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Summary 

 

Animal parasitic nematodes cause a wide range of diseases in humans and 
animals. Most Strongyloides and Onchocerca species are highly host specific, 
being restricted to one or a few species, but a few of them have a broader 
host range (eg. S. stercoralis). If a parasitic nematode species can infect 
multiple hosts, the infection efficiency and dynamics, reproductive success 
and the gene expression patterns may vary depending on the host.  Also 
within the species, different genotypes that are specialized for a particular 
host may exist. 

In this thesis I: 1) compared the infection dynamics and the transcriptomes of 
S. ratti in its natural host rat and in the sub-optimal host gerbil; 2) analyzed the 
transcriptomes of different developmental stages of S. papillosus; 3) 
investigated the population structure of S. stercoralis from humans and dogs 
in rural Cambodia and 4) compared the genetic variation in the whole 
mitochondrial genomes of the O. ochengi population in northern Cameroon.  

To 1) I show that the infection success of S. ratti in gerbils is lower than in 
rats, but those worms that are successful, survive and reproduce much longer 
compared with S. ratti in rats. They produce a very high percentage of male 
progeny. The gene expression patterns are very similar in both hosts. Hence, 
gerbils are good laboratory hosts for the long-term maintenance of S. ratti.  

To 2) I report a comparative analysis of the transcriptomes of six 
developmental stages of S. papillosus. Different members of Astacin and CAP 
gene families, which are strongly expanded in Strongyloides spp., are 
specifically up-regulated particularly in parasitic adults and infective larvae 
suggesting biologic importance of these gene families for the parasitic life 
cycle of this organism. 

To 3) Using the nuclear 18S rDNA locus and mitochondrial markers, I 
demonstrate the existence of multiple genotypes among S. stercoralis isolated 
from humans and dogs in rural Cambodia. Whilst some make up the vast 
majority of Strongyloides spp. in dogs and are specific for this host, others are 
predominant in humans but also occur in dogs.  This illustrates the possibility 
of zoonotic transmission of this parasite. I never found hybrids between the 
different 18S genotypes. This indicates either that intermixing only occurs 
within the same 18S genotypes, and as a result S. stercoralis represents a 
species complex of closely related species, or that these worms reproduce 
only asexually, as it had been proposed for Strongyloides spp. by some 
authors (but disproven for S. ratti and S. papillosus). I provide preliminary 
evidence that at least the laboratory isolate of S. stercoralis is capable of 
sexual reproduction. 

To 4) I present the complete mitochondrial genome sequences of eleven 
different individuals of Onchocerca ochengi, a filarial nematode of cattle. I 
confirm the existence of two O. ochengi mitochondrial clades at the whole 
genome level and resolve the mitochondrial phylogeny of the two O. ochengi 
clades and the very closely related human pathogen O. volvulus.  



ix 
 

Zusammenfassung 
 
Tier-parasitäre Nematoden verursachen eine große Bandbreite an Erkrankungen in 
Menschen und Tieren. Viele Strongyloides und Onchocerca Arten sind hoch Wirt-
spezifisch und damit auf eine oder wenige Arten von Wirten beschränkt. Bei anderen 
Arten ist das Wirtsspektrum breiter (z.B. S. stercoralis). Wenn eine Art verschiedene 
Wirte infizieren kann, können Effizienz und Dynamik der Infektion, der 
Reproduktionserfolg und das Genexpressionsmuster vom Wirt abhängig sehr 
unterschiedlich sein. Innerhalb der Arten können verschiedene Genotypen existieren, 
welche auf betimmte Wirte spezialisiert sind.  
In dieser Doktorarbeit habe ich 1) die Effizienz und die Dynamik der Infektion sowie 
die Transkriptome von S. ratti in dessen natürlichem Wirt Ratte mit denen im 
suboptimalen Wirt Wüstenrennmaus verglichen; 2) die Transkriptome von 
verschiedenen Entwicklungsstadien von S. papillosus analysiert; 3) die 
Populationsstruktur von S. stercoralis aus Menschen und Hunden im ländlichen 
Kambodscha untersucht und 4) die genetischen Variationen im mitochondrialen 
Genom von O. ochengi im nördlichen Kamerun untersucht. 
Zu 1) zeige ich, dass der Infektionserfolg von S. ratti in Wüstenrennmäusen niedriger 
ist als in Ratten aber dass die Würmer, die in Wüstenrennmäusen Erfolg haben, viel 
länger überleben und reproduzieren als S. ratti in Ratten. Sie produzieren einen 
hohen Anteil an männlichen Nachkommen. Die Genexpressionsmuster sind in 
beiden Wirten sehr ähnlich. Somit sind Wüstenrennmäuse gute Wirte für eine 
langzeitige Erhaltung von S. ratti für Labore. 
Zu 2) lege ich eine vergleichende Analyse der Transkriptome von sechs 
Entwicklungsstadien von S. papillosus vor. Aus den bei Strongyloides spp. sehr 
verbreiteten Gen-Familie Astacin und CAP sind manche Gene spezifisch in 
parasitären adulten Würmern oder infektiösen Larven hochreguliert. Dies legt nahe, 
dass diese Genfamilien eine biologisch wichtige Rolle für den parasitären  
Lebenszyklus dieser Organismen spielen. 
Zu 3) zeige ich mit dem nukleären 18S rDNA Lokus und mitochondrialen Makern, 
dass in Menschen und in Hunden im ländlichen Kambodscha mehrere S. stercoralis 
Genotypen vorkommen. Während manche die große Mehrheit von Strongyloids spp. 
in Hunden ausmachen und für diesen Wirt spezifisch sind, kommen andere 
überwiegend in Menschen, aber auch in Hunden, vor. Dies legt die Möglichkeit von 
zoonotischer Übertragung dieses Parasiten nahe. In dieser Studie wurden keine 
Hybride zwischen den verschiedenen 18S Genotypen gefunden. Das bedeutet, dass 
Kreuzung entweder nur innerhalb eines 18S Genotypen stattfindet und S. stercoralis 
damit ein aus nah verwandten Arten bestehender Artenkomplex ist, oder dass sich 
diese Würmer nur asexuell vermehren. Letzteres wurde von älteren Autoren für 
Strongyloides spp. postuliert aber später für S. ratti und S. papillosus widerlegt. Ich 
liefere erste Evidenzen, dass zumindest ein Laborisolat S. stercoralis fähig zur 
sexuellen Reproduktion ist. 
Zu 4) vergleiche ich die kompletten mitochondrialen Genom Sequenzen von elf 
verschiedenen Individuen von Onchocerca ochengi, einer Filarie in Rindern. Ich 
bestätige, gestützt auf das vollständige Genom, die Existenz von zwei 
mitochondriellen Kladen innerhalb der Art und ich charakterisiere die 
phylogenetische Verwandtschaft zwischen den beiden O. ochengi Varianten und 
dem sehr nah verwandten human pathogenen O. volvulus. 

 



1 
 

1. Introduction 

1.1 Parasitism in the phylum Nematoda 

 

Nematodes commonly known as roundworms are the largest phylum in 

animal kingdom [1]. Nematodes live in a variety of environments such as 

marine or fresh water, every type of soil, both the polar and the tropical 

regions, as well as in the highest and lowest elevations either as free-living 

individuals or in plants, animals and humans as a parasites [2][3]. Many 

nematode species are free-living in nature and play an important role in the 

decomposition process, aid in recycling of nutrients in marine environments, 

and are sensitive to changes in the environment caused by pollution [2][3][4].  

