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SUMMARY 

 

Messenger RNAs (mRNAs) are associated with a dynamic set of RNA-binding proteins as well as 

additional proteins whose interaction with the mRNA is bridged by protein-protein interactions. 

These interactions regulate every step of mRNA life cycle from transcription and processing in 

the nucleus to translation and decay in the cytoplasm. The last decade has seen the development 

of many new approaches to study mRNA-protein interactions that have greatly extended our 

knowledge of the mRNA-associated aspects of gene expression regulation. Affinity purification 

of RNA-binding proteins (RBPs) combined with the identification of co-purifying RNAs by 

DNA microarray analysis has shown that mRNAs that encode for proteins with related function 

or sub-cellular location are co-ordinately regulated by specific sets of RBPs (Gerber, Herschlag, 

and Brown 2004; Hogan et al. 2008a; Gerber et al. 2006; Hieronymus and Silver 2003). These 

findings suggest that RBPs play a central role in the post-transcriptional regulation of mRNA 

expression (Hogan et al. 2008a). Proteome-wide screens to identify RNA-protein interactions 

using high-density protein microarrays suggest the existence of novel RBPs among unexpected 

classes of proteins such as enzymes (Tsvetanova et al. 2010; Scherrer et al. 2010). Global analysis 

of mRNA-bound proteome by in vivo UV cross-linking combined with polyadenylated RNA 

purification and quantitative proteomic analysis of the captured proteins has enabled to compile a 

comprehensive list of RBPs in mammalian cells (Baltz et al. 2012; Castello et al. 2012). Methods 

also exist for the creation of a transcriptome-wide high-resolution map of RBP-binding sites 

(reviewed in Ascano et al. 2012). Due to methodological limitations, however, our knowledge of 

the protein composition of mRNPs assembled on distinct cellular mRNAs is very limited. We 

have therefore developed a single-step mRNP affinity purification method that is based on the 

capture of the mRNA component of in vivo-assembled mRNPs from the budding yeast 

Saccharomyces cerevisiae. In order to capture the mRNA of interest we make use of the high affinity 

interaction between the bacteriophage MS2 coat protein and its RNA binding site; integrated 

after the stop codon, MS2 stem-loops serve as an RNA affinity tag for mRNP capture (Haim et 

al. 2007). The protein composition of affinity purified mRNPs is analysed by quantitative 

proteomics. Collectively, our approach should provide an overall picture of the various 

interactions an mRNP is involved in during its life cycle and also reveal the abundance of specific 

interactions.  
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The analysis of the mRNA-bound proteome of two mRNAs encoding for glycolytic 

enzymes, PGK1 and ENO2, indicates that large mRNP subpopulations are engaged in mRNA 

translation and 5′→3′ exoribonucleolytic decay. The latter process seems to be accelerated for the 

analysed mRNAs due to the integration of the RNA tag. The analysis of an mRNA-like transcript 

composed of the RNA tag surrounded by 5′ and 3′ UTR sequences derived from endogenous 

genes revealed an mRNP protein composition largely similar to PGK1 and ENO2. This result 

suggests that the main determinant for recognizing a transcript as an mRNA is not the open 

reading frame but the 5′ and 3′ untranslated regions. The three analysed mRNA-bound 

proteomes contained besides proteins with a well established role in mRNA life cycle also 

multiple unexpected proteins. Our results point to a possible role for ribosome biogenesis 

factors, tRNA-modifying enzymes and some metabolic enzymes in mRNA biology and suggest  

co-translational supramolecular glycolytic enzyme complex formation.  

The established mRNP affinity purification method provides a starting point for further 

analysis of the protein composition of specific in vivo-assembled mRNPs in S. cerevisiae. 

Combining the method with UV cross-linking would enable to determine the proteins that 

directly interact with the mRNA of interest plus the binding sites of these proteins on the 

mRNA. In order to elucidate the molecular mechanisms that regulate the post-transcriptional fate 

of mRNA, future studies should aim at identifying the mRNA-associated proteome on a 

genome-wide scale as well as provide insight into the temporal dynamics of mRNA-protein 

interactions. 
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INTRODUCTION 

 

mRNP – the functional form of mRNA 
 

The physiological and developmental stages of a cell are the outcome of spatially and temporally 

coordinated gene expression. In eukaryotes, gene expression regulation occurs at multiple levels 

from transcription to post-translational protein modifications. In the centre of many of these 

control steps is mRNA. In order to be successfully translated, an mRNA has to undergo proper 

5' capping, splicing, 3' end processing and export. These steps do not only involve pre-mRNA 

modifications but also result in the loading of various factors on the transcript. An mRNA 

together with the associated proteins and non-coding RNAs comprises the messenger 

ribonucleoprotein particle (mRNP). The composition of an mRNP is highly dynamic. The 

changing repertoire of mRNA-interacting factors has a profound influence on the fate and 

function of the mRNA because these factors coordinate and couple the post-transcriptional gene 

expression events.  

The life cycle of an mRNP starts with transcription. As soon as the nascent transcript 

emerges from RNA polymerase II it is bound by RNA-binding proteins. Some RBPs participate 

in gene transcription by promoting elongation and preventing RNA-DNA hybrid formation. 

Other RBPs take part in pre-mRNA processing into 5′ capped, spliced and polyadenylated 

mature transcripts. The interplay between pre-mRNA processing, co-transcriptional mRNA 

export factor recruitment and nuclear mRNP quality control result in the formation of mature, 

export competent mRNPs that are subsequently transported through the nuclear pores to the 

cytoplasm. mRNP export is accompanied by mRNP remodelling which results in the exchange of 

many mRNP proteins. After export, mRNPs can be directly engaged in translation or they can be 

localized to distinct cellular regions. mRNP localization is often mediated by specific mRNA-

binding adaptor proteins that link mRNPs to motor proteins. Transcript-specific translational 

regulation, which, among other processes, is also necessary to prevent protein synthesis during 

mRNA localization, is exerted by RBPs.  Finally, mRNAs are degraded by ribonucleases in 

general cytoplasmic mRNA turnover pathways or in more specialized pathways relying on 

specific cis-acting sequence elements and sequence-specific trans-acting factors.  

Describing the life cycle of an mRNP, however, as a single linear pathway does not 

accurately reflect the reality. In fact, mRNPs are a part of a complex post-transcriptional gene 
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expression regulation system. The importance of post-transcriptional gene expression regulation 

in mRNP life cycle is emphasized by the highly variable correlation between mRNA and protein 

expression levels (Ghaemmaghami et al. 2003; Greenbaum et al. 2003). Hence, it is not possible 

to accurately predict protein abundance based on mRNA expression levels and vice versa. An 

emerging paradigm is the existence of extensive regulatory networks, where mRNAs encoding 

for proteins that are functionally related or localized in same sub-cellular compartments, are 

regulated in a coordinated way by distinct RBPs (reviewed in Keene and Tenenbaum 2002; 

Keene 2007). This concept is supported by evidence provided by several studies (Scherrer et al. 

2010; Gerber, Herschlag, and Brown 2004; Hieronymus and Silver 2003; Tsvetanova et al. 2010; 

Hogan et al. 2008a) and is perhaps best illustrates by the discovery that each of the five members 

of the Puf family of RBPs associates with a distinct set of functionally related mRNAs in the 

budding yeast Saccharomyces cerevisae  (Gerber, Herschlag, and Brown 2004).  

The following overview aims at giving an understanding of the life cycle of an mRNP in 

the context of a complex post-transcriptional regulatory network. In order to provide relevant 

background information for the experimental part of the thesis, which focuses on the protein 

composition analysis of affinity purified mRNPs from S. cerevisiae, mRNA-protein interactions 

involved in different steps of the mRNA life cycle will be discussed. Much of the current 

knowledge about mRNP biogenesis, export and cytoplasmic destiny is based on studies 

performed in S. cerevisiae. Therefore, this overview will focus mostly on this model organism but 

also refer to relevant findings in higher eukaryotes. In addition, experimental methods to study 

mRNA-protein complexes will be reviewed.  

 

 

RNA binding proteins at a glance 
 

RBPs recognize their targets via RNA-binding domains (RBDs). Taken the wide range of 

functions carried out by RBPs one might assume that an equally large number of protein 

structures are involved in RNA recognition. However, this does not appear to be the case. A 

large scale bioinformatics analysis has classified around 40 types of motifs as “non-catalytic” 

RBDs (Anantharaman, Koonin, and Aravind 2002). Some RBDs, such as the RNA-recognition 

motif (RRM), are found in hundreds of proteins within a species, whereas other RBDs can be 

present only in a single proteins (e.g. S6 and L30 ribosomal protein domains) or in proteins with 

a specific functions (e.g. cap-binding domain) (Anantharaman, Koonin, and Aravind 2002). The 

better studied RBDs include the above mentioned RRM plus the heterogeneous nuclear RNP K 

homology (KH) domain, the double-stranded RNA-binding domain (dsRBD), RGG (Arg-Gly-
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Gly) box, DEAD/DEAH box, zinc finger (ZnF), Pumilio/FBF (PUF or Pum-HD) domain and 

the Piwi/Argonaute/Zwiller (PAZ) domain (reviewed in Cléry, Blatter, and Allain 2008; Lunde, 

Moore, and Varani 2007; Auweter, Oberstrass, and Allain 2006). Rather than containing a single 

RBD, RBPs usually harbour multiple copies of a certain RBD or several different RBDs. The 

modular structure of RBPs confers a more specific and higher affinity binding to the cognate 

substrate and ultimately enables RBPs to recognize a wide variety of targets.  

Further functional diversity among RBPs is achieved by combining RBDs with other 

types of domains which can impart catalytic or protein-binding activities. For instance, both 

protein kinase R (PKR) and adenosine deminase 2 (ADAR2) contain two dsRBDs in the N-

terminus, but differ in their catalytic domains and thus in the cellular functions. PKR harbours a 

kinase domain (Dar, Dever, and Sicheri 2005; Lemaire et al. 2008; Meurs et al. 1990), whereas 

ADAR2 contains a deaminase domain catalyzing the conversion of adenosins to inosins (Bass 

2002; Macbeth et al. 2005). PKR activation by double-stranded viral RNA leads to translational 

shut-down, thereby inhibiting viral particle production. ADAR2, on the other hand, can 

modulate biological processes involving sequence- and structure-specific interactions with the 

RNA by changing the primary sequence of the RNA (reviewed in Bass 2002).  

 For some RBPs the ability to form protein-protein interactions can be functionally as 

important as the ability to bind RNA. A good example here is the serine/arginine (SR)-rich 

protein family, whose members are involved in various aspects of mRNA metabolism including 

the regulation of constitutive and alternative splicing (reviewed in Twyffels, Gueydan, and Kruys 

2011). SR proteins interact with RNA via one or two conserved RRMs, whereas protein-protein 

interactions are mediated by a domain enriched in arginine and serine residues (RS domain) (Zuo 

and Maniatis 1996; Kohtz et al. 1994; Amrein, Hedley, and Maniatis 1994). SR proteins can 

greatly enhance splicing activity by recruiting spliceosome components to the regulated splice 

sites and this function is dependent on the protein-binding RS domain (Graveley, Hertel, and 

Maniatis 1998; Kohtz et al. 1994; Zuo and Maniatis 1996). In other RBPs protein-protein 

interactions can be mediated also by atypical RRMs or KH domains and dsRBDs (Ramos et al. 

2002; Irion et al. 2006; Toba and White 2008). For instance, in some heterogenous nuclear 

ribonucleoproteins (hnRNPs), which together with SR proteins play an important role in splicing 

regulation (reviewed in Han, Tang, and Smith 2010), KH domains and RRMs are essential for 

protein-binding (J. H. Kim et al. 2000). 

The versatility of RNA-protein interaction modes among RBPs is further emphasized by 

a group of RBPs whose mRNA recognition specificity is not dependent on RBDs but on guide 

RNAs. Identified guide RNA classes that are involved in post-transcriptional gene silencing 

include microRNAs (reviewed in Bartel 2004), endogenous small interfering RNAs (Tam et al. 
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2008; Kawamura et al. 2008) and Piwi-interacting RNAs (Aravin et al. 2006; Lau et al. 2006). The 

first two types of small non-coding RNAs are found in complex with Argonaut proteins and the 

later with Piwi proteins. Guide RNA function is also provided by small nuclear RNAs during 

splicing (reviewed in Wahl, Will, and Lührmann 2009) and small nucleolar RNAs during RNA-

guided nucleotide modifications (reviewed in Decatur and Fournier 2003). 

3 to 11% of all bacterial, archaeal and eukaryotic proteins are involved in RNA 

metabolism (Anantharaman, Koonin, and Aravind 2002). The list of annotated and predicted 

RBPs in S. cerevisiae comprises over 600 proteins, corresponding to more than 10% of the yeast 

proteome (Hogan et al. 2008a). Astonishingly, most of these proteins lack known RNA-binding 

domains, suggesting that many RBPs remain to be elucidated (Hogan et al. 2008a). The existence 

of RBPs among unexpected classes of proteins, like metabolic enzymes, has been known for 

about two decades (R. Singh and Green 1993; Kennedy et al. 1992; Nagy and Rigby 1995). The 

early findings include the discovery that aconitase, the key player in citric acid cycle that converts 

citrate to isocitrate in mitochondria, also acts as the iron-responsive element-binding protein 1 

(IRP-BP 1) in cytosol (Butt et al. 1996; Kennedy et al. 1992). In response to low cellular iron 

levels IRP-BP 1 binds to the iron-responsive element in its target mRNAs, thereby up- or down-

regulating their expression (Kato et al. 2007). More recent data suggests that the ability to bind 

RNA might be a widespread feature among enzymes (Hogan et al. 2008a; Scherrer et al. 2010; 

Tsvetanova et al. 2010; Hentze and Preiss 2010). These findings point to the possibility that many 

metabolic enzymes could have dual functions which could allow them to fine-tune gene 

expression in response to cell’s metabolic state (reviewed in Hentze and Preiss 2010). The 

question, how proteins without known RBDs bind RNA, remains, in many cases, elusive. One 

possible explanation, which is exemplified by aconitase, is that evolution has selected for RNA 

secondary structures capable of protein-binding to establish these RNA-protein interactions.  

 

 

mRNP life cycle is guided by RNA binding proteins  
 

Transcription elongation and the concomitant pre-mRNA processing events 

The guiding role of RBPs in mRNP life cycle is manifested by tight coupling of different steps in 

mRNP biogenesis. The first important player along this path of interconnected events is RNA 

polymerase II (Pol II), the enzyme transcribing eukaryotic protein-coding genes. The special 

feature of Pol II that enables sequential recruitment of mRNA processing factors is the carboxy-

terminal domain (CTD) of the largest subunit (reviewed in Meinhart et al. 2005). The CTD 
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consists of repeats of an amino acid motif with a consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-

Ser. Different stages of the transcription cycle are characterized by specific patterns of CTD post-

translational modifications, of which serine phosphorylation has a major impact on transcription 

and mRNA processing factor recruitment (M. Kim et al. 2009; reviewed in Egloff and Murphy 

2008). For instance, the first mRNA processing event – 5′ end capping – is dependent on Ser5 

phosphorylation that directly recruits the capping machinery to Pol II soon after transcription 

initiation (Schroeder et al. 2000; Rodriguez et al. 2000; Yue et al. 1997). Capping not only affects 

mRNA by ensuring mRNA stability (Hsu and Stevens 1993; Walther et al. 1998) and efficient 

translation (Tarun and Sachs 1996a; Wakiyama, Imataka, and Sonenberg 2000), but also 

transcription. Several lines of evidence suggest that capping enzymes play a critical role in the 

transition from abortive early transcription to full elongation (Guiguen et al. 2007; Mandal et al. 

2004). 

The monomethylated cap structure is co-transcriptionally bound by nuclear cap-binding 

complex (CBC) (Wong et al. 2007) that likely comprises the first proteins to assemble on a pre-

mRNA. The evolutionarily conserved CBC in S. cerevisia is composed of Cbc2 (CBP20 in higher 

eukaryotes), the 20 kDa cap-binding subunit (Colot, Stutz, and Rosbash 1996; Visa et al. 1996), 

and Cbc1. Cbc1 homolog in higher eukaryotes, CBP80, is the regulatory subunit that enables 

high affinity binding of CBP20 to cap structure (Mazza et al. 2001; Izaurralde et al. 1994) (Table 

1). Studies in yeast have shown that CBC is important for various steps in mRNP biogenesis, 

further emphasizing the importance of functional coupling in this process. CBC is required for 

co-transcriptional spliceosome assembly (Görnemann et al. 2005) and can stimulate transcription 

pre-initiation complex formation on active genes (Lahudkar et al. 2011). In addition, CBC is 

necessary for proper transcription termination because the complex suppresses the recognition of 

weak polyadenylation sites (Wong et al. 2007; B Das et al. 2000). CBC has also been shown to 

participate in rapid mRNA degradation in the nucleus upon mRNA export block (Biswadip Das, 

Butler, and Sherman 2003; Kuai, Das, and Sherman 2005).  

Splicing is another pre-mRNA processing event that is largely co-transcriptional (G. 

Zhang et al. 1994; J. Singh and Padgett 2009; Lacadie and Rosbash 2005; Görnemann et al. 2005). 

During splicing intron-containing pre-mRNAs interact with one of the most complex eukaryotic 

macromolecular machineries – the spliceosome – that catalysis the excision of intronic sequences 

(reviewed in Will and Lührmann 2011). Spliceosome is assembled from U1, U2, U5 and U4/U6 

small nuclear ribonucleoprotein particles (snRNPs) and a multitude of non-snRNP proteins 

(Fabrizio et al. 2009; Y.-I. G. Chen et al. 2007; Zhou, Licklider, et al. 2002). Each snRNP is 

composed of one (or two in case or U4/U6) uridine-rich small nuclear RNA (U snRNA), a 

common set of seven Sm proteins and a varying number of snRNP specific proteins. Proteomic 
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studies have shown that in total about 90 (Fabrizio et al. 2009) and 170 (reviewed in Jurica and 

Moore 2003) proteins associate with the yeast and human spliceosome, respectively. Spliceosome 

composition is highly dynamic. Different stages of splicing are characterized by changes in 

spliceosome protein composition and extensive remodelling of snRNPs. The large number of 

spliceosome associated proteins, which in humans comprises two-thirds of the spliceosome mass, 

indicates the importance of protein-RNA and protein-protein interactions for proper splicing. 

 

Table 1. Selected yeast proteins and their metazoan homologues cited in the thesis. Description refers to the 
biological function of proteins. Table modified from (Kelly and Corbett 2009) and (Rodríguez-Navarro and Hurt 
2011). 
 

S. cerevisiae protein     Metazoan  Description 
orthologue  

Abbreviation Full name    Abbreviation 

Cbc2/Cbp20 cap-binding protein 20   CBP20  Cap-binding complex with Cbp80 

Cbc1/Cbp80 cap-binding protein 80   CBP80  Cap-binding complex with Cbp20 

Tho2  THO complex subunit 2   THOC2  THO/TREX component  

Hpr1  hyperrecombination protein 1  THOC1  THO/TREX component 

Mft1  mitochondrial fusion target protein 1 -  THO/TREX component 

Thp2  THO complex subunit THP2  -  THO/TREX component 

Sub2  suppressor of BRR1 protein 2  UAP56  RNA helicase, TREX component 

Yra1 RNA annealing protein YRA1  Aly/REF  RNA binding protein,  

TREX component  

Mex67  mRNA export factor 67   TAP/NXF1 mRNA export receptor 

Mtr2  mRNA transport regulator 2  p15/NXT1 mRNA export receptor 

Nab2  nuclear polyadenylated RNA-binding 2 NAB2  RNA binding protein 

Npl3  nuclear protein 3    -  RNA binding protein 

Pcf11  protein 1 of CF I    PCF11  mRNA 3′ end processing factor 

Rna14  mRNA 3′ end processing protein RNA14 CstF77  mRNA 3′ end processing factor 

Rna15  mRNA 3′ end processing protein RNA15 CstF64  mRNA 3′ end processing factor 

Glc7  serine/threonine-protein phosphatase  PP1c  protein phosphatase 

PP1-2  

Pap1  poly(A) polymerase 1   Pap1  poly(A) tail synthesis 

Sac3  nuclear mRNA export protein SAC3 GANP/Xmas-2 TREX-2 component 

Thp1  nuclear mRNA export protein THP1 ENST00000246505 TREX-2 component 

Sus1  protein SUS1    DC6/ENY2  SAGA and TREX-2 component 

Cdc31  cell division control protein 31  CETN3  TREX-2 component 

Nup1  nucleoporin NUP1   -  nucleoporin 

Nup60  nucleoporin NUP60   Nup153  nucleoporin 

Mlp1  myosin-like protein 1   TRP  NPC-associated protein 

Mlp2  myosin-like protein 1   TRP  NPC-associated protein 

Dbp5/Rat8 DEAD-box protein 5   DDX19  RNA helicase 

Gle1  nucleoporin GLE1   hGLE1  nucleoporin 

Dis3/Rrp44 chromosome disjunction 3  hDIS3/hDIS3L exosome component  

Rrp6  ribosomal RNA-processing protein 6 hRRP6  exosome component 

Trf4/Pap2 topoisomerase 1-related protein 4  hTRF4-1  TRAMP component 

Trf5  topoisomerase 1-related protein 5  hTRF4-2  TRAMP component 

Air1  Arg methyltransferase-interacting   ZCCHC7  TRAMP component 

RING-finger 1    
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Table 1. Continued 
 

S. cerevisiae protein     Metazoan  Description 
orthologue  

Abbreviation Full name    Abbreviation 

Air2  Arg methyltransferase-interacting   ZCCHC7  TRAMP component 

RING-finger 2   

Mtr4  mRNA-transport regulator 4  hMTR4  TRAMP component 

Rat1  ribonucleic acid-trafficking 1  XRN2  5′→3′ exoribonuclease 

Rai1  RAT1-interacting protein   DOM3Z  Rat1 co-activator 

 

 

mRNP export factors are recruited during transcription 

Co-transcriptional packaging of Pol II generated transcripts into mRNPs is vital for cells to 

preserve genome integrity. Naked RNA has a tendency to invade the DNA duplex behind the 

elongating Pol II and by base pairing with the non-coding DNA strand force the coding strand 

into single-stranded conformation. Such structures are termed R loops and they are harmful for 

the cell in several ways (reviewed in Aguilera and García-Muse 2012). R loop formation can 

impair transcription elongation as this structure is likely to obstruct the next elongating Pol II.  R 

loops can also induce chromosomal DNA rearrangements by blocking replication fork 

progression (Gómez-González, Felipe-Abrio, and Aguilera 2009; Prado and Aguilera 2005; Gan 

et al. 2011; Huertas and Aguilera 2003). 

A critical role in co-transcriptional mRNA packaging into export competent mRNPs, and 

thus in preventing R-loop formation (Gómez-González et al. 2011), is played by the 

evolutionarily conserved transcription and export (TREX) complex (Katja Strässer et al. 2002; 

Abruzzi, Lacadie, and Rosbash 2004). In S. cerevisiae the TREX complex contains the components 

of the THO complex (Tho2, Hpr1, Mft1, Thp2 and, possibly, Tex1) (Chávez et al. 2000; A. Pena 

et al. 2012) and two RNA export adapters, Sub2 and Yra1, which are necessary for the 

recruitment of the mRNA export receptor (Katja Strässer et al. 2002).  Chromatin 

immunoprecipitation experiments have demonstrated that the THO components and the RNA 

export adapters Sub2 and Yra1 become associated with active chromatin during transcription 

elongation (A. Pena et al. 2012; Zenklusen et al. 2002). THO recruitment is partly mediated by 

the C-terminal nucleic acid-binding domain of Tho2 (A. Pena et al. 2012), whereas Sub2 bridges 

the interaction between THO complex and Yra1 (Zenklusen et al. 2002). A model based on this 

data suggests that upon association with sites of active transcription THO complex, specifically 

Hpr1 (Zenklusen et al. 2002), recruits Sub2 to the nascent transcript that further recruits Yra1 

(reviewed in Kelly and Corbett 2009). Yra1 can then serve as an adaptor for the general S. 

cerevisiae mRNA export receptor, Mex67/Mtr2 heterodimer (Santos-Rosa et al. 1998; Kadowaki et 
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al. 1994; Zenklusen et al. 2001; K Strässer and Hurt 2000). As Mex67 and Sub2 share the same 

binding site on Yra1, Sub2 is likely displaced by Mex67 prior to mRNA export (K Strässer and 

Hurt 2001). However, evidence is accumulating that mRNA export does not follow a single linear 

pathway as suggested by the described model. Some of the most notable findings along these 

lines include the discovery that two shuttling heterogeneous nuclear ribonucleoproteins Npl3 

(Wendy Gilbert and Guthrie 2004) and Nab2 (Iglesias et al. 2010) can serve as adaptors for 

Mex67. The role of Npl3 as an mRNA export adaptor is closely related to 3′ end processing and 

will be therefore discussed in the following chapter. 

Nab2 is a polyadenylated RNA-binding protein (J. T. Anderson et al. 1993) with a well-

established role in poly(A) tail length control (Viphakone, Voisinet-Hakil, and Minvielle-Sebastia 

2008; Hector et al. 2002) and nuclear mRNA export (Fasken, Stewart, and Corbett 2008; 

Vinciguerra et al. 2005; D. M. Green et al. 2003; D. M. Green et al. 2002; Batisse et al. 2009). The 

notion that Nab2 can serve as an adaptor for Mex67 is based on the findings that Nab2, Yra1 

and Mex67 can form a trimeric complex, and that the lethal phenotype of Δyra1 cells can be 

rescued by Nab2 overexpression (Iglesias et al. 2010). Furthermore, in the same study Yra1 was 

shown to stimulate the interaction between Mex67 and Nab2, suggesting that Yra1 may not be a 

bona fide mRNA export adaptor but rather a chaperone facilitating Mex67-Nab2 association 

(Iglesias et al. 2010). 

Besides Yra1, Npl3 and Nab2 also the THO complex has been implicated in Mex67 

recruitment. Interestingly, RNase treatment affects the association of Sub2 (Abruzzi, Lacadie, and 

Rosbash 2004; Dieppois, Iglesias, and Stutz 2006) but not Mex67 (Dieppois, Iglesias, and Stutz 

2006) with actively transcribed genes and hints that Mex67 recruitment is largely mediated by 

adaptors associated with the transcription machinery. One such adaptor can be the THO 

component Hpr1. It has been shown that Mex67 can directly be recruited via its ubiquitin-

associated (UBA) domain to Hpr1 and that this recruitment depends on Hpr1 ubiquitination 

(Gwizdek et al. 2006) (Fig. 1). Hpr1 is ubiquitinated in a transcription-dependent manner leading 

to Mex67 association with active genes (Gwizdek et al. 2005). Mex67-UBA binding in turn 

transiently protects Hpr1 from proteasomal degradation (Gwizdek et al. 2006) and can thereby 

contribute to the coordination of transcription and mRNP assembly.  

Not only mRNA export factors are loaded co-transcriptionally to the nascent mRNA, the 

same holds true for the 3′ end processing machinery. A central role in coupling transcription to 3′ 

end formation is played by Pcf11, a conserved subunit of the yeast cleavage factor 1A (CF1A) 

required for cleavage and polyadenylation steps of 3′ end formation (E. J. Steinmetz and Brow 

1996; Sadowski et al. 2003) (Fig. 1). Pcf11 can bind both Pol II CTD via phospho-Ser2 (Barillà, 

Lee, and Proudfoot 2001; Licatalosi et al. 2002; Hollingworth et al. 2006), a phosphorylation 
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mark coinciding with transcription elongation (Komarnitsky, Cho, and Buratowski 2000; Z. Ni et 

al. 2004), and RNA (Licatalosi et al. 2002; M. Kim et al. 2004), thereby facilitating 3′ end 

processing machinery co-transcriptional recruitment. However, linking transcription and 3′ end 

formation does not seem to be the only coupling event Pcf11 is participating in. A recent study 

showed that Yra1 co-transcriptional recruitment was not dependent on Sub2 as anticipated, but 

on Pcf11 (Johnson, Cubberley, and Bentley 2009). The authors proposed that after the initial 

Yra1 recruitment by Pcf11, Yra1 is transferred to Sub2. This scenario is supported by the finding 

that Pcf11 and Sub2 contact with the same region on Yra1, suggesting mutually exclusive binding 

(Johnson, Cubberley, and Bentley 2009). Yra1 recruitment by 3′ end processing machinery could 

provide an additional mRNP quality control mechanism as export competence, which is acquired 

through Yra1 loading, depends on proper transcription and 3′ end processing.  

 

 

3′ end formation and mRNA export are coupled 

All eukaryotic mRNAs, with the exception of replication-dependent histone mRNAs (Dávila 

López and Samuelsson 2008), carry a homopolymeric tail consisting of adenosyl (poly(A)) 

residues at their 3′ end. These poly(A) tails, which are associated with multiple copies of poly(A)-

binding protein (PABP), have a well defined species specific length of 70-80 nt in S. cerevisiae and 

200-250 nt in mammalian cells (reviewed in Eckmann, Rammelt, and Wahle 2011; Lemay et al. 

2010). The two enzymatic activities required in eukaryotes for mRNA 3′ end formation are site-

specific endonucleolytic cleavage of the pre-mRNA and poly(A) tail addition onto the upstream 

cleavage product. Despite the seemingly simple biochemistry of the reactions, a megadalton-sized 

protein machinery is needed both in yeast and mammals for 3′ end formation (reviewed in 

Mandel, Bai, and Tong 2008). The importance of correct 3′ end polyadenylation for living 

organisms is emphasizes by the fact that most 3′ end processing factors are encoded by essential 

genes in S. cerevisiae (reviewed in Proudfoot 2011).  

The co-transcriptional recruitment of mRNA export factors, jet the nuclear export of 

only mature mRNPs suggests that cells can efficiently discriminate between mRNPs still on the 

“assembly line” and export competent mature mRNPs. Evidence has accumulated from studies 

mainly done on yeast that mRNP export competency is linked to 3′ end processing. Similarly to 

temperature sensitive mex67-5 cells (Segref et al. 1997), temperature sensitive mutants of the yeast 

CF1A subunits Rna14, Rna15 and Pcf11 as well as poly(A) polymerase 1 (Pap1) show poly(A) 

RNA accumulation in the nucleus at restrictive temperature (Hilleren et al. 2001; Hammell et al. 

2002; Brodsky and Silver 2000). Conversely, mex67-5 cells show hyperpolyadenylation of 
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transcripts at restrictive temperature (T H Jensen, Patricio, et al. 2001; Hammell et al. 2002; 

Hilleren et al. 2001). This phenotype is also observed in cells defective for 3′ end processing 

(Hammell et al. 2002). 

 

 

 

Figure 1. mRNP co-transcriptional assembly. During transcription initiation the C-terminal domain (CTD) of 
RNA polymerase II (RNA Pol II) becomes phosphorylated at Ser5 in the heptad amino acid repeat composing 
the CTD. This results in the recruitment of the capping machinery to the CTD and subsequent capping of the 
nascent transcript, leading to processive transcription elongation. Cap is bound by the cap binding complex 
that likely represents the first proteins to assemble on the nascent transcript (omitted for simplicity).  During 
transcription elongation CTD is phosphorylated at Ser2, which recruits Pcf11 on the transcription machinery. 
Pcf11 is a component of cleavage factor 1A (CF1A), and has been shown to be necessary for initial Yra1 
association with transcription machinery (Johnson, Cubberley, and Bentley 2009). Yra1 is transferred from 
Pcf11 to the mRNA export adaptor Sub2, which liberates Pcf11 for interaction with 3′ end processing complex. 
Phospho-Ser2 is necessary also for the recruitment of shuttling mRNA-binding protein Npl3. Among other 
functions, Npl3 prevents early termination (Bucheli and Buratowski 2005; Bucheli et al. 2007). Npl3 
phosphorylation during transcription gradually leads to the loss of its anti-termination activity, leading to 
cleavage and polyadenylation factor (CPF) association at the 3′ end (Dermody et al. 2008). During 3′ end 
formation, CPF component Glc7 dephosphorylates Npl3 which promotes Npl3 interaction with the mRNA 
export receptor Mex67 and subsequent mRNP export (Wendy Gilbert and Guthrie 2004). The THO complex 
plays a crucial role in co-transcriptional mRNA export factor recruitment and mature mRNP release form 
transcription site, as indicated by the impairment of these processes in tho mutant yeast strains. The first step 
in Mex67 recruitment to mRNA is likely mediated by THO component Hpr1. Ubiquitination of Hpr1 during 
transcription elongation directly recruits Mex67 to the active genes (Gwizdek et al. 2006). Mex67 is loaded 
together with its adaptors onto the mRNP during 3′ end formation. Three proteins – Yra1, Npl3 and Nab2 – 
have been shown to function as Mex67 adaptors. However, at the moment it is not clear if Mex67 would be 
loaded onto mRNA in a complex with all three adaptors or with only a subset of them (Kim Guisbert et al. 2005; 
D. M. Green et al. 2002; Hieronymus and Silver 2003).  CTD – C-terminal domain, NPC – nuclear pore complex, 
RNA Pol II – RNA polymerase II, P – phosphorylation, Pi – dephosphorylation, Ub – ubiquitin. Figure modiefied 
after (Tutucci and Stutz 2011).  
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The SR-like protein Npl3 is an abundant shuttling RBP that plays a role in a wide range 

of processes including mRNA transcription elongation, termination/3′ end processing (Wong et 

al. 2007; Dermody et al. 2008; Bucheli and Buratowski 2005; Bucheli et al. 2007), splicing (Kress, 

Krogan, and Guthrie 2008), export (Windgassen and Krebber 2003; Singleton et al. 1995; M. S. 

Lee, Henry, and Silver 1996) and translation (Windgassen et al. 2004).  Npl3 directly interacts 

with Pol II CTD via phosphorylated Ser2  and promotes both transcription (Dermody et al. 

2008) and co-transcriptional splicing factor recruitment (Kress, Krogan, and Guthrie 2008) (Fig. 

1). During transcription elongation Npl3 also prevents early termination (Bucheli et al. 2007; 

Bucheli and Buratowski 2005) but this activity is gradually lost due to Npl3 phosphorylation, 

which leads to the recruitment of cleavage and polyadenylation factor (CPF) at the 3′ end 

(Dermody et al. 2008). Npl3 dephosphorylation by CPF component Glc7 elegantly links 3′ end 

processing to mRNA export receptor Mex67 loading (Wendy Gilbert and Guthrie 2004). 

Namely, Npl3 dephosphorylation by Glc7 enables Npl3 to act as an mRNA export adapter 

protein by promoting its direct binding to Mex67 and mature mRNP nuclear export. In the 

cytoplasm Npl3 is rephosphorylated, which leads to its release form the mRNP and nuclear re-

import (W Gilbert, Siebel, and Guthrie 2001). 

In addition to Npl3, Sub2 and the THO complex also have a clear role in 3′ end 

processing and mRNP release form the transcription site. In tho/sub2 mutants the 3′ end of the 

HSP104 locus is trapped in a dense chromatin fraction that besides the gene’s 3′ region also 

contains RNA, Pol II, pre-mRNA 3′ end processing machinery and nuclear pore complex (NPC) 

components (Rougemaille et al. 2008). In the same study 3′ regions of nearly 400 yeast genes were 

found to be associated with dense chromatin in tho mutants. These results suggest that THO and 

Sub2 are required to dissociate the 3′ end processing machinery and to release the export 

competent mRNP form the transcription site. Remarkably, transcription site release seems to 

take place in close proximity to NPC that could further facilitate mRNP export (Rougemaille et 

al. 2008). 

 

 

mRNP export form nucleus 

Mature mRNPs are exported through the nuclear pore complexes to the cytoplasm. The yeast 

NPC contains about 30 different proteins termed nucleoporins (Nups).  The central NPC 

transport channel is filled and surrounded with Nups containing domains rich in phenylalanine 

(F) and glycine (G) (FG-Nups), which create a physical barrier for macromolecules larger than 

about 40 kDa (reviewed in Terry and Wente 2009). This barrier is overcome by cargo export 
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receptors by binding to FG-repeats. At the nuclear side of the NPC eight filaments, connected by 

a ring at the end, reach into the nucleoplasm and form a structure termed the nuclear basket 

(Kiseleva et al. 2004; Ris and Malecki 1993). The filaments reaching into the cytoplasm are not 

connected to each other and are therefore highly mobile (Kiseleva et al. 2004).  

mRNP export starts at the nuclear basket where export competent mRNPs can 

concentrate using multiple mechanisms (Fig. 2). In yeast, TREX-2 complex, which is composed 

of Sac3, Thp1, Sus1 and Cdc31(Rodríguez-Navarro et al. 2004; T. Fischer et al. 2002), has been 

shown to mediate the repositioning of actively transcribed GAL genes from the nuclear interior 

to the NPC (Rodríguez-Navarro et al. 2004; Cabal et al. 2006). Subsequent production of mRNA 

in close vicinity to NPC is likely to increase mRNP export efficiency. TREX-2 mediates the 

repositioning of active genes to the nuclear pores through binding to both the nuclear basket and 

to the SAGA transcriptional co-activator complex (Brownell et al. 1996; Grant et al. 1997). 

TREX-2 component Sac3 tethers TREX-2 to the nuclear basked through interactions with 

nucleoporins Nup1 and Nup60 (T. Fischer et al. 2002). Sus1, which is a functional component of 

both the SAGA and TREX-2 complexes, binds to Sac3, thereby anchoring active genes to 

nuclear pores (Cabal et al. 2006; Rodríguez-Navarro et al. 2004; Jani et al. 2009).  However, 

TREX-2 does not seem to comprise the only link between sites of active transcription and 

nuclear pores. Nuclear basket-associated proteins Mlp1 and Mlp2, which, similarly to Sac3, bind 

this structure via Nup60 (Feuerbach et al. 2002), have been shown to physically associate with 

SAGA components on transcriptionally active GAL genes (Luthra et al. 2007). In addition to 

physically linking sites of active transcription to nuclear pore, Mlp1 can also facilitate the docking 

of export competent mRNPs at the nuclear basket. Namely, the protein has been shown to 

interact with Nab2 (Fasken, Stewart, and Corbett 2008). The existence of a complex web of 

protein-protein interactions at the nuclear basket is further emphasized by the finding that Mex67 

can interact with Sac3 both in vivo and in vitro (T. Fischer et al. 2002). 

The phenomenon of actively transcribed gene docking at NPC is thus far well 

documented only for S. cerevisiae. However, the evolutionary conservation of SAGA (Brand et al. 

1999; Martinez et al. 2001), TREX-2 (Jani et al. 2012) and the NPC including the Mlp proteins 

(Mendjan et al. 2006; Strambio-de-Castillia, Blobel, and Rout 1999) suggests that the mechanism 

could exist also in higher eukaryotes. Indeed, SAGA has been shown to function in anchoring of 

a subset of active transcription sites to the nuclear pores in Drosophila melanogaster (Kurshakova et 

al. 2007). 

In vivo imaging of single endogenous mRNPs in mammalian cells has revealed that mRNA 

export contains three basic steps: docking, transport and release (Grünwald and Singer 2010). 

Surprisingly, transport through the NPC central channel is a very rapid process and is completed 
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in less than 20 ms. Most of the about 200 ms needed for export, the mRNP spends equally 

between the docking and the release phase (Schmitt et al. 1999). mRNA export directionality is 

likely achieved by mRNP reorganization at the cytoplasmic face of the NPC. One protein 

implicated in this processed is the conserved RNA helicase Dbp5 (also known as Rat8) (Schmitt 

et al. 1999; Snay-Hodge et al. 1998; Tseng et al. 1998) (Fig. 2). Dbp5 is a shuttling protein 

(Estruch and Cole 2003; Zhao et al. 2002; Hodge et al. 1999) that at steady state locates at the 

cytoplasmic filaments of the NPC (Weirich et al. 2004; Hodge et al. 1999; Schmitt et al. 1999). 

The low intrinsic RNA-dependent ATPase activity of Dbp5 (Tseng et al. 1998) is greatly 

stimulated at the cytoplasmic filaments upon interaction with Gle1. Inositol hexakisphosphate 

binding to Gle1 has been shown to enhance Gle1-mediated stimulation of Dbp5 ATPase activity 

(Weirich et al. 2006; Alcázar-Román et al. 2006). Even though there is no clear consensus about 

how Dbp5 activity results in mRNP remodelling (reviewed in Linder 2008), the protein has been 

shown to facilitate the removal of export factors such as Mex67 (Lund and Guthrie 2005) and 

Nab2 (Tran et al. 2007). 

 

 

 

Figure 2. Anchoring of active genes to nuclear pore complex (NPC) and mRNP remodelling upon export. 
Active genes can be docked at the NPC by a four subunit protein complex termed TREX-2 or by Mlp proteins. 
TREX-2 bridges the interaction between nucleoporins (Nups) of the nuclear basket and the SAGA transcriptional 
co-activator complex (T. Fischer et al. 2002; Jani et al. 2009). Another link between SAGA and NPC is provided 
by NPC-associated proteins Mlp1 and Mlp2 (Luthra et al. 2007) (represented by dotted lines). Export 
competent mRNP docking at the NPC can be mediated by Nab2, which has been shown to interact with Mlp1 
(Fasken, Stewart, and Corbett 2008), and by Sac3, which can bind Mex67 (T. Fischer et al. 2002) (represented 
by dotted line). mRNA export leads to mRNP remodelling. An important player in this process, the RNA helicase 
Dbp5, is loaded onto the mRNP in the nucleus. Dbp5 ATPase activity is greatly stimulated at the cytoplasmic 
face of the NPC by Gle1 bound to inositol hexakisphosphate (IP6) (Weirich et al. 2006; Alcázar-Román et al. 
2006). Dbp5 activation results in mRNP remodelling, leading to the dissociation of mRNA export factors such as 
Mex67 and Nab2 (Lund and Guthrie 2005; Tran et al. 2007). Figure modified after (Iglesias et al. 2010) and 
(Köhler and Hurt 2007). 



INTRODUCTION 

 

22 
 

Nuclear mRNP quality control 

Formation of a mature, export-competent mRNP is a multistep process where each mRNP 

maturation reaction is inherently error-prone. Functional coupling of the different mRNP 

biogenesis steps helps cells to monitor the overall accuracy of the process. The crosstalk between 

proteins involved in mRNP maturation and quality control leads to the destruction, nuclear arrest 

or transcriptional downregulation of aberrant transcripts. 

mRNA degradation is the best studied nuclear mRNP quality control mechanism (Fig. 3). 

The first ribonucleolytic activity identified in this cellular compartment belongs to the multi-

subunit exosome complex (P. Mitchell et al. 1997; Bousquet-Antonelli, Presutti, and Tollervey 

2000). The eukaryotic nuclear exosome is composed of 9 core subunits forming a barrel-like 

structure, and two enzymatically active subunits.  3′→5′ exonuclease activity of the exosome in S. 

cerevisiae is provided by Dis3 (also known as Rrp44) (Allmang et al. 1999; Dziembowski et al. 

2007) and Rrp6 (Allmang et al. 1999; Liu, Greimann, and Lima 2006). Dis3 also displays 

endonucleolytic activity (Schaeffer et al. 2009; Schneider et al. 2009; Lebreton et al. 2008). mRNA 

degradation by exosome is stimulated by the TRAMP (Trf4/5-Air1/2-Mtr4) polyadenylation 

complex, which marks aberrant transcripts for degradation by adding a short poly(A) tail that 

facilitates exosome recruitment (LaCava et al. 2005; Wyers et al. 2005). Functional exosome is 

required for the rapid degradation of unspliced pre-mRNAs (Bousquet-Antonelli, Presutti, and 

Tollervey 2000), mRNAs with defective poly(A) tails (Milligan et al. 2005; Burkard and Butler 

2000; Libri et al. 2002)  and nucleus-restricted mRNAs upon mRNA export block (Biswadip Das, 

Butler, and Sherman 2003). In addition, catalytically active exosome is also involved in transcript 

retention at the site of synthesis observed in mRNA export deficient yeast strains (Assenholt et 

al. 2008). Interestingly, this phenotype is not dependent on the exosome co-factor TRAMP, 

indicating a functional difference between the two complexes (Rougemaille et al. 2007). 

The other main ribonucleolytic activity in the cell nucleus is provided by 5′→3′ 

exonuclease Rat1. Together with its co-factor Rai1, Rat1 is implicated in transcription termination 

of RNA Pol II (West, Gromak, and Proudfoot 2004; M. Kim et al. 2004) as well as RNA Pol I 

(Kawauchi et al. 2008; El Hage et al. 2008). According to the “torpedo” model of transcription 

termination, Rat1 attacks the 5′ end formed after pre-mRNA cleavage by the 3′ end processing 

machinery and degrades the RNA produced by Pol II downstream of the polyadenylation site, 

causing Pol II to terminate (Connelly and Manley 1988; Luo, Johnson, and Bentley 2006). In 

nuclear RNA quality control Rat1 is needed for the 5′→3′ exonucleolytic degradation of 

unsuccessfully capped mRNAs (Jiao et al. 2010; Jimeno-González et al. 2010). The substrate for 

Rat1-mediated mRNA decay, 5′-monophosphorylated RNA, is generated by Rat1 co-factor Rai1 
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by removing the unmethylated cap or by hydrolyzing the 5′ end triphosphate of an uncapped 

RNA (Xiang et al. 2009; Jiao et al. 2010).  

 

 

 

Figure 3. mRNA degradation during nuclear mRNA quality control. Defects in pre-mRNA processing to 5′ 
capped, spliced and polyadenylated mature transcripts or in mRNA export result in nuclear retention, 
transcriptional downregulation or degradation of these transcripts. Nuclear mRNA degradation involves 5′→3′ 
and 3′→5′ exonucleolytic, as well as endonucleolytic cleavage. The 5′→3′ degradation pathway is responsible 
for the removal of mRNAs with aberrant 5′ ends. Rai1 removes the non-methylated cap structure or hydrolyzes 
the 5′ triphosphate of an uncapped RNA to leave 5′-monophosphorylated RNA, which can then act as a 
substrate for Rat1 5′→3′ exoribonuclease. The 3′→5′ degradation is involved in the surveillance of proper 
mRNA 3′ end formation. Inefficient plyadenylatation by poly(A) polymerase 1 (Pap1) due to defective splicing 
or 3′ end processing results in the addition of a short poly(A) tail by the non-canonical poly(A) polymerase of 
the TRAMP complex. TRAMP then recruits the nuclear exosome, leading to rapid mRNA degradation form the 
3′ end. The exosome contains nine conserved core subunits plus two 3′→5′ exonucleases, Dis3 and Rrp6. Dis3 
also harbours endonucleolytic activity. CBC – cap binding complex. Figure modified after (Tutucci and Stutz 
2011).  

 

Nuclear mRNA quality control does not reduce the level of aberrant transcripts only by 

mRNA degradation. Non-optimal mRNP formation can have a direct negative effect on 

transcriptional rates. Evidence for that has come both from the analysis of defective splicing and 

mRNA export. In the mammalian system promoter-proximal 5′ splice site mutation has been 

shown to strongly reduce the steady state levels of the mRNA in an mRNA decay-independent 

fashion (Damgaard et al. 2008; Furger et al. 2002). As U1 snRNA can interact both with the 5′ 

splice site (Massimo Caputi et al. 2004; Kammler et al. 2001) and TFIIH (Kwek et al. 2002), it has 

been suggested to stimulate transcription initiation by enhancing pre-initiation complex assembly 

(Damgaard et al. 2008). Transcriptional downregulation upon promoter proximal 5′ splice site 

mutation could therefore be an outcome of this disrupted communication. Similarly to the 

mammalian system, the removal of a promoter proximal intron in yeast reduces transcription 

levels of the gene (Furger et al. 2002). How does a cells profit form transcriptional 

downregulation of aberrant mRNAs? The answer could lie in the observation that artificially 



INTRODUCTION 

 

24 
 

reduced transcription rates in tho/sub2 mutants can suppress several associated phenotypes (T H 

Jensen, Boulay, et al. 2001; Torben Heick Jensen et al. 2004). This finding suggests that under 

challenging conditions mRNP assembly efficiency can be increased by reducing the production 

level of aberrant mRNAs. 

 

 

mRNP cytoplasmic destiny 
 

Translation is accompanied by mRNP remodelling 

In rapidly growing S. cerevisiea cells most newly exported mRNPs will be immediately engaged in 

translation in the cytoplasm (Arava et al. 2003). Translation is accompanied by major changes in 

mRNP composition, which involves the dissociation of several nuclear-acquired proteins as well 

as the recruitment of the elongation-competent 80S ribosome. Translation-accompanied changes 

in mRNP composition not only enable bulk protein synthesis but also ensure the quality of gene 

expression through translation-dependent mRNA surveillance pathways (reviewed in Maquat, 

Tarn, and Isken 2010; Isken and Maquat 2007). Nuclear-acquired proteins that travel with the 

mRNA to the cytoplasm include the nuclear cap-binding complex, PABP and, in case of 

mammalian pre-mRNAs subjected to splicing, the exon-junction complex (EJC) deposited ~20-

24 nucleotides (nt) upstream of exon-exon junctions. The newly exported mRNPs seem to 

acquire a set of proteins characteristic for mRNAs involved in steady-state translation 

predominantly by the end of the first or the so-called “pioneer” round of translation (Gehring et 

al. 2009; Sato and Maquat 2009; Hosoda, Lejeune, and Maquat 2006; Ishigaki et al. 2001; S.-Y. 

Chiu et al. 2004). In mammalian cells, where translation-dependent mRNP remodelling has been 

extensively studied, these changes include the replacement of CBP80-CBP20 heterodimer with 

eukaryotic translation initiation factor 4E at the 5′ cap, the exchange of nuclear poly(A) binding 

protein PABPN1 by cytoplasmic PABPC1 and the removal of EJCs (Sato and Maquat 2009; 

Gehring et al. 2009; Dostie and Dreyfuss 2002; Lejeune et al. 2002).   

 

 

mRNP interactions in cap-dependent translation 

Besides the 79 proteins that are loaded onto the mRNA as part of the yeast 80S ribosome 

(reviewed in D. N. Wilson and Cate 2012), mRNA translation involves numerous accessory 

factors that participate in translation initiation, elongation, termination and ribosome recycling 

and interact with the mRNA either directly or indirectly through protein-protein interactions with 



INTRODUCTION 

 

25 
 

other components of the translation machinery (reviewed in R. J. Jackson, Hellen, and Pestova 

2010; Hinnebusch 2011; Dever and Green 2012). The largest number of accessory factors, at 

least 10, participate in translation initiation (reviewed in R. J. Jackson, Hellen, and Pestova 2010). 

Eukaryotic initiation factors (eIFs) help to separate the ribosomal subunits after translation 

termination, prepare the mRNA and the small (40S) ribosomal subunit for binding with each 

other and participate in locating the start codon and in subsequent large (60S) subunit joining 

with 40S, after which translation elongation can proceed (reviewed in R. J. Jackson, Hellen, and 

Pestova 2010; Hinnebusch 2011).  

The “end product” of translation initiation step is an elongation-competent 80S 

ribosome, which is defined by base-pairing between the mRNA’s start codon and the anticodon 

loop of the initiator methionyl tRNA (Met-tRNAi
Met) occupying the ribosomal peptidyl (P) site. 

The molecular events enabling elongation-competent 80S formation start with post-termination 

ribosome separation into free 40S and 60S subunits. After translation termination, the 80S 

ribosome remains bound to at least three factors: mRNA, P-site deacylated tRNA, and eukaryotic 

release factor (eRF) 1 and, possibly, eRF3 (Pisarev, Hellen, and Pestova 2007) (Fig. 4). At a low (1 

mM) free Mg2+ concentration, which enables greater flexibility of the ribosomal subunits (Shenvi 

et al. 2005), eIF3, eIF1 and eIF1A are sufficient to mediate ribosome recycling into free 40S and 

60S subunits (Pisarev, Hellen, and Pestova 2007; Pisarev et al. 2010). In vivo, however, efficient 

ribosome recycling likely needs an additional factor, ABCE1, which is an essential (Z.-Q. Chen et 

al. 2006; Dong et al. 2004) and highly conserved protein of the ATP-binding cassette (ABC) 

transporter superfamily (reviewed in Dean and Annilo 2005). Importantly, ABCE1 can mediate 

the separation of post-termination ribosomes into free 60S and mRNA- and tRNA-bound 40S 

subunits in a wide range of Mg2+ concentrations (Pisarev et al. 2010). The subsequent release of 

mRNA and deacylated tRNA from the 40S subunit is promoted by eIF3, eIF1 and eIF1A 

(Pisarev, Hellen, and Pestova 2007), which are recruited to the 40S subunit during ribosome 

recycling (reviewed in R. J. Jackson, Hellen, and Pestova 2010). All three eIFs remain associated 

with the released 40S subunit and participate in the following steps of translation initiation.  

The binding of eIF1 and eIF1A triggers a conformational change in 40S subunit that 

opens the mRNA binding channel – a change that is proposed to convert the “closed”, scanning-

incompetent 40S structure into an “open”, scanning-competent 43S pre-initiation complex (PIC) 

(Passmore et al. 2007). 43S pre-initiation complex contains besides the 40S subunit and the eIFs 

3, 1 and 1A also the eIF2-GTP- Met-tRNAi
Met ternary complex (TC), which delivers the initiator 

tRNA to the ribosomal P-site (Shin et al. 2011), and eIF5 (reviewed in R. J. Jackson, Hellen, and 

Pestova 2010; Hinnebusch 2011). Biochemical data indicate that eIF1- and eIF1A-induced 

conformational change enhances the rate of eIF2-GTP- Met-tRNAi
Met ternary complex binding to 
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40S, producing a 43S PIC capable of directly docking the mRNA into the mRNA binding 

channel during translation initiation (Passmore et al. 2007). It should be noted that in addition to 

the step-by-step association of eIFs with the 40S subunit, there is evidence for an alternative 

pathway for 43S PIC formation where eIFs 1, 3, 5, and the TC associate into a large multifactor 

complex (MFC) prior to binding to 40S subunit (K Asano et al. 2000; Sokabe, Fraser, and 

Hershey 2012; Dennis, Person, and Browning 2009). 

The 43S PIC is loaded onto the mRNA at the 5′ cap-proximal region and subsequently 

scans downstream the 5′ untranslated region (UTR) to locate the initiation codon (reviewed in R. 

J. Jackson, Hellen, and Pestova 2010; Hinnebusch 2011). 43S PIC is able to attach to an scan 

along an unstructured 5′ UTR (Tatyana V Pestova and Kolupaeva 2002; S. F. Mitchell et al. 

2010). However, attachment to an even weakly structured 5′ UTR depends on eIF4F and eIF4B 

or eIF4H that cooperate to unwind the 5′ cap-proximal region for 43S PIC loading and assist 43S 

PIC in scanning (Tatyana V Pestova and Kolupaeva 2002; S. F. Mitchell et al. 2010; Rogers et al. 

2001; Marintchev et al. 2009). eIF4F is composed of three proteins: (1) eIF4E, the cap-binding 

protein; (2) eIF4A, a DEAD-box RNA helicase; and (3) eIF4G, a large modular protein acting as 

a scaffold for the assembly of highly stable eIF4F at the mRNA’s 5′ end (reviewed in Prévôt, 

Darlix, and Ohlmann 2003; Hinnebusch 2011). eIF4G directly interacts with both eIF4E and 

eIF4A, thereby directing the RNA helicase to the cap-proximal region (J. D. Gross et al. 2003; 

Volpon et al. 2006; S. F. Mitchell et al. 2010; P. Schütz et al. 2008). Furthermore, the ATPase 

activity of eIF4A is stimulated upon binding to eIF4G (P. Schütz et al. 2008). The affinity of 

eIF4E for the cap structure is also enhances by eIF4G-eIF4E interaction (J. D. Gross et al. 

2003).  

Besides interacting with mRNA’s 5′ end, eIF4G also contacts the 3′ poly(A) tail via PABP, 

thereby physically linking the mRNA termini (E.-H. Park et al. 2011; Svitkin et al. 2009; Tarun et 

al. 1997; Craig et al. 1998; Le et al. 1997; AMRANI et al. 2008). The formation of a “closed-loop” 

structure is not absolutely required for translation in vivo as indicated by genetic analysis in S. 

cerevisiae (E.-H. Park et al. 2011; Tarun et al. 1997). However, eIF4G-PABP interaction is thought 

to promote 43S PIC attachment, and thus translation initiation, because it contributes to the 

stability of mRNA binding by eIF4F (reviewed in Hinnebusch 2011). In addition to participating 

in a network of interactions that stabilize eIF4F binding, eIF4G can promote translation 

initiation by directly recruiting 43S PIC to the mRNA. Namely, in mammalian cells eIF4G 

interacts with the 43S PIC component eIF3 (LeFebvre et al. 2006; Morino et al. 2000; Lamphear 

et al. 1995; Korneeva et al. 2000). In yeast, the interaction between the aforementioned proteins 

is bridged by eIF5 or eIF1, which simultaneously interact with both eIF4G and eIF3 (H. He et al. 

2003; Katsura Asano et al. 2001; S. F. Mitchell et al. 2010). 
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Figure 4. Model of eukaryotic translation initiation by ribosomal scanning. Translation initiation is a multitep 
process (single steps in blue type) that starts with the separation of post-termination ribosomal complexes into 
free 40S and 60S ribosomal subunits (shapes depicting ribosomal subunits correspond to crystal structures of 
bacterial 70S and 30S ribosomal species). Association of a subset of eukaryotic translation initiation factors 
(eIFs, dipicted as numbered shapes) and the eIF2-GTP- Met-tRNAi

Met  
ternary complex (TC) with 40S subunit 

results in the formation of 43S pre-initiation complex (PIC). eIFs and TC may be recruited to 40S subunit in a 
sequential manner or as a pre-formed multifactor complex. Association of eIF4F (eIF4E/eIF4G/eIF4A) with m

7
G 

cap and poly(A)-binding protein (PABP) with poly(A) tail activates mRNA for translation initiation – the DEAD-
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box RNA helicase eIF4A with eIF4B unwinds the mRNA to generate a single-stranded region at mRNA’s 5′ end, 
which is bound by 43S PIC. 43S PIC scans the 5′ UTR until initiation codon recognition and 48S PIC formation, 
which commits the ribosome to initiate at the selected start codon and is paralleled by Pi release from GDP•Pi-
bound TC and the dissociation of eIF1. Subsequent 60S subunit joining and the release of eIFs is catalysed by 
the GTPase eIF5B. eIF2-GDP is recycled to eIF2-GTP by eIF2B, the guanine nucleotide exchange factor for eIF2. 
For more details, see text. A – aminoacyl-tRNA binding site, P – peptidyl-tRNA binding site, E – deacylated-tRNA 
binding site (exit), GTP – green ball, GDP – red ball, Pi – inorganic phosphate. Figure modified from (Hinnebusch 

2011).  
 

Once loaded at the 5′ cap-proximal region, 43S PIC scans the mRNA in search of an 

initiation codon, which is commonly the first AUG triplet (reviewed in Hinnebusch 2011). 

During scanning the “open” conformation of 43S PIC is stabilized by eIF1 and eIF1A, thereby 

enabling 43S PIC to thread along the mRNA (Passmore et al. 2007). Perfect base-pairing between 

the initiation codon and the anticodon of Met-tRNAi
Met  leads to a conformational change in 40S 

subunit, which likely closes the mRNA binding channel to prevents further scanning, thereby 

forming 48S PIC (Passmore et al. 2007; Maag et al. 2005; Unbehaun et al. 2004). Subsequent 

dissociation of eIF1 from the pre-initiation complex allows the release of inorganic phosphate 

(Pi) from eIF2-GDP•Pi, which drives GTP hydrolysis by eIF2 to completion and commits the 

ribosome to initiate at the selected start codon (Unbehaun et al. 2004; Maag et al. 2005; Algire, 

Maag, and Lorsch 2005). eIF2-bound GTP hydrolysis is stimulated by eIF5, however, during 

scanning the reaction seems to be reversible because the presence of eIF1 on 43S PIC precludes 

the release of Pi (Algire et al. 2002; Algire, Maag, and Lorsch 2005). eIF1 thus ensures the fidelity 

of translation initiation by allowing irreversible eIF2-bound GTP hydrolysis only upon the 

establishment of codon-anticodon base-pairing (Algire, Maag, and Lorsch 2005).  

60S subunit joining is accompanied by eIF release from the small ribosomal subunit and 

is catalyzed by the ribosome-dependent GTPase eIF5B (T V Pestova et al. 2000; Fringer et al. 

2007). Efficient subunit joining depends on the interaction between eIF5B and the C-terminus of 

eIF1A. This interaction accelerates the rate of subunit joining and, after 60S recruitment, 

enhances  the GTP hydrolysis activity of eIF5B (Acker et al. 2006; Acker et al. 2009; Fringer et al. 

2007). GTP hydrolysis is required for the rapid release of eIF5B and eIF1A, thereby producing 

and elongation-competent 80S ribosome (Acker et al. 2009; J. H. Lee et al. 2002; Shin et al. 2002). 

eIF2-GDP dissociates from a small fraction of 48S complexes upon Pi release and its release is 

further promoted by eIF5B binding to 48S PIC (Pisarev et al. 2006). However, complete 

dissociation of eIF2-GDP from the small ribosomal subunits is paralleled by 60S subunit joining 

(Pisarev et al. 2006).  

In contrast to translation initiation, which is paralleled by the recruitment of a large 

number of initiation factors, translation elongation in most eukaryotes requires the association of 

only two factors with the ribosome. The GTP-bound eukaryotic elongation factor (eEF) 1A 



INTRODUCTION 

 

29 
 

delivers the aminoacyl-tRNA (aa-tRNA) to the ribosomal acceptor (A) site (reviewed in Rodnina 

and Wintermeyer 2001). Correct codon-anticodon base-pairing triggers GTP hydrolysis by 

eEF1A followed by the dissociation of eEF1A-GDP from the ribosome, which enables the aa-

tRNA to fully accommodate in the A-site. Subsequent peptide bond formation leaves a 

deacylated tRNA in the P-site and the newly formed peptidyl-tRNA in the A-site. Before the next 

round of translation elongation can proceed the ribosome needs to move by one codon on the 

mRNA, thereby placing the deacylated tRNA and the peptidyl-tRNA in ribosomal E- and P-sites, 

respectively, and the next codon in the A-site. Translocation is catalyzed by eEF2, which 

hydrolyzes GTP to enable ribosome movement (Taylor et al. 2007; VanLoock et al. 2000). A 

third elongation factor, eEF3, exists exclusively in fungi, where it mediates the release of 

deacylated tRNA from the E-site and the binding of eEF1A-GTP-aa-tRNA ternary complex to 

the A-site (Triana-Alonso, Chakraburtty, and Nierhaus 1995; Andersen et al. 2006).  

Translation is terminated after the entry of one of the three stop codons into the 

ribosomal A-site (reviewed in Kapp and Lorsch 2004). In eukaryots, this process is governed by 

two release factors, eRF1 and eRF3. eRF1 recognizes the three stop codons and catalyzes the 

hydrolysis of peptidyl-tRNA, whereas eRF3 strongly stimulates peptide release by eRF1 through 

GTP hydrolysis. According to the current model eRF1 and eRF3 are recruited to the ribosomal 

A-site in a ternary complex with GTP (Alkalaeva et al. 2006). Importantly, the interaction 

between eRF1 and eRF3 increases the affinity of eRF3 for GTP (Hauryliuk et al. 2006; Pisareva 

et al. 2006). eRF3’s GTPase activity is triggered upon binding to the ribosome and is thought to 

result in a conformational change in eRF1 that activates peptidyl-tRNA hydrolysis by eRF1 

(Frolova et al. 1996; Alkalaeva et al. 2006). Interestingly, in S. cerevisiae mRNA export factors 

Dbp5 and Gle1 together with inositol hexakisphosphate have been implicated in translation 

termination (Bolger et al. 2008; T. Gross et al. 2007). Both Dpb5 and Gle1 physically and 

genetically interact with release factors and have been proposed to participate in mRNP 

remodelling prior to termination (Bolger et al. 2008; T. Gross et al. 2007). However, the exact 

molecular mechanism how these factors promote efficient translation termination remains to be 

determined. 

 

 

Cytoplasmic mRNA decay 

Cytoplasmic mRNA degradation machinery serves two major functions: (1) it maintains normal 

mRNA decay rates and thereby regulates the abundance of functional proteins; (2) it performs 

mRNA quality control by eliminating aberrant mRNAs that otherwise could give rise to toxic 
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proteins (reviewed in Houseley and Tollervey 2009). The five hydrolytic activities participating in 

cytoplasmic mRNA decay mediate decapping at the 5′ end, 5′→3′ exonucleolytic decay, 

deadenylation of the 3′ poly(A) tail, 3′→5′ exonucleolytic decay and endonucleolytic cleavage 

within the transcript (reviewed in Schoenberg 2011; C.-Y. A. Chen and Shyu 2011; Ling, Qamra, 

and Song 2011). The accessibility of an mRNA to these activities is determined by the structure 

of the mRNP, i.e. the complement of mRNA associated RBPs and small non-coding RNAs. 

These mRNA-associated factors can regulate mRNA decay rates directly by promoting or 

hindering the recruitment of mRNA decay machinery, and indirectly by influencing the 

translational status and/or subcellular localization of the mRNA. Depending on the substrate and 

cellular conditions, mRNA decay can be initiated by deadenylation, decapping or endonucleolytic 

cleavage followed by exonucleolytic digestion (reviewed in Garneau, Wilusz, and Wilusz 2007).  

In order to give relevant background information for the experimental part of the thesis, 

this chapter will focus on deadenylation dependent mRNA decay and on mRNA quality control 

mechanism termed nonsense-mediated mRNA decay.  

 

Deadenylation dependent mRNA decay 

Deadenylation 

The initial and often rate-limiting step in most eukaryotic cytoplasmic mRNA degradation 

pathways is deadenylation (Muhlrad, Decker, and Parker 1994; M Tucker et al. 2001). The bulk 

poly(A)-specific 3′ exoribonuclease activity is provided by the evolutionarily conserved Pan2-

Pan3 and Ccr4-Not complexes in S. cerevisiae. In Pan2-Pan3 heterodimer both subunits are 

required for enzymatic activity even though the catalytic site is harboured by Pan2 (Boeck et al. 

1996; C E Brown et al. 1996). The deadenylase activity in the multisubunit Ccr4-Not complex 

resides in Ccr4 (Morgan Tucker et al. 2002; Goldstrohm et al. 2007) and, at least in metazoans, in 

Caf1 (also known as Pop2) (Moser et al. 1997; Temme et al. 2010; Cooke, Prigge, and Wickens 

2010; Viswanathan et al. 2004; Wagner, Clement, and Lykke-Andersen 2007). Studies in yeast 

have shown that Pan2-Pan3 complex is recruited to mRNA via the interaction between Pan3 and 

the major poly(A)-binding protein Pab1 (David A Mangus, Smith, et al. 2004), which leads to the 

activation of Pan2 exonuclease activity (Alan B. Sachs and Deardorff 1992; Lowell, Rudner, and 

Sachs 1992; David A Mangus, Evans, et al. 2004). Pan2-Pan3 is suggested to trim the initially 

synthesized ~90 nt long poly(A) tails to mRNA-specific lengths of ~55-70 nt (Christine E. 

Brown and Sachs 1998). The loss of Pan2-Pan3 activity has a modest effect on mRNA 

deadenylation and decay as only a slight increase in the average poly(A) tail length of total steady-

state mRNA was observed in pan2 and pan3 deletion strains (C E Brown et al. 1996). In contrast, 
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combining pan2 deletion with ccr4 deletion led to the loss of detectable mRNA deadenylation 

activity (M Tucker et al. 2001), indicating that Ccr4-Not complex is the predominant cytoplasmic 

poly(A) nuclease (Morgan Tucker et al. 2002; M Tucker et al. 2001; J. Chen, Chiang, and Denis 

2002). Unlike Pan2-Pan3, Ccr4-Not complex does not directly bind to Pab1 (Yao et al. 2007) and 

is instead selectively recruited to mRNA through the interaction with other RBPs (reviewed in 

Doidge et al. 2012). 

