP) or nlp20 (PccNLP) detected by 

p44/p42 ant-phospho antibody. Ponceau S staining of rbcL (Ribulose bisphosphate carboxylase 

large chain) is shown as loading control (B). PR1::GUS gene activation upon infiltration of 100 nM 

peptide. Histochemical staining was performed 1 dpi (C). One representative experiment out of 

three is shown. 
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3.1.6 Position of the nlp20 motif within PpNLP 

 

PpNLP exhibits a high primary sequence identity of 63,6 % to the crystallized NLP 

from Pythium aphanidermatum (PyaNLP), and displays almost identical structural fold 

conservation (Küfner 2009, Ottmann, et al. 2009). The PyaNLP crystal revealed a 

single-domain molecule consisting of a central β-sandwich (3+5 strands), three α-

helices at the top and three broad loops (L1, L2 and L3) at the base of the molecule. 

A negatively charged cavity above L2 and L3 at the surface of the protein coordinates 

a divalent cation, comprising the highly conserved hepta-peptide motif with amino 

acids assigned to be crucial for toxin activity (Ottmann, et al. 2009). 

To gain insight into the localization of the nlp20 motif within the PpNLP protein, a 

protein model of PpNLP lacking the N-terminal signal peptide was created applying the 

Phyre2 web portal for protein modeling, prediction and analysis (Kelley, et al. 2015) 

and the graphics software PyMOL for digital imaging. The left panel of Figure 3-5 A 

shows the cartoon model of PpNLP with the nlp20 motif spanning amino acids A103-

R122 highlighted in green, building β5 (A103-Y109) and L2 (E110-R122). The right 

panel depicts the surface model, whereby β5 is located inside the protein and residues 

of L2 can be found on the surface of the molecule only. These superficial residues are 

not elicitor-active and would require remote interior residues A103-Y106 in β5 for 

immune stimulating activity (table 3-1, peptides 4, 5 and 6). For comparison, 

localization of the hepta-peptide motif is shown in Figure 3-5 B. Residues of the motif 

G120-E126 are surface-exposed, mainly span β6 and are highlighted in grey. Thus, 

nlp20 and the hepta-peptide motif share three residues G120, H121 and R122 at the 

end of L2 and the beginning of β6.  

The position of the nlp20 motif within PpNLP might indicate that structural 

reorganization of the protein takes place upon the event of plant plasma membrane 

contact, leading to subsequent pattern recognition through the unfolded peptide 

pattern. This hypothesis is supported by findings made in 3.1.1 (Fig 3-1 C, D, E), where 

it is shown that non-toxic mutagenized and denatured PpNLP versions are capable of 

inducing immunity in Arabidopsis. 
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Figure 3-5: Localization of nlp20 and the hepta-peptide motif within PpNLP.  

Cartoon (left panel) and surface view (right panel) of PpNLP showing the position of nlp20 (green, 

A) and the hepta-peptide motif (grey, B). Modeling was done with Phyre2 web portal for protein 

modeling, prediction and analysis and PyMOL software for graphical editing.
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3.1.7 Pre-treatment with nlp20 (PpNLP) renders Arabidopsis less 

susceptible to bacterial and fungal infection 

 

Priming is a state of induced resistance, associated with an enhanced immune 

reaction of plants to microbial attack at the advent of infection (Conrath et al. 2015). To 

test whether nlp20 (PpNLP) primes a defense response in Arabidopsis, leaves were 

infiltrated with 1 µM peptide solution and infected with Pseudomonas syringae pv. 

tomato DC3000 24 hours later. After three days, significantly reduced bacterial growth 

rates could be observed for nlp20 (PpNLP)-treated plants when compared to mock-

treated samples, just as for flg22-treated plants (Fig 3-6 A). This priming effect could 

be shown on fls2/efr double mutant plants as well, thereby ruling out a contamination 

with flg22 within the nlp20 (PpNLP) peptide preparation (Fig. 3-6 B). Likewise, 

Arabidopsis plants infected with the fungus Botrytis cinerea showed significantly 

smaller lesion size development when primed with nlp20 (PpNLP) or the chitin 

hexamer C6, when compared to mock-treated leaves (Fig. 3-6 C).  

Thus, nlp20 (PpNLP) is capable to establish a primed state in Arabidopsis and 

thereby provides enhanced protection against bacterial and fungal infection. 

 

Figure 3-6: Priming of Arabidopsis with nlp20 
(PpNLP) renders it more resistant towards 
bacterial and fungal infection. 

Arabidopsis Col-0 (A) and efr/fls double mutant 

plants (B) were primed with 1 µM nlp20 peptide, 

flg22 or water as control 24 hours prior infection 

with 104 cfu ml -1 Pseudomonas syringae pv. 

tomato strain DC3000 (Pst DC3000). Bacterial 

growth rates were determined 0 and 3 days after 

infection. Each bar represents mean value of 6 replicates ± SD, asterisks indicate significant 

differences over control treatment determined by Student’s t test, **P≤0,01 (A, B). Spot inoculation 

with 5 µl of a 5×106 ml-1 solution of Botrytis cinerea spores was performed 24 hours after priming 

with 1 µM nlp20, chitin hexamer C6 or water respectively. Data represents means of n=28 samples 

per treatment. Asterisks show significant differences over control treatment, **P≤0,01, ***P≤0,001 

(C). All experiments were done in triplicate with similar results. 
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3.1.8 Immunogenic nlp20 (PpNLP) orthologous sequences can be found 

in bacteria, fungi and ooomycetes 

 

NLPs are widely distributed microbial virulence factors that can be found in bacteria, 

fungi and oomycetes (Gijzen and Nurnberger 2006). To examine if an immunogenic 

nlp20 pattern is present in all three kingdoms of life, peptides derived from species of 

all kingdoms with sequences orthologous to the nlp20 (PpNLP) motif were synthesized 

and tested for their ability to induce ethylene formation in Arabidopsis. Table 3-2 shows 

EC50 values ± SD determined for nlp20 (PpNLP) and five orthologous peptides; one 

derived from another oomycete, Pythium aphanidermatum (nlp20 (PyaNLP)), two 

fungus-derived sequences from Fusarium oxysporum (nlp20 (FoNLP)) and Botrytis 

cinerea (nlp20 (BcNLP)) and two of bacterial origin from Bacillus halodurans (nlp20 

(BhNLP)) and Bacillus subtilis (nlp20 (BsNLP)). All peptides were capable of inducing 

ethylene production with EC50 values comparable to the EC50 of nlp20 (PpNLP) (14 ± 

12 nM), ranging from 5,7 ± 2,4 nM to 43 ± 13 nM (Table 2, Fig. 3-7 A). 

This immunogenic potential could not only be observed for ethylene formation, but 

also in additional common read outs of immune stimulating activities like the activation 

of MAP kinases (Fig. 3-7 B), initiation of an oxidative burst (Fig. 3-7 C), the induction 

of PR1::GUS gene expression (Fig. 3-7 D) and the deposition of callose (Fig. 3-7 E) all 

elicited by 100 nM peptide concentration. Interestingly, none of the peptides provoked 

seedling growth inhibition on Arabidopsis seedlings, which were grown on media 

supplemented with 1 µM of the respective peptide. Flg22-treated roots instead showed 

a significant growth reduction of about 65% when compared to the water control (Fig. 

3-7 F). Similarly, 100 nM of flg22 peptide triggered an extremely fast and strong 

extracellular shift of the pH in a medium alkalinization assay (∆pH ≈ 0,5), whereas 

nlp20 (PpNLP) did not show any effect on the ∆pH, not even with a 10-fold higher final 

concentration of 1000 nM (Fig. 3-7 G).  

In sum, oomycete-derived nlp20 (PpNLP) and orthologs from bacteria and fungi are 

able to induce a comprehensive set of immune responses in Arabidopsis, but not 

seedling growth inhibition and extracellular pH-shift. This might point to differential 

downstream signaling upon ligand perception by RLPs or RLKs. 
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Table 3-2: Nlp20 (PpNLP) orthologous peptides of oomycte, fungal and bacterial origin show 
similar elicitor activity in Arabidopsis. 
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Figure 3-7: Nlp20 (PpNLP) and its orthologs elicit immunity-associated defense responses 
in Arabidopsis.  

100nM of orthologous peptides (table 3-2) were leaf infiltrated to determine ethylene formation (A), 

MAP kinase activation (B), production of reactive oxygen species (C), PR1::GUS gene expression 

(D) and apposition of callose (E). Callose deposition is given in % ± SD of three image sections 

counted as pixels after clearing of background and leaf-veins (E). Arabidopsis seedlings were grown 

in liquid ½ MS medium supplemented with 1 µM nlp20 (PpNLP) peptide, its orthologs or flg22 

respectively and grown under short day conditions for 2 weeks. For root length determination, 

seedlings were transfered onto agar plates. Bars in the upper panel represent root length in cm ± 

SD of three representative seedlings depicted in the lower panel. Yellow marks highlight the position 

of the root tips (F). Extracellular pH shift of Arabidopsis cell suspensions after application of nlp20 

(PpNLP) in given concentrations or 100 nM flg22 (G). Data points represent means of three samples 

± SD. All experiments were performed three times with similar results. 
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3.1.9 Screening of various plant families for their ability to recognize nlp20 

(PpNLP) 

 

To investigate whether the ability to perceive nlp20 (PpNLP) is restricted to 

Arabidopsis thaliana or can be found in other plants as well, an ethylene screen of 

different plant species was conducted. As depicted in Fig. 3-8, close relatives of 

Arabidopsis thaliana, thus members of the Brassicaceae family namely Arabis alpina, 

Thlaspi arvense and Draba rigida exhibited a distinct ethylene formation when treated 

with 1 µM nlp20 (PpNLP). However, two other closely related plant species, 

Arabidopsis lyrata and Capsella rubella, did not produce any ethylene upon nlp20 

(PpNLP) treatment (Fig. 3-8). Moreover, the monocot species Triticum aestivum 

(Poaceae) failed to trigger ethylene production as did so a member of the Apiaceae 

family, Petroselinum crispum, what is in accordance with findings made by Fellbrich, 

et al. (2002). Here, Pep-13 from P.sojae transglutaminase, was used as a positive 

control instead of flg22 peptide. Three solanaceous species (Nicotiana benthamiana, 

Solanum lycopersicum and Solanum tuberosum) were also not capable to produce 

ethylene, whereas lettuce (Lactuca sativa, an Asteraceae) exerted a strong ethylene 

formation upon peptide treatment (Fig. 3-8). 13 further members of the Asteraceae 

were tested for their capacity to induce ethylene formation (data not shown), but lettuce 

remained the only responder within this family. Also, among five vegetable cultivars 

from Brassica oleracea could none be identified as nlp20-sensitive (Brassica oleracea 

var. gongylodes, Brassica oleracea var. italica, Brassica oleracea var. botrytis, 

Brassica oleracea convar. capitata var. alba, Brassica oleracea convar. capitata var. 

rubra) as could none be identified out of 14 plants from 11 different plant families 

(Adoxaceae, Araceae, Betulaceae, Convolvulaceae, Fabaceae, Malvaceae, 

Oleaceae, Plantaginaceaea, Rosaceaea, Rubiaceae and Urticaceae, data not shown).  

