
How Income Risks A�ect Financial Markets

An Empirical Analysis of

Three Transmission Channels

Dissertation

zur Erlangung des Doktorgrades

der Wirtschafts- und Sozialwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

vorgelegt von

Tobias Langen

aus Steinfurt

Tübingen

2015



Tag der mündlichen Prüfung: 21.10.2015

Dekan: Professor Dr. rer. soc. Josef Schmid

1. Gutachter: Professor Dr. rer. pol. Joachim Grammig

2. Gutachter: Professor Dr. rer. pol. Martin Biewen



Contents

Lists of Tables and Figures V

1 Introduction 1

2 Empirical Asset Pricing with Large Idiosyncratic Income Shocks 5

2.1 Idiosyncratic Risk in Asset Pricing . . . . . . . . . . . . . . . . . . . 6

2.2 Measuring Idiosyncratic Income Risk . . . . . . . . . . . . . . . . . . 9

2.2.1 Krebs' (2004) Idiosyncratic Income Risk Speci�cation . . . . . 9

2.2.2 The IR-Factor as Measure of Personal Disaster Risk . . . . . . 11

2.2.3 The IR-Model Stochastic Discount Factor . . . . . . . . . . . 14

2.3 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 IR-Factor Series Estimation . . . . . . . . . . . . . . . . . . . 18

2.4.2 IR-Model Estimation and Model Comparison . . . . . . . . . 24

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Empirical Asset Pricing with Reference-Dependent Heterogeneous

Agents 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

I



CONTENTS II

3.2 Model Setup and Methodology . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Reference Grouping . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Estimation Methodology . . . . . . . . . . . . . . . . . . . . . 53

3.3 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 GMM Estimation Results . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 A Cross-Country Analysis of Unemployment and Bonds with Long-

Memory Relations 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Nowcasting with Long-Run Relations . . . . . . . . . . . . . . 76

4.2.2 Unemployment and Bonds � Heterogeneous VAR . . . . . . . 78

4.3 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Unemployment Rates and Bond Yields . . . . . . . . . . . . . 78

4.3.2 Google Search Volume . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Nowcasting Unemployment � M-HAR Estimation . . . . . . . 87

4.4.2 Unemployment and Bonds � Heterogeneous VAR Estimation . 96

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Conclusion 105

Bibliography 107



List of Tables

2.1 Descriptive Statistics � Personal Income Shock Series . . . . . . . . . 17

2.2 Time Series and Cross-Sectional Least Squares Estimates . . . . . . . 25

2.3 Model Comparison � GMM Estimates . . . . . . . . . . . . . . . . . 29

2.4 Model Comparison � GMM Estimates (Full) . . . . . . . . . . . . . . 40

2.5 Model Comparison � GMM Estimates (Equally-Weighted Portfolios) . 41

2.6 GMM Estimates for Di�erent Types of Central Moments . . . . . . . 42

3.1 Descriptive Statistics � Income Growth and Factors . . . . . . . . . . 58

3.2 Monthly Average Fama-French Portfolio Excess Returns . . . . . . . . 59

3.3 GMM Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 GMM Estimation Results � Moment Condition Comparison . . . . . 63

4.1 Descriptive Statistics � Unemployment Changes and Bond Yields . . 81

4.2 List of Search Terms and Descriptive Statistics . . . . . . . . . . . . . 84

4.3 Nowcasting Unemployment � Estimation Results . . . . . . . . . . . . 92

4.3 Nowcasting Unemployment � Estimation Results (cont.) . . . . . . . 93

4.4 HVAR � Estimation Results . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 HVAR � Estimation Results (cont.) . . . . . . . . . . . . . . . . . . . 104

III



List of Figures

2.1 Time Periods Covered by the Nine SIPP Panels . . . . . . . . . . . . 16

2.2 Tail Approximation � Goodness of Fit . . . . . . . . . . . . . . . . . 19

2.3 Structural Breaks in the Estimated IR-Factor Series (0.96) . . . . . . 21

2.4 IR-Factor Series (0.96) Corrected for Structural Breaks . . . . . . . . 23

2.5 Model Comparison � Goodness of Fit . . . . . . . . . . . . . . . . . . 27

2.6 Example of Peaks over Threshold Selection . . . . . . . . . . . . . . . 36

2.7 Model Comparison � Goodness of Fit (Robustness Comparisons) . . . 43

3.1 Reference Grouping: Constructing Representative Agents A and B . . 51

3.2 Time Structure of the SIPP Panles . . . . . . . . . . . . . . . . . . . 56

3.3 Income Index Over Last Two Recessions . . . . . . . . . . . . . . . . 57

3.4 Model Comparison � Goodness of Fit (Value-Weighted Portfolios) . . 64

3.5 Model Comparison � Goodness of Fit (Equally-Weighted Portfolios) . 65

3.6 Robustness � Estimates are Stable for Di�erent Group Quantiles . . . 67

4.1 Unemployment Rates and Ten-Year Bond Yields . . . . . . . . . . . . 80

4.2 Changes in Search Volume for "Jobs" and "Unemployment Bene�ts" 86

4.3 Correlation of Principal Components and Keyword Categories . . . . 88

4.4 Cross-Correlation Peak Size and Timing . . . . . . . . . . . . . . . . 89

4.5 Cross-Correlation � Unemployment Changes and Principal Component 90

4.6 Scatter Plots of MSE and R2 . . . . . . . . . . . . . . . . . . . . . . 94

4.7 AR and M-HAR Nowcasts . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Lag Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.9 Impulse-Response Functions of Bond Yields . . . . . . . . . . . . . . 99

4.10 Scatter Plot of Impulse-Response Peak and Timing . . . . . . . . . . 100

4.11 Impulse-Response Functions of Unemployment . . . . . . . . . . . . . 101

IV



Chapter 1

Introduction

New job opportunities have the potential to drastically increase available income �

perhaps more so than a good year at the stock market. In the US, 62\% of personal

income is derived from wages, as opposed to a mere 4.8\% from capital gains and 3.7\%

from interest and dividends.1 In the same way that a job promotion can positively

a�ect available income, being laid o� can immediately erode it. It seems likely that

job stability plays an important role in personal investment decisions. An unstable

job market may in�uence the willingness of investors to bear additional risks at the

stock market, while a stable job market could alleviate concerns. Likewise, personal

income determines a large fraction of a country's income. 81\% of US tax revenue is

generated from personal income taxes. Thus, overall unemployment is likely to be

an important factor when investors assess the solvency of a country. This evaluation

in�uences the risk compensation that investors demand.

This thesis analyzes how �nancial markets are a�ected by income risk and un-

employment. I focus on two sectors of �nancial markets and evaluate three potential

transmission channels. To model how asset returns are a�ected by individual in-

come risk, two possible approaches are developed in chapters 2 and 3, while chapter

4 examines how government bond yields are a�ected by aggregate income risk in

the form of unemployment changes. The �rst and more traditional approach models

1Statistics are taken from the Federal Reserve's Survey of Consumer Finances and the O�ce of
Management and Budget's Fiscal Year Report. Reported values are from 2013.
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CHAPTER 1 � INTRODUCTION 2

individual income risk as a factor in a linear asset pricing model. With this model

I examine how income risk in�uences the willingness of investors to take risks and

the premium di�erent types of portfolios have to pay in order to compensate for the

portfolio's co-movement with the risk factor. The second approach considers psy-

chological biases that in�uence how investors perceive income changes. Speci�cally,

I test for the presence of behavioral e�ects that may arise from the exposure to in-

dividual income risk. A third study shifts the focus to a macroeconomic level. Here

the relationship between government bond yields and unemployment is analyzed in

a high-frequency heterogeneous vector-autoregression.

Large Idiosyncratic Income Shocks

In chapter 2, the relevance of large idiosyncratic income shocks for asset prices

is evaluated in a linear factor model. The channel through which income risk is

linked to asset returns is described by Constantinides and Du�e (1996): exposure

to income risk renders the situation more risky for investors, especially during a

recession. In contrast to other empirical studies, I focus on the tails of the income

shock distribution because events like job loss, divorce, or an o�er from a prospective

employer typically lead to large income changes. How dangerous are the negative

events? How advantageous are the positive ones? To determine their importance, I

develop a tail risk measure that identi�es the factor by which cross-sectional income

changes exceed a high quantile q on average at each point in time. The factor can be

computed for large positive and large negative income changes. I use the tail income

risk factors in a linearized Consumption-Based Model estimation on a cross-section

of 25 portfolios sorted by size and book-to-market ratio. The results show that the

introduction of large idiosyncratic income risk helps explain cross-sectional return

di�erences. Both the upper tail and the lower tail idiosyncratic risk component

are priced. To compensate for times of market turmoil, when the lower tail risk is

high, large-value stocks have to o�er an additional expected return of 8\% p.a. in

order to remain attractive for investors that are hit by large negative income shocks.

Conversely, the expected annual return of large-value stocks is reduced by 4.5\%, as

compensation for prosperous market conditions, when the chance for an upper tail
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shock is high and investors are willing to pay for the opportunity to smooth their

consumption over time.

Reference-Dependent Heterogeneous Agents

In chapter 3 I examine psychological e�ects that are observed when individuals are

exposed to income risk. These behavioral e�ects represent another link between

income risk and �nancial markets. The approach draws on research that assesses

limited rationality in decisions under risk by Kahneman and Tversky (1979). The

authors devise a framework under which individuals display di�erent attitudes to-

wards risk. More precisely, individuals make decisions with respect to a reference

level, where potential relative gains are devalued while potential relative losses are

ampli�ed. Ultimately, the location of a potential outcome in relation to the reference

level decides whether the agent behaves risk-seeking or risk-averse. Experimental

evidence for such psychological biases that in�uence individuals' decisions is plen-

tiful. The study in chapter 3 presents empirical evidence that psychological biases

have an e�ect on asset returns in a non-experimental setting. I use US panel data

to sort individuals into a group that is above or a group that is below their refer-

ence level, depending on their recent income development. Representative agents

are formed within these groups by capturing the average income development of

investors above or below their reference level. According to prospect theory, these

representative agents should display di�erent attitudes towards risk. Indeed, the

estimation results indicate that investors located below their reference level are risk-

seeking while investors above their reference level are risk-averse. Furthermore, by

allowing for risk-seeking behavior, the cross-sectional variation in returns of portfo-

lios sorted by size and book-to-market value can be explained with reasonably low

risk aversion coe�cients, and a large fraction of the high average premium awarded

for holding risky assets can be explained.
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Unemployment Impacting Government Bond Yields

Chapter 4 investigates the relationship between unemployment and government

bond yields. Economic theory suggests that a combination of a high level of govern-

ment debt and low tax revenue due to a high unemployment rate may increase the

default risk of a country. This should be re�ected in government bond yields and

constitutes yet another potential link between income risk and �nancial markets.

The chapter is based on joint work with Dr. Thomas Dimp�. We describe a general

method to increase the frequency of unemployment data from monthly to weekly

using a mixed frequency heterogeneous autoregressive model. Our method combines

methodologies from the literature on mixed-frequency nowcasting (Marcellino and

Schumacher, 2010) and heterogeneous autoregressions (Corsi, 2009). The approach

exploits additionally available high-frequency data that are related to the original

series. We show that to this end Google search query data can successfully be

employed to nowcast unemployment changes. The resulting weekly unemployment

time series is then used in a heterogeneous vector-autoregression of unemployment

changes and bond yields. For a sample of seven European countries we consistently

�nd that bond yields react positively to a rise in unemployment, while for the United

States and Australia this e�ect is negative. Shocks to bond prices barely have any

impact on unemployment.

Chapter 5 summarizes the key �ndings of the three approaches to analyze the

relationship between unemployment, income risk and �nancial markets, outlines the

main contributions of each chapter, and draws a conclusion.



Chapter 2

Empirical Asset Pricing with Large

Idiosyncratic Income Shocks\ast 

Abstract

In this chapter, I present evidence that large individual income changes can help
explain the size and value premium in a cross-section of portfolio returns. I develop
a tail risk measure, the tail income risk factor and estimate it based on US income
data. In an augmented Consumption-Based Asset Pricing Model, the tail income
risk factor emerges as a priced factor when explaining a cross-section of returns
of 25 portfolios sorted by size and book-to-market ratio. Large-value stocks com-
pensate for lower tail idiosyncratic income risk exposure by o�ering an additional
expected return of 8\% p.a. Conversely, large-value stocks compensate for upper tail
idiosyncratic income risk exposure with an expected return reduction of 4.5\% p.a.
My �ndings support Krebs' (2004) critique of the Constantinides and Du�e (1996)
idiosyncratic risk asset pricing model that central moments of the cross-sectional
distribution of income cannot be used to test the implications of the Constantinides
and Du�e (1996) model. The results back the notion of a fat-tail-generating per-
sonal disaster process a�ecting asset prices.

\ast Chapter 2 is based on the paper �Tracing Tails � Large Idiosyncratic Income Shocks in a
Heterogeneous Agent Asset Pricing Model� by Langen (2013). I thank S. Bryzgalova, T. Dimp�,
J. Grammig, L. Huergo, S. Jank, R. Jung, F. Peter, and W. Pohlmeier, as well as participants of
the Annual Meeting of the German Statistical Society (Berlin) and the European Meeting of the
Econometric Society (Toulouse) for helpful comments and suggestions. Financial support from the
German Research Foundation (DFG) is gratefully acknowledged.
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CHAPTER 2 � LARGE IDIOSYNCRATIC INCOME SHOCKS 6

2.1 Idiosyncratic Risk in Asset Pricing

Developing and testing asset pricing models that provide a link between asset prices

and the real economy is a major concern of the �nancial and econometric literature.

In the canonical framework of neoclassical rational models, such as the Consumption-

Based Model, risk-averse investors demand a premium for holding risky assets. How-

ever, the empirical performance of these models is largely disappointing (Hansen and

Singleton, 1982; Constantinides and Ferson, 1991; Fama and French, 1992).

A possible reason may be that these models do not su�ciently account for the

risks that investors have to bear. One of these omitted risks is the focus of this

chapter. Concretely, I examine the impact of idiosyncratic income shocks on how

investors evaluate their position with respect to the state of the economy and thus,

the risk premium they demand for di�erent kinds of securities. Following Constan-

tinides and Du�e (1996), I allow for an investor heterogeneity that results from

the exposure to idiosyncratic income shocks. These idiosyncratic shocks can a�ect

the investment decisions of individuals. When an economy is hit by a recession,

investors do not only face the risk of potential losses in the stock market, there

is also the additional risk of considerable income losses. An asset pricing model

that neglects the e�ects of idiosyncratic income risk is likely to underestimate the

severity of the situation that investors �nd themselves in. If investors are to hold

their �nancial assets throughout the recession, they will demand compensation in

the form of higher expected returns. In contrast to other empirical studies, I focus

on the tails of the cross-sectional income shock distribution because the events that

cause idiosyncratic income shocks (job losses, accidents, sicknesses, divorces, but

also promotions, and new job opportunities) typically lead to large changes in avail-

able income. Focusing on the tails also acknowledges Krebs' (2004) critique who

shows that central moments of the cross-sectional distribution cannot be used to

test the implications of idiosyncratic risk models. I develop a tail risk measure that

enables the measurement of the personal disaster risk component as it is speci�ed

by Krebs (2004) and is also suitable to deal with more general cases.
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Previous studies suggest that accounting for idiosyncratic income risk helps ex-

plain the high equity premium that investors demand for holding risky assets and

the cross-sectional return variation of size and book-to-market sorted portfolios.

Constantinides and Du�e (1996) demonstrate that idiosyncratic income risk has

an impact on asset prices. They derive a closed-form solution for the stochastic

discount factor, assuming log-normally distributed income shocks. In this special

case, the variance of the shocks enters the stochastic discount factor as a measure

for the idiosyncratic income risk. Brav et al. (2002), Balduzzi and Yao (2007), as

well as Grishchenko and Rossi (2012) use household micro-data from the US Con-

sumer Expenditure Survey to evaluate the prediction of Constantinides and Du�e

(1996) that the variance of log-consumption plays a relevant role in the stochas-

tic discount factor. All present evidence that the Constantinides and Du�e (1996)

model is able to explain the equity premium with economically plausible parame-

ters. Jacobs and Wang (2004) use a linearized version of the Constantinides and

Du�e (1996) discount factor to test the Constantinides and Du�e (1996) model's

ability to price the Fama-French portfolios. They conclude that the cross-sectional

variance of log-consumption growth is a priced factor.

Although the empirical results seem encouraging, some major drawbacks call

for reconsideration. First of all, measurement errors in the Consumer Expenditure

Survey are a common problem (Altonji, 1986; Altonji and Siow, 1987; Zeldes, 1989).

Measurement errors a�ect the variance of log-consumption growth and bias the

results. Vissing-Jørgensen (2002) and Balduzzi and Yao (2007) demonstrate that

a larger measurement error skews risk aversion estimates downwards. Secondly,

assuming log-normal income growth does not allow for enough short-run income

variability to produce an economically signi�cant contribution to pricing the equity

premium (Cochrane, 2008). Plausible income processes should exhibit small changes

for extended periods, but jump abruptly to a new level following a shock. However,

log-normality is essential in all mentioned empirical applications, as it justi�es the

use of the variance of log-consumption growth as a risk factor. Thirdly, Krebs (2004)

shows that central moments of the cross-sectional distribution cannot be used to test

the implications of the Constantinides and Du�e (1996) model in an economy where
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investors face a personal disaster risk. He demonstrates that the observed central

moments can be arbitrary once the possibility of large income shocks is introduced.

This is a consequential result as the events that Constantinides and Du�e (1996)

invoke to motivate their model � job loss or accidents � should predominantly entail

large income changes. Krebs' (2004) income speci�cation that allows for large,

drastic shifts seems to be more realistic. However, it is incompatible with the use

of cross-sectional variance as a risk factor. In the light of these observations, it

is unclear how to evaluate the empirical evidence shown in the above mentioned

studies that rely on Constantinides and Du�e's (1996) log-normal individual income

process.

In this study, I propose a measure for idiosyncratic income risk that is moti-

vated by the speci�cation of the income process in Krebs (2004) and accounts for

the importance of the personal disaster risk component. I suggest a partition of

the observed cross-section of income that enables the measurement of the personal

disaster component as the factor by which shocks exceed a high quantile q on av-

erage. I show that this tail income risk factor (IR-Factor) can quantify changes of

the personal disaster risk variables in the Krebs (2004) income growth speci�ca-

tion. The IR-Factor is also suitable for more general income growth processes, as

it does not hinge on restrictive assumptions. I use the IR-Factor in an augmented,

linearized Consumption-Based Model estimation on a cross-section of 25 portfolios

sorted by size and book-to-market ratio. The results show that the introduction of

a fat-tail-generating idiosyncratic risk process helps explain cross-sectional return

di�erences. Both an upper tail idiosyncratic risk component as well as a lower tail

idiosyncratic risk component are priced. To compensate for turbulent times, when

the lower tail risk is high, large-value stocks have to o�er an additional expected

return of 8\% p.a. in order to remain attractive for investors that are hit by large neg-

ative income shocks. Conversely, large-value stocks o�er an expected annual return

that is reduced by 4.5\%, as compensation for prosperous times, when the upper tail

chance is high and people hit by big positive income shocks want to smooth their

consumption.
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The remainder of the chapter is structured as follows. Section 2.2 introduces and

discusses the IR-Factor in relation to the personal disaster risk process proposed by

Krebs (2004) as well as possible generalizations and derives the stochastic discount

factor of the IR-Model. Section 2.3 describes the personal income data from the

U.S. Survey of Income and Program Participation as well as the test portfolios,

section 2.4 discusses the estimation results, and section 2.5 concludes.

2.2 Measuring Idiosyncratic Income Risk

2.2.1 Krebs' (2004) Idiosyncratic Income Risk Speci�cation

Krebs (2004) builds on Constantinides and Du�e (1996) who construct a full infor-

mation economy in equilibrium, in which symmetrical investors with von Neumann-

Morgenstern preferences are hit by permanent and uninsurable idiosyncratic income

shocks and show that these idiosyncratic shocks have asset pricing implications. In-

come risk is quanti�ed by the variance of log-consumption growth in a closed-form

solution for the stochastic discount factor. The derivation hinges on the income inno-

vation speci�cation. Constantinides and Du�e (1996) assume that innovations are

log-normally distributed. Krebs (2004) and Cochrane (2008) criticize this assump-

tion, arguing that it cannot generate enough short-run variability. Krebs (2004)

suggests a generalization of the restrictive income process speci�cation, allowing for

disastrous income shocks to happen with low probability. The consequence of this

change in speci�cation is that central moments of the cross-sectional distributions

of income and consumption no longer provide testable restrictions.

The original individual income growth process speci�ed by Constantinides and

Du�e (1996), has the following form:

yi,t+1

yi,t
= (1 + g1i,t+1)(1 +Gt+1), (2.1)

where

ln(1 + g1i,t+1) = s1i,t+1Zt+1  - 
Z2

t+1

2
and s1i,t+1 \sim \BbbN (0, 1).
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yi,t+1 is the income of individual i at time t+ 1, Gt+1 is the average income growth

rate and g1i,t+1 is the individual deviation from the average income growth rate.

The process \{ g1i\} \infty t=0 generates what Krebs (2004) calls observed cross-sectional mo-

ments. s1i,t+1 is the individual income shock and Z2
t+1 is the cross-sectional variance

of individual income shocks. Both Z2
t+1(St+1) and Gt+1(St+1) are assumed to be

functions of an unobserved state variable St+1. Constantinides and Du�e's (1996)

stochastic discount factor then depends on aggregate growth and the cross-sectional

variance as sources of risk. If any other moments of the cross-sectional distribution

of income growth were a function of the state variable St+1, they would in�uence

the stochastic discount factor as well.

Krebs (2004) generalizes the income process by introducing a personal disaster

risk component
yi,t+1

yi,t
= (1 + g1i,t+1)(1 + g2i,t+1)(1 +Gt+1), (2.2)

where g1i,t+1 can be the process in equation (2.1), or any other observed moment gen-

erating process and g2i,t+1 is a process that allows for rare extreme events to occur �

events that cause substantial individual income changes. Krebs (2004) de�nes g2i,t+1

as a random variable that can have two outcomes  - \eta (St+1) and
p(St+1)

1 - p(St+1)
\eta (St+1).

 - \eta (St+1) occurs with probability p(St+1). Both, size and probability of an extreme

negative shock depend on the state variable. Krebs (2004) shows that the overall

income process can have arbitrary cross-sectional moments and still ful�ll the Euler

equation, given some extreme disaster process. The proof relies on the two charac-

teristics of the large income shock process, \eta and p. First, Krebs (2004) shows that

the stochastic discount factor growth can be arbitrarily adjusted by varying \{ \eta \} \infty t=0,

given any �xed choice of central moments of income or consumption (determined by

\{ g1i\} \infty t=0 and \{ G\} \infty t=0).
1 Then, Krebs (2004) demonstrates that the central moments

of the generalized income process in equation (2.2) can get arbitrarily close to the

observed moment process for small \{ p\} \infty t=0. Although \{ \eta \} \infty t=0 entirely determines the

stochastic discount factor, it cannot be detected in the observed moment process.

