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Zusammenfassung	
  

Obwohl genetische Variation für eine lange Zeit als die einzige Quelle für phänotypische 

Variation angesehen wurde, sind heute epigenetische Marker als zusätzliche Quellen 

für phänotypische Diversität weitestgehend anerkannt. DNA Methylierung ist ein 

vererbbarer epigenetischer Marker, der in vielen Eukaryoten unverzichtbar ist für eine 

Vielzahl biologischer Prozesse, einschließlich der transkriptionellen Stummschaltung 

von Genen und Transposons. Darüber hinaus können Veränderungen in der DNA 

Methylierung durch endogene und exogene Signale herbeigeführt werden, so dass 

DNA Methylierung als Mechanismus zur Regulierung von Genexpression dienen kann.	
  

Trotz ihrer Vererbbarkeit handelt es sich bei DNA Methylierung um einen äußerst 

dynamischen epigenetischen Marker. Bei Pflanzen und Tieren sind frühe 

Entwicklungsstadien gekennzeichnet durch genomweite Neuprogrammierung der DNA 

Methylierung. Dies wird der Regulierung von Entwicklungsprogrammen zugeschrieben. 

Nebst entwicklungsgesteuerter Veränderungen der DNA Methylierung tragen unter 

anderem auch spontane Variationen und Umweltfaktoren zur Variabilität von DNA 

Methylierung bei.	
  

Frühere Pflanzenstudien erforschten, wie sich Methylierung im Laufe der Entwicklung 

verändert, wobei sie sich im Allgemeinen auf frühe Entwicklungsstadien konzentrierten 

und somit die Variation von DNA Methylierung zwischen sich später entwickelnden 

Organen größtenteils außer Acht ließen. Diese Studie präsentiert eine detaillierte 

vergleichende Analyse von DNA Methylierungsprofilen mehrerer Organe von A. thaliana 

und zieht hierfür hochauflösende genomweite Karten heran, die bis auf einzelne Basen 

genau DNA-Methylierung anzeigen. Die Studie kann grob in drei Teile untergliedert 

werden.	
  

Der erste Teil beinhaltet eine Pipeline für die Analyse von durch Next Generation 

Sequencing-Technologien gewonnenen DNA Methylierungsdaten. Diese Pipeline 

identifiziert zum einen methylierte Stellen im Genom innerhalb einzelner Proben und 

sucht zum anderen nach statistischen Unterschieden in Methylierungsmustern 

zwischen mehreren Proben. 	
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Der zweite Teil dieser Studie untersucht die Variabilität von DNA Methylierung zwischen 

den Blättern einer einzelnen Pflanze und zielt darauf ab, zu bestimmen, ob diese 

Unterschiede in DNA Methylierung ein Produkt stochastischer Varianz sind oder durch 

andere Faktoren erklärt werden können. Durch den Vergleich der Methylierungsprofile 

von 18 Blättern, die alle von einer einzelnen Pflanze stammen, ist es mir gelungen zu 

zeigen, dass die zwischen den einzelnen Blättern beobachteten Veränderungen in der 

Methylierung mit dem Entstehungszeitpunkt des jeweiligen Blattes korrelieren. Im 

Vergleich mit sich in der Entwicklung befindenen Blättern zeigten zu einem früheren 

Zeitpunkt entstandene Blätter einen relativen Verlust an DNA Methylierung.	
  

Der dritte Teil dieser Studie widmet sich der Verbindung von DNA Methylierung mit 

Organidentität, und im Speziellen, wie Veränderungen der DNA Methylierung zwischen 

Organen mit Veränderungen in der Genexpression korrelieren. Zu diesem Zweck habe 

ich Methylierungskarten sowie Transkriptionsprofile für sechs verschiedene 

Organsysteme aus jeweils insgesamt drei Einzelpflanzen angefertigt. Meine Ergebnisse 

zeigen, dass im Vergleich von reproduktiven mit vegetativen Organen genomweite 

Unterschiede in der DNA Methylierung vorliegen. Ferner korrelieren manche dieser 

Veränderungen mit Unterschieden in der Expression Proteinkodierender Gene. 

Schließlich ist es mir gelungen, zu zeigen, dass DNA Methylierungsmarker in 

regulatorischen Regionen nicht ausreichend sind, um Genexpression zu kontrollieren; 

stattdessen müssen diese epigenetischen Marker an Transposons gekoppelt sein.	
  

Zusammenfassend liefert meine Dissertation Einsichten in die Variabilität von DNA 

Methylierung im Laufe der pflanzlichen Entwicklung. Ich habe verschiedene Faktoren 

identifiziert, darunter Organidentität und Alter, welche zur Variabilität von DNA 

Methylierung im Genom beitragen, was darauf hinweisen kann, dass DNA Methylierung 

als eine zusätzliche Ebene von Genregulierung in der Pflanzenentwicklung fungiert. 	
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Summary 

Even though for a long time genetic variation was considered the only source of 

phenotypic variation, it is now widely accepted that epigenetic marks can also contribute 

to phenotypic diversity. This thesis focuses on DNA methylation, a heritable epigenetic 

mark that exists across eukaryotic lineages and is crucial for numerous biological 

processes, including regulation of gene expression and the transcriptional silencing of 

genes and transposable elements. Despite being a heritable epigenetic mark, DNA 

methylation is not entirely static. Early stages of animal and plant development are 

marked by genome-wide reprogramming events of DNA methylation. Changes in DNA 

methylation during later stages of development can be induced by endogenous and 

exogenous cues.  

Previous studies in plants have focused on studying how methylation changes during 

development, generally focusing on early stages of development, leaving the variation 

of DNA methylation between organs that emerge at later stages largely unexplored. 

This study presents a detailed comparative analysis of the DNA methylation profiles of 

multiple organs of A. thaliana through the use of genome-wide single-base-resolution 

DNA methylation maps. The study can be broadly divided into three parts.  

The first part of this study describes a pipeline for the analysis of DNA methylation data 

from next-generation-sequencing technologies. This pipeline is designed to identify 

methylated sites across the genome within samples and to test for statistical differences 

in methylation patterns between samples. 

The second part of this study examines the variability of DNA methylation between 

leaves within an individual plant and aims to determine whether these differences in 

DNA methylation are a product of stochastic variation or could be explained by other 

factors. By comparing the methylation profiles of 18 individual leaves derived from a 

single plant I was able to show that the observed methylation changes between the 

individual leaves correlate with the time in which they emerged from the plant, where 

first leaves to emerge showed a relative loss of DNA methylation compared to the newly 

emerged leaves.  
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The third part of this study investigates the association of DNA methylation with organ 

identity, and in particular how changes in DNA methylation between organs correlate to 

changes in gene expression. For this purpose I produced methylation maps as well as 

transcriptional profiles for six different organ systems derived from three individual 

plants. My results show that there are genome-wide DNA methylation differences in 

reproductive organs compared to vegetative organs. Furthermore, some of these 

changes in DNA methylation correlate with changes in expression of protein coding 

genes. Finally, I was able to show that DNA methylation marks in regulatory regions are 

not sufficient to explain changes in the expression of nearby genes; instead they need 

to be coupled to a transposable element.  

 In conclusion, my thesis provides insights on the variability of DNA methylation 

across development. I have identified different factors such as organ identity and age 

that contribute to the DNA methylation variability across the genome, suggesting that 

DNA methylation might work as an additional layer of gene regulation during plant 

development. 
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1 Introduction- Epigenetics 

1.1 From Genetics to Epigenetics 

Since ancient times, there have been significant human efforts in the study and 

manipulation of traits of living organisms. The word phenotype comes from the Greek 

phainein, which means to show, and typos, which means type, and it refers to any 

observable trait in living organisms. It has always been widely accepted that some 

proportion of the phenotypes is heritable- as the old phrase goes “Like father, like son”, 

but there has been much less agreement on the mechanisms by which these traits are 

inherited and how new phenotypes can arise. Even before understanding the scientific 

basis of heritability (Visscher, Hill et al. 2008), humans have inadvertently performed 

phenotypic selection on multiple species leading to the domestication of many crop 

plants and animals. Furthermore, natural selection can only act on phenotypes, and in 

order to understand evolution it is crucial to understand how phenotypic diversity arises. 

  Gregor Johann Mendel (20 July 1822– 6 January 1884) laid out the foundations 

needed for the development of theories to explain phenotypic inheritance and now he is 

regarded as the father of modern genetics. Mendel performed many hybridization 

studies in peas and was able to show that the inheritance of such traits followed certain 

rules, now known as Mendel’s rules of segregation (Mendel 1866). He hypothesized the 

existences of heritable discrete units responsible for the inheritance of phenotypes, 

which would be known in the future as genes.  

A major breakthrough was the identification of such discrete hereditary units and 

their localization in the cell. The work done by Walther Flemming, Theodor Boveri 

(Boveri 1904), and Walter Sutton (Sutton 1902) on the characterization of chromosome 

and their movement during cell division led to the birth of the chromosome theory which 

hypothesized that chromosomes were the physical carriers of hereditary information. It 

was not until Thomas Hunt Morgan and his experiments on fruit flies (Morgan 1910) that 

direct evidence supporting the chromosome theory was available. 
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Figure 1 Timetable of relevant discoveries in the field of genetics 

While the existence of informational molecules was a widely accepted fact, the 

scientific community was not sure what the chemical nature of these molecules was. 

Scientists knew that genes were carried on chromosomes, but the composition of 

chromosomes was known to be a heterogeneous mix of nucleic acids and proteins and 

as such both agents could be potentially responsible for the transformation principle. 

Furthermore, during this time it was known that proteins had complex structures and 

were chemically diverse compared to the much more stable and chemically 

homogenous DNA counterpart. As such, people were inclined to think that proteins 

were responsible for the complex behavior of genes. It took another 40 years, and the 

work of many notable scientists such as Frederic Griffith (Griffith 1928), Oswald Avery, 

Colin MacLeod and Maclyn McCarty (Avery, Macleod et al. 1944) and Alfred 

Hershey and Martha Chase (Hershey and Chase 1952). To show that DNA was the 

molecule responsible for the transmission of genetic information and end the long-

standing debate on heritability, or so it was thought. 

In the next 20 years there were many breakthroughs in molecular biology, such 

as the determination of the structure DNA (Franklin and Gosling 1953, Watson and 
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Crick 1953), the postulation of gene regulation (Jacob, Perrin et al. 1960) and the 

cracking of the genetic code (Crick, Barnett et al. 1961). During this time, scientists 

believed that all the information needed to understand an organism was coded in their 

genes, and the collection of genes within a genome determined the properties and traits 

of the host organism. While this was true for most of the biological traits, some traits 

appeared to have non-genetic components. Even before the identification of DNA as the 

hereditary molecule, H.J. Muller had observed that certain flies showed high 

phenotypical variation associated with specific DNA translocations (Muller 1930). These 

mutant flies had the same genetic material (arranged differently in the genome), but 

their phenotypes were different. This led him to hypothesize that there were forces 

acting on these regions, rather than acting at a single gene level. More evidence 

showed that the specific location of genes on the chromosome could be responsible for 

changes in phenotype, thus phenotype could not be explained by DNA sequence alone. 

A second phenomenon that this theory could not explain was the following: how can 

cells within an organism have different tissue identities (with unique phenotypic traits) 

even though they arose from the same set of embryonic cells and therefore share the 

same genetic code?  

1.2 Epigenetics 

C.H. Waddington was interested in such questions and coined the term 

epigenetics to address the problem in 1939 as an abstraction (Waddington 1939). He 

suggested of a principle of some kind affecting genes in order to reach and maintain 

specific cellular fate it. Similar to Sewall Wright’s Adaptive Landscape (Wright 1932), 

Waddington envisioned that cells would work like marbles rolling down a hill, an 

epigenetic landscape, (Figure 2), the marbles would be moving through grooves with 

branching points and the final position where the marbles landed would determine their 

final tissue type. Epigenetics, is derived from the prefix epi- with Greek roots επί which 

stands for “upon”, “over” or “above”. As the name suggests, epigenetics is focused on 

the study of heritable phenotypic variation that is not encoded in the DNA. Because 

epigenetics is defined on what it is not, rather than by what it is, the study of any 
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heritable non-DNA unit falls under the study of epigenetics. This very broad definition of 

epigenetics can be problematic due to the fact that there are many different and 

chemically diverse epigenetic marks in nature, some of which are specific to only a 

limited set of organisms. Furthermore some of these can be very stable and be inherited 

throughout multiple generations, while others are only maintained throughout mitotic cell 

division but get reset in the progeny. The diversity of epigenetic marks has led to many 

variations of the definition of epigenetics. 

 

Figure 2 Waddington’s epigenetic landscape. Waddington envisioned epigenetic states as a marble rolling 
down a hill. The marbles could traverse different grooves, which would represent different epigenetic states. 
Figure from (Waddington 1957). 

  Epigenetic marks can act at different organizational levels. The simplest 

epigenetic marks are direct chemical modification of nucleotide bases, which can be 

seen as the incorporation of non-canonical bases to the genetic code. These marks 

include DNA methylation among others, and have been shown to be able to affect gene 
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expression. Another type of epigenetic marks is the modification of the packaging of 

DNA, such modifications are normally chemical modifications on proteins called 

histones that bind to DNA and are responsible for the regulation of many developmental 

genes (Tessarz and Kouzarides 2014). These modifications are tightly linked to DNA 

methylation, and their relationship will be discussed in section 1.3.3. 

An important feature of epigenetic marks is that they can give rise to genetically 

identical but transcriptionally different cells, as in the case of neurons (Toyoda, 

Kawaguchi et al. 2014). While these changes are not heritable (due to the fact that 

some neurons won’t be going through cell division), they are stable within the cell and 

are maintained through long periods of times.  

Epigenetic changes can also be induced through endogenous or exogenous 

cues (Pecinka and Mittelsten Scheid 2012), which can in turn alter gene expression and 

give rise to new phenotypes. These environmentally induced epigenetic changes have 

been of particular interest to the scientific community, due to the fact that these 

modifications can be transmitted to future generations, providing a source of adaptation 

to offspring to a new environment without the need to be exposed to the new 

environment itself (Pecinka and Mittelsten Scheid 2012).  

The field of epigenetics is a rapidly evolving field in biology, especially due to 

technological advances that have allowed for the characterization of epigenetic marks at 

a genome-wide level. While the definition used in the scientific community will most 

likely keep changing across time and between fields, such heritable marks are of crucial 

importance, especially when genetic determinism is so prominent. Even though the term 

epigenetics was coined to address questions regarding cell differentiation, the study of 

epigenetics has revealed the existence of many different epigenetic modifications 

involved in a wide span of biological processes. In the following section I will be 

focusing on one of such epigenetic modification and the main focus of this study: DNA 

methylation.   
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1.3 DNA methylation  

A prominent form of epigenetic DNA modification is the addition of a methyl group 

to the 5th carbon of a cytosine in DNA. This chemical modification creates a non-

canonical base called 5-methyl-cytosine (5mC) (Figure 3). When talking about DNA 

methylation, I will be referring exclusively to this particular methylation mark. Other less 

abundant methylated nucleotides such as N6methyl-adenine have been described 

(Zhang, Huang et al. 2015), but their roles are less well understood and they were not 

investigated in this study. DNA methylation is an epigenetic mark involved in many 

diverse biological processes and can be found in both eukaryotes and prokaryotes, but 

is absent in some species like Drosophila melanogaster and C. elegans. Despite the 

abundance of organisms with DNA methylation, most of our understanding of DNA 

methylation, including the machinery and function, has been the product of studies in 

plants and animals.  

The discovery of DNA methylation dates back almost as far as the identification of 

DNA as the hereditary material itself (Avery, Macleod et al. 1944, McCarty and Avery 

1946). A couple of years after, with the use of paper chromatography, Hotchkiss 

(Hotchkiss 1948) was able to identify a chemically modified nucleotide in calf thymus 

and hypothesized that the modification was methylation in cytosine nucleotides. While 

scientists speculated that DNA methylation could be regulating gene expression, it was 

not until many years later that its function was shown (Holliday and Pugh 1975). Some 

of the early studies of methylation used 5-aza-cytidine, which acts as an inhibitor of 

DNA methylation, to show the functional importance of DNA methylation. For example, 

treatment of mouse embryo cells with 5-aza-cytidine has been shown to induce cell 

differentiation. Interestingly, after the chemical treatment was suspended, the 

differentiated state would persist, even after cell division (Taylor and Jones 1979). 

These were some of the first studies suggesting that DNA methylation played an 

important role in gene regulation and cell identity. 
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Figure 3 Chemical relationships between cytosine, 5-methyl-cytosine and thymine (figure from CGCF 
Wikimedia). 

DNA methylation is established by the addition of methyl groups to cytosines by a family 

of enzymes called methyltransferases. These proteins use S-Adenosyl methionine as a 

methyl donor to establish new methylation marks on previously unmethylated DNA, or 

to maintain DNA methylation after DNA replication.  

Even though methylation in plants and animals share many similarities, the 

proteins and pathways involved in the establishment and maintenance of DNA 

methylation are not all the same. Because they can differ in functions, I will describe first 

the functions of DNA methylation in both plants and animals separately, and then 

discuss the mechanisms for maintenance and establishment of DNA methylation. 

1.3.1 DNA methylation in mammals 

In mammals DNA methylation is not distributed equally across all cytosines in the 

genome, rather it is found almost uniquely in cytosines followed by a guanine. This type 

of methylation is called CG-methylation or CpG methylation (the term CpG is normally 

used in animal studies and it is used to denote “Cytosine phosphate Guanine” in order 

to avoid confusion with cytosine-guanine pairing). In general, most of the CG-sites in 

mammalian genomes (70-80%) are methylated (Ehrlich, Gama-Sosa et al. 1982). 

Unmethylated CG sites are normally localized in gene promoters, in regions called CpG 
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islands (Suzuki and Bird 2008). These CpG islands are characterized by a higher 

occurrence of CG sites than would be expected by chance.  