With this, three close Arabidopsis relatives and lettuce could be assigned receptive 

towards nlp20 (PpNLP). 
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Figure 3-8: Identification of nlp20 (PpNLP)-sensitive plants.  

Ethylene formation of different plant species 4 hours after induction with 1 µM nlp20 (PpNLP). 

Control treatments were performed with water and 1 µM flg22. Pep-13 from P.sojae 

transglutaminase was used as positive control for P.crispum (a). Bars represent means ± SD of 

three samples and asterisks show significant differences over water control as determined by 

Student’s t test, *P≤0,05, **P≤0,01. One out of three experiments with similar results is shown. 

 

 

3.2 An RLP23-SOBIR1-BAK1 receptor complex mediates nlp20 

(PpNLP) recognition in Arabidopsis 

 

Plants are able to sense an ample spectrum of PAMPs which might be of 

carbohydrate, proteinaceous or lipophilic origin (Boller and Felix 2009). Various 

receptor types exist which are implicated in sensing microbial patterns, either alone or 

jointly with other receptors by building complexes (Böhm, et al. 2014a, Zipfel 2014). 

LRR-RKs (leucine-rich repeat receptor-like kinases) like FLS2, the receptor for flg22, 

consist of an extracellular LRR domain, a transmembrane domain adjacent to 

juxtadomain regions and a cytoplasmic kinase domain, whereas LRR-RPs (leucine-

rich repeat receptor-like proteins) lack a cytoplasmic signaling domain. 

Aim of this chapter was to identify and characterize the perception system of nlp20 

in Arabidopsis. Reverse genetics were applied to identify the components of the 

signaling entity. Utilizing an interfamily receptor transfer, the potential of the nlp20 

receptor for conferring resistance against NLP-expressing pathogens to crop plants 

should be examined. Furthermore, interaction studies should provide insight into 

nlp20-dependent and independent receptor interactions. If not stated otherwise in this 

section, nlp20 always refers to the Phytophthora parasitica-derived nlp20 (PpNLP). 
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3.2.1  Identification of the leucine-rich repeat receptor protein RLP23 as 

the receptor for nlp20 

 

3.2.1.1 A reverse genetic screen identifies the LRR-RP RLP23 as a 

prerequisite for nlp20-mediated immune signaling in Arabidopsis 

 

In Arabidopsis, LRR-type PRR mediated immune signaling is often initiated by 

proteinaceous ligands (Böhm, et al. 2014a). To identify PRRs which are involved in 

recognition of nlp20, LRR-RK and LRR-RP T-DNA insertion mutant collections (Wang, 

et al. 2008, Postel, et al. 2010) were screened for ethylene formation upon treatment 

with nlp20 (PpNLP). In all of the tested 38 mutant genotypes representing 29 LRR-RKs 

an ethylene response was triggered upon treatment with 1 µM of the ligand (Fig. 3-9 

A, ethylene response shown in % of Col-0 response). Also, 55 mutant genotypes 

representing 44 LRR-RPs were tested whereby the mutant allele Atrlp23-1 

(SALK_034225) proved to be insensitive to nlp20 (PpNLP) treatment (Fig. 3-9 B). 

This suggests that the LRR-RP RLP23 (At2g32680) is required for nlp20-induced 

immune signaling in Arabidopsis. 
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Figure 3-9: Screen for nlp20-insensitive RLP and RLK T-DNA insertion mutants.  

38 T-DNA insertion mutants for 29 RLKs (A) and 55 T-DNA mutants for 44 RLPs (B) were tested 

for ethylene formation upon induction with 1 µM nlp20 after 4 hours. Bars represent means of two 

replicates ± SD as percentage of the response determined for Col-0. 
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To further substantiate this finding, Atrlp23-1 mutant plants were tested together 

with another RLP23 T-DNA insertion mutant, Atrlp23-2 (GK-738D01), for additional 

immunity-associated defense responses like production of reactive oxygen species, 

activation of MAP kinases and deposition of callose. Upon treatment with 1 µM nlp20, 

both mutant lines failed to generate all responses tested but responded normally to 

flg22 treatment (Fig. 3-10 A-C). 

This indicates specificity of nlp20 recognition by RLP23 due to the lack of functional 

RLP23. 

 

 

 

Figure 3-10: Nlp20-mediated defense responses are abrogated in rlp23 mutant plants.  

Production of reactive oxygen species (A), activation of MAP kinases (B) and callose deposition (C) 

were determined for T-DNA insertion mutant lines rlp23-1 and rlp23-2 upon induction with 1 µM 

nlp20 peptide. Water and flg22 were used as control treatments. Callose deposition is determined 

as percentage of the image section (one out of three representative pictures shown in the right 

panel) calculated in pixels. Bars and data points represent three replicates ± SD, asterisks mark 

significant differences over control treatment determined by Student’s t test, ***P≤0,001 (C). 
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3.2.1.2 Identification of nlp20-insensitive Arabidopsis accessions 

 

In the past, several orphan PAMPs could be assigned to their corresponding 

receptors via forward genetic approaches, like in screening and mapping attempts of 

insensitive Arabidopsis accessions (Gomez-Gomez and Boller 2000, Jehle, et al. 

2013b, Zhang, et al. 2013). Hence, natural genetic variation in different accessions 

might serve as genetic tool to identify PRRs of solitary ligands. 

In a screen of 135 Arabidopsis accessions, three turned out to be impeded in 

ethylene formation (Fig. 3-11, ethylene formation in % of Col-0 response). All of the 

three insensitive ecotypes Kyoto, Bor-4 and Jm-0 exhibited the same frame-shift 

mutations within LRR 13 leading to an early stop codon, what explains the lack of 

responsiveness of these ecotypes towards treatment with nlp20.  

These results reinforce the assumption of RLP23 being the receptor for nlp20.  
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Figure 3-11: Responsiveness of Arabidopsis thaliana accessions towards nlp20 treatment.  

Ethylene production of 135 accessions 4 hours after treatment with 1 µM nlp20. Bars represent 

means of two samples ± SD given in percent of the response determined for Col-0. 
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3.2.1.3 Complementation of insensitive plants with functional RLP23 

 

To confirm that the insensitivity towards nlp20 of RLP23 T-DNA mutant plants and 

accessions Kyoto, Bor-4 and Jm-0 is due to the lack of functional RLP23 protein, 

complementation via stable expression of RLP23 was conducted. Expression of C-

terminally GFP-tagged RLP23 under the control of a 35S promoter 

(p35S::RLP23:GFP) restored sensitivity to nlp20 of the mutant genotypes rlp23-1 and 

rlp23-2, as well as of the ecotypes Bor-4 and Kyoto (formation of ethylene, Fig. 3-12 

A). The same applied for the expression of GFP-tagged RLP23 under the control of 

the native promoter (pRLP23::RLP23:GFP), whereas sensitivity to flg22 remained 

unaltered (Fig. 3-12 A). Moreover, expression of p35S::RLP23:GFP in Nicotiana 

benthamiana, potato (Solanum tuberosum) and tomato (Solanum lycopersicum), three 

solanaceous plants previously identified as insensitive to nlp20 (Fig. 3-8), transformed 

these plants to ethylene responders when treated with the ligand (Fig 3-12 B). 

Expression of RLP23 could be confirmed in all transgenic plants via western blotting 

with GFP-specific antiserum (Fig 3-12 C).  

In summary, these findings show that RLP23 is needed for nlp20-specific 

recognition and immune activation in Arabidopsis and confers sensitivity to 

solanaceous species across genus boundaries. 
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Figure 3-12: Complementation of nlp20-insensitive plants with RLP23.  

Accumulation of ethylene upon induction with 1 µM nlp20, flg22 or water as control in rlp23 mutants, 

insensitive Arabidopsis accessions and in stably transformed p35S::RLP23:GFP and 

pRLP23::RLP23:GFP plants (A) and in transgenic p35S::RLP23:GFP N. benthamiana, 

S.tuberosum and S. lycopersicum plants (B). Bars show means ± SD of three replicates. Asterisks 

indicate significant differences over control treatment determined by Student’s t test, *P≤0,05, 

**P≤0,01, ***P≤0,001. Experiments were performed in triplicate. Western blot analysis of RLP23 

expression in stably transformed p35S::RLP23:GFP and pRLP23::RLP23:GFP rlp23 mutant 

genotypes, insensitive accessions and complemented N.benthamiana, S. lycopersicum and S. 

tuberosum plants with GFP-specific antiserum (C). 
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3.2.2 RLP23 is required for nlp20-induced resistance against the 

bacterium Pseudomonas syringae pv. tomato DC3000 

 

Nlp20 is able to prime a defense response in Arabidopsis Col-0 ecotypes leading 

to reduced disease symptoms upon infection with the bacterium Pseudomonas 

syringae pv. tomato DC3000 (Fig. 3-6 A, Fig. 3-13 A). However, biologically inactive 

peptide derivatives nlp20 (PccNLP) and nlp20 _W6A (peptide 20, Table 3-1) were not 

able to induce a priming effect and bacterial growth remained comparable to the growth 

observed in mock-treated plants (Fig. 3-13 A). Interestingly, nlp20 did not exert such a 

priming effect on rlp23-1 mutant plants and bacterial growth rates were as high as for 

mock-treated plants, or treatment with the two inactive peptide derivatives nlp20 

(PccNLP) and nlp20_W6A (Fig 3-13 B). Flg22-mediated enhanced resistance was not 

affected in rlp23-1 mutant plants, highlighting once more the specificity of RLP23-

mediated perception of nlp20 in Arabidopsis. 

