
Microbial Dynamics in Natural Aquifers 

 

 

 

 

 

 

 

 

Dissertation 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Eberhard Karls Universität Tübingen 

zur Erlangung des Grades eines  

Doktors der Naturwissenschaften  

(Dr. rer. nat.) 

 

 

 

 

 

 

vorgelegt von 

M.Sc. Bijendra Man Bajracharya 

aus Kathmandu 

 Nepal 

  

 

 

 

Tübingen 

2016 



- Microbial Dynamics in Natural Aquifers - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der 

Eberhard Karls Universität Tübingen. 

 

 

Tag der mündlichen Qualifikation:  28.04.2016 

Dekan: Prof. Dr. Wolfgang Rosenstiel 

1. Berichterstatter: Prof. Dr.-Ing. Olaf Arie Cirpka 

2. Berichterstatter: Prof. Dr. Philippe Van Cappellen 

3. Berichterstatter: Dr. Chuanhe Lu 



- Microbial Dynamics in Natural Aquifers - 

 

 

Ph. D. Thesis, Bajracharya  i 

Abstract 

Microorganisms in groundwater form ecosystems that can transform chemical compounds. 

Quantitatively understanding microbial dynamics in soils and groundwater is thus essential for 

pollutant dynamics and biogeochemistry in the subsurface. This dissertation addresses three 

factors influencing microbial dynamics in aquifers and soils, namely:  

(1) the influence of grazing on bacteria in eutrophic aquifers, posing the question whether the 

carrying capacity of bacteria, which has been observed in aquifers, is controlled by higher 

trophic levels of the groundwater ecosystem;  

(2) the influence of bioenergetic constraints on bacteria in oligotrophic aquifers posing the 

question how the energy supply controls the dynamics of microorganisms; and  

(3) the influence of fluctuating redox conditions on overall biogeochemical turnover, posing the 

question whether alteration of oxic and anoxic conditions benefits the efficiency of the microbial 

community in the degradation of natural complex substrates. 

To address the first question, I developed a numerical model simulating a groundwater 

ecosystem with three trophic levels: a growth substrate, bacteria, and grazers (signifying 

bacterivorous protozoa, flagellates, ciliates, or bacteriophages). The model is first tested for well-

mixed conditions, representing retentostats, and is then coupled to transport to obtain a 1-D 

bioreactive transport model. In the model, the bacterial population increases, fluctuates, and 

finally plateaus at a steady-state concentration, which is independent of the substrate 

concentration. Increasing the substrate exclusively increase the steady-state grazer concentration. 

When coupled to transport, the same steady-state bacteria concentration is reached over a 

substantial length of the domain. The simulation results demonstrate that grazing can be a 

controlling factor in determining the carrying capacity of bacteria in aquifers. I present closed-

form expressions for steady-state concentrations in both well-mixed and transport-affected 

regimes. 
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To address the second question, I developed a bioenergetic model to simulate the survival of 

bacteria under energy-limiting conditions. The bacteria allocate the gained catabolic energy to 

growth, maintenance and the production of extracellular hydrolytic enzymes. The fraction of 

excess energy spent on hydrolytic enzyme production versus the fraction spent on growth is 

related to the coverage of the particulate organic matter by hydrolytic enzymes. Additionally, the 

catabolic energy flux governs the activation and deactivation of the microorganisms. The growth 

of steady state active microorganisms is balanced with the inactivation rate, which itself is 

balanced with the maintenance-energy requirement of the dormant microorganisms. Within the 

bioenergetics framework, kinetic rate laws are expressed in thermodynamic terms. The activity 

of microorganisms is constrained by thermodynamics, and the behavior of the microorganisms is 

determined by maximum catabolic energy use. I successfully use this conceptual model to 

illustrate the degradation of cellulose in an anaerobic environment via cellulolytic fermenting 

bacteria and sulfate reducing bacteria. I show that thermodynamic feedbacks are particularly 

important for the fermenting bacteria, which require utilization of their metabolic products by 

other bacteria to gain energy from fermentation. 

To address the third question, I conducted an experiment to observe the effect of alternating 

redox conditions on carbon turnover in organic-rich soil suspensions. The results are compared 

with the static (oxic and anoxic) redox environments. The results demonstrate that redox 

fluctuations initiate various microbial processes including fermentation, aerobic and anaerobic 

degradation, most likely performed by different bacteria within a very diverse community. Under 

oscillating redox conditions, the system always remains far from thermodynamic equilibrium 

thereby supplying labile organic carbon substrates for microbial energy-gain and growth. Carbon 

turnover is higher under fluctuating than under the anoxic conditions, and there is a high 

potential to degrade even more carbon than that under static oxic condition. 
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Kurzfassung  

Mikroorganismen im Grundwasser bilden Ökosysteme die chemische Substanzen transformieren 

können. Ein quantitatives Verständnis der mikrobiellen Dynamik in Böden und 

Grundwasserleitern ist deshalb essentiell für die Schadstoffdynamik und Biogeochemie des 

Untergrundes. Die vorliegende Dissertation befasst sich mit drei Faktoren, die die mikrobielle 

Dynamik in Grundwasserleitern und Böden beeinflusst, nämlich:  

(1) den Einfluss des Grazings von Bakterien in eutrophen Grundwasserleitern, was zu der Frage 

führt, ob die Kapazität für Bakterien, die in Grundwasserleitern beobachtet wurde, durch höhere 

trophische Ebenen des Grundwasserökosystems kontrolliert wird; 

(2) den Einfluss bioenergetischer Beschränkungen auf Bakterien in oligotrophen 

Grundwasserleitern, was zu der Frage führt, wie die Energieversorgung der Mikroorganismen 

ihre Dynamik kontrolliert; sowie 

(3) den Einfluss fluktuierender Redoxbedingungen auf den biogeochemischen Gesamtumsatz, 

was zu der Frage führt, ob abwechselnde oxische und anoxische Bedingungen die Effizienz der 

mikrobiellen Gemeinschaft im Abbau natürlicher komplexer Substrate erhöht. 

Um die erste Frage zu beantworten, habe ich ein numerisches Modell entwickelt, das ein 

Grundwasserökosystem mit drei trophischen Ebenen simuliert: ein Wachstumssubstrat, 

Bakterien und Grazer (z.B. bacterivore Protozoen, Flagellaten, Ziliaten oder Bacteriophagen). 

Das Modell wurde zunächst für gut durchmischte Systeme getestet, die Chemostaten und/oder 

Retentostaten repräsentieren, und wurde dann mit Transportprozessen gekoppelt, um ein 

eindimensionales bioreaktives Transportmodell zu erhalten. Im Modell nimmt die 

Bakterienpopulation zu, fluktuiert und erreicht schließlich eine stationäre Konzentration, die von 

der Substratkonzentration unabhängig ist. Eine Erhöhung der Substratzufuhr führt lediglich zu 

einer Erhöhung der Grazer-Konzentration. In der Kopplung zum Transport ergibt sich die 

gleiche stationäre Bakterienkonzentration über eine beträchtliche Länge des Gebietes. Die 

Simulationsergebnisse demonstrieren, dass Grazing einen bestimmenden Faktor für die Kapazität 

von Bakterien in Grundwasserleitern darstellen können. Ich präsentiere geschlossene Lösungen 
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für die stationären Konzentrationen sowohl für gut durchmischten als auch für Transport-

beeinflussten Systeme. 

Um die zweite Frage zu beantworten, habe ich ein bioenergetisch Modell entwickelt, das den 

Metabolismus von gemischten Bakterienpopulationen unter Energie-limitierenden Bedingungen 

simuliert. Die Bakterien teilen die gewonnene katabolische Energie dem Wachstum, dem Erhalt 

und der Produktion extrazellulärer hydrolytischer Enzyme zu. der Anteil der überschüssigen 

Energie, der auf die Produktion hydrolytischer Enzyme verwendet wird, versus dem Anteil, der 

in Wachstum investiert wird, hängt davon ab, wie stark der partikuläre organische Kohlenstoff 

mit hydrolytischen Enzymen belegt ist. Darüber hinaus steuert der katabolische Energiefluss die 

Aktivierung und Deaktivierung der Mikroorganismen. Das Wachstum der aktiven 

Mikroorganismen wird durch Inaktivierungsrate ausgeglichen, welche den Energiebedarf für die 

Erhaltung der ruhenden Mikroorganismen ausgleicht. Innerhalb des bioenergetischen Rahmens 

werden kinetische Ratengesetze in thermodynamischen Termen ausgedrückt. Die Aktivität der 

Mikroorganismen ist durch die Thermodynamik beschränkt und das Verhalten der 

Mikroorganismen wird durch den maximale Verwendung der katabolischen Energie bestimmt. 

Ich habe das konzeptionelle Modell erfolgreich auf den anaeroben Abbau von Zellulose durch 

Zelluse-verwendene Fermentierer und Sulfatreduzierer angewendet. Ich konnte zeigen, dass 

thermodynamische Rückkopplungen besonders wichtig sind für die fermentierenden Bakterien 

sind, die darauf angewiesen sind, dass andere Bakterien ihre metabolischen Produkte 

verbrauchen, damit sie selbst aus der Fermentation Energie gewinnen können. 

Um die erste Frage zu beantworten, habe ich Experimente durchgeführt, in denen ich die 

Wirkung wechselnder Redoxbedingungen auf den Kohlenstoffumsatz in Bodenlösungen mit 

hohem Gehalt an organischem Kohlenstoff untersuchte. Die Ergebnisse wurden mit statischen 

(oxischen und anoxische) Redox Milieus verglichen. Die Ergebnisse zeigen, dass 

Redoxschwankungen zahlreiche mikrobielle Prozesse initiieren, darunter Fermentation, aerober 

und anaerober Abbau, die aller Wahrscheinlichkeit nach von unterschiedlichen Bakterien in einer 

sehr diversen Gemeinschaft durchgeführt werden. Unter oszillierenden Redoxbedingungen wird 

das System ständig vom thermodynamischen Gleichgewicht ferngehalten und liefert dadurch 
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labile organische Substrate für die mikrobieller Energieverwertung und Wachstum. Der 

Kohlenstoffumsatz ist größer unter fluktuierenden als unter statisch anoxischen Bedigungen und 

es besteht ein hohes Potential, dass der Abbau sogar größer ist als unter statischen oxischen 

Bedingungen. 
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1. Introduction 

1.1 Motivation 

Essential biochemical cycling of carbon, sulfur, and nitrogen in the earth surface and sub-

surface are regulated by microbes, where the products of one cycle is utilized by the next 

cycle (Madsen, 2011). Microorganisms gain their energy from and grow on catalysing 

reactions of reduced and oxidised substrates. The by-products of such reactions may be 

consumed by other organisms. Microbes play a vital role in the flow of nutrients through 

various biotic and abiotic components during the biogeochemical cycle. These processes 

maintain the balance of the biosphere (Falkowski et al., 2008)   

Most natural aquifers are oligotrophic in nature, deprived of nutrients and exhibit low 

microbial concentrations (Whitman et al., 1998). Aquifers comprise numerous and complex 

habitats for various microbial communities (Griebler and Lueders, 2009). They are resource-

limited ecosystems in which organic matter (OM) is efficiently mineralized by microbial 

communities which are then predated by grazers (Foulquier et al., 2011). These aquifers are 

major sources of drinking water. Moreover, the dynamics of intrinsic microbial 

transformations also affect water quality, and ubiquitous microbes also play a significant role 

in the degradation of natural organic matter and contaminants, the emission of greenhouse 

gases (GHG), among other processes. Hence, the systematic analysis of groundwater 

microbes have been performed for several decades (Griebler and Lueders, 2009). Ironically, 

understanding microbial dynamics has always been a challenge because the interactions 

between the various functional groups of organisms and their environment have 

insufficiently been understood. 

It is no surprise that numerous models as well as experiments have been built up to represent 

these complicated systems. Most models of microbial dynamics are based on Monod type 

growth expressions, which account for potentially rate-limiting substrates only by the 

fraction of reactive enzymes bound to reactants, whereas other factors, such as the 
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concentration dependence of the associated energy gain, are neglected (Vallino et al., 1996). 

The availability of energy substrates, electron acceptors and nutrients, as well as physical and 

geochemical variables, affect the microbial dynamics as well as the molecular diversity of 

microbial communities greatly (Boyd et al., 2007; Stolpovsky et al., 2011). Therefore, to 

fully comprehend biogeochemical changes, the environmental influence on microbial 

interactions, transport and transformation needs to be understood.  

When the energy substrates permeate into natural aquifers either via natural processes (e.g. 

infiltration) or under anthropogenic influences (e.g. fertilization), the microbial population 

grow and reach a maximum concentration, known as ‘Carrying Capacity’. The population 

won’t grow further and maintains a steady-state concentration. Bio-reactive transport models 

account this maximum bacterial capacity term to cap excessive microbial growth close to 

substrate-injection regions. The factors controlling this carrying capacity, however, are not 

fully understood. Several competing hypotheses on the control of the carrying capacity have 

been formulated. It could be space limitation (Egli, 2010; Morita, 1988), limited resources 

availability (Ayuso et al., 2010), interspecies competition (Hibbing et al., 2010) and kinetic 

mass-transfer limitations (Cirpka, 2010), to name only a few. However, the impact of grazing 

on bacterial population has not been properly delineated yet, although there are several 

studies showing that grazing controls the bacterial population (Acea and Alexander, 1988; 

Habte and Alexander, 1977).  

The energy substrate is also one of the limiting factors in natural aquifers that limit bacterial 

growth. The natural aquifers, mostly oligotrophic in nature, comprise a spectrum of 

condensed organic matter characterised by low energy content. Only a small fraction of the 

organic matter (OM) is bioavailable which is generated by chemical or enzymatic hydrolysis 

of natural organic matter (NOM) (Egli, 2010). Despite the limited energy catalyzed from this 

small assimilable organic carbon concentration, the microbial populations maintain their 

presence in the entire biosphere. Quantitative models of NOM degradation are essential to 

understand the chemical state and evolution of the near-surface environment, and to predict 

the biogeochemical consequences of ongoing local and global changes. The complex nature 

of these organic matter represents a major obstacle to the development of such models 

(LaRowe and Cappellen, 2011). Moreover, only a fraction of the microbial population is 
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active at any given time, and the microbes are able to switch to dormant or active states with 

changing environmental conditions (Stolpovsky et al., 2011). The efficient distribution of the 

generated energy is vital for microbial communities’ survival. The microbes also respond to 

nutrient limitation with a higher metabolic flexibility and lower maintenance needs compared 

to cultures growing under nutrient-rich conditions (Egli, 2010). Conventional models 

incorporating key microbial processes are often developed using data collected in nutrient-

rich growth media and are not able to represent the conditions of typical natural aquifers.   

Microorganisms, which survive in naturally energy-limited environments, have led to new 

developments in modelling biogeochemical reactions. Thermodynamic constraints are 

especially relevant under low-energy conditions (Dale et al., 2006; Jin and Bethke, 2003, 

2005; LaRowe and Cappellen, 2011;  LaRowe et al., 2012). These constraints have only 

recently been considered in bio-reactive modelling. The total energy generated determines 

the microbial communities’ transformation kinetics including microbial growth, enzyme 

production, maintenance energy (ME), microbial dormancy, and decay. However, these 

related issues are poorly understood and incorporated in numerical models. Therefore, a 

bioenergetics model that determines how energy is being transferred and distributed is 

required. Bioenergetics help detecting possible pathways without requiring a comprehensive 

knowledge of the underlying mechanisms (Demirel and Sandler, 2002). The bacterial 

doubling time (DT) could vary within few minutes to decades depending upon the 

environmental conditions. Only few studies have been conducted for DT of bacteria in 

groundwater systems. For example the DT is in order of days in contaminated sandy aquifers 

and it could be months or even years in natural aquifer (Chapelle, 2000). The models 

including thermodynamic constraints are also capable of exhibiting this wide range of growth 

rate coefficients. 

Except the energy/carbon substrate, the static (aerobic/ anaerobic) and alternating redox 

conditions influence bacterial growth to a great extent. Naturally, the redox state in near-

surface aquifers changes with the environment conditions. Under oscillating conditions (that 

is, alternating oxic and anoxic conditions), the system is perpetually far from thermodynamic 
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equilibrium resulting in maximum opportunities for microbial growth and hence, enhance 

organic substrate depletion (Parsons et al., 2013). This may also reduce the accumulation of 

toxic intermediates or dead-end products (Aller, 1994; Gerritse et al., 1990). The experiments 

on fluctuating groundwater level column operated by Rezanezhad et al. (2014) demonstrated 

that organic carbon degradation is enhanced where the sediment alternates between saturated 

anoxic conditions and unsaturated oxic conditions. However, there is no convincing evidence 

on enhancing carbon release or OM mineralization yet. Before developing models on these 

environments, more experiments to delineate these differences are crucial to comprehend the 

influence of oscillating condition on carbon cycling. This study will understand the processes 

producing and preserving these diversity and dynamics, detect the environmental factor 

which plays impact on the microbial populations, check the influence of redox conditions on 

the biochemical evolution, and eventually lead to a better parameterization of bio-reactive 

transport models at the catchment scale. 

1.2 Identification of research gaps 

In accordance to the context explained in the previous section, I have identified three major 

aspects of environmental change in natural aquifers. 

1) In a favorable environment, (with high input of energy substrates) the microbial 

populations are supposed to grow tremendously. However, this is not observed. The 

microbial communities grow up to only a certain maximum concentration. What is 

the controlling factor?  

2) In an unfavorable environment, (where energy-supply is limited) the microbial 

populations do not die out completely. Instead, microorganisms maintain their 

presence in almost all drastic environments. How do the microorganisms survive 

under these harsh conditions?  

3) The natural aquifers may subject to the oxic, anoxic or alternating redox conditions. 

This could be favorable or unfavorable depending upon the microbial communities. 

The microbial communities’ dynamics change with respect to the change in redox 
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condition. How do the microbial communities respond to these different redox 

conditions? Moreover, what would be the impact on carbon turnover?  

1.3 Objective and structure of the thesis 

Numerous environmental factors, such as temperature, pH, energy substrate, soil moisture 

condition and redox condition etc., exhibit significant influence on the microbial dynamics 

and the carbon cycle (Schmidt et al., 2011; Waksman and Gerretsen, 1931). This thesis will 

address three vital issues of environmental change in the natural aquifer, illustrated in the 

previous section. With this study, I present a detailed analysis to enhance our knowledge to 

solve these issues:  

Chapter 3: The carrying capacity is the maximum biomass that can be supported by the 

aquifer. While the concept is simple and can easily be incorporated into microbial growth 

models, e.g. as a logistic-growth term, the nature of this controlling factor has not been 

entirely understood. This study will help to outline the current level of understanding of the 

carrying capacity and also will give insight into other factors affecting the carrying capacity. 

In this work, a model is developed to demonstrate that “grazing” of the bacteria could be 

possible factor controlling the bacterial population. Moreover, this model, by means of 

mathematics, explains the possible top-down control of the microbial population (that is, 

protozoa, bacteriophage viruses), contrary to the popular belief of bottom-up control (that is, 

by a limited energy supply).  

Chapter 4: This chapter proposes a conceptual bioenergetics model to depict the microbial 

survival dynamics in an oligotrophic aquifer. The model shows the energy distribution of the 

bacteria to growth, maintenance and hydrolytic enzymes production. The energy gained also 

determines the fraction of active and dormant populations of microbes, as well as the decay 

of the bacteria. Then, the model is applied to the degradation of cellulose in an anaerobic 

environment with two microbial communities (cellulolytic fermenting bacteria and sulfate 

reducing bacteria). The model reproduces results that are consistent to observations in natural 

aquifers. 
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Chapter 5: An experiment is conducted to understand and distinguish the microbial dynamics 

and carbon turnover under different redox conditions. Three identical 1L bioreactors are 

prepared using a carbonate-buffered artificial groundwater solution matching the aqueous 

chemistry of the field site. Static oxic (O-reactor) and anoxic (R-reactor) and oscillating 

redox conditions (F-reactor) are maintained for 28 days. The bioreactors were sampled at 

regular intervals and analyzed for various chemical concentrations and microbial activities 

including greenhouse gases (CO2, CH4 and N2O), anions, low molecular weight organic 

acids, DIC, DOC and soil enzymatic activities. The fluctuating redox conditions keep the 

system away from thermodynamic equilibrium by replenishing important pools of electron 

donors (e.g. acetate- via fermentation) and acceptors such as Mn
4+

 and sulfate. These results 

demonstrate that the fluctuating condition have the potential to degrade similar concentration 

of DOC as under oxidizing condition. Only in the F-reactor we can perceive clear synergy 

between aerobic and anaerobic/fermenting processes to deplete the labile carbon at total rates 

that are definitely faster than those observed in reducing reactor. One of the most remarkable 

results is the change in total OM in all bioreactors. Both the O- and the R-reactor show 

decrease in OM whereas we observe the apparent increase of OM in F-reactor. This is 

possibility due to the increase in biomass, which also indicates the presence of autotrophic 

microorganisms. Ironically, within this research period, I have not been able to confirm this 

hypothesis. In the near future, sample collected for microbial ecological analysis will be 

examined to confirm this hypothesis.  
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2. State of research 

The following literature review is sub-divided into four different sections addressing 

important aspects of this dissertation: 

a. the carrying capacity of the subsurface, that is the capability to maintain a maximum 

biomass, which is discussed under the aspects of potential nutrient, energy, and space 

limitations and under the aspect of grazing; 

b. the governing equations for bio-reactive transport in groundwater; 

c. the basic concepts of bioenergetics; and 

d. the degradation of macromolecular carbon in different environments. 

2.1 Carrying capacity 

The carrying capacity is defined by del Monte-Luna et al. (2004) as ‘the limit of growth or 

development of each and all hierarchical levels of biological integration, beginning with the 

population, and shaped by processes and interdependent relationships between finite 

resources and the consumers of those resources.’ The carrying capacity of an environment is 

the maximum population (density) that the environment can sustain at steady state 

(McArthur, 2006). It depends on the relationship between the populations and their 

resources. Initially, microbial populations usually grow slowly; enter an exponential growth 

phase, and then level off when the carrying capacity of that species has been reached. 

Fluctuations of the population density around the carrying capacity may be caused by 

fluctuating environmental conditions, but most bacterial communities adapt to such 

variations (Battin et al., 2007; Keymer et al., 2006; McArthur, 2006). The concept of the 

carrying capacity has frequently been criticized because of its elusive interpretation. While 

postulating the existence of a carrying capacity to explain observations of limited population 

densities is straightforward, it is less clear which factors control the carrying capacity, and 

how it could be predicted. 
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Bio-reactive models may account for the carrying capacity of microbial biomass as 

maximum biomass concentration (Stolpovsky et al., 2012; Yukalov et al., 2012). However, 

the effectiveness of such models is contingent on the adequate information about the studied 

environmental system and the accurate understanding of the main factors that affect 

microbial population. In aquifers, the carrying capacity is usually believed to depend on 

different factors such as the availability of food sources, other macro or micronutrients, space 

for growth, number of sites for suitable reproduction, temperature, and moisture, among 

others. Anthropogenic influences may significantly affect the carrying capacity. Remus-

Emsermann et al. (2012) described the carrying capacity as a ‘sum of many local carrying 

capacities’.  

A simple example is the effect of pH changes on the bacterial communities. Adding nitrogen 

as ammonium sometimes lowers the soil pH, and bacterial growth can negatively be affected 

by low pH values (Baath, 1998). pH variations may cause drastic shifts in the relative 

numbers of different species in a heterogeneous population as it affects specific growth rates 

(De Vries and Shade, 2013; Horiuchi et al., 2002). It may also induce metabolic shifts of 

bacteria as seen by the shift in fermentative patterns in lactic acid bacteria (Yu et al., 2007). 

pH also influences the DOC dissolution (Grybos et al., 2009)  

In the following, I have outlined the most important factors affecting the carrying capacity of 

the microbial biomass without claiming completeness. 

2.1.1 Temperature and moisture content 

Temperature and water content can affect the carrying capacity considerably and are 

important factors for bacterial growth in soil (Smith et al., 1997). Low soil temperatures 

result in slower reaction rates, and frozen soils limit diffusion of substrates thus resulting in 

lower bacterial activities (Steinweg et al., 2013). Diffusion of enzymes, substrates and the 

reaction products are affected by the soil moisture content, since there is a limitation of 

substrate and enzyme diffusion (Stark and Firestone, 1995). The rate of enzyme production 

and activity including turnover rates are influenced by temperature and moisture 

(Wallenstein and Weintraub, 2008), and thus can be affected by climate change (Sowerby et 

al., 2005; Steinweg et al., 2013; Trasar-Cepeda et al., 2007). This will affect the allocation of 
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resources for enzymes production and the population growth. Temperature causes 

maintenance costs and high nutrient demand (Joergensen et al., 1990). Carbon cycling 

processes are also sensitive to minor changes in temperature which could result in a large 

release of soil carbon back to the atmosphere (Classen et al., 2015).  

2.1.2 Resource availability 

Food availability in any habitat is a predominant factor for the survival of the species. 

Normally the carbon/energy source, nutrients, and micro-nutrients are the key factors 

determining the carrying capacity. The common nutrients for the cells are carbon, nitrogen, 

sulfur, phosphorus, calcium, magnesium, potassium, iron, oxygen, and additional trace 

elements. They play vital roles in cellular and metabolic processes, hence; change the 

carrying capacity of the aquifer. Lack of carbon has been assumed to be the most common 

limiting factor for bacterial growth in soil, although limitations by other nutrients, e.g. 

nitrogen and phosphorus have also been observed (Demoling et al., 2007). At low growth 

rates, more carbon is used for maintenance, leaving less carbon available for growth and 

biomass production (Demoling et al., 2007). Nutrient deficiencies cause bacterial inability to 

reproduce and cap the growth of bacteria (Hardin, 1968). 

2.1.3 Habitat space 

The carrying capacity also relates to the size and number of microbial populations 

accommodated in the available physical space. In these communities, bacteria compete with 

their neighbors for space and resources (Hibbing et al., 2010). A high number of bacterial 

colonies in an environment forces the organisms to share the space which results in overall 

decrease of growth (Remus-Emsermann et al., 2012).  

2.1.4 Interspecies bacterial competition 

Microorganisms do not exist isolated in the ecosystem. They share the common habitat with 

other microorganisms to form a complex ecological web. Such interactions could be positive, 

negative, or neutral (Faust and Raes, 2012). Depending upon the type of interaction, the 
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carrying capacity of the ecosystem can change. Antimicrobial production, space competition, 

predation, and even a swift of growth rate are believed to be a way of obtaining nutrients by 

one organism at the expense of another (Oehmen et al., 2007). Several species produce 

adhesions or receptors that bind to specific surface features to increase the chance of winning 

the competition (Rickard et al., 2003). Different bacterial communities may collaborate to 

build a biofilm, which provide antibiotic resistance. Such a positive relation is known as 

mutualism (Rodriguez-Martinez and Pascual, 2006). Syntrophy is another positive 

interaction in which two different species exchange products for the benefit of both (Woyke 

et al., 2006). In symbiotic relationship microbes cross-feed on compounds that are produced 

by other community members as in cellulose degradation (Leschine, 1995). In amensalism, 

the product of one community harms the other without affecting the producer (e.g, lowering 

the surrounding pH). Finally, loss-loss relationships are also found among some organisms in 

which two species with similar niches exclude each other ( Gauze, 1934). 