DNA methylation has been extensively studied in mice and humans, and has 

been shown to be important for development. Reprogramming events on DNA 

methylation including genome-wide gains and losses of methylation occur during early 

stages. For the formation of the germline, cells must go through an erasure of somatic 

epigenetic signatures and then go through an establishment of sex-specific epigenetic 

marks or genomic imprinting (Messerschmidt, Knowles et al. 2014). Imprinting is a 

process in which alleles are marked depending on their origin, either paternal or 

maternal, allowing for the expression of genes in a parent-of-origin-specific manner 

(Reik and Walter 2001).Even though these reprogramming events occur in both 

parental germlines, they occur at different time points, resulting in different levels of 

methylation in the sexual gametes (Figure 4). After fertilization, sperm cells show high 

methylation levels compared to the egg cell. This difference in methylation rapidly 

changes; the paternal gametes go through active demethylation and the maternal 

genome goes through a rapid wave of de novo DNA methylation (Figure 4). Most of the 

mutations causing disruption in the establishment of DNA methylation are embryonic 

lethal. Deficiency in DNA methylation pathways has also been associated to diseases in 

humans, such as ICF syndrome (Hansen, Wijmenga et al. 1999), Rett syndrome (Amir, 

Van den Veyver et al. 1999) and cancer predisposition (Barrow and Michels 2014). 

Both, losses and gains, of methylation can cause diseases, highlighting the importance 

of understanding the effects of DNA methylation. 
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Figure 4 DNA Methylation changes through development in mammals. Primordial germ cell (PCGs) emerge at 
embryos at E7.5, DNA methylation is globally erased (black line). Following sex-determination, new DNA-
methylation landscapes are established in germ-cell precursors in an asymmetrical fashion in male and 
female embryos. Following fertilization, a new wave of DNA demethylation takes place that is distinct on the 
parental genomes. In the zygote, DNA methylation of the paternal genome is rapidly erased by an active 
mechanism (blue line). Demethylation of the maternal genome is slower (red line) and is dependent on DNA 
replication (passive demethylation). Legend and figure from (Smallwood and Kelsey 2012). 

Besides embryo development, DNA methylation plays a crucial role in 

establishing and maintaining tissue identity. Embryonic stem cells (ESC) with defects in 

DNA methylation pathways remain viable and are able to divide, but they are no longer 

able to go through correct cell differentiation (Jackson, Krassowska et al. 2004, 

Tsumura, Hayakawa et al. 2006). There have been identified multiple loci in ESC where 

factors associated to pluripotent states are hypo-methylated but after going through cell 

differentiation they become methylated (Farthing, Ficz et al. 2008). Furthermore, 

genome wide studies in DNA methylation have shown that tissues in humans show 

different methylation profiles, where changes in methylation between tissues correlate 

with changes in gene expression (Schultz, He et al. 2015), suggesting that DNA 

methylation is not only important for the maintenance of differentiated states but also for 

gene regulation. 

DNA methylation is also essential for the control and silencing of transposable 

elements (TEs) in most of the eukaryotic species (Zemach, McDaniel et al. 2010). Mice 
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lines with deficiencies in methylation pathways are unable to methylate TEs correctly, 

leading to TE reactivation (Bourc'his and Bestor 2004).  

1.3.2 DNA methylation in plants 

A major difference between DNA methylation in plants compared to animals is 

that it can occur in three different sequence contexts: CG, CHG and CHH, where H can 

be any non-G nucleotides. Contrary to mammals, most of the methylation in plant 

genomes is restricted to TEs as well as repetitive sequences and centromeric regions 

(Feng, Cokus et al. 2010, Zemach, McDaniel et al. 2010). Similar to its function in 

animals, DNA methylation in plants is crucial for TE silencing. Studies in mutants, which 

have defective pathways in charge of the establishment of DNA methylation, show 

reactivation of transposable elements (Miura, Yonebayashi et al. 2001, Singer, Yordan 

et al. 2001). Studies in pollen grains have shown that there are differences in 

methylation levels between the three cells that they are composed of (2 sperm cells and 

1 vegetative) (Slotkin, Vaughn et al. 2009). The vegetative cell has low levels of 

methylation and an increased level of transposon activity (Zhao, Rank et al. 2009). In 

contrast, the sperm cells show high levels of DNA methylation causing silencing of 

transposable elements (Huh, Bauer et al. 2008). It has been hypothesized that the 

reactivation of transposon in the vegetative cell leads to an increase in 21nt RNA 

molecules that migrate to the sperm cells and reinforce methylation by a pathway 

dependent on small RNAs. This pathway, known as the RdDM pathway will be 

described in detail in section 1.4.2. Only the sperm cell will be contributing with DNA to 

the next generation; therefore their genome integrity is of higher importance.  

DNA methylation in plants is also important for gene imprinting. For example 

FLOWERING WAGENIGEN (FWA) is a transcription factor that is expressed during 

seed development in the endosperm but is silenced in other tissues. FWA is regulated 

through the methylation of tandem repeats in its promoter, which need to be hypo-

methylated in order to be transcribed. A set of mutants was identified that showed 

ectopic expression of FWA compared to the wild-type plants. Even though the FWA 

mutants and the corresponding wild type show identical genetic sequences at the FWA 
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locus, but the repeat region in the promoter of the gene was lacking methylation in the 

mutant lines allowing the gene to escape silencing (Soppe, Jacobsen et al. 2000). This 

phenotype can also be induced by a DEFICIENT IN DNA METHYLATION 1 (ddm1) 

mutant, which is deficient in the establishment of DNA methylation (Soppe, Jacobsen et 

al. 2000). FWA is expressed in a parent-of-origin-specific way. This is achieved by 

DEMETER (DME), a protein (Kinoshita, Miura et al. 2004) that demethylates only the 

maternal genome (Kawashima and Berger 2014) allowing FWA to be transcribed. 

Another identified function of DNA methylation, similar to mammals, is the regulation of 

developmental-associated genes. Studies in maize using mutants with defects in the 

establishment of DNA methylation show strong developmental defects and affect the 

expression of tissue-specific genes, which can control developmental phase transition 

and sex determination (Parkinson, Gross et al. 2007, Erhard, Stonaker et al. 2009).  

Most of the examples outlined above are instances where DNA methylation in or 

near regulatory regions correlated is correlated with reduced gene expression. Not all 

methylation is associated to a reduction in gene expression. Methylation can also be 

found in the exons of genes (gene body methylation), this type of methylation is 

generally associated to constitutively expressed genes, as well as genes that show 

stable expression levels across tissues (Zhang, Yazaki et al. 2006, Zilberman, Gehring 

et al. 2007). While the mechanisms in which DNA methylation is regulating expression 

in such manner are not entirely clear, it has been hypothesized that DNA methylation is 

causing this pattern through the interaction with another type of epigenetic marks called 

histones which will be discussed in the next section (Coleman-Derr and Zilberman 

2012).  

1.3.3 DNA methylation and other epigenetic marks 

In eukaryotic cells, DNA is wrapped around octameric complexes made of 

proteins called histones. These complexes, known as a nucleosomes, are composed of 

8 histone core proteins (two of each the histone families H2A, H2B, H3 and H4), and a 

stretch of DNA of ~147 nucleotides surrounding the histone cores (Kornberg 1974). 

Nucleosomes can affect the spatial structure of DNA. Genomic regions with a tight 
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packaging of nucleosomes (heterochromatin) are transcriptionally silent due to the poor 

accessibility of the transcription machinery to the packaged DNA. By contrast, less 

compacted regions (euchromatin) tend to be transcriptionally active (Venkatesh and 

Workman 2015).  

Some of the changes in configuration are caused by chemical modification of the 

amino acids of histone tails such as phosphorylation, methylation and acetylation 

(Venkatesh and Workman 2015). The modification of histone tails and the presence of 

DNA methylation are intimately connected. In animals the DNA methyltransferase-like 3 

(DNMT3L), a protein involved in the establishment of DNA methylation, interacts with 

the 4th lysine (unmethylated) of the H3 histone (H3K4)(Ooi, Qiu et al. 2007). In plants 

and animals, methylation of this residue is correlated negatively to CG-DNA methylation 

levels (Fournier, Goto et al. 2002, Zhang, Bernatavichute et al. 2009). In plants 

dimethylation or trimethylation of the 9th residue (lysine) of the H3 histone (H3K9me2 or 

H3K9me3) is highly correlated with CHG-DNA methylation in a reinforcing loop 

(Johnson, Bostick et al. 2007) (Bernatavichute, Zhang et al. 2008). In mutants lacking a 

functional KRYPTONITE protein, a histone methyltransferase involved in the 

establishment of the H3K9m2, reduction of global levels of CHG methylation can be 

observed (Jackson, Lindroth et al. 2002). More recent studies have been able to 

determine the structure of KRYPTONITE coupled to methylated DNA, show how DNA 

methylation helps recruit KRYPTONITE (Du, Johnson et al. 2014). 

In addition to the wide variety of chemical modification of histones, in eukaryotes 

there are multiple copies of some histone cores, which differ in their amino acid 

sequence and function. The combination and ratio of these histone variants can confer 

different properties to the nucleosomes (Smolle and Workman 2013). Furthermore, 

there is evidence of a correlation between DNA methylation and histone variants (Cedar 

and Bergman 2009). 

For example, one of the variants of the histone H2A is the histone H2A.Z. This 

histone has a 60% amino acid similarity to the histone H2A, and compromises 15% of 

the total amount of H2A histones in the genome of yeast (Zlatanova and Thakar 2008). 

This variant is commonly found near transcription start sites (TSS) and is associated to 
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genes with either high or low expression levels. DNA methylation correlates negatively 

with the presence of histone variant H2A.Z (Guillemette and Gaudreau 2006). This 

association has led to the hypothesis that DNA methylation can regulate gene 

expression by modulating which histone variants are used near TSS. While the exact 

relationship of DNA methylation to histone methylation is not completely understood, 

many of the identified components of DNA methylation pathway interact with proteins 

involved in the establishment of histone modifications and will be discussed in the next 

section. 

1.4 Establishment, maintenance and removal of DNA methylation  

In both plants and animals multiple pathways have been identified that can modify 

the methylation in DNA. These molecular mechanisms are responsible for the 

propagation of DNA methylation after cellular division, as well as the establishment and 

removal of DNA methylation marks. In this section I will summarize the current 

knowledge about the different pathways involved in the regulation of DNA methylation. 

1.4.1 Symmetrical DNA methylation 

CHG and CG sequences are termed symmetrical in double stranded DNA 

(dsDNA), as the same configuration of bases is found in the complementary strand. In 

symmetrical sequence contexts, cytosine methylation is usually found on both strands 

of the DNA. During DNA replication, the newly synthesized strand of DNA is not 

methylated; this partially methylated dsDNA is termed hemi-methylated DNA. Some 

DNA methyltransferases can interact with hemi-methylated DNA and restore the 

methylation marks in the unmethylated newly synthesized strand, thereby ensuring that 

DNA methylation is faithfully transmitted after DNA replication. 



 

 -14- 

 

Figure 5 Cartoon representation of select mouse (Mm), Arabidopsis (At), and Zebrafish (Dr) proteins involved 
in maintenance methylation, de novo methylation, and demethylation. Original figure from (Law and 
Jacobsen 2010). 

In mammals, the protein responsible for the maintenance of CG methylation is 

DNA methyltransferase 1 (DNMT1)(Yen, Vertino et al. 1992). The exact mechanism by 

which DNMT1 methylates cytosines is not completely understood, but studies have 

shown evidence of interaction between DNMT1 and proteins involved in DNA replication 

as such as proliferating nuclear antigen (PCNA)(Schermelleh, Haemmer et al. 2007), 

chromatin associated proteins like the ubiquitin-like plant homeodomain and RING 

finger domain (URF1) (Bostick, Kim et al. 2007) and chromatin remodeling factors such 

as the lymphoid-specific helicase1 (LSH1)(Dennis, Fan et al. 2001).  
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The homologous protein in plants (Figure 5), METHYL TRANSFERASE 1 

(MET1) (Vongs, Kakutani et al. 1993), can also methylate CG sites, and uses accessory 

proteins homologous to the ones interacting with DNMT1 in mammals (Hirochika, 

Okamoto et al. 2000). This suggests deep conservation of the molecular pathway 

mediating maintenance of CG-methylation.  

In plants, maintenance of CHG methylation requires the methyltransferase 

CHROMOMETHYLASE 3 (CMT3) (Lindroth, Cao et al. 2001). CMT3 interacts with 

SUPRESSOR OF VARIEGATION 3-9 HOMOLOGUE 4 (SUVH4, also known as 

KRYPTONITE), which is a histone methyltransferase in charge of the establishment of 

H3K9m2. DNA methylation guides SUVH4 for histone methylation (Du, Johnson et al. 

2014), and CMT3 is associated to H3K9 methylation (Du, Zhong et al. 2012) creating a 

self-reinforcing loop. 

1.4.2 De-novo DNA methylation 

Contrary to DNA methylation in symmetrical sequence contexts, methylation at 

CHH sites is present only on one strand, and therefore one of the newly synthesized 

double strands after DNA replication will not have any methylation that could be used as 

template for DNA methylation. In this case, methylation needs to be (re-) established 

without a template of hemimethylated DNA to guide DNA methylation. This process is 

referred to de novo DNA methylation. The establishment of de novo DNA methylation is 

not limited to maintenance of DNA methylation, as it also refers to the establishment of 

methylation in previously unmethylated genomic regions. 

In both animals and plants, pathways have been identified that can establish de 

novo DNA methylation through the use of small RNAs. In plants, RNA-directed DNA 

Methylation (RdDM) (Wassenegger, Heimes et al. 1994) has been shown to trigger de 

novo DNA methylation (Matzke and Mosher 2014). This pathway includes two plant 

specific RNA polymerases (Pol IV and Pol V), members of the RNA interference (RNAi) 

pathway, DICER-like 3 (DCL3) and ARGONAUTE 4 (AGO4), as wells as small 

interfering RNAs (siRNA). Pol IV is involved in the synthesis of single-stranded RNA 

transcripts, which are converted to double-stranded RNA (dsRNA) by RNA-
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DEPENDENT RNA POLYMERASE (RDR2). This is followed by the cleavage of dsRNA 

by DCL3 into 24nt siRNA products. The methyltransferase HUA ENHANCER 1 (HEN1) 

creates mature siRNAs by methylating the 3’ ends of the siRNAs. The methylated 

siRNAs are loaded to proteins of the ARGONAUTE family, AGO4, AGO6, and AGO9. 

These protein-RNA complexes migrate to the nucleus where they interact with the RNA 

transcripts produced by the Pol IV. Such interaction is mediated by the base 

complementarity of the siRNA to the Pol IV transcripts. This complex is recruited by 

interacting with KOW DOMAIN-CONTAINING TRANSCRIPTION FACTOR 1 (KTF1). 

Finally, RNA-DIRECTED DNA METHYLATION 1 (RDM1) helps couple AGO4 with the 

protein DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which then 

gives rise to de novo DNA methylation at the target site.  

In mammals there is an equally complex pathway involving the use of small 

RNAs for the establishment of de novo DNA methylation. The piwi proteins are part of 

the ARGNOAUTE super family (see above) and interact with small RNAs of variable 

length (typically 24-32 nt) called Piwi-interacting RNAs (piRNAs). A high proportion of 

the identified piRNAs map to TEs and play an important role on the silencing of 

transposable elements (Kuramochi-Miyagawa, Kimura et al. 2004, Aravin, Hannon et al. 

2007). Furthermore mutants on the piwi proteins MILI or MIWI1 fail to establish de novo 

DNA methylation at some TEs, suggesting that the piRNA containing complexes serve 

to guide DNA methylation (Aravin, Sachidanandam et al. 2008, Kuramochi-Miyagawa, 

Watanabe et al. 2008), serving a similar role to the RdDM pathway in plants.  

1.4.3 DNA demethylation 

DNA methylation can be lost through passive or active mechanisms. If 

maintenance of DNA methylation does not take place after DNA replication, half of the 

methylation is lost after each replication cycle. Active DNA demethylation is achieved 

through proteins that remove methylation and thus is independent of DNA replication.  

Active demethylation in plants is carried out by glycosylases such as 

REPRESSOR OF SILENCING 1 and 3 (ROS1 and ROS3), DME and DEMETER-LIKE 

2 and 3 (DML2 and DML3) (Law and Jacobsen 2010). These proteins excise 
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methylated bases from dsDNA. DNA repair mechanisms then re-replace the missing 

base with an un-methylated cytosine, effectively removing methylation from the DNA. 

Mutations in DNA glycosylases cause a general increase of DNA methylation across the 

genome (Gong, Morales-Ruiz et al. 2002). Active demethylation can have different 

biological roles. The DME protein is expressed during gametogenesis and is necessary 

for imprinting (Choi, Gehring et al. 2002). By contrast, ROS1, DML2 and DML3 (Gong, 

Morales-Ruiz et al. 2002, Ortega-Galisteo, Morales-Ruiz et al. 2008) are expressed in 

somatic tissue and target a similar set of sites, suggesting that they have overlapping 

functions. Their preferred sites are methylated TEs and gene ends (Penterman, 

Zilberman et al. 2007). While the particular role of ROS1 is not known, ros1 mutants 

show increased methylation across the genome and reduced gene expression at such 

hyper-methylated loci (Zhu, Kapoor et al. 2007). These results suggest that ROS1 is 

important on removing the accumulation of DNA methylation. It has also been 

suggested that ROS1 could be triggered through stress, activating genes that under 

normal circumstances would be silent. 

In mammals, the ten-eleven-translocation (TET) proteins have been identified as 

key proteins for DNA demethylation. This family of proteins is involved in the 

modification of 5mC residues into other non-canonical residues such as 5-

hydroxymethylcytosine (5hmC), 5-formylmethylcytosine (5fC) and 5-

carboxylmethylcytosine (5caC)(Tahiliani, Koh et al. 2009, He, Li et al. 2011, Ito, Shen et 

al. 2011). These modifications can cause a loss of methylation in both active and 

passive ways. Proteins in charge of the maintenance of DNA-methylation have much 

lower affinities to 5-hmC (Valinluck and Sowers 2007), causing an improper 

maintenance of DNA methylation, and leading to a passive loss of DNA methylation 

through DNA replication. Additionally thymine DNA glycosylase (TDG) coupled to base 

excision repair can actively replace 5-hmC residues with unmethylated cytosines. 

In mammals, there are highly dynamic transitions of DNA-methylation patterns in 

the genomes of cells that give rise to sexual gametes (known as primordial germ cells 

(PGCs)), and early stage embryos. These cells have low levels of DNA methylation 

(Kafri, Ariel et al. 1992) and are caused by both passive and active demethylation 
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mechanisms (Smith and Meissner 2013). In PGCs, DNA methylation is reset between 

the embryonic day 10.5 and 13.5 followed by a wave of de novo methylation in both 

male and female gametes as shown Figure 4. Studies in mouse have shown that PGCs 

can lose up 90% of the total DNA methylation (Popp, Dean et al. 2010). This resetting of 

DNA methylation is crucial for the removal of imprinting in genes (Reik, Dean et al. 