 

Decapping 

Deadenylated mRNAs can undergo further decay along two different routes. The unprotected 3′ 

end can be attacked by the cytoplasmic exosome, which degrades the mRNA body in 3′→5′ 

direction (reviewed in S. Lykke-Andersen et al. 2011). Alternatively, the mRNA can be decapped 

and degraded by the 5′→3′ exoribonuclease Xrn1 (reviewed in Jones, Zabolotskaya, and Newbury 

2012). In S. cerevisiae, the bulk mRNA seems to be degraded in the latter pathway (C. J. Decker 

and Parker 1993; Hsu and Stevens 1993). This is suggested by the findings that inactivation of 

decapping or 5′→3′ exonucleolytic decay leads to the accumulation of deadenylated full-length 

transcripts (Muhlrad, Decker, and Parker 1994; Beelman et al. 1996; Muhlrad, Decker, and Parker 

1995; Dunckley and Parker 1999). Such decay intermediates can be degraded, albeit slowly, in 

3′→5′ direction, indicating that in yeast the two decay pathways are, at least to some extent, 

redundant (Muhlrad, Decker, and Parker 1994; Muhlrad, Decker, and Parker 1995).  

In wild-type (wt) yeast cells the poly(A) tail is shortened to an oligo(A) length of ~12 nt 

before the mRNA can enter the decapping pathway (C. J. Decker and Parker 1993). The packing 

density of Pab1 on poly(A) tract is approximately one molecule per 25 A residues (Baer and 

Kornberg 1980; A. B. Sachs, Davis, and Kornberg 1987). The shortening of poly(A) tail below 

this length is likely to disrupt the communication between the 5′ cap and the 3′ poly(A) tail due to 

the loss of Pab1 (Tarun and Sachs 1996b; Tarun et al. 1997; Wells et al. 1998) and consequently 

lead to a decrease in translation initiation efficiency (Munroe and Jacobson 1990; Gallie 1991). 

Inefficient translation initiation enables the decapping machinery to gain access to the mRNA 

(Beelman and Parker 1994; D C Schwartz and Parker 2000; LaGrandeur and Parker 1999) as 

indicated by the findings that a stable secondary structure in the 5′ UTR (Muhlrad, Decker, and 

Parker 1995), a poor AUG context (LaGrandeur and Parker 1999) or mutations in the translation 

initiation factors increase in vivo mRNA decapping rates (David C. Schwartz and Parker 1999). 

The catalytic core of the evolutionarily conserved decapping complex is Dcp2 (Steiger et 

al. 2003; Deshmukh et al. 2008; van Dijk et al. 2002; Z. Wang et al. 2002), which in S. cerevisiae 

forms a holoenzyme with Dcp1 (Beelman et al. 1996; Dunckley and Parker 1999; Steiger et al. 
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2003). Kinetic studies have revealed that Dcp1 enhances the catalytic step (Deshmukh et al. 2008; 

Floor et al. 2010). Unexpectedly, the overexpressed human decapping enzymes DCP1A and 

DCP2 do not form a detectable complex in vivo (Fenger-Grøn et al. 2005) and the bacterially 

produced DCP1A is not capable to stimulate the activity of DCP2 in vitro (Jens Lykke-Andersen 

2002; van Dijk et al. 2002). This discrepancy from the results obtained in yeast was explained by 

the finding that the metazoan-specific protein Hedls (also known as Ge-1 and Edc4) promotes 

complex formation between Dcp2 and Dcp1 in human and in A. thaliana and that this interaction 

enhances the catalytic activity of Dcp2 (Fenger-Grøn et al. 2005; J. Xu et al. 2006; Chang et al. 

2014).  

 

Regulation of mRNA decapping. Decapping is an irreversible process that leads to the rapid 

degradation of the mRNA body and therefore this activity needs to be tightly regulated in cells. 

The mRNA specific decapping rates seem to be determined by two properties of individual 

mRNAs. Firstly, mRNA structural features that reduce translation initiation efficiency also 

increase deadenylation and decapping rates. As mentioned above, such features include a poor 

AUG context or a stable secondary structure in the 5′ UTR (Muhlrad, Decker, and Parker 1995; 

LaGrandeur and Parker 1999). Secondly, some mRNAs contain binding sites for regulatory 

proteins that can either stimulate or inhibit decapping (Olivas and Parker 2000; Mauchi, Ohtake, 

and Irie 2010).  

Considering the inverse correlation between translation initiation and decapping 

efficiency, translation initiation factors can be viewed as general decapping inhibitors. Indeed, the 

major cytoplasmic cap-binding protein eIF4E inhibits decapping in vitro due to its ability to bind 

the cap structure (D C Schwartz and Parker 2000; Ramirez et al. 2002) and mutations in the 

subunits of eIF4F or eIF3 complexes increase the rate of decapping (David C. Schwartz and 

Parker 1999; D C Schwartz and Parker 2000). Likewise, the poly(A) tail has a negative effect on 

decapping, which is partly mediated through Pab1 (C. J. Decker and Parker 1993; Caponigro and 

Parker 1995). General decapping activators, on the other hand, enhance decapping of both stable 

and unstable mRNAs. Such proteins can act by interfering with translation, by promoting the 

catalytic activity of Dcp2, or by directly binding to the mRNA and providing a scaffold for the 

assembly of the decapping machinery. In S. cerevisiae the core set of decappin activators includes 

Pat1, Dhh1, Scd6, Edc3 and Lsm1-7, which are all conserved proteins (Sundaresan Tharun et al. 

2000; Bonnerot, Boeck, and Lapeyre 2000; Bouveret et al. 2000; J. M. Coller et al. 2001; N. 

Fischer and Weis 2002; Decourty et al. 2008). 

Several decapping activators like the DEAD-box RNA helicase Dhh1, Pat1 and Scd6 

promote decapping indirectly through mRNA translational repression. Overexpression of these 
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proteins inhibits growth of yeast cells. Further analysis of cells overexpressing either Dhh1 or 

Pat1 revealed reduced rates of translation (J. Coller and Parker 2005; Nissan et al. 2010). 

Consistent with a role in translational repression, all three proteins repress translation in vitro by 

inhibiting the formation of a stable 48S PIC (J. Coller and Parker 2005; Nissan et al. 2010). In 

case of Scd6, further in vitro analysis showed that the protein inhibits translation by directly 

binding to eIF4G, which likely blocks the recruitment of 43S PIC to the mRNA (Rajyaguru, She, 

and Parker 2012). Interestingly, in vivo experiments indicate that Dhh1 is able to repress 

translation also after the initiation step. Namely, Dhh1 was found to repress translation at a step 

subsequent to initiation by slowing ribosome movement (Sweet, Kovalak, and Coller 2012). A 

reduction in ribosome transit rate is a potent activator of mRNA turnover as suggested by the 

finding that rare codons, which restrict ribosome elongation, in the open reading frame (ORF) of 

a reporter mRNA stimulated mRNA decapping in a Dhh1-dependent manner (Sweet, Kovalak, 

and Coller 2012).  

Pat1 is an exceptional protein among decapping activators because it can stimulate 

mRNA decapping both through indirect and direct mechanisms. Besides repressing translation, 

Pat1 act as a scaffold for the assembly of the decapping machinery and enhances the catalytic 

activity of Dcp2 (S Tharun and Parker 2001; Sundaresan Tharun et al. 2000; Bonnerot, Boeck, 

and Lapeyre 2000; Pilkington and Parker 2008; Nissan et al. 2010). Recombinant Pat1 directly 

interacts with Dhh1, Scd6, Lsm1-7 complex, Xrn1, Dcp1 and Dcp2 (Nissan et al. 2010) and has 

strong two-hybrid interactions with Edc3 (Pilkington and Parker 2008). The multitude of 

interactions with the decapping machinery suggests that Pat1 is a key protein in promoting 

decapping. Indeed, except for dcp1 and dcp2 deletion strains, which lack mRNA decapping 

activity, deletion of pat1 results in the strongest defect in decapping as compared to any other 

known mutation (S Tharun and Parker 1999; Dunckley and Parker 1999; Sundaresan Tharun et 

al. 2000; Bouveret et al. 2000; J. M. Coller et al. 2001; Kshirsagar and Parker 2004; Decourty et al. 

2008).  

Similarly to Pat1, Edc1, Edc2 and Edc3 directly bind Dcp1-Dcp2 decapping complex and 

stimulate its activity (D. Schwartz, Decker, and Parker 2003; Carolyn J Decker, Teixeira, and 

Parker 2007; Tritschler et al. 2007; Harigaya et al. 2010; Nissan et al. 2010; Borja et al. 2011). 

Unlike Pat1, however, the loss of these proteins does not cause defects in mRNA decay 

(Dunckley, Tucker, and Parker 2001; Kshirsagar and Parker 2004). Instead, Edc1, Edc2 and Edc3 

become necessary for mRNA decapping when the function of Dcp1 or Dcp2 is partially 

compromised due to mutations (Dunckley, Tucker, and Parker 2001; Kshirsagar and Parker 

2004). Besides interacting with the decapping enzymes, Edc3 shows two-hybrid interactions with 

Pat1, Dhh1 and Lsm1-7 complex and has therefore been proposed to function as a scaffold for 
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the decapping mRNP assembly (Pilkington and Parker 2008; Fromont-Racine et al. 2000; Carolyn 

J Decker, Teixeira, and Parker 2007).  

Co-immunoprecipitation experiments combined with RNase treatment, which enables to 

determine the RNA-dependence of the interactions, have helped to shed light on the dynamics of 

decapping mRNP assembly. Pat1, for instance, associates in an RNase-sensitive manner with 

eIF4E, eIF4G and Pab1, suggesting that Pat1 can bind to the mRNA when it still has a 

functional poly(A) tail (S Tharun and Parker 2001). Lsm1-7 complex, on the other hand, has been 

found to preferentially interact with deadenylaed mRNAs (S Tharun and Parker 2001). 

Consistent with the loss of the poly(A) tail, eIF4E, eIF4G and Pab1 do not co-

immunoprecipitate with Lsm proteins (S Tharun and Parker 2001). Instead, Lsm1-7 complex 

associates in an RNA-dependent manner with Dcp1-Dcp2 (Sundaresan Tharun et al. 2000). 

These results imply that Pat1 and Lsm1-7 bind to mRNAs destined for decay at different times. 

However, once both Pat1 and Lsm1-7 are present on the mRNA they seem to form a stable 

complex as suggested by the finding that Pat1 co-immunopreciptiates with Lsm proteins in an 

RNase-insensitive manner (Sundaresan Tharun et al. 2000; S Tharun and Parker 2001). 

According to the current model the interaction of Pat1 with Lsm1-7 complex results in the 

formation of a binding site for Dcp2 in the C-terminal domain of Pat1 and subsequent activation 

of decapping (reviewed in Parker 2012).  

The binding efficiency of Lsm1-7 has been proposed to be the key factor in determining 

if an mRNA will be degraded in 5′→3′ or in 3′→5′ pathway (reviewed in Sundaresan Tharun 

2009). Remarkably, Lsm1-7 shows a strong binding preference for oligoadenylated mRNAs over 

polyadenylated mRNAs (S Tharun and Parker 2001; Chowdhury, Mukhopadhyay, and Tharun 

2007). Mutations in LSM1 gene that abolish the preferential binding of the Lsm1-7 complex to 

oligoadenylated mRNA impair mRNA decay (Sundaresan Tharun et al. 2005). These 

observations suggest that the Lsm1-7 complex can act as a sensor of the poly(A) tail length and 

that this ability is essential for efficient mRNA decay in vivo. Consistent with Lsm1-7 binding 

preference for oligo(A) tail, unadenylated mRNAs that are generated in vivo by ribozyme cleavage 

are not good substrates for Lsm1-7 mediated 5′→3′ decay (Chowdhury and Tharun 2008). 

Instead, such mRNAs are efficiently degraded by the exosome in the 3′→5′ decay pathway 

(Chowdhury and Tharun 2008; Meaux and Van Hoof 2006). It is therefore conceivable, that 

mRNAs that escape binding by the Lsm1-7 complex at an oligo(A) tail stage are fully 

deadenylated and subsequently degraded by the exosome (Sundaresan Tharun 2009). 

 

The relationship between mRNA decapping and P-bodies. mRNA decay intermediates 

together with proteins involved in decapping and, to a lesser extent, deadenylation can be found 
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in cytoplasmic aggregates known as processing bodies (P-bodies) (Sheth and Parker 2003; 

Teixeira and Parker 2007). Therefore, P-bodies have been proposed to be the actual sites of 

mRNA decapping (reviewed in Parker and Sheth 2007; Franks and Lykke-Andersen 2008). The 

extent of P-body assembly correlates with the cellular concentration of non-translating mRNPs 

(reviewed in Franks and Lykke-Andersen 2008). For instance, P-bodies increase in number and 

size when translation initiation is inhibited by cellular stress or mutations in translation initiation 

factors (Teixeira et al. 2005). Conversely, trapping the mRNA in polyribosomes by blocking 

translation elongation leads to the disappearance of visible P-bodies (Teixeira et al. 2005; Sheth 

and Parker 2003). The assembly of decapping mRNPs into macroscopically visible P-bodies, 

however, is not necessary for efficient mRNA decay, as the deletion of proteins or protein 

domains involved in individual mRNP aggregation into P-bodies does not substantially reduce 

mRNA turnover rates (Carolyn J Decker, Teixeira, and Parker 2007; Reijns et al. 2008). The 

functional significance of P-body formation remains therefore elusive, although the evolutionary 

conservation of the mechanism argues for an adaptive advantage. Blocking mRNA decapping or 

5′→3′ degradation results in an increase in P-bodies, suggesting that aggregation of individual 

mRNPs into P-bodies might facilitate mRNA decay under conditions where mRNA decay 

factors are limited (Sheth and Parker 2003; Andrei et al. 2005; Cougot, Babajko, and Séraphin 

2004; Teixeira and Parker 2007). Sequestration of decapping mRNPs into P-bodies might also 

help to avoid aberrant mRNA decapping by physically separating non-translating mRNPs from 

translating mRNPs (reviwed in Franks and Lykke-Andersen 2008). 

 

 

3′→5′ mRNA decay 

As mentioned above, deadenylated mRNAs can also be degraded in 3′→5′ direction by the 

cytoplasmic exosome. The catalytically inactive 9-subunite exosome core (Exo9), which is 

identical between the nuclear and cytoplasmic versions of the exosome (Hernandez et al. 2006), is 

associated with one enzymatically active protein in the cytoplasm – Dis3 (Dziembowski et al. 

2007; Allmang et al. 1999). Biochemical and structural studies suggest that RNA substrates reach 

the exoribonucleolytic site of Dis3 after having been threaded through the central channel of 

Exo9 (Bonneau et al. 2009; Malet et al. 2010). The length of the RNA binding path in Exo9 

central channel is 31-33 nt (Bonneau et al. 2009). Consequently, only RNAs with a 3′ single 

stranded region longer than 31-33 nt are efficient degraded by the cytoplasmic exosome 

(Lorentzen et al. 2008; Liu, Greimann, and Lima 2006; Bonneau et al. 2009). Dis3 also contains 

an endoribonucleolytic site, which, unlike the exoribonucleolytic site,  is accessible from solvent 
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and does not depend on substrate threading through the Exo9 central channel (Bonneau et al. 

2009).  

The cytoplasmic exosome functions together with Ski proteins as indicated by the 

findings that in yeast strains where 5′→3′ mRNA decay is blocked in cis, the loss of any of the 

four Ski proteins leads to the stabilization of mRNA 3′ end fragments (J. S. Anderson and Parker 

1998; A van Hoof et al. 2000). The evolutionarily conserved Ski2, Ski3 and Ski8 proteins (Orban 

and Izaurralde 2005) form a complex (J. T. Brown, Bai, and Johnson 2000; L. Wang, Lewis, and 

Johnson 2005) that in S. cerevisiae is recruited to the exosome via Ski7, which is a yeast-specific 

protein (Orban and Izaurralde 2005) that directly binds to the exosome (Araki et al. 2001; Ambro 

van Hoof et al. 2002). Ski2 belongs to the DExH family of RNA helicases and could therefore 

mediate ATP-dependent RNA unwinding and mRNP remodelling before the substrate is 

delivered to the exosome (Halbach, Rode, and Conti 2012). This notion is supported by recent 

biochemical data suggests that Ski complex forms a continuous RNA channel to the exosome, 

thereby coupling the RNA helicase and the exoribonuclease (Halbach et al. 2013). The RNA 

helicase activity seems to play an important role in exosome-mediated mRNA decay since also 

the TRAMP complex, which regulates the activity of the nuclear exosome (Jia et al. 2012; Jia et al. 

2011), contains a Ski2-related RNA helicase Mtr4 (Halbach, Rode, and Conti 2012). 

 

 

Cytoplasmic mRNA quality control  

Cytoplasmic mRNA quality control mechanisms target mRNAs with defects in translation. The 

three types of translational defects that trigger mRNA decay include: (1) aberrant translation 

termination due to a premature translation termination codon in the protein coding region; (2) 

translation into 3′ poly(A) tail due to the absence of a stop codon; and (3) stalled translation 

elongation due to a barrier for ribosome progression. Each of the defects activates a specific 

mRNA decay pathway that have been reviewed in (Isken and Maquat 2007; Parker 2012). A 

common theme among these decay pathways seems to be how aberrant mRNAs are 

distinguished from normal transcripts. Namely, mRNA translational defects lead to the 

recruitment of adaptor proteins that interact with the translation machinery and direct the mRNA 

into a decay pathway (reviewed in Doma and Parker 2007).  

 

Nonsense-mediated mRNA decay 

The best studied translation-dependent mRNA quality control mechanism is nonsense-mediated 

mRNA decay (NMD), which targets mRNAs with nonsense codons in the protein coding region 
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in organisms ranging from yeast to human (reviewed in Kervestin and Jacobson 2012). Such 

nonsense codons are referred to as premature termination codons (PTCs) and they can arise in 

any gene due to gene mutations and errors in mRNA transcription and splicing (Massimo Caputi, 

Kendzior, and Beemon 2002; Sayani et al. 2008; Mort et al. 2008). If translated, PTC-containing 

mRNAs can produce truncated proteins with dominant negative or gain-of-function potential, as 

illustrated by truncated β-globine, which causes a dominant negative form of β-thalassemia in 

humans (Thein et al. 1990; Hall and Thein 1994). Therefore, the purpose of NMD seems to be to 

protect cells from the potentially toxic effects of mistakes that routinely occur during gene 

expression (reviewed in Isken and Maquat 2007). It is important to note, however, that in case of 

human genetic disease efficient NMD can also lead to haploinsufficiency because truncated 

proteins, which otherwise would retain sufficient wt function, are not produced (reviewed in J T 

Mendell and Dietz 2001; Peixeiro, Silva, and Romao 2011).   

 

NMD targets and the mechanism of their recognition. Nonsense mutations are likely to arise 

only at a low frequency during gene expression (Korona, LeCompte, and Pursell 2011; M. J. 

Thomas, Platas, and Hawley 1998; Lynch 2010). Therefore, the presence of NMD pathway in all 

eukaryotes examined to date suggests that mRNAs, which contain PTCs introduced by 

mutations, are not the only targets of NMD (Baserga and Benz 1988; Brogna 1999; Isshiki et al. 

2001; Leeds et al. 1991; Cali and Anderson 1998). Indeed, genome wide studies in yeast, worm, 

fruitfly, plant and human have revealed that NMD regulates the expression of many physiological 

non-mutated transcripts (Lelivelt and Culbertson 1999; Feng He et al. 2003; Joshua T Mendell et 

al. 2004; Rehwinkel et al. 2005; Wittmann, Hol, and Jack 2006; Ramani et al. 2009; Kurihara et al. 

2009; Chan et al. 2007). The physiological NMD substrates in yeast include unspliced pre-

mRNAs that contain nonsense codons in their introns (F He et al. 1993; Sayani et al. 2008), 

transcripts with upstream open reading frames (uORFs) (Gaba, Jacobson, and Sachs 2005; Guan 

et al. 2006) or alternative AUG initiation codons beyond the initiator AUG that are out of frame 

with the main ORF (Welch and Jacobson 1999), and transcripts that induce elongating ribosomes 

to shift the reading frame by one base in 5′ or 3′ direction and consequently direct the ribosomes 

to PTCs (Belew, Advani, and Dinman 2010). In higher eukaryotes alternative splicing contributes 

to the production of NMD substrates (reviewed in L. Huang and Wilkinson 2012; McGlincy and 

Smith 2008). Most PTC-containing alternative mRNA isoforms targeted by NMD are likely the 

result of splicing errors as suggested by their relatively low abundance and by the lack of tissue-

specific expression pattern (Pan et al. 2006). However, in case of a subset of PTC-containing 

alternative mRNA isoforms the NMD pathway is exploited to exert post-transcriptional gene 

expression regulation (reviewed in L. Huang and Wilkinson 2012; McGlincy and Smith 2008). A 
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remarkable example here is the SR family of splicing regulators, where the expression of all the 

family members is regulated by alternative splicing-coupled NMD (Lareau et al. 2007; J. Z. Ni et 

al. 2007; Saltzman et al. 2008). 

How do cells distinguish between a PTC and a normal translation termination codon? 

Experiments using mRNAs with artificially extended 3′ UTRs have helped to shed light on this 

question. Namely, in organisms ranging from yeast to human a normal translation termination 

codon can be recognized as premature when positioned too far upstream of the poly(A) tail 

(Muhlrad and Parker 1999; Amrani et al. 2004; Behm-Ansmant et al. 2007; Longman et al. 2007; 

Kertesz et al. 2006; Eberle et al. 2008; Bühler et al. 2006; G. Singh, Rebbapragada, and Lykke-

Andersen 2008). Conversely, PTC-containing mRNAs can be stabilized by positioning the 

poly(A) tail closer to the PTC either by deleting the coding region downstream of the PTC or by 

folding back the 3′ UTR (Peltz, Brown, and Jacobson 1993; Hagan et al. 1995; Eberle et al. 2008). 

These observations indicate that the local mRNP structure downstream of the site of translation 

termination is a critical determinant for PTC recognition. But how does the 3′ UTR regulate PTC 

recognition? Studies in yeast, fruitfly, plant and human cells have shown that NMD reporter 

transcripts can be stabilized by localizing poly(A)-binding protein close to the PTC, thereby 

mimicking a normal 3′ UTR (Amrani et al. 2004; Behm-Ansmant et al. 2007; Kerényi et al. 2008; 

Eberle et al. 2008; G. Singh, Rebbapragada, and Lykke-Andersen 2008). The inhibitory effect of 

PABP on NMD could be mediated by PABP’s role in normal translation termination. Both Pab1 

in yeast and PABPC1 in mammals have been shown to directly interact with eRF3 (Hoshino et 

al. 1999; Cosson et al. 2002). Furthermore, Pab1 overexpression promotes translation 

termination, whereas depletion of PABPC1 increases nonsense codon readthrough (Cosson et al. 

2002; Ivanov et al. 2008). Disrupted communication between PABP and eRF3 may therefore 

signal that the translation termination event is premature and lead to NMD activation (reviewed 

in Kervestin and Jacobson 2012). This notion is also supported by the finding that human β-globin 

mRNA effectively evades NMD if the PTC is located not more than 23 codons downstream of 

the initiator AUG (Inácio et al. 2004; Silva et al. 2006). NMD resistance of such transcripts was 

shown to depend on PABPC1 and eRF3 interaction, which likely facilitates normal translation 

termination at an AUG-proximal PTC (Peixeiro, Silva, and Romao 2011). However, NMD 

activation cannot solely be a consequence of a missing interaction between eRF3 and PABP as 

indicated by the findings that, at least in yeast cells, neither Pab1, mRNA poly(A) tail nor the 

Pab1-interacting domain of eRF3 are necessary for PTC-containing mRNA recognition and 

destabilization by NMD (Meaux, van Hoof, and Baker 2008; Kervestin et al. 2012).  

Even though the exact molecular mechanism involved in PTC recognition remains 

unknown, it has been convincingly shown that translation termination at a PTC is mechanistically 
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different form translation termination at a normal termination codon (Amrani et al. 2004; 

Peixeiro et al. 2011). The latter proceeds without ribosome pausing at the termination codon as 

primer extension inhibition assay, which identifies the position of single ribosomes on mRNA, 

failed to yield toeprint signals at normal yeast and mammalian termination codons (Amrani et al. 

2004; Peixeiro et al. 2011). In contrast, PTC-containing transcripts yielded toeprint signals 

corresponding to ribosomes stalled with nonsense codons occupying the ribosomal A-sites. 

Collectively, these data indicate that translation termination at a PTC is aberrant. It has been 

suggested that the inefficient release of eRF3 from a terminating ribosome, possibly due to the 

absence of PABP, could be the aberrant step in translation termination at a PTC, which leads to 

the activation of NMD pathway (reviewd in Kervestin and Jacobson 2012).  

 

NMD factors and consequences of their activation. In all eukaryotes studied to date NMD 

substrates are identified and eliminated through the recruitment of up-frameshift (Upf) proteins, 

Upf1 (also known as Nam7), Upf2 (also known as Nmd2) and Upf3 (Hodgkin et al. 1989; Leeds 

et al. 1991; F He and Jacobson 1995; F He, Brown, and Jacobson 1997; Perlick et al. 1996; Cui et 

al. 1995; J Lykke-Andersen, Shu, and Steitz 2000; Serin et al. 2001; Gatfield et al. 2003). Single 

deletion of any of the UPF genes in yeast inhibits NMD to the same extent as Δupf1-3, indicating 

that each of the Upf proteins is essential for NMD activation (F He, Brown, and Jacobson 1997). 

Besides Upf1-3, additional proteins participate in NMD activation in metazoans (reviewed in 

Isken and Maquat 2008; Isken and Maquat 2007; Kervestin and Jacobson 2012).  

The key effector of the NMD pathway appears to be Upf1, which is thought to link 

aberrant translation termination at a PTC to NMD activation. Specifically, in the absence of Upf1 

aberrant toeprints corresponding to ribosomes stalled at PTCs fail to accumulate, suggesting that 

Upf1 regulates the extent to which a ribosome remains associated with a PTC (Amrani et al. 

2004). A role of Upf1 in translation termination is also supported by the finding that Upf1 co-

immunoprecipitates with eRF3 and eRF1 (K Czaplinski et al. 1998; Ivanov et al. 2008; Kashima 

et al. 2006; W. Wang et al. 2001). Likewise, Upf2 and Upf3 co-immunoprecipitate with eRF3 but 

not with eRF1, indicating sequential assembly of the NMD machinery (W. Wang et al. 2001).  

Upf1 has an amino terminal cysteine-histidine-rich zinc-knuckle domain (CH domain) 

connected by a flexible linker to helicase motifs common to superfamily 1 nucleic acid helicases 

(Weng, Czaplinski, and Peltz 1996; Bhattacharya et al. 2000). Biochemical and structural analysis 

indicates that in the absence of Upf2, the CH domain enhances the extent of RNA binding by 

the catalytic ATP-dependent RNA helicase domain, thereby inhibiting the ATPase activity of 

Upf1 (Chamieh et al. 2008; Chakrabarti et al. 2011). These observations support a model for 

Upf1 activation during NMD where the formation of the “surveillance complex”, i.e. a complex 
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where the interaction of Upf1 and Upf3 is bridged by Upf2 (F He, Brown, and Jacobson 1997; 

Chamieh et al. 2008; Serin et al. 2001), reduces the extent of RNA binding by the Upf1 helicase 

domain and triggers its ATPase activity (Chakrabarti et al. 2011). However, it should be noted 

that data obtained by yeast two-hybrid and genetic analysis supports a contradicting model where 

Upf1 binding to its target mRNAs is stabilized, but not destabilizes, upon interaction with Upf2 

(Feng He, Ganesan, and Jacobson 2013). Despite no clear consensus about the mechanism of 

Upf2-mediated activation of Upf1 ATP-dependent RNA helicase activity, the latter activity is 

necessary for mRNP disassembly. Namely, it has been found that in HeLa cells that harbour 

UPF1 mutants, which fail to bind or hydrolyze ATP, partially degraded NMD target mRNAs 

accumulate in P-bodies in complex with NMD factors (Franks, Singh, and Lykke-Andersen 

2010). Upf1 has also been shown to play an important role in ribosome recycling at PTCs, 

thereby enabling subsequent rounds of translation (Ghosh et al. 2010). However, it remains to be 

determined if Upf1 ATPase activity is required for this process. 

How exactly is Upf1 recruited to NMD target mRNAs and how Upf1 recruitment is 

linked to NMD activation? These questions have primarily been studied in the mammalian 

system (reviewed in Popp and Maquat 2014; Schweingruber et al. 2013). On newly synthesised 

mRNAs UPF1 has been found to transiently or weakly interacts with nuclear cap-binding 

complex component CBP80 (Hwang et al. 2010). In the presence of a PTC, UPF1-CBP80 

interaction promotes UPF1 binding to eRF1-eRF3 complex at the terminating ribosome (Hwang 

et al. 2010). UPF1 binding to an NMD target is further enhanced by the presence of an EJC 

sufficiently downstream of the PTC (Kurosaki and Maquat 2013). The role of EJC in promoting 

UPF1 recruitment is likely related to EJC serving as a binding platform for UPF2 and UPF3, 

thereby facilitating UPF1-UPF2-UPF3 interaction (reviewed in Schweingruber et al. 2013; Popp 

and Maquat 2014), which leads to the activation of UPF1 helicase activity (Chakrabarti et al. 

2011) required for the destruction of NMD targets (Franks, Singh, and Lykke-Andersen 2010). 

Importantly, PTC-free mRNAs can be bound by UPF1, albeit less efficiently than their PTC-

containing counterparts (Hwang et al. 2010; Kurosaki and Maquat 2013). The critical determinant 

of whether an mRNA is subjected to NMD therefore cannot be the binding of UPF1 to an 

mRNA but rather seems to be the association of UPF1-UPF2-UPF3 proteins as part of the 

decay-inducing complex (reviewed in Schweingruber et al. 2013; Popp and Maquat 2014), which 

contains  the ribosome, the UPF2- and UPF3-associated EJC and several proteins including 

UPF1, eRF1 and eRF3 (Yamashita et al. 2009). However, it should be noted that EJCs are 

removed by the translating ribosome likely during the pioneer round of translation (Gehring et al. 

2009; Dostie and Dreyfuss 2002; Lejeune et al. 2002) but PTC-containing transcripts can be 

subjected to NMD also during subsequent rounds of translation, as indicated by the recent 
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finding that eIF4-bound mammalian mRNAs are not immune to NMD (Rufener and 

Mühlemann 2013; Durand and Lykke-Andersen 2013). These findings raise the question how 

UPF1-UPF2-UPF3 interaction occurs in the absence of an EJC further downstream of a PTC? 

In the absence of EJCs, UPF2 and UPF3 have been proposed to bind to ribosome-bound UPF1 

(reviewed in Stalder and Mühlemann 2008), which is “found” possibly by diffusion (reviewed in 

Schweingruber et al. 2013). 

Whereas Upf1-mediated NMD activation depends on translation, Upf1 binding to 

mRNA seems to be translation-independent. Global analysis of UPF1-mRNA interactions by UV 

cross-linking and immunoprecipitation combined with high-throughput sequencing has revealed 

that UPF1 associates with mRNAs prior to translation and is displaced by translating ribosomes 

from ORF sequences (Zünd et al. 2013; J. A. Hurt, Robertson, and Burge 2013).  

NMD activation results in the rapid degradation of PTC-containing mRNAs that in S. 

cerevisiae and also in mammalian cells can be initiated from both the 5′ and 3′ end of the mRNA 

(reviewed in Isken and Maquat 2007). In D. melanogaster, the first step in the degradation of 

nonsense mRNAs is generally an endonucleolytic cleavage event in the vicinity of the PTC 

(Gatfield et al. 2003). PTC-proximal endonucleolytic cleavage has also been reported for 

mammalian cells (Eberle et al. 2009). Remarkably, in S. cerevisiae decapping of NMD substrates 

does not depend on prior deadenylation, which is a notable difference from the general 

deadenylation-dependent mRNA decay pathway (Muhlrad and Parker 1994; Cao and Parker 

2003). Besides destabilization of PTC-containing mRNAs, NMD activation has also been 

suggested to lead to Upf1-dependent proteasom-mediated destruction of truncated proteins 

(Kuroha, Tatematsu, and Inada 2009). Even though the prevalence of NMD-coupled protein 

decay has yet to be determined (reviewed in Parker 2012), it is tempting to speculate that this 

mechanism has an important role in protecting cells from potentially toxic proteins derived from 

nonsense mRNAs (Kuroha, Tatematsu, and Inada 2009). 

 

 

RNA-based RNP affinity purification 
 

Isolation of ribonucleoprotein particles (RNPs) has provided valuable knowledge about RNA-

protein interactions, which, in turn, has led to a better understanding of post-transcriptional gene 

expression regulation. Multiple methods have been developed to isolate RNPs. However, two 

general approaches exist – RNP capture via the protein or via the RNA component of the 

complex.  With a focus on the technical aspects, the following chapter will give an overview 
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about RNP affinity purification methods that relay on the capture or the RNA component of the 

RNP. 

RNA-based RNP affinity purification methods can be divided into two categories 

according to how RNPs are formed. For methods in the first category RNA-protein complex 

assembly takes place in vivo inside living cells. Methods in the second category are based on in vitro 

RNP formation that is performed after cell lysis. A common theme among all RNA-based RNP 

affinity purification methods is that the RNA of interest has to be “tagged” for purification. This 

tag can either be a chemical modification of the RNA or an RNA secondary structure element 

that binds with high affinity to a specific ligand. In both cases the introduced modification serves 

the purpose of capturing the bait RNA on the affinity matrix. The strategy used to tag the bait 

RNA depends on the nature of the bait. In vitro transcribed RNA or synthesized RNA 

oligonucleotides can be chemically modified. Naturally occurring or artificially selected RNA 

secondary structure elements can be incorporated into the RNA of interest during in vivo or in 

vitro transcription. 

 

 

RNP affinity purification using chemically modified bait RNA 

Many studies have made use of the high affinity biotin-streptavidin or biotin-avidin interaction 

(N. M. Green 1990; Sano and Cantor 1995) to capture ribonucleoprotein complexes. Biotinylated 

nucleotide analogs can be incorporated into the bait RNA during in vitro transcription. Typically, 

the labelled RNA is incubated with cell extract to allow in vitro RNP formation and the formed 

complexes are captured onto streptavidin-coated matrix. In the early studies this strategy was 

used to isolate spliceosome components from nuclear extracts of mammalian cells (Bindereif and 

Green 1987; Grabowski and Sharp 1986) and iron-responsive element-binding protein form 

human liver cytosolic extract (Rouault et al. 1989). One possible drawback of biotin labelling is 

that it can lead to structural changes of the bait RNA, which could affect RNP assembly (Walker 

et al. 2008). More recent studies have therefore utilized direct covalent coupling of the unlabelled 

bait RNA to the affinity matrix (Sela-Brown et al. 2000; Copeland et al. 2000; Allerson et al. 2003; 

M Caputi et al. 1999).  

Despite the technical improvements in chemically modified RNA use for RNP affinity 

purification, the dependence on in vitro RNP assembly is a considerable drawback of the method 

because such complexes might not contain the whole complement of interaction partners present 

in vivo. However, in some cases the method can also be adopted for the affinity purification of in 

vivo assembled RNPs. Namely, antisense 2′-O-methyl RNA oligonucleotides complementary to 
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single-stranded regions in the RNA of interest have been successfully used to purify U2 and 

U4/U6 snRNPs as well as telomerase from nuclear extracts (Wenz et al. 2001; Lingner and Cech 

1996; Blencowe et al. 1989). However, antisense RNA oligonucleotides have not found wide use 

in RNP affinity purification experiments. Single-stranded regions tend to destabilize RNP 

architecture and therefore it might not always be possible to find suitable regions in the bait RNA 

for affinity oligonucleotide annealing.  

 

 

Artificially selected RNA affinity tags 

The studies of RNP composition and function have greatly profited from the development of in 

vitro selection technology SELEX (systematic evolution of ligands by exponential enrichment), 

which has enabled to identify RNA and DNA sequences termed aptamers that bind with high 

affinity to specific ligands (reviewed in D. S. Wilson and Szostak 1999). Four different RNA 

aptamers have been commonly used to study RNA-protein interactions. All these aptamers are 

around 40 nt long stably folding RNA sequences that bind to their cognate ligand with an affinity 

in the micromolar to nanomolar range.  

The first RNA aptamer to be adopted for RNA-protein interaction studies binds to the 

aminoglycosid antibiotic streptomycin. The binding is Mg2+ dependent and has a dissociation 

constant (Kd) of around 1 µM (Wallace and Schroeder 1998). The streptomycin binding RNA 

aptamer, or the so-called StreptoTag (Bachler, Schroeder, and von Ahsen 1999) and its improved 

version STagT (Dangerfield et al. 2006), have thus far been used in in vitro studies. In a typical 

experiment the in vitro transcribed hybrid RNA containing an RNA motif of interest and the 

streptomycin aptamer, is added to the cell lysate to allow RNA-protein complex formation and 

then loaded onto streptomycin-coupled sepharose column. After washing, the bound complexes 

are specifically eluted under native conditions with high concentration of free streptomycin. This 

approach has been used to isolate 48S PICs form rabbit reticulocyte lysate, thereby significantly 

facilitating the preparation of pure 48S PIC for downstream applications (Locker, Easton, and 

Lukavsky 2006). In another study glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 

found to be an enhancer of group II intron splicing in S. cerevisiae (Böck-Taferner and Wank 

2004). However, the identified RNA-protein interaction does not likely take place in vivo, since 

GAPDH is a cytosolic protein but the studied intron is located in yeast mitochondria. As 

eukaryotic GAPDH is more similar to the eubacterial homolog than to the archaeal homolog 

(Martin et al. 1993), the authors speculate that this result could hint to glycolytic pathway 

acquisition from the mitochondrial genome. Even though type II intron-GAPDH interaction 



INTRODUCTION 

 

44 
 

might have a biological meaning, this finding also draws the attention to the problem of possible 

falls-positive interaction identification due to in vitro RNA-protein complex assembly. In addition, 

the same study revealed that large hybrid RNAs could not be efficiently bound to the 

streptomycin matrix (Böck-Taferner and Wank 2004; Windbichler and Schroeder 2006). This is 

likely caused by folding problems of large in vitro transcribed RNA molecules and thus limits the 

size of hybrid RNAs, which can still be efficiently bound by streptomycin column, to about 600 

nt. 

Another RNA aptamer that under physiological conditions binds with a high affinity (Kd 

5 nM) to an aminoglycoside antibiotic is the tobramycin-binding J6f1 RNA (Hamasaki et al. 

1998). This aptamer fused to the 3′ end of a pre-mRNA (hybrid RNA total size 267 nt) was 

successfully used to isolate human prespliceosomes, resulting in the identification of more than 

70 prespliceosome-associated proteins by mass spectrometry (Hartmuth et al. 2002).  

SELEX using the gel filtration matrix Sephadex G-100 as a target ligand resulted in the 

identification of D8 RNA aptamer (Srisawat, Goldstein, and Engelke 2001), which has been used 

to purify in vivo assembled ribonuclease P form S. cerevisiae. The main advantage of D8 aptamer is 

that its affinity matrix Sephadex is relatively cheap and can directly be used for tagged RNA 

purification. However, the affinity of the aptamer is not very high and therefore bound RNA will 

be gradually lost form the matrix during washing steps (Walker et al. 2008). 

From the four RNA aptamers used for RNA-protein interaction studies the streptavidin-

binding S1 aptamer has received the widest use. S1 aptamer binds to streptavidin with a Kd of 

about 70 nM (Srisawat and Engelke 2001). The elution of S1 aptamer form the affinity matrix can 

be performed under native conditions in the presence of d-biotin. The unusually high-affinity 

binding of biotin to streptavidin (Kd about 10-14 M) is essentially irreversible (N. M. Green 1990), 

thus enabling efficient elution and preventing rebinding of the eluted RNA to the matrix. The 

main disadvantage of the system is that the cellular biotin moieties have to be blocked before the 

lysate can be used for affinity purification. However, this can easily be done by pre-incubating the 

cell extract with egg white avidin, which binds biotin with a similar affinity as streptavidin. 

S1 aptamer has been used in various experimental setups to study both in vitro (Butter et 

al. 2009; Leonov et al. 2003) and in vivo (Y. Li and Altman 2002; Vasudevan and Steitz 2007; 

Srisawat and Engelke 2001) assembled RNA-protein complexes. To highlight a few studies, 

Butter et al. developed a screening method of RNA-protein interactions using in vitro transcribed 

RNA motives as bait (Butter et al. 2009). In this approach the S1-tagged RNA is first coupled to 

paramagnetic beads and then incubated with metabolically labelled mammalian cell extract. 

Metabolic labelling is performed by stable isotope labelling by amino acids in cell culture 

(SILAC), which enables to perform high-resolution, quantitative mass spectrometry (MS) to 
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analyze RNA-protein complex composition. Due to the high specificity of RNA elution by 

biotin, it was possible to perform gel-free, single-run MS analysis, thus accelerating sample 

throughput. The method proved to be highly reliable, i.e. both previously reported RNA-protein 

interactions could be identified and new interactions could be proved in follow-up experiments. 

It was recently reported that the S1 aptamer-mediated RNP pull-down efficiency could be 

increased 10-fold by adding a tRNA scaffold between the S1 aptamer sequence and the RNA 

motif of interest (Iioka et al. 2011). Interestingly, the attempt to increase the original S1 aptamer 

binding efficiency to the matrix by creating a hybrid RNA with six consecutive S1 repeats 

resulted in the opposite outcome – reduced RNA tethering efficiency as compared to hybrid 

RNA with a single S1 aptamer. The authors reasoned that this effect could be caused by one 

aptamer repeat interfering with another one, which might lead to misfolding of the RNA and 

subsequent affinity loss to streptavidin. The described tests were performed with matrix-tethered 

in vitro transcribed RNA because in vivo assembled RNA-protein complexes containing the RNA 

motif of interest fused to either one S1 aptamer, six S1 aptamers or S1 aptamer-tRNA scaffold 

could not be efficiently captured from human cell lysate. This is in contrast to some previous 

reports where, for instance, in vivo assembled RNase P could be purified via the S1 aptamer (Y. Li 

and Altman 2002).  This discrepancy underlines the need to optimize RNA-based RNP affinity 

purification conditions for each RNP of interest. 

 

 

Naturally occurring RNA secondary structure elements as RNA affinity tags  

Several powerful tools for studying RNP structure and function have been developed based on 

RNA-protein interactions found in bacteriophages. One such interaction, which, among other 

applications, has been successfully adopted for RNP affinity purification, occurs between a stem-

loop structure in the bacteriophage MS2 single stranded RNA genome and its coat protein 

(MS2CP). The 13.7 kDa MS2CP binds to the 19 nt long stem-loop as a dimer by contacting the 

nucleotides in the loop region and a bulged adenosine in the stem (C. Z. Ni et al. 1995; Valegård 

et al. 1994). The drawback of the wild type version of the coat protein for many experimental 

setups is its property to aggregate into capsid-like structures (Beckett, Wu, and Uhlenbeck 1988; 

Beckett and Uhlenbeck 1988). Structural studies of the coat protein have revealed a region 

important for the interaction of MS2CP dimers in the capsid. Several mutations in this region can 

prevent bulk capsid formation, even though multimers higher than a dimer can still form 

(Peabody and Ely 1992; LeCuyer, Behlen, and Uhlenbeck 1995). Mutational analysis of the RNA 

stem-loop in the bacteriophage R17, which is closely related to MS2, has identified a loop 
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sequence with increased affinity to the coat protein. The binding of the wt loop sequence AUUA 

to the coat protein has a Kd of 1-3 nM, whereas the mutated sequence AUCA has a Kd of 0.2-0.6 

nM (Carey et al. 1983; Lowary and Uhlenbeck 1987; Romaniuk et al. 1987; H. N. Wu, Kastelic, 

and Uhlenbeck 1988). Due to the higher affinity, the mutated loop sequence is now generally 

used to tether the MS2 or R17 coat protein (R17CP) to the stem-loop. 

The first report describing an affinity purification method based on the interaction of 

R17CP and its cognate stem-loop binding site was published by Bardwell and Wickens (Bardwell 

and Wickens 1990). The authors demonstrated that in vitro transcribed RNA containing either 

one or two R17 stem-loops could be captured with equal efficiencies by R17CP immobilized 

onto solid support. However, in the presence of additional sequences two loops were necessary 

to enable efficient capture. The applicability of the MS2CP/MS2-loop (MS2L) system for in vitro 

or in vivo assembled RNP affinity purification has since been demonstrated by many groups. For 

instance, the method has been adopted for the purification of spliceosomal complexes under 

native conditions (R. Das, Zhou, and Reed 2000; Zhou, Sim, et al. 2002; Deckert et al. 2006; 

Bessonov et al. 2008). In this approach, the MS2CP is fused to maltose-binding protein (MBP) 

and amylose beads, which bind the MBP-moiety of the fusion protein, are used for affinity 

selection. Captured complexes are eluted from the matrix under mild conditions with an excess 

of maltose. In the first attempt to affinity purify in vivo formed RNPs from prokaryotes, MS2CP-

MBP was employed to capture MS2L-tagged small non-coding RNAs (sRNAs) from Salmonella. 

sRNAs tagged with two MS2Ls were either expressed from plasmid or from the genomic locus 

and RNPs were immobilized onto MS2CP-MBP-coupled amylose column (Said et al. 2009). It 

was shown that the isolated MS2L-tagged sRNAs co-purified with the common sRNA-binding 

protein Hfq, suggesting that sRNAs were recovered in their native form.   

In the studies described in the previous paragraph only relatively short RNA sequences 

had been used for RNP affinity purification via the MS2L tag. Slobodin and Gerst have 

demonstrated that the MS2CP/MS2L system is also applicable for the purification of RNPs 

containing full-length mRNAs form S. cerevisiae (Slobodin and Gerst 2010). With the aim to 

identify new RBPs taking part in mRNA trafficking, they developed a method termed RNA-

binding protein purification and identification (RaPID). In this method, the mRNA of interest, 

which is expressed form its genomic locus, is captured via 12 tandem copies of MS2Ls inserted 

behind the coding region. In addition, the yeast strain contains a plasmid encoding for the tag-

binding protein under the control of a galactose inducible promoter. The tag-binding protein is 

comprised of three functional unites: (1) the MS2CP that binds to the MS2Ls; (2) GFP that helps 

to monitor in vivo formation of mRNPs and; (3) straptavidin binding protein that enables to 

capture the mRNPs on streptavidin-conjugated matrix. The bound mRNPs are eluted under 
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native conditions by competition with free biotin. The analysis of the affinity-eluates by reverse 

transcription PCR (RT-PCR) and immunobloting confirmed previously known RNA-protein 

interactions. In addition, Sec27, a subunit of the COPI vesicle coating complex, was identified as 

a possible interaction partner of OXA1 mRNA by MS analysis of a specifically enriched band on 

silver stained SDS-PAGE. 

An alternative approach to the MS2CP/MS2L system has been developed base on the 

interaction between bacteriophage lambda N-antiterminator protein and boxB stem-loop (Kevin 

Czaplinski et al. 2005). The N-protein forms a 1:1 complex with boxB by interacting with 

nucleotides both in the stem and the loop region (Van Gilst et al. 1997; Cilley and Williamson 

1997). The Kd of the complex determined by flouorometry is about 1 nM (Van Gilst et al. 1997). 

The first 22 N-terminal amino acids of the N-protein have been shown to bind to the boxB 

stem-loop with a similar affinity and specificity as the full-length protein (Tan and Frankel 1995). 

This short peptide can be fused to the protein of interest, which can then be recruited onto the 

target RNA containing the 19 nt boxB stem-loop (Baron-Benhamou et al. 2004).  

The versatility of possible experimental approaches to purify RNP complexes is 

emphasized by the development of RNA Affinity in Tandem (RAT) method (Hogg and Collins 

2007). This method uses an RNA tag composed of two different stem-loops. In the first 

purification step RNPs are selected based on the interaction between Pseudomonas aeruginosa phage 

7 coat protein (PP7CP) and its 25-nt binding site. The second step is provided by the binding of 

J6f1 RNA aptamer to tobramycin. PP7CP is structurally similar to MS2CP (Chao et al. 2008) and 

both coat proteins bind to their cognate stem-loop with a comparable affinity (Kd about 1 nM) 

(Francis Lim and Peabody 2002; Van Gilst et al. 1997). However, due to the tolerance to a 

broader range of salt concentration and pH than MS2CP-MS2L interaction, PP7CP and its 

binding site might represent a more robust tool for RNP affinity purification (F Lim, Downey, 

and Peabody 2001; Francis Lim and Peabody 2002; Hogg and Collins 2007). Indeed, 

optimization of the RAT tag revealed that RNP yield was higher if PP7CP/PP7-loop (PP7L) 

system was used as compared to MS2CP/MS2L system (Hogg and Collins 2007). Another 

innovative approach by Hogg and Collins besides a two-step purification strategy based on a 

double RNA tag, is the use of tobacco etch virus (TEV) protease to selectively elute RNPs after 

the first affinity purification step. Namely, the PP7CP contains a TEV protease cleavage site 

between the coat protein and protein A tag. The latter tag enables to capture RNPs onto IgG-

coupled affinity matrix during the first purification step. The method was used in mammalian cell 

culture system to purify endogenous RNPs assembled on non-coding RNAs. Combined with 

mass spectrometry, hnRNP K was identified as a component of 7SK ncRNA-containing RNPs. 
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The RNP affinity purification method established by Tsai et al. adds two novel 

approaches to the toolbox of in vivo-assembled RNP affinity purification strategies – affinity 

purification under denaturing conditions and identification of affinity purified proteins by 

SILAC-based quantitative mass spectrometry (Tsai et al. 2011). In order to capture RNPs under 

denaturing conditions, RNA-protein interactions were cross-linked by UV light prior to affinity 

purification and the high affinity biotin-straptavidin interaction was used to isolate RNPs. 

Specifically, the MS2CP was fused to HTBT tag that contains an in vivo biotinylation site, which 

allowed the capture of RNPs onto streptavidin-coated superparamagnetic beads (X. Wang et al. 

2007). This strategy enabled Tsai et al. to quantitatively identify 36 proteins binding to internal 

ribosomal entry site (IRES) of lymphoid enhancer factor-1 mRNA and to determin the RNP 

proteins common to the IRES-containing and control mRNA (Tsai et al. 2011). 
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MATERIALS and METHODS 

 

Materials 

General buffers and media were prepared as described in (Jellbauer 2009). 

 

Chemicals 

Standard chemicals were used as listed in (Fundakowski 2012). 
 

Special chemicals and reagents 

AppliChem Pepstatin A  

Triethylamine  

Bio-Rad Protein Assay Dye Reagent Concentrate 

Carl Roth Roti®-Aqua-Phenol/Chloroform/Isoamyl alcohol for RNA extraction 

EMD Millipore Pellet Paint® Co-Precipitant 

Life Technologies Ambion® Linear Acrylamide  

Applied Biosystems® TRI Reagent® Solution  

Roche Applied Science Blocking Reagent 

Complete Protease Inhibitor Cocktail Tablets 

CSPD, ready-to-use 

Sigma-Aldrich 1-Bromo-3-chloropropane  

Antifoam B Emulsion  

IgG from rabbit serum, reagent grade 

Molecular BioProducts RNase AWAY® 

Thermo Scientific Pierce ECL Western Blotting Substrate 

 

Consumables 

5 Prime Phase Lock Gel™ Heavy 2 ml  

BGB Analytik  GL Microfiber 25 mm Syringe Filter (pore size 3.1 µm and 1.2 µm) 

Biotium GelRed™ Nucleic Acid Gel Stain 

GE Healthcare Life Sciences Amersham HybondTM-P PVDF Transfer Membrane  

Whatman™ GF6 Glass Fibre Filter (Ø 10 cm, pore size 1-3 µm) 

Life Technologies Applied Biosystems® MicroAmp® Fast Optical 96-Well Reaction Pate 

Dynabeads® M-270 Epoxy 

Invitrogen™ NuPAGE® Novex 4‐12% Bis‐Tris Gel (1.0 mm) 
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SYBR® Safe DNA Gel Stain 

Roche Applied Science Nylon Membrane, positively charged 

Sarstedt Filtropur S Sterile Syringe Filter (pore size 0.2 µm) 

Thermo Scientific Fermentas GeneRuler DNA Ladder Mix 

Fermentas PageRuler Prestained Protein Ladder  

Fermentas PageRuler Unstained Protein Ladder 

 

Equipment 

Alpha Innotec FluorChem® FC2 Imaging System 

Analytik Jena AG FlexCycler 

Bachofer Vacuum Concentrator 

Bio-Rad  

 

Mini-PROTEAN® Tetra Cell 

Mini Trans-Blot® Electrophoretic Transfer Cell 

PowerPac™ Basic and HC High-Current Power Supplyis 

Trans-Blot® SD Semi-Dry Electrophoretic Transfer Cell 

EMD Millipore SNAP i.d.™ Protein Detection System 

Eppendorf  

 

Centrifuge 5415 R 

Centrifuge 5702 

Centrifuge 5810 R 

Thermomixer comfort 1.5 ml 

Fujifilm LAS-3000 Imager 

GE Healthcare Life Sciences Amersham Hybridization oven/shaker 

Amersham Typhoon™ Variable Mode Imager  

DynaMag™-15 Magnet 

Ultrospec 10 Cell Density Meter 

IKA Vibrax® VXR basic 

Infors HT  Minitron 

LI-COR Biosciences Odyssey® Infrared Imaging System 

Life Technologies Applied Biosystems® StepOnePlus™ Real-Time PCR System 

XCell SureLock® Mini-Cell 

Retsch  Mixer Mill MM400 

Schleicher & Schuell BioScience GV 100/0 Vacuum Filter Holder  

Thermo Scientific GENESYS 10 Bio UV-Vis Spectrophotometer 

NanoDrop® 1000 Spectrophotometer  

Sorvall® RC-6 PLUS 

 

Enzymes 

Agilent Technologies Herculase II Fusion DNA Polymerase 

Amsbio Zymolyase® 20T 
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Axon Taq DNA Polymerase 

Life Technologies Ambion® RNase Cocktail 

New England Biolabs conventional restriction enzymes 

RecA 

Promega GoTaq® DNA Polymerase 

RQ1 RNase-Free DNase 

Roboklon TEV Protease 

Thermo Scientific Fermentas Calf Intestine Alkaline Phosphatase (CIP) 

Fermentas conventional restriction enzymes 

Fermentas FastDigest restriction enzymes 

Fermentas Proteinase K 

Fermentas RevertAid Premium Reverse Transcriptase  

Fermentas RiboLock RNase Inhibitor 

Fermentas T4 DNA Ligase 

Fermentas T4 DNA Polymerase 

 

Commercial kits 

Agilent Technologies Prime-It II Random Primer Labelling Kit  

Qiagen QIAquick Gel Extraction Kit 

QIAquick PCR Purification Kit 

QIAprep Spin Miniprep Kit 

Life Technologies Applied Biosystems® High Capacity cDNA Reverse Transcription Kit 

Fast SYBR® Green Master Mix 

Invitrogen™ Colloidal Blue Staining Kit 

Invitrogen™ MEGAshortscript™ T7 Kit 

Invitrogen™ SilverQuestTM Silver Staining Kit 

 

Antibodies 

Primary antibodies Corresponding secondary antibodies 

Name Dilutiona Supplier Name Dilutiona  Supplier 

Peroxidase Anti-

Peroxidase (PAP) 

1:5000 Sigma-Aldrich    

Anti-She2  

(clone 1C3-11) 

1:150 AG Jansen Peroxidase-conjugated Rabbit 

Anti-Rat IgG (H+L) 

1:2000 Jackson 

ImmunoResearch  

Anti-c-myc  

(clone 9E10) 

1:1000 Roche  

Applied Science 

Peroxidase-conjugated Sheep 

Anti-Mouse IgG (H+L) 

1:3000 Jackson 

ImmunoResearch  

Anti-Pgk1 

(clone 22C5D8) 

1:3500 Invitrogen™ 

Life Technologies 

Peroxidase-conjugated Sheep 

Anti-Mouse IgG (H+L) 

1:4000 Jackson 

ImmunoResearch 

IRDye 680-conjugatedanti 

Goat Anti-Mouse IgG (H+L) 

1:3500 LI-COR 

Biosciences 

a Dilution corresponds to antibody dilution used for western blot analysis. 

http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&showAddButton=true&productID=4385612&_bcs_=H4sIAAAAAAAAAH1QTU%2FDMAz9NblQMaWJuu26bhoHGEwUDpymqHO7SOmHErel%2Fx6b0h16QLIc%2B%2Fkj%0A7%2FkxFnJ79s21yzFEQq2jDHxvcwj%2F4DfEVuidUEeyYRhWtu4t%2BqaEepU3FYHBItDTBXJQk7s1Faxu%0AWDkaF0qzyS36DjiXG2ZR4CVWMqbm4qKkTJTaPBB8NAGj7Ct9JxIeSqHT6MkD1NGJCuCjk%2F1eUmr%2F%0AeC956d1WUtn2ZT3z%2BszImav1kCOX7gNCH%2FPqKvQhN3iwoXVmzHB0pGrN6RTrQ2br0sEL9OD2BqFs%0A%2FEgdNPMMI5Vj1rN%2BO1NYWEd0KZsCXvJqKt7BCoVKJ43JpFIlOiXsVym9k1YOSO284mNseTy%2BA%2FzL%0AfMRkccb70QvjAl%2F9B8TMSQX6AQAA&returnURL=http%3A%2F%2Fproducts.invitrogen.com%3A80%2Fivgn%2Fen%2FUS%2Fadirect%2Finvitrogen%3Fcmd%3DcatDisplayStyle%26catKey%3D101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_1201%252Ff_2005227*
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Oligonucleotides 

Oligonucleotides for epitope tagging, gene knockout and checking of transformants were 

designed according to published protocols (Janke et al. 2004; Knop et al. 1999; Haim et al. 2007). 

Oligonucleotides for fusion PCR were designed according to Shevchuk et al. (Shevchuk et al. 

2004) and for sequence- and ligation-independent cloning (SLIC) according to Li and Elledge (M. 

Z. Li and Elledge 2007). Oligonucleotides for template DNA amplification for in vitro 

transcription with T7 RNA polymerase were designed following the guidelines of manufacturer’s 

manual of MEGAshortscript T7 Kit (Life Technologies).  

 

Oligonucleotides for epitope tag integration and gene knockout 

RJO Name 5'- 3' sequence 

3560 

 

3561 

PGK1_m-TAG_F  

 

PGK1_m-TAG_R 

GGAATTGCCAGGTGTTGCTTTCTTATCCGAAAAGAAATAAcgc

tgcaggtcgacaaccc 

GGGAAAGAGAAAAGAAAAAAATTGATCTATCGATTTCAATT

CAATTCAATgcataggccactagtggatc 

3590 

 

3591 

MEX67_S1_F 

 

MEX67_S2_R 

AAGAGTAAAATAAATCGTTAAAAATTCTGCATCGCTAATAGC

AGCAAAAAAAATGcgtacgctgcaggtcgac 

CTGTATATTTTTTGTGATACTGTGCGGCTGAAACAGGGAAC

AATATCATTAatcgatgaattcgagctcg 

3848 

 

3849 

ENO2_m-TAG_F  

 

ENO2_m-TAG_R 

CTACGCCGGTGAAAACTTCCACCACGGTGACAAGTTGTAAcgc

tgcaggtcgacaaccc 

CTATGATGAAAAAATAAGCAGAAAAGACTAATAATTCTTAGT

TAAAAGCACTgcataggccactagtggatc 

3934 

 

3935 

NAM7_S3_F  

 

NAM7_S2_R 

GAGAAGAACAAAAGCATGAATTGTCAAAAGACTTCAGCAAT

TTGGGAATAcgtacgctgcaggtcgac 

GTATCACAAGCCAAGTTTAACATTTTATTTTAACAGGGTTCA

CCGAATTAatcgatgaattcgagctcg 

 

Oligonucleotides for verification of proper epitope tag integration or gene knockout 

RJO Name 5'- 3' sequence 

3562 PGK1_Det_F GGCTTTGTTAGACGAAGTTGTC 

3563 HIS3_Det_R GACTGTCAAGGAGGGTATTCTG 

3564 PGK1_Det_R CCCGAACATAGAAATATCGAATGGG 

3589 MEX67_-235_F CATGCCCACTTGCCTTTCGTAG 

3850 ENO2_Det_F CATTGCTGACTTGGTTGTCGG 

3851 ENO2_Det_R CCAGTGCATTATGCAATAGACAGC 

3936 NAM7_Det_F GTACCAGGAGGAGGCTTCTC 

3937 NAM7_Det_R TGCAAATTGCGAGTCTATCTCG 
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Oligonucleotides for RT-PCR 

RJO Name 5'- 3' sequence 

2205 

2206 

Ash1-RTPCR-E1-for  

Ash1-RTPCR-E1-rev 

CTTTATCTAAGAGACCGGAGCGC 

CTTGGACGACCTAGTCGATTCC 

3491 

303 

PGK1_mid_F  

PGK1-rev  

GGTTTTGGAAAACACTGAAATCGG 

TAAGAAAGCAACACCTGGCA 

3509 

3510 

SOD1_+240_F 

SOD1_+424_R 

ACATGTCGGTGACATGGGTAACG 

ACCACAGGCTGGTCTTGGAC 

3515 

3516 

SRL1_+413_F 

SRL1_+570_R 

AGGTCAAGTCCTTTGAACAGGCT 

CCATTGTACGTTACCTGGAGAGGT 

 

Oligonucleotides for qRT-PCR 

RJO Name 5'- 3' sequence 

2920 

2921 

Act1_qPCR_1_for  

Act1_qPCR_1_rev 

TCAGAGCCCCAGAAGCTTTG  

TTGGTCAATACCGGCAGATTC 

2916 

2917 

Eno2_qPCR_2_for  

Eno2_qPCR_2_rev 

GGTTGTCGGTTTGAGAACTGG 

TTCGATTCTCAACAATTGGTTCA 

4132 

4133 

PGK1-RT_F  

PGK1-RT_R 

GAACGGTCCACCAGGTGTT  

GACGGTGTTACCAGCAGCAG 

4135 

4136 

TPI1_F  

TPI1_R 

TGGTACCGGTTTGGCTGCT  

ATTCGCTGGCAGCCTTGTC 

4139 

4148 

18S_F 

18S_qRT_R 

TCAACACGGGGAAACTCACC  

CTAAGAACGGCCATGCACCA 

4141 

4149 

26S_F 

26S_qRT_R 

GCTTGTGGCAGTCAAGCGT  

ACAATCCAACGCTTACCGAA 

 

Oligonucleotides for cloning 

RJO Name 5'- 3' sequence 

3487 pLOX_5'MS2L_F  GTTTAAACGAGCTCTCGAGAACC 

3494 MS2CP_F GGTCGCTGAATGGATCAGCTC 

3683 pUC/M13 Forward CCCAGTCACGACGTTGTAAAACG 

3684 pUC/M13 Reverse AGCGGATAACAATTTCACACAGG 

3747 MET25_F cccctcgaggtcgacggtatcgataagcttAGCTCCGGATGCAAGGG 

3750 TEV-PrA_R ggtggcggccgctctagaactagtggatccGGCCGCAAATTAAAGCCTTCG 

3802 2_PrA5un_3un_R  CTTCATCGTGTTGCGCGGAATTCGCGTCTAC 

3803 3_PrA3un_5un_F  GTAGACGCGAATTCCGCGCAACACGATGAAGCCGTG 

4059 SLIC_pRS4_PGK1gen_F ccctcgaggtcgacggtatcgataagcttTGCAAGTACCACTGAGCAGG 

4061  SLIC_PGK1prom_MS2L_R CGACCTGCAGCGgctagcTGTTTTATATTTGTTGTAAAAAGTAG

ATAATTAC 
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4062 SLIC_MS2L_PGK1prom_F CAACAAATATAAAACAgctagcCGCTGCAGGTCGACAACCC 

4063 SLIC_MS2L_CYC1_R gtgacataactaattacatgGCATGCGCATAGGCCACTAGTGGATC 

4064 SLIC_CYC1_MS2L_F GCCTATGCGCATGCcatgtaattagttatgtcacgc 

4065 SLIC_CYC1_pRS4_R ggcggccgctctagaactagtggatccaaagccttcgagcgtccc 

 

Oligonucleotides for generation of hybridization probes 

RJO Name 5'- 3' sequence 

176 

217 

sASH1nco  

ASH1 1892 REV 
CCAATAGAACCATGGAGCGC  

GAAGATGCCGCGGCGTG 

302 

303 

PGK1-forw.  

PGK1-rev. 
CTTCAAAGTTGTCTGTCCAAG  

TAAGAAAGCAACACCTGGCA 

3491 

3939 

PGK1_mid_F 

PGK1_T7p_R 
GGTTTTGGAAAACACTGAAATCGG 

taatacgactcactatagggGGCATCAGCAGAGAAAGCATC 

4109 

3938 

m-TAG_F  

MS2L_T7p_R 
CGCTGCAGGTCGACAACCC 

taatacgactcactatagggGCAGACATGGGTGATCCTCATG 

4139 

4140 

18S_F 

18S_T7_1302_R  
TCAACACGGGGAAACTCACC 

taatacgactcactatagggCGTTCGTTATCGCAATTAAGCAG 

4141 

4120 

26S_F 

26S_T7_R 
GCTTGTGGCAGTCAAGCGT 

taatacgactcactatagggCTCACGACGGTCTAAACCC 

 

 

Plasmids 

RJP Name Origin 

88 YEplac181-ASH1 pC3319 in (Long et al. 1997) 

407 pSH47 (Prein, Natter, and Kohlwein 2000) 

1116 pUN100-LEU2-mex67-5 (Segref et al. 1997) 

1117 pUN100-LEU2-MEX67 (Segref et al. 1997) 

1433 p414 Gal1 Ash1 Susanne Lange, Gene Center, Munich 

1573 p414 GALS 6MS2 PGK1  Susanne Lange, Gene Center, Munich 

1712 ploxP-HIS5-6xMS2L this study 

1751 pRS316-MET25-MS2CP-TEV-PrAx2 this study 

1783 pRS416-PGK1prom-6MS2L-CYC1 this study 

1814 YCplac22-MET25-MS2CP-PrAx2 this study 

 
RJP 1712, which is a PCR template plasmid for the amplification of 6MS2L-containig m-TAG 

cassette, was constructed from plasmid RJP 1485 (pLOXHIS5MS2L) (Haim et al. 2007) by the 

replacement of 12MS2L with 6MS2L. RJP 1485 was digested with EcoRV and the 3850 bp 
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fragment comprising the vector backbone was blunt-end ligated with 380 bp BamHI-BglII 

fragment cut out from plasmid RJP 232 (YEP lac112-LZ-MS2-ASH1) (Bertrand et al. 1998). 

RJP 1751 (CEN6, URA3), which, under the control of MET25 promoter, expresses MS2CP 

fused to four IgG-binding Z domains of protein A (PrAx2), was constructed using fusion PCR to 

create the insert (Shevchuk et al. 2004) and SLIC (M. Z. Li and Elledge 2007) to assemble the 

insert and the vector backbone. The insert comprising the sequences of MET25 promoter, 

MS2CP, TEV protease cleavage site, PrAx2 and iso-1-cytochrome c (CYC1) transcription 

terminator was created as follows. First, fragment 1 (MET25-MS2CP-TEV-PrA, 1383 bp) and 

fragment 2 (PrA-CYC1, 772 bp) were amplified form plasmid RJP 1748 (pRS316-MET25-

MS2CP-TEV-PrA) with primers RJO 3684/RJO 3802 and RJO 3803/RJO 3802, respectively. 

Due to a 31 nt homology region between the 3'-end of fragment 1 and 5'-end of fragment 2, the 

fragments could be fused in a PCR step containing polymerase and dNTPs but lacking primers 

(Shevchuk et al. 2004). The PCR fusion product was used for insert amplification (1948 bp) with 

nested primers RJO 3747/RJO 3750, which contained at 5'-ends a stretch of 30 nt homologous 

to vector backbone. Plasmid RJP 148 (pRS316) (Sikorski and Hieter 1989) opened with HindIII-

BamHI (4857 bp) was annealed with the insert following the protocol for SLIC sub-cloning using 

T4 DNA polymerase treated inserts with RecA (M. Z. Li and Elledge 2007). 