2.1.5 Grazing 

In a predation-prey relation, one organism benefits from preying on another. An example is 

the predation of bacteria by bacteriophages or protozoa. Here, predation reduces the size of 

bacterial population (Wright et al., 1995). Protozoan grazing is believed to be a significant 

factor controlling the abundance of bacteria in soils (Acea and Alexander, 1988; Habte and 

Alexander, 1977). Protozoan predation requires a sufficiently large pore size (larger than the 

size of the protozoa) and water availability (Vargas and Hattori, 1986). Pore throats with 

sizes of 3 to 6 μm reduces predation by excluding protozoa (Wright et al., 1995). In these 

aquifers, bacteriovorous viruses may control the bacterial population. While viruses are not 

predators in a classical sense (they can’t metabolize bacterial biomass because they lack an 

own metabolism in the first place), their effect on the bacterial biomass is identical (viruses 

infect bacteria, making them produce new viruses rather than reproducing themselves, and 

finally kill the bacteria). Thus, they can constrain bacterial communities in aquifers (Jürgens 

et al., 2008; Khatri et al., 2012).  
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2.2 Bioenergetics 

Bioenergetics is the quantitative study of energy conservation and conversion processes in 

and between living organisms and their environment. It describes the biochemical and 

metabolic pathways through which the cell ultimately obtains energy. The laws of 

thermodynamics are applied to microbial biochemistry to see how energy is transferred. 

Thermodynamics helps identifying possible pathways without requiring a detailed 

knowledge of the underlying reaction mechanisms (Demirel and Sandler, 2002). It is 

especially practical for understanding the biogeochemistry of the sub-surface. However, there 

are still research gaps in representing a sub-surface system via approaches in which the 

microbial dynamics is expressed in terms of Gibbs energy production.  

The study of bioenergetics on microorganisms is of huge interest for the production of 

biofuel, biogas and understanding microbial dynamics with numerical model. It also helps us 

to understand the flow of energy in the biosphere. 

Energy formation is one of the vital components of metabolism. In order to survive, the 

microorganisms are able to harness energy from various sources and channel it into 

biological work. They require energy for maintaining their physiological state, synthesizing 

cellular components, motility, nutrient uptake, maintaining their membrane potential, among 

others. The energy is also used to handle environmental influences such as desiccation, 

osmotic pressure, toxicity and predation (LaRowe and Amend, 2015a). 

The generated catabolic energy of redox reactions is stored in the form of adenosine 

triphosphate (ATP) which is a common molecule for storing energy and driving cellular 

energy-requiring processes (Hoehler, 2004). ATP is used as an intracellular energy source by 

all living organisms. ATP is also called the universal “currency” of chemical energy although 

other high-energy molecules also occur in cells (Mempin et al., 2013). Microorganisms 

generate ATP through the mechanism called chemiosmosis in which a proton concentration 

gradient and an electric potential across the membrane, collectively termed the proton-motive 

force, drive the ATP synthesis. Chemiosmosis can occur only in sealed, membrane limited 
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compartments that are impermeable to H
+
. The proton-motive force is generated by the 

stepwise transport of electrons from higher to lower energy states across the membrane, 

separating the charge across the membrane (Lodish et al., 2000). The terminal phosphate 

bonds of ATP are relatively weak. This bond breaks down to adenosine monophosphate 

(AMP) or adenosine diphosphate (ADP) and phosphate which then dissolve in water. The 

hydration results into energy release. ATP-to-ADP conversion is often assigned with a 

standard free energy (ΔG°) value of -31.8 kJ/mol (Russell and Cook, 1995).  

2.2.1 Gibbs energy and yield of bacteria in natural environments 

Microbial growth requires energy. However, energy is lacking in nature, and many 

ecosystems are termed oligotrophic. The mineral matrix usually stores an adequate energy 

potential, nevertheless the potential must be transferred into a bioavailable form for the cells. 

For the microbial community to survive, energy must be available at finite minimum levels 

which can be harnessed supporting basic biochemical integrity and function (Hoehler, 2004). 

Catabolic actions only occur as long as the thermodynamic state of the reactions is distant 

enough from the equilibrium state to permit energy conservation by the microbes (Harder, 

1997). When bacteria are limited by energy sources, the free energy change of catabolic 

reactions is generally tightly coupled to the anabolic steps of synthesis of cell, and total 

energy flux can be divided into growth and maintenance functions (Russell and Cook, 1995).  

Despite the fact that the yield of the bacteria is considered to be dynamic with response to the 

change of environmental conditions, most models still use it as a constant yield coefficient. 

The wide variations of biomass yields reported for different microbial growth systems can be 

explained based on thermodynamic reasoning (von Stockar et al., 2006). The number of cells 

in the environment is linked with the energy consumption by the bacterial community 

(LaRowe and Amend, 2015a). Yield can’t be easily interpreted in accurate bioenergetics or 

physiological terms unless considerable circumspection (Russell and Cook, 1995). There are 

four major factors that affect the yield determination (Russell and Cook, 1995): (1) 

estimation of ATP production (2) energy source utilization for carbon (3) cell composition 

changes and (4) maintenance energy. Moreover, energy spilling is the common feature of 

growth with an excess of energy and an imbalance between anabolism and catabolism. 
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Energy spilling may allow bacteria to accelerate their processes of cell synthesis and may 

also have the potential to protect the bacteria from toxic substances (Russell and Cook, 

1995). In oligotrophic environments, the cells avoid any energy-spilling reactions (Van 

Walsum and Lynd, 1998).  

Numerous studies have been dedicated to investigate the relationship between the energy 

gained by a microbial population and its yield (Roden and Jin, 2011; VanBriesen, 2002). 

However, these yield values are determined in the lab under favorable conditions for bacteria 

(Hoehler and Jørgensen, 2013). In these studies, the bacteria yield is observed to depend 

linearly on the catabolic energy generation (Hernandez and Johnson, 1967; Jin and Roden, 

2011), while prediction of yield for lower-energy systems is still challenging (Roden and Jin, 

2011). In nature, most energy is spent on maintenance and producing enzymes (Morita, 1990, 

1988; Russell and Cook, 1995). If the catabolic energy production is low, most energy source 

will be used for maintenance. Growth under ideal conditions seldom happens in nature, 

mainly due to the lack of bioavailable energy substrates. Along with the bioavailable energy, 

other physical and geochemical factors also affect the rate of microbial growth. The 

delineation of energy needed for growth or the initiation of the starvation state still needs to 

be clarified (Morita, 1988). Additionally, it is necessary to study how the microbial growth is 

limited by nutrients rather than energy. Under such conditions, bacteria may spill energy in 

reactions which can’t be categorized into maintenance or growth (Russell and Cook, 1995). 

In order to comprehend the rates of biogeochemical processes in the sub-surface, a 

quantitative relationship between microbial population, their catalysis rate, and energy supply 

and demand has been developed (LaRowe and Amend, 2015b).  

2.2.2 Dormancy 

A transition of bacterial cells from an active to an inactive state due to environment change is 

known as dormancy, which is one of the most effective bacterial survival strategies (Jones 

and Lennon, 2010; Lennon and Jones, 2011). The factors affecting dormancy include energy 

substrate, nutrients, toxic or inhibiting chemicals, geochemical and physical variables etc. 
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Dormant cells display neither characteristic of living cells nor of dead cells, they simply enter 

a state of low metabolic activity where they do not undergo cell division (Mellage et al., 

2015). The dormant bacteria represents a seed which can determine and maintain the 

bacterial community in the future (Lennon and Jones, 2011). However, not all bacteria switch 

to dormancy under unfavorable conditions (Konopka, 2000).  

Only a fraction of the microbial population is active in an aquifer at any given time. 

However, microbial growth is a result of increasing the number of active cells only (Morita, 

1988). Depending on the environmental conditions, active microorganisms may switch to 

inactive state or vice versa. Within a given microbial community, only a small portion of the 

population may grow while the others are in dormant state or in starvation survival state. 

Usually, this irregular growth, is due to the deficiency of available energy substrates for 

several physiological types of bacteria in the environment and less because of other 

environmental factors (Morita, 1988). 

It is quite common in modelling to treat the decay of microorganisms by a first-order term 

with constant decay coefficient which is independent on the mentioned variables and 

environment condition. This constant decay term, however, cannot explain the long term 

survival of microorganisms in oligotrophic environments. The dormancy of bacteria may 

explain this phenomenon. When net growth is not favorable due to depletion of the energy 

substrate, the cells often use endogenous materials as an energy source (Morita, 1990; 

Russell and Cook, 1995). The cells reduce the metabolic activity to a minimum which 

confirm the long term survival of inactive cells. The intracellular potassium concentration 

may help to distinguish the active and starving cells. Growing cells have a potassium 

concentration that is at least two-fold larger than that of starving cells (Russell and Cook, 

1995). 

The bacteria switching to dormancy go through the starvation-survival process. This 

starvation-survival process has been illustrated by Morita (1990). When the cells have not 

sufficient environmental or cellular energy-yielding substrates for maintenance, metabolic 

arrest of the cells occurs. This metabolic arrest permits organisms to survive over extremely 

long time. However, the energy yielding mechanisms remain intact in starving cells. Starving 
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cells utilize all their enzymes except those required for obtaining energy from the 

environment. When the conditions are favorable, the cellular enzymes are synthesized again. 

Drastic changes occur in the lipid, an integral part of the cell membrane content, during 

starvation. 

Although dormancy is considered as good survival strategy, this may not hold true for all 

cases. Transiting to different states, both active and inactive, requires certain energy. 

Rejuvenation requires an adequate amount of available substrate which is usually higher than 

the amount needed for maintenance of active cells (Stolpovsky et al., 2011). The inactive 

fraction usually contains a percentage of cells that are incapable of reactivating. The ability 

to switch between an active and inactive state could also explain lag times in microbial 

response to changing substrate concentrations (Stolpovsky et al., 2011). The longer the 

starvation, the longer the lag phases (Morita, 1990). Moreover, dormancy could only be 

advantageous when the starving periods exceed a certain time (Konopka, 2000). Model 

simulation predicted that the dormancy is only successful when the starving period is 54 

times longer than the minimum generation time. Dormancy under low stress does not provide 

any benefit, and may decrease the chances of survival population and vice versa for high 

stress (Bär et al., 2002). Additionally, the dormant bacteria can also be highly sensitive to 

other disturbances.  

2.2.3 Maintenance energy 

The maintenance energy is  a certain minimum of energy intake to maintain molecular and 

cellular integrity and functioning (Hoehler, 2004). The maintenance energy also comprises of 

the rate of energy expenditure required to fix damaged cells, to keep their physiological state 

(e.g., cell motility, osmoregulation etc.), and also to adapt to extreme conditions (Van 

Bodegom, 2007). The maintenance energy requirement defines the minimum necessary flux 

of substrate across the cell membrane, and thereby determines the magnitude of the required 

concentration gradient (Hoehler, 2004). This threshold for growth is also referred to as 

‘critical’ Gibbs free energy (Harder, 1997). In some studies, maintenance energy is also 

described by a negative growth rate constant (Russell and Cook, 1995). In summary, the 
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maintenance is the energy required to keep the microorganism viable and ready to take 

advantage of opportunity (LaRowe and Amend, 2015a). In a given environment, the 

maximum microorganism communities are achieved when all the energy conserved is spent 

entirely on maintenance (Harder, 1997).  

Only some portion of the energy gained by catabolism can be used for growth. Bacteria also 

expend energy on functions that are not directly growth related (Russell and Cook, 1995). In 

oligotrophic aquifers, a significant portion of catabolic energy is used for maintenance 

energy. ME is sensitive to a range of environmental parameters which may vary significantly 

in the subsurface (Hoehler, 2004; Russell and Cook, 1995). Therefore, the proper 

maintenance energy measurement is elusive and often questioned (Hoehler, 2004; Morita, 

1988; Van Bodegom, 2007). The relative energy spent for maintenance at high growth rate is 

lower than that at lower growth yields. The maintenance values derived from pure culture 

conditions are higher than those from natural ecosystems. Additionally, the values obtained 

in culture experiments normally exceed, by orders of magnitude, the levels that can be 

reasonably supported by geochemical fluxes in natural systems (Anderson and Domsch, 

1985; Hoehler, 2004). Morita (1988) therefore refute the application of maintenance values 

calculated in the lab to natural ecosystems. According to this research, the ME of lab cultures 

was at least by three orders of magnitude higher than that studied in agricultural or forest 

soils.  

Therefore, Hoehler (2004) described different levels of ME requirement depending upon the 

environment. The study suggested that the microbes living in an eutrophic environment have 

maintenance value that are likely 3–6 orders of magnitude higher than in energy-limited 

natural systems. In term of ATP, the maintenance value ranges between 0.02 to 40 mmoles 

ATP· (g dry biomass)
−1

 h
−1 

depending upon the bacterial species and the environment 

(Stouthamer and Bettenhaussen, 1973). Tijhuis et al. (1993) also compiled numerous data of 

chemostat studies, and calculated an average ME value for anaerobic microorganisms of 127 

J (g dry biomass)
−1

·h
−1 

at 298 K. This study, based on Arrhenius equations, calculated the 

maintenance energy as species independent. 
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One of the common mathematical expression for the calculation of yield considering the 

maintenance requirement was proposed by Tijhuis et al. (1993): 

1

𝑌
=

1

𝑌𝑚𝑎𝑥
+

𝑀𝐸

µ
          2.1 

where 𝑌 is the actual yield of the bacteria, 𝑌𝑚𝑎𝑥 is the maximum possible biomass yield 

under given conditions, and µ is the maximum rate of bacterial growth. 

Temperature is considered as one of the most important factors which can change the ME of 

the cell. The breakdown rate of biochemical molecules increases with temperature (Hoehler, 

2004; Tijhuis et al., 1993). Higher temperature leads to rapid breakdown of biomolecules, 

thereby increasing the energy input for ME to fix the damage. One of common mathematical 

expressions is presented below:   

𝑀𝐸 = 𝐴 ∙ 𝑒−
𝐸𝑎

𝑅𝑇         2.2 

where, Ea is the activation energy, R is the universal gas constant, T is the absolute 

temperature, and A is an empirically derived  constant (Harder, 1997). 

2.2.4 Previous bioenergetic models 

There are only few studies using bioenergetics concept to simulate microbial dynamics 

However, new studies are dedicated to develop bioenergetic models. Most of these models 

are based on some combination of thermodynamic, stoichiometric, and kinetic principles 

(Payn et al., 2014). In the following, I discuss some important models that considered 

thermodynamic constraints.  

Van Walsum and Lynd (1998) developed a model that distributed the energy gained by 

cellulolytic fermentative microorganisms between growth and extracellular hydrolytic 

enzymes production. The model includes anaerobic cellulose fermentation based on the 

ethanol fermentation of yeast. A bioenergetic model was developed for the fermentation of 

glucose by Haughney and Nauman (1990). This model uses energy balances to determine 

which pathways are utilized by the substrate and to predict substrate consumption, biomass 
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growth, and the product distribution. However, the fermentation of glucose using mixed 

cultures of bacteria is still challenging on the industrial scale. For this, an in-depth knowledge 

of fermentation including metabolic and biochemical principles is necessary. Therefore, 

González-Cabaleiro et al. (2015) presented a model based on metabolic energy to accurately 

predict the changes in product spectrum with pH. Additionally, Cueto-Rojas et al. (2015) 

used the concept of thermodynamics to choose the right substrate for the production of 

different compounds including biofuels, amino acid and alcohols etc. under anaerobic 

conditions. 

Demirel and Sandler (2002) reviewed the role of thermodynamics in understanding the 

coupling between chemical reactions and the transport of substances in bioenergetics. The 

study explained the use of non-equilibrium thermodynamics in bioenergetics and membrane 

transport to describe the energy conversion and coupling between chemical reaction and 

diffusional flows. The formulation of linear non-equilibrium thermodynamics could also be a 

tool to represent the key processes of coupled phenomena of transport and chemical 

reactions. 

Jin and Bethke (2005) outlined two sets of parameters that need to be defined in the rate law; 

one related to thermodynamics constraints and another appeared in kinetic terms. 

         2.3                                                            

where, r is the rate of the energy-yielding redox reaction; µmax stands for the maximum rate 

of reaction per unit biomass; B indicates the active biomass concentration; and FK and FT are 

two non-dimensional functions that vary between 0 and 1.  

The kinetic limitation FK is represented by a Monod-type term. The bioenergetic term, FT, 

expresses growth limitation depending on the available Gibbs energy for a particular pathway 

(ΔG), which includes the minimum energy required by microorganisms to synthesize ATP 

under conditions of active microbial growth (Jin and Bethke, 2005). The function introduced 

by Jin and Bethke (2005) incorporates an energetic barrier term and relates to the Gibbs 

energy required to synthesize ATP which effectively sets a minimum energy threshold that 

must be available for microorganisms to catalyze reactions. As a result, though this model 

TK FFBr  max
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can be applied in low energy environments, there is a cut-off below which it is no longer 

applicable. This limitation ensures that a particular microbially-mediated reaction can only 

proceed if the bioenergetic driving force is thermodynamically spontaneous, regardless of the 

kinetic driving force.  

However, turnover times for super slow growing yet active bacteria are thousands years. 

These active microorganisms should catalyze chemical reactions at some finite rate for 

generation of energy. However, the utilization of energy is too slow for models considering 

FT, which depend on the ∆GATP term. Therefore, LaRowe et al. (2012) presented a new 

formulation based on the comparison of the amount of energy available from any redox 

reaction with the energy required to maintain the membrane potential (∆Ψ); a proxy for the 

minimum amount of energy required by an active microorganism. It states that the 

concentrations of ions inside and outside the cell must be distinct and maintained. The 

established electrical potential gradient is a fundamental descriptive component of active 

cells. The dominant thermodynamic driving force behind ATP production in most species is 

∆Ψ. This new model can represent the lowest levels of metabolic activity, which are not 

implemented in current formulations, and can be incorporated into quantitative models of 

microbial activity. 

Payn et al. (2014) also combined thermodynamics and kinetics to model aquatic microbial 

metabolism and growth. This model applies fundamental ecological theory to simulate the 

impact of various potential metabolic reactions on ecological biogeochemistry. LaRowe and 

Amend (2014) developed an innovative geochemical modelling of redox reaction energetics 

to understand the growth, active bacterial population, diversity, and populations in deep sea 

sediments. This bioenergetic model can be used to predict microbial activities in any 

environment where the geochemistry is well characterized, even if microbiology data have 

not been collected. 

Most of these models essentially proposed that microorganism require a minimum energy 

from the catabolic reactions. This concept is merged with the kinetic models that signifies 

reaction rate. Hence, LaRowe and Amend (2015b) developed a bioenergetic model that 
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considered microbial activities as a rate with which energy should be made available and 

consumed. It shows the relationship between the power consumption and the bacterial 

population in the environment through the energy based yield coefficient. This model also 

takes into account the constraints of environmental influences on biomolecule synthesis. The 

models developed in this study are used to demonstrate the relationship between catabolic 

reaction rates, Gibbs energy of reaction, maintenance energy, biomass yield coefficients, 

microbial population sizes and doubling/replacement times. LaRowe and Amend (2015a) 

applied this bioenergetics model in marine sediment to quantify the power that the bacteria 

use in ultra-low energy environments. Moreover, the study also shows a clear link between 

power consumption and the bacterial population. 

Nowadays, there is the  possibility of calculating the energy required to synthesize numerous 

biomolecules in different environments (Amend et al., 2013). There are uncertainties 

associated with these calculations according to environmental stresses. Moreover, the 

energetic cost of all these steps, the timescale over which it is required by the microbes and 

the responses of these to environmental stresses are still not achievable. The quantification of 

bioavailable Gibbs energy is still possible if there is sufficient geochemical data available 

(LaRowe and Amend, 2015a and references inside).  

Nevertheless, the bioenergetics models should produce results that are representative of the 

real environment. The bioenergetic model developed in this study shows an efficient 

wholesome approach of distribution of energy by the bacterial communities and also the 

effect on the microbial community themselves. This is not the focus of any of these previous 

studies. The developed model uses ideas from few of these previous models (Heijnen and 

Dijken, 1992; Jin and Bethke, 2002, 2005, 2003; LaRowe et al., 2012; Stolpovsky et al., 

2011; Tijhuis et al., 1993; Van Walsum and Lynd, 1998).  

2.3 Particulate organic matter: Cellulose 

Total organic matter (TOM) consists of particulate organic matter (POM) and dissolved 

organic matter (DOM). The organic carbon (OC) comprises almost half of the OM (Kaplan 

and Newbold, 1995). POC is the OC with particle sizes of less than 2 mm and larger than 
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0.45 μm and DOC is the organic carbon suspended in water which is defined by the 

standardized pore-size of filters of 0.45 μm (Thurman, 1985). Figure 2.1 illustrates the 

continuum of POC and DOC and the type of organic particles and molecules in sediments. 

The POM is poorly soluble and too large to enter cell membranes. The hydrolysis of POM 

results in oligo- and mono-meric carbon substrates which are sources of energy and food for 

the microorganisms. Cellulose is the most abundant form of POM in the earth surface and the 

enzymatic hydrolysis of the cellulose is a key step in global carbon cycle (Wilson, 2011). In 

this thesis, cellulose is used as an example to understand the degradation of POM via 

bioenergetics model.  

 

Figure 2.1: Continuum of particulate and dissolved organic carbon in natural waters (where, 

FA-Fatty Acids; CH-Carbohydrates; AA-Amino Acids; HC-Hydrocarbons). Source: 

Thurman, 1985 
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2.3.1 Degradation of cellulose 

Cellulose is a homopolymer consisting of glucose units joined by β-1,4 glycosidic bond 

(Béguin and Aubert, 1994). Although cellulose is abundant in nature, only a small fraction of 

microorganisms is able to degrade it. This is due to its insolubility and crystalline regions in 

which the neighbouring molecules have strong interactions, such as hydrogen bonds and 

hydrophobic stacking (Brown, 1996). Cellulolytic microorganisms, primarily fungi and 

bacteria, are responsible for the degradation of cellulose in soil, although some insects and 

molluscs produce their own cellulases and degrade cellulose (Wilson, 2008). 

Cellulolytic bacteria, cellulases and source of cellulose are very diverse in nature; hence, the 

precise degradation of cellulose in any environment is still ambiguous (Wilson, 2011). Figure 

2.2 elucidates the general pathways of cellulose degradation. This figure also illustrates the 

processes involved and energy generating steps in both aerobic and anaerobic environments. 

Most bacteria produce extracellular hydrolytic enzymes, cellulases, as the cellulose cannot be 

transported across the cell membrane. The products of the cellulases such as cellobiose, 

glucose, and other soluble sugars are taken into the cell where the oligomers are metabolized 

further by cellobiose phosphorylase or by β-glucosidase to form glucose (Coughlan, 1991; 

Wilson, 2008). 

In both aerobic and anaerobic environments, the first step of cellulose degradation is the 

hydrolysis of cellulose into monomers. Some microorganisms use the free cellulose 

mechanism in which they secrete a set of individual cellulases, most of which contain 

carbohydrate binding domain (CBM) (Wilson, 2011); while other bacteria use cellulosomes, 

large extracellular multi-enzyme complexes composed of several cellulases (Desvaux et al., 

2001; Wilson, 2008). The cellulosomes are usually bound to the external surface of the 

microorganism. The enzyme complex also helps the bacteria to attach to the cellulose. Only 

few of the enzymes in cellulosomes contain a CBM (Wilson, 2008). The cellulase system 

consists of three main types of enzymes: (a) endoglucanases, which break non-covalent 

bonds; (b) exoglucanases (cellobiohydrolases), which act on the existing or endoglucanase-

generated chain ends to split cellobiose units from cellulose; and (c) β-glucosidase, which 

hydrolyse cellobiose and low-molecular-weight cellodextrins to yield glucose molecules 
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(Pérez et al., 2002). Cellobiose hydrolysis by β-glucosidase prevents the accumulation of 

cellobiose, which is an inhibitor of exoglucanase activity (Jurtshuk, 1996).  

 

Figure 2.2: Degradation of cellulose. ∆G represent the energy generated during the 

degradation. The microorganism and microbial processes are represented by green and blue 

letters respectively. The hydrolysis steps and hydrolytic enzymes are denoted by red letters. 

In oxic environments, aerobic microorganisms utilize glucose via glycolysis and Krebs cycle 

to gain catabolic energy. Two pyruvate molecules are created from a single glucose molecule 
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through glycolysis, with the release of two ATPs. The Krebs cycle is the oxidative process in 

respiration by which pyruvate is completely decarboxylated to CO2 generating additional 

ATPs and NADH/FADH2. These high-energy compounds (NADH and FADH2) are utilized 

in an electron transport chain (respiratory chain) to produce more energy through oxidative 

phosphorylation, where oxygen is the terminal electron acceptor (Jurtshuk, 1996). 

Complete oxidation of glucose by aerobes can be represented by the following equation: 

C6H12O6 + 6O2  6CO2 + 6H2O + energy 

This complete process of glycolysis, Krebs cycle and electron transport chain produces 

approximately 38 ATPs (that is, 380,000 calories) from a single glucose molecule (Jurtshuk, 

1996). 

About 5-10 % of cellulose in nature is degraded under anaerobic conditions (Leschine, 

1995). Anaerobic degradation is a multi-step process of serial and parallel reactions. The 

metabolic versatility of anaerobes expresses itself in their ability to perform various 

fermentation and respiration reactions, employing several electron acceptors (e.g. carbon 

dioxide, inorganic sulphur compounds, and inorganic nitrogen compounds) instead of 

oxygen. 

Under anaerobic condition, cellulolytic fermentative microorganisms do not degrade 

cellulose completely; other types of microorganisms operate in combination with them in 

order to completely oxidize organic matter in anoxic sediments (Lovley and Chapelle, 1995). 

During fermentation, the oxidation of the organic compounds is incomplete, but this process 

yields sufficient energy for microbial growth (Jurtshuk, 1996). Many facultative anaerobes 

also perform fermentation under anaerobic conditions or can use alternative terminal electron 

acceptors for respiration depending on the environmental conditions (Botheju et al., 2010). 

Fermentation does not utilize an electrochemical gradient as that in electron transport chain. 

Instead, the microorganism performs internally balanced redox reactions to produce energy 

regardless of the external environment (Konhauser, 2007).  Fermentative organisms use 

NADH and other cofactors to produce many different reduced metabolic by-products, often 

including hydrogen gas (H2). Hydrogen gas is also produced in many types of fermentation 
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reactions (mixed acid fermentation, butyric acid fermentation, butanol fermentation), and the 

electron acceptor NAD
+
 is regenerated from NADH which is utilized again during glycolysis 

(Jurtshuk, 1996). 