Consequently, central moments of the cross-sectional distribution of income shocks

1The adjustment can also be caused through any combination of changes in \eta and p. Changes
in \eta , however, are su�cient.
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cannot be used to test the model. All pricing relevant dynamics are driven by the

large income shock component.

2.2.2 The IR-Factor as Measure of Personal Disaster Risk

Now, consider the following partitioned individual income process speci�cation:

yi,t+1 = (1 + g1i,t+1)(1 +Gt+1)yi,t + g+i,t+1\Delta yt+1[q] + g - i,t+1\Delta yt+1[1 - q], (2.3)

where \Delta yt+1[q] is the upper q quantile of the cross-sectional income shock distribu-

tion in levels, while \Delta yt+1[1 - q] is the lower 1 - q quantile. The random variables

g+i,t+1 and g - i,t+1 de�ne the tails of the income shock distribution. Their proper-

ties are of particular interest. Subtracting the individual's current income yi,t from

equation (2.3) yields the following absolute income shock speci�cation:

\Delta yi,t+1 = [(1 + g1i,t+1)(1 +Gt+1) - 1]yi,t + g+i,t+1\Delta yt+1[q] + g - i,t+1\Delta yt+1[1 - q]

= g\circ i,t+1yi,t + g+i,t+1\Delta yt+1[q] + g - i,t+1\Delta yt+1[1 - q], (2.4)

where g\circ i,t+1 is a random variable that generates economically non-extreme income

�uctuations � changes that are below the q quantile. The tail generating random

variables g+i,t+1 and g - i,t+1 are zero with probability q and follow any distribution > 1

with probability 1 - q. The exact functional form is left unspeci�ed. A distribution

with a lot of mass allocated close to one will create a light-tailed income shock

distribution. If more mass is allocated away from one, the distribution will have

heavy tails. The IR-Factors are estimates for the expected values of g+i,t+1 and g - i,t+1.

Taking expectations across i yields

\BbbE [\Delta yi,t+1] = \BbbE [g\circ i,t+1yi,t] + \BbbE [g+i,t+1]\Delta yt+1[q] + \BbbE [g - i,t+1]\Delta yt+1[1 - q]. (2.5)
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The last two terms can be re-written as

\BbbE [g+i,t+1]\Delta yt+1[q] = \BbbE [\Delta yi,t+1| \Delta yi,t+1 > \Delta yt+1[q]]

\BbbE [g - i,t+1]\Delta yt+1[1 - q] = \BbbE [\Delta yi,t+1| \Delta yi,t+1 < \Delta yt+1[1 - q]]. (2.6)

Rearranging leads to a speci�cation for the expected value of the large tail generating

random variables:

\BbbE [g+i,t+1] =
\BbbE [\Delta yi,t+1| \Delta yi,t+1 > \Delta yt+1[q]]

\Delta yt+1[q]

\BbbE [g - i,t+1] =
\BbbE [\Delta yi,t+1| \Delta yi,t+1 < \Delta yt+1[1 - q]]

\Delta yt+1[1 - q]
. (2.7)

A convenient de�nition of these expectations can be derived by recognizing the

numerator as the expected shortfall. The resulting expectations are de�ned as the

IR-Factors:

IR+
t+1 \equiv \BbbE [g+i,t+1] =

ES+
q [\Delta yi,t+1]

\Delta yt+1[q]

IR - 
t+1 \equiv \BbbE [g - i,t+1] =

ES - 
q [\Delta yi,t+1]

\Delta yt+1[1 - q]
. (2.8)

The IR-Factors consist of an expected shortfall component in the numerator and

a quantile in the denominator. If the tails are light, observations will lie close to

the quantile and thus the IR-Factor will be small. If the tails are heavy, many

observations will be far above the quantile values, so the IR-Factors will be large.

In the special case of Krebs' (2004) income process speci�cation, the lower tail

IR-Factor simpli�es to the following expression, as 1 - q approaches p

IR - 
t+1 =

p

1 - q

(1 - \eta )\BbbE [yi,t+1] - \BbbE [yi,t]
(\~yi,t+1  - yi,t)[1 - q]

, (2.9)

where (1  - \eta )\BbbE [yi,t+1]  - \BbbE [yi,t] is the expected size of the observed large shocks,

and (\~yi,t+1  - yi,t)[1  - q] is the lower tail q-quantile of the shocks, generated by the

non-extreme income change component, with \~yi,t+1 = (1 + g\circ i,t+1)yi,t.
2 The small

2A derivation of equation (2.9) can be found in the appendix.



CHAPTER 2 � LARGE IDIOSYNCRATIC INCOME SHOCKS 13

probability p with which the large shock  - \eta occurs makes it hard to detect these

shocks in the observed central moments. However, this probability is in�ated, when

the quantile is pushed further into the tail of the distribution. As 1 - q approaches

p, p
1 - q

approaches one. When the quantile is large enough, the IR-Factor measures

how large the extreme events are in relation to the q quantile of the non-extreme

income changes.

The partition of the observed cross-section of income into extreme and non-

extreme components (2.4) also enables the measurement of the personal disaster risk

component for more general personal income process speci�cations. Krebs' (2004)

speci�cation only models one tail of the distribution. Nevertheless, if large negative

income shocks can in�uence the stochastic discount factor, the same is true for large

positive income shocks. This possibility is accounted for by including an additional

upper tail risk component in the personal income speci�cation. Furthermore, Krebs'

(2004) speci�cation allows for one size of large income shocks only ( - \eta ), which is

overly restrictive. The partitioned income speci�cation in (2.4) relaxes this assump-

tion. Lastly, Krebs (2004) assumes that the distribution of large income shocks is

the same across individuals and does not depend on current income. This is not nec-

essarily true. Consider a case where investors face the risk of losing a major part of

their income. A symmetric exposure to this risk would generate an even distribution

of small income shocks, as small income individuals are hit and high income shocks,

as high income individuals are hit. However, the economic situation might instead

be such that low income individuals have a much higher probability of being hit

by a shock. This asymmetric exposure would generate more small income changes

than large ones. Conversely, if high income individuals are more exposed to income

risk, a higher number of large income changes will be observed. The estimation of a

risk component measure in the symmetric case could be performed using all income

changes. In the asymmetric case, the exposure to the income risk and even its size

can vary with the individuals' income. Consequently, the income size and the re-

sulting shock size have to be taken into account. Partitioning the observed income

process allows for a distinction between those times when high income individuals

lose big portions of their income and those times when low income individuals are
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more exposed, while the risk for high earners is relatively low. Both cases certainly

have di�erent economic implications.

The scarcity of large income shocks makes the estimation of the IR-Factor chal-

lenging. While the quantile of the distribution may be estimated by the empirical

quantile with adequate precision, an approximation of the expected shortfall com-

ponent as the sample mean above the quantile is biased downward. The bias is

especially prominent for heavy tailed distributions. Extreme Value Theory can help

avoid this problem (compare Embrechts et al. (1999), McNeil and Frey (2000)). It

justi�es �tting a Generalized Pareto distribution to the peaks over a �xed threshold

(Davidson and Smith, 1990). The expected shortfall component can be consistently

estimated from the parameters of a �tted Generalized Pareto distribution that traces

the available tail observations. A detailed discussion can be found in the appendix.

2.2.3 The IR-Model Stochastic Discount Factor

The stochastic discount factor of the IR-Model is a modi�cation of a linearized Con-

stantinides and Du�e (1996) stochastic discount factor. To motivate this, consider

the following speci�cation

mCD
t+1 = \beta 

\biggl( 
ct+1

ct

\biggr)  - \gamma 

exp

\biggl[ 
\gamma (\gamma + 1)

2
Z2

t+1

\biggr] 
. (2.10)

This factor is derived by Constantinides and Du�e (1996) for log-normal individ-

ual income growth as speci�ed in equation (2.1). Here, \beta is the time preference

of the investor and \gamma the risk aversion coe�cient. The cross-sectional variance of

log-consumption growth Z2
t+1 augments the Consumption-Based Model stochastic

discount factor (Lucas, 1987; Breeden, 1979; Grossman and Shiller, 1981) as a mea-

sure for the idiosyncratic income risk that investors are exposed to. Following Cogley

(2002) and Jacobs and Wang (2004), the heterogeneous agent stochastic discount

factor is linearized by a Taylor approximation. Although this introduces an ap-

proximation error, there are two convincing advantages: no assumptions need to be

made about the functional form of the investors' utility function and the estima-

tion results of a linearized model can be compared straightforwardly to other linear
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benchmark models, such as the Capital Asset Pricing Model (Sharpe, 1964; Lintner,

1965; Mossin, 1966) and the Fama-French Three-Factor Model (Fama and French,

1995). The linearized stochastic discount factor has the following form:

mL - CD
t+1 = b0 + b1\Delta ct+1 + b2Var [\Delta ci,t+1] , (2.11)

where\Delta ct+1 is consumption growth, as before, and Var [\Delta ci,t+1] is the cross-sectional

variance of consumption growth. Since the goal of this study is to trace the in�uence

of large cross-sectional income changes on the stochastic discount factor, consump-

tion is approximated by income. Jacobs and Wang (2004) do the same to avoid

mixing income and consumption variables

mL - JW
t+1 = b0 + b1\Delta yt+1 + b2Var [\Delta yi,t+1] . (2.12)

Finally, the generalization of Krebs (2004) and the de�ning impact of the personal

disaster process on the stochastic discount factor is accounted for by replacing the

variance with the IR-Factors

mIR
t+1 = b0 + b1\Delta yt+1 + b2IR

+
q,t+1 + b3IR

 - 
q,t+1, (2.13)

where \Delta yt+1 is the overall income growth and IR+
q,t+1 and IR - 

q,t+1 are the upper tail

chance and the lower tail risk of the cross-sectional distribution of income shocks.3

The IR-Model is evaluated in comparison to the CAPM and the Fama-French Model.

The unknown parameters are estimated via GMM (Hansen, 1982), using the uncon-

ditional moment restrictions implied by the basic pricing equation. The correspond-

ing return-beta representations are evaluated via two-pass least squares regressions.

3The same stochastic discount factor can be motivated in the ICAPM framework of Merton
(1973). However, the theory-driven approach outlined here seems more compelling, albeit its
reliance on several approximations.
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Time Periods Covered by the Nine SIPP Panels
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Figure 2.1: Time periods covered by each of the nine SIPP panels. The overlapping ends of the
panel enable income shock computations at each point in time for at least one panel. Observations
from overlapping panels are pooled. The time period between March and September 2000 is not
covered by the SIPP and is excluded form the estimation.

2.3 Data Description

The Survey of Income and Program Participation4 (SIPP) is chosen in this study

in favor of the Panel Study of Income Dynamics or the Current Population Survey

because it allows for the computation of individual income data on a quarterly basis.

The SIPP is conducted by the U.S. Census Bureau. It is a sequence of nine national

representative panels, which record the labor income of households and of the adult

individuals within each household. The panels cover a time period of almost 23

years, from October 1987 to August 2010. In the years before the 1996 panel,

several smaller panels were in operation simultaneously. In a consolidation e�ort

starting in 1996, only one larger panel was conducted at a time, with slight overlaps

at the beginning and end of panels. Due to lack of funding, there is an observation

gap between March and September 2000. Figure 2.1 depicts the time structure of

the SIPP panels. Each panel covers the income of 30,000 to 100,000 adults. Using

the panel structure, I generate monthly cross-sections of income shocks. Table 2.1

provides an overview of the income shock data. Each of the nine panels is composed

4www.census.gov/sipp
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Descriptive Statistics � Personal Income Shock Series

Table 2.1: This table provides condensed descriptive statistics of the income shock series, gener-
ated from the nine SIPP panels. Reported personal labor income changes are in US Dollar. Each
row provides the time period and length of the panel. All subsequent values refer to a median
month. \Delta y - and \Delta y+ list the cross-sectional average positive and negative income shocks, \sigma \Delta y is
the cross-sectional variance of income shocks and \Delta y[0.05] and \Delta y[0.01] provide the cross-sectional,
empirical 0.05 and 0.01 quantiles of income shocks. Finally, the number of cases in which no income
change was reported are listed as well as the number of observations.

Months \bfDelta \bfity  - \bfDelta \bfity + \bfitsigma \bfDelta \bfity \bfDelta \bfity [\bfzero .\bfzero \bffive ] \bfDelta \bfity [\bfzero .\bfzero \bfone ] Zeros Obs.

Nov '87 - Dec '89 26 -842 784 1095 -1063 -3042 7048 15408

Nov '89 - Aug '92 34 -609 581 623 -500 -1512 33567 47538

Nov '90 - Aug '93 34 -641 623 670 -500 -1510 24607 35001

Nov '91 - Mar '95 41 -660 629 652 -500 -1580 34116 48223

Nov '92 - Dec '95 38 -664 638 683 -495 -1555 34577 48238

Jan '96 - Feb '00 50 -892 842 1164 -481 -2004 55709 76344

Nov '00 - Dec '03 38 -1058 1019 1197 -536 -2400 50300 67886

Nov '03 - Dec '07 50 -2592 2515 2752 -2755 -7053 41298 63668

Nov '07 - Aug '10 34 -2972 2907 2816 -3072 -8000 41746 61576

of di�erent individuals, so it is not possible to compute income changes between

panels. However, since the panels overlap, income shocks can be computed for

each month for at least one of the panels. Observations covering the same months

in di�erent panels are pooled. Possible structural breaks, especially after the re-

organization in 1996 and the funding break in 2000, are discussed and accounted for

during the IR-Factor estimation.

The IR-Model is evaluated on 25 value-weighted quarterly portfolio returns. The

portfolios are composed of assets that are sorted by market capitalization and book-

to-market ratio. These range from small market value, low book-to-market ratio

(small size, growth) to large market value, high book-to-market ratio (large size,

value). The data can be downloaded from the homepage of Kenneth R. French,

which also holds series for the Fama-French Factors (Rm, SMB and HML), as well

as the one-month treasury bill data used to compute excess returns.5 Aggregate con-

5www.dartmouth.edu/~kfrench
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sumption and income growth series are obtained from the homepage of the Federal

Reserve Bank of St. Louis.6

2.4 Results and Discussion

2.4.1 IR-Factor Series Estimation

Unbiased IR-Factor estimates are obtained using Extreme Value Theory. Its ap-

plication to the income shock data requires the determination of a threshold above

which income shocks are considered extreme. If chosen correctly, the peaks above

the threshold qualify as being approximately Generalized Pareto distributed. The

threshold choice has to strike a balance between being su�ciently high, such that the

observations can be considered extreme, and being su�ciently low, such that enough

observations are available to estimate the parameters of the Generalized Pareto dis-

tribution with high precision. A suitable threshold region is identi�ed with the aid

of several goodness of �t measures. The �rst graph in Figure 2.2 shows the aver-

age root mean squared error (RMSE) of the upper and lower tail approximations

for di�erent thresholds. The values are computed by selecting di�erent empirical

income shock quantiles as a threshold (0.85 to 0.99). Income shocks above the re-

spective thresholds are considered extreme and the peaks above the given threshold

are �tted to a Generalized Pareto distribution. The RMSE of the approximation is

computed in each quarter. The average RMSEs across all quarters are depicted, for

each threshold quantile. One can see that the approximation of the tail of the em-

pirical income shock distribution by the Generalized Pareto distribution improves,

as the threshold moves closer towards the end of the empirical distribution. The

approximation starts deteriorating again around the 0.96 quantile. A threshold in

the region of the 0.95 quantile seems to be a reasonable choice. It is about as high

as the threshold can be pushed into the tail of the distribution, while still main-

taining a good model �t. The graph below depicts the RMSEs in each quarter for

the threshold quantiles 0.85, 0.95 and 0.99. Choosing the threshold at the 0.95

6www.stlouisfed.org
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Figure 2.2: These plots represent several ways of evaluating the goodness of �t of the income
shock tail approximation by the Generalized Pareto distribution. Ideally a threshold quantile area
should be identi�ed for which the �t is good and the approximation is valid. The upper left graph
depicts the time-average root mean squared error of the upper and lower tail approximation for a
range of threshold quantiles. The top right graph depicts the average Anderson-Darling p-value
for a range of threshold quantiles. The bottom graph shows the time series of root mean squared
errors for three threshold quantiles.
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quantile provides a low RMSE throughout the whole observation period. The last

graph in Figure 2.2 depicts the average p-value of an Anderson-Darling test with

the null hypothesis being that the observed values are generated by a Generalized

Pareto distribution. The further the threshold is pushed into the tail, the higher

the p-values get. If feasible, a threshold should be chosen for which the null is not

rejected in any quarter.7

These observations motivate the following estimation strategy: IR-Factor series

are estimated for three quantiles (0.95, 0.96 and 0.97). To estimate these factor

series, I use the Peaks over Threshold method, where the threshold is selected ac-

cording to a quantile that is 0.01 below the estimated IR-Factor quantile. Since the

threshold quantile is always below the designated IR-Factor quantile, each IR-Factor

estimation is feasible. At the same time the threshold quantile is pushed as high as

possible. From an economic perspective, IR-Factor quantiles around 0.95 seem to

be a meaningful choice. Estimating the IR-Factors for a range of quantiles serves

as a robustness check. If a threshold quantile is too low and the selected income

shocks do not qualify as extreme events, the estimation results will not be robust

to the threshold selection. If the values do qualify as extreme events, then varying

the threshold should only in�uence e�ciency. The higher-than-necessary threshold

simply reduces the number of observations from the underlying Generalized Pareto

distribution that can be used for estimation. Furthermore, if idiosyncratic income

risk is priced, then it would be surprising if an e�ect only appeared at a speci�c

quantile. Looking at a range of IR-Factor quantiles ensures not to be mislead by an

odd draw. All three IR-Model speci�cations should deliver sensible and comparable

results.

IR-Factor series are constructed using the Generalized Pareto distribution pa-

rameter estimates. Figure 2.3 shows the upper and lower tail IR-Factor series for

the 0.96 quantile alongside its 0.95 con�dence interval. Two structural breaks in the

series' average are apparent. The shifts coincide with the beginning of new panels

7It should be noted that as the threshold rises, the number of peaks naturally decreases, causing
the Anderson-Darling test to lose power and reject less frequently. However, the number of peaks
at the 0.96 quantile is still rather large, with an average of 7611 observations for the lower tail and
7628 for the upper tail.
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Structural Breaks in the Estimated IR-Factor Series (\bfzero .\bfnine \bfsix )
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Figure 2.3: Estimated 0.96 IR-Factor time series for the lower tail (IR - ) and the upper tail
(IR+) along its 0.95 con�dence band. There is a two quarter gap (2000 Q2, 2000 Q3). The blue
shaded areas mark recession periods. Dashed lines indicate the start of the 1996 and the end of
the 2000 panel.
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and organizational as well as procedural changes within the Census Bureau's orga-

nization of the SIPP. The �rst clear break occurs at the beginning of the sixth panel

(Q1 1996) and the second at the beginning of the eighth panel (Q4 2003). The 1996

panel is the �rst panel that does not have major overlaps with other running panels

and features a sample size that is nearly twice as large as all the previous panels.

It is the outcome of a general move to better pool and target available resources.

The 2003 panel is the �rst full-�edged panel after the 2000 funding failure. The

structural changes in the IR-Factor series might be caused by di�erences in the abil-

ity to avoid non-responses after a big income change. Individuals that experience

a large negative income shock might be inclined to drop out of the panel in order

to focus on readjusting after the shock. Individuals that experience a large positive

income shock might have to move to a new job location and are possibly lost. Both

these e�ects lead to an underestimation of the IR-Factor. This downward bias can

be weakened or ampli�ed by the �nancial and organizational ability of the Census

Bureau to track down those cases. I account for the structural breaks by demeaning

the IR-Factor series. The resulting series are depicted in Figure 2.4.

The lower tail IR-Factor series seems to display a higher volatility in the �rst two

recession periods (depicted as blue shaded areas). In the last recession there is only

one higher peak at the beginning of the period. The upper tail IR-Factor does not

seem to be especially volatile in the �rst two recession periods, but is notably similar

to the lower tail IR-Factor in the last recession period. The recessions appear to

be structurally di�erent. The �rst two recessions feature several waves of increases

in the lower tail risk, while the upper tail risk remains stable. The last recession

features just one increase in both upper and lower tail risk. In the �rst quarter of

2001, just before the peak of the dot-com bubble on March 10th, the upper tail risk

rises considerably, while at the same time the lower tail risk falls. Unfortunately,

the following two quarters are missing but in the subsequent recession, there is a

strong reaction by the lower tail IR-Factor. It increases considerably right after

the unobserved period and in the quarters thereafter. The dot-com bubble and

its recession appear to be linked more closely to cross-sectional income distribution

changes than the economy-wide recession caused by the sub-prime crisis. This ability
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IR-Factor Series (\bfzero .\bfnine \bfsix ) Corrected for Structural Breaks
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Figure 2.4: Demeaned 0.96 IR-Factor time series for the lower tail (IR - ) and the upper tail
(IR+) along its 0.95 con�dence band. There is a two quarter gap (2000 Q2, 2000 Q3). The blue
shaded areas mark recession periods. The large peak in the (IR+) series coincides with the peak
of the dot-com bubble. The following recession features increased lower tail risk �uctuations. This
can also be observed for the �rst recession period. The recent recession seems structurally di�erent.
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to distinguish between symmetric and asymmetric recessions where big earners lose

over-proportionally may be one of the characteristics that allow the IR-Factors to

price the cross-section of portfolio returns that is considered in this study.

2.4.2 IR-Model Estimation and Model Comparison

How well can the IR-Model explain di�erences in a cross-section of portfolio returns?

This question is investigated employing two-pass least squares regressions and GMM.

The two-pass regression is performed in two steps. In a time series regression, excess

returns are regressed on income growth and the IR-Factors to estimate a portfolio's

exposure to the factors

Re
i,t = ai + \bfitbeta \prime 

iFactorst + \varepsilon i,t, (2.14)

where Re
i,t is the excess return of the portfolio i at time t, ai is a portfolio speci�c

constant, Factorst is a vector containing the income growth and IR-Factor series for

the lower and upper tail, and \bfitbeta \prime 
i is a vector containing the exposure factors \beta i,\Delta y,

\beta i,IR - , and \beta i,IR+ . The estimate \^\bfitbeta i is used in a cross-sectional regression of average

excess returns to estimate a variable that is related to the factors' price of risk

\BbbE T [Re
i ] = \bfitlambda \prime \^\bfitbeta i + \alpha i, (2.15)

where \BbbE T [Re
i ] is the time series average excess return of portfolio i, \bfitlambda \prime is a vector

containing the price of risk variables, and \^\bfitbeta i are the factor exposures, estimated in

the time series regression. The results are summarized in Table 2.2.