RJP 1783 (CEN6, URA3) encodes for an RNA that contains loxP-6MS2L sequence as it is 

present in the endogenously expressed mRNA tagged with 6MS2L (Haim et al. 2007). The insert 

(1676 bp) was created by a two step fusion PCR form three fragments: (1) PGK1 promoter 

containing 947 nt upstream of PGK1 start codon was amplified form yeast genomic DNA 

(gDNA) (RJY 3731) with primers RJO 4059/ RJO 4061; (2) loxP-6MS2L was amplified form 

yeast gDNA (RJY 3731) with primers RJO 4062/RJO 4063; and (3) CYC1 transcription 

terminator was amplified form plasmid RJP 111 (p413-GAL1) (Mumberg, Muller, and Funk 

1994) with primers RJO 4064/4065. The first round of fusion PCR resulted in fragment 1-2 

(amplified with RJO 4059/4063) and fragment 2-3 (amplified with RJO 4062/4065) fusion. The 

resulting PCR products were fused in a second round of PCR and amplified with primers RJO 

4059/4065. Plasmid RJP 291 (pRS416) (Sikorski and Hieter 1989) opened with HindIII-BamHI 

(4868 bp) was annealed with the insert following the protocol for SLIC sub-cloning using T4 

DNA polymerase treated inserts with RecA (M. Z. Li and Elledge 2007). 

RJP 1814 (CEN4, TRP1) expresses MS2CP-TEV-PrAx2 fusion protein under the control of 

MET25 promoter. The insert (1882 bp) comprising the sequence of MET25 promoter and the 
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fusion protein was cut out with HindIII-BamHI from plasmid RJP 1751 and inserted into 

HindIII-BamHI site of RJP 138 (YCplac22) (Gietz and Akio 1988). 

All the plasmids created in this study were verified by sequencing.  

 

 

E. coli strains 

Strain Essential genotype Origin 

TOP10

  

F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 

Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ- 

Invitrogen 

 

 

S. cerevisiae strains 

All yeast strains that were generated for this work are based on either haploid (RJY 359) or 

diploid (RJY 925) W303 wildtype cells. 

RJY Essential genotype Origin 

135 MATalpha, ade2-1, trp1-1, can1-100, leu2-3, 112, his 3-11,15, ura3, ash1::URA3 (Nasmyth et al. 1990) 

359 MATalpha, ade2-1, trp1-1, can1-100, leu2-3, 112, his3-11,15, ura3, GAL, psi+ n/a 

3166 MATa, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3, GAL, psi+, loxP-

ProtA-TEV-CBP-SHE2 

Stephan Jellbauer, 

Gene Center, Munich 

3550 MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, PGK1-

loxP-HIS5-loxP-6MS2L 

this study 

3558 MATa, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, 

lys1::kanMX6 

Katja Sträßer,  

Gene Center, Munich 

3639 MATa/MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, 

psi+, LYS1/lys1::kanMX6, PGK1/PGK1-loxP-HIS5-loxP-6MS2L, pSH47(RJP 

407) 

this study 

3641 MATa/MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, 

psi+, LYS1/lys1::kanMX6, PGK1/PGK1-loxP-HIS5-loxP-6MS2L, 

MEX67/mex67::natNT2, pUN-LEU2-mex67-5 (RJP 1116), pSH47(RJP 407) 

this study 

3644 MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+ 

lys1::kanMX6, mex67::natNT2, PGK1-loxP-6MS2L, pUN100-LEU2-mex67-5 (RJP 

1116) 

this study 

3645 MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+ 

lys1::kanMX6, mex67::natNT2, PGK1,  pUN100-LEU2-mex67-5 (RJP 1116) 

this study 

3682 MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, 

lys1::kanMX6, mex67::natNT2, PGK1-loxP-6MS2L, pUN100-LEU2-MEX67 (RJP 

1117), pRS316-MET25-TEV-PrAx2 (RJP 1751) 

this study 

3683 MATa, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, 

lys1::kanMX6, mex67::natNT2, PGK1, pUN100-LEU2-MEX67 (RJP 1117), 

pRS316-MET25-TEV-PrAx2 (RJP 1751) 

this study 
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3715 MATa, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, 

lys1::kanMX6, mex67::natNT2, ENO2-loxP-6MS2L, pUN100-LEU2-MEX67 

(RJP 1117), pRS316-MET25-MS2CP-TEV-PrAx2 (RJP1751) 

this study 

3731 MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+ 

lys1::kanMX6, mex67::natNT2, PGK1-loxP-6MS2L, NAM7-3myc::His3MX6, 

pUN100-LEU2-mex67-5 

this study 

3739 MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, 

lys1::kanMX6, mex67::natNT2, PGK1-6MS2L, NAM7-3myc::His3MX6, pUN100-

LEU2-mex67-5 (RJP 1116), pRS316-MET25-MS2CP-TEV-PrAx2 (RJP 1751) 

this study 

3740 MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, 

lys1::kanMX6, mex67::natNT2, PGK1, NAM7-3myc::His3MX6, pUN100-LEU2-

mex67-5 (RJP 1116), pRS316-MET25-MS2CP-TEV-PrAx2 (RJP 1751) 

this study 

3827 MATalpha, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, 

lys1::kanMX6, mex67::natNT2, PGK1-loxP-6MS2L, NAM7-3myc::His3MX6, 

pUN100-LEU2-MEX67 (RJP 1117), pRS316-MET25-MS2CP-TEV-PrAx2 (RJP 

1751) 

this study 

3828 MATa, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, 

lys1::kanMX6, mex67::natNT2, PGK1, NAM7-3myc::His3MX6, pUN100-LEU2-

MEX67 (RJP 1117), pRS316-MET25-MS2CP-TEV-PrAx2 (RJP 1751) 

this study 

3989 MATa, ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3, GAL, psi+, 

lys1::kanMX6, mex67::natNT2, PGK1, NAM7-3myc::His3MX6, pUN100-LEU2-

MEX67 (RJP 1117), pRS416-PGK1prom-6MS2L-CYC1 (RJP 1783), YCplac22-

MET25-MS2CP-TEV-PrAx2 (RJP 1814) 

this study 

 
 
 

Methods 
 

Standard methods in molecular biology and Escherichia coli-specific techniques were performed as 

described in (Jellbauer 2009). 

 
 

Working with S. cerevisiae 

 

Optical density of yeast culture 

Yeast culture optical density (OD) was determined using Ultrospec 10 Cell Density Meter (GE 

Healthcare Life Sciences) at 600 nm. One OD unit at 600 nm (1 OD600) corresponds to 2.7 x 107 

cells. 

Transformation of yeast cells 

Plasmid DNA transformation was carried out, with minor modifications, according to the 

protocol published by Chen et al. (D. C. Chen, Yang, and Kuo 1992). Specifically, instead of 
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incubating the cells in DNA/One-Step Buffer mix at 45°C, the incubation was performed at 

30°C followed by incubation at 42°C for 10 or 5 min. 5 min incubation time was used for strains 

carrying the temperature sensitive mex67-5 allele. 

PCR products were introduced by high-efficiency transformation according to a protocol 

adapted from Hami-Vilmovsky and Gerst (Haim-Vilmovsky and Gerst 2009). Cells were 

harvested at OD600 0.6-0.8 by centrifugation at 1000 x g for 3 min at room temperature (RT; same 

settings were used also for subsequent centrifugation steps for cell suspension in 15 or 50 ml 

tubes), washed with 0.5 culture volume of TE and thereafter with 0.1 culture volume of 0.1 M 

lithium acetate (LiAc). Cells were resuspended in 1 ml 0.1 M LiAc, transferred into 1.5 ml tube 

and pelleted by centrifugation at 16 000 x g for 15 sec.  Subsequently, cells were resuspended in 

0.1 M LiAc to have around 3 OD600 units of cells per 50 µl cell suspension. In parallel to cell 

washing, PCR tubes containing 8 µl of PCR product (3-1 µg DNA) and 525 µl of polyethylene 

glycol (PEG)/LiAc/single stranded DNA (ssDNA) mix were prepared. A negative control was 

prepared by omitting the PCR product. 50 µl of cell suspension was added to each tube, mixed 

by brief vortexing and incubated for 30 min at 30°C. Cells were then exposed to heat shock at 

42°C for 10 or for 5 min in case of temperature sensitive strains. After heat shock 600 µl yeast 

extract-peptone (YEP) was added to the tubes and cells were pelleted by centrifugation at 1000 x 

g for 3 min. Washing was repeated once with 1 ml YEP. Finally, cells we resuspended in 1 ml 

YEP and 200 µl of cell suspension corresponding approximately to 0.6 OD600 units of cells was 

plated onto an appropriate selection plate. Colonies were allowed to form for 2-3 days at 26°C. If 

cloNAT (nourseothricin) or G418 (geneticin) was used for selection, cells were allowed to 

recover after the heat shock for 4-16 h in yeast extract-peptone-dextrose (YEPD) before plating.  

 

One-Step Buffer 
0.2 M LiAc 
40% (w/v) PEG 3350 
100 mM DTT 
Filter sterilized and stored at -20°C 
 

PEG/LiAc/ssDNA mix per one transformation 
50 µg ssDNA (stock 2 µg/µl) 
400 µl 45% (w/v) PEG 4000 
100 µl 95 mM LiOAc (in TE) 
Prepared fresh before use. ssDNA added directly before use to avoid 
reannealing of ssDNA 

 

Summary of mRNP affinity purification- and SILAC-compatible yeast strain creation 

PGK1 was tagged with 6MS2L using a PCR-based genomic tagging strategy termed m-TAG 

(Haim et al. 2007). Genomic deletion of LYS1 was achieved by mating two haploid strains of 

opposite mating types: RJY 3558 carrying Δlys1 and RJY 3550 carrying PGK1-loxP-Sphis5+-loxP-

6MS2L. In addition to LYS1 deletion, strain RJY 3558 contained plasmid RJP 407 with URA3 

selection marker. Mating of stains was performed as described in (Jellbauer 2009) and diploid 

cells were selected on synthetic complete (SC) plates lacking uracil and histidine. Yeast colony 
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PCR was performed to confirm the diploid status of selected colonies (Huxley, Green, and 

Dunham 1990). The resulting diploid strain RJY 3639 was next used for the genomic deletion of 

mex67 for experimental purposes not discussed in this thesis. After successful mex67 deletion the 

resulting strain RJY 3641 was sporulated and tetrads were dissected. One tetrad was identified 

with two haploid spores with desired genotypes: (1) Δlys1, Δmex67, PGK1 (RJY 3645); and (2) 

Δlys1, Δmex67, PGK1-loxP-6MS2L (RJY 3644). These strains were used as background strains to 

create all other strains for mRNP affinity purification experiments. 

 

 

mRNP affinity purification 

 

Coupling of Dynabeads® M-270 Epoxy with rabbit IgG 

300 mg of Dynabeads® M-270 Epoxy paramagnetic beads (Life Technologies ) were coupled 

with 50 mg of rabbit IgG (Sigma-Aldrich) as described in (Oeffinger, Wei, and Rout), except that 

rabbit IgG was reconstituted in 150 mM NaCl instead of double distilled (dd) H2O.  

 

Culturing cells for mRNP affinity purification optimization experiments 

Yeast strains were grown in SC medium containing 6.7 g/L yeast nitrogen base, 69 mg/L adenine 

sulfate, amino acids (Table 2) and 2% glucose. In the morning, 10 ml of medium was inoculated 

with a small amount of cells form freshly streaked plate and allowed to grow over day at 26°C 

with shaking at 120 rpm (growth conditions here and hereinafter). In the evening, cells were 

diluted to OD600 0.05 in 200 ml medium and grown overnight. The next morning, 1900 ml 

medium was inoculated to OD600 0.2 and the culture was allowed to reach mid-log phase (OD600 

0.8) before harvesting. 

 

Table 2. Final concentration of amino acids in SC medium lacking uracil (SC -ura). 

Amino acid mg/L 

L-arginine monohydrochloride 42 
L-histidine hydrochloride monohydrate 42 
L-isoleucine 42 
L-leucine 84 
L-lysine 50 
L-methionine 84 
L-phenylalanine 63 
L-serine 42 
L-threonine 42 
L-tryptophan 63 
L-tyrosine 69 
L-valine 189 
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Metabolic labelling by SILAC for mass spectrometry-based quantitative proteomics 

SILAC-compatible yeast strains were first tested for SILAC amino acid incorporation rate. For 

this, cells were allowed to divide ~7 times in 4 ml of appropriate SC medium containing the 

“heavy”, i.e. the stable 13C15N isotopic form of the amino acid lysine (Lys8). Yeast cells were 

disrupted in MS Cell Breakage Buffer by vigorous shaking with acid washed glass beads (Ø 0.2-

0.3 mm) for 10 min at 4°C, stopping the shaking after each 2 min to cool down the lysate on ice 

for 2 min. Protein concentration of the clarified lysate was determined using Protein Assay Dye 

Reagent (Bio-Rad) according to manufacturer’s manual and the lysate was stored at -20°C. Lys8 

incorporation test was performed by the Proteome Center Tübingen using 50 µg of lysate. The 

strains used in this study had Lys8 incorporation rates > 95%. 

For mRNP purification combined with quantitative analysis of MS2L-tagged mRNA co-

isolating proteins, two strains were grown in parallel in SC -ura medium (see previous chapter 

and table 2 for medium composition) supplemented either with “light” 12C14N isotope-containing 

lysine (Lys0) or Lys8. In order to precisely determine the number of cell divisions in Lys8-

containing medium, both strains were first grown overnight in 2 ml medium supplemented with 

Lys0. The next morning the strains were inoculated to OD600 0.2 in 4 ml of SILAC medium, 

which for one strain was supplemented with Lys0 and for the other strain with Lys8, and were 

allowed to grow for about eight hours. Then cells were diluted to OD600 0.1 in 80 ml of SILAC 

medium and were grown overnight. The following morning, the two cultures were diluted to 

OD600 0.2 in 1200 ml SILAC medium. In order to prevent both strains from reaching OD600 0.8 at 

the same time, dilutions were performed with 1 h gap in between. Cells should be allowed to 

double in SILAC medium for at least five times for full incorporation of the heavy amino acid 

(Gruhler and Kratchmarova 2008). The described growth strategy enabled cells to double at least 

8 times in SILAC medium and the determined Lys8 incorporation rates were > 95%. 

 

MS Cell Breakage Buffer 
6 M urea 
2 M thiourea 
10 mM Tris HCl, pH 8.0 
1x Protease Inhibitor Cocktail ( Roche Applied Science) 
Prepared fresh 

 
 

Harvesting of large scale yeast culture according to Öffinger et al.  

Yeast cell harvesting was modified from (Oeffinger, Wei, and Rout). Briefly, 2 L culture was 

divided into three 1 L centrifugation tubes and spun down at 4000 x g for 10 min at 4°C 

(Sorvall® RC-6 PLUS, Thermo Scientific). Supernatant was decanted and centrifugation tubes 

were placed on ice. Pellets were resuspended in 25 ml ice cold ddH2O per pellet. Cell suspension 
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was divided into two 50 ml pre-cooled conical tubes and spun down at 2600 x g for 5 min at 4°C 

(5810 R, Eppendorf). After decanting the supernatant, cells were resuspended in 25 ml ice cold 

ddH2O per pellet. Cell suspension in two 50 ml tubes was pooled into one and cells were spun 

down at 2600 x g for 5 min at 4°C. After centrifugation supernatant was decanted, cells were 

resuspended in ice cold Resuspension Buffer equal to the volume of the cell pellet and spun 

down at 2600 x g for 10 min at 4°C. Supernatant was removed by aspiration and the pellet was 

spun down once more at 2600 x g for 10 min at 4°C. The remaining of the supernatant was 

removed by aspiration and yeast cells were frozen following the protocol by Öffinger et al. 

(Oeffinger, Wei, and Rout). 

 

Resuspension Buffer 
1.2% (w/v) PVP-30  
20 mM Hepes (pH 7.4) 
Stored at 4°C 

Before use Resuspension Buffer was supplemented with:  
1x Protease Inhibitor Cocktail 
1:100 Solution P (stock: 0.4 mg/ml Pepstatin A, 18 mg/ml PMSF in absolute EtOH) 
1:1000 1M DTT 

 

 

Harvesting of large scale yeast culture according to Inada et al. 

Yeast growth medium was removed by vacuum filtration (GV 100/0, Schleicher & Schuell 

BioScience) using 2 pieces of GF6 glass fibre filters (Whatman™, GE Healthcare Life Sciences) 

pre-wetted in distilled (d) H2O. The maximal volume of mid-log phase culture that could be 

filtered before clogging of the system was 2 L. After filtration, the filter with the captured cells 

was placed into a 600 ml wide-mouth glass beaker and the cells were removed by rinsing with 25 

ml of Cell Wash Buffer pre-warmed to 30°C (Inada et al. 2002). Cell suspension was transferred 

into a 50 ml conical tube and the filter was washed with an additional 20 ml of Cell Wash Buffe 

in order to collect remaining cells. Cell suspension was pelleted at 2600 x g for 4 min at 24°C and 

supernatant was removed by decanting. In order to remove the rest of the supernatant, the 50 ml 

tube was left standing upside down on a towel paper for 10 sec before proceeding with freezing 

the cells (Oeffinger, Wei, and Rout). 

 

Cell Wash Buffer 10x Amino Acids   
20 mM Hepes (pH 7.4) 0.2 g  adenine sulfate 1 g L- isoleucine 
2 mM MgAc2 0.2 g  uracil 1 g L- phenylalanine 
100 mM KAc 0.2 g L- tyrosine 1 g  L- glutamic acid 
2% (w/v) glucose  1 g  L- tryptophan 1 g L- aspartic acid 
1x amino acids 1 g  L-histidine hydrochloride monohydrate 3 g L- valine 
1x Protease Inhib. Cocktail 1 g L- arginine monohydrochloride 4 g L- threonine 
Prepared fresh before use 1 g L- leucine 8 g L- serine 
     
 Volume brought to 1 L with ddH2O, filter sterilized, stored at 4°C 
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Disruption of yeast cells by cryolysis 

Frozen cells were disrupted under cryo conditions by grinding in mixer mill (MM400, Retch). 

The technical details of grinding are listed in table 3. Before transferring the frozen cells into 

grinding jars, the jars, as well as the steel grinding balls, were cooled down in liquid nitrogen 

(LN2). Care was taken to remove all LN2 before closing the screw cap of the grinding jar. Cells 

were ground for 6 cycles, each cycle lasting 3 min. After every cycle (including the last one) the 

grinding jars were cooled down in LN2 for about 2 min until LN2 had stops boiling. During 

cooling down, the jars were not entirely immersed in LN2 in order to prevent LN2 from seeping 

into the jars. After grinding, the grindate was transferred into 50 ml conical tubes previously 

cooled down in LN2 and stored at -80°C.  

 
Table 3. Grinding specification. Sample volume refers to the volume of frozen yeast cells. 

Initial culture vol. Sample vol. Grinding jar vol. Ball charge Grinding cycles (Hz) 

2 L ≥5 ml 50 ml 1 x Ø 25 mm 20, 2 x 14, 3 x 12 

1.2 L 2-3 ml 10 ml 1 x Ø 12 mm 20, 5 x 16 

 

 

mRNP affinity purification protocol 

The method of mRNP isolation via the mRNA component of the complex was developed based 

on a method for immunoaffinity purification of protein complexes (Oeffinger et al. 2007). The 

experiments were performed under essentially RNase-free conditions. Only RNase-free solutions 

and water (HPLC-purified or DEPC-treated H2O) were used. In order to prevent RNase 

contamination through pipettes, filter tips and serological plastic pipettes were used. In addition, 

the work area and pipettes were regularly cleaned with RNase AWAY® (Molecular BioProducts 

Sigma-Aldrich).  

Yeast cell grindate amount used for mRNP isolation depended on the downstream 

application (Table 4). Before starting with the experiment, grindate was weighed out into a 15 ml 

or 50 ml conical tube pre-cooled in LN2, and stored in LN2 or at -80°C until needed. Due to the 

loss of some material during lysate preparation 1.3 times more grindate was weighed out than 

eventually needed for the experiment (in case of grindate amounts ≤ 300 mg 1.5-2 times more 

grindate was weighed out). Once ready to proceed with the experiment, the tubes were immersed 

in ice and the grindate was allowed to thaw until it resembled thick ice cream (15 to 30 min 

depending on grindate amount). In parallel, IgG-coupled Dynabeads were washed four times 

with ice cold RNP Buffer 150 (RNPB-150). Per gram of grindate 100 µl IgG-coupled Dynabeads 

(concentration 150 mg/ml) were washed and per 100 µl beads 2 ml of RNPB-150 was used for 
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washing. Depending on the bead volume, washing was performed in 1.5 ml safe seal tube (safe 

seal tubes were used throughout the experiment) or in 15 ml conical tube. For washing, the beads 

were resuspended by pipetting or by short vortex, captured on magnet and the supernatant was 

removed by pipetting (1.5 ml tube) or by aspiration (15 ml tube). If bead washing had been 

performed in a 15 ml tube, the beads were transferred into a 1.5 ml tube after the fourth washing 

steps by rinsing the 15 ml tube twice with 1 ml RNPB-150. After washing, 100-200 µl RNPB-150 

was added to the beads and the beads were stored on ice until needed.  

 
Table 4. Grindate amount used for mRNP affinity purification.  

Grindate amount Downstream application 

300-400 mg Analysis of bead-captured RNA by northern blot and qRT-PCR
a
 

200 mg Analysis of bead-captured RNA co-isolating proteins on silver stained SDS-PAGE
b
 

100 mg Immunodetection of bead-captured RNA co-isolating proteins
b
 

1.15 g  Quantitative MS analysis of bead-captured RNA co-isolating proteins
b
 

a
 Isolated material was enough to perform several analyses. 

b
 Isolated material was enough to perform one analysis. 

 

Thawed grindate was resuspended in ice cold RNPB-150 using 9 ml of buffer per one 

gram of grindate. After adding the buffer, the tube was vortexed for ≤ 30 sec. If after 30 sec of 

vortexing the lysate still contained a frozen clump of cells, the tube was inverted until the clump 

disappeared and the lysate was immediately spun down at 940 x g for 3 min at 4°C. During the 

centrifugation step preparations were made for subsequent lysate filtration: (1) per lysate two 50 

ml wide-mouthed 100 ml glass beakers were placed on ice; (2) the piston of a fresh 10-20 ml 

syringe was removed; (3) a 25 mm glass microfiber syringe filter with a pour size of 3.1 µm (BGB 

Analytik) was attached to the syringe and placed into the glass beaker on ice. Immediately after 

centrifugation the supernatant was poured into the prepared syringe avoiding the transfer of cell 

debris and the lysate was filtered avoiding foaming. The filtration step was repeated using a 

syringe filter with pore size of 1.2 µm (BGB Analytik). The appropriate volume of clarified lysate 

(mg grindate intended to use for the experiment times 9) was transferred into a 15 ml conical 

tube (or 1.5 ml tube) and washed IgG-coupled beads were added. In case of working with several 

lysates in parallel, care was taken to use an equal volume of each lysate for the experiment and to 

divide the IgG-coupled beads equally between the samples. mRNA-protein complexes were 

captured by rotating the samples at minimal rpm (Reax 2, Heidolph) for 30 min at 4°C. A 100 µl 

aliquot of input material was stored at -20°C for western blot analysis of MS2CP-PrAx2 capture 

and cell grinding efficiency. A second aliquot of 150 µl was snap frozen in LN2 and stored at -

20°C for total RNA extraction. During lysate-bead incubation the tube containing the cell debris, 

which had been stored on ice while preparing the lysate, was spun down at 3020 x g for 5 min at 
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4°C, the supernatant was removed by aspiration and the pellet was resuspended in ice cold 

ddH2O equal to the volume of RNPB-150 used for resuspending the grindate. A 100 µl aliquot 

was removed and stored at -20°C for western blot analysis of cell grinding efficiency. 

After 30 min of binding, the tubes were placed on magnet and the supernatant was 

allowed to clear. 100 µl of cleared supernatant (flow through) was transferred into a 1.5 ml tube 

and stored at -20°C for western blot analysis of MS2CP-PrAx2 capture efficiency. A second 

aliquot of 150 µl was snap frozen in LN2 and stored at -20°C for total RNA extraction. The 

supernatant was removed from beads by pipetting (1.5 ml tube) or by aspiration (15 ml tube). 1 

ml of ice cold RNPB-150 was added to the tube for washing and the beads were resuspended by 

gentle pipetting in order to prevent disruption of captured complexes. During the first washing 

step beads were transferred from 15 ml tube into 1.5 ml tube. Washing with RNPB-150 was 

repeated once, followed by two washing steps with 1 ml of ice cold Final Wash Buffer (FWB). 

After this, either bead-captured RNA was extracted or mRNP proteins were release by RNase 

treatment. 

RNP Buffer 150  Final Wash Buffer  
20 mM Hepes (pH 7.4) 20 mM Hepes (pH 7.4) 
110 mM KAc 1 mM MgCl2 
150 mM NaCl 40 mM NaCl 
0.5% (v/v) Triton X-100 Prepared fresh before use 
0.1% (v/v) Tween-20  
0.02% (v/v) Antifoam B (Sigma-Aldrich)  
1:100 Solution P (added directly before use)  
Prepared fresh before use  
 

 

Bead-captured RNA extraction 

IgG-coupled beads with the bound mRNPs were resuspended in FWB (2 times the initial bead 

volume) supplemented with 0.1% (v/v) SDS and 200 µg/ml Proteinase K (Fermentas Thermo 

Scientific) and incubated on a water bath at 30°C for 30 min. During the incubation, beads were 

mixed every 10 min by tapping the 1.5 ml tube with a finger. After Proteinase K treatment, equal 

volume of TRI Reagent (Applied Biosystems® Life Technologies) was added to the beads and 

mixed by vortexing for 30 sec. The sample was incubated at RT for 5 min, after which 1/10 TRI 

Reagent volume of 1-bromo-3-chloropropane (Sigma-Aldrich) was added. The sample was mixed 

by vortexing and incubated at RT for additional 10-15 min. The sample wash shortly spun down 

in order to collect liquid form the lid and placed on magnet to capture the beads. The organic and 

aqueous phase was mixed by pipetting and transferred onto a pre-spun Phase Lock Gel Heavy 2 

ml (PGL, 5 Prime) tube. The PGL tube was centrifuged at 16 000 x g for 5 min at RT (5415 R, 

Eppendorf) and the aqueous RNA-containing phase was transferred into a fresh 1.5 ml tube. An 
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equal volume of chloroform (Sigma-Aldrich) was added to the tube, mixed by pipetting and 

incubated at RT for 2 min. The sample was loaded onto a pre-spun PGL tube and the 

centrifugation was repeated as above. The aqueous phase was transferred into a new 1.5 ml tube. 

The following solutions were added to the RNA sample: 1/10 RNA sample volume 3 M sodium 

acetate (pH 5.2), 0.5 µl Pellet Paint Co-Precipitant (EMD Millipore), 2.5 RNA sample volume 

absolute EtOH and 10 µg/ml Linear Acrylamide (Ambion® Life Technologies, amount 

calculated according to the final volume of RNA sample plus EtOH). The sample was mixed by 

vortexing and RNA was precipitated at -20°C overnight. The next day RNA was collected by 

centrifugation at 16 000 x g for 15 min at 4°C. After removing the supernatant by pipetting, 500 

µl of 75% EtOH was added into the tube in order to remove salt from RNA pellet and the 

sample was centrifuged at 16 000 x g for 5 min at 4°C. After removing most of the 75% EtOH, 

the sample was briefly spun down and the remaining of the liquid was removed by pipetting. The 

sample was allowed to air-dry for 2 min at RT, after which the pellet was dissolved in 12 µl 

HPLC-H2O per 400 mg initial grindate. 

 

 

mRNP protein release by RNase treatment 

For RNase treatment beads were resuspended in 1.2 times the initial bead volume of FWB. 

Subsequently, 1/24 of FWB volume of RNase Cocktail (Ambion® Life Technologies) was added 

and the sample was mixed at 24°C for 30 min on Thermomixer comfort (Eppendorf) using the 

following settings: 10 sec at 1400 rpm, 1 min break. After RNase treatment the sample was 

shortly spun down and the beads were captured on magnet. RNase eluate containing the mRNP 

proteins was transferred into a fresh 1.5 ml tube. The beads were washed with one initial bead 

volume of HPLC-H2O by pipetting, the water was pooled with the eluate and the sample was 

vacuum dried (Vacuum Concentrator, Bachofer). Vacuum drying took about 1.5 h for 250 µl 

sample. The dry eluate samples, as well as the magnetic beads, were stored at -20°C for further 

analysis. 

RNase treatment was performed with a modification for SILAC-labelled grindates. 

Specifically, before RNase treatment the washed beads from two parallel affinity purifications 

were mixed. For this, the beads in one tube were resuspended in 200 µl FWB and added to the 

beads in the other tube. The empty tube was rinsed with an additional 200 µl of FWB in order to 

collect all the beads into one tube. FWB was removed from the pooled beads and RNase 

treatment was performed as described above.  
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Total cellular RNA extraction  

An equal volume of phenol-chloroform-isoamyl alcohol (PCI, Roti-Aqua-PCI for RNA 

extraction, Carl Roth) was added to the frozen input (I) and flow through (FT) samples and 

vortexed until the samples had thawed. In order to allow mRNA-protein complexes to dissociate, 

samples were incubated at RT for 5 min and then the organic and RNA-containing aqueous 

phase were separated by centrifugation at 16 000 x g for 5 min at RT. The upper aqueous phase 

was transferred into new 1.5 ml tubes, 2.5 volumes of cold absolute EtOH was added, mixed and 

RNA was precipitated for 10 min at RT. The samples were centrifugation at 16 000 x g for 10 

min at 4°C to collect the RNA. RNA pellets were washed with 1 ml 75% cold EtOH, centrifuged 

at 16 000 x g for 5 min at 4°C and the air-dried pellets were dissolved in 50 µl HPLC-H2O. 

A small amount of grindate (~ 50 µl) was transferred into a pre-cooled 1.5 ml tube. 400 µl 

PCI and 600 µl Cross RNA Buffer I were added to the tube and vortexed for mixing. The sample 

was incubated at RT for 5 min and RNA extraction was continued as described for I and FT 

samples. 

Cross RNA Buffer I 
0.3 M NaCl  
10 mM Tris-HCl (pH 7.5) 
1 mM EDTA (pH 8.0) 
0.2% (w/v) SDS 
Stored at 4°C  
Before use the bottle was swirled to equally distribute precipitated SDS 

 

 

 

RNA analysis 

 

Northern blot analysis 

Denaturing agarose gel electrophoresis and capillary transfer of RNA onto positively charged 

nylon membrane was performed as described in (Jellbauer 2009). 

 

Hybridization probe synthesis 

Radiolabelled probe synthesis. α-[32P]-dCTP labeled DNA probes (Table 5) were synthesized 

using Prime-lt II Random Primer Labeling Kit (Agilent Technologies) according to the 

manufacturer’s manual. 25 ng PCR product was used per labelling reaction and the reaction 

products were purified from unincorporated nucleotides with probe cleanup spin columns. 
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Table 5. Radiolabeled DNA probes for northern blot analysis. 

DNA probe 
Template DNA for labelling by random priming 

DNA probe length (nt) 
PCR template PCR primers 

ASH1 RJP 88 
RJO 176 
RJO 217 

1020 

PGK1 RJP 1573 
RJO 302 
RJO 303 

1226 

 

DIG-labelled probe synthesis. Antisense RNA probes were synthesized by in vitro transcription 

in the presence of digoxigenine-11-UTP (Roche Applied Science) using MEGAshortscript Kit 

(Life Technologies) according to the manufacturer’s manual (Table 6). 100 nM PCR product 

containing a T7 RNA polymerase promoter site was used as template DNA for in vitro 

transcription.  

Table 6. Antisense RNA probes for northern blot analysis. 

RNA probe 
Template DNA for in vitro transcription In vitro transcription 

PCR template PCR primers DIG-UTP:UTP Antisense RNA probe length (nt) 

PGK1-ORF RJP 1573 
RJO 3491 
RJO 3939 

1:2.5 154 

MS2L gDNA, RJY 3731 
RJO 4109 
RJO 3938 

1:2 120 

18S gDNA, RJY 3731 
RJO 4139 
RJO 4140 

1:2.5 138 

25S gDNA, RJY 3731 
RJO 4141 
RJO 4120 

1:2.5 148 

 

Northern blot hybridization 

Hybridization of DNA probes. DNA probe hybridization and signal detection were performed 

as described in (Jellbauer 2009). 

Hybridization of antisense RNA probes. Hybridization was performed with minor 

modifications as described in Engler-Blum et al. (Engler-Blum et al. 1993). Briefly, the membrane 

was prehybridized at 68°C with gentle rolling in hybridization oven/shaker (Amersham GE 

Healthcare Life Sciences) for a minimum of 2 h in 20 ml/100 cm2 Prehybridization Solution. 100 

ng denatured DIG-labelled RNA probe was added to the hybridization tube per ml of 

Prehybridization Solution and incubated overnight. After hybridization, the membrane was 

washed 3 x 20 min at 65°C with 50 ml of preheated Wash Buffer I. Subsequently, the membrane 

was transferred from the hybridization tube into a box and incubated with gentle rocking for 5 

min at RT in Wash Buffer II. Before antibody incubation the membrane was blocked in 1 

ml/cm2 Blocking Solution for 1 h, after which Anti-Digoxigenin-alkaline phosphatise, Fab 

fragments (Roche Applied Science) was added at 1:5000 dilution. After 1 h of antibody 

incubation the membrane was washed 2 x 15 min in 100 ml Wash Buffer II. The membrane was 
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equilibrated in Detection Buffer for 3 min and ready-to-use CSPD chemiluminescent substrate 

(Roche Applied Science) was applied on the membrane according to manufacturer’s instructions. 

Chemiluminescence was detected using LAS-3000 image acquisition system (Fujifilm) equipped 

with a cooled digital CCD camera.  

Prehybridization Solution 
250 mM Na-phosphate buffer (pH 7.2) 
10% (w/v) SDS 
0.5% (w/v) Blocking Reagent (Roche) 
Prepared fresh by adding Blocking Reagent (stock 5% (w/v)) 

Blocking Solution  
Wash Buffer II 
0.5% (w/v) Blocking Reagent  
Prepared fresh by adding 
Blocking Reagent (stock 5% (w/v)) 

Wash Buffer I 
20 mM Na-phosphate buffer (pH 7.2) 
1 mM EDTA 
1% (w/v) SDS 
Stored at RT 

Detection Buffer  
0.1 M Tris-HCl (pH 9.5) 
 0.1 M NaCl 
50 mM MgCl2 

Stored at RT 

Wash Buffer II 
0.1 M maleic acid (pH 8.0) 
3 M NaCl 
0.3% (v/v) Tween-20 
Stored at RT 

 

 

 

Real-time quantitative reverse transcription PCR (qRT-PCR) 

DNase treatment and cDNA synthesis 

Input and Flow Through RNA samples. In order to digest genomic DNA, total cellular RNA 

was treated with RQ1 RNase-Free DNase (Promega) prior to cDNA synthesis. 9 µl reaction 

containing 1 µg RNA, 1 U RQ1 DNase, 1 µl 10x RQ1 DNase Reaction Buffer and HPLC-H2O 

was pipette into a 200 µl thin wall PCR tube and incubated for 30 min at 37°C. All incubation 

steps during DNase treatment and cDNA synthesis were performed in a PCR cycler with a 

heated lid. Reaction was terminated by adding 1 µl RQ1 DNase Stop Solution (sample total 

volume 10 µl) and subsequently DNase was denatured by incubating the reaction for 10 min at 

65°C. RNA was reverse-transcribed using High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems® Life Technologies). cDNA synthesis was performed in a total volume of 

12 µl containing 600 ng of DNase treated RNA, 1.2 µl 10x RT Buffer, 1.2 µl 10x RT Random 

Primers, 0.6 µl 25 mM dNTPs, 0.6 µl MultiScribe Reverse Transcriptase and HPLC-H2O. Per 

each RNA sample an 8 µl control reaction containing 400 ng of DNase treated RNA and all 

cDNA synthesis components except reverse transcriptase was prepared. cDNA synthesis was 

performed using the following settings: 10 min 25°, 120 min 37°C, 15 min 85°C. 

Bead-captured RNA samples. DNase treatment and cDNA synthesis were performed using 

the same reagents and incubation conditions as described for I and FT samples. 2 µl bead-
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captured RNA was treated with 0.2 U of DNase in a total volume of 9 µl. 6 µl of the DNase-

treated RNA was used for cDNA synthesis and 4 µl for a control reaction without reverse 

transcriptase.   

 

qRT-PCR 

qRT-PCR was performed using the StepOnePlus Real-Time PCR System (Applied Biosystems® 

Life Technologies). Each reaction contained 5 µl Fast SYBR Green PCR Master Mix (Applied 

Biosystems® Life Technologies), 4 µl appropriately diluted cDNA and 1 µl of primer mix (500 

nM each). Primers were designed using FastPCR software (PrimerDigital, http:// 

primerdigital.com/fastpcr.html). The thermocycling profile included an initial denaturation for 20 

sec at 95°C, followed by 40 cycles of amplification, which comprised denaturation at 95°C for 3 

sec and annealing/elongation at 60°C for 30 sec. A single fluorescence measurement was 

performed at the end of the elongation step of every amplification cycle. After PCR amplification 

melting curve analysis of amplification products was performed to test for the formation of 

primer-dimers and non-specific PCR products. For this, PCR amplification products were 

denatured at 95°C for 15 sec and allowed to reanneal at 60°C for 1 min. Subsequently, the 

temperature was increased in 0.3°C increments to 95°C (step-and-hold fluorescence 

measurement). Only those primer pairs (Table 7) were used for further analysis that did not 

generate any primer-dimers during the 40 PCR amplification cycles. Reactions were run in 

duplicate or in triplicate and included a no template control (cDNA replaced by ddH2O). 

 
Table 7. qRT-PCR target genes. Input refers to the RNA extracted from clarified lysate before the mRNP 
isolation step. Bead captured-RNA refers to the RNA extracted from IgG-coupled beads after mRNP isolation. 
Amplification efficiency (E) estimates for each target were calculated using a 5 fold serial dilution curve with 
five data points. 
 

Target gene Primers 
cDNA dilution 

E 
Input Bead-captured RNA 

PGK1 
RJO 4132 
RJO 4133 

20 or 100 100 1.926 

TPI1 
RJO 4135 
RJO 4136 

20 or 100 100 1.896 

ACT1 
RJO 2920 
RJO 2921 

20 or 100 100 1.944 

ENO2 
RJO 2916 
RJO 2917 

20 or 100 100 1.935 

25S 
RJO 4141 
RJO 4149 

1000 100 1.935 

18S 
RJO 4139 
RJO 4148 

1000 100 1.986 
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qRT-PCR data analysis 

qRT-PCR amplification efficiency. In order to determine qRT-PCR amplification efficiency 

(E) for each target, 5 fold serial dilutions were prepared from a cDNA sample corresponding to 

input RNA of strain RJY 3739. cDNA dilutions ranging from 10-fold to 6250-fold were run in 

triplicate and StepOne Software version 2.2 was used to generate the standard curve for each 

target. Using the slope of the linear regression line, the software calculates E of one cycle in the 

exponential phase according to the equation: E=5(-1/slope). Only those primer pairs were used for 

further analysis that showed an E value between 0.9-1 (Table 7). 

Relative quantification of qRT-PCR results. Relative quantification of qRT-PCR results was 

performed by comparative CT method (also known as the 2 –ΔΔCT) combined with kinetic qRT-

PCR efficiency correction (Pfaffl 2001). In this model the relative expression ratio (R) of a target 

gene is calculated based on its E, and threshold cycle (CT) difference (Δ) of one unknown sample 

(e.g. drug treated sample) versus one control (e.g. untreated sample), and expressed in 

comparison to a reference gene (Pfaffl 2001) (Equation 1). 

 

Equation 1 R = (Etarget) 
ΔCT target (control – sample) ÷ (Eref) 

ΔCT ref (control – sample) 
 

In order to give an overview about how equation 1 was applied in this study, the steps of 

calculating  PGK1-6MS2L  relative enrichment after PGK1-mRNP affinity purification are listed. 

In this calculation PGK1-6MS2L and PGK1 are defined as “target” mRNAs and TPI1, ACT1 and 

ENO2 as “reference” mRNAs. For PGK1-6MS2L mRNA (and its respective reference mRNAs) 

“control” is the CT value of input sample and “sample” is the CT value of bead-captured RNA 

sample (both CT values correspond to the strain harbouring PGK1-6MS2L). Conversly, for PGK1 

mRNA (and its respective reference mRNAs) “control” is the CT value of input sample and 

“sample” is the CT value of bead-captured RNA sample (both CT values correspond to strain 

harbouring PGK1). Relative quantification of all the qRT-PCR experiments in this study was 

done analogous to the below described case.  

1) Calculation of ΔCT (normalization) 
a) CT values of strain harbouring PGK1-6MS2L 

Target ΔCT PGK1-6MS2L (CT input PGK1-6MS2L - CT bead-captured PGK1-6MS2L)  
Reference ΔCT TPI1/ACT1/ENO2 (CT input TPI1/ACT1/ENO2 - CT bead-captured TPI1/ACT1/ENO2) 

b) CT values of strain harbouring PGK1 
Target ΔCT PGK1 (CT input PGK1 - CT bead-captured PGK1)  
Reference ΔCT TPI1/ACT1/ENO2 (CT input TPI1/ACT1/ENO2 - CT bead-captured TPI1/ACT1/ENO2) 
 

2) Calculation of EΔCT from target and reference ΔCT values 
 

3) Calculation of relative expression ratio R 
a) EΔCT PGK1-6MS2L ÷ EΔCT

 
TPI1/ACT1/ENO2 

b) EΔCT PGK1 ÷ EΔCT
 
TPI1/ACT1/ENO2 
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4) Calculation of relative enrichment of PGK1-6MS2L as compared to PGK1 
R PGK1-6MS2L (TPI1/ACT1/ENO2) ÷ R PGK1 (TPI1/ACT1/ENO2) = x 
R PGK1 (TPI1/ACT1/ENO2) ÷ R PGK1 (TPI1/ACT1/ENO2) = 1 
 

5) Calculation of average (corresponding to TPI1, ACT1 and ENO2) relative enrichment of 
PGK1-6MS2L 

 

Reverse transcription PCR (RT-PCR) 

DNase treatment and cDNA synthesis 

Input and Flow Through RNA samples. DNase treatment of total RNA was carried out as 

described above for qRT-PCR experiment and reverse-transcribed into cDNA using reagents 

from Fermentas (Thermo Scientific). All the incubation steps during DNase treatment and 

cDNA synthesis were performed in a PCR cycler with heated lid. 15 µl reaction containing 1 µg 

DNase treated RNA, 50 pmol Oligo(dT) Primer, 50 pmol Random Hexamer Primer and 1 µl 10 

mM dNTPs was incubated for 5 minutes at 65°C in order to denature RNA secondary structures 

and rapidly cooled down on ice. 4 µl of 5x RT Buffer and 0.5 µl (20 U) of RiboLock RNase 

inhibitor were added to the reaction. Subsequently, 12 µl of the reaction was transfered into a 

new tube and 0.6 µl (120 U) RevertAid Premium Reverse Transcriptase was added. Reverse 

transcriptase was not added to the remaining 7.5 µl of reaction in order to have a control for 

genomic DNA contamination. cDNA syntheses was performed for 40 minutes at 55 °C followed 

by heat inactivation of the enzyme for 5 minutes at 85 °C.  

Bead-captured RNA samples. DNase treatment and cDNA synthesis were performed using 

the same reagents and incubation conditions as described for I and FT samples. 2 µl bead-

captured RNA was treated with 0.2 U of DNase in a total volume of 10 µl. 5 µl of the DNase-

treated RNA was used for cDNA synthesis and 5 µl for a control reaction without reverse 

transcriptase.  

 

Protein analysis 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)  

Sample preparation. 5x Laemmli Sample Buffer (Laemmli 1970) was added to lysate samples 

taken from I, FT and pellet material to obtain a 1x solution and proteins were denatured by 

heating for 10 min at 70°C. Vacuum dried RNase eluate containing the mRNP proteins was 

dissolved in 10 µl Solution A and heated for 5 min at 70°C, after which 10 µl Solution B was 

added and heated for an additional 10 min at 70°C. After removing the RNase eluate form the 

IgG-coupled beads, the beads were resuspended in 40 µl Solution A and B mix (1:1, v/v) and 
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heated for 10 min at 70°C. The beads were captured on a magnet and the protein-containing 

supernatant was transferred into a new 1.5 ml tube. Beads were resuspended in an additional 40 

µl Solution A and B mix, heated for 2 min at 70°C and the supernatant was pooled with the 

previous supernatant to obtain a 4x diluted sample as compared to the RNase eluate. Prior to 

loading on SDS-PAGE, the samples were spun down at 16 000 x g for 2 min at RT. 

Protein gel electrophoresis. SDS-PAGE was performed as described in (Sambrook and Russell 

2001). Standard gels were run using Mini-PROTEAN Tetra Cell electrophoresis system (BioRad) 

at 100 V for 20 min, followed by 150 V until the dye front had reached the lower edge of the gel. 

NuPAGE Novex 4‐12% Bis‐Tris gels (Invitrogen™ Life Technologies) were run according to 

manufacturer’s manual. 

 

Western blot 

Protein transfer onto membrane. Towbin Transfer Buffer without methanol was used for 

electrophoretic protein transfer onto PVDF membrane. Semi-dry transfer was carried using 

Trans-Blot SD (Bio-Rad) semi-dry transfer device at 12 V (1 gel) or 18 V (2 gels) for 35 min. If 

efficient transfer of large proteins (>100 kDa) was desired, transfer was performed in Mini 

Trans-Blot (Bio-Rad) tank transfer system for 1 h at 350 mA. Two types of PVDF membranes 

were used depending on the nature of the signal to be detected. Proteins were transferred onto 

Hybond-P (Amersham GE Healthcare Life Sciences) for chemiluminescent signal detection and 

onto Immobilon-FL (EMD Millipore) for fluorescent signal detection following the 

manufacturer’s guidelines for membrane handling. 

Solution A  
0.5 M Tris-HCl (pH 8.0) 
5% SDS (w/v) 
Stored at RT 

Laemmli Sample Buffer (1x) 
60 mM Tris-HCl (pH 6.8) 
2% SDS (w/v) 
10% glycerol (v/v)  
5% β-mercaptoethanol, 710 mM 
0.01% bromphenol blue 
Stored at -20°C 

Towbin Transfer Buffer 
25 mM Tris 
192 mM glycine 

Solution B  
75% glycerol (v/v) 
124.5 mM DTT 
0.05% bromphenol blue (w/v) 
Stored at -20°C 

 
 

Protein detection. Membrane blocking and antibody incubation was performed using SNAP i.d. 

Protein Detection System (EMD Millipore) according to the manufacturer’s manual. Membrane 

was blocked with phosphate-buffered saline (PBS) solution containing 0.2% (w/v) non-fat dry 

milk and 0.1% (v/v) Tween-20. Routinely, membrane was incubated with antibody solution for 

20 min. After the final washing step in SNAP i.d., the membrane was removed from the blot 

holder and was washed with gentle rocking for an additional 10 min in PBS-0.1% (v/v) Tween-
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20. Horseradish peroxidise enzymatic activity was detected with ECL Western Blotting Substrate 

(Pierce Thermo Scientific) and chemiluminescent image was captured with LAS-3000 or 

MultiImage II (Alpha Innotech) imaging system and quantified using FluorChem FC2 image 

analysis software (Alpha Innotech). Fluorescent signal was detected with Odyssey Infrared 

imaging system (LI-COR) and quantified using Image Studio (Li-COR).  

 
 

Protein visualization by staining 

In order to visualize mRNA co-purifying proteins, an RNase eluate volume corresponding to 

~200 mg initial grindate used for mRNP affinity purification was separated on  10% SDS-PAGE 

and the proteins were stained using SilverQuest Silver Staining Kit (Invitrogen™ Life 

Technologies) according to the Basic Staining Protocol. For protein identification by mass 

spectrometry, an RNase eluate volume corresponding to ~1 g of initial grindate was separated on 

NuPAGE Novex 4‐12% Bis‐Tris Gel (Invitrogen™ Life Technologies) and stained using 

Colloidal Blue Staining Kit (Invitrogen™ Life Technologies). 

 
 

Mass spectrometry-based quantitative proteomics  

MS analysis of MS2L-tagged mRNA co-purifying proteins was conducted at Proteome Center 

Tübingen (http://www.pct.uni-tuebingen.de/index.php?id=2) by Dr. Mirita Frantz. Briefly, 

SILAC-labelled RNase eluate was separated by 1D SDS-PAGE and the gel was cut into several 

slices, which were subjected to in-gel enzymatic digestion of proteins with LysC endoproteinase. 

Liquid chromatography (LC) coupled to electrospray and tandem MS (MS/MS) analysis of 

peptide mixture was performed on Easy-nLC (Proxeon Biosystems) nanoscale chromatography 

system coupled to Linear Trap Quadrupole (LTQ)-Orbitrap XL mass spectrometer (Thermo 

Scientific). The raw MS spectra containing peptide mass and intensity information were 

processed and prepared for database search using MaxQuant software (Cox and Mann 2008). 

MS/MS spectra were searched using the Mascot search engine against a yeast database containing 

common contaminants and a reversed version of all sequences.  

http://www.pct.uni-tuebingen.de/index.php?id=2
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AIMS 

 

In order to elucidate the mechanisms of mRNA regulation it is important to know which 

proteins interact with the mRNA during its lifetime. Methodological advances in high-throughput 

methods such as quantitative mass spectrometry have allowed to compile a comprehensive list of 

mammalian and yeast RNA-binding proteins (Baltz et al. 2012; Castello et al. 2012; S. F. Mitchell 

et al. 2013). However, the analysis of mRNA-bound proteome of specific cellular mRNPs has 

been hampered due to the lack of a suitable method that would combine fast and easy affinity 

purification of specific mRNPs with efficient identification of the captured proteins. Therefore, 

the aims of the current study were: (1) to develop an mRNP affinity purification method that can 

be used to capture in vivo-assembled mRNPs form S. cerevisiae; and (2) to test the applicability of 

the method for mRNA-bound proteome analysis using SILAC-based quantitative proteomics for 

the identification of mRNP proteins. Our goal was to study mRNP composition under normal 

yeast growth conditions with glucose as the carbon and energy source. We wished to get an idea 

of the full spectrum of mRNA-protein and protein-protein interactions mRNPs are involved in 

during their lifetimes. Therefore, the mRNP affinity purification method was optimized to 

prevent mRNA degradation and to preserve ribosome-association with the mRNA. In order to 

test whether the established mRNP affinity purification method is suitable for the analysis of 

mRNA-bound proteome, proteins co-purifying with the two abundant cellular mRNAs, PGK1 

and ENO2, were identified. Another goal of the study was to determine which proteins have the 

potential to interact with the RNA-tag that was chromosomally integrated after the translation 

termination codon to “mark” endogenous PGK1 and ENO2 mRNAs for affinity purification. 

Therefore, the proteins co-purifying with a plasmid-encoded mRNA-like transcript containing 

the RNA tag sequence were analysed. 
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RESULTS 

 

Single-step mRNP affinity purification strategy 

 
We isolate endogenously assembled mRNA-protein complexes from Saccharomyces cerevisiae via the 

mRNA component of the mRNP. In order to capture the mRNA of interest the mRNA is 

tagged before the 3′ UTR with  binding sites for bacteriophage MS2 coat protein (MS2CP), which 

is a 421 nt long sequence containing 6 stably folding stem-loop structures (MS2L) (Haim et al. 

2007). mRNPs assembled on tagged messages are captured from cell lysate by using the wt 

version of MS2CP (Jou et al. 1972) fused with 4 IgG-binding Z domains of Staphylococcus aureus 

protein A (MS2CP-PrAx2) (B. Nilsson et al. 1987). 

Conventional yeast cell lysis methods, such as glass bead milling and French press, result 

in rapid RNA degradation upon cell wall disruption (López de Heredia and Jansen 2004). Our 

strategy for preserving mRNP integrity includes cryolysis and fast mRNP capture by magnetic 

separation (Fig. 5). Previously, a similar strategy was used to isolate complexes containing protein 

A-tagged RNA binding proteins (Oeffinger et al. 2007). We adopted this method for mRNA-

based mRNP affinity purification by replacing protein elution under denaturing conditions with 

selective RNA-associated protein release via ribonuclease (RNase) treatment. Finally, proteins co-

isolating with MS2L-tagged mRNAs are identified by mass spectrometry.  

 

 

Optimization of mRNP affinity purification 
 

mRNA integrity during mRNP affinity purification 

For efficient mRNP capture only minor degradation of MS2L-taggd mRNA during mRNP 

affinity purification is tolerable. Therefore, we first wanted to know if RNase inhibitors are 

needed to keep RNA intact while performing the experiment. We tested the effect of 3 different 

RNase inhibitors on mRNA integrity: (1) E. coli tRNA (500 µg/ml) as a competitor substrate for 

RNases; (2) heparin (500 µg/ml) as a non-specific RNase inhibitor; and (3) recombinant RNasin 

(50 U/ml) as a protein that inactivates RNases via non-covalent binding. In the negative control  
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Figure 5. Experimental workflow of mRNP affinity purification. After harvesting, S. cerevisiae cells are frozen 
in liquid nitrogen and disrupted under cryo conditions using Retch mixer mill MM400. Cell grindates can be 
stored at -80°C until proceeding with mRNP isolation. Upon grindate resuspension in buffer, cell debris is spun 
down and the lysate is filtered. IgG-coupled superparamagnetic particles (Dynabeads) are incubated with the 
lysate for 30 min at 4°C, then captured by magnetic force, washed and used either for bead-captured RNA or 
protein extraction. RNA is isolated by Proteinase K digestion followed by PCI extraction and proteins are eluted 
by RNase A/T1 treatment. Isolated RNA and proteins are analysed. 



RESULTS 

 

77 
 

RNase inhibitors were not added to the lysate. As a positive control for non-degraded RNA total 

RNA was extracted directly from yeast cell grindate by phenol-chlorophorm-isoamyl alcohol 

(PCI) extraction. The experiment was performed similarly to mRNP affinity purification except 

that the IgG-coupled beads were not added to the lysate. Samples for total RNA extraction were 

taken at different steps of the protocol, i.e. from crude lysate, from clarified lysate and from 

clarified lysate incubated at 4°C for 30 min and for 1 h.  

We examined the stability of plasmid encoded ASH1 (Fig. 6A) expressed under GAL1 

promoter control and genomically encoded PGK1 (Fig. 6B). ASH1 was chosen as a 

representative of an unstable transcript. The mRNA exhibits a half-life of around 3 min when 

expressed from the wild-type allele introduced at ASH1 locus by gene replacement (Zheng et al. 

2008). In contrast, PGK1 is a very stable yeast transcript with a half-life of more than 60 min 

(Grigull et al. 2004; Y. Wang et al. 2002). 

RNA samples were analysed by northern blot. Smear underneath the signal 

corresponding to the full-length transcript indicates mRNA degradation. ASH1 degradation was 

observed already in the clarified lysate for samples not containing any RNase inhibitors (Fig. 6A, 

lane 7) or only tRNA (Fig. 6A, lane 8). Furthermore, rRNA was not entirely intact in these 

samples as shown by smearing of rRNA signal on methylene blue stained membrane. After 30 

min of incubation, the full-length transcript seemed to be entirely degraded in the absence of 

RNase inhibitors (Fig. 6A, lane 11) and after 1 h also in the presence of tRNA (Fig. 6A, lane 16). 

Additionally, extensive rRNA degradation was observed for these samples. Remarkably, tRNA in 

combination with heparin or heparin and RNasin prevented ASH1 degradation even after 1 h of 

lysate incubation (Fig. 6A, lane 17 and 18). Sharp 25S and 18S rRNA bands on methylene blue 

stained membrane also indicated intact rRNA.  

Surprisingly, endogenous PGK1 transcript seemed to be relatively stable throughout the 

whole experiment even in the absence of RNase inhibitors (Fig. 6B, lanes 2, 6, 10, 14) as no 

prominent smearing was observed. The lower signal intensity of the full-length mRNA in the 

clarified lysate that was incubated for 30 min in the absence of RNase inhibitors (Fig. 6B, lane 10) 

could be explained by less total RNA loaded as the signals for 25S and 18S rRNAs were also 

slightly weaker on methylene blue stained membrane. 

We concluded that RNase inhibitors are crucial to preserve mRNA integrity if mRNP 

purification of overexpressed mRNAs with a short half-life, like ASH1, is performed. In this case 

a combination of tRNA and heparin should be used as tRNA alone did not allow efficient 

mRNA protection. Addition of RNasin is not essential; in the presence of tRNA and heparin 

RNasin did not seem to provide any additional mRNA stabilizing effect. However, in case of the 

stable endogenous PGK1 transcript RNase inhibitors are not needed. Astonishingly, PGK1 did 
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not show obvious degradation in any of the samples even after 1 h of lysate incubation (Fig. 6B 

lanes 14-17).  

 

 

 

Figure 6. RNase inhibitors are needed to prevent degradation of overexpressed ASH1 but not endogenously 
expressed PGK1 during mRNP affinity purification. The effect of yeast tRNA (500 µg/ml), heparin (500 µg/ml) 
and recombinant RNasin ribonuclease inhibitor (50 U/ml) on mRNA stability was tested in two experiments 
imitating mRNP affinity purification. Yeast cell lysate was handled similarly to mRNP purification except that 
IgG-coupled beads were not added. Aliquots for total RNA extraction by PCI were taken after: (1) grindate 
resuspension in mRNP-isolation buffer (crude); (2) removal of cell debris by centrifugation at 4000 x g 
(clarified); (3) incubation of clarified lysate at 4°C for 30 min; (4) and for 1 h. RNA extracted by PCI directly from 
grindates was used as a control for intact RNA (grindate). 5 µg of total RNA was separated on 1.2% agarose-
formaldehyde gels and transferred onto positively charged nylon membranes. After methylene blue staining, 
the membranes were hybridized with radiolabelled DNA probes against ASH1 (A) or PGK1 (B). The hybridization 
signal corresponding to the full-length transcripts and the position of 25S and 18S rRNAs on methylene blue 
stained membranes are indicated. (A) ASH1 was expressed for 1 h from centromeric plasmid (RJP 1433) in 
response to 4% galactose in logarithmically growing Δash1 strain (RJY 135) before cell harvesting. RNA 
extracted from strain RJY 135 not containing ASH1-encoding plasmid shows a non-specific crosshybridization 
band with ASH1 probe (lane 1, Δash1). RNA extracted from grindate after 1h of galactose induction of ASH1 
(pASH1) (B) Δash1 strain (RJY 135) expressing PGK1 from the genomic locus. 
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TAP-She2p as a tool for mRNP affinity purification optimization 

Starting point of mRNP affinity purification optimization – high non-specific mRNA and 

protein binding to IgG-coupled beads  

Specificity is an important aspect of any affinity purification method. In case of mRNP pull-

down the result should essentially be free of non-specific mRNAs to avoid contamination by 

RNA-binding proteins not belonging to the mRNP of interest. She2 is a yeast RNA-binding 

protein (Böhl et al. 2000) that targets several transcripts to the distal tip of the daughter cell 

(Long et al. 1997; Shepard et al. 2003). mRNA localization is achieved by She2 directly binding to 

the mRNA and linking it via the adaptor protein, She3, to the myosin Myo4 motor. Myo4 then 

delivers the cargo along actin cables to the bud tip (Müller et al. 2009; Müller et al. 2011). 

Öffinger et al. showed that affinity purification of PrA-tagged She2 resulted in co-purification of 

a very distinct set of proteins – She3, Myo4, Myo2 and Act1 (Oeffinger et al. 2007) – making 

She2 a perfect bite for accessing the specificity of an affinity tag-based RNA-protein complex 

purification method. Moreover, She2 affinity purification would also allow to characterize the 

method’s specificity at the RNA level as more than 30 transcripts are known to specifically co-

isolate with She2 (Shepard et al. 2003; Oeffinger et al. 2007).  

In order to optimize our mRNP affinity purification protocol we first determined the 

level of non-specific adhesion of cellular mRNAs and proteins to the IgG-coupled beads. As an 

equivalent to She2-PrA used by Öffinger et al. (Oeffinger et al. 2007) we used TAP-She2. TAP is 

a double epitope tag (Rigaut et al. 1999) that, in our case, consists of an N-terminal PrA tag 

followed by the tobacco etch virus (TEV) protease cleavage site and a calmodulin binding 

peptide. TAP-She2 purification was performed under low stringency conditions (here and 

hereafter low stringency conditions refer to the use of 110 mM KAc as the only salt in RNP 

Buffer) in the presence of E. coli tRNA, heparin and RNasin. In a parallel control purification a 

lysate containing the untagged wt version of She2 was used. After washing, half of the beads were 

used to isolate bead-captured RNA by proteinase K digestion and PCI extraction, while the other 

half was used to elute proteins under denaturing conditions.  

Western blot comparison of TAP-She2 signal in input and flow through samples using 

anti-She2 antibody showed that about 50% of TAP-She2 was isolated from the lysate after 

incubation with IgG-coupled beads (Fig. 7A, upper panel, compare lanes 2 and 4). TAP-She2 

capture from lysate was confirmed by the analysis of the eluate sample with peroxidase anti-

peroxidase soluble complex (PAP) antibody (Fig. 6A lower panel, lane 6). In the untagged strain 

She2 signal intensity in samples taken before and after lysate incubation with IgG-coupled beads 

remained constant (Fig. 7A, upper panel, compare lanes 1 and 3). This finding argues that She2 is 
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not non-specifically captured by the beads. Unfortunately, the eluate sample of mock purification 

could not be used to analyse the possible non-specific binding of She2 to IgG-coupled beads 

because the about 25 kDa rabbit IgG light chain present in the eluate cross-reacts with the 

primary and/or secondary antibody used for She2 detection, thereby resulting in a signal in 30-25 

kDa region and masking the possible non-specifically bound She2 signal (Fig. 7A, upper panel, 

compare lanes 5 and 6). 

 

 

 

Figure 7. High non-specific RNA and protein binding to IgG-coupled beads as the starting point for mRNP 
affinity purification protocol optimization. Grindates of strains RJY 359 and RJY 3166 expressing the wt (mock) 
or TAP-tagged version of She2 (TAP), respectively, were subjected to TAP-She2 affinity purification using IgG-
coupled superparamagnetic beads. mRNP capture and washing was performed in the presence of 110 mM KAc. 
(A) Upper panel: She2 and TAP-She2 immunodetection with α-She2 antibody 1C3-11. Quantification of 
western blot signal is indicated below the lanes. On lanes 2 and 4 a signal at about 34 kDa is visible. This signal 
may correspond to TAP-She2 proteolytic degradation product that has lost the protein A part of the tag 
because the signal is not detectable on the lower panel. Lower panel: TAP-She2 immunodetection with 
peroxidase anti peroxidase (PAP) soluble complex. Inp – input, lysate after removal of cell debris; FT – flow 
through, immunodepleted lysate; E – eluate, proteins eluted under denaturing conditions from IgG-coupled 
beads. Proteins were separated on 12% SDS-PAGE. (B) Silver staining of Inp and E samples separated on a 4-
12% NuPAGE Novex BisTris gel. (C) RT-PCR analysis of RNA isolated from IgG-coupled beads by Proteinase K 
digestion and PCI extraction. TAP-She2 co-isolating mRNAs ASH1 and SRL1 were amplified from serially diluted 
cDNA. -RT, control for genomic DNA contamination (reverse transcriptase omitted); +RT, cDNA; H2O, negative 
control lacking cDNA template.  
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The comparison of She2 signal in input and flow through samples suggested that She2 is 

not non-specifically captured by IgG-coupled beads (Fig. 7A, upper panel, compare lanes 1 and 

3). However, silver staining of the affinity eluates revealed an identical protein pattern for both 

the TAP-She2 and the untagged strain (Fig. 7B, compare lanes 4 and 5), indicating high non-

specific protein binding to the beads. Furthermore, RT-PCR uncovered that She2 target mRNAs 

ASH1 and SRL1 (Shepard et al. 2003; Oeffinger et al. 2007) were present at similar levels in 

bead-captured RNA samples of both the TAP-She2 and the untagged control strain (Fig. 7C). 

This was surprising as western blot analysis had suggested no non-specific She2 binding to the 

beads. The RT-PCR result could be explained by high levels of non-specific mRNA attachment 

to the beads, possibly via non-specifically bound polyribosomes. In this case the contribution of 

the low levels of specifically captured ASH1 and SRL1 to the signal intensity of semi-quantitative 

RT-PCR could be masked by high levels of non-specifically captured ASH1 and SRL1. 

 

Small changes can make a big difference – revised IgG coupling to Dynabeads 

We assumed that the high non-specific mRNA binding to our IgG-coupled beads might arise 

from a small modification of the coupling protocol published by Öffinger et al. (Oeffinger et al. 

2007). Namely, after coupling beads are washed extensively to remove non-covalently bound 

IgG. One of the steps includes washing 5 times for 5 min with PBS. During this step we added 

insulin (0.05% w/v) and E. coli tRNA (200 µg/ml) to the washing buffer to block the sites on the 

beads that have the potential to non-specifically interact with proteins and RNA. Analogous 

blocking agents are regularly used to block sepharose beads, which are incubated with low-

immunogenic proteins such as BSA (C. Gilbert and Svejstrup 2012) or with tRNA (Slobodin and 

Gerst 2010) prior to using in immunoprecipitation experiments.  

We prepared a new batch of IgG-coupled beads completely following the protocol by 

Öffinger et al. (Oeffinger et al. 2007). Neither insulin nor E. coli tRNA were used as blocking 

agents. In addition, a new magnetic separation rack for 15 ml tubes was used. This enabled to 

reduce the bead capture time after washing from about 2 min to 20 sec. Fast removal of two 

washing solutions, one containing 100 mM glycine and the other 100 mM triethylamine, is 

important according to Öffinger et al. (Oeffinger et al. 2007).  

Using the new batch of IgG-coupled beads, TAP-She2 affinity purification was repeated 

under low stringency conditions. In parallel, we further wanted to test if the addition of tRNA, 

heparin and RNasin during mRNP capture was necessary for preserving mRNA integrity as had 

been observed earlier for overexpressed ASH1 (Fig. 6A). Therefore, TAP-She2 affinity 
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purifications were performed either in the presence or in the absence of the above mentioned 

RNase inhibitors. 

RT-PCR analysis of bead-captured RNA samples (Fig. 8A) indicated that ASH1 was 

enriched to a comparable extent both in the presence and in the absence of tRNA, heparin and 

RNasin. The same was observed also for SRL1. In order to study the level of non-specific 

mRNA binding, PCR was performed with primers specific for PGK1 and SOD1. These two 

mRNAs should not specifically co-isolate with TAP-She2. PGK1 signal could be detected for 

undiluted cDNA sample if TAP-She2 purification had been performed in the absence of tRNA, 

heparin and RNasin. In contrast, SOD1 signal was detected for undiluted and for 10-fold diluted 

cDNA if tRNA, heparin and RNasin had been present. Importantly, the signal of She2-target 

mRNAs was stronger than the signal of control mRNAs in all the tested cDNA dilution, 

indicating that non-specific RNA binding to the beads had not been as extensive as in the 

previous experiment (compare Fig. 7C and 8A). Therefore, IgG coupling to the beads was 

hereafter carried out using the new magnetic separation rack and excluding the blocking agents 

insulin and E. coli tRNA. 