They also effectively regulate bacterial populations and community 

composition, for instance they may eat up to 5,000 bacteria per minute [3].  

For example, Caenorhabditis elegans (C. elegans) is a free-living nematode 

model organism for studying development, aging and some aspects of 

proteins involved in human diseases [5] as 40% of genes known to be 

associated with human diseases have clear orthologs in the C. elegans 

genome [6]. The phylum Nematoda consists of more than 1 million species, of 

which only about 25,000 species have been described so far, more than half 

of which are parasitic nematodes [2]. Phylogenetically, the phylum Nematoda 

has been classified into five clades, each clade containing at least one 

parasitic species [7], suggesting that parasitism has arisen multiple times 

throughout evolution [7][8][9]. The exact mechanism by which nematodes 

developed the parasitic life histories is not clear [8][9][10][11]. A phylogenetic 

relationship between nematodes and their evolution of parasitism is presented 

in Figure 1 below.  

 

Many parasites are highly host specific, being restricted to one or a few 

species of hosts [12]. Host specificity can evolve through either through long-

term associations of hosts and parasites, persisting through speciation events 

that can restrict sister parasite lineages to sister host lineages, or alternatively 

a parasite lineage that is initially capable of utilizing several species of hosts 
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may become restricted to a subset of them [12]. This could happen when a 

parasite population inhabits a geographically isolated area where some 

potential hosts are absent or due to a genetically based loss of ability to 

parasitize certain species that formerly served as hosts even when they are 

present [12]. Lateral transfers of parasites across host lineages could involve 

an expansion of host range, allowing colonization of a new host, and then loss 

of ability to use the ancestral host [13].  

 

As far as the parasitic nematodes of interest for this thesis are concerned, 

Strongyloides spp. are considered to be rather host specific (naturally infect 

one or very few specific hosts), but some species like Strongyloides 

stercoralis (S. stercoralis) and Strongyloides fuelleborni (S. fuelleborni) are 

known to infect a wider range of vertebrate hosts [14][15][16][17]. Also 

artificial infections of suboptimal non-natural hosts with some Strongyloides 

spp. have been reported (for example: Strongyloides ratti (S. ratti) in mice and 

gerbil [18][19], Strongyloides papillosus (S. papillosus) in rabbit [20]; 

Strongyloides venezuelensis (S. venezuelensis) [21] and S. stercoralis in 

gerbil [22]). Also in the genus Onchocerca most species appear host specific 

[23]. This species provides an example for a recent speciattions even 

assotiated with a host switch. It has been hypothesized that O. volvulus and 

O. ochengi evolved from a common ancestor after humans acquired this 

infection from their cows upon cattle domestication in Africa about 10,000 

years ago [24]. This host switching might have been followed by fusion of two 

chromosomes in O. volvulus. O. ochengi has 2n=5 chromosomes, where as 

O. volvulus has 2n=4 [25]. O. ochengi infection in cattle has no pathology, 

where as O. volvulus cause serious eye (river blindness) and skin diseases 

[26]. This might be due to long term of co-evolution and adaptation to each 

otherr of cattle and O. ochengi [27], where as O. volvulus infection in humans 

is much more recent and has therefore a more pronounced pathological effect 

on the host [24]. 
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Figure 1. Phylogenetic relationships between nematodes based on SSU 
sequences (adapted from [7]).  
 

Parasitic nematodes cause a wide range of diseases in humans, animals and 

plants [28]. In domestic and wild animals, parasitic nematode infections 

reduce the productivity and affect general welfare [29]. The economic 

importance of parasitic nematodes is enormous [30]. Plant parasitic 

nematodes infect most cultivated plant species and cause crop production 

losses, thereby exacerbating global food shortages [10]. Global total annual 

yield losses caused by plant parasitic nematodes are estimated to be greater 

than US$ 125 billion [31].  

 

Nematode infections in humans lead to serious health problems causing 

substantial suffering, especially in children [32][33]. Globally, more than 2.9 

billion people are infected by parasitic nematodes that can impair physical and 
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educational development in children [34] often resulting in significant morbidity 

and mortality [35]. The infectious forms of many human parasitic nematodes 

are developmentally arrested third-stage larvae (iL3s), which reside in soil, 

from which the designation soil transmitted helminthes (STH) originated [35]. 

The most common STH in humans are hookworm disease (Necator 

americanus and Ancylostoma duodenale), ascariasis (Ascaris lumbricoides), 

trichuriasis (Trichuris trichiura), lymphatic filariasis (Wuchereria bancrofti and 

Brugia malayi), onchocerciasis (Onchocerca volvulus), and strongyloidiasis 

(S. stercoralis). These are reported to infect between 576-740, 807-1221, 

604-795, 120, 37 and 30-100 million people worldwide respectively [35][36]. 

Strongyloidiasis caused by S. stercoralis and S. fuelleborni causes serious 

health problems in humans [37], dogs and non-human primates [16][17] 

[38][39]. In domestic animals, S. papillosus, S. ransomi and S. westeri [40] are 

the most important parasite of sheep, pigs and horses that cause serious 

disease in nursing lambs, piglets and foals respectively. During my PhD 

studies, I have conducted comparative transcriptomics and genetic analyses 

in S. ratti, S. papillosus, S. stercoralis and Onchocerca ochengi. Below, I 

provide basic information on the taxonomy, biology, disease, genomics and 

genetic tools in these species. 

1.2 The genus Strongyloides 
 
1.2.1 Taxonomy  

 

The genus Strongyloides is grouped in the order Rhabditida of clade IV in the 

phylum Nematoda [7]. This genus contains more than 50 described species 

that are obligate gastrointestinal parasites of vertebrate hosts ranging from 

mammals and birds to reptiles and amphibians [40]. In the wild or in natural 

infections, hosts become infected when iL3s penetrate the skin [37]. Artificial 

infections can be achieved by bringing the iL3s close to the host skin or by 

subcutaneous injection in the laboratory [41]. The Strongloides iL3s are 

considered homologous to C. elegans dauers that are developmentally 

arrested larvae that can live in the external environment for more than 2 

weeks [42].  
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Taxonomic classifications of Strongyloides spp. are mainly based on 

molecular phylogeny [40] due to the fact that different species are often very 

similar morphologically and cannot be identified solely on this criterion. 

Recently Hino et al. [43] reported a very informative phylogenetic tree for the 

most important Strongyloides spp. using the full length sequence of the 18S 

rDNA. Humans can be infected with S. stercoralis and S. fuelloborni, which 

are phylogenetically distant from each other [40][43]. Rats can be infected 

with S. ratti and S. venezuelensis, which are also far apart from each other on 

this tree [43]. Phylogenetically, S. ratti and S. stercoralis are very close to 

each other [40][43]. S. papillosus, a parasite of sheep is phylogenetically very 

close to S. fuelleborni and to S. venezuelensis [43]. These examples illustrate 

that in Strongyloides spp., the phylogenetic relationships of the parasites and 

of their respective host species do not correlate, suggesting that host 

switching was fairly common during the evolution of the genus Strongyloides 

[40][43]. The phylogenetic relationship between different Strongyloides spp. 

and their respective hosts they infect are given in Figure 2 below.  