The IR-Factors can explain di�erences in portfolio returns related to di�erences

in size and book-to-market ratios. The lower tail exposure estimates from the time

series regression \^\beta i,IR - are signi�cant � especially for larger stocks. The upper tail

exposure estimates \^\beta i,IR+ are signi�cant � especially for smaller stocks. The cross-

sectional estimates \^\lambda IR - suggest that the lower tail IR-Factor is priced. The upper

tail price of risk estimates \^\lambda IR+ are weakly signi�cant for the second and third IR-

Factor quantiles. The overall size of the estimates is economically meaningful. In
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Time Series and Cross-Sectional Least Squares Estimates

Table 2.2: List of two-pass least squares estimates for the Idiosyncratic Risk Model. The three
panels refer to the di�erent IR-Factor quantiles. The time series estimates \^\beta i,IR+/ - are reported
in 5x5 tables. The estimates are sorted by portfolios, ranging from low to high book-to-market
ratio, and small to large size. Heteroscedasticity corrected p-values are reported in parentheses.
The cross-sectional estimates \^\lambda IR+/ - can be found below each 5x5 table. Shanken (1992) corrected
p-values are reported in parentheses. Estimation results for the income growth factor are omitted
as they are insigni�cant. The sampling frequency is quarterly, returns are denoted in % per month.

Panel A: Two-Pass Estimates for \bfitq = \bfzero .\bfnine \bffive 

\^\beta i,IR - Small Large \^\beta i,IR+ Small Large

Low -1.65 -0.55 -0.55 -0.95 0.12 Low 5.43 3.32 2.09 2.04 -0.66
(0.44) (0.77) (0.74) (0.54) (0.92) (0.00) (0.00) (0.00) (0.00) (0.11)

-0.11 1.29 1.62 2.57 2.04 4.46 1.11 0.39 -0.26 -1.17
(0.94) (0.32) (0.15) (0.01) (0.02) (0.00) (0.09) (0.39) (0.46) (0.00)

0.54 1.50 1.97 2.60 2.30 2.82 0.52 -0.17 -0.67 -0.89
(0.67) (0.18) (0.05) (0.01) (0.01) (0.00) (0.35) (0.64) (0.07) (0.02)

0.65 1.86 2.71 2.37 2.72 2.35 0.85 -0.76 0.17 -1.78
(0.59) (0.09) (0.01) (0.02) (0.00) (0.00) (0.14) (0.07) (0.65) (0.00)

High 1.84 3.03 3.68 2.51 1.68 High 1.79 0.56 -0.61 -1.77 -0.92
(0.18) (0.03) (0.00) (0.03) (0.22) (0.01) (0.40) (0.12) (0.00) (0.05)

\^\lambda IR - 0.30 \^\lambda IR+ 0.18
(0.04) (0.18)

Panel B: Two-Pass Estimates for \bfitq = \bfzero .\bfnine \bfsix 

\^\beta i,IR - Small Large \^\beta i,IR+ Small Large

Low -4.20 -2.59 -2.40 -2.96 -0.64 Low 9.27 5.81 3.81 3.80 -0.84
(0.17) (0.31) (0.32) (0.19) (0.73) (0.00) (0.00) (0.00) (0.00) (0.37)

-1.63 1.03 1.52 2.88 2.26 7.54 1.97 0.96 -0.17 -1.85
(0.45) (0.54) (0.31) (0.03) (0.06) (0.00) (0.05) (0.17) (0.81) (0.01)

-0.11 1.54 2.38 3.21 2.67 4.76 0.89 -0.10 -0.97 -1.35
(0.95) (0.30) (0.07) (0.03) (0.02) (0.00) (0.32) (0.88) (0.16) (0.12)

0.12 1.78 3.31 2.56 3.47 3.96 1.48 -1.29 0.38 -2.89
(0.94) (0.22) (0.03) (0.07) (0.01) (0.00) (0.10) (0.07) (0.54) (0.00)

High 1.82 3.48 4.43 3.09 2.28 High 2.92 0.85 -1.05 -2.91 -1.36
(0.33) (0.06) (0.01) (0.05) (0.17) (0.02) (0.42) (0.13) (0.00) (0.19)

\^\lambda IR - 0.24 \^\lambda IR+ 0.17
(0.03) (0.09)

Panel C: Two-Pass Estimates for \bfitq = \bfzero .\bfnine \bfseven 

\^\beta i,IR - Small Large \^\beta i,IR+ Small Large

Low -4.27 -3.09 -3.31 -3.83 -1.07 Low 10.60 7.43 5.19 5.15 -1.27
(0.31) (0.35) (0.28) (0.20) (0.65) (0.04) (0.00) (0.00) (0.00) (0.33)

-1.97 0.88 1.21 2.73 2.21 9.05 3.00 1.93 0.41 -2.66
(0.53) (0.67) (0.52) (0.12) (0.16) (0.03) (0.04) (0.08) (0.76) (0.03)

-0.25 1.13 2.07 3.07 2.93 5.79 1.66 0.52 -0.76 -1.95
(0.92) (0.53) (0.22) (0.09) (0.04) (0.05) (0.14) (0.65) (0.56) (0.14)

-0.17 1.35 2.92 2.08 3.59 4.80 2.20 -1.35 0.58 -3.92
(0.94) (0.44) (0.12) (0.24) (0.04) (0.08) (0.08) (0.25) (0.55) (0.04)

High 1.81 3.55 4.27 2.88 2.85 High 3.38 1.31 -1.03 -3.11 -1.81
(0.43) (0.12) (0.04) (0.20) (0.17) (0.14) (0.35) (0.43) (0.09) (0.25)

\^\lambda IR - 0.22 \^\lambda IR+ 0.15
(0.04) (0.08)
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both regressions, excess returns are sampled quarterly and denoted in percentage

points. Multiplying the price of risk factor with each portfolio's exposure factor

yields an explainable return span of 4.8\% per quarter for the lower tail 0.95 IR-

Factor. The upper tail 0.95 IR-Factor covers a similarly large span of 3.6\% per

quarter. The exposure estimates \^\beta i,IR - and \^\beta i,IR+ display an interesting pattern.

Small-growth stocks have a negative exposure to the lower tail IR-Factor, while large-

value stocks have a positive exposure to the lower tail IR-Factor. Exposures to the

upper tail IR-Factor are just reversed. An economic intuition for the portfolios' risk

exposures to the IR-Factor could be the following. When the lower tail IR-Factor

is large, high income individuals are hit by large unexpected income shocks. These

large income changes cause their previous portfolio allocation to be sub-optimal.

In order to smooth their consumption path and to adjust it to the lower income,

individuals liquidate long-term investments in secure �blue chips�, most commonly

large-value stocks. This allows for higher consumption at that moment at the cost

of lower consumption in the following periods. In order to keep their investors,

these large-value stocks have to o�er a higher return. These expected return com-

pensations can be detected in the two-pass regression. Conversely, when the upper

tail IR-Factor is large, investors experience major unexpected income rises. In the

process of readjusting their portfolio to realize a new smooth consumption path,

they want to invest some of the additional income in secure long-term investments

to safely transfer it into the future. As a result, large-value stocks can get away

with paying a lower return.8 Overall, the direction of the e�ects and their sizes

remain comparable across all three IR-Factor quantiles, which underlines that the

results are robust with regard to threshold and IR-quantile selection. The overall

signi�cance of the �rst stage estimates decreases as the threshold is pushed further

into the tail. This is an expected phenomenon. If the threshold is chosen to be

higher than necessary, fewer observations are available, which translates into higher

standard errors. To keep the discussion organized, the remainder of this section will

focus on the results for the 0.95 IR-Factor. Detailed results for all three quantiles

can be found in the appendix.

8Note that this intuition serves as a plausibility check. The actual mechanism through which
the economy reaches equilibrium is not within the scope of this study.
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Model Comparison � Goodness of Fit (Benchmark Models and IR-Model)

Idiosyncratic Risk Model Reduced Idiosyncratic Risk Model

0.0

0.5

1.0

1.5

11

12
13

14

15

21

22

23

24 25

31

32
33

34

35

41

42

43

44

45

51

52

53

54

55

0.0 0.5 1.0 1.5

R
ea

liz
ed

 M
ea

n 
R

et
ur

ns
 in

 %
0.0

0.5

1.0

1.5

11

12
13

14

15

21

22

23

24 25

31

32
33

34

35

41

42

43

44

45

51

52

53

54

55

0.0 0.5 1.0 1.5

R
ea

liz
ed

 M
ea

n 
R

et
ur

ns
 in

 %

Fama-French Three-Factor Model Linear Consumption-Based Model Capital Asset Pricing Model

0.0

0.5

1.0

1.5

11

12
13

14

15

21

22

23

24 25

31

32
33

34

35

41

42

43

44

45

51

52

53

54

55

0.0 0.5 1.0 1.5

R
ea

liz
ed

 M
ea

n 
R

et
ur

ns
 in

 %

0.0

0.5

1.0

1.5

11

12
13

14

15

21

22

23

24 25

31

32
33

34

35

41

42

43

44

45

51

52

53

54

55

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

11

12
13

14

15

21

22

23

24 25

31

32
33

34

35

41

42

43

44

45

51

52

53

54

55

0.0 0.5 1.0 1.5

Predicted Mean Returns in %

Figure 2.5: Realized and predicted mean excess returns. These graphs visualize the goodness of �t provided by the di�erent stochastic discount
factor speci�cations for the 25 Fama-French portfolio returns. The points are labeled according to their associated portfolio. The �rst digit refers to
the book-to-market ratio (low to high), the second digit refers to the size (small to large). The bottom row plots the benchmark models' predicted
mean returns against the observed values. The top row does the same for the (reduced) Idiosyncratic Risk Model. The closer the points align
around the 45-degree line, the better is the model's ability to explain the observed mean returns. The sampling frequency is quarterly, returns are
denoted in % per month.
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Figure 2.5 shows a comparison of average return prediction quality between the

Fama-French Model, the Linear CBM, the CAPM and the two IR-Model speci�ca-

tions. The better the portfolios align around the 45-degree line, the better is the

model's ability to explain the portfolios' average returns. The variation that is ex-

plained by the IR-Model is comparable to that of the ad-hoc Fama-French Model.

The returns align more clearly along the 45-degree line for the IR-Model than for

the theory-driven alternatives, the Linear CBM and the CAPM. The return of the

small-growth portfolio | 11| is gravely overestimated in each model. This is a typical

weakness of many asset pricing models and the IR-Model is no exception, although

the overestimation is slightly reduced. On the other hand, the IR-Model struggles

when pricing the larger growth portfolios | 41| , | 51| , even more so than the Fama-

French Model.

Alternatively, all the above models can directly be estimated in their stochastic

discount factor representation via GMM. First stage estimates use the identity ma-

trix as a weighting matrix. Each portfolio receives the same weight in the objective

function. Second stage GMM employs an optimal weighting matrix estimate, deliv-

ering more e�cient estimates. To enable identi�cation, the constant b0 is set to one

and factors are demeaned. The results are reported in Table 2.3. First stage esti-

mates for the three benchmark models are not signi�cant. This may be due to the

length of the time period. None of the models can be rejected by the J-test; again,

this is likely due to the length of the sample period. The signs of the coe�cients

are as expected. For the CAPM, a higher market return implies a lower stochastic

discount factor, and thus a lower marginal rate of substitution. Investors are not

willing to replace consumption in the next period with consumption now. The same

is true for the Linear CBM. Higher consumption growth indicates a lower stochastic

discount factor. In the Fama-French Model, the coe�cient of the size factor SMB

is not signi�cant in both the �rst and the second stage. This is in line with the

literature that �nds the size e�ect to gradually disappear in recent decades.9 Sec-

ond stage GMM estimates retain their sign and are signi�cant. Cross-sectional root

mean squared errors and adjusted R2s can provide a basis for comparing the models'

9Cochrane (2008) provides a comprehensive overview.
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Model Comparison � GMM Estimates

Table 2.3: Comparison of the Generalized Method of Moments estimates for di�erent stochastic
discount factor speci�cations. Reported are �rst and second stage GMM estimates for the Capital
Asset Pricing Model, the Linear Consumption-Based Model, the Fama-French Three-Factor Model
and the the Idiosyncratic Risk Model. In the reduced IR-Model estimation (r), the income growth
factor is excluded as a robustness check. p-values are given in parentheses. Furthermore, J-tests as
well as adjusted R2s and root mean squared errors from the cross-sectional regression are provided
below the estimates. The adjusted R2 values refer to a cross-sectional regression that includes a
constant to enable an interpretation as explained variance. None of the reported R2 values are
signi�cantly di�erent from R2s computed for randomly simulated factors.

CAPM L-CBM FF IR IR (\bfitr )

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

\bfitR \bfitm -0.07 -0.09 -0.06 -0.09
(0.18) (0.02) (0.33) (0.04)

\bfDelta \bfitc -1.78 -2.04
(0.37) (0.00)

\bfDelta \bfity -0.17 -0.65
(0.81) (0.22)

\bfitS \bfitM \bfitB -0.06 -0.04
(0.38) (0.50)

\bfitH \bfitM \bfitL -0.09 -0.12
(0.17) (0.00)

\bfitI \bfitR  - -4.79 -2.09 -4.79 -2.30
(0.31) (0.00) (0.29) (0.00)

\bfitI \bfitR + -1.12 -0.99 -1.20 -0.90
(0.39) (0.00) (0.37) (0.00)

J-test 24.41 24.17 17.68 17.52 25.18 24.21 21.73 17.11 22.18 18.61

RMSE 0.27 0.26 0.19 0.23 0.24

adj. \bfitR \bftwo 0.03 -0.04 0.47 0.15 0.19
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goodness of �t, much like the graphs in Figure 2.5. Out of the three benchmark

models, the Fama-French Model features the lowest average prediction error, as well

as the highest explained variance. Both the CAPM and the Linear CBM perform

worse, especially with respect to explained variance. The numbers re�ect what can

also be seen in Figure 2.5.

First stage estimates for the IR-Model are insigni�cant, just like the benchmark

models. The IR-Factor coe�cients retain the correct sign, consistent with the two-

pass regression results. Second stage GMM estimates are signi�cant. An economic

interpretation for the upper tail coe�cient is straightforward. If the IR-Factor is

high, people experience large rises in income, resulting in an overall lower hunger.

When the lower tail IR-Factor is high, high income individuals seek to liquidate some

of their assets. To remain attractive, these assets have to o�er higher returns. This

return pressure will alleviate everyone else's hunger, resulting in an overall decrease

in the stochastic discount factor. The RMSE is below that of the CAPM and the

Linear CBM and comes close to the RMSE of the Fama-French Model. Explained

variance for the IR-Model is considerably larger than for the Linear CBM or the

CAPM but below that of the Fama-French Model. Adjusted R2 are then simulated

for 5000 draws of independent standard normal factors to evaluate the signi�cance

of the reported values (see Lewellen et al., 2010). None of the reported R2s are

larger than the 0.95 quantile of the simulated R2 values. One should avoid drawing

conclusions based on these R2 values alone.

The income growth factor coe�cients feature the expected sign but are insigni�-

cant. Krebs (2004) argues that central moments can be arbitrary and do not provide

any testable restrictions. The dynamics of the stochastic discount factor can be de-

termined solely by the large income shock process. The estimation results support

this notion. To further investigate the importance of the central moment factor to

the estimation results, the aggregate income growth factor is excluded in a reduced

version of the IR-Model. The in�uence on coe�cient estimates is negligible. Fig-

ure 2.5 shows a comparison of the complete and reduced models' average return

predictions. Here too, the di�erence is small. The reduced models' predictions of

the big growth portfolio returns (| 51| and | 41| ) are even better. This is also re-
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�ected in the RMSE and adjusted R2 values. The average prediction error remains

nearly the same, whether income growth is included or not. Explained variance

rises noticeably, which gives reason to believe that aggregate income growth does

not contribute notably to the explained variance. Excluding an unnecessary factor

leads to a smaller adjustment of the R2 and thus to a higher adjusted R2. The

importance of central moments in a stochastic discount factor that includes the IR-

Factors is further explored in the appendix, where aggregate consumption growth is

used in the stochastic discount factor instead of income growth. The implications

are similar. Overall, the GMM results con�rm the �ndings of the two-pass least

squares regression.

2.5 Concluding Remarks

This study introduces the tail income risk Factor (IR-Factor) as a measure for the

individual income risk that investors are exposed to. The IR-Factor is estimated

on US income data and evaluated on returns of a cross-section of 25 portfolios

sorted by size and book-to-market ratio. Two-pass regression and GMM results

provide empirical evidence that large idiosyncratic income risk contributes to the

explanation of this cross-section of portfolio returns. Its contribution to explaining

the variation in portfolio returns is both economically and statistically signi�cant.

The direction and size of the e�ect varies across portfolios and re�ects the impact of

investors' portfolio adjustments to idiosyncratic income shocks. Aggregate income

growth plays no signi�cant role in the stochastic discount factor. This supports the

theoretical claim of Krebs (2004), who argues that large individual income changes

have a dominating e�ect on the stochastic discount factor while central moments

can be arbitrary.

An interesting avenue for future research may be the development of a complete

model with a closed-form solution for a stochastic discount factor that incorporates

this personal disaster risk. In combination with a suitable utility function, this could

enable estimations of risk aversion and time preference parameters and thus allow

for a better economic assessment of the model. It might entail the departure from
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the elegant representative agent paradigm, but the possible gain is a better and

more complete understanding of the real economic processes that drive asset prices.
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Appendix A

A.1 The IR-Factor for the Krebs (2004) Income Process

Speci�cation

To derive equation (2.9), recall the income growth speci�cation of Krebs (2004):

\Delta yi,t+1 =
\bigl( 
(1 + g1i,t+1)(1 + g2i,t+1)(1 +Gt+1) - 1

\bigr) 
yi,t

=
\bigl( 
(1 + g\circ i,t+1)(1 + g2i,t+1) - 1

\bigr) 
yi,t. (2.16)

Applying the IR-Factor (equation (2.7)) to \Delta yi,t+1 yields

IR - 
q,t+1 =

\BbbE [\Delta yi,t+1| \Delta yi,t+1 < \Delta yt+1[1 - q]]

\Delta yt+1[1 - q]
. (2.17)

Substituting equation (2.16) into the denominator of (2.17) returns

\Delta yt+1[1 - q] =
\bigl( 
((1 + g\circ i,t+1)(1 + g2i,t+1) - 1)yi,t

\bigr) 
[1 - q]. (2.18)

The de�nition simpli�es for the case that (1  - q) > p and \eta are su�ciently large,

such that for all \Delta yi,t+1[u], where u < q, it holds that g2i,t+1 = 0. If individuals

are hit by the shock \eta , these shocks are large enough to accumulate beyond the

q quantile. Since we always want to choose a case where (1  - q) > p and since

Krebs (2004) claims that the large shock implicates a personal disaster, this is a

mild assumption.10

\Delta yt+1[1 - q] =
\bigl( 
((1 + g\circ i,t+1) - 1)yi,t

\bigr) 
[1 - q]

= ((\~yi,t+1  - yi,t)) [1 - q]. (2.19)

10The assumption is also inconsequential, as a similar equation to (2.9) can be derived without it.
Instead, one can rely on shocks from the personal disaster risk component to be over-proportionally
present in the tails. The resulting formulas are more complex, but the implications remain the
same. I stay with the more straightforward case.
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Substituting equation (2.16) into the numerator of (2.17) yields

\BbbE [\Delta yi,t+1| \Delta yi,t+1 < \Delta yt+1[1 - q]] =

\BbbE 
\bigl[ \bigl( 
(1 + g\circ i,t+1)(1 + g2i,t+1) - 1

\bigr) 
yi,t| \Delta yi,t+1 < \Delta yt+1[1 - q]

\bigr] 
. (2.20)

There are two possibilities how the condition can be ful�lled for a given yi,t. Either

the corresponding \Delta yi,t+1 belongs to the 1 - q  - p income changes that are not the

result of a personal disaster shock, but are still large enough, such that they lie

above the q quantile or the condition is ful�lled for the p values that are a result of

a personal disaster. With this in mind, equation (2.20) can be divided into

\BbbE [\Delta yi,t+1| \Delta yi,t+1 < \Delta yt+1[1 - q]] =

1 - q  - p

1 - q
\BbbE 
\bigl[ 
((1 + g\circ i,t+1) - 1)yi,t| \Delta yi,t+1 < \Delta yt+1[1 - q]

\bigr] 
+

p

1 - q
\BbbE 
\bigl[ 
((1 + g\circ i,t+1)(1 - \eta ) - 1)yi,t

\bigr] 
. (2.21)

With the assumption that income shocks are independent of current income, the

terms simplify further:

1 - q  - p

1 - q
\BbbE 
\bigl[ 
((1 + g\circ i,t+1) - 1)yi,t| \Delta yi,t+1 < \Delta yt+1[1 - q]

\bigr] 
+

p

1 - q
 - ((1 +G)(1 - \eta ) - 1)\BbbE [yi,t]

=
1 - q  - p

1 - q
\BbbE [(\~yi,t+1  - yi,t)| \Delta yi,t+1 < \Delta yt+1[1 - q]] +

p

1 - q
((1 - \eta )\BbbE [yi,t+1] - \BbbE [yi,t]) . (2.22)

Two e�ects drive the �rst part of the sum towards zero as q increases. First, the

mean-of-excess function of a light tailed distribution is decreasing in q, so the ex-

pectation term approaches zero. Second, the fraction 1 - q - p
1 - q

also approaches zero as

1 - q approaches p. As the threshold q is pushed further into the tail of the income

shock distribution, the numerator of the IR-Factor converges to the second part of
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the sum. Resubstituting equations (2.19) and (2.22) back into equation (2.17) yields

the result obtained in equation (2.9)

IR - 
q,t+1 =

p

1 - q

(1 - \eta )\BbbE [yi,t+1] - \BbbE [yi,t]

(\~yi,t+1  - yi,t) [1 - q]
. (2.23)

A.2 Unbiased Estimation of the Expected Shortfall

The Peak over Threshold method rests on two limit theorems. The �rst theorem

(Fisher and Tippett, 1928) describes the distribution of the maximum of a series

of random variables. Let \{ X\} n be iid random variables, bn a constant > 0, an a

constant \in \BbbR , \BbbV a not degenerated distribution, and Mn the maximum value of the

\{ X\} n series such that
Mn  - an

bn

d - \rightarrow \BbbV , (2.24)

then \BbbV belongs to the class of Generalized Extreme Value distributions F\xi . \xi is

a shape parameter that determines the type of extreme value distribution � light,

medium or heavy tailed. The distribution that has generated \{ X\} n is said to be

in the maximum domain of attraction of the Generalized Extreme Value distribu-

tion F\xi . This convergence theorem can be utilized to model extreme events within

certain prede�ned blocks, for example a month or a city. The distribution of the

maxima within each block converges in distribution to the Generalized Extreme

Value distribution F\xi , if it is not degenerated.