 

 

 
Figure 8. Optimization of mRNP affinity purification protocol to reduce non-specific RNA binding to IgG-
coupled beads. (A) TAP-She2 co-isolating mRNAs are enriched to a similar extent after TAP-She2 affinity 
purification both in the absence (-) and presence (+) of RNase inhibitors. Using IgG-coupled beads, two parallel 
purifications from lysate containing TAP-She2 (strain RJY 3166) were carried out either in the absence of RNase 
inhibitors or in the presence of E. coli tRNA (500 µg/ml), heparin (500 µg/ml) and recombinant RNasin 
ribonuclease inhibitor (20 U/ml). mRNP capture and washing was performed in the presence of 110 mM KAc. 
Bead-captured RNA was isolated by Proteinase K digestion and PCI extraction and reverse transcribed. The 
levels of TAP-She2p target mRNAs ASH1 and SRL1 as well as negative control mRNAs PGK1 and SOD1 were 
determined by PCR from serially diluted cDNA. +RT, cDNA; -RT, control for genomic DNA contamination 
(reverse transcriptase omitted); H2O, negative control lacking cDNA template. (B) TAP-She2 purification in the 
presence of 150 mM NaCl results in reduced non-specific RNA binding to IgG-coupled beads. Lysates containing 
untagged wt She2 (strain RJY 359, mock) or TAP-She2 (RJY 3166, TAP) were used for TAP-She2 affinity 
purification with IgG-coupled beads. mRNP capture and washing was performed in the presence of 150 mM 
NaCl and 110 mM KAc. Bead-captured RNA was isolated and subjected to RT-PCR as described in (A).  
 



RESULTS 

 

83 
 

It is likely that TAP-She2-bound mRNAs are protected from RNases as ASH1 and SRL1 

enrichment by TAP-She2 resulted in similar efficiencies independent of the presence of RNase 

inhibitors. Addition of tRNA, heparin and RNasin did not also seem to influence the extent of 

non-specific RNA capture as PGK1 could be detected in the absence and SOD1 in the presence 

of RNase inhibitors. Therefore, in the subsequent experiments tRNA, heparin and RNasin were 

omitted from the mRNP affinity purification.   

 

Increased buffer stringency reduces non-specific RNA binding to IgG-coupled beads to 

minimum 

In order to further reduce the non-specific RNA binding by IgG-coupled beads, we increased the 

stringency of mRNP capture conditions and performed the next TAP-She2 affinity purification 

in the presence of 150 mM NaCl (RNP Buffer 150, see Methods for buffer composition). Mock 

purification of wt untagged She2 served as the negative control.   

Addition of 150 mM NaCl to TAP-She2 capture and washing steps resulted in a dramatic 

increase in affinity purification specificity (Fig. 8B). ASH1 and SRL1 could only be detected in 

bead-captured RNA samples of the TAP-She2 strain. Control mRNA PGK1 could neither be 

detected in the eluate of the untagged nor of the TAP-She2 strain. A similar result was obtained 

also for SOD1 except that a very weak signal was detected for the undiluted cDNA sample of the 

TAP-She2 strain. 

 

 

PGK1 mRNA isolation via MS2L::MS2CP-PrA::IgG interaction 

Having optimized mRNP affinity purification conditions, we wanted to test if MS2L-tagged 

PGK1 could be specifically captured using our method. Lysates containing MS2CP-PrAx2 and 

either the wt untagged PGK1 or the 6MS2L-tagged PGK1 were subjected to mRNP affinity 

purification. Bead-captured RNA analysis by RT-PCR showed that PGK1 was enriched only if 

the mRNA contained the MS2L tag (Fig. 9A, upper panel, lanes 4-6). No PGK1 PCR product 

could be detected for mock purification of untagged PGK1 (Fig. 9A, upper panel, lanes 1-2). In 

order to further analyse the levels of non-specific mRNA capture, RT-PCR was performed with 

primers for SOD1 and ADH1. These mRNAs were chosen as controls because their transcript 

copy number is in the same range compared to PGK1, which on average has 177 copies per cell 

grown on YEPD (Miura et al. 2008). ADH1 and SOD1 have 306 and 93 copies per cell, 

respectively. PCR products could be detected for neither of the control mRNAs even after 30 
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PCR cycles (Fig. 9A lower panel, lanes 1-4), thus confirming low non-specific mRNA capture by 

IgG-coupled beads using the optimized mRNP affinity purification protocol (see Methods, 

“mRNP affinity purification protocol”). 

 

 

 
Figure 9. PGK1-6MS2L affinity purification – analysis of co-purifying RNAs and proteins. (A) PGK1-6MS2L is 
specifically enriched after mRNP affinity purification. Lysates containing MS2CP-PrAx2 and PGK1-6MS2L (MS2L, 
strain RJY 3683) or, as a control, MS2CP-PrAx2 and the untagged wt PGK1 (no tag, strain RJY 3682) were 
subjected to mRNP affinity purification using IgG-coupled beads. Bead-captured RNA isolated by Proteinase K 
digestion and PCI extraction was used in RT-PCR analysis. PGK1 (upper panel) and negative control mRNAs 
SOD1 and ADH1 (lower panel) were amplified from serially diluted cDNA. -RT, control for genomic DNA 
contamination (reverse transcriptase omitted); +RT, cDNA; H2O, negative control lacking cDNA template. (B) 
mRNP protein elution via RNase treatment enables detection of specifically enriched proteins. Lysate 
containing PGK1-6MS2L and MS2CP-PrAx2 (strain RJY 3682) was subjected to mRNP affinity purification 
(MS2L). As a negative control, lysate expressing untagged wt version of PGK1 and MS2CP-PrAx2 (strain RJY 
3683) was used (no tag). RNA-associated proteins were eluted using RNase A/T1, eluates were resolved on 4-
12% NuPAGE Novex BisTris gel and stained with Colloidal Blue.  Two bands were specifically enriched for PGK1-
6MS2L affinity purification. These bands, as well as the corresponding parts of the negative control lane, were 
analysed by mass spectrometry and the identified proteins are indicated by red (Upf1-), green (Pab1, 
Ssb1/Ssb2, Ded1) and black (Ded1) arrowheads.  

 

 

RNase treatment of affinity-captured mRNPs enables identification of 

PGK1-6MS2L co-isolating proteins 

After optimization of mRNP capture conditions our mRNP affinity purification method fulfilled 

two requirements for a reliable mRNP affinity purification method – specific enrichment of 

MS2L-tagged message and negligible background binding of non-specific mRNAs (Fig. 9A). 

Next, we wanted to test if PGK1-6MS2L purification would result in co-isolation of specifically 

enriched proteins. In order to release only RNA-associated proteins, we decided to use RNase 

A/T1 treatment for protein elution (Michlewski and Cáceres 2010). 
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PGK1-6MS2L affinity purification resulted in the detection of two specific bands 

compared to the negative control, the untagged wt PGK1 (Fig. 9B). These bands were analysed 

by mass spectrometry and altogether four proteins were identified: Upf1, Pab1, Ssb1/Ssb2 and 

Ded1. The analysis of the corresponding parts of the negative control lane identified Ded1. 

Interestingly, all of the four proteins have a role in mRNA life cycle. Furthermore, three of them 

(Upf1, Pab1, Ded1) can directly bind RNA (Chakrabarti et al. 2011; Iost, Dreyfus, and Linder 

1999; A. B. Sachs, Davis, and Kornberg 1987). This result implies that intact endogenous mRNPs 

can be isolated via MS2L-tagged mRNA.  

 

 

Formaldehyde crosslinking and cycloheximide treatment  

as means of mRNP composition stabilization 

Silver stained eluates from several PGK1-6MS2L affinity purification experiments revealed a 

similar protein pattern showing two specifically enriched bands in the upper molecular weight 

region and faint bands in the lower molecular weight region (Fig. 10A, lanes 1-2 and data not 

shown). Due to a weak signal it was not possible to spot clear differences in the protein patter 

between the MS2L-tagged PGK1 and the untagged control below the 60 kDa marker band. 

Consequently, we addressed the question whether stabilization of the mRNP composition would 

allow us to detect more specifically enriched proteins in PGK1-6MS2L affinity purification. In 

addition, we wanted to confirm Upf1 co-isolation with PGK1-6MS2L by western blot analysis. 

For that, thee copies of c-myc epitope tag were inserted at the C-terminus of Upf1. 

First, we tried out cross-linking with 0.05% formaldehyde (v/v) as described by (Slobodin 

and Gerst 2010) to stabilize mRNA-protein and protein-protein interactions (Fig. 10A). This 

resulted in the detection of more bands in the lower molecular weight region when compared to 

the untreated control. However, no additional specifically enriched bands for PGK1-6MS2L 

purification were observed after cross-linking. Therefore, it was decided not to use formaldehyde 

cross-linking in the subsequent experiments. 

Western blot analysis clearly demonstrated that Upf1-3myc specifically co-purified with 

MS2L-tagged PGK1 but not with the untagged control (Fig. 10C). Interestingly, a fraction of 

Upf1-3myc remained on the beads even after RNase treatment (Fig. 10C, lanes 4 and 8). This 

could be caused by incomplete RNA degradation during RNase treatment or, alternatively, by 

non-specific attachment of the released protein to IgG-coupled beads. The signal intensity of 

Upf1-3myc was comparable between the input and immunedepleted samples (Fig. 10B, 

uppermost panel, compare lanes 3-4 and 7-8). This is not surprising as probably only a minor 
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fraction of total cellular Upf1-3myc is bound to PGK1-6MS2L. The analysis of MS2CP-PrAx2 

capture efficiency indicated that roughly 50% of the protein present in the lysate was bound to 

IgG-coupled beads during the 30 min of incubation time (Fig. 10B, middle panel). MS2CP-PrAx2 

capture efficiency of around 50% was routinely observed if 15 mg of IgG-coupled beads per 1 g 

cell grindate was used (data not shown). 

 

 

 

Figure 10. Formaldehyde crosslinking does not result in the detection of additional specifically enriched 
proteins. Lysates containing MS2CP-PrAx2 together with untagged wt PGK1 (strain RJY 3740, no tag) or 6MS2L-
tagged PGK1 (strain RJY 3739, MS2L) were used for mRNP affinity purification. (A) Comparison of RNase eluate 
patterns of untreated and 0.05% formaldehyde cross-linked cells. During harvesting cells were cross-linked with 
0.05% formaldehyde (v/v) for 10 min (+) or this step was omitted (-). After mRNP affinity purification RNA-
associated proteins were released by RNase A/T1 treatment. Eluate volume corresponding to 185 mg initial 
grindate used for the experiment was loaded on each lane, separated on 10% SDS-PAGE and silver stained. Red 
arrowheads indicate the bands previously identified as Upf1, and green arrowheads as Pab1, Ssb1/Ssb2, Ded1. 
(B) Western blot analysis of Upf1-3myc levels with anti-myc antibody 9E10 (upper panel) and MS2CP-PrAx2 
with PAP (lower panel). Quantification of MS2CP-PrAx2 signal is indicated below the lanes (100 = control band). 
I – input, lysate after removal of cell debris; FT – flow through, immunodepleted lysate. 5 µl of sample was 
loaded on each lane and separated on 10% gel. Equal loading was verified by Ponceau S staining of the 
membrane. (C) Western blot analysis of Upf1-3myc co-isolation with PGK1-6MS2L using anti-myc antibody 
9E10. E – eluate, RNA-associated proteins eluted by RNase A/T1 treatment; BB – boiled beads, in order to 
remove proteins bound to beads after RNase treatment, beads were boiled in SDS-sample buffer.  

 

Next, we used the protein synthesis inhibitor cycloheximide (CHX) to stabilize mRNPs 

that are associated with or part of translating ribosomes. CHX blocks the translocation step of 

elongation (Tatyana V. Pestova and Hellen 2003; Obrig et al. 1971; Schneider-Poetsch et al. 2010) 

and thereby stalls ribosomes on the transcript (Fig. 11). We reasoned that performing cell 

harvesting and mRNP capture in the presence of CHX (0.1 mg/ml) should result in more 

ribosomes co-isolating with PGK1-6MS2L. Most yeast ribosomal proteins have a size of 10-30 

kDa (Michel, Traut, and Lee 1983). Upon CHX treatment it was therefore expected to find more 

proteins in that molecular weight range for PGK1-6MS2L affinity purification.  In addition, if 
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translation is stalled during the pioneer round, CHX treatment can also prevent ribosomes from 

removing other mRNA-binding proteins from the transcript, possibly leading to the detection of 

additional specifically enriched bands (Dostie and Dreyfuss 2002; Lejeune et al. 2002; Sato and 

Maquat 2009). 

 

 

 
Figure 11. Cycloheximide (CHX) treatment does not result in the detection of additional specifically enriched 
proteins. Lysates containing MS2CP-PrAx2 together with untagged wt PGK1 (strain RJY 3740, no tag) or 6MS2L-
tagged PGK1 (strain RJY 3739, MS2L) were used for mRNP affinity purification. (A) Comparison of RNase eluate 
patterns of untreated and 0.1 mg/ml CHX treated cells. In case of CHX treatment (+) cell harvesting and mRNP 
purification was carried out in the presence of 0.1 mg/ml CHX. For control cells CHX was omitted (-). Eluate 
volume corresponding to 360 mg initial grindate used for the experiment was loaded on each lane, separated 
on 10% SDS-PAGE and silver stained. Red arrowhead indicates the band previously identified as Upf1, and 
green arrowheads as Pab1, Ssb1/Ssb2, Ded1. (B) Western blot analysis of Upf1-3myc levels with α-myc 
antibody 9E10. I – input, lysate after removal of cell debris; FT – flow through, immunodepleted lysate. 5 µl of 
sample was loaded on each lane and separated on 10% gel. Equal loading was verified by Ponceau S staining of 
the membrane. (C) Western blot analysis of Upf1-3myc co-isolation with PGK1-6MS2L using α-myc antibody 
9E10. E – eluate, RNA-associated proteins eluted by RNase A/T1 treatment; BB – boiled beads, in order to 
remove proteins still bound to beads after RNase treatment, beads were boiled in SDS-sample buffer.  

 

Surprisingly, in this experiment we could detect distinct protein bands in the lower 

molecular weight region also for the control lysates, which were not treated with CHX (Fig. 11A, 

lanes 1-2). However, the protein pattern below 60 kDa did not significantly differ between the 

untagged control strain and PGK1-6MS2L strain. In fact, the pattern in that region was very 

similar among all four samples. The only clearly detectable difference between CHX-treated and -

untreated lysates was that the band corresponding to Upf1 had disappeared upon CHX treatment 

(Fig. 11A, compare lanes 2 and 4). This could be confirmed also by western blot analysis (Fig. 

11C, compare lanes 3-4 and 7-8). The total Upf1 level in the lysates remained constant upon 

CHX treatment (Fig. 11B). Altogether, CHX treatment did not lead to improved results and was 

therefore not used in the subsequent experiments. 
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mRNP affinity purification recapitulated 

Before applying our affinity purification method to analyse the protein composition of PGK1-

6MS2L containing mRNPs we further wanted to characterize the performance of the method. 

The individual aspects of the method’s performance not yet studied included: (1) integrity of 

bead-captured PGK1-6MS2L mRNA; (2) precise enrichment levels of PGK1-6MS2L compared to 

control purification; (3) efficiency of PGK1-6MS2L affinity purification; (4) the levels of non-

specific ribosome binding to IgG-coupled beads compared to specific ribosome enrichment via 

co-isolation with PGK1-6MS2L; and (5) the influence of cell harvesting method on PGK1-6MS2L 

affinity purification. 

We addressed all these questions in one experiment. Starting from question no. 5, we 

prepared grindates for mRNP affinity purification following two different cell harvesting 

protocols. Previously we had been performing harvesting according to the protocol by Öffinger 

et al. (Oeffinger et al. 2007), where cells are collected and washed at 4°C in the absence on amino 

acids and glucose. Due to many washing and centrifugations steps it takes about 1.5 h before 

yeast cells are frozen in liquid N2. This lengthy procedure is likely to alter the translational profile 

of the cells. Ashe et al. have shown that in yeast after 2.5 min of glucose deprivation actively 

translating polyribosomes almost entirely redistributed into 80S monosomes (Ashe, De Long, 

and Sachs 2000). However, polyribosomes could be preserved if harvesting was carried out in the 

presence of glucose and amino acids (Inada et al. 2002; Ashe, De Long, and Sachs 2000). Our 

goal was to study mRNP composition under physiological conditions. Therefore, we tested a new 

protocol that allowed the completion of the whole harvesting process in only 20 min. Cells were 

collected by vacuum filtration and washed once. This washing step was performed in the 

presence of glucose and amino acids at room temperature as described by Inada et al. (Inada et al. 

2002). Grindates prepared from cells harvested according to the above-mentioned protocols we 

subjected to 4 parallel mRNP affinity purifications. In order to answer the questions about 

PGK1-6MS2L integrity, enrichment and capture-efficiency, as well as ribosomal RNA levels, 

lysate samples for total RNA extraction before and after mRNP isolation were collected and 

bead-captured RNA was extracted.  

 

Affinity purified PGK1-6MS2L integrity and enrichment level 

Northern blot analysis using a probe complementary to a 154 nt long sequence in the second half 

of PGK1 ORF (Fig. 12A) indicated specific capture of the ~2 kb long PGK1-6MS2L full-length 

mRNA (Fig. 12B, uppermost panel). Mock purifications with lysates containing untagged wt 

PGK1 mRNA (~1.6 kb) did not result in any detectable hybridization signal (Fig. 12B, uppermost 
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panel, lanes 9-11 and 15-17). In contrast, PGK1-6MS2L could be detected in up to 100-fold 

diluted bead-captured RNA samples (Fig. 12B, upper panel, lane 14 and 20). No extensive smear 

beneath the signal corresponding to the full-length transcript was observed suggesting affinity 

purification of mostly intact PGK1-6MS2L. However, hybridization with a probe complementary 

to 120 nt in the MS2 stem-loop region (Fig. 12A) revealed the presence of a large fraction of 

5′→3′ shortened PGK1-6MS2L RNA species (Fig. 12B, lower panel). Interestingly, the intensity 

of the smear appeared higher if cells had been harvested according to Öffinger et al. (Oeffinger et 

al. 2007) (Fig 12B, lower panel, compare lanes 13 and 19). Full-length PGK1-6MS2L 

quantification indicated that about 1.3-times more of the tagged transcript was captured if cells 

had been harvested according to Inada et al. (Inada et al. 2002).  

Interestingly, the level of total PGK1-6MS2L was considerably lower than that of PGK1 

(Fig. 12B, upper panel, compare lanes 1 and 3, 5 and 7). This does not seem to influence cell 

fitness, as the tagged and untagged strains have similar growth rates (data not shown). Minor 

mRNA degradation was observed for both PGK1 and PGK1-6MS2L in the input samples. The 

degradation levels did not seem to increase during the 30 min of mRNP capture as the intensity 

of the smear underneath the full-length transcript remained about equal between input and flow 

through samples. This observation is in good agreement with the previous result showing that 

endogenous PGK1 is stable even in the absence of RNase inhibitors (Fig. 12B, lower panel).  

By the time of performing the described experiment quantitative real-time reverse 

transcription PCR (qRT-PCR) analysis had become available in our laboratory. This enabled us to 

determine the precise PGK1-6MS2L level after affinity purification (Fig. 13A). Relative 

enrichment analysis (see Methods, “Relative quantification of qRT-PCR results”) indicated more 

than 1000-fold enrichment of PGK1-6MS2L compared to PGK1. Slightly more PGK1-6MS2L 

was affinity-captured if cells had been harvested according to Inada et al. (Inada et al. 2002). The 

1.52-fold difference between the two harvesting methods correlates well with northern blot 

quantification results (Fig. 12B, compare lanes 13 and 19). 

 

 

 

Figure 12. (A) In scale diagram of PGK1 ORF and 6MS2L region. Annealing sites for hybridization probes (PGK1-
ORF and MS2L) are indicated as well as start codon (ATG), stop codon (STOP), loxP site (orange bar) and six 
MS2-loops (green bars). Figure 12B, see next page.  
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Figure 12. (B) Northern blot analysis of affinity captured PGK1-6MS2L integrity (see next page). Yeast cells 
containing MS2CP-PrAx2 together with PGK1-6MS2L (MS2L, strain RJY 3827) or PGK1 (no tag, strain RJY 3828) 
were harvested following two different protocols. The first protocol (Öffinger) involves harvesting at 4°C in the 
absence of glucose and amino acids, whereas in the second protocol (Inada) cells are collected at growth 
temperature in the presence of the above mentioned nutrients. Samples for total RNA analysis were taken 
before (I – input) and after (FT – flow through) PGK1 mRNP isolation. Bead-captured RNA was isolated form 
IgG-coupled beads by Proteinase K and PCI treatment. 1.5 µg total RNA as well as 1/6

th
 (1), 1/60

th
 (10) and 

1/600
th

 (100) of bead-capture RNA were separated on 1.3% agarose-formaldehyde gels and blotted onto 
positively charged nylon membranes. After methylene blue staining, the membranes were hybridized with DIG-
UTP-labelled antisense RNA probes complementary to PGK1 ORF (upper panel) or beginning of 6MS2L-tag 
(MS2L, lower panel). The hybridization signal corresponding to the full-length transcript, as well as non-specific 
cross-reaction with 25S rRNA, is indicated. On a methylene blue stained membrane, 25S and 18S rRNAs are 
marked. Quantification of the selected hybridization signals is indicated below the lanes (1 = control band). 
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Figure 13. Relative enrichment and capture efficiency of PGK1-6MS2L after PGK1-mRNP affinity purification. 
Yeast cells expressing MS2CP-PrAx2 together with wt untagged PGK1 (no tag, strain RJY 3828) or 6MS2L-tagged 
PGK1 (MS2L, strain RJY 3827) were collected for mRNP affinity purification following 2 different harvesting 
protocols (Öffinger, Inada). (A) mRNP affinity purification results in more than 1000-fold enrichment of PGK1-
6MS2L compared to PGK1. Affinity-purified RNA was isolated form IgG-coupled beads by Proteinase K digestion 
and PCI extraction and subjected to qRT-PCR analysis. The level of affinity-captured PGK1-6MS2L or PGK1 was 
normalized to the level of the corresponding transcript in input RNA sample. The same normalization was 
applied to control mRNAs TPI1, ACT1 and ENO2. Data is presented as the arithmetic mean (indicated above the 
bars) of three relative enrichment values (corresponding to 3 control mRNAs) ± standard deviation, n=1. (B) 
Only negligible amount of total PGK1-6MS2L is affinity captured. qRT-PCR analysis of PGK1 and PGK1-6MS2L 
levels before (Inp – input, lysate after removal of cell debris) and after ( FT – flow through, immunodepleted 
lysate) mRNP isolation. PGK1 and PGK1-6MS2L levels in Inp and FT were normalized to TPI1, ACT1 and ENO2. 
The normalized PGK1 and PGK1-6MS2L levels in Inp (value 1) were compared to the levels in FT. Data is 
presented as the arithmetic mean of three relative PGK1 or PGK1-6MS2L levels in FT (corresponding to 3 
control mRNAs) ± standard deviation, n=1. 

 
In order to get an idea about the capture-efficiency of the tagged PGK1, its level in the 

lysate before and after incubation with IgG-coupled beads was determined by qRT-PCR (Fig. 

13B). The same analysis was performed for untagged PGK1 where a reduction in the level of 

PGK1 after mRNP capture step should reflect the fraction of non-specifically bound and/or 

degraded PGK1. Compared to the input, the untagged PGK1 level did not significantly change 

after mRNP capture. Unexpectedly, the same was observed also for PGK1-6MS2L. Northern 

blot analysis had suggested that a considerable fraction of cellular PGK1-6MS2L had been 

captured on IgG-coupled beads as a reduction in the hybridization signal intensity could be 

observed by visual comparison of input and flow through samples (Fig. 12B, upper panel, 

compare lanes 3 and 4, 7 and 8; lower panel, compare lanes 7 and 8). However, after repeating 

the northern blot several times a similar signal reduction in flow through sample was observed 

only for some of the experiments, whereas in other experiments the signal intensity of PGK1-

6MS2L appeared equal for input and flow through samples (Fig. 12B, lower panel, lanes 3-4 and 

data not shown). The inconsistencies in northern blot results, as well as the large variability of 

qRT-PCR data, make it impossible to precisely assess the mRNP capture efficiency. However, 
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these data suggest that only a minor fraction of total cellular PGK1-6MS2L is captured onto IgG-

coupled beads. 

 

The level of total cellular PGK1 or PGK1-MS2L mRNA and the corresponding protein  

Northern blot quantification indicated a 3.85- and 1.79-fold reduction in total PGK1-6MS2L level 

compared to PGK1 for cells harvested according to Öffinger et al. (Oeffinger et al. 2007) and 

Inada et al. (Inada et al. 2002), respectively (Fig. 12B, upper panel). qRT-PCR confirmed reduced 

total PGK1-6MS2L levels. However, compared to PGK1, the reduction was about 2-fold for both 

of the cell harvesting protocols (Fig. 14A). Interestingly, the analysis of Pgk1 protein level 

showed no difference between the untagged control and PGK1-6MS2L strain (Fig. 14B). Given 

that PGK1 is an essential gene, this finding can explain the similar growth rates of PGK1 and 

PGK1-6MS2L strains (data not shown). As expected, the harvesting method did not have any 

significant effect neither on the total level of PGK1 nor PGK1-6MS2L (Fig. 14C). 

 

 

 
Figure 14. Steady-state level of PGK1 or PGK1-6MS2L mRNA and the corresponding protein. Yeast cells were 
collected for mRNP affinity purification following 2 different harvesting protocols (Öffinger, Inada). Total RNA 
or protein was extracted from cell lysate of strain RJY 3828, containing untagged PGK1 (no tag), or RJY 3827 
containing PGK1-6MS2L (MS2L). (A) Total PGK1-6MS2L level is significantly reduced compared to PGK1. qRT-
PCR analysis of relative steady-state PGK1-6MS2L level compared to PGK1. Untagged or tagged PGK1 level in 
bead-captured RNA sample was normalized to input level of these transcripts. The same normalization was 
applied to control mRNAs TPI1, ACT1, and ENO2. Data are presented as the arithmetic mean (indicated above 
the bars) of three relative enrichment values (corresponding to 3 control mRNAs) ± standard deviation, n=1. 
***, P < 0.001. (B) Pgk1 protein level is not reduced in strain expressing 6MS2L-tagged PGK1 compared to 
untagged PGK1. Western blot analysis of total cell lysates with anti-Pgk1 and anti-She2 antibodies. Pgk1 signal 
was normalized to She2. Quantification of normalized signal is indicated below the lanes (control band in bold). 
(C) PGK1 or PGK1-6MS2L level is not significantly influenced by the cell harvesting method. qRT-PCR analysis  of 
relative PGK1 expression level in cells harvested according to Öffinger et al. compared to Inada et al. Untagged 
or 6MS2L-tagged PGK1 level in bead-captured RNA sample was normalized to input level of these transcripts. 
The same normalization was applied to control mRNAs TPI1, ACT1, and ENO2. Data are presented as the 
arithmetic mean of three relative enrichment values (corresponding to 3 control mRNAs) ± standard deviation, 
n=1.  
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Ribosomal RNA detection in bead-captured RNA samples 

Since mRNA translation is part of the mRNA life cycle, mRNA-based mRNP affinity 

purification should result in co-isolation of ribosomal RNA and proteins. However, ribosomal 

proteins also belong to common contaminants of affinity purifications (Trinkle-Mulcahy et al. 

2008), suggesting non-specific ribosome binding to various types of affinity matrices. Therefore, 

we were interested to compare the level of ribosomes specifically co-isolating with PGK1-6MS2L 

to the level of ribosomes captured due to non-specific attachment to IgG-coupled beads. As 

polyribosomes can easily be lost while cells are collected (Ashe, De Long, and Sachs 2000) we 

also wanted to compare harvesting methods from Öffinger et al. (Oeffinger et al. 2007) and 

Inada et al. (Inada et al. 2002) for the levels of rRNA co-isolation with PGK1-6MS2L.  

Assuming that a higher enrichment level of rRNA after PGK1-6MS2L affinity 

purification compared to mock purification of PGK1 is an indicative of active translation, we first 

performed northern blot analysis with hybridization probes complementary to 25S and 18S 

rRNA (Fig. 15A). rRNA could easily be detected in bead-captured RNA samples both for PGK1-

6MS2L affinity purification and for mock purification of untagged PGK1. However, independent 

of the used harvesting protocol, hybridization signal quantification indicated that rRNA levels 

were lower for mock purification (Fig 15A, compare lanes 10 and 13, 16 and 19), suggesting 

specific ribosome co-isolation with PGK1-6MS2L. Comparison of the cell harvesting protocols 

by Öffinger et al. (Oeffinger et al. 2007) and Inada et al. (Inada et al. 2002) showed that the 

enrichment level of both 25S and 18S rRNA was higher after PGK1-6MS2L affinity purification 

if the latter harvesting protocol was used (Fig. 15A, compare lanes 13 and 19). Remarkably, in the 

mock purification the level of captured rRNA was comparable between the two cell harvesting 

methods (Fig. 15A, compare lanes 10 and 16). This result indicate that the non-specific binding 

of ribosomes to the beads is, in contrast to specific co-isolation with PGK1-6MS2L, not 

influenced by the cell harvesting method. Not surprisingly, a higher level of ribosome co-isolation 

with PGK1-6MS2L was observed for cells harvested in the presence of glucose and amino acids. 

Next, in order to more precisely determine the levels of rRNA, we performed qRT-PCR 

on the same bead-captured RNA samples as used for northern blot analysis (Fig. 15B). Even 

though the absolute enrichment values determined by northern blot quantification and qRT-PCR 

analysis differed, the same trend was observed for both methods. Compared to mock 

purification, rRNA was significantly enriched for PGK1-6MS2L affinity purification for cells 

harvested according to Inada et al. (Inada et al. 2002). A 2.36- and 3.73-fold increase for 25S and 

18S rRNA, respectively, was determined. Surprisingly, the same comparison for cells harvested 

according to Öffinger et al. (Oeffinger et al. 2007) showed almost identical 25S rRNA levels for 

PGK1-6MS2L and mock purification and a nonsignificant increase of 1.79-fold for 18S rRNA.  
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Figure 15. The level of ribosome co-isolation with PGK1 and PGK1-6MS2L. Yeast strain expressing MS2CP-
PrAx2 and wt untagged PGK1 (no tag, strain RJY 3828) or 6MS2L-tagged PGK1 (MS2L, strain RJY 3827) were 
collected for mRNP affinity purification following 2 different harvesting protocols (Öffinger, Inada). Total RNA 
from lysate samples taken before (Inp – input, lysate after removal of cell debris) and after (FT – flow through, 
immunodepleted lysate) mRNP affinity purification was extracted by PCI. Affinity-purified RNA was isolated 
from IgG-coupled beads by Proteinase K digestion and PCI extraction. (A) PGK1-6MS2L affinity purification as 
well as mock purification of PGK1 results in ribosome capture. Northern blot analysis of 25S and 18S rRNA in 
total RNA and bead-captured RNA samples. 1 ng total RNA as well as 1/6

th
 (1), 1/60

th
 (10) and 1/600

th
 (100) of 

bead-capture RNA was separated on 1.3% agarose-formaldehyde gel and blotted onto positively charged nylon 
membrane. 25S and 18S rRNA was detected using DIG-UTP-labelled antisense RNA probes. Hybridization signal 
quantification of 10x diluted samples is shown below the lanes (1 = control band). (B) Cell harvesting according 
to Inada et al. results in significant rRNA enrichment upon PGK1-6MS2L affinity purification. qRT-PCR 
comparison of strains containing PGK1-6MS2L or PGK1 for rRNA enrichment in bead-captured RNA samples. 
rRNA levels in bead-captured RNA samples were normalized to input levels of rRNA. The same normalization 
was applied to control mRNAs TPI1, ACT1, and ENO2. Data is presented as the arithmetic mean (indicated 
above the bars) of three relative enrichment values (corresponding to 3 control mRNAs) ± standard deviation, 
n=1. **, P < 0.01. (C) Cell harvesting method does not influence non-specific ribosome attachment to IgG-
coupled beads. However, it significantly influences the level of ribosome co-isolation with PGK1-6MS2L. qRT-
PCR comparison of two cell harvesting methods for rRNA levels in bead-captured RNA samples. Data are 
presented as the arithmetic mean (indicated above the bars) of three relative enrichment values 
(corresponding to control mRNAs TPI1, ACT1, and ENO2) ± standard deviation, n=1. *, P < 0.05. 



RESULTS 

 

95 
 

Similarly to northern blot analysis, qRT-PCR results suggest specific ribosome co-isolation with 

PGK1-6MS2L for cells harvested according to Inada et al. (Inada et al. 2002). However, in 

contrast to northern blot, qRT-PCR indicated no significant rRNA enrichment for cells harvested 

according to Öffinger et al. (Oeffinger et al. 2007). It should be noted that the northern blot 

signal of 25S and 18S rRNA could not be normalized against a reference gene, whereas qRT-PCR 

results were normalized against three reference genes and should therefore represent a more 

reliable quantification. 

The same qRT-PCR dataset was used for a second comparison to determine if the cell 

harvesting method influenced bead-captured rRNA levels (Fig. 15C). As already observed by 

northern blot analysis (Fig. 15A, compare lanes 9-11 and 15-17), the cell harvesting method did 

not significantly influence the background binding of rRNA to IgG-coupled beads. Specifically, 

PGK1 mock purification from the cells harvested according to Inada et al. (Inada et al. 2002) 

resulted in a non-significant increase of 1.19- and 1.49-fold for 25S and 18S rRNA, respectively, 

as compared to cells harvested according to Öffinger et al. (Oeffinger et al. 2007). In contrast, 

when MS2L-tagged PGK1 was affinity purified, the harvesting protocol by Inada et al. (Inada et 

al. 2002) enabled to capture 2.73- and 3.11-times more 25S and 18S rRNA, respectively, as 

compared to the harvesting protocol by Öffinger et al. (Oeffinger et al. 2007). qRT-PCR thus 

clearly demonstrated that ribosomes co-isolation with PGK1-6MS2L was more efficient if cells 

were harvested in the presence of nutrients. Consequently, in the following experiments the 

harvesting method by Inada et al. (Inada et al. 2002) was used. 

 

 

TEV protease cleavage as a possible alternative to RNase treatment  

for mRNP protein release 

Protein elution via RNase treatment does not only release mRNA-associated proteins, but also 

ribosomal and ribosome-associated proteins via the disintegration of rRNA. A high level of non-

specifically bound ribosomes can therefore pose a problem for mRNP protein composition 

analysis by mass spectrometry because it would reduce the signal to noise ratio, i.e. low 

abundance proteins specifically co-isolating with PGK1-6MS2L could be detected as false-

negative due to the signal overlap with background proteins. We reasoned that proteolytic 

cleavage could confer specific mRNP protein release yet prevent the elution of proteins 

associated with non-specifically attached ribosomes because the rRNA would remain intact 

during proteolytic cleavage. Therefore, a tobacco etch virus (TEV) protease cleavage site was 
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inserted between MS2CP and PrAx2. Upon treatment with TEV protease MS2CP should be 

released from affinity matrix together with the bound mRNP (Fig. 16). 

 

 

 
Figure 16. TEV protease cleavage as an alternative to RNase treatment for releasing affinity purified mRNA-
associated proteins. Yeast lysates containing MS2CP-PrAx2 and an MS2L-tagged transcript were subjected to 
mRNP affinity purification using IgG-coupled magnetic beads. (A) mRNP release from IgG-coupled beads by TEV 
cleavage is inefficient in the presence of bead-captured RNA. After mRNP capture IgG-coupled beads were 
incubated in the presence of 0.2 U/μl TEV protease (Roboklon). An aliquot of beads was taken 0, 30 and 60 min 
after incubation. Bead-bound proteins were released by boiling in SDS-sample buffer and separated on 12% 
SDS-PAGE. MS2CP-PrAx2 was immunodetected with PAP. Signal quantification is indicated below the lanes 
(100 = control band). (B) MS2CP-PrAx2 cleavage by TEV protease is efficient after RNase treatment. Following 
mRNP capture IgG-coupled beads were incubated in the presence of RNase for 30 min and then TEV protease 
was added to a final concentration of 0.2 U/μl. Bead aliquots were taken after 0, 10, 30 and 60 min of TEV 
protease cleavage. Samples were used for MS2CP-PrAx2 immunodetection as described under (A).  

 

In the first TEV protease cleavage time course experiment the protease was added to the 

IgG-coupled beads after mRNP capture to a final concentration of 0.2 U/µl. Western blot 

analysis of cleavage efficiency indicated that at least 90% of bead-bound MS2CP-PrAx2 remained 

uncleaved even after 60 min of incubation (Fig. 16A). Repeating the experiment using a higher 

final TEV protease concentration (0.5 U/µl) did not result in more efficient cleavage (data not 

shown). We assumed that the low proteolytic cleavage efficiency could be possibly due to the 

masking the TEV protease cleavage site. To further investigate this possibility, the time course 

experiment was repeated by first degrading bead-captured RNA by RNase treatment followed by 

TEV protease cleavage (0.2 U/µl, Fig. 16B). In contrast to the previous experiments, a clear time-

dependent reduction in bead-captured MS2CP-PrAx2 signal intensity was observed.  Western 

blot quantification indicated that already after 10 min 63% of MS2CP-PrAx2 had been cleaved. 

After 1 h, the cleavage efficiency had risen to 90%. This result clearly demonstrates that in our 

experimental setup the prerequisite for efficient proteolytic cleavage is the removal of intact 

mRNPs by RNase treatment. Consequently, TEV protease cleavage cannot be used as an 

alternative to RNase treatment for mRNP protein release.  
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Quantitative proteomic analysis of in vivo-assembled  

mRNA-protein complexes 
 

In order to obtain quantitative information about mRNP protein composition we employed 

stable isotope labelling by amino acids in cell culture (SILAC) (Ong et al. 2002). SILAC enables 

the labelling of newly synthesized proteins through normal metabolic process with either the 

natural “light” isotope-containing (i.e. 12C, 14N, H) amino acids or with “heavy” SILAC amino 

acids containing stable isotopes (i.e. 13C, 15N, 2H). Compared to peptides generated from proteins 

containing light amino acids, incorporation of heavy amino acids into proteins results in a mass 

shift of the corresponding peptides. This mass shift can be detected by mass spectrometry and 

upon mixing heavy and light samples in 1:1 ratio, used for the detection of differences in the 

relative protein abundance in these samples. The general workflow of SILAC-based relative 

quantification of mRNP proteins is depicted on figure 17. In the “forward” experiment the 

proteome of the MS2L-tagged yeast strain is labelled with heavy lysine (Lys8) and of the untagged 

control strain with light non-labelled lysine (Lys0, see Methods, “Metabolic labelling by SILAC 

for mass spectrometry-based quantitative proteomics”). Consequently, proteins specifically co-

purifying with MS2L-tagged mRNAs are enriched from the heavy lysate resulting in a heavy (H) 

to light (L) SILAC ratio >1, whereas the non-specific background binders display a H/L ratio 

around 1. In order to be able to detect dynamic protein-protein interactions, mRNP affinity 

purification is performed separately from the two SILAC states (see Methods, “mRNP affinity 

purification protocol”). Mixing heavy and light lysates prior to affinity purification has been 

shown to result in the exchange of dynamically interacting proteins between the heavy and light 

labelled protein complexes, leading to the erroneous identification of dynamically interacting 

proteins as background binders (X. Wang and Huang 2008). To avoid this, two parallel 

purifications are carried out and IgG-coupled beads are combined immediately prior to RNase 

elution. In order to increase the specificity of relative quantification, each SILAC mRNP affinity 

purification is also carried out in “reverse”, i.e. the amino acid labelling conditions are switched 

so that the proteome of the untagged control strain is labelled with Lys8 and of the MS2L-tagged 

strain with Lys0. The H/L ratios of the two biological replicate experiments determined for each 

identified protein are manually analysed to single out proteins specifically co-isolating with the 

tagged mRNAs. Specific binders are characterized by a high H/L ratio (H/L ratio >1) in the 

forward experiment, whereas in the reverse experiment the H/L ratio should have a reciprocal 

value to the forward experiment H/L ratio. 
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Figure 17. Experimental workflow of SILAC-based quantitative proteomic analysis of in vivo-assembled 
mRNA-protein complexes. In the forward experiment the proteome of S. cerevisiae strain expressing MS2L-
tagged mRNA is metabolically labelled with “heavy” isotope-containing lysine (Lys8), whereas the untagged 
control strain is labelled with “light” isotope-containing lysine (Lys0). mRNP affinity purification is carried out in 
parallel from Lys8- and Lys0-labelled cells. IgG-coupled beads with the captured complexes are combined 
immediately before RNase digestion. The protein composition of RNase eluate is analysed by LC-MS/MS. In the 
reverse experiment the amino acid labelling condition are swapped. Proteins specifically co-purifying with 
MS2L-tagged mRNA are characterized by high heavy-to-light ratio in the forward experiment and a low heavy-
to-light ratio in the reverse experiment. Non-specific background binders show 1:1 heavy-to-light ratio under 
both labelling conditions. m/z – mass-to-charge ratio. 
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Using our mRNP affinity purification strategy combined with SILAC-based quantitative 

proteomics, we have analysed the protein composition of mRNPs containing endogenously 

expressed MS2L-tagged PGK1 and ENO2. Besides PGK1, ENO2 was chosen to test the 

applicability of the established mRNP affinity purification method for quantitative analysis of 

mRNP protein composition because, similarly to PGK1, it is a stable and abundant yeast 

transcript (Y. Wang et al. 2002; Grigull et al. 2004; Miura et al. 2008). Affinity purification of 

ENO2-6MS2L-containing mRNPs could therefore be carried out without further optimization of 

the mRNP affinity purification protocol. In addition, we reasoned that PGK1- and ENO2-

containing mRNPs would share similarities in their mRNP protein composition because both 

mRNAs encode enzymes that participate in the same metabolic pathways, glycolysis and 

glyconeogenesis (Lam and Marmur 1977; McAlister and Holland 1982; Hitzeman, Clarke, and 

Carbon 1980). By studying the composition of PGK1- and ENO2-containing mRNPs we wished 

to determine the general mRNP composition of glycolytic enzymes and thereby shed light on the 

proteome of mRNPs translated on cytosolic ribosomes under normal yeast growth conditions 

(Reid and Nicchitta 2012).  

In order to study what proteins might directly bind to the MS2L tag, we have also 

analysed what proteins co-purify with an exogenously expressed RNA containing the 6 MS2 

stem-loops (6MS2L-RNA). The in silico predicted structural and experimentally determined 

functional properties of 6MS2L-RNA will be discussed in the following chapter.   

 

 

Control RNA to determine the effect of MS2L tag on  

mRNP protein composition 

In order to identify the proteins co-purify with the MS2L tag, the 421 bp long loxP-6MS2L 

sequence identical to the MS2L tag present at the genomic loci of PGK1- and ENO2-6MS2L 

genes (Haim et al. 2007) was cloned into a yeast centromeric plasmid under the control of PGK1 

promoter and iso-1-cytochrome c (CYC1) transcriptional terminator (see Materials, Plasmids, 

RJP 1783). The PGK1 promoter was chosen to control 6MS2L-RNA expression in order to 

ensure comparable transcriptional gene expression regulation to PGK1 mRNA. Important 

aspects of 6MS2L-RNA expression that we reasoned would be similar to PGK1 due to PGK1-

promoter controlled transcription were 6MS2L-RNA expression level and transcriptional start 

site (TSS) selection. The cloned PGK1 promoter fragment extended from position –947 to 

position –1 upstream of PGK1 initiator AUG (here and hereafter A is assigned as +1) and 

contained all identified transcription factor binding sites (Chambers et al. 1989; Packham, 
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Graham, and Chambers 1996). The well characterized CYC1 transcriptional terminator sequence  

was used to ensure efficient termination of 6MS2L-RNA transcript (Osborne and Guarente 1989; 

Zaret and Sherman 1982; Russo et al. 1993; Guo and Sherman 1996). 

As both the promoter and transcriptional terminator of 6MS2L-RNA are derived from 

genes transcribed by RNA PolII, the transcript is predicted to carry a 5' cap and 3' poly(A) tail 

(reviewed in Houseley and Tollervey 2009). The predicted size of 6MS2L-RNA is around 680 nt 

(Fig. 18A). PGK1 transcriptional start sites in S. cerevisiae have been mapped to a region spanning 

positions –48 to –27 (van den Heuvel et al. 1989; Hitzeman et al. 1982; Mellor et al. 1985; Z. 

Zhang and Dietrich 2005) with the major TSS mapped to position –40 (Z. Zhang and Dietrich 

2005). We assumed that 6MS2L-RNA transcription is initiated from the same promoter region as 

for PGK1 mRNA, likely at position –40. Several polyadenylation sites in CYC1 gene have been 

mapped to a 58 bp region downstream of position +468 (Russo et al. 1993). Assuming that 

polyadenylation of 6MS2L-RNA would take place at the major poly(A) site spanning positions 

+503 to +505 (Russo et al. 1993; Russo and Sherman 1989), the length of CYC1 3' UTR present 

in 6MS2L-RNA would be around 150 nt. The average poly(A) tail length of CYC1 mRNA is 60 

nt (Christine E. Brown and Sachs 1998; Dheur et al. 2005), which we reasoned would be similar 

for 6MS2L-RNA. 

In order to determine if 6MS2L-RNA carries coding potential, the predicted transcript 

sequence was analysed for the presence of open reading frames with ORF Finder (Sequence 

Manipulation Suit, Version 2). A thorough analysis of 6MS2L-RNA’s coding potential was 

necessary in order to be able to better interpret the SILAC-based quantitative proteomics results. 

The 6MS2L-RNA contains 3 full-length ORFs (containing a start and a stop codon) of at least 30 

codons and 2 full-length ORFs of at least 10 codons, all of which are located in the MS2L-tag 

region. The preferred nucleotide sequence around the initiation codon  in S. cerevisiae is reported 

to be AAAAAAAAAAUGUC (AUG represents the translation initiation codon) (Cavener and 

Ray 1991). Nucleotide bias around the initiation codon in yeast is especially strong at positions –

3, +4 and +5 with the most frequent appearance of A, U and C, respectively (Nakagawa et al. 

2008). PGK1 with the sequence UAUAAAACAAUGUC matches the preferred initiation codon 

context at 11 positions out of 14, including positions –3, +4 and +5. The first AUG triplet of the 

predicted 6MS2L-RNA transcript is located within the loxP site. Importantly, the sequence 

xxxxxxAxAAUGUx (x denotes a mismatch compared to the preferred yeast initiation codon 

context) contains the preferred nucleotides A and U at positions –3 and +4, respectively. The 

nucleotides at positions –3 and +4 are known to have a strong effect on translation initiation 

efficiency (Kozak 1986a) and therefore the presence of the preferred nucleotides at these 

positions is likely to promote translation initiation from the first AUG triplet in 6MS2L-RNA. 
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The predicted ORF is 8 codons long. There are two additional AUG triplets 5' to the 6 MS2 

stem-loops, which, if used as translation initiation sites would encode for 7 and 8 aa long 

peptides. However, as the surrounding sequence of these AUG triplets does not match the 

preferred translation initiation site context in any of the 3 important positions, these AUG 

triplets are not likely to be used as translation initiation codons.   

Each 19 nt long MS2 stem-loop contains 2 AUG triplets. The analysis of the surrounding 

nucleotides revealed several matches with the preferred S. cerevisiae initiation codon context. 

Importantly, in the sequence xxAxAAAxAUGxx an A is present at position –3 and in the 

sequence xxAxxAxxxAUGUC a U and a C are present at positions +4 and +5, respectively. It 

should be noted that in the RNA genome of bacteriophage MS2 the initiation codon of the 

replicase gene is located in the MS2 stem-loop and corresponds to the AUG triplet in the 

sequence xxAxxAxxxAUGUC (Borisova et al. 1979).  

Considering the context of the two AUG triplets present in MS2L sequence, it seems 

possible that both of them could serve as translation initiation codons. However, this would 

mean that the 43S pre-initiation complex would have to scan past at least 3 upstream AUG 

codons. Furthermore, the interaction between MS2 stem-loop and MS2 coat protein is likely too 

strong to be dissociated by the scanning 43S PIC. The physiological role of MS2L-MS2CP 

interaction in the bacteriophage MS2 RNA genome is to repress translation of the viral replicase 

gene (Fouts, True, and Celander 1997; Bernardi and Spahr 1972). To our knowledge, the effect of 

a 5' UTR-located MS2 stem-loop on the translational efficiency of yeast genes in the presence of 

MS2CP has not been studied. However, in E. coli the expression of MS2CP resulted in a 30-50-

fold repression of protein synthesis from MS2 replicase-β-galactosidase reporter gene (Peabody 

1990). In our experimental setup 6MS2L-RNA is expressed in the presence of MS2CP-PrAx2. 

Therefore, the AUG triplets present in MS2L sequence are not likely accessible for translation 

initiation. 

Besides the translation initiation codon context, RNA secondary structures upstream of 

the translation initiation site can have a dramatic effect on translation initiation efficiency (Kozak 

1986b; Babendure et al. 2006). Translation efficiency can be reduced to minimum by a stem-loop 

with thermal stability above –35 kcal/mol, whereas a stem-loop with thermal stability up to –25 

kcal/mol, if not placed directly downstream of the 5' cap, does not significantly influence 

translation efficiency (Babendure et al. 2006). The predicted 6MS2L-RNA transcript was analysed 

for RNA folding with RNAfold from ViennaRNA Web Service (Gruber et al. 2008). As could be 

expected, the first 40 nt of 6MS2L-RNA that are transcribed from the PGK1 promoter did not 

contain any stable RNA stem-loops. The following loxP sequence, where the first AUG triplet of 

6MS2L-RNA is located, forms a stem-loop with minimum free energy of –13.7 kcal/mol and 
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should therefore be efficiently removed by 43S PIC-associated RNA helicase activity (Tatyana V 

Pestova and Kolupaeva 2002; S. F. Mitchell et al. 2010; Rogers et al. 2001; Marintchev et al. 

2009). The MS2 stem-loop has a minimum free energy of –5.3 kcal/mol, which the 43S PIC is 

likely able to unwind only in the absence of MS2CP. 

 

 

 

Figure 18. 6MS2L-RNA is expressed and enriched on IgG-coupled beads after mRNP affinity purification. (A) 
Schematic representation of predicted 6MS2L-RNA transcript. (B) A yeast strain containing plasmids encoding 
for 6MS2L-RNA and MS2CP-PrAx2 (RJY 3989) was used for mRNP affinity purification. Strain RJY 3827, which 
contains plasmid encoded MS2CP-PrAx2 and genomically encoded PGK1-6MS2L, served as positive control. 
RNA extracted from input material (total RNA) and from IgG-coupled beads (bead-captured RNA) was used in 
RT-PCR analysis. 6MS2L tag was amplified from serially diluted cDNA. Quantification of RT-PCR signal is 
indicated below the lanes. To determine the total level of 6MS2L-RNA as compared to PGK1-6MS2L (1 = control 
band), the signals corresponding to total RNA (10x cDNA dilution) were directly compared. To determine the 
level of beads-captured 6MS2L-RNA as compared to PGK1-6MS2L, the signal corresponding to beads-captured 
RNA (500x cDNA dilution) was first normalized to signal corresponding to total RNA (10x cDNA dilution). -RT, 
control for genomic DNA contamination (reverse transcriptase omitted); +RT, cDNA; H2O, negative control 
lacking cDNA template. 

 

Experimental characterization of 6MS2L-RNA involved testing if the predicted transcript 

would be expressed and if it could be captured from yeast cell lysate via MS2L::MS2CP-PrA::IgG 

interaction. For this, a yeast strain transformed with plasmids encoding for 6MS2L-RNA and 

MS2CP-PrAx2 was subjected to mRNP affinity purification. As a positive control, a parallel 

PGK1-6MS2L affinity purification was performed. Indeed, RT-PCR analysis of total RNA 

extracted from input material showed that 6MS2L-RNA is expressed (Fig. 18B, lanes 9-11). 

Quantification of RT-PCR signal indicated that 6MS2L-RNA level in total RNA is 2.3-fold 

higher than that of PGK1-6MS2L mRNA. Analysis of bead-captured RNA demonstrated that 

6MS2L-RNA can also be captured from yeast cell lysate by IgG-coupled beads (Fig. 18B, lanes 

13-15), albeit 2.1-times less efficiently than PGK1-6MS2L.  
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The analysis of quantitative MS data:  

enrichment criteria and distribution of H/L ratios 

Using our mRNP affinity purification strategy combined with SILAC-based quantitative 

proteomics, the proteome of mRNPs containing endogenously expressed 6MS2L-tagged PGK1 

or ENO2 were analysed. In addition, proteins with the potential to co-purify with the 6MS2L-tag 

were identified by affinity capture of plasmid-encoded 6MS2L-RNA. Our first quantitative 

proteomic analysis was performed on PGK1-6MS2L-containing mRNPs. Besides identifying 

proteins that co-purify with PGK1-6MS2L mRNA, we analysed the efficiency of mRNP protein 

release from IgG-coupled beads during RNase treatment. mRNP proteins were first eluted by 

RNase treatment; the remaining proteins were subsequently release by heating the IgG-coupled 

beads in SDS sample buffer at 70°C and both protein samples were analysed by LC-MS/MS. In 

case of ENO2-6MS2L and 6MS2L-RNA affinity purification, only the RNase eluate was analysed 

by LC-MS/MS. The following chapter gives an overview about MS data analysis to identify the 

enriched proteins among MaxQuant-quantified proteins as well as discusses the quality of the 

data. The next chapter will focus on the comparison of proteins enriched in PGK1-6MS2L 

RNase eluate or BB sample to analyse the efficiency of RNase elution. 

The number of proteins identified at a false discovery rate (FDR) of 1% (Käll et al. 2008) 

in the 8 analysed samples is listed in table 8. The enriched proteins were identified by integrating 

the MS data from the forward and reverse labelling experiments. In order to be classified as an 

enriched interaction partner the quantified proteins, i.e. proteins with MaxQuant-assigned H/L 

ratios, had to meet two criteria: (1) proteins identified by a single peptide were considered 

enriched only if in one of the biological replicate experiments the protein was identified by more 

than 1 peptide; (2) the H/L ratio had to meet the set threshold criteria in both forward and 

reverse labelling experiment. In order to facilitate the comparison of H/L ratios of the two 

biological replicate experiments, all normalized H/L ratios were first converted into log2 space. 

We applied two arbitrarily defined thresholds to classify the quantified proteins as enriched: (1) a 

less stringent threshold of log2 (H/L) >0.5 or <–0.5; and (2) a more stringent threshold of log2 

(H/L) >1 or <–1. The thresholds log2 (H/L) >0.5 and >1, which correspond to H/L ratio of 

1.41 and 2, respectively, were applied to identify the enriched proteins in forward labelling 

experiment. The thresholds log2 <–0.5 and <–1, which correspond to H/L ratio of 0.71 and 0.5, 

respectively, were applied to identify the enriched proteins in reverse labelling experiment. 

Using two thresholds of different stringencies enabled us to define two sets of enriched 

proteins: firstly, a set containing specific interaction partners with likely few if any contaminating 

proteins; and, secondly, a set containing also low abundance and/or low affinity interaction 
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partners including possible contaminating proteins. Depending on the MS data set, the low 

abundance proteins comprised 20-40% of all enriched proteins. Figure 19 shows the distribution 

of quantified proteins in each LC-MS/MS run as well as the two subsets of enriched proteins 

identified by comparing log2 (H/L) ratios determined for the forward and reverse experiment. 

Importantly, ~70-90% of quantified proteins in each MS data set did not classify as enriched, 

emphasising the importance of robust quantitative analysis based on SILAC metabolic labelling 

to distinguish between specific interactors and contaminating proteins. The number of proteins 

>1.41-fold enriched (threshold log2 (H/L) >0.5 or <–0.5) in PGK1-6MS2L RNase eluate and BB 

sample, respectively, was 78 and 64. By applying the more stringent threshold of log2 (H/L) >1 

or <–1, which corresponds to >2-fold enrichment, the number of enriched proteins in both data 

sets was reduced roughly by 40% to 45 in RNase eluate and to 39 in BB sample. The number of 

proteins >1.41-fold enriched after ENO2-6MS2L and 6MS2L-RNA affinity purifications was 103 

and 90, respectively. The number of proteins >2-fold enriched was reduced by ~20% to 83 and 

to 71 for ENO2-6MS2L and 6MS2L-RNA, respectively.  

 

Table 8. Number of identified proteins in each LC-MS/MS run. The data were processed with a setting of 1% 
for the FDR, i.e. with an estimation that 1% of all identifications are false-positive.  
 

PGK1 – Boiled Beads PGK1 – RNase eluate ENO2 6MS2L 

for rev for rev for rev for rev 

614 384 688 380 404 312 454 363 

 

Table 9. Number of significantly enriched (significance B <0.01) proteins in each LC-MS/MS run.  
 

PGK1 – Boiled Beads PGK1 – RNase eluate ENO2 6MS2L 

for rev for rev for rev for rev 

28 19 26 18 1 7 14 13 

 

Table 10. SILAC mixing error – median of unnormalized heavy-to-light ratios of each LC-MS/MS run. 
 

PGK1 – Boiled Beads PGK1 – RNase eluate ENO2 6MS2L 

for rev for rev for rev for rev 

0.99 0.67 1.39 0.64 5.21 0.53 0.74 0.92 

 

The largest number of proteins was classified as enriched for ENO2-6MS2L affinity 

purification. However, the number of statistically significant H/L ratio changes, as expressed 

through a quantity termed significance B (Cox and Mann 2008), was the lowest in the 

corresponding forward and reverse experiment MS data sets (Table 9). Notably, in the two MS 

data sets the distribution of log2 (H/L) ratios of proteins that did not classify as enriched appears 

more scattered as compared to other MS data sets (Figure 19). Indeed, box plot statistics 
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Figure 19. SILAC-based quantitative mass spectrometry of mRNP proteome. Plots display log2 values of 
normalized heavy-to-light ratios (H/L, x axis) and log10 values of summed peptide intensities (y axis) for all 
identified proteins (FDR 1%). Blue dots represent proteins that did not classify as enriched by comparing the 
H/L ratios determined in two biological replicate experiments. Red dots represent proteins that, at least in one 
of the biological replicate experiments, were >1.41-fold but <2-fold enriched. Green dots represent protein 
that were >2-fold enriched in both biological replicate experiments. for – forward labelling, rev – reverse 
labelling. 
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confirms that the log2 (H/L) values are more dispersed in ENO2-6MS2L forward and reverse 

MS data sets as compared to other MS data sets (Figure 20). The reason for higher variability in 

the spread of H/L ratios in the above mentioned data sets could lie in unequal mixing of heavy 

and light protein populations. Namely, from the 8 analysed samples the largest SILAC mixing 

errors, 5.21 and 0.53, were determined for ENO2-6MS2L forward and reverse experiment, 

respectively. Table 10 shows the values of SILAC mixing errors, i.e. the median of all 

unnormalized H/L ratios determined for each LC-MS/MS run. Assuming that heavy and light 

protein populations are mixed in 1:1 ratio and that most of the proteins captured during affinity 

purification are non-specific background binders, the sample’s peptide median H/L ratio should 

be around 1. Inequality in the heavy and light protein populations introduced by unequal protein 

mixing or other imperfections during mRNP affinity purification can result in a median H/L 

ratio that considerably deviates from 1. In order to remove mixing errors, the H/L ratios 

determined in each LC-MS/MS run are normalized so that the mean of all log2-transformed H/L 

ratios is zero (Cox and Mann 2008). Despite the possibility to correct for mixing errors of total 

protein amounts by normalization, inaccurate mixing of heavy and light protein populations may 

affect the dynamic range over which accurate peptide masses can be determined and thus reduce 

the overall accuracy of the LC-MS/MS analysis (reviewed in Bantscheff et al. 2012; Bantscheff et 

al. 2007). 

A step in our mRNP affinity purification protocol that could possibly introduce inequality 

between the pools of heavy and light proteins is lysate preparation. The preparation of lysates of 

the same protein concentrations relies on weighing in the same amount of yeast cell grindate per 

each analysed strain (see Materials and Methods, “mRNP affinity purification protocol”). The 

grindate has to be filled into tubes cooled down in LN2 to avoid grindate thawing. Determining 

the exact weight of the grindate filled into a cooled tube might be imprecise because of the water 

vapour condensing on the walls of the cooled tube. Even though the tube is cooled several times 

during weighing in the grindate to keep a constant temperature, it is possible that this step in the 

mRNP affinity purification protocol can lead to differences in the amount of grindate used for 

lysate preparation between the MS2L-tagged strain and the wt control strain. In order to test if 

the protein concentration of heavy and light lysates had been the same in the experiment with the 

largest SILAC mixing error, the same volume of heavy and light lysate from ENO2-6MS2L 

forward experiment was separated on SDS-PAGE and stained with Coomassie dye (Ulrike Thieβ, 

unpublished data). Densitometric analysis of the stained gel confirmed that the two lysates in this 

case had had exactly the same protein concentrations. Therefore, in ENO2-6MS2L forward 

experiment the imbalance between the heavy and light protein populations must have been 

introduced at some other step than weighing in the grindate. 
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Figure 20. Box plots showing the distribution of SILAC ratios determined for mRNP affinity purification 
experiments shown in figure 19. Box plots demarcate the median (stripe), the mean (open rectangle), the 25th 
to 75th percentile (interquartile range, box), 1.5× the interquartile range (whiskers) and outliers (open circles).  

 

Two of the three sets of mRNP affinity purification experiments were performed without 

technical problems as indicated by the spread of the determined H/L ratios (Fig. 19 and 20) as 

well as by SILAC mixing errors (Table 10), which were within an acceptable error range for 

PGK1-6MS2L and 6MS2L-RNA affinity purifications. However, the high SILAC mixing errors 

determined for ENO2-6MS2L forward and reverse experiment suggest that during the course of 

the experiment an imbalance in the heavy and light protein pools can be introduced, underlying 

the importance of careful and precise performance of the experiment.  

 

 

RNase elution efficiency  

Western blot analysis had shown that Upf1, which specifically co-purified with PGK1-6MS2L 

mRNA (Fig. 9B), was present both in the RNase eluate and in the BB sample (Fig. 10C). This 

result hinted at the possibility that the 30 min of RNase treatment might not be sufficient to 

release all mRNP proteins because of insufficient RNA degradation. However, northern blot 

analysis of PGK1-6MS2L mRNA integrity after RNase treatment suggested the opposite – 

efficient degradation of bead-captured PGK1-6MS2L (Fig. 21B and data not shown). In this 

experiment, the sample was split after PGK1-6MS2L affinity purification. Half of the IgG-

coupled beads were treated with proteinase K followed by PCI RNA extraction to isolate the 

bead-captured RNA (Fig. 21A). The other half of the beads was first treated with RNase and the 
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RNase eluate, as well as the RNase-treated IgG-coupled beads, was subjected to RNA isolation as 

described above. Northern blot hybridization with PGK1-ORF (Fig. 21B) and MS2L (data not 

shown) antisense RNA probes resulted in a detectable hybridization signal only if RNase 

treatment had been omitted (Fig. 21B, compare lanes 7-9, 12-14 and 17-19 and data not shown). 

The 30 min of RNase treatment seems not only sufficient to degrade bead-captured PGK1-

6MS2L but also rRNA (Fig 21B, methylene blue staining and data not shown). PGK1-6MS2L but 

not untagged PGK1 affinity purification resulted in the detection of two bands on methylene blue 

stained membrane that migrated at the same height as 25S and 18S rRNA. However, these bands 

could only be detected if bead-captured PGK1-6MS2L had not been treated with RNase (Fig. 

21B, methylene blue staining, compare lanes 7, 12 and 17).  

Unable to detect any PGK1-6MS2L degradation products after RNase treatment, we 

reasoned that Upf1 is efficiently released from RNA during RNase treatment but non-specifically 

reattaches to the IgG-coupled beads. During RNase treatment other proteins might behave 

similarly to Upf1 and therefore in our first quantitative proteomic analysis we wished to identify 

the proteins that were enriched both in the RNase eluate and in the BB sample. In addition, we 

were interested to determine if some proteins were exclusively enriched in BB sample. Therefore, 

the proteins >1.41-fold enriched in PGK1-6MS2L RNase eluate and BB sample were grouped 

into three categories: (1) “Unique; (2) “Possible common; and (3) “Common”. Categories 

“Unique” and “Common” contain proteins that were unambiguously identified as enriched only 

in one or in both of the data sets, respectively. Proteins that were classified as enriched in one of 

the data sets but failed partly to fulfil the set threshold criteria to be classified as enriched in the 

other data set, for example due to a missing H/L ratio in one of the biological replicate 

experiments, were classified as “Possible common” (Appendix, Table 2). From the 78 proteins 

enriched in RNase eluate, 27 (35%) classified as “Unique”, 21 (26%) as “Possible common” and 

30 (39%) as “Common”. 18 (28%) of the 64 enriched proteins in BB sample classified as 

“Unique” and 16 (25%) as “Possible common”. The 30 proteins classified as “Common” 

comprised 47% of the enriched proteins in BB sample. 

The comparison of the enriched proteins in RNase eluate and BB sample revealed that 

besides Upf1, 29 proteins were enriched in both data sets. Assuming that PGK1-6MS2L mRNA 

was efficiently degraded as suggested by northern blot analysis (Fig. 21B), this finding 

demonstrates that many eluted proteins could only be partly removed from the IgG-coupled 

beads. 60% of the proteins classified as “Common” were present among the top 50% of enriched 

proteins in both RNase eluate and BB sample if the data was sorted according to log2 (H/L) 

values determined for forward experiment (if the data was sorted according to log2 (H/L) values 

determined for reverse experiment 70% and 63% of “Common” proteins mapped to top 50% of 
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enriched proteins in RNase eluate and in BB sample, respectively). The distribution of the 

proteins enriched both in RNase eluate and BB sample thus revealed that the more highly 

enriched proteins are more likely to be only partly removed from the IgG-coupled beads. 

 

 

 

Figure 21. Northern blot analysis of PGK1-6MS2L mRNA integrity after RNase digestion. (A) Schematic 
representation of sample preparation for northern blot analysis. After mRNP affinity purification the sample 
was divided into two. One part of the sample was subjected to RNA extraction, whereas the other part was first 
treated with RNase. After RNase treatment RNA was extracted from RNase eluate and RNase-treated IgG-
coupled beads. + RNase – RNase digestion; prot K – proteinase K treatment; PCI – phenol-chlorophorm-isoamyl 
alcohol RNA extraction. (B) Northern blot hybridization with DIG-UTP-labelled antisense RNA probes 
complementary to PGK1 ORF. mRNP affinity purification was performed from yeast cells containing MS2CP-
PrAx2 together with PGK1-6MS2L (MS2L, strain RJY 3827) or PGK1 (no tag, strain RJY 3828). Samples for total 
RNA analysis were taken before (I – input) and after (FT – flow through) PGK1 mRNP isolation. 1.5 µg total RNA 
and 10-fold serial dilutions of RNA extracted after mRNP affinity purification (1/6

th
 to 1/600

th
 of total sample) 

were separated on 1.3% agarose-formaldehyde gels and blotted onto positively charged nylon membranes. The 
hybridization signal corresponding to the full-length PGK1 and PGK1-6MS2L, as well as non-specific cross-
reaction with 25S rRNA, is indicated. On methylene blue stained membrane 25S and 18S rRNAs are marked. 
Red arrowheads indicate two bands corresponding in size to 25S and 18S rRNA that became visible after 
adjusting image contrast. 



RESULTS 

 

110 
 

Slightly more than a quarter of the enriched proteins in BB sample classified as “Unique”, 

suggesting that not all PGK1-6MS2L co-purifying proteins could be efficiently eluted from IgG-

coupled beads by RNase treatment. Remarkably, 7 of the 18 proteins in this category are involved 

in rRNA processing. According to Saccharomyces Genome Database (Cherry et al. 2012) 

proteins encoded by RRP7, UTP22, KRI1, KRR1, NOP4, RPP1 and NUG1 are all predominantly 

nucleolar proteins participating in various aspects of ribosome biogenesis. Besides the 7 

aforementioned rRNA processing factors unique for BB sample, the two data sets include only 3 

additional proteins with the function in rRNA processing – the gene products of CBF5 and 

DIM1 in BB sample and of NOP58 in RNase eluate – all classified as “Possible common”.  

