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ABSTRACT  
 

One fundamental goal of the brain is to predict sensory events in the environment in 

order to spatially direct actions. In vision, the ability to identify and locate objects 

depends on two cortical pathways: a ventral “what” stream supporting object 

recognition and a dorsal “where” stream supporting object localization. While this 

hierarchical model received strong support in vision, in audition the analogues 

functional roles have remained rather elusive, particularly for the dorsal “where” 

stream. Thus, the objective of this thesis was to explore the functional roles of auditory 

ventral and dorsal stream pathways in the macaque brain. We first explored the 

representational structure of natural sounds in early regions of the ventral pathway 

utilizing single-unit electrophysiology. We then used functional magnetic resonance 

imaging (fMRI) to map the representation of natural sounds along the ventral pathway 

including regions outside auditory cortex. Finally, using high-field fMRI we examined 

the functional representation of acoustic space in auditory cortical regions. Overall, our 

work confirms the role of the ventral stream in decoding sound identity and extends the 

evidence suggesting that vocalizations carry information that is represented outside 

auditory cortex. Moreover, our work in the dorsal stream also confirms the role of a 

posterior dorsal cortical region specialized in processing spatial information and 

reconciles competitive theories of spatial coding in auditory cortex. However, our space 

work also indicates a fundamental difference in the representation format for acoustic 

space in auditory cortex as compared to visual cortex. Taken together, our work 

confirms the functional roles of the ventral and dorsal streams and suggests 

incorporating subcortical level processes in the cortical model for a more integrated 

framework of acoustic processing in the primate brain. 
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1 INTRODUCTION 

1.1 “What” and “Where” processing streams 

In 1969, clinical studies in humans with lesions of occipital cortex led to the finding of 

functionally specialized cortical brain regions for recognizing and locating visual 

objects. In particular, behavioural studies in humans with lesions to the ventral temporal 

cortex suggested that these regions were involved in the recognition of objects while 

dorsal parietal regions were more important for localization of objects in space 

(Newcombe, 1969). In 1983, behavioural and lesion studies combined with anatomical 

tract-tracing techniques in monkeys led to the proposal of a ventral “what” pathway 

involved in the recognition of objects and a dorsal “where” pathway involved in sound 

localization (Mishkin et al., 1983).  

In 1999, a similar proposal was adapted to the auditory domain (Rauschecker et al., 

1997; Rauschecker, 1998; Romanski et al., 1999; Rauschecker and Tian, 2001). This 

proposal was based on the electrophysiological tuning of neurons and on differential 

anatomical projections of anterior-ventral regions and posterior-dorsal regions of 

auditory cortex to segregated functional domains in prefrontal cortex (Romanski et al., 

1999). However, in contrast to the original dual-pathway proposal in vision, the 

analogues functional roles proposed in the auditory domain were based on neuronal 

tuning properties (Tian et al., 2001) rather than on causal relationships of cortical 

lesions on behaviour (Mishkin et al., 1983). Up to date, after more than a decade of 

research, neuroscientists have provided evidence supporting this proposal while others 

have challenged this notion in the auditory system (Belin and Zatorre, 2000; Bizley and 
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Cohen, 2013; Middlebrooks, 2002). Consequently, the proposed functional roles of 

these two pathways in audition have remained elusive given the evidence is mixed. 

1.2 Ventral Stream: Functional and anatomical organization 
 

While most of the data supporting a dual-pathway in audition is based on non-invasive 

functional imaging studies in humans (Binder et al., 2000; Maeder et al., 2001; Alain et 

al., 2001; Arnott et al., 2004; Leaver and Rauschecker, 2010; Chevillet et al., 2011), 

evidence based on fMRI in the macaque monkey is very limited. Still, single-unit 

studies in monkeys together with anatomical tracing techniques provided the foundation 

for understanding the functional organization of auditory cortex in the framework of the 

dual-stream hypothesis.  

Previous neurophysiological studies of macaque auditory cortex identified three 

auditory cortical fields, primary (A1), rostral (R) and rostrotemporal (RT). These fields 

are functionally characterized by their mirror-symmetric tonotopic maps of the cochlea 

partition (see Kaas and Hackett, 2000a for review). Anatomically, they are characterized 

by a dense expression of cytochrome oxidase and parvalbumin in middle cortical layers, 

typical of primary sensory cortices. Together they make up the core auditory cortex, 

which is bordered by belt areas with similar tonotopic organization and a tertiary 

processing stage further referred as parabelt cortex. The rostral belt, parabelt and the 

anterior superior temporal gyrus (STG) send afferent projections into ventrolateral, 

polar, orbital and medial regions of the prefrontal cortex (PFC) (Jones and Powell, 

1970; Hackett et al., 1999; Romanski et al., 1999; Kaas and Hackett, 2000b; Cavada et 

al., 2000; Hackett, 2011; Yeterian et al., 2012), and together these regional projections 

form the ventral cortical stream in audition.  

Functionally, neurons in belt areas are known to respond more prominently to narrow-

band noise rather than to simple pure tones as it is typically observed in core auditory 

regions (Kusmierek and Rauschecker, 2009 and Rauschecker et al., 1995). Hence, it is 

hypothesized that along the medial-lateral axis of auditory cortex spectral information 

gets integrated to represent broader spectral bandwidth. Similarly, along the posterior-

anterior axis (e.g. most rostral areas) neurons do not longer show synchronized temporal 

discharges to temporal rate but rather integrate temporal information into a rate like 

code (Bendor and Wang, 2007; Hackett, 2011). Temporal integration of acoustic 

features is necessary for auditory stimulus identification (Rauschecker and Tian, 2000; 
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(Tian et al., 2013) and combined with increasing spectral integration (Rauschecker et 

al., 1995) it provides the equivalent to a gradual increase in receptive field complexity 

along the ventral stream pathway (Desimone et al., 1984; Connor et al., 2007).  

Furthermore, neurons in the anterior lateral belt (area AL) were found to be more 

selective to monkey vocalizations than neurons in more posterior lateral belt areas (Tian 

et al., 2001). Anatomically, area AL projects to regions further ventral in the anterior 

STG and to ventrolateral PFC (Romanski et al., 1999). Thus, it is thought that along the 

anteriolateral axis spectrotemporal information gets integrated to form a complete 

acoustic “scene” or “auditory object” (Griffiths and Warren, 2004; Nudds, 2010). Such 

higher-level processes are important for decoding sound meaning and for invariant 

representations of acoustic features. These functions are generally thought to belong to 

regions in PFC as originally suggested in the visual domain (Riesenhuber and Poggio, 

1999; Romanski and Goldman-Rakic, 2002). However, it remains an open question 

whether or not neurons at earlier stages of the auditory ventral stream could give rise to 

higher-level representations of complex natural sounds. 

1.2.1 Representation of vocalizations in the macaque 
 

Similarly to studies of the ventral stream in vision and the use of faces as primordial 

stimuli to probe the neural mechanisms of face identity, in audition the use of species-

specific vocalizations provided valuable insight into the neural mechanisms involved in 

the representation of voice identity. In macaques, vocalizations carry information about 

the identity of individuals including gender. Moreover, vocalizations also carry 

information about emotional states of individuals, analogous to human vocal sounds 

including speech (Cheney and Seyfarth, 1990; Ghazanfar and Hauser, 1999; Yovel and 

Belin, 2013).  

Most of the evidence for vocalization coding in the ventral pathway came from 

neurophysiological studies that characterized the physiological properties of the anterior 

STG (Russ et al., 2008; Cohen et al., 2009; Kikuchi et al., 2010, 2014; Perrodin et al., 

2011; Fukushima et al., 2014). Several other studies have also examined the 

representation of vocalizations in the macaque using neuroimaging techniques 

(Poremba et al., 2003; Petkov et al., 2008; Joly et al., 2012b). A highlight among these 

studies was the first fMRI study by Petkov et al. (2008), which found an area sensitive 

to the voice of individuals in the anterior STG region of the macaque. Such imaging 



Functional neuroimaging of ventral and dorsal stream pathways in the macaque auditory system 

4   

studies in monkeys offered the possibility to bridge the methodological gap between 

neuroimaging studies in humans and single-unit studies in monkeys in the search for 

homologies between human speech and monkey vocalizations. 

 Previous comparative approaches focused on identifying the anatomical networks 

involved in the processing of speech in humans and vocalizations in non-human 

primates (Petrides and Pandya, 2009). As the use of functional MRI in monkeys became 

increasingly more available it provided researchers with a complementary method to 

study common neuronal networks in the evolution of speech and language 

(Rauschecker, 2012). Recently, a comparative study in humans and monkeys compared 

the activations of vocalizations and speech in both species and found similar activations 

in the STG (Joly et al., 2012a). Moreover, the authors reported that monkeys listening to 

either vocalizations and/or humans speech showed activation of the orbitofrontal cortex 

(Joly et al., 2012a, 2012b). Given the fact that the ventral pathway continues into 

orbitofrontal and ventrolateral PFC from anterior STG regions (Romanski et al., 1999; 

Cohen et al., 2007), this finding is particularly interesting.  

In humans, the cortical processing of speech has been traditionally attributed to the 

dorsal stream (Wernicke, 1970; Dronkers and Baldo, 2010), but more recent meta-data 

studies have challenged this notion showing primary involvement of the ventral stream  

pathway (DeWitt and Rauschecker, 2012). On the other hand, a recent proposal 

suggested the dorsal stream might also play a role in processing temporal sequences of 

speech sounds (Rauschecker & Scott, 2009). Specifically, this hypothesis predicts that 

articulatory sequences from prefrontal and/or premotor cortices might be transmitted 

into the inferior parietal lobule (IPL) and posterior superior temporal (pST) regions 

where, presumably, the incoming sensorial speech signal could be compared with the 

executed motor sequences. Along the same lines, the existence of mirror neurons in 

premotor cortex area (F5) of the macaque monkey suggests that premotor areas might 

also be involved in the execution and perception of vocal actions (Rizzolatti et al., 

1996). Based on these findings, it was suggested that mirror neurons represent a 

primitive system from which language circuits could have emerged in humans 

(Rizzolatti and Arbib, 1998). But it remains an open question whether the representation 

of vocalizations in the macaque brain also carries information about the motor actions, 

which are necessary to produce them, as it was shown in humans listening to speech and 

music (Wilson et al., 2004; Leaver et al., 2009; Rauschecker, 2012). Thus, besides the 

STG regions, activation of frontal, premotor and parietal regions might also be expected 
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when monkeys are presented with conspecific vocalization sounds, which might carry 

information about internal motor representations. 

1.3 Dorsal Stream: Functional and anatomical organization 
 

As opposed to the ventral pathway projecting to anterio-ventral regions, the dorsal 

pathway projects to posterio-dorsal regions of auditory cortex, intraparietal cortex and 

dorsal PFC (Romanski et al., 1999; Lewis and Van Essen, 2000). The classical 

functional role of the posterior-dorsal pathway relates to the processing of sound source 

location and motion perception (Tian et al., 2001; Recanzone, 2000; Maeder et al., 

2001a; Warren et al., 2002). In monkeys, the dorsal “where” stream begins in the 

posterior STG regions and includes caudolateral (CL) and caudomedial (CM) belt areas. 

Anatomically, both of this areas show darker expression of parvalbumin as compared to 

other belt regions (Kaas and Hackett, 2000b). Functionally, evidence from single-unit 

studies indicates that some of these regions might be tonotopically organized 

(Rauschecker et al., 1997) . However, the functional role of caudal belt regions is more 

related to spatial processing.  In particular, area CL was shown to contain neurons with 

sharp spatial tuning and to be more selective to spatial position than other areas of the 

lateral belt (Tian et al., 2001; Woods et al., 2006; Miller and Recanzone, 2009). More 

recently, electrophysiological studies confirmed the role of area CL in spatial 

processing and provided new evidence indicating that area CM is faster (in terms of 

latency) than other cortical fields (Camalier et al., 2012) while even more recent studies 

emphasised the posterior areas differences by showing that CM is also more temporally 

precise than CL (Kusmierek and Rauschecker, 2014). While these recent data suggested 

that the dorsal pathway might be composed of out multiple pathways emerging from 

posterior areas (Kusmierek and Rauschecker, 2014), the role of CL/CM, including other 

auditory cortical fields in spatial processing remains a matter of debate.  

The notion of a posterior-dorsal region specialized in processing spatial information 

remains conjectural given that many other single-unit studies in monkeys (Woods et al., 

2006; Miller and Recanzone, 2009; Werner-Reiss and Groh, 2008), cats (Middlebrooks 

et al., 1994; Stecker and Middlebrooks, 2003) and ferrets (Nelken et al., 2008) showed 

neurons across auditory cortical fields broadly tuned to contralateral space rather than 

localized in posterior regions in the form of sharply tuned neurons (Tian et al., 2001). 

While a large number of human neuroimaging studies support the notion of a posterior-
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dorsal system for auditory space, only a handful of single-unit studies in macaques exist 

exploring spatial tuning in macaque posterior regions (Tian et al., 2001; Woods et al., 

2006; Miller and Recanzone, 2009; Kusmierek and Rauschecker, 2014).  

A critical point to notice is the fact that most of the single-unit studies in macaques do 

not plot spatial tuning curves, except the study by Woods et al. (2006), which showed 

neurons broadly tuned to contralateral space. Given functional analogues roles in spatial 

processing of the posterior-dorsal pathways in vision and audition, it remains highly 

controversial whether neurons in posterior-dorsal regions of auditory cortex code spatial 

position with a narrow tune response as in the visual system. This issue is important in 

light of the possible spatial presentations that could be observed at the population level. 

Narrow or sharp tuning to spatial position leads to a place code, which may (or may not) 

be arranged in a topographical map of space as in visual cortex. Alternatively, broad 

tuning across hemispheres might represent space based on a distributed rate code or 

hemifield map. 

1.3.1 Spatial representations in auditory cortex  
 

The controversy between broad and sharp tuning is a question that relates to how 

auditory cortical regions could possibly represent spatial position in auditory cortex. If 

the assumption of analogous functional roles between audition and vision are taken into 

account as originally proposed by the dual-pathway in audition (Rauschecker and Tian, 

2000) one could expect narrow tuning at the cortical level for acoustic spatial position 

alike in visual cortex for retinal space (Wandell et al., 2007).  

 If narrow tuning exists in caudal regions and is arranged sequentially in cortical space 

one could expect a space map. However, the search for spatial maps in the auditory 

system of the mammalian brain was not fruitful (McAlpine and Grothe, 2003a).  

Instead, all evidence indicates that auditory space is not represented in the form of a 

spatial topography or maps but by a contralateral hemifield representation based on 

neurons widely distributed across auditory cortex (Grothe et al., 2010; Stecker et al., 

2005; Werner-Reiss and Groh, 2008). Up to date, no map of acoustic space was ever 

found in any auditory structure of any mammalian species ever studied with neuronal 

recordings and/or optical imaging technology. Interestingly however, a map of auditory 

space does exist in the superior colliculi: multisensory nuclei involved in integrating 

different sensorial representations of space into a coherent reference frame (King et al., 
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1994). Thus, it remains an unresolved mystery whether or not the representation of 

space is really analogous to the representation of visual space at the cortical level in 

primates.  

1.4 Aim of projects 
 

The purpose of this thesis was to study the functional roles of the dual-pathways in the 

auditory system focusing on auditory cortical networks. In the following sections, we 

present three studies conducted to explore how auditory cortical areas represent sound 

identity and acoustic space. First, we explored the representational structure of complex 

sounds within auditory cortical fields using population analyses of single-units. 

Secondly, we explored the representation of vocalizations within and outside auditory 

cortex using functional magnetic resonance imaging. Finally, we explored the 

representation of acoustic space in auditory cortex of the macaque using a combination 

of analytical methods applied to the BOLD signal. The overall implication of this work 

suggest a fundamental differences in spatial representations between vision and audition 

and suggest a revised framework that could incorporate subcortical and cortical 

processing of auditory information in primates. 
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2 SOUND-IDENTITY 
PROCESSING IN EARLY 
AREAS OF THE AUDITORY 
VENTRAL STREAM IN THE 
MACAQUE 

 

2.1 Motivation 
The anterior ventral stream in audition is thought to be involved in processing sensory 

information in a hierarchical fashion similarly to the visual ventral stream (Riesenhuber 

and Poggio, 1999). Thus the size and complexity of receptive fields is predicted to 

gradually increase along the ventral pathway (Riesenhuber and Poggio, 1999). Thus, an 

early increase in sensitivity for more complex acoustic features should be present 

already at relatively early processing stages near primary auditory cortex. For this study 

we examined how stimulus classes belonging to two main categories, simple and 

complex sounds, were represented by the population activity patterns in early areas of 

the auditory ventral stream using representational similarity analyses (Kriegeskorte et 

al., 2008; Nili et al., 2014). 
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2.2 Methods 
Single-unit and multi-unit recordings from auditory cortical areas were obtained from 

four awake macaque rhesus monkeys performing a behavioral go/no-go auditory 

discrimination task.  In this task monkeys were trained to release a bar for an infrequent 

(~10-15%) auditory target (broad-band noise) that was paired with a juice reward. The 

task served to maintain a constant level of attention to all other stimuli in the sound 

library. The sound library consisted of simple (i.e. pure tones and narrow-band noise) 

and complex sounds (i.e. monkey vocalizations and environmental sounds). All 

analyses were performed at the population level (n neurons = 585) and the responses of 

the neural population to each sound stimulus were analysed using representational 

dissimilarity analyses and hierarchical clustering techniques.  

In brief, mean firing rate from discrete temporal windows of the peri-stimulus time 

histograms were calculated. First, the mean response of each neuron to the set of stimuli 

was aligned in a vector and normalized by subtracting the mean response of the neuron 

from the vector and dividing it by its Euclidean length. The response normalization for 

single neurons cancels the bias due to different ranges of firing rates in different 

neurons. Second, for any pair of stimuli, we calculated the Pearson correlation 

coefficient (R) between the patterns of responses evoked by the stimuli in the neural 

population. Multidimensional scaling and hierarchical clustering were employed on the 

response pattern dissimilarities to visualize the overall structure of the neural responses. 

The distance or dissimilarity between two stimuli was quantified by 1−R. A 

dissimilarity matrix based on neural distance (1−R) was a substrate for some clustering 

methods employed to reveal the response patterns to sound stimuli, while the normalize 

response patterns were used for K-means clustering.  

2.3 Results 
Dissimilarity analyses and hierarchical clustering techniques revealed that simple 

sounds such as pure tones and band pass noise were clustered mainly by sound 

frequency. The structure for complex sounds formed a distinguishable tree structure far 

apart from the responses to pure tones and band-pass noise. We further quantified these 

results using k-means clustering and showed that if a smaller number of discrete clusters 

were imposed onto the data, the response patterns still reproduced the original stimulus 

structure with reasonable accuracy.  
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Using the same analyses for discrete temporal windows we found an emerging pattern 

of differences between responses across cortical regions. In the caudal region the 

response patterns to each stimuli were classified poorly, but quickly. Classification 

success in the middle region showed marginal performance but slightly later than the 

caudal region. In the rostral region classification evolved slowly:  after 20 ms it could 

perform as good as the middle and caudal regions. Interestingly however, at 

approximately 60-80 ms past stimulus onset, the rostral region clearly surpassed the 

classification performance of any other cortical region, reaching ~90% accuracy.  

We further explored the degree of classification accuracy for the rostral region and 

tested whether it reflected the acoustic features of stimuli. First, we applied the same 

classification methods as for the neural population to multiple acoustic features 

extracted from the stimuli. Classification based on acoustic features showed comparable 

results to the classification performance base on neural population in caudal and middle 

regions. However, classification performance from the rostral region, within 80-160 ms 

past stimulus, surpassed not only classifications obtained from other cortical regions, 

but also those extracted from acoustic features of the stimuli.  

 

2.4 Conclusions 
In this study we provided evidence showing that stimulus identity, a feature attributed to 

the anterior ventral stream, could be found at the level of the rostral and rostromedial 

areas (R/RM). Based on relatively slow development of high classification accuracy and 

on much higher classification accuracy than that based on acoustic features, we 

hypothesized about the role of top-down influences of higher regions in the process. 

Methodologically, this study also demonstrates the advantage of using clustering 

analyses with short temporal windows yielding more information than more 

conventional type of analyses. 
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3  FUNCTIONAL MRI OF THE 
VOCALIZATION-PROCESSING 
NETWORK IN THE MACAQUE 
BRAIN 

 

3.1 Motivation 
Species-specific vocalizations in non-human primates convey important information 

about affective/emotional states as well as information pertaining to the identity of 

objects and individuals (Ghazanfar and Hauser, 1999). While single-unit studies in the 

macaque monkey had focused on the neural properties of neurons in the superior 

temporal gyrus (STG) much less is known about the representation of vocalization 

networks outside the STG. Here, we examined the global representation of vocalizations 

using fMRI and compared their activation with other sound categories. We explained 

our results based on the anatomical networks projecting from the observed active 

regions in the STG to prefrontal and parietal cortices. 

3.2 Methods 
We used whole-brain fMRI in awake-behaving macaques to image the BOLD responses 

to auditory stimuli from three categories: macaque monkey vocalizations, 
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environmental sounds and scrambled versions of the same monkey vocalizations. The 

scrambled versions of the monkey vocalizations served as acoustic control given that 

those sounds preserved the local spectrotemporal features of the original monkey calls. 

During scanning sessions, monkeys performed a go/no-go auditory discrimination task 

in which they were required to response with a saccade to a sound target presented 

randomly within 2 sec after data acquisition. Each trial lasted for about 12 sec: 8 sec of 

stimulus presentation, 2 sec of data acquisition and a random interval of 2 sec 

maximum. For each sound condition, we used a general linear model to estimate the 

hemodynamic response function (HRF) to each stimulus. The HRF was convolved with 

on-parameter gamma distribution estimate and a square-wave stimulus function. For 

each condition and contrast, the obtained t-values were used to calculate a mean 

weighted laterality index (LIwm). The indices were based on laterality curves computed 

from a mean sample (x1 – xn) that used the t-value threshold as a weighting factor wi for 

each data point x: 

𝐿𝐼𝑤𝑚 = 𝑊𝑖 ∗ 𝑋𝑖
!

!!!

/ 𝑊𝑖
!

!!!

 

This index yields a single value between − 1 and 1 indicating right- or left-sided 

hemisphere dominance (Wilke and Lidzba, 2007). 

3.3 Results 
Using a horizontal 3-T scanner without enhancing or contrast agents we were able to 

activate the ascending auditory pathways using all three sound categories as regressors 

of interest. Regions that were significantly activated included: cochlear nucleus, inferior 

colliculi, medial geniculate body, primary auditory cortex and the STG.  

We also compared the activations evoked by monkey vocalizations against those 

evoked by environmental sounds and/or scrambled monkey vocalizations and found 

consistent activations in the anterior STG, specifically in AL, rostrotemporolateral 

(RTL) and rostrotemporal pole (RTp) areas of both monkeys. The laterality index 

showed a bias towards the right anterior STG patches (e.g. RTL and RTp). 

Interestingly, when we compared monkey calls against environmental sounds we found 

activation patches in regions of the inferior parietal lobule (IPL), specifically in areas 

PF/PFG. 
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3.4 Conclusions 
Our functional imaging results demonstrate the validity of using complex sounds for 

mapping cortical and subcortical auditory structures in the macaque brain (Rauschecker 

et al., 1995; Rauschecker 1998; Poremba et al., 2003). We also substantiate previous 

fMRI results showing a right-hemispheric bias in the representation of complex sounds 

in macaque auditory cortex (Joly et al., 2012; Petkov et al., 2008). More importantly, 

our results extend previous evidence showing increased sensitivity to monkey 

vocalizations in anterior STG regions (Poremba et al., 2004; Petkov et al., 2008; 

Kikuchi et al., 2010; Fukushima et al., 2014b). Taken together, our results indicate that 

vocalizations are processed along the ventral auditory pathway and involve a chain of 

interconnected regions in the anterior STG and PFC for the recognition and 

categorization of complex sounds (Rauschecker, 2012). 
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4 WIDESPREAD AND 
OPPONENT FMRI SIGNALS 
REPRESENT SOUND 
LOCATION IN MACAQUE 
AUDITORY CORTEX 

 

4.1 Motivation 
How acoustic space is represented in primate auditory cortex remains a highly debated 

argument in the field of auditory neuroscience (Zatorre et al., 2002; Belin and Zatorre, 

2000; Middlebrooks, 2002). Two theoretical frameworks proposed different forms of 

coding for spatial position of sound sources in auditory cortex. While some single-unit 

studies in monkeys suggested that acoustic space is represented by specialized and 

localized cortical regions in posterio-dorsal auditory areas (Tian et al., 2001; Woods et 

al., 2006; Miller and Recanzone, 2009; Kusmierek and Rauschecker, 2014),  other 

studies in monkeys (Werner-Reiss and Groh, 2008; Woods et al., 2006; Miller and 

Recanzone, 2009), cats (Middlebrooks et al., 1994; Stecker and Middlebrooks, 2003) 

and ferrets (Nodal et al., 2012; Nelken et al., 2008) indicated that neurons across 

auditory cortical areas responded broadly to spatial position.  
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The notion of distributed coding for space (Stecker et al., 2005; Stecker and 

Middlebrooks, 2003; Magezi and Krumbholz, 2010; Salminen et al., 2009) is in 

accordance with a subcortical framework (McAlpine et al., 2001; Grothe et al., 2010) 

which indicates that acoustic space in mammals is coded by an opponent-channel 

mechanism based on contralateral inhibition (Grothe, 2003; McAlpine et al., 2001; 

Grothe and Pecka, 2014). While strong evidence exists across mammalian species 

supporting this model, the majority of neuroimaging research in humans supports a 

different perspective which suggest a local and specialized cortical region for space in 

posterior auditory cortex (Maeder et al., 2001b; Baumgart et al., 1999; Warren et al., 

2002; Griffiths et al., 1996). However, functional imaging data in the macaque monkey 

mapping the auditory spatial domain is not available. For this work we investigated how 

auditory space is presented across auditory cortical areas of each hemisphere of the 

macaque monkey utilizing high-resolution fMRI.  