Figure 2. The molecular phylogenetic relationship between Strongyloides spp. 
and their hosts (according to [43]).  
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1.2.2 Morphology 
 

There are clear morphological differences between different developmental 

stages and sexes of Strongyloides spp. [44]. The parasitic females are 

approximately 2-10 mm in length, depending on the species, with either blunt-

ended or pointed tails (this is used for species morphological identification) 

and an elongated filariform esophagus [37][43][44][45]. The ovary is didelphic 

and opens at the vulva, that is positioned ventrally approximately two thirds 

along the body length [37][43][44]. The parasitic female of the genus 

Strongyloides contains no male gonads and, with the exception of two reports 

in the early 1930s which were later contested, the existence of parasitic males 

is not yet reported [43][44][45][46]. The free-living female is 0.64-1.7 mm in 

length, with didelphic ovaries and a vulva at the mid-point of the body 

[37][44][45][46]. The free-living male is 0.7-1 mm in length, with a short and 

conical tail consisting of 1 or 2 pairs of per-anal and 1 or 2 pairs of post-anal 

papillae, the spicules and the gubernaculums [37][45][46]. Both sexes in free-

living stages have a rhabditiform esophagus. The length of the L1 is about 

0.18-0.3 mm, whilst the L2 is about 0.25-0.54 mm [37][45][46]. The iL3 is 

approximately 0.4-0.63 mm in length and radially constricted, with a filariform 

esophagus approximately half the length of the larva and tripartite pointed tail 

that looks like a simple fork [37][44]. Morphological features useful for 

identification of Strongyloides spp. include the angle of vulval rotation, the 

presence or absence of post-vulva narrowing in adult free-living females, the 

natures of the tip and ventral membrane of the spicules, and the locations of 

the perianal papillae in adult free-living males. In parasitic females, the shape 

of the stoma in apical view, presence or absence of spiralling ovaries, the 

shape of the tail and the number of lobes on the circumoral elevation can be 

used for identification [37][47]. 

 

1.2.3 Life cycle and reproduction  

 

Strongyloides spp. have unique and complicated life cycles compared to 

some other gastrointestinal nematodes and alternate between free-living and 

parasitic generations [44][48]. The hosts are infected when iL3 larvae 
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penetrate the skin (in experiemental infecions, the iL3 are frequently 

subcutaneously injected) [37]. These larvae migrate through the host body 

and 24 hours after infection they reach at the lungs or the naso-frontal region 

(depending on the species) of the host, where they will be swallowed to reach 

the small intestine [41]. During this migration they moult to L4 stages and then 

to adult parasitic females [41]. The parasitic adults are all females and live in 

the mucosa of the small intestine of the host [37][45].  

 

The parasitic adult females reproduce by mitotic parthenogenesis (asexual 

reproduction) [45][49]. From six days after infection, eggs and/or first stage 

larvae (L1) will appear in the host feces depending on the species [41]. The 

female L1s can have alternative developmental fates [45][50]. Either they 

develop via L2-L4 stages into rhabditiform free-living adult worms, as do all 

the males. This type of development is known as indirect, sexual or 

heterogonic development [45][51]. The free-living males and females undergo 

sexual reproduction by mating [45][51] and all their progenies develop to 

female iL3s that can live in the environment (soil) until they encounter a 

suitable host, where the iL3s penetrate the host skin to initiate the parasitic 

cycle [37]. Pseudogamy (sperm dependent parthenogenesis) has been 

proposed as mode of reproduction of free-living generations of Strongyloides 

spp. For S. ratti and S. papillosus, it has been confirmed by crossing 

experiments and molecular genotyping that the free-living generations of 

these species actually reproduce sexually [45][51]. It is crucial to investigate 

the mode of reproduction in the free-living generations of the medically 

important S. stercoralis, both in laboratory and wild populations.  

 

Alternatively, the female progenies of parasitic adults that pass with host 

feces can develop directly to iL3s. This kind of development is called direct or 

homogonic development or clonal or asexual reproduction [45][51]. As a 

medically important particuliarity, S. stercoralis but not the other species of 

Strongyloides investigated, has an auto infective cycle in which larvae 

develop into iL3s within the host. This allows the parasite to re-infect the same 

host individual. Therefore, S. stercoralis infections may persist for much 

longer than the life duration of an individual parasitic worm, even in the 
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absence of new infection [37][52][53][54]. These unique alternating life cycles 

provide opportunity to apply available genetic and molecular tools for better 

understanding of the basic biology and evolution of parasitism in 

Strongyloides [48]. The generalized life cycle of Strongyloides spp. is given in 

Figure 3 below. 

 
Figure 3. Generalized life cycle of Strongyloides spp. (modified from [55]). The 
autoinfective cycle (in red) is specific for S. stercoralis. The developmental 
stage that leaves the host varies between species. 

 
1.2.4 Sex determination and Karyotype 

 

Many species of Strongyloides and Parastrongyloides trichosuri have an 

XX/XO sex determination mechanisms suggesting that XX/XO sex 

determination system is ancestral [56]. In S. ratti and S. stercoralis both sexes 

have two pairs of autosomes, and the females have two but the males have 

only one X chromosome [50][58]. So in these species females have 2n=6 and 

males have 2n=5 [50]. In S. papillosus and S. vituli, the I and X chromosome 

are fused [56][59][60] and sex-specific chromatin diminution in males result in 

the  formation a hemizygous region corresponding to the X chromosome in S. 

ratti [50][56][58][59]. The males have 2n=5 and the females have 2n=4 
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[56][59]. However, the chromosomal differences between the sexes are not 

the primary sex determining factors, but sex determination in Strongylodes 

spp. also depend on environmental factors such as the host immune status 

[61]. Increased immune response of the host against the worms leads to a 

higher proportion of males [61]. A schematic representation of the 

chromosomes of the Strongyloides spp. discussed here is presented in Figure 

4 below.   

 

Figure 4. Schematic representation of Strongyloides and Parastrongyloides 
male and female karyotypes. Chromosomes/genomic regions present two 
copies in both sexes are depicted blue; chromosomes/genomic regions 
present in two copies in females and only in one copy in males are depicted in 
red (adapted and modified from [56]). 

 

1.2.5 Genomes and transcriptomes  

 

Whole genome and transcriptome sequencing of nematodes is becoming 

common and easy with the fast growing and improving next generation 

sequencing technologies [62][63][64][65][66]. S. ratti has the second most 

assembled and annotated nematode genome after the C. elegans reference 

genome, with a high-quality 43 Mb reference genome with the two autosomes 

[59] assembled into single scaffolds and the X chromosome [59] assembled 

into ten scaffolds [11][59]. High-quality draft assemblies ranging from 42 to 60 

Mb were also released for S. stercoralis, S. venezuelensis and S. papillosus 

[11]. The Strongloides genomes (~43 Mb) are small compared to the 
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genomes of C. elegans (100 Mb) [67] and P. pacificus (169 Mb) [68]. The S. 

ratti and S. stercoralis genomes have GC contents of 21% and 22%, 

respectively, that make these species the most AT rich nematode genome 

reported so far [11]. The total protein-coding content of S. ratti and S. 

stercoralis ranges between 18–22 Mb [11]. The predicted numbers of genes 

for S. ratti, S stercoralis, S. papillosus and S. venezuelensis are 12,451, 

13,098, 18,457 and 16,904 respectively [11]. 