In a cross-section of income changes, no natural blocks are present. When blocks

are formed arbitrarily, multiple extreme events might be selected into the same block

while other blocks might not contain any extreme events at all. This is likely to

cause ine�ciencies. In such a case, the Peak over Threshold method provides a

more e�cient solution.
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Example of Peaks over Threshold Selection
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Figure 2.6: Income changes in US Dollar for individuals from the US Survey of Income and Program Participation in August 1996. Only the
values above/below a threshold are used in estimating the parameters of the Generalized Pareto distribution.
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Figure 2.6 illustrates the procedure. By selecting excesses above a certain thresh-

old, and not maxima within a block, all large events can be taken into account. The

theorem by Pickands (1975), Balkema and de Haan (1974) describes the distribution

of the excesses F u
X and relates it to the Fisher and Tippett (1928) theorem. Let X

be a random variable with a distribution FX and an excess distribution F u
X . There

exists a Generalized Pareto distribution \~F\xi (x, 0, \sigma (u)) such that

lim
u\uparrow xF

\biggl[ 
sup

0\leq x<xF - u

\Bigl( 
| F u

X(x) - \~F\xi (x; 0, \sigma (u))| 
\Bigr) \biggr] 

= 0, (2.25)

if and only if FX is in the maximum domain of attraction of an extreme value

distribution F\xi with identical shape parameter \xi . Here, u is the selected threshold

and xF is the endpoint of the distribution (xF = sup\{ x \in \BbbR | FX(x) < 1\} ). The

excess function F u
X converges uniformly to a Generalized Pareto distribution \~F\xi ,

if and only if the underlying value generating distribution FX is in the maximum

domain of attraction of an extreme value distribution F\xi .

The Generalized Pareto distribution has the following form:

\~F\xi (x, \mu , \sigma ) =

\left\{     1 - 
\bigl( 
1 + \xi x - \mu 

\sigma 

\bigr)  - 1
\xi for \xi \not = 0

1 - exp
\bigl( 
 - x - \mu 

\sigma 

\bigr) 
for \xi = 0.

(2.26)

The unknown parameters \xi and \sigma can be estimated via maximum likelihood, \mu is

known to be zero. These estimates can be used to compute a maximum likelihood

estimate for the expected shortfall component

\widehat ESq(\Delta y) = u+
\^\sigma (s - 1)

\^\xi 
+

\^\sigma s

1 - \^\xi 
(2.27)

with: s =

\biggl( 
n

Nu

(1 - q)

\biggr)  - \^\xi 

,

where n are the numbers of observations in the whole set and Nu are the number of

peaks over the threshold. Dividing this estimate by the empirical q-quantile of the

income shock distribution results in an unbiased estimate for the IR-Factor.
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A.3 Robustness Checks

GMM Results for Higher Quantiles

Detailed GMM results for all three IR-Factor quantiles can be found in Table 2.4.

The IR-Factor estimation results remain comparable. The sharp rise in RMSE for

the higher IR-Factor quantiles is mostly due to the model's increasing problems in

pricing big growth stocks (| 51| and | 41| ). The income growth factor coe�cients dis-

play an interesting pattern. For the 0.95 quantile, they feature the expected sign

but are insigni�cant. For the 0.96 and 0.97 quantile, the sign switches and second

stage estimates are signi�cant. This is at odds with the intuition that larger ag-

gregate income growth should decrease hunger. However, this result is not at odds

with the �ndings of Krebs (2004). He argues that central moments can be arbitrary

and do not provide any testable restrictions. The dynamics of the stochastic dis-

count factor can be determined solely by the large income shock process. Viewed

in that light, the seemingly erratic and contradictory estimation results support the

argumentation of Krebs (2004).

Alternative Test Portfolios

I check the robustness of the results by evaluating all models on a di�erent set

of portfolios. Each model speci�cation is re-estimated using the equally-weighted

Fama-French portfolios. The estimation results are expected to be similar. However,

it is likely that small portfolios are prone to measurement errors, due to liquidity

constraints. Table 2.5 summarizes the results. The sign, size and signi�cance of

all coe�cients closely resemble the results for the value-weighted portfolios. The

most notable di�erence are higher adjusted R2 values, especially for the IR-Model,

re�ecting an overall better explanation of the observed average return variance.

Alternative Central Moments

While the erratic results obtained for the aggregate income growth factor support the

dominating importance of the tail risk, it is possible that aggregate income growth

is just a poor factor in general. To check the robustness of the above �ndings, alter-

native central moment factors are explored. In alternative ad-hoc IR-Model spec-

i�cations, aggregate income growth is replaced by aggregate consumption growth
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(C-IR) and the market excess return (R-IR). The estimation results are reported in

Table 2.6. The inclusion of IR-Factors makes a notable di�erence in the explained

average return variance for the aggregate consumption growth factor, as well as the

market excess return factor. The adjusted R2 rises from  - 0.04 to 0.17 when the

IR-Factors are included alongside consumption growth and from 0.03 to 0.27 when

included alongside the market excess return. The adjusted R2 values for the Con-

sumption IR-Model are nearly the same as for the Income IR-Model, and smaller

than for the reduced IR-Model. This indicates that the contribution of the aggregate

consumption growth factor to the explained variance of average returns is negligible.

The inclusion of the market excess return instead of the aggregate consumption or

income growth leads to a notable increase in the adjusted R2. Coe�cient estimates

for the aggregate consumption growth factor and the market excess return factor

have the correct signs, but are insigni�cant at both GMM stages. The exception is

the second stage estimate for the C-IR97 speci�cation, with a p-value of 0.10. Coef-

�cient estimates for the lower tail IR-Factor are comparable to the original models'

estimates. Coe�cient estimates for the upper tail IR-Factor are notably smaller

compared to the original IR-Model. Overall, the conclusions reached for the IR-

Model can be maintained. The inclusion of aggregate consumption growth instead

of aggregate income growth has no impact on explained variance. The inclusion

of the market excess return does improve the explanatory power, but removes the

model from the context of a Consumption-Based Model. Additionally, the market

excess return factor becomes insigni�cant when the IR-Factors are included.

Figure 2.7 gives an overview of all robustness model speci�cations and their

ability to predict average excess return for the 0.95 IR-Factor quantile.
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Model Comparison � GMM Estimates (Full)

Table 2.4: Comparison of the Generalized Method of Moments estimates for di�erent stochastic discount factor speci�cations. Reported are �rst
and second stage GMM estimates for the Capital Asset Pricing Model, the Linear Consumption-Based Model, the Fama-French Three-Factor Model
and the three Idiosyncratic Risk Model speci�cations for di�erent IR-Factor quantiles (0.95, 0.96 and 0.97). In the reduced IR-Model estimation
(r), the income growth factor is excluded as a robustness check. p-values are given in parentheses. Furthermore, J-tests as well as adjusted R2s and
root mean squared errors from the cross-sectional regression are provided below the estimates. The adjusted R2 values refer to a cross-sectional
regression that includes a constant to enable an interpretation as explained variance.

CAPM L-CBM FF IR95 IR96 IR97 IR95 (\bfitr ) IR96 (\bfitr ) IR97 (\bfitr )

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

\bfitR \bfitm -0.07 -0.09 -0.06 -0.09
(0.18) (0.02) (0.33) (0.04)

\bfDelta \bfitc -1.78 -2.04
(0.37) (0.00)

\bfDelta \bfity -0.17 -0.65 0.34 0.29 0.53 0.70
(0.81) (0.22) (0.77) (0.03) (0.67) (0.04)

\bfitS \bfitM \bfitB -0.06 -0.04
(0.38) (0.50)

\bfitH \bfitM \bfitL -0.09 -0.12
(0.17) (0.00)

\bfitI \bfitR  - -4.79 -2.09 -6.75 -2.24 -8.99 -2.58 -4.79 -2.30 -6.78 -2.51 -9.18 -2.77
(0.31) (0.00) (0.30) (0.03) (0.35) (0.08) (0.29) (0.00) (0.32) (0.01) (0.38) (0.02)

\bfitI \bfitR + -1.12 -0.99 -2.48 -1.53 -3.79 -2.07 -1.20 -0.90 -2.25 -1.25 -3.14 -1.79
(0.39) (0.00) (0.45) (0.00) (0.52) (0.00) (0.37) (0.00) (0.43) (0.00) (0.50) (0.00)

J-test 24.41 24.17 17.68 17.52 25.18 24.21 21.73 17.11 21.14 15.06 20.40 13.31 22.18 18.61 20.76 16.26 20.33 14.52

RMSE 0.27 0.26 0.19 0.23 0.29 0.32 0.24 0.29 0.33

adj. \bfitR \bftwo 0.03 -0.04 0.47 0.15 0.16 0.12 0.19 0.20 0.15
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Model Comparison � GMM Estimates (Equally-Weighted Portfolios)

Table 2.5: Comparison of the Generalized Method of Moments estimates for di�erent stochastic discount factor speci�cations on the equally-
weighted Fama-French portfolios. Reported are �rst and second stage GMM estimates for the Capital Asset Pricing Model, the Linear Consumption-
Based Model, the Fama-French Three-Factor Model and the three Idiosyncratic Risk Model speci�cations for di�erent IR-Factor quantiles (0.95, 0.96
and 0.97). In the reduced IR-Model estimation (r), the income growth factor is excluded as a robustness check. p-values are given in parentheses.
Furthermore, J-tests as well as adjusted R2s and root mean squared errors from the cross-sectional regression are provided below the estimates.
The adjusted R2 values refer to a cross-sectional regression that includes a constant to enable an interpretation as explained variance.

CAPM L-CBM FF IR95 IR96 IR97 IR95 (\bfitr ) IR96 (\bfitr ) IR97 (\bfitr )

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

\bfitR \bfitm -0.07 -0.08 -0.05 -0.06
(0.17) (0.03) (0.39) (0.11)

\bfDelta \bfitc -1.91 -2.20
(0.38) (0.00)

\bfDelta \bfity 0.25 0.42 0.78 0.53 0.78 0.66
(0.87) (0.05) (0.74) (0.01) (0.74) (0.00)

\bfitS \bfitM \bfitB -0.08 -0.09
(0.18) (0.02)

\bfitH \bfitM \bfitL -0.11 -0.14
(0.09) (0.00)

\bfitI \bfitR  - -4.56 -2.33 -6.30 -2.45 -8.72 -3.83 -4.61 -2.45 -6.60 -2.98 -8.80 -5.15
(0.24) (0.00) (0.25) (0.00) (0.28) (0.00) (0.28) (0.00) (0.30) (0.00) (0.34) (0.00)

\bfitI \bfitR + -1.03 -0.76 -2.22 -1.01 -2.63 -1.83 -0.90 -0.66 -1.51 -1.02 -1.41 -1.46
(0.55) (0.00) (0.59) (0.05) (0.69) (0.04) (0.39) (0.00) (0.45) (0.01) (0.68) (0.02)

J-test 24.37 24.35 17.62 17.20 26.01 25.48 24.90 20.46 24.74 18.43 21.74 17.42 24.82 20.93 24.87 20.34 21.58 18.98

RMSE 0.29 0.27 0.19 0.25 0.29 0.30 0.25 0.31 0.33

adj. \bfitR \bftwo 0.05 -0.03 0.56 0.23 0.26 0.22 0.24 0.28 0.24
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GMM Estimates for Di�erent Types of Central Moments

Table 2.6: Comparison of the Generalized Method of Moments estimates for di�erent stochastic discount factor speci�cations. Reported are �rst
and second stage GMM estimates for the three Idiosyncratic Risk Model speci�cations with di�erent IR-Factor quantiles (0.95, 0.96 and 0.97) and
two ad-hoc IR-Models with alternative central moments. C-IR includes consumption growth, R-IR includes the market excess return instead of
income growth. p-values are given in parentheses. Furthermore, J-tests as well as adjusted R2s and root mean squared errors from the cross-sectional
regression are provided below the estimates. The adjusted R2 values refer to a cross-sectional regression that includes a constant to enable an
interpretation as explained variance.

IR95 IR96 IR97 R-IR95 R-IR96 R-IR97 C-IR95 C-IR96 C-IR97

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

\bfDelta \bfity -0.17 -0.65 0.34 0.29 0.53 0.70
(0.81) (0.22) (0.77) (0.03) (0.67) (0.04)

\bfitR \bfitm -0.04 -0.02 -0.05 -0.04 -0.05 -0.05
(0.58) (0.66) (0.45) (0.39) (0.42) (0.34)

\bfDelta \bfitc -0.99 -0.75 -1.29 -1.27 -1.43 -1.39
(0.61) (0.43) (0.54) (0.13) (0.53) (0.10)

\bfitI \bfitR  - -4.79 -2.09 -6.75 -2.24 -8.99 -2.58 -2.86 -2.17 -3.38 -3.04 -4.23 -3.77 -2.60 -2.14 -3.01 -2.75 -3.73 -3.57
(0.31) (0.00) (0.30) (0.03) (0.35) (0.08) (0.13) (0.00) (0.14) (0.00) (0.17) (0.00) (0.13) (0.00) (0.15) (0.00) (0.19) (0.00)

\bfitI \bfitR + -1.12 -0.99 -2.48 -1.53 -3.79 -2.07 -0.59 -0.61 -0.74 -0.82 -0.73 -0.66 -0.46 -0.50 -0.49 -0.48 -0.34 -0.20
(0.39) (0.00) (0.45) (0.00) (0.52) (0.00) (0.34) (0.00) (0.48) (0.05) (0.68) (0.43) (0.50) (0.01) (0.69) (0.19) (0.87) (0.79)

J-test 21.73 17.11 21.14 15.06 20.40 13.31 25.11 24.30 25.05 24.88 24.24 24.11 21.08 20.28 19.26 19.06 19.24 19.17

RMSE 0.23 0.29 0.32 0.23 0.23 0.24 0.22 0.22 0.23

adj. \bfitR \bftwo 0.15 0.16 0.12 0.27 0.25 0.26 0.16 0.17 0.13
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Model Comparison � Goodness of Fit (Robustness Comparisons)
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Figure 2.7: Realized and predicted mean excess returns. These graphs visualize the goodness of �t provided by di�erent stochastic discount factor
speci�cations for the 25 Fama-French portfolio returns. The points are labeled according to their associated portfolio. The �rst digit refers to
the book-to-market ratio (low to high), the second digit refers to the size (small to large). In the C-IR version of the IR-Model, income growth
is replaced by consumption growth. In the R-IR version, the excess return of the market portfolio replaces income growth. The top row plots
the models' predicted mean returns against the observed values for the equally-weighted test portfolios. The bottom row does the same for the
value-weighted test portfolios. The closer the points align around the 45-degree line, the better is the model's ability to explain the observed mean
returns. The sampling frequency is quarterly, returns are denoted in % per month.



Chapter 3

Empirical Asset Pricing with

Reference-Dependent Heterogeneous

Agents\ast 

Abstract

In this chapter I propose a strategy for the empirical evaluation of prospect theory
that links concepts from behavioral �nance to the literature on asset pricing with
heterogeneous agents. I develop an asset pricing model in which two representative
agents maximize their utility by investing in risky assets. One agent represents the
behavior of investors above their reference level, one below. Using US income panel
data, investors are sorted into groups depending on recent income development. In
line with prospect theory, estimation results indicate that investors below their ref-
erence level act risk-seeking. The cross-sectional variation in returns of portfolios
sorted by size and book-to-market value can be explained with a plausible risk aver-
sion coe�cient of ten while the unexplained equity premium is drastically reduced.

\ast Chapter 3 is based on the paper �Empirical Asset Pricing with Reference-Dependent Hetero-
geneous Agents� by Langen (2014). I thank T. Dimp�, J. Grammig, R. Jung, J. Lahaye, F. Peter,
W. Pohlmeier, E. Schaub, P. Sercu, and J. Sönksen, as well participants of the Congress of the
European Economic Association (Toulouse) and the Journal of Banking and Finance's Special
Conference on Recent Developments in Financial Econometrics (Geelong) for helpful comments
and suggestions. Financial support from the German Research Foundation (DFG) is gratefully
acknowledged.
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3.1 Introduction

Prospect theory (Kahneman and Tversky, 1979, 1992) is well established in describ-

ing choice under risk in experimental settings. So far few studies have implemented

and evaluated prospect theory predictions in an empirical asset pricing context. To a

certain degree, this is surprising. The psychological e�ects are well documented and

it is hard to deny that a more accurate understanding of �nancial markets is needed.

But the conversion of prospect theory to non-experimental settings entails numerous

theoretical and practical di�culties so the translation is not straightforward.

This study tackles this challenge by linking concepts from behavioral �nance to

the literature on asset pricing with heterogeneous agents. In particular, I propose

an asset pricing model in which two reference-dependent representative agents max-

imize their expected utility across time and states by investing in risky assets. One

representative agent captures the behavior of investors above their reference level,

the other represents the behavior of investors below their reference level. Prospect

theory predicts that due to biases investors below their reference level act risk-

seeking. The estimation results suggest that this is the case. By allowing for risk-

seeking behavior, the cross-sectional variation in returns of portfolios sorted by size

and book-to-market value can be explained with reasonably low risk aversion coef-

�cients and the average unexplained equity premium (Mehra and Prescott, 1985) is

reduced considerably.

My study contributes to the behavioral �nance literature that analyzes the rela-

tion between returns and investor misevaluation. This relation exists, when psycho-

logical biases are shared systematically among groups of investors. These groups'

systematic overbuying or overselling impacts prices and returns (Hirshleifer, 2001).

Even in the presence of purely rational investors, equilibrium prices are a�ected

by a systematic misevaluation (Figlewski, 1978; Campbell and Kyle, 1993; Shefrin

and Statman, 1994). The psychological dispositions that are most relevant in the

context of asset pricing can be subsumed by the notions of self-deception and self-

control (Hirshleifer, 2001). The relevance of these two sources is evinced by a large

body of experimental evidence (Kachelmeier and Shehata, 1992; Odean, 1998; Post
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et al., 2008). When investors lack self-control, it manifests itself in time-inconsistent

discounting and a high preference for immediate consumption. When investors are

subject to self-deception, they misjudge their current situation and exhibit over-

con�dence in private information signals and their ability. Self-deception can also

elicit biased self-attribution, where positive outcomes are associated with personal

actions while negative outcomes are dismissed as bad luck. All behaviors subsumed

by the notions of self-deception and self-control contribute to the misevaluation of

securities. Self-deception is essential for the distinction of the curvatures in di�erent

parts of the utility function (risk-seeking or risk-averse behavior), because the be-

havioral impact of biases depends on the location of the investors in relation to their

reference level. Self-deception creates the risk-seeking behavior below the reference

level. An investor who is a�ected by self-deception may, for example, dismiss bad

outcomes as bad luck and not adjust accordingly. This will seem risk seeking.

Since there is no obvious way to account for behavioral e�ects in an asset pricing

context, recent empirical studies have proposed di�erent approaches and have tested

the predictions of prospect theory according to various interpretations.1 Dimmock

and Roy (2010) provide evidence that loss aversion can explain household non-

participation in the stock market. Barberis and Huang (2008) show that if prospect

theory holds, the skewness of returns is priced. Boyer et al. (2010), Bali et al. (2011)

and Conrad et al. (2013) provide further empirical evidence. De Giorgi and Hens

(2006) examine the size and value premium and are able to rationalize both with

the calibration of a convex-concave exponential utility function. Finally, Barberis

et al. (2001), Andries (2012) and Pagel (2012) build on Benartzi and Thalers' (1995)

model to explain the high equity premium, and present additional evidence.

My study links these behavioral �nance aspects to the literature on asset pricing

with heterogeneous agents. In a seminal paper, Constantinides and Du�e (1996)

demonstrate that expected returns are related to the cross-sectional variation of

investors' individual income. Under restrictive assumptions, Constantinides and

Du�e derive a closed-form solution for the stochastic discount factor. Brav et al.

1Barberis (2013) provides a general assessment of recent research on prospect theory. Booij
et al. (2010) give an extensive overview of both recent and older experimental studies.
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(2002), Balduzzi and Yao (2007), and Grishchenko and Rossi (2012) account for

investor heterogeneity by constructing an economy-wide stochastic discount factor

as the average of the individual stochastic discount factors. In equilibrium, all in-

vestors' stochastic discount factors are valid, so a linear combination of the individual

stochastic discount factors is also valid.

This study adopts the averaging of stochastic discount factors for the estimation

of an asset pricing model with reference-dependent heterogeneous agents. I use US

panel data and sort individuals into a group that is either above or below their ref-

erence level, depending on their recent income development. Representative agents

are formed within these groups by capturing the average income development of

investors above (below) their reference level. According to prospect theory, both

representative agents may display di�erent attitudes towards risk. The estimation

results indicate that investors below their reference level are risk-seeking. The cur-

vature of the utility function in the convex (loss) part is about twice as high as in the

concave (gain) part which is in line with many empirical �ndings from experimental

studies. The estimation results further suggest that forming groups by investors'

disposition to their reference level helps explain the value premium. The cross-

sectional variation in returns of size and book-to-market sorted portfolios can be

explained with reasonable relative risk aversion coe�cients of around ten. The aver-

age unexplained equity premium is the smallest among all benchmark models � with

a reduction of 75% over the benchmark Fama-French (1995) Three-Factor Model.

Compared to purely rational alternatives, return prediction accuracy is drastically

increased and parameter estimates are more plausible.

The remainder of the chapter is structured as follows. Section 3.2 introduces the

method of reference grouping and discusses the estimation methodology. Section 3.3

describes the data used for the estimation. Section 3.4 discusses the empirical results

and section 3.5 draws a conclusion.
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3.2 Model Setup and Methodology

3.2.1 Reference Grouping

The assumption that investors evaluate their income in relation to a reference level

causes some theoretical and practical di�culties. One particularly troublesome ques-

tion is how exactly do people determine their reference level? Literature does not

provide a straightforward answer in this matter. One obvious reason for this is

that a personal reference level is not directly observable. A major strand of studies

assumes the reference level to be set externally (Campbell and Cochrane, 1999).

Other studies assume that the reference level re�ects expectations about the future

(Koszegi and Rabin, 2006, 2007, 2009). For some investors the formation of these

expectations may include notions of (un-)deservedness. Expectation forming could

also take into account the overweighting of rare events. A big practical problem

is the type of data needed to compute these potentially complex individual-speci�c

reference levels. Reference grouping avoids these problems, without having to �nd

a direct answer to them on an individual investor level.