4.2 Methods 
Binaural sound recordings were used to create a virtual acoustic space from which 

spatial sounds containing all individual spatial cues (interaural time delays (ITDs), 

interaural level differences (ILDs) and spectral cues) were played during experiments. 

High field imaging (0.75 x 0.75 x 2 mm resolution) was performed in anesthetized and 

awake monkeys to image the activation patterns to spatial sounds.  

Before spatial mapping, we used phase-encoding methods to identify tonotopy maps 

and to use their mirror-reversals to delineate areal boundaries in auditory cortex. The 

coherence of the fMRI time series at the stimulus presentation cycle was used to 

measure the strength of the BOLD response amplitude in each voxel. Coherence 

measures the ratio of the amplitude at the fundamental frequency to the signal variance, 

ranging between 0 and 1. The measure of coherence used was: 

𝐶(𝑓!) = 𝐴 𝑓! /( 𝐴 (𝑓)!
!!!

∆!
!

!! !!!
∆!
!

)
!
!

 

where 𝑓!  was the stimulus frequency,  𝐴 𝑓!  the amplitude of the signal at that 

frequency, 𝐴 𝑓  the amplitude of the harmonic term at the voxel temporal frequency 𝑓 

and ∆𝑓 the bandwidth of frequencies in cycles/scan around the fundamental frequency 

𝑓!. For all tonotopy stimuli 𝑓! corresponds to twelve cycles (12/1200 sec = 0.01 Hz) and 
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∆𝑓 corresponds to the frequencies around the fundamental excluding the second and 

third harmonics. Any given coherent voxel exceeding threshold was used to plot the 

phase peak to each stimulus condition (e.g. frequency range). The same method was 

used to map the spatial domain in auditory cortex.  

Furthermore, we used general linear modelling to obtain the BOLD responses to each 

spatial sector. To determine the degree of contralaterality between responses across 

hemifields we calculated hemispheric differences with a mean weighted laterality index 

(LIwm) as described above (see section 3.2). In addition, spatial tuning curves were 

calculated from the spatial spread of the BOLD responses for each auditory cortical 

region using circular statistics. Finally, multivariate pattern dissimilarity was used to 

compare spatial representations across cortical regions with a hemifield code model. 

 

4.3 Results 
Using phase-encoding methods we mapped the tonotopic organization in auditory 

cortex, identified mirror-reversal frequency maps and delineated areal boundaries 

between regions. For the spatial domain we found a broad hemifield-tuning response 

and a lack of topographical organization at the millimeter scale in each auditory cortical 

region.  

Using a general linear model of the BOLD response we found that the representation of 

space was dominated by distributed hemifield representation of positive and negative 

BOLD signals across the cerebral hemispheres. The positive BOLD responses showed a 

maximum amplitude and spatial spread for contralateral sectors (e.g. near the ear ~ ± 

90° - 120°). On average, each cortical field of the same hemisphere showed similar 

broad hemifield tuning curves.  

Contrast between the responses to each hemifield sector also showed a robust 

contralateral bias in auditory cortex and inferior colliculi. Given the profound roles that 

inhibition plays in the medial superior olive (e.g. at the brainstem level) for coding ITDs 

we conducted control experiments in which we tested the effects of removing ITD cues 

from the original spatial sounds. These control experiments suggested that the 

suppression effects (either in the form of small patches of positive BOLD and/or 

negative BOLD responses) were due to inhibitory inter-hemispheric processes brought 
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by ITD cues. In addition, the lack of suppression caused by the removal of ITD cues 

particularly affected the right hemisphere response necessary for contralateral tuning.  

Finally, our multivariate pattern dissimilarity analyses showed that BOLD signals in 

right posterior STG were greatly modulated by spatial sounds showing that this region 

contains more spatial information than any other field of auditory cortex, and codes full 

acoustic azimuthal space similarly to a hemifield rate code. 

4.4 Conclusions 
In summary, our results showed that the representation of auditory space relies on 

distributed as well as specialized mechanisms of cortical processing. The functional 

representation of auditory space was biased towards contralateral space and dependent 

on the suppression effects provided by ITD cues. Suppression was most pronounced in 

the right posterior region, allowing this region to modulate its activity to a greater 

degree than any other field of auditory cortex and thus to code full acoustic space. Such 

functional specialization of the right posterior region suggests similar cortical 

machinery between humans and monkeys for processing auditory space. Taken 

together, our results reconcile seemingly contradictory views of auditory space coding 

(Belin and Zatorre, 2000)  showing that (1) the representation of space follows a 

broadly-tuned hemifield code (at least on the millimeter scale used in this fMRI study), 

but (2) that this representation generates higher sensitivity for spatial location in 

posterior-dorsal auditory cortex, as  commonly seen in spatial studies of primate 

auditory cortex (Tian et al., 2001; Miller and Recanzone, 2009; Griffiths et al., 1996; 

Warren et al., 2002). 
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5 DISCUSSION 

 

5.1 Higher level representations in early “what” stream 
 

Population analyses of single-units (Kuśmierek et al., 2012) and functional imaging 

experiments (Ortiz-Rios et al., 2015) confirmed the role of an anterior ventral stream 

involved in processing complex natural sounds (Rauschecker and Tian, 2000). Our 

results also extended the evidence implicating an anterior STG region in coding species-

specific vocalizations (Poremba et al., 2004; Petkov et al., 2008; Kikuchi et al., 2010; 

Fukushima et al., 2014) and are in accordance with previous single-unit results showing 

increased selectivity for vocalizations in area AL (Tian et al., 2001). Furthermore, our 

single-unit studies of the rostral region also found increased sensitivity to other sound 

categories (Kuśmierek et al., 2012). In addition, our fMRI results showed that even 

when control stimuli, which preserved the low-level spectrotemporal acoustic 

information were used, the anterior STG sensitivity for vocalizations still held.   Taken, 

together our studies using both single-unit electrophysiology and fMRI were consistent 

with the notion of hierarchical processing along the ventral stream pathway. 

Hierarchical processing along the ventral stream is thought to emerge from neural 

ensembles whose selectivity for more complex acoustic features increases, as shown in 

anterior regions of the STG (Poremba et al. 2004; Petkov et al. 2008; Kikuchi et al. 

2010). However, our single-unit data indicated that higher-level representations for 

stimulus-identity were already present at much earlier cortical regions (e.g. area R and 
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RM). These results suggest that at the level of the rostral region the representation may 

shift from feature-based towards object-based. 

This transformation is relevant to consider in comparison to the representation of faces 

in the inferior temporal cortex (e.g. along the visual ventral stream). In the inferior 

temporal (IT) cortex an increase in receptive field size leads to invariant representation 

of 3D objects (Logothetis et al., 1994) and faces (Freiwald and Tsao, 2010). Such 

responses in anterior temporal regions are essential for building invariant object 

representations, which could be robust to changes to individual features as in higher-

level visual areas. Given that both visual and auditory ventral pathways project 

anteriorly to the temporal pole and subsequently to the hippocampal formation it might 

be worthwhile to investigate how multimodal representation of objects might get 

integrated in space and time in the temporal lobe (Howard and Eichenbaum, 2014).  

In our fMRI experiments using complex sounds we observed activations in higher-level 

visual areas, such as the middle temporal (MT) and IT areas. These regions are known 

to be involved in the processing of visual motion (Maunsell and Van Essen, 1983) and 

face identity, respectively (Tsao et al., 2006; Ku et al., 2011). Their activation by 

environmental sounds raises the possibility that multisensory processing of dynamic 

audio-visual stimuli, such as facial expressions which naturally occur in conjunction 

with vocalizations and/or motion of the face (Furl et al., 2012; Polosecki et al., 2013; 

Perrodin et al., 2014) might recruit recurrent neural networks between superior and 

inferior temporal cortices.  

While most studies of higher-level visual cortex focused on the use of static faces, as 

stimuli to prompt the neural mechanism of object-identity, more recent research has 

begun to explore the use of dynamic motion in faces (Polosecki et al., 2013; Furl et al., 

2012). Such stimuli are more comparable to complex sound “objects” given that sounds 

by nature are never static and their representation might involve recurrent networks for 

a time-evolving acoustic scene (Sak et al., 2014). Thus the classical comparison 

between static faces and vocalizations might not be the most adequate for the functional 

analogy between ventral stream function in vision and audition. Our analyses of the 

neural population patterns showed a gradual increase in categorical structure in the 

representation of natural sounds across time at the level of auditory cortex (Kuśmierek 

et al., 2012). However, such higher-level representations for natural sounds are typically 

associated with prefrontal function, and we hypothesized about possible role of top-
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down modulation arising from prefrontal or anterior temporal regions in sound 

categorization. 

In terms of the auditory ventral pathways, the ventrolateral PFC is known to be involved 

in higher-level integrative processes for the cognitive control of vocalizations and the 

interpretation of semantic content in vocalizations (Romanski and Averbeck, 2009). The 

activation patches we found in PFC with our fMRI studies could be due to categorical 

or affective information imbedded in the vocalizations. Neurons with vocalization-

sensitivity are found along with face-sensitive neurons in the vlPFC (Romanski et al., 

2005), allowing these regions to integrate vocalizations with the corresponding facial 

gestures (Romanski and Goldman-Rakic, 2002; Cohen et al., 2007; Diehl and 

Romanski, 2014).  Thus, the processing of vocalizations in the macaque encompasses a 

network of areas, which involve the superior temporal gyrus and prefrontal cortices. 

Moreover, the involvement of prefrontal regions in cognitive control of gestural actions 

in vocalizations might require sensorimotor coupling between regions involved in the 

perception and production of active vocal behaviour.  

 

5.2 Sensorimotor representations in vocal perception  
 

Ventrolateral PFC along with the ventral premotor cortex (vPMC) is implicated in the 

cognitive control and initiation of vocalizations in the macaque monkey (Hage and 

Nieder, 2013). In our fMRI studies utilizing vocalizations we found an engagement of 

both vlPFC and vPMC (in particular area 44) in the processing of monkey 

vocalizations. These results are in accordance with previous fMRI studies in humans 

reporting premotor activation during the presentation of speech sounds (Wilson et al. 

2004). It could be speculated that the vPMC regions are the source of an efference copy 

signal (Kauramäki et al., 2010; Rauschecker and Scott, 2009), which might be, for 

example, responsible for the suppression of auditory cortex during self-initiated 

vocalizations (Eliades and Wang, 2003).   

Area 44 of the vPMC in the macaque monkey controls the orofacial musculature of the 

face (Petrides and Pandya, 2009) and is strongly linked via the superior longitudinal 

fasciculus (SLF III) to the PF/PFG region in parietal cortex (Rozzi et al. 2006; Seltzer 

and Pandya, 1978ab). When we compared vocalizations against environmental sounds 
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we observed differential activation of the PF/PFG region of the right hemisphere. The 

PF/PFG in the macaque is thought to be a homologue to the human supramarginal gyrus 

(Petrides and Pandya, 2009) an area which was linked to language perception and 

receptive aphasia (Dronkers and Baldo, 2010).  

Previous electrophysiological studies in area 44 of the macaque found neurons sensitive 

to orofacial actions and somatomotor stimulation of the face (Hyvärinen and Shelepin, 

1979; Leinonen et al. 1979). Thus, it is conceivable that the cortical representation of 

vocalizations may also include information related to the articulatory sequences and 

actions required to utter them as similarly suggested in humans listening to speech 

sounds (Wilson et al. 2004; Aboitiz, 2012). Thus, it is reasonable to speculate that 

premotor and parietal regions may contain an internal representation of the temporal and 

motor sequences necessary to utter them during vocalizations, as suggested by 

Rauschecker and Scott (2009). While parietal cortex, specifically regions inside the 

intraparietal sulcus (IPS), are known to receive auditory projections (Lewis and 

VanEssen, 2000) and contain neurons that respond to auditory and multimodal stimuli 

(Stricanne et al., 1996; Grunewald et al. 1999; Cohen and Andersen 2000, Cohen, 

2009), it is not known how areas PF/PFG of the IPL respond to auditory or naturalistic 

stimuli such as vocalizations. Today, it remains a challenge to study sensorimotor 

interactions among distal cortical regions and especially challenging to train macaque 

monkeys to vocalize on command. However, a new study by Hage et al. (2013) opens a 

new window for experimental studies in which macaques could be trained to vocalize 

(Fukushima et al., 2014a) during chronic neurophysiological preparations and/or even 

inside an MRI scanner. Future experiments along these lines might reveal the overall 

network dynamics involved in the production and execution of vocalizations in the 

macaque monkey and provide the basis for further comparative studies with humans.  

 

5.3 Widespread representation of acoustic space in auditory cortex 
In humans and monkeys, it is generally accepted that auditory spatial processes belong 

to a dorsal “where” pathway (Romanski et al., 1999; Rauschecker and Tian, 2000) 

which includes specialized cortical areas CL/CM of the posterior STG (Rauschecker 

and Tian, 2000; Tian et al., 2001). However, how the posterior regions including other 

auditory cortical areas code auditory space has remained a matter of controversy in 

functional imaging studies in humans and single-unit studies in monkeys (Zatorre et al., 
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2002; Romanski et al., 1999; Middlebrooks, 2002). The general debate is surrounded by 

whether or not auditory space is represented locally in specialized cortical areas in 

posterior regions or distributed throughout the superior temporal plane. Our functional 

mapping studies demonstrated that the functional representation of auditory space in the 

macaque as measured by functional MRI is distributed throughout auditory cortex. This 

finding is in accordance with previous cortical lesion studies (Jenkins and Masterton, 

1982; Heffner and Masterton, 1975; Nodal et al., 2012), optical imaging results (Nelken 

et al., 2008) and single-unit studies in cats and monkeys (Middlebrooks et al., 1994; 

Miller and Recanzone, 2009; Woods et al., 2006; Stecker et al., 2005) showing neurons 

responding broadly across auditory cortical fields. While previous single-unit studies of 

the macaque area CL indicated the existence of cells with narrowly tuned responses to 

sound location (Tian et al., 2001), we found essentially no difference in the spatial 

tuning curves across cortical regions. This finding indicated that voxels in and out of 

posterior regions, on average, shared common spatial tuning curves (Stecker and 

Middlebrooks, 2003). Given that fMRI samples (at the millimeter level) the average 

signal across a large neuronal population it might be be possible that narrow tuning cells 

may exist intermixed in the cortex.  

On the other hand, if we consider the original suggestion of a posterior specialized 

region composed of sharply tuned neurons; it might be conceivable that if such cells are 

arranged in compact format (e.g. in place code), a map of space could exist. We tested 

this notion by implementing a modified version of the phase-mapping techniques 

(Barton et al., 2012) typically used for mapping the retinotopic organization in visual 

cortex (Wandell et al., 2007). When we used this method to map the frequency 

organization we were able to obtain tonotopic maps as previously shown with 

neurophysiological and functional imaging techniques in the macaque auditory cortex 

(Merzenich and Brugge, 1973; Rauschecker et al., 1997; Petkov et al., 2006). However, 

for the spatial domain two broadly tuned responses (one in each hemisphere) indicated a 

contralateral hemifield representation for auditory space.  

While previous neuroimaging studies in humans presenting spatial sounds or moving 

virtual sounds in space showed different results in relation to the degree of 

contralaterality (Werner-Reiss and Groh, 2008; Zatorre et al., 2002; Krumbholz et al., 

2007), single-unit studies in cats and monkeys invariably show a contralateral bias in 

the firing rate of cortical neurons (Woods et al., 2006; Miller and Recanzone, 2009; 

Werner-Reiss and Groh, 2008; Stecker and Middlebrooks, 2003). When we further 
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investigated these results by looking at each spatial sector we observed an opponent 

pattern of positive and negative BOLD responses across the cerebral hemispheres. This 

finding indicated that a suppression effect for ipsilateral sound sources had caused the 

overall amplitude shift towards a contralateral representation. When we compared 

equidistant hemifield sectors we observed a strong contralateral bias in the BOLD 

response contrast including the inferior colliculi. 

Given the inhibitory roles which ITD cues exert in coding space at the subcortical level 

(Grothe, 2003), we explored the effects of subtracting ITD cues from the original spatial 

sounds (e.g. sounds based only on ILD and spectral cues) in the overall BOLD 

responses at the cortical level. Such manipulation of spatial cues removed the negative 

BOLD responses, but instead generated a facilitation of the response in the right 

hemisphere. The removal of the suppression effect due to the removal of ITD from the 

spatial sounds affected contralateral tuning in the representation of space at the cortical 

level. Lateralization indices further confirmed these results by showing near-zero values 

around the midline, which indicated that ITD cues were essential in shifting the 

hemifield representation across the hemispheres. Furthermore, our results are in 

accordance with the inhibitory roles of ITD cues in subcortical and cortical system of 

mammals, where at least in humans, right hemisphere lesions show severe deficits in 

sound localization (Bisiach et al., 1984; Spierer et al., 2009) and motion discrimination 

(Griffiths et al., 1996) for sounds based solely on ITD cues (Spierer et al., 2009).  

We also noticed a selective suppression of the right posterior STG region for sound 

sources in the ipsilateral side, despite the overall positive BOLD response. The 

concentric BOLD modulation indicated that spatial information was greatly emphasized 

and deemphasized in anterior and posterior regions of AC. Such functional dynamics 

allowed in particular the right posterior region to segregate the responses similarly to 

their actual position. In humans, the posterior right region is known to be sensitive to 

spatial auditory motion (Baumgart et al., 1999; Krumbholz et al., 2007) and our spatial 

coding results support this finding (Werner-Reiss and Groh, 2008; Salminen et al., 

2009). In general, our dissimilarity analyses also provided support to the hypothesis of a 

specialized posterior region in macaque auditory cortex (Tian et al., 2001; Rauschecker 

and Tian, 2000) and coincides with previous single-unit studies in monkeys (Tian et al., 

2001; Miller and Recanzone, 2009; Woods et al., 2006; Kusmierek and Rauschecker, 

2014) by showing that posterior regions carried more spatial information than primary 
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cortical regions in agreement with a posterior-dorsal “where” auditory pathway 

(Romanski et al., 1999; Rauschecker and Tian, 2000). 

5.4 Conclusions 
The functional analogy between visual and auditory streams has provided a platform for 

understanding the neural mechanisms of higher-level processing of acoustic information 

in cortex. More than two decades of research in the cortical systems of primates has lead 

neuroscientist to either support or reject the cortical centric view of auditory processing. 

The fact that the processing of complex natural sounds involves a large number of 

widespread cortical and subcortical regions across the macaque brain challenges the 

notion of a purely cortical and unimodal sensory model. Instead such evidence calls for 

a more comprehensive view of auditory processing to a model that incorporates cortical 

and subcortical processing of acoustic information.  

The necessity to incorporate the subcortical processes in the overall cortical model is 

more sounding for ITD coding given the complexity of interactions that takes place at 

the brainstem level. While it was originally thought that ITDs (the most salient spatial 

cues) were coded by a topographical arrangement of coincidence detectors as in the 

barn owl (Jeffress, 1948; Knudsen and Konishi, 1978), more than a decade of research 

in multiple mammalian species has revealed a different mechanism (Grothe et al., 2010; 

McAlpine and Grothe, 2003b),  one in which ITDs are coded by an opponent hemifield 

code based on contralateral inhibition (McAlpine et al., 2001; Grothe, 2003; Grothe et 

al., 2010; McAlpine and Grothe, 2003b). Our spatial mapping results here support this 

view at the cortical level by showing an opponent representation across the cerebral 

hemispheres rather than a local spatial topography.  

Thus, in comparison to the visual dorsal stream, the format of representation in auditory 

cortex is fundamentally different from the spatial topography of the retina in visual 

cortical regions (Wandell et al., 2007).  The lack of topographic organization, together 

with our results showing positive and negative BOLD responses across hemispheres, 

strongly support the opponent-channel model (Stecker et al., 2005) for auditory space in 

the macaque, rather than a place code format as generally seen in retinotopic space 

maps in visual cortex. Although similar functional cortical organization for the 

representation of visual and auditory space was proposed more than a decade ago 

(Rauschecker and Tian, 2000), the functional analogy is weakened by the consideration 

of the auditory feature analogous to “where” (position of the sensory periphery) in 
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vision. In the auditory system, position in the sensory periphery is based on sound 

frequency rather than spatial position as in vision. Thus the functional analogy between 

visual and auditory spatial representations in cortex of primates may not reach that far. 
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Abstract 

Auditory cortical processing is thought to be accomplished along two processing 

streams. The existence of a posterior/dorsal stream dealing, among others, with the 

processing of spatial aspects of sound has been corroborated by numerous studies in 

several species. An anterior/ventral stream for the processing of nonspatial sound 

qualities, including the identification of sounds such as species-specific vocalizations, 

has also received much support. Originally discovered in anterolateral belt cortex, most 

recent work on the anterior/ventral pathway has been performed on far anterior superior 

temporal (ST) areas and on ventrolateral prefrontal cortex (vlPFC). Regions of the 

anterior/ventral stream near its origin in early auditory areas have been less explored. In 

the present study, we examined three early auditory regions with different antero-

posterior locations (caudal, middle, and rostral) in awake rhesus macaques. We 

analyzed how well classification based on sound-evoked activity patterns of neuronal 

populations replicates the original stimulus categories. Of the three regions, the rostral 

region (rR), which included core area R and medial belt area RM, yielded the greatest 

classification success. Starting from approximately 80 ms past stimulus onset, 

clustering based on the population response in rR became clearly more successful than 

clustering based on responses from any other region. Our study demonstrates that 

specialization for sound-identity processing can be found very early in the auditory 

ventral stream. Furthermore, the fact that this processing develops over time can shed 

light on underlying mechanisms. Finally, we show that population analysis is a more 

sensitive method for revealing functional specialization than conventional types of 

analysis.
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Introduction 

The concept of two streams in auditory cortical processing, similar to the ones 

in visual cortex (e.g., Mishkin et al. 1983) has been proposed more than a 

decade ago (Rauschecker et al. 1997; Rauschecker 1998; Rauschecker and 

Tian, 2000).  It was supported by contrasting patterns of anatomical 

connections in the macaque from anterior/ventral and posterior/dorsal belt 

regions of auditory cortex to segregated domains of lateral prefrontal cortex 

(Romanski et al. 1999) and by different physiological properties of these 

regions. In particular, the anterior lateral belt (area AL) exhibited enhanced 

selectivity for the identity of sounds (monkey vocalizations); the caudal lateral 

belt (CL) was particularly selective to sound location; the middle lateral belt area 

(ML) fell in-between and showed no specific preference for either of these 

properties (Tian et al. 2001). 

Though refinements of the dual-pathway hypothesis have been proposed (e.g., 

Rauschecker and Scott 2009; Rauschecker 2011), its core concept has 

persisted and has been supported by numerous studies. Perhaps the most 

massive evidence for dual auditory processing streams comes from functional 

imaging in humans (e.g., Binder et al. 2000; Maeder et al. 2001; Alain et al. 

2001; Arnott et al. 2004; Leaver and Rauschecker 2010; Chevillet et al. 2011). 

In non-human primates, Recanzone and colleagues have presented extensive 

data confirming the enhanced selectivity of neurons in caudal regions of 

macaque auditory cortex (especially area CL) to sound location (Recanzone et 

al. 2000a,b; Woods et al. 2006; Recanzone et al. 2010), thus providing further 

support for the existence of a caudal “where”-stream.  



 

 

 

The concept of an anterior “what”-stream has been tested in various monkey 

studies as well. After the initial demonstration of increased selectivity to monkey 

calls in area AL by Tian et al. (2001), most of the evidence for stimulus-identity 

coding in the anterior pathway came from studies of far anterior regions of the 

superior temporal (ST) cortex and of ventrolateral prefrontal cortex (VLPFC) 

(Poremba et al. 2004; Romanski et al. 2005; Petkov et al. 2008; Cohen et al. 

2009; Kikuchi et al. 2010). Fewer data are available from the earliest stages of 

the anterior stream, that is, from areas adjacent to primary auditory cortex (A1). 

Recanzone (2008) found no difference in monkey-call selectivity between the 

rostral core area (R) and A1, suggesting that feature selectivity may not emerge 

until the level of the belt. The same study failed to find specificity in belt area 

ML, consistent with Tian et al. (2001). However, Recanzone’s (2008) recordings 

did not extend to belt area AL, where Tian et al. (2001) found the earliest signs 

of selectivity to vocalizations, nor to other anterior belt regions, a fact noted both 

by the author himself (Recanzone 2008), as well as by subsequent 

commentators (Bizley and Walker 2009).  

Indirect confirmation for the existence of an anterior “what”-stream in primates 

came from measures of temporal integration, which increase in areas anterior to 

A1 (Bendor and Wang 2008; Kuśmierek and Rauschecker 2009; Scott et al. 

2011). Temporal integration of acoustic features is necessary for auditory 

stimulus identification (Rauschecker and Tian 2000). Combined with increasing 

spectral integration (Rauschecker et al. 1995) it provides the equivalent to the 

gradual increase in receptive field complexity along the ventral visual stream 

(e.g., Desimone et al. 1984; Connor et al. 2007). 
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As the anterior stream processes auditory structure in a hierarchical fashion 

(Chevillet et al. 2011), selectivity for sound stimuli is expected to develop 

gradually along the stream, which would make it more difficult to find indications 

of selectivity closer to A1. Still, the beginnings of selectivity constituting initial 

primitives of sound identification should be present even at relatively early 

processing stages. Coding may take place across larger populations of 

neurons, as has been found in posterior regions: while single neurons carry little 

information about sound location in auditory areas adjacent to A1 on the 

posterior side, analyzing neural populations allowed to extract more precise 

spatial information (Miller and Recanzone 2009). Population analysis has also 

been successful in studies of monkey-call selectivity in vlPFC (Romanski et al. 

2005). Thus, we decided to investigate how stimulus identity is represented by 

population activity patterns in early areas of the auditory ventral stream.  

Furthermore, many previous studies focused on selectivity of single neurons for 

stimuli within a stimulus class, e.g. monkey calls (e.g., Tian et al. 2001; 

Romanski et al. 2005; Recanzone 2008; Russ et al. 2008; Kuśmierek and 

Rauschecker 2009). In the present study, we examined how responses of 

neural populations can be used to discriminate between stimulus classes. Our 

expectation was that between-class categorization might require coarser 

discriminations than within-class categorization and would therefore be 

detectable more readily in early cortical areas. 