 

 

 

Figure 3-13: RLP23-mediated priming effect of nlp20. 

Bacterial growth rates in Arabidopsis Col-0 (A) and rlp23-1 (B) genotypes 0 and 3 dpi with 

Pseudomonas syringae pv. tomato DC3000. Priming of plants with 1 µM nlp20 (PpNLP) or 

immunogenically inactive peptides nlp20 (PccNLP) or nlp20_W6A was performed 24 hours prior 

infection. Water and flg22 served as controls. Bars represent means of six replicates, asterisks 

indicate siginificant differences over water control treatment, **P≤0,01, ***P≤0,001. One out of three 

representative experiments is shown. 
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3.2.3 Stable expression of RLP23 in potato confers enhanced disease 

resistance to pathogens from different kingdoms of life 

 

Transfer of PRRs between different plant families or cultivars involves the potential 

of creating crops with strikingly increased disease resistance against detrimental 

pathogens as shown for the bacteria Xanthomonas oryzae, X. campestris or X. 

axonopodis (Wang et al. 1996, Mendes et al. 2010, Tripathi et al. 2014, Schwessinger 

et al. 2015), Ralstonia solanacearum (Lacombe et al. 2010), the fungi Verticillium 

dahliae or V. albo-atrum (Fradin et al. 2011) or the oomycete Phytophthora infestans 

(Du, et al. 2015b). To investigate whether transfer of RLP23 into other plant species 

reveals such an effect, transgenic potato plants expressing RLP23 were challenged 

with pathogens expressing NLPs with an elicitor active nlp20 motif. As model 

pathogens the oomycete Phytophthora infestans (strain 88069) and the fungus 

Sclerotinia sclerotiorum (strain 1980) were chosen. Sclerotinia sclerotiorum expresses 

two NLPs (NPP1 SS1G_11912.3; NPP2 SS1G_03080.3) of which the orthologous 

nlp20 (PpNLP) sequences were tested as elicitor active in ethylene formation in 

Arabidopsis (nlp20 (SsNLP1): GIMYAWYFPKDQPAAGNVVGGHR and nlp20 

(SsNLP2): GLMYSWYMPKDEPSPGIGHR, data not shown). No bacterial contender 

could be found, since no NLP-expressing bacteria containing an elicitor active nlp20 

motif exist which are suitable for laboratory plant-pathogen assays. 

Two transgenic potato lines stably expressing RLP23 (line I.1 and I.2) under the 

control of an 35S promoter exhibited an increased disease resistance with significantly 

smaller infection sites as wild-type potato leaves, when infected with the devastating 

pathogen Phytophthora infestans (Fig. 3-14 A, B). Moreover, qPCR-based 

quantification of the oomycete DNA revealed a significantly lower DNA content in 

RLP23-expressing potato leaves of line I.2 than in wild-type samples (Fig. 3-14 C). 

Strikingly, the same observations could be made for infections with the fungus 

Sclerotinia sclerotiorum, as potato leaves of transgenic lines I.1 and I.2 showed 

significantly smaller lesion sizes when compared to untransformed control leaves (Fig. 

3-14 D, E).  

These observations show that expression of RLP23 in the crop potato confers 

increased resistance to destructive oomycete and fungal pathogens. 
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Figure 3-14: RLP23-mediated pathogen resistance.  

Lesion size development of Phytophthora infestans stran 88069 4 days after drop inoculation of a 

5×104 zoospores ml-1 solution on transgenic p35S::RLP23:GFP S. tuberosum plants. Bars 

represent means ± SD of n = 24 samples (I.1) or n = 32 samples (I.2) (A). 2 representative leaves 

of line I.1 or line I.2 are shown (B). qPCR-based quantification of the oomycete DNA in line I.2, bars 

represent means of n = 60 samples (C). Infection size assessment 2 dpi of transgenic potato lines 

I.1 and I.2 with the fungus Sclerotinia sclerotiorum strain 1980. Bars represent means of n = 9 

leaves per line (D). Representative leaves are shown (E). Asterisks indicate significant differences 

over untransformed wild-type plants, **P≤0,01, ***P≤0,001, determined by Student’s t test. All 

experiments were performed three times with similar results. 
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3.2.4 Characterization of the RLP23 receptor complex 

 

LRR-RPs like RLP23 are proteins with a small cytoplasmic tail only, lacking any 

obvious signaling domains. Therefore it was investigated, if RLP23 recruits signaling 

partners with kinase domains to enable downstream signaling. 

3.2.4.1 The LRR-RK SOBIR1 is involved in nlp20-sensing 

 

The LRR-RK SOBIR1/EVR (SUPPRESSOR OF BIR1-1/EVERSHED) has been 

implicated in LRR-RP function (Gust and Felix 2014). In tomato for example, SOBIR1 

interacts with the receptor-like proteins Ve1, Cf-2, Cf-4, Cf-9 and EIX2, some of which 

are involved in resistance of tomato against fungal infection (Liebrand, et al. 2013). 

SOBIR1 was furthermore shown to be involved in immune signaling mediated by LRR-

RLPs or to interact with them in Arabidopsis, such as RLP1/REMAX, RLP30 and 

RLP42/RBPG1 (Jehle, et al. 2013a, Zhang, et al. 2013, Zhang, et al. 2014). To test 

whether SOBIR1 is involved in nlp20-mediated immune signaling, two Arabidopsis T-

DNA insertion mutants of SOBIR1 (sobir 1-12: SALK_050715 and sobir 1-13: 

SALK_009453) were subjected to nlp20 treatment and analysed for ethylene 

production. Both mutant lines responded normally to treatment with flg22 whereas 

responsiveness towards nlp20 was completely abrogated (Fig. 3-15). 

These findings suggest an involvement of SOBIR1 in nlp20-mediated immune 

signaling in Arabidopsis. 

 

 

 

Figure 3-15: Sensitivity of 
SOBIR1 towards nlp20.  

Ethylene formation 4 hours after 

induction with 1 µM nlp20. Water 

and flg22 served as controls. Bars 

represent means ± SD of three 

replicates. Asterisks indicate 

significant differences over water 

control treatment as determined by 

Student’s t test, **P≤0,01. 
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3.2.4.2 RLP23 and SOBIR1 physically interact with each other 

 

To demonstrate a physical interaction of RLP23 and SOBIR1, a bimolecular 

complementation assay (BIFC) was conducted. Here, a fluorescent signal is only 

obtained in case of a very close proximity of the two proteins. Therefore, Arabidopsis 

protoplasts were co-transformed with RLP23:nYFP and SOBIR1:cYFP or 

SOBIR1:nYFP and RLP23:cYFP –constructs respectively, and investigated by 

confocal laser scanning microscopy. A strong and distinct YFP signal could be 

observed for both construct combinations, whereas control transformations with empty 

vector constructs did not show any signal (Fig. 3-16).  

These images confirm, that RLP23 and SOBIR1 directly interact with each other at 

the plasma membrane. 

 

 

 

 

 

 

 

Figure 3-16: RLP23 and SOBIR1 
directly interact with each other.  

Bimolecular fluorescence 

complementation assay with 
protoplasts isolated from Arabidopsis 

transiently expressing RLP23:nYFP 

and SOBIR1:cYFP or SOBIR1:nYFP 

and RLP23:cYFP. Confocal laser 

scanning microscopy was applied to 

detect fluorescence of 

complemented YFP. nYFP and cYFP 

vector constructs were used as 

controls. 
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3.2.4.3 BAK1, another LRR-RK is also involved in nlp20-mediated immune 

signaling together with BKK1 

 

The LRR-RK BRI1-ASSOCIATED KINASE1 (SERK3/BAK1) is a member of the 

subclass of subfamily II LRR-RKs with five closely related members and a well-known 

interactor of the LRR-RKs FLS2 and EFR, mediating immune signaling upon 

perception of bacterial flg22 or elf18 in Arabidopsis (Chinchilla, et al. 2007, 

Schwessinger, et al. 2011). In tomato, genetic evidence suggests that the LRR-RP Ve1 

requires BAK1 for resistance against Verticillium dahliae. Likewise, EIX1/2-mediated 

signaling is dependent on BAK1 and a direct interaction of EIX1 and BAK1 could be 

shown (Fradin, et al. 2009, Bar, et al. 2010). More recently, BAK1 was found to be 

involved in SCFE1-mediated signaling together with RLP30 and the LRR-RK SOBIR1 

in Arabidopsis (Zhang, et al. 2013). Therefore it was investigated if BAK1 also plays a 

role in nlp20-mediated signaling. Bak1-3 (SALK_034523) and bak1-4 (SALK_116202) 

are both T-DNA insertion lines exhibiting impairment in cell-death control, immunity-

associated responses and brassinosteroid signaling (Nam and Li 2002, Chinchilla, et 

al. 2007, Kemmerling, et al. 2007). Another mutant genotype, bak1-5, is not affected 

in brassinosteroid signaling or cell-death control but immune signaling mediated by 

FLS2 and EFR is severely compromised (Schwessinger, et al. 2011), (Fig. 3-17). 

However, all of the mutants responded normally to treatment with nlp20 in an ethylene 

assay (Fig. 3-16). Due to functional redundancy of BAK1 and BAK1-like1 

(SERK4/BKK1), a BKK1 mutant (bkk1-1, SALK_057955) was subjected to nlp20 

treatment. This mutant showed a normal ethylene response upon induction with nlp20, 

whereas the double mutant bak1-5/bkk1-1 was strongly impaired in ethylene formation 

(Fig. 3-17).  

This suggests that BAK1 and BKK1 might complement each other to gain full 

signaling strength and hereby play a role in nlp20-mediated immune signaling. 
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Figure 3-17: Sensitivity of SERK3/BAK1 and SERK4/BKK1 towards nlp20.  

Production of ethylene of 3 different bak1 mutant genotypes, a bkk1 mutant and a bak1/bkk1 double 

mutant after 4 hours of incubation with 1 µM nlp20. Water and flg22 served as controls. Bars represent 

means ± SD of three replicates, asterisks indicate significant differences over water control determined 

by Student’s t test, *P≤0,05, **P≤0,01, ***P≤0,001. 