The second largest group of functionally related proteins among the proteins exclusively 

enriched in BB sample is comprised of 4 large ribosomal subunit proteins. Further analysis of the 

distribution of 60S ribosomal subunit proteins in the two data sets of enriched proteins raised the 

possibility that 60S rRNA might not have been completely degraded during the 30 min of RNase 

treatment. Specifically, 11 60S ribosomal proteins were enriched in BB sample, whereas only 5 

were enriched in RNase eluate. In contrast, the small ribosomal subunit proteins were relatively 

more abundant among the enriched proteins in RNase eluate. RNase eluate contained 19 and BB 

sample 13 enriched 40S ribosomal proteins. Notably, in addition to the 19 40S ribosomal subunit 

proteins detected as enriched after RNase treatment, only 6 additional 40S ribosomal subunit 

proteins were detected as enriched after heating the RNase-treated IgG-coupled beads in SDS 

sample buffer. This is in contrast to the results obtained for 60S ribosomal proteins – only 5 60S 

proteins were detected as enriched after RNase treatment, whereas heating the RNase-treated 

beads resulted in the detection of 9 additional enriched 60S ribosomal proteins. These results 

suggest that the less complex 40S rRNA might be more efficiently degraded during RNase 

treatment than the more complex 60S rRNA, thereby leading to the detection of relatively more 

40S ribosomal subunit proteins in RNase eluate. 60S ribosomal subunit proteins, on the other 

hand, seem to have more efficiently dissociated from rRNA during protein denaturation by 

heating in SDS sample buffer. 

Due to financial limitations we did not wish in the subsequent SILAC mRNP affinity 

purification experiments to determine the composition of BB sample. Due to time limitations it 

was unfortunately also impossible to further optimize RNase treatment conditions to ensure full 

rRNA degradation. Therefore, it can be expected that not all ENO2-6MS2L and 6MS2L-RNA 

co-purifying proteins have been detected.  The MS2L-tagged mRNA co-purifying proteins that 

might not be efficiently released by RNase treatment from IgG-coupled beads under current 

experimental conditions include nucleolar rRNA processing factors and large ribosomal subunit 
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proteins; the latter escaping detection possibly due to incomplete rRNA degradation during 

RNase treatment.  

 

 

The proteome of in vivo-assembled mRNPs is enriched for proteins 

 involved in mRNA biology 

In order to facilitate the comparison of proteins enriched after PGK1-6MS2L, ENO2-6MS2L and 

6MS2L-RNA affinity purification, PGK1-6MS2L co-purifying proteins identified in RNase eluate 

or BB sample were integrated into one data set. The classification of the enriched proteins 

according to Protein Class using PANTHER classification system (P. D. Thomas et al. 2003; Mi, 

Muruganujan, and Thomas 2012) revealed a close functional similarity among proteins 

specifically co-purifying with PGK1-6MS2L, ENO2-6MS2L and 6MS2L-RNA (Fig. 22). Within 

each of the three quantitative MS data sets PANTHER classification results were very similar 

between proteins >1.4-fold and >2-fold enriched (Table 11). Independent of the set threshold, 

more than 50% of the enriched proteins in the three data sets classified as nucleic acid binding 

proteins (Fig. 22A). Within this category 76-83% of proteins were classified as RNA binding 

proteins (Fig. 22B). The most prominent class of proteins among RBPs were ribosomal proteins 

with 42-49% of RBPs classifying under this category in the three MS data sets (Fig. 22C). The 

enrichment of ribosomal proteins in all three MS data sets indicates that not only PGK1-6MS2L 

and ENO2-6MS2L but also 6MS2L-RNA can be engaged in translation. In addition to 

translation, the three MS2L-tagged RNAs seem to undergo largely the same processes. With only 

one exception – a single protein classified as DNA-directed RNA polymerase in ENO2-6MS2L 

data set – the enriched RBPs in the three data sets classified to the same 8 subcategories (Fig. 

22C). Furthermore, the fraction of enriched proteins mapped to a specific RBP subcategory was 

very similar for PGK1-6MS2L, ENO2-6MS2L and 6MS2L-RNA. 

 

Table 11. PANTHER Protein Class ontology classification (version 8.1) of enriched proteins. Table depicts 
percent of gene hit against total number of Protein Class hits. 
 

MS2L-tagged RNA log2
a
 Nucleic acid binding RNA binding protein Ribosomal protein 

PGK1 0.5 
1 

54 
51 

80 
76 

46 
42 

ENO2 0.5 
1 

58 
55 

79 
77 

48 
44 

6MS2L 0.5 
1 

60 
69 

79 
83 

48 
49 

a
 log2 0.5 corresponds to threshold log2 (H/L) >0.5 or <-0.5; log2 1 corresponds to threshold log2 (H/L) >1 or <-1. 
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Figure 22. PANTHER Protein Class ontology classification of proteins that classified as enriched by applying 
the threshold log2 (H/L) >0.5 or <-0.5. Figures depict percent of gene hit against total number of Protein Class 
hits. (A) Initial classification of all enriched proteins in the three MS data sets: PGK1-6MS2L (proteins enriched 
in RNase eluate and BB sample were combined into one data set), ENO2-6MS2L and 6MS2L-RNA co-purifying 
proteins (B) Further classification of proteins in the category “nucleic acid binding”. (C) Further classification of 
proteins in the category “RNA-binding protein”. 

 

PANTHER Protein Class category “RNA-binding protein“ contained not only known 

mRNA-binding proteins but also proteins interacting with other cellular RNAs such as rRNA 

and tRNA. Consequently, several proteins classified as RBPs have previously not been implicated 

in mRNA biology. In order to estimate how many of the enriched proteins are annotated 

mRNA-binding proteins or proteins known to play a role in mRNA biology,  a manual literature-

based analysis of the three MS data sets was performed (Appendix, Table 3). Depending on the 

data set, 60-67% of the >1.41-fold enriched proteins belonged to one of the following categories: 

mRNA nuclear maturation, export, localization, decay and translation. The latter category 

contained translation initiation factors, ribosomal proteins and proteins involved in mRNA 

translational control or co-translational nascent peptide maturation. Among the proteins >2-fold 

enriched, 67-72% of the proteins could be classified under one of the above-mentioned 

categories. The prevalence of proteins with a role in mRNA biology among the MS2L-tagged 
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RNA co-purifying proteins clearly demonstrates that 6MS2L::MS2CP-PrAx2::IgG interaction can 

be employed to capture in vivo-assembled mRNPs for quantitative MS analysis. The identification 

of proteins involved in various stages of mRNA life cycle both in the nucleus and in the 

cytoplasm indicates that a variety of mRNPs from diverse cellular compartments could be affinity 

purified (see table 12 for examples). However, the repertoire of the MS2L-tagged RNA co-

purifying proteins also suggests that the efficiency of detecting certain mRNP proteins is 

influenced by mRNP abundance in different cellular compartements (see Discussion, Part 2 “The 

analysis of mRNA-bound proteome is likely influenced by mRNP abundance in different cellular 

compartments“).  

In order to better visualize how proteins that specifically co-purified with an MS2L-

tagged RNA are related to each other, the lists of enriched proteins were analysed using STRING 

database, which integrates the information about known and predicted physical and functional 

protein-protein interactions to create a protein interaction network (L. J. Jensen et al. 2009). 

Figures 23-25 depict the STRING networks obtained for PGK1-6MS2L, ENO2-6MS2L and 

6MS2L-RNA. Proteins >1.41-fold enriched are shown.  

A common feature of the three STRING networks is the high degree of connectivity 

between the proteins in each network even when using the highest confidence score (0.900) for 

generating the networks. In each data set only 10-14% of all proteins >1.41-fold enriched are not 

linked to any other protein in the core network (Fig. 23-25). Among the proteins >2-fold 

enriched the fraction of such unconnected proteins is remarkably similar – 9-12% (data not 

shown). This result suggests that the threshold log2 (H/L) >0.5 or <–0.5 can efficiently filter out 

non-specific background binding proteins. Non-specific background binders are expected to be 

less enriched compared to proteins specifically interacting with MS2L-tagged RNAs. In addition, 

they would be more likely to carry out functions unrelated to mRNA metabolism and therefore 

would be less likely linked to proteins forming the core of the STRING network. The finding 

that for each MS2L-tagged RNA the number of unconnected proteins in the STRING network is 

very similar among proteins >1.41-fold and >2-fold enriched thus suggests that the proteins that 

do not classify as enriched if the more stringent threshold is applied are mostly specific 

interaction partners of MS2L-tagged RNAs.  

An overall functional similarity among proteins specifically co-purifying with PGK1-

6MS2L, ENO2-6MS2L and 6MS2L-RNA suggested by PANTHER classification (Fig. 22) 

becomes evident through the STRING interaction networks. Distinct clusters within the 

networks common to all three MS2L-tagged RNAs are formed by ribosomal proteins and by 

proteins involved in cytoplasmic mRNA decay. Translation and mRNA turnover thus appear to 

be the two central processes in the life cycles of the studied MS2L-tagged RNAs. Each STRING 
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network, however, also shows unique features, revealing some interesting differences in the 

physiology of the studied RNAs. The following chapter will give an overview of the enriched 

proteins in the context of the determined protein interaction networks. 

 

 

 

Figure 23. Protein-protein interaction network of proteins enriched after PGK1-6MS2L affinity purification. 
The enriched proteins in two MS data sets – RNase eluate and BB sample – are combined. Image modified from 
the image created by STRING database (v.9.1) using the highest confidence score (0.9). Each circle represents 
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an individual protein with the standard name depicted. The colour coding corresponds to the H/L ratios 
determined in the forward labelling experiment. If a protein was enriched both in RNase eluate and BB sample, 
the colour was chosen according to the H/L ratio determined for RNase eluate. Connecting lines represent 
association. 

 

 

 

Figure 24. Protein-protein interaction network of proteins enriched after ENO2-6MS2L affinity purification. 
Image modified from the image created by STRING database (v.9.1) using the highest confidence score (0.9). 
Each circle represents an individual protein with the standard name depicted. The colour coding corresponds to 
the H/L ratios determined in the forward labelling experiment. Connecting lines represent association. 
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Figure 25. Protein-protein interaction network of proteins enriched after 6MS2L-RNA affinity purification. 
Image modified from the image created by STRING database (v.9.1) using the highest confidence score (0.9). 
Each circle represents an individual protein with the standard name depicted. The colour coding corresponds to 
the H/L ratios determined in the forward labelling experiment. Connecting lines represent association. 

 

 

Overview of MS2L-tagged RNA co-purifying proteins 

Literature-based analysis of the enriched proteins indicated that 26-35% of proteins in each MS 

data set (Appendix, Table 4) are mRNA-binding proteins or components of multiprotein 
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complexes with known mRNA-binding subunits (examples shown in Table 12). Most of the 

detected mRNA-binding or mRNA-associated proteins are part of cytoplasmic mRNPs engaged 

in translation or in mRNA decay. The enriched proteins involved in translation include 

translation initiation factors (Table 13), the major yeast poly(A) binding protein Pab1, 

components of polyribosome-associated mRNPs (Scp160, Bfr1) and proteins involved in 

translation repression (e.g. Sbp1, Dhh1, see also Table 15). Several enriched proteins of the latter 

class are functionally linked to mRNA degradation as decapping activators (e.g. Dhh1, Pat1, see 

also Table 16). Besides decapping activators, the enriched mRNA decay factors include Dcp1-

Dcp2 decapping complex and 5′→3′ exonuclease Xrn1. Remarkably, most mRNA decay factors 

were among the highly enriched proteins (>5-fold enrichment), suggesting that a large 

subpopulation of cellular MS2L-tagged RNA-containing mRNPs are involved in mRNA 

degradation. The co-purification of one protein – the nonsense-mediated mRNA decay factor 

Upf1 – with all three MS2L-tagged RNAs suggests that the studied mRNAs may be targeted by 

NMD and thus subjected to accelerated mRNA decay leading to high enrichment levels of 

mRNA decay factors (see Discussion, Part 1, “MS2L-tagged RNAs may be targeted by nonsense-

mediated decay”). MS2L-tagged RNAs also co-purified with several proteins implicated in stress 

granule formation (e.g. Pbp1, Pub1, see also Table 19), hinting at the possibility that a 

subpopulation of mRNPs might be stalled in the process of translation initiation in these 

cytoplasmic mRNP granules. The nuclear stage of the mRNA life cycle is reflected by co-

purification of MS2L-tagged RNAs with several RBPs know to be loaded on mRNPs in the 

nucleus (e.g. Nab2, Sro9, Cbc2-Cbc1, see also Table 20). 

The largest group of MS2L-tagged RNA co-purifying proteins is comprised of rRNA-

binding proteins; 38-43% of the enriched proteins in each MS data set classified under this 

category. The majority of the rRNA-binding proteins are ribosomal proteins of the 40S or 60S 

subunit. The enrichment of ribosomal proteins of both the small and large subunit strongly 

suggests that the MS2L-tagged RNAs have been captured while bound to 80S ribosomes and 

thus engaged in translation.  The minor group among the enriched rRNA-binding proteins is 

composed of 17 ribosome biogenesis factors (e.g. Mrd1, Arx1, see also Table 21). Most of the 

ribosome biogenesis factors were enriched only in single MS data sets. Furthermore, the 

enrichment level of these proteins was mostly moderate (<3-fold enrichment), raising the 

question whether ribosome biogenesis factors might have co-purified with contaminating 

ribosomes. Even though we cannot rule out that the enriched ribosome biogenesis factors 

represent false-postitive interactors in our experiments, recent findings from other groups 

suggest that mRNA binding by ribosome biogenesis factors might be a common phenomenon 

both in yeast and in mammalian cells (S. F. Mitchell et al. 2013; Castello et al. 2012; Baltz et al. 
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2012) (see Discussion, Part 1, “Ribosome biogenesis factors co-purifying with MS2L-tagged 

RNAs“).  

Ribosome biogenesis factors were not the only group of proteins that are known to bind 

RNA but not known to associate with mRNA among the MS2L-tagged RNA co-purifying 

proteins. We also identified 3 tRNA methyltransferases (Trm44, Trm2, Ncl1) and 3 tRNA 

pseudouridine synthases (Pus1, Pus4, Pus7). Most of these proteins were highly enriched (>5-

fold enrichment) and co-purified with at least two MS2L-tagged RNAs (Table 23). Remarkably, 

the human homologs of 4 enriched tRNA-modifying enzymes out of 5 conserved proteins (Pus4 

is not conserved between yeast and human) have been found to co-purify with poly(A)+ RNA 

from mammalian  cells (Castello et al. 2012; Baltz et al. 2012), suggesting that Trm2, Ncl1, Pus1 

and Pus7 play a jet undefined but conserved role in mRNA biology. 

The studied MS2L-tagged RNAs co-purified with several proteins which have been 

implicated in RNA-binding but whose RNA-interaction partners remain unknown or whose 

function in general or in the context of mRNA biology is not well understood. Such proteins 

include, for instance, the putative RBP Ygr250c and the GTPase Rbg1 together with its 

interaction partner Tma46, all three proteins have a possible role in translation initiation, or the 

deubiquitinase Ubp3 and its positive regulator, a putative RBP Bre5, or the putative homolog of 

DEAH-box family of RNA-dependent ATPases Ylr419w. All the mentioned proteins and their 

human homologs have been identified in several studies to co-purify with poly(A)+ RNA or with 

Pab1 (S. F. Mitchell et al. 2013; Castello et al. 2012; Baltz et al. 2012; Klass et al. 2013; R. 

Richardson et al. 2012). Hence, our results confirm previous observations and identify Ygr250c, 

Rbg1, Tma46, Ubp3, Bre5 and Ylr419w as mRNP proteins. Three proteins, the general vacuolar 

RNAse Rny1 involved in rRNA and tRNA decay, the mitochondrial RNA polymerase Rpo41 

and the intronic branchpoint binding complex component Msl5 were highly enriched after 

ENO2-6MS2L affinity purification. Even though all the mentioned proteins are RBPs, their role 

in the context of ENO2 mRNA, which is transcribed from an intronless gene and encodes a 

cytoplasmic protein, remains unknown. 

14-22% of MS2L-tagged RNA co-purifying proteins have previously not been identified 

as RBPs. This group include proteins that have likely co-purified with mRNA in association with 

mRNA-bound ribosomes; however, in case of many of the enriched proteins with no known 

RNA-binding activity the mechanism underlying co-purification with MS2L-tagged RNAs remain 

elusive. Ribosome-association of proteins involved in nascent peptide maturation can easily 

explain why the MS2L-tagged RNAs have co-purified, for instance, with the components of the 

ribosome-associated chaperone triad (Leidig et al. 2013) or the NatA N-terminal acetyltransferase 

(Matthias Gautschi et al. 2003; Polevoda et al. 2008) (Table 14). Ribosome-association is also a 
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plausible reason for the co-purification of three proteins involved in tRNA aminoacylation (Arc1, 

Gus1, Ths1, Table 32) with 6MS2L-RNA. Interestingly, several aminoacyl-tRNA synthetases 

have been found to associate with ribosomes in organisms as diverse as humans and archaea 

(Kaminska et al. 2009; Raina et al. 2012; David et al. 2011; Godinic-Mikulcic et al. 2014). The 

enrichment of Pgk1 protein after PGK1-6MS2L affinity purification and enolase 2 after ENO2-

6MS2L affinity purification but not vice versa suggests that the nascent peptide has co-purified 

with the mRNA it is encoded by as an mRNA-ribosome-nascent peptide complex (see 

Discussion, Part 1 “Ribosomal proteins, translation factors, nascent peptide modifying enzymes 

and proteins involved in translation regulation – mRNP proteome reveals translation and a 

network of translation-associated molecular events as part of MS2L-tagged RNA life cycle”). This 

chain of interactions might also contribute to the co-purification of several glycolytic enzymes 

with PGK1-6MS2L (Table 31). Namely, several lines of evidence indicate that glycolytic enzymes 

associate into multi-enzyme complexes presumably for optimal pathway activity (Campanella, 

Chu, and Low 2005; Puchulu-Campanella et al. 2013; Araiza-Olivera et al. 2013; Araiza-Olivera et 

al. 2010). The co-purification of PGK1-6MS2L with Pgk1 protein and additional glycolytic 

enzymes thus hints at the possibility of co-translational glycolytic enzyme complex formation (see 

Discussion, Part 1 “PGK1-6MS2L co-purifies with several glycolytic enzymes – co-translational 

formation of a supramolecular glycolytic enzyme complex?”). 

Besides the glycolytic enzymes that were enriched after PGK1-6MS2L affinity 

purification, 13 additional metabolic enzymes co-purified with the MS2L-tagged RNAs (Table 

25). None of these proteins is known to have RNA-binding activity, however, the high 

enrichment level and co-purification with more than one of the tested RNAs suggests that the 

association of at least 6 of the identified metabolic enzymes with the MS2L-tagged RNAs is 

specific. Remarkably, 5 of these 6 proteins have previously been found to co-purify with poly(A)+ 

RNA or Pab1, including the inosine monophosphate dehydrogenase isozymes Imd2, Imd3 and 

Imd4, the mitochondrial trifunctional C1-tetrahydrofolate synthase Mis1 and the mitochondrial 

serine hydroxymethyltransferase Shm1 (S. F. Mitchell et al. 2013; Castello et al. 2012; Klass et al. 

2013; R. Richardson et al. 2012). Our results are thus in agreement with previous observations 

and suggest that the above mentioned proteins play a jet undefined role in mRNA biology (see 

Discussion, Part1, “Metabolic enzymes co-purifying with MS2L-tagged RNAs”). The sixth 

protein in this group, the mitochondrial aldehyde dehydrogenase Ald5, might specifically interact 

with the 6MS2L-tag. Even though the protein has not been found to co-purify with poly(A)+ 

RNA (S. F. Mitchell et al. 2013; Castello et al. 2012; Baltz et al. 2012) or with Pab1 (Klass et al. 

2013; R. Richardson et al. 2012), Ald5 was highly enriched after the affinity purification of all 

three MS2L-tagged RNAs. The remaining 7 metabolic enzymes co-purified only with single 
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MS2L-tagged RNAs and were mostly <2-fold enriched, suggesting that at least some of these 

enriched proteins might represent false-positive interactors. Additional moderately enriched 

proteins in single MS data sets included Vph1, a subunit of the vacuolar ATPase V0 domain; 

Sec16, COPII coat assembly protein; Tra1, a subunit of SAGA and NuA4 histone 

acetyltransferase complexes; Hsp60, a mitochondrial  chaperonin; Bmh2, a 14-3-3 protein; 

Ymr046c, the Gag nucleocapsid protein of retrotransposon Ty1, etc. While non-specific 

interaction with MS2L-tagged RNA-containing mRNPs might contribute to the isolation of some 

of these proteins, other proteins such as Bmh2 and Ymr046c possibly represent bona fide 

interaction partners (see Discussion). 

 

Table 12. Examples of MS2L-tagged RNA co-purifying proteins identified by quantitative MS. An MS2L-tagged 
RNA co-purifying protein was considered enriched if it fulfilled the threshold criteria log2 (H/L) > 0.5 or <0.5 (+).   
 

Category Gene Protein 
ID 

Function BB
a
 RNase ENO2 6MS2L 

mRNA-binding protein TIF4631 P39935 Translation initiation + + + + 
SCP160 P06105 Translation regulation + +  + 
DHH1 P39517 Translation repression, 

Decay 
  +  

DCP2 P53550 Decay + + +  
XRN1 P22147 Decay + + + + 
NAB2 P32505 Export  +  + 
KHD1 P38199 Localization  +  + 
WHI3 P34761 Unknown  +   

rRNA-binding protein/ 
ribosome-associated 
protein 

RPL4A P10664 Ribosomal 60S subunit 
protein 

+ + + + 

MRD1 Q06106 Ribosome biogenesis   + + 
ARX1 Q03862 pre-60S subunit export + + +  
ZUO1 P32527 Ribosome-associated 

chaperone 
+ + + + 

GUS1 P46655 Cytosolic glutamyl-tRNA 
synthetase 

   + 

PGK1 P00560 Glycolytic enzyme + +   

tRNA-binding protein TRM2 P33753 tRNA methyltransferase  + + + 
PUS7 Q08647 tRNA, snRNA, rRNA 

pseudouridine synthase 
  + + 

Undefined  
RNA-binding protein 

YGR250C YGR250C Putative RBP  +  + 
UBP3 Q01477 Ubiquitin-specific 

protease 
+ + +  

RPO41 P13433 Mitochondrial RNA 
polymerase 

  +  

Not annotated as RBP IMD4 P50094 Inosine monophosphate 
dehydrogenase 

 + + + 

ALD5 P40047 Mitochondrial aldehyde 
dehydrogenase 

 + + + 

VHP1 P32563 Subunit of vacuolar 
ATPase 

+    

a
 Abbreviations here and hereafter: BB – Boiled Beads sample of PGK1-6MS2L affinity purification, RNase – 

RNase eluate of PGK1-6MS2L affinity purification. 
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DISCUSSION 
 

 

 

mRNP affinity purification: 

our strategy and the obtained results at a glance 
 

In order to analyse the proteome of in vivo-assembled mRNA-protein complexes in S. cerevisiae, 

we have established an affinity purification method that enables to capture specific mRNAs 

together with the mRNA-associated proteins. Our approach makes use of two naturally occurring 

high affinity interactions: (1) the interaction between the bacteriophage MS2 coat protein and its 

RNA binding site (Lago et al. 1998); and (2) the interaction between IgG and the IgG-binding Z 

domains of Staphylococcus aureus protein A (Cedergren et al. 1993). The mRNA of interest is 

genomically tagged with MS2 stem-loops (Haim et al. 2007) and co-expressed with MS2 coat 

protein fused to IgG-binding domains. mRNPs assembled on the tagged mRNAs are isolated 

using IgG-coupled beads (Oeffinger et al. 2007). Quantitative analysis of the mRNP proteome is 

achieved by using SILAC metabolic labelling technique in combination with sample analysis by 

liquid chromatography-tandem mass spectrometry. Using this system, we have analysed the 

proteins co-purifying with 6MS2L-tagged PGK1 and ENO2. In addition, we have identified the 

proteins that associate with an mRNA-like transcript containing the 6MS2L tag. 

Our approach should provide an overall picture of the various interactions an mRNP is 

involved in during its life cycle. In order to preserve the native structure of the mRNP, we used 

optimized yeast cell harvesting and lysis conditions. Harvesting was done in the presence of 

glucose and amino acids, which enabled to preserve ribosome binding to the tagged mRNA (Fig. 

15A and 15B). mRNA degradation during cell lysis could be prevented by breaking the cells 

under cryo conditions (Fig. 6B). Removal of cell debris by a short centrifugation step followed by 

lysate filtration, the use of superparamagnetic IgG-coupled beads as the affinity matrix and a 

short capture time of the tagged mRNPs (30 min) enabled to finish the whole affinity purification 

procedure in about 70 min. The relatively fast completion of the affinity purification should 

further help to maintain the native structure of the mRNPs. 

We did not include a cross-linking step to stabilize mRNP composition. On the one 

hand, excluding a cross-linking step helps to avoid possible changes in mRNP protein 

composition that might occur in response to cross-linking. The two commonly used cross-linking 

approaches to stabilize RNA-protein interactions – cross-linking by 254 nm UV light or by 
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formaldehyde – often involve removal of the cells from their natural growth environment 

(Slobodin and Gerst 2010; S. F. Mitchell et al. 2013). This likely alters the mRNP composition of 

mRNAs engaged in translation; removal of the carbon source has been shown to result in rapid 

inhibition of translation in S. cerevisiae which is paralleled by the loss of polyribosomes (Ashe, De 

Long, and Sachs 2000). Cross-linking may also induce a stress response and thereby influence the 

abundance of mRNPs in different subcellular compartments. For instance, exposure to UV light 

has been shown to increase the accumulation of P-body marker proteins in P-bodies (Teixeira et 

al. 2005), indicating an increase in the translationally repressed pool of mRNPs. On the other 

hand, omitting a cross-linking step may result in the loss of weak or transient interaction partners 

during mRNP affinity purification. Indeed, in several cases we observed that only certain 

subunits of well defined heteromeric protein complexes were enriched after MS2L-tagged RNA 

affinity purification. In a test experiment the treatment of yeast cells with formaldehyde (0.05% 

v/v) (Slobodin and Gerst 2010) did not enable us to detect additional specifically enriched 

proteins compared to the purification of untagged control mRNA. In this experiment the protein 

pattern of RNase eluates was compared on silver stained SDS-PAGE (Fig. 10A). We cannot rule 

out that by using a more sensitive method such as mass spectrometry to analyse the protein 

composition of the RNase eluate samples we would have been able to detect a beneficial effect of 

formaldehyde cross-linking on mRNP stability. 

Despite not using cross-linking to stabilize mRNP composition, a relatively large number 

of proteins were enriched after MS2L-tagged RNA affinity purification. The number of proteins 

that were >2-fold enriched in both biological replicate experiments was 58, 83 and 71 for PGK1-

6MS2L (combined proteins enriched in RNase eluate and boiled beads samples), ENO2-6MS2L 

and 6MS2L-RNA, respectively. PANTHER Protein Class analysis indicated that >50% of the 

enriched proteins in each MS data set were nucleic acid binding proteins (Table 11). A manual 

literature-based analysis identified 26-35% of the enriched proteins as previously known mRNA-

binding proteins or as components of protein complexes containing annotated mRNA-binding 

subunits (Appendix, Table 3 and 4). Importantly, 60-72% of the MS2L-tagged RNA co-purifying 

proteins perform a function related to mRNA biology (Appendix, Table 3). The repertoire of the 

proteins co-purifying with the three MS2L-tagged RNAs reflects both nuclear and cytoplasmic 

steps of mRNP life cycle. Many of the enriched proteins in each MS data set have a role in 

mRNA translation or decay, suggesting that a large subpopulation of the MS2L-tagged RNAs is 

engaged in these two processes. The large number of enriched proteins involved in mRNA 

biology as revealed by PANTHER analysis and the literature-based analysis thus indicates that 

the established mRNP affinity purification method is successful at capturing in vivo-assembled 

mRNPs. This notion is also supported by STRING analysis, which demonstrated that the 
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proteins co-purifying with a specific MS2L-tagged RNA are largely physically or functionally 

linked to each other (Fig. 23-25). 

In addition to the enriched proteins with a well defined role in mRNP life cycle, many of 

the MS2L-tagged RNA co-purifying proteins participate in cellular processes not connected to 

mRNA function. Interestingly, in several such cases we found that the protein has previously 

been implicated in association with mRNA or the major yeast poly(A) binding protein Pab1 (S. F. 

Mitchell et al. 2013; Castello et al. 2012; Baltz et al. 2012; Tsvetanova et al. 2010; Scherrer et al. 

2010; Klass et al. 2013; R. Richardson et al. 2012). Collectively, our mRNA-associated proteome 

analysis suggests a role for several ribosome biogenesis factors, tRNA modifying enzymes and 

metabolic enzymes in mRNA biology. Our results also point to the possibility of co-translational 

glycolytic enzyme complex formation. However, each MS data set also contains a few proteins 

which possibly represent false-positive interactors. Non-specific association of cellular proteins 

with MS2L-tagged RNA-containing mRNPs likely takes place during the 30 min of mRNP 

capture when proteins released from different cellular compartments can form interactions that 

normally would not occur. Candidate false-positive interactors include some cytoplasmic 

metabolic enzymes and mitochondrial proteins that have previously not been found to associate 

with mRNA and also some RBPs that might non-specifically interact with the MS2L-tagged 

RNAs due to deregulated RNA-binding activity upon cell lysis. During mRNP capture the bona 

fide mRNP proteins, especially those with fast association and dissociation rates, might also 

rearrange between mRNPs assembled on different mRNAs (X. Wang and Huang 2008). 

However, these rearrangements should not lead to changes in protein SILAC ratios since mRNP 

affinity purification from heavy and light labelled lysate is carried out separately. The IgG-

coupled beads with the captured mRNPs from two parallel purifications are only mixed prior to 

mRNP protein release by RNase treatment (Fig. 17), thus preventing the exchange of heavy and 

light labelled forms of dynamically interacting mRNP proteins between MS2L-tagged RNA-

containing mRNPs and the untagged control RNA-containing mRNPs. 

The focus of the first part of the discussion is on the analysis of the mRNA-bound 

proteome and the possible molecular mechanisms responsible for the co-purification of a certain 

set of proteins with each tested MS2L-tagged RNA. The second part of the discussion tries to 

find answers to the questions that stem from the results of mRNP proteome analysis. For 

instance, what features of mRNA-protein and protein-protein interactions determine their 

efficient capture using our mRNP affinity purification method? What are the limitations of the 

MS2L system for mRNP affinity purification and how these limitations could be overcome? In 

the final part of the discussion unanticipated findings regarding mRNP protein composition will 

be recapitulated.  
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Part 1 

 

Ribosomal proteins, translation factors, nascent peptide modifying enzymes and proteins 

involved in translation regulation – mRNP proteome reveals translation and a network of 

translation-associated molecular events as part of MS2L-tagged RNA life cycle 

The analysis of mRNP proteome of PGK1-6MS2L, ENO2-6MS2L and 6MS2L-RNA revealed 

that ribosomal proteins comprise the most abundant group of enriched proteins in the three MS 

data sets. Depending on the data set, 49-70% of the 33 S. cerevisiae small ribosomal subunit 

proteins and 30-37% of the 46 large ribosomal subunit proteins classified as enriched (reviewed 

in D. N. Wilson and Cate 2012). The relative abundance of enriched 40S ribosomal proteins 

compared to 60S ribosomal proteins is thus not specific for PGK1-6MS2L affinity purification 

(see Results, “RNase elution efficiency”), supporting the notion that 60S rRNA might have been 

less efficiently degraded than 40S rRNA during RNase treatment.  

The presence of both 40S and 60S ribosomal proteins among the enriched proteins 

suggest that all three MS2L-tagged RNAs can be captured while bound to 80S ribosomes. This 

finding is in agreement with northern blot and qRT-PCR results showing that 18S and 25S 

rRNAs are enriched after PGK1-6MS2L affinity purification compared to the mock purification 

of untagged PGK1 (Fig. 15). The enrichment of 80S ribosomal components after affinity 

purification of the three MS2L-tagge RNAs thus suggests that a subset of PGK1-6MS2L, ENO2-

6MS2L and 6MS2L-RNA transcripts has been engaged in translation at the moment of flash 

freezing the yeast cells in LN2. Enrichment of several canonical translation factors and ribosome-

associated proteins involved in translational control or nascent peptide maturation further 

supports the notion that we have been able to capture mRNPs that in living cells were engaged in 

protein synthesis. In addition, the protein product of PGK1-6MS2L or ENO2-6MS2L is among 

the enriched proteins in the respective MS data set. The simplest explanation to this finding is 

that the nascent peptide has co-purified with the mRNA it is encoded by as a nascent peptide-

ribosome-mRNA complex. Alternatively, Pgk1 and enolase 2 could directly bind to the mRNA 

the respective protein is encoded by. While there is no experimental evidence suggesting that 

enolase 2 would possess RNA-binding activity (Castello et al. 2012; Baltz et al. 2012; Tsvetanova 

et al. 2010; Scherrer et al. 2010), Pgk1 has been identified as a candidate RBP in mammalian cells 

by poly(A)+ RNA affinity purification combined with co-purifying protein identification by label-

free quantitative MS (Castello et al. 2012). However, in a similar study in mammalian cells the 

protein was not detected after poly(A)+ RNA affinity purification (Baltz et al. 2012). 

Furthermore, Pgk1 also failed to be identified as an RBP in S. cerevisiae in two separate studies 
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where RBPs were identified by probing high-density protein microarrays with mRNA 

(Tsvetanova et al. 2010) or with different types of cellular RNA (Scherrer et al. 2010). These latter 

findings suggest that Pgk1 is not an RBP and thus the likely reason for Pgk1 protein co-

purification with PGK1-6MS2L is the association between the Pgk1 nascent peptide, the 

ribosome and the mRNA. Identification of Pgk1 as a candidate RBP by Castello et al. could in 

fact also be due to the above-mentioned chain of interactions. In this study, many ribosomal 

proteins were identified as RBPs, suggesting poly(A)+ RNA co-purification with translating 

ribosomes (Castello et al. 2012). Since UV crosslinking was used to covalently crosslink direct 

RNA-protein interactions (Castello et al. 2012), Pgk1 nascent peptide could have been 

crosslinked to ribosomal exit tunnel (Bhushan et al. 2010), ultimately leading to Pgk1 

identification as a candidate RBP. 

The only translation factors enriched in all three MS data sets are the two eIF4G isoforms 

in S. cerevisiae, eIF4G1/TIF4631 and eIFG2/TIF4632 (Goyer et al. 1993) (Table 13). During 

translation initiation eIF4G acts as a scaffold protein, which coordinates the interaction between 

the mRNA 5′ cap and the 3′ poly(A) tail, as well as promotes the recruitment of 43S PIC to the 

mRNA (reviewed in Hinnebusch 2011). Among its direct interaction partners are the cap-binding 

protein eIF4E  (Goyer et al. 1989; J. D. Gross et al. 2003) and the RNA helicase eIF4A 

(Dominguez et al. 1999; Neff and Sachs 1999; P. Schütz et al. 2008). Both proteins were found 

among the enriched proteins: eIF4E/CDC33 was enriched in 6MS2L-RNA affinity purification 

and eIF4A/TIF1 was enriched in PGK1-6MS2L affinity purification.  

eIF5B/FUN12, the ribosome-dependent GTPase that mediates ribosomal subunit 

joining, was found enriched in two MS data sets (ENO2-6MS2L and 6MS2L-RNA). Other 

identified translation initiation factors were enriched in single MS data sets. 6MS2L-RNA co-

purified with eIF3a/RPG1 (also known as TIF32), which is one of five eIF3 core subunits in S. 

cerevisiae (Phan et al. 1998). Besides eIF3a, a possible eIF3 subunit encoded by CLU1/TIF31 

(Vornlocher et al. 1999) was also found enriched. ENO2-6MS2L co-purified with eIF2 subunits 

eIF2α/SUI2 and eIF2γ/GCD11. The third eIF2 subunit eIF3β/SUI3 was enriched in the 

forward experiment but was not quantified in the reverse experiment, suggesting that the subunit 

might have dissociated from eIF2 heterotrimer during affinity purification. Besides eIF2, which 

delivers the initiator methionyl tRNA to the 40S ribosome during canonical translation initiation, 

ENO2-6MS2L co-purified with a second protein with the potential to direct the binding of Met-

tRNAi
Met to small ribosomal subunit – eIF2A/YGR054W (Merrick and Anderson 1975). 

Importantly, the requirements of the two proteins for Met-tRNAi
Met binding to 40S ribosome are 

different – eIF2 requires GTP (Safer et al. 1975) whereas eIF2A the presence of an AUG codon 

(Merrick and Anderson 1975). Consistent with a role in translation initiation, eIF2A genetically 
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interacts with several yeast translation initiation factors (Wilmes et al. 2008; Komar et al. 2005) 

and binds to 40S ribosomal subunit and 80S ribosome (Komar et al. 2005); however, the exact 

molecular function of the protein remains elusive (Komar et al. 2005; Reineke et al. 2011).  

Among the proteins enriched in single MS data sets was also the only identified translation 

elongate factor – eEF3 (encoded by paralogous genes YEF3 and HEF3), which was enriched 

after PGK1-6MS2L affinity purification. 

 

Table 13. MS2L-tagged RNA co-purifying translation factors. Log2 (H/L) ratios of enriched proteins are in bold.  
 

Protein 
ID 

Protein 
name 

Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

P39935 

P39936 

P07260 

P38912 

P39730 

P38249 

Q03690 

P20459 

P32481 

P09064 

P53235 

P16521; 
P53978 

eIF4G1 

eIF4G2 

eIF4E 

eIF4A 

eIF5B 

eIF3a 

eIF3 p135 

eIF2α 

eIF2γ 

eIF2β 

eIF2A 

eEF3 
 

TIF4631 

TIF4632 

CDC33 

TIF1 

FUN12 

RPG1 

CLU1 

SUI2 

GCD11 

SUI3 

YGR054W 

YEF3; 
HEF3 

1.42 

1.78 

 1.29 

0.46 

0.20 

0.31 

-0.19 

0.17 

-0.64 

0.27 

0.73 
 

-2.08 

-2.34 

 

 

 -0.01 

-0.04 

0.19 

 0.73 

 -0.82 
 

1.23 

1.76 

-0.68 

1.40 

0.36 

1.26 

0.12 

-0.18 

-0.07 

-0.32 

0.10 

1.52 
 

-1.76 

-2.37 

0.21 

-0.54 

0.16 

 0.08 

0.29 

0.15 

0.68 

0.06 

-1.38 
 

0.92 

2.04 

-1.73 

2.38 

2.09 

 -0.07 

1.25 

1.02 

1.13 

1.94 

0.63 
 

-2.39 

-3.70 

1.37 

 -3.41 

 -2.08 

-1.25 

-1.34 

 -2.82 

-0.21 
 

4.51 

5.31 

3.72 

-0.32 

1.60 

1.22 

1.67 

0.26 

0.30 

 

 0.10 
 

-4.78 

-5.76 

-3.03 

-1.29 

-1.37 

-0.99 

-1.20 

0.09 

-0.05 

 -0.72 

-0.66 
 

 

Co-translational nascent peptide maturation steps reflected in mRNP proteome 

The nascent polypeptide emerging from the ribosomal exit tunnel undergoes several co-

translational maturation steps, which may include N-terminal enzymatic processing, chaperone-

assisted protein folding and targeting to endoplasmatic reticulum (ER). The ribosome plays an 

important role in the spatial and temporal coordination of these maturation steps by acting as a 

binding platform for the processing enzymes (reviewed in Kramer et al. 2009; Jha and Komar 

2011). The proteome of the studied mRNPs contains several enzymes participating in co-

translational maturation of the nascent peptide (Table 14). Among the proteins enriched in all 

three MS data sets are Ssb2, Ssz1 and Zuo1, which form a functional ribosome-associated 

chaperone triad (Matthias Gautschi et al. 2002; Leidig et al. 2013; Albanèse et al. 2006). Ssb2 and 

its functionally interchangeable isoform Ssb1 belong to the Hsp70 family of proteins (Boorstein, 

Ziegelhoffer, and Craig 1994) whose members participate in various protein folding processes in 

the cell (reviewed in Mayer and Bukau 2005). The chaperone function of Hsp70 proteins 

depends on ATP binding and hydrolysis. The J-domain co-chaperones promote stable Hsp70 
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interaction with the substrate by stimulating Hsp70 ATPase activity, whereas nucleotide exchange 

factors control the duration of Hsp70 interaction with the substrate by stimulating ADP-ATP 

exchange on Hsp70 (reviewed in Kampinga and Craig 2010). The co-chaperone function in the 

Ssb/Ssz1/Zuo1 ribosome-associated chaperone triad is performed by Ssz1 and Zuo1, which 

form the so-called ribosome-associated complex (RAC) (M Gautschi et al. 2001; P. Huang et al. 

2005; Conz et al. 2007). RAC dynamically associates with the ribosome in the vicinity of the 

peptide tunnel exit through Zuo1-mediated interactions with ribosomal proteins and rRNA 

(Raue, Oellerer, and Rospert 2007; Peisker et al. 2008; Leidig et al. 2013). Ssb associates with the 

ribosome independently of RAC (Rakwalska and Rospert 2004); however, the direct binding site 

of Ssb remains unknown (reviewed in Peisker, Chiabudini, and Rospert 2010). Unlike RAC, the 

co-immunoprecipitation of nascent polypeptides with Ssb is not abolished by ribosome release, 

suggesting a stable interaction between Ssb and the newly synthesised proteins (Albanèse et al. 

2006). Collectively, these findings indicate that Ssz1 and Zuo1 interaction with the MS2L-tagged 

RNAs is ribosome-mediated. Ssb2 interaction with the MS2L-tagged RNAs is also likely 

ribosome-mediated but interactions with the nascent peptide may contribute to Ssb2 co-

purification with PGK1-6MS2L and ENO2-6MS2L mRNAs. 

6MS2L-RNA co-purified with the α-subunit of the heterodimeric nascent polypeptide-

associated complex (NAC). The prevalent cellular version of yeast NAC is composed of an α-

subunit encoded by EGD2 and a β-subunit encoded by EGD1 (Reimann et al. 1999). The exact 

molecular function of NAC remains unknown; however, the complex interacts both with the 

nascent peptide and the ribosome (Reimann et al. 1999; Wiedmann et al. 1994; Beatrix, Sakai, and 

Wiedmann 2000; Wegrzyn et al. 2006) and has therefore been proposed to act as a molecular 

chaperone (reviewed in Kramer et al. 2009; Jha and Komar 2011). Ribosome-association of NAC 

is mediated by the β-subunit, which has been shown to bind to the large ribosomal subunit 

protein L25 located adjacent to peptide tunnel exit (Wegrzyn et al. 2006). The complex can be 

dissociated from ribosomes by high salt wash and purified as an intact heterodimer from both 

yeast and mammalian cells, thus suggesting a stable interaction between the α- and β-subunit 

(Wiedmann et al. 1994; Reimann et al. 1999). Considering the high salt concentration needed to 

release NAC from ribosomes (500 mM KAc) as well as the salt-resistance of the α- and β-subunit 

interaction, it is surprising that only one of the NAC subunits was enriched after 6MS2L-RNA 

affinity purification. Similarly, in ENO2-6MS2L MS data set the α- and β-subunit of NAC were 

enriched for only one of the biological replicate experiments. These results hint at the possibility 

that in our experimental setup the ribosome- and possibly also nascent peptide-mediated 

interaction between the MS2L-tagged RNA and the NAC complex might have been prone to 

dissociation.  
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Nascent polypeptide emergence from the peptide tunnel exit is for the majority of 

proteins accompanied by the removal of the N-terminal methionine (reviewed in Giglione, 

Boularot, and Meinnel 2004; Kramer et al. 2009; Jha and Komar 2011). The enrichment of 

methionine amonopeptidase-2/MAP2 (MetAP-2) after ENO2-6MS2L affinity purification 

suggests that the enolase 2 protein is subjected to N-terminal methionine excision (NME). 

Whether a protein undergoes NME or not is determined by the second residue; an N-terminal 

methionine followed by a small and uncharged residue is removed (Boissel et al. 1985; 

Tsunasawa, Stewart, and Sherman 1985; Flinta et al. 1986; Ben-Bassat et al. 1987; S. Huang et al. 

1987; Hirel et al. 1989; Moerschell et al. 1990). Importantly, the second residue in enolase 2, 

alanine, belongs to the group of amino acids known to elicit NME (Boissel et al. 1985; 

Tsunasawa, Stewart, and Sherman 1985; Flinta et al. 1986), thus suggesting that ENO2-6MS2L 

has been captured in complex with the nascent peptide undergoing NME. Pgk1 with serine as the 

second residue should also be subjected to NME; however, neither of the two N-terminal 

aminopeptidases expressed in yeast was enriched after PGK1-6MS2L affinity purification. 

Assuming that Pgk1 is an NME substrate, this result suggests that the interaction between Pgk1 

nascent peptide and the N-terminal aminopeptidase might have been lost during mRNP affinity 

purification.  

Co-purification of ENO2-6MS2L with the two subunits of the N-terminal 

acetyltransferase NatA reveals another nascent peptide enzymatic modification step. N-terminal 

acetylation is a very common protein modification in eukaryotic cells; more than 50% of yeast 

and 80% of mammalian proteins are N-terminally acetylated (Arnesen et al. 2009). Since in most 

of the yeast proteins the N-terminal methionine is removed, the majority of the proteins are 

acetylated by NatA – the N-terminal acetyltransferase family member whose activity depends on 

prior NME (Soppa 2010; Starheim, Gevaert, and Arnesen 2012; Kramer et al. 2009). The transfer 

of the acetyl moiety form acetyl coenzyme A to the N-terminal α-amino group is catalyzed by 

NatA subunit Ard1 (also known as Naa10); the auxiliary subunit Nat1 (also known as Naa15) 

mediates NatA ribosomal association (Matthias Gautschi et al. 2003; Polevoda et al. 2008) likely 

in the vicinity of the peptide tunnel exit (reviewed in Kramer et al. 2009). Surprisingly, enolase 2 

has been shown not to be N-terminally acetylated (Polevoda and Sherman 2003; Arnesen et al. 

2009), raising the question why an enzyme mediating N-terminal acetylation would co-purify with 

ENO2-6MS2L. The answer to this question may lie in the finding that Nat1 does not only cross-

link to nascent peptides that are NatA substrates but also efficiently cross-links to nascent 

peptides that are not subjected to N-terminal acetylation (Matthias Gautschi et al. 2003). Cross-

link formation between Nat1 and the nascent peptide is abolished after puromycin treatment, 

which leads to premature nascent chain release from the ribosome, indicating that Nat1 
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interaction with the nascent peptide can be ribosome-mediated (Matthias Gautschi et al. 2003). A 

likely explanation for Nat1 and Ard1 co-purification with ENO2-6MS2L would therefore be that 

ENO2-6MS2L mRNA is translated on ribosomes that are associated with NatA. Unlike enolase 

2, Pgk1 is N-terminally acetylated (Polevoda and Sherman 2003; Arnesen et al. 2009). Even 

though NatA subunits were not classified as enriched after PGK1-6MS2L affinity purification, 

Nat1 with log2 (H/L) ratio 0.41 in the forward experiment and -0.6 in the reverse experiment 

almost fulfilled the set threshold criteria for enriched proteins. Therefore, it seems likely that at 

least the ribosome-binding subunit of NatA complex has co-purified also with PGK1-6MS2L.  

 

Table 14. MS2L-tagged RNA co-purifying proteins involved in co-translational nascent peptide maturation. 
Log2 (H/L) ratios of enriched proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

Ribosome-associated chaperone triad 

P40150 

P38788 

P32527 
 

SSB2 

SSZ1 

ZUO1 
 

1.08 

0.90 

0.75 
 

-1.55 

-0.89 

-1.45 
 

1.89 

1.08 

1.10 
 

-1.74 

-1.42 

-1.37 
 

2.13 

2.83 

2.75 
 

-3.70 

-3.75 

-3.65 
 

1.68 

1.08 

1.01 
 

-1.49 

-0.63 

-0.62 
 

Nascent polypeptide-associated complex 

P38879 
 

EGD2 
 

  0.02 
 

-0.28 
 

0.39 
 

-1.36 
 

0.79 
 

-0.52 
 

N-terminal methionine excision 

P38174  MAP2   -0.31 0.54 2.25 -2.99  -0.48 

N-terminal acetylation by NatA 

P07347 

P12945 
 

ARD1 

NAT1 
 

-0.91 

0.49 
 

 
 0.41 

 

 -0.60 
 

1.67 

2.08 
 

-2.41 

-2.52 
 

 
-0.56 

 
 

 

mRNP proteome reveals complex translation regulation of MS2L-tagged RNAs  

Several proteins enriched in the three MS data sets are ribosome-associated proteins implicated in 

translation regulation (Table 15). The repertoire of these proteins suggests that the translation of 

the studied MS2L-tagge RNA is dynamically regulated to enable both active translation on 

polyribosomes as well as translational repression to promote mRNA decapping and decay.  

A highly enriched protein (>5-fold enrichment) in all three MS data sets involved in both 

translation-promoting and -repressing molecular events is Asc1 (Ceci et al. 2003; Shor et al. 2003; 

Chantrel et al. 1998; Sezen, Seedorf, and Schiebel 2009; Rachfall et al. 2013). Asc1 is a core 

protein of the 40S ribosomal subunit believed to mediate signals from the cellular signalling 

pathways to the ribosome (reviewed in J. Nilsson et al. 2004). Consistent with a role in signal 

transduction, the loss of ASC1 leads to defects in multiple cellular processes (Valerius et al. 2007; 

Rachfall et al. 2013; Zeller, Parnell, and Dohlman 2007; Melamed et al. 2010). This evolutionarily 
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highly conserved protein is located on the 40S subunit in close proximity to the mRNA exit site 

and is proposed to form a binding platform for the simultaneous recruitment of multiple factors 

(Sengupta et al. 2004; Taylor et al. 2009; Ullah et al. 2008). One such protein whose ribosome-

association seems to be partly mediated by Asc1 is Scp160 (Baum et al. 2004) – a protein also 

enriched after PGK1-6MS2L and 6MS2L-RNA affinity purification. Scp160 is a KH domain 

RNA-binding protein (Weber et al. 1997) proposed to bind most if not all cellular mRNAs 

(Hogan et al. 2008a). Scp160 has been shown to associate with cytosolic as well as membrane-

bound polyribosomes (Frey, Pool, and Seedorf 2001). The protein likely associates with 

polyribosomes as a component of mRNP complexes as suggested by the findings that Scp160 

polysome-association is mRNA-dependent (Frey, Pool, and Seedorf 2001) and that upon EDTA 

treatment, which dissociates polysomes and 80S monosomes into single subunits (Nolan and 

Arnstein 1969; Blobel 1971), Scp160 is released from ribosomes in a complex also containing the 

major yeast poly(A)-binding protein Pab1(Lang and Fridovich-Keil 2000). A third protein 

identified in complex with Scp160 and Pab1 after yeast cell cytosolic extract treatment with 

EDTA was Bfr1 (Lang and Fridovich-Keil 2000). This protein was also among the enriched 

proteins in our mRNP affinity purification experiments. Several lines of evidence suggest that 

Scp160 and Bfr1 are functionally related. Firstly, both proteins bind a large and overlapping set of 

cellular mRNAs (Hogan et al. 2008a). Secondly, gene deletion of either SCP160 or BFR1 results 

in similar phenotypes characterized by increased cell ploidy and abnormal cell morphology 

(Wintersberger, Kühne, and Karwan 1995; C. L. Jackson and Képès 1994). As mentioned above, 

the two proteins also seem to be physically associated as components of mRNP complexes (Lang 

and Fridovich-Keil 2000). Similarly to Scp160, Bfr1 associates with polyribosomes in an RNase-

sensitive manner (Lang et al. 2001). However, the exact molecular function of Scp160 and Bfr1 

interactions with the mRNA and polyribosomes has remained elusive. The deletion of BFR1 has 

been shown to largely disrupt Scp160 recruitment to polyribsomes; interestingly, the opposite 

was not observed (Lang et al. 2001). This finding suggests a role for Bfr1 in recruiting Scp160-

containing mRNPs to ribosomes for translation (Lang et al. 2001). The role of Scp160 in 

translation was recently addressed in our laboratory (Hirschmann et al. 2014). Unexpectedly, the 

results point to the possibility that Scp160 may exert its positive effect on translation by 

increasing the pool of tRNAs available for the translation machinery via promoting tRNA 

recycling and/or preventing tRNA diffusion. 

PGK1-6MS2L and ENO2-6MS2L have co-purified with two related proteins – the 

GTPase Rbg1 and its binding partner Tma46. Both proteins cosediment with 80S ribosomes and 

polyribosomes in sucrose density gradients, suggesting a function in translation (Francis et al. 

2012; Daugeron et al. 2011). Ribosome recruitment of the Rbg1-Tma46 complex is mediated by 
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the latter protein, which also modulates Rbg1’s GTP binding and hydrolytic activity (Francis et al. 

2012). Rbg1 and Tma46 seem to perform overlapping roles with several other proteins – a severe 

growth defect is only observed in a triple knock-out strain where RBG1 and its paralog RBG2 is 

deleted in combination with SLH1 (Daugeron et al. 2011), a gene encoding for a putative RNA 

helicase (Martegani et al. 1997; V. Pena et al. 2009). The reduced amount of polyribosomes and 

accumulation of 80S monosomes in Δrbg1Δrbg2Δslh1 strain hints at a possible role for Rbg1 and 

Tma46 in translation initiation because a similar change in polysome profile is observed also for 

strains defective in translation initiation (Daugeron et al. 2011). 

 

Table 15. MS2L-tagged RNA co-purifying proteins involved in translation regulating. Log2 (H/L) ratios of 
enriched proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

Possible role in general translation regulation 

P38011 

P06105 

P38934 
 

ASC1 

SCP160 

BFR1 
 

0.90 

0.79 

2.01 
 

-2.61 

-1.18 

-2.61 
 

2.68 

0.87 

1.79 
 

-3.02 

-0.76 

-2.60 
 

2.39 

-0.23 

3.05 
 

-3.68 

-0.93 

-4.43 
 

2.52 

1.49 

2.51 
 

-1.88 

-1.25 

-1.67 
 

Possible role in translation initiation 

P39729 

Q12000 

P53316 

P40561 
 

RBG1 

TMA46 

YGR250C 

SGN1 
 

3.95 

4.05 

0.67 

 
 

-2.76 

-2.96 

 -1.07 
 

2.49 

2.70 

1.23 

0.95 
 

-3.07 

-3.25 

-1.37 

-1.28 
 

2.87 

1.07 

 

 
 

-3.21 

-3.19 

-3.51 

-3.59 
 

 

 4.02 

3.92 
 

 

 -3.53 

-3.27 
 

Role in translation repression 

P10080 

P39015 

P39517 

P25644 
 

SBP1 

STM1 

DHH1 

PAT1 
 

1.97 

2.50 

 

 
 

-0.39 

-2.76 

 -3.82 
 

0.66 

2.51 

0.48 

3.76 
 

-0.91 

-2.97 

-0.54 

-4.70 
 

0.02 

2.54 

1.05 

3.88 
 

-2.07 

-4.39 

-2.34 

-6.48 
 

3.51 

1.82 

0.61 

3.19 
 

-2.03 

-1.42 

-0.01 

-3.13 
 

mRNA- and ribosome-associated protein 

Q04600 
 

TMA64 
 

  1.21 
 

-1.67 
 

3.33 
 

   

 

A putative RBP encoded by YGR250C (Feroli et al. 1997; Sartori et al. 2000) was 

enriched after PGK1-6MS2L and 6MS2L-RNA and possibly also after ENO2-6MS2L affinity 

purification. In case of the latter mRNA, Ygr250c was not quantified in the forward labelling 

experiment; however, the H/L ratio obtained in the reverse labelling experiment suggested >11-

fold enrichment. An interaction between Rbg1 and Ygr250c has been identified by yeast 2-hybrid 

system (Wout et al. 2009; Ito et al. 2000). However, this interaction was not observed in a 

genome-wide analysis of yeast protein complex composition (Gavin et al. 2006). Instead, the 

most highly scored Ygr250c’s interaction partner in this study was Sgn1 (Gavin et al. 2006) – an 

mRNA-binding protein proposed to modulate mRNA expression in the cytoplasm possibly by 
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enhancing translation initiation (Winstall et al. 2000). A role for Sgn1 in translation initiation is 

also supported by the findings of a genome-wide analysis of yeast protein complex composition. 

Namely, the two highest scoring interaction partners of Sgn1 in this study were eIF4G1/TIF4631 

and eIF4G2/TIF4632 (Gavin et al. 2006). Furthermore, 8 out of 10 identified interaction 

partners of Ygr250c (including eIF4G1/TIF4631 and eIF4G2/TIF4632) were also among the 

interaction partners of Sgn1 (Gavin et al. 2006), suggesting that the two proteins act in concert 

possibly as components of one protein complex.  

In our experiments Sgn1 was enriched, similarly to Ygr250c, after PGK1-6MS2L and 

6MS2L-RNA affinity purification. In case of ENO2-6MS2L, Sgn1 was not quantified in the 

forward labelling experiment but was >12-fold enriched in the reverse labelling experiment, 

suggesting that the protein might also associate with ENO2-6MS2L-containig mRNPs. The 

missing H/L ratio in ENO2-6MS2L MS data set for both Sng1 and Ygr250c in the forward 

labelling experiment and a similar enrichment level in the reverse labelling experiment supports 

the notion that the two proteins might function as part of one protein complex.  

Several enriched proteins in each MS data set have been implicated in translation 

repression. These proteins include Sbp1, Stm1 and the mRNA decapping activators Dhh1 and 

Pat1. The latter protein was enriched in all three MS data sets and with >8.5-fold enrichment was 

also the most highly enriched of the four above-mentioned proteins. In vitro experiments have 

shown that Pat1 interferes with an early step in translation by limiting the formation of 48S PIC 

(Nissan et al. 2010). 

The second protein among the translational repressors enriched in all three MS data sets 

was Stm1. This ribosome-associated protein (M. W. Van Dyke et al. 2004; N. Van Dyke, Baby, 

and Van Dyke 2006) has been shown by genetic analysis to promote Dhh1-meidated translational 

repression and mRNA decay (Balagopal and Parker 2009). In vitro studies have revealed that Stm1 

can block translation after ribosomal subunit joining (Balagopal and Parker 2011).  

The determined H/L ratios hint at the possibility that Sbp1 and Dhh1 are similarly to 

Pat1 and Stm1 enriched after the affinity purification of all three MS2L-tagged RNAs. However, 

the set threshold criteria for enriched proteins were fulfilled by Sbp1 only after PGK1-6MS2L and 

6MS2L-RNA affinity purification and by Dhh1 only after ENO2-6MS2L affinity purification. 

Translational repression upon glucose deprivation is attenuated in Δsbp1 as well as in Δdhh1 yeast 

cells, revealing a role for both proteins in global translation repression of mRNAs (J. Coller and 

Parker 2005; Segal, Dunckley, and Parker 2006). Genetic analysis has shown that Sbp1 and Dhh1 

function together to promotes translation repression (Segal, Dunckley, and Parker 2006); 

however, Dhh1 alone is required for mRNA decapping, revealing an important difference in the 

function of the two proteins (Segal, Dunckley, and Parker 2006; J. M. Coller et al. 2001). Sbp1 
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has been proposed to block the recruitment of 43S PIC to the mRNA because recombinant Sbp1 

can directly bind eIF4G and repress the translation of a reporter mRNA (Rajyaguru, She, and 

Parker 2012). In vitro, Dhh1 has been shown to interfere with stable 48S PIC formation (J. Coller 

and Parker 2005), whereas in vivo the protein seems to interfere with the elongation step by 

reducing ribosome transit rate (Sweet, Kovalak, and Coller 2012). 

The protein encoded by TMA64 was enriched after PGK1-6MS2L and possibly also after 

ENO2-6MS2L affinity purification. In case of the latter mRNA, Tma64 was 10-fold enriched in 

the forward labelling experiment but was not quantified in the reverse labelling experiment, 

suggesting that the protein might have dissociated form the mRNP during affinity purification. 

The function of Tma64 is unknown. The protein contains a putative pseudouridine synthase and 

archaeosine transglycosylase (PUA) RNA-binding domain (Fleischer et al. 2006), which, among 

other proteins, is found in pseudouridine synthase enzymes and in RNA methyl transferases 

(reviewed in Pérez-Arellano, Gallego, and Cervera 2007). Tma64 has been found to co-purify 

with ribosomes (Fleischer et al. 2006) and with epitope-tagged Pab1 in an RNA-independent 

manner (R. Richardson et al. 2012). These findings hint at the possibility that Tma64 is a 

component of mRNPs engaged in translation. 

 

MS2L-tagged RNAs seem to be largely degraded in the  

5′→3′ exonucleolytic decay pathway  

All studied MS2L-tagged RNAs have co-purified with several mRNA decay factors (Table 16). 

The repertoire of these proteins suggests that the decay of PGK1-6MS2L and ENO2-6MS2L and 

possibly also 6MS2L-RNA is mechanistically similar and involves the same cellular mRNA decay 

pathways. Most of the identified mRNA decay factors were highly enriched after MS2L-tagged 

RNA affinity purification with log2 (H/L) ratios >2 or <-2. The high enrichment of mRNA 

decay factors suggests that mRNA degradation comprises a prominent step in the life cycle of the 

studied RNAs. 

The proteome of PGK1-6MS2L and ENO2-6MS2L-containing mRNPs indicates that the 

mRNAs are degraded in 5′→3′ exonucleolytic decay pathway. The prerequisite for mRNA 

degradation in 5′→3′ direction is 5′ cap removal. Indeed, both MS2L-tagged mRNAs have co-

purified with almost the entire set of proteins known to assemble into a decapping mRNP, 

including the two subunits of the decapping complex and several decapping activators (see 

Introduction, “Decapping” and references therein). Dcp2, the catalytic core of the decapping 

complex, was >9-fold enriched after PGK1-6MS2L and ENO2-6MS2L affinity purification and 

Dcp1, which stimulates the catalytic step, was >2.5-fold enriched. Structural analysis of the yeast 
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decapping complex has shown that Dcp2 and Dcp1 form a 1:1 complex (She et al. 2008) with 

Dcp2 being the subunit that interacts with the 5′ cap and the mRNA body (Deshmukh et al. 

2008). Therefore, the lower enrichment level of Dcp1 likely reflects the loss of this subunit from 

the decapping complex during affinity purification. 

 

Table 16. MS2L-tagged RNA co-purifying proteins involved in mRNA decay. Log2 (H/L) ratios of enriched 
proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

Decapping complex 

P53550 

Q12517 
 

DCP2 

DCP1 
 

4.38 

 
 

-5.01 

 
 

4.28 

1.91 
 

-4.10 

-2.29 
 

3.24 

1.52 
 

-3.90 

-2.71 
 

 

 -0.07 
 

Decapping activators
a
 

P39998 

P40070 

P47017 

P38203 
 

EDC3 

LSM4 

LSM1 

LSM2 
 

 -4.04 

 

 -0.49 
 

3.54 

1.59 

1.82 

3.26 
 

-4.00 

-1.55 

 

 
 

3.11 

0.58 

2.46 

2.87 
 

-4.60 

-0.82 

-2.94 

-3.17 
 

 3.42 

 

 
 

 -2.23 

-2.81 

 
 

mRNA exoribonucleases 

P22147 

P53010 

P36102 
 

XRN1 

PAN2 

PAN3 
 

2.99 

 

 
 

-3.42 

 

 
 

2.89 

3.09 

3.13 
 

-2.98 

-3.88 

-4.30 
 

3.16 

3.10 

3.10 
 

-4.08 

-4.45 

-4.22 
 

3.39 

4.63 

5.87 
 

-2.60 

-4.99 

-4.74 
 

Nonsense-mediated decay 

P30771 

Q03466 

Q12129 
 

UPF1 

EBS1 

NMD4 
 

6.78 

4.99 

 
 

-7.41 

-5.20 

 
 

5.92 

4.47 

4.65 
 

-6.08 

-5.49 

 
 

3.18 

4.86 

1.65 
 

-4.78 

-4.72 

-4.17 
 

4.45 

 4.56 
 

-4.08 

 -3.06 
 

a 
The Log2 (H/L) of decapping activators Pat1 and Dhh1 are listed in table 15.

 

 

From the well characterized decapping activators Pat1, Dhh1, Scd6, Edc3 and Lsm1-7 

only Scd6 was not found among the enriched proteins after PGK1-6MS2L or ENO2-6MS2L 

affinity purification. Pat1 and Edc3 with >8.5-fold enrichment were the most highly enriched 

decapping activators in both MS data sets. Dhh1 was >2-fold enriched after ENO2-6MS2L 

affinity purification. The protein did not classified as enriched after PGK1-6MS2L affinity 

purification; however, the determined log2 (H/L) ratios 0.48 and -0.54 suggest that Dhh1 also co-

purified with PGK1-6MS2L. Neither PGK1-6MS2L nor ENO2-6MS2L co-purified with all seven 

subunits of the Lsm1-7 complex. The enriched subunits included Lsm4, Lsm1 and Lsm2 in 

ENO2-6MS2L MS data set and Lsm4 in PGK1-6MS2L MS data set. In case of the latter mRNA, 

Lsm1 and Lsm2 were enriched in the forward labelling experiment but were not quantified in the 

reverse labelling experiment, suggesting that the same set of Lsm1-7 subunits may have co-

purified with PGK1-6MS2L as with ENO2-6MS2L. The absence of Lsm3 and Lsm5-7 among the 

enriched proteins, as well as Lsm1 and Lsm2 missing detection in PGK1-6MS2L reverse 
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experiment indicates that Lsm1-7 complex is prone to dissociation during mRNP affinity 

purification. Interestingly, the Lsm subunits enriched in our MS data sets have been shown to 

interact with mRNA or with Pat1 (Chowdhury, Mukhopadhyay, and Tharun 2007; Sharif and 

Conti 2013; D. Wu et al. 2013). These interactions likely help to maintain Lsm4, Lsm1 and Lsm2 

attached to the mRNP during MS2L-tagged mRNA affinity purification. 

Decapped mRNAs are rapidly degraded by the 5′→3′ exoribonuclease Xrn1. Xrn1was 

>7-fold enriched after PGK1-6MS2L and ENO2-6MS2L affinity purification, indicating that the 

exorbonuclease is, at least partly, responsible for the degradation of MS2L-tagged PGK1 and 

ENO2. 

The set of mRNA decay factors co-purifying with 6MS2L-RNA had one major difference 

compared to PGK1-6MS2L and ENO2-6MS2L co-purifying proteins – the two subunits of the 

decapping complex did not co-purify with 6MS2L-RNA. However, other important components 

of the 5′→3′ exonucleolytic decay pathway, including Pat1 and the Lsm4 subunit of the Lsm1-7 

complex plus the 5′→3′ exoribonuclease Xrn1, were among the enriched proteins. These results 

suggest that 6MS2L-RNA is similarly to PGK1-6MS2L and ENO2-6MS2L degraded in 5′→3′ 

decay pathway. The decapping complex might have been lost from 6MS2L-RNA during affinity 

purification.  

In the deadenylation dependent mRNA decay pathway mRNA decapping and 5′→3′ 

exonucleolytic decay is preceded by poly(A) tail shortening to oligo(A) length. Surprisingly, none 

of the MS2L-tagged RNAs co-purified with components of the Ccr4-Not complex, which is 

believed to be the major poly(A)-specific 3′ exoribonuclease in yeast (see Introduction, 

“Deadenylation” and references therein). Instead, the components of the heterodimeric Pan2-

Pan3 complex were >8-fold enriched in all three MS data set. Pan2-Pan3 complex has been 

shown to mediate the shortening of the newly synthesised poly(A) tails to mRNA-specific 

lengths. Therefore, the enrichment of Pan2-Pan3 in all three MS data sets may reflect the 

trimming step of poly(A) tails of the MS2L-tagged RNAs. However, resent findings by Sun et al. 