2001). During embryo development, the paternal genome undergoes a transition within 

the first hours of fertilization, where remodeling of chromatin takes place followed by 

genome-wide erasure of DNA methylation by active demethylation (Mayer, Niveleau et 

al. 2000). DNMT1 (a protein responsible for the maintenance of DNA methylation) is 

excluded from the nucleus during cell division, resulting in passive DNA demethylation 

in the genome (Carlson, Page et al. 1992).  

1.5 Sources of DNA methylation variability 

Due to the fact that DNA methylation can modify gene expression and thus be a 

source phenotypic variability, there has been great interest in identifying the factors that 

can affect DNA methylation in the genome. In this section, I will present some of the 

sources that can give rise to epigenetic variability. 

1.5.1 Genetically induced variation DNA methylation 

William Bateson and Caroline Pellew discovered in 1915one of the first reported 

cases of a phenomenon that became to be called paramutation later. Some pea 

individuals displayed a “rogue” phenotype with curved pots and pointy leaflets. Such 

individuals when crossed with normal looking plants, produced offspring displaying the 

“rogue” phenotype. Furthermore, all the offspring deriving from the self-fertilization of 

the F1 displayed the “rogue” phenotype (Bateson and Pellew 1915). Such behavior was 

puzzling as no normal phenotype was found in the F2, thus violated Mendel’s laws of 

segregation.  

Thirty years later, work on pigmentation in maize focusing on the red1 locus (r1) 

described in more detail such phenomena. The cross of plants containing the normal 

pigment R-r allele with plants containing either the R-marbled (R-mb) or R-stippled (R-
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st) allele, which display a mottled phenotype, resulted in offspring having a mottled 

phenotype as well (Brink 1956). Furthermore, this cross caused a modification of the 

normal R-r allele which now, despite being genetically identical to the original one, 

would also cause mottled phenotype (Brink 1956). This modification, which could be 

transmitted meiotically, was termed paramutation which is defined as an interaction 

between two alleles where one allele (paramutagenic) can induce a heritable epigenetic 

modification on the other one (paramutant). Such modification can persist even if the 

paramutagenic allele is no longer present. Furthermore paramutant can be propagated 

through meiosis and can be a source of phenotypic variation in genetically identical 

individuals. 

While the molecular mechanisms that give rise to paramutation are still not 

entirely understood, there are some clues regarding the machinery involved. One 

protein that has been identified as necessary for paramutation in maize is MEDIATOR 

OF PARAMUTATION1 (MOP1), which is an RNA polymerase associated with the 

production of siRNAs (Sidorenko and Chandler 2008), suggesting that the RdDM 

pathway might be involved in such phenomena.  

1.5.2 Environmentally induced changes of DNA methylation 

Plants have very limited mobility and as such they need to be able to adapt 

quickly to an ever-changing environment. While the majority of this phenotypic plasticity 

needed to adapt to new environments is encoded in the genome, studies have shown 

that epigenetic marks such as DNA methylation or histone modifications can contribute 

to the responses to the environment (Dowen, Pelizzola et al. 2012, Secco, Wang et al. 

2015). These epigenetic changes can also work as a heritable molecular memory, 

allowing the offspring of a stressed individual to be pre-adapted to a new environment, 

even though they have never experienced the stress. Many examples exist of 

epigenetic stress adaptation including salt stress, cold stress (Seymour, Koenig et al. 

2014), biotic stress (Dowen, Pelizzola et al. 2012, Gutzat and Mittelsten Scheid 2012), 

and phosphate starvation (Secco, Wang et al. 2015, Yong-Villalobos, Gonzalez-Morales 

et al. 2015) among others. 
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The duration of stress memory in the progeny of stressed individuals varies. 

Some studies have shown that a single unstressed generation time is sufficient to reset 

the epigenetic state to pre-stress levels (Secco, Wang et al. 2015). Other studies could 

still measure the stress preadaptation after multiple generations (Iwasaki and 

Paszkowski 2014). It is worth noting that in the direct progeny of stressed plants, 

maternal effects could be the cause of apparent trans-generational adaptation, rather 

than trans-generational memory. In mammals, female gametes and progenitor cells of 

the male gametes are already present in the unborn offspring. Stress on a pregnant 

individual could therefore lead to epigenetic changes in the unborn offspring as well as 

in its germline. Consequently the third generation could also show an epigenetic 

adaptation, but such adaptation can be a direct result from the initial stress exposition 

rather than stress memory passing through meiosis. 

1.5.3 Spontaneous variability 

Due to the importance of DNA methylation in the regulation of biological 

processes, there has been a great interest in determining the rate at which DNA 

methylation varies across time. There are several examples where spontaneous 

changes of DNA methylation affect the expression of a gene. One of the best-

characterized examples of such behavior in DNA methylation was ripening of an 

epimutant in tomato. The Colorless non-ripening locus (Cnr) encodes a regulator of fruit 

ripening in tomato, and its expression is regulated by DNA methylation (Manning, Tor et 

al. 2006). The epimutant showed stable methylation at the Cnr locus and produced 

fruits that never ripened (Figure 6). Adding 5-azacytidine, a known inhibitor of DNA 

methylation, to such plants generated a loss of methylation causing early ripening. 

Interestingly, individual cells in the epimutant could stochastically switch to an 

unmethylated state, causing partial ripening of the fruit.  
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Figure 6 Random loss of methylation leads to expression across tomato. A) Spontaneous loss of DNA 
methylation leads to the expression of Cnr. B) the addition of 5-azacytidine leads to the demethylation of the 
Cnr locus, leading to expression. C) Losses of methylation leads to the ripening of tomato. D) Effect of the 
expression of CNR in tomato. Figure modified from (Ecker 2013) and (Manning, Tor et al. 2006).  

Epimutant stability, such as the natural reversions found in tomato, have shed 

light on the dynamic nature of DNA methylation as an epigenetic mark. In order to 

understand the impact of DNA methylation on genome regulation as a whole, 

quantifying such spontaneous variability in the genome is necessary. With the 

availability of high throughput sequencing, it is now possible to study DNA methylation 

across the whole genome (Cokus, Feng et al. 2008, Lister, O'Malley et al. 2008). This 

has allowed the quantification of variability of DNA methylation across generations in 

some organisms such Arabidopsis thaliana (Becker, Hagmann et al. 2011, Schmitz, 
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Schultz et al. 2011). Both groups used a set of individuals that originated from a founder 

plant 30 generation back, and have been propagated through single seed descent since 

(Shaw, Byers et al. 2000). By generating single base resolution methylation maps 

(Cokus, Feng et al. 2008, Lister, O'Malley et al. 2008) of several individuals from 

generation 3 and 30, the rate of change of methylation per generation (which I will be 

referring as the epimutation rate for the remaining of the text) could be measured. Much 

like DNA mutations, spontaneous changes at single positions where heritable and could 

persist in the following generations. This epimutation rate was determined to be over 

four orders of magnitude greater than the mutation rate of DNA (10-4 against 10-8) when 

plants where grown in a stable and controlled environment. Furthermore, the 

epimutation rate didn’t seem to be the same for all positions in the genome. Some 

positions showed particularly high turnover rates between individuals. A second 

observation from these studies is that even though single sites show a high amount of 

variation, methylation across larger contiguous regions showed less variability. The 

variability of DNA methylation in those regions was estimated to be similar to DNA 

mutation rates, suggesting that methylation at a region level might play a stronger role 

in evolution than individual sites. 

A similar study was performed using Arabidopsis thaliana wild populations across 

the East coast of the United States of America. The colonization event of A. thaliana in 

this area is believed to have happened around 300 years ago (Exposito-Alonso, Becker 

et al. 2016); therefore the variation of DNA methylation between these populations 

would be the product of the accumulation of naturally induced variants during this time 

(Hagmann, Becker et al. 2015). Strikingly, the epimutation rate of these wild populations 

was estimated to be very similar to the epimutation rate found in the laboratory-grown 

MA lines. These results suggest that while DNA methylation might provide a strategy for 

short-term adaption, DNA methylation is not likely to be a source of variation under 

strong selective pressure. 

While the mechanisms that give rise to this type of variation remain elusive, there 

are some patterns found in such variation. First of all variable sites tend to be away from 

TEs and loci targeted by siRNAs, where methylation seems to be stable. This suggests 
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that the density of TE’s in a genome can affect the variability of DNA methylation. 

Additionally sites with high DNA methylation variability in natural populations had also 

high variability in green house conditions, suggesting that some sites in the genome are 

particularly prone to epimutations (Becker, Hagmann et al. 2011, Hagmann, Becker et 

al. 2015). Some of the epimutations identified in the transgenerational studies overlap 

with epimutations found in mutants on the DNA methylation maintenances machinery, 

suggesting that part of this spontaneous variation could be due to a failure in the 

maintenance of DNA methylation (Lister, O'Malley et al. 2008, Schmitz, Schultz et al. 

2011).  

1.6 Conclusion  

DNA methylation is an epigenetic mark with a broad range of functions and a close 

connection to other epigenetic marks such as histones. DNA methylation is essential for 

the silencing of some genes, including transposable elements and is involved in the 

regulation of multiple developmental associated genes. There are many identified 

mechanisms in both plants and animals that can dynamically regulate DNA methylation. 

These include mechanisms in plants and animals to establish, maintain and remove 

methylation marks. Some of these mechanisms are shared between the two kingdoms, 

for example both have homologous methyltransferases that establish DNA methylation 

in hemi-methylated DNA, and they both use small RNAs to establish de novo DNA 

methylation.  

While many of the pathways and their components have been elucidated, the 

dynamics of DNA methylation in the genome are still not well understood. Even though 

DNA methylation is a stable heritable mark, there are many sources that can alter 

methylation patterns. Some of the identified sources of variability are stochasticity, 

response to external stimuli, and genetic variability. All these attributes of DNA 

methylation serve to highlight why the study of DNA is an important and challenging 

topic.  
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2 Introduction-Next generation sequencing  

As described in section 1.3, DNA methylation can affect gene expression, thereby 

constituting a source of phenotypic variability. Furthermore methylation can vary 

between populations, between individuals, or even within an individual’s tissue types 

(Becker, Hagmann et al. 2011, Schultz, He et al. 2015, Exposito-Alonso, Becker et al. 

2016). In order to understand the role of DNA methylation it is important to be able to 

measure these differences at a genome-wide scale. This section outlines the 

technological developments, focusing in particular on DNA sequencing technologies, 

which now allow for the study of DNA methylation at a genome wide level as well as its 

association to gene expression. 

One of the major questions in the study of biology has been centered on 

deciphering the mechanisms that give rise to phenotypic variability in nature. With the 

help of DNA sequencing, it is now clear that genes and DNA mutations are the 

responsible for the majority of the phenotypic diversity. The “first generation” of 

sequencing technologies used Sanger’s chain termination method for DNA sequencing, 

(Sanger, Nicklen et al. 1977), such method could only sequence a couple of kilobases 

of DNA but was suitable for the sequencing of entire genes. Further advancements in 

technology coupled with the automation of DNA sequencing (Smith, Sanders et al. 

1986) lead to an exponential growth of output and decrease of cost of DNA sequencing, 

which could now sequence entire genomes. These sequencing technologies are now 

referred to next generation sequencing (NGS). The availability of high-throughput 

sequencing methodologies paved the way for a new era in Biology. By coupling NGS to 

other methodologies it was now possible to measure the presence of epigenetic marks 

at a genome wide levels or measure global levels of gene expression. In the following 

sections I will present how can NGS be used to study gene expression and DNA 

methylation. 
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2.1 Using NGS to study DNA methylation 

While DNA methylation has been shown to be an important epigenetic mark 

involved in many diverse biological processes, it was not until the availability of high-

throughput sequencing technologies, and in particular the development of bisulfite 

shotgun sequencing that it has been possible to study this mark at a genome-wide level. 

While there are many methods to measure DNA methylation, I will be describing three 

of the most used ones: restriction analysis, affinity enrichment and bisulfite sequencing. 

I will give a brief overview of the techniques, and will discuss as their advantages and 

limitations for genome-wide studies.  

2.1.1 Restriction analysis of DNA methylation 

One of the most widely used technologies to determine DNA methylation was 

restriction analysis of DNA methylation. This method uses pairs of restriction enzymes, 

called isoschizomers, that recognize the same DNA sequence, but one of them is 

unable to cleave the sequence when DNA methylation is present. An example of such 

set of enzymes is the HpaII-MspI pair. They both recognize a CCGG sequence, 

however HpaII is sensitive to cytosine methylation and won’t cut the target sequence if it 

is methylated. By contrast MspI is insensitive to cytosine methylation and will perform its 

endonuclease activity at all sites. By comparing the restriction bands generated from the 

digestion of genomic DNA by the two enzymes, it is possible to infer the methylation 

status of the sites of interest. This method has some advantages: restrictions enzymes 

are relatively cheap, it has single base resolution and it does not require prior 

knowledge of the complete genome sequence of the organism of interest. While this 

method is still being used in A. thaliana (Cervera, Ruiz-Garcia et al. 2002), maize (Lu, 

Rong et al. 2008) and O. sativa (Wang, Pan et al. 2011), there are some shortcomings 

to take into consideration: measurements are limited to cytosines contained in cleavage 

sites. This drastically limits the number of cytosines that can be interrogated across the 

genome. Most of the cytosines found in a genome are not part of such restriction sites. 

A second limitation is that the measurements are not quantitative; DNA methylation is 

measured as a binary feature with either presence or absence being the only possible 

outcomes.   
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2.1.2 Affinity enrichment 

Methylated DNA immunoprecipitation (MeDIP) is based on the isolation of 

methylated DNA from fragmented genomic DNA by immunoprecipitation through 

antibodies that specifically bind to methylated DNA. Microarrays (MeDIP-chip) or next 

generation sequencing (MeDIP-seq) can be used to identify or sequence the 

immunoprecipitated fragments. While this method can be applied at a genome-wide 

level, it has the drawback that immunoprecipitation depends on the quality and 

specificity of the antibody and the distribution of methylated sites within a region. 

Furthermore, it lacks single base-resolution and instead reports methylation enrichment 

in the sequenced region. In plant genomes, this poses a problem due to the fact that 

most cytosines in the genome are not methylated. Furthermore there are lower levels of 

methylation at CHG and CHH sites than at CG sites, causing a reduction in this 

method’s efficiency and generating biases towards CG-sites.  

2.1.3 Whole-genome bisulfite sequencing 

This technique consists of treating DNA with Bisulfite and the performing whole 

genome sequencing. It provides single base-pair resolution as well as quantitative 

measurements of DNA methylation, and is not affected by sequence context of the 

cytosines nor the abundance of methylation in a given region. Because bisulfite 

sequencing was the methodology used for the measurement of DNA methylation in this 

study, I will provide detailed overview: 

In 1970, two groups described a chemical reaction in which sodium bisulfite 

(NaHSO3) lead to the deamination of cytosines in DNA (Hayatsu, Wataya et al. 1970, 

Shapiro, Servis et al. 1970). This reaction occurs in three steps: the sulfite group binds 

the 6th carbon of the cytosine, followed by the loss of the amine group of the cytosine 

(cytosine converted to uracil sulfite), and finally the sulfite group is released, effectively 

converting a cytosines to uracils (Figure 7). This reaction acts 100 times faster on 

unmethylated cytosines compared to methylated cytosines. 
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Figure 7 Conversion of cytosine to uracil through bisulfite treatment. Figure from (Tollefsbol 2011). 

Bisulfite sequencing exploits this property of selective deamination of 

unmethylated cytosines (Frommer, McDonald et al. 1992), and is now one of the most 

widely used methods for (indirect) DNA methylation identification. This method consists 

of treating DNA with sodium bisulfite and then amplifying the DNA of interest with a 

PCR reaction. Unmethylated cytosines (from the untreated DNA) are converted to 

thymines, while 5-methyl-cytosines remain unaffected. To identify DNA methylation, one 

needs to distinguish which cytosines were converted to thymines. Initially, low 

throughput methods such as Sanger sequencing were used to determine the 

sequences of bisulfite-converted PCR products. However recent technologies in the 

field of DNA variant detection such as microarrays and next generation sequencing 

platforms have made possible the use of bisulfite sequencing for genome-wide DNA 

methylation analysis. Bisulfite sequencing can accurately survey most of the genome, it 

has a single-base resolution, gives strand specific information, and it is highly scalable. 

Furthermore, it provides a non-biased and highly sensitive quantitative measurement of 

DNA methylation, which allows cross experiment comparisons.  

Technical confounders of bisulfite sequencing include 5-hydroxymethylcytosine, 

present at low levels in mammalian genomes, is also immune to bisulfite treatment, and 

therefore measured as 5-methylcytosine (Huang, Pastor et al. 2010). Also, PCR 

efficiency drops when amplifying DNA containing uracils; creating the need for more 

PCR cycles during sequencing library preparation, which can lead to PCR product 

biases and requiring higher amounts of starting DNA material. An additional 
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complication is that bisulfite conversion is not 100% efficient. Some cytosines will not be 

converted, and are therefore incorrectly identified as methylated. This false positive 

methylation can be directly measured and used as a correction factor during 

downstream analysis. This is achieved by including in the sample to be sequenced DNA 

material that is known to lack methylation (such as phage lambda DNA or chloroplast 

DNA). Additionally, the analysis of bisulfite sequencing requires a reference genome. 

Methylation is estimated from the aligned reads to the reference genome; hence the 

quality of the reference genome will affect the correct mapping of sequenced reads, and 

therefore the methylation estimates. Furthermore areas where sequence alignment is 

either difficult or not possible (such as repetitive elements) cannot be interrogated. This 

can be problematic due to the fact that DNA methylation is a prominent mark of such 

regions. Finally, due to the reduction of sequence complexity of the bisulfite treated 

DNA, alignments to the reference sequence are less accurate, requiring more stringent 

quality standards or creating additional errors.   

2.2 Generating transcription profiles 

One of the central questions regarding DNA methylation is its relationship to gene 

expression. So far I have presented the tools needed to study DNA methylation at a 

genome wide level. In this section I will describe how NGS can be used to measure 

global gene expression in an organism. 