Very little is known of the spatial and temporal regulation of parasitic 

nematode genes. Knowledge of expression pattern of these genes will help to 

understand their biological functions. Microarray and transcriptomic studies of 

Strongyloides began with analyses of Expressed Sequence Tags (EST) from 

different developmental stages of S. stercoralis and S. ratti [69][70]. These 

analyses resulted in the generation of about 11,000 and 15,000 ESTs that 

were grouped into 3,311 and 4,152 clusters in S. stercoralis and S. ratti 

respectively. Transcriptome analyses of different developmental stages of S. 

ratti and S. stercoralis identified genes possibly important in parasitism [11] 

[70]. Recently Nagayasu et al. [72] reported robust transcriptome analyses in 

four developmental stages of S. venezuelensis. O’Meara et al. [64] reported 

relatively stable gene expression in S. ratti parasitic adult transcriptome raised 

in rats with different immunological status. In S. stercoralis, transcriptome 

analyses were mainly performed in iL3s, to identify potential candidate genes 

for drug targets [63][73][74]. With rapidly improving genomic and 

transcriptomic sequencing technologies becoming available, more effort can 

now be put on assembly and complete annotation of the genomes of 

Strongyloides spp., to identify and characterize genes involved in 

development and parasitism. 

1.2.6 Genetic tools  
 

Unlike for C. elegans, there is a lack of robust functional genomic and genetic 

tools for most of the parasitic nematodes, which severely limits functional 

studies in these organisms [44]. However, there are some promising progress 
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being made in the area of transgenesis [75], CRISPR-Cas9 [76] and RNA 

interference [77].  

1.2.6.1 Transgenesis  
 

Transgenesis is the process of introducing an exogenous gene called a 

transgene into the germ line of an organism so that a new property will be 

transmitted to its offspring [78]. It is an essential tool for studying gene 

function and is used to search and validate essential molecular targets, for 

new drugs and vaccines in disease causing agents especially parasitic 

nematodes [78][79][80]. The access to free-living females and its 

morphological similarities to C. elegans, have helped to adapt gonadal 

microinjections as a method for gene transfer in Strongyloides spp. [81]. The 

wealth of genome sequence data available could be used to identify promoter 

regions and regulatory motifs, and to construct promoter reporter constructs to 

examine expression patterns of major genes, that may play significant roles in 

the parasitic life cycle of Strongyloides spp. [80]. 

In Strongyloides spp., transgenesis was first developed for S. stercoralis [75] 

[81]. The same protocols and promoter constructs from S. stercoralis were 

also used in S. ratti transgenesis [82], however with considerably lower 

transformation efficiency. Initial attempts to establish stable lines of transgenic 

S. stercoralis and S. ratti by following standard C. elegans protocols for the 

injection of plasmid-constructs failed. Although transgenes were established, 

they were not expressed from the second generation onward [79][82]. This 

may be due to transcriptional silencing in the multi-copy episomal arrays [82]. 

Shao et al. [79] solved this issue by creating constructs consisting of 

regulatory elements of the piggyBac transposon system, allowing the creation 

of the first stable transgenic lines with close to 100% transgene expressions 

after the second generations. Low germline transformation efficiency and 

survival rate of injected worms in S. stercoralis and S. ratti is a bottleneck in 

transgenesis in these organisms [75][79]. Several successful transgenesis in 

S. stercoralis have been reported [74][83] and these encouraging results will 
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help scientists to investigate the expression patterns and functions of more 

genes that play role in development and parasitic life of these nematodes. 

1.2.6.2 CRISPR-Cas9  
 

CRISPR-Cas9 is a newly developed genome-editing tool that has a wide 

range of potential applications [76][84][85]. The CRISPR-Cas9 system is most 

commonly used to introduce mutations in specific, molecularly defined loci 

[76][84][85]. The system is derived from a natural type of bacterial adaptive 

immune system[84], the type 2 short palindromic repeats (CRISPR) system. It 

involves a bipartite RNA (single guide or sgRNA, which in most experimental 

approaches replaces the two RNA molecules present in the natural system) 

that provides sequence specificity by base pairing, which then recruits the 

endonuclease Cas9 to the recognition site, leading to endonucleolytic 

cleavage of the DNA. Mutations arise by imperfect repair of the chromosome 

break. By providing a DNA molecule with the desired sequence as template, it 

is possible to introduce specific alteration into the genome. In C. elegans and 

other model nematodes, CRISPR-Cas9 has been successfully used to 

generate heritable mutations (insertions and/or deletions), by microinjecting 

DNA or RNA constructs coding for the Cas9 and the guide RNA or a mixture 

of the two components made in vitro into the gonad of hermaphrodites (which 

replace females in this species) [76][85][86][87][88][89]. But in parasitic 

nematodes, successful CRISPR-Cas9 transformation has not yet been 

reported [48]. However, CRISPR-Cas9 is a promising genetic tool to induce 

gene knock out to study gene functions in parasitic nematodes [48][90].  

 
1.2.6.3 RNA Interference  
 

RNA interference (RNAi) is a mechanism for RNA guided silencing of gene 

expression in eukaryotic cells [91]. It can induce both transcriptional and post-

transcriptional gene silencing [92]. The natural functions of RNAi and its 

related processes seem to be protection of the genome against the invasion 
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of mobile genetic elements (i.e. viruses or transposons), as well as 

orchestrated functioning of the developmental programs of eukaryotic 

organisms [92][93][94]. In RNAi, double stranded RNA (dsRNA), 

complementary to a portion of a gene, is processed into small interfering 

RNAs (siRNAs) [95][96][97]. This effect is amplified beyond the initiation site 

within the gene by secondary siRNAs [98][99][100]. The siRNAs bind to the 

endogenous mRNA, forming a mRNA-siRNA duplex, which results in the 

recruitment of the RNA interfering specificity complex (RISC); this complex 

degrades/suppresses the endogenous mRNA [101]. The whole process 

results in the cessation/reduction of the effective function of the gene, which 

may result in visible phenotypic defects [102]. A potent gene silencing effect 

by RNAi was achieved in C. elegans by injecting double stranded RNA [95]. In 

nematodes, dsRNA/siRNA can be delivered by injection [95], soaking [103], 

feeding [104]. In parasitic nematodes electroporation was also atempted 

[105][106][107]. A schematic representation of the exo-RNAi pathway in C. 

elegans is given Figure 5 below. 

 

Figure 5. Schematic representation of the exo-RNAi pathway in C. elegans 
(adapted from [108]). 
 

RNAi in several nematodes is becoming a very important tool to understand 

and characterize parasitism genes [77]. The first successful RNAi report in 
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gastrointestinal nematode was reported in Nippostrongylus brasiliensis [109]. 

Following this report, RNAi by soaking in dsRNA was reported for several 

parasitic nematodes: Brugia malayi, Onchocerca volvulus, Haemonchus 

contortus, Ostertagia ostertagi, Ascaris suum and Trichostrongylus 

colubriformis and has resulted in some RNAi mediated knock down [105][106] 

[110][111][112][113][114]. However, while transcript levels have been reduced 

for some target genes in parasitic nematodes, using current methods, RNAi 

seems to be inconsistent with variable results between species and between 

genes[77][108][115][116]. RNAi in plant parasitic nematodes seems to be 

more effective compared to animal parasitic nematodes [77][108]. In plant 

parasitic nematodes, usually the larval stages were soaked in dsRNA together 

with octopamine and/or serotonin to induce pharyngeal pumping [117], 

facilitating the ingestion of dsRNA. In animal parasitic nematodes, several 

difficulties are encountered when attempting RNAi such as reproducibility, 

specificity and susceptibility issues [118]. When using different siRNA/dsRNA 

delivery methods, RNAi was not successful for Strongyloides spp. and many 

other parasitic nematodes [119]. These mixed results suggest the importance 

of optimizing RNAi methods in animal parasitic nematodes to analyze gene 

functions which could be helpful in identifying candidate genes for drug and 

vaccine targets [120]. 