Anaerobic respiration uses electron acceptors other than oxygen such as sulfate (SO4
2-

), 

nitrate (NO3
-
), sulphur (S), or fumarate etc. This process still uses a respiratory electron 

transport chain. However, these terminal electron acceptors have smaller reduction potentials 

compared to oxygen and generate less energy per oxidized molecule. Anaerobic utilization of 

soluble sugar starts from glycolysis producing pyruvate which then enters the Krebs cycle. 

The rest of the energy is obtained via electron transport chains using different electron 

acceptors. Therefore, cellulose is completely oxidized via microbial food-chain processes by 

anaerobic communities (Leschine, 1995). 

The degradation via anaerobic process, including fermentation and respiration, to mineralize 

cellulose can be categorized into four major processes (Lovley and Chapelle, 1995). 

1) Hydrolysis 

2) Acidogenesis 

3) Acetogenesis 

4) Methanogenesis 

The first step is hydrolysis of the cellulose into simpler OM, such as glucose. This soluble 

OM can pass through the cell walls of the bacteria. It is now fermented by the same 

cellulolytic bacteria or acid forming bacteria, yielding CO2, H2, and organic acids (e.g. 

formate, lactic, acetate, propionate and butyrate etc.), and alcohols (Leschine, 1995). This 

step is called acidogenesis. The simple organic end products formed from this incomplete 

biologic oxidation process also serve as electron-donors for other anaerobic microorganisms. 

The third step is called acetogenesis where the product of acidification is converted into 

acetic acid, carbon dioxide and hydrogen, respectively. Syntrophic bacteria play a key role in 

the conversion to CH4 and CO2. They usually grow in the presence of H2-consuming 

organisms through interspecies H2 transfer (Leschine, 1995). The combination of these three 

steps is also known as acid fermentation (Haandel and Lubbe, 2012). In the final step, the 
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products of acid fermentation (mainly acetate) are also converted to CO2, H2 and CH4 

(Christensen et al., 2000; Leschine, 1995; Lovley and Chapelle, 1995). H2 is also an energy 

source for methanogens and sulfate reducing bacteria, which keep the concentration of H2 

low to produce methane. Methanogens are usually present along with fermentative bacteria. 

This interaction is considered to be syntrophic because the methanogens, which rely on the 

fermenters for H2 save the fermenters from toxicity produced due to the accumulation of 

hydrogen. Again, homoacetogens use H2 to reduce CO2 forming acetate (Leschine, 1995; 

Pérez et al., 2002). When methanogens were used as the H2-consuming organisms, a shift in 

fermentation pattern to form more acetate and less electron sink products was observed 

(Marvin-Sikkema et al., 1990). Very little amount of H2 escape into the atmosphere since it is 

immediately consumed by methanogens or homoacetogens (Jurtshuk, 1996). In alternate 

pathways, if sulfate is present in the environment, the sulfate reducer will consume the 

hydrogen and acetate to form sulfide, outcompeting the methanogens (Leschine, 1995).  

In every four consecutive steps, the catabolic reactions generate energy. The free energy 

released in the reactions is partially used for synthesis of the anaerobic bacterial populations 

(Haandel and Lubbe, 2012).  

2.4 Governing equations for bio-reactive transport 

The governing equations presented here illustrate groundwater flow, substrate transport and 

microbial degradation of the substrate in the subsurface. In this dissertation only one-

dimensional steady-state flow in fully saturated porous media is considered. 

In modeling porous media, usually conservation laws for solute mass and fluids are 

formulated for a representative elementary volume (REV). All parameters are averaged over 

the REV. The exact pore structure of the medium is lost and the medium is considered a 

continuum.  
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2.4.1 Groundwater flow 

Groundwater flows from areas of higher potential (typically expressed as hydraulic head) to 

areas of lower potential. This is expressed in Darcy’s law: 

𝒒 = −𝑲𝛻ℎ          2.4 

in which q [LT
-1

] is the specific discharge vector, that is, the volume transferred per bulk 

cross-sectional area, K [LT
-1

] is the hydraulic conductivity tensor, a symmetric positive 

definite matrix, h[L] is the hydraulic head, and  ∇ is the nabla operator. Darcy’s law is 

substituted into the continuity equation, stating that the divergence of q is zero under steady-

state conditions in systems without internal sources or sinks, to form the groundwater-flow 

equation. 

2.4.2 Solute transport 

Groundwater flow causes the redistribution of solute mass. Solutes are transported in porous 

media with the flow of ground water (advection), and by molecular diffusion and mechanical 

dispersion. The conservative transport of a dissolved, non-sorbing solute can be described by 

the advection-dispersion equation: 

𝜕𝑐

𝜕𝑡
+ ∇ ∙ (𝐯𝑐) − ∇ ∙ (𝐃∇𝑐) = 0       2.5 

where c [ML
-3

] is the concentration of the solute, v = q/n [LT
-1

] is the seepage velocity with 

n  [-] denoting porosity, and D [L
2
T

-1
] is the dispersion tensor. The negative sign implies that 

the dispersive solute flux is oriented from higher concentration area to the lower one. 

For this study, only 1-D flow and transport are considered. Then the advection-dispersion 

equation becomes: 

𝜕𝑐

𝜕𝑡
+ 𝑣 ∙

𝜕𝑐

𝜕𝑥
− 𝐷 ∙

𝜕2𝑐

𝜕𝑥2
= 0        2.6  
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in which x [L] is the spatial coordinate and D [L
2
T

-1
] is the dispersion coefficient of the 

porous medium. 

2.4.3 Bio-reactive transport model 

Let’s now consider a reactive substrate with concentration 𝑐𝑠 [ML
-3

]. Then, the advection-

dispersion equation is amended by a reactive source/sink term: 

𝜕𝑐𝑠

𝜕𝑡
+ 𝑣 ∙

𝜕𝑐𝑠

𝜕𝑥
− 𝐷 ∙

𝜕2𝑐𝑠

𝜕𝑥2
= −𝑟𝑠        2.7 

where  𝑟𝑠 [ML
-3

 T
-1

] is the net reaction rate of the substrate, which may be the sum of several 

individual reaction rates. Typically, the reaction rates are assumed to depend uniquely on the 

concentrations of the reactants and of the biomass. A typical kinetic law to predict reaction 

rates is the Michaelis-Menten law, also denoted Monod law if the reaction is proportional to 

biomass growth: 

𝑟𝑠 =
𝜇𝑚𝑎𝑥

𝑌
∙

𝑐

𝐾+𝑐
 ∙ 𝑐𝑏𝑎𝑐         2.8 

where 𝜇𝑚𝑎𝑥  [T-1
] is the maximum specific growth rate of the bacteria, Y [Mbac M

-1
] is the 

bacterial yield, 𝑐𝑏𝑎𝑐 [MbacL
-3

] is the bacterial concentration, and K [ML
-3

] denotes the half-

velocity concentration of the substrate (Monod constant). 

The related growth and decay rates of bacterial and grazers required for the bio-reactive 

transport are explained in detail in chapter 3.  

2.4.4 Initial and boundary conditions 

The governing partial differential equations have to be supplemented by appropriate initial 

and boundary conditions. Initial conditions include the hydraulic-head and concentration 

distributions throughout the domain at the initial time. In steady-state simulations, no initial 

states are needed. Boundary conditions indicate how an aquifer interacts with the 

environment outside the model domain. Mathematical boundaries are commonly defined in 

three categories: Dirichlet (fixed value), Neumann (fixed normal gradient component), and 

Cauchy (fixed combination of values and normal derivatives).  
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2.4.5 Numerical solution 

The finite volume method is a suitable approach to discretize the spatial domain because it 

guarantees local mass conservation (Muyinda, 2014). This technique is used in the present 

thesis. The domain is subdivided in control volumes with grid spacing Δx, and a balance 

equation is formulated for each control volume. Gradients at the interfaces of two control 

volumes are approximated by the difference of the values in the two control volumes divided 

by the grid spacing, whereas concentration values themselves (needed for the evaluation of 

advective fluxes) are approximated by the values on the upstream side (upwind 

differentiation). Upon spatial discretization, the system of coupled partial differential 

equations is converted to a large system of ordinary differential equations, which are 

nonlinear due to the reactive terms. Rather than applying my own temporal discretization 

method, I rely on the Gear solver implemented in Matlab as function ode15s. This is a 

variable-order implicit solver based on backward-differentiation formulas that are 

particularly suited for stiff systems of differential equations. 
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3. Substrate-bacteria-grazer interactions  

The content in this chapter is modified from ‘Bajracharya, B., Lu, C., Cirpka, 

O.A., 2014. Modeling substrate-bacteria-grazer interactions coupled to 

substrate transport in groundwater. Water Resour. Res. 50, 4149–4162. 

doi:10.1002/2013WR015173.’ 

3.1 Introduction 

Microbial activity in porous media is of utmost importance for biogeochemical cycling and 

pollutant turnover in natural aquifers and technical fixed-bed reactors. Common models 

applied to simulate microbial activity in porous media account for a single or a few types of 

biomass, each of which catalyzing a specific solute transformation; microbial growth is 

assumed proportional to the transformation rate; and a first-order biomass decay term 

represents microbial death. Previous studies have shown that most bacteria in groundwater 

are attached to the aquifer’s sediment and are therefore immobile (Griebler et al., 2001; 

Griebler and Slezak, 2001), even though expressions for passive transport, motility, 

attachment, detachment, and straining of microbes have been developed (Corapcioglu and 

Haridas, 1985; Hill and Häder, 1997; Tufenkji, 2007). The rate laws describing microbial 

reactions act as sink-source terms in the transport equations of the solutes, typically 

formulated on the basis of the advection-dispersion equation. A review of bio-reactive 

transport models is given by Barry et al., (2002). 

In many applications of bio-reactive transport to natural attenuation and remediation of 

contaminated aquifers, microbial activity is controlled by bringing the reacting electron 

donors and acceptors together. In these set-ups, transverse mixing across plume fringes (e.g., 

Anneser et al., 2008; Cirpka and Valocchi, 2007; Davis and Sieburth, 1984; Fraser et al., 

2008; Prommer et al., 2009; Thornton et al., 2001) and kinetic mass transfer between water 

and non-aqueous phase liquids or mineral phases (e.g., Schäfer and Therrien, 1995; Watson 

et al., 2005), rather than the microbial dynamics, often determine the overall reaction rates. 
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This may be different in many natural groundwater ecosystems. A good counter-example is 

bank filtration and hyporheic exchange  (e.g., Doussan et al., 1997; Grünheid et al., 2005; 

Marzadri et al., 2012) Here, the organic electron donors and oxygen as the most important 

electron acceptor are typically mixed within the streams, but their transformation is limited 

by the low bacterial density in the flowing water. Once the stream water enters the stream 

bed, it is exposed to microbial biomass attached to the sediments. That is, the system behaves 

like a continuously fed fixed-bed reactor. A second example of microbial reactions in 

groundwater that are not controlled by mixing of the substrates is the operation of mixing 

wells in active bioremediation (e.g., Hyndman et al., 2000; Mccarty et al., 1998; Phanikumar 

et al., 2005). Here, missing substrates are added to groundwater recirculation wells, and the 

mixture of contaminant and reactants are jointly re-injected into the aquifer via the injection 

screens of the recirculation wells. Again, a stream tube within the aquifer originating from 

such an injection screen may be seen as a continuously fed fixed-bed reactor. 

Using the models discussed above to simulate continuous injection of a growth substrate into 

a sand column leads to excessive biomass growth near the inlet, even if the substrate 

concentration in the inflow is small. This, however, is not observed in the field (Luna et al., 

2009; Pedersen and Ekendahl, 1990; Zhou et al., 2012). Various authors have thus introduced 

a biomass-capacity term penalizing biomass growth beyond a maximum concentration 

(Stolpovsky et al., 2012; Yukalov et al., 2012; Zhou et al., 2012). One approach to implement 

the carrying capacity is based on the logistic-growth equation used in theoretical ecology: 
















max
1

bac

bac
bacbac

bac

c

c
c

dt

dc
 ,        3.1 

in which cbac [MbacL
-3

] is the biomass concentration, t [T] is time, bac [T
-1

] is the specific 

growth rate coefficient, and max

bacc  [MbacL
-3

] is the maximum biomass concentration, or 

carrying capacity. Mathematically similar expressions, such as biomass-inhibition terms, 

have been used as well (Zysset et al., 1994). It may be noteworthy that the introduction of a 

carrying capacity is not needed for a set-up in which the macroscopic control of microbial 
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activity is by physical mixing processes, such as in the case of fringe-controlled 

biodegradation. 

While the concept of a carrying capacity is intriguing, its mechanistic explanation remains 

unclear. Some authors speculate on space constraints within the porous medium, but bacteria 

in natural aquifers colonize only a small fraction of the grain surface (Anneser et al., 2010). 

Other authors assume that kinetic uptake of solutes by the bacteria or diffusive mass transfer 

within the pore space limits biomass growth (Egli, 2010; Morita, 1988). However, assuming 

a diffusive length scale of 100 micrometers within a pore, the characteristic time scale of 

diffusion is on the order of ten seconds, which does not pose a significant kinetic limitation 

(Cirpka, 2010). Nutrient availability has also been suggested as factor controlling biomass 

growth (Ayuso et al., 2010) but appears unlikely in natural aquifers unless large substrate 

loads are to be transformed. 

All possible explanations for the occurrence of a carrying capacity discussed above are based 

on the assumption of a bottom-up control of groundwater ecosystems. That is, the basic 

supply of substrates or nutrients to the biota limits the overall turnover of the ecosystem. An 

alternative explanation is based on top-down control, where organisms on a higher trophic 

level limit the abundance of those on lower levels. In groundwater ecosystems, higher trophic 

levels include grazers, such as protozoa, and bacteriophages, that is, viruses infecting 

bacteria. These agents grow on the bacteria, leading to a negative feedback on the bacteria 

concentration which may limit the turnover of the substrate. The current study explores the 

possibility of top-down controls in groundwater ecosystems by means of mathematical 

analysis. 

Grazers are quite common in both shallow and deep aquifers (Harvey et al., 1995). The 

dynamics of substrate-bacteria-grazer interactions have been intensely analyzed for more 

than three decades (Azam et al., 1983; Butler et al., 1983; Fenchel, 1982). Models to 

represent these biotic interactions have already been developed (Cao et al., 2008; Khatri et 

al., 2012;  Wright, 1988). A focus has primarily developed around differing aspects of biotic 

interactions such as the influence of the grazer size on predation (Calbet et al., 2001; Gasol, 
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1994), the grazing rate (Davis and Sieburth, 1984) and energy flow (Azam et al., 1983), 

among others.  

Environmental concentrations of grazers and bacteriophages suggest that they play a vital 

role in controlling bacterial growth in aquatic bacterial communities (Davis and  Sieburth, 

1984; Boras et al., 2009). Viruses also actively act as predators; infect the bacteria and hinder 

the population of the bacteria (Jürgens et al., 2008; Khatri et al., 2012). Research performed 

in coastal environment showed that both viruses and grazers are responsible for substantial 

bacterial mortality (Harvey et al., 1995). Viral lysis, along with grazing can be a cause of 

mortality in aquatic bacterial communities and the supremacy of those two processes vary 

among ecosystems (Boras et al., 2009). Some studies indicate that viruses are important 

predators in eutrophic systems, whereas protists play a major role in bacterial losses in 

oligotrophic water bodies (Boras et al., 2009). 

The presence of grazers is found to enhance net bacterial activity by improving the recycling 

rate of limiting nutrients (Harvey et al., 1995; Tufenkji, 2007). However the role of grazing 

within bioremediation processes is inadequately understood at this time and rarely 

incorporated within biodegradation models (Mittal and Rockne, 2012). Only few studies 

have been directed towards substrate-bacteria-grazers interactions within aquifers as most 

studies have been applied to marine environments or laboratory experiments. Presently it is 

unclear whether and how grazers control bacterial biomass within porous media. The impact 

of grazers on specific bacterial functions, bioremediation and biogeochemical 

transformations are likely, but have rarely been considered in detail (Jürgens et al., 2008; 

Mittal and Rockne, 2012). Common bio-reactive transport models couple bacteria-substrate 

interactions to advective-dispersive transport (Corapcioglu and Haridas, 1985; Regnier et al., 

2005), but to the best of our knowledge, bio-reactive transport models including substrates, 

bacteria, and predators are yet missing. 
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Figure 3.1: Schematic of transport processes in the model developed (A) Retentostat model 

where the mixed reactor is inoculated with bacteria and grazers while the substrate is 

injected with the inflow and washed out with the outflow water and a filter is employed to 

restrain organisms from exiting the reactor with the outflow (B) 1-D model where the 

substrate is injected with the inflow into the column that is inoculated with bacteria and 

grazers. Substrate is subject to advection and dispersion whereas bacteria are immobile and 

grazers are allowed to disperse. 

In this study, we present the mathematical analysis of an idealized groundwater ecosystem 

considering three trophic levels: (1) a dissolved organic substrate, introduced into the system 

with the inflowing water, (2) a bacteria population growing on the substrate, and (3) a 

population of grazers growing on the bacteria. Bacteria and grazers also undergo first-order 

decay. We first analyze a perfectly mixed flow-through system with immobile bacteria and 

grazers, representing a single retentostat (Figure 3.1 A). We are particularly interested in 

identifying possible steady states of the system, their stability and dependence on either 

substrate supply (supporting the hypothesis of bottom-up control) or grazing (supporting top-

down control). We subsequently extend the analysis to one-dimensional porous media in 

which, in addition to the reactive processes, the substrate undergoes advective-dispersive 

transport, the bacteria are considered immobile, and the grazers undergo a combination of 

random walk and chemotactic movement (Figure 3.1 B). We analyze spatial profiles of 

concentrations at steady state, their stability and their dependence on system parameters. In 

particular, we explore whether constant bacterial concentrations occur without explicit 

introduction of a maximum biomass concentration. The mathematical model of the present 
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study focuses on grazing, which may be replaced by virus lysis without changing the 

principal concept. 

3.2 Governing equations and mathematical analysis 

We simulate microbial dynamics, biotic interactions, and transport in two types of reactors. 

In order to analyze basic dynamics of the ecological system, we first simulate a continuously 

fed retentostat considering the concentrations of a growth substrate, a bacterial population, 

and a grazer population as dynamic state variables. We apply classical expressions for 

substrate utilization, related bacterial growth, grazing, and biomass decay. The grazers could 

also be replaced by bacteriophages, that is, viruses infecting the bacteria, without changing 

the mathematical model. We choose the retentostat as a zero-dimensional model of an aquifer 

because the largest fraction of microbial biomass is immobile in groundwater systems, and 

also protozoa are known to be strongly retained in aquifers (Bales et al., 1995; Harvey et al., 

1995). 

In the second system, we couple one-dimensional advective-dispersive solute transport to the 

ecological expressions. The growing substrate is continuously injected into the system with 

water flow. As frequently done in bio-reactive transport models, the bacteria are considered 

immobile, whereas we allow for a random walk of the grazers by applying a Fickian 

diffusion term, combined with chemotactic movement towards the food source. 

Conceptually, this is similar to considering many retentostats in series. If grazers were to be 

replaced by bacteriophages, retarded advection of this component may be needed, but the 

latter is beyond the scope of the current analysis. 

In order to keep our models simple, we do not account for additional organisms or substrates, 

we neglect transport of bacteria, kinetics of solute uptake by the bacteria, and sorption of the 

substrate. All coefficients are considered constant in time and uniform in space, and the 

transport domain is one-dimensional. Most important of all, we do not predefine carrying 

capacities of bacteria and grazers. This implies that asymptotic concentrations of the 
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organisms approached in the system at late times naturally result from the dynamic 

expressions applied in the model. 

3.2.1 Dynamic retentostat model 

The idealized retentostat is a perfectly mixed flow-through bioreactor in which a growing 

substrate is continuously introduced into the system by the inflow and washed out via the 

outflow. Inside the reactor, bacteria utilize the substrate for growth. Our model setup also 

includes grazers which exclusively grow on the bacteria. In contrast to the substrate, the cells 

of living bacteria and grazers are not washed out of the reactor. In our model, substrate 

utilization is described by Monod kinetics, whereas grazing is described by a second-order 

grazing law as applied in the classical Lotka-Volterra model: 

bac

subsub

sub

bac

bac
sub c

Kc

c

Y
r 




max
,                 3.2 

grazbacgraz cckr  ,                                                                                                   3.3 

in which rsub [MsubL
-3

 T
-1

] and rgraz [MbacL
-3

 T
-1

] are reaction rates of substrate utilization and 

grazing, max

bac  [T
-1

] is the maximum specific growth rate of the bacteria, Ksub [MsubL
-3

] 

denotes the corresponding half-velocity concentration of the substrate (Monod constant), Ybac 

[ 1MM 

subbac
] is the bacterial yield, k [

113 TML 

graz ] is the second-order grazing rate coefficient, 

whereas csub [MsubL
-3

], cbac [MbacL
-3

], and cgraz [MgrazL
-3

] are the concentrations of substrate, 

bacteria, and grazers, respectively. For the ease of computation, all concentrations are 

expressed in units of milligram carbon per liter of water. 

In order to account for loss of organic carbon due to respiration, we consider the bacterial 

yield Ybac and the grazer yield Ygraz [
1MM 

bacgraz ], quantifying the fraction of food organic 

carbon incorporated into the biomass of the grazing organism. 

The substrate concentration is affected by injection with the inflow, loss by the outflow, and 

substrate utilization leading to the following ordinary differential equation: 
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  subsubin
sub rcc

dt

dc




1
,        3.4 

in which t [T] is time, cin [MsubL
-3

] denotes the substrate concentration in the inflow,  = V/Q 

[T] is the residence time of the reactor with the reactor volume V [L
3
] and the volumetric 

flow rate Q [L
3
T

-1
]. 

The bacteria concentration is affected by bacteria growth due to substrate utilization, loss due 

to grazing, and first-order decay, whereas the grazer concentration increases due to grazing 

and decreases due to first-order decay: 

bac

dec

bacgrazbacsub
bac crYr

dt

dc
  ,       3.5 

graz

dec

grazgrazgraz

graz
cYr

dt

dc
  ,       3.6 

in which dec

bac  [T
-1

] and 
dec

graz  [T
-1

] are the first-order decay rate coefficients of bacteria and 

grazers, respectively. 

3.2.1.1 Possible steady-state concentrations of the retentostat model 

At steady state, the rates of change of all concentrations are zero. Substituting Eqs. (3.2 & 

3.3) into Eqs. (3.4-3.6), setting the resulting expressions to zero, and rearranging terms yields 

three possible steady-state solutions. In the trivial steady state, all biota are extinct and the 

substrate concentration equals the inflow concentration. In a second steady state, the grazers 

are extinct, and bacterial growth is balanced by first-order decay. Here, we consider only the 

steady-state solution in which all three concentrations, denoted 

subc , 

bacc , and 


grazc , are non-

zero: 

,
graz

dec

graz

bac
Yk

c





          3.7 
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


 dec

bacbac

subsub

sub
graz

cK
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k
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Eq. (3.7) implies that, in the presence of grazers, the steady-state bacteria concentration 

bacc  

does neither depend on the inflow concentration cin of the substrate, nor on parameters 

related to substrate-bacteria interactions. 

bacc  is purely defined by the grazer dynamics. 

A brief analysis reveals that very small values of the steady-state substrate concentration 

subc , 

e.g. caused by small values of cin, may lead to negative values of the steady-state grazer 

concentration 


grazc , implying that under such conditions this particular steady state cannot be 

reached, that is, the grazers become extinct. In such a case, a steady state is possible in which 

the substrate concentration is independent of cin and reflects only parameters of the bacterial 

dynamics (equations not shown). If this substrate steady-state concentration is smaller than 

cin, the corresponding steady-state bacteria concentration renders negative, implying that this 

steady state is not reached either, and the biota-free steady-state solution remains the only 

possible solution. 

3.2.1.2 Linearized stability analysis of the retentostat model 

While the steady state derived in the previous section is a valid fix point of the dynamic 

system, it is not yet clear whether it is actually approached by the system under constant 

conditions. A common approach to analyze the stability of a fix point is to linearize the 

system of ordinary differential equations about the proposed steady-state solution (Khatri et 

al., 2012): 

  ccJ
c

dt

d
,         3.10 



- Microbial Dynamics in Natural Aquifers - 

 

 

Ph. D. Thesis, Bajracharya  39 

in which c=[csub, cbac, cgraz]
T
 is the column vector of concentrations, and J is the Jacobian 

matrix defined as: 





















cc
t

c

c
J i

j

ij ,        3.11 

that is, the 3×3 matrix of the partial derivatives of all rates of concentration changes with 

respect to all concentrations, derived about the steady state. Deriving J about the steady-state 

solution with non-zero grazer concentration, we obtain: 
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The analytical solution for the linearized problem of Eq. (3.10) is: 

   

















 cccVVc )0(

)exp(00

0)exp(0

00)exp(

)( 1

3

2

1

t

t

t

t







,    3.13 

in which λi is the i-the eigenvalue of the Jacobian J, and V is the matrix of corresponding 

eigenvectors. A positive real component in any of the three eigenvalues would indicate that a 

small deviation of the concentrations from the fix-point solution is magnified, revealing that 

the system is incapable of achieving the fix point. This characterizes a linearly instable 

system. By contrast, if the real components of all eigenvalues are negative, exponential 

relaxation occurs towards the fix point, so that this steady state can be approached by the 

system (Khatri et al., 2012).  

Non-zero imaginary components of the eigenvalues imply oscillations of the system close to 

the fix point. Since the solution in the time domain is real, complex eigenvalues are 
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accompanied with complex conjugate values, and also the corresponding complex 

eigenvectors are complex conjugates of each other. Complex eigenvalues with a negative real 

part reveal decaying oscillations, with the concentrations approaching the fixed steady-state 

in an alternating manner. For these cases, the time period Ti of oscillations [T] and half-life 

t1/2,i [T] of their amplitudes are computed by: 

)Im(/2 iiT  ,          3.14 

)Re(/)2ln(,2/1 iit  .        3.15 

3.2.2 One-dimensional bio-reactive transport model 

We now consider bio-reactive transport in a one-dimensional saturated porous medium such 

as a one-dimensional aquifer or a fixed-bed reactor. The solute undergoes advective-

dispersive transport and consumption by bacterial activity: 

bac

subsub

sub

bac

bacsub
sub

subsub c
Kc

c

Yx

c
D

x

c
v

t

c



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











 max

2

2 
,    3.16 

in which x [L] is the spatial coordinate, v [LT
-1

] denotes the seepage velocity, and Dsub [L
2
T

-

1
] is the dispersion coefficient of the substrate. The governing equation for the bacteria, 

considered immobile, is identical to the one used for the retentostat: 

bacgraz

dec

bac

subsub

sub
bac

bac cck
Kc

c

dt

dc




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





 max

,     3.17 

whereas we assume that random movement of the grazers can be described by Fickian 

diffusion, which is coupled to the reactions of the retentostat. The diffusion coefficient of the 

grazers decreases with increasing bacteria concentration, resulting in a “chemotactic” 

movement of the grazers towards higher bacteria concentrations. 