 

 

3.2.4.4 SOBIR1 and BAK1/BKK1 are essential for nlp20-mediated immune 

signaling 

 

To confirm a role of SOBIR1 and BAK1/BKK1 in nlp20-mediated signaling in 

Arabidopsis, mutant sobir1-12, sobir1-13 and bak1-5/bkk1-1 lines were analyzed for a 

comprehensive set of nlp20-induced marker immune responses. In a luminol-based 

oxidative burst assay, no production of reactive oxygen species could be observed for 

sobir1-12 and bak1-5/bkk1-1 mutants when incubated with 1 µM nlp20 peptide (Fig. 3-

18 A). Furthermore, sobir1-12 and sobir1-13 mutants showed a strong activation of 

MAP kinases upon leaf infiltration with flg22, whereas MAP kinase activations in nlp20-

treated samples were as sparsely as in water treated plants (Fig. 3-18 B). Likewise, 

nlp20 triggered only very little MAP kinase activation in bak1-5/bkk1-1 mutants, and 

also activation mediated by flg22 was strongly diminished and comparable to control 

mock treatment (Fig. 3-18 B). A complete abrogation of callose deposition in both sobir 

mutants corroborated these findings, while some residual callose deposition could be 

observed in bak1-5/bkk1-1 mutant plants (Fig 3-18 C, callose deposition in % of the 

image section, and representative image section shown).  
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This data set further strengthens the assumption, that SOBIR1 and BAK1/BKK1 are 

essential components in nlp20-mediated immunity acting as co-receptors of RLP23 to 

facilitate signaling in Arabidopsis. 

 

 

 

Figure 3-18: Nlp20-mediated defense responses are abrogated in sobir and bak/bkk mutant 
genotypes.  

Production of reactive oxygen species (A), activation of MAP kinases (B) and callose deposition (C) 

were determined of  mutant genotypes sobir1-12, sobir1-13 and bak1-5/bkk1-1 upon induction with 

1 µM nlp20 peptide. Water and flg22 were used as control treatments. Callose deposition is 

determined as percentage of the image section and calculated in pixels (one out of three 

representative pictures shown in the right panel). Bars and data points represent three replicates ± 

SD, asteriks mark significant differences over control treatment determined by Student’s t test, 

*P≤0,05, ***P≤0,001 (C). Experiments were conducted in triplicate with similar results. 

 

 



 Results  

72 

3.2.5 RLP23 forms a complex with SOBIR1, BAK1 and other SERK family 

members 

To investigate whether RLP23 forms a complex not only with SOBIR1 (3.2.4.2) but 

also with BAK1 and if complex assembly is nlp20-dependent, co-immunoprecipitations 

in N. benthamiana were conducted. These plants transiently co-expressed the C-

terminally tagged receptor proteins. GFP-trap beads were used to pull-down 

RLP23:GFP and to co-immunoprecipitate SOBIR1:HA and BAK1:Myc protein. Three 

minutes after leaf infiltration of 1 µM nlp20, BAK1:Myc gets recruited into a complex 

with RLP23:GFP independently of co-expression of SOBIR1:HA (Fig. 3-19 A). 

However, endogenous SOBIR1 of N. benthamiana might take over the function due to 

its close homology to Arabidopsis-derived SOBIR1 and it cannot be stated here if 

SOBIR1 would be an essential component to form a RLP23/BAK1 complex. Unlike 

BAK1:Myc, SOBIR1:HA could be co-immunoprecipitated independently of ligand 

treatment, suggesting the existence of a pre-formed RLP23-SOBIR1 complex (Fig. 3-

19 A). Also here, no statement can be made about the requirement of BAK1 for the 

interaction of RLP23 and SOBIR1 due to potentially functional redundant BAK1 

proteins from Arabidopsis and N. benthamiana. 

In addition, native BAK1 could be co-immunoprecipitated in transgenic rlp23-

1/p35S::RLP23:GFP Arabidopsis plants upon induction with 10 µM nlp20, confirming 

a ligand-dependent recruitment of BAK1 into a complex with RLP23 even under native 

BAK1 levels (Fig. 3-19 B). 

Functional redundancy among members of the SERK protein family is a known 

phenomenon (Albrecht et al. 2008). For instance, immune signaling mediated by flg22, 

elf18 and the damage-associated molecular pattern (DAMP) AtPEP1 is dependent on 

both, SERK3/BAK1 and SERK4/BKK1, and ligand-dependent interaction with FLS2 or 

EFR could be shown for SERK1-4 in transient expression assays in N. benthamiana 

(Roux, et al. 2011). Moreover, results from 3.2.4.3 and 3.2.4.4 show that both, BAK1 

and BKK1 are involved in nlp20-induced signaling events. Therefore it was 

investigated, if other members of the SERK protein family than SERK3/BAK1 get 

recruited into a RLP23-SOBIR1 complex upon stimulation with nlp20. SERK4/BKK1 

could be co-immunoprecipitated as could be SERK3/BAK1 three minutes after ligand 

infiltration together with RLP23:GFP and SOBIR:HA transiently co-expressed in 
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N.benthamiana plants (Fig. 3-19 C). The same observations could be made for SERK1 

and SERK2, but not for SERK5:Myc. 

Altogether, these observations implicate that all three receptor proteins build a 

complex, whereas RLP23 and SOBIR1 constitute a pre-formed entity in which BAK1 

(or other SERK protein family members) get recruited after induction by nlp20 only. 

 

 

 

 

 

Figure 3-19: Complex formation of 
RLP23, SOBIR1, BAK1 and other 
SERK family members.  

Western blot analysis with tag-specific 

antisera of co-immunoprecipitated 

RLP23:GFP, SOBIR1:HA and 

BAK1:Myc. Proteins were transiently 

co-expressd in N. benthamiana and 

pulled down using GFP-trap beads 

either directly or 3 minutes after leaf 

infiltration of 1 µM nlp20 (A). Protein 

extracts of complemented rlp23-

1/p35S::RLP23:GFP plants were 

subjected to a GFP-trap pull-down and analysed via western blotting using GFP- or BAK1- specific 

antisera. Leaf material was taken either directly or 3 minutes after infiltration of 10 µM nlp20 peptide 

(B). SERK1-5:Myc proteins were transiently co-expressed with RLP23:GFP and SOBIR1:HA in N. 

benthamiana and protein extracts were made either directly or 3 minutes after infiltration of 1 µM 

nlp20. GFP-trap beads were used to pull-down proteins and the western blot was probed with tag-

specific antisera. Experiments were peformed in triplicate with similar results. 
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4. Discussion 

 

4.1 Nlp20- a novel immunogenic pattern within the widespread NLP 

toxin family 

 

NEP1-like proteins are microbial virulence factors with a broad taxonomic 

distribution, exerting toxin activity on dicot plant species. Simultaneously, these 

proteins are potent inducers of plant immunity and mutational analysis within bacterial 

PccNLP revealed a causal link between cell death inducing and immunogenic activity 

(Küfner, et al. 2009, Ottmann, et al. 2009). Thus, toxin-induced release of molecules 

representing self or modified self is assumed to be the agent for activation of plant 

immunity. Here, the mechanism of action of how NLPs trigger immunity in plants was 

elucidated and revealed a novel immunogenic feature beside toxin activity. The results 

discussed in this chapter are published in Böhm et al. (2014b) and Oome et al. (2014). 

 

4.1.1 Differences in the immunogenic potential of PccNLP and PpNLP lead 

to the identification of nlp20 

 

Comparative studies on recombinant bacterial PccNLP and oomycete-derived 

PpNLP confirmed cytotoxic potential of both proteins when applied in a calcein release 

assay using purified Arabidopsis membrane vesicles (Fig. 3-1). Also, leaf infiltration of 

Arabidopsis plants led to NLP-characteristic necrotic symptoms. At the same time, 

typical defense-associated responses are exerted by both toxins, such as PR1::GUS 

and PAD3 defense gene expression and ethylene biosynthesis. Release of 

endogenous danger signals (DAMPs) by NLP cytotoxicity and subsequent recognition 

thereof through plant PRRs is suggested to be the immune-stimulating mode of action 

(Küfner, et al. 2009). Toxin-mediated release of self-representing molecules inducing 

immunity in plants is also known to be triggered by the host-selective toxin victorin from 

Cochliobolus victoriae (Tada et al. 2005), fumonisin B1 (FB1) produced by certain 

Fusarium spp. (Asai et al. 2000, Stone et al. 2000), the type B trichothecene 

deoxynivalenol (DON) produced by Fusarium spp. (Nishiuchi et al. 2006), AAL-toxin 
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from Alternaria alternata (Gechev et al. 2004) and fusicoccin from Fusicoccum 

amygdali (Schaller and Oecking 1999) and as such is considered to be a hallmark of 

innate immunity not only in metazoans (toxin-mediated activation of the 

inflammasome) (Mariathasan et al. 2006), but also in plants. 

NLPs exhibit highly conserved regions, like the hepta-peptide motif as a part of the 

surface exposed, negatively charged cavity which is known to be crucial for toxin 

activity (see 1.4). Mutational analysis of single amino acids within this region of 

bacterial PccNLP revealed a causal link between toxin activity and immune-stimulating 

activity (Ottmann, et al. 2009), supporting the hypothesis of toxin-mediated release of 

self-representing signals of danger. Indeed, mutated PccNLP is not only rendered non-

toxic, but also deficient in triggering immune responses like defense gene expression 

and ethylene production (Fig. 3-1). Intriguingly, Phytophthora parasitica-derived NLP 

does not lose its immunogenic potential, although cytotoxicity is completely abrogated 

in PpNLP_mut (double mutation in PpNLP, H101A D104A) variants. These 

investigations led to the assumption, that PpNLP must feature two independent 

immune-stimulating mechanisms; toxin-mediated release of immunogenic molecules 

and immune activation by a yet unidentified immunogenic epitope within the protein. 

Two out of thirteen synthetic peptides spanning the whole PpNLP sequence are 

capable of eliciting immune responses in Arabidopsis (Fig. 3-2), confirming the 

presence of an immunogenic peptide pattern within PpNLP. The minimal immunogenic 

epitope spans 20 aa (A103-R122) designated as nlp20, a length characteristic for typical 

proteinaceous PAMPs such as flg22 and elf18. Identification of two mechanistically 

different immunogenic principles within one molecule is unreported in metazoan as 

well as in plant immunity to date. 