 
1.2.7 Strongyloidiasis in humans 
 

In humans, strongyloidiasis is caused predominantly by S. stercoralis, but to a 

lesser extent also by S. fuelleborni and S. fuelleborni kellyi [37]. S. stercoralis 

infections have also been described in dogs, cats, and non-human primates 

[14][15][16][17][121]. S. stercoralis has a cosmopolitan distribution in tropical 

and subtropical regions and is the predominant species of Strongyloides in 

humans [36][122]. S. fuelleborni infection mainly occurs in African primates 

but is zoonotic and so infection can be transmitted to humans [15][37]. Human 

infections with S. fuelleborni kellyi has been reported only from New Guinea 

[123]. Humans become infected when iL3s come in contact with host skin and 

penetrate it, allowing the establishment of an infection [37].  
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Strongyloidiasis is one of the most neglected soil transmitted helminthiasis 

[36][124][125]. It is estimated to infect 100-200 million individuals worldwide 

[33][124], however this number could be an underestimate as it is often 

difficult to detect infections in single fecal examination [47]. The prevalence of 

S. stercoralis infections ranges from 5% to 40% in many tropical and 

subtropical countries [36] with higher prevalence among young individuals 

and children [44]. Factors such as high temperature, high moisture, poor 

sanitation and sharing premises with domestic animals may contribute to this 

high prevalence of S. stercoralis in developing countries within the tropical 

and subtropical regions [36][126]. 

In healthy individuals, strongyloidiasis is asymptomatic causing very little 

pathology [37]. However in immunocompromised individuals, it can result in 

serious complicated disease called hyperinfection syndrome (eventually 

leading to disseminated strongyloidiasis) due to massive invasion of 

autoinfective iL3s throughout the body [37][52][127][128]. This special ability 

to replicate in vivo and re-infect the same host is unique for S. stercoralis and 

infections have been shown to persist for many decades [37][54]. In chronic 

uncomplicated strongyloidiasis, major symptoms involve the gastrointestinal, 

respiratory and cutaneous systems. The common gastrointestinal signs are 

intermittent or persistent diarrhea, abdominal pain, pruritus ani, anorexia, 

vomiting (nausea), constipation and indigestion [37][129]. Chest pain, 

coughing and dyspnea are some of the symptoms involved in the respiratory 

system [37][129]. Skin rash, larva currens and urticarial are the major 

dermatologic signs from migrating infective larvae in the skin tissue [129].   

In severe complicated strongyloidiasis, complication of gastrointestinal, 

respiratory, central nervous systems result in severe diseases [37]. The major 

gastrointestinal complications are abdominal distension, intestinal obstruction 

[130], dilation and thickening of the loops of the jejunum, necrotizing jejunitis, 

arteriomesenteric occlusion, small bowel infarction, biliary obstruction, 

aphthoid ulceration of the colon gastrointestinal hemorrhage and anorectitis 

[37][131][132][133][134][135][136][137]. It has been reported that some 

pulmonary complications like irritative or productive cough and shortness of 

breath, are often associated with wheezing that might lead to fatal adult 
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respiratory distress syndrome [138][139]. Invasion of the central nervous 

system by migrating larvae, is often accompanied by secondary bacterial 

infection that might cause meningitis or brain abscess resulting in fever, 

headache, nausea, vomiting, neck stiffness, or convulsions or coma [37]. 

Septicemia due to enteric microorganisms like Pseudomonas aeruginosa may 

result in shock [132]. Pelvic inflammatory disease has also been ascribed to 

S. stercoralis [37]. Migration of larvae through skin may cause petechial or 

purpuric lesions [135][140][141]. In disseminated complicated strongyloidiasis, 

the mortality rate could reach up to 85 % [47] if anti-Strongyloides therapy is 

not given immediately. The most frequently used drugs for the treatment of 

strongyloidiasis are ivermectin (200 μg/kg body weight in a single dose) and 

albendazole (400 mg daily for 3 days) [142][143]. In a comparative study 

conducted on both regimens in Zanzibar, a cure rate of 82.9% and 45.0% was 

reported for ivermectin and albendazole respectively [142]. Zaha et al. [144] 

reported 96.0% efficacy for ivermectin used at 200 µg/kg that increased to 

98.0% after a second follow-up treatment 2 weeks later. Patients with 

hyperinfection and disseminated strongyloidiasis are treated with repeated 

doses of Ivermectin several weeks apart to completely clear the infection 

[144]. Antibiotic therapy directed towards enteric pathogens and/or meningitis 

is also recommended in case of severe and complicated strongyloidiasis [37]. 

Ivermectin is contraindicated in children younger than 4 years old and 

pregnant women due to its toxicity [124]. Alternative drugs such as 

thiabendazole, cambendazole, and mebendazole can be used, but are less 

effective than ivermectin [122][143][145][146]. 

Commonly used standard parasitological methods for diagnosing 

strongyloidiasis are Bearmann technique, formalin-ether concentration, Kato-

Katz technique, test-tube culture and agar plate culture [15][47][121]. These 

methods are laborious, time consuming, and need well-trained technicians 

[47][125]. Immunological and serological tests have been reported in the 

diagnosis of strongyloidiasis but with variable sensitivity and specificity 

[147][148][149][150]. The major clinical manifestations described above, 

coupled with the detection of rhabditiform larvae and/or embryonated eggs in 

patient stool by parasitological methods, will assist in the diagnosis of 



17 
 

strongyloidiasis in humans.  However, these tests have to be repeated several 

times to detect the larvae/eggs in the stool, because of the low sensitivity and 

specificity of these methods [47]. S. stercoralis larvae are passed in the stool 

whereas in S. fuelleborni, embryos are passed as eggs. Autoinfection 

probably also does not occur in S. fuelleborni [37].  

Specific detection of Strongyloides with improved sensitivity and specificity 

using DNA obtained from human stool samples, and by identifying using the 

18S rDNA with real-time PCR, has been reported [151] as a promising 

diagnostic method. In Strongyloides spp., the 18S rRNA sequence is highly 

conserved [152]. However, Hasegawa et al. [121] reported several nucleotide 

polymorphisms among different species of Strongyloides, in four of the hyper 

variable regions of the 18S rRNA (HVR-I to IV). HVR-IV has been suggested 

for Strongyloides spp. diagnosis, because the nucleotide arrangements at this 

region is species specific and no within species variablility has been found 

[121]. As far as HVR-I and the rest of the SSU are concerned, some within-

species variablity has recently been detected in S. stercoralis isolated from 

humans in rural Cambodia [153]. Hasegawa et al. [15] used the mitochondrial 

cytochrome oxidase subunit 1 (cox1) gene for identifying the cryptic variations 

in S. stercoralis, isolated from different host species. S. stercoralis is generally 

considered a zoonotic disease [37][125][126]; that transmits from humans to 

animals and vice versa but the infectivity of S. stercoralis of animal origin to 

human is a matter of debate [15][125]. To address this question I isolated S. 

stercoralis larvae from humans and dogs in the same household in rural 

communities in Northen Cambodia, where the living condition is ideal for 

strongyloidiasis (people walk barefoot, few or no toilet access). Strongyloides 

larvae were genotyped using 18S rDNA and cox1 molecular genetic markers. 