 

 

 

Materials and Methods 

This paper presents population analysis of data collected in two single/multiunit 

recording experiments from four male rhesus monkeys (Experiment 1: monkeys 

S and L; Experiment 2: monkeys B and N). Data from monkeys S and L have 

also been used in another study, but for a different purpose and analyzed in a 

different way (Kuśmierek and Rauschecker 2009). Experiments 1 and 2 were 

conceptually very similar, but differed in some details. For the sake of clarity, 

detailed information on methodological differences between Experiments 1 and 

2 was moved to the last section of Materials and Methods. In earlier sections, 

we describe only those differences that are crucial to data interpretation. 

Animals 

Each animal was implanted with a plastic recording chamber (Crist Instruments, 

Hagerstown, MD, USA) over left auditory cortical areas. Implant locations were 

confirmed by 3T MRI with 1 mm3 voxel size. Monkeys were water-restricted to 

provide adequate drive in a fluid-rewarded task. All experiments were 

conducted in accordance with NIH guidelines and approved by the Georgetown 

University Animal Care and Use Committee. 

Stimuli and task  

Monkeys were seated in a monkey chair (Crist Instruments) in a sound-

attenuated chamber (IAC, Bronx, NY, USA) measuring 2.6 m x 2.6 m x 2.0 m 

(W x L x H).   
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The stimuli of interest included artificial sounds: pure tones (PT), 1/3-octave and 

1-octave band-pass noise bursts (1/3-oct BPN, 1-oct BPN); and two classes of 

natural sounds: rhesus monkey calls (MC) and environmental sounds (ES). 

Duration of tones and noise bursts was 500 ms (Experiment 1) or 300 ms 

(Experiment 2). Due to limitation of the presentation system in Experiment 2, 

the range of PT and BPN frequencies was reduced compared to Experiment 1, 

and the number of MC and ES stimuli was 7 in each class instead of 10. 

(Throughout the paper, “BPN frequency” denotes BPN center frequency.) All 

MC used in Experiment 2 where previously used in Experiment 1, whereas only 

5 out of 7 ES used in Experiment 2 were previously used in Experiment 1.  

Data from each Experiment were analyzed separately. Then, in addition, 

responses to stimuli that were common to Experiment 1 and 2 were pooled and 

analyzed together. The respective analyses/results are labeled as “Experiment 

1”, “Experiment 2”, and “Combined”. The stimulus sets used in the analyses 

were as follows: 

Experiment 1: nine PT, nine 1/3-oct BPN, nine 1-oct BPN (frequencies of PT 

and BPN: 0.125-32 kHz), ten MC and ten ES.  

Experiment 2: seven PT, seven 1/3-oct BPN, seven 1-oct BPN (frequencies of 

PT and BPN: 0.25-16 kHz), seven MC and seven ES.  

Combined: seven PT, seven 1/3-oct BPN, seven 1-oct BPN (frequencies of PT 

and BPN: 0.25-16 kHz), seven MC and five ES.  

Stimulus duration ranged from 151 to 2614 ms. Thus, to ensure that only 

stimulus-driven activity contributed to the results, all analyses covered the first 

160 ms of neural responses (the approximate duration of the shortest stimulus). 



 

 

 

Similarly, when acoustical properties of stimuli were examined, only the first 160 

ms of each stimulus period were used. The stimulus presentation level was set 

to ~50 dB and ~30 dB above the macaque hearing threshold (Jackson et al. 

1999) for Experiment 1 and 2, respectively. 

The behavioral task was go/no-go auditory discrimination: a bar-release 

response to an infrequent (~10-15%) auditory target was rewarded by a small 

amount of juice, water, or a balanced electrolyte drink (Prang, BioServ, 

Frenchtown, NJ, USA). The purpose of the task was to keep the animals at an 

approximately constant level of attention. A block of all stimuli (including several 

repetitions of the behavioral target) was presented 10-13 times (Experiment 1) 

or 60 times (Experiment 2), in random order within each block presentation. 

Each trial started with a 300-400-ms pretrial period, during which the animal had 

to keep its hand on the bar. 

Neural recordings 

Single and multi-unit recordings were obtained by advancing 1-2 epoxylite- or 

glass-insulated 1-3 MΩ tungsten electrodes (FHC, Bowdoin, ME, USA or NAN 

Instruments, Nazareth Illit, Israel) into the auditory cortex by means of a 

micropositioner (Model 650, David Kopf, Tujunga, CA, USA, or FlexMT/EPS, 

Alpha Omega, Nazareth Illit, Israel). A stainless steel guide tube was used to 

puncture the dura. A 1 mm x 1 mm spacing grid (Crist Instruments) provided a 

repeatable spatial reference for electrode location. The electrode signal was 

amplified and filtered (Model 1800, A-M Systems, Sequim, WA, USA and PC1, 

TDT; or MCP Plus, Alpha Omega). In Experiment 1, neural activity was isolated 

with a window discriminator (SD1, TDT), and spike time stamps were recorded 
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with a custom-made program (“Fiordiligi”, Kuśmierek and Rauschecker 2009), 

which also presented stimuli and controlled the behavioral task. In Experiment 

2, Power1401mk2 (CED) interface and Spike2 program (v. 6 or 7, CED) running 

custom-made scripts were used to record and isolate neural activity, present 

stimuli, and control behavior; in most cases, units were isolated post-hoc using 

principal component analysis. As the recording electrode was lowered, the 

surface of auditory cortex was determined from recording depth (in reference to 

MRI images) and from the presence of a “silent gap” corresponding to the 

lateral sulcus. In order to drive the neurons (whether identified by baseline 

activity, or silent when not stimulated), we used the same stimuli as those in the 

formal testing and/or natural sounds produced ad hoc (knocking, hissing, key 

jingling, clapping etc.). Only auditory-responsive units were tested further. 

Cortical regions 

Since the main purpose of the study was to investigate antero-posterior 

differences of acoustic stimulus representation in core and medial belt, 

recordings from core areas R and A1 were pooled with recordings from 

neighboring medial belt areas RM and MM, respectively. Total number of 

elements being an important factor in this type of study (Miller and Recanzone 

2009), pooling enabled us to increase the size of analyzed neuronal 

populations. We have shown previously that response properties of MM and 

RM neurons are quite similar to responses of cells in A1 and R, respectively 

(Kuśmierek and Rauschecker 2009). 

After pooling, three cortical regions were distinguished: a rostral region (rR) 

comprising the rostral core area R and rostro-medial area RM, a middle region 

(rM) consisting of the primary core area A1 and middle medial area MM, and a 



 

 

 

caudal region (rC) which consisted of the caudo-medial area CM (

 

Figure 1). Region rR data originated from Experiment 1 only, rC data from 

Experiment 2 only, and rM data from both Experiments 1 and 2. To account for 

the fact that Experiments 1 and 2 differed in several respects, rM datasets 

coming from Experiments 1 and 2 were analyzed separately and labeled as rM1 

and rM2, respectively. This enabled us to distinguish differences between 

regions from differences between experiments. 

Antero-posterior parcelation was based on best-frequency reversals, which 

were clear in both Experiment 1 (Kuśmierek and Rauschecker 2009) and 2. In 

Experiment 2, medio-lateral delimitation of area CM from CL was also required. 

In monkey N, CL was separated from CM based on longer latencies and higher 

selectivity to azimuth (Woods et al. 2006; Kuśmierek and Rauschecker in 

preparation). The resulting boundary ran approximately along the midline of the 

superior temporal plane, consistent with the placement of the CM/CL boundary 
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in the anatomical literature (Smiley et al. 2007). In monkey B, caudal recordings 

were performed only in the medial half of the superior temporal plane, and 

neither long latencies nor increased azimuth selectivity were found laterally in 

the recorded area.  Thus, all recordings caudal to the best-frequency reversal at 

the caudal end of A1 in monkey B were considered to be from CM.  The total 

number of neurons per cortical region was 159, 262, 95, and 69 for rR, rM1, 

rM2, and rC, respectively. 

Neural data analysis 

Spike time-stamps were exported to Matlab (Mathworks, Natick, MA, USA) and 

processed with custom-made Matlab scripts. Spike times were corrected for 

sound travel time from the loudspeaker to monkey ear, and, in Experiment 1, for 

spike discriminator delay.  

The analysis of neural data was performed in several variants. First, as 

mentioned before, it was done separately for Experiment 1 or 2, or for both 

experiments Combined. Second, we analyzed all cortical regions together, or 

each of them separately to detect any between-region differences. Third, we 

performed computations on data from a single 160-ms temporal window starting 

at the stimulus onset, compared to a 160-ms window immediately preceding 

sound onset (pretrial), or we analyzed eight consecutive 20-ms windows within 

the stimulus starting at the stimulus onset and compared them to a 20-ms 

pretrial window. Fourth, analyses were performed for all stimuli (PT, BPN, MC, 

and ES), or for natural stimuli (MC and ES) only. 

The first stage of analysis followed the method of Kiani et al. (2007). 

Specifically, for each unit and each stimulus, average firing rate within 20-ms or 



 

 

 

160-ms temporal windows was calculated across all stimulus presentations. For 

each unit, values of firing rate in response to the entire stimulus set were 

treated as a vector that was normalized by subtracting the mean and dividing by 

the vector’s Euclidean length. Correlation coefficients (r) between normalized 

population responses were calculated and visualized as similarity matrices. For 

natural stimuli MC and ES, representation of stimulus classes in the similarity 

matrices was quantified by comparing within-class correlation coefficients to 

between-class correlation coefficients (both between the given class and the 

other natural stimulus class, and between the given class and all artificial 

stimuli, that is, PT and BPN) with a t-test.  

Next, the normalized responses were arranged into a units x stimuli matrix, and 

hierarchical clustering of stimuli based on a measure of neural distance (1-r) 

was calculated and visualized with dendrograms.  

To quantify and compare the representation of stimulus classes in population 

responses, we assigned stimuli to k a-priori categories of stimuli. The choice of 

actual k values and of categories is described in the Results section. Next, we 

clustered the normalized firing rates into k clusters with the k-means procedure. 

The main measure obtained in this analysis was classification success, that is, 

the proportion of stimuli that were clustered into their a-priori classes: proportion 

of correct classifications (PCC). 

Different numbers of neural units were available for different cortical regions. 

This could skew the results of clustering because the quality of stimulus 

representation by a neural population may depend on the population size (Miller 

and Recanzone 2009). To avoid this potential confound, we performed k-means 
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clustering on a subset of neurons from each region. The size of the subset was 

set to the number of units in the least numerous region of the analysis. 

Clustering was repeated 50 times with subsets drawn randomly from each 

region every time. The mean PCC (or mode PCC, see below) from these 50 

repeats was taken as the representative value for a region. 

The statistical significance of PCC values was quantified in two ways. First, to 

evaluate if quality of clustering was higher than the baseline, the mode PCC 

obtained in each temporal window during the stimulus was compared to the 

mode PCC derived from the pretrial with a one-way Fisher exact probability test. 

When cortical regions were analyzed separately, their separate mode PCCs 

were compared to one pretrial mode PCC from all regions combined. 

Second, when regions were analyzed separately, we assessed if quality of 

clustering in a particular region deviated significantly from the “reference range”. 

The reference range was estimated by randomly re-assigning the neurons to 

regions and repeating the k-means analysis in an identical way as described 

above to obtain reference mean PCCs. The number of re-assignments was 

such that the number of reference PCCs was 400. For example, when 4 regions 

were analyzed, the analysis was run 100 times, each run producing four 

reference PCCs. The mean PCC of a region was considered significantly 

(p≤0.05) above or below the reference range if it was outside of the middle 95% 

of reference PCCs. 

Again, this procedure could possibly be confounded by the unequal number of 

neurons per region. The reference range obtained by drawing neurons from the 

entire pool in a random fashion would be skewed towards values characteristic 

for the rM1 region (which contributed 45% neurons to the pool), and less 



 

 

 

representative for the rC region (12%). Similarly, the reference range would be 

skewed towards values obtained from Experiment 1, which provided 72% of the 

analyzed units. Thus, the randomized pool of neurons was created by drawing 

the same number of neurons from each region. The number was equal to the 

mean number of neurons across the regions. Consequently, in each 

randomization a random subset of more numerous regions was used, whereas 

some neurons were re-drawn from less numerous regions. Still, the subset size 

used for k-means clustering of randomized data was the same as for the 

original data, that is, equal to the number of neurons in the least numerous 

region. 

Analysis of sound stimuli 

The purpose of the analysis of sound stimuli was to determine if classification of 

the stimuli based on responses of neural populations in the auditory cortex can 

be matched by classification based on acoustical properties of the stimuli. For 

this analysis, only the first 160-ms segment of each stimulus was used, to 

match the information used for the neural analysis. To avoid cut-off transient, 5-

ms linear fade-out was applied to the segment. All stimuli used in any of the 

experiments were analyzed: 10 PT, 20 BPN, 10 MC and 12 ES. Three analysis 

approaches were used. 

First, a log-frequency scale spectrogram was created by splitting each stimulus 

into 57 ⅙-octave frequency bands (center frequencies: 64 Hz - 41.3 kHz) with a 

16384-point FIR filter and measuring RMS value (expressed in dB) in 33 

consecutive non-overlapping 5-ms bins. Pearson correlation coefficient between 

spectrograms was used to measure the similarity between pairs of stimuli, 
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which was then visualized in the form of a similarity matrix. Between/within-

class correlations of natural sounds were quantified, same as for the neural 

data. The similarity matrix was converted to a dissimilarity measure by 

subtracting from 1, and the resulting dissimilarity matrix was subjected to 

multidimensional scaling (MDS) with the number of dimensions set to three. As 

a result, each sound was assigned three parameter values derived from 

spectrogram dissimilarity. 

Second, modulation spectrum analysis (Singh and Theunissen 2003) was 

performed for each sound with the STRFpak Matlab toolbox. We obtained a 

spectrogram of each sound by decomposing it into frequency bands using a 

bank of Gaussian filters (244 bands, filter width = 125 Hz). The filters were 

evenly spaced on the frequency axis (64-48000 Hz) and separated from each 

other by one standard deviation. The decomposition resulted in a set of narrow-

band signals which were then cross-correlated with each other, including itself, 

to yield an autocorrelation matrix. This auto-correlation matrix was calculated for 

time delays of +/-150 ms. Two-dimensional Fourier transformation of this auto-

correlation matrix was calculated to obtain the modulation spectrum (MS) of 

each sound. Just as for the spectrogram analysis, the Pearson correlation 

coefficient between MS was used to measure the similarity between all pairs of 

stimuli, displayed as similarity matrix, and quantified for natural stimuli. Then, 

MDS was used to calculate values of three parameters derived from MS 

dissimilarity. 

Third, three direct acoustic measures were calculated for each stimulus using 

the program Praat (v. 5.1.04, Boersma and Weenik, University of Amsterdam, 

http://www.praat.org): center of gravity of spectrum (in logarithmic scale), mean 



 

 

 

harmonicity (Boersma 1993), and standard deviation of intensity, with the 

purpose of estimating the frequency region with dominant energy, the ratio of 

periodic to aperiodic components, and the degree of amplitude modulation, 

respectively.  

The last step of the analysis of sounds was an attempt to classify the stimuli 

based on calculated acoustic parameters in a similar way as for the neural 

responses. To this end, each of nine acoustic parameters (three from direct 

measurements, three from MDS based on spectrogram dissimilarity, three from 

MDS based on modulation spectrum dissimilarity) was converted to Z-scores 

and k-means clustering (k=4 and k=5 for all sounds, k=2 for natural sounds 

only) was performed: 

- separately on each of three direct parameters (spectrum center of gravity, 

mean harmonicity, standard deviation of intensity), 

- on all three parameters derived from spectrum dissimilarity (combined, i.e., 

used as three variables in a single clustering procedure), and 

- on all three parameters derived from MS dissimilarity.  

Furthermore, the clustering procedure was performed: 

- on all three direct parameters combined,  

- on all six parameters derived from spectrum and MS dissimilarity combined, 

and 

- on all nine parameters combined (three direct measures, three parameters 

derived from spectrum dissimilarity, and three parameters derived from MS 

dissimilarity).  
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As for the neural data, classification quality was quantified as proportion of 

correct classifications (PCC), and the PCC values were compared to those 

obtained from the neural data in the 80-160 ms range. 

Differences between Experiment 1 and 2 in more detail 

In Experiment 1, a 19-mm diameter round recording chamber was used, while 

in Experiment 2 the chamber was oval and measured 19 x 38 mm. 

In Experiment 1, auditory stimuli were played with an Audiophile 192 (M-Audio, 

Irwindale, CA, USA) sound card, PA4 attenuator (TDT, Alachua, FL, USA), SE 

120 amplifier (Hafler, Tempe, AZ, USA) and Reveal-6 two-way studio “monitor” 

loudspeaker (Tannoy, Coatbridge, UK), located 1.7 m in front of the monkey. 

The stimuli were played at 96 kHz sampling frequency, 16-bit resolution. 

In Experiment 2, auditory stimuli were played with a Power1401MkII laboratory 

interface (CED, Cambridge, UK), PA4 attenuator, SE 120 amplifier, and 400-

312-10 3.5” one-way car speakers (CTS, Elkhart, IN, USA). Because spatial 

tuning data were also collected in Experiment 2 (not reported here), the 

speakers were arranged in a vertical arc-shaped array (Crist Instruments) which 

was rotated automatically around the monkey chair using a Unidex 100 

controller (Aerotech, Pittsburgh, PA, USA) and 300SMB3-HM (Aerotech) 

stepper motor under control of the Spike2 v.6/7 software program (CED). In the 

first stage of the experiment, a subset of stimuli was presented at azimuths of 0, 

45, 90, 135, 180, 215, 270 and 315 degrees and at elevation 0 to estimate 

spatial tuning in the horizontal plane. In the second stage, the full set of stimuli 

was presented at best azimuth and at five elevations of -60, -30, 0, 30 and 60 

degrees. Data from Experiment 2 analyzed in this paper come from the second 



 

 

 

stage only. The distance between the loudspeakers and the monkey’s head 

was approximately 0.95 m. The stimuli were played at 48 kHz sampling 

frequency, 16-bit resolution. 

The difference in loudspeaker size and quality as well as in sampling frequency 

(and consequently, bandwidth) resulted in a possibly lower playback quality in 

Experiment 2 compared to Experiment 1. 

In addition to stimuli of interest, in Experiment 1, bursts of white noise (equal 

power per Hz) and pink noise (equal power per octave) were presented, and a 

short four-note melody was used as behavioral target. In Experiment 2, a white-

noise burst was used as behavioral target. Although white-noise bursts were 

used in both experiments, they were excluded from analyses because of 

differing behavioral contingencies. 

In Experiment 1, each stimulus block consisted of 49 stimuli and 8 repetitions of 

the target, whereas in Experiment 2, a block consisted of 35 stimuli + 4 

repetitions of the target. The high number of block repeats in Experiment 2 (60) 

resulted from each block being played 12 times at each of 5 elevations. 

In Experiment 1 the location of the speaker and monkey chair was adjusted to 

minimize the influence of the room on low-frequency response, this could not be 

done for Experiment 2 due to constraints of the spatial tuning study. 
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Results 

As expected, similarity matrices revealed no correlations in activity of neuronal 

populations during pretrial, with all correlation coefficients (r) close to zero 

(Figure 2, upper row, 

 

Figure 3A-C). However, a clear correlation structure emerged during the first 

160 ms of stimulus presentation (Figure 2, lower row). Oblique lines of high r 

values reflect similarity of population responses to PT, 1/3-oct BPN, and 1-oct 

BPN of the same  frequency, that is, frequency tuning. Dark blue colors visible 

between the lines demonstrate that population responses to distant frequencies 

were anti-correlated, whether within one bandwidth or across bandwidths. 

Apparently, stimulus frequency was the main factor determining the population 

response to artificial sounds, whereas bandwidth played less of a role.  

Responses to natural sounds were correlated within each natural stimulus 

class. This was particularly well visible for MC in Experiment 2 and in combined 

data, with the first 6 out of 7 MC all evoking clearly similar population 

responses. Response correlation within the ES class was less pronounced, but 

was still clearly noticeable. 



 

 

 

These observations were confirmed quantitatively; 

 

Figure 3 shows that within-class correlation coefficients of responses to each of 

natural stimulus classes were clearly and significantly higher than between-

class r values. This was true both when response similarity within MC or ES 

class was compared to similarity of responses between this class and artificial 

stimuli, and when compared to similarity of responses between MC and ES 

classes. 
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Further confirmation of the findings based on similarity matrices was provided 

by hierarchical clustering (

 

Figure 4). Again, during the pretrial period, the stimulus structure was not 

reflected at all in the population responses (upper row), which is by itself trivial, 

but provides a control condition for the computational procedures. 

During stimulus presentation, however, clustering of population responses 

replicated many features of the stimulus structure (lower row). Responses to 

artificial stimuli (PT and BPN) always clustered with PT and BPN of the same 

frequency, and usually fell close to PT and BPN of neighboring frequencies, 

indicating frequency tuning in the auditory cortex. Bandwidth was not a robust 

organizing principle of the population responses, as shown by the fact that 

responses to PT and BPN of the same frequency always clustered very closely 

together. However, the effect of bandwidth on the response was still detectable. 

Of all PT/BPN triplets of the same frequency, in only one case did the response 

to PT and 1-oct BPN (i.e., two outlying bandwidths) cluster together first, while 



 

 

 

1/3-oct BPN (the intermediate bandwidth) joined at a larger distance (

 

Figure 4, Experiment 1, lower row, three lowermost branches).  In all other 

cases, responses to neighboring bandwidths clustered together most closely 

(PT with 1/3-oct BPN or 1/3-oct BPN with 1-oct BPN), only later joined by the 

response to the remaining outlying bandwidth of the triplet. In quantitative 

terms, one out of 16 (6.25%) response triplets clustered inconsistently with a 

proportional effect of bandwidth on response clustering. The 95% confidence 

interval of this proportion is <0.01% to 30.31% and is below the chance level of 

33.3%. (Only data from the Experiment 1 and Experiment 2 dendrograms were 

included in this calculation, because the Combined data are not independent 

from Experiment 1 and Experiment 2 data.) 
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In neither Experiment, nor in the Combined data, the responses to MC and ES 

(or to natural stimuli in general) were assigned to clusters that contained all 

responses to the class, and only responses to that class. However, in many 

cases they formed clear subgroups separated from responses to artificial 

sounds and, to some extent, to each other. In Experiment 1, possibly due to a 

larger number of ES and MC involved, the picture was not unequivocal; still, a 

certain degree of clustering of responses to ES and MC can be observed. In the 

data from Experiment 2, grouping is much clearer: all responses to MC except 

one were in a single cluster with two ES responses, with remaining responses 

to ES forming another big cluster. A similar picture emerged from the Combined 

data, with only one response to ES clustering with most MC responses. The 

remaining four ES responses grouped closely, also with responses to high-

frequency artificial stimuli. This picture contrasts with one seen for pretrial 

responses, where all classes were mixed (

 

Figure 4, upper row). 



 

 

 

In summary, analyses of similarity matrices and of results of hierarchical 

clustering yielded several findings. Population responses to PT and BPN were 

determined mostly by the stimulus frequency. Bandwidth contributed less to the 

response. Responses to each of two classes of natural sounds formed 

distinguishable clusters and differed from responses to PT and BPN, and from 

responses to each other. 

These findings were used to guide the choice of the cluster number (k) for the 

quantitative analysis of population responses to stimulus classes with k-means 

clustering. Not only does the procedure require deciding on an a-priori number 

of clusters (k) into which the data will be grouped; also, for the purpose of 

quantification of clustering quality with proportion of correct classifications 

(PCC), the stimuli must be pre-assigned to k classes. Stimulus assignments 

resulting from clustering are then compared to these original assignments. 

For natural stimuli, the choice was simple, as they formed two obvious natural 

categories: MC and ES. Because analyses of similarity matrices and of 

hierarchical clustering showed that bandwidth of the artificial stimuli only weakly 

affected population responses in our data set, we decided to split PT and BPN 

into classes based on frequency only. The frequencies were evenly spaced, 

thus the decision had to be partly arbitrary. We split PT and BPN into two 

classes: low and high frequency, for a total k=4. Specifically, when analyzing 

data from Experiment 1 (9 PT/BPN frequencies), we placed four PT/BPN 

frequencies into the “low-frequency” class (125 Hz to 1 kHz) and five 

frequencies into the “high-frequency” class (2 kHz to 32 kHz), while the seven 

PT/BPN frequencies of Experiment 2/Combined were divided into ranges of 250 
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Hz to 1 kHz (3 members) and 2 kHz to 16 kHz (4 members). In addition, the 

analysis was replicated with PT/BPN frequencies split into low, middle and high 

range for a total k=5 (Experiment 1: 125-500 Hz, 1-4 kHz, and 8-32 kHz; 

Experiment 2/Combined: 250-500 Hz, 1-4 kHz, 8-16 kHz). Separate analyses 

on responses to natural sounds only (MC and ES) were performed with k=2. 

 



 

 

 

Figure 5A shows mean classification success (PCC) values from Experiment 1, 

Experiment 2, and Combined experiments, for k=4 (see also 

 

Figure 6A for results obtained with k=5). Classification of responses recorded 

prior to stimulus presentation yielded mean PCC values from 0.35 to 0.40, 

considered chance value. Clustering of responses recorded during stimulus 

presentation replicated the original class structure with much higher accuracy of 

0.57 to 0.90. Mode PCC for stimulus responses was significantly higher than 

mode PCC for pretrial responses for both k values in Combined data, as well as 

for k=5 in Experiment 1 and k=4 in Experiment 2 (p<0.05, one-way Fisher exact 

probability test). These results show that when a small number of discrete 

clusters are imposed on the data (as opposed to the basically continuous 

approach of hierarchical clustering) classification of population responses can 

still re-create original stimulus classes with reasonable accuracy. 
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The next step was to apply k-means clustering to population responses 

recorded from each cortical region separately. 