  ,graz

dec

grazbacgraz

graz

graz

graz
ccYk

x

c
D
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c
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


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




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in which Dgraz [L
2
T

-1
] is the “diffusion” coefficient of the grazers, quantifying their random 

movement. It is known that grazers usually migrate by random walk combined with 

chemotaxis (Fenchel, 2004; Machemer, 2001). Grazers can actually congregate at food 

source within a few minutes from distance up to few centimeters in an aquatic medium 

(Fenchel and Blackburn, 1999). This is implemented in the model by linearly reducing Dgraz 

from its maximum value 
max

grazD  [L
2
T

-1
] with the bacteria concentration. At a maximum 

bacteria concentration grazDno

bacc  [MbacL
-3

] for grazer diffusion, the random movement of the 

grazers is assumed zero. By making the random movement of the grazers dependent on the 

food supply, chemotaxis is possible without the need of actively sensing concentration 

gradients. 

As boundary conditions, we assume a known flux concentration cin of the substrate at the 

inlet (x=0), and vanishing first derivatives for csub at x=L and for cgraz at both boundaries, in 

which L [L] is the length of the domain: 
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      3.20 

We solve Eqs. (3.16-3.20) by applying the Finite Volume Method with grid spacing Δx for 

spatial discretization, using upwind differentiation for advection, and solving the resulting 

large system of non-linear ordinary differential equations with the Gear solver implemented 

in Matlab as function ode15s. 
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3.2.3 Approximate steady-state concentration distributions for one-dimensional bio-

reactive transport in the presence of grazers 

We approximate the steady-state concentration distributions in the one-dimensional 

advective-dispersive-reactive system by neglecting the dispersive terms in Eqs. (3.16 & 3.18) 

and setting the time derivatives of the concentrations to zero: 

  ,0 graz
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Then, as long as grazers are sustained, the steady-state bacteria and grazer concentrations 

follow the corresponding expressions of Eqs. (3.7 & 3.9), whereas the steady-state substrate 

concentration is (see Simmons et al., 1995): 
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in which W(a) is Lambert’s W-function with argument a, meeting  .)(exp)( aWaWa   

The steady-state concentration profiles of Eqs. (3.24, 3.7 & 3.9) for )(xcsub


, )(xcbac


, and 

)(xcgraz


 are valid until )(xcgraz


 according to Eq. (3.9) becomes zero. We denote the distance 

at which this occurs xgraz [L]. Substituting Eq. (3.9) into 0)( 

grazgraz xc  and solving for 

)( grazsub xc
 yields: 
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which may be substituted into Eq. (3.24), to compute the distance xgraz over which grazers are 

sustained: 
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in which we have considered that Lambert’s W-function is defined by its inverse. For x > 

xgraz, the steady-state substrate concentration )(xcsub

  is too small to sustain grazers. Our 

experience from the numerical analysis is that downstream of this point the trivial solution, in 

which the last valid solution of the steady-state solute concentration )( grazsub xc
 remains 

constant and both the bacteria and grazer concentrations are zero, is the most realistic 

analytical approximation. 

Because the steady-state bacteria concentration )(xcbac

  according to Eq. (3.7) does neither 

depend on the substrate concentration )(xcsub

  nor on parameters related to substrate-bacteria 

interactions, the approximate steady-state spatial profile of the bacteria biomass )(xcbac

  is 

constant for x  xgraz. 

3.2.4 Linearized stability analysis of the one-dimensional bio-reactive transport model 

The stability analysis of the retentostat system, expressed in Eqs. (3.10, 3.11, 3.13-3.15), can 

also be applied to the spatially discretized bio-reactive transport equations. For this purpose, 

we compute the Jacobian matrix J by direct numerical differentiation of the system of 

ordinary differential equations resulting from spatial discretization of the bio-reactive 

transport equations. The sensitivities are derived about the spatial concentration distribution 

at the end of the simulated time period where steady state has almost been achieved. We are 

particularly interested in verifying that all real components of the eigenvalues of J are 

negative. We also consider the smallest absolute real component of complex eigenvalues 

representing the slowest decaying oscillatory signal component, for which we compute the 

corresponding time period Ti, half-life t1/2,i, and the related contributions of the substrate, 
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bacteria, and grazer concentrations to the corresponding eigenvector. This information 

describes which oscillations remain the longest in the system, the temporal frequency of the 

oscillations, and how quickly they vanish. 

3.3 Model applications 

3.3.1 Retentostat model 

In the first model, we consider a single retentostat of 1L volume. The volumetric flux Q is 1 

mL/min with an inflow concentration cin of 1 mg C L
-1

. The initial concentrations of the 

substrate, bacteria, and grazers are 0 mg C L
-1

, 0.01 mg C L
-1

,
 
and 0.01 mg C L

-1
, 

respectively. The simulations are performed until steady-state is reached, which is about 50 

days.  

Table 3.1: Parameters values used in the simulations. 

Parameters Description Values Units Reference 

subc
 

Initial substrate concentration 0.00 [mg C L
-1

]  

bacc
 

Initial bacteria concentration 0.01 [mg C L
-1

]  

grazc
 

Initial grazer concentration 0.01 [mg C L
-1

]  

subK
 

Half-velocity concentration of the 

substrate (Monod constant) 
0.1 [mg C L

-1
] 

(Owens and Legan, 

1987) 

max

bac
 

Maximum specific growth rate of the 

bacteria 
1×10

-4
 [s

-1
] 

(Reardon et al., 2002) 

inc
 

Substrate concentration in the inflow 1.0 [mg C L
-1

]  

k  Second-order grazing rate coefficient 1×10
-4

 
[L Mg C S

-

1
] 

 

bacY
 

Bacterial yield 0.3 
[mg C mg

-1
 

C
-1

] 

(Reardon et al., 2002) 

grazY
 

Grazer yield 0.2 
[mg C mg

-1
 

C
-1

] 

(Wright, 1988) 

dec

bac
 

First-order decay rate coefficient of 

bacteria 
1×10

-5
 [s

-1
] 

(Corapcioglu and 

Haridas, 1985) 
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dec

graz
 

First-order decay rate coefficient of 

grazers 
2×10

-6
 [s

-1
] 

(Wright, 1988) 

subr
 

Reaction rates of substrate utilization N/A 
[mg C L

-1
 

s
-1

] 

 

grazr
 

Reaction rates of grazing N/A 
[mg C L

-1
 

s
-1

] 

 

Specific parameters for the one-dimensional column simulation 

subD
 

Dispersion coefficient of the substrate 1×10
-8

 [m
2 
s

-1
]  

max

grazD
 

Diffusion coefficient of the grazers 1×10
-9

 [m
2 
s

-1
] 

(Murray and Jackson, 

1992) 

grazDno

bacc
 

Bacteria concentration at which grazer 

diffusion becomes zero 
5 [mg C L

-1
] 

 

v Seepage velocity of 1-D column 1/86400 [m s
-1

]  

Specific parameters for the retentostat simulation 

V Reactor volume 1×10
-3

 [m
3
]  

Q Volumetric flow rate through the reactor 
1.67×10

-

8
 

[m
3 
s

-1
] 

 

 

The parameters of Monod and biomass-decay kinetics are unique for specific 

microorganisms and may depend on temperature, pH, and other environmental condition. 

Only little is known about the transport behavior of protozoa within the subsurface, as the 

subsurface microbial transport literature has largely focused on bacteria and viruses (Harvey 

et al., 1995). More importantly, quantitative investigations on the death of bacteria and 

grazers are scarce. Thus, the parameter values listed in Table 3.1 are based on previous 

studies, intelligent guesses, and have been selected after testing the models with various 

parameter combinations. We have chosen a value of the second-order grazing rate coefficient 

( k ) that gives a steady state bacterial concentration similar to observations found in natural 

aquifers. This value of k  is 1×10
-4

 
1s C mg L 
. 
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Figure 3.2: Time series of concentrations (A-C) and phase diagram (D) for the retentostat 

model. All concentrations are in mass carbon per volume of water; parameters according to 

Table 3.1. 

Figure 3.2 shows the simulated time series of all concentrations in the retentostat and a phase 

diagram. At the very beginning, the substrate concentration increases rapidly reaching its 

peak at about 9 hours. The presence of the substrate initially facilitates bacteria growth 

without being affected by the grazers too much. After the first few hours but within the first 

three days, the increasing substrate consumption by the bacteria leads to a decrease of the 

substrate concentration which slows down bacterial growth. From the third day on, the 

bacteria concentration decreases again. The increasing bacteria concentration leads to 

improved growth conditions for the grazers. With increasing grazer concentrations, the 

bacteria concentration decreases and thus the substrate concentration increases, which in turn 

could improve the growth conditions for the bacteria. With the parameters chosen, the 
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concentrations exponentially approach their steady-state values predicted by Eqs. (3.7-3.9) 

without apparent oscillations about the asymptotic values. Using different parameter 

combinations, approaching steady-state may be subject to dampened oscillations. 

As discussed above, the steady-state bacteria concentration 

bacc  depends solely on 

parameters related to grazing. This is in contrast to the concepts put forward by Wright, 

(1988) and Billen et al., (1980), who assumed that the steady-state bacterial concentration 

primarily depends on the ratio of the substrate input to the grazing rate. Our model analysis 

reveals that the bacteria concentration does not depend on the inflow concentration cin. At 

steady-state, the bacteria act like a catalyst, transferring organic carbon from the dissolved 

fraction to higher trophic levels in a linear heterotrophic food chain (Azam et al., 1983; 

Mittal and Rockne, 2012; Wright, 1988). Increasing the substrate input increases the steady-

state grazer concentration sustained by the system. 

The stability analysis according to Eqs. (3.10-3.15) yields two complex eigenvalues, λ1,2 = (-

4.81×10
-5

 ± 4.57×10
-5

i) s
-1

, and one real eigenvalue, λ3 = -1.59×10
-6

 s
-1

. All real components 

are negative, confirming a stable steady-state of non-zero concentrations that is approached 

by the system. The oscillatory components of perturbations about the steady-state decay 

fairly quickly with a half-life of 4 hours, which is much shorter than the corresponding time 

period of oscillations of 1 day and 14 hours. The quick decay of the oscillatory components 

explains why no oscillations are observable at late times in Figure 3.2. At these late times, 

the dominant component of deviations from the steady-state is the eigenvector with the real 

eigenvalue. Translating this eigenvalue to a half-life, results in about 5 days. In Figure 3.2, 

the exponential approach towards the steady-state solution is visible from about day 7 on. 

3.3.2 One-dimensional bio-reactive transport model 

The one-dimensional model is simulated for 100 days using the parameter values listed in 

Table 3.1. The reactive coefficients are identical to those of the retentostat model. The 

effective flow velocity of 1 meter per day is a typical groundwater value. The substrate 

dispersion coefficient of 1×10
-8

 m
2 

s
-1 

corresponds to a dispersivity of 1 mm, which is a 
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typical value for a uniform sand column. The maximum diffusion coefficient 
max

grazD  of the 

grazers of 1×10
-9

 m
2 

s
-1 

lies in the reported range of 1×10
-10 

to 3×10
-7 

m
2 

s
-1

 (Harvey et al., 

1995; Kiørboe et al., 2004; Murray and Jackson, 1992). Choosing the bacteria concentration 

grazDno

bacc  above which grazer diffusion stops to be 5 mg C L
-1

 is equivalent to a cross-diffusion 

coefficient of 2×10
-10

 m
2 
s

-1
 L mg

-1
 C. 

Figure 3.3 A-C shows the concentration distributions of all three components as a function of 

space and time. At the beginning of the simulation, an unretarded, mainly advective 

concentration front invades the domain. The presence of the substrate facilitates substantial 

bacteria growth followed by growth of the grazers. This leads to a combined bacteria-grazer 

peak traveling through the domain. The presence of grazers diminishes the bacteria 

population, which again leads to a reduction of the grazer concentration and increment of the 

substrate concentration. This behavior is repeated several times with decreasing oscillations. 

From day 50 onwards, the oscillations fluctuate in a more or less regular pattern about the 

steady-state concentration distribution, which is approached in the asymptotic limit. 
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Figure 3.3: Transient results of the 1-D bio-reactive transport model: Concentration of (A) 

substrate, (B) bacteria, (C) grazers as function of time and space; (D, E & F) comparison of 

analytical and numerical solution at late times. 

Figure 3.3 D-F show length profiles of the concentrations at the end of the simulation after 

100 days together with the analytical expressions for strictly advective-reactive transport of 

Eqs. (3.7, 3.9, 3.24). The simulated steady-state substrate concentration decreases with travel 

distance until it reaches its asymptotic minimum value of 0.0109 mg C L
-1

, which confirms 
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the analytical value of 0.0111 mg C L
-1

 according to Eq. (3.25). The steady-state substrate 

profile computed by numerical simulation agrees very well with the analytical expression of 

Eq. (3.24), even though the latter was derived for transport with zero dispersion. 

The numerically simulated results confirm that in the presence of grazers, the system 

approaches a steady-state in which bacterial growth and predation balance at constant 

bacteria concentrations, so that the higher turnover of substrate near the inlet supports higher 

grazer concentrations (0.807 mg C L
-1

 at x = 0 m). The values are monotonically decreasing 

with decreasing substrate concentrations. The analytical grazer model of Eq. (3.9) in 

conjunction with the substrate profile according to Eq. (3.24) again agree very well with the 

numerical steady-state solution, at least over the largest part of the domain. The analytical 

expression of Eq. (3.26) predicts that at xgraz = 0.50 m, the substrate concentration reaches 

such a small value that grazers cannot be sustained anymore. The numerical result shows a 

gradual decrease instead. This can be explained by grazer diffusion which is not accounted 

for in the analytical expression. Comparative simulations without grazer diffusion (not 

shown) confirm a much sharper drop of the grazer (and the bacteria) concentrations. 

The simulated steady-state bacteria concentration remains constant over the first 0.4 m at a 

value of almost exactly 0.1 mg C L
-1

 as predicted by the analytical expression of Eq. (3.7), 

which solely depends on the presence and the parameters of the grazers. While the analytical 

model predicts a sharp drop of the bacteria concentration at xgraz, the numerical profile is 

smoothed. Interestingly this smoothing is caused by diffusion of the grazers rather than that 

of the bacteria, and it is much less pronounced for smaller grazer diffusion coefficients. 

Overall, the independence of the steady-state bacteria concentration on the substrate 

concentration indicates top-down rather than bottom-up control. 

The dispersion coefficients of the grazers and the substrate do not largely impact the shape 

and length of the steady-state plume, the only substantial difference is whether the plateau 

bacteria concentration drops sharply (no diffusion/dispersion) or smoothly (large 

diffusion/dispersion). At late times, the chemotactic component of the grazer diffusion has no 

influence on the steady-state concentrations, because the steady-state gradient of the bacteria 
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concentration is zero anyway. However, all dispersion/diffusion terms influence the time 

needed until steady-state is reached. 

 

Figure 3.4: Stability analysis of the one-dimensional bio-reactive transport model, 

compound-specific contributions to the complex eigenvector related to the complex 

eigenvalue with the largest real component. These contributions define the slowest decaying 

oscillatory deviations from the steady-state solution. 
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The overall good agreement between the analytical and numerical expressions for steady-

state concentration distributions simplifies the analysis of scenarios by just considering the 

analytical expressions. For instance, if the injected substrate concentration is increased, the 

late-time bacteria concentration according to Eq. (3.7) is not affected, but the length xgraz over 

which substantial bacterial biomass can be found will be increased according to Eq. (3.26). 

The extra input of carbon will lead to a steady-state concentration profile of the substrate 

according to Eq. (3.24), starting with almost the same spatial gradient and achieving the same 

asymptotic substrate-concentration value of Eq. (3.25). In qualitative terms, because the 

bacterial concentration is limited by predation, only a percentage of substrate will be 

consumed near the inlet. The remaining concentrations will be transported further 

downstream and thus increase the length over which bacteria and grazers can be found. 

The linearized stability analysis about the steady-state solution reveals that all real 

components of eigenvectors are negative, confirming a stable fix point approached by the 

system. Figure 3.3 A-C illustrate that initially strong oscillations of concentrations occur 

which are gradually dampened. The slowest decaying oscillation corresponds to the complex 

eigenvalue with the largest (i.e., the least negative) real component, which is λ = (-7.28×10
-7

 

± 1.33×10
-5

i) s
-1

. The real component of this eigenvalue indicates a half-life t1/2,i of the 

oscillatory fluctuations about the steady-state solution of approximately 11 days, whereas the 

imaginary component indicates a time period of the oscillations of 5 days and 11 hours. 

Figure 3.4 shows the corresponding compound-specific contributions to the complex 

eigenvector. These contributions define the slowest decaying oscillatory deviations from the 

steady-state solution. The profiles actually resemble the waves of concentration fluctuations 

about steady-state moving slowly in the upstream direction towards the end of the 

simulations. 

We repeated the stability analysis for one-dimensional bio-reactive transport without grazer 

diffusion. Under these conditions, the oscillations of concentrations persist over a much 

longer time, and simulation times had to be increased at least tenfold to achieve quasi steady-

state. However, the steady-state, now resembling the analytical expressions even better, was 

reached nonetheless. This behavior was also reflected by the linearized stability analysis 

about the steady-state solution. All real components of the eigenvalues were negative, and 



- Microbial Dynamics in Natural Aquifers - 

 

 

Ph. D. Thesis, Bajracharya  53 

the complex eigenvalue with the largest real component indicated a half-life of the 

oscillations about ten times larger than in the reference case, whereas the frequency and 

eigenvector patterns were rather similar. These findings can be explained by grazer diffusion 

smoothing sharp gradients of the grazer concentration which dampens the oscillations of all 

components by feedbacks between the different trophic levels. 

3.4 Conclusions 

In this study, we have presented a one-dimensional bio-reactive transport model that 

accounts for substrate-bacteria-grazer interactions using parameters accumulated in a 

literature survey. One of the key results of this study pertains to the steady-state 

concentration distribution of the bacteria. The bacterial concentration was found to remain 

constant throughout a certain length of the model domain while the steady-state 

concentration of the grazers, and particularly the length over which bacteria and grazers can 

be found, are positively linked to the substrate inflow. While the inflowing substrate will be 

consumed by the bacteria, the resulting growth of the bacteria population will eventually be 

balanced by higher concentration of the grazers. After a time period of oscillatory 

concentrations, the duration of which is strongly influenced by substrate and grazer diffusion, 

the ecological community successfully achieves a steady-state with spatially uniform bacteria 

concentrations. This implies that grazing is a potential explanation for the “maximum 

biomass” used in reactive transport models, provided that there is enough substrate to sustain 

bacteria and grazers. Our model results conclude that groundwater ecosystems may rather be 

top-down than bottom-up controlled. Previous studies also elucidated that grazing exerts a 

major control on bacterial biomass in oligotrophic ecosystems (Foulquier et al., 2011). 

Further studies, in particular experiments, are required in order to confirm our findings. 

Transport in porous media, and even more so microbial activity, are affected by various 

environmental factors such as temperature, chemical environment, heterogeneity, properties 

of cell surfaces, cell motility, size and shape, organism type, and growth phase, among others 

(Tufenkji, 2007). For some of these components, model expressions exist that may be added 
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to our model in future studies for a more in-depth view of the dynamic interactions. In the 

present study, we have presented a simple model in order to understand the elementary 

functional capacities of a steady-state system and identify its principal controls, without 

claiming completeness of the system description. Moreover, new methods are needed to 

improve our capability of measuring microbial activity and interactions. A need also exists 

for careful observations of long timespan experiments of microbial processes in selected 

ecosystems in order to assess their quasi steady-state behavior. 
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4. Anaerobic degradation of particulate organic 

matter: a bioenergetic approach 

4.1 Introduction 

To survive, cells need to extract useable energy from their environment. In many subsurface 

systems, the availability of energy substrates is limited and therefore exert a strong control on 

the growth and activity of the resident microbial populations. Relatively little research has 

focused on the allocation of catabolic energy within cells and across different microbial 

groups in energy-limited environments, such as oligotrophic aquifers or deep-sea sediments 

(Morita, 1988). In these environments, optimizing catabolic energy use may be critical to 

microbial survival by suppressing energy spilling reactions (i.e., wasting) and catabolic 

energy is directed towards anabolic processes (i.e., growth, maintenance, and enzyme 

production) (Russell and Cook, 1995).  

In bioenergetics, catabolic energy yields are calculated without a detailed representation of 

the biochemical reaction pathways (Demirel and Sandler, 2002).  A number of studies have 

investigated the relationship between catabolic Gibbs energy and microbial growth yields 

(Roden and Jin, 2011; VanBriesen, 2002). However, growth yields have experimentally been 

obtained in the laboratory mostly under conditions that favor rapid growth and high 

metabolic rates (Hoehler and Jørgensen, 2013). Reported empirical relationships between 

growth yields and Gibbs energy tend to work well for higher-energy yielding catabolic 

reactions (e.g., aerobic respiration and denitrification), while considerable deviations 

between predicted and observed growth yields are found for lower-energy yielding pathways 

(e.g., sulfate respiration and methanogenesis) (Roden and Jin, 2011). Consequently, the 

applicability of the existing relationships to natural energy-limited environments remains an 

open question.  



- Microbial Dynamics in Natural Aquifers - 

 

56  Ph. D. Thesis, Bajracharya 

In contrast to most laboratory culture studies, microbial growth in natural, oligotrophic 

aquifers is slow. For example, Phelps et al. (1994) report bacterial doubling times of decades 

to centuries for an ultra-oligotrophic aquifer. In these environments, one expects 

microorganisms to devote a majority their catabolic energy production to non-growth 

functions, including cellular maintenance processes. The maintenance energy (ME) demand 

is the minimum rate of catabolic energy production needed to ensure survival of the cell 

(Hoehler, 2004). It includes processes such as DNA repair and osmoregulation. 

Quantification of ME requirements is a controversial topic, with values varying significantly 

depending on environmental conditions and measurement methods (Hoehler, 2004; Morita, 

1988; Van Bodegom, 2007). Very few studies have addressed the allocation of energy in 

microbial communities inhabiting oligotrophic systems (Morita, 1988; Van Walsum and 

Lynd, 1998). 

An additional, often over-looked, energy sink in the microbial energy budget is the synthesis 

and exudation of extracellular hydrolytic enzymes (HE) that initiate the breakdown of 

macromolecular particulate organic matter (POM). In many subsurface environments, POM 

is the primary source of energy substrates sustaining microbial communities. We may thus 

expect subsurface chemoorganotrophic microorganisms to invest a significant portion of their 

catabolic energy production in the release of HE into their surroundings. Given that POM 

hydrolysis controls the rate at which direct energy substrates are made available to 

microorganisms, HE production represents a key process in the subsurface carbon cycle 

(Wilson, 2011). 

The Gibbs energy gain from catabolism has previously been invoked as a regulating factor in 

the transition of microbial cells from the active to dormant state, and vice versa (Stolpovsky 

et al., 2011). If the total ME demand of a microbial population exceeds the energy that can be 

extracted from the environment, active cells respond by entering a reversible state of low 

metabolic activity and, hence, reduced cellular ME. Dormant cells resuscitate when the 

potential catabolic energy production under given environmental conditions exceeds the total 

ME requirement. Thus, under changing environmental conditions, we can expect 

simultaneous adjustments of new biomass growth, HE production, and the proportions of 

active and dormant states (Morita, 1988).  



- Microbial Dynamics in Natural Aquifers - 

 

 

Ph. D. Thesis, Bajracharya  57 

Van Walsum and Lynd (1998) proposed a model in which cellulolytic fermentative 

microorganisms distribute their limited supply of adenosine triphosphate (ATP) between 

biomass growth and the production of hydrolytic enzymes. The model, however, does not 

allow cells to respond to energy limitation by going dormant, nor the rationale for different 

cellulose conversion factors, specific enzymes activities, or the Gibbs’ energy generated per 

mole of glucose are made very clear. Payn et al. (2014) combined thermodynamics and 

kinetics to model aquatic microbial metabolism, taking into account maintenance 

requirements and biomass growth, but not HE production and the alternation between active 

and dormant states. Resat et al. (2012) presented a comprehensive kinetic model based on the 

concept of optimum cellular resource allocation. While this model includes enzyme 

production, biomass growth, and dormancy, it requires assigning a large set of adjustable, 

often poorly constrained and site-specific, parameter values.  

In the present study, we build further on the concept that in energy-limited environments the 

activity and population dynamics of chemoorganotrophic communities is largely regulated by 

the optimization of catabolic energy use. The proposed bioenergetic approach is applied to 

the degradation of cellulose, a major constituent of organic detritus derived from terrestrial 

plants. Microorganisms are known to secrete up to 50% of their protein production as 

hydrolytic enzymes to degrade cellulose (Wilson, 2011). The model explicitly represents the 

release of HE in the catabolic energy balance of microorganisms. The abundance of HE 

controls the rate at which monomers are produced outside the cells. All other biochemical 

processes, taking place at the surface or inside the cells, are included in the ME requirement 

of the organisms. The model further represents dormancy and resuscitation to the active state 

as adaptive responses of microorganisms to fluctuations in the catabolic energy supply 

(Figure 4.1).   

To illustrate the model dynamics, we consider a community consisting of two inter-

dependent functional groups: cellulolytic fermenting bacteria (CFB) and strictly anaerobic 

sulfate reducing bacteria (SRB) (Figure 4.2). The latter are representative of respiratory 

microorganisms typically found in deeper subsurface with depleted highly energetic terminal 
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electron acceptors (TEAs), such as oxygen and nitrate, have been exhausted. As a general 

modeling framework, the catabolic energy optimization approach developed in this paper can 

be extended to more complex, energy-limited microbial communities by the incorporation of 

additional functional groups. 

4.2 Model overview and governing equations 

In natural environments, microbial communities typically comprise both active and dormant 

cells (Stolpovsky et al., 2011). Depending on the environmental conditions, the fraction of 

dormant biomass ranges from 20 to 80%, with several studies showing up to 95% of soil 

microorganisms present in the inactive state (Jones and Lennon, 2010; Lennon and Jones, 

2011). Only active microorganisms are capable of growth, while only a subset of these 

microorganisms release HE that hydrolyze POM into monomers that can be taken up and 

used as electron donors by microorganisms (Wilson, 2011). Hydrolysis is usually considered 

as the rate limiting step in degradation of complex POM (Eastman and Ferguson, 1981; 

Rivers and Emert, 1988; Tiehm et al., 1997). The corresponding model conceptualization is 

illustrated in the Figure 4.1. 