I also investigated the mode of reproduction of free-living generations of the 

laboratory isolate of S. stercoralis.  
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1.2.8 Strongyloides infections in animals 
 
1.2.8.1 Strongyloides ratti  

 

Strongyloides ratti is a common gastrointestinal parasite of rats (Rattus 

norvegicus) [154]. Although the worms normally reside in the small intestine, 

there has also been a report of isolation of S. ratti from the large intestine of 

wild rats [154]. S. ratti infection in rats is usually cleared 4 weeks after 

infection due to a strong anti-S.ratti immune response [155][156]. The 

prevalence of S. ratti in wild rats in the UK was reported to be 62% [157], 

demonstrating its high abundance in nature. S. ratti infections in rats can be 

detected by examination of host feces using Baermann technique and agar 

culture for the presence of rhabditiform larvae [47][158]. Immunological, 

serological and molecular diagnostic tools described above for S. stercoralis 

are also used in the diagnosis of S. ratti infections [148][150][159][160].  

 

Phylogenetically, S. ratti is closely related to S. stercoralis [40][43], and is 

used as a laboratory model animal to study this human parasitic nematode 

[161]. The basic biology of Strongyloides including genetics [162], sex 

determination [50], reproduction [45] are well studied and documented in S. 

ratti. In addition, major molecular and genetic tools such as genetic linkage 

maps [163], transgenesis [79][82], transcriptomics [64] and a well-annotated 

genome [11] are available for S. ratti.  

 

Mongolian gerbils (Meriones unguiculatus) have been found to be permissive 

hosts for many parasitic nematodes including S. ratti [19][21][22][164] 

[165][166]. Persistent S. venezuelensis [21][163] and S. stercoralis [22] 

infections have also been reported in gerbils. But there has been no report of 

natural infection of gerbils with any species of Strongyloides. The responses 

of both natural and permissive hosts to nematode infections can be quantified 

by infection dynamics and durations (parasitic worm burden, worm/egg 

output, sex ratios), and change in gene expressions [167][168][169][170]. In 

this thesis, I systematically compared the S. ratti infection dynamics in the 
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natural host rat and the permissive non-natural host gerbil. I also compared 

the transcriptomes of parasitic females isolated from rat and gerbil intestines.  

 
1.2.8.2 Strongyloides papillosus  

 

Strongyloides papillosus is a common gastrointestinal parasite of sheep and 

several domestic and wild ruminants [51][171][172][173]. S. papillosus 

infection is very common in sheep and cattle in tropical to temperate climate 

zones. There are reports of very closely related species of Strongyloides 

infecting ruminants [29][171][172][173][174][175]. Usually S. papillosus 

infections proceed without clinical manifestations, but heavy infections can 

result in fatal strongyloidiasis often called sudden death syndrome in young 

ruminants, due to sudden cardiac arrest without any premonitory signs [176]. 

The infection routes are peroral, percutaneous and galactogenic [177], but 

percutaneous is the most common route of infection, whereby infective larvae 

penetrate intact skin and establish infection [173][178]. 

The major clinical manifestations in S. papillosus infection in lambs and calves 

are diarrhoea, dehydration, anorexia, cachexia, anaemia, ataxia, nystagmus, 

slow growth and sudden death [172][179][180]. Commonly observed 

pathologies in S. papillous infected lambs and goat are ventricular fibrillations, 

enteritis, status spongiosus in the brain, hepatosis, hepatic rupture, nephrosis, 

pulmonary oedema and interstitial pneumonia [39][176][179][181]. Mortality 

rates of up to 25% with very high egg output (up to 5,000 eggs per gram of 

feces) were observed in calves on a beef farm located in South Bohemia, 

Czech Republic without previous clinical signs [38].  

Strongyloides papillosus infections can be diagnosed by detection of the 

characteristic embryonated eggs in the feces [172][173][182]. The standard 

flotation technique is used for the eggs, but as the eggs hatch in few hours 

after fecal collection, the Baermann method is also suitable for detecting the 

larvae [60][179]. Parasitological and molecular diagnostic methods described 

for S. stercoralis above can also be applied in the diagnosis of S. papillosus 

infection. Ivermectin in a dose of 200 µg/kg administered subcutaneously, 
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albendazole and benzimidazoles are used for the treatment of adult S. 

papillosus in sheep, goat and cattle [183]. The biology, genetic and genomics 

of S. papillosus has been studied as in S. ratti [11]. The rabbit is a permissive 

sub-optimal host for S. papillosus and is commonly used to raise this parasite 

in the laboratory [60][173][184].However, successful infection using single iL3 

to establish isofemale lines have so far not been achieved in rabbits, but are 

possible although technically difficult in lambs [59].  

Transcriptomic information about the gene expression profiles of different 

developmental stages, have so far been reported for only three of the 

Strongyloides spp. (S. ratti, S. stercoralis and S. venezuelensis), whose 

genomes were recently reported by Hunt et al. [11], but not for all of the life 

cycle stages. Hunt et al. [11] reported that CAP and Astacin gene families 

have undergone much duplication in Strongyloides spp. This extreme 

expansion coincided with the emergence of parasitism but continued during 

subsequent speciation events. They are possibly associated with the infection 

of novel hosts and makes members of these families primary candidates for 

genes associated with parasitism [11]. Blaxter et al. [7] suggested that 

parasitism evolved multiple times independently in the phylum Nematoda. 

Thus it seems unlikely, that there is only a single genomic basis for parasitism 

in nematodes [185]. To get more insight into the evolution of parasitism at the 

genomic level, multiple independent studies focusing on different parasitic 

species as well as non-parasitic outgroups from different clades would be 

needed. The identification of candidate genes associated with parasitism is 

very important for the development of potential treatments, especially in 

Strongyloidides spp. To contribute more to the ever-improving transcriptome 

areas of parasitic nematodes, I conducted a comparative transcriptomics 

analysis between different developmental stages of S. papillosus and 

compared the results with the published transcriptome data of S. ratti. 
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1.3 The genus Onchocerca 

 

The genus Onchocerca consists of about 30 described species that can 

parasitize ungulates [24], humans [26] and dogs [23][186]. It is associated 

with endosymbiontic Wolbachia bacteria [221]. Onchocerca spp. undergo two 

host switches during their life cycle, between a vertebrate host and an insect 

intermediate host (in the case of the species discussed here black flies). Adult 

stages are only found in the vertebrate hosts. During the blood meal, the 

black fly takes up the first larval stage worms (microfilariae). The microfilariae 

then migrate to the muscle of the thorax of the fly, and molt to the second 

larval stage. After a few days they molt to the third larval stage, which is the 

infective stage. This infective stage migrates to the head of the fly and gets 

deposited into host tissue during the next blood meal [27]. It is very difficult to 

distinguish the infective larvae of different Onchocerca spp. morphologically. 

In the vertebrate host, the infective larvae undergo two more molts and 

develop to adult worms. Adult females can grow up to 30 cm while males are 

only about 5 cm long. The adult females of some species (among them the 

human parasite O. volvulus) induce the formation of a nodule made of host 

tissue consisting mainly of collagen, where they stay for the rest of their life. 

One adult female produce about 75, 000 to 100, 000 healthy embryos per 

reproductive cycle [27][187]. The embryos hatch to microfilarea in the female, 

and migrate to the subcutaneous tissues of the vertebrate host, to be taken up 

by black fly vector during a blood meal to continue their developmental cycle 

[27].  