(M. Sun et al. 2013) suggest that Pan2-Pan3 complex could also perform the deadenylation of the 

MS2L-tagged RNAs leading to mRNA decapping and decay. Namely, comparative dynamic 

transcriptome analysis suggested that Ccr4-Not and Pan2-Pan3 deadenylase complexes prefer 

different mRNA substrates (M. Sun et al. 2013). Unfortunately, PGK1 and ENO2 were not 

among the analysed mRNAs in this study and therefore it is not known if these mRNAs would 

be preferentially deadenylated by Pan2-Pan3 complex. It remains possible that Pan2-Pan3 

complex is, in addition to trimming the initially synthesised poly(A) tails, responsible for PGK1-

6MS2L, ENO2-6MS2L and 6MS2L-RNA deadenylation, ultimately leading to the 5′→3′ 

exonucleolytic decay of these RNAs.  
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MS2L-tagged RNAs may be targeted by nonsense-mediated decay 

The most highly enriched protein after PGK1-6MS2L affinity purification in the two biological 

replicate experiments was Upf1 – the key effector of nonsense-mediated mRNA decay pathway 

(see Introduction, “NMD factors and consequences of their activation” and references therein). 

The protein was also highly enriched after ENO2-6MS2L and 6MS2L-RNA affinity purification, 

raising the possibility that the studied MS2L-tagged RNAs may be targeted by NMD (Table 16).  

The only difference between PGK1-6MS2L and ENO2-6MS2L and the respective wt 

mRNAs is the 6MS2L tag inserted immediately downstream of the translation termination 

codon, which increases the distance to poly(A) tail by 421 nt compared to wt mRNA. Positioning 

the normal stop codon too far upstream of the poly(A) tail has been shown to redefine the stop 

codon as premature and activate NMD (see Introduction, “NMD targets and the mechanism of 

their recognition” and references therein). The MS2L-tagging technique (Haim et al. 2007) may 

thus have the potential to turn wt mRNAs into NMD targets.  

6MS2L-RNA may also contain NMD-activating features, which may include a large 

distance between the stop codon and the poly(A) tail. Proteins of the translation machinery co-

purifying with 6MS2L-RNA indicate that the transcript is translated. Therefore, 6MS2L-RNA 

seems to be sensed as an mRNA by the yeast cells. If the first AUG codon of the predicted 

6MS2L-RNA transcript (see Results, “Control RNA to determine the effect of MS2L tag on 

mRNP protein composition”) is used to initiate translation, 500 nt would separate the translation 

stop codon from the poly(A) tail, possibly leading to NMD activation due to a large distance 

between the stop codon and the poly(A) tail. 

Other enriched proteins in the three MS data sets implicated in NMD include Ebs1 and 

Nmd4. Ebs1 was >22-fold enriched after PGK1-6MS2L and ENO2-6MS2L affinity purification 

but was missing among the enriched proteins after 6MS2L-RNA purification. Nmd4 was 

enriched after ENO2-6MS2L and 6MS2L-RNA affinity purification. In case of PGK1-6MS2L 

purification, the protein was 25-fold enriched in the forward experiment but was not quantified 

in the reverse experiment, suggesting that Nmd4 might have dissociated from the mRNP during 

affinity purification. Very little is known about the role of Nmd4 in nonsense-mediated decay. 

The protein was originally identified in a yeast 2-hybrind screen searching for Upf1 interaction 

partner (F He and Jacobson 1995). Later genetic studies have shown that NMD4 deletion 

suppresses growth defects in Δxrn1 cells, whereas the deletion of NMD4 in Δlsm7 or Δski2 cells 

leads to a stronger growth defect than in single mutants (Wilmes et al. 2008). The role of Ebs1 in 

NMD is also not well defined. The protein seems to perform a non-essential function in 

canonical NMD as suggested by the finding that the level of NMD substrates is less elevated in 

Δebs1 cells than in Δupf1, Δupf2 or Δupf3 cells (Luke et al. 2007). Upf1 co-immunoprecipitates 
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with Ebs1 in an RNase-insensitive manner, suggesting a physical interaction between the proteins 

(Luke et al. 2007). 

 

MS2L-tagged RNA co-purifying proteins implicated in poly(A) tail-mediated interactions 

Poly(A) tail provides a platform for a multitude of RNA-protein and protein-protein interactions. 

An important role in the poly(A) tail-mediated interactions is played by the major yeast poly(A)-

binding protein Pab1. In one study the protein was shown to be involved in about 200 RNA-

dependent but ribosome-independent protein-protein interactions (Klass et al. 2013). Another 

study identified 55 proteins that co-immunoprecipitated with Pab1 in an RNA-independent 

manner (R. Richardson et al. 2012). Collectively, these two studies identify a set of proteins that 

associate with Pab1-containing mRNPs. Table 17 shows the identified proteins in the above-

mentioned studies that were also enriched in our affinity purification experiments. Altogether, 61 

proteins enriched in our MS data sets have previously been found to co-purify with Pab1, 

indicating that the MS2L-tagged RNAs are involved in multiple protein-protein interactions 

through their Pab1-bound poly(A) tails. The current chapter will focus on four proteins in the 

SILAC protein-protein interaction networks whose association with the mRNP is mediated by 

the poly(A) tail (Table 18). 

As expected, Pab1 was enriched after PGK1-6MS2L and ENO2-6MS2L affinity 

purification, indicating that these mRNAs carry a poly(A) tail that is bound by Pab1. Pab1 was 

enriched also after 6MS2L-RNA affinity purification, confirming our hypothesis that the CYC1 

transcriptional terminator would provide the necessary signals for poly(A) addition to the 

6MS2L-RNA transcript. Surprisingly, the enrichment level of Pab1 was roughly 6-fold higher 

after 6MS2L-RNA affinity purification compared to the affinity purifications of the two MS2L-

tagged mRNAs. This finding hints at the possibility that compared to the MS2L-tagged mRNAs, 

6MS2L-RNA has on average a longer poly(A) tail that can accommodate more Pab1 molecules, 

thus leading to a higher enrichment level of Pab1 after 6MS2L-RNA affinity purification 

(Beilharz and Preiss 2007). A difference in the average poly(A) tail length can reflect differences 

in deadenylation and mRNA decay kinetics (reviewed in Eckmann, Rammelt, and Wahle 2011); 

however, it remains to be experimentally determined whether the deadenylation rate differs 

between 6MS2L-RNA and the MS2L-tagged mRNAs. 
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Table 17. MS2L-tagged RNA co-purifying proteins previously found to co-purify with epitope-tagged Pab1 
(see next page). Protein co-purification with Pab1 was shown to be RNA-independent (reference 1) or RNA-
dependent but ribosome-independent (reference 2). An MS2L-tagged RNA co-purifying protein was considered 
enriched if it fulfilled the threshold criteria log2 (H/L) > 0.5 or <0.5 (+). 
 

Description Reference
a
 Gene BB

b
 RNase ENO2 6MS2L 

Translation initiation, elongation
c
 1, 2 eIF4G1/TIF4631 + + + + 

 1,2 eIF4G2/TIF4632 + + + + 
 2 eIF5B/FUN12   + + 
 2 eIF2α/SUI2   +  
 2 eIF2γ/GCD11   +  
 1, 2 eIF2A/YGR054w   +  
 2 eIF4E/CDC33    + 
 1, 2 eIF3 p135/CLU1    + 
 1, 2 eEF3/YEF3 + +   

Translation repression 2 STM1 + + + + 
 2 PAT1  + + + 
 2 SBP1  +  + 

mRNA decay 1, 2 XRN1 + + + + 
 2 LSM4  + + + 
 2 LSM2   +  

Nonsense-mediated decay 1 UPF1 + + + + 
 2 EBS1 + + +  

Nuclear cap-binding complex 2 CBC2    + 
 1, 2 CBC1    + 

Poly(A)
+
 RNA-binding protein 1 HRB1  + +  

 2 NAB2  +  + 
 1, 2 PUB1  +  + 

RNA-binding protein 2 BFR1 + + + + 
 2 KHD1  + + + 
 2 SRO9  + +  
 1, 2 YGR250C  +  + 
 1, 2 SGN1  +  + 
 1 LHP1  +   
 2 DED1    + 

Splicing 2 MSL5   +  
 2 PSP2   +  

Ribosome biogenesis 2 ARX1 + + +  
 1, 2 CBF5 +  +  
 1, 2 RRP5    + 
 2 DIM1 +    
 2 RRP7 +    
 2 UTP22 +    
 2 NOP4 +    
 1 KRR1 +    
 1 KRI1 +    
 1 NUG1 +    

Mitochondrial 1, 2 MIS1 +  + + 
 1, 2 YLR419W +  +  
 2 SHM1   + + 
 2 MGM101   +  
 2 MSS116 +    

Translation machinery-associated 2 RBG1 + + +  
 1, 2 TMA46 + + +  

Ubiquitin-specific protease 1, 2 UBP3 + + + + 
Ubiquitin protease cofactor 2 BRE5 +    

Inosine monophosphate dehydrogenase 2 IMD4  + + + 

Nascent peptide maturation 2 ARD1   +  

Histone acetyltransferase complex 2 TRA1 +    
 

a
 Reference 1 (R. Richardson et al. 2012), reference 2 (Klass et al. 2013). 

b
 Abbreviations: BB – Boiled Beads sample of PGK1-6MS2L affinity purification, RNase – RNase eluate of PGK1-6MS2L 

affinity purification. 
c
 Ribosomal proteins are omitted from the comparison.  
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Pab1 has been found to interact with Pbp1 in yeast 2-hybrid assay (D A Mangus, Amrani, 

and Jacobson 1998). Using the same method, an interaction was identified between Pbp1 and 

Pbp4 (David A Mangus, Smith, et al. 2004), as well as between Pbp1 and Mkt1 (Tadauchi et al. 

2004). ENO2-6MS2L and 6MS2L-RNA co-purified with all four above-mentioned proteins. 

PGK1-6MS2L co-purified with Pab1 and Mkt1 and possibly also with Pbp1, which was among 

the enriched proteins in the forward labelling experiment but was not quantified in the reverse 

labelling experiment (Table 18). The exact molecular function of Pbp1, Mkt1 and Pbp4 is not 

well defined; all three proteins are encoded by non-essential genes and seem to regulate the 

expression of their target mRNAs at the post-transcriptional level. Pbp1 is a negative regulator of 

Pan2-Pan3 deadenylase activity (David A Mangus, Smith, et al. 2004); the protein cosediments 

with polyribosomes in sucrose density gradients (D A Mangus, Amrani, and Jacobson 1998; 

Tadauchi et al. 2004) and localizes to stress granules upon glucose deprivation (Buchan, Muhlrad, 

and Parker 2008). Stress granules are thought to store mRNPs stalled in translation initiation 

because the typical components of these cytoplasmic aggregates are translation initiation factors 

and the 40S ribosomal subunit (reviewed in Carolyn J. Decker and Parker 2012). Pbp1 also plays 

a role in stress granule formation as indicated by  a strong reduction in stress granule formation 

in Δpbp1 cells upon glucose deprivation (Buchan, Muhlrad, and Parker 2008). Glucose 

deprivation also leads to the accumulation of Pbp4 in stress granules; however, unlike Δpbp1 cells, 

Δpbp4 cells do not show a strong defect in stress granule formation (Swisher and Parker 2010). 

 

Table 18. MS2L-tagged RNA co-purifying proteins that either directly or indirectly bind the poly(A) tail. Log2 
(H/L) ratios of enriched proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

P04147 

P53297 

Q07362 

P40850 
 

PAB1 

PBP1 

PBP4 

MKT1 
 

2.46 

1.55 

 1.49 
 

-3.26 

-2.00 

 -1.67 
 

2.58 

1.30 

-0.51 

1.34 
 

-3.36 

 0.43 

-1.60 
 

2.12 

2.75 

3.30 

2.00 
 

-3.66 

-4.12 

-3.43 

-2.95 
 

5.33 

3.23 

3.49 

3.43 
 

-5.58 

-2.99 

-2.67 

-2.88 
 

 

Pbp1 has been implicated together with Mkt1 in positive regulation of HO endonuclease 

mRNA translation (Tadauchi et al. 2004). Similarly to Pbp1, Mkt1 cosediments with 

polyribosomes (Tadauchi et al. 2004). Mkt1 polysome-association depends on Pbp1, but not vice 

versa (Tadauchi et al. 2004). A role for Mkt1 in post-transcriptional gene expression regulation is 

further supported by the large number of different cellular processes that are influenced by allelic 

variation of MKT1. Namely, the gene encoding for MKT1 has been identified in several 

quantitative trait locus mapping studies to provide resistance to stressful growth conditions 

including exposure to high temperature (L. M. Steinmetz et al. 2002; Sinha et al. 2006), high 
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ethanol (Swinnen et al. 2012) or low glucose (Parreiras, Kohn, and Anderson 2011). MKT1 allelic 

variation also contributes to sporulation efficiency (Deutschbauer and Davis 2005), 

mitochondrial genome maintenance (Dimitrov et al. 2009) and drug sensitivity (Demogines et al. 

2008).  

 

A subpopulation of MS2L-tagged RNA-containing mRNPs might be sequestered to 

stress granules for translation repression 

The more than 6-fold enrichment of two stress granule components, Pbp1 and Pub4, after 

ENO2-6MS2L and 6MS2L-RNA affinity purification (Table 18) hinted at the possibility that a 

subpopulation of mRNPs containing these two transcripts might be stalled in the process of 

translation initiation and are possibly localized to stress granules. Stress granules generally contain 

40S ribosomal subunits and translation initiation factors eIF4E, eIF4G, eIF4A, eIF4B, eIF3 and 

eIF2. Besides these components, four additional proteins are considered to be typical stress 

granule constituents: Pab1 and Pbp1 discussed in the previous chapter plus Pub1 and Ded1 

(reviewed in Carolyn J. Decker and Parker 2012).  

Pub1 was enriched after PGK1-6MS2L and 6MS2L-RNA affinity purification and likely 

co-purified also with ENO2-6MS2L (Table 19). Besides Pab1, Pub1 is the major proteins that is 

crosslinked to poly(A)+ RNA by UV light (J. T. Anderson, Paddy, and Swanson 1993; Matunis, 

Matunis, and Dreyfuss 1993). The protein contains three RNA recognition motifs, which have a 

high binding preference for U- or UA-rich sequences (Santiveri et al. 2011). Pub1 has been 

shown to directly bind to eIF4G1/TIF4631 (Santiveri et al. 2011) and to the poly(A)+ RNA-

binding protein Nab2 (Apponi et al. 2007), both of which were among the enriched proteins in 

several MS data sets (Table 13 and 20). Pub1 does not co-sediment with polyribosomes on 

sucrose density gradients (J. T. Anderson, Paddy, and Swanson 1993; Ripmaster and Woolford 

1993), which is in agreement with a role as a component of translationally inactive mRNPs 

(Buchan, Muhlrad, and Parker 2008). Interestingly, Pub1 was considerably more enriched after 

6MS2L-RNA affinity purification (>4.5-fold enrichment) compared to PGK1-6MS2L affinity 

purification (>1.5 fold enrichment), suggesting that the subpopulation of translationally repressed 

mRNPs might be higher for 6MS2L-RNA. 

The DEAD-box RNA helicase Ded1 (reviewed in Tarn and Chang 2009) was enriched 

only after 6MS2L-RNA affinity purification. The later protein seems to play an important 

regulatory role in stress granule formation (Hilliker et al. 2011). On the one hand, Ded1 may act 

as a translational repressor because the binding of Ded1 to eIF4F leads to mRNP accumulation 

in stress granules. On the other hand, Ded1 may activate translation in an ATP-dependent 
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manner. ATP hydrolysis by Ded1 leads to mRNP exit from stress granules and completion of 

translation initiation (Hilliker et al. 2011). The relatively low enrichment level (>1.5-fold 

enrichment) of Ded1 after 6MS2L-RNA affinity purification suggests that only a minor fraction 

6MS2L-RNA-containing mRNPs are associated with this protein. 

 

Table 19. MS2L-tagged RNA co-purifying proteins implicated in stress granule formation. Log2 (H/L) ratios of 
enriched proteins are in bold. 
 

Protein ID
a
 Gene 

BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

P32588 

P06634 
 

PUB1 

DED1 
 

 0.23 
 

 0.07 
 

0.65 

0.22 
 

-0.73 

0.02 
 

0.35 

0.55 
 

-1.80 

0.45 
 

2.89 

1.09 
 

-2.22 

-0.64 
 

a
 The Log2 (H/L) of stress granule components Pab1 and Pbp1 are listed in table 18. 

 

 

The nuclear history of MS2L-tagged RNAs is reflected by the enriched RBPs 

All three tested MS2L-tagged RNAs have co-purified primarily with proteins whose steady state 

localization is cytoplasmic. The nuclear phase of mRNA life cycle of the studied transcripts is 

reflected by a few enriched shuttling RNA-binding proteins and nuclear RNA decay factors 

(Table 20). 

The enriched shuttling RBPs co-purifying with MS2L-tagged RNAs include Nab2, Hrb1, 

Sro9 and Khd1 (also known as Hek2), all of which were enriched after PGK1-6MS2L affinity 

purification. ENO2-6MS2L co-purified with Hrb1 and Sro9 and possibly also with Nab2 and 

Khd1, which were enriched in one of the biological replicate experiments. 6MS2L-RNA co-

purified with Nab2 and Khd1 but not with Sro9 or Hrb1. The latter protein is a shuttling SR-like 

RBP (Häcker and Krebber 2004) that is recruited to the transcribed genes via the THO complex 

(Häcker and Krebber 2004; E. Hurt et al. 2004). Recent findings indicated that Hrb1 is a quality 

control factor that ensures the export of only correctly spliced mRNAs (Hackmann et al. 2014). 

Hrb1 may recruit the TRAMP complex to initiate mRNA decay of incorrectly spliced transcripts 

(Hackmann et al. 2014). On properly spliced mRNAs, however, Hrb1 can recruit the mRNA 

export receptor Mex67 to enable quality controlled mRNA export (Hackmann et al. 2014).  

Interestingly, the binding of Hrb1 is not limited to intron-containing transcripts (E. Hurt et al. 

2004; Hackmann et al. 2014), explaining why the protein co-purified with PGK1-6MS2L and 

ENO2-6MS2L derived from intronless genes. 

Sro9, which similarly to Hrb1 co-purified with PGK1-6MS2L and ENO2-6MS2L, is 

associated with both transcribed genes (Röther et al. 2010) and translating ribosomes (Sobel and 

Wolin 1999). The protein has therefore been proposed to be loaded onto mRNA during 
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transcription and shuttle with the mature mRNP to cytoplasm (Röther et al. 2010). The exact 

molecular function of Sro9 remains unknown; however, since the protein has been shown not to 

be essential for the expression and stability of specific transcripts, the association of Sro9 with 

translating ribosomes hints at a role for Sro9 in translation regulation of bound mRNAs (Röther 

et al. 2010). 

 

Table 20. Nuclear or shuttling RNA-binding proteins that co-purify with MS2L-tagged RNAs. Log2 (H/L) ratios 
of enriched proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

Shuttling RNA-binding proteins 

P32505 

P38922 

P25567 

P38199 
 

NAB2 

HRB1 

SRO9 

KHD1 
 

  1.16 

1.77 

1.30 

0.54 
 

-1.25 

-1.87 

-1.69 

-0.76 
 

1.78 

3.10 

1.65 
 

 -5.22 

-3.69 

-2.63 
 

3.80 

 

 3.05 
 

-3.75 

 

 -2.38 
 

Nuclear cap-binding complex 

Q08920 

P34160 
 

CBC2 

CBC1 
 

  

 0.79 
 

-0.12   4.68 

4.89 
 

-4.74 

-5.38 
 

Nuclear mRNA decay factors 

P47047 

Q02792 
 

MTR4 

RAT1 
 

0.36  0.12 

0.05 
 

0.33 

0.12 
 

0.95 

1.21 
 

 -1.52 
 

0.99 

 
 

-0.60 

-1.52 
 

 

The multifunctional poly(A)+ RNA binding protein Nab2 (see Introduction, “mRNP 

export factors are recruited during transcription”) co-immunoprecipitates with a large fraction of 

the yeast transcriptome, including PGK1 (Batisse et al. 2009). This protein-mRNA interaction 

could be confirmed – Nab2 was moderately enriched (>2-fold enrichment) after PGK1-6MS2L 

affinity purification.  Co-purification of Nab2 with ENO2-6MS2L was detected only in the 

forward labelling experiment (3.4-fold enrichment), suggesting that ENO2-6MS2L interaction 

with Nab2 might have been lost during affinity purification in the reverse labelling experiment. 

Remarkably, Nab2 was >13-fold enriched after 6MS2L-RNA affinity purification. This finding 

points to the possibility that the mRNA-like 6MS2L-RNA transcript may be differently regulated 

than the MS2L-tagged mRNAs. Nab2 is released from the mRNP at the cytoplasmic face of the 

nuclear pore complex (reviewed in Oeffinger and Zenklusen 2012). The higher level of Nab2 co-

purification with 6MS2L-RNA therefore suggests that 6MS2L-RNA-containg ribonucleoprotein 

complex export form the nucleus to the cytoplasm and/or remodelling at the NPC cytoplasmic 

face may happen at a slower rate compared to MS2L-tagged mRNA-containing mRNPs.  

The KH-domain protein 1, Khd1, was moderately enriched (>1.41-fold enrichment) after 

PGK1-6MS2L and relatively highly enriched (>5.2-fold enrichment) after 6MS2L-RNA affinity 

purification. The 6.2-fold enrichment of Khd1 in ENO2-6MS2L forward labelling experiment 
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suggests that Khd1 might also interacts with this mRNA. Even though Khd1 is associated with a 

large number of yeast transcripts (Hasegawa, Irie, and Gerber 2008; Hogan et al. 2008a), the 

interaction with PGK1 and ENO2 has previously not been reported (Hasegawa, Irie, and Gerber 

2008), suggesting that Khd1 may have even more cellular targets than currently known. Hogan et 

al. have shown that immunoaffinity enrichment of mRNAs associated with Khd1 is negatively 

correlated with ribosome occupancy (Hogan et al. 2008a). Since Khd1 is required for the 

translational repression of ASH1 mRNA expression during mRNA localization to the distal tip 

of the daughter cell (Paquin et al. 2007), the protein has been proposed to participate also in the 

translational control of its other target mRNAs (Hogan et al. 2008a). 

6MS2L-RNA has co-purified with the two subunits of the nuclear cap-binding complex. 

Remarkably, more than 25-fold enriched, Cbc2 and Cbc1 (also known as Sto1) were among the 

most highly enriched proteins in 6MS2L-RNA MS data set. In contrast, the nuclear CBC 

subunits were not among the enriched proteins after affinity purification of the two MS2L-tagged 

mRNAs. Despite this, PGK1 and ENO2 are expected to be bound by the nuclear CBC (see 

Introduction, “Transcription elongation and the concomitant pre-mRNA processing events” and 

references therein). A 1.7-fold enrichment of Cbc1 in PGK1-6MS2L forward labelling experiment 

therefore suggests that only a minor fraction of the total cellular PGK1-6MS2L or ENO2-6MS2L 

pool is bound by the nuclear CBC. The steady state translation depends on the cap-binding 

translation initiation factor eIF4E (reviewed in Topisirovic et al. 2011). The exchange of the 

nuclear CBC to eIF4E is thought to take place before or during the pioneer round of translation 

(see Introduction, “Translation is accompanied by mRNP remodelling” and references therein). 

The absence of Cbc2 and Cbc1 among the enriched proteins after MS2L-tagged mRNA affinity 

purification indicates that the majority of cellular PGK1-6MS2L and ENO2-6MS2L transcripts 

have lost the nuclear CBC. Therefore, it is plausible to think that the MS2L-tagged mRNAs 

become rapidly engaged in translation upon export from the nucleus. The efficiency of 

nucleocytoplasmic export, RNP remodelling after export and/or pioneer translation initiation 

complex formation might be less efficient for 6MS2L-RNA-containing RNPs, leading to a 

prolonged association with the nuclear CBC. Collectively, the high enrichment of the nuclear 

CBC and Nab2 after 6MS2L-RNA affinity purification indicate that some aspects of 6MS2L-

RNA regulation are different compared to MS2L-tagged mRNAs. 

Besides cytoplasmic 5′→3′ exonucleolytic mRNA decay, ENO2-6MS2L and 6MS2L-

RNA transcripts seem also to be degraded in the nucleus (Table 20). The RNA helicase encoded 

by MTR4 was enriched after 6MS2L-RNA and possibly also after ENO2-6MS2L affinity 

purification. Mtr4 is a component of the TRAPM complex, which acts as a co-factor for the 

nuclear RNA exosome (see Introduction, “Nuclear mRNP quality control” and references 
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therein). The gene product of RAT1, the nuclear 5′→3′ exonuclease, was enriched after ENO2-

6MS2L and possibly also after 6MS2L-RNA affinity purification. The relatively low enrichment 

level of Mtr4 and Rat1, which does not exceed 3-fold enrichment, suggests that nuclear mRNA 

decay of ENO2-6MS2L and 6MS2L-RNA is by far less prominent than cytoplasmic 5′→3′ 

exonucleolytic decay of these RNAs (Table 16). 

 

 

Ribosome biogenesis factors, tRNA-modifying enzymes, metabolic enzymes, 

mitochondrial proteins etc. – the studied MS2L-tagged RNA-containing mRNPs are 

involved in many unanticipated interactions with other cellular proteins 

The functional diversity of proteins co-purifying with the MS2L-tagged RNAs is surprisingly 

high. The determined mRNP proteomes do not only contain proteins that participate in the 

various steps of the mRNA life cycle like mRNP biogenesis, translation and mRNA decay but 

also contain many proteins with well established roles in cellular processes that are unrelated to 

mRNA biology. The following chapter will introduce the MS2L-tagged RNA co-purifying 

proteins whose “standard” cellular function is not in mRNA regulation.  

 

Ribosome biogenesis factors co-purifying with MS2L-tagged RNAs 

Several ribosome biogenesis factors were enriched after affinity purification of the MS2L-tagged 

RNAs (Table 21). Most of these proteins were not highly enriched; only two proteins, Arb1 and 

Arx1, were >5-fold enriched. None of the ribosome biogenesis factors classified as enriched in all 

three MS data sets, although in one data set out of three Mrd1 and Arx1 failed only slightly to 

fulfil the threshold criteria, suggesting that the two proteins might have co-purified with all tested 

MS2L-tagged RNAs. Interestingly, the largest number of ribosome biogenesis factors classified as 

enriched in the BB sample MS data set, followed by ENO2-6MS2L MS data set. 

 

Table 21. MS2L-tagged RNA co-purifying proteins involved in ribosome biogenesis. Log2 (H/L) ratios of 
enriched proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

P33322 

Q06106 

P41819 

P25368 

P53254 

Q05022 

CBF5 

MRD1 

DIM1 

RRP7 

UTP22 

RRP5 

1.24 

 0.51 

1.26 

1.07 

0.76 

-1.12 

 -1.18 

-0.52 

-1.01 

-0.36 

0.89 

0.64 

1.39 

 

 0.62 

 -0.30 

 

 

 -0.38 

1.25 

1.34 

 

 

 

 

-2.03 

-2.60 

 

 

 

 

 1.27 

 

 

 1.96 

 -0.76 

 

 

 -1.72 
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Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

P25586 

P42846 

Q12499 

P40024 

Q03862 

P38779 

Q08208 

P53883 

P40010 

P37838 

P38786 
 

KRR1 

KRI1 

NOP58 

ARB1 

ARX1 

CIC1 

NOP12 

NOP13 

NUG1 

NOP4 

RPP1 
 

0.82 

0.96 

0.60 

0.43 

1.28 

 0.95 

 0.56 

0.73 

0.70 
 

-0.88 

-1.10 

-0.26 

-0.40 

-1.44 

 

 

 -0.75 

-0.63 

-2.40 
 

 

 0.74 

1.57 

1.27 

-0.05 

0.40 

-0.10 

 

 

 
 

 

 -0.66 

-1.40 

-1.50 

 

 0.11 

 

 

 
 

 

 

 3.26 

2.33 

0.53 

1.07 

0.69 

 

 

 
 

 -3.34 

 -3.44 

-3.97 

-1.20 

-1.69 

-1.40 

 

 

 
 

 

 

 

 1.16 

 

 1.64 

 

 

 
 

 

 

 

 -0.43 

 -1.38 

-0.36 

 

 

 
 

 

Table 22. Description of the enriched proteins involved in ribosome biogenesis. 
 

Gene
a
 

Pre-
ribosome 

Location
b
 Description Reference 

CBF5 pre-90S noc Catalytic subunit of box H/ACA snoRNPs, which 
pseudouridylates both large and small rRNA 

(D. L. Lafontaine et al. 1998; Duan 
et al. 2009) 

MRD1 pre-90S noc 40S biogenesis; required for initial A0-A2 cleavage of 35S 
pre-rRNA to produce 18S rRNA 

(Jin et al. 2002; Segerstolpe et al. 
2013) 

DIM1 pre-90S noc 40S biogenesis; rRNA dimethyladenosine tranferase; 
depletion leads to diminished accumulation of mature 
18S rRNA 

(Grandi et al. 2002; D. Lafontaine, 
Vandenhaute, and Tollervey 
1995) 

RRP7 pre-90S noc, nuc 40S biogenesis; component of CURI complex (Baudin-Baillieu et al. 1997; Rudra 
et al. 2007; Lin et al. 2013) 

UTP22 pre-90S noc, nuc 40S biogenesis; component of CURI complex (Rudra et al. 2007; Bernstein et al. 
2004; Lin et al. 2013) 

RRP5 pre-90S noc 40S and 60S biogenesis; required for cleavage of 35S pre-
rRNA at sites A0-A3 to produce 18S rRNA and 5.8S rRNA 

(Venema and Tollervey 1996; de 
Boer et al. 2006) 

KRR1 pre-90S noc 40S biogenesis; physically and functionally interacts with 
Kri1 

(Gromadka and Rytka 2000; 
Sasaki, Toh-E, and Kikuchi 2000) 

KRI1 pre-90S noc 40S biogenesis; associates with snR30, which is a box 
H/ACA snoRNA 

(Sasaki, Toh-E, and Kikuchi 2000; 
Hoareau-Aveilla et al. 2012) 

NOP58 pre-90S noc box C/D snoRNP component, required for cleavage of 35S 
pre-rRNA at sites A0 and A2 to produce 18S rRNA 

(D. L. Lafontaine and Tollervey 
1999; P. Wu et al. 1998; Grandi et 
al. 2002) 

ARB1 pre-90S, 
40S, 60S 

nuc, cyt 40S and 60S biogenesis; depletion leads to delayed 
processing of rRNA in 40S and 60S biogenesis pathways; 
shuttles  

(Dong et al. 2005; Altvater et al. 
2012) 

ARX1 pre-60S noc, nuc, 
cyt 

pre-60S subunit export (Bradatsch et al. 2007) 

CIC1 pre-60S noc Cic1 co-purifies with 60S pre-ribosomes; interacts with 
26S proteasome 

(Oeffinger et al. 2007; Jäger et al. 
2001; Harnpicharnchai et al. 
2001) 

NOP12 pre-60S noc 60S biogenesis; involved in pre-25S processing; similar to 
Nop13 and Nsr1 

(K. Wu, Wu, and Aris 2001; 
Granneman, Petfalski, and 
Tollervey 2011) 

NOP13 pre-60S noc, nuc Nop13 contains RNA recognition motif; similar to Nop12 
and Nsr1 

(K. Wu, Wu, and Aris 2001) 

NUG1 pre-60S noc, nuc 60S export; putative GTPase (Bassler et al. 2001; Oeffinger et 
al. 2007) 

NOP4 pre-60S noc, nuc 60S biogenesis; depletion leads to diminished 
accumulation of mature 25S rRNA  

(C. Sun and Woolford 1997; C. 
Sun and Woolford 1994) 

RPP1 - noc, nuc, 
cyt 

Component of RNase MRP and RNase P; RNase MRP 
required for production of 5.8S rRNA 

(Houser-Scott et al. 2002; Marvin 
et al. 2011) 

 

a
 Localization and function data was retrieved from Saccharomyces Genome Database (http://www.yeastgenome.org/; see also reference 

(Cherry et al. 2012)). 
b
 Abbreviations: noc – nucleolus, nuc – nucleus, cyt – cytoplasm. 

 

http://www.yeastgenome.org/
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The repertoire of the enriched ribosome biogenesis factors covers various ribosome 

biogenesis steps from pre-rRNA processing to mature 18S and 25S rRNAs and pre-60S 

ribosomal particle export. Ribosome biogenesis starts within the nucleolus with the transcription 

of 35S pre-rRNA (reviewed in Kressler, Hurt, and Baβler 2010). Pre-rRNA transcription is 

accompanied by rRNA folding, modification and cleavage, as well as association with ribosomal 

proteins and trans-acting factors. Small nucleolar ribonucleoprotein particles (snoRNPs) perform 

pre-rRNA 2′-O-ribose methylation of nucleoside ribose moieties and uridine conversion into 

pseudouridines. 35S pre-rRNA is cleaved in 90S pre-ribosomal particle that, besides the pre-

rRNA, contains around 50 non-ribosomal proteins, U3 snoRNA and several small subunit 

ribosomal proteins. Pre-rRNA sequential cleavage at sites A0, A1 and A2 separates pre-40S and 

pre-60S ribosomal particles, which continue maturation along two independent assembly 

pathways. The maturation of pre-40S and pre-60S ribosomal particles, which includes final 

cleavage of rRNA, association of a few ribosomal proteins and release of trans-acting factors, is 

completed in the cytoplasm (reviewed in Panse 2011). Importantly, pre-40S and pre-60S 

ribosomal subunits acquire translation competence only after all the maturation steps have been 

successfully completed (reviewed in S. Schütz and Panse 2012). Therefore, it seems highly 

unlikely that ribosome biogenesis factors could have co-purified with MS2L-tagged RNAs owing 

to interactions with ribosomes engaged in translation of the MS2L-tagged RNAs. A more likely 

explanation to ribosome biogenesis factor co-purification with MS2L-tagged RNAs is that these 

proteins directly bind to mRNA and/or Pab1. This notion is supported by the findings from 

other groups, which have identified several ribosome biogenesis factors among the enriched 

proteins after epitope-tagged Pab1 affinity purification (Table 17) from yeast cell extracts treated 

with RNase A (R. Richardson et al. 2012) or supplemented with EDTA (Klass et al. 2013), which 

disrupts the association of ribosomal subunits. A large set of ribosome biogenesis factors was 

also enriched after poly(A)+ RNA affinity purification form glucose deprived yeast cells; the 

authors present evidence that the enrichment of ribosome biogenesis factors was not due to co-

purification of ribosomes (S. F. Mitchell et al. 2013). The human homologues of most of the 

enriched ribosome biogenesis factors (Appendix, Table 3) have been found to co-purify with 

poly(A)+ RNA also in mammalian cells (Castello et al. 2012; Baltz et al. 2012). Collectively, our 

results support the notion that there may be extensive cross-talk between mRNA regulation and 

ribosome biogenesis (S. F. Mitchell et al. 2013).  
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tRNA-modifying enzymes co-purifying with MS2L-tagged RNAs 

tRNA-modifying enzymes that perform uridine to pseudouridine isomerisation or methylation of 

ribonucleotide nucleobase or ribose comprise a small but interesting group of enriched proteins 

in each MS data set because several of these enzymes are highly enriched (Table 23 and 24). One 

of the six identified tRNA-modifying enzymes, Pus1, has previously been found to co-purify with 

poly(A)+ RNA from glucose deprived yeast cells (S. F. Mitchell et al. 2013). Our results point to 

the possibility that association of tRNA-modifying enzymes with mRNA may be more common 

than previously known. The finding that several tRNA-modifying enzymes were enriched not 

only after MS2L-tagged PGK1 and ENO2 affinity purification but also after mRNA-like 6MS2L-

RNA affinity purification suggests that tRNA-modifying enzymes might play an important role in 

the regulation of a wide variety of mRNAs. Remarkably, the human homologues of Pus1, Trm2, 

Ncl1 and Pus7 have also been found to co-purify with poly(A)+ RNA (Castello et al. 2012; Baltz 

et al. 2012), suggesting that the role of tRNA-modifying enzymes in mRNA biology is 

evolutionarily conserved.  The low abundance of mRNAs has hampered the analysis of mRNA 

modifications (reviewed in Ge and Yu 2013; Motorin and Helm 2011; Motorin, Lyko, and Helm 

2010). Therefore, it remains to be determined if tRNA-modifying enzymes also catalyze the 

modification of mRNA and, if yes, what the exact effect of these modifications on mRNA 

regulation would be. 

An additional protein involved in tRNA maturation, Lhp1, was enriched after PGK1-

6MS2L affinity purification and the protein possibly also co-purified with ENO2-6MS2L and 

6MS2L-RNA (Table 23). In case of the latter MS2L-tagged RNAs, Lhp1 was quantified only in 

one of the biological replicate experiments, suggesting that Lhp1 may associate with all three 

MS2L-tagged RNAs. Lhp1 is not a tRNA-modifying enzyme. Instead, the protein stabilizes 

tRNA structure to enable proper tRNA 3′ end formation (Yoo and Wolin 1997). The protein has 

been proposed to act as a molecular chaperone for all RNA Pol III transcripts since Lhp1 also 

stabilizes the newly synthesised U6 RNA to facilitate the assembly of U6 snRNP (Pannone, Xue, 

and Wolin 1998). Lhp1 has also been found to co-purify with epitope-tagged Pab1 (R. 

Richardson et al. 2012). Surprisingly, the interaction with Pab1 was RNA-independent, suggesting 

that protein-protein interactions contribute to Lhp1 association with Pab1-containing mRNPs. 

The possible role of Lhp1 in the context of an mRNP remains to be determined; however, it 

seems plausible that Lhp1 could act as a molecular chaperone also for RNA Pol II transcription 

products. 
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Table 23. MS2L-tagged RNA co-purifying enzymes involved in tRNA modification. Log2 (H/L) ratios of enriched 
proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

Q02648 

P33753 

P38205 

Q12211 

P48567 

Q08647 

P33399 
 

TRM44 

TRM2 

NCL1 

PUS1 

PUS4 

PUS7 

LHP1 
 

3.26 

 

 

 

 

 
 

 3.71 

3.46 

0.89 

1.02 

1.82 

0.51 

0.91 
 

-4.93 

-3.49 

 

 

 -0.25 

-1.05 
 

3.76 

4.22 

1.06 

1.49 

2.44 

0.91 

1.3 
 

-6.77 

-6.11 

 -2.40 

-4.71 

-1.95 
 

 4.64 

4.78 

 3.33 

2.49 
 

 -6.24 

-4.24 

-1.91 

-3.24 

-1.83 

-2.44 
 

 

Table 24. Description of the enriched tRNA-modifying enzymes. 
 

Gene
a
 Location

b
 Description 

TRM44 cyt tRNASer Um44 2'-O-methyltransferase 

TRM2 UNK tRNA(m5U54) methyltransferase  

NCL1 nuc tRNA(m5C34, m
5C40, m

5C48, m
5C49) methyltransferase 

PUS1 nuc pseudouridine synthase; catalyzes pseudouridylation at positions 26-28, 34-36, 65, and 67 in tRNA, as well as 
at position 44 in U2 snRNA 

PUS4 nuc, mito tRNA pseudouridine synthase; catalyzes pseudouridylation at position 55 in cytoplasmic as well as 
mitochondrial tRNAs 

PUS7 nuc pseudouridine synthase; catalyzes pseudouridylation at positions 35 and 56 in U2 snRNA, position 50 in 5S 
rRNA, position 13 in cytoplasmic tRNAs, and position 35 in pre-tRNATyr 

a
 Localization and function data was retrieved from Saccharomyces Genome Database (http://www.yeastgenome.org/; see also reference 

(Cherry et al. 2012)). 
b
 Abbreviations: cyt – cytoplasm, nuc – nucleus, mito – mitochondrion, UNK – unknown. 

 

Metabolic enzymes co-purifying with MS2L-tagged RNAs 

All tested MS2L-tagged RNAs have co-purified with several metabolic enzymes (Table 25). The 

gene products of IMD2, IMD3, IMD4, ALD5 and MIS1 were enriched in all three MS data sets, 

whereas the proteins encoded by ADH3, MET6, LEU2, ZWF1, ARO1, HIS4 and URA3 were 

enriched only in single MS data sets. The latter proteins were almost exclusively <2-fold enriched. 

In contrast, Imd2, Imd3, Imd4, Ald5 and Mis1 were >2-fold enriched in most affinity 

purification experiments. Except for Ald5, these enzymes have previously been found to co-

purify with mRNPs in yeast (S. F. Mitchell et al. 2013; Klass et al. 2013), suggesting that their co-

purification with MS2L-tagged RNAs is specific. IMD2, IMD3 and IMD4 are closely related 

genes in S. cerevisiae, which encode for proteins with potential inosine monophosphate 

dehydrogenase (IMDH) activity (Hyle, Shaw, and Reines 2003). IMDH is a key enzyme in de novo 

GTP biosynthesis, which catalyses the first committed step in the pathway. The three Imd 

proteins have been found to form heteromeric complexes in vivo (McPhillips, Hyle, and Reines 

2004), suggesting that they may have co-purified with the MS2L-tagged RNAs as one complex. 

In mammalian cells, IMDH has been shown to be recruited to actively transcribed genes through 

http://www.yeastgenome.org/
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phosphorylated serine 2 in RNA Pol II C-terminal domain (J.-H. Park and Ahn 2010) and to 

bind to RNA in vivo (McLean et al. 2004; Mortimer and Hedstrom 2005). In S. cerevisiae, Imd2-4 

were among the enriched proteins after poly(A)+ RNA affinity purification from glucose deprived 

cells (S. F. Mitchell et al. 2013) and Imd4 was enriched after TAP-tagged Pab1 affinity 

purification from logarithmically growing cells (Klass et al. 2013). The experimental conditions 

used in the latter study enabled the detection of RNA-dependent but ribosome-independent 

RNA-protein and protein-protein interactions, suggesting that Imd4 is a component of Pab1-

containing mRNPs that are devoid of ribosomes. Our results thus further confirm the existing 

evidence that Imd2, Imd3 and Imd4 are mRNP proteins (S. F. Mitchell et al. 2013; Klass et al. 

2013). The role of Imd2-4 in mRNA metabolism remains undefined. However, this role is 

probably not essential since yeast cells can survive without the four genes encoding for IMDH 

isozymes if their growth medium is supplemented with guanine, indicating that the only essential 

function of Imd2-4 (IMD1 is likely a pseudogene) is in GTP biosynthesis (Hyle, Shaw, and 

Reines 2003). 

All tested MS2L-tagged RNAs co-purified with the gene product of MIS1, which encodes 

for the mitochondrial trifunctional C1-tetrahydrofolate synthase (Shannon and Rabinowitz 1988). 

The enzyme catalyses the synthesis of mitochondrial 10-formyltetrahydrofolate (Shannon and 

Rabinowitz 1988) that provides an active one-carbon unit for the formylation of mitochondrial 

initiator tRNA, Met-tRNAf
Met (Dickerman et al. 1967). Interestingly, two different studies have 

identified Mis1 among the enriched proteins after epitope-tagged Pab1 affinity purification (Klass 

et al. 2013; R. Richardson et al. 2012). Mis1 co-purified with Pab1 also when the lysate used for 

Pab1 immunoprecipitation was previously treated with RNase to eliminate Pab1 binding to 

poly(A) tail (R. Richardson et al. 2012), indicating that the two proteins are associated via protein-

protein interactions. Our results and the previous results from others (Klass et al. 2013; R. 

Richardson et al. 2012) thus suggest that Mis1 is an mRNP protein. The role of Mis1 in mRNA 

metabolism remains to be identified; however, since the deletion of MIS1 has no detectable 

impact on cell growth (Shannon and Rabinowitz 1988), Mis1 function in mRNA metabolism 

cannot be essential.  

The last of the metabolic enzymes enriched in all three MS data sets – the minor isoform 

of mithocondrial aldehyde dehydrogenase encoded by ALD5 – has previously not been reported 

to associate with mRNA nor Pab1 (Klass et al. 2013; R. Richardson et al. 2012; Tsvetanova et al. 

2010; Scherrer et al. 2010; S. F. Mitchell et al. 2013).  These results argue against a possibility that 

Ald5 could be an mRNP protein. However, the relatively high enrichment level of Ald5 after 

affinity purification of all three MS2L-tagged RNAs suggests that Ald5 co-purification has been 

specific. A common element in all three RNAs subjected to mRNP affinity purification is the 
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6MS2L-tag. This RNA sequence, which naturally does not occur in yeast transcripts, might have 

the potential to bind Ald5. 

 

Table 25. Metabolic enzymes co-purifying with MS2L-tagged RNAs. Log2 (H/L) ratios of enriched proteins are 
in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

P38697 

P50095 

P50094 

P40047 
P09440 
P37292 

P07246 

P05694 

P04173 

P11412 

P08566 

P00815 

P03962 
 

IMD2 

IMD3 

IMD4 

ALD5 
MIS1 
SHM1 

ADH3 

MET6 

LEU2 

ZWF1 

ARO1 

HIS4 

URA3 
 

 

 

 

 2.52 
 

 -0.02 

2.09 

 0.05 

0.40 

 
 

 

 

 

 -2.96 
 

 

 -0.30 

 -0.23 

-0.20 

 
 

-0.03 

0.62 

0.81 

1.38 
2.10 
0.56 

1.08 

1.17 

0.83 

1.42 

0.41 

1.05 

2.70 
 

-0.54 

-1.10 

-1.36 

-1.26 
 

-0.09 

-0.71 

-0.65 

-0.54 

 0.06 

0.07 

 
 

1.55 

1.81 

2.16 

2.79 
1.82 
3.61 

0.04 

1.59 

-0.89 

0.87 

0.63 

0.85 

0.41 
 

-3.37 

-3.00 

-3.72 

-4.16 
-3.95 
-4.65 

 1.49 

1.63 

-0.75 

-0.61 

 

 
 

2.16 

2.78 

2.95 

2.62 
1.97 
1.2 

0.09 

-0.42 

-0.20 

0.22 

0.25 

0.50 

0.60 
 

-1.84 

-1.95 

-2.41 

-2.29 
-1.46 
-1.05 

0.63 

-1.42 

0.76 

0.39 

0.35 

-0.67 

-1.07 
 

 

Table 26. The function of the enriched metabolic enzymes not discussed in the text.  
 

Gene
a
 Location

b
 Description 

ADH3 mito Mitochondrial alcohol dehydrogenase isozyme III; involved in the shuttling of mitochondrial NADH to the 
cytosol under anaerobic conditions and ethanol production 

MET6 cyt, pl memb Cobalamin-independent methionine synthase; involved in methionine biosynthesis and regeneration; requires 
a minimum of two glutamates on the methyltetrahydrofolate substrate, similar to bacterial metE homologs 

LEU2 cytosol Beta-isopropylmalate dehydrogenase (IMDH); catalyzes the third step in the leucine biosynthesis pathway; 
can additionally catalyze the conversion of β-ethylmalate into α-ketovalerate 

ZWF1 cyt Glucose-6-phosphate dehydrogenase (G6PD); catalyzes the first step of the pentose phosphate pathway; 
involved in adapting to oxidative stress; homolog of the human G6PD which is deficient in patients with 
hemolytic anemia; protein abundance increases in response to DNA replication stress 

ARO1 cyt Pentafunctional arom protein; catalyzes steps 2 through 6 in the biosynthesis of chorismate, which is a 
precursor to aromatic amino acids 

HIS4 cyt Multifunctional enzyme containing phosphoribosyl-ATP pyrophosphatase; phosphoribosyl-AMP 
cyclohydrolase, and histidinol dehydrogenase activities; catalyzes the second, third, ninth and tenth steps in 
histidine biosynthesis 

URA3 cytosol Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis 
of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a 
toxic compound 

a
 Localization and function data was retrieved from Saccharomyces Genome Database (http://www.yeastgenome.org/; see also reference 

(Cherry et al. 2012)). 
b
 Abbreviations: cyt – cytoplasm, ch – chromatin, pl memb – plasma membrane, mito – mitochondrion 

 

The gene product of SHM1 was highly enriched after ENO2-6MS2L affinity purification 

(>12-fold enrichment) and classified as an enriched protein also after 6MS2L-RNA affinity 

purification (>2-fold enrichment). The gene encodes for the mitochondrial isozyme of serine 

hydroxymethyltransferase (McNeil et al. 1994), which, depending on the yeast growth conditions, 

may synthesise serine form glycine and one-carbon units or provide one-carbon units for purine 

http://www.yeastgenome.org/
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synthesis (Kastanos, Woldman, and Appling 1997). Shm1 has not been identified as an RBP in 

yeast (Tsvetanova et al. 2010; Scherrer et al. 2010); however, the protein was found to co-purify 

with epitope-tagged Pab1 in an RNA-dependent manner (Klass et al. 2013). The high enrichment 

level of Shm1 after ENO2-6MS2L affinity purification further suggests that Shm1 is an mRNP 

protein. Interestingly, Shm1 participates in interconversion of the one-carbon units carried by 

tetrahydrofolate together with the above-mentioned protein Mis1, hinting at the possibility that 

the two proteins might have co-purified with ENO2-6MS2L as components of one protein 

complex. 

Based on previously published findings, only one of the seven metabolic enzymes 

enriched in single MS data sets (Table 26) can be functionally related to the MS2L-tagged RNA it 

has co-purified with. The gene product of MET6, a cobalamin-independent methionine synthase, 

co-purified with PGK1-6MS2L. Interestingly, Met6 and Pgk1 can both be detected in isolated 

yeast plasma membrane fraction (Delom et al. 2006). Same subcellular localization of the two 

proteins may provide the basis for Met6 co-purification with PGK1-6MS2L, possibly via the 

ribosome-bound Pgk1 nascent peptide. The association of Pgk1 and Met6 was also observed in a 

large-scale screen of yeast protein complexes (Gavin et al. 2006), further suggesting that Met6 co-

purification with PGK1-6MS2L is specific. 

 

MS2L-tagged RNA co-purifying proteins involved in ubiquitin-mediated regulation  

Two MS2L-tagged RNA co-purifying proteins suggest that mRNPs may be associated with 

deubiquitination activity provided by the Ubp3-Bre5 deubiquitination complex (Table 27). The 

ubiquitin-specific protease 3, Ubp3 (Baker, Tobias, and Varshavsky 1992), classified as enriched 

after MS2L-tagged PGK1 and ENO2 affinity purification. A relatively high (4.4-fold) enrichment 

in 6MS2L-RNA reverse labelling experiment suggests that the protein might also co-purify with 

this mRNA-like transcript. Bre5, an essential positive regulator of Ubp3-mediated 

deubiquitination (Cohen et al. 2003), classified as enriched only in the BB sample MS data set. 

However, it seems likely that Bre5 has co-purified also with ENO2-6MS2L since the protein was 

12.8-fold enriched in ENO2-6MS2L forward labelling experiment. Ubp3-Bre5 complex is 

involved in diverse cellular processes such as transcription activation and elongation (Chew et al. 

2010; Kvint et al. 2008), DNA repair by non-homologous end joining (Bilsland et al. 2007), 

maintenance of an efficient ER to Golgi secretory pathway (Cohen et al. 2003) and autophagy of 

mature ribosomes in response to starvation (Kraft et al. 2008; Ossareh-Nazari et al. 2010). So far, 

Ubp3-Bre5 complex has not been implicated in mRNA regulation. However, the protein 

complex has been found to co-purify with poly(A)+ RNA (S. F. Mitchell et al. 2013; Tsvetanova 
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et al. 2010), as well as with epitope-tagged Pab1 (Klass et al. 2013). The evolutionarily conserved 

Ubp3 protein has been found to co-purify with poly(A)+ RNA also in mammalian cells (Castello 

et al. 2012; Baltz et al. 2012). Collectively, these findings are in line with our results showing that 

Ubp3-Bre5 can co-purify with in vivo-assembled mRNPs. Since Bre5 contains an RNA-

recognition motif (K. Li et al. 2005), Ubp3-Bre5 complex could be directly recruited to mRNA 

by Bre5. However, additional Pab1-mediated protein-protein interactions might contribute to the 

association with mRNA. Namely, Ubp3 was found to co-purify with Pab1 in an RNA-

independent manner (R. Richardson et al. 2012). Considering that several proteins participating in 

mRNA maturation, export and decay are regulated by ubiquitination (reviewed in Finley et al. 

2012), it seems plausible that an mRNP-associated deubiquitination activity may provide a means 

to proofread ubiquitination-regulated steps in mRNP life cycle.   

Surprisingly, all three tested MS2L-tagged RNAs have co-purified with an RNA Pol II 

degradation factor encoded by DEF1 (Woudstra et al. 2002) (Table 27).  Def1 is a cytoplasmic 

protein that upon transcription-impeding DNA damage is processed in a ubiquitin- and 

proteasome-dependent manner, leading to nuclear accumulation of the activated Def1 protein 

(M. D. Wilson et al. 2013). In the nucleus, Def1 binds to the stalled RNA Pol II and recruits the 

Elongin-Cullin E3 ligase complex, which polyubiquitinates the Rpb1 subunit and thus triggers the 

proteasome-mediated degradation of the stalled RNA Pol II (M. D. Wilson et al. 2013). RNA Pol 

II seems not to be the only cellular target of Def1-mediated proteolytic decay. In the context of a 

stalled DNA replication fork, Def1 promotes the degradation of the catalytic subunit of DNA 

polymerase δ (Daraba et al. 2014). Whether Def1 participates also in mRNA regulation has not 

been experimentally addressed. However, since the protein has been found to co-purify with 

Pab1 under conditions, which preserve ribosome-association with the mRNA (Klass et al. 2013), 

it is possible that Def1 could participate in the regulation of translationally active mRNAs. Since 

Def1 has been shown to act as an adaptor for E3 ubiquitin ligase recruitment to stalled RNA Pol 

II (M. D. Wilson et al. 2013) it seems plausible that the protein might have a similar activity in the 

context of an mRNP. 

 

Table 27. MS2L-tagged RNA co-purifying proteins involved in ubiquitin-mediated regulation. Log2 (H/L) ratios 
of enriched proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

Q01477 

P53741 

P35732 
 

UBP3 

BRE5 

DEF1 
 

2.30 

2.21 

1.14 
 

-2.57 

-2.55 

-1.02 
 

1.97 

2.25 

0.89 
 

-2.22 

 -0.83 
 

2.27 

3.67 

0.66 
 

-3.96 

 -2.45 
 

 

 1.25 
 

-2.12 

 -0.62 
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Mitochondrial proteins co-purifying with MS2L-tagged RNAs 

In addition to the mithocondrial enzymes discussed above (Table 25 and 26), ENO2-6MS2L and 

possibly also PGK1-6MS2L have co-purified with a few additional mitochondrial proteins (Table 

28). The gene products of YLR419W, MGM101, and RPO41, which co-purified with ENO2-

6MS2L, were all highly enriched (>8.5-fold enrichment). YLR419W encoded protein was also 

relatively highly enriched (>5.3-fold enrichment) in BB sample MS data set, suggesting co-

purification with PGK1-6MS2L. YLR419W encodes for a putative homolog of DEAH-box 

family of RNA-dependent ATPases (reviewed in de la Cruz, Kressler, and Linder 1999), whose 

protein product has been found to be present in isolated highly pure mitochondria (Sickmann et 

al. 2003). Remarkably, several studies have identified Ylr419w among the enriched proteins after 

mRNA or eppitope-tagged Pab1 affinity purification (S. F. Mitchell et al. 2013; Klass et al. 2013; 

R. Richardson et al. 2012). The protein seems to be mRNA-associated under normal yeast 

growth conditions (Klass et al. 2013; R. Richardson et al. 2012) as well as upon glucose 

deprivation (S. F. Mitchell et al. 2013). mRNA-association of Ylr419w has also been detected in 

human (Castello et al. 2012; S. F. Mitchell et al. 2013). Our results thus confirm the previous 

observations that Ylr419w is an mRNP protein. The predicted role of Ylr419w in mRNA 

biogenesis remains to be elucidated; however this role cannot be essential since Δylr419w yeast 

cells are viable (Colley et al. 2000; Shiratori et al. 1999). 

RPO41 encodes for the mitochondrial RNA polymerase (Greenleaf, Kelly, and Lehman 

1986) and MGM101 a component of the mitochondrial nucleoid (Meeusen et al. 1999) that 

participates in recombinatorial mitochondrial DNA repair (Mbantenkhu et al. 2011). The two 

proteins are found in the same protein complex since TAP-tagged Rpo41 co-purifies with 

Mgm101 (Markov et al. 2009). Mgm101 is a ssDNA-binding protein (Mbantenkhu et al. 2011), 

which also seems to bind RNA – the protein was identified in a screen for RNA-binding proteins 

by probing a high density yeast protein microarray with different sorts of RNA (Scherrer et al. 

2010). Furthermore, the protein has been found to co-purify with Pab1 in an RNA-dependent 

but ribosome-independent manner (Klass et al. 2013), suggesting that Mgm101 is an mRNP 

protein. Mgm101 co-purification with ENO2-6MS2L might therefore be physiologically relevant 

and also contribute to Rpo41 co-purification with this MS2L-tagged mRNA. 

Besides Ylr419w, BB sample MS data set contained one additional enriched 

mitochondrial protein – the DEAD-box splicing factor Mss116 (reviewed in de la Cruz, Kressler, 

and Linder 1999). The protein has been found to be required for group I and II intron splicing in 

mitochondria and proposed to facilitate splicing by destabilizing stable but inactive RNA 

structures (H.-R. Huang et al. 2005). Considering the role of Mss116 in mitochondrial splicing, it 

is not surprising that the protein has been found to co-purify with epitope-tagged Pab1 (Klass et 
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al. 2013; R. Richardson et al. 2012). However, since PGK1 is an intronless cytoplasmic mRNA, 

PGK1-6MS2L co-purification with Mss116 could represent a false-positive interaction that might 

have occurred due to the release of mitochondrial proteins from this compartment during cell 

lysis. Assuming that the interaction between PGK1-6MS2L and Mss116 is specific, the relatively 

low enrichment level of Mss116 (about 1.8-fold enrichment) suggests that only a minor fraction 

of cellular PGK1-6MS2L is associated with Mss116. The same conclusion can be drawn for 

Hsp60. This mitochondrial chaperonin was about 1.5-fold enriched in RNase eluate after PGK1-

6MS2L affinity purification. The protein has not been implicated in mRNA metabolism and 

therefore the physiological relevance of PGK1-6MS2L and Hsp60 interaction remains elusive. 

 

Table 28. Mitochondrial proteins co-purifying with PGK1-6MS2L and ENO2-6MS2L. Log2 (H/L) ratios of 
enriched proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

Q06698 

P32787 

P13433 

P15424 

P19882 
 

YLR419W 

MGM101 

RPO41 

MSS116 

HSP60 
 

2.41 

0.41 

 0.74 

0.29 
 

-2.67 

 

 -0.97 

-0.28 
 

-3.30 

0.93 

1.72 

 0.54 
 

 

 

 

 -0.59 
 

3.09 

3.57 

3.19 

 0.92 
 

-4.70 

-6.27 

-4.42 

 -0.12 
 

 

 

 

 

 0.27 
 

 

Vacuolar and vesicular transport-involved proteins co-purifying with MS2L-tagged RNAs  

The enriched proteins involved in vesicular transport or vacuolar function are listed in table 29. 

With one exception, these proteins showed relatively low enrichment levels. The exception, the 

RNaseT2 family member encoded by RNY1 (reviewed in Luhtala and Parker 2010), was >19-

fold enriched after ENO2-6MS2L affinity purification. The protein was not quantified in other 

MS2L-tagged RNA affinity purification experiments, suggesting that Rny1 might play a specific 

role in ENO2-6MS2L mRNA regulation. RNaseT2 family members are general RNases that 

cleave ssRNA producing mono- or oligonucleotides with a terminal 3′ phosphate group (Scheer 

et al. 2011). In logarithmically growing yeast cells Rny1 is found in vacuoles from where it is 

released into the cytoplasm upon oxidative stress (Thompson and Parker 2009). Released from 

the vacuoles, Rny1 may cleave tRNA and rRNA, as well as promote cell death independent of its 

nuclease activity (Thompson and Parker 2009). Rny1-dependent tRNA cleavage has also been 

observed in vacuole or in vacuole-like compartment, suggesting that tRNA cleavage by Rny1 may 

also occur at, or inside, the vacuole (Luhtala and Parker 2012). Whether Rny1 also participates in 

mRNA cleavage remains unknown. However, it seems unlikely that Rny1 could have interacted 

with ENO2-6MS2L in the cytoplasm because the yeast cells used for mRNP affinity purification 
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were harvested in mid-log phase when Rny1 protein localization is restricted to the vacuoles 

(Thompson and Parker 2009). It seems more likely that ENO2-6MS2L has associated with Rny1 

at or within the vacuole. mRNAs have been proposed to be targeted to the vacuole during 

autophagy of aggregated mRNPs (reviewed in Luhtala and Parker 2010). Since several P-body 

and stress granule components (reviewed in Carolyn J. Decker and Parker 2012) co-purified with 

ENO2-6MS2L, it is possible that ENO2-6MS2L-containing mRNPs aggregate and may thus be 

targeted by autophagy for degradation in the vacuole.  

The gene products of VPH1, IMH1 and SEC16, whose protein functions are listed in 

table 30, have not been implicated in mRNA metabolism. Assuming that the interaction between 

these proteins and the corresponding MS2L-tagged RNAs is specific, the relatively low 

enrichment level of Vph1, Imh1 and Sec16 suggests that they are not associated with the majority 

of MS2L-tagged RNA-containing RNPs. 

 

Table 29. MS2L-tagged RNA co-purifying vacuolar proteins and proteins involved in vesicular transport. Log2 
(H/L) ratios of enriched proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

Vacuolar proteins 

Q02933 

P32563 
 

RNY1 

VPH1 
 

 1.32 
 

 -1.55 
 

  4.28 

 
 

-4.88 

 
 

  

Vesicular transport 

Q06704 

P48415 
 

IMH1 

SEC16 
 

 0.76 
 

 -1.13 
 

0.32 

 
 

-0.06 

 
 

0.88 

 
 

-1.76 

 
 

1.06 

 
 

-0.54 

 
 

 

Table 30. The function of the vacuolar and vesicular transport-involved proteins not discussed in the text. 
 

Gene
a
 Location

b
 Description 

VPH1 vac memb Subunit a of vacuolar-ATPase V0 domain; vacuolar acidification 

IMH1 cytosol, Golgi Protein involved in vesicular transport; mediates transport between an endosomal 
compartment and the Golgi 

SEC16 ER to Golgi transport 
vesicle membrane 

COPII vesicle coat protein required for ER transport vesicle budding; essential factor in 
endoplasmic reticulum exit site (ERES) formation, as well as in COPII-mediated ER-to-Golgi 
traffic 

a
 Localization and function data was retrieved from Saccharomyces Genome Database (http://www.yeastgenome.org/; see also reference 

(Cherry et al. 2012)). 
b
 Abbreviations: vac memb – vacuole membrane 

 

 

PGK1-6MS2L co-purifies with several glycolytic enzymes – co-translational formation of a 

supramolecular glycolytic enzyme complex? 

Several steps of the 10 enzymatic reactions that are needed to convert one molecule of glucose 

into 2 molecules of pyruvate, concomitantly generating 2 ATP, are reflected in the proteome of 

http://www.yeastgenome.org/
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PGK1-6MS2L. Besides Pgk1, three proteins in the glycolytic pathway – the gene products of 

HXK2, PGI1 and TDH3 – classified as enriched after PGK1-6MS2L affinity purification (Table 

31). Three additional proteins encoded by TPI1, TDH2 and ENO2 failed to meet the set 

threshold criteria only slightly in one of the biological replicate experiments. None of the 

enriched or the possibly enriched glycolytic enzymes co-purifying with PGK1-6MS2L has 

previously been identified as an RNA-binding protein in yeast (Tsvetanova et al. 2010; Scherrer et 

al. 2010) nor has been found to be associated with mRNPs (D. N. Richardson et al. 2011; Klass 

et al. 2013; S. F. Mitchell et al. 2013). Therefore, it seems unlikely that a direct binding of the 

glycolytic enzymes to PGK1-6MS2L or to PGK1-6MS2L-associated RBPs provides the basis for 

glycolytic enzyme co-purification with 6MS2L-tagged PGK1. An emerging view is that proteins 

that participate in a common metabolic or signalling pathway are organized into supramolecular 

complexes for optimal pathway performance (reviewed in Vonck and Schäfer 2009; Dai, Hall, 

and Hell 2009). Glycolysis seems to be one of such metabolic pathways whose activity can be 

regulated by supramolecular complex formation. Glycolytic enzyme association with membranes 

and cytoskeletal elements, as well as interaction between enzymes participating in sequential 

reactions was observed already about three decades ago (reviewed in Srere 1987). Since then a 

multi-enzyme glycolytic complex has been demonstrated to exist on the human erythrocyte 

membranes (Campanella, Chu, and Low 2005; Puchulu-Campanella et al. 2013). In S. cerevisiae the 

association of glycolytic enzymes has been shown to confer resistance against enzymatic activity 

inhibition by a compatible solute trehalose (Araiza-Olivera et al. 2010). Glycolytic enzymes seem 

to assemble in association with filamentous F-actin, which co-immunoprecipitates with several 

glycolytic enzymes and, in the filamentous form, increases fermentation rate and protects against 

trehalose inhibition in permeabilized yeast cells or yeast cell cytoplasmic extracts (Araiza-Olivera 

et al. 2013). Glycolytic enzyme assembly into a supramolecular complex may thus provide the 

answer why several proteins of this metabolic pathway were enriched after PGK1-6MS2L mRNA 

affinity purification. As discussed earlier, PGK1-6MS2L co-purifies with the nascent peptide likely 

as an mRNA-ribosome-nascent peptide complex. The emerging Pgk1 protein may co-

translationally be recruited to a glycolytic enzyme complex. Pgk1 nascent peptide-mediated 

protein-protein interactions could therefore provide a link between PGK1-6MS2L and the 

glycolytic enzymes. 

Interestingly, the gene product of ACT1 was among the enriched proteins in BB sample 

MS data set (Appendix, Table 1). Even though the protein is often found as a contaminant in 

affinity purification experiments (Mellacheruvu et al. 2013), the role of F-actin in glycolytic 

enzyme complex assembly would also provide a physiologically meaningful explanation for actin 

co-purification with PGK1-6MS2L mRNA. 
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Large-scale analysis of yeast protein complexes has identified an almost identical set of 

glycolytic enzymes associated with Pgk1 and enolase 2 (Gavin et al. 2006), suggesting that 

similarly to Pgk1, enolase 2 is among the glycolytic enzymes that may associate into a 

supramolecular complex. Furthermore, both proteins also co-immunoprecipitate with actin 

(Araiza-Olivera et al. 2013). Therefore, it is surprising that besides enolase 2 no other glycolytic 

enzyme co-purified with ENO2-6MS2L. Since cell’s metabolic state could have a profound effect 

on the formation of a glycolytic enzyme complex, it is important to note that yeast cells were 

collected in mid-log phase in all mRNP affinity purification experiments, thereby excluding the 

possibility that PGK1-6MS2L- or ENO2-6MS2L-containing cells would have been in different 

metabolic states. The lack of glycolytic enzyme co-purification with ENO2-6MS2L could be 

explained by weak protein-protein interactions between the glycolytic enzymes, which could be 

lost during affinity purification; this observation has also been made by others (Brandina et al. 

2006). 

 

Table 31. Several glycolytic enzymes are enriched after PGK1-6MS2L affinity purification. Log2 (H/L) ratios of 
enriched proteins are in bold. Log2 (H/L) ratios of proteins that did not fulfil the set threshold criteria log2 (H/L) 
>0.5 or <0.5 in one of the biological replicate experiments are in gray. 
 