 

Figure 5B shows PCC values calculated for each region for pretrial (160 ms 

preceding stimulus onset) and the first 160 ms of stimulus (see also 

 



 

 

 

Figure 6B for results obtained with k=5). In the Combined data at k=5, 

classification based on responses in regions rC and rM2 was poorer than in rM1 

and rR, with rC and rM2 PCC being significantly below the reference range. 

This suggests that factors differing between Experiments 1 and 2 influenced the 

PCC values. It may be noteworthy that PCC obtained from the rC region was 

numerically lower in each case than PCC from rM2. Also, except for one 

measurement, classification success based on responses from rR numerically 

exceeded that from rM1. Still, these differences were small in the analysis that 

used 160-ms temporal windows, and none of them appeared to be significant. 

A more compelling picture emerged from the next analysis, wherein we again 

calculated PCC for each region separately, but this time in eight 20-ms windows 

covering the first 160 ms of the stimulus period, with a single 20-ms window 
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preceding stimulus onset used to establish chance level (

 

Figure 5C, see also 

 

Figure 6C for results obtained with k=5). 



 

 

 

Classification based on responses from rC increased from chance level faster 

than classification based on other regions. This is particularly clear for k=4: in 

the first temporal window of the stimulus (0-20 ms), mode PCC from rC but not 

from other regions was significantly higher than pretrial PCC. For k=5, PCC 

from rM2 also reached significance in the first window, but it was still 

numerically lower than PCC from rC. Later in time, from approximately 60 ms 

past stimulus onset, classification based on responses from rC tended to be 

poorer than the one in rM2, but the difference was slight and there was much 

overlap. 

The most interesting results, however, emerged from region rR. The 

development of classification success was notably slower in rR than in the other 

regions: in the first 20 ms of the stimulus period, PCC from rR remained 

significantly below the reference range, barely different from pretrial level. 

However, starting from approximately 60-80 ms past stimulus onset, clustering 

based on the population response from rR became clearly more successful in 

replicating the original classes than clustering based on response from any 

other region. For the four temporal windows starting at 80 ms after stimulus 

onset, the PCC ranges calculated from rR never overlapped with those from 

region rM1 within the same Experiment and k value. (Experiment 1 k=4: rR 

0.783-0.915, rM1 0.582-0.742; Combined k=4: rR 0.755-0.949, rM1: 0.600-

0.717; Experiment 1 k=5: rR 0.603-0.686, rM1 0.452-0.596; Combined k=5: rR 

0.604-0.672, rM1 0.488-0.599). Within this temporal range, mode PCC 

calculated from rR was significantly above pretrial level in each window, which 

was not always the case for rM1. In many cases, mean PCC for rR was above 

the upper significance limit of the reference range, but this was never true for 
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rM1; actually, in one case (Experiment 1, k=4, at 100 ms) mean PCC for rM1 

was below the lower significance limit. 

Taken together, population responses in region rC provided information 

sufficient for stimulus classification early compared to region rM; later in time, 

however, the quality of classification based on rC responses was marginally 

worse than one based on rM responses. On the other hand, population 

responses in rR contributed very little to classification in the first 20 ms of the 

stimulus time. In the 20-60 ms period, the quality of classification based on rR 

responses was more or less similar to that based on responses from other 

regions; starting at approximately 60-80 ms, responses from rR allowed for 

much better classification of stimuli into original classes. 

In summary, a clear pattern of differences emerged between response 

properties in the three regions. Responses in rC supported stimulus 

classification only with poor quality, but very quickly. Responses in rM 

supported marginally better classification, and they did so slightly later. 

Classification supported by responses in rR developed slower: only past 20 ms 

it matched classification based on rM or rC. Most importantly, however, starting 

at approximately 60-80 ms past stimulus onset the rR-based classification 

clearly surpassed classification based on any other region at any time point. 



 

 

 

From the inspection of similarity matrices (Figure 2) and dendrograms (

 

Figure 4) we inferred that artificial stimulus frequency was a powerful factor that 

determined population responses. In the k-means analyses described above, 

the natural stimuli (ES and MC) were subjected to clustering together with the 

artificial stimuli (PT and BPN), the latter being classified based on frequency. 

Thus, the question remains whether the high classification success found in rR 

with k-means analyses arose only from very accurate classification of artificial 

stimuli, or region rR also excelled in classification of ES vs. MC stimuli. Many 

lines of evidence show that the latter was the case. First, the artificial stimuli 

constituted 57 or 64% (Experiment 1 and Combined, respectively) of stimuli, 

whereas more than 90% of stimuli were correctly classified based on rR 

responses at some temporal windows. Second, correlations of population 

responses within the MC and ES classes were very significantly higher than 

between these classes or between any of these classes and artificial sounds for 

rR in temporal windows at 80-160 ms, at which classification based on rR 
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responses was particularly successful (

 

Figure 7, left). Thus, there was a significant potential for MC vs. ES 

classification in rR responses. For comparison, correlations within the ES class 

did not exceed correlations between MC and ES or between ES and artificial 



 

 

 

stimuli in rM1 responses as reliably as in rR responses (

 

Figure 7, right), indicating that the difference in general classification ability 

between rR and rM1 stemmed at least partially from different capability to 

classify natural sounds.  
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Finally,  

Figure 8 shows PCC for all regions calculated for MC vs. ES classification only 

(k=2), for both 160-ms and 20-ms window sizes. In contrast to rM1 (as well as 

rM2 and rC), only classification based on rR responses was significantly better 

than classification based on pretrial data for the 0-160 ms window and for all 20-

ms windows starting from 80 ms past stimulus onset. In that time period, 

classification success for responses from rR ranged 0.867-0.917, compared to 

0.722-0.808 for responses from rM1. 

The analyses of neural data described above provide evidence that population 

responses in early auditory cortex, specifically in region rR, carry sufficient 

information to allow for correct classification of stimuli that evoked these 

responses with an accuracy exceeding 90%. It would be interesting to know if 

this degree of classification accuracy can be supported by acoustic properties of 



 

 

 

stimuli. Therefore, we measured a number of acoustic parameters of the stimuli 

and applied to them similar classification methods as we did for the neural data.  

Correlations between log-frequency spectrograms and modulation spectra (MS) 

were visualized as similarity matrices (Figure 9A and C). A prominent feature of 

the similarity matrix calculated from spectrograms (Figure 9A) was the presence 

of oblique lines in the upper-left area, showing similarity of spectrograms 

calculated for PT/BPN of the same frequency, but different bandwidth. The 

picture resembled very closely the PT/BPN area seen in similarity matrices 

derived from neural data (Figure 2). Correlations within the group of natural 

stimuli were strong (lower right), but the separation of the MC and ES classes 

was not clear. Within-MC correlation coefficients were particularly high, but 

within-ES correlation coefficients appeared to be similar to correlation 

coefficients between ES and MC. These observations were confirmed 

quantitatively: mean within-MC correlation coefficient (r) values were 

significantly higher than r values between MC and PT/BPN, and than those 

between MC and ES. Within-ES r values, however, were significantly higher 

than r values between ES and PT/BPN, but did not differ from correlation 

coefficients between MC and ES (Figure 9B), in contrast to correlations derived 

from neural data (

 

Figure 3A). 

The similarity matrix calculated from modulation spectra did not show the same 

characteristic patterns for the PT/BPN stimuli (Figure 9C), as did similarity 
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matrices calculated from spectrograms or neural data. The connection between 

PT/BPN of same frequency but different bandwidths was missed. On the other 

hand, pure tones seemed to be reasonably well separated from BPN. 

At first glance, separation of the ES and MC classes was visible in the similarity 

matrix. Indeed, both within-MC and within-ES r values were significantly 

different from r values between ES and MC, as well as from r values between 

either natural sound class and artificial sounds (Figure 9D). However, within-MC 

r values were actually lower than those between MC and ES, showing that 

modulation spectra of various MC were on average more similar to modulation 

spectra of ES than to modulation spectra of other MC. This shows that 

differentiation of MC as a stimulus class cannot be supported by differences 

and similarities between MC (as measured with the acoustical parameters that 

we chose) and is in contrast to the findings from the neural data (Figure 2 and 

 

Figure 3). 

Finally, we attempted to classify the stimuli based on acoustic parameters using 

k-means clustering. As with neural data, we classified all stimuli into k=4 or k=5 

clusters, and natural stimuli into k=2 clusters. The PCC values calculated based 

on acoustic parameters were compared to PCC values obtained from the neural 



 

 

 

data in the 80-160 ms range (

 

Figure 10).  

 For k=4, PCC derived from any acoustic parameters, direct or derived from 

spectrograms or MS, or from any combination of acoustic parameters, remained 

below 0.6. The PCC at best reached values comparable to those derived from 

rC and rM2 recordings, while remaining below the range of values produced by 

analysis of rM1 population response, and far below those derived from rR 

responses. In two cases of spectrum center of gravity and mean harmonicity, 

acoustics-based PCC were below the range of PCC obtained from any of the 

regions. 
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For k=5, the acoustics-based PCC did not differ as much from neural based-

PCC, being comparable to PCC obtained from responses from regions rC, rM1 

and rM2. Still, they failed to match PCC derived from rR responses: only PCC 

from clustering based on parameters derived from dissimilarity of spectrograms 

exceeded 0.6 and reached rR-based PCC range, still remaining below its mean.    

Finally, for clustering of natural sounds (MC and ES) only (

 

Figure 10, k=2), some PCC (in this case, three) derived from acoustic 

parameters were below the range of all population activity-derived PCC. The 

remaining ones were spread across the neural PCC range from regions rC, 

rM1, and rM2. None reached the range of PCC obtained from the rR population 

response. 



 

 

 

Taken together, the acoustic features that we analyzed could support 

classification success at best comparable to classification based on population 

responses collected in regions rC, rM1, and rM2. On the other hand, 

classification based on population responses recorded in rR within 80-160 ms 

past stimulus onset clearly surpassed not only classifications derived from the 

other regions’ responses, but also those obtained from acoustic parameters, 

whether analyzed separately or in combinations. 
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Discussion 

We applied neural population analysis to study the representation of stimulus 

identity in rhesus monkey auditory cortex. To our knowledge, such techniques 

have not been used for this purpose before, although population analysis has 

proved successful previously in studies of the representation of sound location 

in auditory cortex (Miller and Recanzone 2009; Recanzone et al. 2010) and of 

the representation of visual stimuli in visual cortex (e.g., Kiani et al. 2007; 

Kriegeskorte et al. 2008). 

Methodological considerations 

Kriegeskorte et al. (2008) emphasized that the methods they used assumed no 

or little structure in the data; only after classification was performed, 

correspondence between resulting clusters and natural categories was found. A 

similar approach was taken by Kiani et al. (2007). We initially followed this 

principle when we studied similarity matrices and dendrograms. In this way we 

confirmed the existence of a particular structure in the neural data and that this 

structure reflected our preconceived notions about stimulus categories. In the 

next step, however, we used k-means clustering, with a-priori structure explicitly 

sought in the data. This approach allowed us to achieve our main goal: 

quantifying how well stimulus structure is represented in different cortical areas 

and at different time points. It has to be pointed out that, should we have 

imposed an inappropriate structure on the clustering procedure, we would likely 

not have seen any difference between regions, and classification success 

scores would be low. What we saw instead were clear between-region 



 

 

 

differences and high classification scores in rR (

 

Figure 10). Thus, the stimulus structure we imposed on k-means clustering 

appears to match a structure actually represented in the investigated cortical 

area, and, more importantly, a structure whose representation in anterior areas 

(region rR) exceeds that in more posterior areas (regions rM and rC). While we 

cannot assure that the structure was the most appropriate, our results, together 

with the choice of categories which arguably reflects natural categorization (i.e., 

vocalizations, environmental sounds, low frequencies, high frequencies), 

indicate that the structure imposed on k-means clustering was meaningful in 

terms of cortical sound processing. 
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In addition to employing k-means clustering to quantify classification quality, 

another novel component was to perform classification in successive short 

temporal windows, in addition to analysis over the entire stimulus duration (in 

our case, the duration of the shortest stimulus). This has proved very 

successful: when firing rates were averaged over the first 160 ms of the 

stimulus, virtually no differences in classification success between regions were 

detected (

 



 

 

 

Figure 5B); however, analysis in 20-ms windows not only revealed a clear 

divergence between region rR and the other regions (

 

Figure 5C), but allowed us to trace the temporal dynamics of classification 

ability and discuss its origins (see further below). 

A potential confound comes from the fact that the neural data came from two 

different experiments, with different stimulus presentation techniques, neural 

recording techniques, and slightly different stimulus sets; e.g. data from regions 

rC and rR came from different experiments. However, our key analyses were 

replicated within-experiment, that is, data from region rC were compared to 

those from region rM2 (region rM recorded in the same experiment as rC), and 
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data from rR to those from rM1 (region rM recorded in the same experiment as 

rR, 

 

Figure 5C). In this way not only the results from the combination of the 

experiments were validated, but thanks to “anchoring” both experiments in 

region rM, we gained insight into the effects of experimental conditions under 

which neural data were gathered on stimulus classification based on these data. 

We did not systematically explore the effects of all differences between the 

experiments on classification, but we can speculate that reduced stimulus 

quality due to using small loudspeakers and/or lower sampling frequency 

(consequently, lower stimulus bandwidth) and/or lower stimulus intensity in 

Experiment 2 resulted in neural data that provided support for somewhat less 



 

 

 

accurate classification than data from Experiment 1. This effect was not offset 

by supposedly more reliable estimation of firing rates in Experiment 2, wherein 

each stimulus was played 60 times, compared to 10-13 times in Experiment 1. 

In conclusion, quality of stimulus presentation should be carefully attended to 

when stimulus classification is investigated. 

Band-pass noise 

Bandwidth of band-pass noise (versus pure tone) has been shown to influence 

neural responses in the auditory cortex (e.g., Rauschecker et al. 1995; 

Rauschecker and Tian 2004; Petkov et al. 2006; Kuśmierek and Rauschecker 

2009; Kajikawa et al. 2011); also discrimination of a tone from a ⅓-octave or 1-

octave noise does not seem to be difficult at least for human listeners (although 

we are not aware of any formal tests in monkeys, see however below). It is 

therefore surprising that only a small effect of bandwidth on population 

response was found in the present study (see 
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Figure 3,  

Figure 4, and accompanying description in Results). It should be noted that the 

most robust effects of bandwidth have been found in the lateral belt 

(Rauschecker et al. 1995; Rauschecker and Tian 2004; Petkov et al. 2006), 

which was not included in the present study. Our recordings were derived from 

core and medial belt, and band-pass noise preference in the medial belt over 

core, although demonstrable, appears to be less pronounced than in the lateral 

belt (Petkov et al. 2006; Kuśmierek and Rauschecker 2009; Kajikawa et al. 

2011). Thus, the picture might be different if the present study was replicated in 

the lateral belt or in cortical areas further anterior or lateral. Furthermore, 

behavioral data from Experiment 1 offer an insight into perception of bandwidth 

and frequency in rhesus monkeys. In this experiment, the behavioral target was 

a short “melody” consisting of a rapid succession of four 125-ms pure tones; the 

first tone’s frequency was 523 Hz, less than a semitone from frequency of a 

non-target 500-Hz stimulus. Consequently, the monkeys often responded to the 

500-Hz tone. In addition, they quite often responded to ⅓-octave and 1-octave 

noise bursts centered at 500 Hz, and much more rarely to tones or noises at 



 

 

 

neighboring frequencies of 250 or 1000 Hz, let alone more distant frequencies (

 

Figure 11). Apparently, the perceptual difference between a pure tone and a 

band-pass noise burst at the same frequency was smaller than a step to a tone 

(or band-pass noise) one octave apart. The small effect of bandwidth on 

population response may be a correlate of this behavioral finding. 

Stimulus classification in the 0-20 ms window 
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Within the first 20 ms after stimulus onset, the classification capability measured 

by PCC developed differently in the cortical regions (

 

Figure 5C). Data from region rC supported high classification accuracy, 

comparable to accuracy in any subsequent time window. On the other hand, 

responses from rR barely differed from chance level in the 0-20 ms window, and 

the responses from region rM fell in-between. Latencies in area CM are shorter 

than latencies in area A1 in rhesus monkeys (Scott et al. 2011; also Kuśmierek 

and Rauschecker, in preparation); the same was found by Kajikawa et al. 

(2005) in the marmoset. Latencies in R and RM were shown to be longer than 

in A1 and MM in macaques (Recanzone et al. 2000a; Kuśmierek and 

Rauschecker 2009; Scott et al. 2011) as well as in marmosets (Bendor and 



 

 

 

Wang 2008). The differences between classification capabilities found in the 0-

20 ms window likely reflect this posterior-to-anterior progression of neural 

latencies in the core and medial belt. In the first 20 ms of the stimulus, fewer 

region-rM neurons than region-rC neurons began firing, and consequently, 

contributed to classification, and only few rR neurons were active at that time. 

Object categories or combinations of features? 

Finding category specificity in neural responses always raises an important 

question: Does this effect correspond to genuine object categorization, or 

simply to low-level stimulus features that were unequally distributed across 

different stimulus classes? A direct answer can be given if sharp categorical 

boundaries are found in response to gradual continua of low-level features: 

invariance of responses to large changes of features irrelevant to object identity, 

and specificity of responses when small changes are introduced to highly 

relevant features. This approach requires more knowledge about feature 

relevance and on parameters of object invariance than is available for auditory 

perception in macaques. Therefore, we have chosen a simpler alternative 

approach (Kiani et al. 2007), that is, we attempted to classify the stimuli based 

on low-level acoustic features and compared the results to results of 

classification based on neural data. An important caveat is that a failure of 

feature-based classification to match neural data-based classification does not 

prove that the cortical region in question operates on representation of sound 

objects beyond simple combinations of features. Another explanation might be 

that crucial low-level features were not entered into the analysis. We have 

chosen three direct stimulus features that covered a wide range of qualities: 
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spectrum center of gravity approximated which cochlear channels were 

activated by the sound; harmonicity measured whether a stimulus was more 

periodic or more noisy; and standard deviation of harmonicity revealed 

amplitude modulation structure. In addition, parameters were derived from 

dissimilarity of simple frequency-time representation (log-frequency 

spectrogram), and from dissimilarity of spectrotemporal modulation spectra 

(Singh and Theunissen 2003; Cohen et al. 2007). 

Inspection of 

 

Figure 10 suggests that representation of stimuli in regions rM and rC may be 

driven by low-level features, as the performance of stimulus classification based 

on low-level features overlapped with classification performance based on 

neural responses from these regions. Conversely, population responses in rR 



 

 

 

(in the 80-160 ms time window) supported much higher classification 

performance than achieved by way of stimulus features. Although more 

research is needed before definite conclusions can be drawn, this result may 

suggest that already in region rR the stimulus representation begins to shift 

from feature-based towards object-based. 

Processing streams in the auditory cortex 

The function of the dorsal stream of auditory cortical processing compared to 

the ventral stream remains less sharply defined. Although processing of space 

(i.e., sound source location) has been emphasized (e.g., Romanski et al. 1999; 

Rauschecker and Tian 2000), more recent proposals include sensorimotor 

integration with the purpose of learning and control of auditory production 

(Rauschecker and Scott 2009; Rauschecker 2011). Specifically, parietal regions 

are fed by posterior areas of auditory cortex with a fast, temporally precise, but 

relatively rough “primal sketch” of ongoing auditory information (Rauschecker 

2011). Properties of area CM, as shown in the present study, fit this description 

well: neural data collected from CM support stimulus classification at an earlier 
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time point than data from any other region (

 



 

 

 

Figure 5C), but with relatively low classification quality (

 

Figure 10). While a common denominator can be found for both functions 

postulated for the dorsal stream (i.e., spatial processing and audio-motor 

integration, Rauschecker 2011), emerging properties of areas CM and CL hint 

at a possible division of labor. The spatial sensitivity appears to be more 

pronounced in CL (Tian et al. 2001; Miller and Recanzone 2009; also 

Kuśmierek and Rauschecker, in preparation), while CM seems to respond 

faster and with a higher temporal precision (Kajikawa et al. 2005; Scott et al. 

2011; the present study; also Kuśmierek and Rauschecker, in preparation). 

The results of the present study show that specialization for stimulus 

identification, a feature postulated for the anterior stream, can be found as early 
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as in areas R/RM. The finding adds to the earlier result of Tian et al. (2001) who 

found increased selectivity for discrimination between monkey calls in area AL, 

a lateral belt area adjacent to area R. Strongly specific responses are expected 

in more anterior regions of the superior temporal lobe, or even in ventrolateral 

prefrontal cortex (e.g., Poremba et al. 2004; Romanski et al. 2005; Petkov et al. 

2008; Kikuchi et al. 2010), but the findings of Tian et al. (2001) and of the 

present study demonstrate that primitives of “what” specialization are already 

present much closer to the primary areas. 

How can these findings be reconciled with results from Recanzone (2008), who 

described no increased stimulus selectivity in area R compared to more 

posterior areas? One explanation might be that high selectivity is limited to belt 

areas, which were studied by Tian et al. (2001) and in the present study (lateral 

belt area AL and medial belt area RM being a part of our region rR, 

respectively), while Recanzone (2008) studied the core area R, but not adjacent 

belt areas AL or RM.  Still, this explanation would imply that enhanced stimulus 

selectivity in RM is strong enough to be detectable even when RM neurons are, 

like in the present study, pooled with R neurons, which supposedly show no 

enhanced selectivity. Given that RM units constituted only about ⅓ of our region 

rR, and that response properties of RM cells are in general similar to R units 

(Kuśmierek and Rauschecker 2009), this explanation seems unlikely. The 

crucial argument, however, is that the difference in classification success 

between the rR and rM1 regions late after stimulus onset is still visible even 



 

 

 

when the analysis is limited only to core components, that is, areas R and A1 (

 

Figure 12). 

Another possible explanation is that Recanzone (2008) and Tian et al. (2001) 

studied stimulus selectivity within the same class and in individual neural units, 

whereas we looked at between-stimulus-class differences in responses evoked 

in larger neural populations. Our choice of methods might have provided 

adequate sensitivity to detect selectivity in R/RM, whereas classical methods 

used by Recanzone (2008) and Tian et al. (2001) were sufficient to detect only 

more pronounced selectivity, such as the one present in AL.  

Finally, one should not overlook that Recanzone (2008) did, in fact, show 

enhanced selectivity in area R using the linear discrimination method, although 

the effect was limited to reversed vocalizations and to a subset of linear 

discriminator bin widths. The effect was absent at the shortest bin widths (~2-10 

ms), at which the discriminator performance reached the highest values. It is 

possible, however, that these high values at short bin widths were a byproduct 

of a particular implementation of the algorithm, and that results obtained at 
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longer bin widths actually reflected genuine properties of the investigated areas 

(see Supplementary Information).  

An intriguing finding in the present study was that classification based on region 

rR data initially was only as good as classification based on data from other 

regions. But about 60-80 ms after stimulus onset, rR-based PCC began to 

clearly exceed those derived from other regions. This delay might have been 

due to time needed by rR neurons to integrate incoming information and 

perform computations needed to discriminate stimuli at a high accuracy level, 

beyond what was possible based on simple analysis of acoustic features. We 

have shown previously that (for temporally structured stimuli) the best linear 

discriminator bin width, which can be interpreted as a measure of temporal 

integration scale, was on the order of 40-50 ms in area R, and 20-30 ms in A1 

(Kuśmierek and Rauschecker 2009). From synchronization cut-off frequencies, 

Scott et al. (2011) estimated temporal integration windows to be approx. 100 ms 

in R and 20-30 ms in A1. 

Instead of (or in addition to) the computation in local circuits, arrival of feedback 

or “top-down” information from areas further downstream could have 

contributed to the late (60-80 ms past stimulus onset) surge in classification 

accuracy. Based on latency estimates from Kikuchi et al. (2010), candidates for 

the source of such feedback information include area RT, reported to respond 

with mean latencies of 40-70 ms, while area RTp would have to be excluded 

(70-110 ms latencies). Romanski and Hwang (submitted), on the other hand, 

found mean latencies exceeding 100 ms in the ventrolateral prefrontal cortex, 

but a subset of cells responded with latencies as fast as 50 ms; thus, these 

neurons could theoretically be the source of increased classification accuracy 



 

 

 

found in region rR in the present study. It has to be noted as well that relying on 

latencies measured across different studies is somewhat risky. For example, 

Kikuchi et al. (2010) reported mean latencies in area A1 to be on the order of 

40-60 ms, far longer than found by us (median 17-20 ms, Kuśmierek and 

Rauschecker 2009) or by others (Scott et al. (2011): median 20 ms, Recanzone 

et al. (2000a): mean 32.4 ms).  

Methodological notes on linear discriminator analysis 

The results of linear discriminator analysis reported by Recanzone (2008), as 

well as by Russ et al. (2008), and presented again by Recanzone (2011), raise 

some questions. In both studies, linear discriminator performance was found to 

reach very high values (80-90%) at a very short bin (window) width of 2 ms.  

This finding implies that almost all neurons produced highly replicable and 

clearly different spiking patterns to all stimuli and that they were driven by 

almost all these stimuli. A cell that does not respond to a subset of stimuli would 

not produce spiking patterns supporting such high discriminator performance 

because these non-driving stimuli would not be distinguished by the procedure. 

Raster plots presented by Recanzone (2008) and Russ et al. (2008) do not 

seem to show firing that is highly replicable within each stimulus, differently 

patterned across stimuli, and vigorous for all stimuli.  