1.3.1 Onchocerca ochengi and O. volvulus 
 

Onchocerca ochengi is a nodule-forming parasite of cattle. It is most closely 

related to O. volvulus (the causative agent of human onchocerciasis also 

called river blindness), because the black flies (vector) breed along fast 

running streams and rivers [188]. O. ochengi and O. volvulus show many 

parallels in their biology and share the black fly Simulium damnosum s.l. as a 

vector [26][27]. It has been proposed that O. volvulus arose from a host 
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switching event from cattle to their keepers as little as 10,000 years ago [24]. 

O. ochengi infection in cattle is not associated with any obvious pathology, 

and it was speculated that this is the consequence of a longer time of co-

evolution between O. ochengi and cattle [191]. O. volvulus can render carriers 

completely blind. Two distinct strains of O. volvulus are known to exist in West 

Africa [24][26]: the Forest strain (which causes mild eye lesions) is endemic to 

the rainforest region, while the Savanna strain (causes severe eye lesions) is 

endemic in the savanna region [26].  

The intradermal O. ochengi nodules are easily accessible. Their number 

increases over time because multiple sequential infections of the same cattle 

host are possible [188]. Because of this ease of accession and phylogenetic 

closeness, O. ochengi can serve as an experimentally more approachable 

animal model, for studying aspects of the O. volvulus biology [188], but not 

the pathology, since it causes little or no disease in cattle. Krüger et al. [24] 

isolated from black flies in Uganda iL3s of an undetermined Onchocerca spp., 

which they referred to as Onchocerca spp. variant Siisa. Based on very 

limited mitochondrial DNA sequence information, this variant appeared to be 

very closely related to O. ochengi and to O. volvulus, but the phylogenetic 

relationship between the taxa could not be resolved [24]. Eisenbarth et al. 

[190], using the partial sequences of the 12S, 16S and the cox1 mitochondrial 

genes as markers, identified microfilaria and adults of Onchocerca spp. Siisa 

also in black flies and cattle nodules in Cameroon. This demonstrated, that 

cattle is at least one of the definitive hosts of this variant. Recently, using 

nuclear and mitochondrial genetic markers, Hildebrandt et al. [191] has shown 

that Onchocerca spp. Siisa is interbreeding with O. ochengi. There are no 

obvious morphological differences between Onchocerca spp. Siisa and O. 

ochengi [24][190]. These findings suggest that Onchocerca spp. Siisa is a 

mitochondrial clade of O. ochengi. However, also in this study the 

phylogenetic relationship of O. ochengi, Onchocerca spp. Siisa and O. 

volvulus could not be resolved due to insufficient sequence information. To 

clarify this I determined the whole mitochondrial genomes of nine O. ochengi 

and two Onchocerca spp. Siisa individuals isolated from cattle.  
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1.4 Aims of this thesis 

 

The unifying themes of this thesis are host specificity and host switching. Host 

switching at the level of current species that can use multiple hosts, is a very 

important process in the context of zoonotic transmission of pathogens to 

humans. Host switching in evolutionary time frames may be an important 

determinant for the formation of new parasite species. To address these 

questions I performed laboratory experiments and field studies. The aims of 

each of the four projects followed are outlined below. 

 

1.4.1 Parasitological and transcriptomics comparison of S. ratti infections in 

rats and gerbils 

 
In order to evaluate the consequences of living in a different, presumably 

suboptimal host, I decided to compare experimental S. ratti infections in rats 

(which are the preferred natural hosts) and in gerbils (which are permissive 

but presumably suboptimal hosts). I wanted to measure firstly parasite 

performance with respect to infection success, survival and reproduction and 

secondly, to compare the global gene expression profiles in order to identify 

genes that are differentially expressed between the parasitic adults isolated 

from both hosts.  
 

1.4.2 Comparative transcriptomics analyses of different developmental stages 

of S. papillosus 

 
 Recently Hunt et al. [11] reported the genomes of four species of 

Strongyloides. While the genomic sequence of S. papillosus was included in 

this work, however the transcriptomic studies were not reported for this 

species. I sequenced the transcriptomes of different developmental stages of 

S. papillosus and compared them among themselves and with the published 

data of S. ratti. Special attention was given to Astacin and CAP protein 

families, which are very expanded in Strongyloides spp. 
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1.4.3 Genetic variations and reproduction in human parasitic nematode, S. 

stercoralis 

S. stercoralis is a human parasitic roundworm but natural infections have also 

been reported in dogs, cats and several non-human primates. The aim of this 

project was to determine to what extent S. stercoralis is transmitted from dogs 

to humans and vice versa. By determining the nuclear 18S rDNA and 

mitochondrial cox1 sequences of S. stercoralis individuals isolated from 

humans and dogs in the same households in rural Cambodia, I addressed the 

question of whether S. stercoralis in dogs and humans form single or separate 

populations. 

1.4.4 Genetic and phylogenetic analyses of O. ochengi isolates using 

complete mitochondrial genome sequences 

It is hypothesized that O. volvulus, the causative agent of human river 

blindness, evolved from the cattle parasite O. ochengi through a host switch 

from cattle to their keepers, as recently as 10,000 years ago. Based on very 

limited sequence information, it had been proposed that with respect to their 

mitochondrial genome, two different clades exist within the species O. 

ochengi, referred to as type "ochengi" and type "Siisa". Phylogenetically, 

these two-mitochondrial types appeared to be equally distant from each other, 

than either of them is from O. volvulus, raising some questions about the 

species status of O. volvulus. I set up to re-evaluate the phylogenetic 

relationship of O. ochengi type “ochengi”, O. ochengi type “Siisa” and O. 

volvulus by including full mitochondrial sequence information.  
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2. Results and Discussion  

2.1 Parasitological and transcriptomic comparison of S. ratti infections in rat 
and gerbil hosts 

2.1.1 S. ratti infections: duration, worm output, sex ratios and worm burdens  
 

In two independent experiments, groups of four male rats and four male 

gerbils were infected with 500 iL3s per animal. The worm output was 

measured starting at day six after infection as described in materials and 

methods. The nightly total worm counts are shown in Figure 6 A-B. The total 

worm count was higher in gerbils compared with rats, but the worm output 

was higher in rats during the first two weeks of infection. However, it is 

important to note, that the absolute numbers of worms counted are not really 

comparable between the two different hosts because they might pass different 

proportions of their daily output during the sampling period.  The mean S. ratti 

total worm output count was highest around the 15th day post infection in rats 

and about one day later in gerbils and then declined in both hosts. However, 

while the decline in rats was fast and after one month, no worms were 

detected, in gerbils, substantial worm output was observed for more than four 

months and only after 6 months were no larvae found anymore.  
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 Figure 6. Nightly mean total worm count per host individual from rats (A) and gerbils 

(B) infected with 500 iL3 per animal. Error bars are the standard deviation between 

the six parallel cultures made from each collection cache. PI days = post infection 

days; TWC = total worm count; R1 = replicate 1; R2 = replicate 2. The TWC over the 

lifetime was significantly higher for the worms in gerbils (p =0.001768).  