Assume investor i derives utility in period t+1 from a reference-dependent power

utility function

ui,t+1(yi,t+1| yrefi ) =

\left\{       
1

1 - \gamma 
(\Delta \ast yi,t+1)

1 - \gamma if \Delta \ast yi,t+1 > 1 (gain)

1
1 - k\gamma 

(\Delta \ast yi,t+1)
1 - k\gamma if \Delta \ast yi,t+1 < 1 (loss),

(3.1)

where \gamma is the relative risk aversion in the upper (gain) part of the utility function,

and k is a loss aversion parameter. Utility is derived from changes of personal income

yi,t+1 in relation to an unobserved personal reference level yrefi

\Delta \ast yi,t+1 =
yi,t+1

yrefi

. (3.2)

Note that the personal reference level yrefi is assumed to be sticky. Within a certain

time frame, the investors have an idea of what they desire, or what they are used
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to, and do not change this assessment quickly from one period to the next. The

stickiness is what allows me to circumvent measuring the reference level directly.

Also note that investors are assumed to derive utility directly from income, not con-

sumption. Many studies suggest that investors are slow to adjust their consumption

upon receiving bad income news as a result of loss-aversion (Shea, 1995; Bowman

et al., 1999). To avoid this e�ect, I focus on income directly.

Utility-maximizing investors choose their portfolio allocations, such that marginal

changes to their portfolio compositions today do not lead to an increase in expected,

discounted future utility. Assuming time separable utility, this optimal allocation

implies the stochastic discount factor

mi,t+1 =\beta 
u\prime (yi,t+1| yrefi )

u\prime (yi,t| yrefi )
, (3.3)

where \beta is the time preference parameter. If I had the knowledge, that the in-

come of investor i is above its reference level, equation (3.3) in combination with

equations (3.1) and (3.2) would simplify to

mi,t+1 =\beta 

\Biggl( 
yi,t+1/y

ref
i

yi,t/y
ref
i

\Biggr)  - \gamma 

=\beta 

\biggl( 
yi,t+1

yi,t

\biggr)  - \gamma 

. (3.4)

Similarly, if I knew that the income of investor i is below its reference level, equa-

tion (3.3) would simplify to

mi,t+1 =\beta 

\biggl( 
yi,t+1

yi,t

\biggr)  - k\gamma 

. (3.5)

These simpli�cations make a direct measurement of an individual's reference level

obsolete. To identify where the income of an investor is located in relation to his ref-

erence level, I take a look at his recent income path. Assume all investors are sorted

by their recent income development. If investor i belongs to the upper q quantile

of people that has recently experienced considerable positive income changes, it is

reasonable to assume that he is currently above (A) his reference level. Conversely,
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Reference Grouping: Constructing Representative Agents A and B

B A

yB, t yi
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Incomei
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Figure 3.1: This graph visualizes the procedure of reference grouping. Investors are sorted into
groups that are above (A) and below (B) their reference level. Representative investors are created
in both groups. The income changes for representative agent A are constructed using only income
information of agents well above their reference level. Since the reference level is sticky, only
the upper part of the utility function is relevant for investor A. Likewise, the income changes for
representative agent B are constructed using only income information of agents well below their
reference level. So only the lower part of the utility function is relevant for investor B.

if investor i belongs to the lower q quantile of people that has recently experienced

considerable negative income changes, it is reasonable to assume that he is cur-

rently below (B) his reference level. Figure 3.1 illustrates this approach. To capture

the general behavior of investors above and below their reference level I form two

representative agents within these groups. Representative agent A (above) has the

average income development of the q investors with the most advantageous recent

income developments. These investors are above their respective reference level and

are assumed to share a common risk aversion parameter \gamma . All of the gains and

losses in income are evaluated within the risk-averse part of the utility function

because these q investors have recently surpassed their reference level by a large

margin. Representative agent B (below) has the average income development of the
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q investors with the least advantageous recent income developments. All of the gains

and losses in income are evaluated within the lower part of the utility function. If k

is negative, these agents display risk-seeking behavior. If k is positive but unequal

to one, they just have a di�erent risk aversion. This provides a test for the presence

of behavioral e�ects.

Bhamra and Uppal (2014) prove the existence of an equilibrium in such an econ-

omy. As long as agents share the same time preference \beta , an equilibrium for i

heterogeneous power utility agents exists without restricting the risk aversion coe�-

cients \gamma i. Translating this study's model to the model of Bhamra and Uppal (2014)

results in a two agent economy where both agents have the same time preference \beta 

while \gamma A = \gamma and \gamma B = k\gamma .

Expected returns are related to investor misevaluation when groups of investors

systematically share the same biases. Through reference grouping I form representa-

tive agents among investors that potentially share certain psychological biases due to

their disposition in relation to their reference level. Self-deception is the psychologi-

cal mechanism that protects individuals from the pain of realizing that they are not

where they want to be. Self-deception may lead investors below their reference level

to appear risk-seeking. It may even lead them to be overcon�dent in their ability to

invest and thus continue to hold high-risk securities. It may also lead them to have

a biased-self attribution where gains are attributed to their ability while losses are

attributed to external circumstances. This may then cause systematic overbuying

or overselling and thus contribute to a misevaluation of assets. This potential e�ect

materializes itself in the value of k, where negative values imply a risk-seeking be-

havior below the reference level. To ensure the existence of an equilibrium all agents

share the same time preference \beta . If investors above and below the reference level

lack self-control and engage in time-inconsistent discounting, this should manifest

itself in a low time preference parameter.
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3.2.2 Estimation Methodology

The model's capacity in pricing a cross-section of returns as well as the average

equity premium can be evaluated using a set of moment restrictions in the spirit of

Parker and Julliard (2005). These restrictions allow for the estimation of an average

unexplained excess-return term \alpha . In equilibrium the stochastic discount factors

of both agents should be valid. This implies that they can price a cross-section of

excess returns

0 = \BbbE 
\bigl[ 
mA,t+1R

e
t+1| \scrF t

\bigr] 
0 = \BbbE 

\bigl[ 
mB,t+1R

e
t+1| \scrF t

\bigr] 
, (3.6)

where Re
t+1 is a vector of future excess returns and \scrF t is the information set available

at time t. Using these individual moment conditions and the law of total expecta-

tions, an economy-wide unconditional moment restriction can be derived

0 = \BbbE 

\Biggl[ 
B\sum 

i=A

mi,t+1R
e
t+1

\Biggr] 
. (3.7)

The type of moment restriction in equation (3.7) is commonly used in GMM (Hansen

and Singleton, 1982) estimations. An additional moment restriction can be included

to identify the time preference \beta 

0 = \BbbE 

\Biggl[ 
B\sum 

i=A

mi,t+1R
f
t+1  - 1

\Biggr] 
, (3.8)

where Rf
t+1 is the risk-free rate. Equation (3.7) can be rearranged using the de�nition

of covariance to get an expression for the expected excess return

\BbbE 
\bigl[ 
Re

t+1

\bigr] 
=  - 

Cov
\Bigl[ \sum B

i=A mi,t+1, R
e
t+1

\Bigr] 
\BbbE 
\Bigl[ \sum B

i=Ami,t+1

\Bigr] . (3.9)
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If the model holds, the di�erence between expected excess returns on the left, and

predicted excess returns on the right should be zero. If the model does not hold,

part of the average level of excess returns may remain unexplained:

0 = \BbbE 
\bigl[ 
Re

t+1

\bigr] 
 - \alpha +

Cov
\Bigl[ \sum B

i=A mi,t+1, R
e
t+1

\Bigr] 
\BbbE 
\Bigl[ \sum B

i=Ami,t+1

\Bigr] . (3.10)

The additional parameter \alpha measures the average unexplained excess return of the

model. It is thus an estimate for the unexplained equity premium implied by the

model. Equation (3.10) is used as a moment restriction in the GMM estimations,

where equation (3.8) is employed as identifying condition for \beta . The set of restric-

tions (3.7) and (3.8) is used in a robustness check. In all estimations, �rst stage

estimates rely on the identity matrix as a weighting matrix where each portfolio

receives the same weight in the objective function. Second stage GMM employs an

optimal weighting matrix estimate, which delivers more e�cient estimates.

The performance of the Reference Group Model (RGM) above is evaluated in

comparison to several benchmark models. The Consumption Based Model (CBM)

(Lucas, 1987; Breeden, 1979; Grossman and Shiller, 1981) is estimated with

mCBM
t+1 = \beta 

\biggl( 
ct+1

ct

\biggr)  - \gamma 

, (3.11)

where ct+1/ct is consumption growth. The Income-Consumption Based Model (I-

CBM) is estimated with

mI - CBM
t+1 = \beta 

\biggl( 
yt+1

yt

\biggr)  - \gamma 

, (3.12)

where yt+1/yt is income growth. The Capital Asset Pricing Model (CAPM) (Sharpe,

1964; Lintner, 1965; Mossin, 1966) ist estimated with

mCAPM
t+1 = b0 + b1R

m
t+1, (3.13)
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where Rm
t+1 is the market excess return. The Fama-French (1995) Three-Factor

Model (FF) ist estimated with

mFF
t+1 = b0 + b1R

m
t+1 + b2SMBt+1 + b3HMLt+1, (3.14)

where SMBt+1 is the excess return of small size portfolios over big size portfolios

and HMLt+1 is the excess return of high book-to-market portfolios over low book-

to-market portfolios. These two factors are constructed using the returns on the

basis of which the model is then evaluated, giving the Fama-French Model a natural

advantage and the status of the benchmark model.

The di�erent models are compared using several standard model performance

and goodness of �t measures. The root mean squared error is calculated as

RMSE =

\sqrt{} 
1

J
( \^Re

j  - \BbbE T [Re
j ])

2, (3.15)

where

\^Re
j =  - 

Cov( \^mt+1, R
e
j,t)

\BbbE T [ \^mt+1]
+ \^\alpha (3.16)

and

\BbbE T [R
e
j ] =

1

T

T\sum 
t=1

Re
jt, (3.17)

where Re
j is the excess return of the jth test portfolio. The RMSE provides a measure

for the size of the model errors when explaining the di�erent portfolios' average

observed excess returns. A second goodness of �t measure relates the variation of

the pricing errors to the overall observed variation

R2 = 1 - 
Var(\BbbE T [R

e
j ] - \^Re

j)

Var(\BbbE T [Re
j ])

(3.18)

The smaller the fraction, the higher the R2 value, the better the ability of the model

to explain the observed excess return variation.2

2As Lewellen et al. (2010) point out, one should avoid drawing conclusions based on these R2

values alone. By simulating many unrelated factor series I �nd that it is likely to receive comparable
and larger R2 values by chance for all models.
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Time Structure of the SIPP Panles
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Figure 3.2: This graph depicts the time structure of the nine SIPP panels. Panels are used
as natural reference grouping blocks. Within each block income changes are calculated for both
representative investors. Observations for the same time period from di�erent panels are then
averaged. The observation gap between March and September 2000 is excluded from the estimation.

3.3 Data Description

Individual income data is taken from the Survey of Income and Program Participa-

tion3 (SIPP) of the U.S. Census Bureau. It is chosen over other popular data sets

(Panel Study of Income Dynamics or the Current Population Survey) as it provides

income data on a monthly frequency. The SIPP consists of nine sequential, nation-

ally representative panels. Each panel records the labor income of households and

adult individuals within each household. The time series cover a period of nearly

23 years. The �rst panel starts in October 1987 and the last observations are from

August 2010. There is a short time period of six months where no data is available

between March and September 2000, due to a lack of funds. Figure 3.2 again depicts

the time structure of the SIPP panels.

Cross-sectionally, the panels vary in size and contain the income of around 30,000

to 100,000 adults. The sample of households changes between the di�erent panels

which makes the linking of individual income series between panels impossible. The

panels are used as natural blocks within which individuals are sorted by their recent

3www.census.gov/sipp
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Income Index Over Last Two Recessions
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Figure 3.3: The income index shows the hypothetical income developments of two investors that
start with an income of 1000 following the observation gap in September 2000. The changes of their
income are equal to the calculated representative agents' income changes for q = 0.12. Recession
periods are indicated as blue shaded areas.

income development. Individuals that are on an upwards path are considered for the

group of investors who are above their reference level, individuals on a downward

path are considered for the group of investors who are below their reference level.

For each group the highest ranking q quantile is chosen. The higher the quantile,

the further away the investors presumably are from their reference level, but at the

same time the fewer observations are available to form the representative investor.

The formation creates a trend so the income series are de-trended. All panels feature

overlaps with others, so that there are no observation gaps between panels. Income

changes can be computed for both groups of investors for each month. The resulting

income growth series is depicted as an income index in Figure 3.3. The index shows

the hypothetical income developments of two investors that start with an income of

1000 following the observation gap in September 2000. The changes of their income

are equal to the calculated representative agents' income changes for a ranking

quantile of q = 0.12. Descriptive statistics for the income growth series can be

found in the left panel of Table 3.1.

The Reference Group Model is evaluated on the returns of 25 equally-weighted

and value-weighted portfolios. The portfolios are constructed by sorting assets ac-
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Descriptive Statistics � Income Growth and Factors

Table 3.1: The left panel of this table presents descriptive statistics for the generated monthly
income growth series where yA is the time series of investor above their reference level and yB is
the time series for investors below their reference level. Investor groups are formed with respect to
di�erent quantiles q. The right panel presents descriptive statistics for the factors of the benchmark
models. The lower panel displays the correlations between all time series with q = 0.12. The sample
period is November 1987 to August 2010 excluding a six month gap from April to September 2000.

Time Series Means and Variances

\bfitq \bfDelta \bfity \bfitA \bfitsigma \bfDelta \bfity \bfitA \bfDelta \bfity \bfitB \bfitsigma \bfDelta \bfity \bfitB Factors \bfitx \=\bfitx \bfitsigma \bfitx 

0.10 0.9996 0.0129 1.0023 0.0011 \bfitS \bfitM \bfitB 0.2718 9.7013

0.12 0.9992 0.0107 1.0023 0.0011 \bfitH \bfitM \bfitL 0.1918 9.3665

0.14 0.9991 0.0093 1.0022 0.0011 \bfitR \bfitm 0.5341 19.4243

0.16 0.9987 0.0082 1.0022 0.0012 \bfDelta \bfitc 1.0043 0.0000

0.18 0.9987 0.0073 1.0022 0.0012 \bfDelta \bfity 1.0021 0.0000

0.20 0.9989 0.0066 1.0023 0.0012

Time Series Correlations

\bfitS \bfitM \bfitB \bfitH \bfitM \bfitL \bfitR \bfitm \bfDelta \bfitc \bfDelta \bfity \bfDelta \bfity \bfitA 

\bfitH \bfitM \bfitL -0.23

\bfitR \bfitm 0.21 -0.24

\bfDelta \bfitc 0.18 -0.06 0.14

\bfDelta \bfity 0.04 -0.06 0.11 0.11

\bfDelta \bfity \bfitA 0.07 -0.02 0.09 0.10 0.01

\bfDelta \bfity \bfitB 0.08 -0.09 0.08 0.14 0.10 0.47
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Monthly Average Fama-French Portfolio Excess Returns

Table 3.2: This table presents average observed monthly excess returns for the 25 Fama-French
portfolios between November 1987 and August 2010 excluding the six month gap from April to
September 2000. Assets are sorted into portfolios according to their size and book-to-market value.
This sorting algorithm creates the large return variation displayed below. The left panel lists the
average monthly excess returns for the value-weighted portfolios, the right panel lists the average
monthly excess returns for the equally-weighted portfolios. The last row displays the average
monthly equity premium that an investor who invested equally into all portfolios in 1987 would
have earned by 2010. All values are in percent per month.

Value-Weighted Excess Returns Equally-Weighted Excess Returns

Book
Market

Book
Market

Low High Low High

Size

Small 0.18 0.88 0.89 1.00 1.10

Size

Small 0.45 1.01 1.10 1.10 1.48

0.56 0.73 0.93 0.81 0.85 0.53 0.76 0.99 0.81 0.88

0.62 0.70 0.73 0.70 0.99 0.64 0.72 0.76 0.77 1.07

0.80 0.65 0.58 0.74 0.72 0.77 0.67 0.64 0.74 0.74

Large 0.55 0.57 0.47 0.35 0.52 Large 0.55 0.64 0.56 0.51 0.67

Average 0.71 Average 0.78

cording to their market capitalization (size) and their book-to-market ratio (value).

Table 3.2 provides an overview of the large dispersion in returns that is created by

this sorting procedure. The average excess-return an investor would earn over the

risk-free rate by investing in these portfolios is a monthly 0.71% and 0.78% respec-

tively. The homepage of Kenneth R. French provides time series of these portfolios

for the US stock market, alongside time series for the Fama-French Factors (Rm,

SMB and HML) and the one-month treasury bill data used to compute excess re-

turns.4 The data for aggregate consumption and income growth can be downloaded

from the homepage of the Federal Reserve Bank of St. Louis.5 Descriptive statistics

for all factors can be found in the right panel of Table 3.1.

4www.dartmouth.edu/~kfrench
5www.stlouisfed.org
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3.4 Results and Discussion

3.4.1 GMM Estimation Results

GMM estimation results based on moment conditions (3.10) and (3.8) are reported

in Table 3.3. Listed are �rst and second stage GMM estimates for the Reference

Group Model (RGM) as well as several benchmark models. p-values are reported in

parenthesis. For the formation of the representative agents, investors with q = 0.12

best (worst) income developments are used. As long as a q of 0.2 or lower is chosen,

estimation results are stable. A more detailed discussion of the choice of q can be

found in section 3.4.2.

The Reference Group Model (RGM) delivers the lowest unexplained equity pre-

mium estimate \^\alpha of all considered models. It is a less than half of the monthly

average excess return implied by the test assets with an average unexplained excess

return of 0.35% per month. The risk aversion parameter estimate \^\gamma of around ten

borders on realistic values. Time preference parameter estimates \^\beta of 0.5 to 0.6 are

extremely low. However, these values are in line with prospect theory when investors

lack self-control and engage in time-inconsistent discounting. The loss-aversion pa-

rameter estimate \^k is negative with values of around -2. The negativity implies that

investors below their reference level act risk-seeking. The value of <  - 1 implies

loss aversion. Both are in line with prospect theory. Estimates stay similar in the

second stage estimation. Comparing the estimates of the value-weighted and the

equally-weighted test portfolios also reveals no striking di�erences.

The estimates of the alternative models are greatly a�ected by the inclusion of

the unexplained equity premium parameter \alpha . For the Capital Asset Pricing Model

(CAPM) and the Fama-French Model (FF), the estimates for the market excess

return Rm have the opposite sign to what is expected. This seems to be o�set by

an overestimated average equity premium \^\alpha . The values of \^\alpha = 1.06\% and 1.46\%

per month respectively are far above the observed average equity premium of 0.71%.

The Consumption Based Model (CBM) and the Income CBM (I-CBM) estimates for

the unexplained equity premium are more reasonable. Additionally, the parameter
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GMM Estimation Results

Table 3.3: This table presents GMM estimation results for the �ve di�erent stochastic discount
factor speci�cations. The sample period is 1987-2010. Test assets are the 25 value-weighted Fama-
French portfolios in the �rst panel and the 25 equally-weighted Fama-French portfolios in the
second panel. Equations (3.10) and (3.8) are used as moment conditions. First stage estimates use
an identity matrix as weighting matrix. Second stage estimates are computed using an estimate for
the optimal weighting matrix to deliver more e�cient parameter estimates. p-values are reported
in parentheses. J-test statistics are based on second stage estimates.

Value-Weighted Portfolios

Model Stage \^\bfitbeta \^\bfitgamma \^\bfitk \bfitR \bfitm \bfitS \bfitM \bfitB \bfitH \bfitM \bfitL \^\bfitalpha \bfitJ RMSE \bfitR \bftwo 

RGM 1st 0.62 10.31 -1.91 0.35 26.78 0.178 0.268
(0.02) (0.04) (0.01) (0.22) (0.06)

2nd 0.53 12.84 -1.96 0.44
(0.00) (0.00) (0.00) (0.03)

I-CBM 1st 0.96 -13.64 0.75 31.94 0.207 0.009
(0.00) (0.91) (0.06) (0.10)

2nd 0.92 -29.24 0.98
(0.00) (0.41) (0.00)

CBM 1st 1.12 28.91 0.59 31.96 0.204 0.039
(0.00) (0.71) (0.10) (0.10)

2nd 1.21 48.05 0.91
(0.00) (0.15) (0.020)

CAPM 1st 1.00 0.02 1.06 31.01 0.203 0.050
(0.00) (0.66) (0.14) (0.12)

2nd 0.99 0.03 1.34
(0.00) (0.05) (0.00)

FF 1st 1.00 0.05 -0.04 -0.01 1.46 49.30 0.150 0.476
(0.00) (0.04) (0.09) (0.62) (0.00) (0.00)

2nd 0.99 0.08 -0.05 0.02 1.88
(0.00) (0.00) (0.01) (0.38) (0.00)

Equally-Weighted Portfolios

Model Stage \^\bfitbeta \^\bfitgamma \^\bfitk \bfitR \bfitm \bfitS \bfitM \bfitB \bfitH \bfitM \bfitL \^\bfitalpha \bfitJ RMSE \bfitR \bftwo 

RGM 1st 0.58 9.97 -2.68 0.66 29.73 0.177 0.404
(0.00) (0.02) (0.01) (0.18) (0.13)

2nd 0.49 12.17 -2.74 0.67
(0.00) (0.00) (0.00) (0.00)

I-CBM 1st 0.96 -16.88 0.84 36.06 0.227 0.020
(0.00) (0.87) (0.03) (0.04)

2nd 0.88 -43.06 0.92
(0.00) (0.11) (0.00)

CBM 1st 1.23 57.48 0.50 36.32 0.222 0.070
(0.00) (0.47) (0.29) (0.04)

2nd 1.36 86.11 0.77
(0.00) (0.01) (0.00)

CAPM 1st 1.00 0.03 1.47 36.96 0.211 0.157
(0.00) (0.28) (0.02) (0.03)

2nd 1.00 0.03 1.43
(0.00) (0.03) (0.00)

FF 1st 1.00 0.05 -0.04 -0.01 1.62 76.16 0.148 0.585
(0.00) (0.04) (0.11) (0.60) (0.00) (0.00)

2nd 1.00 0.05 -0.03 0.03 1.57
(0.00) (0.00) (0.14) (0.17) (0.00)
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estimates for time preference \^\beta and risk aversion \^\gamma for the CBM are closer to sensible

values, when \alpha is included in the estimation. In contrast, the results for the I-CBM

are defeating.

Table 3.4 provides a comparison between estimates based on the moment con-

ditions in equations (3.10) and (3.8) that include the unexplained equity premium

parameter \alpha and the more conventional moment conditions in equations (3.7) and

(3.8). The upper panel refers to the �rst set of conditions (Moment Conditions

A), the lower panel to the second one (Moment Conditions B). The inclusion of \alpha 

has virtually no impact on the Reference Group Model while all other models have

coe�cients that change drastically. In panel B, where no unexplained excess return

\alpha is estimated, the market excess return Rm parameter estimates have the expected

sign, the Consumption Based Model features the typical high risk aversion param-

eter estimate \^\gamma of around 110 and the I-CBM risk aversion parameter is positive in

the �rst stage estimation.