4.2.1 POM hydrolysis 

We consider a subsurface environment where the degradation of POM is continuously 

balanced by the re-supply of hydrolyzable POM. Hence, in what follows, we assign a 

constant POM concentration which eliminates the need for a separate conservation equation 

for POM. The HE that hydrolyze POM can be free floating or attach to the external cell 

surface (Wilson, 2008). We assume that binding of HE to POM obeys a Langmuir adsorption 

isotherm. If, in addition, we assume that the hydrolysis rate scales linearly with the 

concentration of the enzyme-POC complexes (Vavilin et al., 2008), the extracellular 

hydrolysis rate 𝑟ℎ𝑦𝑑  [mol-C/L/d] (molar carbon per day) follows the classical Michaelis-

Menten (or Monod) rate law:  

𝑟ℎ𝑦𝑑 = 𝑟ℎ𝑦𝑑
𝑚𝑎𝑥.

[𝐻𝐸]

[𝐻𝐸]+ 𝐾𝐻𝐸
        4.1 
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where, 𝑟ℎ𝑦𝑑
𝑚𝑎𝑥 [mol-C/L/d] is the maximum hydrolysis rate, [𝐻𝐸] [mol-C/L] (Molar 

concentration) denotes the extracellular hydrolytic enzyme concentration, and 𝐾𝐻𝐸 [mol-C/L] 

is the half-saturation constant for POM hydrolysis. 𝑟ℎ𝑦𝑑
𝑚𝑎𝑥could be expressed as the product of 

the concentration of bioavailable POM and a maximum specific hydrolysis rate, but the latter 

two quantities are poorly constrained variables (see chapter 4.3.2 for detail), so that it makes 

no sense to separate the two factors making up 𝑟ℎ𝑦𝑑
𝑚𝑎𝑥. 

 

Figure 4.1:  Schematic diagram of the energy and carbon flow in a POM fermenter. The 

circle represents the biomass; ellipses represent organic matter; and rectangles represent 

the investment or source of energy. 
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4.2.2 Respiration 

Monomers, produced by extracellular hydrolysis and fermentation, are utilized by active cells 

as direct energy substrates. In the following, we consider the respiration of monomers. The 

rate of respiration 𝑟𝑟𝑒𝑠𝑝 [mol-C/L] is assumed to follow the Monod rate law commonly used 

to describe substrate utilization by microbial cells: 

𝑟𝑟𝑒𝑠𝑝 = µ𝑟𝑒𝑠𝑝
𝑚𝑎𝑥 · 𝑋𝑎𝑐 ·  

[𝑆]

[𝑆]+𝐾𝑆
,        4.2 

in which µ𝑟𝑒𝑠𝑝
𝑚𝑎𝑥 [d

-1
] is the maximum specific respiration rate, 𝑋𝑎𝑐 [mol-C/L] the active 

biomass concentration, [S] [mol-C/L] the monomer concentration, and 𝐾𝑆 [mol-C/L] the half-

saturation constant. Then, the change rate of the monomer concentration is the difference 

between the hydrolysis and respiration rates: 

𝑑[𝑆]

𝑑𝑡
=  𝑟ℎ𝑦𝑑 − 𝑟𝑟𝑒𝑠𝑝.         4.3 

4.2.3 Energy balance of active cells 

Energy gained from the respiration of the external monomers is used for cellular 

maintenance, production of HE, and biomass growth. If the availability of external 

monomers becomes severely limited, cellular compounds can serve as additional energy 

substrates. For simplicity, we lump the decrease in biomass that accompanies cell death and 

the utilization of non-essential energy resources within the cell (i.e., endogenous respiration). 

The energy balance of the active biomass is then expressed as: 

−𝑟𝑟𝑒𝑠𝑝 ∙ ∆𝐺𝑟𝑒𝑠𝑝 = 𝑋𝑎𝑐 ∙ 𝑀𝐸𝑎𝑐 + 𝑟𝐻𝐸 ∙ ∆𝐺𝐻𝐸 + 𝑟𝑔𝑟 ∙ ∆𝐺𝑔𝑟 + 𝑟𝑑𝑒𝑐
𝑎𝑐 ∙ ∆𝐺𝑑𝑒𝑐

𝑎𝑐 ,  4.4 

where ∆𝐺𝑟𝑒𝑠𝑝 < 0 [kJ/mol-C] is the Gibbs energy of the respiration reaction, 𝑀𝐸𝑎𝑐 > 0 

[kJ/mol-C] denotes the maintenance energy rate for active cells, ∆𝐺𝐻𝐸 > 0 [kJ/mol-C] is the 

Gibbs energy of reaction for HE production, ∆𝐺𝑔𝑟> 0 [kJ/mol-C] is the Gibbs energy of 

biomass synthesis, ∆𝐺𝑑𝑒𝑐
𝑎𝑐  < 0 [kJ/mol-C] denotes the Gibbs energy released during oxidation 

of cellular components, 𝑟𝑔𝑟 [mol-C/L/d] is the biomass growth rate, 𝑟𝐻𝐸 [mol-C/L/d] is the 
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HE production rate, and 𝑟𝑑𝑒𝑐
𝑎𝑐  [mol-C/L/d] is the decay rate for active biomass. All Gibbs 

energies of reactions in Eq. (4.4) can be calculated using:  

𝛥𝐺𝑟 =  𝛥𝐺0 + 𝑅𝑇 ln 𝑄        4.5 

where 𝛥𝐺𝑟  and 𝛥𝐺0 [kJ/mol-C] are the actual and standard Gibbs energies of reaction, 

respectively; T [K] is the absolute temperature, R [kJ/K/mol-C] denotes the universal gas 

constant, and Q the reaction quotient, that is, the ratio of the product concentrations over the 

reactant concentrations. The 𝛥𝐺𝑟 is computed at every time step taking into account the 

change in reaction quotient.  

In the model simulations, the specific maintenance-energy demand (𝑀𝐸𝑎𝑐) for any given 

microbial group is kept constant. In addition, we assume that, when allocating catabolic 

energy, cells give priority to fulfilling their maintenance requirements before investing into 

growth or HE production. If the catabolic energy production is insufficient to supply the 

maintenance of the entire active biomass, there is neither cell growth nor HE production. 

Furthermore, biomass decay (cell death plus endogenous respiration) is assumed to make up 

for the energy shortage. This is expressed mathematically as: 

If    −𝑟𝑟𝑒𝑠𝑝∆𝐺𝑟𝑒𝑠𝑝 < 𝑋𝑎𝑐 𝑀𝐸𝑎𝑐  

then, 

𝑟𝐻𝐸 = 0;   𝑟𝑔𝑟  = 0;  

𝑟𝑑𝑒𝑐
𝑎𝑐 =  −

𝑋𝑎𝑐 ∙ 𝑀𝐸𝑎𝑐+𝑟𝑟𝑒𝑠𝑝∆𝐺𝑟𝑒𝑠𝑝

∆𝐺𝑑𝑒𝑐
𝑎𝑐 .       4.6 

Conversely, if the catabolic energy supply is greater than the maintenance requirement of the 

active cell population, excess energy is available for growth and HE production. The release 

of exoenzymes, including HE, has been shown to respond to changes in environmental 

conditions, such as temperature, pH, moisture content and dissolved-oxygen concentration 

(Hall et al., 2014; Sinsabaugh and Follstad Shah, 2012; Sinsabaugh et al., 2008). 

Microorganisms most likely also adjust the production of exoenzymes to the availability of 
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the targeted external resources, although the underlying mechanisms remain poorly 

understood (Lynd et al., 2002; Moorhead et al., 2013; Sinsabaugh and Follstad Shah, 2012). 

Overall, we expect the biomass-HE-POM system to strive for a balance between maximizing 

access to the resource and minimizing the wasting of exoenzymes (Wang et al., 2013). 

If, for a given availability of POM, the HE concentration is too low, more excess catabolic 

energy production is diverted into HE production. If the HE concentration is too high, HE 

production is inhibited and more of the excess energy is invested in biomass growth. 

Mathematically, this behavior is captured by introducing an inhibition coefficient, KHE [mol-

C/L/d] that regulates HE production. Together with the assumption that, in case of excess 

catabolic energy production, there is no biomass decay, we obtain: 

If  −𝑟𝑟𝑒𝑠𝑝∆𝐺𝑟𝑒𝑠𝑝 > 𝑋𝑎𝑐 ∙ 𝑀𝐸𝑎𝑐  

then, 

𝑟𝑑𝑒𝑐
𝑎𝑐 = 0; 

𝑟𝐻𝐸∆𝐺𝐻𝐸

𝑟𝐻𝐸 ∆𝐺𝐻𝐸+ 𝑟𝑔𝑟 ∆𝐺𝑔𝑟
=  

𝐾𝐻𝐸

[𝐻𝐸]+𝐾𝐻𝐸
;       4.7 

𝑟𝑔𝑟 =  
−𝑟𝑟𝑒𝑠𝑝∆𝐺𝑟𝑒𝑠𝑝− 𝑋𝑎𝑐𝑀𝐸𝑎𝑐 

∆𝐺𝑔𝑟
∙

[𝐻𝐸]

[𝐻𝐸]+𝐾𝐻𝐸
;      4.8 

𝑟𝐻𝐸 =  
−𝑟𝑟𝑒𝑠𝑝∆𝐺𝑟𝑒𝑠𝑝− 𝑋𝑎𝑐 𝑀𝐸𝑎𝑐 

∆𝐺𝐻𝐸
∙

𝐾𝐻𝐸

[𝐻𝐸]+𝐾𝐻𝐸
.      4.9 

4.2.4 Dormancy 

An important strategy of microorganisms to survive unfavorable conditions is to switch to a 

dormant state (Stolpovsky et al., 2011). Dormancy creates a microbial seed bank ready to be 

resuscitated upon the return of more favorable conditions (Lennon and Jones, 2011). In our 

model, the switching between active and dormant states is controlled by the relative 

magnitudes of the catabolic energy production and maintenance requirements of the 

microbial population. When the maintenance energy rate is greater than the catabolic energy 

production, active cells enter the dormant state. In the opposite case, dormant cells 
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resuscitate. In the model, this behavior is represented through the following dimensionless 

switch function: 

𝜃 = 0.5 ∙ [𝑡𝑎𝑛ℎ (
−𝑟𝑟𝑒𝑠𝑝∆𝐺𝑟𝑒𝑠𝑝

𝑋𝑎𝑐𝑀𝐸𝑎𝑐
− 1) + 1],      4.10 

with values ranging between 0 and 1. The deactivation rate 𝑟𝑑𝑒𝑎𝑐 [mol-C/L/d] is then 

calculated as: 

𝑟𝑑𝑒𝑎𝑐 = 𝑘𝑑𝑒𝑎𝑐 ∙ (1 − 𝜃) ∙ 𝑋𝑎𝑐,        4.11 

in which 𝑘𝑑𝑒𝑎𝑐 [1/d] is the deactivation rate coefficient. The activation rate 𝑟𝑎𝑐 [mol-C/L/d] is 

obtained from: 

𝑟𝑎𝑐 = 𝑘𝑎𝑐 ∙ 𝜃 · 𝑋𝑖𝑛,         4.12 

where 𝑘𝑎𝑐 [1/d] is the activation rate coefficient, and 𝑋𝑖𝑛 [mol-C/L/d] is the concentration of 

the inactive biomass.  

Eq. (4.10) yields θ-values approaching zero when the catabolic energy production 

(−𝑟𝑟𝑒𝑠𝑝∆𝐺𝑟𝑒𝑠𝑝) is small compared to the maintenance energy requirement of the active 

microbial population (𝑋𝑎𝑐𝑀𝐸𝑎𝑐). In contrast, when the catabolic energy gain largely exceeds 

the maintenance requirement, θ is close to 1, and inactive cells transform into active cells. 

The use of the switch function 𝜃 to simulate the dynamic response of the partitioning 

between active and dormant cells is similar to that proposed by Stolpovsky et al. (2011), who 

analyzed data from laboratory experiments in which microorganisms were exposed to a 

discontinuous supply of substrate and reactivated after periods of starvation. 

4.2.5 Energy balance of dormant cells 

The dormant microorganisms cannot use external monomeric substrates, grow, or produce 

HE. However, they still need to invest some energy to maintain their molecular and cellular 

integrity, albeit at much lower rates than active cells. Dormant cells use endogenous 
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compounds, such as glycogen or hydroxyalkanoates, as energy substrates, resulting in a 

reduction of biomass (Lennon and Jones, 2011). The corresponding energy balance is: 

𝑋𝑖𝑛 ∙ 𝑀𝐸𝑖𝑛 + 𝑟𝑑𝑒𝑐
𝑖𝑛 ∙ ∆𝐺𝑑𝑒𝑐

𝑖𝑛 = 0,         4.13 

resulting in: 

𝑟𝑑𝑒𝑐
𝑖𝑛 =  

𝑋𝑖𝑛∙𝑀𝐸𝑖𝑛

−∆𝐺𝑑𝑒𝑐
𝑖𝑛 ,         4.14 

where 𝑀𝐸𝑖𝑛 [kJ/mol-C/d] is the maintenance energy requirement of the inactive biomass, 

∆𝐺𝑑𝑒𝑐
𝑖𝑛  [kJ/mol-C] is the free energy released by the degradation of cellular constituents, and 

𝑟𝑑𝑒𝑐
𝑖𝑛  is the decay rate of inactive biomass [mol-C/L/d]. Note that, as for the active cells, we 

use the term decay to include all processes leading to a reduction in the microbial biomass, 

that is, endogenous respiration, and cell lysis.  

4.2.6 Conservation equations for biomass and hydrolytic enzymes 

The conservation equations for biomasses of the active and inactive cells, Xac and Xin, and the 

concentration of HE read as: 

𝑑𝑋𝑎𝑐

𝑑𝑡
= 𝑟𝑔𝑟 + 𝑟𝑎𝑐 − 𝑟𝑑𝑒𝑎𝑐 − 𝑟𝑑𝑒𝑐

𝑎𝑐 ;       4.15 

𝑑𝑋𝑖𝑛

𝑑𝑡
= 𝑟𝑑𝑒𝑎𝑐 − 𝑟𝑎𝑐 − 𝑟𝑑𝑒𝑐

𝑖𝑛 ;        4.16 

𝑑[𝐻𝐸]

𝑑𝑡
=  𝑟𝐻𝐸 −  𝑘𝑑𝑒𝑐

𝐻𝐸 ∙ [𝐻𝐸],        4.17 

where 𝑘𝑑𝑒𝑐
𝐻𝐸  [d

-1
] is the rate coefficient for first-order decay of HE. Spatial distributions of the 

biomasses and HE concentration can, in principle, be computed by coupling Eqs (4.15-4.17) 

to transport equations, while the response to temporal changes in POM availability could be 

simulated by adding a conservation equation that accounts for the sources and sinks of POM.  
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4.3 Anaerobic cellulose degradation 

4.3.1 Reaction system  

Cellulose is a major refractory compound in terrestrial plant detritus (Béguin and Aubert, 

1994; Leschine, 1995; Lynd et al., 2002; Pérez et al., 2002). It is used here as a representative 

for POM in soil and groundwater environments. Microorganisms use a variety of hydrolytic 

enzymes to degrade cellulose via a number different pathways, which have yet to be 

completely characterized (Wilson, 2009, 2011). In anaerobic environments, cellulolytic 

fermentative microorganisms are able to obtain energy for growth from the degradation of 

cellulose (Jurtshuk, 1996). Fermentation of glucose, resulting from the hydrolysis of 

cellulose, produces CO2, H2, and different combinations of intermediate products such as 

ethanol, formate, acetate, lactate, and succinate (Leschine, 1995; Lovley and Chapelle, 1995; 

Christensen et al., 2000). These fermentation products may serve as electron donors to other 

anaerobic microorganisms. Microbial communities that include cellulolytic fermenters 

operating in concert with heterotrophic or methanogenic microorganisms can therefore 

completely oxidize cellulose to CO2. 

The model microbial community considered here consists of two interacting functional 

groups: cellulolytic fermenting bacteria (CFB) and sulfate-reducing bacteria (SRB). We 

assume that only the CFB are able to hydrolyze cellulose, while the SRB depend on the 

metabolites produced by CFB as their energy source (Wilson, 2008; Wrighton et al., 2014). 

Synergistic communities of fermenters and SRB have been shown to completely degrade 

cellulose to carbon dioxide with the production of sulfide, under strictly anaerobic conditions 

(Leschine, 1995). In the model application, sulfate is used as representative of the terminal 

electron acceptors (TEAs) found in suboxic and anoxic subsurface sediments. The same 

approach can be extended to microbial groups using alternative TEAs, such as, ferric iron 

mineral phases, CO2, or organic electron acceptors.  

In the model, the dynamics of cellulose degradation by the CFB-SRB community are 

modulated by the availability of the energy substrates (Eq. 4.2). Hence, we implicitly assume 
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that the concentration of the TEA or those of essential nutrients (N, P, Fe, micronutrients), as 

well as other physical-chemical conditions (e.g., pH and temperature) are not limiting the 

microbial activity. Additional limiting factors can be incorporated in the model by expanding 

the kinetic expressions presented in chapter 4.2. For example, the dependence of the 

respiration rate on the TEA abundance can be accounted for by multiplying the right-hand 

side of Eq.(4.2) by a Monod-type term when calculating the concentration of sulfate (Pallud 

and Van Cappellen, 2006). 

The CFB perform two key tasks: the release of extracellular enzymes, facilitating the 

hydrolysis of cellulose to glucose, and the fermentation of glucose (Figure 4.2). The 

mathematical formulations describing the activity of CFB are identical to those developed in 

chapter 4.2 (Eqs. 4.2-4.17), with glucose as the monomer and replacing the rate of respiration 

by the rate of fermentation of glucose by the active CFB. In addition, we assume that glucose 

fermentation produces acetate (CH3COO
-
) and H2, intermediates commonly observed during 

the anaerobic degradation of natural organic matter (Novelli et al., 1988). Acetate is 

considered to be one of the main carbon and energy substrates fueling respiration in 

anaerobic sediments (Roden, 2008). Many organic compounds, such as ethanol, lactate, 

propionate and butyrate, produced as by-products of fermentation processes usually 

transform into acetate and H2 before complete oxidation to CO2 (Leschine, 1995; Lovley and 

Chapelle, 1995). Hence, the following simplified reaction is used to represent glucose 

fermentation:  

C6H12O6 + 4H2O  2CH3COO
-
 + 2HCO3

-
 +4H

+
 + 4H2(aq),   4.18 

Natural populations of SRB utilize H2 and a variety of small organic compounds as energy 

substrates (Plugge et al., 2011). In the model, the latter are collectively represented by 

acetate. The corresponding reactions are then: 

CH3COO
- 
+ SO4

2-
  2HCO3

-
 + HS

-
,       4.19 

4H2 (aq) + H
+
 + SO4

2-
  HS

- 
+ 4H2O,      4.20 
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Sulfide, produced by the reduction of sulfate, is assumed to react rapidly with iron containing 

mineral phases to form insoluble ferrous iron sulfides (Rickard and Luther, 1997), hence 

avoiding the accumulation of free sulfide to toxic levels (Reis et al., 1992). Similarly, we 

assume that H2 concentrations remain low and constant because H2 produced by fermentation 

is transferred directly to the H2 consuming SRB (Novelli et al., 1988). Consequently, losses 

of H2S and H2 to the gas phase are considered to be negligible. By removing H2 and acetate, 

the SRB help maintain thermodynamically favorable conditions for the CFB.  

According to the stoichiometry of the glucose fermentation reaction (Eq. 4.18), 2/3 of the 

carbon from glucose goes to acetate and 1/3 to carbon dioxide, while 2/3 moles of H2 are 

formed per mole glucose carbon consumed. The conservation equations for acetate and H2 

can then be written as:  

𝑑[𝐴𝑐]

𝑑𝑡
=  

2

3
𝑟𝑓𝑒𝑟𝑚 − 𝑟𝐴𝑐,         4.21 

𝑑[𝐻]

𝑑𝑡
=  

2

3
𝑟𝑓𝑒𝑟𝑚 − 𝑟𝐻,         4.22 

where [𝐴𝑐] [mol-C/L/d] and [𝐻] [mol-C/L] are the concentrations of acetate and H2, 𝑟𝑓𝑒𝑟𝑚 

[M/d] is the rate of fermentation (which replaces the respiration rate 𝑟𝑟𝑒𝑠𝑝 in Eq. 4.2), and 𝑟𝐴𝑐 

[mol-C/L/d] and 𝑟𝐻 [mol/L/d] are the rates of acetate and H2 consumption, respectively. 

The rates of acetate and hydrogen consumption are calculated by using acetate and H2 as the 

substrates and the active SRB biomass in Eq. 4.2. Sulfate is assumed to be present in non-

limiting constant concentrations. The equations of chapter 4.2 are applied to the SRB with 

the only difference that the SRB do not produce HE. Thus, any catabolic energy in excess of 

the maintenance energy requirement can be invested to growth. 
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Figure 4.2: Community dynamics of cellulolytic fermenting microorganisms and sulfate-

reducing bacteria for complete cellulose degradation in an anaerobic environment. 

4.3.2 Parameter values 

The parameter values used in the simulations are given in Table 4.1. They are intended to be 

representative of oligotrophic subsurface environments, although for most of the parameters, 

variations can be expected from one site to another. Concentration units are expressed per 

unit of total volume of the porous medium, that is, adding the volumes solid and aqueous 

phases.  

A key parameter controlling the overall POM degradation dynamics is the maximum 

cellulose hydrolysis rate, 𝑟ℎ𝑦𝑑
𝑚𝑎𝑥. Previous studies report a wide range of hydrolysis rates 

depending on the source of cellulose, soil types, the specific microorganisms and hydrolytic 

enzymes etc. involved (Bezerra and Dias, 2004; Small et al., 2008). Rate coefficients of 

POM hydrolysis range widely between 0.2 and 2×10
-5

 per day depending on various 
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environmental conditions (Roden and Wetzel, 2002; Roden, 2008; Rotter et al., 2008). 

Additionally, POM concentration also varies widely (Carter et al., 2003; Figueiredo et al., 

2010; Handayani et al., 2010; Peter et al., 2012; Roden, 2008; Whitbread, 1995). Even 

though it is possible to accurately quantify POM concentrations, its bioavailable fraction 

remains uncertain (Morita, 1988). For example, the cellulose fraction in POM varies 

significantly about the average value of 26.7% (Wang et al., 2013). Due to the combined 

uncertainties of bioavailable POM and its maximum hydrolysis rate coefficients, we have 

introduced the maximum hydrolysis 𝑟ℎ𝑦𝑑
𝑚𝑎𝑥 which is identical to the turnover rate of carbon 

from POM to monomers. For this study, an average value is taken from various literature 

studies (Roden and Wetzel, 2002; Canfield et al. 2005; Roden, 2008; Rotter et al., 2008). The 

value of 10
-5 

mol-C/L for the half-saturation constant of cellulose hydrolysis, KHE, is largely 

arbitrary. As Resat et al. (2012) showed in their cellulose degradation simulations, the overall 

model outcomes are relatively insensitive to the chosen value of KHE, unless extreme values 

are chosen which also holds true in our simulation.  

Other sensitive model parameters include the maintenance energy requirements for active 

bacteria (MEac) and the Gibbs energies for biomass growth (∆𝐺𝑔𝑟) for the different microbial 

groups. The MEac-value sets the catabolic energy production threshold that needs to be 

exceeded to sustain biomass growth. This ME can vary over 5-6 orders of magnitude 

depending upon the environmental conditions (Hoehler, 2004). For the active SRB and CFB, 

we use the temperature-dependent empirical formula for anaerobic  microorganisms 

proposed by Tijhuis et al. (1993). As a typical groundwater temperature for Central Europe, 

we use 10°C. The dormant SRB and CFB are assigned the same value as that derived 

experimentally for an agricultural soil at 15°C (Anderson and Domsch, 1985). The Gibbs 

energy of dissipation (i.e. energy for growth) of the microorganisms is calculated by the 

empirical expression of Heijnen and Dijken (1992) whereby glucose and acetate are used as 

the carbon sources for the CFB and SRB, respectively.  

The initial concentrations are listed in Table 4.2. They were chosen based on concentration 

values found in natural aquifers, namely of hydrogen sulfide (Detmers et al., 2001); sulfate 
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(Lovley and Chapelle, 1995); acetate, glucose and hydrogen (Lovley and Chapelle, 1995; 

Lovley and Phillips, 1989; Novelli et al., 1988). Values of ∆𝐺𝑔𝑟 are obtained from the 

empirical expression of Heijnen and Dijken (1992) with glucose and acetate as carbon 

sources for the CFB and SRB, respectively. In the simulations shown below, the Gibbs 

energies of reaction are calculated at each time step by Eq. 4.5 to account for their 

concentration dependence. As simplifications we assume that the decay of dormant and 

active biomasses yield the same Gibbs energies, and apply the same activation and 

deactivation rate coefficients to the different bacterial groups. 

4.4 Simulation results and discussion 

4.4.1 Model simulation 

The system of ordinary differential equations using all concentrations as dynamic state 

variables was implemented as Matlab function and solved with the Matlab-internal solver 

ode15s.The simulation was run for 600 days until steady-state was reached. During the 

initial days of simulation, it can be observed that the system undergoes a sudden change in 

concentrations of electron-donors, hydrolytic enzymes, active and dormant bacteria (Figure 

4.3). This indicates that the initial concentrations used in the model simulations deviate from 

the steady-state approached by the system. Unless extreme initial conditions are considered, 

the system approaches the same steady-state concentrations regardless of the initial 

conditions. Figure 4.4 shows simulated time series of energy fluxes of the cellulolytic 

fermenting bacteria (CFB) and the sulfate-reducing bacteria (SRB) per unit carbon biomass, 

respectively. Energy generation and distribution are calculated as energy turnover per time 

per mol-C biomass. Figure 4.5 illustrates the allocation of energy in the form of a pie-chart. 