 

4.1.2 Nlp20- redefining dated definitions 

 

Nlp20 fulfills characteristics of a typical PAMP; it is a highly conserved pattern 

among NLPs and evokes a comprehensive set of typical defense-related immune 

responses in Arabidopsis at low concentrations, such as ethylene biosynthesis, 

production of reactive oxygen species, activation of MAP kinases, defense gene 

expression and deposition of callose (Fig. 3-7). Accordingly, pretreatment of 

Arabidopsis with nlp20 establishes a state of induced resistance, enhancing disease 

resistance against bacterial and fungal infection (Fig. 3-6). This is reminiscent of the 



 Discussion  

76 

prototypical PAMP flg22, albeit significant differences exist between both peptide 

patterns. Flg22 induces a strong inhibition of Arabidopsis seedling growth and elicits 

extracellular alkalinization in cell suspensions of Arabidopsis (Felix, et al. 1999, 

Gomez-Gomez, et al. 1999), whereas nlp20 is not capable of triggering such 

responses (Fig. 3-7). On the other hand, nlp20 strongly triggers production of salicylic 

acid and camalexin in a dose- and time-dependent manner, whereas flg22-triggered 

salicylic acid production is much weaker. Camalexin biosysnthesis genes PAD3 and 

CYP71A13 are highly induced 6 hours after treatment with nlp20 (Wei-Lin Wan, 

personal communication). This might be due to underlying differences in the perception 

system of flg22 and nlp20, the latter will be discussed in chapter 4.2. 

As such, PpNLP is not only a toxin and virulence factor, but also features 

characteristics of a classical PAMP and differentiation into PAMP or effector seems to 

be blurred. Also other PAMPs just like the generic PAMPs flagellin (Naito et al. 2008, 

Taguchi et al. 2010), LPS (Newman et al. 2007) and chitin (Soulie et al. 2006) have 

been shown to fulfill a virulence-promoting function in plant-pathogen interaction. 

Likewise, PAMPs have been identified within effectors such as EIX, the ethylene 

inducing xylanase from Trichoderma viride which is an important virulence factor for 

the pathogen (Rotblat et al. 2002). The immunogenic pattern within EIX consists of five 

amino acids exposed on the surface of the protein and is not involved in β-1-4-

endoxylanase activity. Pep-13 instead, is a conserved PAMP within TGase of 

Phytophthora spp. and the amino acids required for immunogenic activity are the same 

required for TGase activity (Nürnberger, et al. 1994, Brunner, et al. 2002). Further 

examples of PAMPs within virulence factors are the ion-conducting pore forming harpin 

HrpZ1 from Pseudomonas syringae (Engelhardt et al. 2009) or fungal 

endpolygalacturonases (Zhang, et al. 2014). 

Recognition of nlp20 by Arabidopsis is reminiscent of effector-shaped evolution of 

plant PRRs, triggering ETI. Here, a conserved virulence factor might have promoted 

the formation of a recognition system mediating PTI, supporting the concept of a 

continuum between PTI and ETI (Thomma, et al. 2011). 

 

4.1.3 Nlp20 and the hepta-peptide motif: two distinct conserved regions 

 

Immunogenic activity of nlp20 can clearly be discriminated from cytotoxicity, since 

denatured and mutated PpNLP still evoke a strong immune response in Arabidopsis 
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although toxin activity is completely abrogated (Fig.3-1). Likewise, nlp20 is neither able 

to provoke cytotoxic symptoms upon leaf infiltration nor a calcein release of 

Arabidopsis membrane vesicles (Fig.3-3). The hepta-peptide motif of PpNLP is 

localized within a negatively charged surface-exposed cavity spanning parts of β6 and 

L2 (Ottmann, et al. 2009) (Fig. 3-5 B), presumably facilitating binding to certain 

structures of the plant plasma membrane. This mechanism is deduced from structurally 

related molecules for which membrane attachment via similar surface topologies is 

known, like actinoporins and lectins (Küfner, et al. 2009). Nlp20 instead spans β5 and 

L2, whereas β5 comprises the amino acids obligatory for immunogenic activity (Fig. 3-

5 A left panel, table 3-1). Interestingly, this region is not surface-exposed but rather lies 

within the protein (Fig 3-5 A right panel). Thus, perception of nlp20 by a PRR must be 

enabled by structural reorganization of PpNLP. Crystal and electron microscopy 

structures of sticholysin II (StnII), which is an actinoporin structurally similar to NLPs, 

show that the N-terminal α-helix and a flexible loop undergo significant conformational 

changes upon oligomerization (Mancheño, et al. 2003). Due to obvious structural 

similarities of actinoporins and NLPs, structural reorganization of PpNLP upon 

membrane binding is quite likely; thereby exposing the nlp20 motif which can then get 

recognized by a PRR. Degradation of NLPs by plant proteases is also conceivable, 

releasing peptide fragments with immunogenic nlp20. 

 

4.1.4 Distribution of nlp20 across kingdom boundaries 

 

No nlp20 orthologous immunogenic sequence is present in PccNLP (3.1.5) what 

explains the loss of immune-stimulating capacity occurring upon mutation of the toxin 

motif of the protein (Fig 3-1). Instead, sequences orthologous to nlp20 can be found in 

another oomycete-derived NLP (from Pythium aphanidermatum), and also in fungal 

(Fusarium oxysporum, Botrytis cinerea) and bacterial (Bacillus halodurans, Bacillus 

subtilis) microorganisms (Table 3-2). All of these peptides are capable of inducing a 

complex set of immune responses in Arabidopsis (Fig. 3-7), unveiling a unique 

distribution pattern among prokaryotic and eukaryotic microbes. The most prominent 

PAMPs are not distributed across lineages, but can be rather found within kingdom 

boundaries. Peptidoglycan, flg22 and lipopolysaccharides are generic PAMPs of 

bacterial origin, whereas chitin or β-glucan structures are typical fungal- or oomycete- 

derived PAMPs respectively (1.3.1 and 1.3.2). Using the PpNLP sequence as a query, 
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1.091 NLP sequences can be found in databases presently, whereas 221 sequences 

are from bacterial, 558 from fungal and 312 from oomycete origin belonging to 156, 96 

and 10 species respectively. At an average this means, that bacteria possess 1,4, fungi 

3,8 and oomycetes 31 NLPs. This is not only a calculated number, but reflects facts; 

the bacterium Pectobacterium carotovorum for example harbors only one NLP 

(Mattinen, et al. 2004), the fungus Moniliophthora perniciosa five NLPs (Mondego et 

al. 2008) and the oomycete Phytophthora sojae encodes for 33 NLPs (Dong, et al. 

2012). Screening the database-retrieved sequences for the nlp20 pattern and for the 

presence of the four amino acids (I104, Y106, W108 and Y109) within nlp20 which are 

crucial for immunogenic activity (Table 3-1), revealed that only about 10 % of bacterial 

NLP sequences are presumably immunogenic. In contrast, almost all of the oomycete 

and 85 % of the fungal species have NLPs with an immunogenic nlp20 motif. The 

expansion of NLPs within certain taxonomic groups could be ascribed to horizontal 

gene transfer and gene duplication (Oome and Van den Ackerveken 2014). 

Considerable expansion of NLP genes within oomycetes suggests an important role, 

also of non-toxic NLPs for the pathogen’s lifestyle (see also 1.4). The obligate biotroph 

Hyaloperonospora arabidopsidis solely expresses non-toxic NLPs and is the causal 

agent for downy mildew on Arabidopsis. Six Hyaloperonospora-derived nlp20 

orthologous synthetic peptides strongly induce ethylene formation in Arabidopsis 

leaves and four do so to a lower extent (Oome, et al. 2014). Rapid expansion and 

diversification of the NLP gene family obviously does not provoke selection of severely 

mutated nlp20 motifs yet, albeit the nlp20 orthologous peptide nlp24 derived from 

HaNLP3 is capable of inducing a strong priming effect in Arabidopsis leading to 

drastically reduced growth of H. arabidopsidis (Oome, et al. 2014). However, under 

natural conditions H. arabidopsidis is able to establish an infection on Arabidopsis, 

presumably through secretion of effectors which suppress PTI triggered by 

immunogenic NLPs. The H. arabidopsidis genome encodes for about 130 RXLR 

effector genes and a lot of effectors from Hyaloperonospora have already been 

characterized as suppressors of PTI (Baxter et al. 2010, Fabro et al. 2011). 

 

 

 

 

 



 Discussion  

79 

4.2 RLP23-BAK1-SOBIR1: The receptor complex mediating 

recognition of nlp20 

 

Recognition of nlp20 occurs in a rather genus-specific manner, as mainly 

Arabidopsis and close relatives thereof are able to perceive nlp20 (Fig. 3-8). Besides 

members of the Brassicaceae family, only one Asteraceae family member can sense 

nlp20. Lettuce (Lactuca sativa) seems to be equipped with the recognition system 

enabling perception of nlp20 and mounts an ethylene response upon stimulation with 

the peptide pattern comparable to Arabidopsis. So far, lettuce seems to be the only 

exception, since screening of various other Aster family members and further members 

of unrelated plant families could not identify additional nlp20-sensitive plants (see 

3.1.9). Here, the identification of the components of the nlp20 perception system in 

Arabidopsis and characterization of the receptor entity is discussed, enlightening the 

mechanism of nlp20-mediated LRR-RP and LRR-RK interaction and signaling. The 

results discussed in this chapter are published in (Albert et al. 2015). 

 

4.2.1 RLP23 is the receptor for nlp20 

 

Several LRR-RKs and LRR-RPs are sensors for proteinaceous ligands (Monaghan 

and Zipfel 2012, Böhm, et al. 2014a). To identify the receptor for the novel NLP-derived 

peptide pattern nlp20 in Arabidopsis, reverse genetics were applied and screening of 

RLP and RLK T-DNA insertion mutant collections (Wang, et al. 2008, Postel, et al. 