In both tables several model performance evaluation statistics are reported. In

most of them, the Reference Group Model performs almost as well as the bench-

mark Fama-French Model and better than the others. The root mean squared error

(RMSE) is always a little higher than that of the Fama-French Model. Estimated

on the basis of value-weighted portfolios, the Reference Group Model's R2 is about

half as high as the R2 of the Fama-French Model, while it is much closer for the

equally-weighted portfolios. All this is also re�ected in Figures 3.4 and 3.5. These

�gures depict plots of predicted mean excess returns against those that have been

realized for both sets of test portfolios. The more the portfolio returns align around

the 45-degree line, the better is the models' ability in pricing these portfolio returns.
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GMM Estimation Results � Moment Condition Comparison

Table 3.4: This table presents GMM estimation results for the �ve di�erent stochastic discount
factor speci�cations. The sample period is 1987-2010. Test assets are the 25 value-weighted Fama-
French portfolios. In the �rst panel equations (3.10) and (3.8) are used as moment conditions, in
the second panel equations (3.7) and (3.8) are used as moment conditions. First stage estimates use
an identity matrix as weighting matrix. Second stage estimates are computed using an estimate for
the optimal weighting matrix to deliver more e�cient parameter estimates. p-values are reported
in parentheses. J-test statistics are based on second stage estimates.

Moment Conditions A

Model Stage \^\bfitbeta \^\bfitgamma \^\bfitk \bfitR \bfitm \bfitS \bfitM \bfitB \bfitH \bfitM \bfitL \^\bfitalpha \bfitJ RMSE \bfitR \bftwo 

RGM 1st 0.62 10.31 -1.91 0.35 26.78 0.178 0.268
(0.02) (0.04) (0.01) (0.22) (0.06)

2nd 0.53 12.84 -1.96 0.44
(0.00) (0.00) (0.00) (0.03)

I-CBM 1st 0.96 -13.64 0.75 31.94 0.207 0.009
(0.00) (0.91) (0.06) (0.10)

2nd 0.92 -29.24 0.98
(0.00) (0.41) (0.00)

CBM 1st 1.12 28.91 0.59 31.96 0.204 0.039
(0.00) (0.71) (0.10) (0.10)

2nd 1.21 48.05 0.91
(0.00) (0.15) (0.020)

CAPM 1st 1.00 0.02 1.06 31.01 0.203 0.050
(0.00) (0.66) (0.14) (0.12)

2nd 0.99 0.03 1.34
(0.00) (0.05) (0.00)

FF 1st 1.00 0.05 -0.04 -0.01 1.46 49.30 0.150 0.476
(0.00) (0.04) (0.09) (0.62) (0.00) (0.00)

2nd 0.99 0.08 -0.05 0.02 1.88
(0.00) (0.00) (0.01) (0.38) (0.00)

Moment Conditions B

Model Stage \^\bfitbeta \^\bfitgamma \^\bfitk \bfitR \bfitm \bfitS \bfitM \bfitB \bfitH \bfitM \bfitL \bfitJ RMSE \bfitR \bftwo 

RGM 1st 0.53 12.38 -1.47 36.22 0.196 0.119
(0.01) (0.00) (0.00) (0.02)

2nd 0.55 11.96 -1.56
(0.00) (0.00) (0.00)

I-CBM 1st 1.04 49.60 55.41 0.643 -0.394
(0.00) (0.13) (0.00)

2nd 0.95 -18.76
(0.00) (0.60)

CBM 1st 1.39 106.15 37.21 0.233 -0.251
(0.00) (0.10) (0.04)

2nd 1.43 113.69
(0.00) (0.00)

CAPM 1st 1.00 -0.03 42.45 0.245 -0.388
(0.00) (0.00) (0.01)

2nd 1.00 -0.04
(0.00) (0.00)

FF 1st 1.00 -0.03 -0.03 -0.05 35.36 0.183 0.225
(0.00) (0.16) (0.33) (0.15) (0.05)

2nd 0.99 -0.03 -0.01 -0.03
(0.00) (0.00) (0.22) (0.00)
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Model Comparison � Goodness of Fit (Value-Weighted Portfolios)

Reference Group Model Income-Consumption Based Model

11

12 13

14

15

21

22

23

24
25

31

32
3334

35

41

42

43

4445

51
52

53

54

55

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

R
ea

liz
ed

 M
ea

n 
R

et
ur

ns
 in

 %
11

1213

14

15

21

22

23

24
25

31

32
3334

35

41

42

43

4445

51
52

53

54

55

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Consumption Based Model Capital Asset Pricing Model Fama-French Three-Factor Model

11

1213

14

15

21

22

23

24
25

31

32
3334

35

41

42

43

4445

51
52

53

54

55

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

R
ea

liz
ed

 M
ea

n 
R

et
ur

ns
 in

 %

11

12 13

14

15

21

22

23

24
25

31

32
3334

35

41

42

43

4445

51
52

53

54

55

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Predicted Mean Returns in %

11

12 13

14

15

21

22

23

24
25

31

32
3334

35

41

42

43

4445

51
52

53

54

55

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Figure 3.4: This �gure depicts realized and predicted mean excess returns for the 25 value-weighted Fama-French portfolios in % per month. The
plots allow for an assessment of the goodness of �t for each of the di�erent model speci�cations. The portfolio points are labeled according to their
position in the book-to-market sorting (�rst digit, low to high) and their size (second digit, small to big). The closer the portfolios align around
the 45-degree line, the better are the average excess return predictions of that model.
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Figure 3.5: This �gure depicts realized and predicted mean excess returns for the 25 equally-weighted Fama-French portfolios in % per month.
The plots allow for an assessment of the goodness of �t for each of the di�erent model speci�cations. The portfolio points are labeled according
to their position in the book-to-market sorting (�rst digit, low to high) and their size (second digit, small to big). The closer the portfolios align
around the 45-degree line, the better are the average excess return predictions of that model.
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Only the Reference Group Model and the Fama-French Model can generate some

of the necessary return variation, while the Capital Asset Pricing Model and the

(Income-) Consumption Based Model predict nearly the same return for each port-

folio. The premium that is earned by value portfolios cannot be explained by these

traditional models. Allowing for risk-seeking behavior generates enough variation

to explain a larger fraction of the dispersion in returns than the other theory-driven

alternatives. An economic intuition for this is that �rms with a small book value,

relative to their market value, might be more di�cult to evaluate, as fewer tangible

assets are available. Thus, they may be more prone to misevaluation by investors

that overestimate their personal ability or misinterpret private information signals.

3.4.2 Robustness

All above Reference Group Model estimates are produced with an investor group

cuto� quantile of q = 0.12. Only investors that are among the q investors with

the steepest income growth paths are used in the construction of representative

agent A (above). A high group cuto� quantile q ensures that the assumption of

this group of people to be representative for individuals above their reference level

can be justi�ed. Similarly, only those investors among the q investors with the

steepest descending income paths are used in the construction of representative

agent B (below). Figure 3.6 displays the impact, that the choice of the group cuto�

quantile q has on the di�erent model parameter estimates. The upper two graphs

display the estimated values for the loss-aversion parameter \^k for di�erent quantiles

q alongside the 0.95 con�dence interval. The left column displays the estimates for

the value-weighted test portfolios, the right column displays the estimates for the

equally-weighted test portfolios. The middle and lower rows depict the same for the

unexplained equity premium estimates \^\alpha and the risk-aversion parameter estimates

\^\gamma . The results indicate that estimates are relatively robust to the quantile selection.

Risk-aversion and loss-aversion estimates stay signi�cant throughout the di�erent

group size speci�cations. The unexplained equity premium \^\alpha stays insigni�cant. The

level of all estimates also changes only slightly. In the data, many individuals do

not report any income changes throughout a panel. So when using a total of 40% of



CHAPTER 3 � REFERENCE-DEPENDENT HETEROGENEOUS AGENTS 66

Robustness � Estimates are Stable for Di�erent Group Quantiles
Value-Weighted Portfolio Estimates Equally-Weighted Portfolio Estimates
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Figure 3.6: These graphs display GMM estimates for the key model parameters: the loss-aversion
coe�cient k, the unexplained average equity premium \alpha and the risk aversion coe�cient \gamma . Es-
timates are repeatedly computed for di�erent values of the group cuto� quantile q. The left row
depicts results for the 25 value-weighted Fama-French portfolios, the right row depicts results for
the 25 equally-weighted Fama-French portfolios. 95\% con�dence intervals are indicated as gray
areas.
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all individuals' income developments in the representative agent construction (when

q = 0.20) most of the income change information available in the data is exploited.

3.5 Concluding Remarks

Being biased can be subtly manipulative. So subtle that one might not even notice

the in�uence on one's decisions. Where individuals are located in relation to a

reference level can determine the biases that in�uence their behavior. This can

sometimes be seen even more clearly when looking at examples that are far removed

from questions of personal �nance. Imagine that an individual intends to loose

weight. In such a case people will have a target "reference" weight, a weight that

they feel they should be able to reach � a weight they will be happy with. A

commonly observed pattern is that individuals still tend to indulge in things that

are wonderful right now but will have to be paid for later. In the case of loosing

weight, this means eating that nice meal or watching TV instead of working out.

Self-control is di�cult. And it is closely tied to self-deception: People tend to

believe, that they are going to change self-indulgent behavior in the future. But if

past behavior is any indication, this may just be a case of overcon�dence in future

ability to resist temptations. To the individual, the behavior seems perfectly rational

and it can see itself reaching its goal in the future. The individual is truly convinced

of its perceived future ability to exercise self-control. To an outside observer, the

same behavior appears to be extremely risk-seeking. The individual relies on an

unlikely future commitment in order to make progress.

In experimental settings, evidence for psychological biases that in�uence individ-

uals' decisions is plentiful. This study presents empirical evidence for the e�ect that

psychological biases have on asset prices in a non-experimental setting. I propose a

simple identi�cation strategy based on individuals' income development that enables

me to estimate the curvature of the investors' utility function in relation to their

reference level. This allows for a test of the hypothesis that investors below their

reference level act risk-seeking. Estimation results suggest that this is the case.

Theory implies that risk-seeking investors overestimate their ability and overem-
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phasize private information signals. Because the behavior is shared by a group of

agents, asset prices are in�uenced. In the cross-sections of returns that I consider,

assets are asymmetrically a�ected. When objective measures are less available (low

book-to-market value), mispricings have a more pronounced e�ect. Allowing for

psychological biases to a�ect asset prices, I am able to explain the cross-sectional

variation in returns with a plausible risk aversion coe�cient of ten. This is a vast

improvement over values implied by purely rational models. Additionally, the model

in this study can explain over 50% of the average equity premium � the largest value

amongst all considered models. Besides providing evidence for risk-seeking behavior

below the reference level, model parameter estimates are overall more plausible and

model predictions more accurate than those of the purely rational alternatives.

Prospect theory is geared towards experimental research. For non-experimental

empirical applications it is nonetheless a very useful generalization of many di�erent

psychological factors that in�uence decisions under risk. It facilitates a systematic

categorization of psychological dispositions and resulting biases. And it provides

predictions about the in�uence of these biases on certain decisions. Since these

dispositions are so well documented, many recent empirical studies have adapted

existing models to accommodate for those biases that are relevant to these models'

application. Rather than trying to �t their model into a prospect theory framework,

prospect theory tools are instead used to enhance existing theories and methodolo-

gies. It is still too early to draw any de�nite conclusions, but this strategy promises

to be fruitful.



Chapter 4

A Cross-Country Analysis of

Unemployment and Bonds with

Long-Memory Relations\ast 

Abstract

We analyze the relationship between unemployment rate changes and government
bond yields during and after the most recent �nancial crisis across nine industrialized
countries. The study is conducted on a weekly basis and we therefore nowcast
unemployment data, which are only available once a month, on a weekly frequency
using Google search query data. In order to account for the time series' long-memory
components during the �rst-stage nowcasting and the second-stage modeling, we
draw on Corsi's (2009) heterogeneous autoregressive time series model. In particular,
we adapt this idea to a setting of mixed-frequency nowcasting. Our results indicate
that Google searches greatly increase the nowcasting accuracy of unemployment rate
changes. The impact of an idiosyncratic rise in unemployment on bond yields turns
out to be positive for European countries while it is negative for the United States
and Australia. The speed of the response also varies. Not unexpectedly, bond yields
do not have an impact on unemployment. Our �ndings have interesting implications
for the way shocks are absorbed in economic systems that di�er, in particular, with
respect to the central bank's core tasks.

\ast Chapter 4 is based on the paper �A Cross-Country Analysis of Unemployment and Bonds
with Long-Memory Relations� by Dimp� and Langen (2015). Financial support from the German
Research Foundation (DFG) is gratefully acknowledged.
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4.1 Introduction

Government bonds are by no means risk-free investments. In the aftermath of the

�nancial crisis investors demanded considerable compensation for taking the risk

of owning government bonds from nearly insolvent countries like Greece, Spain or

Portugal. Economic theory suggests that a combination of a high level of govern-

ment debt and low tax revenue due to high unemployment rates may increase the

default risk of a country. Still, government bonds are a�ected by monetary policy

which could halt or even reverse the e�ect. Earlier studies on the relationship be-

tween government debt and unemployment rates did not �nd a clear-cut pattern

of interdependency. In particular, empirical studies are hampered by the fact that

unemployment rates and government bond yields are observed on di�erent frequen-

cies. Bonds are continuously traded while unemployment rates are only announced

once a month. The general solution is to align the data on a monthly frequency.

Decreasing the frequency of the bond data obviously entails a substantial loss of

information.

In this study, we examine the relationship between unemployment and govern-

ment bond yields on a weekly basis, that is on a frequency which is higher than the

publishing frequency of unemployment �gures. To this end, we describe a general

method to increase the resolution of a lower frequency time series when additional,

related high-frequency data are available. The method implies a nowcasting of the

low-frequency time series that feeds the supplementary data as a cascade of frequen-

cies into the nowcast. The cascade structure accounts for long-run components of

the higher frequency time series in a parsimonious way. We refer to this model as

M-HAR model as it combines methodologies from the literature on mixed-frequency

nowcasting (M; see, inter alia, Marcellino and Schumacher, 2010) and heterogeneous

autoregressions (HAR; in particular following Corsi, 2009). We use Google search

query data to increase the frequency of unemployment data from a monthly to a

weekly level. For that purpose, the principal component of various search queries for

information about unemployment is fed into the prediction model. In the process

of nowcasting unemployment based on weekly Google data and monthly unemploy-
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ment information, the M-HAR model can process both short-term and long-term

relations between these time series. This is important because an individual's be-

havior that is indicative of becoming unemployed in the future can be observed far

ahead of the date where the person actually becomes o�cially unemployed. In-

ternet searches that were conducted one or multiple weeks before are used for the

current unemployment nowcast. Therefore, our model can account for a general rise

in searches that took place already during last three months, while current search

intensity might be going down. We show that including Google search query data

greatly increases the nowcasting accuracy compared to a pure autoregressive model.

The resulting weekly unemployment time series is then used in a heterogeneous

vector-autoregression (HVAR) of unemployment changes and bond yields. For a

sample of seven European countries we consistently �nd that bond yields react pos-

itively to a rise in unemployment while for the United States and Australia this

e�ect is negative. In contrast, there is virtually no impact of shocks in bond prices

on unemployment.

Currently, the literature that directly analyzes the relationship between unem-

ployment and bond prices is scarce. A notable exception is Bayoumi et al. (1995)

who �nd that debt �nancing costs rise by nine basis points if unemployment rises

by one percentage point. Still, there is quite a number of event studies that investi-

gate how the announcement of unemployment �gures impacts on government bond

rates. Balduzzi et al. (2001) �nd that short-term (three-month T-bill, two-year note)

and long-term bonds (ten-year note) in the US react positively to a surprise rise in

jobless claims. Similarly, Fleming and Remolona (1999) report that employment

announcements are the macroeconomic announcements that have the greatest e�ect

on bond prices. In line with these �ndings, Afonso et al. (2011) document that the

structural level of unemployment has a negative long-run impact on the credit rating

of a country which may ultimately lead to rising re�nancing costs, i.e. higher bond

prices.

A possible explanation for why this kind of analysis is rare is a data issue.

Unemployment �gures and bond prices are not available at an identical frequency

and one faces the question how to suitably aggregate bond data to monthly levels.
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Recently, mixed data sampling (MIDAS) regression models (in particular Ghysels

et al., 2004) have become popular as a means to alleviate this problem. For example,

Ghysels et al. (2006) predict daily stock price volatility combining di�erent intraday

frequencies of returns. In this spirit, Marcellino and Schumacher (2010) combine

the virtue of MIDAS regressions with factor models to reduce the dimensionality in

macroeconomic models and to overcome the sampling frequency issue when now-

and forecasting macroeconomic variables.

Another challenge in modeling government bond data is the long-memory prop-

erty of this �nancial time series. Currently, there are two major ways to model

stationary time series with long-memory properties. First, there is the class of

ARFIMA (autoregressive fractionally integrated moving average) models. Sibbert-

sen et al. (2014) for example document that the bonds of France, Germany, Italy,

and Spain are highly persistent and are close to unit-root behavior during the �-

nancial crisis. A second way to account for this high persistence is the cascading

structure of heterogeneous autoregressive models as suggested by Corsi (2009). As

the model is readily implemented it is now frequently and successfully applied (see,

amongst others, Bauer and Vorkink, 2011; Dimp� and Jung, 2012; Tseng et al.,

2009). Chiriac and Voev (2011) compare the two methodologies and �nd a similar

performance of the ARFIMA and the HAR model.

The forecast of a low-frequency time series at a higher frequency is termed now-

casting. This is of particular interest in macroeconomic modeling where GDP and

other important economic indicators are only available on a quarterly or even yearly

basis and are generally provided with a substantial time lag. Factors that in�uence

the variable of interest are, however, available on a higher frequency and can be

used to provide a nowcast of the still unobserved variable. Giannone et al. (2008)

and Kuzin et al. (2011), for example, provide intra-quarter nowcasts of current GDP

growth rates. On an even longer horizon Navicke et al. (2014) nowcast the at-risk-

of-poverty rate in the EU which is only published with a delay of 2-3 years. This

publication lag is obviously too long for policy recommendations.

In order to nowcast unemployment rates in France, Germany, Italy and Portugal,

Barreira et al. (2013) draw on Google search query data. Google data have recently
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gained particular attention as they allow to forecast a broad range of (economic)

data. The ground-breaking work in this context is Ginsberg et al. (2009) who use

search query data to �nd early warning signs of an upcoming in�uenza epidemic.

The basic idea behind using Google search queries is to �nd a measure for the

relative importance of a subject for the individuals that are directly concerned.

Da et al. (2011) use this relation to predict stock price returns while Bank et al.

(2011) explain time-varying liquidity supply in the German stock market. Choi

and Varian (2012) were the �rst to use Google search query data in predicting

unemployment �gures. They �nd the addition of Google data particularly useful to

identify turning points in unemployment.

This study exploits both the advances in the literature on modeling long-memory

components and the literature on mixed-frequency nowcasting. Combining these

methodologies we can conduct an analysis of the relationship between unemployment

and government bond yields at a high-frequency. Changes in unemployment are

preceded by changes in relevant search activity several months earlier. Using the

information available in search activity data signi�cantly increases the nowcasting

accuracy of unemployment for each of the nine considered countries. The reaction

of government bond yields to a rise in unemployment is country-speci�c. In Europe,

government bond yields increase in reaction to a shock in unemployment. This

result is in line with economic theory which suggests that countries with higher

unemployment face increased insolvency risk. Government bond yields of Australia

and the United States decrease in reaction to a shock in unemployment. This might

be explained by a policy of more aggressive monetary interventions, as pursued in

particular by the US federal reserve system.

The remainder of this chapter is structured as follows. Section 4.2 introduces

the M-HAR method to nowcast unemployment and presents the heterogeneous VAR

that is used to investigate the relationship of bonds and unemployment. Section 4.3

describes the data and extensively discusses the intricacies of working with Google's

search volume data. Section 4.4 presents the empirical results and section 4.5 con-

cludes.



CHAPTER 4 � UNEMPLOYMENT AND BONDS 74

4.2 Methodology

4.2.1 Nowcasting with Long-Run Relations

The M-HAR model can produce nowcasts of a low-frequency series by drawing on

information from a related long-memory high-frequency series, where the timing of

important informative events is not obvious ex-ante. Consider the case of Google

searches and unemployment. How long does it take for an increased interest in un-

employment bene�ts due to economic distress to translate into actual unemployment

�gures? How far in advance do individuals know they might be laid o�? The rele-

vant time frame could span a single week (e.g. in a hire-and-�re state like Louisiana

in the US) or months (e.g. in Germany where the majority of workers have a three

months notice period). To capture the entire, possibly important time structure in

a vector-autoregression, a large number of lags is needed. Estimating such a model,

however, su�ers from the curse of dimensionality. In the M-HAR model this long lag

structure is replaced by a much more parsimonious heterogeneous frequency cascade.

Let yt+1 be the low-frequency time series for which a nowcast is needed. Assume

that yt+1 follows its own autoregressive structure of order p such that

yt+1 = \phi 
(y)
1 yt + \phi 

(y)
2 yt - 1 + . . .+ \phi (y)

p yt - p+1 + \varepsilon t

=

p\sum 
j=1

\phi 
(y)
j yt - j+1 + \varepsilon t, (4.1)

where \varepsilon t follows some distribution with �nite �rst and second moments. Now let

xt,i be a related higher frequency time series that can be used to produce nowcasts

of yt+1. Introducing a suitable structure of x into equation (4.1) results in

yt+1 =

q\sum 
j=1

\tau \sum 
i=1

\phi 
(x)
j,i xt - j+1,i + \nu t,i +

p\sum 
j=1

\phi 
(y)
j yt - j+1 + \varepsilon t, (4.2)

where \tau is the number of partitions of the interval [t, t + 1] and q is the number

of low-frequency lags of xt,i. In principle, the parameters in equation (4.2) could

be directly estimated. However, equation (4.2) potentially includes a large num-
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ber of lags (namely q \cdot \tau ) of the higher frequency series x, which might ultimately

render estimation infeasible. Instead let us replace the homogeneous autoregressive

structure of x with a parsimonious heterogeneous frequency cascade \BbbC (S) that cap-

tures the original autoregressive properties. S is a set of frequencies (e.g. weekly,

monthly, quarterly, ...) and \BbbC is the corresponding operator that aggregates x to

the respective frequencies in S. Replacing the �rst term on the right hand side of

equation (4.2) by this frequency cascade leads to

yt+1 = \BbbC (S)xt,i + \nu t,i +

p\sum 
j=1

\phi 
(y)
j yt - j+1 + \varepsilon t \forall i \in [1, \tau ]. (4.3)

In our application, unemployment data is available on a monthly basis while

Google search volume is available on a weekly basis. In order to nowcast the monthly

unemployment ut+1 we propose a frequency cascade structure of weekly data sup-

plied with monthly, quarterly and yearly aggregates to cover the long-memory prop-

erty of search query data:

ut+1 = cwg
(w)
t,i +cmg

(m)
t,i +cqg

(q)
t,i +cyg

(y)
t,i +\nu t,i+

p\sum 
j=1

\phi 
(u)
j ut - j+1+\varepsilon t \forall i \in [1, 4], (4.4)

where g
(w)
t,i is the weekly search volume series as provided by Google, and g

(m)
t,i , g

(q)
t,i

and g
(y)
t,i are series aggregated to monthly, quarterly and yearly averages, respectively.