Figure 4.6 shows the time series of yield of mol-C biomass per joule gained.  
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Table 4.1: Parameter values used in the simulations 

Parameter Description Value Units Reference 

𝑟ℎ𝑦𝑑
𝑚𝑎𝑥 Maximum hydrolysis rate 1.12×10

-5
  [mol-C/L/d] Calculated based on Roden and Wetzel, 2002; 

Canfield et al. 2005; Roden, 2008; Rotter et 

al., 2008 

µ𝐴𝑐
𝑚𝑎𝑥 Maximum specific acetate utilization rate by 

sulfate-reducing bacteria 

29.28 [d
-1

] Calculated based on Scheibe et al. (2009) 

µ𝐻
𝑚𝑎𝑥 Maximum specific hydrogen  utilization rate 

by sulfate-reducing bacteria 

7.675 [d
-1

] (Khosrovi et al., 1971) 

µ𝑓𝑒𝑟𝑚
𝑚𝑎𝑥  Maximum specific fermentation rate 5.4 [d

-1
] Calculated based on Scheibe et al. (2009) 

𝑀𝐸𝑎𝑐,𝑆𝑅𝐵 Maintenance-energy requirement for active 

sulfate-reducing bacteria 

17.76  [kJ/mol-C 

biomass/d] 

(Tijhuis et al. 1993) 

 

𝑀𝐸𝑖𝑛,𝑆𝑅𝐵 Maintenance-energy requirement for inactive 

sulfate-reducing bacteria 

0.312   [kJ/mol-C 

biomass/d] 

(Anderson and Domsch 1985) 

𝑀𝐸𝑖𝑛,𝑓𝑒𝑟𝑚 Maintenance-energy requirement for inactive 

cellulolytic fermenters 

0.312   [kJ/mol-C 

biomass/d] 

(Anderson and Domsch 1985) 

𝑀𝐸𝑎𝑐,𝑓𝑒𝑟𝑚 Maintenance-energy requirement for active 

cellulolytic fermenters 

17.76 [kJ/mol-C 

biomass/d] 

(Tijhuis et al. 1993) 

∆𝐺𝑔𝑟,𝑆𝑅𝐵 Gibbs energy required to form sulfate-

reducing bacteria 

426 [kJ/mol-C biomass]  Calculated based on the empirical formula 

using acetate as the C-source (Heijnen and 

Dijken, 1992) 
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∆𝐺𝑑𝑒𝑐,𝑓𝑒𝑟𝑚
𝑎𝑐  Gibbs energy gained from decaying biomass 

of active fermenters 

67 [kJ/mol-C biomass] (Heijnen and Dijken, 1992) 

∆𝐺𝑑𝑒𝑐,𝑓𝑒𝑟𝑚
𝑖𝑛  Gibbs energy gained from decaying biomass 

of dormant fermenters 

67 [kJ/mol-C biomass] (Heijnen and Dijken, 1992) 

∆𝐺𝑑𝑒𝑐,𝑆𝑅𝐵
𝑎𝑐  Gibbs energy gained from decaying biomass 

of active sulfate-reducing bacteria 

67 [kJ/mol-C biomass] (Heijnen and Dijken, 1992) 

∆𝐺𝑑𝑒𝑐,𝑆𝑅𝐵
𝑖𝑛  Gibbs energy gained from decaying biomass 

of dormant sulfate-reducing bacteria 

67 [kJ/mol-C biomass] (Heijnen and Dijken, 1992) 

∆𝐺𝑔𝑟,𝑓𝑒𝑟𝑚 Gibbs energy required to form fermenters 211 [kJ/mol-C biomass] Calculated based on Heijnen and Dijken 

(1992) 

∆𝐺𝐻𝐸 Gibbs energy required to form hydrolytic 

enzymes 

50.16   [kJ/mol-C biomass] Assumed based on Karp (2009) 

𝑘𝑑𝑒𝑐
𝐻𝐸  Decay rate coefficient of hydrolytic enzymes 0.005 [d

-1
] Calculated based on Resat et al. (2012) 

𝐾𝐻𝐸 Michaelis-Menten/Monod constant for 

concentration of hydrolytic enzymes 

1×10
-5

 [mol-C/L] Back calculated 

𝐾𝐴𝑐 Michaelis-Menten/Monod constant for acetate 

in sulfate reduction 

2×10
-3

 [mol-C/L] (Roden, 2008) and reference there within 

𝐾𝐻 Michaelis-Menten/Monod constant for H2 in 

sulfate reduction 

1×10
-5

 [mol-C/L] (Dale et al., 2006) 

𝐾𝑆 Michaelis-Menten/Monod constant for 

glucose in fermentation 

1.33×10
-4

 [mol-C/L] (Kleman and Strohl, 1994) 

𝑘𝑑𝑒𝑎𝑐,𝑓𝑒𝑟𝑚 Deactivation rate coefficient of fermenters 1.2 [d
-1

] (Stolpovsky et al., 2011) 

𝑘𝑑𝑒𝑎𝑐,𝑆𝑅𝐵 Deactivation rate coefficient of sulfate-

reducing bacteria 

1.2 [d
-1

] (Stolpovsky et al., 2011) 

𝑘𝑎𝑐𝑡,𝑓𝑒𝑟𝑚 Activation rate coefficient of fermenters 1.2 [d
-1

] (Stolpovsky et al., 2011) 
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𝑘𝑎𝑐𝑡,𝑆𝑅𝐵 Activation rate coefficient of sulfate-reducing 

bacteria 

1.2 [d
-1

] (Stolpovsky et al., 2011) 
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Table 4.2: Initial concentration used in the simulation 

  

Description Value Units 

Acetate  1×10
-5

 [mol-C/L] 

Glucose 1×10
-7

 [mol-C/L] 

Hydrogen 1×10
-9

 [mol/L] 

Active cellulolytic fermenting bacteria 1×10
-6

 [mol-C/L] 

Dormant cellulolytic fermenting bacteria 1×10
-6

 [mol-C/L] 

Active sulfate reducer 1×10
-6

 [mol-C/L] 

Dormant sulfate reducer 1×10
-6

 [mol-C/L] 

Temperature 283.15 [K] 

Gibbs energy generated by reaction of hydrogen and sulfate at 10
o
C -75.02 [kJ/mol-C] 

Gibbs energy generated by reaction of acetate and sulfate at 10
o
C -84.79 [kJ/mol-C] 

Gibbs energy by fermentation of glucose into acetate and hydrogen at 10
o
C -39.22 [kJ/mol-C] 

Hydrogen sulfide 5.73×10
-6

 [mol/L] or [M] 

Bicarbonate 3.44×10
-3

 [mol/L] or [M] 

H
+
 1×10

-7
 [mol/L] or [M] 

Sulfate 4.68×10
-5

 [mol/L] or [M] 
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4.4.1.1 Initial lag and growth phase  

Initial glucose and acetate/hydrogen concentrations are too low to provide the CFB and SRB 

with sufficient energy for growth. Therefore, at the beginning of the simulation (0 – 2 days), the 

maintenance-energy requirement for both types of active bacteria is higher than the catabolic 

energy gained during either fermentation or sulfate reduction and no growth is observed (inset of 

Figure 4.4). Consequently, the CFB and SRB compensate for the energy gap by using 

endogenous reserves and the concentration of active biomass decreases while dormant biomass 

increases (Figure 4.3 C and D). The unfavorable initial conditions (0 – 2 days) also inhibit 

hydrolytic enzyme production, leading to a decrease in HE concentration due to decay. However, 

the concentration of hydrolytic enzymes is sufficient to induce immediate POM hydrolysis 

thereby resulting in a rapid increase in glucose concentration within days followed by an increase 

in the hydrogen and acetate concentrations, respectively (inset of Figure 4.3 A). The increased 

concentrations of all dissolved electron donors, result in an increased catabolic energy gain by 

both types of bacteria (Figure 4.4). After two days, the energy gained from the fermentation of 

glucose exceeds the maintenance-energy requirement of the CFB, which start growing rapidly 

and producing hydrolytic enzymes. The SRB take four days longer until growth begins (Figure 

4.6). Consequently, the dormant CFB and SRB decrease in the beginning since they start to 

resuscitate in response to the advantageous conditions.  

The same behavior can be observed in the energy turnover shown in Figure 4.4. The increased 

concentrations of all electron donors, results in the increased catabolic energy gain of both types 

of bacteria. Within 15 days, the energy gained from the fermentation of glucose far exceeds the 

maintenance-energy requirement of the CFB, which start growing rapidly. The SRB follow the 

same pattern for growth. The yield (molar carbon per unit joule) is very high during this period 

which last two and three weeks, respectively, from the first day of simulation.  A high fraction of 

energy is spent on HE production and growth during this period by CFB compared to the rest of 

the simulation period (inset of Figure 4.4). The intricate interplay between abundance and 

activity of the bacteria and solute concentrations leads to non-monotonic concentration time 
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series, as observed in a peak of dissolved electron donors and hydrolytic enzymes (Figure 4.3 A 

and B).  

 

 

Figure 4.3: Simulated time series of concentrations. A: electron-donors, B: hydrolytic enzymes, 

C: active bacteria, D: dormant bacteria. All concentrations are in mass carbon per volume 

except hydrogen which is in mass per unit volume (that is, moles). The inset figures in ‘A’ and 

‘C’ show the first 100 and 5 days of simulation respectively. Parameters are according to Table 

4.1 and Table 4.2. 
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Figure 4.4: Simulated energy generation and consumption per unit carbon in the biomass. The 

inset figure shows the first 100 days of simulation. For cellulolytic fermenting bacteria and 

sulfate-reducing bacteria; total energy generated by represented by TEferm and TESRB, energy 

consumed by growth is Gferm and GSRB and energy invest on extracellular hydrolytic enzymes is 

EHe for both figures. Maintenance energy for both cellulolytic fermenting bacteria and sulfate-

reducing bacteria are displayed as MEbac. Parameters are according to Table 4.1 and Table 4.2. 

4.4.1.2 Approach of steady-state 

Within three weeks, glucose and hydrogen concentrations start to decrease because they are used 

by the larger bacterial population while acetate concentration starts decreasing after five weeks. 
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The difference between the total energy (TE) and maintenance energy start to decline with 

increased bacterial concentration and low electron-donor concentration (Figure 4.4) but 

remarkably both active bacterial concentrations still continue to increase. However, the rate of 

growth slows down due to the declining energy difference. After approximately 150 days, the 

difference between total energy supply and maintenance-energy demand becomes practically 

constant (Figure 4.4). From this moment onward, both bacterial concentrations begin to decrease. 

Finally, the steady-state concentrations of active and dormant CFB are reached at 2.77×10
-5

 mol-

C/L (1.33×10
7
 cells/cm

3
) and 2.42×10

-5
 mol-C/L (1.16×10

7
 cells/cm

3
), respectively. Thus, 

approximately half of the CFB is active in the steady-state. The SRB follows almost the same 

growth and decay pattern as CFB with some delay. Under steady-state conditions, the growth of 

active biomass is balanced by deactivation, and the gain of dormant biomass is balanced by the 

maintenance-energy requirement of the dormant biomass. The active and dormant SRB plateaus 

at concentrations of 9.9×10
-6

 mol-C/L (4.75 ×10
6
 cells/cm

3
) and 8.27×10

-6
 mol-C/L

 
(3.96 ×10

6
 

cells/cm
3
), respectively. Similarly to the fermenters, somewhat more half the sulfate reducers in 

the steady-state are active. The percentage of active biomass is close to values found in both 

marine and fresh-water environments (Lennon and Jones, 2011). The total biomass of 

microorganisms in both physiological states amounts to 7.02×10
-5 

mol-C/L (3.37 ×10
7
 cells/cm

3
). 

This is in the high range of the bacterial abundance found in typical porous aquifers (Griebler 

and Lueders, 2009).  The bacterial concentration is found in the range of 10
5 

to 10
8
 cells/cm

3
. 

This may be explained by neglecting natural predators or bacteriophages, in the aquifer which 

may control the steady-state concentration of the bacteria (Bajracharya et al., 2014). 

After three weeks, the difference between total energy generated and ME decreases. As a 

consequence, less energy can be allocated to growth and hydrolytic enzymes. The concentration 

of HE steadily increases for almost 80 days, peaks, and decreases to a steady-state value of 

3.05×10
-5

 mol-C/L after approximately 550 days. The concentration of glucose eventually 

plateaus at the steady-state value of 8.16 ×10
-6

 mol-C/L. The interplay of the two bacteria leads 

to steady-state concentrations of acetate and dissolved molecular hydrogen of 3.92×10
-5

 mol-C/L
 

and 7.91 ×10
-10 

M, respectively. These electron-donor concentrations show significant 

spatiotemporal variation in different natural environments. Our simulation results of hydrogen 

and acetate concentration lies in the range observed in the literature (Dale et al., 2006; Hoehler et 
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al., 1998; Lovley and Chapelle, 1995). A similar concentration of glucose has also been observed 

in anaerobic and marine sediments (Lovley and Phillips, 1989; Dale et al., 2006). We thus 

consider the simulation results plausible. 

The total catabolic energy gained by active CFB at steady-state is 18.9 kJ/mol-C biomass/d 

(Figure 4.4). According to the simulation, the fermenters invest 94% of the energy produced in 

maintenance, 5% in growth (which eventually ends up in maintenance of dormant biomass), and 

the remaining 1% in the production of hydrolytic enzymes (Figure 4.5). The catabolic energy 

gained by active SRB at steady state is 19.4×10
-3 

kJ/mol-C biomass/d. The SRB spend 92% on 

the maintenance of active biomass; the remaining 8% is invested in growth, but is funneled to the 

maintenance of the dormant biomass. These results are consistent with those observed in energy-

oligotrophic environments (Del Giorgio and Cole, 1998; Russell, 1986); whereby the bacterial 

growth efficiency has been reported as low as 1% (Del Giorgio and Cole, 1998). The fastest 

doubling time for CRB and SRB is approximately 13 and 17 days in our simulation, whereas 

literature values vary from minutes to millennia (Phelps et al., 1994). Griebler and Lueders, 

(2009) report a typical doubling time in the range of 1-320 days for natural groundwater. A study 

on geobacter species in the subsurface mentions a doubling time of approximately 15 days 

(Mailloux and Fuller, 2003). We conclude that our results are reasonable. 

4.4.2 Accounting for bioenergetics  

The microbial growth yield varies according to the energy generated from the environment 

(Heijnen and Dijken, 1992). Most kinetic models use constant growth yields for the conversion 

of substrates to biomass. By contrast, Roden and Jin, (2011) assumed a linear relationship 

between bacterial growth yields and the Gibbs energy generated, concluding that the growth 

yield should be modeled dynamically based on the Gibbs energy generated rather than taken as 

static value from literature. Our model implicitly results in a dynamic growth yield because the 

catabolic Gibbs energy gained by the bacteria changes over the course of the simulation. Figure 

4.6 shows the simulated growth yield per unit energy generated as function of time. To the best 

of our knowledge, this is the first model to illustrate a dynamic growth yield based on 

bioenergetics. The total-energy gain of the fermenters is higher than that of the sulfate reducers 
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during the initial 20 days of simulation (Figure 4.4). However, this energy is divided into 

producing hydrolytic enzymes and growth. Due to this division, the yield of SRB becomes 

higher than CFB on the 7
th

 day (Figure 4.6). At steady-state, the yield of CFB and SRB is 0.2 × 

10
-3 

 and 0.22 × 10
-3 

mol-C/J respectively. 

 

 

Figure 4.5: Energy distribution at steady-state conditions A: Cellulolytic fermenting bacteria, B: 

Sulfate reducing bacteria. 

It is also noteworthy that the energy per unit carbon biomass of the SRB is higher than that of the 

CFB under steady-state conditions (Figure 4.4). Despite larger energy generation, the steady-

state yield (Figure 4.6) and concentration of the SRB (Figure 4.4) is smaller than those of the 

CFB (0.2 and 0.22 C mol/J respectively). This is due to the fact that more energy is necessary to 

form SRB than CFB. 
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Figure 4.6: Bacterial yield (in mole-carbon per unit joule gained for acetate, glucose, and 

hydrogen) 

In order to illustrate the advantages accounting for dynamic energy production, we run various 

simulations of the proposed model with identical parameters (as described in Table 4.1 and Table 

4.2), expect for the Gibbs energy calculation. We kept the Gibbs energy constant for three 

different scenarios where energy does not change according to the change of reaction quotient 

but only with respect to fermentation or respiration rates. These results are compared to our 

original model. The different scenarios are: (1) concentration-dependent, time-varying Gibbs 

energy (ΔGo), which is the full and original model, (2) constant Gibbs energy calculated for the 

initial concentrations (ΔGr°initial), (3) constant standard Gibbs energy at 10
o
 C (ΔGr°283K), and (4) 
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constant Gibbs energy at standard condition (ΔGr°298K) . We observe very contrasting results in 

these simulations. The two models with ΔGr°298K and ΔGr°283K were unable to sustain any 

bacterial biomass over long time periods, leading to extinction of the biomasses (Figure 4.7). 

Only the models with ΔGr°initial and ΔGo reach non-zero steady-state concentrations. The total 

steady-state bacterial concentration in the proposed model (i.e., scenario 1, ΔGo) is almost 9.5% 

lower than the total steady-state bacterial concentration using a constant Gibbs energy calculated 

for the initial concentrations (i.e., scenario 2, ΔGr°initial), implying that the energy gain decreases 

in the course of the experiment due to the change of the reaction quotient Q. The simulations also 

reveal that the concentrations of glucose, hydrolytic enzymes, and hydrogen differ by 11%, 7%, 

and 3% respectively in the model with ΔGr°initial compared to the proposed model.  Moreover, 

depending upon the initial concentration, the steady-state bacterial concentration in both cases 

may vary in term of magnitude. 

 

 

 

Figure 4.7: Comparison of Bacterial population at constant Gibbs energy with variable Gibbs 

energy (1) varying Gibbs energy (ΔGo), (2) constant Gibbs energy calculated at initial 

concentration (ΔGr°initial), (3) constant Standard Gibbs energy at 10
0
 C (ΔGr°283K), and (4) 

constant Gibbs energy at standard condition (ΔGr°298K),. 

0,E+00

5,E+06

1,E+07

2,E+07

2,E+07

3,E+07

3,E+07

4,E+07

4,E+07

C
el

l 
n

o
./

cm
3
 

ΔG
o
 ΔG

r
°

initial
 ΔG

r
°

283K 
and

 

ΔG
r
°

298K
 



- Microbial Dynamics in Natural Aquifers - 

 

 

Ph. D. Thesis, Bajracharya  83 

4.4.3 Sulfate perturbation starting at steady-state 

The groundwater is a dynamic system which is influenced by various environmental changes. A 

simple example of a perturbation is the seasonal variation of groundwater recharge, which can 

result in fluctuating positions of biogeochemical contrasts. As an example for a biogeochemical 

perturbation, we consider sudden change of the sulfate concentration from 4.68 × 10
-5

 M
 
to 

4.68 × 10
-7 

M at day 50 of a simulation that starts at the steady-state evaluated in the previous 

calculations. Figure 4.8 shows the resulting time series of simulated concentrations. As expected, 

the drop in sulfate leads to unfavorable condition for the SRB. The active SRB instantaneously 

start decaying or switch to dormancy (Figure 4.8 C). The dormant SRB quickly increases and 

then also decays. The total SRB population dies out completely within 150 days of simulation 

(Figure 4.8 C and D). Simultaneously, the acetate and hydrogen concentrations increase 

dramatically because they cannot be oxidized by sulfate anymore (Figure 4.8 A). The increased 

acetate and hydrogen concentrations hinder fermentation, by lowering the catabolic energy gains 

for CFB. Consecutively, the energy gain is not sufficient for the CFB which then start to decay. 

The total CFB will eventually die out due to low energy gain from accumulation of fermenting 

products (Figure 4.8 C and D). As the SRB start to die out, the fermenting product also being to 

level off. Concurrently, the glucose consumption (inset of Figure 4.8 A) and the HE 

concentration decrease (Figure 4.8 B). These results demonstrate that the decrease in sulfate, 

which is the terminal electron acceptor of the SRB only, also affects CRB population through 

lowering the catabolic energy, thereby affecting the whole ecosystem. 

For comparison, we have run the same perturbation of sulfate concentration in the scenarios 2 

defined in chapter 4.4.2 (constant Gibbs energy calculated at initial concentration). As before, 

the total SRB concentration dies out completely within 150 days (Figure 4.9 C and D). In 

contrast to our conceptual model, the CRB bacteria including HE, fermenting products and 

glucose concentration are not affected by the change due to decrease in sulfate concentration 

(Figure 4.9). The model with a static Gibbs energy of the reaction simply lacks the 

thermodynamic feedback of acetate/hydrogen consumption on fermentation.  
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Figure 4.8: Concentration response to a change in sulfate concentration. A: the concentration of 

electron-donors, B: concentrations of hydrolytic enzymes, C: concentrations of active bacteria, 

D: concentrations of dormant bacteria. The inset figure in ‘A’ shows the first 100 days of 

simulation. All concentrations are in mass carbon per volume of water except hydrogen which is 

in mass per volume of water.   
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Figure 4.9: Concentration response to a change in sulfate concentration with static Gibbs 

energy calculated at initial concentration. A: the concentration of electron-donors, B: 

concentrations of hydrolytic enzymes, C: concentrations of active bacteria, D: concentrations of 

dormant bacteria. All concentrations are in mass carbon per volume of water except hydrogen 

which is in mass per volume of water. 

4.5 Conclusions and future works 

I have presented a bioenergetic framework to model microbial dynamics in energy-limited 

aquifers based on the distribution of catabolic energy to extracellular hydrolytic enzymes 

production, maintenance-energy requirement, and biomass growth. This framework forms the 

basis for a quantitative description of microbial activity under given environmental and thus 
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energetic conditions. Moreover, this model offers practical advantages over expensive and labor-

intensive genomics-based modeling. While bioenergetics cannot explain all mechanistic details 

of microbial pathways, it can predict what activity is energetically beneficial. We illustrate that 

energy optimization is a likely driver of microbial behavior, at least under oligotrophic 

conditions, but we can of course not exclude that some microorganisms may catalyze reactions 

for which an energetic benefit is not obvious.  

I have successfully used our conceptual model to simulate anaerobic cellulose degradation by a 

mixed culture of cellulolytic fermenting and sulfate-reducing bacteria. One of the main features 

of the model is the computation of catabolic Gibbs energy at every time step. Importance of a 

dynamic-based Gibbs energy approach is illustrated and compared with a static Gibbs energy 

model. As demonstrated, the results vary significantly and may lead to erroneous interpretation 

unless bioenergetics is properly implemented. The simulation of decreased sulfate concentrations 

illustrates the utility for modelling to model complex biogeochemical processes. The static 

model can’t capture the change in thermodynamic efficiency that might be brought by 

perturbation of any component in the system (electron acceptor in our case).  These concepts can 

further be modified to simulate different microbial species, different pathways of particulate-

organic-matter degradation, or different activities excerpted by the same organisms considering 

the Gibbs energy of the considered reactions.  

In the particular case of sulfate-perturbation’s simulation (Figure 4.8), the increasing fermenting 

products lower the generated catabolic energy. When the energy gained is not sufficient for the 

CFB. This results in dying of CFB.  The fermenting products start to plateau only when the CFB 

decrease significantly. However, if the concentrations of fermenting products increase 

tremendously due to external influences; this could lead to positive catabolic Gibbs energy. This 

should halt the fermentation rate at once. However, in the proposed model, the fermentation 

reaction will continue. Consecutively, the bacteria will go dormant and will die out slowly. An 

additional thermodynamic constraint (FT) as mentioned in Eq. 2.3 (Chapter 2.2.4) will improve 

the model to portray these scenarios. Taking account of the thermodynamic term during the 

evaluation reaction rate (before the distribution of energy) will hinder the 

respiration/fermentation rate more quickly and the product accumulation will level off as soon as 

the Gibbs energy becomes zero or reached critical threshold energy (Jin and Bethke, 2005; 
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LaRowe et al., 2012). Several studies have been dedicated to find the accurate thermodynamic 

term (FT). The search for appropriate FT that will account the Gibbs free energy along with the 

reaction rate should be the future step for the proposed model.  

Among the parameters required, the maximum hydrolysis rate and maintenance-energy (ME) 

requirement may be the most critical parameter for modelling population dynamics. Yet, 

maximum hydrolysis rates of POM in oligotrophic aquifers are one of the poorly constrained 

variables in the literature. Moreover, studies demonstrate that the ME requirements change with 

changing catabolic energy (Russell, 1986).  We cannot be sure that the values we have chosen 

are correct, as there are no relevant measurements. Therefore, proper investigation of the aquifers 

is a must before assigning the values to these parameters.  

Further studies are required to confirm and extend our hypothesis. Experiments under well-

defined conditions could elucidate to which extent the principles set forward are valid. To 

address conditions of spatially variable and dynamic environments (Allison, 2005), the 

dependence of energetic and kinetic terms on physical and chemical conditions such as 

temperature, nutrients and pH should be accounted for (German et al., 2012). Furthermore, 

coupling of bioenergetics microbial dynamics to transport of the substrates on different scales 

could put biogeochemical zonation onto better thermodynamic grounds. The modeling 

framework can also be modified to simulate microbial dynamics in diverse environments in 

which carbon is not the limiting factor, as long as energetic constraints can be attached to the 

regulating process.  
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5. Soil organic matter degradation by microbes in 

fluctuating vs static redox condition 

5.1 Introduction 

Fluctuating redox conditions can occur naturally, e.g., in riparian floodplains, due to seiches in 

stratified lakes, within soils influenced by a fluctuating groundwater table, or in coastal 

environments. They can also be the result of anthropogenic influences, e.g., in paddy fields, or 

due to damming, recharging or discharging the water. Land-use changes can also lead to 

oscillating redox conditions. The fluctuating environment triggers biogeochemical changes that 

differ in comparison to strictly static oxic or anoxic conditions. Fluctuating redox conditions are 

important for predicting the degradation of soil organic matter (SOM), the emission of 

greenhouse gas (GHG) and microbial dynamics in general.  

A few studies on the influence of fluctuating redox conditions have been conducted. Besides 

oscillating redox conditions, other factors might have affected the results in these studies. These 

factors include soil moisture (Blodau and Moore, 2003; Blodau, 2003; Butterly et al., 2009; 

Rezanezhad et al., 2014), the chemical gradient developed as a result of soil depth (Frindte et al., 

2013), the quality and quantity of carbon content (Kristensen et al., 1995), the soil chemical 

composition (Hanke et al., 2013; Kristensen et al., 1995), among others. In addition, the period 

and direction (that is oxic to anoxic or vice versa) of redox oscillation also have an effect (Hanke 

et al. 2013). Some studies target specified effects of redox fluctuations; for example, Parsons et 

al.,( 2013) and Couture et al., (2015) focused mostly on contamination, while Thompson et al. 

(2006) concentrated their efforts on iron cycling. Teh et al. (2005) conducted an experiment in 

which they tried to maintain variable redox conditions by changing only the head-space gas; 

however, this could not prevent the formation of micro-anaerobic sites also under oxic 

conditions.  

In static oxic or anoxic conditions the reactants fuelling important biogeochemical processes 

such as heterotrophic respiration become depleted and metabolic products build up decreasing 
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the energetic efficiency of important reactions. By contrast, an oscillating redox environment 

keeps the system far from thermodynamic equilibrium increasing the energetic efficiency 

(Parsons et al., 2013). This is the result of regenerating electron acceptors (EA) during the  

aerobic phase (Blodau and Moore, 2003; Knorr, 2013) and the variable pH associated with the 

adsorption of the organic matter (OM). The activity of hydrolase enzymes is higher under 

anaerobic than under aerobic conditions which results in high dissolved organic carbon (DOC) 

production (Chen et al., 2011). Additionally, mineralization of organic matter is less efficient 

under anaerobic conditions, resulting in the enrichment of water-soluble intermediate metabolites 

such as organic anions like acetate, formate, propionate, and lactate (Kögel-Knabner et al., 2010 

and reference within). These labile substrates are an easy energy source for the aerobic bacteria. 