Gene Name 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

HXK1 

HXK2 

GLK1 

PGI1 

PFK1 

PFK2 

FBA1 

TPI1 

TDH1 

TDH2 

TDH3 

PGK1 

GPM1 

ENO1 

ENO2 

CDC19 
 

Hexokinase-1 

Hexokinase-2 

Glucokinase-1 

Glucose-6-phosphate isomerase 

6-phosphofructokinase subunit alpha 

6-phosphofructokinase subunit beta 

Fructose-bisphosphate aldolase 

Triosephosphate isomerase 

Glyceraldehyde-3-phosphate dehydrogenase 1 

Glyceraldehyde-3-phosphate dehydrogenase 2 

Glyceraldehyde-3-phosphate dehydrogenase 3 

Phosphoglycerate kinase 

Phosphoglycerate mutase 1 

Enolase 1 

Enolase 2 

Pyruvate kinase 1 
 

 

 

 
0.06 

0.01 

-0.04 

0.66 

 

 
-0.67 

-2.44 

1.68 

 

 
-0.17 

-0.02 
 

 

 

 

 
-0.20 

-0.04 

-0.10 

 
-0.22 

-0.13 

1.47 

-5.09 

 

 
-0.13 

-0.14 
 

-0.37 

0.94 

-0.23 

1.05 

0.05 

0.12 

0.81 

0.27 

-0.18 

2.98 

1.13 

0.75 

0.77 

0.18 

1.21 

0.26 
 

 
-1.51 

 
-1.84 

0.56 

0.84 

-0.17 

-1.55 

-0.13 

-0.45 

-0.70 

-3.58 

0.29 

-0.82 

-0.23 

-0.38 
 

 
-0.64 

 
2.35 

-1.82 

-0.31 

1.95 

2.67 

0.17 

2.17 

1.87 

0.54 

-1.29 

2.70 

0.80 

1.38 
 

 
1.31 

 
2.00 

1.75 

0.93 

0.94 

2.63 

-0.31 

 
2.49 

1.42 

4.83 

 
-2.72 

0.90 
 

 
-0.88 

 
-1.14 

0.02 

0.01 

-0.66 

-1.54 

-0.25 

0.17 

0.15 

-0.35 

0.14 

-0.91 

-1.16 

-0.52 
 

 
-0.91 

 
-1.16 

0.00 

0.09 

0.14 

-0.83 

-0.59 

 
-0.45 

-0.01 

0.80 

-1.05 

-0.77 

-0.14 
 

 

 

MS2L-tagged RNA co-purifying proteins that were enriched in single MS data sets 

Each MS data set contains proteins that appear to have co-purified with only one of the MS2L-

tagged RNAs. Such proteins include the glycolytic enzymes that co-purified with PGK1-6MS2L 
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(Table 31) and some metabolic enzymes listed in table 25. Maybe the most remarkable example 

of a protein that has exclusively co-purified only with one MS2L-tagged RNA is the vacuolar 

RNaseT2 family member Rny1, which was >19-fold enriched after ENO2-6MS2L affinity 

purification but was not quantified in other MS data sets (table 29). The following chapter will 

introduce additional proteins that were enriched in single MS data sets (Table 32). 

The protein encoded by WHI3 was >4-fold enriched after PGK1-6MS2L affinity 

purification. Whi3 is an RRM-containing RBP (Nash, Volpe, and Futcher 2001) that localizes to 

stress granules and/or P-bodies upon glucose deprivation or heat shock (Holmes et al. 2013; Cai 

and Futcher 2013). The protein seems to have many mRNA targets (Colomina et al. 2008; Vergés 

et al. 2007; Holmes et al. 2013; Cai and Futcher 2013); up to a thousand mRNAs have been 

identified as Whi3 targets (Holmes et al. 2013). Interestingly, PGK1 has not been reported to be a 

Whi3 target mRNA, raising the possibility that the 6MS2L-tag might contribute to Whi3 co-

purification with PGK1-6MS2L mRNA. The role of Whi3 in the regulation of its target mRNAs 

is not very well understood; however, the protein appears to have a mild destabilizing effect on 

its targets (Holmes et al. 2013; Cai and Futcher 2013). 

The gene products of TRA1 and YNL050C were enriched in the BB sample MS data set, 

suggesting that the proteins co-purify with PGK1-6MS2L. The later gene encodes for a putative 

protein with unknown function (Cherry et al. 2012). Interestingly, Ynl050c was identified as an 

RBP by probing a high-density yeast protein microarray with different cellular RNAs (Scherrer et 

al. 2010), suggesting that Ynl050c could directly bind to PGK1-6MS2L mRNA. Tra1 is a 

common subunit of SAGA and NuA4 histone acetyltransferase complexes (Grant et al. 1998; 

Saleh et al. 1998; C E Brown et al. 2001). Surprisingly, this nuclear protein involved in 

transcription activation has also been found to co-purify with epitope-tagged Pab1 in an RNA-

dependent manner (Klass et al. 2013), suggesting that Tra1 might have a secondary role, possibly 

in the nuclear compartment, as an mRNP component.  

ENO2-6MS2L mRNA co-purified with two proteins implicated in pre-mRNA splicing. 

The gene product of MSL5 is a component of the commitment complex, which defines the first 

step in splicing. PSP2 encodes for a suppressor of group II intron-splicing defects with a possible 

role in mitochondrial mRNA splicing. ENO2-6MS2L does not contain introns and should not be 

subjected to mRNA splicing. Therefore the biological role of ENO2-6MS2L association with 

Msl5 and Psp2 remains unclear. The low enrichment level (<2.2-fold enrichment) of the two 

proteins suggests that only a minor fraction of total cellular ENO2-6MS2L is associated with 

Msl5 and Psp2. 

6MS2L-RNA co-purifying proteins encoded by ARC1, GUS1 and THS1 participate in 

tRNA aminoacylation. GUS1 encodes for cytosolic glutamyl-tRNA synthetase (cERS) and THS1 
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encodes for cytosolic threonyl-tRNA synthetase (cTRS). The gene product of ARC1 is a non-

enzymatic protein that together with cERS and cytosolic methionyl-tRNA synthetase forms the 

so called multiaminoacyl-tRNA synthetase (MARS) complex in yeast (reviewed in Frechin et al. 

2010). The MARS subunits Arc1 and Gus1 might have co-purified with 6MS2L-RNA as 

components of one protein complex; however, the third subunit of MARS complex might have 

been lost during affinity purification. The <2-fold enrichment of Arc1, Gus1 and Ths1 indicates 

that the interaction between the three proteins and the 6MS2L-RNA-containing RNPs is either 

transient or weak, which, in both cases, could lead to low enrichment levels after mRNP affinity 

purification.  

Recent findings in human cells and archaea point to the possibility that Arc1, Gus1 and 

Ths1 might have co-purified with 6MS2L-RNA in complex with the translating ribosome 

(Kaminska et al. 2009; David et al. 2011; Raina et al. 2012; Godinic-Mikulcic et al. 2014). In both 

organisms several aminoacyl-tRNA synthetases (aaRSs) have been found to co-purify with 

ribosomal proteins (Kaminska et al. 2009; Raina et al. 2012) or to co-fractionate with 

polyribosomes on sucrose density gradients (David et al. 2011; Kaminska et al. 2009). Further 

biochemical studies in archaeon Methanothermobacter thermautotrophicus have identified an interaction 

surface for two archaeal aaRSs on the large ribosomal subunit in the vicinity of the flexible 

L7/L12 stalk (Godinic-Mikulcic et al. 2014). Since aaRS-ribosome association is observed in 

distantly related species, such as humans and archaea, it seems plausible that aaRSs can also 

associate with ribosomes in S. cerevisiae. This notion is supported by the finding that in yeast, as 

well as in most other organisms examined, tRNA diffusion away from the ribosome is slower 

than translation rate, suggesting that out-going tRNAs remain bound to the ribosome 

(Cannarozzi et al. 2010). Ribosome-associated aaRSs are the likely candidates to prevent tRNA 

diffusion from the translating ribosome (Raina et al. 2012). These proteins might capture and 

aminoacylate the out-going tRNAs, thereby keeping a constant supply of aminoacylated tRNAs 

at the translating ribosome. The co-purification of Arc1, Gus1 and Ths1 with 6MS2L-RNA 

might therefore reflect the process of tRNA channelling to the ribosome during translation.  

The 6MS2L-RNA co-purifying proteins encoded by SPC110, SKN7 and BMH2 have 

previously not been implicated in mRNA biology (Tsvetanova et al. 2010; Scherrer et al. 2010; S. 

F. Mitchell et al. 2013; R. Richardson et al. 2012). With about 1.5-fold enrichment, Bmh2 was the 

least enriched of the four proteins. Bmh2 belongs to the family of 14-3-3 proteins, whose 

members participate in multiple cellular processes through binding to other proteins. 14-3-3 

proteins may regulate the activity or subcellular location of their interaction partners or connect 

two binding partners with each other (reviewed in van Heusden 2009). Considering the large 

number of protein-protein interactions the two yeast 14-3-3 proteins are involved in (Kakiuchi et 



DISCUSSION 

 

160 
 

al. 2007), it is likely that Bmh2 has co-purified with 6MS2L-RNA in complex with some other 

6MS2L-RNA-bound protein(s). Indeed, a large-scale analysis in yeast found two 6MS2L-RNA 

co-purifying proteins – Upf1 and Spc110 – to be associated with Bmh1 and Bmh2 (Kakiuchi et 

al. 2007). Spc110 is a core component of the spindle pole body, which is the yeast microtubule 

organizing centre (reviewed in Jaspersen and Winey 2004). The >2-fold enrichment of Spc110 in 

both biological replicate experiments suggests that the interaction between 6MS2L-RNA and 

Spc110 is specific. Since 6MS2L-RNA is not a normal cellular mRNA, it may be involved in 

interactions that normally do not exist between mRNA and proteins. Alternatively, Spc110 may 

co-purify with 6MS2L-RNA due to protein-protein interactions between common interaction 

partners; the latter possibility may involve 6MS2L-RNA and Spc110 co-localization to the same 

cellular compartment. 

6MS2L-RNA co-purified with the gene product of SKN7, a protein that regulates the 

nuclear response to oxidative and osmotic stress (Morgan et al. 1997; Brombacher et al. 2006; 

Ketela et al. 1998). Skn7 has not been implicated in mRNA regulation and the role of the protein 

in 6MS2L-RNA biogenesis remains unknown. However, since Skn7 acts as a transcription factor 

(Morgan et al. 1997; Raitt et al. 2000) the interaction between Skn7 and 6MS2L-RNA may 

involve the nuclear compartment.  

 

Table 32. MS2L-tagged RNA co-purifying proteins that were enriched in single MS data sets. Log2 (H/L) ratios 
of enriched proteins are in bold. 
 

Protein ID Gene 
BB RNase ENO2 6MS2L 

for rev for rev for rev for rev 

P34761 

P38811 

P53952 

Q12186 

P50109 

P46672 

P46655 

P04801 

P32380 

P38889 

P34730 

P0CX63 

Q04215 
 

WHI3 

TRA1 

YNL050C 

MSL5 

PSP2 

ARC1 

GUS1 

THS1 

SPC110 

SKN7 

BMH2 

YGR161W-B 

YMR046C 
 

 1.41 

2.07 

-0.02 

0.23 

 0.06 

-0.22 

-0.06 

0.05 

 0.42 

0.03 
 

 -1.07 

-0.91 

0.07 

0.21 

 -0.48 

-0.26 

1.00 

-1.00 

0.61 

-0.12 

 
 

2.01 

 

 0.00 

0.48 

-0.27 

-0.10 

-0.29 

-0.28 

0.41 

-0.17 

0.42 

0.01 
 

-2.37 

 

 -0.08 

0.22 

0.51 

0.45 

0.73 

1.27 

-0.64 

-0.15 

0.10 

0.18 
 

 

 

 1.12 

0.66 

-0.26 

0.17 

-0.76 

 

 1.14 

0.21 

0.01 
 

 

 

 -0.58 

-0.61 

-0.27 

-0.31 

0.06 

 -1.84 

 -0.44 

0.12 
 

 

 

 

 

 0.54 

0.75 

0.59 

3.84 

1.91 

0.56 

1.62 

1.16 
 

 

 

 

 -0.28 

-0.96 

-0.80 

-0.89 

-1.56 

-1.36 

-0.67 

-1.26 

-0.71 
 

 

Two 6MS2L-RNA co-purifying proteins reveal an interesting difference in the 

metabolism of this mRNA-like transcript and the MS2L-tagged PGK1 and ENO2.  The Gag-Pol 

polypeptide (Ygr161w-B) and Gag polypeptide (Ymr046c) of yeast retrotransposons Ty2 and 
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Ty1, respectively, were enriched after 6MS2L-RNA affinity purification but not after MS2L-

tagged mRNA affinity purification. Retrotransposons are mobile DNA elements, which replicate 

over an RNA intermediate that is transported to the cytoplasm and translated (reviewed in 

Perlman and Boeke 2004). Besides serving as mRNA, the RNA intermediate also serve as 

genomic RNA and is packaged into virus-like particle (VLP) in the cytoplasm. In VLP the RNA 

is reverse transcription and a double-stranded cDNA copy is synthesized that integrates into a 

new site in the nuclear DNA. Interestingly, different cellular mRNAs have been found to 

associate with VPLs (H. Xu and Boeke 1990). This finding suggests that non-Ty RNA may be 

packaged into VLPs, revealing that the packaging process is not highly specific (reviewed in Roth 

2000). VLP formation is a multistep process that involves the association of Ty genomic RNA 

plus Gag and Gag-Pol polypeptides into an immature particle that does not completely 

encapsulate the RNA (Burns et al. 1992). Collectively, these findings point to the possibility that 

the abundant 6MS2L-RNA transcript (see Results, “Control RNA to determine the effect of 

MS2L tag on mRNP protein composition”) might be packaged into VLPs, which, in their 

immature form, presumably provide access to the 6MS2L-tag sequence for MS2CP-PrAx2::IgG 

interaction. 

 

 

 

Part 2 

 

Don’t mess with 3′ UTR – integration of MS2 stem-loops affects  

normal regulation of at least some cellular mRNAs 

The steady state level of PGK1-6MS2L was about 50% of the wt untagged PGK1 level (Fig. 14A). 

This finding indicates that the integration of the 6MS2L tag has altered PGK1 mRNA regulation 

and thus raises several questions. What is the mechanism behind the reduction of PGK1 steady 

state levels upon integration of MS2 stem-loops? Is Pgk1 protein function affected by the 

integration of the MS2L tag? Would other cellular mRNAs be affected in as similar way as PGK1? 

Is the altered mRNA regulation upon MS2-tag integration perhaps a yeast-specific effect or 

would the MS2L tag have a similar effect also in other model organisms? Would it be possible to 

modify the MS2 system so that the integration of the MS2L tag would not affect mRNA 

regulation? The following chapter will try to find answers to these questions. 
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Integration of MS2 stem-loops likely activates nonsense-mediated mRNA decay of PGK1 

and ENO2 

The steady state mRNA expression level is proportional to the rate of mRNA transcription and 

degradation. A decrease in PGK1 mRNA steady state level upon 6MS2L tag integration (Fig. 

14A) can thus be a consequence of decreased mRNA transcription or increased mRNA decay (or 

both). The 6 MS2 stem-loops are integrated between PGK1’s translation termination codon and 

the 3′ UTR. This insertion should not affect signals in the 3′ UTR important for proper 3′ end 

formation, which, if compromised, might lead to defects in pre-mRNA cleavage and poly(A) tail 

addition, ultimately reducing the efficiency of export-competent mRNP assembly (see 

Introduction, “3′ end formation and mRNA export are coupled”). Interestingly, the nuclear 

basket-associated proteins Mlp1 and Mlp2 have been shown to reduce reporter mRNA 

transcription in response to inefficient mRNP assembly in yeast cells containing a defective RNA 

export adapter Yra1 (Vinciguerra et al. 2005). This finding reveals a feedback mechanism 

between mRNP assembly and transcription (reviewed in Schmid and Jensen 2008)  and points to 

the possibility that suboptimal mRNP assembly caused by other defects, such as inefficient 3′ end 

processing, could result in transcriptional downregulation. However, since the integration of the 

6MS2L-tag should not interfere with proper 3′ end formation, it seems unlikely that the reason 

behind the decrease in PGK1-6MS2L steady state level is a reduction in mRNA transcription. 

A large body of evidence indicate that an increase in the physical distance between the 

normal stop codon and the 3′ UTR can lead to rapid mRNA decay due to the activation of post-

transcriptional mRNA surveillance mechanism termed nonsense-mediate mRNA decay (see 

Introduction, “Nonsense-mediated mRNA decay” and references therein). The integration of the 

6MS2L tag adds an extra 421 nt between the stop codon and the 3′ UTR in PGK1-6MS2L and 

may thereby introduce an NMD-activating feature. Indeed, Upf1, the central regulator of NMD 

pathway, was the most abundant protein co-purifying with PGK1-6MS2L (>60-fold enrichment). 

Furthermore, an additional NMD factor, Ebs1, and several proteins involved in 5′→3′ decay 

(Table 16) were also highly enriched after PGK1-6MS2L affinity purification. These results 

strongly suggest that the major mechanism behind the decrease in the steady state level of PGK1-

6MS2L is an increase in the rate of mRNA decay due to the activation of NMD. Since ENO2-

6MS2L has co-purified with a similar set of NMD and 5′→3′ decay factors (Table 16), it seems 

highly likely that the integration of the 6MS2L tag has also compromised the normal regulation of 

this mRNA.  
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PGK1-6MS2L encodes for a functional protein whose expression might be promoted by 

the presence of MS2CP-PrAx2 

The growth rate of yeast cells carrying the untagged or the 6MS2L-tagged PGK1 allele was 

comparable; the doubling time of both strains at 26°C in SC -ura supplemented with 2% glucose 

was around 3 h (data not shown, see Materials and Methods, “Culturing cells for mRNP affinity 

purification optimization experiments” for yeast cell growth conditions). Since the function of 

Pgk1 protein is essential, this result indicates that the Pgk1 protein expressed from PGK1-6MS2L 

allele is functional.  

Western blot analysis showed that Pgk1 protein levels were almost identical in yeast 

strains carrying the untagged or the 6MS2L-tagged PGK1 allele (Fig. 14B). This result suggests 

that despite reduced steady state levels of PGK1-6MS2L mRNA, the yeast cells can produce a 

similar amount of Pgk1 protein compared to the strain carrying the wt PGK1 allele. Importantly, 

the tested strains also expressed MS2CP-PrAx2. Further analysis revealed that in the absence of 

MS2CP-PrAx2 the Pgk1 protein level was reduced proportionally to the reduction in PGK1-

6MS2L mRNA level (the tested yeast strains were isogenic to the strains used in mRNP affinity 

purification experiments except that they contained C-terminal 3myc epitope-tagged Upf1 or 

Stm1 and, as mentioned, did not express MS2CP-PrAx2; Ulrike Thieβ, unpublished data). This 

finding raises the possibility that binding of MS2CP-PrAx2 to the MS2 stem-loops may promote 

better translation of PGK1-6MS2L transcripts. Interestingly, a similar observation was made by 

Tsai et al., who have established an MS2L-MS2CP interaction-based in vivo-assembled mRNP 

affinity purification method from human cells (Tsai et al. 2011). They found that in the presence 

of the tag-binding protein the luciferase activity of a reporter mRNA containing 4 MS2L stem-

loops downstream of the firefly luciferase stop codon was slightly elevated (Tsai et al. 2011). 

Since the effect of the integration of the MS2 stem-loops on mRNA stability was not addressed 

in this study, it remains unknown whether in mammalian system the integration of the 4MS2L 

tag had an mRNA destabilizing effect as observed by us for 6MS2L tag integration in S. cerevisiae.  

 

Would the stability of all cellular mRNAs be affected by the integration of the MS2L tag? 

For creating yeast strains carrying 6MS2L-tagged PGK1 and ENO2 we used a PCR-based 

chromosomal gene tagging method (Haim et al. 2007). This method was initially developed for in 

vivo visualization of specific endogenously expressed mRNAs in S. cerevisiae and has since been 

used in several studies to analyse mRNA localization (as a rule, 12 MS2 stem-loops are integrated 

for mRNA visualization purposes) (Zipor et al. 2009; Kilchert and Spang 2011; Casolari et al. 

2012; Fundakowski, Hermesh, and Jansen 2012). The effect of the integration of MS2 stem-loops 
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on mRNA stability has been addressed in case of one localized mRNA, ASH1, which is targeted 

to the distal tip of yeast daughter cells during anaphase (Long et al. 1997; Takizawa et al. 1997). 

Remarkably, the cell-cycle dependent relative level of the MS2L-tagged ASH1 was found to be 

unaltered compared to wt ASH1 mRNA (Haim et al. 2007), demonstrating that the effect of the 

MS2L tag on mRNA stability is mRNA-specific. This raises the question why ASH1-12MS2L is 

immune to the mRNA destabilizing effect of the MS2L tag and PGK1-6MS2L is not? The answer 

to this question likely lies in the different mode of translational control of the two mRNAs. 

PGK1 is expected to be efficiently recruited to the translating mRNA pool upon export from the 

nucleus (Arava et al. 2003). In contrast, ASH1 mRNA is transported in a translationally repressed 

state to the but tip (Irie et al. 2002; Gu et al. 2004) where it is translated only during a short 

period in late anaphase (Bobola et al. 1996). Since mRNA translation is a prerequisite for NMD 

(reviewed in Maquat 2004), PGK1-6MS2L likely becomes susceptible to NMD immediately after 

export to the cytoplasm. ASH1-12MS2L, if targeted by NMD at all, should be immune to NMD 

during mRNA localization and become sensitive to NMD only during mRNA translation. This 

notion is supported by the finding that in a translationally repressed state a PTC-containing 

ASH1 allele is insensitive to NMD but becomes sensitive once protein synthesis is initiated 

(Zheng et al. 2008).  

It remains to be experimentally determined whether ASH1-12MS2L is subjected to 

NMD during mRNA translation. The finding that the cell-cycle dependent relative level of 

ASH1-12MS2L is unchanged compared to ASH1 (Haim et al. 2007) suggests that unlike PGK1, 

ASH1 mRNA is not destabilized by an increased distance between the normal stop codon and 

the poly(A) tail. Collectively, the analysis of PGK1-6MS2L (Fig. 14A) and ASH1-12MS2L (Haim 

et al. 2007, see Fig. 2C) steady state levels indicate that the MS2L tag affects the stability of 

different cellular mRNAs to a different extent. Assuming that the integration of the MS2 stem-

loops introduces an NMD-activating feature, the mRNAs that are efficiently engaged in 

translation upon mRNA export should be destabilized to a greater extent than mRNAs whose 

translation is repressed or inefficient. 

 

The MS2 system provides an attractive approach to capture in vivo assembled mRNPs 

also from mammalian cells – what about MS2L-tagged mRNA stability?  

As mentioned above, Tsai et al. have developed a method based on the MS2 system for affinity 

purification of specific in vivo-assembled mRNPs from mammalian cells (Tsai et al. 2011). 

Similarly to us, Tsai et al. analysed the proteome of the captured mRNPs by SILAC-based 

quantitative proteomics. To our knowledge this is the only study published to date that combines 
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affinity purification of specific in vivo-assembled mRNPs with mRNP proteome analysis by 

SILAC-based quantitative proteomics. The analysis indicated that mRNPs undergoing processing 

in the nucleus or translation in the cytoplasm could be efficiently captured (Tsai et al. 2011). In 

contrast to our results, however, Tsai et al. did not identify mRNA decay factors among the 

proteins co-purifying with the tested MS2L-tagged mRNAs. From the NMD factors only UPF1 

was identified, which, according to the recent observations in mammalian cells, seems to 

associate with mRNAs before NMD targets are selected (Zünd et al. 2013; J. A. Hurt, Robertson, 

and Burge 2013). Therefore, UPF1 co-purification alone, without other NMD factors, cannot be 

considered as an indicative of mRNA targeting by NMD. The findings by Tsai et al. thus raise the 

question whether in mammalian cells MS2 stem-loops integrated downstream of the normal 

translation termination codon have the potential to destabilize mRNA. Considering that an 

increased distance between the stop codon and the poly(A) tail is an efficient trigger of NMD not 

only in yeast (Zaborske, Zeitler, and Culbertson 2013) but also in mammalian cells (Eberle et al. 

2008), it seems unlikely that in mammalian cells MS2L-tagged transcripts per se would be 

insensitive to NMD. A possible explanation therefore for the absence of mRNA decay and 

NMD factors among the identified mRNP proteins in the study by Tsai et al. is that the 

integration of 4 MS2 stem-loops did not increase the distance between the stop codon and the 

poly(A) tail sufficiently to trigger NMD of the tested mRNAs. However, even if NMD was not 

triggered, the cells should contain mRNPs engaged in constitutive cytoplasmic deadenylation-

dependent mRNA decay (reviewed in C.-Y. A. Chen and Shyu 2011). A possible reason for not 

detecting this pool of mRNPs in the study by Tsai et al. could be that the subpopulation of 

4MS2L-tagged mRNA-containing mRNPs undergoing deadenylation-dependent mRNA decay is 

very small, which might lead to mRNA decay factors escaping quantification. Alternatively, some 

technical reasons could be responsible in this study for not detecting mRNA decay factors. It 

therefore remains an open question whether integration of 4 MS2 stem-loops would have an 

mRNA-destabilizing effect also in mammalian cells.  

In order to visualize single mRNAs in living mammalian cells, the integration of 24 MS2 

stem-loops has routinely been used (Fusco et al. 2003; Shav-Tal et al. 2004; Mili, Moissoglu, and 

Macara 2008; Grünwald and Singer 2010; Darzacq et al. 2007; Mor et al. 2010). The experiments 

have largely relied on ectopic expression of artificial reporter mRNAs to analyse RNA Pol II 

transcription kinetics (Darzacq et al. 2007) and  mRNP movement (Fusco et al. 2003; Shav-Tal et 

al. 2004), export (Grünwald and Singer 2010; Mor et al. 2010) or localization (Mili, Moissoglu, 

and Macara 2008). A more natural context for mRNA visualization in mammalian cells has only 

recently become available through the generation of a transgenic mouse line carrying 24 MS2 

stem-loops in the 3′ UTR of both β-actin alleles (Lionnet et al. 2011). For the first time the effect 
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of the 24MS2L-tag on mRNA stability could be directly compared; northern blot analysis 

indicated that in mouse embryonic fibroblasts (MEFs) derived from a heterozygous knock-in 

mouse line the steady state level of MS2L-tagged β-actin mRNA was about 50% compared to the 

untagged mRNA level (Lionnet et al. 2011, see supplementary Fig. 3). This result suggests that 

the stability of the endogenous β-actin mRNA is affected by the integration of the 24 MS2 stem-

loops, thus hinting at the possibility that 24MS2L-tagged endogenous mRNAs in mammalian 

cells might not behave completely in the same way as their wt counterpart. Considering the 

emerging paradigm that mRNA levels are buffered by coupling between transcription and 

mRNA decay (Trcek et al. 2011; Bregman et al. 2011; Shalem et al. 2011; M. Sun et al. 2013; 

Haimovich et al. 2013; Goler-Baron et al. 2008), the presumed faster decay kinetics of 24MS2L-

tagged β-actin should result in enhanced mRNA transcription, which might lead to inaccurate 

estimations when such an mRNA is used for the analysis of mRNA transcription regulation on a 

single-cell level (Lionnet et al. 2011). Another proposed application for the 24MS2L-tagged β-

actin is mRNP isolation via the MS2L-tag (Lionnet et al. 2011). Our quantitative mRNA-bound 

proteome analysis results suggest that a 50% reduction in the steady state level of an MS2L-

tagged mRNA is caused by enhanced mRNA decay. The possible destabilizing effect of the 

MS2L tag on mammalian mRNAs should therefore be considered when establishing an mRNP 

affinity purification method based on MS2L-MS2CP interaction. 

 

Possible strategies to prevent NMD activation upon integration of the MS2L tag 

Even though our results indicate that the integration of the 6MS2L tag can hamper the normal 

regulation of at least some cellular mRNAs, an mRNP affinity purification method based on the 

capture of the mRNA component of the mRNP remains an attractive approach for determining 

the composition of specific in vivo-assembled mRNPs. To date, a simple and reliable method for 

the protein composition analysis of specific mRNPs, which would have met wide use, is missing 

(see Introduction, “RNA-based RNP affinity purification”). Consequently, on the level of a 

specific mRNA, our understanding of the spectrum, functional importance and spatio-temporal 

dynamics of mRNA-protein interactions is very limited (reviewed in Müller-McNicoll and 

Neugebauer 2013). Currently, only two alternatives exist for “marking” specific endogenous 

RNAs for affinity capture: (1) antisense 2′-O-methyl RNA oligonucleotides complementary to 

single-stranded regions; and (2) chromosomal integration of an RNA affinity tag (see 

Introduction, “RNA-based RNP affinity purification” and references therein). Due to the ease of 

use and reliability the second approach is by far the more popular one. An RNA affinity tag that 

could be integrated without affecting the regulation of the mRNA therefore seems to be the 
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optimal solution for marking specific endogenous mRNAs for affinity purification. Since our 

mRNP affinity purification method is based on the MS2L-MS2CP interaction, in the following 

section we consider different possibilities for reducing the destabilizing effect of the 6MS2L tag 

on mRNA stability.  

Several studies have found that NMD activation by a premature termination codon can 

be reduced by decreasing the distance between the PTC and the poly(A) tail (Peltz, Brown, and 

Jacobson 1993; Hagan et al. 1995; Eberle et al. 2008). Therefore, reducing the number of MS2 

stem-loops should decrease the potential of the MS2L tag to elicit NMD. However, reducing the 

number of MS2 stem-loops might also affect the capture efficiency of the MS2L-tagged RNA. 

Even though the capture efficiency of 6MS2L-tagged PGK1 could not be precisely determined, it 

seems likely that not more than a few per cent of the total cellular PGK1-6MS2L could be 

captured onto IgG-coupled beads (Fig. 13B). One possible explanation for the low capture 

efficiency of PGK1-6MS2L is that the amount of used IgG-coupled beads per affinity purification 

was too low to enable the capture of more PGK1-6MS2L-coniaining mRNPs. Alternatively, not 

all 6MS2L-tagged PGK1 transcripts might be bound by MS2 coat protein and consequently 

would not be captured onto IgG-coupled beads. The local mRNP structure might “hide” the 

MS2 stem-loops so that they would not be accessible for the interaction with MS2 coat protein. 

Indeed, the mRNP structure of PGK1-6MS2L-containing mRNPs seems to be relatively compact 

as suggested by the finding that in affinity purified mRNPs the TEV protease cleavage site 

between MS2CP and PrAx2 became accessible for cleavage only after RNase treatment, which 

disassembles the mRNPs by digesting the MS2L-tagged mRNA (Fig. 16 and data not shown). It 

remains to be experimentally determined whether the number of integrated MS2 stem-loops 

influences the capture efficiency of the tagged mRNA. However, if this is the case then the trade-

off of increased mRNA stability due to the integration of less MS2 stem-loops would likely be a 

reduction in mRNP capture efficiency. 

Besides reducing the distance between the PTC and the poly(A) tail, NMD targets can be 

stabilized by tethering poly(A)-binding protein close to the PTC (Amrani et al. 2004; Behm-

Ansmant et al. 2007; Kerényi et al. 2008; Eberle et al. 2008; G. Singh, Rebbapragada, and Lykke-

Andersen 2008). These findings suggest that MS2L-tagged mRNAs could be stabilized by 

localizing Pab1 to the MS2 stem-loops. Instead of using MS2CP-PrAx2 to capture the mRNPs of 

interest onto IgG-coupled beads, a fusion protein of MS2CP-Pab1-PrAx2 could be used. 

Alternatively, Pab1 could be tethered downstream of the MS2L tag by using the PP7 system (see 

Introduction, “Naturally occurring RNA secondary structure elements as RNA affinity tags” and 

references therein). Since the stabilizing effect of Pab1 likely depends on the number of Pab1 

molecules tethered, this approach would enable to control the magnitude of mRNA stabilization.  
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The integration of the RNA stability element (RSE) from Rous sarcoma virus (RSV) 

downstream of the MS2 stem-loops might provide an additional possibility to stabilize MS2L-

tagged mRNAs. RSV is an avian retrovirus whose unspliced mRNA is subjected to NMD if it 

contains a PTC in the gag gene (Weil and Beemon 2006). However, the PTC-free full-length RSV 

mRNA is protected from NMD despite the fact that the normal gag translation termination 

codon is located 7 kb from the 3′ poly(A) tail (Weil and Beemon 2006). The stability of the full-

length RSV mRNA depends on a 401-nt long sequence element immediately downstream of gag 

stop codon (Weil and Beemon 2006). Currently, it is not known if this RNA element prevents 

NMD by preventing Upf1 recruitment or by increasing translation termination efficiency 

(reviewed in Quek and Beemon 2014). Since NMD is an evolutionarily conserved cellular 

mechanism (see Introduction, “NMD factors and consequences of their activation” and 

references therein), it seems plausible that RSV RNA stability element could provide protection 

against NMD also in yeast cells. 

 

 

The mRNA-bound proteome – how much of it could we actually capture? 

The three main classes of proteins co-purifying with the MS2L-tagged PGK1 and ENO2 mRNAs 

as well as with the mRNA-like 6MS2L-RNA transcript were: (1) proteins involved in mRNA 

translation; (2) mRNA 5′→3′ decay factors; and (3) proteins associated with the poly(A) tail. The 

latter class includes proteins involved in mRNA poly(A) tail trimming in the cytoplasm and stress 

granule-associated proteins. Importantly, the three classes of enriched proteins participate in 

cytoplasmic processes, raising the question why nuclear events of the mRNA life cycle, such as 

transcription, 3′ end processing and mRNP export, should be underrepresented in the mRNA-

bound proteome. This is one of the issues that will be discussed in the following chapter, which 

focuses on the question why some mRNA-protein and protein-protein interactions might miss 

detection using our mRNP affinity purification strategy. 

 

The analysis of mRNA-bound proteome is likely influenced by mRNP abundance in 

different cellular compartments 

In comparison to cytoplasmic mRNP proteins, the number of enriched nuclear proteins in each 

MS data set was much lower (Table 20). The enriched proteins that are known to associate with 

mRNPs in the nucleus include, for instance, the two subunits of the nuclear cap-binding complex 

that co-purified with 6MS2L-RNA and the shuttling RNA-binding proteins Hrb1 and Sro9 that 

co-purified with 6MS2L-tagged PGK1 and ENO2. We could not detect proteins involved in 
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mRNA export such as the mRNA export receptor Mex67/Mtr2 or the mRNA export adapters 

Sub2 and Yra1 even though these proteins are expected to interact with the MS2L-tagged RNAs 

(see Introduction, “mRNP export factors are recruited during transcription”). Likewise, we could 

not detect proteins involved in mRNA transcription and 3′ end processing. These results suggest 

that nuclear mRNPs might be poorly accessible for affinity purification possibly due to their low 

abundance compared to cytoplasmic mRNPs. Besides physiological reasons such as the relatively 

short time it takes to assemble export-competent mRNPs upon transcription induction, which 

occurs within 5-40 min in mammalian cells (Mor et al. 2010), or the fast decay of pre-mRNAs if 

the mRNP assembly is delayed (Rougemaille et al. 2007; Saguez et al. 2008), inefficient breakage 

of nuclei during cryogenic grinding might contribute to low abundance of nuclear mRNPs in the 

cell lysate. However, another experiment done in our laboratory speaks against this latter 

possibility. Namely, SILAC-based quantitative proteomic analysis of mRNPs containing brome 

mosaic virus RNA3 (reviewed in Noueiry and Ahlquist 2003) identified many nuclear proteins 

(Hanna Tumin and Ulrike Thieβ, unpublished data). This result shows that nuclear mRNPs are 

not, per se, less accessible for mRNP affinity purification than the cytoplasmic mRNPs. The 

efficiency of mRNP capture from certain subcellular compartments therefore rather seems to 

depend on mRNP abundance in these compartments. Transcription in the yeast nucleus is not a 

natural part of brome mosaic virus’s life cycle; this positive-strand RNA virus replicates on the 

perinuclear ER membranes in plant cells (reviewed in den Boon, Diaz, and Ahlquist 2010). It 

seems plausible to think that the nucleocytoplasmic export of RNA3-conaining mRNPs is less 

efficient compared to normal cellular mRNAs, which likely contributes to the co-purification of 

MS2L-tagged RNA3 with multiple nuclear proteins. In case of MS2L-tagged PGK1 and ENO2 

and the mRNA-like 6MS2L-RNA transcript, however, the number of mRNPs on the nuclear 

assembly line at any given moment is presumably much lower than the number of cytoplasmic 

mRNPs engaged in processes such as mRNA translation or decay (Arava et al. 2003). Detection 

of low abundance proteins by LC-MS/MS is challenging due to dynamic range limitations 

(reviewed in Bantscheff et al. 2007). At very low peptide signals, bona fide interaction partners are 

difficult to distinguish from background noise and therefore such proteins may escape detection. 

Even though we did not observe non-specific binding of untagged mRNAs to IgG-coupled 

beads (Fig. 9A, 12B, 21B and data not shown), our mRNP affinity purification experiments may 

suffer from relatively high background of non-specifically captured proteins. Namely, northern 

blot (Fig. 15A) and qRT-PCR (Fig. 15B) analysis revealed non-specific ribosome binding to the 

IgG-coupled beads; roughly every third ribosome seems to have co-purified non-specifically (Fig. 

15B, Inada harvesting protocol). Since RNase treatment releases ribosomal proteins not only 

from ribosomes specifically co-purifying with MS2L-tagged RNAs but also from non-specifically 
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captured ribosomes, ribosomal proteins likely comprise abundant contaminants in our mRNP 

affinity purification experiments. The level of contaminating ribosomal proteins may be similar to 

or even exceed the level of some specific mRNA interactors and therefore detection of low 

abundance proteins poses a key challenge for the established mRNP affinity purification method. 

 

The position of the MS2L tag may influence the affinity purification efficiency of some 

mRNP proteins – is this the case in our experiments?  

All tested MS2L-tagged RNAs co-purified with factors involved in mRNA 5′→3′ 

exoribonucleolytic decay (Table 16), indicating that the 5′→3′ decay pathway plays an important 

role in the turnover of the three MS2L-tagged RNAs (see Discussion, Part 1, “MS2L-tagged 

RNAs seem to be largely degraded in the 5′→3′ exonucleolytic decay pathway” for further 

discussion). In contrast, the number of proteins involved in mRNA decay from the 3′ end was 

limited to the two subunits of the Pan poly(A)-specific 3′ exoribonuclease that trims the newly 

synthesised poly(A) tails to mRNA specific lengths (see Introduction, “Deadenylation” and 

references therein). Subunits of other protein complexes involved in the 3′→5′ decay pathway – 

the Ccr4-Not complex, the exosome and the Ski complex – could not be detected (see 

Introduction, “Deadenylation” and “3′→5′ mRNA decay” and references therein). This is 

surprising since normal, deadenylation-dependent mRNA decay, as well as fast mRNA decay 

promoted by NMD involve mRNA exonucleolytic degradation from both the 5′- and 3′ end (see 

Introduction, “NMD factors and consequences of their activation” and references therein).  

The reason for the absence of mRNA 3′→5′ decay factors among the enriched proteins 

might be related to the position of the 6MS2L tag close to 3′ end of the mRNA (Haim et al. 

2007). Once the MS2 stem-loops are degraded by the concerted action of the cytoplasmic 

exosome-Ski assembly (Halbach et al. 2013), the mRNA cannot be bound by MS2CP-PrAx2 and 

thus such mRNPs would be excluded from the proteomics analysis. For similar reasons, the 

capture of mRNPs involved in nuclear 3′→5′ decay by the exosome-TRAMP complex assembly 

might be problematic. Since, Ccr4-Not complex mediates mRNA deadenylation but not the 

3′→5′ decay of the mRNA body (see Introduction, “Deadenylation” and references therein), it 

should in principle be possible to capture Ccr4-Not-containing mRNPs. The failure to detect 

components of the Ccr4-Not complex among the enriched proteins might therefore be caused by 

dissociation of these proteins from mRNA during mRNP affinity purification. Alternatively, 

instead of the Ccr4-Not complex, poly(A) tail removal from the studied MS2L-tagged RNAs 

might be carried out by the Pan2-Pan3 heterodimer (see Discussion, Part1, “MS2L-tagged RNAs 

seem to be largely degraded in the 5′→3′ exonucleolytic decay pathway” for further discussion). 
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Even though it remains an open question what proteins are responsible for the deadenylation of 

the MS2L-tagged RNAs, co-purification of some subunits of the Lsm1-7 complex with all three 

MS2L-tagged RNAs suggests that a subpopulation of these transcripts is deadenylated. Namely, 

Lsm1-7 complex has been found to preferentially associate with deadenylated mRNAs (S Tharun 

and Parker 2001). 

Interestingly, northern blot analysis of the bead-captured PGK1-6MS2L mRNA 

demonstrated the accumulation of shortened PGK1-6MS2L RNA species (Figure 12B, compare 

upper and lower panel, lanes 12-13 and 18-19) that could be detected only with MS2L 

hybridization probe but not with PGK1-ORF probe (Figure 12A). This result suggests that the 

detected mRNA decay intermediates have lost the 5′ part of the mRNA with the annealing site of 

PGK1-ORF probe; however, the 3′ part of the mRNA, which contains MS2L probe annealing 

site, has not been degraded. Further analysis would be necessary to determine if the 5′→3′ 

shortened PGK1-6MS2L RNA species also contain the 3′ UTR. The presence of the 3′ UTR 

would support the notion that the 3′→5′ mRNA decay by the exosome-Ski assembly plays a 

minor role in the degradation of the analysed MS2L-tagged mRNAs. Since the smear below the 

signal corresponding to full-length PGK1-6MS2L forms a long “tail” (Figure 12B, lower panel, 

lane 13 and 19), it seems plausible that these mRNA decay intermediates indeed contain 

sequences downstream of the MS2L tag. Therefore, the main reason for not detecting subunits of 

the exosome or the Ski complex among the enriched proteins might not be related to the 

position of the 6MS2L tag or the instability of 3′→5′ mRNA decay factor interaction with the 

mRNA. Instead, northern blot results hint at the possibility that the subpopulation of MS2L-

tagged RNAs degraded in 3′→5′ direction is very small and therefore could escape detection. 

 

Many proteins are likely lost during mRNP affinity purification due to a weak association 

with the mRNP 

Our mRNP affinity purification strategy does not include a covalent cross-linking step to stabilize 

mRNA-protein and protein-protein interactions. Consequently, the mRNPs are prone to lose 

weak or transient interaction partners during mRNP affinity purification. This problem is 

illustrated, for example, by the enrichment of most translation initiation factors in single MS data 

sets or by the enrichment of only certain subunits of the heptameric Lsm1-7 complex. In 

addition, many proteins were quantified in only one of the biological replicate experiments and 

therefore the number of enriched proteins in each MS data set is likely underestimated 

(Appendix, Table 1). 
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The only translation initiation factor enriched in all MS data sets was eIF4G (Table 13). 

The protein makes multiple contacts with the mRNA body (Berset et al. 2003; E.-H. Park et al. 

2011; Yanagiya et al. 2009) and also interacts with the poly(A) tail-bound Pab1 (E.-H. Park et al. 

2011; Svitkin et al. 2009; Tarun et al. 1997). Unlike most other translation factors, which 

dissociate from the mRNA by the end of the translation initiation step, eIF4G remains associated 

with the mRNA throughout the whole translation cycle (reviewed in Hinnebusch 2011). 

Therefore, proteins whose association with the mRNA is stable in terms of interaction strength 

and duration can likely be efficiently captured using our mRNP affinity purification strategy. The 

enrichment of most other translation initiation factors only in single MS data sets suggest that the 

interaction of these initiation factors with the mRNA, rRNA or ribosomal proteins and other 

initiation factors (Herrmannová et al. 2012; W.-L. Chiu et al. 2010; Lebaron et al. 2012; Shin et al. 

2011; Hashem et al. 2013) is not strong enough to be efficiently retained throughout the affinity 

purification procedure. 

The only subunit of the Lsm1-7 complex enriched in all three MS data sets was Lsm4 

(Table 16). Two additional subunits, Lsm1 and Lsm2, were enriched after ENO2-6MS2L affinity 

purification. In one of the biological replicate experiments these two subunits co-purified also 

with PGK1-6MS2L. Likewise, Lsm1 co-purified with 6MS2L-RNA in one of the biological 

replicate experiment. These results indicate that the interaction between the subunits of the 

heptameric Lsm1-7 complex is not very stable and raise the question why the Lsm1, Lsm2 and 

Lsm4 subunits but not the Lsm3 and Lsm5-7 were detected? UV cross-linking experiments 

indicate that Lsm1 and possibly also Lsm4 directly contact the mRNA (Chowdhury, 

Mukhopadhyay, and Tharun 2007). Since Lsm4 was the only subunit co-purifying with all tested 

MS2L-tagged RNAs, our results hint at the possibility that the major RNA-binding subunit of 

Lsm1-7 complex may be Lsm4. Structural studies indicate that the order of the subunits in the 

heptameric ring is Lsm1-2-3-6-5-7-4 (Sharif and Conti 2013). The interaction between the 

subunits 1 and 2 may help to stabilize Lsm2 interaction with the mRNP. The decapping activator 

Pat1, which was enriched in all MS data sets (Table 15), has been found to bind a composite 

surface of Lsm2 and Lsm3 (Sharif and Conti 2013). This interaction might also contribute to the 

stability of Lsm2 interaction with the mRNP during affinity purification.  

Collectively, the mRNA-bound proteome analysis indicates that the efficiency of 

detection of certain mRNP-associated mRNA-protein and protein-protein interactions is 

influenced by the stability and cellular abundance of these interactions. Considering these 

limitations, it is remarkable that many proteins with no previously identified role in mRNA 

regulation have co-purified with the MS2L-tagged RNAs, suggesting that such proteins indeed 

represent true mRNP-associated proteins (see Discussion, Part 3, “mRNA-bound proteome 
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analysis revealed many unexpected proteins – a hint to novel RNA-binding proteins and 

previously uncharacterized cellular mechanisms?”). However, the inefficient detection of low-

abundance, weak or transient interactions also implies that the determined mRNA-associated 

proteomes do not reflect all the cellular events the MS2L-tagged RNAs are engaged in. For 

instance, we consistently could not detect Upf2 and Upf3 among the enriched proteins. Besides 

Upf1, these two proteins are essential for NMD, which is triggered upon interaction of the three 

Upf proteins on NMD target mRNAs (see Introduction, “NMD factors and consequences of 

their activation” and references therein). The absence of Upf2 and Upf3 among the enriched 

proteins raises the possibility that the MS2L-tagged mRNAs might not be targeted by NMD. 

This problem points to the need to use several parallel methods to study mRNA-protein 

interactions and the biological mechanisms underlying these interactions. The involvement of 

NMD in the turnover of MS2L-tagged RNAs, for instance, can be determined by monitoring 

MS2L-tagged mRNA decay upon transcription shutoff in wt, Δupf1 and Δupf2 strain background; 

NMD targets should be stabilized to a comparable extent in Δupf1 and Δupf2 cells (F He, Brown, 

and Jacobson 1997). 

 

 

 

Part 3 

 

mRNA-bound proteome analysis opens up a host of new questions  

What are the biological mechanisms behind the co-purification of a certain set of proteins with 

MS2L-tagged PGK1, ENO2 or the mRNA-like 6MS2L-RNA transcript? This is not an easy 

question to answer especially since the three analysed mRNA-bound proteomes did not only 

contain proteins with well established roles in the different steps of mRNA life cycle but also 

contained many proteins that have previously not been implicated in mRNA regulation. The final 

chapter of the thesis will highlight the proteins that possibly represent novel mRNP proteins. We 

will also compare the mRNA-bound proteomes of 6MS2L-RNA transcript to MS2L-tagged 

PGK1 and ENO2 to analyse how the MS2L tag might influence mRNP protein composition. 

Finally, the intriguing possibility of co-translational assembly of a supramolecular glycolytic 

enzyme complex will be discussed. 
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6MS2L-RNA – not quite an mRNA 

We set out to study what proteins co-purify with a heterologously expressed RNA containing the 

6 MS2 stem-loops (see Results, “Control RNA to determine the effect of MS2L tag on mRNP 

protein composition”) to identify cellular proteins that have the potential to bind to the MS2L 

tag. Interestingly, the majority of proteins co-purifying with 6MS2L-RNA were also enriched 

after PGK1-6MS2L or ENO2-6MS2L affinity purification, indicating that during its life cycle the 

6MS2L-RNA transcript is engaged in a similar network of cellular interactions as the MS2L-

tagged PGK1 and ENO2. It seems plausible that 6MS2L-RNA is sensed as an mRNA by the 

yeast cells. We assume that the PGK1-derived 5′ UTR and the CYC1-derived 3′ UTR that are 

necessary regions for in vivo expression of 6MS2L-RNA are responsible for this. As a 

consequence, the 6MS2L-RNA-bound proteome is comprised not only of proteins that bind to 

the MS2 stem-loops but also contains proteins that associate with the 5′ and 3′ UTRs. The high 

degree of overlap between the proteomes of 6MS2L-RNA and the MS2L-tagged mRNAs 

suggests that many cellular proteins have the potential to bind to the MS2 stem-loops; however, 

this binding likely depends on the mRNA context provided by 5′ and 3′ UTRs of the 6MS2L-

RNA. It seems plausible that not many cellular proteins bind to the MS2 stem-loops per se. 

The small differences in the repertoire or enrichment level of 6MS2L-RNA co-purifying 

proteins hint at interesting differences in the regulation of this mRNA-like transcript compared 

to the two MS2L-tagged mRNAs. The analysis of these differences helped to understand better 

the mechanisms responsible for co-purification of a certain set of proteins with the studied 

MS2L-tagged RNAs. For instance, the two subunits of the nuclear cap-binding complex, Cbc2 

and Cbc1, were among the most highly enriched proteins in 6MS2L-RNA MS data set (Table 20). 

In contrast, these proteins did not classify as enriched after PGK1-6MS2L or ENO2-6MS2L 

affinity purification. Since the nuclear cap-binding complex is replaced by eIF4E before or during 

the pioneer round of translation, these results indicate that the association of eIF4E with 6MS2L-

RNA is perturbed (see Discussion, Part1, “The nuclear history of MS2L-tagged RNAs is reflected 

by the enriched RNA-binding proteins” for further discussion). A possible reason for that could 

be slower remodelling kinetics of 6MS2L-RNA-containing mRNPs at the cytoplasmic side of the 

nuclear pores. This notion is supported by the finding that the shuttling poly(A)+ RNA-binding 

protein Nab2, which is removed after mRNP export to the cytoplasm, was >13-fold enriched 

after 6MS2L-RNA affinity purification compared to the about 2.3-fold enrichment after PGK1-

6MS2L affinity purification (Table 20).  

Ribosomal proteins of both the large and small subunit were among the enriched proteins 

after 6MS2L-RNA affinity purification (Figure 25), demonstrating that 80S ribosomes can form 

on this mRNA-like transcript. Since 80S ribosome formation is paralleled by initiation of 
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translation elongation (see Introduction, “mRNP interactions in cap-dependent translation” and 

references therein), this finding strongly suggests that 6MS2L-RNA can be translated. mRNA 

translation, however, is a prerequisite for nonsense-mediated mRNA decay (see Introduction, 

“Nonsense-mediated mRNA decay” and references therein). The predicted NMD-activating 

feature in 6MS2L-RNA as in MS2L-tagged PGK1 and ENO2 is a long distance between the 

translation termination codon and the poly(A) tail (see Discussion, Part 1, “MS2L-tagged RNAs 

may be targeted by nonsense-mediated decay” for further discussion). The comparable 

enrichment level of Upf1 with all three studied MS2L-tagged RNAs as well as co-purification of 

Nmd4 with 6MS2L-RNA suggests that this mRNA-like transcript is subjected to NMD (Table 

16). However, RT-PCR analysis of the steady state level of 6MS2L-RNA compared to PGK1-

6MS2L (Fig. 18B) hints at the possibility that the decay kinetics and thus the decay mechanism of 

the two RNAs might be different. The transcription of 6MS2L-RNA is under the control of 

PGK1 promoter. We reasoned that PGK1 promoter-controlled expression of 6MS2L-RNA would 

result in a similar expression level of 6MS2L-RNA compared to untagged PGK1.  However, this 

hypothesis could not be experimentally tested because the two transcripts to be compared cannot 

be amplified with the same set of primers. Therefore, we have compared the steady state levels of 

6MS2L-RNA and PGK1-6MS2L. The level of the latter mRNA is about 50% of the level of 

untagged PGK1 (Fig. 14A). The 2.3-fold higher level of 6MS2L-RNA compared to PGK1-6MS2L 

suggests that 6MS2L-RNA transcript levels are comparable to PGK1 as hypothesised. This 

finding thus suggests that 6MS2L-RNA is not subjected to accelerated mRNA decay due to 

NMD. However, we cannot rule out the possibility that despite the PGK1 promoter-controlled 

expression, the expression level of 6MS2L-RNA is actually higher than that of PGK1. Therefore, 

in order to unambiguously determine whether 6MS2L-RNA is subjected to NMD the decay of 

this transcript should be examined in wt and Δupf1 strain backgrounds.   

 

mRNA-bound proteome analysis revealed many unexpected proteins – a hint to novel 

mRNP proteins and previously uncharacterized cellular mechanisms?  

The mRNA-bound proteome analysis revealed several proteins that might, in addition to other 

cellular functions, participate in mRNA regulation. This class of proteins contains metabolic 

enzymes Imd2, Imd3, Imd4, Mis1 and Shm1 (Table 25), tRNA modification enzymes Trm44, 

Trm2, Pus4 and Pus7 (Table 23), ribosome biogenesis factors Cbf5, Mrd1, Arb1 and Arx1 (Table 

21) and proteins involved in ubiquitin-mediated regulation (Ubp3 and Def1, Table 27). All the 

above-mentioned proteins co-purified with at least two of the tested MS2L-tagged RNAs. 

Importantly, most of these proteins have previously been found to co-purify with poly(A)+ RNA 
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(Imd2, Imd3, Imd4, Cbf5, Mrd1 and Ubp3) or with Pab1 (Imd4, Mis1, Shm1, Cbf5, Arx1 and 

Ubp3) in yeast (S. F. Mitchell et al. 2013; Klass et al. 2013; R. Richardson et al. 2012). Further 

evidence for mRNA-association has been obtained for the ubiquitin-specific protease Ubp3 

(Baker, Tobias, and Varshavsky 1992), which has been found to associate with >1000 mRNAs in 

S. cerevisiae (Tsvetanova et al. 2010). However, for all of these proteins the possible function in 

context of an mRNP remains unknown. 

The only proteins whose mRNA-related function has been studied to some extent are the 

inosine monophosphate dehydrogenase isozymes encoded by IMD2, IMD3 and IMD4. Genetic 

studies in yeast have demonstrated that the only essential function of the three proteins is de novo 

synthesis of GTP (Hyle, Shaw, and Reines 2003). However, observations in human cells suggest 

that IMPDH has a “moonlighting” function in translation regulation (reviewed in Hedstrom 

2009). Several mutations in human inosine monophosphate dehydrogenase isozyme type 1 

(IMPDH1) are associated with autosomal dominant form of retinitis pigmentosa (adRP) (Bowne 

et al. 2002; Kennan et al. 2002; Bowne et al. 2006). Surprisingly, the analysed adRP-associated 

mutations in IMPDH1 gene do not affect the activity of the enzyme (Mortimer and Hedstrom 

2005). Instead, the mutations reduce the level of RNA co-immunoprecipitation with  IMPDH1 

(Mortimer and Hedstrom 2005) and disrupt polyribosome-association of the tested retinal 

IMPDH1 isoform (Mortimer et al. 2008). The latter finding suggests a role for mammalian 

IMPDH in regulation of translation (Mortimer et al. 2008). It should be noted, however, that 

IMPDH isoenzymes were not among the enriched proteins after poly(A)+ RNA affinity 

purification from immortalized human cell lines (Castello et al. 2012; Baltz et al. 2012), suggesting 

that ribosome-association might be specific for IMPDH1 retinal isoform. It remains to be 

determined whether the yeast Imd2, Imd3 and Imd4 are also associated with polyribosomes and 

what the functional role of this interaction could be. Imd2, Imd3 and Imd4 co-purification with 

mRNA under normal yeast growth conditions (our data) as well as upon glucose deprivation (S. 

F. Mitchell et al. 2013) suggests that the proteins may associate with both translationally active 

and inactive pools of mRNPs.  

Besides the possible role for Imd2, Imd3 and Imd4 in translation regulation (Mortimer et 

al. 2008), the secondary functions of the above-mentioned proteins have not been studied to our 

knowledge. However, the identification of 21 ribosome biogenesis factors among the poly(A)+ 

RNA co-purifying proteins in glucose deprived yeast cells (S. F. Mitchell et al. 2013) or the co-

purification of Ubp3 with >1000 transcripts (Tsvetanova et al. 2010) strongly suggests that some 

ribosomal biogenesis factors and Ubp3 have a jet unidentified role in mRNA life cycle. 

Importantly, this function seems to be evolutionarily conserved since most of the MS2L-tagged 
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RNA co-purifying ribosome biogenesis factors as well as Ubp3  have been found to co-purify 

with poly(A)+ RNA also in mammalian cells (Castello et al. 2012; Baltz et al. 2012).  

In addition to proteins with no well established role in mRNA regulation that co-purified 

with at least two of the analysed MS2L-tagged RNAs, many proteins previously not implicated in 

mRNA regulation were enriched also in single MS data sets. For instance, ENO2-6MS2L co-

purified with the mitochondrial RNA polymerase Rpo41 (Greenleaf, Kelly, and Lehman 1986) 

and with a component of mitochondrial nucleoid Mgm101 (Mbantenkhu et al. 2011). Both 

proteins were >9-fold enriched, suggesting a specific interaction with ENO2-6MS2L. Since 

Rpo41 and Mgm101 are mitochondrial proteins, this finding raises the questions of where and 

why the cytoplasmic mRNPs containing ENO2-6MS2L mRNA interact with these mitochondrial 

proteins. The functional role of ENO2-6MS2L interaction with Rpo41 and Mgm101 remains 

unknown. However, a possible cellular site of interaction could be the mitochondrial surface. A 

part of cellular enolase pool is associated with mitochondrial surface where the protein is a 

component of a large macromolecular complex containing additional glycolytic enzymes, 

mitochondrial membrane carriers and enzymes of the citric acid cycle (Entelis et al. 2006; 

Brandina et al. 2006). The formation of such a macromolecular complex might involve ENO2 

mRNA translation in the vicinity of mitochondria, where the mRNA or the nascent enolase 

peptide could come into contact with mitochondrial proteins awaiting import. Alternatively, the 

co-purification of Rpo41 and Mgm101 with ENO2-6MS2L might represent false-positive 

interactions that occur upon the release of mitochondrial proteins due to cell breakage. 

Considering the high enrichment level of Rpo41 and Mgm101 (>9-fold enrichment) the latter 

scenario seems unlikely. However, we cannot rule out that some non-specifically bound proteins 

have been classified as enriched. The low enrichment level (<2-fold enrichment) and 

classification as enriched only in a single MS data set raises the possibility that some cytoplasmic 

metabolic enzymes (Leu2, Zwf1, Aro1, His4, Ura3, Met6), mitochondrial proteins (Adh3, 

Mss116, Hsp60) and additional proteins with various functions (Sec16, Psp2, Bmh2) represent 

non-specific interactors. 

PGK1-6MS2L co-purified with four glycolytic enzymes – Pgk1, Hxk2, Pgi1 and Tdh3 

(Table 31). In addition, three glycolytic enzymes (Tpi1, Tdh2 and Eno2) only slightly failed to 

meet the set threshold criteria for enriched proteins. Co-purification of Pgk1 protein with PGK1-

6MS2L mRNA is easily explained by association between the PGK1-6MS2L mRNA, the 

ribosome and the Pgk1 nascent peptide. This chain of interactions might also contribute to the 

co-purification of the other glycolytic enzymes with PGK1-6MS2L. Namely, several lines of 

evidence suggest that glycolytic enzymes form a supramolecular complex (see Discussion, Part 1, 

“PGK1-6MS2L co-purifies with several glycolytic enzymes – co-translational formation of a 



DISCUSSION 

 

178 
 

supramolecular glycolytic enzyme complex?” for references). Pgk1 nascent peptide might be co-

translationally recruited to such a complex, resulting in PGK1-6MS2L co-purification with not 

only Pgk1 nascent peptide but also with other glycolytic enzymes. It remains to be experimentally 

determined if the co-purification of glycolytic enzymes with PGK1-6MS2L represents biologically 

meaningful interactions or is a result of non-specific association of abundant cytoplasmic 

proteins with mRNPs upon cell breakage. The fact that 6MS2L-RNA did not co-purify with any 

of the glycolytic enzymes supports the notion that PGK1-6MS2L co-purification with glycolytic 

enzymes is biologically meaningful and represents the association of glycolytic enzymes into a 

supramolecular complex. 
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Table 1. The list of MS2L-tagged mRNA co-purifying proteins, which fulfilled the set threshold criteria to be 
classified as “enriched” (forward labelling experiment log2 (H/L) >0.5 and reverse labelling experiment log2 
(H/L) <–0.5). Each single row contains the group of proteins (proteinGroup) that could be assigned to a set of 
peptides that were identified by SILAC-based quantitative mass spectrometry. P – number of identified 
peptides; H/L – normalized SILAC ratio; log2 – log2 transformed normalized SILAC ratio; significance – 
significance B (if < 0.01, the corresponding proteinGroup is significantly up or down regulated). 
 