2010) identified the receptor protein RLP23 as the receptor for nlp20 (Fig. 3-9). Rlp23 

mutants lack the ability to mount typical defense responses which can be observed in 

Col-0 plants upon treatment with nlp20 such as plasma membrane depolarization, 

ethylene biosynthesis, production of reactive oxygen species, activation of MAP 

kinases and deposition of callose ((Albert, et al. 2015), Fig. 3-7 and Fig. 3-10). 

Consequently, RLP23 is needed for an nlp20-induced priming effect conferring 

enhanced disease resistance towards bacterial and oomycete infection. Rlp23 mutants 

are as susceptible as mock-treated plants in contrast to nlp20-primed wild-type plants, 

which show significantly enhanced disease resistance against infection with 

Pseudomonas syringae or Hyaloperonospora arabidopsidis ((Albert, et al. 2015) and 

Fig. 3-13). Identification of three nlp20-insensitive Arabidopsis accessions exhibiting a 
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premature stop codon within LRR 13 of RLP23 and successful complementation of 

nlp20-insensitive plants further supports the finding that RLP23 is the receptor 

mediating nlp20-induced immunity in Arabidopsis.  

Functional RLP23 protein seems to be necessary for nlp20 recognition and 

downstream signaling, since none of the immunity-related defense responses are 

elicited in rlp23-deficient plants, rlp23 mutants cannot be primed by nlp20 and nlp20-

insensitive plants show frame-shift muations within the LRR of RLP23. In fact, no 

RLP23 transcript accumulates in rlp23 mutant plants and no RLP23 protein is 

detectable upon expression of the Bor-4 RLP23 allele in N. benthamiana (Albert, et al. 

2015). RLP23 is thus the receptor for nlp20 and necessary for initiation of NLP-induced 

PAMP signaling in Arabidopsis. 

Some peptide patterns are known to physically and specifically interact with the 

LRR-domains of their cognate RLPs. Fungal ethylene-inducing xylanase EIX 

physically interacts with tomato SlEIX2 and endopolygalacturonase PG3 from Botrytis 

cinerea interacts specifically with RLP42/RBPG1 (Ron and Avni 2004, Zhang, et al. 

2014). As reported in Albert, et al. (2015), nlp20 specifically binds to and physically 

interacts with RLP23 in vitro and in planta. Resin-bound GST-tagged nlp20 exclusively 

precipitates recombinant RLP23 ectodomains and not FLS2-LRR, this interaction is 

competed by excess amounts of soluble nlp20 and RLP23 ectodomains are not 

precipitated by a structurally unrelated peptide. Similarly, in vivo cross-linking 

experiments show specific binding of biotinylated nlp20 to RLP23 at concentrations 

similar to the EC50 value of nlp20 and this binding is competed by excess of unlabeled 

nlp20. This competition only occurs when a biologically active nlp20 peptide is used, 

stressing the specifity of the binding event between nlp20 and RLP23. Likewise, no 

binding of nlp20 can be observed in Arabidopsis rlp23 mutants or with the structurally 

related LRR-RP RLP30.  

These findings demonstrate that RLP23 is the receptor for nlp20 and that ligand 

and receptor physically and specifically interact with each other. Specific and direct 

interaction of a LRR-RP-PAMP pair has been shown for only two examples; the binding 

of EIX to SlEIX2 and BcPG3 to AtRLP42/RBPG1, making the nlp20-RLP23 system to 

another model for further studies on LRR-RP-peptide pattern interaction. Here it would 

be interesting, to determine the interacting residues within the LRRs of RLP23 and the 

nlp20 peptide in detail. Regarding the peptide, three aromatic residues Y106, W108 and 

Y109 and I104 can be assigned as crucial for immunogenicity (table 3-1) and thus most 
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likely for proper binding to RLP23. Substitution of Y106, W108 and Y109 by other aromatic 

amino acids like phenylalanine, tyrosine or tryptophan do not have any impact on 

peptide activity whereas substitution of Y109 by histidine or lysine and substitution of 

Y106 by lysine drastically reduces peptide activity (data not shown). This is in agreement 

with the strong conservation of Y106, W108 and Y109 among nlp20 orthologous peptides 

assigned as immunogenic. Next to the peptides listed in table 3-2, four oomycete-

derived (Phytophthora infestans, Phytophthora sojae, Plasmopara viticola and 

Hyaloperonospora arabidopsidis) and eight fungal (Mycosphaerella graminicola, 

Verticillium dahliae NLP1, 3 and 4, Magnaporthae grisea, Moniliophthora perniciosa 

and Sclerotinia sclerotiorum NLP1 and 2) orthologous peptides are tested as 

immunogenic (data not shown). All exhibit the presence of Y106, W108 and Y109 or in 

case of Verticillium dahliae NLP3 and NLP4 a W108 to Y substitution within the peptide 

pattern. Also I104 is highly conserved among all patterns assigned as immunogenic, 

with the exception of Sclerotinia sclerotiorum NLP2 and Moniliophthora perniciosa NLP 

(I104L) and Phytophthora sojae NLP (I104F). This is reminiscent of the bacterial pattern 

flg22, where all amino acids crucial for binding to the LRR-RK FLS2 are conserved 

among FLS2-activating bacteria. Here, hydrophobic contacts and hydrogen bonds are 

shown to mediate binding of conserved flg22 residues to the receptor FLS2 (Sun, et 

al. 2013). Thus, also conserved amino acids I104 Y106, W108 and Y109 within nlp20 could 

be essential to mediate proper binding to RLP23 LRRs.  

Regarding RLP23, successive deletion of the LRRs and transient expression 

thereof in N. benthamiana lead to a complete loss of nlp20-mediated immune signaling 

as soon as LRR3 is missing, uncovering this LRR as one interaction site of RLP23 and 

nlp20 (analysis done together with Dr. Isabell Albert, data not shown). Further 

mutational analysis of RLP23 LRRs or crystallization of RLP23 in complex with nlp20 

would refine the exact binding sites and events happening between nlp20 and RLP23. 

 

4.2.2 Nlp20-mediated signaling is dependent on RLP23-interacting LRR-

RKs SOBIR1 and BAK1 

 

RLPs like RLP23 are proteins lacking a cytoplasmic kinase domain required for 

mediating downstream signaling upon pattern perception. As such, most RLPs 

involved in immune responses are considered to interact with the LRR-RK SOBIR1, 
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forming functional receptor kinase equivalents (Gust and Felix 2014). This is supported 

by genetic evidence, as signaling through Arabidopsis RLP1/ReMAX or 

RLP42/RBPG1 induced by eMax or PGs respectively, is dependent on SOBIR1 (Jehle, 

et al. 2013a, Zhang, et al. 2014). In tomato, SOBIR1 is required for Cf-2 and Cf-4-

mediated immunity and furthermore interacts with Ve1 and EIX2, mediating signaling 

upon perception of Ave1 and EIX respectively (Liebrand, et al. 2013). Interestingly, 

Ave1 not only requires SOBIR1 but also BAK1 for proper downstream signaling 

(Fradin, et al. 2009) and also EIX1 interacts with BAK1, attenuating immune response 

output mediated by the EIX2/SOBIR1 complex (Bar, et al. 2010). Complex formation 

of RLPs and RLKs forming modules resembling functional RLKs not only occurs with 

PRRs with an extracellular LRR domain, but also with LysM domain proteins. LYM1 

and LYM3 mediate PGN-induced signaling by forming a functional receptor kinase 

equivalent with the LysM-RK CERK1 in Arabidopsis (Willmann, et al. 2011). Another 

generic example of complex formation between LysM-RPs and -RKs is the chitin 

induced dimerization of rice CEBIP RLPs with subsequent recruitment of the RLK 

CERK1, thereby establishing a signaling active α2β2 heterotetramer (Hayafune, et al. 

2014). 

 Arabidopsis RLP30, a receptor protein structurally related to RLP23, requires 

SOBIR1 as well as BAK1 for SCFE1-mediated immune signaling (Zhang, et al. 2013). 

In this work it could be shown, that also nlp20-mediated signaling in Arabidopsis is 

dependent on SOBIR1 and BAK1 and conceivably on other members of the SERK 

protein family like SERK4/BKK1. Sobir1 mutants display complete insensitivity towards 

nlp20 treatment in early as well as in late defense responses (Fig. 3-15 and 3-18). 

Bak1 mutant plants still induce a strong ethylene response upon nlp20 treatment 

whereas bak1/bkk1 mutants are significantly impaired in responsiveness, indicating 

functional redundancy between BAK1 and BKK1. This phenomenon has also been 

shown for the PAMPs flg22 and elf18 and the DAMP AtPEP1 for which immune 

signaling is dependent on both proteins, BAK1 and BKK1 (Roux, et al. 2011). BAK1 

and BKK1 seem to represent an ohnologous gene pair originated by whole genome 

duplication (WGD) and might as such be functionally redundant (Liebrand et al. 2014). 

Early defense responses elicited by nlp20 like production of reactive oxygen species 

are completely abrogated in bak1/bkk1 mutant genotypes whereas some residual 

callose deposition is detectable (Fig. 3-18). This implies that also other SERK proteins 
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might partially overtake the function of BAK1 and BKK1 in nlp20-mediated immune 

signaling. 

Genetic evidence for the roles of SOBIR1 and BAK1 in nlp20-induced immune 

signaling is further strengthened as MS/MS spectroscopy identifies both proteins as 

interactors of RLP23 (Albert, et al. 2015). SOBIR1 interaction with RLP23 is 

represented by 15 SOBIR1-derived peptides, found upon co-immunoprecipitations 

independently of nlp20-treatment. This confirms ligand-independent and constitutive 

interaction of SOBIR1 with RLP23 as described recently by Bi et al. (2014). SOBIR1 is 

not only assumed to form heteromeric complexes with RLP-type immune receptors 

(Liebrand, et al. 2013, Gust and Felix 2014), but also to serve receptor protein stability 

as shown for Ve1 and Cf-4 proteins (Liebrand, et al. 2013). Preliminary results indicate 

that RLP23 stability is not dependent on the presence of SOBIR1, as no quantifiable 

differences in accumulation of RLP23 protein in sobir-1 mutant and Col-0 protoplasts 

are measurable (data not shown). Interaction of SOBIR1 with LRR-RPs such as Cf-4, 

Ve1 and EIX2 is considered to be mediated by the GxxxG dimerization motif also 

referred to as ‘glycine zipper’ within the transmembrane domain of SOBIR1 (Bi et al. 