RNA-seq is a method that involves the quantification of RNA transcripts in the cells 

through NGS. While the expression of a gene is hard to quantify, the quantity of 

messenger RNA for a given gene tends to correlate well with the amount of protein 

found in the cell, as such it has been used as a proxy for gene expression. To do this, 

the RNA of interest (such as mRNA or sRNA) is isolated from cells, and with the use of 

reverse transcriptase, complementary DNA (cDNA) fragments to the RNA molecules 

are generated. Such DNA fragments can then be sequenced, and from abundance of 

DNA molecules it is possible to infer the abundance of RNA transcripts. RNA-seq allows 

for the detection of exon/intron boundaries, as well as the identification of alternative 

transcripts. The currently most common platform for sequencing (Illumina HiSeq) 
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generates short sequencing reads (<500 bases). These are easily processed when a 

reference transcriptome is available. While de novo assembly of transcripts is possible 

when such a reference is not available, it requires sophisticated software packages and 

the congruency of the results is low (Zhang, Jhaveri et al. 2014). Another challenge is 

that the abundance of different transcripts ranges across many orders of magnitude. To 

detect lowly abundant molecules, either enrichment or a very high sequencing depth is 

needed.  

Despite these challenges, RNA-seq is the most common tool used in high 

throughput experiments. Advancements in technology and the development of better 

protocols, such as longer reads, enrichment techniques, and better kits, will help cope 

with the drawbacks mentioned above. Finally, more accurate and reliable pipelines for 

the downstream analysis are being developed, which will help on creating more robust 

analyses. 

2.3 Conclusions 

There are various ways of measuring DNA methylation, and new technologies are 

still being developed aiming at increased sensitivity and higher data output. These 

include methods for enrichment of desired DNA, thereby reducing the amount of 

required starting material, single molecule sequencing with long reads, e.g. using the 

Pacific Biosciences technology (Rhoads and Au 2015), and techniques that can 

measure DNA methylation directly without the need of nucleotide conversion are being 

developed, such as nanopore technology (Simpson, Workman et al. 2016). While there 

is great effort in developing these technologies they are still too expensive for large-

scale experiments. Regardless of the technique, repetitive elements are difficult to 

analyze and to measure, this is particularly relevant in the field of epigenetics due to the 

fact that there are many epigenetic marks that are closely associated to these repetitive 

elements, including DNA methylation. Longer reads from the sequencing platforms and 

better bioinformatics tools will help to analyze these elements. 
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An inherent challenge that I will also address in the Results section is that 

measure average methylation (and also gene expression) across multiple cells (unless 

performing single-cell experiments). While the averages have been useful to describe 

the correlations between DNA methylation and gene expression, single cell sequencing 

has shown variability at both transcript and epigenetic level. Since my work also 

involved larger tissue samples, heterogeneity of cell types does limit the analyses 

described.  
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2.4 Analysis of bisulfite sequencing data  

In section 2.1, I have described briefly the technologies available to sequence 

DNA, and how they can be applied to measure gene expression and to detect DNA 

methylation. In the following section, I will describe the computational strategies that 

have been used in previous studies to analyze bisulfite-sequencing data. 

2.4.1 Processing of Illumina reads 

The raw data from the Illumina instruments are images from the optical sensors 

of the machines. These images are then processed with “Base calling” software which 

generate a file with the DNA sequences of the reads in a fastq format (Cock, Fields et 

al. 2010). The length of the reads ranges from 100-300 bp depending on the instrument 

used. Each base of each read has “phred quality score” which is a measurement of the 

probability of an incorrect base call. Due to technology used for Illumina sequencing 

(sequencing by synthesis), the 3’ ends of the reads tend to have lower quality scores. 

Quality control is performed to filter out reads that could introduce errors in the 

downstream analysis, as well as to trim the ends of the reads, which have low quality 

scores. Some of the properties of Illumina reads that are used for filtering include 

number of bases with low quality, number of ambiguous bases and sequence 

complexity. Finally, the adapter sequences used for the indexing of sequencing libraries 

are removed from the reads. There are many different software packages designed to 

perform such tasks such as fastQC (Andrews) , STACKS (Catchen, Hohenlohe et al. 

2013), GBSX (Herten, Hestand et al. 2015) and Shore (Schneeberger, Ossowski et al. 

2009). In this study the SHORE toolkit was used for demultiplexing and quality control. 

2.4.2 Alignment of Illumina reads  

One of the biggest advantages of performing high throughput experiments in a 

model organism such as A. thaliana is the availability of a high quality reference 

genome. It allows for the identification of polymorphisms, such as the ones introduced 

during bisulfite conversion, through the comparison of the sequenced samples to the 

reference genome. To do this, it is necessary to identify the genomic regions from which 
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the reads originated from which is equivalent to the problem of identifying sequences of 

high similarity. This problem has been widely studied in the field of bioinformatics and is 

known as sequence alignment problem, or in the case of matching individual reads to 

genomes, read mapping. Originally, the problem was limited to the alignment of one 

sequence to another and was solved by algorithms like Smith-Waterman (Smith and 

Waterman 1981) or Needleman-Wunsch (Needleman and Wunsch 1970). These 

algorithms were designed to find the optimal alignment between the two sequences. 

While these algorithms are still used for the alignment of sequences, they are 

computationally demanding and therefore not suitable for NGS data. 

Current algorithms need to be able to handle millions of reads in a sensitive time 

while also producing accurate alignments. This type of software needs to be flexible 

enough to allow for mismatches, due to biological variability and sequencing errors 

found in the sequenced reads (Illumina machines have a 1% error rate), but sensitive 

enough to avoid reporting incorrect alignments. The repertoire of software implemented 

for the mapping of reads is vast, using many different algorithms and strategies. Some 

of these have focused on speed and a small memory footprint like Bowtie (Langmead 

and Salzberg 2012) and SOAP (Luo, Liu et al. 2012) and are suitable for desktop 

computers. Others have focused on the ability to use multiple reference sequences in 

order to create better alignments, such as Genomemapper (Schneeberger, Hagmann et 

al. 2009). 

Read mapping of bisulfite sequencing data comes with an added layer of 

complexity. Due to the conversion of unmethylated cytosines to thymines after 

sequencing (caused by bisulfite treatment) the alignment of bisulfite reads to a 

reference genome would have an unusual number of mismatches, producing low score 

alignments (Bock 2012). There are two main strategies that have been used to address 

this problem. The first approach is to map to a modified reference genome, were all 

cytosines have been replaced with thymines (Krueger and Andrews 2011). This allows 

all converted and unconverted cytosines from the bisulfite sequencing to map correctly 

to the genome. A second widely sued approach is to modify the scoring matrix for the 

alignment to not penalize mismatches between cytosines and thymines (Xi and Li 
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2009). The problem with such strategies is that the lack of penalization of mismatches, 

or the reduction of sequence complexity lowers the accuracy of the alignments. 

Increasing the minimum quality scores of the alignments, as well as to remove any 

reads which map non-uniquely can help address this problem. 

Once alignments are available, a second quality filter is performed in order to 

control for the PCR duplicates. During sequencing library preparation, there is a PCR 

step that might introduce a bias when not all fragments are amplified equally. This bias 

is stronger in bisulfite libraries due to the higher number of amplification cycles 

compared to normal genomic libraries (see section 2.1.3). To avoid redundant reads 

representing PCR duplicates, reads that map to the exact same starting position are 

removed. Because all reads are required to map at different locations, the maximum 

coverage at any given position is equal to the read length of the sequencing machine 

(assume a position i had a higher coverage than the read length m, that would mean 

there are at least m+1 reads that map to different starts and cover i, but there are only 

m different positions at a distance <=m from i, by the pigeon hole principle, at least 2 

reads would map to the exact position reaching a contraction). 

Finally, a count table is generated with an entry for each cytosine in the genome 

containing the number of unconverted cytosines (methylated cytosines in the genomic 

DNA used to prepare sequencing libraries) and the total number of reads covering that 

site. This count table, which is referred to in subsequent sections as a genome matrix, is 

the only input needed for all subsequent analysis. 

For each position, one can calculate the proportion of methylated reads from the 

total coverage. For the remaining of the text I will be referring to such quantity as the 

methylation rate. It is worth noting that even though DNA methylation at each position of 

a single DNA strand is a binary feature (it is either methylated or unmethylated), the 

methylation rate is a value that ranges from 0 to 1. This is because the material used for 

DNA library preparation usually comes from a large number of cells, and not all cells 

have the same DNA methylation profile (Smallwood, Lee et al. 2014). These differences 

can be due to stochastic differences or due to biological differences between cells 

(Feng, Jacobsen et al. 2010). Additionally, recently replicated DNA might still lack 
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methylation on the newly synthesized strand, also contributing to these differences. This 

rate represents the proportion of DNA molecules that carry methylation, rather than the 

quantity of methylation within a cell. 

2.5 Identifying methylated positions across the genome 

In an ideal experiment, the methylation rate would be a faithful representation of 

the relative methylation found at each position. Unfortunately, as outlined in 2.1.3, errors 

from incomplete conversion during bisulfite treatment, sequencing errors, ‘real’ DNA 

mutations, and errors introduced by inaccurate alignments have to be taken into 

consideration. Some can be estimated easily: sequencing errors vary depending on the 

instrument used for sequencing and are normally very low. The Illumina HiSeq2000 

instrument has an estimated sequencing error of ~1%. From these errors, only miss-

calls of cytosine to thymines affect the methylation detection. By using only high quality 

reads one can further lower down this error rate. Due to these reasons, this error rate is 

normally ignored. Similar to sequencing errors, genetic variability in the analyzed DNA 

relative to the reference genomes can affect methylation estimates in the same way. 

While the genetic variability changes in a per study basis, its effect on DNA methylation 

is normally ignored. 

Incomplete conversion during bisulfite treatment is another factor that can affect 

DNA methylation estimates. Incomplete conversion of unmethylated cytosines to 

thymines leads to an overestimation of DNA methylation; unmethylated reads will 

appear to be methylated. The magnitude of these errors can be many times higher than 

sequencing errors, greatly inflating the methylation rate. This incomplete conversion 

rate (referred to the false methylation rate) can vary between experiments, and even 

between replicates. It is possible to measure the false methylation rate (FMR) by 

treating control DNA composed entirely of unmethylated cytosines with bisulfite and 

measure directly the incomplete conversion rate. Some examples of commonly used 

control DNA are phage lambda DNA, chloroplast DNA in plants and, in the case of 

mammals, non-CG sites.  
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When testing a position for methylation, the Null hypothesis is that the position is 

not methylated and that the reads supporting methylation are a product of incomplete 

conversion from the bisulfite treatment. A binomial distribution is used to calculate the 

probability of seeing a number equal or greater of non- converted sites out of the total 

coverage, with the probability of a methylation call being equal to the false methylation 

rate. This procedure is performed for each cytosine position in each sample. Due to the 

great number of statistical inferences being made, multiple testing correction must be 

performed, which will be discussed in section 2.5.2.  

2.5.1 Identifying differentially methylated positions 

While identifying methylation across the region is an important task, sometimes it 

is more biologically relevant to identify positions where there are changes of methylation 

between samples. Early studies of DNA methylation have used relatively simple models 

to identify differentially methylated positions (DMPs). These include labeling positions 

as DMPs between samples if one sample is classified as methylated and another one is 

not (Schmitz, Schultz et al. 2011) or classifying a positions as DMPs if the difference in 

methylation rates between samples exceeds an arbitrary value (Laurent, Wong et al. 

2010). While these methodologies are easy to implement, and they are not 

computationally demanding, they have important biases. The first approach fails to 

classify as DMPs positions with high differences in DNA methylation rates between two 

samples as long as both of them are methylated, while the second approach is biased 

to CG-sites (because the range of DNA methylation rates in CG-sites is higher) as well 

as sites with low coverage (standard deviation decreases proportionately with sample 

size). Finally, these approaches do not provide a confidence value for the classification 

of DMPs. 

Instead, one can test directly if the two samples show differential methylation at a 

cytosine of interest by transforming the number of methylated reads/unmethylated reads 

of each sample into a contingency matrix and performing a two tail Fisher´s exact test. 

This allows for the identification of small but statistically significant differences between 

samples, making this method suitable to detect differences of DNA methylation in all 



 

 -36- 

cytosine contexts. A second advantage of this method is that is not affected by poor 

coverage; positions with low coverage but high methylation differences will have low 

confidence estimates. Finally, it provides a p-value, which serves as a measure of 

reliability of the statistical test. One of the drawbacks of this method though, is that small 

differences of DNA methylation between positions with high coverage are generally 

identified as differentially methylated. While these positions may show statistically 

significant differences in DNA methylation, these differences might not be biologically 

relevant. Furthermore, a Fisher’s exact test must be performed for each position of 

interest for each pair of samples. If all pairwise comparisons are made, there is a 

combinatorial increase of the number of statistical tests needed, which can become a 

limiting factor in the analysis. Furthermore, due to the high number of tests performed, 

multiple testing correction is necessary, which lowers the power of detection.  

2.5.2 Multiple testing correction 

Prior to performing a statistical test, the experimenter must pick a significance 

value, which will serve as a cut off value to either reject or accept the Null hypothesis 

after performing the test. Once a significance value has been selected, it is compared to 

a p-value, which is defined as the probability of observing a case equal or more extreme 

given that the Null hypothesis is true. If the p-value is lower than the significance cutoff 

the test is called statistically significant. The problem arises when performing a large 

number of statistical tests, due to the fact that the probability of observing extreme or 

rare events increases proportionally to the number of tests being performed. In such 

cases, some instances of tests will report significant p-values, which will lead to the 

rejection of the Null hypothesis even though the Null hypothesis is true, and thus 

increasing the number of false positives (type I errors). 

This problem is known as the multiple testing problem, and there have been 

many methods to control for this increase of type I errors. The simplest approach for 

multiple testing corrections is known as the Bonferroni correction (Dunn 1959). In this 

approach, one is interested in controlling the family-wise error rate (FWER), which is 
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defined as the probability of making at least one or more type I errors. The Bonferroni 

procedure goes as follows, call pi, the p-value of the Hi test. One will reject Hi if: 

pi< alpha/m 

Where m is the total amount of statistical tests, and alpha is the desired FWER. It 

can easily be shown by Boole’s inequality that this significance value guarantees an 

FWER equal or lower than alpha. The problem with this approach is that is conservative 

and significance values need to be extremely low when dealing with large samples in 

order to maintain a moderate FWER. 

There are many other alternatives to calculate this correction value such as 

Westfall–Young permutation testing procedure, which calculates this correction factor 

empirically and is less conservative.  

An alternative is to control for the proportion of type I errors instead known as the 

False Discovery Rate (FDR). Methods to control for the FDR have the advantage that 

are less stringent than methods controlling for the FWER, increasing the power of 

detection at the cost of a higher amount of type I errors. Some of the most used 

procedures to control for the FDR include Benjamini-Hochberg (Benjamini and 

Hochberg 1995) or Storey’s method (Storey 2002). 

Regardless of the method of choice, controlling the FWER or the FDR involves the 

establishing a new significance cutoff for the statistical tests that depends on the 

amount of tests being performed. As a consequence, this decreases with a larger 

sample size (and thus lower values are required to call a test significant). 

2.6 Identifying methylated regions across the genome 

Most studies where changes in DNA methylation are associated to differences in 

gene expression have been cases where methylation changes at a region level rather 

than at a single site level (Law and Jacobsen 2010, He, Chen et al. 2011). For this 

reason it has been of great interest to study DNA methylation at a regions level. The 

strategies used for the identification of methylated regions (MRs) can be roughly divided 
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into two categories. The first strategy involves the testing of predetermined regions 

while the second involves the identification of methylated sites without any prior 

knowledge. I will introduce two approaches belonging to the first category, and 

summarize a more complex and novel method developed in the Weigel lab, which I 

have used for the analysis of my own samples. 

2.6.1 Using individual sites to identify methylated regions 

The most common approach for identifying methylated regions uses a sliding 

window. Methylated regions are defined as segments in the genome where there are 

multiple methylated positions within a specified genomic distance. This approach has 

been used in many studies due to its simplicity and ease of implementation (Lister, 

Pelizzola et al. 2009). It does however, not take into account the density of cytosines 

within a window. In areas of high GC-content, there is higher probability of finding 

methylated cytosines within the window size than in low GC-content areas. 

Furthermore, as described in 1.3.2 the levels of methylation vary depending on 

sequence context and in particular CG-sites are either completely methylated or 

completely unmethylated. The consequence is that the methylated regions identified 

with this approach are dominated by CG-methylation. Finally, the choice of window size 

is arbitrary, introducing further bias. 

An alternative approach is to use predefined genomic coordinates to test for DNA 

methylation enrichment. It uses the number of methylated calls and the number of 

unmethylated reads in a given window, followed by a Pearson’s chi-squared test 

(Regulski, Lu et al. 2013) or a fisher exact tests (Stroud, Greenberg et al. 2013) to 

compare the numbers to the expected frequency assuming that the methylated reads 

are only a product of the false methylation rate . While this approach helps to classify 

known regions of interest as methylated and not methylated, it requires predefined 

regions for testing, which can introduce a bias. Furthermore, CHG, CHH and CG 

methylation marks have unique distribution patterns across the genome. Therefore, 

using a single distribution model for all methylated sites is far from ideal. Also, as 

discussed for individual cytosines, sites with high coverage are disproportionally 
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identified as methylated, and thus contribute disproportionately to the classification of 

regions as methylated. Finally, this approach requires defining regions to be tested, 

which can introduce undesired biases as well. 

2.6.2 Identifying methylated regions using beta-binomial models  

As mentioned in the previous sections there are many factors that can affect the 

analysis of DNA methylation including sequencing coverage and sequence context. 

Furthermore the large amount of statistical inferences being made requires multiple 

testing correction lowering the power of detection. One promising alternative is the use 

of beta-binomial models (Molaro, Hodges et al. 2011). Such models use a beta-binomial 

distribution to model the distribution of DNA methylation counts from bisulfite 

sequencing data. These methods have the advantage that can easily incorporate the 

variation of methylation rates in the genome (which are sequence dependent), are not 

affected by sequencing depth and incorporate in their detection the variance found 

within and across replicate groups. These methods have been used in human studies 

(Molaro, Hodges et al. 2011), where methylation only occurs at CG sites, and therefore 

not suitable for plant studies. Recently, an implementation of such method has been 

developed for plant studies (Hagmann, Becker et al. 2015). Such method can model 

methylation for each sequence context, CG, CHG, CHHH, independently. 