Moreover, these exoenzymes are activated after short term exposure to oxygen which can 

strongly increase carbon mineralization rates (Blodau and Moore, 2003). Some studies also 

suggest that alternating oxic and anoxic condition improve degradation of  organic matter by 

enhancing chemical breakdown, recycling of biomass and reducing the accumulation of toxic 

intermediates (Aller, 1994; Blodau and Moore, 2003; Gerritse and Gottschal, 1992). Studies of 

fluctuating condition in estuaries have demonstrated enhanced degradation of particulate organic 

matter (Frindte et al., 2013 and reference within). Therefore, enhanced organic matter 

degradation seems plausible under these oscillating conditions. This also implies that there is a 

threat of carbon release from wetlands all over the world. 

Microbial communities have been observed to change dramatically towards higher diversity 

under fluctuating redox conditions compared to static conditions (Pett-Ridge and Firestone, 

2005; Rezanezhad et al., 2014). Microbes seem to adapt to continuous changes in water 

saturation and redox potential, and switch to other electron acceptors such as manganese and iron 

etc. (Grybos et al., 2009; Rezanezhad et al., 2014). Goodheart (2014) hypothesized that there 

could be potential synergy between aerobic and anaerobic bacteria which may be an important 

factor controlling the decomposition rates in wet forest soils. Microbes are also responsible for 

the emission of greenhouse gases (GHG). Their activities depend on redox conditions which 

would modulate the exchange of these gases with the atmosphere (Kögel-Knabner et al., 2010; 

Rezanezhad et al., 2014 and references within).  
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The cited studies demonstrate that oscillating redox conditions lead to deviating results compared 

to static conditions. However, current results regarding the carbon release and organic-matter 

mineralization are inconclusive. There is also contrasting evidence: carbon mineralization rates 

in incubated soil suspensions from different paddy and non-paddy soils decreased when the 

conditions changed regardless of whether the direction was from oxic to anoxic or vice versa 

(Hanke et al., 2013). This study also indicates that the repeated cycles of desorption followed by 

partial mineralization and re-adsorption could contribute to carbon accumulation under 

continuously alternating redox conditions. Some studies also suggest that a sudden change in 

redox conditions leads to an unusually high proportion of microbial cell lysis (Butterly et al., 

2009; Sharma et al., 2013). Frindte et al., (2013) found that the bacterial concentration was the 

lowest under fluctuating condition, the highest under anoxic conditions, and in-between under 

oxic conditions. However, microbial activities under the anoxic conditions were found to be 

lower compared to oxic and variable conditions. The latter study illustrated that alternating redox 

conditions lead to similar chemical and microbial activities as those in oxic cores and which are 

significantly higher than those in anoxic cores. 

These previous studies demonstrated the inconclusiveness with respect to biogeochemistry under 

oscillating conditions. Also, the effect on soil respiration is poorly known under fluctuating 

conditions (Rezanezhad et al., 2014). Therefore, an experimental approach with three bioreactors 

with peat material has been chosen in the present analysis. One reactor remained reducing, one 

oxic, and third underwent fluctuating redox conditions. By this, we want to study the influence of 

redox conditions on soil-organic-matter degradation excluding influences of other physical or 

chemical conditions. Peatlands play a vital role in the global carbon cycle. They form one of 

largest sinks for carbon in soils and can emit greenhouse gases (Blodau and Moore, 2003; 

Blodau, 2003). We want to compare carbon cycling processes under static and oscillating redox 

conditions, particularly organic-matter degradation rates, solid phase carbon transformations, 

greenhouse gas emission, and the interaction of heterotrophic metabolism and fermentation. 
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5.2 Materials and methods 

5.2.1 Soil sampling and characterization 

The soil used for the study was sampled from a marshy area, very close to a groundwater-fed 

small stream in the rare Charitable Research Reserve field site located in Cambridge, Ontario, 

Canada (3°22'34.42"N, 80°22'9.12"W). The soil was collected from a highly productive forested 

riparian wetland area which was an upwelling zone for nitrate contaminated groundwater. 

Naturally, the soil is anaerobic and contains an abundance of organic matter (acting as electron 

donor). The soils at the site are made of a combination of woody peat and incompletely 

decomposed organic matter. The organic-carbon content of the soil is 23% of dry weight. The 

soil was sampled from the top 20 cm of the soil surface. Large vegetative materials and root 

masses were manually removed to create a uniform mixture and the samples were thoroughly 

mixed and stored moist and airtight at 4°C until the start of the experiments. The soil moisture 

content was gravimetrically determined by drying approximately 30 g of fresh soil at 80˚C for at 

least 48 h; its value was 60%. This was conducted in triplicates. 

5.2.2 Experiment design and redox oscillation sequence 

A set of three identical bioreactors (Applikon ®) based on the designs of Thompson et al., (2006) 

was set up. A homogenous soil suspension of 93 g/L was prepared with an artificial groundwater 

solution; the particle diameter was smaller than 500µm (See appendix A1 for details). Each 

bioreactor was filled with 1L soil suspension with a headspace of 250 ml. The bioreactors were 

subjected to three different redox conditions. The first bioreactor (O-reactor) and the second 

bioreactor (R-reactor) were continuously purged with air and nitrogen, respectively, resulting in 

static oxic and anoxic conditions. The third reactor (F-reactor) was subjected to anaerobic 

conditions for 6 days followed by 1 day under aerobic conditions by purging nitrogen and air, 

respectively. All suspensions were stirred at 500 rpm and maintained at 25±1°C and run 

simultaneously for 28 days (four full oscillating cycles). The values of temperature, pH, and Eh 

were continuously recorded throughout the experiment. A more detailed description of the 

sampling and analytical procedures is illustrated in appendix A2. 
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5.2.3 Aqueous chemistry analyses 

All chemicals used in the experiment were analytical grade (Sigma-Aldrich and Anachemica). 18 

MΩ cm
-1

 water was used for preparing standards and reagents. The soil suspensions sampled 

from the reactors were centrifuged for 15 minutes at 3500 rpm and filtered through 0.2 µm 

polyethersulfone sterile syringe filters prior to all aqueous analyses. All aqueous elemental 

concentrations were determined by ICP-OES after dilution and acidification (Thermo Scientific 

iCAP 6300). Chloride, nitrate, nitrite, sulfate, and phosphate concentrations were measured by 

ion chromatography using a Dionex ICS 5000 equipped with a capillary IonPac® AS18 

hydroxide selective anion-exchange column. DOC, nitrogen, and DIC concentrations were 

determined on a TOC-LCPH/CPN analyzer (Shimadzu). All aqueous analyses were conducted in 

triplicate and the precision was less than 5% relative standard deviation (RSD). Organic acids 

(OA) were measured using a high capacity, high efficiency anion exchange column that provides 

an excellent resolution of organic acids (Thermo Scientific, Dionex IonPac AS11-HC). The 

measured organic acids were lactate, acetate, propionate, formate, isobutyrate, butyrate, 

succinate, sulfate, fumerate, and citrate. 

5.2.4 Greenhouse gas analyses 

The greenhouse gases (CH4, N2O, and CO2) were sampled both in the aqueous and gaseous 

phase. Gas fluxes from the suspension to the headspace were calculated based on the increased 

concentration in the headspace over 15 minutes, during which sparging was stopped and gas 

outflow from the headspace was prevented. Samples were taken by a syringe. The sample 

volumes collected for gas and aqueous samples were 10 ml and 2 ml, respectively. The samples 

were analyzed on the same day using a GC-2014 Gas Chromatograph (Shimadzu). A correction 

of GHG fluxes was applied to account for increasing headspace volume caused by sampling of 

the soil suspension. The gas sample was directly injected in the GC and the mass of analyte in 

the gas sample was calculated. In case of an aqueous sample, 1ml of the sample was mixed with 

helium in the ratio of 1:9. When the greenhouse gases and helium equilibrated, the helium was 

injected into the GC. Then the mass of the analyte in both phases was calculated.  
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5.2.5 Specific ultra violet absorbance analysis 

Specific ultra violet absorbance (SUVA254) is defined as the UV absorbance at 254 nanometers 

measured in inverse meters (m
-1

) that is normalized by the DOC concentration measured in 

milligrams per liter. SUVA is positively correlated with the percentage aromaticity in DOC 

(Weishaar and Aiken, 2001). Absorbance measurements were carried out on the day of sampling. 

The absorbance measurements were performed using a Thermo Scientific Evolution 260 Bio 

UV-visible Spectrophotometer. A 70 µl micro UV-Cuvette with a 10 mm path length was used 

for the analysis. All analyses were conducted in triplicate. 

5.2.6 Solid analyses 

The solid pellet resulting from centrifugation of the soil was used for solid analyses. Soil samples 

were collected to examine extracellular enzymes, microbial ecological analysis CHNS, and 

organic carbon. Organic carbon and carbonate fractions in the solid phase were determined by 

thermo-gravimetric analysis (TGA-Q500, TA Instruments Q500) based on the research by 

Pallasser et al., (2013). Microbial ecological analysis and extracellular enzymes have not been 

completed till the end of this thesis and will be continued in future work. 

5.3 Results 

Figure 5.1-5.4 show time series of all measured parameters and concentrations. In all 

experiments, the change in geochemistry is drastic during the first few days of the experiment, 

because the temperature higher than in the field, the water-to-soil ratio is larger, and mixing is 

enhanced by stirring and gas purging. Some data are inconsistent. For instance, the nitrogen 

species show unusual patterns and are therefore not considered in the following discussion. The 

precise reason behind this is not known. Potentially, there had been nitrate contaminated vials. 

Therefore, I have not shown NO3
-
/NH4

+
 ratios, nitrate, nitrous oxide etc. In addition, we also 

observed some anomalous results regarding CO2 both in the aqueous and gaseous phases which 

is explained below. Data of major anions and cations that don’t participate in redox cycling are 
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not shown in this report, since their results are not relevant for this study but would be used in 

future works. 

5.3.1 pH and redox potential 

The pH is highest in the R-reactor, followed by the F-reactor and the O-reactor. The pH-value in 

the O-reactor increases from 7.1 to 7.5 within three days (Figure 5.1 A). Then the pH keeps 

almost constant for two weeks. In the third week, the pH increases slightly up to 7.8 and then 

drops back to 7.5 by the end of the experiment. In the R-reactor, there is a steady increase of pH 

which stabilized at 8.1. In the F-reactor, the pH rises to approximately 7.8 during each anaerobic 

cycle and drops by roughly 0.15 units during each aerobic cycle.   

The Eh maintains a high positive value 500 ± 20 mV during the experiment in the O-reactor, 

whereas it has a value of – 270 mV in the R-reactor and continues decreasing (Figure 5.1 B).  In 

the F-reactor, we observe oscillating behavior of Eh. The Eh increases sharply during the aerobic 

cycles up to 500 mV and decreases in the anaerobic cycle as low as -105 mV. The periodic 

change of Eh ranges from +400 to -100mV. The values of both pH and Eh in the F-reactor are 

between the values of the R-reactor and O-reactor. 

 

Figure 5.1: Time series of A: pH and B: Eh. The grey regions denote the one day oxidizing 

period in the fluctuating reactor and the Limit of quantification (LOQ) is marked by blue 

regions. 
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5.3.2 Carbon pool 

The carbon is analyzed in all solid, aqueous and gaseous phases. SOM in the solid phase mostly 

consists of macromolecules that are initially degraded into monomers. These monomers are 

typically water soluble, but may undergo adsorption or desorption depending on pH and Eh. The 

monomers are further mineralized to carbon dioxide or methane gas with several byproducts.  

5.3.2.1 Aqueous carbon pool 

Dissolved organic carbon 

DOC remains low throughout the entire experiment in the O-Reactor (Figure 5.2 A). DOC under 

anaerobic conditions increases rapidly and reaches a very high concentration of 70 mmol-C/L 

after 11 days. There is a sharp decrease in the next 4 days. After this period, DOC concentration 

is roughly constant with a final concentration of 13 mmol-C/L. In the F-reactor, DOC shows an 

interesting pattern: it increases at the beginning of each anoxic period but declines prior to the 

aerobic cycle. This degradation is enhanced during the aerobic cycle and reaches as low values 

as the concentration observed in the O-reactor. With each anaerobic cycle, the peak-value of 

DOC decreases. By the end of the experiment, the DOC concentration reaches 6.5 mmol-C/L, 

which is half the concentration of the R-reactor. 

Unlike the DOC concentration, the fraction of aromatic DOC remains the highest in the aerobic 

reactor (Figure 5.2 D). By the end of the experiment, the aromaticity doubles from 12% to 24%, 

but the DOC concentration is very low. That is, the little DOC left in the oxic system is mainly 

recalcitrant aromatic DOC. By contrast, the aromaticity of DOC is very low in the R-reactor, but 

the DOC concentration is high. In the F-reactor, the aromaticity of DOC also shows a remarkable 

pattern. During the anaerobic cycle the aromaticity remains as low as that in the R-reactor and 

suddenly spikes to higher values comparable to those in the O-reactor within one day of the 

aerobic cycle.  

Dissolved inorganic carbon (DIC) 

The DIC in all bioreactors behaves almost similar. The concentration initially decreases within a 

week and remains approximately constant for the rest of the experiments (Figure 5.2 B). The 
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DIC concentration is highest for the O-reactor, followed by the F-reactor. The DIC concentration 

in the R-reactor is the lowest. The concentration decreases rapidly from 3.25 to 0.25 mmol-C/ L 

by the end of the experiments. We also observe a slight increase in the DIC concentration in the 

soil suspension during each aerobic cycle of the F-reactor.  

Short-chain fatty acids  

The measured short-chain fatty acids (SCFA) concentrations stay lowest in the O-reactor (Figure 

5.2 C and Figure A3.1). In contrast, the SCFAs increase linearly in the R-reactor. Among the 

organic acids, only acetate, propionate, butyrate are observed during the analysis. The 

concentration of organic acids increases linearly, amounting to more than 35% of the total DOC 

by the end of the experiment. Acetate is the most abundant with a concentration of 3.9 mmol-

C/L, followed by propionate with a final concentration of 0.72 mmol-C/L. Other SCFA 

concentrations are insignificant. The enrichment of these fermentation products starts a day later 

in the F-reactor as a result of the first aerobic cycle. In the first cycles, the SCFAs accumulate 

during the anaerobic cycle and are rapidly consumed during the following aerobic cycles. The 

accumulation of propionate, butyrate and formate plus isobutyrate can be clearly observed only 

in the first redox cycle. Acetate is the only fermentation product where the oscillations can be 

observed over several cycles. However, the increase of the acetate concentration is very small 

compared to that in the R-reactor and after every redox cycle, the acetate peak during the 6 days 

of anoxic period decreases. During each oxic cycle, the concentration of SCFAs in the F-reactor 

is as low as that in the O-reactor. 
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Figure 5.2: Dissolved carbons A: Dissolved organic carbon (DOC) B: Dissolved inorganic 

carbon (DIC) C: Acetate D: Aromaticity percentage of dissolved organic carbon. The grey 

regions denote the one day oxidizing period in the fluctuating reactor and the Limit of 

quantification (LOQ) is marked by blue regions. All concentrations are in mass carbon per volume 

of water. 

5.3.2.2 Greenhouse gases 

Greenhouse-gas concentrations were measured both in the aqueous and gaseous phase. Only data 

of CO2 and CH4 are discussed in this study (Figure 5.3 A and B). The aqueous-phase CO2 

concentration is approximately one order of magnitude higher than the headspace CO2 converted 
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to dissolved CO2 following Henry’s law. The gas-phase concentrations were obtained after 

stopping the purging of the reactors for 15 minutes. Over this time, the equilibrium between the 

two phases has not been reached yet. Moreover, in some sampling of gas-phase CO2 is also 

below the limit of detection (Figure not shown). Thus, the water-phase CO2 concentrations are 

used as a proxy of the CO2 release by the reactors.  

 

Figure 5.3: Greenhouse gases A: Carbon dioxide, and B: Methane. All concentrations are in mass 

carbon per volume of water 

Flooding is known to cause complex patterns of CH4  and CO2 production (Blodau and Moore, 

2003; Blodau, 2003). More cumulative CO2 was produced under oxic conditions, followed by 

the fluctuating redox conditions and the anoxic conditions. The CO2 concentration decreases in 

each bioreactor in the initial days in response to the change of environmental conditions. After 

the first week, the CO2 is roughly constant in the R-reactor. The concentration of CO2 is 

negatively correlated with pH, reflecting carbonate dissolution and precipitation. In the F-

reactors, there is a small increase in the CO2 concentration in the soil suspension during each 

aerobic cycle which gets smaller in each redox cycle. This decrease is probably due to depletion 

of the labile carbon in the F-reactor (Butterly et al., 2009; Rezanezhad et al., 2014) .  

Methane was not detected in the aqueous phase. Hence, only the methane collected in the gas 

phase is used for analysis. Methanogenesis is observed in the R-reactor within four days. There 

is also some methane production in the F-reactor during the anoxic cycles, particularly in the late 
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stage of the experiment. In the O-reactor, the methane concentration was lower than the limit of 

quantification throughout the whole experiment.  

5.3.2.3 Solid organic carbon pool 

Thermogravimetric analysis (TGA) performed on the soil samples shows a significant decrease 

of organic carbon in the O-reactor by 4.5% (Table 5.1). In the R-reactor, the decrease in organic-

carbon content is 1.5%. Simultaneously an increase in carbonate is observed in the O- and R-

reactors, respectively. By contrast, TGA results show a remarkable increase in solid phase 

organic carbon by 4.1% in the F-reactor; whereas carbonate decreases. CHNS analysis of the soil 

suspension does not show consistent data, however, it also indicates that there is an increase in 

organic carbon and total carbon but a decrease in inorganic carbon (Appendix Table A.2).  

Table 5.1: Solid phase total organic carbon (%) measured using thermogravimetric analysis 

(TGA). 

Bioreactor  Carbonate (%) Organic Matter (%) 

Day 1 Day 28 Difference Day 1 Day 28 Difference 

Oxidizing 10.3 12.89 2.59 21.3 16.7 -4.5 

Reducing 10.37 13.44 3.07 19.9 18.4 -1.5 

Fluctuating 11.39 8.67 -2.72 19.4 23.5 4.1 

5.3.3 Electron acceptors 

Among the different Terminal Electron Acceptors (TEAs), only dissolved oxygen (O2), 

manganese (Mn) and sulfate (SO4
2-

) were detected in the aqueous samples (Figure 5.4). Nitrate 

shows an anomalous behavior in all bioreactors which could not be interpreted (not shown). We 

observed that Fe(II) was mostly below the limit of quantification in all aqueous samples. 
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However, we observed low concentrations of Fe(II) in the F- and R-reactors at the end of the 

experiment (Figure not shown). Nevertheless, Fe cycling is considered as a vital process for 

DOC mineralization in the range of pH- and Eh-values observed in the F-reactor (Bishop et al., 

2010). The measured redox potentials would allow Fe
2+

 reduction during the anoxic cycles. 

However, Fe
2+

 in the given pH-range of 7-8 is usually poorly soluble because it can adsorb to the 

sediment (Hanke et al., 2013 and references within). Ferrous iron may also precipitate in the 

form of FeS under reducing conditions. During oxidation, Fe is not observed since it may 

precipitate in the form of ferric iron hydroxyoxides (Konhauser, 2007). Manganese speciation 

was not measured, but only the reduced Mn
2+

 can exist as a free ion in the aqueous solution 

(Lutz Ehrlich and Newman, 2008). This concept is used to distinguish the Mn data.  

 

Figure 5.4: Electron Acceptors A: Sulfur concentration within sulfate, and B: Manganese.  

In the O-reactor, an increase in the sulfate concentration can be observed, and Mn
2+ 

becomes 

undetectable within one day, most likely due to oxidation to Mn
4+

 and precipitation as 

manganese oxide (Figure 5.4). As expected, oxygen is the only terminal electron acceptor being 

reduced in the O-reactor. On the contrary, manganese and sulfate reduction occurs within 1 and 2 

days, respectively, in the R-reactor. The Mn
2+

 concentration increases to a constant value of 0.9 

µmol/L until the end of the experiment, whereas sulfate vanishes below the detection limit within 

one week from the start of the experiment. In the F-reactor, the electron-acceptor concentrations 

(Mn
4+

 and sulfate) increase during aerobic cycles as the result of oxidation of Mn
2+

 and sulfide 

by oxygen. The anaerobic cycle is characterized by an increase in aqueous Mn
2+ 

and a decrease 
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in the SO4
2- 

concentrations. The Mn
2+

 increases rapidly at the first day of the anoxic cycles, 

which shows that manganese is the preferred electron acceptor at these times. The sulfate 

concentration starts to decrease only after the second day of the anaerobic cycles. Over the first 

two cycles, the concentration of sulfate decreases and approaches a dynamic steady state in the 

last two cycles. The increase in sulfate within each oxic cycle is also roughly similar.  

5.4 Discussion 

5.4.1 Dynamics of pH and Eh 

The soil is naturally carbonate buffered. An artificial solution with a concentration of 1 mol/L 

bicarbonate was also added which also buffered the suspension. Despite that, there is slight pH 

increase in all bioreactors (Figure 5.1 A). This might be a result of continuously purging gas 

through the reactors which removes CO2. Additionally, water logging is also known to increase 

pH (Hanke et al., 2013, 2014). This is usually due to reductive dissolution of Mn- and Fe-

oxyhydroxides (Grybos et al., 2009). The pH initially decreases in the O- and F-reactors because 

of oxidation of sulfides before it rises. After few hours, there is a steady rise in pH in these 

reactors. The redox conditions had significant effects on the pH of individual soils, because of 

H
+
 consumption during reduction reactions (Grybos et al., 2009). Therefore, the largest change 

in pH is in the R-reactor, since it was only sparged by N2 gas. In the F-reactor, the values of pH 

increased distinctly during the reducing periods, while they decreased during oxidation. The 

transition from oxic to anaerobic conditions results in a reduction in electron acceptors (e.g., 

Mn
4+

 and sulfate)  which causes pH increase and vice versa (Knorr, 2013). 

The redox potential indicates the capacity of the solution to provide electrons to the electrode. It 

may also give information about the terminal electron acceptor participating in the redox 

reactions and may be indicative of microbial respiration (DeLaune and Reddy, 2005). 

Nonetheless, Eh should be interpreted very carefully as many terminal electron acceptors may 

not fully contribute to the measured Eh. The Eh in the O-reactor remained at highly positive 

values whereas that in the R-reactor remained at strongly negative ones as expected for oxic and 
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anoxic conditions, respectively (Figure 5.1 B). In the F-reactor, we observe oscillating behavior 

of Eh in response to the purging with air and pure nitrogen. The change of Eh in the F-reactor 

indicates the major changes in the aqueous chemistry in the F-reactor ((Figure 5.1 B). When the 

redox potential is higher than 400 mV, the suspension is considered aerobic and oxygen is used 

as the dominant terminal electron acceptor (DeLaune and Reddy, 2005; Tokarz and Urban, 

2015). The range of Eh values also crossed the thermodynamic equilibria of several important 

redox pairs, namely Fe(OH)3/Fe
2+

, MnO2/Mn
2+

, and SO4
2-

/HS
-
. Similar changes in Eh are 

observed in redox-fluctuating natural systems such as periodically inundated wetlands.  

5.4.2 Transformation of aqueous carbon 

In wetlands, flooding causes mobilization of DOC from peat soils. Increase in DOC is usually 

related to microbial production of metabolites, desorption of organic matter due to pH changes, 

and reductive dissolution from Mn- and Fe- oxyhydroxides (Grybos et al., 2009). In a given field 

setting, it is difficult to assess the actual source, since these processes occur simultaneously. 

Studies performed by Grybos et al. (2009) and Hanke et al. (2013) illustrated that pH-changes 

were the main source of DOC release whereas Knorr (2013) considered reductive desorption as 

the main source.  

In the O-reactor, we observed very low DOC concentrations because the aerobic microbes 

appear to be very efficient in consuming labile carbon under oxic system (Figure 5.2 A). In 

general, soil organic matter is considered to decompose more rapidly and completely under oxic 

conditions than that under anoxic ones (Hanke et al., 2013 and references within). We could not 

observe any accumulation of intermediate metabolites; and the concentration of single-chain 

fatty acids stayed low. High DOC decline is also associated with enhanced organic-matter 

mineralization (Grybos et al., 2009). This is also supported by the fact that CO2 and DIC, which 

is the end product of carbon mineralization, were highest in the O-reactor.  

In contrast, the DOC concentrations in the R- and F-reactors were initially high. However, the 

fatty-acid concentration were low at first, indicating that the microbes have little to do with the 

observed DOC increase (Figure 5.2 C and Figure A.1) Instead, the pH increase and reductive 

desorption could be the reason for the high DOC concentrations. In the R-reactor, the DOC 

increased quickly for ten days and then declined sharply. This was not associated with 
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concentration changes of CO2, DIC, or methane. This observation is most likely caused by 

hydrochemical factors rather than biological ones (Kalbitz et al., 2000). In the R-reactor, the 

DOC concentration is the largest compared to those in the other reactors. This results from a 

combination of different effects: (1) Fermentation is a dominant process and the decomposition 

of organic matter is less efficient under anaerobic than under aerobic conditions. This results in 

accumulation of water-soluble intermediate metabolites such as organic anions like acetate, 

butyrate and propionate. (2) DOC processed under different conditions sorb differently to soil 

minerals; in particular, DOC resulting from anaerobic processing sorbs less than DOC from 

aerobic processing of organic matter (Hanke et al., 2014). (3) The high pH increases the 

solubility of humic compounds and results in enhanced desorption of organic matter from soil 

minerals and Fe oxides (Grybos et al., 2009; Hanke et al., 2013 ) and (4), the hydrolase enzyme 

activity is higher under anaerobic than under aerobic conditions, which results in high DOC 

production from soil organic matter (Chen et al., 2011).  

In the F-reactor, the DOC declines at later times within the anaerobic cycles because of the 

respiration of heterotrophic bacteria including sulfate and manganese reducers prior to the 

aerobic period. However, this does not trigger CO2 or methane emission or increase of DIC. We 

did not perceive any clear relationships between DOC and CO2 or DIC production under the 

different redox conditions, which confirms findings of Yu et al. (2007). There are few 

speculations for potential explanations: (1) DOC might be transformed into calcium carbonate. 

The time scale of the sampling is too large to observe the precipitation or dissolution of 

carbonate. (2) The DOC transforms into solid carbon pools in the form of organic biomass 

(explained in chapter 4.5). Moreover, the DOC is consumed more rapidly in the oxic cycle, 

reaching values as low as those observed in the O-reactor. This confirms that the aerobic bacteria 

are efficient in consuming labile carbon. In the oxic cycle, we perceive a minor increase in CO2 

emission. This finding is in contrast with the previous study by Hanke et al. (2013) where the 

carbon mineralization decreased after every change in redox conditions. The increase of CO2 

during the aerobic phase is the result of carbonate dissolution and microbial respiration. This 

increase is smaller than the degraded DOC. Hence, it is difficult to predict the exact source of 

CO2. By the end of the anaerobic cycle, DOC decreases in the F-reactor, while the fermentation 
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products (in particular acetate) appear to slightly increase, which suggests that the rate of 

respiration catches up with fermentation quickly and the aerobic bacteria are very efficient in 

consuming DOC. This also suggests that the microbial community in the redox-fluctuating 

system adapts over several cycles, leading to a declining accumulation of fermentation products 

with a larger number of repetitive redox cycles.  