Furthermore, the firing patterns should be replicable with 2-ms accuracy. Again, 

the raster plots in both papers do not seem to show such accuracy. Moreover, 

the replicability of spiking patterns could be based on one of two mechanisms: a 

precise abstract temporal code, or precise following of spectrotemporal features 
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in the ongoing stimulus. We have shown that spiking patterns in the auditory 

cortex seem to follow features of the ongoing stimulus (Kuśmierek and 

Rauschecker 2009), suggesting that the second mechanism may play a role in 

the generation of highly replicable spike patterns. Furthermore, if neurons can 

replicate spiking patterns on a 2-ms temporal scale, they should also be 

capable of locking to stimulus modulations on the order of 500 Hz. (One can 

conceive of a neuron capable of firing to some stimulus features with very high 

temporal accuracy but only with relatively long inter-spike intervals, and hence 

incapable of locking to modulations at 1/accuracy Hz. However, such a neuron 

would not necessarily be able to produce replicable spike patterns to repetitions 

of a stimulus, as in some cases the first potentially spike-evoking feature of the 

stimulus could occur during the inter-spike interval resulting in a different spike 

pattern.) Such capability has not previously been demonstrated in the auditory 

cortex, let alone in a majority of neurons (Malone et al. 2007; Bendor and Wang 

2008; Oshurkova et al. 2008; Scott et al. 2011). Finally, when various other 

authors utilized linear discriminator or similar methods employing the concept of 

bin/window, the best window has never been shown to be as short as 2 ms. In 

our hands, linear discriminator performance peaked at around 10-50 ms bin 

size (Kuśmierek and Rauschecker 2009; Kuśmierek and Rauschecker in 

preparation, see also below). Malone et al.’s (2007) discriminators performed 

best at 5-10 ms, while Schnupp et al. (2006) showed that the mutual information 

for their “highly informative” units in ferret A1 reached the maximum at 10-20 ms 

and declined above 40 ms and below 5 ms. In the prefrontal cortex, Averbeck 

and Romanski (2006) obtained the best classification performance using a 

hidden Markov model at 60-ms bin size. Interestingly, Russ et al. (2008) also 



 

 

 

used another measure than the linear discriminator, i.e., mutual information, 

and this measure’s performance appeared to peak around 20 ms. 

Given all of the above, it is problematic to consider 80-90% performance of a 

linear discriminator at 2-ms bin width in prefrontal cortex (Russ et al. 2008) or in 

certain areas of auditory cortex (Recanzone 2008) a reliable result. It is difficult 

to determine the cause of such an outcome without knowing the exact 

implementation of the linear discriminator algorithm used in these two studies. 

What may be significant, however, is that we have identified a step in the 

algorithm described by Russ et al. (2008) and Recanzone (2008) in their 

Methods sections which, if slightly modified from the published form, produces 

results resembling theirs. The modification is, in our opinion, of a kind that one 

could easily make by accident while streamlining the code and optimizing 

performance. 

Recanzone (2008) described the first steps of the algorithm as follows: “For 

each neuron, the first step was to select one spike train from one trial, referred 

to as the test trial. A stimulus PSTH was then constructed using all 12 trials for 

the other 7 stimuli and the remaining 11 trials for that particular stimulus.” We 

have found that if this procedure was exactly followed (“original discriminator”), 

the performance of the linear discriminator based on our data peaked at a 10-50 

ms window size, with the best average performance dependent on stimulus 

type (likely, on the temporal structure available in the stimulus, Kuśmierek and 
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Rauschecker 2009), but remaining below 65% (

 

Figure 13, Kuśmierek and Rauschecker 2009). However, if the “same” stimulus 

PSTH contained not only the remaining trials, but all trials for that particular 

stimulus, including the test trial, the performance of this “modified” linear 

discriminator peaked at >80% accuracy at the shortest bin width of 2 ms (

 



 

 

 

Figure 13). The effect was similar whether data from Experiment 1 or 2 were 

used, thus it was little influenced by differences in stimuli, presentation manner, 

spike acquisition system, or cortical areas covered. Moreover, when the 

discriminator was applied to randomly generated time-stamps, the modification 

described above changed the result from expected chance performance at all 

windows to one that reached almost 100% performance at narrow bins (

 

Figure 14). The Matlab code which we used to perform both the “original” and 

“modified” linear discriminator analyses, as well as one used to generate and 

analyze the random time-stamps, are provided as Supplementary Material. 

This analysis shows how a departure from the original, published linear 

discriminator algorithm resulted in altering the linear discriminator performance. 

It is possible that the unique results shown by Russ et al. (2008) and 

Recanzone (2008) might have stemmed from a similar departure from the 

published algorithm, or from another factor of comparable consequences. In the 

context of the present paper, we propose that the results of Recanzone (2008) 

should be reinterpreted as being consistent with increased stimulus selectivity in 

area R compared to other areas studied. 
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Summary 

We have shown that specialization for sound-identity processing in the ventral 

stream can be found at its earliest stages, at the level of areas R and RM. The 

processing appears to develop in two stages: within 20-60 ms after stimulus 

onset, stimulus clustering quality based on R+RM responses cannot be 

distinguished from responses of more posterior early areas (A1, MM, CM), as 

well as clustering based on acoustic measures. Later on, it surpasses both. 

A methodological achievement of the study is the demonstration of how the use 

of population responses analyzed in short temporal windows yields substantially 

more information than is available with more conventional methods. 
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Figure Legends 

 

Figure 1. Schematic representation of anatomical areas of rhesus monkey 

auditory cortex. Medial belt areas: RM, rostromedial area; MM middle medial 

area; CM, caudomedial area. Core areas: R, rostral area; A1 primary auditory 

area. Lateral belt areas: AL, anterolateral area; ML, middle lateral area; CL, 

caudolateral area. Overlaid in color are regions rR, rM and rC, distinguished for 

the purpose of the present paper.  
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Figure 2. Similarity matrices showing correlations between population 

responses to PT, BPN, MC and ES stimuli. Left column: data combined from 

Experiments 1 and 2; middle column: Experiment 1 only; right column: 

Experiment 2 only. Top row: pretrial data from 160 ms preceding stimulus 

onset; bottom row: data from the first 160 ms of stimulus. Stimuli are coded by 

symbols along matrices’ edges, explanation of symbols at the bottom of the 

figure. Correlation coefficient (r) value color-coded in the -0.5..1 range. 



 

 

 

 

Figure 3. Quantification of correlations between population responses to 

monkey calls (MC) and environmental sounds (ES), for all cortical regions 

combined. A-C. Mean within-class correlation coefficients (+/- SD) within a 

stimulus class are shown with filled symbols separately for MC and ES. Empty 

symbols show between-class correlations, MC/ESvsA: between MC or ES and 

artificial sounds (i.e., PT and BPN, marked as A); MCvsES: between MC and 

ES. Asterisks denote significant differences between within-class correlations 

and the correlation of the same class with artificial sounds, e.g. between MC 

and MCvsA. Plus signs denote significant differences between within-class 

correlations and the MCvsES correlation. One symbol: p<0.05, two symbols: 

p<0.01, three symbols: p<0.001, t-test. Left side of each panel shows “pretrial” 

data, that is, data from 160 ms preceding the stimulus onset. Right side shows 

“stimulus” data, i.e., data from the first 160 ms after stimulus onset. D. 

Illustration of the relationship between a similarity matrix and values used in A-

C. Stimuli coded by symbols, see Figure 2. 
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Figure 4. Dendrograms obtained from hierarchical clustering of the population 

responses to auditory stimuli. Stimuli coded by symbols, see Figure 2. Top row: 

pretrial data from 160 ms preceding stimulus onset; bottom row: stimulus data 

from the first 160 ms of the stimulus. Left column: data combined from 

Experiment 1 and 2; middle column: Experiment 1 only; right column: 

Experiment 2 only. 



 

 

 

 

Figure 5. Classification of all sound stimuli based on neural population 

response. Mean classification success (proportion of correct classifications) with 

k-means clustering, k=4. A. Data from brain regions pooled: rR and rM1 for 

Experiment 1, rM1 and rC for Experiment 2, and all four regions for Combined. 

Within each panel, pretrial data from 160 ms preceding the stimulus onset are 

shown on the left, stimulus data from the first 160 ms of stimulus are shown on 

the right. B. Data from each brain region (rR, rM1, rM2, rC) plotted separately. 

Again, “pretrial” data from 160 ms before the onset on the left, “stimulus” data 

from the first 160 ms of stimulus on the right. C. Data from each brain region 

(rR, rM1, rM2, rC) plotted separately. Within each panel, “pretrial” data from 20 

ms preceding the stimulus onset are shown on the left, followed by “stimulus” 

data from eight consecutive 20-ms windows covering 0-160 ms of stimulus. 

Double circles denote classification success that was significantly higher 

(p≤0.05) than pretrial classification success. (Note that this statistical test is 
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based on mode classification success whereas mean classification success is 

plotted in the figure). Filled circles represent stimulus classification success 

outside reference range (p≤0.05, see Methods). Grey broken lines show 

boundaries of the reference range for p≤0.05. For plots showing classification 

with k=5, see 

 

Figure 6. The values on the abscissa denote onset of analysis window. 

 

Figure 6. Classification of all sound stimuli based on neural population 

response. Mean classification success (proportion of correct classifications) with 

k-means clustering, k=5. A. Data from brain regions pooled: rR and rM1 for 

Experiment 1, rM1 and rC for Experiment 2, and all four regions for Combined. 

Within each panel, pretrial data from 160 ms preceding the stimulus onset are 

shown on the left, stimulus data from the first 160 ms of stimulus are shown on 

the right. B. Data from each brain region (rR, rM1, rM2, rC) plotted separately. 

C. Data from each brain region (rR, rM1, rM2, rC) plotted separately. Within 

each panel, “pretrial” data from 20 ms preceding the stimulus onset are shown 



 

 

 

on the left, followed by “stimulus” data from eight consecutive 20-ms windows 

covering 0-160 ms of stimulus. For detailed legend and respective data 

obtained with k=4, see 

 

Figure 5. 
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Figure 7. Quantification of correlations between population responses to 

monkey calls (MC) and environmental sounds (ES) for region rR (left) and rM1 

(right), in four temporal windows from 80 to 160 ms after stimulus onset (rows). 

Data from Combined experiments. Conventions and explanations of symbols: 

see  



 

 

 

Figure 3A-C. 

 

Figure 8. Classification of sound stimuli based on neural population responses 

to natural stimuli. Mean classification success (proportion of correct 

classifications) with k-means clustering, for MC and ES stimuli only (k=2). Data 

from each brain region (rR, rM1, rM2, rC) presented separately. Left panel: 

pretrial data from 160 ms preceding the stimulus onset on the left, stimulus data 

from the first 160 ms of stimulus on the right. Right panel: pretrial data from 20 

ms preceding the stimulus onset are shown on the left, followed by stimulus 

data from eight consecutive 20-ms windows covering 0-160 ms of stimulus. For 



Functional neuroimaging of ventral and dorsal stream pathways in the macaque auditory system 

 118 

detailed legend, see 

 

Figure 5. 



 

 

 

 

Figure 9. A. Similarity matrix showing correlations between log-frequency 

spectrograms of all stimuli. B. Quantification of correlations between log-

frequency spectrograms of monkey calls (MC) and environmental sounds (ES). 

C. Similarity matrix showing correlations between modulation spectra of all 

stimuli. D. Quantification of correlations between modulation spectra of monkey 

calls (MC) and environmental sounds (ES). Note that while in D the mean 

correlation coefficient within the MC class (MC) differs significantly from the 

mean correlation coefficient between MC and ES classes (MCvsES), the value 
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for MC is lower than for MCvsES. Conventions same as in Figure 2 and 

 

Figure 3 except for scale in C and D. 

 

Figure 10. Classification of sound stimuli based on acoustical parameters (black 

circles), compared to classification based on neural responses (color lines and 

shading). Classification success (proportion of correct classifications) with k-



 

 

 

means clustering. Left: all stimuli, k=4 clusters; middle: all stimuli, k=5 clusters, 

right: natural (MC and ES) stimuli, k=2 clusters. Abbreviations represent 

acoustic parameters used as the basis for clustering: CG, spectrum center of 

gravity; H, mean harmonicity; ISD, standard deviation of intensity; dir, all direct 

parameters (CG, H, ISD); Sp, three parameters derived from dissimilarity of log-

frequency spectrograms; Ms, three parameters derived from dissimilarity of 

modulation spectra; SM, all six parameters derived from dissimilarity of 

spectrograms and modulation spectra; All, all nine parameters. For reference, 

respective ranges (shaded areas) and means (lines) of mean classification 

success values based on neural data from the 80-160 ms range are shown in 

color. Red, region rR; darker blue, region rM1; paler blue, region rM2; green, 

region rC. Neural data from the Combined experiment, see 
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Figure 5, 

 

Figure 6, and 

 

Figure 8 for source data. The shaded areas are shifted along the abscissa 

relative to each other to improve readability.  



 

 

 

 

Figure 11. Effect of frequency and bandwidth on probability of false alarm error 

to pure tones (PT) or band-pass noise bursts (BPN) in monkeys L and S 

(Experiment 1). The rewarded stimulus began with a 523 Hz tone. Bandwidth 

errors are more likely than frequency errors. 

 

Figure 12. Classification of all sound stimuli based on neural population 

responses for core areas R (subset of region rR) and A1 (subset of region rM1) 
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into four clusters (k=4) as a function of time window in Experiment 1. Cf. 

 

Figure 5, bottom center panel.  



 

 

 

 

Figure 13. Performance of the linear discriminator for environmental sounds 

(ES) and monkey calls (MC) plotted against analysis bin width. In Experiment 1 

(regions rR and rM1 pooled), there were 10 stimuli in each class, hence the 

chance level was 0.1. In Experiment 2 (regions rC and rM2 pooled), there were 

7 stimuli in each class, for a chance level of 0.143. Left: “original” discriminator 

according to descriptions in Recanzone (2008), Russ et al. (2008), and 

Kuśmierek and Rauschecker (2009). Right, “modified” discriminator, as 

described in the Discussion of the present paper. 
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Figure 14. Performance of the “original” and “modified” linear discriminator for 

random time-stamps, plotted against analysis bin size. For 100 “neurons”, time-

stamps were generated as 10-50 values in the 0-1000 ms range, for 10 “stimuli” 

and 12 “trials” per “stimulus”. Both the number of time-stamps per “trial” and the 

value of the time-stamps were randomly and uniformly distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

7.2 Functional MRI of the vocalization-processing networks in the 
macaque brain 
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Abstract 

Using functional magnetic resonance imaging in awake behaving monkeys we 

investigated how species-specific vocalizations are represented in auditory and 

auditory-related regions of the macaque brain. We found clusters of active voxels along 

the ascending auditory pathway that responded to various types of complex sounds: 

inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and 

parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). 

Regions sensitive to monkey calls were most prevalent in the anterior STG, but some 

clusters were also found in frontal and parietal cortex on the basis of comparisons 

between responses to calls and environmental sounds. Surprisingly, we found that 

spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also 

activated the parietal and frontal regions. Taken together, our results demonstrate that 

species-specific vocalizations in rhesus monkeys activate preferentially the auditory 

ventral stream, and in particular areas of the antero-lateral belt and parabelt.  

Keywords:	 Auditory	 cortex,	 monkey,	 species-specific	 calls,	 spectrotemporal	 features,	 higher-level	

representations	

 

 

  



 

 

 

Introduction 

The concept of two streams in auditory cortical processing, analogous to that in visual 

cortex (Mishkin et al., 1983), was proposed more than a decade ago (Rauschecker, 

1998a; Rauschecker and Tian, 2000). The concept was supported by contrasting 

patterns of anatomical connections in the macaque from anterior/ventral and 

posterior/dorsal belt regions of auditory cortex to segregated domains of lateral 

prefrontal cortex (Romanski et al., 1999) and by different physiological properties of 

these belt regions. In particular, the anterior lateral belt (area AL) in the macaque 

exhibited enhanced selectivity for the identity of sounds (monkey vocalizations), 

whereas the caudal lateral belt (area CL) was particularly selective to sound location 

(Tian et al., 2001; see also Kuśmierek and Rauschecker, 2014). Evidence for segregated 

streams of auditory cortical processing has also been provided in human studies 

(Maeder et al., 2001; Arnott et al., 2004; Ahveninen et al., 2006). 

Use of species-specific vocalizations for auditory stimulation in the macaque is of 

particular interest in the context of the ongoing debate about the evolution of speech and 

language (Rauschecker, 2012; Bornkessel-Schlesewsky et al., 2015). Comparative 

approaches have focused on identifying the common neural networks involved in the 

processing of speech in humans and of vocalizations in non-human primates (Gil-da-

Costa, 2004; Petrides and Pandya, 2009; Joly et al., 2012b; Frey et al., 2008, 2014). 

Monkey calls convey semantic information about objects and events in the environment 

as well as about affective states of individuals, similar to information contained in 

human communication sounds and speech (Cheney and Seyfarth, 1990; Ghazanfar and 

Hauser, 1999; Yovel and Belin, 2013). An open question regarding the vocalization-

processing network in the macaque brain is whether it also carries information about the 
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motor actions necessary to produce the vocalizations, as has been shown in humans 

listening to speech and music (Wilson et al., 2004; Leaver et al., 2009). 

Several studies have examined the representation of complex sounds, including 

vocalizations, in the macaque brain using neuroimaging techniques (Poremba et al., 

2003; Petkov et al., 2008; Joly et al., 2012b). In particular, the first fMRI study by 

Petkov et al. (2008) found activation specific to monkey vocalizations in the anterior 

STG region. One of the aims in later studies has been to characterize the physiological 

properties of the anterior superior temporal (aSTG) region that shows sensitivity to 

higher-level spectrotemporal features in vocalizations (Russ et al., 2008; Kikuchi et al., 

2010, 2014; Perrodin et al., 2011; Fukushima et al., 2014). A recent comparative study 

by Joly et al. (2012b) replicated and extended these results by analyzing fMRI images 

of the entire brain and found an involvement of orbitofrontal cortex in the processing of 

monkey vocalizations. Given that the ventral pathway continues into orbitofrontal and 

ventrolateral prefrontal cortex (vlPFC) (Barbas, 1993; Romanski et al., 1999; Cohen et 

al., 2007; Petkov et al., 2015), this finding is of particular interest.  

In humans, the ventral auditory pathway is thought to be particularly involved in the 

recognition and identification of vocalizations as well as speech (Binder et al., 2000; 

DeWitt and Rauschecker, 2012). By contrast, the dorsal pathway is involved primarily 

in processing sound source location and motion in both humans and animals (Maeder et 

al., 2001; Tian et al., 2001; Arnott et al., 2004). However, a recent proposal, derived 

from both human and nonhuman primate studies, suggests that the dorsal stream may 

also play a role in sensorimotor integration and control of complex sounds, including 

speech (Rauschecker and Scott, 2009; Rauschecker, 2011). Thus, activation of frontal 

and parietal regions might also be expected when monkeys are presented with 

conspecific vocalization sounds. 



 

 

 

Here we identified which brain regions of the macaque monkey are sensitive to 

conspecific vocalizations using whole-brain functional magnetic resonance imaging 

(fMRI). We found the most distinct activation in the anterior STG and along the 

auditory ventral stream, but some clusters of activation were also found in prefrontal, 

premotor and parietal cortex when comparing monkey vocalizations to environmental 

sounds. These findings are discussed in terms of their functional significance. 

 

Material and Methods 

Subjects 

Two male rhesus monkeys (Macaca mulatta) weighing 10-12 kg participated in our 

awake-fMRI experiments. Each animal was implanted with an MRI-compatible 

headpost (Applied Prototype) secured to the skull with ceramic screws (Thomas 

Recording), plastic strips and bone cement (Osteobond, Zimmer). All surgical 

procedures were performed under general anesthesia with isoflurane (1-2%) following 

pre-anesthetic medication with ketamine (13 mg/kg) and midazolam (0.12 mg/kg). The 

experiments were approved by the Georgetown University Animal Care and Use 

Committee and conducted in accordance with standard NIH guidelines. 

Behavioral Training 

To ensure the monkeys attended to each stimulus for which a brain volume was 

acquired, we adapted a go/no-go auditory discrimination task (Kuśmierek and 

Rauschecker, 2009; Kikuchi et al., 2010) for sparse-sampling functional MRI. 
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First, each monkey was trained to lie in sphinx position in an MRI-compatible primate 

chair (Applied Prototype) placed inside a double-walled acoustic chamber simulating 

the scanner environment. Inside the chamber, the animals were trained to be accustomed 

to wearing headphone equipment and hearing (simulated) scanner noise, presented by a 

loudspeaker. Eye movements were monitored using an infrared eye-tracking system 

(ISCAN). Analog output of the tracker was sampled with an analogue-to-digital 

conversion device (National Instruments). A PC running Presentation software 

(Neurobehavioral Systems) was used to present visual and auditory stimuli, control the 

reward system, and trigger imaging data acquisition (see below). 

After the animal completed the fixation training, a go/no-go auditory discrimination 

task was introduced, in which the monkeys could initiate a trial by holding fixation on a 

central red spot while a block of auditory stimuli would be simultaneously presented. 

After the first 6 seconds of auditory stimulation, a trigger was sent to the scanner, 

starting the acquisition of an image volume (Figure 1B). Following acquisition and a 

random delay, the target sound (white noise) was presented, cueing a saccade to the left 

or to the right side as signaled at the beginning of each experimental session (Figure 

1A). To provide feedback, after the response window, a yellow spot was shown 

indicating the correct target location. Finally, contingent on performance, the animal 

received a juice reward. An inter-trial interval of at least 2 s was enforced before the 

next trial could be initiated by fixation. Every sound presentation trial was followed by 

a “silence” trial, allowing for measurement of baseline blood oxygen level dependent 

(BOLD) signal. Monkey 1 (M1) performed the task correctly for over 90% of the trials. 

Monkey 2 (M2) was not able to perform the saccadic go/no-go discrimination task with 

high accuracy and was therefore scanned while passively listening to the acoustic 

stimuli. To ensure stable attention, M2 was rewarded for successfully holding fixation 

throughout the trial. 



 

 

 

Auditory stimuli 

Three sound categories were used in the experiments: environmental sounds (Env), 

monkey vocalizations or calls (MC), and scrambled monkey calls (SMC). Spectrograms 

of example clips from each of these three categories are illustrated in Figure 1C. 

Environmental sounds were obtained from multiple online sources and from recordings 

made in our laboratory facilities (Kuśmierek and Rauschecker, 2009). They included the 

sounds of vehicles, cages, water, food containers, clocks, cameras, applause, coins, 

footsteps, chewing, heartbeats, horns, and telephones (n = 56). The mean duration of the 

Env stimuli was 1.14 s (range: 0.96 – 2.6 s). Monkey calls were obtained from 

recordings made outside our colony (M. Hauser and/or Laboratory of Neuropsychology 

[LN] library). Monkey vocalizations (n = 63) consisted of grunts, barks, warbles, coos 

and screams, as used in prior studies (Rauschecker et al., 1995; Tian et al., 2001, 

Kuśmierek et al., 2012). The mean duration of the vocalization stimuli was 0.67 s 

(range: 0.13 - 2.34 s). SMC were generated by randomly rearranging 200 ms by 1-

octave tiles of the constant-Q spectrogram (Brown, 1991) for each monkey call and 

reconstructing a time-domain waveform with an inverse transform (Schörkhuber & 

Klapuri, 2010). Transposition along the time axis was not constrained while 

transposition along the frequency axis was restricted to displacement by a single octave.  

For each trial, a random selection of stimuli from one class (MC, Env, or SMC) was 

arranged sequentially into a smooth auditory clip that lasted for the duration of the trial 

(8 s). 

Sounds were presented through modified electrostatic in-ear headphones (SRS-005S + 

SRM-252S, STAX), mounted on ear-mold impressions of each animal’s pinna (Sarkey 

Eden Prairie) and covered with a custom-made earmuff system for sound attenuation. 
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To match loudness, the stimuli were played through the sound presentation system and 

re-recorded with a probe microphone (Brüel and Kjær, type 4182 SPL meter) inserted in 

the ear-mold of an anesthetized monkey. The recordings were then filtered with an 

inverted macaque audiogram (Jackson et al. 1999) to simulate the effect of different ear 

sensitivity at different frequencies, analogous to the dB(A) scale for humans. The 

stimuli were finally equalized so that they produced equal maximum root mean square 

(RMS) amplitude (using a 200-ms sliding window) in filtered recordings (Kuśmierek 

and Rauschecker, 2009). During experiments, all stimuli were amplified (Yamaha AX-

496) and delivered at a calibrated RMS amplitude of ~80 dB SPL. 

Analyses of sound categories  

A modulation spectrum analysis (Singh and Theunissen, 2003) was performed for each 

sound with the STRFpak Matlab toolbox (http://strfpak.berkeley.edu). We obtained a 

spectrogram of each sound by decomposing it into frequency bands using a bank of 

Gaussian filters (244 bands, filter width = 125 Hz). The filters were evenly spaced on 

the frequency axis (64-48000 Hz) and separated from each other by one standard 

deviation. The decomposition resulted in a set of narrow-band signals, which were then 

cross-correlated with each other and themselves to yield a cross-correlation matrix. This 

matrix was calculated for time delays of +/-150 ms, and the two-dimensional Fourier 

transform of this matrix was calculated to obtain the modulation spectrum of each sound 

(Figure 1D).  

Data acquisition 

Images were acquired with a horizontal MAGNETOM Trio 3-T scanner (Siemens) with 

a 60-cm bore diameter. A 12-cm custom-made saddle shape radiofrequency coil 

(Windmiller Kolster Scientific) covered the entire brain and was optimized for imaging 



 

 

 

the temporal lobe. The time series consisted of gradient-echo echo-planar (GE-EPI) 

whole-brain images obtained in a sparse acquisition design. Sparse sampling allows 

single volumes to be recorded coincidentally with the predicted peak of the evoked 

hemodynamic response (Hall et al., 1999). This helps to avoid contamination of the 

measured stimulus-specific BOLD response by the scanner-noise-evoked BOLD 

response. Further, by triggering acquisition 6 s after stimulus onset, the auditory 

stimulus was presented without acoustic interference from gradient-switching noise, 

typical of a continuous fMRI design. For the functional data, individual volumes with 

25 ordinal slices were acquired with an interleaved single-shot GE-EPI sequence (TE = 

34 ms, TA = 2.18 s, flip angle = 90°, field of view (FOV) = 100 x 100 mm2, matrix size 

= 66 x 66 voxels, slice thickness = 1.9 mm, voxel size = 1.5 x 1.5 x 1.9 mm3). On each 

experiment day, a low-resolution FLASH anatomical scan was acquired with the same 

geometry as the functional images (TE = 14 ms, TR= 3 s, TA = 2.18 s, FOV = 100 x 

100 mm2, matrix = 512 x 512 voxels, slice thickness = 1.9 mm, number of averages = 2, 

flip angle = 150°). For overlaying our functional images, we created a high-resolution 

anatomical template (0.5 x 0.5 x 0.5 mm3 isotropic voxels) by averaging five high-

resolution anatomical scans acquired under general anesthesia with an MP-RAGE 

sequence (TE = 3.0 ms, TR = 2.5 s, flip angle = 8°, FOV = 116 x 96 x 128 mm3; matrix 

= 232 x 192 x 256 voxels). 