If we wanted to cover a similar time span without using the frequency cascade, we

would have to include 12\times 4 = 48 lags of g
(w)
t,i . The higher frequency Google series

g
(w)
t,i has an additional amount of \tau = 4 observations for each time period t, allowing

for four consecutive nowcasts before observing ut+1:

\^ut+1,1 = cwg
(w)
t,1 + cmg

(m)
t,1 + cqg

(q)
t,1 + cyg

(y)
t,1 +

\sum p
j=1\phi 

(u)
j ut - j+1

\^ut+1,2 = cwg
(w)
t,2 + cmg

(m)
t,2 + cqg

(q)
t,2 + cyg

(y)
t,2 +

\sum p
j=1\phi 

(u)
j ut - j+1

\^ut+1,3 = cwg
(w)
t,3 + cmg

(m)
t,3 + cqg

(q)
t,3 + cyg

(y)
t,3 +

\sum p
j=1\phi 

(u)
j ut - j+1

\^ut+1,4 = cwg
(w)
t,4 + cmg

(m)
t,4 + cqg

(q)
t,4 + cyg

(y)
t,4 +

\sum p
j=1\phi 

(u)
j ut - j+1 . (4.5)
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The parameters ci and \phi 
(u)
j in equation system (4.5) are estimated using quasi max-

imum likelihood (QML).

4.2.2 Unemployment and Bonds � Heterogeneous VAR

In order to analyze the relationship between unemployment and government bonds

we draw on the well-established framework of vector autoregressive (VAR) models.

The VAR model is implemented on a weekly basis. The nowcasts of unemployment

based on the Google search volume data are matched with the quarterly observed

data to construct a weekly time series. We then implement a heterogeneous VAR

which accounts for past observations up to three years. Denote the weekly unem-

ployment changes by \Delta ut and the weekly bond yields by bt . The set S includes the

frequencies of one week, one, three and six months, and one, two and three years.

The model reads as follows:

bt = a10 + \BbbC 11(S)bt - 1 + \BbbC 12(S)\Delta ut - 1 + \epsilon 1,t

\Delta ut = a20 + \BbbC 21(S)bt - 1 + \BbbC 22(S)\Delta ut - 1 + \epsilon 2,t. (4.6)

As we only have a reduced-form structure, the model can be estimated linewise with

OLS.

4.3 Data Description

4.3.1 Unemployment Rates and Bond Yields

We analyze the relationship between unemployment rate changes and bond yields

for a panel of nine countries: seven European countries (Austria, France, Germany,

Portugal, Spain, Switzerland, and the UK) and two non-European countries (Aus-

tralia and the US). All monthly unemployment series are obtained from Eurostat,1

except for Australia and Switzerland for which the series are available on the Aus-

1ec.europa.eu/eurostat
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tralian Bureau of Statistics2 and the Swiss Amstat3 websites, respectively. The time

period considered is January 2004 (when Google search volume data became avail-

able) until April 2014. Daily government bond series are obtained from Datastream.

Ten-year government bond yields are computed by subtracting the respective short-

term bond rates. For the European countries for which short-term bond data are

not available the EURIBOR is used instead.

Figure 4.1 depicts time series plots of the unemployment rates (upper graph)

and bond yields (lower graph) for all countries in the panel. At �rst glance we can

already observe some co-movement between rises in unemployment and bond yields.

Furthermore, the e�ect of the European debt crisis is clearly visible for Spain and

Portugal: both countries experienced a sharp increase in unemployment, starting

during the �nancial crisis in 2008, which is accompanied by a similar rise in long-term

government bond yields.

For the analysis, all unemployment series are seasonally adjusted and trans-

formed into �rst di�erences. Subsequently, they are tested for stationarity using

augmented Dickey-Fuller (DF) tests and are all found to be I(0). Following Camp-

bell et al. (1997) we calculate the yield spread using the theoretical cointegrating

vector (1, - 1) and perform a cointegration analysis. We generally �nd p-values that

reject the cointegration hypothesis. This �nding shows that the yield still has a

long-memory property which we will account for using the cascading lag structure

as outlined in section 4.2. The fact that the DF test fails to reject the null hypoth-

esis of a unit root might well be due to the lacking power of this test. Furthermore,

the literature on ARFIMA models documents that the DF test fails to distinguish

unit root behavior (with d = 1) from near unit root behavior (d < 1). We therefore

also calculate the fractional di�erence parameter d using the method of Geweke and

Porter-Hudak (1983) and �nd it to be close to one, depending on the bandwidth

selection criteria. Again no clear answer can be provided by this test. Ultimately,

we rely on the theoretical result in Campbell et al. (1997) and assume stationarity

2www.abs.gov.au
3www.amstat.ch
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Figure 4.1: The �gure presents time series plots of monthly unemployment rates per country
(upper graph) and daily ten-year government bond yields (lower graph). Both series are depicted
in percent, from January 2004 to April 2014.
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Descriptive Statistics � Unemployment Changes and Bond Yields

Table 4.1: The table provides the mean (denoted by \=x), the standard deviation \sigma , and the
skewness coe�cient \varsigma of monthly unemployment changes \Delta u and weekly ten-year government
bond yields b for the nine countries listed in the �rst column.

\bfDelta \bfitu \bfitsigma \bfDelta \bfitu \bfitvarsigma \bfDelta \bfitu \bfitb \bfitsigma \bfitb \bfitvarsigma \bfitb 

Austria 0.00 0.14 0.26 1.43 1.00 -0.50

France 0.01 0.08 -0.10 1.46 0.99 -0.69

Germany -0.04 0.09 0.18 1.11 0.90 -0.50

Portugal 0.06 0.18 0.14 3.69 3.50 0.86

Spain 0.11 0.24 1.04 2.56 1.58 0.07

Switzerland -0.01 0.07 0.78 -0.07 0.92 -0.64

UK 0.01 0.10 0.59 1.23 1.44 0.10

Australia 0.00 0.14 0.29 0.11 0.91 0.45

USA 0.00 0.18 0.57 1.96 1.15 -0.46

for the yield spreads while being aware that there is still a long-memory property

which we have to account for.

Table 4.1 provides descriptive statistics. On average, only Germany and Switzer-

land could reduce the unemployment rate between 2004 and 2014. In Austria,

Australia and the US, the unemployment rate remained roughly stable while it

grew slightly in France and in the UK. In Spain and Portugal the sharp rise in

unemployment after the �nancial crisis is re�ected by the higher monthly growth

rates: for Spain, this rate is ten times higher (on average) than for France or the UK.

Similarly, these two countries exhibit the highest weekly bond yields, followed by the

US and the UK. The lowest bond yields are observed for Australia and Switzerland;

in case of the latter it is even negative. We also �nd that unemployment changes

are generally left-skewed while the skewness of bond yields is not clearly drawn to

left or right.
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4.3.2 Google Search Volume

Ideally we would like to know how many people engage in preparations to �le for

unemployment and how far in advance of becoming unemployed they do so. With

this information we could easily nowcast unemployment �gures. This would also

solve the drawback that even month-end data, which correspond to the reporting

frequency, are not immediately available on the �rst day of the following month,

but only with a lag. Of course we do not have this exact data, but we can try

to approximate how many people prepare facing unemployment with the help of

Google search volume data (see Choi and Varian, 2012; Barreira et al., 2013).

The data is obtained from Google Trends,4 where normalized weekly search vol-

ume data is provided for any search query that surpasses a certain volume threshold.

These series are available starting in January 2004. The raw search volume data

is corrected for multiple searches from one IP address and normalized by the total

search volume at that time:

vs,t =
Vs,t

Vt

, (4.7)

where vs,t is the normalized search volume at time t for search query s, Vs,t is the

actual search volume, and Vt the total search volume. To better be able to compare

changes in search terms with di�erent volume levels, the normalized volumes vs,t are

rescaled by their maximum historical value. The normalized search volume index

gs,t is thus given as

gs,t =
vs,t

max
t

\{ vs,t\} 
\cdot 100. (4.8)

This preparation and pre-selection of the data by Google causes several complica-

tions. Firstly, the volume threshold criterion restricts the set of keywords we can

use for our analysis. This is problematic especially for smaller countries. Secondly,

the rescaling of the normalized volume series vs,t by its historical maximum causes

the whole series to change when a new maximum occurs.

When working with Google's search data, it is vital to keep in mind what is

measured: The number of times a keyword is entered into the search engine. To

4www.google.com/trends
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make assumptions about the intentions that an individual had when she entered a

query, the choice of keywords is crucial. They need to be speci�c to the intention

and at best unique. However, most of them will also appear in other possibly related

or � worse � competing contexts. The famous prediction of in�uenza epidemics with

search query data by Ginsberg et al. (2009) is well-known to su�er from this keyword

ambiguity. Some symptoms like fever or headache are not speci�c to having the �u,

but occur in the course of numerous illnesses. Entering the keyword �fever� is, thus,

not necessarily related to the illness of interest. When a fever causing epidemic

unrelated to the �u spreads, the �u index rises erroneously.

Besides the choice of keywords, the context in which search volume data is used

to draw conclusions about intentions can favor or hinder the application. Search

queries are usually performed to acquire information on a speci�c topic. When the

topic is only of interest to individuals when they are in a certain situation, then we

can infer that changes in search volume indicate a higher amount of individuals in

that situation (being sick, being unemployed). Still, this only works if the situation

occurs rarely, so that individuals are not yet informed from previous experience and

do not need to search for information anymore. When an individual su�ers from �u

symptoms in the �u season, he might not search for information on it anymore. For

rare symptoms no such learning can occur.

These insights are very important for the application to unemployment. The con-

text is favorable to the application because when an individual faces unemployment

it is likely a rare event, unlike getting the �u. The situation is likely to be unfamiliar

and new information needs to be retrieved. To make the keywords we use as situa-

tionally speci�c as possible, we focus on the process of �ling for unemployment and

receiving unemployment bene�ts. We sort all keywords into four categories, each

linked to the search for information on the process of �ling for unemployment. These

categories guide the choice of keywords in the di�erent languages and countries and

ensure comparability. The category �Bene�ts� relates to queries about unemploy-

ment bene�ts while �Process or Agency� subsumes queries on how and where to �le

for unemployment. These two categories are very speci�c. The categories �Unem-

ployed� and �Unemployment� are more general and as such more prone to be used
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List of Search Terms and Descriptive Statistics

Table 4.2: The table presents the keywords used to extract Google search volume data and descriptive statistics thereof. Keywords marked with a
* account for possible misspelling. vrel is the relative average search volume normalized by the series denoted with vrel = 100. For example vrel = 10
means that the average search volume of that series is ten times lower than for the base series. \sigma is the standard deviation of the respective search
volume over time.

Keyword Categories

Country Bene�ts \bfitv \bfitr \bfite \bfitl \bfitsigma \bfDelta \bfitv Process or Agency \bfitv \bfitr \bfite \bfitl \bfitsigma \bfDelta \bfitv Unemployed \bfitv \bfitr \bfite \bfitl \bfitsigma \bfDelta \bfitv Unemployment \bfitv \bfitr \bfite \bfitl \bfitsigma \bfDelta \bfitv 

Austria ams 100 0.08 arbeitslos* 1 0.17

France allocation chômage* 14 0.28 au chômage* 14 0.21 chômage* 100 0.20
calcul chômage* 7 0.23

Germany arbeitslosengeld 61 0.10 hartz iv 89 0.21 arbeitslos* 29 0.11 arbeitslosigkeit* 39 0.10
arbeitslosengeld* 96 0.09 hartz iv* 100 0.20
arbeitslosengeld berechnung* 11 0.26

Portugal subsidio desemprego 35 0.17 desemprego 100 0.26
subsidio desemprego* 43 0.19

Spain subsidio desempleo* 8 0.13 inem* 100 0.21 en paro 8 0.22 paro 33 0.18

Switzerland arbeitslosengeld* 6 0.33 arbeitslosenkasse* 14 0.19 arbeitslos* 9 0.19 arbeitslosigkeit* 11 0.31
rav 100 0.16

UK jobseeker's allowance* 100 0.15 unemployed* 34 0.19 unemployment* 62 0.15
jobseeker's allowance rate* 2 0.34

Australia unemployment bene�ts* 38 0.10 unemployed* 27 0.16 unemployment* 100 0.15

USA unemployment bene�ts 6 0.23 �le for unemployment* 2 0.24 unemployed* 4 0.25 unemployment 100 0.21
unemployment bene�ts* 13 0.27 unemployment* 100
unemployment bene�ts rate* 2 0.28
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by individuals not faced with unemployment. Still they are very speci�c to the

context of unemployment. Out of these two categories, �Unemployed� is more likely

to be part of individuals' sentence queries like �I am unemployed�, while the cate-

gory �Unemployment� more likely captures general attention. Table 4.2 provides an

overview of the keywords used and the categories they represent. Queries marked

with a star (*) are combined queries of several similar words and include di�erent

(mis-)spellings. Not all categories are represented for each country due to limited

availability as a result of low search volume. We intentionally restrict ourselves to a

very precise set of queries closely related to unemployment. Other studies like Ask-

itas and Zimmermann (2009) and D'Amuri and Marcucci (2010) include di�erent

search terms that individuals who face unemployment might enter. The intention

behind these queries is not to seek information about receiving unemployment ben-

e�ts, but �nding employment. Such queries range from searches for �jobs� or names

of speci�c job search engines (like �indeed� or �job24�). We �nd that the volume of

these queries behaves di�erently in every country.

An example is presented in Figure 4.2. The graphs depict the �rst principal

component of changes in normalized search volume for queries related to jobs and

unemployment bene�ts. For the United States the sharp increase in search volume of

both series occurs almost at the same time during the crisis. For the United Kingdom

however this does not hold. Here, the sharpest increase in search volume for jobs is

observed years after the crisis. Searches for speci�c job websites have the additional

problem that �uctuations in popularity lead to changes in search volume which are

completely unrelated to unemployment. Moreover, the keywords would have to be

frequently adjusted as new websites emerge. In our sample, only unemployment-

related searches consistently occurred ahead of changes in unemployment for all

nine countries. A possible explanation is that job search related queries are not

necessarily speci�c to individuals in the situation of facing unemployment. They

can just as well be a sign of a growing job market. The series just happen to be

very similar for the US, which may be due to speci�cs of the social security system

coupled with a high pressure to �nd a new job quickly.
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Changes in Search Volume for "Jobs" and "Unemployment Bene�ts"
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Figure 4.2: The �gure presents time series plots illustrating the lagged co-movement of search
volume for the keywords �jobs� and �unemployment bene�ts�. The upper graph presents data for
searches conducted in the United States, the lower graph is UK data.
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All search queries listed in Table 4.2 are di�erent measures of the same underlying

quantity, namely impending unemployment. We perform a principal component

analysis to reduce the dimensionality of search volume data and produce a single

indicator time series. Before computing the principal components, each normalized

search volume series is smoothed and �rst di�erences are formed. These steps are

necessary to ensure that the variance-maximizing principal component analysis does

not simply pick the noisiest series as the most important variance contributor. To

evaluate the �t of the �rst identi�ed principal component with the search volume

data of the di�erent categories we compute the average correlation per category.

Overall, the principal component represents all categories well, i.e. a high correlation

is observed for all nine countries. The weakest relationship is found for the �Process�

category and the principal component for Austria where the correlation is still 0.457.

Figure 4.3 illustrates the results.

4.4 Results and Discussion

The analysis of the relation between changes in unemployment and government

bond yields is separated into two steps. In a �rst step we use weekly Google search

volume data to nowcast monthly unemployment changes on a weekly frequency em-

ploying the M-HAR method. In a second step we use the resulting higher frequency

unemployment series to analyze the relationship with government bond yields in a

heterogeneous VAR framework.

4.4.1 Nowcasting Unemployment � M-HAR Estimation

The M-HAR model requires the identi�cation of a suitable cascading structure. As

outlined in Subsection 4.2.1, the number of relevant lags might di�er across coun-

tries. Therefore, we use cross-correlations between unemployment changes and the

principal component of normalized search volume changes to determine an appropri-

ate structure. Figure 4.5 depicts cross-correlations at di�erent lags of search volume

changes for France and the United States. The search volume changes feature a high
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Correlation of Principal Components and Keyword Categories
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Figure 4.3: The �gure illustrates the correlation of the extracted principal component with the
search volume in the four categories �Bene�ts�, �Process�, �Unemployed� and �Unemployment� for
the di�erent countries.



CHAPTER 4 � UNEMPLOYMENT AND BONDS 87

Cross-Correlation Peak Size and Timing
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Figure 4.4: The �gure shows how many months h ahead of a change in unemployment, the correla-
tion with past search query data is highest, i.e. a scatter plot of h against maxh \{ cor(\Delta ut,\Delta gt - h)\} .

persistence as correlations change slowly between lags. One can observe that the

correlation peaks at di�erent lags: -2 months for the US, -5 months for France. The

strength of the correlation also varies. This may be yet another indicator that the

timing when people search for information about unemployment is country-speci�c.

Figure 4.4 provides an overview of the two key characteristics � time and strength

� of the cross-correlation functions for all nine countries in the panel. The scatter

plot depicts the maximum correlations between unemployment changes and search

volume changes alongside the lag at which these occur. The blue points mark the

two non-European countries, crisis countries are labeled by red squares, and the

remaining European countries are tagged by green triangles. Again, we observe

that there are large di�erences in the timing of the maximum correlation peak and

the size of the correlation. There also seems to be a pattern that the closer the timing

of changes in either time series, the higher is the correlation between them. This

should be intuitively clear since a larger distance in time allows for more unrelated

innovations to dilute the relation.
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Cross-Correlation Functions of Unemployment Changes and Principal Component
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Figure 4.5: The �gure presents the cross-correlation function of the current change in unemployment rates with di�erent leads and lags of the
principal component extracted from the search volume changes. The left graph depicts the situation for US data while the right graph presents
data from France. The blue vertical line denotes lag 0. The green dotted horizontal lines represent 95\% con�dence intervals.
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We use the M-HAR model based on equation (4.5) to produce four weekly now-

casts of unemployment each month. Figure 4.4 shows that the peak of the cross-

correlation for Austria occurs at a lag of eight months. This is the longest distance

observed, so a frequency cascade structure that covers one year should be able to

capture a su�cient amount of lags. The 48 weekly lags are represented in the

cascade by �ve frequency factors (week, month, three months, six months, year).

The bene�t of including the search volume frequency cascade in the estimation is

evaluated by comparing the nowcasts to a forecast based on a pure autoregressive

(AR) model of unemployment. The number of monthly lags of the autoregressive

component for unemployment in both models is chosen in a way to guarantee the

best model �t of the pure AR model. Selection criteria are forecasting performance,

lag signi�cance and BIC. The maximum of the optimal lag length p turns out to

be three. Lag length is determined for each country individually. Parameters are

estimated via QML. Table 4.3 summarizes the results.

The magnitude of the cascade coe�cient estimates, as well as their signi�cance,

closely mirrors the time at which the respective cross-correlation functions peak in

Figure 4.4. This result highlights that the cascade coe�cients pick up the infor-

mation occurring at these lags. Countries where the peak in the cross-correlation

function occurs less than four months ahead have insigni�cant year coe�cients in

the M-HAR estimation. For countries with a peak more than four months ahead the

year coe�cients are signi�cant. The pattern is more pronounced when the size of the

coe�cients is considered as well. The two exceptions are Portugal and the United

Kingdom. For Portugal the overall high variance of the parameter estimates might

indicate a data quality issue. The overall search volume for unemployment-related

topics is so low that many queries that are used for other countries are below the

Google-imposed threshold and thus unavailable. For the United Kingdom most coef-

�cients have relatively low p-values but the largest absolute values are still observed

before the four-months mark. The coe�cient estimates for Spain are particularly

large due to the big changes in unemployment during the �nancial and debt crises.

Mean squared forecasting error (MSE) and adjusted R2 are reported in the last

two columns of Table 4.3 to measure the bene�t of including the Google search vol-
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Nowcasting Unemployment � Estimation Results

Table 4.3: The model presents the coe�cient estimates for the model used to nowcast unemployment. p-values are given in parentheses. Model �t
is evaluated by the mean squared error (MSE) and the adjusted R2 in the last two columns. The �rst row of each country is the pure autoregressive
model, the third row is the M-HAR model. * (**) indicates that the reduction of the MSE is signi�cant on the 5% (1%) level.

Country \bfitphi 
(\bfitu )
\bfone \bfitphi 

(\bfitu )
\bftwo \bfitphi 

(\bfitu )
\bfthree \bfitc \bfitw \bfitc \bfitm \bfitc \bfitq \bfitc \bfith \bfitc \bfity \bfitsigma \bfitvarepsilon MSE \bfitR \bftwo 

Austria 0.28 -0.31 0.13 1.74 13.9
(0.00) (0.00) (0.00)

0.21 -0.37 0.03 0.00 -0.03 -0.66 0.75 0.13 1.57** 22.1
(0.00) (0.00) (0.96) (1.00) (0.96) (0.11) (0.00) (0.00)

France 0.39 0.17 0.07 0.55 23.9
(0.00) (0.00) (0.00)

0.25 0.11 0.06 0.11 -0.43 0.44 -0.10 0.07 0.47** 38.4
(0.00) (0.01) (0.70) (0.64) (0.00) (0.00) (0.02) (0.00)

Germany 0.53 0.24 0.07 0.43 32.9
(0.00) (0.00) (0.00)

0.47 0.21 0.30 -0.26 0.02 -0.03 0.05 0.06 0.41* 35.4
(0.00) (0.00) (0.05) (0.21) (0.87) (0.77) (0.16) (0.00)

Portugal 0.73 0.13 1.82 48.8
(0.00) (0.00)

0.61 -0.31 0.33 -0.17 0.26 0.05 0.13 1.67** 53.6
(0.00) (0.26) (0.38) (0.45) (0.14) (0.58) (0.00)
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Table 4.3: Nowcasting Unemployment � Estimation Results (cont.)