2015). This motif has been assigned as key factor for dimerization of two 

transmembrane proteins via helix-helix interactions (Cymer et al. 2012, Fink et al. 

2012). Mutations within the RLP23 GxxxG motif do obviously not severely influence 

the interaction with NbSOBIR1, as sensitivity towards nlp20 is not abrogated when 

tested in transient expression experiments in N. benthamiana (preliminary analysis, 

performed by Dr. Isabell Albert). To describe the role of the GxxxG motif in RLP23-

SOBIR1 interaction more precisely, mutational analysis within both proteins and co-

immunoprecipitations need to be performed. So far, it cannot be excluded that 

interaction with the Arabidopsis-derived SOBIR1 would be disturbed quantitatively 

upon mutation of the RLP23 GxxxG motif, or vice versa. Arabidopsis LRR-RLPs 

behave differently regarding their compatibility with SOBIR1 of N. benthamiana. 

RLP1/ReMAX and RLP30 for example are not compatible with NbSOBIR1, as transient 

expression of the RLPs in N.benthamiana do not lead to sensitivity towards the 

corresponding ligands eMax and SCFE1 (Jehle, et al. 2013a, Zhang 2013). RLP23 

instead is able to signal, thus to interact with SOBIR1 from N. benthamiana, S. 

lycopersicum and S. tuberosum (Fig. 3-12). Other regions than the GxxxG motif might 

also play a role in RLP-SOBIR1 interaction. The extracellular juxtamembrane of 

SOBIR1 for example is rich of positively charged lysine residues, possibly mediating 
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contact to the negatively charged extracellular juxtamembrane of RLPs by ionic 

interactions. An interaction via LRR domains of SOBIR1 and RLPs is also conceivable 

(Gust and Felix 2014). 

In the MS/MS analysis, BAK1 fragments are solely detectable with precipitated 

RLP23 protein upon treatment of the plants with nlp20 (Albert, et al. 2015). Constitutive 

complex formation of SOBIR1 and RLP23 and ligand-dependent recruitment of BAK1 

into the entity can also be investigated in co-immunoprecipitation assays in N. 

benthamiana, regardless of whether RLP23-GFP or SOBIR1-GFP proteins are 

precipitated (Fig. 3-19) (Albert, et al. 2015). Also SERK1, SERK2 and SERK4/BKK1 

are pulled-down in a nlp20-dependent manner. This is reminiscent of the receptor 

kinases FLS2 and EFR, recruiting the same SERKs in a flg22 or elf18-dependent 

manner respectively (Roux, et al. 2011). Nlp20-dependent recruitment of BAK1 also 

works under native BAK1 levels, as shown in a co-immunoprecipitation assay using 

rlp23-1/p35S::RLP23:GFP transgenic plants (Fig. 3-19). Ligand-dependent 

recruitment of BAK1 might be a general characteristic of RLP-type immune receptors, 

since BAK1 can be co-immunoprecipitated with RLP30 and SOBIR1 solely after 

treatment with the corresponding ligand, SCFE1 (Albert, et al. 2015). 

SOBIR1 constitutively interacts with RLP23 in a fashion independent of nlp20 

treatment, and this is a physical interaction as ratiomeric bimolecular fluorescence 

complementation assays (BIFC) in Arabidopsis protoplasts show a yellow fluorescent 

signal upon expression of SOBIR1 and RLP23 split-YFP constructs (Fig. 3-16). 

Likewise, a complemented YFP signal of interacting SOBIR1 and RLP23 proteins 

proves direct interaction of the proteins in N. benthamiana (Albert, et al. 2015). In vitro 

gel filtration experiments with recombinant ectodomains of RLP23 and BAK1 reveal 

that also these proteins physically interact with each other, since co-migration and co-

elution occurs in the presence of nlp20 (Albert, et al. 2015). This is reminiscent of the 

proposed mechanism for the interaction of BAK1 with the RLK FLS2, in which the 

ligand flg22 acts as ‘molecular glue’ between both proteins (Sun, et al. 2013). RLP23, 

SOBIR1 and BAK1 are thus in very close physical vicinity, likely forming a tripartite 

receptor entity to mediate nlp20-induced signaling. Crystallization of the complex is in 

progress in collaboration with Jijie Chai (Tsinghua University Beijing), and will reveal 

new insight into ligand-induced LRR-RP-LRR-RK complex assembly. 
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4.2.3  Expression of RLP23 confers broad-spectrum disease resistance in 

potato 

 

Nowadays, deployment of agrichemicals is an indispensable tool to control pests 

and microbial diseases on plants, preventing crop shortfalls and saving global food 

security. Many pesticides are toxic and pose serious health and environmental risks. 

Thus, other solutions are urgently in demand and research on plant-pathogen 

interactions within the last years has revealed many genes that are promising 

candidates for genetic engineering of pest resistant crops. However, attempts to 

engineer resistant crops often fail due to detrimental side effects on plant development 

and growth or crop yield (Hammond-Kosack and Parker 2003, Gurr and Rushton 

2005). 

Potato is a crop playing an important role in the world’s food production and supply. 

386 million tons were produced in 2013 worldwide, whereas two thirds are directly for 

human consumption and the rest is used as animal feed or for the production of starch 

(Food and Agriculture Organization of the United Nations). It is a cheap and nutritious 

crop, growing under most diverse climate conditions and altitudes and thereby requires 

little water. The United Nations named the year 2008 as the International Year of the 

Potato, with the potential to fight the hunger of an ever growing world population. 

Phytophthora infestans is one of the most devastating potato pathogens and the causal 

agent for late blight. Fungicides are the means of choice to fight the pathogen and to 

avoid crop failures, but still 20 % of the potato crop loss worldwide can be assigned to 

P. infestans. In the last years, researchers identified R genes from wild potato cultivars 

confering enhanced resistance against P. infestans upon transfer into cultivated potato 

(Bradeen et al. 2009, Foster et al. 2009). The delicate part of R gene mediated 

resistance is that no durability is guaranteed, since effectors might evolve quite rapidly 

and positive selection leads to growth of pathogens circumventing recognition by the 

plant. Recently, transfer of the Solanum microdontum LRR-RP ELR, the receptor for 

elicitin, has been shown to be a valuable tool for engineering resistance in potato (Du 

et al. 2015a). Elicitins are evolutionary conserved proteins among several 

Phytophthora species, increasing the potential to confer durable resistance against P. 

infestans through ELR transfer into susceptible crops.  

Many of the oomycete and fungal pathogens listed in the top 10 in molecular plant 

pathology express NLPs and constitute a serious threat for crop yields such as 
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Phytophthora species, Magnaporthe oryzae or Fusarium species (see 1.3). The broad 

taxonomic distribution of NLPs among bacteria, omycetes and fungi, the fact that 

various destructive pathogens express NLPs with the immunogenic nlp20 motif, and 

the rather genus-specific occurrence of RLP23 predestines the receptor for 

engineering disease resistance in economically important crops. Transfer of RLP23 

into solanaceous plants like N. benthamiana, S. lycopersicum and S. tuberosum 

confers responsiveness towards nlp20 (Fig. 3-12), suggesting the presence of RLP23-

compatible components needed for downstream signaling such as SOBIR1 and 

BAK1/BKK1. Transgenic potato plants expressing RLP23 exhibit increased disease 

resistance against the devastating pathogens Phytophthora infestans and Sclerotinia 

sclerotiorum (Fig. 3-14), turning RLP23 into a valuable instrument for engineering 

broad-spectrum disease resistance in crops.  

This is reminiscent of the successful transfer of Arabidopsis EFR, a receptor-like 

kinase recognizing the highly conserved bacterial elongation factor Ef-Tu or its epitope 

elf18, into solanaceous plants such as tomato leading to broad-spectrum disease 

resistance towards bacterial pathogens (Lacombe, et al. 2010). Dicotyledoneous-

derived EFR also confers responsiveness and enhanced disease resistance upon 

transfer into monocot species like rice and wheat, suggesting that both classes share 

conserved immune signaling components (Schoonbeek et al. 2015, Schwessinger, et 

al. 2015). Likewise, the rice receptor-like kinase Xa21 can be transferred into dicot 

species such as orange, banana and tomato cultivars conferring resistance to 

Xanthomonas and Pseudomonas species (Mendes, et al. 2010, Afroz et al. 2011, 

Tripathi, et al. 2014). Xa21 confers robust resistance against most strains of 

Xanthomonos oryzae pv. oryzae and recognizes the conserved RaxX protein (Pruitt, 

et al. 2015). Virtually all crop plants are affected by Xanthomonas species, making 

Xa21 to a meaningful object of research in transgenic engineering of resistant crops. 

In spite of all that, raxX allelic variants of economically important Xanthomonas species 

are discovered, which evade recognition by Xa21. This means that novel Xa21 variants 

need to be engineered which recognize the altered RaxX proteins to confer resistance 

against certain Xanthomonas strains. 

Breeding crops with resistance genes like Xa21 (or variants thereof), ELR, EFR 

(Gust et al. 2010, Dangl et al. 2013) or RLP23 recognizing highly conserved structures 

might lead to extremely durable disease resistance, since the recognized patterns are 

not subject to rapid evolution like most effector molecules. Pyramiding of such 
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receptors with R genes would lead to maximized quantitative and qualitative immune 

output, presumably establishing crop plants with a durable, broad-spectrum disease 

resistance. 
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5. Summary 

 

NEP1-like proteins are phytotoxins and microbial virulence factors secreted by 

bacteria, oomycetes and fungi capable of exerting immune responses in dicot plant 

species. Previously, immunogenic activity has been linked to cytotoxicity, supposedly 

through toxin-mediated release of endogenous signals of danger called DAMPs.  

Comparative analysis of Pectobacterium carotovorum and Phytophthora parasitica-

derived NLPs revealed a second, toxin-independent immune stimulating mechanism 

within the PpNLP protein. This concerns a 20 amino acid stretch designated as nlp20. 