The implementation mentioned above (Hagmann, Becker et al. 2015) uses a 

Hidden Markov Model to classify genomic regions into methylated or non-methylated 

from single site information by fitting the data to a sequence-specific beta-binomial 

distribution. This strategy has the advantages that does not require prior knowledge of 

the regions and can model the unique distribution of each methylation context 

independently, allowing for a more accurate detection of methylated blocks. After MRs 

have being assigned, it is possible to tests these regions across samples for differential 

methylation using a log-likelihood test. This method calculates the log odds ratio 

between the likelihood with 2 different sets of beta-binomial distributions and the 

likelihood of the joint distribution. 
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3 Results 

Many studies investigating DNA methylation have focused on two specific aspects: 

development-associated changes as well as heritability (and evolutionary conservation) 

of the methylation mark.  

In this study, I assessed the variability of DNA methylation in a set of different A. 

thaliana organs  

• To compare the inter-individual variability against intra-individual variability 

• To address whether different developmental phases in the plant are associated 

with different DNA methylation patterns 

• To study the relationship between organ-specific methylation pattern, organ 

identity, and gene expression profiles. 

In the following sections, I present the obtained results and discuss the biological 

relevance of those results in combination with an outlook of this study.  

3.1 A new pipeline for the analysis of DNA methylation 

The initial version of the pipeline for detection of methylated positions (binomial 

tests) and differentially methylated positions (Fisher’s exact tests) was first implemented 

in 2011 for the analysis of DNA methylation of the MA lines (Becker, Hagmann et al. 

2011). This pipeline consisted of multiple python, Perl, R and Bash scripts that had to 

be run in a particular order, generating a great number of temporary files, each having 

many overlapping parameters.  

For scientists without much experience using a terminal environment, running 

multiple programs in succession as well as keeping track of temporary files can prove to 

be difficult, furthermore having to take care of dependencies of each language being 

used increases the complexity of setting up the resources needed for the pipeline to 

work. It also makes comparing individual runs from different users more complicated 

due to the fact that each temporary file will be named differently, and parameters can 
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vary. Due to these reasons, the first objective of this work was the implementation of 

self-contained and user friendly pipeline for the analysis of DNA methylation. 

3.1.1 Outline 

The only input needed to run the implementation of a pipeline is a methylation 

count file in a “genome matrix” format descried in (Becker, Hagmann et al. 2011). This 

count data file can be easily generated from an alignment file of bisulfite-sequencing 

reads to a reference genome using the Shore module “methyl”.  

The pipeline is divided in five steps:  

1) False methylation rate estimation 

2) Binomial testing for differential methylation 

3) Merging of the binomial test results 

4) Differential Methylation Calculation 

5) Clean up of intermediary files 

The first step of the pipeline involves the estimation of the conversion rate of the 

bisulfite treatment (see section 2.5) or the FMR. These rates will be used to identify 

statistically methylated positions in step 2. This estimation uses the reads of DNA that is 

known to be completely unmethylated such as phage lambda DNA or plastid DNA such 

as mitochondria or chloroplast. The estimation of the FMR is done in a per sample 

basis. During this step the program also performs a round of filtering where sites that 

not meet a minimum coverage (default 5) and a minimum quality (default 16) are filtered 

out.  

Most of the chloroplast reads are highly covered, and with very low false 

methylation rates (10-6 -10-8), as such if one uses a single value for the false methylation 

rate (FMR) it will be dominated by highly covered single sites. For this reason I cluster 

sites by coverage bins (default value of bins of size 5, e.g. first bin consists of sites with 

0-5 coverage, second bin 6-10, etc.) and calculate a false methylation for each bin. I 

use a conservative approach where bins with lower coverage must have a higher FMR. 
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To do this, if a low coverage bin has a lower FMR, then the FMR for that bin is set to the 

highest FMR among all the other bins with higher coverage (for that sample). 

The second part of the pipeline is the calculation of p-values using a binomial 

distribution assuming that the presence of methylated reads is only due to incomplete 

conversion as described in section 2.5.Once all the p-values are calculated multiple 

testing correction is performed using Storey’s method (Storey 2002). If one is only 

interested in identifying methylated positions one can stop here. 

The next steps are for the identification of differentially methylated positions 

between samples. In the third step, the results from step 2 are summarized into a single 

file with a flag determining which positions passed the quality filters and the results of 

the binomial test. The default behavior of the pipeline is to test all samples against each 

other. In order to reduce the number of tests being performed, I only compare positions 

where at least one position was identified as methylated among all samples. 

Finally for each pairwise comparison, all cytosines are tested for differential 

methylation using a Fisher’s exact test using the number of methylated reads and 

unmethylated reads of each pair of samples. After all p-values are calculated, multiple 

testing correction is performed using Storey’s method (Storey 2002). 

One of the first improvements made was the consolidation of all individual scripts 

into a two R scripts, a C++ library and a C++ wrapper, which is the only platform in 

which the user interacts. This change improved the sharing of the pipeline as well as the 

simplicity of running it; also reducing the number of dependencies needed to run the 

pipeline. An additional advantage of this scheme is that all the intermediate files are 

named and handled automatically by the main function, ensuring a consistent 

experience across users. Each of these steps is implemented into a function in a library 

file with the Binomial testing being performed by C++ and the Differential testing being 

performed in an R helper file. In the simplest case, the user will have a genome matrix 

(refer to section 2.4.2) and will want to retrieve a list of methylated positions in all 

samples and a list of DMPs between all pairwise comparisons. In this particular case, 



 

 -43- 

the user only needs to provide a writable directory and the path of the genome matrix to 

get such output, illustrating how easy a new user could run this pipeline with default 

parameters. All necessary parameters have a default value, which are the ones used in 

previously published material, and these can be easily changed. 

3.1.2 Handling of replicates 

A second modification regarded the handling of replicates among samples. The 

original version of the pipeline could be provided with a list of replicates and for each 

group of replicates, only those positions that had concordant methylation status 

(methylated or unmethylated) across all replicates were tested. In my improved 

implementation, replicates can be handled in different ways. The first one is identical to 

the initial version, where only sites were all replicates were classified as either 

methylated or unmethylated are tested. The second one is testing directly for differential 

methylation between replicates using the same procedure used for testing differential 

methylation across samples and only using positions that were not identified as 

differentially methylated between replicates, regardless of classification as methylated 

or unmethylated. For example, a site can be classified as methylated in all replicates, 

but there can in addition be statistically significant differences in methylation level 

between the replicates; such a site would not be considered  

In the original version, the reads from replicates were merged into a single 

sample by adding their respective methylated/unmethylated reads. This increase in 

coverage can cause problems due to the previously discussed coverage effect when 

applying a Fisher’s exact test. In my pipeline the user has two additional possibilities for 

handling replicate read counts. The first one is just using the sample with the highest 

coverage. The second method calculates the weighted arithmetic mean (weighted to the 

coverage) of the methylation rates of the replicates, and assigns 

methylated/unmethylated counts to that positions such that the coverage of that position 

is equal to the highest coverage across all replicates, and the methylation rate is as 

close as possible to the weighted average mean. 
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The implementation of this pipeline in C++ had also the expected advantage that 

numerical calculations where much faster compared to the counterpart in Perl. On a 

benchmark consisting of 500 sets with one millions simulated positions, the Perl 

implementation had an average runtime of 89 seconds (s.d.=1.4) compared to an 

average runtime of 9 seconds on C++ (s.d.=.2). 

Furthermore, in contrast to the original pipeline where most of the operation had 

been designed to work within a single processor, my pipeline was implemented in order 

to be parallelizable and thus exploit the multicore capabilities that are present in most 

modern computers. Additionally my pipeline was designed to be able to run on stand-

alone desktop or laptop computers by avoiding operations using large amounts of RAM. 

An alternative version of my pipeline was implemented such that it could exploit the 

resources of our computing cluster (through Sun Grid Engine scheduling system).  

3.1.3 Using the minimum attainable p-value in multiple testing correction 

Finally, I implemented a new method to reduce the loss of statistical power that is 

caused by multiple testing correction. As mentioned in 2.5.2, when performing multiple 

testing correction, one determines a new significance cutoff value that depends on the 

number of statistical inferences. This can become problematic when using a discrete 

test statistic such as the binomial test to detect MPs, or the Fisher’s exact test to detect 

DMPs. This is due to the discrete nature of the test: there is a finite number of possible 

significance values a test can output, and therefore there is a minimum attainable 

significance value for each test (known as the minimum attainable p-value). If the 

minimum attainable p-value of a test is greater than the significance cutoff set by the 

multiple testing correction procedure, the result of that test could never be considered 

significant. Such tests are not only non-informative, but are taken into consideration 

when calculating the new significance cutoff; as such it would be ideal to remove them 

completely from the analysis. 

Because the minimum attainable value can be calculated without doing any 

statistical inferences, one can take advantage of this property to remove cases where 

the minimum attainable p-value is higher than the significance cutoff. This method has 
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the advantage that less or an equal amount of statistical tests will be performed, while 

guaranteeing to be at least as powerful as just performing a single round of multiple 

testing correction. 

The method works as follows: 

1. Calculate the significance cutoff value k 

2. Calculate the minimum attainable p-values for all tests 

3. Sort them from lowest to highest  

 

for i=1 to m do 

If Pmin(i) > k then 

  remove Pmin(i) from the set 

  update k 

else 

  return(k) 

This method guarantees that that all the remaining tests that are performed could 

be considered significant even after multiple testing correction. One drawback from this 

procedure is that one needs to calculate the minimum attainable p-values for each test, 

which can be computationally intensive. When testing for differential methylation it is 

possible to mitigate this problem by pre-calculating all the minimum attainable values for 

all possible cases. This is possible due to the way the methylation count table is 

generated where the maximum coverage of a single position is 200 (see section 2.4.2), 

consequently there are only 200x200 different possible Fisher’s exact tests that can be 

performed, allowing for a fast implementation for such algorithm.  

3.1.4 Conclusion 

While previous pipelines were available for analysis of bisulfite data, my new 

implementation in C++ provides a more efficient and simpler to use alternative. It 

provides a tool that, can be easily used by non-expert users, while also giving more 

options for handling the analysis to advanced users. It also provides a novel method to 
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preprocess data, reducing the number of statistical tests performed and thus reducing 

the impact of multiple testing correction as well as a moderate speedup. Finally, the 

pipeline was designed with flexibility and scalability in mind, with a version suited for 

stand-alone computers and another for a high-performance computing environment.  
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3.2 Methylation variation in leaf tissues  

Many previous studies of genome-wide DNA methylation have used leaves as 

their study object as they are easily collected (Cokus, Feng et al. 2008, Lister, O'Malley 

et al. 2008). Usually, several leaves from a single individual or even leaves from 

multiple individuals are pooled, which helps to average out stochastic and inter-

individual variation. Furthermore this allows for an easier detection of conserved 

methylation patterns. While this strategy is useful to investigate some aspects of DNA 

methylation, both the variation between individuals as well as between organs is lost in 

the pooling, which might contain relevant biological information.  

Previous studies have shown that different epigenetic marks in plants can change 

with plant age and between different developmental stages (Feng, Jacobsen et al. 

2010, Cantone and Fisher 2013), further pointing to a potentially biologically relevant 

role of such variation.  

To study the variation of DNA methylation in leaf tissue, I produced single-base-

resolution methylation maps using bisulfite-sequencing (Cokus, Feng et al. 2008, Lister, 

O'Malley et al. 2008) from 18 individual leaves from a single 5-week-old individual with 

Col-0 background, where the order in which each leaf arose in the plant was recorded. 

This allowed for studying the progressive effects of leaf age, or time point of leaf 

formation, on DNA methylation. In order to assess how pooling compares to individual 

leaf sequencing, I additionally sequenced bisulfite treated DNA of pools of six leaves 

from fourteen 5-week-old siblings originating from a single founder with a Col-0 

background. 
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Figure 8 Distribution of DNA methylation of 18 individual leaves across the genome. Circos plot showing the 
normalized densities of a) genes density b) transposable element density c) DNA methylation (leaves are 
arranged according to their emergence time). Data was plotted using 250kb blocks and each track was 
normalized to the highest number in any block. 

My samples were sequenced to an average genome coverage of 10x. I required 

each position analyzed to have a minimum coverage of 5x. Out of 43 million cytosines 

in the A. thaliana genome, an average of 27 million cytosines (s.d. 3 million) per sample 

passed the quality and coverage filters. I identified both MPs and DMPs using the 

pipeline described in section 3.1. Six million individual cytosines across the genomes 
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were methylated in at least one sample, with an average of 4 million cytosines being 

methylated in each sample. Similar to previous studies (Cokus, Feng et al. 2008, Lister, 

O'Malley et al. 2008), most of the methylated positions were found near the 

centromeres, and there were fewer on the chromosome arms (Figure 8).  

To reduce the impact of multiple testing correction when calling DMPs, I only 

performed biologically relevant comparisons, by separately assessing inter-individual 

variation with pairwise comparisons between the 14 sibling leaf samples, and intra 

individual variation with pairwise comparisons between the 18 leaves from the same 

individual. 

3.2.1 Inter-individual variation and intra-individual variation 

To assess the degree of conservation of methylation between individual leaves I 

calculated the frequency spectrum, which represents the proportion of sites that that are 

methylated by a given number of samples. My results showed that methylation in leaves 

was highly conserved, where most of the sites are either methylated or unmethylated in 

all leaf samples (Figure 9A). In order to compare the degree of conservation between 

individual leaves and siblings I calculated the overlap of methylated sites between them, 

in this specific context methylated referring to sites where at least 50% of the samples 

were methylated at that site. The majority of cytosines that were methylated in individual 

leaves were also methylated in the pools of leaves originating from 14 siblings (Figure 

9B), suggesting that methylation in leaves is largely conserved.  

I wanted to assess how does the variation between leaves compares to the 

variation between closely related individuals (siblings). I performed principal component 

analysis (PCA) using the methylation rates of all individual cytosines called as 

methylated in at least one sample (Figure 9C). To avoid imputing or handling missing 

information, only sites with complete information were taken into consideration (18.2 

million sites). The PCA showed higher variation between individual leaves originating 

from a single individual compared to the variation found between pools of leaves from 

different individuals.  
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Figure 9 Variation of DNA methylation in leaf tissue. A)Frequency spectrum of the number of methylated 
samples in the 18-leaf data set, “0” represents sites in which methylation was not detected in any leaf, “18” 
represents sites in which methylation was detected in all 18 leaves B) Overlap of methylated positions 
between the 14xSiblings set and the 18-leaf set. A position was considered methylated if at least half of the 
samples where methylated at that position C)Principal component analysis of methylation rates of 
methylated positions between siblings (blue) and individual leaves (red). D) Principal component analysis 
only using the individual leaf data set, the leaf number is represented by color where red is the oldest and 
yellow is the youngest. E) Hierarchical Clustering of individual leaves using Pearson’s correlation 
coefficients as distance matrix. F) Hierarchical clustering of leaves using number of DMPs as distance 
matrix, colors represent the log2 of the counts between each sample. 

3.2.2 Age-dependent changes of DNA methylation in leaves  

I wanted to ask if age or time point of formation of the individual leaves was 

correlated to the observed variability in DNA methylation. In this case, and for the 

remaining of the text I define age as the order in which leaves emerged from the shoot 

apical meristem. I repeated the PCA analysis described in using only the data from 

individual leaves (Figure 9D). Leaf samples were numbered according to the order they 

emerged, where leaf 18 was the last one to emerge, and therefore the youngest. PC1 

separated individual samples by order on the plant, and explained an increased amount 

of variance compared to the previous PCA (24% vs 21%, Figure 9), which included 14 

individual siblings. To identify how related where the leaves between each other, I 

calculated the correlation coefficients between all leaf samples and used them as a 

distance matrix to perform hierarchical clustering (Figure 9E). Samples clustered in two 

groups where the ‘oldest’ (early emerging) and ‘youngest’ (late emerging) leaf samples 

grouped together. Clustering analysis using the number of DMPs between samples as a 

distance matrix (Figure 9F) showed a similar separation between ‘young’ and ‘old’ 

leaves.  

To investigate whether a specific set of cytosines would be responsible for the 

difference between ‘young’ and ‘old’ leaves, I calculated the average methylation rate 

across all chromosomes in 250kb windows (Figure 10A). My previous results hinted at 

an age dependent effect of DNA methylation, therefore I normalized these methylation 

rates by the methylation rates found in the ‘youngest’ leaf sample (leaf #18). The 

normalization revealed a genome-wide correlation of DNA methylation with age. This 

correlation was more pronounced near the centromeres (Figure 10B). The oldest 

samples showed a generalized decrease of methylation, which was more pronounced 

near the centromere. Leaf development is a complex process and is composed of 
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different stages with different transcriptional profiles. A possible explanation for the 

observed differences in DNA methylation could be due to changes in the expression of 

methylation machinery. 

 

Figure 10 Genome wide age associated changes of DNA methylation patterns. A) Distribution of DNA 
methylation rates across the genome, each point is the average methylation rate of a 250kb block. B) Each 
block was divided by the average methylation rate found in the youngest leaf (Leaf #18).  

To test this hypothesis, I used published transcriptome data (Schmid, Davison et 

al. 2005) to explore whether age-dependent changes in expression of 

methyltransferases genes might explain the relative loss of methylation in older leaves. 

Expression of both METI and CMT3 (Figure 11A) (encoding the main 

methyltransferases responsible for CG and CHG) declined in older leaves and 

senescent leaves compared to young leaves. Reduced activity of DNA 

methyltransferases could thus be responsible for failure to faithfully maintain DNA 

methylation marks as leaves age. 
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I also wanted to whether variation of DNA methylation between leaves was 

similarly distributed across along the chromosomes as the variation found between 

individuals. In therefore compared the distribution of DMPs between individual leaves 

against the distribution of DMPs between siblings (Figure 11B). My data showed that 

DMPs between siblings were located mainly in chromosome arms and were rare in the 

centromere. Such distribution of DMPs has been previously reported in 

transgenerational studies (Becker, Hagmann et al. 2011). By contrast, DMPs between 

individual leaves were enriched in centromeres (Figure 11B) and were rare in 

chromosome arms. This suggested that the variation of DNA methylation individual 

leaves is different from the variation of DNA methylation between individuals. 

 

Figure 11 Changes in expression and distribution of DMPs between individual leaves. A) MET1 and CMT3 
expression levels of different leaves at different ages. B) Relative density distribution of DMPs across the 
genome. Each block (size=250kb) was normalized by the highest DMP count for a block from their respective 
data set. 