Country \bfitphi 
(\bfitu )
\bfone \bfitphi 

(\bfitu )
\bftwo \bfitphi 

(\bfitu )
\bfthree \bfitc \bfitw \bfitc \bfitm \bfitc \bfitq \bfitc \bfith \bfitc \bfity \bfitsigma \bfitvarepsilon MSE \bfitR \bftwo 

Spain 0.73 0.25 -0.07 0.12 1.36 75.0
(0.00) (0.00) (0.13) (0.00)

0.66 0.25 -0.07 1.38 -2.18 1.48 -0.71 0.13 0.11 1.25** 77.5
(0.00) (0.00) (0.17) (0.00) (0.00) (0.00) (0.03) (0.35) (0.00)

Switzerland 0.16 0.29 0.31 0.06 0.35 36.9
(0.00) (0.00) (0.00) (0.00)

-0.02 0.16 0.25 0.19 -0.29 0.28 -0.11 0.00 0.05 0.28** 48.9
(0.62) (0.00) (0.00) (0.04) (0.02) (0.00) (0.08) (0.95) (0.00)

UK 0.26 0.10 0.26 0.09 0.80 20.8
(0.00) (0.03) (0.00) (0.00)

0.17 0.05 0.18 -0.19 0.65 -0.31 -0.21 0.16 0.09 0.73** 28.6
(0.00) (0.33) (0.00) (0.38) (0.03) (0.11) (0.14) (0.01) (0.00)

Australia -0.16 0.14 2.00 2.5
(0.00) (0.00)

-0.26 -0.50 0.69 -0.49 0.51 0.04 0.13 1.74** 15.4
(0.00) (0.15) (0.15) (0.07) (0.01) (0.67) (0.00)

USA 0.15 0.34 0.15 0.16 2.49 23.7
(0.00) (0.00) (0.00) (0.00)

-0.13 0.04 -0.07 -0.24 0.36 -0.06 0.09 0.06 0.14 1.90** 41.9
(0.01) (0.42) (0.14) (0.31) (0.27) (0.78) (0.54) (0.33) (0.00)
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Scatter Plot MSE Scatter Plot \bfitR \bftwo 
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Figure 4.6: The �gure compares the model �t of the pure autoregressive forecast model (Naive) and the M-HAR model based on mean squared
error (left graph) and adjusted R2 (right graph). The dashed 45-degree line indicates the reference line for equal performance of the two models.
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ume frequency cascade in addition to a pure autoregressive model of unemployment.

Overall, we �nd a signi�cant reduction in MSE and a higher adjusted R2 for all coun-

tries.5 The degree of improvement, however, varies greatly. Figure 4.6 depicts the

changes as a scatter plot of MSE and R2 for the pure AR and the M-HAR model.

Interestingly, the largest improvements in both MSE and R2 can be observed for

the United States, even though none of the frequency cascade estimates are sta-

tistically signi�cant. Large improvements in both criteria can also be observed for

Australia. France and Switzerland, which already feature a low MSE in the pure

model, display a large increase in R2. For the solvent European countries the un-

employment forecasts based on the AR model result already in a comparatively low

MSE. Therefore, the inclusion of the search query data has no large impact. The R2

values indicate that while the search volume data does not greatly improve the av-

erage forecasting error in this case, it nevertheless helps explaining a larger fraction

of the total variation in unemployment. For the non-European countries and the

European countries hit by the solvency crisis the inclusion of search data distinctly

improves the prediction of unemployment changes by both decreasing the initially

high forecast error as well as explaining a larger part of total variation.

The plots in Figure 4.7 present a comparison of the M-HAR model and the

autoregressive model based forecasts during the crisis for the United States and

France. The vertical lines represent the observed changes in the o�cial unemploy-

ment �gures, while the solid line represents the nowcasts of the M-HAR model and

the dashed line is the AR-based nowcast. Due to the additional search volume data,

the M-HAR forecast can anticipate movements in unemployment much better than

the autoregressive model. For the United States the large changes during the crisis

cannot be inferred from its past changes alone, so the pure autoregressive model

forecasts deviate by a large margin from actual data, which results in a high MSE

for this model. The M-HAR forecast utilizes the increase in unemployment-related

search activity that takes place one month ahead (cp. Figure 4.5), improving the

forecast noticeably. But even for France, where the autoregressive model already

5Di�erences in MSE are tested for signi�cance using the Diebold-Mariano test (Diebold and
Mariano, 1995).
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AR and M-HAR Nowcasts
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Figure 4.7: The �gure shows a comparison of the unemployment change nowcasts based on the
pure autoregressive model (dotted line) to the one based on the M-HAR model (solid line). The
horizontal lines represent the actual changes. The left graph is for the US, the right graph for
France.

performs well, the inclusion of unemployment related search activity improves the

forecasts.

4.4.2 Unemployment and Bonds � Heterogeneous VAR Esti-

mation

To estimate the relationship between unemployment changes and bond yields we em-

ploy a heterogeneous VAR as described in equation (4.6) using the higher frequency

unemployment series provided by the M-HAR model. The frequency cascades used

in the heterogeneous VAR have to cover a longer time span than in the M-HAR

model in the previous subsection to account for the extreme long-memory feature

of the government bond yield time series (see also Diebold and Li, 2006). We �nd

that a period of three years captures a su�ciently long lag structure, such that the

impact of innovations is not permanent but slowly decreases over time. To cover this

lag structure we use seven heterogeneous AR-terms, i.e. two frequency terms more

than in the previously used cascade. Like in the standard VAR context, increasing

the number of parameters in the HVAR leads to larger variances of the estimates,
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Figure 4.8: The �gure illustrates the impact of the lag structure of unemployment rate changes
and bond yields on government bond yields. Signi�cance of the heterogeneous autoregressive
parameters is illustrated through fading blue where dark blue is a p-value < 0.001 and white is an
insigni�cant parameter with a p-value > 0.2.

which would in turn call for a parsimonious modeling strategy. Instead of using the

same frequency cascade for each country, we could use cascades that are tailored to

�t the individual countries best, i.e. leaving out insigni�cant frequencies or adding

additional ones where necessary. This decreases the variance of the remaining esti-

mates but it also leaves ample room for ambiguity. Instead, we opt for keeping the

estimation as general as possible and comparable across countries, thereby accepting

the fact that parameter estimates su�er from higher variance.

Figure 4.8 visualizes the estimation results of the bond equation, only displaying

signi�cant frequency estimates.6 The shading indicates the p-value of the param-

eter estimates on a scale from < 0.001 (blue) to > 0.2 (white). For Switzerland,

Spain, and the US we �nd a rather timely response of bond yields to unemployment

changes. For the remaining countries, it takes longer for the bond yields to react.

However, the impact seems stronger in the latter case where the largest values of

the estimates can be observed between the frequencies of six month and two years.

The order of magnitude of the majority of the insigni�cant estimates is considerably

lower than the reported values. Bond yield estimates are around one for the one

6Detailed estimation results are reported in the appendix.
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week frequency which is due to the high persistence of the time series. This e�ect is

countered by subsequent negative estimates on lower frequencies. The insigni�cant

estimates of the bond yields cascade structure are again small in magnitude, sim-

ilar to the insigni�cant unemployment cascade estimates. While for the impact of

unemployment a more country-speci�c pattern can be observed, the autoregressive

structure of the bond yields is rather similar across all countries.

Figure 4.9 provides impulse-response functions of bond yields to an idiosyncratic

shock of one standard deviation in unemployment for all countries. Contemporane-

ous e�ects are identi�ed via Cholesky decomposition. The ordering is not crucial

in the present context as the important in�uences are not contemporaneous but

lagged. The information contained in the impulse-response functions is condensed

in Figure 4.10. The scatter plot depicts the peaks of the impulse-response func-

tions and the lag at which they occur. The graph illustrates an interesting pattern.

Government bond yields of all European countries react positively to idiosyncratic

shocks in unemployment. This matches the intuition that a higher unemployment

rate increases future debt of the country and decreases tax income revenue. This

negatively impacts future solvency and increases the risk involved in holding long-

term government bonds. For the European crisis countries the impact peaks at a

much later stage, implying that the impact is much more persistent. This may be

due to di�erences in the local economic systems and the way shocks to unemploy-

ment can be absorbed quickly. The German labor market was arguably the most

�exible one during the crisis, which is re�ected in this graph as well. The bond

markets in the United States and Australia react di�erently to idiosyncratic shocks

in unemployment. Here, shocks to unemployment decrease government bond yields.

In the United States the shock is absorbed relatively quickly while the Australian

system adjusts more slowly. Di�erences in labor market e�ciency may serve as an

explanation.

The fact that the response of bond yields is negative may be an indication of

a di�erent monetary policy in the United States and Australia compared to that

of the European Union. The most likely explanation is that the European Central

Bank's core task �shall be to maintain price stability� (EU, 2012). Therefore, rising
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Impulse-Response Functions of Bond Yields to a Shock in
Unemployment
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Figure 4.9: The �gure presents the impulse-response functions of bond yields to a one standard
deviation shock in unemployment (solid line). 95% con�dence bounds (dotted lines) are based on
a resampling bootstrap.

unemployment could be interpreted solely as a deterioration of the country's future

solvency which might lead to a rising bond yield as in particular long-term re�nanc-

ing costs should rise. In contrast, the central mission of the Federal Reserve Board

in the United States entails the �pursuit of maximum employment, stable prices, and

moderate long-term interest rates�.7 Therefore the Fed might react immediately to

rising unemployment rates by lowering interest rates to stimulate public and private

investment. The excess supply of money might then lead to lower bond yields. The

same holds true for Australia where the Reserve Bank of Australia's core task is also

7www.federalreserve.gov/aboutthefed/mission.htm
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Scatter Plot of Impulse-Response Peak and Timing
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Figure 4.10: The �gure illustrates the timing and magnitude of the impulse-response of govern-
ment bond yields to an idiosyncratic shock in unemployment changes.

to �contribute to the stability of the currency, full employment, and the economic

prosperity�.8

The impact of idiosyncratic shocks in bond yields on unemployment changes is

negligible. Figure 4.11 presents the corresponding impulse-response functions. As

can be seen, the impact graphs lie close to zero for all nine countries. This result is

in line with economic reasoning. Interest rates might have an impact on both public

and private investment, which in turn determines the number of available jobs in

the long run. A direct impact has, to the best of our knowledge, never been derived.

8www.rba.gov.au/about-rba/index.html
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Impulse-Response Functions of Unemployment to a Shock in Bond
Yields

Austria France Germany

−0.1

0.0

0.1

0.2

0 20 40 60

−0.1

0.0

0.1

0.2

0 20 40 60

−0.1

0.0

0.1

0.2

0 20 40 60

Portugal Spain Switzerland

−0.1

0.0

0.1

0.2

0 20 40 60

−0.1

0.0

0.1

0.2

0 20 40 60

−0.1

0.0

0.1

0.2

0 20 40 60

UK Australia US

−0.1

0.0

0.1

0.2

0 20 40 60

−0.1

0.0

0.1

0.2

0 20 40 60

−0.1

0.0

0.1

0.2

0 20 40 60

Figure 4.11: The �gure presents the impulse-response functions of unemployment to a one stan-
dard deviation shock in bond yields (solid line). 95% con�dence bounds (dotted lines) are based
on a resampling bootstrap.
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4.5 Concluding Remarks

With this work we set out to investigate the relationship between government bond

yields and unemployment. Government-issued bonds are priced on the assumption

that the country as a whole will be able to pay the mortgage back in the future.

This ability is entirely determined by the labor force and unemployment is therefore

a great risk factor in this bet. Besides the short-run negative e�ects of unemploy-

ment, we show that at least in Europe, rising unemployment leads to an increase

in government bond yields, indicating that �nancing costs for the country rise. In

a worst-case scenario one might imagine that the country fails to re�nance mature

bonds because investors deem the risk as abundant, and require extremely high risk

compensation (as happened in Greece or Spain) or refrain from investing at all,

leading to a state bankruptcy. The current European sovereign debt crisis is such a

situation. And even if it seems obvious, the reported result has an important policy

implication: unemployment reduction has to be a major goal of government activity.

Reducing unemployment not only raises the tax basis and, thus, alleviates the debt

burden, but in the long run also leads to lower interest rates as the risk compensa-

tion requested by investors is reduced. A notable exception are the United States

for which the trust of investors in the country's ability to meet its debt obligations

is seemingly endless.

The investigation of the relationship between unemployment and bond yields

requires a suitable preparation of the time series because bond and unemployment

data are only available on di�erent frequencies. Our methodological contribution

consists of a proposition how to provide weekly data for unemployment using a

mixed-frequency heterogeneous autoregressive model. We show that to this end

Google search queries can successfully be used to nowcast unemployment changes.

The application of the M-HAR model is of course not limited to unemployment

nowcasting but can generally be applied to any context where a nowcast that employs

a highly persistent time series is needed.
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Appendix B

HVAR � Estimation Results

Table 4.4: The table reports coe�cient estimates for the HVAR model. DV marks the dependent variable bond yields b or unemployment changes
u. p-values are in parentheses.

Country DV \bfitc \bfitu \bfitw \bfitc \bfitu \bfitm \bfitc \bfitu \bfthree \bfitm \bfitc \bfitu \bfsix \bfitm \bfitc \bfitu \bfity \bfitc \bfitu \bftwo \bfity \bfitc \bfitu \bfthree \bfity \bfitc \bfitb \bfitw \bfitc \bfitb \bfitm \bfitc \bfitb \bfthree \bfitm \bfitc \bfitb \bfsix \bfitm \bfitc \bfitb \bfity \bfitc \bfitb \bftwo \bfity \bfitc \bfitb \bfthree \bfity 

Austria b 0.04 -0.25 0.01 0.79 1.20 0.85 0.15 1.14 -0.18 -0.02 -0.03 0.03 -0.12 0.16
(0.83) (0.28) (0.98) (0.12) (0.14) (0.49) (0.87) (0.00) (0.05) (0.77) (0.60) (0.54) (0.03) (0.04)

u 0.91 -0.27 0.01 0.34 -0.94 -0.87 0.42 0.02 -0.01 -0.01 0.01 0.01 0.05 -0.09
(0.00) (0.00) (0.94) (0.06) (0.00) (0.05) (0.21) (0.29) (0.77) (0.78) (0.51) (0.63) (0.02) (0.00)

France b -0.86 0.91 -0.91 0.00 4.17 2.82 2.37 1.06 -0.16 0.03 -0.17 -0.08 0.20 -0.03
(0.21) (0.31) (0.22) (1.00) (0.02) (0.02) (0.15) (0.00) (0.06) (0.72) (0.01) (0.34) (0.08) (0.69)

u 1.02 -0.10 -0.17 -0.01 0.46 0.06 -0.10 0.00 -0.01 0.01 -0.01 -0.02 0.03 -0.01
(0.00) (0.22) (0.02) (0.90) (0.01) (0.60) (0.52) (0.95) (0.27) (0.14) (0.04) (0.03) (0.00) (0.06)

Germany b -0.05 0.70 -0.67 0.19 1.68 1.25 1.20 1.10 -0.15 -0.01 -0.06 -0.04 0.10 -0.08
(0.91) (0.28) (0.25) (0.76) (0.08) (0.14) (0.53) (0.00) (0.09) (0.90) (0.38) (0.57) (0.16) (0.05)

u 0.89 0.03 -0.07 -0.03 -0.49 0.18 0.40 0.01 0.00 0.00 0.02 -0.02 -0.04 0.02
(0.00) (0.71) (0.37) (0.75) (0.00) (0.12) (0.13) (0.20) (0.82) (0.66) (0.03) (0.07) (0.00) (0.00)

Portugal b 0.03 0.11 -0.11 -0.38 -0.25 -2.07 4.42 1.00 -0.20 0.28 -0.07 -0.08 0.21 -0.21
(0.94) (0.88) (0.87) (0.59) (0.76) (0.26) (0.13) (0.00) (0.03) (0.02) (0.59) (0.42) (0.18) (0.10)

u 0.92 -0.08 0.05 -0.01 0.13 -0.37 -1.02 0.01 -0.01 0.01 0.00 0.01 0.03 -0.03
(0.00) (0.37) (0.58) (0.93) (0.24) (0.13) (0.01) (0.08) (0.35) (0.74) (0.78) (0.56) (0.20) (0.06)
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Table 4.4: HVAR � Estimation Results (cont.)

Country DV \bfitc \bfitu \bfitw \bfitc \bfitu \bfitm \bfitc \bfitu \bfthree \bfitm \bfitc \bfitu \bfsix \bfitm \bfitc \bfitu \bfity \bfitc \bfitu \bftwo \bfity \bfitc \bfitu \bfthree \bfity \bfitc \bfitb \bfitw \bfitc \bfitb \bfitm \bfitc \bfitb \bfthree \bfitm \bfitc \bfitb \bfsix \bfitm \bfitc \bfitb \bfity \bfitc \bfitb \bftwo \bfity \bfitc \bfitb \bfthree \bfity 

Spain b 0.97 -0.74 -0.12 -0.27 1.31 0.44 0.21 0.74 0.02 0.23 -0.26 -0.03 0.50 -0.23
(0.02) (0.20) (0.81) (0.57) (0.01) (0.37) (0.81) (0.00) (0.85) (0.07) (0.03) (0.81) (0.03) (0.21)

u 0.88 0.15 -0.17 0.14 -0.03 -0.24 0.04 0.03 -0.03 0.01 -0.01 0.04 -0.04 0.00
(0.00) (0.13) (0.05) (0.09) (0.66) (0.00) (0.78) (0.03) (0.12) (0.62) (0.51) (0.04) (0.25) (0.91)

Switzerland b 0.76 -1.13 0.69 1.09 0.61 2.89 -1.44 1.11 -0.18 -0.01 -0.10 0.04 0.17 0.02
(0.15) (0.11) (0.40) (0.29) (0.60) (0.00) (0.11) (0.00) (0.03) (0.86) (0.14) (0.55) (0.15) (0.78)

u 1.03 -0.26 0.22 0.04 -0.32 -0.13 0.11 0.01 0.00 -0.01 0.01 0.00 -0.03 0.01
(0.00) (0.00) (0.02) (0.77) (0.02) (0.26) (0.30) (0.36) (0.90) (0.42) (0.23) (0.52) (0.03) (0.60)

UK b -0.44 0.25 -0.10 1.65 -0.18 0.20 -3.59 1.01 0.01 -0.11 0.05 0.03 0.13 -0.12
(0.40) (0.72) (0.88) (0.04) (0.84) (0.81) (0.10) (0.00) (0.88) (0.15) (0.52) (0.67) (0.26) (0.20)

u 1.18 -0.36 0.04 0.00 -0.12 0.07 0.47 0.00 0.00 0.00 0.01 -0.02 -0.01 0.01
(0.00) (0.00) (0.54) (1.00) (0.22) (0.42) (0.05) (0.91) (0.90) (0.96) (0.16) (0.00) (0.60) (0.34)

Australia b -0.11 -0.22 0.94 -0.50 -2.60 3.71 -0.58 1.06 -0.12 0.07 0.04 -0.11 -0.09 0.13
(0.69) (0.58) (0.17) (0.63) (0.15) (0.08) (0.50) (0.00) (0.17) (0.41) (0.64) (0.14) (0.38) (0.27)

u 0.95 -0.45 0.22 -0.07 -0.41 0.23 -0.10 0.01 -0.01 0.01 0.00 -0.01 -0.03 0.01
(0.00) (0.00) (0.12) (0.76) (0.27) (0.61) (0.56) (0.60) (0.69) (0.49) (0.85) (0.50) (0.11) (0.72)

US b 0.13 -1.57 1.25 -0.08 0.23 0.40 1.08 0.97 -0.02 -0.02 0.00 0.05 -0.38 0.34
(0.77) (0.02) (0.23) (0.95) (0.80) (0.49) (0.18) (0.00) (0.85) (0.80) (0.97) (0.55) (0.14) (0.23)

u 1.03 -0.60 0.21 0.53 -0.40 -0.08 -0.02 -0.01 0.02 -0.01 0.00 0.02 0.01 -0.05
(0.00) (0.00) (0.11) (0.00) (0.00) (0.29) (0.82) (0.16) (0.12) (0.51) (0.71) (0.09) (0.87) (0.19)



Chapter 5

Conclusion

How do income risks and unemployment a�ect �nancial markets? The study answers

this question by looking at two sectors of �nancial markets. To that end, I analyze

two models that link personal income risk to asset returns and one model that

describes the impact of changes in unemployment on government bond yields.

Investigating how asset returns are a�ected, I examine how a purely rational

asset pricing model changes with the introduction of an income risk factor and I

describe how a behavioral model can be estimated using income risk as a basis

for reference level discrimination. The evidence presented in chapter 2 suggests that

income risk plays an important role in determining the risk premium di�erent classes

of portfolios have to pay in order to compensate for their exposure to the income

risk factor, i.e. the co-movement of the returns with the severity of the income risk.

The main contribution of chapter 2 is the development of a risk factor that captures

large idiosyncratic income risk. The risk factor builds on Constantinides and Du�e

(1996) who formulate a rational model for the e�ect of idiosyncratic income risk on

asset returns. In the construction of the risk factor, I account for the Krebs (2004)

critique by not relying on central moments of the income distribution for testable

restrictions. Instead, the factor measures by how much a large quantile is exceeded

on average. Finally, the income risk factor successfully prices a cross-section of

portfolio returns.
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Income risk also a�ects the investors' attitude towards risk. In the estimation

of the behavioral model in chapter 3, I �nd that investors above a certain reference

level feature plausible risk aversion, while investors below a certain reference level act

risk-seeking. The study contributes to the existing literature on behavioral �nance

by introducing methods from the literature on asset pricing with heterogeneous

agents. In that, it provides a test for the presence of behavioral e�ects using non-

experimental data. The strategy relies on sorting individuals by their recent income

development. If investors belong to an upper q quantile of individuals that has

recently experienced considerable positive income changes, the model permits that

they have a di�erent risk aversion than investors that belong to the lower q quantile.

Chapter 4 examines how the market for government bonds is a�ected by changes

in unemployment. We present evidence that bond yields respond to shocks in unem-

ployment in a country-speci�c manner. Concretely, bond yields respond positively

to rises in unemployment for European countries where the central bank may only

engage in monetary policies and negatively for the US and Australia, where the

central banks' core tasks also include economic goals. Varying response speeds hint

at di�erences in the e�ectiveness with which economies can absorb these changes.

Chapter 4 outlines a methodological contribution by describing how the frequency

cascade of heterogeneous autoregressive models can be used in a nowcasting context

to account for long lag structures in a parsimonious fashion. In the application of

our method we provide a detailed discussion of the use of Google search query data

in nowcasting.

All chapters conclude that income risks a�ect �nancial markets. The in�uence

of income risk on asset returns is exerted through a change in investor behavior

either as a result of additional risk exposure or through psychological biases. The

impact of unemployment changes on government bond yields is country-speci�c and

depends on the role of the central bank. Of course this list is incomplete and there

is likely more to be discovered about how income risks a�ect �nancial markets.

My exploration of three of these channels not only shows their importance but

also demonstrates their diversity. This certainly makes a completion of the list an

interesting agenda for future research.
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