Data analysis 

For M1, 9 EPI runs (180 time points each) were acquired over 6 sessions. For M2, 7 

runs were acquired over 4 sessions. All data analyses were performed using AFNI (Cox, 

1996) (http://afni.nimh.nih.gov/afni), FreeSurfer (Dale et al., 1999; Fischl et al., 1999) 

(http://surfer.nmr.mgh.harvard.edu/), SUMA (http://afni.nimh.nih.gov/) and custom 
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code written in Matlab (MathWorks). Preprocessing involved slice timing correction, 

motion correction (relative to the run-specific mean GE-EPI), spatial smoothing with a 

3.0 mm full width at half-maximum Gaussian kernel, and normalization of the time 

series at each voxel by its mean. All volumes that had motion values with shifts > 0.5 

mm and/or rotations > 0.5 deg were excluded from further analyses. Lastly, we 

performed linear least-squares detrending to remove nonspecific variations (i.e. scanner 

drift). Following preprocessing, data were submitted to generalized linear model 

analyses. The model included three stimulus-specific regressors and six estimated 

motion regressors of no interest. For each stimulus category (Env, MC, SMC) we 

estimated a regressor by convolving a one-parameter gamma distribution estimate of the 

hemodynamic response function with the square-wave stimulus function. We performed 

t-tests contrasting all sounds vs. baseline (“silence” trials), MC vs. Env and MC vs. 

SMC. Finally we coregistered and normalized our functional data to the population-

average MRI-based template for rhesus monkeys 112RM-SL (McLaren et al., 2009) and 

then displayed the results on a semi-inflated cortical surface of the template extracted 

with Freesurfer and displayed with SUMA to facilitate visualization and identification 

of cortical activations. The anatomical boundaries described here are based on the 

macaque brain atlas of Saleem and Logothetis (2012).   

  

To quantify the lateralization of the BOLD response across hemispheres we measured a 

lateralization index (LI = (Rh-Lh)/(Rh+Lh)), where Rh and Lh are the mean responses in 

the right and left hemisphere, respectively. The LI curve analyses ensure that the 

lateralization effect is not caused by small numbers of highly activated voxels across 

hemispheres.  The LI curves were based on the t-values obtained from each contrast 

condition and were calculated using the LI-toolbox (Wilke and Lidzba, 2007) with the 



 

 

 

following options: +5 mm mid-sagittal exclusive mask, clustering with a minimum of 5 

voxels and default bootstrapping parameters (min/max sample size 5/10000 and 

bootstrapping set to 25% of data). The bootstrapping method calculates 10,000 times 

LIs using different thresholds ranging from 0 until the maximum t-value for a specific 

contrast condition. For each threshold a cut-off mean value is obtained from which a 

weighted mean (LI-wm) index value can then be calculated (Wilke and Lidzba, 2007). 

This yields a single value between − 1 and 1 indicating right- or left-sided hemisphere 

dominance.  

 

Results 

Our first goal was to identify brain regions involved in the processing of conspecific 

vocalizations by the macaque brain. To this end, we collected functional MR images of 

two monkeys in a horizontal 3-T scanner while stimuli from three different sound 

categories were presented to the animals. Complex sounds are characterized by having a 

wide range of spectrotemporal features. While environmental sounds typically contain 

sharp temporal onsets, monkey vocalizations contain greater modulations in the spectral 

domain because of the harmonics contained in these sounds. Environmental sounds also 

carry abstract information about the identity of objects, so a comparison between BOLD 

responses to monkey vocalizations and environmental sounds is useful in determining 

brain structures involved in higher-level processing. However, specific spectrotemporal 

differences exist between these two types of sounds. This can be seen, for instance, in 

the spectral modulation of monkey vocalizations at approximately 1.5 - 2 cycles/kHz, 

which is not present for other sound categories (Figure 1D). Thus, scrambled versions 

of monkey calls (SMC) were used to further control for the local spectrotemporal 
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features in the vocalizations (see Figure 1C and Material and Methods). Comparison 

of average modulation spectra between categories showed that SMC were acoustically 

better matched to MC than Env (correlation coefficient between the modulation spectra: 

SMC vs. MC: 0.92, Env vs. MC: 0.86; Figure 1D).  

Overall, sound stimulation elicited significant BOLD responses compared to silent trials 

irrespective of auditory stimulus category (q [FDR] < 0.05, p < 10−3, one-tailed t-test, t 

range: 2.3 - 10, cluster size > 10 voxels) in a broad network of brain regions, including 

subcortical auditory pathways, classical auditory areas of the superior temporal gyrus 

(STG), but also regions in parietal and prefrontal cortices (Figure 2). The clusters in 

Figure 2A highlight the main activation sites on the cortical surface of monkey M1. 

Figure 2B shows selected coronal slices for both animals (M1 and M2) showing 

activation in the ascending auditory pathway. These regions include the cochlear 

nucleus (CN), the inferior colliculus (IC), the medial geniculate nucleus (MGN), the 

primary auditory cortex (A1), and areas in the anterior superior temporal cortex, 

including the rostral (R) and anterolateral (AL) areas, the rostrotemporolateral area 

(RTL) and the rostrotemporal pole (RTp) region. 

Activation clusters (averaged across animals and hemispheres) taken from a normalized 

number of voxels (i.e. equal number of left and right voxels) were found in: IC [N = 84 

voxels, peak coordinate = (4, -1, 12)]; A1 [N = 198 voxels, peak coordinate = (22, 6, 

24)]; R/AL [N = 131 voxels, peak coordinate = (24, 17, 12)]; and RTL/RTp [N = 165 

voxels, peak coordinate = (23, 22, 8)].  

For both animals we observed a larger amplitude and spatial extent of the BOLD 

response in the right hemisphere as compared to the left hemisphere (Figure 2B). 

Activation (percent signal change) in selected clusters for each hemisphere is shown in 

Figure 2C. We compared the activation between the two hemispheres by calculating a 



 

 

 

laterality index (LI), with a positive index indicating a left-hemisphere bias and a 

negative index indicating a right-hemisphere bias. Given the fact that LIs show a 

threshold dependency (Nagata et al., 2001), we measured LI curves to provide a more 

comprehensive estimate over a whole range of thresholds (Wilke and Lidzba, 2007). 

Using this adaptive thresholding approach we found a right-hemisphere bias in the LI 

curves for general auditory activation (all sounds versus baseline) in both monkeys (M1, 

weighted mean = -0.33; M2, weighted mean = -0.66). For higher thresholds, the 

activation was clustered in primary auditory cortex (A1) of the right hemisphere in each 

animal.   

Vocalizations are complex naturalistic stimuli that contain behaviorally relevant 

information. In order to investigate if the auditory system contained representations that 

are sensitive to this sound category versus other types of behaviorally relevant complex 

sounds, we contrasted monkey calls against environmental sounds (see Material and 

Methods). Environmental sounds also carry abstract information about object identity 

in their spectrotemporal patterns. We, therefore, also looked for areas showing elevated 

response to these sounds relative to monkey vocalizations.  When correcting for 

multiple comparisons (q [FDR] < 0.05), no differences were observed for the contrast of 

MC vs. Env. However, at uncorrected thresholds, we found significantly higher 

activations by MC as compared to Env in both monkeys across regions in temporal, 

parietal and prefrontal cortices (M1, p < 10−3 uncorrected, t-value range: -4.2 to 6.1, 

cluster size > 5 voxels; M2, p < 10−2 uncorrected, t-value range: -3.6 to 5.9, cluster size 

> 5 voxels) (Figure 3A). Specifically, activations sensitive to MC were found in the 

anterior STG region, including areas AL and RTp of the rostral belt/parabelt, and 

further along the auditory ventral stream in ventrolateral prefrontal cortex (vlPFC). In 

addition, we observed activation patches in the inferior parietal lobule (areas PF/PFG) 
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of the right parietal cortex, and bilaterally inside the inferior branch of the arcuate 

sulcus, possibly corresponding to Brodmann’s area (BA) 44, and posterior to the arcuate 

sulcus, in a region that is part of ventral premotor cortex (PMv). In addition, we found 

regions sensitive to environmental sounds (blue) along the superior temporal sulcus 

(STS) and inferotemporal (IT) cortex. To investigate hemispheric lateralization in the 

processing of vocalizations, we measured LI curves for this contrast (Mc > Env), 

finding a slight right hemispheric bias in monkey M1 (weighted mean = -0.19) and a 

moderate right-hemisphere bias in monkey M2 (weighted mean = -0.42). 

In order to determine whether spectrotemporal features alone could have driven the 

activation in these areas, we further contrasted monkey calls (MC) with scrambled 

monkey calls (SMC). The results showed similar patterns of MC activation in both 

monkeys in the RTL region of the aSTG (M1; p < 10−3 uncorrected, t-value range > -4.8 

– 7.5, cluster size > 5 voxels and for M2, p < 10−2 uncorrected, t-value range > -4.3 – 

6.1, cluster size > 5 voxels) in both monkeys specifically in the RTL region of the aSTG 

(Figure 3B). In monkey M2, a second region, the middle medial belt (MB), was also 

more strongly activated by monkey vocalizations than by their scrambled counterparts. 

The weighted-mean lateralization index (LI) for this contrast (MC > SMc) also showed 

higher values towards the right hemisphere (M1: weighted mean =  -0.34; M2: weighted 

mean =  -0.44). A summary is shown in Table 1. 

Some differences in the patterns of activity were observed across the two animals. 

These differences might be explained either by variability across subjects or by 

differences in attentional state: M1 was significantly engaged in completing the task (> 

90% success), whereas M2 was scanned passively while holding fixation. To 

compensate for this variability, we calculated the minimum t-statistic (p < 0.01 

uncorrected) across contrasts in each monkey (a conjunction test) and across monkeys 

in each contrast (Figure 4). Conjunction across contrasts (MC > Env and MC > SMC) 



 

 

 

and monkeys (M1 and M2) found a single area in the right hemisphere to be specifically 

involved across both conjunction analyses, area RTL/RTp (peak coordinate: 24, 17, 12). 

 

Discussion 

Species-specific vocalizations in non-human primates (“monkey calls”) convey 

important information about affective/emotional states as well as the recognition of 

objects and individuals (Ghazanfar and Hauser, 1999). We used whole-brain functional 

magnetic resonance imaging (fMRI) in awake behaving monkeys to examine auditory 

responses to stimuli from three different sound categories: a) multiple types of 

conspecific monkey calls, b) environmental sounds, and c) scrambled versions of the 

same monkey calls largely preserving their local spectrotemporal features.  

For all three sound categories combined we found robust BOLD responses along 

various regions in the ascending auditory pathways (CN, IC, MGB and A1, Figure 

2A,B). These results, using a 3-T scanner without contrast agent, corroborate previous 

fMRI findings obtained on a 1.5-T magnet with the contrast agent MION, showing 

activation by complex sounds along the auditory pathway (Joly et al., 2012a). The 

results further attest to the fact that complex sounds are highly effective for mapping 

subcortical and cortical auditory structures (Rauschecker et al., 1995; Rauschecker, 

1998b; Poremba et al., 2003). Furthermore, our results confirm the general trend of a 

slight right-hemisphere bias (Table 1) in the processing of complex sounds in the 

macaque auditory cortex, as measured with fMRI (Joly et al., 2012a; Petkov et al., 

2008). Similar results have been found in humans for non-speech voice sounds (Belin et 

al., 2000). 
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When we compared activations produced by monkey vocalizations versus the other two 

sound categories using a conjunction analysis, we found consistent activations in 

regions along the anterior STG, in particular in areas AL, RTL and RTp, in both 

animals (Figure 4). Our results extend previous findings of increased sensitivity to 

monkey vocalizations in anterior STG regions (Poremba et al., 2003; Petkov et al., 

2008; Kikuchi et al., 2010; Joly et al., 2012a,b; Fukushima et al., 2014) by using control 

stimuli (SMC) that retained the low-level acoustic information of macaque 

vocalizations and whose acoustic structure was better matched to the vocalizations than 

the acoustic structure of other complex sounds (Figure 1D). Single-unit studies of the 

R/AL region have also found increased selectivity either to monkey calls, or to sound 

categories including vocalizations (Tian et al., 2001; Kuśmierek et al., 2012), consistent 

with the present results (Figure 3 and 4).  

Thus, the cortical representation of vocalizations involves an auditory ventral pathway, 

consisting of a chain of interconnected regions in anterior STG and vlPFC that extract 

abstract information for the recognition and categorization of vocalizations 

(Rauschecker, 2012). The rostral belt, parabelt and aSTG send afferent projections into 

ventrolateral, polar, orbital and medial regions of the prefrontal cortex (PFC) (Jones and 

Powell, 1970; Hackett et al., 1999; Romanski et al., 1999; Kaas and Hackett, 2000; 

Cavada et al., 2000; Hackett, 2011; Yeterian et al., 2012), and together these regions 

form the ventral cortical stream in audition. Vocalization-sensitive neurons are found 

along with face-sensitive neurons in the vlPFC (Romanski et al., 2005), allowing these 

regions to integrate vocalizations with the corresponding facial gestures (Romanski and 

Goldman-Rakic, 2002; Cohen et al., 2007; Diehl and Romanski, 2014). The PFC is 

involved in higher-level integrative processes for the cognitive control of vocalizations 

as well as in the interpretation of semantic content in vocalizations (Romanski and 

Averbeck, 2009). The activation patterns observed in PFC (Figure 3A) could represent 



 

 

 

categorical or affective information reflected in the vocalizations. Further imaging 

studies and multivariate analyses comparing multiple vocalization types might elucidate 

the differential contribution of each subregion of the PFC. 

Our stimuli also activated higher-level visual areas, such as the middle temporal (MT) 

and inferior temporal areas (IT). These areas are known to be involved in the processing 

of visual motion (Maunsell and Van Essen, 1983) and in object perception (including 

faces), respectively (Tsao et al., 2006; Ku et al., 2011). Their activation by purely 

auditory stimuli raises interesting questions regarding their possible role in the 

multisensory processing of dynamic audio-visual stimuli, such as facial expressions that 

naturally occur in conjunction with vocalizations and/or motion of the face (Furl et al., 

2012; Polosecki et al., 2013; Perrodin et al., 2014). However, to answer these questions 

more definitively, further imaging experiments utilizing dynamic audio-visual stimuli 

would be necessary. Such studies could enlighten us on how auditory information 

combines with visual information in both the ventral and dorsal pathways building 

multimodal representations from dynamic facial expressions combined with 

vocalizations (Ghazanfar and Logothetis, 2003). 

When we contrasted monkey calls to environmental sounds, we also found differential 

activation in regions PF/PFG (area 7b) (Pandya and Seltzer, 1982; Rozzi et al., 2006) of 

the inferior parietal lobule (IPL), in addition to the well-known regions in the STG 

sensitive to monkey vocalizations. Parietal regions inside the intraparietal sulcus (IPS) 

have been known to receive auditory projections (Lewis and Van Essen, 2000) and to 

contain neurons that respond to auditory and multimodal stimuli (Stricanne et al., 1996; 

Bushara et al, 1999;  Grunewald et al., 1999; Cohen and Andersen, 2000; Cohen, 2009), 



Functional neuroimaging of ventral and dorsal stream pathways in the macaque auditory system 

 146 

but the role of these regions has traditionally been assumed to lie in spatial processing 

and control of eye movements.  

Similarly, we found an engagement of the ventral premotor cortex (PMv) in the 

processing of monkey vocalizations (Figure 3A). This region has previously been 

thought to be involved in the processing of the location (but not quality) of nearby 

sounds (Graziano et al., 1999). Surprisingly, when we compared the effects of 

vocalizations (MC) against vocalizations that were scrambled in both the spectral and 

temporal domains (SMC), we did not observe greater activation in parietal or prefrontal 

areas for MC, suggesting that the scrambled versions of the MC evoked the same 

amount of activity in these regions. Similar results where obtained by Joly et al. (2012b) 

with temporally scrambled vocalizations activating large regions of premotor and 

parietal cortices. Ventral premotor cortex (PMv) has also been implicated in the 

initiation of vocalizations in the macaque monkey (Hage and Nieder, 2013). It appears 

possible, therefore, that the same neurons are the source of an efference copy signal 

(Kauramäki et al., 2010), which is responsible for the suppression of auditory cortex 

during self-initiated vocalizations (Eliades and Wang, 2003). More generally, they 

could be part of an audio-motor network connecting perception and production of 

sounds (Rauschecker and Scott, 2009; Rauschecker, 2011).  
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Figure Legends: 

Figure 15. Behavioral paradigm and example stimuli for each sound category. (A) 

The monkey had to keep fixation on a central spot while stimuli were presented from 

one of three sound categories: environmental sounds (Env), monkey calls (MC) and 

scrambled monkey calls (SMC). Next, a target sound (white noise, 500 ms) was played 

after a random delay of 0.5 – 1.5 s at the end of each stimulus period, and the animals 

were required to make a saccade to an imaginary cue position (yellow cue). The 

imaginary target was chosen to be either on the left or the right side of the screen, and 

the animal was instructed at the beginning of each session where the target was going to 

appear (sees Methods). (B) All conditions were presented in a sparse-sampling design 

to avoid interference between the hemodynamic response (HR) generated by the 

scanner noise and by the stimuli. The inter-trial interval (ITI) lasted for 2 s, and the 

monkey was then allowed to start a new trial by initiating fixation once again.  (C) 

Eight-second series of spectrograms from the three sound categories presented. (D) 



 

 

 

Average modulation spectra for each stimulus category. Pearson correlations between 

average modulation spectra were: MC vs. SMC = 0.92, MC vs. Env = 0.86. 

 

Figure 16. Mapping auditory and auditory-related regions with complex sounds. 

(A) Representative cortical responses from monkey (M1) for all sound conditions 

combined (q FDR < 0.05, p < 10−2; cluster size > 10 voxels). The projection onto the 

semi-inflated surface preserves sulcal and gyral landmarks while allowing visualization 

inside the intraparietal sulcus (ips) and lateral sulcus (ls). Activation was observed along 

the auditory ventral stream in the superior temporal gyrus (STG), the superior temporal 

sulcus (STS), ventral intraparietal area (VIP) and the frontal pole (Fp). Activated dorsal-
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stream regions included the ips and ventral premotor cortex (PMv). Some active clusters 

were also observed in the middle temporal area (MT) and the inferior temporal cortex 

(IT). (B) Activation was robust across regions in the ascending auditory pathway of the 

two monkeys: cochlear nuclei (CN), inferior colliculus (IC), medial geniculate nucleus 

(MGN), primary auditory cortex (A1), rostral area (R), anterolateral area (AL), lateral 

rostrotemporal area (RTL) and the rostrotemporal pole region (RTp). (C) The average 

BOLD response for the main auditory activation showed a right-hemisphere bias in both 

animals (M1, weighted mean = -0.33, M2, weighted mean = -0.66). 

 

Figure 3.  Regions specifically activated by monkey vocalizations. (A) Vocalization-

sensitive regions obtained from comparison between the effects of monkey calls and 

environmental sounds. All activation maps were displayed on a semi-flattened surface 

of the macaque monkey template. Active regions were found in the anterolateral area 

(AL), lateral rostrotemporal area (RTL), rostrotemporal pole (RTp), secondary 

somatosensory (SII) cortex, ventral premotor cortex (PMv), ventrolateral prefrontal 

cortex (vlPFC), and inferior parietal areas (PF and PFG). (B) Regions significantly 

more activated by monkey vocalizations than by scrambled monkey vocalizations 

include areas in the anterior STG, RTL/RTp.  Red/orange: significantly higher 



 

 

 

activation by MC than by control sounds (SMC or Env); blue: significantly higher 

activation by SMC or Env than by MC. 

 

Figure 4.  Conjunction results across contrast conditions and across monkeys. (A) 

Conjunction across contrast (MC > Env and MC > SMC) for monkey M1 (n voxels = 

235, top panel) and for monkey M2 (n voxels = 89, lower panel). (B) Conjunction 

across monkeys (M1 and M2) for contrast MC > Env (n voxels = 248, top panel) and 

for contrast MC > SMC (n voxels = 58, lower panel). Each individual contrast map was 

thresholded at p < 0.01 (uncorrected).  Red region indicates conjunction voxels that 

were differentially activated for both contrasts in each monkey or in both monkeys for 

each contrast. 

Table 1. LI-weighted-mean values for the overall sound activation and for each 

contrast condition. Mean lateralization index values (LI-wm) are shown that were 

obtained from LI curves measured as a function of the statistical threshold (t-value) for 

the overall auditory activation (all sounds vs. baseline), for the contrast between 

monkey calls and environmental sounds (MC > Env) and for the contrast between 
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monkey calls and scrambled monkey calls (MC > SMC). A positive index indicates a 

left-hemisphere bias, while a negative index indicates a right-hemisphere bias. LI-wm 

values are shown separately for monkeys M1 and M2.  

 All > baseline MC > Env MC > SMC 

M1 -0.33 -0.19 -0.34 

M2 -0.66 -0.42 -0.44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

7.3 Widespread and opponent fMRI signals represent sound location in 
macaque auditory cortex 
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Abstract (150 words): 

In primates, posterior auditory areas are thought to be part of a dorsal auditory pathway 

specialized in processing spatial information. While a number of human studies support 

this notion, neuroimaging evidence in macaques is missing. Here we provide new 

evidence based on functional magnetic resonance imaging (fMRI) of the macaque 

monkey indicating that auditory space is represented based on a distributed hemifield 

code rather than on a local spatial topography. Hemifield tuning emerges from an 

opponent pattern of positive and negative fMRI signals across the cerebral hemispheres 

that dependents on the suppression carried by interaural delay cues. Importantly, this 

pattern in right posterior region generates enough spatial information to segregate space 

across hemifields. Taken together, our results suggest that primate auditory cortex 

represents space based on a distributed hemifield code and that posterior specialization 

for space arises from this form of coding. 
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Introduction:  

The ability to localize sounds is essential for an animal’s survival. In primates, auditory 

spatial information is thought to be processed along a dorsal auditory pathway1, a 

hierarchical system with reciprocal connections that includes areas CL/CM of the 

posterior superior temporal (pST) region2,3. A central question regarding the cortical 

mechanisms for sound-source localization in primates is whether the spatial 

representation of sounds is localized to distinct areas of the pST region or distributed 

throughout the superior temporal cortex.  

Most of the original results that suggested regional specificity in posterior regions of 

auditory cortex (AC) for sound source localization were based on single-unit recordings 

in macaque monkeys3, followed by neuroimaging studies in humans4,5. In the macaque, 

neurons in area Cl were found to be sharply tuned3 and more selective to spatial position 

than other fields of AC3,6,7. However, more recent evidence in both monkeys8 and 

humans9,10 suggest that auditory space is represented based on a hemifield code by 

neurons broadly tuned to either side of space.  

These new evidence is consistent with a competing perspective which suggests that 

space is coded by an opponent-channel mechanism 11,12 as similarly found in the 

brainstem 13,14. Strong evidence supporting this notion comes from previous lesion 

studies in cats15  and monkeys16 demonstrating that unilateral or reversible lesions17 of 

either left or right AC resulted in severe localization deficits for sound sources 

contralateral to the lesion. Comparably, single-unit studies in cats12 and optical imaging 

experiments18 in ferrets have provided data predominantly supporting a distributed 

mechanism by showing neurons responding broadly with a maximal response to sound 

sources in contralateral space (e.g. near the opposite ear).  



 

 

 

While several animal studies have addressed the issue of space coding in AC utilizing 

optical imaging18 and single-unit methods19, these techniques are not ideal for studying 

long-range functional interactions among the distant hemispheres, particularly in 

primates, where auditory areas reside deep inside sulci. Functional magnetic resonance 

imaging (fMRI) based on blood oxygen level depend (BOLD) signals provides a 

complementary method to overcome this problem.  

To visualize the functional representation of space across auditory cortical fields (CFs) 

of each hemisphere we first mapped the frequency organization in AC and identified 

mirror reversal tonotopic maps20,21. Secondly, we presented spatial stimuli from an 

individualized virtual azimuth space (Fig. 1g) and found a lack of topographical 

organization. Instead, we found a distributed representation of azimuth with an 

opponent pattern of positive and negative BOLD responses (PBRs and NBRs 

respectively) across hemispheres with a predominant NBR in pST of the right 

hemisphere. We explored these results further by presenting the same original spatial 

sounds but without ITD cues and found that such manipulation resulted in a loss of 

hemifield tuning. Finally, we show by using multivariate pattern dissimilarity22 of  the 

BOLD responses to each azimuth sector that right pST can segregate space similarly to 

a hemifield code. 

 

Results: 

Our first aim was to identify auditory CFs based on the frequency organization of AC 

and then map the spatial dimension using phase-encoding analytical methods23,24. 

Functional experiments were conducted under general anesthesia25 in two male rhesus 

monkeys (Macaca mulatta) using a 7-Tesla MRI scanner (Biospec 7/60v, Bruker), 
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while awake-monkey experiments were conducted in  two female monkeys using a 4.7-

Tesla MRI scanner (Biospec 47/40v, Bruker). All images were acquired in-plane 

resolution of 0.75 x 0.75 with a slice thickness of 2 mm aligned parallel to the superior 

temporal gyrus (STG) (Fig. 1a).  Sparse sampling acquisition was used to avoid scanner 

noise interference with the stimulus induced BOLD responses (Fig. 1b). Auditory 

stimulation elicited significant BOLD responses (q FDR < 0.05, p < 10 −7, cluster size > 

10 voxels) along the auditory pathway; inferior colliculli (IC), medial geniculate body 

and AC in both anesthetized and awake monkeys (Supplementary Fig. 1).  