All these results confirm that soil-organic-matter mineralization is higher under oxic than under 

anoxic condition. This also holds true under fluctuating conditions where the mineralization of 

soil organic matter is larger compared to the R-reactor. The soil organic matter in the O-reactor 

gives the impression of a higher mineralization rate than in the F-reactor. However, low CO2 

production in F-reactor does not mean low organic-matter turnover. The carbon from the 

aqueous pool might go into a solid carbon pool (discussed in next section). The concentrations 

DOC and fatty acids under fluctuating conditions get lower after each progressive redox cycle in 

the F-reactor. The F-reactor is able to degrade as much DOC as the O-reactor. Over long time 

periods, the carbon mineralization rates in the F-reactor may be equal or even higher than in the 

O-reactor. 

In the R-reactor, the methane concentration remains relatively constant after a week even when 

the fatty acids (mostly acetate) increases (Figure 5.3 B and Figure 5.2 C); indicating an inhibition 

of acetotrophic methagonesis. This demonstrates that methane and fatty-acid production are not 

associated. The methane generation during the late stage under the fluctuating conditions 

suggests that methanogenesis was delayed but not inhibited by the oxic cycle (Blodau and 

Moore, 2003; Blodau, 2003; Goldhammer and Blodau, 2008).  

5.4.3 DOC and aromaticity 

The fermentation products accumulated in the R-reactor are non-aromatic (Figure 5.2 A and D). 

Thus the remaining low aromaticity of the DOC in the R-reactor mainly indicates that the non-

aromatic compounds are not easily mineralized under strictly reducing conditions. The 

aromaticity of DOC in the F-reactor also reflects the behavior of the DOC concentration. When 

the DOC concentration is low, which is during the aerobic periods, the aromaticity of the 

remaining DOC is high, whereas the buildup of DOC in the anaerobic phases leads to a decrease 

in aromaticity because these intermediate compounds are predominantly non-aromatic. Our 



- Microbial Dynamics in Natural Aquifers - 

 

 

Ph. D. Thesis, Bajracharya  105 

results imply that the mineralization of non-aromatic compounds is significantly enhanced under 

aerobic conditions, whereas the degradation of aromatic compounds may be enhanced but to a 

much smaller extent. Moreover, the aromatic DOC of the F-reactor in the oxic cycle is similar to 

that in the O-reactor. 

5.4.4 Electron acceptors, greenhouse gases and microbial activity 

Oxygen is the only predominant electron acceptor in the O-reactor and there is no possibility of 

fermentation. The only process is aerobic respiration, and consequently the O-reactor produces 

more CO2 than the other bioreactors. Whether the active bacteria are obligatory or facultative 

aerobes is not known. Strictly anaerobic bacteria, including fermenters, either die off or become 

dormant. The R-reactor is deprived of all energy-rich terminal electron acceptors within a week 

and promotes fermentation (Figure 5.4). The low CO2 production is the result of incomplete 

degradation of soil organic matter, and the CO2 produced may also have been utilized by 

methanogens (actetoclastic and hydrogentrophic bacteria etc.) using hydrogen as an electron 

donor (Figure 5.3 A). Regarding the F-reactor, the six-days reducing cycle is characterized by an 

increase in aqueous Mn
2+ 

and a decrease in SO4
2- 

which indicates heterotrophic respiration of 

both electron acceptors. Sulfate usually regenerates even upon brief exposure to oxygen and also 

the sulfate reducing bacteria are known to recover instantly (Goldhammer and Blodau, 2008). 

The fluctuating redox conditions keep the system away from thermodynamic equilibrium by 

replenishing important pools of electron donors (e.g., acetate) and acceptors such as Mn
4+

 and 

sulfate. This may lead to larger carbon degradation. The fluctuating conditions may have the 

potential to degrade soil organic matter at similar rates as under strictly oxic condition. The 

microbes using oxygen for carbon mineralization may be able to switch to Mn(IV) and Fe(III) 

(Frindte et al., 2013). Additionally, various microbial processes such as fermentation, sulfate 

reduction, Mn
4+

 reduction etc. are all active in F-reactor. This illustrates that the microbes are 

acclimated to the oscillating condition (DeAngelis et al., 2010). The fluctuating redox condition 

most likely allows heterotrophic anaerobic, aerobic and fermenting microorganisms to co-exist. 

Methanogenesis, a strict anaerobic process, is observed in only in R- and F-reactors. R-reactor, 

being under always anoxic condition, shows evidence of methanogenesis within a week (Figure 
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5.3 B). In previous studies, methane production was observed after few weeks only (Blodau and 

Moore, 2003; Blodau, 2003). However, in the cited studies, other electron acceptors, such as 

sulfate, inhibited the onset of methanogenesis. Such electron acceptors were absent in our R-

reactor. Late methane production in the F-reactor suggests that the oxic cycles do not inhibit the 

methane production but only delay it. This also indicates that the methanogens co-exist along 

with other microorganism under the oscillating redox condition. The methane production in last 

two cycles is almost equal in magnitude indicating possible dynamic steady state. Moreover, the 

production of methane is less than R-reactor.  

5.4.5 Solid carbon pool and microbial activity 

The thermogravimetric analysis of the solid phase (Table 5.1) shows a decrease of solid-phase 

organic carbon in both the O- and R-reactors, whereas the F-reactor shows an apparent increase 

of organic carbon in the solid phase. In addition to that, there is also a decrease in carbonate 

under the fluctuating conditions. There is no precise explanation for this outcome. We 

hypothesize that biomass may have increased. Peatlands have been found to have higher rates of 

biomass formation than of organic-matter decomposition (Hugron et al., 2013). Autotrophs may 

exist in the F-reactor which converts CO2 from calcite dissolution to new biomass. Heterotrophic 

respiration also could be the source of CO2. Peat soils have a high reduction capacity (Leon and 

Lnicki, 2002). Some peat soils have very high sulfur contents (Andriesse, 1988). Sulfur may 

exist as polysulfides or elemental sulfur that can act as the electron donors needed for reduction 

of inorganic carbon to biomass. However, large amounts of reductants (that is, approximately 

1.25 moles of electrons) would be required to form approximately 0.33 mol/L of carbon biomass 

(that is, 4% of organic matter) from carbonates. While the measurements of solid-phase 

inorganic and organic carbon are very reproducible, the representativeness of the samples may be 

questioned. 

5.5 Conclusions and future works 

With respect to carbon cycling, we observe an overall adaptation of the microbial community in 

the fluctuating reactor to the fluctuating redox conditions. In the first anaerobic phase, the 
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concentrations of DOC and fermentation products are the highest. During the oxic cycle, DOC 

rapidly declines. In this time Mn
4+

, sulfate, and most likely ferric iron hydroyoxides are also 

replenished. These secondary electron acceptors are reduced in the following anaerobic cycle. 

There is also a replenishment important pools of electron donors in the anoxic cycles (e.g., 

acetate via fermentation). The externally driven redox variations, caused by oxygen fluctuations, 

keep the system always far from thermodynamic equilibrium, giving reducing and oxidizing 

microbial communities good conditions in alternating time periods. Obviously, the chosen 

frequency of redox fluctuations facilitates all types of microbial activities like fermentation, 

aerobic and anaerobic respiration including methanogenesis. Hence, fluctuating conditions 

maintain a more diverse microbial community than static conditions. There is the possibility that 

aerobic, anaerobic and fermenting bacteria work in concert. This results in efficient degradation 

of soil organic matter. In the F-reactor we can therefore perceive clear synergy between aerobic 

and anaerobic/fermenting processes to deplete the labile carbon at total rates that are definitely 

faster than those observed in the reducing reactor. We could not confirm that fluctuating 

condition will result into more carbon mineralization compared to aerobic conditions by this 

experiment. Nevertheless, the decline of DOC peaks after progressive redox cycles plus the 

concentration of DOC becoming similar to that of the oxidizing reactor indicates that the 

fluctuating conditions may have the potential for higher carbon mineralization in the long term 

than even the purely oxic system. Nevertheless, we found that the CO2 production is higher 

under the continuously oxidizing than under the fluctuating conditions 

The fraction of aromatic carbon increases predominantly in the F-reactor in the oxic cycles, 

when the total DOC decreases. This clearly indicates that the non-aromatic carbon is oxidized 

preferably under aerobic conditions. We also perceive a quite high fraction of aromatic organic 

carbon under aerobic conditions. However, we don’t observe it under anaerobic conditions even 

when the total DOC is higher. By the end of the anaerobic cycle, DOC decreases in the F-reactor, 

while the fermentation products (in particular acetate) hardly increase which suggests that the 

rate of respiration quickly catches up with fermentation. Moreover, methanogenesis does not 

catch up with fermentation in the strictly reducing reactor, resulting in accumulation of acetate.  
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The most remarkable as well as unexplainable result is the increase in solid organic matter and 

dissolution of carbonate in the F-reactor which is in contrast to the O- and R-reactors. The exact 

reason behind this result could not be found in this study. One of the speculations is the 

formation of new autotrophic biomass. The tremendous amount of electron donors that needs to 

be oxidized for this conversion of inorganic to organic carbon make our hypothesis bit uncertain.  

In future work, we will analyze all frozen samples in the lab for microbial analysis and 

extracellular enzymes. This will help us to understand how the microbial dynamics as well as 

genetic diversity of the microbial communities change. More TGA analysis of the samples 

collected during the experiment will also help us to confirm or disprove and understand the 

apparent increase of organic carbon in the F-reactor.  
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6. General conclusions and outlook 

This dissertation focused on three research gaps that I identified and discussed in the 

introduction. To address the influence of environment, I developed two different models to 

represent microbial dynamics in two contrasting aquifers, and conducted an experiment to 

understand the organic matter degradation by microbial communities under static and fluctuating 

redox conditions. 

6.1 Conclusions 

This study demonstrated that the models developed of microbial dynamics in two different 

aquifers (that is, eutrophic and oligotrophic aquifers) require different assumptions for similar 

microbial activities. For example, the first-order decay term is used for the death of bacteria in 

the kinetic model representing eutrophic aquifers; however the same assumption can’t be applied 

to oligotrophic aquifers. The bacterial growth is observed to be very slow in natural aquifers, 

which means that a constant first-order decay of bacteria will lead to total eradication of bacterial 

communities. Additionally, maintenance-energy can be neglected in eutrophic aquifers whereas 

maintenance-energy captures most of the energy generated by the bacteria in oligotrophic 

environments. 

Chapter 3: Natural aquifers receiving constant supply of an energy/carbon substrate are well 

represented by reaction kinetics. The substrate consumption rate is defined by Monod kinetics. 

The bacterial transformation is calculated by a constant yield and substrate consumption rate. To 

the best of my knowledge, I developed the first one-dimensional bio-reactive transport model 

that depicts three hierarchal level interactions (substrate-bacteria-grazer) in groundwater. The 

dissolved substrate is advected with water flow whereas the biomasses of bacteria and grazers 

are considered essentially immobile. The one-dimensional reactive transport model also accounts 

for substrate dispersion and a random walk of grazers influenced by the bacterial concentration. 

These dispersive-diffusive terms affect the oscillations until steady state is reached, but hardly 

the steady-state value itself. The remarkable result is the steady-state concentration of the 
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bacteria. Both the analytical solution and numerical simulations illustrate that the maximum 

bacterial concentration is independent of the substrate inflow. Grazing, or infection by 

bacteriophages, is found to be a possible explanation of the maximum biomass concentration 

frequently needed in bio-reactive transport models. Its value depends on parameters related to the 

grazers or bacteriophages and is independent of bacterial growth parameters or substrate 

concentration, provided that there is enough substrate to sustain bacteria and grazers. The 

simulation results suggest that groundwater ecosystems could also be controlled top-down, 

which is in contradiction to the popular belief of a bottom-up control. 

Chapter 4: In contrast, the bio-reactive model for an energy-limited aquifer contained more than 

kinetic equations. Resat et al. (2012) developed a comprehensive kinetic model to illustrate 

microbial dynamics which requires numerous parameters as well as mathematical formulations. 

Searching appropriate parameter values and solving all those equations can be painstaking. I 

developed a bioenergetics model and expressed kinetic rate laws in thermodynamic terms. The 

activity of microorganisms is based on efficient utilization of catabolic energy. A key point of 

the model is the distribution of energy, gained by catabolic reactions, between extracellular 

hydrolytic enzymes production, maintenance-energy requirement, and biomass growth. I 

hypothesized that the fraction of excess energy spent on extracellular hydrolytic enzyme 

production versus the fraction spent on growth is related to the fraction of free reactive centers of 

the extracellular hydrolytic enzymes breaking down the monomers generated by hydrolysis. I 

applied the model to simulate the anaerobic degradation of cellulose by a hypothetical microbial 

community consisting of cellulolytic fermenting bacteria and sulfate-reducing bacteria, under 

conditions representative of those encountered in oligotrophic aquifers. Inside the model, the 

catabolic Gibbs energy is computed at every time step. The simulation result is compared with a 

static Gibbs energy model. The results vary significantly and lead to serious discrepancies. The 

proposed model shows that lowering the sulfate concentration influences the thermodynamics of 

the whole system and affects whole microbial communities whereas, in the static bioenergetics 

model, only sulfate reducers is affected whereas the fermenter are not influenced because the 

model lacks thermodynamic feedbacks. 
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Chapter 5: To address contradicting results from previous studies about the effect of oscillating 

conditions on microbial dynamics, I conducted an experiment with three identical bioreactors. 

The soil suspensions were operated under static oxic, static anoxic, and fluctuating redox 

condition respectively. The oxic reactor emitted the highest CO2 whereas the anoxic reactor 

emitted the highest CH4. The microbial communities appeared to be flourishing within the 

fluctuating reactor where fermentation, aerobic/anaerobic respiration, and methanogenesis were 

observed. Under fluctuating conditions, the electron donors and acceptors were observed to be 

restored during the anoxic and oxic cycles, respectively. This propelled the environment away 

from thermodynamic equilibrium and soil organic matter could be transformed more quickly 

than under anoxic conditions. Fluctuating redox conditions showed the potential to facilitate 

higher transformation rates of soil organic carbon than oxic condition. An unsolved issue is the 

increase of solid organic matter in the fluctuating reactor. This may be as a result of increase in 

autotrophic microorganisms under the fluctuating conditions. 

6.2 Outlook and future perspectives 

Chapter 3: One dimensional reactive transport model developed, within this dissertation to 

illustrate three hierarchal level of biotic interaction, should not be perceived only as a concept 

but a new beginning to develop more complicated level of hierarchy. The model including 

different grazers and bacterial communities could be very interesting where either grazers or 

bacteria possess advantage against other competing species. This will deepen our knowledge on 

groundwater ecosystem. Furthermore, if “grazing” can explain maximum biomass, this will help 

to have better insight on the term carrying capacity and how it can be used in the modelling field. 

If relevant it may also be used while developing multi-dimensional model in larger scale. If a 

similar experiment is planned on the interactions discussed above, this model will also help to 

plan the time duration of the experiment, time-period for sampling and also to understand how 

the bacteria will fluctuate before it goes to steady-state condition.  

Chapter 4: The bioenergetics model captures comprehensive microbial dynamics. This model 

coupled with transport will be able to represent the oligotrophic aquifer more closely. 

Knowledge of the dormancy triggered by energy can be used when modeling bio-reactive 
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transport with dynamic boundary conditions where the contaminant inflow varies with time. This 

concept is useful in reactive transport modelling to understand how a natural aquifer behaves if it 

is contaminated, or the contaminant comes along with groundwater recharge.  Potential 

applications involve agricultural systems with seasonal variations in recharge and bank-filtration 

systems where the substrate and nutrient load changes during hydrological events. 

If plausible representation of NOM within a particular aquifer can be presented; then 

bioenergetics combined into the microbial rate law will depict the microbial dynamics even in 

large scale ecosystems. Moreover, the model can be modified without lot of effort to incorporate 

more microbial dynamics. For e.g., if sulfate is reduced then, the system may switch to 

methanogenic-based system whereby there are now hydrogenotrophic and acetoclastic 

methanogens. It can also be changed to look at the relative impacts of limitations on nutrients 

(that is, P and N) versus limited energy or temperature etc. The current model only focuses on 

extracellular hydrolytic enzymes. With the current progress in biochemistry, there is the 

possibility of calculating energy required to form various biomolecules (Amend et al., 2013). 

Therefore, the model, modified according to these current or future progresses in biochemistry, 

can account several enzymes produced by the bacteria and will be able to represent in-depth 

microbial activities.  

Chapter 5: The experiment was conducted on a peat soil, which is one of the largest reservoirs of 

carbon. There is a global threat of release of carbon from these peat soils (Tokarz and Urban, 

2015). With the global climate change, the redox condition of the peatland may change 

drastically. The results may be used to understand the SOM degradation and GHG release from 

the peatland under different redox conditions. The possibility of increase of organic carbon under 

fluctuating condition might be also one of the interesting results which need to be verified. This 

may shed some insight on the current knowledge about peat soil.  
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Appendix to chapter 5 

A1. Field site characterization 

A1.1 Soil preparation:  

The soil collected from the rare site was preserved in the temperature of 4
o
C for three days. The 

soil was kept in an anaerobic condition within an air-tight plastic container. The soil was 

transferred to another container to obtain the desired concentration of 100 gm/L to increase the 

workability. Artificial water was added to obtain target concentration after the moisture content 

were measured. The artificial water was made based on the groundwater composition (prepared 

with 18 M cm
-1

 water).   Although the concentration of Na
+
 and K

+
 are relatively low in the 

natural groundwater, we added NaHCO3 and KHCO3 with a concentration of 0.5 mmol/L. 

Consequently the target of 1 mmol/L of HCO3
- 

was achieved which is comparable to the 

groundwater. A comparison of artificial groundwater and real groundwater is shown in 

Supplementary Table A. 1. The soil suspension was made homogenous by continuous stirring for 

at least 10 minutes. The suspension was then passed through a sieve of 2 and 0.5 mm to 

segregate larger sediment fragments and solid organic material. The 2 mm sieve did not retain 

any of the material. The residues that retained in the 0.5 mm sieve were then grinded until the 

sediment was less in diameter than 0.5 mm. Therefore, we did not lose any materials which 

would result into more accurate interpretation.  The minute soil particles (less than 0.5 mm) have 

less probability to clog the portal which might be used for sampling or purging of gas. A 

concentration of 93 g/L was achieved. This soil was let to stand in anaerobic condition for 6 

more days before the main experiment in the bioreactor.  The soil was again stirred to make it 

homogenous before transferring to the bioreactor. Soil sample was also taken for CHNS analysis.  
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A2. Experimental procedures 

A2.1 Preliminary experiment 

Soil samples were collected from four different sources; Beverly Swamp (BS), Commercial 

Peats (CP), rare Site (rare) and Laurel Creek (LC). Among these four, commercial peats were 

bought and other three were collected from the relative sites. The soil suspension were prepared 

aerobically using artificial water and left for three days. 30 mL soil suspensions (duplicates) 

were transferred to 40 mL amber glass vials and placed in the anaerobic chamber. Sampled were 

sacrificed anaerobically at 0, 1, 4 and 7 days respectively. It was observed that the rare soil had 

the lowest methanogenesis rate and high short chain fatty acid (SCFA) generation in 7 days 

period. This fulfils our goals to observe building up of organic acid during the anaerobic cycle in 

the bioreactor which will be consumed in the aerobic cycle. Low methanogenesis indicate that 

the bioavailable organic matter last longer. This allows us to run the experiment for sufficient 

redox cycle to observe better result.  

A2.2 Reactors setup 

A set of three identical air-tight borosilicate glass bioreactors (Applikon ®) with 1.2L working 

volumes and stainless steel head-plates were used.  Each head-plate contained airtight ports for 

sampling, electrodes, gas sparging and mechanical agitation. Oxic or anoxic conditions were 

induced in the reactors by the sparging (30 mL min
-1

) of either compressed air (oxic) or N2 

(anoxic) similar to the experiment set up in the study performed by Parsons et al., (2013). All the 

parts of the bioreactors were washed by 18 M cm
-1

 water initially followed by rinsing with 1M 

HCl. Subsequently, all bioreactors were stirred continuously filled with 0.1 M NaOH for half an 

hour. Finally, all bioreactors were soaked in 18 M cm
-1

 water for 24 hours before commencing 

the experiment. The first and second were labelled as static oxidizing bioreactor (O-reactor, 

continuous sparging with air), reducing bioreactor (R-reactor, continuous sparging with N2) and 

third was oscillating or fluctuating reactor (F-reactor, alternating between N2 and air).  Eh, pH, 

temperature and dissolved oxygen (DO) were monitored continuously using a combined 

autoclavable Mettler Toledo InPro 3253i/SG open junction electrode and an AppliSens, Low 

drift polarographic sensor respectively, and logged every 8 minutes. The InPro system helps to 
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avoid interference between redox and pH electrodes in close proximity using a common 

reference electrode.  Redox, pH and temperature data were converted to digital signals in the 

InPro electrode head to avoid degradation and transmitted to a Mettler Toledo M800 multi-

parameter transmitter for temperature correction of the pH signal and adjustment of the redox 

signal to the standard hydrogen electrode (SHE) Eh values.  The processed output of the M800 

was transmitted to Applikon MyController systems before being recorded on a PC using 

BioXpert software. Dissolved oxygen (DO) value was continuously monitored only on F-reactor 

and R-reactor. The O reactor was considered saturated with oxygen at all times. The F-reactor 

was subjected to 6 days of anoxic conditions and 1 day of oxic conditions.  

A total of four fluctuating cycles were conducted over a period of 28 days. The suspension was 

sampled four times a week (i.e. within one redox cycle). The sampling was carried out on both 

period when the air was turned on and off for F-reactor.  One more sampling was conducted on 

the following day after the oxygen was shut off and the final sampling was collected after 1 day 

interval.  

A2.3 Sampling procedure 

18 ml of suspension was sampled through a connection on the top of the reactor by drawing on a 

30 ml syringe connected to a soil sampling tube. Prior to these sampling the syringes was purged 

three times with either air or nitrogen corresponding to the reactors and redox cycle. The syringe 

was then capped. The anaerobic samples were transferred to an anaerobic atmosphere glove-box 

with less than 0.1 ppm oxygen. All the sample soil suspension was centrifuged at 3500 rpm for 

15 minutes to isolate solid particles from the aqueous phase.  The resulting supernatant was then 

filtered to 0.2 m to confirm no large particles were present in the aqueous sample. The resulting 

aqueous sample is distributed for different analysis as shown in the Table A.3. For the solid 

analyses (extracellular enzymes, microbes), the segregated solid soil was mixed with 2 ml of 

aqueous sample to increase the workability and transferred to cryptube. The solid sample is 

frozen immediately in liquid nitrogen where it was stored until it was prepped for analysis. The 

sample preservation for the different analysis is also shown in the Table A.3. This table also 

includes total number of the samples, the variety of vial used for keeping the sample until the 
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analysis. The samples collected for DOC were also used for Specific Ultra-voilet Aborbance 

(SUVA), being an indestructible sampling method. This analysis was usually performed on the 

same day as the experiment. After the SUVA, the DOC sample is acidified by HCl.   

For the (Greenhouse gas) GHG samples for gaseous phase, the flow of the gas in the bioreactor 

is stopped for 15 minutes. The entire inlet and outlet valves are closed during this process. The 

gas is allowed to accumulate. 10 ml of the gas sample is collected via the gas tube on the top of 

the reactor by drawing from the syringe. For the GHG aqueous sampling, 2 ml of sample is also 

collected using syringe consequently after the aqueous sampling. The samples were also capped 

making sure that there is no gas in the sample. 

A3. Figures 

A3.1 Short chain fatty acids  

 

Figure A.1: Short chain fatty acids A: Propionate, and B: Butyrate. The grey regions denote the 

one day oxidizing period in the fluctuating reactor and the Limit of quantification (LOQ) is 

marked by blue regions. All concentrations are in mass carbon per volume of water 
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A4. Tables 

 Table A.1: Comparison of artificial and actual groundwater 

Ion Artificial solution(mmol/L) Actual groundwater (mmol/L) 

Na
+
 0.5008338 0.3491 

K
+
 0.5000000 0.0172 

Ca
2+

 1 1.9610 

Mg
2+

 1 1.1467 

HCO
3-

 1 

No data 

CO3
2-

 0.0004169 

Cl
-
 4 0.6699 

 

Table A.2: CHNS analysis of soil suspension 

Bioreactor  Total Carbon (%) Inorganic carbon (%) Organic carbon (%) 

Day 0 Day 28 Difference Day 0 Day 28  Difference Day 0 Day 28  Difference 

Oxidizing 23.7 22.2 1.5 1.56 1.81 -0.25 22.1 20.4 1.7 

Reducing 23.7 24.9 -1.2 1.56 1.75 -0.19 22.1 23.2 -1.1 

Fluctuating 23.7 30.3 -6.6 1.56 1.33 0.23 22.1 29.0 -6.9 
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Table A.3: Sampling Table 

Sample Techniq

ue 

Analyte Sample  

Preservation 

Sample 

Vol (ml) 

Vial No of 

Sampling 

per week 

Total  no 

of sample 

Water ICP Ca, Fe, S, K, 

Mg, Mn, Na, 

P 

204 µL HNO3  and 

temperature 4
o
C 

2  HNO3 acid, Milli-

Q rinsed, ICP 

tube (13 ml) 

4 48 

Water IC Cl-, NO3-, 

No2-,So4-, 

PO4-, Br-, 

F- 

Freezing at -20
o
C 1 1.5 Eppendorf 4 48 

Water TOC DOC 20 µL HCl  and 

temperature 4
o
C 

 

1 HCl acid, Milli-Q 

rinsed, Glass tube 

4 48 

Water TOC DIC 20 µL HCL  and low 

temperature 4
o
C 

 

1 HCl acid, Milli-Q 

rinsed, Glass tube 

4 48 

Water  Organic acid 20 µl CrO4, 500 ppm 

and low temperature 

4
o
C 

1 4 ml amber vial 4 48 

Solid  Archive Freezing at -80
o
C 1.5 Sterile cryptube 4 48 

Solid  Enzyme Freezing at -80
o
C 1.5 Sterile cryptube 4 48 

Solid  Microbes Freezing at -80
o
C 1.5 Sterile cryptube 4 48 

Water GC GHG  2  Syringe (10 ml) 4 48 

Gas GC GHG  10  Syringe (10 ml) 4 48 

Solid CHNS TN/TC Freeze @-80
o
C 5g solid  Start 

/End 

4 

Solid SEM  Freezing at -20
o
C   Start 

/End 

4 

Solid Extra 

Solid 

sample 

 Freezing at -20
o
C  MQ rinse, ICP 

tube (13ml) 

4 48 
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