Next, I investigated whether the age-associated changes in DNA methylation 

were overrepresented in any specific genetic feature. For this purpose, I calculated the 

average methylation rate for pseudogenes, genes, 5’-UTRs and 3’-UTRs UTRs 
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transposable elements (TEs) in each sample and compared them across samples 

Figure 12. Similar to previous results (Zilberman, Gehring et al. 2007), transposable 

elements had the highest average methylation rate among all the genetic features 

analyzed, followed by gene bodies and UTRs. All genomic features showed a similar 

relative loss of DNA methylation in older samples compared to the younger ones except 

for leaf #13. Leaf #13 had the highest false methylation rates among all samples, 

suggesting that the increase of DNA methylation is likely to be an artifact due to 

incomplete conversion after bisulfite treatment. This analysis suggests that the 

observed loss of DNA methylation was not specific to any particular genetic feature. 

This was surprising given that the mechanisms in which DNA methylation is established 

and maintained are different for each genetic feature. 

       

Figure 12 Distribution of DNA methylation across genetic features. A) Average DNA methylation of TEs, 
genes, 3’ and 5’ UTRs and pseudogenes B) Normalized average methylation of TEs, genes and 3’ and 5’ 
UTRs; samples were normalized to the average methylation levels of the youngest leaf (leaf #18). 
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Leaves undergo a series of developmental transitions during their life cycle. Even 

though the leaves I used for methylation profiling (leaves 1-18) were all harvested at the 

same time, they all emerged at different times and therefore some were in different 

developmental phases. The ‘oldest’ leaves were initiated during the juvenile rosette 

stage, while later arising leaves were initiated during the adult rosette stage that 

precedes the transition to flowering.  

I wanted to determine whether the observed changes in DNA methylation 

between leaves of the same individual were dependent only on their age, i.e., the time 

that had passed since their initiation, or could be explained by their initiation at distinct 

developmental stages of the whole plant. In order to answer this question, I performed 

bisulfite sequencing of four individual leaves (leaves 1,3,5 and 7) of a 3-week-old plant 

and a 5-week-old plant. Methylation rates in each sample were calculated in 250kb 

blocks along the genome instead of at individual sites as the large sample number 

would have forced me to filter out a high proportion of sites when requiring complete 

information. 

PCA separated samples by time of collection, but no age effects between 

individual leaves obtained from same individual could be observed (Figure 13A). Since 

these results were different from what I had observed in the 18-leaves-series, I wanted 

to exclude a technical error due to analyzing average methylation rate across blocks 

rather than methylation rates of individual positions. Therefore, I performed the same 

block analysis on the original 18 leaf samples (Figure 13B). This showed that the 

separation of samples by leaf age is still observable when using average methylation in 

blocks. The use of a different analyses pipeline can thus not explain the discrepancy 

between my results.  
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Figure 13 Effect of plant age on DNA methylation patterns A) PCA using average methylation from leaves of a 
3 week-old and a 5-week old plant. Average methylation of 250kb blocks along the genome was used. B) PCA 
of the 18-leaves series using the methylation rate of 250kb blocks. 

One major difference between the two datasets, the 18-leaves-series and the 3- 

and 5-week-old plant series, was the origin of the biological material. While all plants 

had a Col-0 reference background, the plant used for the 18-leaves-series was derived 

from an individual from the 30th generation of the MA collection line (Shaw, Byers et al. 

2000), while the other plants were derived from an independent (not traceable) batch of 

seeds. To determine whether the discrepancy between experiments could be explained 

by seed origin, I performed another experiment using seven leaves (leaf number 

1,3,5,7,9,11 and 13) of an independent 5-week old Col-0 individual from a third 

independent batch of seeds. Additionally I included in the analysis the methylation data 

from the MA lines, which are derived from whole rosettes of individual plants (Becker, 

Hagmann et al. 2011). The complete MA line data set compromises 20 individuals split 

by 30 generations from a common founder and two pairs of siblings that originated from 

the same founder plant but only 3 generations ago. This set includes the parental line 

from which the 18-leaves-series as well as the 14 siblings were derived from (one 

individual from generation 3). Furthermore, I also included in my analysis data from 

plants grown by a collaborating group, which sequenced 18 pools of the complete 
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rosettes of 10x individuals each (Col-0 background) from 3 generations (Wibowo, 

Becker et al. 2016) 

. 

  

A PCA of the average methylation rate in 250kb blocks for all 89 samples 

showed that samples from the MA lines and samples generated from independent sets 

of seeds cluster separately (Figure 14). Figure 14 Differences in DNA methylation 

between the MA lines and other Col-0 accessions. PCA using methylation rates in 250 

kb blocks of multiple whole genome bisulfite sequencing studies. 

It remains an open question why the Col-0 derived MA lines and other Col-0 

descendants have different methylation patterns. Only 15 mutations are shared across 

all MA individuals compared to the reference genome (13 substitution and 2 deletions) 

out of which none are in coding regions (Ossowski, Schneeberger et al. 2010), 

suggesting that genetic differences are unlikely to be the underlying cause. A second 

possibility could be that the MA lines and their relatives have an epigenetic memory 

different from individuals from independent lines. Further replication of the experiment 

using individuals derived from the MA lines is necessary to bring this study to a 

conclusion. 

The aim of this study was to quantify the variation of DNA methylation within 

organs of a single individual. My results showed that there is variability present in the 

DNA methylation profiles between individual leaves originating from a single individual. 

Such variability was higher than the one found between pools of individual leaves from 

different individuals. Furthermore, in all cases individual leaves grouped together by 

their time of collection (3-week stage and 5-week stage) (Figure 13). Leaf development 

is a complex process composed of multiple developmental transitions such as leaf 

initiation and leaf elongation. Each of these developmental phases is accompanied by 

transcriptional changes. From tilling arrays I observed a correlation between the 

expression of different methyltransferases and leaf ageFigure 11). While it is tempting to 

speculate that DNA methylation might play a functional role during leaf development, 
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My study showed that the changes of DNA methylation were not associated to any 

specific sequence context, nor enriched in particular genetic features such as 

transposable elements or gene bodies. Instead I hypothesize that these age-associated 

changes of DNA methylation are a product of improper maintenance of DNA 

methylation. This hypothesis is supported by the age–associated changes of expression 

of methyltransferases in leaves, arguing against the idea of leaf development being 

regulated by DNA methylation.  

While the presented experiments revealed differences in DNA methylation 

between organs from the same individual, and an association of methylation with 

developmental stage, rosette leaves represent only a single organ type. Furthermore, 

different organ types can be both phenotypically and transcriptionally very different from 

each other (Schmid, Davison et al. 2005). Therefore I proceeded to focus on DNA 

methylation of different organs, its association to organ identity and gene expression.   
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3.3 Methylation variation across organs 

Many studies in mammals and plants have shown that changes in DNA 

methylation are important for processes such as tissue differentiation and 

embryogenesis (Chan, Henderson et al. 2005, Smith and Meissner 2013). 

Developmental programs are tightly regulated and are accompanied by changes in 

transcription profiles as well as epigenetic changes, which are needed to accommodate 

to a new cellular fate. DNA methylation has been shown to be able to influence gene 

expression and to change through development (Law and Jacobsen 2010, He, Chen et 

al. 2011). In plants, most studies addressing methylation in a developmental context 

have focused on early stages, but the effects of DNA methylation on organ identity or its 

importance regarding dynamic gene regulation are still unclear.  

To disentangle the contribution of DNA methylation to organ identity and gene 

expression, I performed bisulfite sequencing and RNA-seq of six different types of aerial 

organs of three Arabidopsis thaliana individuals. With this dataset I investigated tissue 

specific differences in methylation profiles, as well as their relationship to gene 

expression.  

In this section, I will focus on two main questions: 

• How do genome-wide methylation profiles differ between distinct plant organs?  

• How does the intra-individual variation compare to inter-individual variation? 

• Does methylation at different genetic elements, such as transposable elements 

and gene bodies, correlated with tissue identity and/or gene expression?   
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3.3.1 Organ-specific methylation profiles 

To study differences of DNA methylation between organs, I generated single-

base-resolution methylation maps from six types of aerial organs in three biological 

replicates: rosette leaves, cauline leaves, stems, siliques, open flowers, and closed 

flowers. Each plant was derived from a single individual of the third generation of the 

MA collection line (Col-0 background, refer to section 3.2 or (Becker, Hagmann et al. 

2011)). These plants were grown in growth room conditions and have nearly identical 

genome sequences. Therefore differences in DNA methylation between identical organs 

from different siblings could be due to natural variation, while DNA methylation 

differences across organs could reflect changes associated to organ identity. 

Samples were sequenced to an average coverage depth of 10x. I required all 

positions analyzed to have coverage equal or higher than 5. After filtering, 27.7 million 

cytosines remained out of the 43.1 million found in the repeat-masked genome. After 

using the pipeline described in section 3.1, I identified 6.5 million cytosines that were 

methylated in at least one sample with an average of 3.1 million methylated sites per 

sample (s.d. 0.5) and a range of 2.4 and 4.1 million samples depending on the organ 

type. Similar to previous studies, all organ types showed low levels of DNA methylation 

on chromosome arms and increased in centromeric regions (Figure 15). 
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Figure 15 Distribution of DNA methylation across the genome. Circos plot showing the distribution of DNA 
methylation by A) organs (siliques, shoot, rosette leaves, open flowers, closed flowers, cauline leaves) B) 
Methylation density by sequence context CG (red), CHG (green) and CHH (blue) C) Density of TEs (gray) and 
genes (purple). Each track was normalized by the highest value in that track. Replicates were averaged 
together. 

I wanted to determine whether DNA methylation was more strongly correlated 

with organ identity or with the individual from which the organs originated from. I 

performed Principal Component Analysis (PCA) using methylation rates for each 

cytosine in the genome. As shown in Figure 16A, samples clustered primarily according 

to organ systems (vegetative or reproductive). To assess the degree of similarity 
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between the genome-wide methylation patterns, I calculated Pearson’s correlation 

coefficient between all samples and performed hierarchical clustering using these 

correlation coefficients as a distance matrix (Figure 16B). In agreement with the PCA, 

the hierarchical clustering showed that samples belonging to either vegetative (leaves) 

or reproductive (flowers, siliques) organ systems grouped separately. Interestingly 

individual organ types did not cluster together. The first component of the PCA 

separated reproductive from vegetative organs when considering all cytosines (Figure 

16A), as well as when separating cytosines by sequence context (Figure 16C). 

Interestingly the second component of the PCA using CG-methylation separated 

samples by the individual the organs originated from, such separation was not seen 

when looking at other sequence contexts.  

 

Figure 16 Genome-wide differences of DNA methylation between organ systems. A) PCA of the DNA 
methylation rates of individual cytosines from multiple organs of A. thaliana. B) Hierarchical clustering 
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analysis of organ types using the Pearson’s correlation coefficient between samples. C) PCA of methylation 
rates from individual cytosines separated by sequence context. 

The PCA showed that vegetative or reproductive organ systems have distinct 

methylation profiles. This could suggest that changes of DNA methylation occur during 

organ development, and that these changes are conserved across individuals. To 

measure the similarity of the methylation profiles, I calculated the correlation coefficients 

between all pairwise sample comparisons. The correlation coefficients ranged from 0.95 

to 0.98 in all comparisons. This suggests that even though the genome-wide differences 

in methylation were sufficient to separate vegetative and reproductive organ systems, 

all organs showed an overall similar methylation profiles.  

To identify DNA methylation differences between organs, I tested individual 

cytosines for differential methylation across all pairwise samples comparisons using 

previously described methods (see section 2.4). Differences between identical organs 

from different individuals can provide an estimate of spontaneous variation, while 

differences between organs could reflect organ-specific methylation patterns. I identified 

813,461 differentially methylated positions (DMPs) with diverging methylation in at least 

one pair of samples, with an average of 26,888 differentially methylated positions per 

pairwise comparison.  

I wanted to determine whether the identified DMPs were also correlated with 

organ identity. I performed a PCA using the methylation ratio of the identified DMPs 

(Figure 17). My results show the, similar to the previous analysis using whole-genome 

methylation rates, DMPs also separated vegetative and reproductive organ types apart. 

If the DMPs were product of stochastic variations between organ samples, the amount 

of variance explained by the PCA should remain the same. Instead, the amount of 

variance explained by PC1 was higher for DMPs than for whole-genome methylation 

rates, suggesting that the variability of these sites is not random and some sites 

responsible for most of the variation found across tissues. Furthermore the number of 

DMPs between tissues from similar types of organs (vegetative vs. reproductive) was 

lower than the number of DMPs found between tissues of organ systems, suggesting 

that the variability found within these positions reflect an association with organ identity. 
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Figure 17 Differentially methylated positions separate samples by organ type. Principal component analysis 
methylation rates from DMPs separated samples by sequence context. 

The functions of DNA methylation can change depending on sequence context 

(CG, CHG, and CHH). Furthermore, the DNA methylation maintenance mechanisms 

are different for each context. In order to investigate whether there was an association 

between sequence context and the variability found across tissues I repeated the 

clustering and PCA analysis separating individual cytosines by sequence context. 

Hierarchical clustering separated vegetative and reproductive organ systems in 

all sequence contexts. My results also showed that identical organ types had similar 
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CHG-methylation profiles and therefore grouped together. In contrast, CG-methylation 

showed the least amount of organ specific differences, were samples were only 

separated between reproductive and vegetative tissues. Similar to the results presented 

above, the second component of the PCA using CG-sites separated samples according 

on the individual they originated from. These results suggested that methylation 

changes associated to development vary depending on sequence context. 

 

Figure 18 Inter- and intra-individual variation between organ systems. A) Proportion of cytosines according 
to the number of samples that are methylated, 0 represents sites where no sample was found methylated, 15 
represents sites were all samples are methylated. B) Overlap of methylated positions between organ systems 
(k=1000). C) Overlap of the DMPs identified within each individual. D) Overlap of the DMPs found between 
identical organ types, with DMPs found between organs derived from a single individual and DMPs found in 
the MA collection line. 
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My previous results have shown that differences between methylation are 

sufficient to separate samples by organ systems, but it is still not clear which proportion 

of the genome is stable and which is variable. To measure the degree of stable DNA 

methylation between all samples, I calculated the frequency spectrum, resembling the 

site frequency spectrum but using DNA methylation as a polymorphism instead (Figure 

18A). The majority of analyzed cytosines in the genome showed the same methylation 

status across all samples; 87.3 % of the cytosines that were methylated in one or more 

samples were methylated in all samples. This is in agreement with studies investigating 

transgenerational variability of DNA methylation as well as its changes in response to 

environmental stimuli, where most of the genome is stably methylated (Becker, 

Hagmann et al. 2011, Schmitz, Schultz et al. 2011, Dowen, Pelizzola et al. 2012, 

Seymour, Koenig et al. 2014). 

Even though most of the cytosines in the genome were either methylated or 

unmethylated in most of the samples, the PCA still separated vegetative and 

reproductive organ systems. To identify the source of this variation, I calculated the 

overlap of methylated positions between all organs (Figure 18B). In agreement with my 

previous results, the majority of the positions that were methylated in one sample were 

methylated in all samples. The overlapping sites corresponded mainly to TEs and 

centromeric regions. As shown in Figure 18B, most of the positions that were 

methylated in leaves were also methylated in other organs, while reproductive organs 

had a higher number of methylated positions, mostly unique to those organs.  

 Trans-generational DNA methylation studies in near-isogenic A. thaliana lines 

separated by 30 generations have identified spontaneously occurring DMPs between 

individuals (Becker, Hagmann et al. 2011, Schmitz, Schultz et al. 2011). Additional 

studies comparing the methylation profiles of A. thaliana individuals separated by 

hundreds of generations have found that DMPs between those populations have a 

higher than expected overlap with the DMPs identified in the 30 generation study 

(Hagmann, Becker et al. 2015), suggesting that methylation at such sites are inherently 

labile. I wanted to determine whether such labile sites were also present in my samples. 

For each of the three individuals, I extracted the set of identified DMPs between organs 
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of the same individual (intra-individual variation), and then determined how many of 

these DMPs where present in more than one individual (Figure 18C). My results 

showed that the overlap of such positions between the three individuals was higher than 

expected by chance (binomial test, P-value<2x10-16). While this overlap supports the 

idea of labile sites, these variable positions were identified by comparing different organ 

systems within an individual and therefore could be the result of conserved 

developmental changes rather than true lability. To determine whether these DMPs are 

genuinely labile or they are just the product of development-associated changes, I 

identified DMPs between identical organ systems (inter-individual variants), sites that 

were variable between organs of the same individual (intra-individual variants, which is 

the combined set from figure 16C), and sites that were found variable in the MA 

accumulation lines (trans-generational variants) (Becker, Hagmann et al. 2011)). The 

overlap between all data sets was statistically significant (binomial test, P-value<2x10-

16). One out of ten sites that were found variable within individuals and one out of three 

variable positions between individuals were also variable in the MA lines (Figure 18D), 

suggesting that these sites are inherently labile. 

While the importance of changes of methylation of individual sites is still debated, 

it is generally accepted that changes of methylation in multiple contiguous nucleotides 

are able to affect gene expression. Therefore I decided to focus next on methylation 

differences across regions rather than individual sites. 

3.3.2 Variation of methylation across genomic regions 

I identified methylated regions (MRs) across all samples using the Hidden 

Markov Model described in section 2.6.2 (Hagmann, Becker et al. 2015) and then tested 

these regions for differential methylation between samples. Subsequently, for every 

sample I calculated the methylation rate of each sequence context separately for each 

DMR by averaging the methylation rate of all cytosines present in that region. I used 

these methylation rates as a distance matrix to perform hierarchical clustering.  

While vegetative and reproductive organs showed clear differences in all 

sequence contexts, a more detailed grouping arose within the grouping. Unlike genome-
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wide methylation and DMPs, where organs types only showed similarities in CHG-

methylation, samples grouped together by organ type across all contexts when 

considering DMRs. The fact that this pattern is only found when looking at regions but 

not when looking at individual sites suggests that the methylation of these regions are 

changing through organ development across all sequence contexts.  