After optimizing the sparse acquisition design, we conducted tonotopic experiments to 

identify individual CFs utilizing phase-mapping analytical techniques (see Online 

Methods). The method consisted of presenting tones and narrow band noise (Fig. 1b) in 

blocks of one-octave steps in ascending frequency order and repeating the stimulus 

cycle twelve times (Supplementary Fig. 2a).  

The resulting average BOLD response to each frequency range was narrow and 

gradually shifted from low frequency A1 to anterior and posterior regions of AC with a 

distinct wave pattern of PBRs and NBRs (Fig. 1c). The PBR/NBR pattern reversed 

drastically around 2 kHz indicating a shift towards high frequency regions. Voxels with 

significant modulation (coherence > 0.3) to the stimulus rate (0.01 Hz, 12 cycles/ 1200 

s) were mapped by their scaled phase values to the frequency range of the presented 

stimuli (0.1 - 16 kHz) (Fig. 1d). For visualization of the overall maps inside the lateral 

sulcus we superimposed all results into a rendered surface of the STG of each animal. 

Subsequently, we defined four CFs (posterior, primary, rostral and anterior) based on 

the mirror reversal boundaries with the same population response mediolaterally (Fig. 

1f and Supplementary Fig. 2b-d).  



 

 

 

We then aimed at mapping the spatial domain utilizing the same analytical methods but 

at a stimulation rate of 0.008 Hz (12 cycles/ 1800 s). Prior to experiments we obtained 

individualized 3D-head-related transfer function (HRTF) sounds (broad-band noise 

bursts, 0.2-16 kHz, 80 dB SPL, 100 ms in duration) from binaural recordings of each 

individual monkey (see Online Methods). The recorded stimuli contained all individual 

spatial cues (ITDs, interaural level differences (ILDs) and spectral cues, 

Supplementary Fig. 3a, b). In addition, the virtual noise bursts changed in azimuth 

direction (leftward, rightward and in distance) within a 30° sector over time (Fig. 1g). 

Such innovative design allowed us to keep space partitioned while we estimated the 

response to dynamic spatial sounds within a constrained spatial sector and thus avoided 

repetition suppression in the BOLD response. A total of 12 sectors around a virtual 

plane surrounding the head of the monkey were used to image the BOLD signal at any 

given point in time.  

As opposite to the frequency domain, the mean BOLD responses to spatial sounds were 

broad and shifted between two phases across the cerebral hemispheres (Fig. 1h). 

Overall, the maps showed no topographic organization, but instead two color codes on 

each hemisphere reflected the broad peak response across sounds in the contralateral 

hemifield (Fig. 1i and Supplementary Fig. 3c). We investigated these results further by 

plotting region-of-interest (ROI) in significant coherent voxels crossing parallel and 

orthogonal to the primary field and confirmed a lack of topography in the flat phase-

peak response across cortical space spanning 10 mm (Supplementary Fig. 3d).  

In summary, our mapping experiments corroborated previous electrophysiological26 and 

imaging studies of macaque AC showing mirror-reversal tonotopic maps21 and provided 

new evidence indicating that the functional representation of azimuth as measured by 

fMRI at the millimeter scale is not organized based on spatial topography.  
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Positive and negative BOLD responses across auditory fields  

How is azimuth space represented on each auditory CFs? We investigated our data 

further by analyzing each time series with a general linear model (GLM) of the BOLD 

signal. We tested the significance of the model from the measured BOLD responses to 

each condition (n = 12) as compared to the baseline/silence periods (q FDR < 0.05, p < 

10−6, cluster size > 10 voxels). Surprisingly, we found distinct patterns of PBRs and 

NBRs within each hemisphere that changed dynamically as a function of each spatial 

sector (Fig. 2a and Supplementary Fig. 4). Spatial tuning curves calculated from the 

spatial spread of PBRs and NBRs in each AC showed that the overall tuning was in 

opposite polarity between signals, with PBRs oriented approximately at ±120° and 

NBRs at ±60° between hemispheres. Similarly, hemispheric differences in PBRs and 

NBRs showed opposite polarity between signals, with NBRs showing a peak around 

frontal right sectors (Fig. 2d).  The peak for PBRs was observed for sectors near the 

contralateral ear (e.g. ±90°/120°), with a cluster size extending the overall spatial 

volume of AC.  However, the ipsilateral PBRs were greatly reduced in size and were 

accompanied by a NBR pattern in anterior and posterior regions of AC. In the primary 

field, the responses exhibited a concentric pattern (e.g. at +30°- 60°) with positive 

voxels expanding the overall anterior-posterior frequency axis and negative voxels 

mostly lying anteriorly and posteriorly (Fig. 2b). 

The average BOLD signal in CFs of each monkey (mean and ±SEM, including both 

PBRs and NBRs) showed a marked shift in amplitude around the midline, which further 

indicated hemifield tuning across all CFs (Fig. 2c). Similarly, spatial tuning curves 

obtained from PBRs showed highly significant deviations from circular uniformity 

(Rayleigh test, p < 2.3 −20) with angular means oriented in opposite polarity (~ ±120°) 



 

 

 

between hemispheres but not within CFs of the same hemisphere (Fig. 3). Vector length 

showed that more than half of the total numbers of voxels were active to contralateral 

sectors (~ ±120°) for all CFs. The overall tuning in central fields (primary and rostral) 

was slightly broader than in anterior and posterior fields of the same hemisphere based 

on the standard deviations (see Supplementary table 1 for details).  

In summary, our functional analyses showed that azimuth space as measured by fMRI is 

represented by opponent hemifield responses of positive and negative BOLD across 

hemispheres. The dynamic change between PBRs and NBRs strongly supports the idea 

of an opponent-channel mechanism11,12 in the representation of space in the macaque 

monkey. 

 

Contralateral bias measured with BOLD response contrast  

While animal studies have shown a clear contralateral bias in the firing rate of cortical 

neurons6–8,12, neuroimaging studies in humans have obtained mixed results in respect to 

the degree of contralaterality8,27,28 in AC to spatial sounds. Whether these discrepancies 

are due to species differences in neural coding or to methodological differences (e.g. 

sound stimulation, single-unit and/or fMRI) between studies in animals and humans 

remain a matter of debate8.  

Here, we provide evidence showing a contralateral bias in the fMRI BOLD contrast 

between equidistance spatial sectors (Fig. 4a). The differential activation maps (q FDR 

< 0.05, p < 10−3, cluster size > 10 voxels) showed whether the responses were greater 

for the left (blue to cyan) or the right hemifield (red to yellow).  The strength of the 

BOLD response showed a robust contralateral bias for spatial sectors near the lateral 

axis (e.g. ~ ±90° - 120°). The contrast in frontal sectors (± 0 - 30°) showed greater 
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differential response only in the right hemisphere, while contrast for backward sectors 

(± 150 - 180°) showed almost no differential activation at equal threshold values (q 

FDR < 0.05).  

We quantified these results further by calculating a laterality index (LI = L − R/ |L + R|) 

between correspondent CFs in the opposite hemisphere, including AC as a whole (all 

fields included). Since laterality indexes (LI) in fMRI typically show a threshold 

dependency29, we measured LI curves by bootstrapping LI values as a function of the t-

value threshold and then calculated a mean weighted laterality index (LIwm) (see 

Online Methods for details). The LIwm ranges between −1 and +1 with a positive 

index indicating left-hemisphere bias and a negative index indicating a right-hemisphere 

bias. The resulting indexes for all CFs showed a very strong right hemisphere bias 

(LIwm < −0.5) for sectors in the left hemifield and a left hemisphere bias (LIwm > 0.5) 

for sectors in the right hemifield, except for the right backward sector (+150 - 180°), 

where indexes were more variable across CFs and monkeys (Fig. 4b). The changes 

around the midline were drastic as observed in the slope line in frontal sectors (±0 - 30°) 

as opposed to the slope lines for sectors within each hemifield.  

Similar contralateral representations were found in AC of the awake-monkey (Fig. 5). 

Additionally however, we obtained reliable BOLD signals from IC of the awake-

monkey. Similarly to the anesthetized monkey, the average time courses showed an 

overall suppression effect to sound sources in the ipsilateral side (Fig. 5a). For contrast 

between spatial sectors of the awake-monkey we collapsed across all left and all right 

hemifield sectors (q FDR < 0.05, p < 10−3, cluster size > 10) and confirmed a robust 

contralateral bias (Fig. 5b). The LIwm values in the awake-monkey resembled those in 

the anesthetized animal showing contralateral biases (Fig. 5c).  



 

 

 

Overall, our analyses showed a robust contralateral bias in both anesthetized and awake 

monkeys as measured with fMRI. Moreover, our finding in IC further supports the 

neurophysiological evidence showing hemifield coding below the cortical level30 and 

attest the feasibility of fMRI as a tool for measuring spatial coding in cortical and 

subcortical structures of primates.  

 

Removing ITD cues from spatial sounds  

Previous, work has suggested that NBRs are related to decreases in neuronal activity31. 

Given the strong inhibitory roles involved in ITD coding at subcortical levels32,33 we 

explored the effects of removing ITD cues from the original recorded sounds in the 

PBR/NBR pattern in AC.  

First, we replicated our previous findings (Fig. 6a) showing PBRs and NBRs in AC for 

spatial sounds carrying all spatial cues in frontal azimuth (± 0 - 60°) of the anesthetized 

monkey (All-cues condition, q FDR <0.01, p < 10−6, cluster size > 10 voxels, t-value 

range −6.4 to 8.7). Secondly, we measured the BOLD responses to the same sounds, but 

without ITD cues, sounds mainly carrying ILD and spectral cues (NO-ITD condition, q 

FDR < 0.01, p < 10−3, cluster size > 10 voxels, t-value range −6 to 18.8). The BOLD 

response to leftward sounds (e.g. NO-ITD at −60°) showed greater activation in the 

right hemisphere as compared to the left hemisphere (Fig. 6a).  However, the BOLD 

response to rightward sounds  (e.g. NO-ITD at +60°) showed a bilateral activation in 

both left and right AC.  

Moreover, while spatial tuning curves for the All-cues condition showed contralateral 

tuning (~ ±30°), the ITD-control condition showed a lack of contralateral tuning (Fig. 

6b). Laterality indexes showed comparable values between −60° and −30°, however the 
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LIwm values near the midline (−15° to +15°) shifted drastically towards zero and just 

increased slightly (LIwm < 0.5) for more rightwards sounds as compared to the All-cue 

condition. Thus, removal of ITD cues facilitated the responses of the right hemisphere 

and consequently the difference in BOLD activity between both hemispheres plateaus 

near the midline (Fig. 6c).  

Taken together, our results suggest that the suppression effects (either in the form of 

smaller positive clusters and/or negative BOLD responses) might be due to inhibitory 

inter-hemispheric processes brought by ITD cues. In addition, our results indicate that 

the lack of suppression caused by the removal of ITD cues particularly affected the right 

hemisphere response necessary for contralateral tuning. Overall, we provide new 

evidence for the role of ITD mechanisms in the representation of azimuth space in the 

right hemisphere of the macaque monkey. 

 

Relating cortical representations with hemifield model 

Previous work has strongly suggested that the form of coding in AC for azimuth space 

follows a hemifield rate code 8,9,11. The neural population code could be investigated by 

representational similarity analyses (RSA) 22. Here, RSA measures dissimilarity 

between the responses patterns to each spatial sector.  

The beta coefficients (β) obtained from the fitted GLM to each stimulus condition (n 

=12) were subjected to pairwise Pearson’s correlation (R) and the distance (1 − R) to 

each spatial sector was ordered into a 12 x 12 representational dissimilarity matrix 

(RDM). The RDM characterizes the BOLD response patterns to each spatial sector and 

captures distinctions within and between hemifield responses (Fig. 7a).  

This analysis was repeated for each CF, AC and hemifield model, providing a total of 

11 RDMs (Supplementary Fig. 6). Visual inspection of each RDM from the left 



 

 

 

hemisphere revealed a small dissimilarity (blue) distance between spatial sectors in the 

right hemifield, while RDMs from the right hemisphere showed a small dissimilarity 

distance between spatial sectors in the left hemifield. These results largely confirm our 

previous results showing contralateral tuning (Fig. 4, 5). More importantly however, 

these analyses revealed that while most regions showed variability within ipsilateral 

sectors, the pST region of the right hemisphere showed small dissimilarity within 

hemifields and a graded dissimilarity distance (red) between hemifields (Fig. 7b), 

indicating that right pST carried spatial information in the NBRs to ipsilateral sound 

sources. When subjecting RDMs to clustering analyses and multidimensional scaling 

(MDS), we were able to visualize how the right pST region segregated the response 

patterns in an ordered distance (Fig. 7c, d). Interestingly, the elicited response patterns 

to frontal sectors (±30°) were very dissimilar, generating a larger distance between them 

that further indicated drastic changes of responses around the midline. 

We also examine the dissimilarity between spatial representations obtained from 

individual CFs (including AC) and hemifield model by computing Spearman’s rank-

order correlations between RDMs (1 − Spearman’s R). This analysis resulted in a 

second-order RDM (see Online Methods and Supplementary Fig. 6). The second-

order RDM when subjected to MDS showed how the pST clustered at a closer distance 

to a hemifield code (Fig. 7e). Using a sign-rank permutation test (FDR p < 0.01, 95% 

confidence intervals by bootstrap) we determined that the right pST RDM was 

significantly more similar to a hemifield model RDM than any other cortical RDM (Fig. 

7f). Such great distinctions found for the pST of the right hemisphere suggested a 

distinct cortical region in macaque sensitive to auditory space and motion. 

 

Discussion: 
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Using fMRI and multivariate analytical methods, we mapped auditory CFs and then 

measured the BOLD responses to spatial auditory stimuli. We demonstrated that the 

functional representation of azimuth in the macaque as measured by the BOLD signal is 

not topographically organized but instead distributed throughout AC. We further show 

that an opponent pattern of positive and negative BOLD responses across the cerebral 

hemispheres generates hemifield tuning and that such tuning is dependent on the 

suppression carried by ITD cues. 

While it was originally thought ITDs  (the most salient spatial cue) in mammals were 

coded by a topographical arrangement of coincidence detectors as in the barn owl34,35, 

more than a decade of research in multiple mammalian species has revealed a different 

mechanism14,36,  one in which ITDs are coded by an opponent hemifield code based on 

neuronal inhibition14,32,33,36. Our results here support this view at the cortical level by 

showing opponent patterns of positive and negative BOLD responses across AC.  

In our functional mapping experiments, positive BOLD responses showed a maximum 

amplitude and spatial spread for contralateral sectors (e.g. near the ear ~ ± 90° - 120°), 

in agreement with previous lesion15–17, single-unit6,7,11,19 and optical imaging data18. On 

average, the BOLD responses on each hemisphere shifted the overall amplitude near the 

midline, with each cortical field of the same hemisphere showing similar broad tuning 

to the contralateral hemifield. Although previous single-unit studies of the macaque 

posterior regions (in particular area CL) have reported sharply tuned neurons to spatial 

position3, we found no differences in the spatial tuning curves of CFs, suggesting that 

neurons in these regions shared similar spatial tuning curves12. However, because 

BOLD signals reflect the average activity across a large neuronal population, it is also 

conceivable that sharply tuned neurons are highly distributed and can only be detected 

at the single-unit level. Thus it remains controversial whether posterior regions are the 



 

 

 

only regions in AC which processes spatial information12,27,37, a question that future 

studies with multiple parallel recordings across fields may resolve.  

While single unit studies consistently reported a contralateral bias in the firing rate of 

cortical neurons6–8,12, neuroimaging studies in humans have obtained mixed results with 

respect to the degree of contralaterality8,27,28. Here we found a robust contralateral bias 

in the BOLD contrast to equidistance hemifield sectors in both anesthetized and awake-

monkeys, suggesting that the lack of contralaterality in some of the previous 

neuroimaging studies in humans might be due to differences in sound stimulation, i.e. 

sounds relying on ITD’s28 or ILD’s cues alone and not due to an inherent lack of 

functional-MRI sensitivity8.  Our stimulation design consisted of individualized head 

related transfer functions (HRTFs) sounds and the contralateral bias we obtained in our 

analyses is in accordance with human neuroimaging studies utilizing individualized 

HRTFs sounds9,38,39.  

Another important observation is the selective suppression of the right posterior AC 

during the presentation of sounds sources in the ipsilateral side, despite the overall 

positive BOLD responses. Particularly, in the right hemisphere of each monkey small 

activation patches were surrounded by a NBR in posterior and anterior regions of AC. 

These small ipsilateral patches could correspond to EE regions40,41 receiving callosal 

input42–44, while NBRs could be due to lateral inhibition from EE cells in ITD sensitive 

regions45 or due to subcortical inhibition32. Importantly, NBRs were dynamic, shifting 

between hemispheres, which further supported the idea of a neuronal inhibitory process 

rather than a local vascular phenomena31.   

Given the profound role that inhibition plays in the coding of spatial cues in the 

brainstem32, we investigated the effects of removing ITD cues from spatial sounds in 

the overall BOLD responses in AC. The response patterns no longer exhibited NBRs, 
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but instead a sustained PBR in the right hemisphere for sounds without ITD cues; 

primordially sounds based only on ILD and spectral cues. The lack of suppression 

caused by the removal of ITD cues particularly affected the right hemisphere tuning 

necessary for contralateral bias. Evidently, the spatial tuning curves showed a lack of 

contralateral tuning in the right hemisphere, while the left hemisphere still showed some 

degree of tuning, perhaps due to a similar representation for ILD cues10,46. Moreover, 

the lateralization indexes showed near zero values for NO-ITD sounds around the 

midline as compared to sounds carrying all spatial cues, indicating that ITD cues were 

necessary to preserve the shift in hemifield tuning across the hemispheres. These results 

are in accordance with the role of ITD cues in the right hemisphere of humans in which 

right hemisphere lesions results in severe deficits in sound localization47,48 and motion 

detection49 for sounds based solely on ITD cues47.  

The dynamics of the concentric activation/deactivation pattern in the right hemisphere 

indicated that spatial information was greatly emphasized and deemphasized in 

posterior regions of AC. Such dynamics allowed the right pST to code the population 

response patterns to a greater degree than any other cortical field. In humans the right 

pST region is particularly sensitive to spatial auditory motion4,28 and our results here 

support this finding by showing that it could segregate the response patterns in an 

orderly manner similar  to a hemifield rate code8,9. Our dissimilarity analyses provided 

partial support to the notion of a specialized posterior region2,3 for processing auditory 

space. However, by comparison to the visual system, the format representation is 

fundamentally different from the spatial topography of the retina in cortex24.  The lack 

of topographic organization together with our results showing positive and negative 

BOLD responses across hemispheres strongly support the opponent-channel model for 

auditory space in the macaque, rather than a place code format as generally seen in 

retinotopic space maps in visual cortex. Although similar functional cortical 



 

 

 

organization for the representation of visual and auditory space was proposed more than 

a decade ago2, the functional analogy is weakened by the consideration of the auditory 

feature analogous to “where” (position of the sensory periphery) in vision. In the 

auditory system, position in the sensory periphery is based on sound frequency rather 

than spatial position as in vision. Therefore, the functional analogy between visual and 

auditory space representations in primates may not reach that far.  

In summary, our results indicate that the representation of auditory space relies on 

distributed as well as specialized mechanisms in cortical processing. The functional 

representation was biased towards contralateral space and dependent on the suppression 

effects brought by ITD cues. Suppression was pronounced in the right pST region, 

allowing this region to modulate its activity to a greater degree than any other field of 

AC and thus to code full azimuth space. Such functional specialization of the right pST 

cortex suggest an evolutionary preserved cortical machinery for processing auditory 

space in primates. Taken together, our results reconcile seemingly contradictory views 

of auditory space coding50 by showing that the representation of space follows a 

hemifield code and that such representation generates the posterior sensitivity for space 

commonly seen in spatial studies2,3,5,49  of primate auditory cortex. 
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ONLINE METHODS 

Subjects 
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Two male rhesus monkeys (Macaca mulatta)  (M1 and M2, weighing 6-8 kg) were used 

for anesthetized functional imaging. The anesthesia regiment25 ensured a bottom-up 

driven response without the possibility of eye-movement modulations in AC. For 

experiments in awake-monkeys we used two additional females monkeys (M3 and M4) 

weighing 8 kg each. In monkeys used for awake-experiments we implanted a custom-

made PEEK headpost (polyetheretherketone; TecaPEEK, Ensinger, Inc., Nufringen, 

Germany) and fixed it to the skull with ceramic screws (zirconium oxide Y2O3-TPZ 

5x1, Pfannenstiel, Bad Toelz, Germany) and bone cement (Palacos, Merck Biomaterial 

GmBh, Darmstadt, Germany). Surgical procedures were carry out under general 

anesthesia with isoflurane (1 - 2%) following pre-anesthetic medication with 

glycopylorate (i.m. 0.01 mg/kg) and ketamine (13 mg/kg).  

For experiments with anesthetized monkeys a head mask was constructed prior to fMRI 

experiments with thermoplastic polymer material to hold the head in place.  

 Surgical procedures were approved by the local authorities (Regierungspräsidium 

Tübingen) and are in compliance with the German law for the protection of animals and 

guidelines of the European Community (EUVD 86/609/EEC) for the care and use of 

laboratory animals.  

  

Binaural recordings and design 

Monkeys were lightly anesthetized (ketamine 0.2 ml + domitor 0.4 ml) inside a MRI-

chair placed inside a sound-insulated acoustic chamber (Illtec, Illbruck Acoustic GmbH, 

Germany). In-ear miniature microphones (Danish Pro Audio 4060) were placed at the 

entrance of the ear canals of the animal. A broadband noise signal (0.12 - 16 kHz, 100 

ms in duration) was generated in Matlab (MATLAB 7.10, MathWorks, Natick, USA) at 

a sampling rate of 48 kHz/16-bit and played through a loud speaker (Apple Pro 



 

 

 

M653170, 2.2 cm radius) mounted on a custom-made circular frame around the MRI-

chair. The signals were played every 5° (72 horizontal angle steps) from −180° to +180° 

(full circle) at 0° elevation from the interaural plane. A full horizontal plane was 

recorded from four distances (20, 30, 40 and 50 cm) from head-center for a total of 288-

recorded horizontal angles. The signals measured ~82 dB SPL at 20 cm and ~70 dB 

SPL at 50 cm from the center of the monkey’s head (Bruel and Kjaer 4188, 2238 

mediator SPL meter).  

The recorded signals from the microphones were pre-amplified (Safari Pro, Focuswrite) 

and recorded using Adobe Audition (AU) CS6 (AU, Adobe, San Jose, CA) on a 

MacBook Pro (Apple Inc.). The recorded noise bursts were processed in AU for noise 

reduction using the frequency editing tool and concatenated every 5° to form 12 spatial 

sectors (Fig. 2g). For example, positions referring to a 0° to 30° sector the stimuli were 

concatenated in the following way: From 0° at a distance of 50 cm to 15° at a distance 

of 20 cm every 5° to form a looming pattern and from 15° at a distance of 20 cm to 30° 

at a distance of 50 cm to form a receding pattern; total duration of “motion” pattern = 

1200).  The same pattern was applied inversely (30°/50 cm to 15°/20 and from 15°/20 to 

30°/50). This dynamic/directionality pattern of 2400 ms was repeated 3 times (total time 

= 7200 ms). Such pattern was used to avoid adaptation in the BOLD responses, to 

control for directionality (e.g. towards ear/away from ear) and to introduce dynamic 

“motion” into the perception of horizontal position. For the stimulus manipulation of 

ITD we calculated interaural delay between left and right microphone signals using 

cross-correlation and removed the computed lag from either the left or the right 

microphone signal by subtraction.  

 

Auditory stimulation and presentation 
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Auditory stimuli were played through electrostatic in-ear headphones (SRS-005S 

+SRM-252S, STAX, Ltd., Japan), mounted on ear-mold impressions of each monkey’s 

pinna and covered with sound attenuating foam (Tempur-Pedic, KY, U.S.A). The 

acoustical noise of the MRI scanner (peak intensity, ~105 dB SPL) was reduced by ~32 

dB SPL by utilizing earmolds, earmuffs and a custom-made acoustic insulated-helmet 

covering the entire head. More importantly however, we used sparse-sampling 

acquisition of 10 seconds intervals to avoid the contamination of scanner noise into the 

hemodynamic signal of interest (Fig. 1a). To match loudness, all sounds were played 

through the presentation equipment and re-recorded with a microphone probe (Bruel 

and Kjaer 4188, 2238 mediator SPL meter) positioned inside the MRI scanner.  

Stimuli for tonotopic mapping consisted of 250 ms pure tones (PT), 1/3-octave and 1-

octave band-pass noise burst (1/3-oct BPN 1-oct BPN) with center frequency every 

octave from 0.125 to 16kHz. For tonotopy stimuli, the recordings obtained from the 

microphone were further filtered with an inverted macaque audiogram to simulate the 

effect of different ear sensitivity at multiple frequencies. The stimuli were finally 

equalized so that they produced equal maximum root mean square (RMS) amplitude 

(using a 200-ms sliding window) in filtered recordings. During experiments, all stimuli 

were played using a QNX real-time operating system (QNX Software Systems, Ottawa, 

Canada), amplified (Yamaha, AX-496) and delivered at a calibrated RMS amplitude of 

~80 dB SPL. 

 

Behavioral training for awake-monkey fMRI  

Monkeys assigned to awake-fMRI experiments (M3 and M4) were trained to sit still in 

an MRI-compatible primate chair placed inside an acoustic shielded box simulating the 

scanner environment. Inside the box, the animals were trained to be accustomed to wear 



 

 

 

headphone equipment and to hear simulated scanner noise, presented by a loudspeaker. 

Eye movements were monitored using an infrared eye-tracking system (iView, 

SensoMotoric Instruments GmbH, Teltow, Germany). We considered the monkeys 

ready to be scanned when the amplitude of motion detected by a custom-made body 

sensor did not exceed amplitude of breathing in 95% of the scanning time 

(approximately 2 hours). Typically, while being trained or scanned in the absence of 

any visual stimulation in darkness, the monkeys kept their eyes closed resembling a 

light sleep condition. 