Orthologous immunogenic sequences can be found in NLPs of bacteria, oomycetes 

and fungi; a unique distribution pattern among all known PAMPs to date. Nlp20 and its 

orthologs elicit a comprehensive set of immune responses in Arabidopsis. Besides 

some closely related Arabidopsis species, lettuce could be identified as nlp20-

sensitive. Nlp20 is localized rather inside of PpNLP than being exposed on the surface 

of the protein. Presumably, structural reorganization of the protein upon binding to the 

plant plasma membrane takes place, exposing the pattern for recognition by a PRR. 

NLPs with the novel PAMP nlp20 are paradigmatic for the discussed continuum 

between ETI and PTI, since usual classification into PAMP or effector seems to be 

blurred. 

Nlp20 is perceived by the Arabidopsis LRR-RP RLP23, and ligand and receptor 

physically interact with each other. Likely, interaction is mediated by the highly 

conserved amino acids Y106, W108 and Y109 and I104 of the nlp20 motif. The LRR-RKs 

SOBIR1 and BAK1/BKK1 are required as co-receptors for facilitating nlp20-induced 

downstream signaling. RLP23 interacts constitutively and indepent of nlp20 with 

SOBIR1, whereas BAK1 is recruited into the receptor complex in a nlp20-dependent 

fashion. This is reminiscent of the ‘molecular glue’ flg22 stabilizing FLS2 and BAK1 

interaction. All three receptors are in close physical proximity, likely forming a tripartite 

receptor complex. Interfamily transfer of RLP23 into the important crop potato confers 

broad-spectrum disease resistance against fungi and oomycetes, turning RLP23 into 

a promising candidate for engineering durable disease resistance against an ample 

spectrum of pathogens in crops.
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6. Zusammenfassung 

 

NEP1-ähnliche Proteine sind Phytotoxine und mikrobielle Virulenzfaktoren welche 

von Bakterien, Oomyzeten und Pilzen sekretiert werden und imstande sind 

Immunantworten in dikotylen Pflanzen auszulösen. Bislang wurde die immunogene 

Aktivität mit der Zytotoxizität verknüpft, vermutlich ausgelöst durch Toxin-induzierte 

Freisetzung endogener Gefahrensignale welche DAMPs genannt werden. 

Vergleichsstudien von NLPs aus Pectobacterium carotovorum und Phytophthora 

parasitica deckten einen zweiten, toxinunabhängigen Mechanismus der 

Immunstimulation innerhalb des PpNLP Proteins auf. Hierbei handelt es sich um ein 

20 Aminosäuren langes Stück welches als nlp20 bezeichnet wird. Orthologe, 

immunogene Sequenzen können in NLPs aus Bakterien, Oomyzeten und Pilzen 

gefunden werden; ein einzigartiges Verteilungsmuster unter allen bisher bekannten 

PAMPs. Nlp20 und dessen Orthologe lösen eine ganze Reihe an Immunantworten in 

Arabidopsis aus. Neben ein paar eng verwandten Arabidopsis Spezies konnte eine 

Lattich-Art als nlp20-sensitiv identifiziert werden. Nlp20 ist vielmehr im Inneren von 

PpNLP lokalisiert als exponiert auf der Oberfläche des Proteins zu liegen. Vermutlich 

finden nach erfolgter Bindung an die Plasmamembran strukturelle Umgestaltungen 

des Proteins statt, wobei das Erkennungsmuster zur Erkennung durch einen PRR 

freigelegt wird. NLPs mit dem neuen PAMP nlp20 sind beispielhaft für das derzeit 

diskutierte Kontinuum zwischen ETI und PTI, da die gebräuchliche Klassifizierung in 

PAMP oder Effektor unklar erscheint. 

Nlp20 wird von dem Arabidopsis LRR-RP RLP23 erkannt, wobei Ligand und 

Rezeptor direkt miteinander interagieren. Wahrscheinlich wird die Interaktion durch die 

stark konservierten Aminosäuren Y106, W108 and Y109 und I104 des nlp20 Motivs 

vermittelt. Die LRR-RKs SOBIR1 und BAK1/BKK1 werden als Korezeptoren benötigt 

um die nlp20-induzierte Signalweiterleitung zu ermöglichen. RLP23 interagiert 

konstitutiv und unabhängig von nlp20 mit SOBIR1, während BAK1 in einer nlp20-

abhängigen Art und Weise in den Rezeptorkomplex rekrutiert wird. Dies erinnert an 

den „molekularen Kleber“ flg22, der die Interaktion von FLS2 mit BAK1 stabilisiert. Alle 

drei Rezeptoren befinden sich in unmittelbarer Nähe zueinander, wobei 

vorraussichtlich ein dreiteiliger Rezeptorkomplex gebildet wird. Ein interfamiliärer 

Transfer von RLP23 in die bedeutende Feldfrucht Kartoffel vermittelt 
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Krankheitsresistenz mit einem breiten Wirkspektrum gegen Pilze und Oomyzeten, was 

RLP23 zu einem vielversprechenden Kandidaten macht um langlebige Resistenz 

gegen ein umfassendes Spektrum an Pathogenen in Kulturpflanzen zu entwickeln. 
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8. Appendix 

 

Abbreviations 

 

At   Arabidopsis thaliana 
ATP   Adenosine triphosphate 
BAK1   BRI1-associated kinase 1 
Bc   Botrytis cinerea  
Be   Botrytis elliptica 
Bh   Bacillus halodurans 
BIK1   Botrytis-induced kinase 1 
BIR   Baculovirus inhibitor repeat 
BIR2   BAK1-interacting receptor-like kinase 2 
BKK   BAK1-like kinase 
BLB   Bacterial leaf blight 
BR   Brassinosteroid 
BRI   Brassinosteroid insensitive 1 
Bs   Bacillus subtilis 
BSK1   BR-signaling kinase 1 
B-type   Bulb-type 
C6   Chitin hexamer 
CARD   Caspase-recruitment domain 
CBB   Cassava bacterial blight 
CBEL   Phytophthora cellulose-binding elicitor lectin 
CC   Coiled-coil 
CDPK   Calcium-dependent protein kinase 
CEBIP  Chitin elicitor-binding protein 
CERK1  Chitin elicitor receptor kinase 1 
Cf   Cladosporium fulvum 
cfu   Colony forming unit 
CLR   C-type lectin receptor 
CpG   Cytosin-phosphatidyl-guanin 
CRD   Carbohydrate recognition domain 
CRN   Crinkling and necrosis 
Csp   Cold-shock protein 
DAMP   Damage-associated molecular pattern 
DNA   Deoxyribonucleic acid 
DORN1  Does not respond to nucleotides 1 
EFR   Ef-Tu receptor 
Ef-Tu   Elongation factor thermo unstable 
EGF   Epidermal growth factor 
EIX   Ethylene-inducing xylanase 
elf18 Peptide from EF-Tu with the sequence 

SKEKFERTKPHVNVGTIG 
ELR   Elicitin response 
eMax   Enigmatic MAMP of Xanthomonas 
ETI   Effector-triggered immunity 
ETS   Effector-triggered susceptibility 
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flg22 Peptide from flagellin with the sequence 
QRLSTGSRINSAKDDAAGLQIA 

FLS2    Flagellin-sensing 2 
Fo   Fusarium oxysporum 
GBP   β-glucan binding protein 
GlcNAc  N-acetylglucosamine 
GUS   β-glucuronidase 
Ha   Hyaloperonospora arabidopsidis 
HG   Heptaglucoside 
HMGB1  High mobility group box 1 
HR   Hypersensitive response 
HST   Host-selective toxin 
IRAK   Interleukin-1 receptor-associated kinase 
JA   Jasmonic acid 
KAPP   Kinase-associated protein phosphatase 
LORE   Lipooligosaccharide-specific reduced elicitation 
LPS   Lipopolysaccharide 
LRR   Leucine-rich repeat 
LysM   Lysin motif 
MAMP  Microbe-associated molecular pattern 
MAP kinase  Mitogen-activated protein kinase 
MurNAc  N-acetylmuramic acid 
MyD88  Myeloid differentiation primary response gene 88 
Myg   Mycosphaerella graminicola 
NADPH  Nicotinamide adenine dinucleotide phosphate 
NBS   Nucleotide-binding site 
NEP1   Necrosis- and ethylene-inducing peptide 1 
NF   nodulation factor 
NF-κB   Nuclear factor-KappaB 
NLP   NEP1-like protein 
nlp20 Peptide from PpNLP with the sequence 

AIMYSWYFPKDSPVTGLGHR 
NLR   NOD-like receptor 
NOD   Nucleotide-binding oligomerization domain 
OGs   Oligogalacturonides 
Os   Oryza sativa 
PAD3   Phytoalexin deficient 3 
PAMP   Pathogen-associated molecular pattern 
Pcc   Pectobacterium carotovorum subsp. carotovorum 
PGN   Peptidoglycan 
Pp   Phytophthora parasitica 
PP2C   Protein phosphatase 2C 
PR1   Pathogenesis-related 1 
PRR   Pattern recognition receptor 
PTI   PAMP-triggered immunity 
pv.   Pathovar 
Pya   Pythium aphanidermatum 
PYR   Pyrin 
RaxX   Required for activation of Xa21 X 
rbcL   Ribulose bisphosphate carboxylase large chain 
RBOHD  Respiratory burst oxidase-D 
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RBPG 1   Responsiveness to Botrytis polygalacturonases 1 
ReMAX  Receptor of eMax 
RIG I   Retinoic acid inducible I 
RIN4   RPM1-interacting protein 4    
RK   Receptor kinase 
RLCK   Receptor-like cytoplasmic kinase 
RLK   Receptor-like kinase 
RLP   Receptor-like protein 
RNA   Ribonucleic acid 
ROS   Reactive oxygen species 
RP   Receptor protein 
R-protein  Resistance protein 
SA   Salicylic acid 
SAR   Systemic acquired resistance 
SCFE1  Sclerotinia culture filtrate elicitor 1 
SERK   Somatic embryogenesis receptor 
Sl   Solanum lycopersicum 
SOBIR1/EVR Suppressor of BIR1-1/evershed 
spp.   Species pluralis 
ssRNA  Single-stranded RNA 
StnII   Sticholysin II 
T3SS   Type 3 secretion system 
TAL   Transcription activator-like 
TIR   Toll/interleukin 1-receptor 
TLR   Toll-like receptor 
VBP   Victorin binding protein 
WAK1   Wall-associated kinase 1 
WGD   Whole genome duplication 
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