Boiled Beads unique (PGK1-6MS2L) Forward experiment Reverse experiment 

Protein ID Gene P H/L log2 Significance P H/L log2 Significance  

P09440 

Q06698 

P0CX47; P0CX48 

P53741 

P0CX82; P0CX83 

P05748; P54780 

P53952 

P14120 

P40212; Q12690 

P26321 

P05738 

P53297 

P0CX43; P0CX44 

P38811 

P32563 

P49626 

P25368 

P41805 

P33322 

P53254 

P42846 

P60010 

P25586 

P0C0T4 

P48415 

P15424 

P37838 

P02407; P14127 

P38786 

P0CX29; P0CX30 

P0CX35; P0CX36 

P40010 

P05756 

P41819 
 

MIS1 

YLR419W 

RPS11A; RPS11B 

BRE5 

RPL19A; RPL19B 

RPL15A; RPL15B 

YNL050C 

RPL30 

RPL13B; RPL13A 

RPL5 

RPL9A 

PBP1 

RPL1A; RPL1B 

TRA1 

VPH1 

RPL4B 

RRP7 

RPL10 

CBF5 

UTP22 

KRI1 

ACT1 

KRR1 

RPS25B 

SEC16 

MSS116 

NOP4 

RPS17A; RPS17B 

RPP1 

RPS23A; RPS23B 

RPS4B 

NUG1 

RPS13 

DIM1 
 

27 

15 

9 

12 

5 

3 

2 

4 

4 

6 

9 

9 

7 

12 

6 

9 

5 

2 

4 

12 

3 

6 

7 

6 

13 

9 

7 

6 

2 

8 

12 

7 

5 

6 
 

5.733 

5.309 

4.952 

4.640 

4.589 

4.381 

4.191 

4.013 

3.529 

3.298 

3.059 

2.935 

2.904 

2.655 

2.490 

2.488 

2.391 

2.391 

2.356 

2.098 

1.949 

1.820 

1.770 

1.718 

1.697 

1.676 

1.661 

1.636 

1.624 

1.609 

1.576 

1.474 

1.466 

1.429 
 

2.52 

2.41 

2.31 

2.21 

2.20 

2.13 

2.07 

2.00 

1.82 

1.72 

1.61 

1.55 

1.54 

1.41 

1.32 

1.32 

1.26 

1.26 

1.24 

1.07 

0.96 

0.86 

0.82 

0.78 

0.76 

0.74 

0.73 

0.71 

0.70 

0.69 

0.66 

0.56 

0.55 

0.51 
 

0.001493 

0.00229 

0.003327 

0.004657 

0.004922 

0.006205 

0.007696 

0.009449 

0.01687 

0.022462 

0.030435 

0.035751 

0.037233 

0.05182 

0.064808 

0.064998 

0.074247 

0.074249 

0.077964 

0.11182 

0.13818 

0.16624 

0.17855 

0.19254 

0.19855 

0.20465 

0.20904 

0.21669 

0.22043 

0.22521 

0.2362 

0.2738 

0.27689 

0.29207 
 

19 

7 

7 

8 

5 

4 

2 

5 

2 

4 

5 

7 

5 

2 

3 

9 

2 

4 

7 

4 

4 

4 

3 

7 

3 

7 

2 

8 

2 

7 

8 

5 

4 

2 
 

0.128 

0.158 

0.120 

0.171 

0.216 

0.267 

0.531 

0.354 

0.255 

0.541 

0.240 

0.249 

0.233 

0.475 

0.343 

0.257 

0.699 

0.275 

0.459 

0.495 

0.465 

0.183 

0.542 

0.691 

0.457 

0.510 

0.646 

0.188 

0.189 

0.129 

0.109 

0.593 

0.583 

0.441 
 

-2.96 

-2.67 

-3.06 

-2.55 

-2.21 

-1.91 

-0.91 

-1.50 

-1.97 

-0.89 

-2.06 

-2.00 

-2.10 

-1.07 

-1.55 

-1.96 

-0.52 

-1.86 

-1.12 

-1.01 

-1.10 

-2.45 

-0.88 

-0.53 

-1.13 

-0.97 

-0.63 

-2.41 

-2.40 

-2.95 

-3.20 

-0.75 

-0.78 

-1.18 
 

0.058185 

0.079027 

0.052032 

0.088563 

0.1216 

0.1581 

0.3201 

0.21699 

0.14966 

0.32554 

0.13936 

0.14565 

0.13403 

0.28984 

0.20958 

0.15112 

0.40006 

0.16409 

0.28084 

0.30096 

0.28443 

0.097472 

0.32597 

0.39652 

0.27988 

0.30894 

0.37647 

0.10163 

0.10192 

0.058713 

0.044872 

0.35141 

0.34648 

0.2705 
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RNase unique (PGK1-6MS2L) Forward experiment Reverse experiment 

Protein ID Gene P H/L log2 Significance P H/L log2 Significance  

P02400 

P25644 

Q02648 

P39998 

P33753 

P36102 

P53010 

P05750 

P0CX51; P0CX52 

P26783 

P34761 

P26786 

Q12517 

P38922 

P40070 

P40024 

P10081 

P40047 

P25567 

P0CX37; P0CX38 

P05317 

P53316 

Q04600 

P05694 

P32505 

P00359 

P35997;P38711 

P07246 

P12709 

P0CX84; P0CX85 

P48164 

P40561 

P04807 

P33399 

P04173 

P0C0V8; Q3E754 

P50094; O42831 

Q3E7Y3; P0C0W1 

P00330 

Q12499 

P05759; P0CG63 

P26785 

P10080 

P32588 

RPP2B 

PAT1 

TRM44 

EDC3 

TRM2 

PAN3 

PAN2 

RPS3 

RPS16A; RPS16B 

RPS5 

WHI3 

RPS7A 

DCP1 

HRB1 

LSM4 

ARB1 

TIF1 

ALD5 

SRO9 

RPS6A; RPS6B 

RPP0 

YGR250C 

TMA64 

MET6 

NAB2 

TDH3 

RPS27A; RPS27B 

ADH3 

PGI1 

RPL35A; RPL35B 

RPS7B 

SGN1 

HXK2 

LHP1 

LEU2 

RPS21A; RPS21B 

IMD4; YAR075W 

RPS22B; RPS22A 

ADH1 

NOP58 

RPS31; UBI4 

RPL16B 

SBP1 

PUB1 

2 

10 

14 

6 

9 

14 

4 

6 

6 

7 

4 

15 

5 

6 

4 

9 

4 

19 

9 

7 

6 

6 

5 

11 

10 

14 

3 

3 

7 

3 

13 

5 

8 

5 

8 

2 

9 

7 

10 

6 

5 

4 

6 

4 

14.164 

13.558 

13.080 

11.665 

11.031 

8.756 

8.492 

5.776 

5.179 

4.096 

4.040 

3.986 

3.759 

3.407 

3.016 

2.963 

2.632 

2.604 

2.455 

2.439 

2.426 

2.342 

2.311 

2.253 

2.240 

2.187 

2.164 

2.117 

2.076 

1.986 

1.947 

1.937 

1.915 

1.883 

1.773 

1.754 

1.753 

1.749 

1.702 

1.674 

1.671 

1.666 

1.585 

1.572 

3.82 

3.76 

3.71 

3.54 

3.46 

3.13 

3.09 

2.53 

2.37 

2.03 

2.01 

2.00 

1.91 

1.77 

1.59 

1.57 

1.40 

1.38 

1.30 

1.29 

1.28 

1.23 

1.21 

1.17 

1.16 

1.13 

1.11 

1.08 

1.05 

0.99 

0.96 

0.95 

0.94 

0.91 

0.83 

0.81 

0.81 

0.81 

0.77 

0.74 

0.74 

0.74 

0.66 

0.65 

6.41E-06 

8.92E-06 

1.17E-05 

2.67E-05 

3.95E-05 

0.000183 

0.000222 

0.002044 

0.003576 

0.010735 

0.011403 

0.012082 

0.015499 

0.023099 

0.036651 

0.039086 

0.058868 

0.060995 

0.073711 

0.075259 

0.076522 

0.085284 

0.088839 

0.095843 

0.097537 

0.10452 

0.10777 

0.11472 

0.12103 

0.13664 

0.14396 

0.14587 

0.15024 

0.15697 

0.18218 

0.18699 

0.18722 

0.18814 

0.2006 

0.20858 

0.20942 

0.21072 

0.23558 

0.23962 

2 

6 

6 

3 

5 

8 

6 

5 

1 

5 

2 

9 

2 

5 

3 

7 

5 

16 

5 

8 

5 

2 

3 

6 

5 

15 

2 

2 

4 

3 

11 

2 

3 

3 

4 

2 

5 

3 

14 

3 

4 

1 

3 

3 

0.342 

0.039 

0.033 

0.062 

0.089 

0.051 

0.068 

0.219 

0.512 

0.443 

0.194 

0.406 

0.204 

0.274 

0.341 

0.378 

0.688 

0.418 

0.309 

0.645 

0.355 

0.387 

0.315 

0.637 

0.420 

0.616 

0.457 

0.613 

0.280 

0.511 

0.398 

0.412 

0.352 

0.484 

0.690 

0.419 

0.390 

0.480 

0.686 

0.631 

0.439 

0.477 

0.531 

0.605 

-1.55 

-4.70 

-4.93 

-4.00 

-3.49 

-4.30 

-3.88 

-2.19 

-0.97 

-1.17 

-2.37 

-1.30 

-2.29 

-1.87 

-1.55 

-1.40 

-0.54 

-1.26 

-1.69 

-0.63 

-1.50 

-1.37 

-1.67 

-0.65 

-1.25 

-0.70 

-1.13 

-0.71 

-1.84 

-0.97 

-1.33 

-1.28 

-1.51 

-1.05 

-0.54 

-1.25 

-1.36 

-1.06 

-0.54 

-0.66 

-1.19 

-1.07 

-0.91 

-0.73 

0.11457 

7.19E-05 

3.30E-05 

0.000622 

0.002543 

0.000255 

0.000892 

0.041735 

0.23489 

0.18581 

0.030213 

0.15866 

0.034501 

0.071114 

0.11402 

0.13915 

0.35518 

0.16763 

0.092826 

0.32743 

0.12316 

0.14554 

0.096408 

0.32177 

0.16908 

0.30776 

0.19553 

0.30549 

0.074752 

0.23437 

0.15346 

0.16312 

0.12107 

0.21506 

0.35655 

0.16833 

0.14759 

0.21212 

0.35401 

0.31791 

0.1829 

0.21002 

0.24857 

0.30011 
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Boiled Beads unique (PGK1-6MS2L) Forward experiment Reverse experiment 

Protein ID Gene P H/L log2 Significance P H/L log2 Significance  

P50095 

P38701 

P19882 

P38199 
 

IMD3 

RPS20 

HSP60 

HEK2 
 

13 

11 

19 

5 
 

1.539 

1.486 

1.458 

1.455 
 

0.62 

0.57 

0.54 

0.54 
 

0.25081 

0.26979 

0.2804 

0.28139 
 

11 

9 

9 

2 
 

0.466 

0.665 

0.666 

0.589 
 

-1.10 

-0.59 

-0.59 

-0.76 
 

0.20208 

0.3407 

0.34132 

0.2889 
 

 

 

Shared (PGK1-6MS2L) Forward experiment Reverse experiment 

  P H/L log2 Significance P H/L log2 Significance  

P30771 

Q03466 

P53550 

P22147 

Q12000 

P38011 

P04147 

P39015 

P39729 

Q01477 

P40150 

P38934 

P14126 

P39936 

P16521; P53978 

P10664 

P25443 

P40850 

Q03862 

P39935 

P32527 

P05755 

P38788 

P0CX39; P0CX40 

P35732 

P06105 

P33442 

P00560 

P07281 

P23248 
 

UPF1 

EBS1 

DCP2 

XRN1 

TMA46 

ASC1 

PAB1 

STM1 

RBG1 

UBP3 

SSB2 

BFR1 

RPL3 

TIF4632 

YEF3; HEF3 

RPL4A 

RPS2 

MKT1 

ARX1 

TIF4631 

ZUO1 

RPS9B 

SSZ1 

RPS8A; RPS8B 

DEF1 

SCP160 

RPS1A 

PGK1 

RPS19B 

RPS1B 
 

16 

12 

15 

15 

8 

11 

29 

16 

6 

7 

21 

22 

2 

18 

22 

5 

5 

9 

10 

18 

15 

7 

18 

2 

17 

40 

6 

19 

6 

7 
 

60.681 

22.113 

19.375 

7.407 

6.489 

6.393 

5.960 

5.709 

5.636 

3.914 

3.711 

3.463 

3.415 

3.385 

2.864 

2.853 

2.647 

2.526 

2.411 

2.348 

2.150 

2.111 

2.110 

1.855 

1.853 

1.831 

1.704 

1.686 

1.676 

1.521 
 

5.92 

4.47 

4.28 

2.89 

2.70 

2.68 

2.58 

2.51 

2.49 

1.97 

1.89 

1.79 

1.77 

1.76 

1.52 

1.51 

1.40 

1.34 

1.27 

1.23 

1.10 

1.08 

1.08 

0.89 

0.89 

0.87 

0.77 

0.75 

0.75 

0.60 
 

5.90E-12 

1.66E-07 

5.20E-07 

0.00051 

0.001089 

0.001183 

0.00173 

0.002173 

0.002325 

0.013067 

0.016363 

0.02166 

0.022893 

0.023695 

0.044104 

0.044713 

0.057788 

0.067367 

0.078029 

0.084665 

0.10984 

0.11553 

0.11573 

0.16287 

0.1635 

0.16843 

0.20005 

0.20519 

0.20791 

0.25725 
 

9 

5 

6 

26 

3 

11 

28 

17 

4 

5 

19 

15 

3 

10 

17 

5 

3 

3 

6 

17 

10 

5 

11 

1 

7 

35 

7 

16 

5 

7 
 

0.015 

0.022 

0.058 

0.127 

0.105 

0.123 

0.097 

0.127 

0.119 

0.214 

0.300 

0.165 

0.297 

0.193 

0.384 

0.431 

0.549 

0.330 

0.355 

0.296 

0.387 

0.449 

0.372 

0.353 

0.563 

0.591 

0.511 

0.084 

0.659 

0.418 
 

-6.08 

-5.49 

-4.10 

-2.98 

-3.25 

-3.02 

-3.36 

-2.97 

-3.07 

-2.22 

-1.74 

-2.60 

-1.75 

-2.37 

-1.38 

-1.21 

-0.86 

-1.60 

-1.50 

-1.76 

-1.37 

-1.16 

-1.42 

-1.50 

-0.83 

-0.76 

-0.97 

-3.58 

-0.60 

-1.26 
 

3.88E-07 

4.19E-06 

0.000465 

0.00852 

0.004608 

0.007778 

0.003471 

0.008689 

0.007029 

0.039179 

0.087279 

0.019108 

0.084941 

0.02986 

0.1438 

0.17674 

0.2614 

0.10682 

0.12305 

0.084346 

0.14529 

0.18956 

0.13543 

0.12181 

0.27131 

0.29042 

0.23405 

0.002011 

0.33636 

0.1674 
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ENO2-6MS2L (RNase eluate) Forward experiment Reverse experiment 

Protein ID Gene P H/L log2 Significance P H/L log2 Significance  

Q03466 

Q02933 

P33753 

P0CX55; P0CX56 

P25644 

Q02648 

P37292 

P32787 

P0CX82; P0CX83 

P0CX35; P0CX36 

Q07362 

P40024 

P53550 

P13433 

P30771 

P22147 

P39998 

P36102 

P38922 

P53010 

Q06698 

P38934 

P26321 

P0CX47; P0CX48 

P14126 

P39729 

P38203 

P38788 

P05317 

P10664 

P07281 

P40047 

P0CX37; P0CX38 

P32527 

P53297 

P24000 

P04456 

P25443 

P39015 

P05755 

Q02753 

Q3E7Y3; P0C0W1 

P47017 

P48567 

EBS1 

RNY1 

TRM2 

RPS18A; RPS18B 

PAT1 

TRM44 

SHM1 

MGM101 

RPL19A; RPL19B 

RPS4A; RPS4B 

PBP4 

ARB1 

DCP2 

RPO41 

NAM7 

XRN1 

EDC3 

PAN3 

HRB1 

PAN2 

YLR419W 

BFR1 

RPL5 

RPS11A; RPS11B 

RPL3 

RBG1 

LSM2 

SSZ1 

RPP0 

RPL4A 

RPS19B 

ALD5 

RPS6A; RPS6B 

ZUO1 

PBP1 

RPL24B 

RPL25 

RPS2 

STM1 

RPS9B 

RPL21A 

RPS22B; RPS22A 

LSM1 

PUS4 

11 

2 

7 

3 

11 

5 

14 

2 

4 

4 

2 

8 

5 

9 

12 

24 

4 

7 

4 

8 

17 

26 

2 

2 

3 

8 

2 

16 

5 

6 

4 

19 

5 

10 

3 

2 

4 

6 

19 

5 

2 

6 

2 

2 

29.074 

19.370 

18.617 

18.299 

14.727 

13.519 

12.245 

11.898 

11.636 

9.977 

9.872 

9.581 

9.420 

9.110 

9.046 

8.919 

8.661 

8.600 

8.577 

8.546 

8.525 

8.306 

7.665 

7.602 

7.532 

7.306 

7.303 

7.117 

7.042 

7.010 

6.997 

6.920 

6.843 

6.719 

6.704 

6.645 

6.576 

6.141 

5.800 

5.603 

5.600 

5.525 

5.511 

5.419 

4.86 

4.28 

4.22 

4.19 

3.88 

3.76 

3.61 

3.57 

3.54 

3.32 

3.30 

3.26 

3.24 

3.19 

3.18 

3.16 

3.11 

3.10 

3.10 

3.10 

3.09 

3.05 

2.94 

2.93 

2.91 

2.87 

2.87 

2.83 

2.82 

2.81 

2.81 

2.79 

2.77 

2.75 

2.75 

2.73 

2.72 

2.62 

2.54 

2.49 

2.49 

2.47 

2.46 

2.44 

0.0085327 

0.020706 

0.02245 

0.023246 

0.035463 

0.041542 

0.049604 

0.052165 

0.05422 

0.07021 

0.071427 

0.074966 

0.077032 

0.081243 

0.082141 

0.08399 

0.087901 

0.08887 

0.089244 

0.089735 

0.090075 

0.093744 

0.1057 

0.107 

0.10846 

0.11336 

0.11343 

0.11771 

0.1195 

0.12027 

0.1206 

0.12249 

0.12444 

0.12767 

0.12806 

0.12965 

0.13154 

0.14437 

0.15573 

0.16286 

0.16297 

0.1658 

0.16634 

0.16997 

10 

2 

8 

3 

9 

8 

10 

2 

5 

7 

5 

5 

10 

4 

10 

23 

4 

5 

5 

3 

5 

17 

2 

6 

8 

7 

1 

11 

6 

5 

3 

21 

7 

10 

8 

3 

3 

2 

18 

5 

4 

4 

1 

6 

0.038 

0.034 

0.015 

0.088 

0.011 

0.009 

0.040 

0.013 

0.592 

0.527 

0.093 

0.092 

0.067 

0.047 

0.036 

0.059 

0.041 

0.054 

0.027 

0.046 

0.039 

0.046 

0.157 

0.150 

0.051 

0.108 

0.111 

0.074 

0.701 

0.140 

0.230 

0.056 

0.094 

0.079 

0.058 

0.408 

0.055 

0.293 

0.048 

0.227 

0.633 

0.207 

0.130 

0.038 

-4.72 

-4.88 

-6.11 

-3.50 

-6.48 

-6.77 

-4.65 

-6.27 

-0.76 

-0.92 

-3.43 

-3.44 

-3.90 

-4.42 

-4.78 

-4.08 

-4.60 

-4.22 

-5.22 

-4.45 

-4.70 

-4.43 

-2.67 

-2.74 

-4.28 

-3.21 

-3.17 

-3.75 

-0.51 

-2.84 

-2.12 

-4.16 

-3.42 

-3.65 

-4.12 

-1.29 

-4.19 

-1.77 

-4.39 

-2.14 

-0.66 

-2.27 

-2.94 

-4.71 

0.087438 

0.080276 

0.03748 

0.16303 

0.02903 

0.023716 

0.090891 

0.033636 

0.44422 

0.42409 

0.16885 

0.16793 

0.13481 

0.10319 

0.084911 

0.12295 

0.093604 

0.11465 

0.065687 

0.10142 

0.088747 

0.1026 

0.23324 

0.22754 

0.1109 

0.18623 

0.18901 

0.14509 

0.47409 

0.21793 

0.28865 

0.11841 

0.16962 

0.1519 

0.12098 

0.38021 

0.11629 

0.32603 

0.10514 

0.28625 

0.45615 

0.27294 

0.20872 

0.088203 
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ENO2-6MS2L (RNase eluate) Forward experiment Reverse experiment 

Protein ID Gene P H/L log2 Significance P H/L log2 Significance  

P48589 

P0C0V8; Q3E754 

P38011 

Q03862 

P0C2H8 

Q01477 

P38174 

P26786 

P50094; O42831 

P05740; P46990 

P40150 

P02407; P14127 

P04147 

P39730 

P12945 

P39936 

P29453 

P40850 

P53235 

P09440 

P50095; REV_P38882 

P41805 

P05738 

P46784; Q08745 

P07347 

P25567 

Q12129 

P05750 

P38697; P39567 

Q12517 

Q12211 

Q06106 

P38701 

P33322 

P20459 

Q02792 

P0CX43; P0CX44 

Q12186 

Q08208 

Q12000 

P48164 

P39517 

P32481 

Q02326 

RPS12 

RPS21A; RPS21B 

ASC1 

ARX1 

RPL31A 

UBP3 

MAP2 

RPS7A 

IMD4; YAR075W 

RPL17A; RPL17B 

SSB2 

RPS17A 

PAB1 

FUN12 

NAT1 

TIF4632 

RPL8B 

MKT1 

YGR054W 

MIS1 

IMD3; REV_UTP9 

RPL10 

RPL9A 

RPS10B; RPS10A 

ARD1 

SRO9 

NMD4 

RPS3 

IMD2; IMD1 

DCP1 

PUS1 

MRD1 

RPS20 

CBF5 

SUI2 

RAT1 

RPL1A; RPL1B 

MSL5 

NOP12 

TMA46 

RPS7B 

DHH1 

GCD11 

RPL6A 

5 

3 

16 

10 

4 

13 

3 

16 

8 

3 

20 

5 

25 

7 

8 

20 

10 

4 

8 

19 

12 

1 

12 

2 

2 

6 

5 

7 

10 

3 

2 

8 

7 

4 

4 

5 

13 

5 

5 

7 

15 

5 

5 

7 

5.343 

5.280 

5.228 

5.033 

4.979 

4.808 

4.756 

4.638 

4.462 

4.402 

4.362 

4.333 

4.332 

4.249 

4.233 

4.123 

4.091 

3.997 

3.848 

3.537 

3.499 

3.459 

3.453 

3.356 

3.192 

3.135 

3.135 

2.990 

2.927 

2.877 

2.804 

2.539 

2.412 

2.381 

2.376 

2.310 

2.206 

2.171 

2.105 

2.104 

2.081 

2.069 

2.022 

1.999 

2.42 

2.40 

2.39 

2.33 

2.32 

2.27 

2.25 

2.21 

2.16 

2.14 

2.13 

2.12 

2.12 

2.09 

2.08 

2.04 

2.03 

2.00 

1.94 

1.82 

1.81 

1.79 

1.79 

1.75 

1.67 

1.65 

1.65 

1.58 

1.55 

1.52 

1.49 

1.34 

1.27 

1.25 

1.25 

1.21 

1.14 

1.12 

1.07 

1.07 

1.06 

1.05 

1.02 

1.00 

0.17301 

0.17561 

0.17782 

0.18635 

0.18883 

0.197 

0.19955 

0.20562 

0.21509 

0.2185 

0.22078 

0.22251 

0.22253 

0.22747 

0.22843 

0.23531 

0.23738 

0.24348 

0.25376 

0.27732 

0.28036 

0.28369 

0.28419 

0.29251 

0.30732 

0.31273 

0.31274 

0.32715 

0.33374 

0.33903 

0.34717 

0.37881 

0.39554 

0.39985 

0.40047 

0.4098 

0.4251 

0.43048 

0.44086 

0.44092 

0.44465 

0.44656 

0.45431 

0.45827 

3 

1 

9 

5 

2 

9 

4 

13 

7 

3 

17 

4 

27 

5 

2 

14 

8 

8 

5 

12 

13 

2 

8 

2 

2 

5 

3 

6 

11 

4 

2 

5 

6 

2 

5 

3 

10 

5 

5 

7 

14 

6 

3 

4 

0.126 

0.100 

0.078 

0.064 

0.086 

0.064 

0.126 

0.117 

0.076 

0.075 

0.077 

0.139 

0.079 

0.094 

0.174 

0.077 

0.199 

0.129 

0.142 

0.065 

0.125 

0.270 

0.148 

0.098 

0.188 

0.077 

0.056 

0.043 

0.097 

0.153 

0.189 

0.165 

0.099 

0.244 

0.422 

0.350 

0.136 

0.670 

0.310 

0.110 

0.375 

0.197 

0.396 

0.156 

-2.99 

-3.32 

-3.68 

-3.97 

-3.54 

-3.96 

-2.99 

-3.09 

-3.72 

-3.74 

-3.70 

-2.84 

-3.66 

-3.41 

-2.52 

-3.70 

-2.33 

-2.95 

-2.82 

-3.95 

-3.00 

-1.89 

-2.76 

-3.35 

-2.41 

-3.69 

-4.17 

-4.54 

-3.37 

-2.71 

-2.40 

-2.60 

-3.34 

-2.03 

-1.25 

-1.52 

-2.88 

-0.58 

-1.69 

-3.19 

-1.42 

-2.34 

-1.34 

-2.68 

0.20474 

0.17754 

0.15031 

0.13 

0.15992 

0.13065 

0.20513 

0.19588 

0.1469 

0.14582 

0.14893 

0.21767 

0.15141 

0.1698 

0.24782 

0.14875 

0.26696 

0.20803 

0.22024 

0.13178 

0.20378 

0.3133 

0.22555 

0.17471 

0.25896 

0.14902 

0.11771 

0.09673 

0.17348 

0.22987 

0.25951 

0.24048 

0.17557 

0.29762 

0.38591 

0.35459 

0.21485 

0.46607 

0.33514 

0.18774 

0.36605 

0.26541 

0.37523 

0.23298 
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ENO2-6MS2L (RNase eluate) Forward experiment Reverse experiment 

Protein ID Gene P H/L log2 Significance P H/L log2 Significance  

P39935 

Q08647 

P26785 

Q06704 

P11412 

P26783 

P00925 

P35997; P38711 

P53883 

P35732 

P50109 

P08566 

P0C0W9; Q3E757 

P40070 

P38779 
 

TIF4631 

PUS7 

RPL16B 

IMH1 

ZWF1 

RPS5 

ENO2 

RPS27A; RPS27B 

NOP13 

DEF1 

PSP2 

ARO1 

RPL11A; RPL11B 

LSM4 

CIC1 
 

16 

5 

4 

9 

4 

6 

22 

3 

10 

2 

8 

4 

8 

3 

6 
 

1.898 

1.886 

1.852 

1.835 

1.823 

1.818 

1.737 

1.682 

1.617 

1.579 

1.575 

1.550 

1.550 

1.500 

1.444 
 

0.92 

0.91 

0.89 

0.88 

0.87 

0.86 

0.80 

0.75 

0.69 

0.66 

0.66 

0.63 

0.63 

0.58 

0.53 
 

0.47584 

0.47805 

0.48408 

0.48726 

0.48955 

0.4904 

0.49217 

0.47765 

0.4598 

0.44918 

0.44804 

0.44095 

0.44082 

0.4262 

0.40934 
 

14 

6 

5 

6 

3 

9 

19 

2 

4 

14 

9 

6 

6 

5 

2 
 

0.190 

0.259 

0.497 

0.295 

0.595 

0.121 

0.152 

0.097 

0.380 

0.184 

0.656 

0.655 

0.237 

0.567 

0.436 
 

-2.39 

-1.95 

-1.01 

-1.76 

-0.75 

-3.05 

-2.72 

-3.37 

-1.40 

-2.45 

-0.61 

-0.61 

-2.08 

-0.82 

-1.20 
 

0.26033 

0.30637 

0.414 

0.32723 

0.44521 

0.1993 

0.22881 

0.17344 

0.36837 

0.25534 

0.46239 

0.46197 

0.29261 

0.43678 

0.3916 
 

 

 

6MS2L-RNA (RNase eluate) Forward experiment Reverse experiment 

Protein ID Gene P H/L log2 Significance P H/L log2 Significance  

P36102 

P04147 

P39936 

P34160 

P38205 

Q08920 

P33753 

P53010 

Q12129 

P39935 

P30771 

P53316 

P40561 

P32380 

P32505 

P07260 

P10080 

Q07362 

P40850 

P40070 

P22147 

P48567 

P53297 

PAN3 

PAB1 

TIF4632 

STO1 

NCL1 

CBC2 

TRM2 

PAN2 

NMD4 

TIF4631 

NAM7 

YGR250C 

SGN1 

SPC110 

NAB2 

CDC33 

SBP1 

PBP4 

MKT1 

LSM4 

XRN1 

PUS4 

PBP1 

9 

29 

11 

9 

9 

3 

8 

8 

3 

14 

6 

4 

3 

10 

4 

9 

4 

2 

7 

4 

11 

7 

7 

58.517 

40.286 

39.738 

29.565 

27.439 

25.617 

24.868 

24.695 

23.554 

22.795 

21.883 

16.236 

15.179 

14.339 

13.960 

13.203 

11.406 

11.274 

10.773 

10.730 

10.461 

10.085 

9.366 

5.87 

5.33 

5.31 

4.89 

4.78 

4.68 

4.64 

4.63 

4.56 

4.51 

4.45 

4.02 

3.92 

3.84 

3.80 

3.72 

3.51 

3.49 

3.43 

3.42 

3.39 

3.33 

3.23 

0.00016 

0.00057 

0.00059 

0.00149 

0.00186 

0.00227 

0.00248 

0.00253 

0.00289 

0.00317 

0.00355 

0.00782 

0.00926 

0.01066 

0.01137 

0.013 

0.01824 

0.01873 

0.02073 

0.02092 

0.02213 

0.02397 

0.02808 

11 

28 

21 

13 

11 

3 

13 

13 

3 

20 

14 

5 

5 

2 

6 

9 

5 

5 

8 

4 

23 

6 

8 

0.037 

0.021 

0.018 

0.024 

0.053 

0.038 

0.013 

0.031 

0.120 

0.036 

0.059 

0.086 

0.104 

0.339 

0.074 

0.122 

0.245 

0.157 

0.136 

0.214 

0.165 

0.106 

0.126 

-4.74 

-5.58 

-5.76 

-5.38 

-4.24 

-4.74 

-6.24 

-4.99 

-3.06 

-4.78 

-4.08 

-3.53 

-3.27 

-1.56 

-3.75 

-3.03 

-2.03 

-2.67 

-2.88 

-2.23 

-2.60 

-3.24 

-2.99 

0.000934 

0.000119 

7.16E-05 

0.000196 

0.002804 

0.000948 

1.87E-05 

0.000521 

0.024294 

0.000857 

0.003887 

0.010985 

0.017253 

0.17003 

0.007407 

0.025588 

0.10136 

0.044024 

0.032266 

0.079971 

0.04875 

0.018093 

0.027155 



APPENDIX 

 

233 
 

6MS2L-RNA (RNase eluate) Forward experiment Reverse experiment 

Protein ID Gene P H/L log2 Significance P H/L log2 Significance  

P25644 

P38199 

P50094; O42831 

P32588 

P50095; REV_P38882 

P40047 

P26783 

P38011 

P38934 

Q08647 

P25443 

P0CX29; P0CX30 

P26786 

P38701 

P33442 

P0CX35; P0CX36 

P38697; P39567 

P0CX47; P0CX48 

P05750 

P48164 

P48589 

P0CX37; P0CX38 

P0CX43; P0CX44 

P05738 

P09440 

Q05022 

P05755 

P38889 

Q02326 

P05739 

P26785 

P10664 

P39015 

P0CX82; P0CX83 

P0C0W9; Q3E757 

P05737 

Q02753 

P29453 

P40150 

Q03690 

P40212; Q12690 

P05740; P46990 

P0CX49; P0CX50 
a
 

P0CX63 
b
 

PAT1 

HEK2 

IMD4; YAR075W 

PUB1 

IMD3; REV_UTP9 

ALD5 

RPS5 

ASC1 

BFR1 

PUS7 

RPS2 

RPS23A, RPS23B 

RPS7A 

RPS20 

RPS1A 

RPS4A, RPS4B 

IMD2 

RPS11A; RPS11B 

RPS3 

RPS7B 

RPS12 

RPS6A; RPS2B 

RPL1A; RPL1B 

RPL9A 

MIS1 

RRP5 

RPS9B 

SKN7 

RPL6A 

RPL6B 

RPL16B 

RPL4A 

STM1 

RPL19A; RPL19B 

RPL11A; RPL11B 

RPL7A 

RPL21A 

RPL8B 

SSB2 

CLU1 

RPL13B; RPL13A 

RPL17A; RPL17B 

RPL18A; RPL18B 

YGR161W-B 

6 

4 

7 

4 

12 

21 

4 

10 

16 

6 

2 

2 

9 

2 

7 

5 

9 

3 

4 

7 

2 

3 

9 

6 

3 

8 

3 

2 

4 

5 

3 

3 

8 

4 

5 

8 

4 

7 

15 

4 

3 

3 

2 

5 

9.124 

8.279 

7.720 

7.420 

6.892 

6.149 

6.018 

5.741 

5.707 

5.633 

4.682 

4.610 

4.569 

4.564 

4.563 

4.481 

4.475 

4.445 

4.346 

4.263 

4.253 

4.200 

4.012 

3.974 

3.914 

3.900 

3.877 

3.765 

3.740 

3.647 

3.637 

3.606 

3.535 

3.508 

3.496 

3.492 

3.337 

3.284 

3.201 

3.172 

3.166 

3.137 

3.077 

3.066 

3.19 

3.05 

2.95 

2.89 

2.78 

2.62 

2.59 

2.52 

2.51 

2.49 

2.23 

2.20 

2.19 

2.19 

2.19 

2.16 

2.16 

2.15 

2.12 

2.09 

2.09 

2.07 

2.00 

1.99 

1.97 

1.96 

1.95 

1.91 

1.90 

1.87 

1.86 

1.85 

1.82 

1.81 

1.81 

1.80 

1.74 

1.72 

1.68 

1.67 

1.66 

1.65 

1.62 

1.62 

0.02967 

0.03625 

0.04167 

0.04503 

0.05188 

0.06403 

0.06656 

0.07235 

0.07312 

0.0748 

0.10196 

0.10453 

0.10603 

0.10622 

0.10625 

0.10933 

0.10955 

0.11073 

0.11469 

0.11819 

0.11863 

0.12095 

0.12963 

0.1315 

0.13454 

0.13523 

0.13644 

0.14244 

0.14381 

0.14912 

0.1497 

0.15156 

0.1559 

0.1576 

0.15838 

0.15866 

0.169 

0.17269 

0.17881 

0.181 

0.18144 

0.18371 

0.18846 

0.18938 

7 

6 

12 

4 

15 

20 

5 

11 

15 

6 

3 

2 

10 

5 

8 

3 

12 

3 

4 

9 

4 

3 

12 

8 

6 

25 

4 

3 

5 

7 

2 

3 

14 

4 

7 

10 

5 

5 

19 

9 

3 

3 

2 

5 

0.114 

0.192 

0.188 

0.214 

0.259 

0.205 

0.393 

0.272 

0.315 

0.281 

0.548 

0.167 

0.446 

0.409 

0.358 

0.324 

0.279 

0.229 

0.383 

0.345 

0.340 

0.356 

0.520 

0.426 

0.364 

0.303 

0.234 

0.389 

0.363 

0.398 

0.282 

0.321 

0.373 

0.167 

0.385 

0.348 

0.267 

0.330 

0.355 

0.436 

0.329 

0.299 

0.248 

0.417 

-3.13 

-2.38 

-2.41 

-2.22 

-1.95 

-2.29 

-1.35 

-1.88 

-1.67 

-1.83 

-0.87 

-2.58 

-1.16 

-1.29 

-1.48 

-1.63 

-1.84 

-2.13 

-1.39 

-1.54 

-1.56 

-1.49 

-0.94 

-1.23 

-1.46 

-1.72 

-2.10 

-1.36 

-1.46 

-1.33 

-1.83 

-1.64 

-1.42 

-2.58 

-1.38 

-1.52 

-1.91 

-1.60 

-1.49 

-1.20 

-1.60 

-1.74 

-2.01 

-1.26 

0.021672 

0.065225 

0.062731 

0.080211 

0.11132 

0.074 

0.20909 

0.12083 

0.15247 

0.12736 

0.31352 

0.049618 

0.24621 

0.22022 

0.18395 

0.15863 

0.12632 

0.090389 

0.20154 

0.17396 

0.17075 

0.18228 

0.29549 

0.23238 

0.18822 

0.14387 

0.093922 

0.2059 

0.18736 

0.21267 

0.12792 

0.15686 

0.19473 

0.049946 

0.20328 

0.17633 

0.11728 

0.16357 

0.18141 

0.23893 

0.16287 

0.14043 

0.10362 

0.22616 
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6MS2L-RNA (RNase eluate) Forward experiment Reverse experiment 

Protein ID Gene P H/L log2 Significance P H/L log2 Significance  

P05759 
c
 

P39730 

P05317 

P06105 

P41805 

Q06106 

P35732 

P38249 

P37292 

Q04215 
d
 

P06634 

P38788 

Q06704 

P32527 

P47047 

P07281 

P38879 

P46655; REV_P50275 

P03962 

P04801 

P34730 

P46672 

P00815 
 

RPS31 

FUN12 

RPP0 

SCP160 

RPL10 

MRD1 

DEF1 

RPG1 

SHM1 

YMR046C 

DED1 

SSZ1 

IMH1 

ZUO1 

MTR4 

RPS19B 

EGD2 

GUS1; REV_ASE1 

URA3 

THS1 

BMH2 

ARC1 

HIS4 
 

2 

3 

5 

29 

2 

3 

8 

6 

8 

5 

4 

12 

2 

9 

4 

1 

3 

5 

2 

5 

6 

3 

2 
 

3.041 

3.036 

3.022 

2.807 

2.795 

2.416 

2.387 

2.335 

2.314 

2.234 

2.121 

2.113 

2.086 

2.021 

1.986 

1.742 

1.724 

1.683 

1.512 

1.508 

1.473 

1.457 

1.417 
 

1.60 

1.60 

1.60 

1.49 

1.48 

1.27 

1.25 

1.22 

1.21 

1.16 

1.09 

1.08 

1.06 

1.01 

0.99 

0.80 

0.79 

0.75 

0.60 

0.59 

0.56 

0.54 

0.50 
 

0.19145 

0.19186 

0.19299 

0.21221 

0.21338 

0.2545 

0.25811 

0.26466 

0.26745 

0.2782 

0.29439 

0.29564 

0.29971 

0.31006 

0.3157 

0.35985 

0.36344 

0.37186 

0.40961 

0.4106 

0.41905 

0.42295 

0.43304 
 

4 

6 

3 

41 

2 

8 

14 

4 

8 

4 

7 

14 

11 

12 

11 

2 

6 

7 

4 

9 

7 

3 

1 
 

0.342 

0.387 

0.483 

0.419 

0.595 

0.589 

0.652 

0.505 

0.484 

0.610 

0.641 

0.646 

0.688 

0.650 

0.662 

0.607 

0.697 

0.574 

0.476 

0.541 

0.627 

0.513 

0.630 
 

-1.55 

-1.37 

-1.05 

-1.25 

-0.75 

-0.76 

-0.62 

-0.99 

-1.05 

-0.71 

-0.64 

-0.63 

-0.54 

-0.62 

-0.60 

-0.72 

-0.52 

-0.80 

-1.07 

-0.89 

-0.67 

-0.96 

-0.67 
 

0.17168 

0.20483 

0.27155 

0.22742 

0.34297 

0.33898 

0.37596 

0.28573 

0.27227 

0.3516 

0.36965 

0.37271 

0.39626 

0.37505 

0.38175 

0.34995 

0.40135 

0.32974 

0.26668 

0.30925 

0.36144 

0.29132 

0.36371 
 

 
Additional protein IDs forming one proteinGroup:  
a 

P27809 
b
 P0CX64; P25384; Q12472; P0C2J3; Q03494; Q12113; Q12337; Q12501; Q12491; P0C2J5; P0C2J2; P0C2J4; P0C2J6; P0CX61; P0CX62; 

P25383; Q03483; Q12293; Q12392; Q12439; Q99303; Q12260 
c
 P0CG63; P0CH08; P0CH09 

d
 Q12266 

 
 
 
 

Table 2. RNase elution efficiency as assessed by the comparison of enriched proteins in RNase eluate and 
Boiled Beads sample. After PGK1-6MS2L affinity purification the beads were first treated with RNase and 
subsequently boiled in SDS sample buffer. The resulting protein samples – RNase eluate and Boiled Beads (BB) 
sample – were analysed by mass spectrometry. The enriched proteins were grouped into three categories 
(Unique, Possible Common, Common) depending if the protein classified as enriched in one MS data set, 
possibly in both or in both MS data sets. Table depicts the log2 (H/L) ratios of the enriched proteins. 
 

BB sample 

Gene 

Unique 

Gene 

Possible Common 

BB RNase BB RNase 

for rev for rev for rev for rev 

YLR419W 

RPL19A; RPL19B 

RPL15A; RPL15B 

YNL050C 

2.41 

2.20 

2.13 

2.07 

-2.67 

-2.21 

-1.91 

-0.91 

-3.30 

-0.15 

 

 

 
0.22 

 

 

MIS1 

RPS11A; RPS11B 

BRE5 

RPL30 

2.52 

2.31 

2.21 

2.00 

-2.96 

-3.06 

-2.55 

-1.50 

2.10 

0.63 

2.25 

 

 
-0.30 

 
-1.31 
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BB sample 

Gene 

Unique 

Gene 

Possible Common 

BB RNase BB RNase 

for rev for rev for rev for rev 

RPL13B; RPL13A 

TRA1 

VPH1 

RPL10 

RRP7 

UTP22 

KRI1 

ACT1 

KRR1 

SEC16 

MSS116 

NOP4 

RPP1 

NUG1 
 

1.82 

1.41 

1.32 

1.26 

1.26 

1.07 

0.96 

0.86 

0.82 

0.76 

0.74 

0.73 

0.70 

0.56 
 

-1.97 

-1.07 

-1.55 

-1.86 

-0.52 

-1.01 

-1.10 

-2.45 

-0.88 

-1.13 

-0.97 

-0.63 

-2.40 

-0.75 
 

-1.26 

 

 
-0.83 

 

 

 
-0.59 

 

1.47 

 

 
0.83 

 

 

 
-0.59 

 

RPL5 

RPL9A 

PBP1 

RPL1A; RPL1B 

RPL4B 

CBF5 

RPS25B 

RPS17A; RPS17B 

RPS23A; RPS23B 

RPS4A; RPS4B 

RPS13 

DIM1 
 

1.72 

1.61 

1.55 

1.54 

1.32 

1.24 

0.78 

0.71 

0.69 

0.66 

0.55 

0.51 
 

-0.89 

-2.06 

-2.00 

-2.10 

-1.96 

-1.12 

-0.53 

-2.41 

-2.95 

-3.20 

-0.78 

-1.18 
 

 
1.77 

1.30 

1.12 

 
0.89 

1.67 

0.45 

0.45 

0.61 

0.48 

1.39 
 

-0.84 

-0.43 

 
-0.05 

-1.61 

 

 
-0.51 

-0.42 

-0.39 

-0.34 
 

 

RNase eluate 

Gene 

Unique 

Gene 

Possible Common 

BB RNase BB RNase 

for rev for rev for rev for rev 

RPP2B 

TRM2 

PAN3 

PAN2 

RPS5 

WHI3 

DCP1 

HRB1 

LSM4 

ALD5 

SRO9 

RPP0 

TMA64 

MET6 

NAB2 

TDH3 

ADH3 

PGI1 

RPL35A; RPL35B 

HXK2 

LHP1 

IMD4; YAR075W 

ADH1 

RPS31; UBI4 

0.02 

 

 

 
-0.25 

 

 

 

 

 

 
-0.13 

 
-0.02 

 
-2.44 

 
0.06 

-0.03 

 

 

 
-1.85 

-0.12 

0.77 

 

 

 
-2.65 

 

 

 

 

 

 
-0.80 

 

 

 
1.47 

 

 
-1.44 

 

 

 
1.33 

-0.45 

3.82 

3.46 

3.13 

3.09 

2.03 

2.01 

1.91 

1.77 

1.59 

1.38 

1.30 

1.28 

1.21 

1.17 

1.16 

1.13 

1.08 

1.05 

0.99 

0.94 

0.91 

0.81 

0.77 

0.74 

-1.55 

-3.49 

-4.30 

-3.88 

-1.17 

-2.37 

-2.29 

-1.87 

-1.55 

-1.26 

-1.69 

-1.50 

-1.67 

-0.65 

-1.25 

-0.70 

-0.71 

-1.84 

-0.97 

-1.51 

-1.05 

-1.36 

-0.54 

-1.19 

PAT1 

TRM44 

EDC3 

RPS3 

RPS7A 

ARB1 

TIF1 

RPS6A;RPS6B 

YGR250C 

RPS27A; RPS27B 

RPS7B 

SGN1 

LEU2 

RPS21A; RPS21B 

RPS22B; RPS22A 

NOP58 

RPS16A; RPS16B 

SBP1 

RPS20 

HSP60 

RPS16A 
 

 
3.26 

 
0.32 

0.40 

0.43 

1.29 

0.49 

0.67 

 
0.49 

 
2.09 

 
0.47 

0.60 

0.00 

1.97 

0.53 

0.29 

0.63 
 

-3.82 

 
-4.04 

-3.06 

-2.68 

-0.40 

 
-2.76 

 
-1.14 

-2.48 

-1.07 

-0.30 

-0.31 

-0.24 

-0.26 

-1.90 

-0.39 

-0.15 

-0.28 

-0.23 
 

3.76 

3.71 

3.54 

2.53 

2.00 

1.57 

1.40 

1.29 

1.23 

1.11 

0.96 

0.95 

0.83 

0.81 

0.81 

0.74 

0.74 

0.66 

0.57 

0.54 

2.37 
 

-4.70 

-4.93 

-4.00 

-2.19 

-1.30 

-1.40 

-0.54 

-0.63 

-1.37 

-1.13 

-1.33 

-1.28 

-0.54 

-1.25 

-1.06 

-0.66 

-1.07 

-0.91 

-0.59 

-0.59 

-0.97 
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RNase eluate 

Gene 

Unique 

Gene 

Possible Common 

BB RNase BB RNase 

for rev for rev for rev for rev 

PUB1 

IMD3 

HEK2 
 

 

 

 
 

 

 

 
 

0.65 

0.62 

0.54 
 

-0.73 

-1.10 

-0.76 
 

 

BB sample and RNase eluate Common 

Gene 
BB RNase 

Gene 
BB RNase 

for rev for rev for rev for rev 

NAM7 

EBS1 

DCP2 

XRN1 

TMA46 

ASC1 

PAB1 

STM1 

RBG1 

UBP3 

SSB2 

BFR1 

RPL3 

TIF4632 

YEF3; HEF3 
 

6.78 

4.99 

4.38 

2.99 

4.05 

0.90 

2.46 

2.50 

3.95 

2.30 

1.08 

2.01 

3.17 

1.78 

0.73 
 

-7.41 

-5.20 

-5.01 

-3.42 

-2.96 

-2.61 

-3.26 

-2.76 

-2.76 

-2.57 

-1.55 

-2.61 

-1.96 

-2.34 

-0.82 
 

5.92 

4.47 

4.28 

2.89 

2.70 

2.68 

2.58 

2.51 

2.49 

1.97 

1.89 

1.79 

1.77 

1.76 

1.52 
 

-6.08 

-5.49 

-4.10 

-2.98 

-3.25 

-3.02 

-3.36 

-2.97 

-3.07 

-2.22 

-1.74 

-2.60 

-1.75 

-2.37 

-1.38 
 

RPL4A 

RPS2 

MKT1 

ARX1 

TIF4631 

ZUO1 

RPS9B 

SSZ1 

RPS8A; RPS8B 

DEF1 

SCP160 

RPS1A 

PGK1 

RPS19B 

RPS1B 
 

1.25 

1.48 

1.49 

1.28 

1.42 

0.75 

2.02 

0.90 

2.93 

1.14 

0.79 

0.62 

1.68 

0.73 

0.56 
 

-1.81 

-2.60 

-1.67 

-1.44 

-2.08 

-1.45 

-3.14 

-0.89 

-3.13 

-1.02 

-1.18 

-3.03 

-5.09 

-0.58 

-2.64 
 

1.51 

1.40 

1.34 

1.27 

1.23 

1.10 

1.08 

1.08 

0.89 

0.89 

0.87 

0.77 

0.75 

0.75 

0.60 
 

-1.21 

-0.86 

-1.60 

-1.50 

-1.76 

-1.37 

-1.16 

-1.42 

-1.50 

-0.83 

-0.76 

-0.97 

-3.58 

-0.60 

-1.26 
 

 

 

 

 
Table 3. Literature-based analysis of MS2L-tagged RNA co-purifying proteins (>1.41-fold enriched) to identify 
their previously known target RNAs and function. Comparison of  our data set of enriched proteins to RBPs 
identified in yeast (S. F. Mitchell et al. 2013) or in mammalian cells (Castello et al. 2012; Baltz et al. 2012). 
  

PGK1-6MS2L       

Gene mRNA Target Function
a
 

Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

ACT1 

ADH1 

ADH3 

ALD5 

ARB1 

ARX1 

ASC1 

BFR1 

BRE5 

CBF5 

DCP1 

DCP2 

none 

none 

none 

none 

rRNA 

rRNA 

rRNA 

mRNA (Hogan et al. 2008a) 

mRNA 

snoRNA, rRNA 

mRNA 

mRNA 

Other 

Metabolism 

Metabolism 

Metabolism 

Rs Biogenesis 

Rs Biogenesis 

Translation 

Translation 

Other 

Rs Biogenesis 

Decay 

Decay 

no 

no 

no 

no 

no 

no 

no 

yes 

yes 

yes 

no 

no 

ACTG1 

ADH1A 

Opisthokonta 

ALDH2 

ABCF2 

EBP1  

GNB2L1 

MDR1  

Saccharomycetaceae 

DKC1 

DCP1A 

DCP2 

no 

no 

 
no 

cand 

no 

yes 

no 

 
yes 

no 

no 

no 

no 

 
no 

no 

no 

yes 

no 

 
no 

no 

no 
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PGK1-6MS2L       

Gene mRNA Target Function
a
 

Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

DEF1 

DIM1 

EBS1 

EDC3 

HRB1 

HSP60 

HXK2 

IMD3; REV_UTP9 

IMD4; YAR075W 

KHD1 

KRI1 

KRR1 

LEU2 

LHP1 

LSM4 

MET6 

MIS1 

MKT1 

MSS116 

NAB2 

NOP4 

NOP58 

NUG1 

PAB1 

PAN2 

PAN3 

PAT1 

PBP1 

PGI1 

PGK1 

PUB1 

RBG1 

RPL10 

RPL13B; RPL13A 

RPL15A; RPL15B 

RPL16B 

RPL19A; RPL19B 

RPL1A; RPL1B 

RPL3 

RPL30 

RPL35A; RPL35B 

RPL4A 

RPL4B 

RPL5 

none 

rRNA 

mRNA (Luke et al. 2007) 

mRNA 

mRNA 

none 

none 

none 

none 

mRNA 

rRNA 

rRNA 

none 

tRNA, snRNA 

mRNA 

none 

none 

none 

mRNA 

mRNA 

rRNA 

snoRNA 

rRNA 

mRNA 

mRNA 

mRNA 

mRNA 

mRNA 

none 

none/mRNA (Castello et al. 2012) 

mRNA 

none 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

Other 

Rs Biogenesis 

Decay 

Decay 

Export 

Other 

Metabolism 

Metabolism 

Metabolism 

Localization 

Rs Biogenesis 

Rs Biogenesis 

Metabolism 

Other 

Decay 

Metabolism 

Metabolism 

Unknown 

Splicing 

Export 

Rs Biogenesis 

Rs Biogenesis 

Rs Biogenesis 

Translation 

Decay 

Decay 

Decay 

Decay 

Metabolism 

Metabolism 

Decay 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

no 

no 

no 

no 

yes 

no 

no 

yes 

yes 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

yes 

yes 

no 

no 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

N/A 

DIMT1L 

SMG7  

EDC3 

MYEF2 

HSPD1 

HK1 

IMPDH3 

IMPDH4 

PCBP3 

KRI1 

KRR1 

Eukaryota 

Saccharomycetaceae 

LSM4 

 Eukaryota 

 Ascomycota 

 Ascomycota 

Saccharomycetaceae 

ZC3H14 

RBM28 

NOP58 

GNL3L 

PABPC1 

PAN2 

PAN3 

PATL1 

ATXN2 

GPI 

PGK1 

TIA1 

DRG1 

RPL10 

RPL13 

RPL15 

RPL13A 

RPL19 

RPL10A 

RPL3 

RPL30 

RPL35 

RPL4 

RPL4 

RPL5 

 
yes 

no 

no 

no 

yes 

no 

no 

no 

yes 

yes 

yes 

 

 
yes 

 

 

 

 
yes 

yes 

yes 

yes 

yes 

no 

no 

yes 

yes 

no 

cand 

yes 

cand 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

 
yes 

no 

no 

yes 

no 

no 

no 

no 

no 

no 

yes 

 

 
yes 

 

 

 

 
yes 

yes 

yes 

no 

yes 

no 

no 

yes 

yes 

no 

no 

yes 

no 

yes 

no 

yes 

no 

no 

yes 

yes 

yes 

no 

yes 

yes 

yes 
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PGK1-6MS2L       

Gene mRNA Target Function
a
 

Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

RPL9A 

RPP0 

RPP1 

RPP2B 

RPS11A; RPS11B 

RPS13 

RPS16A; RPS16B 

RPS17A; RPS17B 

RPS19B 

RPS1A 

RPS1B 

RPS2 

RPS20 

RPS21A; RPS21B 

RPS22B; RPS22A 

RPS23A; RPS23B 

RPS25B 

RPS27A; RPS27B 

RPS3 

RPS31 

RPS4A; RPS4B 

RPS5 

RPS6A; RPS6B 

RPS7A 

RPS7B 

RPS8A; RPS8B 

RPS9B 

RRP7 

SBP1 

SCP160 

SEC16 

SGN1 

SRO9 

SSB2 

SSZ1 

STM1 

ZUO1 

TDH3 

TIF1 

TIF4631 

TIF4632 

TMA46 

TMA64 

TRA1 

rRNA 

rRNA 

rRNA, tRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

mRNA 

mRNA 

none 

mRNA (Winstall et al. 2000) 

mRNA 

unknown 

none 

mRNA (Hogan et al. 2008a) 

rRNA 

none 

mRNA 

mRNA 

mRNA 

unknown 

none 

none 

Translation 

Translation 

Rs Biogenesis 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Rs Biogenesis 

TL Repression 

Translation 

Other 

Unknown 

Translation 

Co-TL NP Mat 

Co-TL NP Mat 

TL Repression 

Co-TL NP Mat 

Metabolism 

Translation 

Translation 

Translation 

Translation 

Unknown 

Transcription 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

yes 

yes 

no 

no 

yes 

no 

no 

no 

no 

no 

no 

yes 

yes 

yes 

no 

no 

RPL9 

RPLP0 

RPP30 

Saccharomycetaceae 

RPS11 

RPS13 

RPS16 

RPS17 

RPS19 

RPS3A 

RPS3A 

RPS2 

RPS20 

RPS21 

RPS15A 

RPS23 

 Saccharomycetaceae 

RPS27A 

RPS3 

RPS27A 

RPS4X 

RPS5 

RPS6 

RPS7 

RPS7 

RPS8 

RPS9 

RRP7A 

Saccharomycetaceae 

HDLBP 

SEC16A; SEC16B 

ASCL3 

Saccharomycetaceae 

N/A 

HSP70L1 

Saccharomycetaceae 

MPP11 

GAPDH 

EIF4A1 

EIF4G1 

EIF4G2 

ZC3H15 

Saccharomycetaceae 

TRRAP 

cand 

yes 

yes 

 
yes 

cand 

no ev 

no 

no ev 

yes 

yes 

yes 

yes 

yes 

yes 

cand 

 
yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

 
yes 

no 

no 

 

 
no 

 
no 

cand 

yes 

yes 

yes 

yes 

 
no 

no 

yes 

no 

 
no 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

no 

yes 

yes 

 
yes 

yes 

yes 

yes 

yes 

no 

yes 

yes 

yes 

no 

no 

 
yes 

no 

no 

 

 
no 

 
no 

no 

yes 

yes 

yes 

yes 

 
no 
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PGK1-6MS2L       

Gene mRNA Target Function
a
 

Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

TRM2 

TRM44 

UBP3 

UPF1 

UTP22 

WHI3 

VPH1 

XRN1 

YEF3; HEF3 

YGR250C 

YLR419W 

YNL050C 
 

tRNA 

tRNA 

mRNA 

mRNA 

rRNA 

mRNA 

none 

mRNA 

mRNA 

unknown 

unknown 

unknown (Scherrer et al. 2010) 
 

tRNA Mod 

tRNA Mod 

Other 

Decay 

Rs Biogenesis 

Unknown 

Other 

Decay 

Translation 

Unknown 

Unknown 

Unknown 
 

no 

no 

yes 

yes 

no 

no 

no 

yes 

no 

yes 

yes 

no 
 

TRMT2A; TRMTB 

TRMT44 

USP10 

UPF1 

NOL6 

N/A 

ATP6V0A1 

XRN1 

Ascomycota 

CELF1 

DHX36 

Saccharomycetaceae 
 

yes 

no 

yes 

yes 

yes 

 
no 

yes 

 
yes 

yes 

 
 

no 

no 

yes 

yes 

no 

 
no 

yes 

 
yes 

yes 

 
 

 

 

ENO2-6MS2L 

Gene mRNA Target Functiona 
Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

ALD5 

ARB1 

ARD1 

ARO1 

ARX1 

ASC1 

BFR1 

CBF5 

CIC1 

DCP1 

DCP2 

DEF1 

DHH1 

EBS1 

EDC3 

ENO2 

FUN12 

GCD11 

HRB1 

IMD2; IMD1 

IMD3; REV_UTP9 

IMD4; YAR075W 

IMH1 

LSM1 

LSM2 

LSM4 

MAP2 

none 

rRNA 

none 

none 

rRNA 

rRNA 

mRNA (Hogan et al. 2008) 

snoRNA, rRNA 

none 

mRNA 

mRNA 

none 

mRNA 

mRNA (Luke et al. 2007) 

mRNA 

none 

mRNA 

mRNA 

mRNA 

none 

none 

none 

none 

mRNA 

mRNA 

mRNA 

none 

Metabolism 

Rs Biogenesis 

Co-TL NP Mat 

Metabolism 

Rs Biogenesis 

Translation 

Translation 

Rs Biogenesis 

Unknown 

Decay 

Decay 

Other 

Decay 

Decay 

Decay 

Metabolism 

Translation 

Translation 

Export 

Metabolism 

Metabolism 

Metabolism 

Other 

Decay 

Decay 

Decay 

Co-TL NP Mat 

no 

no 

no 

no 

no 

no 

yes 

yes 

no 

no 

no 

no 

yes 

no 

no 

no 

no 

no 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

ALDH2 

ABCF2 

NAA11 

Eukaryota 

EBP1  

GNB2L1 

MDR1 

DKC1 

Saccharomycetaceae 

DCP1A 

DCP2 

N/A 

DDX6 

SMG7  

EDC3 

ENO2 

Ascomycota 

Eukaryota 

MYEF2 

IMPDH1 

IMPDH3 

IMPDH4 

saccharomyceta 

LSM1 

LSM2 

LSM4 

METAP2 

no 

cand 

no 

 
no 

yes 

no 

yes 

 
no 

no 

 
yes 

no 

no 

no 

 

 
no 

no 

no 

no 

 
yes 

yes 

yes 

yes 

no 

no 

no 

 
no 

yes 

no 

no 

 
no 

no 

 
yes 

no 

no 

no 

 

 
yes 

no 

no 

no 

 
yes 

yes 

yes 

no 
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ENO2-6MS2L 

Gene mRNA Target Functiona 
Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

MGM101 

MIS1 

MKT1 

MRD1 

MSL5 

NAT1 

NMD4 

NOP12 

NOP13 

PAB1 

PAN2 

PAN3 

PAT1 

PBP1 

PBP4 

PSP2 

PUS1 

PUS4 

PUS7 

RAT1 

RBG1 

RNY1 

RPL10 

RPL11A; RPL11B 

RPL16B 

RPL17A; RPL17B 

RPL19A; RPL19B 

RPL1A; RPL1B 

RPL21A 

RPL24B 

RPL25 

RPL3 

RPL31A 

RPL4A 

RPL5 

RPL6A 

RPL8B 

RPL9A 

RPO41 

RPP0 

RPS10B; RPS10A 

RPS11A; RPS11B 

RPS12 

RPS17A; RPS17B 

mRNA 

none 

none 

rRNA 

mRNA 

unknown 

unknown 

rRNA 

rRNA 

mRNA 

mRNA 

mRNA 

mRNA 

mRNA 

none 

unknown (Castello et al. 2012) 

tRNA, snRNA 

tRNA 

tRNA, rRNA, snRNA 

mRNA and others 

none 

tRNA, rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

unknown 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

Splicing 

Metabolism 

Unknown 

Rs Biogenesis 

Splicing 

Co-TL NP Mat 

Unknown 

Rs Biogenesis 

Rs Biogenesis 

Translation 

Decay 

Decay 

Decay 

Decay 

Unknown 

Unknown 

tRNA Mod 

tRNA Mod 

tRNA Mod 

Decay 

Translation 

Decay 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Transcription 

Translation 

Translation 

Translation 

Translation 

Translation 

no 

no 

no 

no 

no 

no 

no 

no 

no 

yes 

no 

no 

yes 

yes 

no 

yes 

yes 

no 

no 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

saccharomyceta 

Ascomycota 

 Ascomycota 

RBM19 

Ascomycota 

NAA15 

Saccharomycetaceae 

Ascomycota 

Ascomycota 

PABPC1 

PAN2 

PAN3 

PATL1 

ATXN2 

N/A 

N/A 

PUS1 

Ascomycota 

PUS7 

XRN2 

DRG1 

Saccharomyceta 

RPL10 

RPL11 

RPL13A 

RPL17 

RPL19 

RPL10A 

RPL21 

RPL24 

RPL23A 

RPL3 

RPL31 

RPL4 

RPL5 

Opisthokonta 

RPL7A 

RPL9 

Eukaryota 

RPLP0 

RPS10 

RPS11 

RPS12 

RPS17 

 

 

 
yes 

 
yes 

 

 

 
yes 

no 

no 

yes 

yes 

 

 
yes 

 
yes 

yes 

cand 

 
yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

 
yes 

cand 

 
yes 

yes 

yes 

yes 

no 

 

 

 
yes 

 
no 

 

 

 
yes 

no 

no 

yes 

yes 

 

 
yes 

 
yes 

yes 

no 

 
yes 

yes 

no 

yes 

no 

yes 

yes 

yes 

yes 

yes 

no 

yes 

yes 

 
yes 

no 

 
yes 

yes 

no 

yes 

yes 
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ENO2-6MS2L 

Gene mRNA Target Functiona 
Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

RPS18A; RPS18B 

RPS19B 

RPS2 

RPS20 

RPS21A; RPS21B 

RPS22B; RPS22A 

RPS27A; RPS27B 

RPS3 

RPS4A; RPS4B 

RPS5 

RPS6A; RPS6B 

RPS7A 

RPS7B 

RPS9B 

SHM1 

SRO9 

SSB2 

SSZ1 

STM1 

SUI2 

ZUO1 

ZWF1 

TIF4631 

TIF4632 

TMA46 

TRM2 

TRM44 

UBP3 

UPF1 

XRN1 

YGR054W 

YLR419W 
 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

none 

mRNA 

unknown 

none 

mRNA (Hogan et al. 2008) 

mRNA 

rRNA 

none 

mRNA 

mRNA 

unknown 

tRNA 

tRNA 

mRNA 

mRNA 

mRNA 

rRNA 

unknown 
 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Metabolism 

Translation 

Co-TL NP Mat 

Co-TL NP Mat 

TL Repression 

Translation 

Co-TL NP Mat 

Metabolism 

Translation 

Translation 

Translation 

tRNA Mod 

tRNA Mod 

Other 

Decay 

Decay 

Translation 

Unknown 
 

no 

no 

no 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

yes 

no 

no 

no 

no 

no 

no 

yes 

yes 

yes 

no 

no 

yes 

yes 

yes 

yes 

yes 
 

RPS18 

RPS19 

RPS2 

RPS20 

RPS21 

RPS15A 

RPS27A 

RPS3 

RPS4X 

RPS5 

RPS6 

RPS7 

RPS7 

RPS9 

SHMT2 

Saccharomycetaceae 

N/A 

HSP70L1 

Saccharomycetaceae 

EIF2S1 

MPP11 

G6PD 

EIF4G1 

EIF4G2 

ZC3H15 

TRMT2A; TRMTB 

TRMT44 

USP10 

UPF1 

XRN1 

EIF2A 

DHX36 
 

no 

no ev 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

cand 

 

 
no 

 
yes 

no 

no 

yes 

yes 

yes 

yes 

no 

yes 

yes 

yes 

cand 

yes 
 

yes 

yes 

yes 

yes 

no 

yes 

yes 

yes 

yes 

yes 

no 

yes 

yes 

no 

no 

 

 
no 

 
yes 

no 

no 

yes 

yes 

yes 

no 

no 

yes 

yes 

yes 

no 

yes 
 

 

 

6MS2L-RNA 

Gene mRNA Target Functiona 
Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

ALD5 

ARC1 

ASC1 

BFR1 

BMH2 

CBC2 

CDC33 

none 

none 

rRNA 

mRNA (Hogan et al. 2008) 

none 

mRNA 

mRNA 

Metabolism 

tRNA Aminoacy 

Translation 

Translation 

Other 

Nuc Processing 

Translation 

no 

no 

no 

yes 

no 

no 

no 

ALDH2 

Ascomycota 

GNB2L1 

MDR1  

YWHAE 

NCBP2 

EIF4E 

no 

 
yes 

no 

yes 

yes 

no ev 

no 

 
yes 

no 

no 

yes 

yes 



APPENDIX 

 

242 
 

6MS2L-RNA 

Gene mRNA Target Functiona 
Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

CLU1 

DED1 

DEF1 

EGD2 

FUN12 

GUS1; REV_ASE1 

HIS4 

IMD2; IMD1 

IMD3; REV_UTP9 

IMD4; YAR075W 

IMH1 

KHD1 

LSM4 

MIS1 

MKT1 

MRD1 

MTR4 

NAB2 

NCL1 

NMD4 

PAB1 

PAN2 

PAN3 

PAT1 

PBP1 

PBP4 

PUB1 

PUS4 

PUS7 

RPG1 

RPL10 

RPL11A; RPL11B 

RPL13B; RPL13A 

RPL16B 

RPL17A; RPL17B 

RPL18A; RPL18B 

RPL19A; RPL19B 

RPL1A; RPL1B 

RPL21A 

RPL4A 

RPL6A 

RPL6B 

RPL7A 

RPL8B 

unknown 

mRNA 

none 

none 

mRNA 

tRNA 

none 

none 

none 

none 

none 

mRNA 

mRNA 

none 

none 

rRNA 

multiple RNA types 

mRNA 

tRNA 

unknown 

mRNA 

mRNA 

mRNA 

mRNA 

mRNA 

none 

mRNA 

tRNA 

tRNA, rRNA, snRNA 

mRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

Unknown 

Translation 

Other 

Co-TL NP Mat 

Translation 

tRNA Aminoacy 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Other 

Localization 

Decay 

Metabolism 

Unknown 

Rs Biogenesis 

Nuc Processing 

Export 

tRNA Mod 

Unknown 

Translation 

Decay 

Decay 

Decay 

Decay 

Unknown 

Decay 

tRNA Mod 

tRNA Mod 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

yes 

yes 

no 

no 

no 

yes 

no 

yes 

yes 

yes 

no 

yes 

no 

no 

no 

no 

yes 

yes 

no 

no 

yes 

no 

no 

yes 

yes 

no 

yes 

no 

no 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

Saccharomycetaceae 

DDX3Y 

N/A 

NACA 

Ascomycota 

EPRS 

Eukaryota 

IMPDH1 

IMPDH3 

IMPDH4 

saccharomyceta 

PCBP3 

LSM4 

Ascomycota 

 Ascomycota 

RBM19 

SKIV2L2 

ZC3H14 

NSUN2 

Saccharomycetaceae 

PABPC1 

PAN2 

PAN3 

PATL1 

ATXN2 

N/A 

TIA1 

Ascomycota 

PUS7 

EIF3A 

RPL10 

RPL11 

RPL13 

RPL13A 

RPL17 

RPL18 

RPL19 

RPL10A 

RPL21 

RPL4 

Opisthokonta 

Opisthokonta 

RPL7 

RPL7A 

 
no 

 
no ev 

 
no ev 

 
no 

no 

no 

 
yes 

yes 

 

 
yes 

yes 

yes 

yes 

 
yes 

no 

no 

yes 

yes 

 
yes 

 
yes 

yes 

yes 

yes 

yes 

yes 

yes 

no ev 

yes 

yes 

yes 

yes 

 

 
yes 

yes 

 
no 

 
no 

 
no 

 
no 

no 

no 

 
no 

yes 

 

 
yes 

no 

yes 

yes 

 
yes 

no 

no 

yes 

yes 

 
yes 

 
yes 

yes 

yes 

yes 

no 

no 

yes 

no 

no 

yes 

yes 

yes 

 

 
yes 

yes 
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6MS2L-RNA 

Gene mRNA Target Functiona 
Mitchell 

et al. 

Homologue/Related 

Human Proteinb 

Castello 

et al. 

Baltz et 

al. 

RPL9A 

RPP0 

RPS11A; RPS11B 

RPS12 

RPS19B 

RPS1A 

RPS2 

RPS20 

RPS23A; RPS23B 

RPS3 

RPS31 

RPS4A; RPS4B 

RPS5 

RPS6A; RPS6B 

RPS7A 

RPS7B 

RPS9B 

RRP5 

SBP1 

SCP160 

SGN1 

SHM1 

SKN7 

SPC110 

SSB2 

SSZ1 

STM1 

STO1 

ZUO1 

THS1 

TIF4631 

TIF4632 

TRM2 

UPF1 

URA3 

XRN1 

YGR161W-B 

YGR250C 

YMR046C 
 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

rRNA 

mRNA 

mRNA 

mRNA (Winstall et al. 2000) 

none 

none 

none 

unknown 

none 

mRNA (Hogan et al. 2008) 

mRNA 

rRNA 

tRNA 

mRNA 

mRNA 

tRNA 

mRNA 

none 

mRNA 

none 

unknown 

none 
 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Rs Biogenesis 

TL Repression 

Translation 

Unknown 

Metabolism 

Transcription 

Other 

Co-TL NP Mat 

Co-TL NP Mat 

TL Repression 

Nuc Processing 

Co-TL NP Mat 

tRNA Aminoacy 

Translation 

Translation 

tRNA Mod 

Decay 

Metabolism 

Decay 

Other 

Unknown 

Other 
 

no 

no 

no 

no 

no 

no 

no 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

no 

yes 

yes 

yes 

no 

no 

no 

no 

no 

no 

no 

yes 

no 

no 

yes 

yes 

no 

yes 

no 

yes 

no 

yes 

no 
 

RPL9 

RPLP0 

RPS11 

RPS12 

RPS19 

RPS3A 

RPS2 

RPS20 

RPS23 

RPS3 

RPS27A 

RPS4X 

RPS5 

RPS6 

RPS7 

RPS7 

RPS9 

PDCD11 

Saccharomycetaceae 

HDLBP 

ASCL3 

SHMT2 

Saccharomycetaceae 

Saccharomycetaceae 

N/A 

HSP70L1 

Saccharomycetaceae 

NCBP1 

MPP11 

TARS 

EIF4G1 

EIF4G2 

TRMT2A; TRMTB 

UPF1 

Ascomycota 

XRN1 

N/A 

CELF1 

N/A 
 

cand 

yes 

yes 

yes 

no ev 

yes 

yes 

yes 

cand 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

 
yes 

no 

cand 

 

 

 
no 

 
cand 

no 

cand 

yes 

yes 

yes 

yes 

 
yes 

 
yes 

 
 

no 

yes 

no 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

no 

yes 

yes 

no 

no 

 
yes 

no 

no 

 

 

 
no 

 
yes 

no 

no 

yes 

yes 

no 

yes 

 
yes 

 
yes 

 
 

a
 Abbreviations: Co-TL NP Mat – Co-translational Nascent Peptide Maturation; Rs Biogenesis – Ribosome Biogenesis; TL Repression – 

Translation Repression; tRNA Mod – tRNA Modification; tRNA Aminoacy – tRNA Aminoacylation; Nuc Processing – Nuclear Processing; cand 
– candidate RBP; no ev – no evidence, N/A – no answer 
b
 Homologues of the MS2L-tagged RNA co-purifying proteins were retreived from (S. F. Mitchell et al. 2013). To find human homologues to 

the remaing proteins, HomoloGene tool of the National Center for Biotechnology Information (NCBI) was used. If HomoloGene could not 
detect a human homolog of the yeast gene, the table shows the division of the eukaryotic kingdom where homologous genes were 
detected (read: Conserved in Saccharomycetacea). ARX1, BFR1 and EBS1 homologs are according to the literature EBP1 (Hung and Johnson 
2006), MDR1 (Wilkinson and Millar 1998) and SMG7 (Luke et al. 2007), respectively.   
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Table 4. Literature-based classification (Appendix, Table 3) of the enriched proteins according to the type of 
RNA bound by the protein. Table depicts percent of proteins known to bind a certain type of RNA. Note that 
some proteins classified under multiple categories. Proteins containing putative RNA-binding domains or 
known to be involved in mRNA biology but for whom the RNA target has not been identified, we classified 
under category “undefined RNA”. snoRNA – small nucleolar RNA; snRNA – small nuclear RNA. 
 

MS2L-tagged 

RNA 
log2

a
 mRNA rRNA tRNA snoRNA snRNA 

undefined 

RNA 

no known 

RNA target 

PGK1 
0.5 27 43 3 2 1 4 19 

1 35 38 3 1 0 8 18 

ENO2 
0.5 26 43 6 1 2 7 17 

1 29 42 6 1 1 7 14 

6MS2L 
0.5 27 39 7 0 1 4 22 

1 32 41 6 0 1 6 15 
a
 log2 0.5 corresponds to threshold log2 (H/L) >0.5 or <-0.5; log2 1 corresponds to threshold log2 (H/L) >1 or <-1. 
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