 

Anesthesia for fMRI 

Anesthesia procedures have been described elsewhere25. In brief, anesthesia was 

induced with a cocktail of short-acting drugs (fentanyl at 3 lg/kg, thiopental at 5 mg per 

kg, and the muscle relaxant succinyl-choline chloride at 3 mg/kg) after premedication 

with glyco-pyrolate (i.m. 0.01mg/kg) and ketamine (i.m. 15 mg/kg). Anesthesia was 

then maintained with remifentanil (0.5–2 ug/kg/min) and the muscle relaxant 

mivacurium chloride (5 mg/kg/h). Physiological parameters (heart rate, blood pressure, 

blood oxygenation, expiratory CO2 and temperature) were monitored and kept in 

desired ranges with volume supplements. Data acquisition started approximately ~2 h 

after the start of animal sedation. 

 

MRI data acquisition 

Images for anesthetized experiments were acquired with a vertical 7 T-magnet (Bruker, 

BioSpin GmbH, Ettlingen, Germany) equipped with a 12-cm custom-made quadrature 

volume coil covering the whole head. Sparse sampling was implemented to avoid 
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contamination of the measured stimulus-specific BOLD response by the scanner-noise-

evoked BOLD response. Thus, the auditory stimulus was presented without acoustic 

interference from gradient-switching noise, typical of a continuous fMRI design.  

For functional data, gradient-echo echo planar images (GE-EPI) were acquired with 4-

segments shots (TR = 500 ms, TE = 18 ms, flip angle= 40°, FOV = 96 X 96 mm2, 

matrix= 128 X 128 voxels, slices = 9 - 11, slice thickness = 2 mm, resolution = 0.75 x 

0.75 x 2 mm voxel size) with slices aligned for each experimental session along the 

superior temporal gyrus (STG). Followed by the functional scans, two in-session 

volumes (FLASH and RARE) were acquired with the following parameters: for RARE 

(TE= 48 ms, TA= 24 ms, TR = 4000 ms, flip angle = 180°, FOV =96 X 96, matrix= 256 

X 256 voxels, resolution= 0.375 x 0.375 mm, slice thickness = 2mm, slices = 9-11. For 

FLASH (TE= 15 ms, TA= 24 ms, TR = 2000 ms, flip angle = 69°, FOV =96 X 96, 

matrix= 256 X 256 voxels, resolution= 0.375 x 0.375 mm, slice thickness = 2mm, slices 

= 9-11. For tonotopic mapping experiments with anesthetized animals, 14 EPI runs (120 

volumes) were acquired for M1 over one experimental session (days) and 16 runs (120 

volumes) for M2 over one session; while for azimuth space experiments, 14 runs (150 

time points each) were acquired for M1 over two sessions and 23 runs for M2 over two 

sessions.  

For overlaying functional images, we acquired a high-resolution structural scan under 

general anesthesia using a T1-weighted three-dimensional (3D) MDEFT pulse sequence 

(4 segments, TR = 15 ms, TE = 5.5 ms, flip angle = 16.7 ms, FOV = 112 x 112 x 60.2 

mm; matrix = 320 x 320 x 172 voxels, number of slices = 172, resolution  = 0.35 x 0.35 

x 0.3 5 mm voxel size). A total of 6 scans were acquired with the parameters above to 

form an average MDEFT high-resolution volume. 



 

 

 

Measurements for awake-experiments were made on a vertical 4.7 T-magnet (Bruker, 

BioSpin GmbH, Ettlingen, Germany) equipped with a 12 cm quadrature volume coil 

covering the whole head. We acquired functional images with 360 volumes per run for 

each monkey (GE-EPI sequence: TR = 1000 ms, TE = 18 ms, flip angle = 53°, FOV = 

96 X 96 mm2, matrix = 96 X 96 voxels, number of slices = 18, slice thickness = 2 mm, 

resolution = 1.0 x 1.0 x 2 mm). For azimuth space experiments in awake-monkeys, 5 

runs (360 volumes) were acquired for M3 over one session. Given that 3 volumes were 

acquired in sparse sampling and the emitted power at any given sequential volume was 

different but comparable across sparse blocks we separated firsts, seconds and thirds 

volumes and created 3 separate time courses (120 volumes each) per run. Thus a total of 

15 runs per monkey were analyzed. 

Similar to the anesthetized experiments, slices were aligned along the STG. In the end 

of each session, an MDEFT sequence customized for awake-experiments was taken 

(TE= 15 ms, TA= 840 ms, TR = 2320 ms, flip angle = 20°, FOV =96 x 96 x 80 mm, 

matrix = 192 x 192 x 80 voxels, slice thickness = 1 mm, resolution= 0.5 x 0. 5 x 1 mm). 

 

FMRI phase-mapping analyses  

All data analyses were performed using AFNI (http://afni.nimh.nih.gov/afni), 

FreeSurfer  (http://surfer.nmr.mgh.harvard.edu/), SUMA (http://afni.nimh.nih.gov/) and 

Matlab (MathWorks). We used the coherence of the fMRI time series at the stimulus 

presentation cycle and measured the strength of the BOLD response amplitude in each 

voxel. Coherence measures the ratio of the amplitude at the fundamental frequency to 

the signal variance23,24. The measure of coherence is 
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where 𝑓! is the stimulus frequency, 𝐴 𝑓!  the amplitude of the signal at that frequency, 

and ∆𝑓 the bandwidth of frequencies around the fundamental. For all tonotopy stimuli 

𝑓!  corresponds to twelve cycles (1/120 = 0.008 Hz) and ∆𝑓  corresponds to the 

frequencies around the fundamental excluding the first and second harmonic (see 

Supplementary Fig. 1b for an example of voxel harmonics). In the case of the spatial 

mapping 𝑓! corresponds to twelve cycles (1/180 = 0.007 Hz). Each voxel was given a 

coherence threshold value of 0.3.  The phase response at 𝑓!  encodes the sound 

frequency or azimuth in degrees in case of the spatial domain (see Fig. 1e for an 

example of three voxels in A1). 

 

GLM analyses 

Pre-processing included slice-timing correction, spatial-smoothing (1.5 mm full width at 

half-maximum Gaussian kernel) and scaling of the time series at each voxel by its 

mean. For awake-fMRI data, motion correction was used to correct volumes that 

contained motion shifts > 0.5 mm and/or rotations > 0.5 deg and removed them from 

further analyses. Lastly, we used linear least-squares detrending to remove nonspecific 

variations (i.e. scanner drift). Following preprocessing, data were submitted to general 

linear modeling analyses. The model included 12 stimulus-specific regressors and six 

estimated motion regressors of no interest for awake-fMRI data. For each stimulus 

condition (sectors 1 to 12) we estimated a regressor by convolving a one-parameter 

gamma distribution estimate of the hemodynamic response function with the square-

wave stimulus function. We then performed t-tests contrasting each azimuth sector 



 

 

 

condition with baseline (“silence” trials) and between equidistance spatial sectors to 

quantify contralateral biases.  

The average anatomical scans (n = 6) were spatially normalized; the head and skull 

removed and extracted brains were corrected for intensity non-uniformities from the 

radiofrequency coil. After intensity corrections, the volumes were segmented to obtain 

the white and gray matter. The white and gray matter were aligned to the in-session 

FLASH or MDEFT anatomical scans. Whole brain surfaces were then rendered along 

with the extracted surfaces of the STG using Freesurfer (Fig. 1b). Finally, we illustrate 

the results on a semi-inflated cortical surface extracted with SUMA to facilitate 

visualization and identification of cortical regions and boundaries.  

 

Laterality index 

Significant activations (q FDR > 0.05) from the two hemispheres were used to calculate 

a laterality index (LI), with a positive index indicating a left-hemisphere bias and a 

negative index indicating a right-hemisphere bias. Given that LIs show a threshold 

dependency we measured LI curves to provide a more comprehensive estimate over a 

whole range of thresholds and to ensured that lateralization effects were not caused by 

small numbers of highly activated voxels across hemispheres. The LI curves were based 

on the t-values obtained from each spatial sector condition and were calculated using 

the LI-toolbox29 with the following options: +5 mm mid-sagittal exclusive mask, 

clustering with a minimum of 5 voxels and default bootstrapping parameters (min/max 

sample size 5/10000 and bootstrapping set to 25% of data). The bootstrapping method 

calculates 10,000 times LIs using different thresholds ranging from 0 until the 

maximum t-value for each condition. For each threshold a cut-off mean value is 
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obtained from which a weighted mean (LIwm) index value can then be calculated29. 

This analysis returns a single value between −1 and 1 referring to a right- or left-sided 

hemispheric bias. Indexes between −0.25 and +0.25 were used to exclude a 

lateralization bias. Indexes higher than +0.5 or bellow −0.5 were designated strongly 

lateralized.  

 

Spatial tuning curves 

Circular statistics and spatial tuning curves were performed using CircStat toolbox for 

MATLAB (https://philippberens.wordpress.com/code/circstats/). The spatial spread of 

the BOLD response to each azimuth sector was used to calculate spatial tuning curves. 

The total number of voxels per CFs was used to calculate the percentage of significant 

active voxels (q FDR < 0.05) either positive of negative per azimuth sector. The center 

angles of each sector were converted from degrees to angle in radians using the function 

circ_g2rad.  Descriptive statistics, mean, resultant vector length, variance, standard 

deviation and confidence intervals (see Supplementary Table 1) were calculated using 

the following functions: circ_mean, circ_r, circ_var, stats and circ_confmean 

respectively. A Rayleigh test was applied to all circular data with the function 

circ_rtest, to test whether data was uniformly distributed around the circle or had a 

common mean direction. We confirm that the deviations from circular uniformity were 

all highly significant (Rayleigh test, p < 2.3 −20) for all CFs accepting the alternative 

hypothesis of a non-uniform distribution. 

 

FMRI dissimilarity analyses 

Representational similarity analyses (RSA) were performed using the MATLAB 

toolbox for RSA (http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/). 



 

 

 

The beta coefficients (β) obtained from the fitted GLM to each stimulus condition (n 

=12) were subjected to pairwise Pearson’s correlation (R) and the distance (1 − R) to 

each spatial sector was ordered into a 12 x 12 representational dissimilarity matrix 

(RDM) (Fig. 7). This analysis was repeated for each CF, AC and hemifield model, 

providing a total of 11 RDMs (Supplementary Fig. 5a, b). For further analyses, we 

average the RDMs for each session and monkey, resulting in one RDM for each CFs or 

hemisphere and model. To visualize the geometry of the responses without assuming 

any categorical-structure we used multidimensional scaling (MDS). MDS arrange the 

spatial position of sound sources in two-dimensions such that the distance among them 

reflects the dissimilarities between the response patterns they elicited. Similarly 

hierarchical clustering was used to visualize the subdivisions in responses patterns. 

However, unlike MDS this method assumes the existence of some structure but not a 

particular arrangement. 

For the hemifield code RDM (c) we used the ITD delay functions for pair-wise 

correlations (Supplementary Fig. 5c) and linearly combined noisy estimates of the ITD 

RDM with a categorical-model RDM (Supplementary Fig. 5d). Because RDMs are 

symmetric along the diagonal we measured the relationships between the upper 

triangles of the matrices by calculating the dissimilarity distance (1 − Spearman’s R) 

obtaining a second-order dissimilarity matrix (Supplementary Fig. 6). We then used 

multidimensional scaling (MDS) on the second-order RDM to visualize the similarity 

distances between cortical representations and hemifield model (Figure 7e). Statistical 

inference among RDMs was performed using stimulus-label randomization and the 

pair-wise comparisons among them were based on bootstrap resampling of stimulus set. 

The noise ceiling of the hemifield code model indicated the expected performance given 

the noise in the modeled RDM.  



Functional neuroimaging of ventral and dorsal stream pathways in the macaque auditory system 

 192 

 

References: 

50. Groh, J. M., Trause, A. S., Underhill, A. M., Clark, K. R. & Inati, S. Eye position 
influences auditory responses in primate inferior colliculus. Neuron 29, 509–518 
(2001). 

51. Jackson, L. L., Heffner, R. S. & Heffner, H. E. Free-field audiogram of the 
Japanese macaque (Macaca fuscata). J. Acoust. Soc. Am. 106, 3017–3023 (1999). 

52. Kusmierek, P. & Rauschecker, J. P. Functional specialization of medial auditory 

belt cortex in the alert rhesus monkey. J. Neurophysiol. 102, 1606–22 (2009) 

 

Figure Legends: 

 

Fig. 1 Phase-mapping for frequency and space. (a) Image acquisition plane and 

extracted surface (red). (b) Sparse imaging and stimulation design (e.g. high frequency 

stimuli, 8-16 kHz). (c) Average BOLD response to each frequency step in octaves 

(labeled frequency refers to the upper range of the frequency presented). (d) Time 



 

 

 

course of a voxel in A1 (crosshair in c) tuned to high frequency. Gray shading 

represents one cycle.  (e) Fourier transform of the same voxel shows a peak at the 

stimulation rate (0.01 Hz = 12 cycles/1200 s). Inset panel, mean ± SEM of 3 voxels in 

A1 at the peak stimulation rate. Response peaks were used to calculate the phase of the 

preferred sound frequency independently at each voxel. (f) Tonotopic maps rendered 

into STG surfaces of each hemisphere. Black dotted lines indicate mirror reversal 

boundaries between fields. (g) Binaural recordings and stimulation design. Polar plot of 

mean amplitude from sounds (broad-band noise 0.2-16 kHz) recorded at each ear (red 

and blue). Outset panel illustrates virtual speaker orientations and distances. Sounds 

were played dynamically every 5° in a leftward, rightward and distance motion pattern 

(dashed red and black arrows) within a 30° spatial sector (shaded gray, n sectors = 12).  

(h) Mean and ± SEM of all significant voxels (coherence > 0.3) in AC shown for four 

cycles of the time course to aid visualization of the overall broad amplitude modulation 

across hemispheres.  (i) Space map at the stimulation rate (0.008 Hz = 12 cycles/ 1800 

s) highlights two phases across hemispheres. STG, superior temporal gyrus; cs, central 

sulcus; ls, lateral sulcus; ips, intraparietal sulcus; sts, superior temporal sulcus; Lh, left 

hemisphere; Rh, right hemisphere; ant, anterior; lat, lateral; post, posterior. 
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Fig. 2. Positive and negative BOLD responses represent opposite hemifields. (a) 

Activation t-maps with significant positive (red/yellow) and negative (blue) BOLD 

responses (q FDR < 0.05, p < 10−6, cluster size > 10 voxels). Each map is shown around 

the corresponding spatial sector in polar plots of each hemisphere of monkey M2 (see 

Supplementary Fig. 4 for a similar plot in monkey M1). The polar plot shows spatial 

tuning curves obtained from the spatial spread of the positive (red) and negative (blue) 

BOLD responses (PBRs and NBRs respectively). Mean resultant vectors (arrows) 

points towards the preferred angular direction. The length represents the percentage of 

active voxels around the mean direction. Negative angles (−180° -0°) in polar plot 

represent the left hemifield and positive angles (+180° - 0°) the right hemifield. (b) 

Scatterplot of voxels in primary field showing PBRs and NBRs to an exemplar spatial 

sector (+60° - 90°) plotted as function of the frequency tuning of each voxel.  (c) Mean 



 

 

 

and ± SEM of BOLD responses (including both PBRs and NBRs) for cortical fields of 

each hemisphere (Lh, red; Rh, black) of both monkeys M1 (top) and M2 (bottom). (d) 

Average BOLD amplitude differences across hemispheres for PBRs and NBRs plotted 

as a function of azimuth. The differential response shows opposite polarity between 

hemifields with a peak in NBRs for frontal right sectors. Lh, left hemisphere; Rh, right 

hemisphere; ant, anterior; lat, lateral. 

 

Figure 3 Cortical fields are broadly tuned to contralateral space. The spatial spread of 

the positive BOLD response was used to calculate spatial tuning curves (black curves) 

for each cortical field: Posterior, primary, rostral and anterior.  (a) Left hemisphere for 
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M1 (top panel) and M2 (bottom panel). (b) Right hemisphere for M1 (top panel) and 

M2 (bottom panel). The mean resultant vectors (red) points towards the preferred 

angular direction and the length represents the percentage of active voxels around the 

mean direction. All fields were approximately oriented around  ± 90° - 120°. Overall, 

cortical fields were broadly tuned, with central fields (primary and rostral) slightly 

broader than anterior and posterior fields (see Supplementary table 1 for details). 

 

Fig. 4 Auditory cortex represents the contralateral hemifield. (a) Contrast t-maps 

between equidistance sectors for both monkeys. Middle panel illustrates the contrast 

design between sectors (left hemifield in blue; right hemifield in red). Voxels preferring 

left hemifield sectors were mapped negatively (blue-to-cyan) while voxels preferring 

right hemifield sectors were mapped positively (red-to-yellow). The range of t-values (q 



 

 

 

FDR < 0.05, p < 10−3, cluster size > 10 voxels) in the color bar was scaled according to 

a maximum t-value of 10 to illustrate the strength of the contrast across sectors and 

monkeys. (b) Mean-weighted laterality index (LIwm) between hemispheres calculated 

from the t-value threshold of each spatial sector (see Online Methods). Index range 

between −1 and +1 with a positive value indicating Lh biases and a negative index 

indicating Rh biases. Indexes curves are shown for each monkey and for each cortical 

field, including auditory cortex as a whole (all fields combined). Lh, left hemisphere; 

Rh, right hemisphere. 

 

Figure 5 Cortical and subcortical hemifield tuning in the awake-monkey. (a) Example 

time courses and average cycles of voxels in auditory cortex (AC) and inferior colliculli  

(IC) of each hemisphere. Red dashed lines indicate duration periods of sounds presented 

in the right hemifield and blue dashed duration periods of sounds presented in the left 
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hemifield. Notice the amplitude suppression for sounds sources in the ipsilateral side. 

(b) Contrast t-maps (q FDR < 0.05, p < 10−3, cluster size > 10 voxels, t-value range ± 

7.8) between all left and all right spatial sectors in monkey M3. Top left image 

illustrates oblique slice orientations and planes (numbered 1-7) cutting through AC and 

IC. Voxels preferring the left hemifield sectors were mapped negatively (blue-to-cyan) 

while voxels preferring the right hemifield sectors were mapped positively (red-to-

yellow). (c) Laterality index (LIwm) curves for AC and IC of awake-monkey M3.  

 

Figure 6 ITD cues are essential for contralateral tuning in auditory cortex. (a) Example 

t-maps with significant BOLD responses (q FDR < 0.05) to spatial sounds presented in 

left +60° and right −60° hemifields. All cues condition (top panel) and NO-ITD 

condition (bottom panel) in which ITD cues were removed from the original recorded 

sounds, sounds mainly based on ILD and spectral cues. Maps are shown for two pair of 

oblique slices (S1 ventral and S2 dorsal) cutting through the superior temporal gyrus. 

The response to rightward +60° in the NO-ITD condition was observed in both auditory 

cortices (e.g. no contralateral tuning). (b) Spatial tuning curves for frontal field show a 

loss of hemifield tuning in the right hemisphere for the NO-ITD condition. (c) Laterality 



 

 

 

index (LIwm) as a function of frontal azimuth shows a lack of laterality (LIwm near 

zero) in the midline (± 15°) with only a slightly increase in laterality (LIwm < 0.5) for 

rightward sounds. 

 

Figure 7 Posterior superior temporal region (pST) codes azimuth space based on a 

hemifield code. (a) For each field we extracted the response patterns to each spatial 

sector, yielding 12 response patterns. We then calculated pairwise Pearson’s 

correlations (R) across all spatial sectors and then assigned the dissimilarity measure (1 

− R) to a 12 x 12 representational dissimilarity matrix (RDM). This analysis was 

repeated for each cortical field and hemifield model (see Supplementary Fig. 5 for all 

averaged matrices). (b) RDM of the right pST region. The color bar reflects 

dissimilarity in percentiles (low dissimilarity, blue; high dissimilarity, red/yellow). (c) 
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Hierarchical clustering and (d) MDS of fMRI responses in right pST. Unsupervised 

hierarchical clustering (criterion: average dissimilarity) revealed a hierarchical structure 

dividing left and right hemifields. MDS (criterion: metric stress) showed two groups of 

dots (red and blue) corresponding to each hemifield. (e) We compare the dissimilarity (1 

− Spearman’s correlation) between RDMs (see Supplementary Fig.6 for second-order 

RDM). Visual inspection of the MDS structure reveals that the pST RDM lies closer in 

distance to the hemifield model than any other cortical region. (e) Cortical RDMs were 

tested and compared to a hemifield model RDM. Relationships were tested using 

stimulus-label randomization and pair-wise comparisons among cortical RDMs  (along 

with error bars) were based on bootstrap resampling of stimulus set. Shaded gray bar 

illustrates the noise ceiling of the model, indicating the expected performance given the 

noise. The statistical comparisons show that right pST relates more to a hemifield code 

than any other RDM.  



 

 

 

 

Supplementary Fig.1 Activation of the auditory pathway in anesthetized and awake 

monkeys. (a) Activation maps (q FDR < 0.05, p < 10−7, cluster size > 10 voxels) and 

time course examples of voxels in auditory cortex (AC), medial geniculate body (MGB) 

and inferior colliculus (IC) of anesthetized monkey M1. (b) Overall evoked activation 

of awake monkey M3 (q FDR < 0.05, p < 7.8−5, cluster size > 10 voxels) and an 

example of time course where the crosshair shows the response modulation of a 

representative voxel in A1. Gray shaded bars denote silent periods. 
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Supplementary Fig.2 Phase-mapping fMRI analyses and frequency maps of monkey  

M2. (a) Traveling wave design and stimulus presentation cycle (12 cycles/run) (b) The 

measure of coherence is equal to the amplitude of the BOLD signal modulation at the 

stimulus presentation rate (0.01 Hz for tonotopy, 0.08 Hz for space mapping) divided by 

the square root of the power over all other frequencies except the harmonics. Voxels 

that exceeded a coherence value > 0.3 were then assigned a phase corresponding to the 

voxel’s peak response to the stimuli presented in the cycle. (c) Coherence map used to 

threshold the phase map. (d) Resulting frequency maps and reversal boundaries (black 

dotted lines) between the four indentified fields. These included: Posterior (Cl, Cm), 

Primary (Ml, A1, Mm), Rostral (Al, R, Rm) and anterior (Rtl, Rt, Rtm). Lh, left 

hemisphere; Rh, right hemisphere; ant, anterior; lat, lateral. 



 

 

 

 

Supplementary Fig. 3 Spatial cues and maps of monkey M2. (a) Spectrogram of 

interaural level differences (L mic − R mic) of the average microphone signals within 

each sector. (b) Plot shows average interaural time delay between left and right 

microphone signals for each horizontal sector and distance. (c) Space map at 0.008 Hz 

(12 cycles/ 1800 s) showing the two main phases across auditory cortical fields without 

topographic organization. (d) Phase peak along cortical space spanning 10 mm across 

A1 orthogonal and parallel to the frequency axis shown for M1 (top) and M2 (bottom). 
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Supplementary Fig.4 Positive and negative BOLD responses represent opponent 

hemifields. (a) Activation t-maps with significant positive (red/yellow) and negative 

(blue) BOLD responses (q FDR < 0.05, p < 10−4, cluster size > 10 voxels). Each map is 

shown around the corresponding spatial sector in polar plots of each hemisphere of 

monkey M1. The polar plot shows spatial tuning curves obtained from the spatial spread 

of the positive (red) and negative (blue) BOLD responses (PBRs and NBRs 

respectively). Mean resultant vectors points towards the preferred angular direction and 

the length represents the percentage of active voxels around the mean direction. 

Negative angles (−180° - 0°) in the polar plot represent the left hemifield while positive 

angles (+180° - 0°) represent the right hemifield.  



 

 

 

 

Supplementary Fig.5 RDM matrices. We computed pairwise Pearson’s correlations 

(R) between spatial sectors and then assigned the dissimilarity measure (1 − R) to a 12 x 

12 representational dissimilarity matrix (RDM) indexed by each spatial sector. This 

analysis was repeated for each cortical field of both left (a) and right (b) hemispheres 

(including auditory cortex). For the hemifield code RDM (c) we used the ITD delay 

functions for pair-wise correlations (Supplementary Fig. 5c) and linearly combined 

noisy estimates of the ITD RDMs with a categorical-model RDM (d).  
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Supplementary Fig.6 Matrix of RDM correlations. We calculated the distance (1 − 

Spearman’s correlation) between RDMs. The matrix is symmetric along the diagonal. 

Notice the Post Rh cortical region correlates best with the hemifield code RDM. 

 

Supplementary table 1 

Circular statistics for monkey M1. 

CF N  

vox 

mean  var std Upper lim Lower lim 

Lh 

Post 

1452 124 0.60 1.1 2.31 2.03 



 

 

 

 

 

Circular statistics for monkey M2. 

CF N 

vox 

mean var std Upper lim Lower lim 

Lh 

Post 

1036 108 0.67 1.16 2.05 1.72 

Lh 

A1 

582 108 0.73 1.21 2.08 1.71 

Lh 

A1 

744 110 0.79 1.26 2.15 1.69 

Lh 

R 

434 118 0.47 0.97 2.17 1.96 

Lh 

Ant 

521 124 0.46 0.96 2.27 2.07 

Rh 

Post 

1549 -94 0.45 0.94 -1.53 -1.77 

Rh 

A1 

709 -143 0.74 1.21 -2.31 -2.67 

Rh 

R 

486 -120 0.5 1 -1.99 -2.20 

Rh 

Ant 

454 -111 0.57 1.07 -1.81 -2.08 
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Lh 

R 

319 97 0.5 1 1.82 1.58 

Lh 

Ant 

212 99 0.47 0.97 1.85 1.6 

Rh 

Post 

946 -82 0.38 0.87 -1.33 -1.52 

Rh 

A1 

604 -118 0.74 1.22 -1.86 -2.24 

Rh 

R 

430 -101 0.61 1.1 -1.62 -1.90 

Rh 

Ant 

224 -101 0.48 0.98 -1.65 -1.87 

 

 

 

 

 

 

 

 

 