 

Figure 19 Differences in methylation at a region level. Hierarchical clustering of using the methylation rate of 
all identified DMRs. For each DMR, the average methylation rate of rosette leaves was subtracted from all 
samples. Red represents comparative gains of DNA methylation and blue losses of DNA methylation 

A possible reason why identical organ systems clustered together when 

considering only DMRs is that the for each organ system, a single set of parameters for 

the beta-binomial distribution (which is used to model methylation) is calculated using 

the replicates for that organ system. This approach identified methylated regions within 

organ systems only when they were stable across replicates. While some bias could be 

introduced through this methodology, it is unlikely that this is enough to generate the 

observed organ-specific clustering. For this analysis, for each identified DMR, I 

calculated the average methylation rate of each sample independently and used these 

rates for the clustering. These include the methylation rates of samples that were not 

used to label a region as a DMR, and therefore are not biased by the beta-binomial 

model. 
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As seen in Figure 19, reproductive organs showed a relative increase of DNA 

methylation compared to vegetative organs in DMRs. Furthermore, this increase of 

methylation is found only in CHG and CG methylation, where CHG-methylation showed 

the relative gain. This difference in methylation is not equal in all organ systems, leaf 

tissues showed the lowest average gene body methylation, with shoot tissues showing 

intermediate levels, and reproductive tissues showing the highest levels.  

My results have shown that even though vegetative and reproductive tissues 

show differences in DNA methylation in both single sites and regions, individual organ 

types within one class do not substantially differ from each other at the genome-wide 

methylation level. I thus decided to investigate methylation differences at specific 

genetic elements, such as at transposable elements and in gene bodies could have 

stronger association to organ identity. 

3.3.3 Gene Body methylation 

Gene body methylation, defined as the methylation present in exons of genes, 

has been shown to correlate with gene expression (Zhang, Yazaki et al. 2006, 

Zilberman, Gehring et al. 2007). This association depends on the sequence context of 

the methylation present. Gene expression levels correlate negatively with an increase of 

CHH and CHG methylation. In contrast CG-methylation is low in genes showing either 

high or low levels of expression, and is normally associated with constitutively 

expressed genes. Previous studies have shown that identical organ systems show 

similar expression profiles. I therefore wanted to determine whether tissue-dependent 

effects on gene expression could be correlated with organ-specific gene body 

methylation. 

To address this question, for each gene in the TAIR10 annotation (Berardini, 

Reiser et al. 2015), I calculated the average gene body methylation by context and each 

sample Figure 20A. Similar to my previous results, reproductive and vegetative tissues 

could be separated by only using gene body methylation profiles. Surprisingly CHG-

methylation showed strong organ-specific differences. 
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Figure 20 Gene body methylation reveals tissue specific patterns. A)Principal component analysis of DNA 
methylation rate in gene bodies separated by context. B)Distribution of DNA methylation in genes according 
to their expression levels. Genes were separated by expression levels in 10% quantiles. 

I therefore hypothesized that gene body methylation could provide an added 

layer of tissue specific gene regulation. To explore the relationship between gene 

expression and DNA methylation, I linked the gene body methylation profiles to RNA-

seq data produced from the same tissue type from the same individuals. Clustering 

analysis confirmed that samples from identical organ systems showed similar 
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transcription profiles and therefore grouped together. Similar to published studies, all 

organ systems showed a strong correlation between CHG methylation within gene 

bodies and low levels of expression while genes with either high or low levels of CG 

methylation showed low levels of expression (Figure 20B).  

Next, I wanted to determine whether changes in DNA methylation between 

organs were also associated with changes in gene expression, since I had already 

found that vegetative and reproductive organs have distinct methylation profiles. To 

reduce the dimensionality and complexity of the analysis of methylation and expression 

changes across all organ systems, I focused on analyzing two representatives organ 

systems from the reproductive and vegetative lineages: rosette leaves and closed 

flowers. In agreement with my previous results, closed flowers had a higher average 

methylation rate at gene bodies than rosette leaves Figure 21A. I selected the 500 

genes with the highest amount of difference in methylation between both organs. From 

this set, all of them were relative gains of methylation in flowers compared to leaves. 

From each gene in this set I calculated the average methylation rate for all three 

sequence contexts, and compared these rates with their expression differences. Genes 

without read counts were excluded from the analysis. Linear regression revealed an 

association between changes in DNA methylation and changes in gene expression. CG 

and CHH showed the strongest association with R2 values of 0.16 and 0.15 respectively 

(p. value =2.81x10-5 and4.97x10-5). 
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Figure 21 DNA methylation changes are associated with changes in gene expression. A) Histogram of genes 
according to the difference in methylation rates between closed flowers and rosettes. B) Changes in gene 
expression plotted against changes in methylation between closed flowers and rosette leaves. The 
expression changes are shown as log2 values of expression of flower divided by the expression in rosette 
leaves. 

3.3.4 Transposable element, DNA methylation and gene expression 

Large plant genomes are composed mainly of transposable elements (TE), and 

even in a species such as A. thaliana where TEs are not as highly abundant, TEs 

account for at least 10% of the genome (The Arabidopsis Genome Initiative 2000, 

Buisine, Quesneville et al. 2008). Because TEs can have harmful effects, plants have 

developed numerous mechanisms to inhibit TE mobility. One of these is to mark TEs 

with DNA methylation, which in turn recruits components of the TE silencing machinery 

(Slotkin and Martienssen 2007). TEs are normally heavily methylated which causes 

transcriptional silencing of these mobile elements preventing transposition (Zemach, 

McDaniel et al. 2010). In the event of loss of methylation, such as during 

gametogenesis, TEs get reactivated and start proliferating (Slotkin, Vaughn et al. 2009). 

Furthermore, the transposition of a TE can cause changes at a transcription level of 

genes near the site of insertion (Hollister, Smith et al. 2011). Some of these changes 

are caused by the spreading of TE-associated methylation to regulatory regions of 

neighboring genes (Arnaud, Goubely et al. 2000, Ahmed, Sarazin et al. 2011). This 
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propagation of methylation from TEs represents a potential mechanism in which DNA 

methylation can affect gene regulation. 

To investigate whether differences in DNA methylation of TEs near genes could 

explain some of the differences in expression levels across organs, I used the TAIR10 

genome annotation to identify protein-coding genes with a TE within 5kb of either side 

of the transcribed region. I classified the genes into two categories, depending on 

whether or not they had a methylated region overlapping with the TE. Finally, I used the 

transcription profiles of each organ system and compared the expression levels of each 

gene to the distance of the TE to the gene. 

As shown in Figure 22 the presence of unmethylated transposons near protein 

coding genes does not seem to affect the expression levels of genes. By contrast, 

protein-coding genes with a neighboring methylated transposon (methylated region 

overlapping the transposon) showed a decrease in gene expression levels. In fact, the 

expression level of genes was inversely proportional to the distance of the methylated 

TE to the gene. Expression was the lowest at a TE-gene distance of up to 1kb, the 

effect of expression was lost completely at a distance of 5kb or longer. 
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Figure 22 Effects of adjacent methylated regions to gene expression. Average gene expression of genes 
where a methylated TE (blue), unmethylated TE (red) or predicted methylated regions that did not overlap 
with a TE were present within 5kb upstream or downstream of the gene. Values are plotted against the 
distance of the TE or the methylated region to the gene. Methylation and expression were evaluated in a per 
individual basis. A generalized additive model was used for smoothening. 

While my results suggest that methylation in TEs near regulatory regions affects 

gene expression, methylation alone could be causing the silencing of the genes, 

independent of the presence of a TE. To test this hypothesis, I used the TAIR10 

genome annotation to look for genes without a TE within 10 kb upstream or 

downstream, but for which I had found an MR within 5kb. As shown in Figure 22, genes 

with a nearby MR but without TEs had a higher average expression than genes with 

either unmethylated or methylated TEs, suggesting that methylation alone is not 

sufficient (or at least less effective) to decrease gene expression when present near 

regulatory regions. 
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4 Discussion 

The biological importance of epigenetic marks and in particular DNA methylation in 

plants and animal has been demonstrated repeatedly in the past couple of years (Law 

and Jacobsen 2010, He, Chen et al. 2011). Multiple reports have linked phenotypic 

differences to changes in DNA methylation, some of them including trait variation in 

commercially important species (Ong-Abdullah, Ordway et al. 2015). The sources of 

variation of DNA methylation have been studied extensively. Such variation can occur 

stochastically (Becker, Hagmann et al. 2011, Schmitz, Schultz et al. 2011), be induced 

by exposure to environmental conditions (Dowen, Pelizzola et al. 2012, Seymour, 

Koenig et al. 2014, Secco, Wang et al. 2015), or be associated to organ identity 

(Seymour, Koenig et al. 2014, Widman, Feng et al. 2014). Most of the studies in plants 

investigating the role of DNA methylation in development have focused on early stages 

where methylation is highly dynamic, but variation across organs at later stages remains 

largely unexplored. In this study I have performed a detailed genome-wide survey of the 

variability of DNA methylation across multiple organs and multiple individuals to 

describe inter- and intra-individual variation in A. thaliana. 

To characterize such variation of DNA methylation across organ types I 

generated single-base-resolution DNA methylation maps using whole-genome bisulfite 

sequencing of three different collections of samples, each designed to capture different 

sources of epigenetic variation. The first set consisted of pools of leaves, where each 

pool was separately collected from 14 individuals, all of which were derived from a 

single parent. This dataset allowed me to investigate variability of DNA methylation 

between very closely related individuals that had experienced the same environmental 

conditions. The second set consisted of 18 separate leaves harvested from a single 

individual. This dataset was designed to answer questions regarding the effect of organ 

age on DNA methylation. The third set was composed of six different aerial organs, 

each collected from three very closely related individuals, allowing me to interrogate 

organ-specific patterns of DNA methylation. Furthermore, all samples were collected 

from individuals that shared a single parent allowing for cross comparisons. 
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My data showed that organ identity was the main factor contributing to variation 

of DNA methylation. Vegetative organs (rosette leaves and cauline leaves) showed a 

relative loss of DNA methylation compared to reproductive organs (flowers and 

siliques). A second source of variation in methylation was associated to age, were leaf 

samples of at different developmental stages showed genome wide differences in their 

methylation patterns. 

By coupling DNA methylation data to RNA-seq data, I was also able to correlate 

methylation patterns and gene expression levels. This revealed that methylation at gene 

bodies correlated strongly with organ identity, and that differences in gene body 

methylation were associated with differences in gene expression. I could also show that 

cytosine methylation in regulatory regions alone is probably not sufficient to induce gene 

expression, rather it needs to be coupled to TE induced gene silencing. 

Finally, based on a previous pipeline I implemented a new self-contained pipeline 

designed to identify DNA methylation and differential DNA methylation from bisulfite 

sequencing data. Compared to the original implementation pipeline, my improved 

pipeline requires fewer intermediate steps, and at the same time comes with significant 

speed-ups. The pipeline was designed with flexibility and scalability in mind, being able 

to be run in stand-alone desktop computers as well as being able to take advantage of 

high performance computing platforms. I also implemented a new method to mitigate 

the impact of multiple testing correction on the detection of methylation and differential 

methylation.  

4.1 New methylation pipeline 

I developed a new pipeline with tunable parameters to accommodate differences in 

available RAM as well as processing cores. A second version is available allowing the 

use of the Sun Grid Engine (SGE) directly in the pipeline, allowing the use of already 

efficient scheduling systems. 

A main feature of the new pipeline is the use of a new method to mitigate the loss of 

statistical power caused by multiple testing correction. This method is based on the 
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concept of minimum attainable p-value (Tarone 1990), and uses it to filter out 

comparisons where statistical tests are not informative. The reduction of the number of 

statistical inferences made, reduces the effect of multiple testing correction on the 

power of detection. This method requires a function to calculate a corrected significance 

value from only the number of statistical tests to be performed (refer to section 3.1). For 

a proof of concept, I used this method coupled with a Bonferroni correction procedure 

controlling for the FWER, but the obtained correction was still very conservative. While 

this method can in principle use any other correction function, the implementation with 

other multiple testing correction procedures is still lacking. Nevertheless it has been 

shown to be a viable in other studies (Llinares-Lopez, Grimm et al. 2015). When 

performing a large number of statistical tests, one might want to focus on the proportion 

of type I errors instead of controlling for the FWER. Methods to control for this value, 

known as the False Discovery Rate (FDR), have been widely implemented and are also 

incorporated in my pipeline. It is tempting to speculate that one can further improve 

such methods by incorporating the concept of a minimum attainable p-value into this 

type of procedures, but more research in this area would be needed for implementation. 

Finally, the pipeline was designed for a simple user experience. After installing all 

necessary libraries (one C++ library and two R libraries), it only takes one single 

command to run the entire pipeline from start to end, including MP and DMP analyses. 

Such simplicity will make the analysis of such type of data accessible to any laboratory 

interested in performing bisulfite-sequencing experiments, even with very limited 

bioinformatics experience.  

4.2 Short term variation of DNA methylation 

I made use of my new bisulfite analysis pipeline to study intra- and inter-individual 

variation of cytosine methylation in A. thaliana. The analyses revealed different factors 

that contribute to the variation found on a genome-wide level. 
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4.2.1 Variation of DNA methylation in rosette leaves of A. thaliana 

To study the variation of DNA methylation in rosette leaves, I generated methylation 

maps of multiple individual leaves from single plants. The first analyzed set composed 

of 18 individuals showed that older leaves (i.e. initiated earlier during the plant life cycle) 

have lower methylation levels compared to younger leaves. There are many biological 

processes that could lead to such an observation. The oldest leaves of the 5-week old 

plants I harvested had started the senescence program. During the final stages of leaf 

development, senescence-associated degradation and relocation of cellular 

components ensures recycling of nutrients in other organs (Tsukaya 2013).  

Senescence is a highly regulated and coordinated process, characterized by many 

changes in metabolism, gene expression and cell structure. The maintenance of DNA 

methylation requires numerous different proteins; it would not be surprising that the 

correct maintenance of DNA methylation stopped being a priority in such late stages of 

development, which could lead to losses of DNA methylation. Furthermore, 

methyltransferases need metabolites to act as methyl donors (S-adenosyl methionine) 

to methylate cytosines (Wu and Santi 1987). Some studies have shown that metabolic 

changes can affect DNA methylation in the genome (Liu and Ward 2010). Another 

possible explanation is that the metabolic changes occurring during senescence are 

affecting the availability of methyl donors, causing the observed pattern. 

A second factor to consider is that leaves can transition to endoreplication cell cycles, or 

endocycles for short (Lee, Davidson et al. 2009, Edgar, Zielke et al. 2014). During these 

cycles, DNA is replicated without cell division leading to an increase in cellular ploidy 

level. The ploidy levels have been shown to correlate with age and have been shown to 

be developmentally regulated (Galbraith, Harkins et al. 1991, Gendreau, Orbovic et al. 

1999). While DNA methylation has yet to be studied in the context of leaf development 

and endoreduplication, studies using induced tetraploid Arabidopsis hybrids have 

shown that changes in ploidy levels lead to changes in DNA methylation (Ng, Lu et al. 

2012, Tian, Li et al. 2014). Endocycles are accompanied by many transcriptional 

changes; such changes could also lead to changes in DNA methylation (Beemster, De 

Veylder et al. 2005). Expression of MET1 and CMT3 is not constant in different portions 
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of A. thaliana leaves, which have different levels of cells going through 

endoreduplication (Galbraith, Harkins et al. 1991, Melaragno, Mehrotra et al. 1993). The 

regions with higher endoreduplication showed lower expression of methyltransferases, 

supporting this hypothesis. One problem of measuring DNA methylation on segments of 

leaves is that endoreduplication is not perfectly distributed across the leaf, furthermore 

more the ploidy level can vary significantly from an average of 8n to 64n, as such the 

exact effects of ploidy number cannot be directly assessed (Melaragno, Mehrotra et al. 

1993).  

I also performed whole-genome bisulfite sequencing of individual leaves from a 

3-week-old and a 5-week-old individual. These replicates did not confirm the association 

of leaf age with methylation found in the 18-leaves-set. It is still unclear why each leaf 

set behaves differently, but it could be due to epigenetic/genetic differences between 

the lineages used in the two experiments. From the comparison of these datasets 

against published methylation data sets, plants derived from the MA lines cluster 

separately from the additional replicates supporting this hypothesis. Regardless, more 

replication is necessary to make any definitive conclusions. 

While the effect of age in individual leaves remained inconclusive, one pattern was 

consistent in all data sets: the variability of DNA methylation between individual leaves 

originating from a single individual was higher than the variability between pools of 

leaves from distinct individuals. My analysis thus showed that DNA methylation varies 

even between organs of an individual.  

4.3 Organ specific DNA methylation 

A second aim of this study was to describe the association of DNA methylation 

with organ identity. The analysis of methylation maps of aerial organs showed that 

organ types had unique methylation profiles. 

Previous studies have shown a considerable amount of spontaneous variation of DNA 

methylation after a few generations (Becker, Hagmann et al. 2011, Schmitz, Schultz et 

al. 2011). These changes can be a major source of inter-individual variability. One aim 
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of this study was determine whether organ-specific differences are the product of the 

accumulation of somatic epimutations or are developmentally driven.  

 In order to test for this I used the epimutation rate calculated in transgenerational 

studies as a baseline of expected epimutations between organ types. My analysis 

showed that the number of epimutations between different organ types was higher than 

expected due to spontaneous variation, thus is unlikely that spontaneous variation alone 

is responsible for such differences in DNA methylation between organs. One caveat 

from using the epimutation rate from transgenerational studies as a Null expectation is 

that plants go through a partial resetting of DNA methylation during early stages of 

development. It could be possible that there is a high degree of somatic epimutations, 

but such epimutations are efficiently removed during this reset and therefore are not 

heritable, causing the transgenerational epimutation rate to be much lower than the 

“real” epimutation rate.  

This could explain why the discrepancy in the number of epimutations between 

organs compared to what would be expected by the epimutation rate in trans-

generational studies. Even if this was the case, one would expect that the epimutations 

(gains and losses of DNA methylation) should be equally distributed between the organ 

samples. My data shows that reproductive organs show a relative gain of DNA 

methylation compared to vegetative organs, supporting the hypothesis that these 

epimutations are not stochastic, rather they are systematic and directional among the 

organs of A. thaliana.  

Genome-wide methylation data showed organ-specific differences (Figure 16). 

These differences became more evident when limiting the analyses to only DMPs 

(Figure 17). In both cases reproductive and vegetative organs showed distinct 

methylation profiles. This separation was also observed when separating the 

interrogated cytosines by sequence context and in all cases organ identity the largest 

source of variation. The CHG sequence context provided additional resolution as 

replicates of individual organs formed distinct clusters in the PCA (Figure 17). These 

findings suggest that if methylation is contributing to the maintenance of organ identity it 

is likely to be acting through CHG methylation, as this organ-specific separation is not 
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observed in any other context. This hypothesis is further supported by my results in 

gene body methylation, where CHG methylation shows an even stronger separation 

between organ types, but is also not present in the other two sequence contexts. 

Furthermore, when comparing rosette leaves against closed flowers, the differences of 

DNA methylation in genes correlate with differences in gene expression. This 

correlation is found both in CG and CHG contexts independently. The overlap of CG 

and CHG methylation could be due to the interaction of methyltransferases with histone 

modifications. In particular H3K9 has been closely associated to both CG and CHG 

methylation (Jackson, Lindroth et al. 2002, Tariq, Saze et al. 2003). 

In the case of CG methylation, the second component of the PCA separated organs by 

the individual from which they originated, but only for CG-methylation. One possible 

explanation for this pattern is that due to the high levels of DNA methylation at CG-sites, 

small changes of DNA methylation are statistically significant, but biologically 

insignificant, in that they do not affect methylation at a functional level, and therefore are 

tolerated. In this scenario, spontaneous epimutations could accumulate in organs from 

an individual giving rise to the observed patterns. A second explanation could be that 

there are differences in the epimutation rates between different methylation contexts, 

and epimutations accumulate more rapidly in the CG contexts. This hypothesis is 

consistent with transgenerational studies that have showed a higher accumulation of 

epimutations in a CG context compared to other contexts. These differences in 

epimutation rates could be due to the fact that the establishment and maintenance of 

DNA methylation is mediated by different molecular machineries in each sequence 

context.  

The strong association of CHG methylation with organ identity and the individual 

differences in CG methylation are reminiscent of the changes in DNA methylation 

triggered by a stress response (Dowen, Pelizzola et al. 2012, Wibowo, Becker et al. 

2016). Previous studies have shown that stress affects methylation at each sequence 

context differently. In the case of salt stress, reproducible locus-specific gains and 

losses are observed in CHH and CHG contexts. By contrast salt stressed individuals 

show stochastic losses and gains of CG-methylation across the genome, similar to the 
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patterns I observed at an organ level. The RdDM pathway (described in section 1.4.2 ) 

could provide a mechanism of tissue specific regulation, as this pathway could induce 

tissue-specific methylation through the regulation of the expression of siRNAs. There is 

evidence that siRNAs can spread between tissues (Molnar, Melnyk et al. 2010), which 

could facilitate gene regulation within tissues. 

There have been studies showing that CG-methylation at gene bodies correlate with 

intermediate levels of gene expression through the exclusion of the histone variant 

H2A.Z. In contrast to CG methylation, CHH and CHG methylation is mostly associated 

with genes that are expressed at low levels (Zhang, Yazaki et al. 2006). This pattern 

was also observed in all organs investigated in this study. The fact that organ-specific 

differences in gene body methylation were not found in CG sequence contexts but only 

in CHG sequence contexts could be due to the preferential association of CG-

methylation with constitutively expressed genes, which are expressed in all organ types. 

In contrast changes of CHG methylation might be involved in the activation or silencing 

of organ specific genes. 

A central aim of this study was to assess the stability of methylation between different 

organs of A. thaliana. I found that the majority of cytosines in the genome are stably 

methylated across all organ types analyzed (Figure 18). Most of the methylated sites 

were found across TEs, repeat-rich regions and centromeric regions as expected 

(Cokus, Feng et al. 2008, Lister, O'Malley et al. 2008). When considering the amount of 

methylated sites that overlapped between different organs, rosette leaves had the 

highest amount proportion of sites that were methylated in at least another organ type 

(Figure 18). By contrast, a high proportion of methylated cytosines in later arising 

organs (reproductive organs) were not shared between organs that arise at earlier 

developmental stages. This correlation between gains of methylation and the temporal 

order in which organs were initiated was observable at both a single site and a region 

level. 

In plants, organogenesis occurs throughout the life of the plant, and new organs arise at 

from the flanks of a pool of stem cells, this pool of cells is known as the shoot apical 

meristem (SAM) (Murray, Jones et al. 2012). At early stages, the SAM gives rise to the 
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leaves and stems, and to flowers and siliques during the plants reproductive phase. 

One hypothesis is that the observed differences between early and late arising organ 

types is the product of the accumulation of methylation changes in SAM, this could 

explain why later arising organs have an increased proportion of non-shared methylated 

sites. The SAM is not going through active cellular division; epimutations caused by 

passive loss of DNA methylation due to DNA replication are rare, this could help explain 

why the observed epimutations between later arising tissues are directional gains of 

DNA methylation.  

An alternative hypothesis is that there is a loss of DNA methylation in leaf organs 

instead. My results with of sets of individual leaves showed there is an age-dependent 

decrease of the expression of genes encoding proteins required for establishment of 

CG and CHG methylation. These transcriptional changes in leaves could lead to a 

generalized loss of methylation and explain the observed patterns. 

Additional experiments surveying the methylome of the SAM over the course of 

the plant development would help determine the directionality of the changes in DNA 

methylation in leaves as well as to test if DNA methylation changes are accumulating in 

meristems.  

Almost certainly, stochastic epimutations also contributed to the observed 

variability of DNA methylation between organs. A high proportion of the DMPs between 

identical organs from different individuals (inter-individual variation) overlapped with 

sites that have been identified as highly variable in transgenerational studies. 

Furthermore, a high proportion of the DMPs between organs of a single individual (intra-

individual variation) also overlapped with these hyper variable sites. My study thus 

suggests that there is a high amount of stochastic variation of methylation in plants, and 

most of this variation is not conserved, nor transmitted to the next generation. This 

hypothesis raises the question: if methylation is so variable, how can it be subject to 

natural selection, and how can it have biological function. My hypothesis is that most of 

the DNA methylation in the genome is not subject to natural selection at a single site 

level; instead methylation is selected at a region level, where a combination of 

methylated sites have a functional roles. This point of view is consistent with my 
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observations that DNA methylation show clearer organ specific pattern when focusing 

on regions as opposed to individual sites. I conclude that variability in methylation 

patterns results likely from a combination of systematic changes that occur through 

development and stochastic variation between and within individuals. 

4.3.1 Transposable elements, DNA methylation and gene expression 

One of the best-characterized functions of DNA methylation is the silencing of 

TEs (Slotkin and Martienssen 2007). Loss of TE methylation can cause transcriptional 

reactivation and induce transposon mobility (Miura, Yonebayashi et al. 2001). TE 

insertions can have deleterious effects, e.g. by disrupting genes or regulatory 

sequences. Additionally, TEs when integrated near or in gene regulatory regions can 

alter the expression pattern of genes through the recruitment of the transposon 

silencing machinery, which include components for the machinery for DNA methylation 

(Morgan, Sutherland et al. 1999). The recruitment of such machinery leads to the 

methylation of the newly inserted TE, this methylation can then spread to neighboring 

regions and cause silencing of genes in the vicinity (Jordan, Rogozin et al. 2003). 

Several studies have addressed the effects of TEs on nearby gene expression at 

a genome-wide level. Some of them have inferred DNA methylation levels by using the 

presence of siRNAs target in TEs as a proxy (Hollister, Smith et al. 2011). Such indirect 

measurements can only provide information about the TEs that are target for DNA 

methylation, but they do not provide direct information regarding the effects of 

methylation per se. My study provides a more detailed picture of the relationship 

between DNA methylation, TEs and gene expression. 

My findings are in agreement with previous studies (Hollister, Smith et al. 2011), 

which reported a lower average expression of genes containing a methylated TE in 

close proximity. The apparent repressive effect of methylated TEs on gene expression 

was on average less pronounced the further away the TE was located from the gene. I 

found that methylated TEs correlated negatively with gene expression both when found 

upstream and downstream of the genes (Figure 22). Only few instances have been 

described where TE methylation located downstream of genes affected gene 
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expression. It has been recently shown in salt stress experiments that the a loss of DNA 

methylation in a TE downstream of the CARBON/NITROGEN INSENSITIVE 1 (CNI1) 

gene in A. thaliana confers resistance to hyperosmotic stress (Wibowo, Becker et al. 

2016). In this case the loss of DNA methylation leads to transcription of a long non-

coding (lncRNA) RNA transcript that in turn reduces the expression of CNI1. 

Furthermore it was shown that DMRs in stressed plants overlap more frequently with 

downstream regions transcribing antisense lncRNAs than DMRs in transgenerational 

studies (Wibowo, Becker et al. 2016), suggesting that downstream methylation of TEs 

might play a more broadly role in stress acclimation. 

  My study suggests that downstream methylation could be contributing to 

changes in gene expression to a greater extent than previously envisioned. While it is 

clear that DNA methylation can modulate transcription dynamically, most TEs 

investigated in this study overlapped with methylated regions and were found 

methylated in all samples arguing against a role in tissue-specific gene regulation. 

5 Outlook 

I have presented a detailed comparison of methylation in organs of A. thaliana. To 

deepen our understanding of the role of DNA methylation in organ development of 

plants, numerous future avenues could be pursued, based on the data presented here. 

One possible extension of the organ study would be to investigate not only the 

changes that occur between individual organs in plants at a defined stage, but to 

analyze also tissue of the same organ type at multiple developmental time points. Such 

an experiment would help to determine the temporal distribution of DNA methylation 

changes, and to elucidate how developmental transitions affect DNA methylation in 

organs and how age changes methylation in different organs of the plant.  

In addition to this, the inclusion of a broader set of organs would provide a more 

detailed picture of the relationship between DNA methylation and organ identity. In 

particular, roots would be of high interest as they are derived from a different set of stem 
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cells. It remains crucial to determine whether changes in DNA methylation are occurring 

in stem cells and at what frequencies (shoot apical meristem and root apical meristem), 

as these cells are the progenitors of all organs in plants. While it is technically difficult to 

isolate meristems, new technologies designed to extract nuclei only from specifically 

tagged cells, such as the INTACT method (Isolation of Nuclei TAgged in specific Cell 

Types) (Deal and Henikoff 2011) could help cope with this problem. An alternative is the 

use of fluorescent-activated cell sorting (FACS) to obtain pools of cells from a desired 

cell line. This approach has been used to study DNA methylation of different cell types 

in root of Arabidopsis thaliana (Kawakatsu, Stuart et al. 2016), though it requires the 

availability of GFP reporter cell lines. 

There are many sources that contribute to methylation variability, including but not 

limited to plant environment, stochastic variability, and temporal changes of DNA 

methylation and cell identity (Law and Jacobsen 2010, He, Chen et al. 2011, Becker 

and Weigel 2012). My data showed that there was more variability between individual 

leaves derived from a single individual than variability between pools of leaves from 

different individuals. This result showed that by pooling organs, some fraction of the 

biological variation gets masked in the analysis. An additional problem with using pools 

of cells to measure DNA methylation is that even relatively simple organs are composed 

of a heterogeneous mix of different tissue types. As an example, leaf architecture is 

complex, and one could argue that studying DNA methylation patterns of whole leaves 

is a gross over-simplification. Additionally, studies have shown that there is also 

variability in gene expression between individual cells. By sequencing pools of cells, it is 

not possible to determine whether differences in methylation and gene expression are 

caused by large-scale changes in a subset of cells, or whether these changes are 

coordinated and distributed homogenously across many cells. Single cell sequencing, 

the ultimate technology to address cell-specific questions, has already been applied 

successfully to study DNA methylation and gene expression profiling (Smallwood, Lee 

et al. 2014, Wu, Neff et al. 2014) and can circumvent many of the previously mentioned 

problems.  
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It has been shown that DNA methylation acts in concert with other epigenetic 

marks, more prominently with histone modifications and small RNA products (Cedar 

and Bergman 2009, Matzke and Mosher 2014). Despite this, the exact nature of the 

relationship between DNA methylation and such marks is not well understood. It 

remains a long-standing question whether DNA methylation is just a product of other 

epigenetic modifications or transcriptional changes. In order to gain full understanding of 

DNA methylation, it is crucial to start studying it in combination with other epigenetic 

players. The use of CHIP-seq and RNA-seq of sRNAs will provide valuable 

opportunities to study the interplay of DNA methylation with chromatin and 

transcriptional changes. 

Arabidopsis thaliana is a model plant with a high quality reference genome, short 

generation time, and a small genome; these factors have facilitated the study of DNA 

methylation in plants. Despite these advantages, mutations that disrupt the 

establishment and maintenance of DNA methylation have small effects compared to 

other plant species like maize (Herr, Jensen et al. 2005, Pontier, Yahubyan et al. 2005, 

Parkinson, Gross et al. 2007, Erhard, Stonaker et al. 2009). This is likely due to the fact 

that these species have a much higher content of TE elements, thus DNA methylation 

might play a more prominent role on the regulation of genes in such species. A previous 

study comparing closely related plants from the Brassicaceae family have shown that 

genome architecture, and in particular TE element composition play a significant role 

shaping the evolution of DNA methylation (Seymour, Koenig et al. 2014), as such the 

expansion of DNA methylation profiling into plants with high TE content might provide 

valuable insights into the functional roles of DNA methylation. 

With a true and full understanding of DNA methylation, through approaches such as 

the one I have performed and discussed here, it might become possible to exploit the 

properties of DNA methylation to create (epi)genetic regulatory circuits. One could 

potentially find regions of the genome that are targeted for methylation or 

demethylation, and use these DNA sequences as regulatory components of artificial 

regulatory circuits. With proper understanding of the variation of DNA methylation 
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across development and environment, studies on DNA methylation could be used for 

synthetic biology. 
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6 Materials and methods 

Plant growth and material 

Sibling’s data set, 18-leaves data set and organ data set 

Seeds of a single individual from the MA collection line (3rd generation, Col-0 

background, line ID 0-4-27) were stratified in soil for 3 days at 4o in short day cycles (8 

hours light, 16 hours dark). Plants were transferred to 23 C with long day conditions (16 

hours light, 8 hours dark). After 5 weeks, 14 individuals were dissected and pools 

consisting between 4 to 6 leaves of each individual were collected and pooled 

separately. An additional individual was dissected and each of its 18 leaves were 

collected separately. A final set of 3 individuals was dissected to collect aerial tissues 

consisting of siliques, open flowers, closed flowers, stems, cauline leaves and rosette 

leaves. From rosette and cauline leaves, 5 leaves of each were pooled separately. For 

floral samples between 15 and 25 flowers were pooled, as well as 10-20 siliques were 

pooled per individual. All tissues were frozen immediately in liquid nitrogen after 

collection. 

3-week and 5-week leaf data set (4 leaves) 

Seeds of a single individual with a Col-0 background were stratified in soil for 3 

days at 4o in short day cycles (8 hours light, 16 hours dark). Plants were transferred to 

23 C with long day conditions (16 hours light, 8 hours dark). After 3 weeks one 

individual was dissected, leaves 1,3,5 and 7 were collected. After a total of 5 weeks a 

second individual was dissected and leaves 1,3,5 and 7 were collected. All tissues were 

frozen immediately in liquid nitrogen after collection. 

5-week replicate (7 leaves) 

Seeds of a single individual with a Col-0 background were stratified in agar in a 

4o fridge for 3 days. Plants were transferred to 23 C with long day conditions (16 hours 

light, 8 hours dark). After 5 weeks, one individual was dissected and leaves 1,3,5,7,9,11 
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and 13 were collected separately. Samples were frozen in liquid nitrogen immediately 

after collection. 

Bisulfite and RNA sequencing 

Frozen plant material was ground with metal beads using a Qiagen Tissuelyzer 

II. Genomic DNA was extracted using the Qiagen Plant DNeasy kit (catalog # 69104) 

following the manufacturer’s instructions. Bisulfite converted DNA libraries were 

prepared as described in (Becker, Hagmann et al. 2011) with a 300 bp insert size using 

the Qiagen Epitect Plus Kit (catalog # 59124). Total RNA was isolated using the 

RNAeasy Plant Mini Kit following manufacturer’s instructions (catalog # 74904). 

Libraries for RNA-seq were prepared from 1 µg RNA using the TruSeq RNA sample 

prep kit (Illumina catalog # RS-122-2001) according to manufacturer’s protocol. 

Libraries were sequenced on a HiSeq2000 instrument (Illumina) with 2x101 bp paired-

end reads for bisulfite-treated DNA, and 101 bp single-end reads for RNA-seq. For 

image analysis and base calling, Illumina OLB software was used.  

Read processing and alignment 

For BS-sequencing, the SHORE pipeline v0.9.0 (Ossowski, Schneeberger et al. 

2008) was used to trim and quality filter reads. Reads that had more than one base in 

the first 12 positions with a quality score below 4 were removed. Reads with 10% or 

more ambiguous bases were discarded. Reads were aligned using Shore against the 

TAIR9 (http://www.arabidopsis.org) version of the A. thaliana genome using a seed 

length of 40. Reads were required to have fewer than three mismatches within the seed. 

Paired-end reads were required to have a distance of 10-100 bp. Paired end read 

correction was performed after alignment using SHORE to discard reads that showed 

abnormal insert sizes (2 standard deviations from the average insert size). Finally, using 

SHORE’s scoring matrix approach (Becker, Hagmann et al. 2011), unique read counts 

were retrieved. Command line arguments are provided in supplementary file 

commands.txt. RNA-seq reads were trimmed using the SHORE pipeline (Ossowski, 

Schneeberger et al. 2008).  
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Identification of methylated and differentially methylated positions 

In all cases, MRs and DMRs were called using the pipeline described in sections 

2.6.2 and 3.1 (Becker, Hagmann et al. 2011). A minimum coverage of 5 was required 

for each site. Quality scores were used as an additional filter, where sites with a quality 

score lower than 16 were removed from the analysis. Additionally all cytosine analyzed 

required at least one sample to have a quality score of 32. Storey’s method was used in 

all cases for multiple testing correction. 

Expression analysis 

For transcriptome analysis, the cufflinks package was used. Bowtie2 (Langmead 

and Salzberg 2012) was used to map the RNA reads to the gene annotation of TAIR10 

(Swarbreck, Wilks et al. 2008) allowing for up to 10% mismatches and 7% gaps. I used 

Cufflinks (Trapnell, Roberts et al. 2012) with default values to calculate expression 

values from pooled samples of the same organ type (Supplemental Data 1). 
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