 

These results are in line with previous reports on other Strongyloides spp. 

raised in permissive but presumably suboptimal hosts. In S. venezuelensis, 

persistent infections of gerbils that lasted 450 days [164] and 570 days [21] 

were reported. In the second, the limiting factor was actually the life span of 

the gerbil hosts, which are short-lived animals. In these experiments, the 

gerbils were able to clear the S. ratti infections after about six months. This 

might be due to the low dose of iL3s (500) used in this experiment or because 

gerbils are indeed able to eventually clear S. ratti but not S. venezuelensis 

infections [164]. The quick clearance within about a month of S. ratti infections 

from rats is due to a strong anti-S. ratti immune response [155][156]. Khan et 

al. [192] claimed that the inability of Mongolian gerbils to expel S. 

venezuelensis is not due to a failure to recognize the parasite antigens, but 

due to defects in effectors/regulatory cells such as mast cells. Nolan et al. [22] 
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also reported prolonged S. stercoralis infection in gerbils of up to 130 days 

without using immunosuppressant drugs. S. stercoralis which is very closely 

related to S. ratti, has the special ability to maintain long lasting infections in 

humans and dogs through an auto-infective cycle [37]. Autoinfection has also 

been observed in experimental infections of gerbils with S. stercoralis [193]. 

However, the prolonged duration of S. venezuelensis [21][164]  and S. ratti 

[19] appear not to be associated with autoinfection. 

There was a significant difference in total male to female ratios between 

worms derived from gerbils and rats feces (Figure 7 A-B). While the sex ratio 

remained stable with a slight excess of females in cultures from rats, in 

cultures from gerbils, an excess (3.8 fold) of males was observed during the 

first two weeks, which then declined to approximately equal numbers of males 

and females after one month of infection. An elevated proportion of males has 

also been observed for S. papillosus (natural host sheep) in rabbits, which act 

as permissive hosts [46] and in cattle [173] but not for S. ratti in mice [61]. As 

expected, based on earlier literature [194], culture temperature had no effect 

on the sex ratio. 
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Figure 7. Total male to female ratios of worms collected from rats (A) and gerbils (B) 

feces cultured at 19°C and 22°C. Error bars are the standard deviations between the 

six parallel cultures made from each collection cache. PI days = post infection days; 

R1 = replicate 1; R2 = replicate 2. The difference in sex ratio over the lifetime is 

highly significant (p<0.00001).  

 

In two separate experiments, groups of four rats and gerbils were infected 

with 500 iL3s per animal and 12 days after infection, the animals were 

sacrificed and the adult parasitic worms were isolated from the small intestine 

and counted. The worm burden in rats (288.25±6.6 and 290±9.93 in the two 

replicates, respectively) was significantly higher compared to gerbils (65±8.1 

and 70±6.32) (Figure 8). There were no visible phenotypic differences 

between parasitic adults isolated from rats and gerbils. These results clearly 

showed that in gerbils the infection success is lower than in rats, but those 

worms that are successful in gerbils, survive longer and produce more 

progeny than in rats. The high worm output from gerbils when compared with 

rats might lead to the impression that gerbils are even better hosts than rats. 

But this cannot be concluded for various reasons. Firstly, the absolute 

numbers of worms observed cannot be directly compared between the two 

hosts, because the determined worm output was over night and not over the 

full day. The two host species have different circadian rhythms and it is 

therefore likely that they shed a different proportion of the total larvae 

produced during the collection window. For animal welfare reasons it was not 

acceptable to maintain the animals permanently in collection caches. 

Secondly, experimental infections were done by subcutaneous injection of 

infective larvae, thereby bypassing the natural host recognition and skin 

penetration. Thirdly, in gerbils a high, probably suboptimal, proportion of 

males were produced. 
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Figure 8. Mean number of parasitic worms isolated from sacrificed rats and 
gerbils. The error bars are standard deviations. The difference is highly 
significant (p<0.00001) 
 
 
 

2.1.2 Transcriptomes of parasitic S. ratti adults isolated from rats and gerbils 
 

The parasitic worms isolated from the small intestines of the four animals of a 

group were pooled resulting in two biological replicates. I sequenced poly (A) 

plus transcriptomes of parasitic worms isolated from both hosts. In all four 

samples between 10,000 and 11,000 transcripts were covered. The two 

biological replicates for both groups correlated very well (Figure 9). The 

expression profiles in the two hosts were very similar with only relatively few 

genes showing significantly different expressions. In the first replicate, we 

identified 259 transcripts, which were differentially expressed, of which 39 and 

220 were higher in parasitic worms isolated from rats and gerbils, 

respectively. In the second dataset, we found 204 transcripts to be 

differentially expressed, 84 up-regulated in worms from rats and 120 up- 

regulated in worms isolated from gerbils. In most instances the differences 

were very close to the significance borders and only 23 transcripts, which 
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were differentially expressed in both RNA-Seq datasets were identified (Table 

1). One transcript, predicted to encode a cuticular collagen, was differentially 

expressed in opposite direction in the two replicates. Among the other 22 

transcripts, three were derived from putative astacin-like 

metalloendopeptidase genes and four from genes predicted to encode 

acetylcholinesterases.  

 

 

Figure 9. Correlation of the different parasitic adults RNA-Seq experiments. A) 
Comparison between rats and gerbils, replicate 1; B) comparison between 
rats and gerbils, replicate 2; C) Comparison between the two replicates in 
gerbils; D) Comparison between the two replicates in rats. 
 

Despite the different hosts and the clear S. ratti performance in rats and 

gerbils, there were very little differences between the gene expression 

patterns. Similarly, an earlier study comparing parasitic adult S. ratti in rats 
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with varying immunological status, found only very little difference in over all 

gene expression in spite of considerable phenotypic differences [64]. In the 

present study, even among those genes that were significantly differentially 

regulated in both experiments, the fold changes were generally rather low. 

Only seven genes, among them two astacin-like and one acetylcholinesterase 

gene, were on average over the two experiments, up-regulated in gerbils 

more than two fold (maximum 3.4 fold) and only two genes, both 

Acetylcholinesterases, were reduced to less than half in gerbils. Astacin-like 

and acetylcholinesterase family genes were very prominently represented 

among the genes that were significantly differentially expressed in both 

experiments (three and four genes respectively among a total of 23). Both of 

these gene families are greatly expanded in Strongyloididae [11].  Different 

members of these families show different developmental stage specific 

expression patterns. All three astacin-like genes identified, belong to the 

fraction of this family described to be high in parasitic adults compared with 

free-living and infective stages [11], and all three were further up-regulated in 

worms from gerbils compared to worms from rats. In fact, the two most 

strongly up-regulated genes in gerbils were astacin-like genes. Of the four-

acetylcholinesterase genes, one was up regulated in gerbils, while three were 

down regulated in this host. The two most strongly down-regulated genes in 

gerbils were acetylcholinesterase genes. Interestingly, both these genes were 

found by Hunt et al. [11] to be down regulated in parasitic adults when 

compared with iL3s. The significance of these observations remains open for 

the moment and further functional analyses will be needed to investigate the 

role of these genes during S. ratti infections in the two hosts. 
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Table 1. Expression values and comparison for all differentially expressed S. 
ratti transcripts. 

 

 

In summary, upon experimental infection by subcutaneous injection of 

infective larvae, S. ratti can establish patent infections that last for several 

months in Mongolian gerbils. The portion of infective larvae that successfully 

colonize the host is smaller than in the natural host (rats), but the ones that 

are successful live longer and reproduce well. However, they produce a high 

proportion of male progeny. These prolonged and stable infections make 

gerbil good laboratory host for the long-term maintenance of S. ratti. The 
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transcriptomes of parasitic S. ratti in rats and gerbils are very similar. Among 

the few differentially expressed genes, astacin-like and acetylcholinesterase 

family genes are prominent. 

 

 

2.1.3 Contributions 
 

I designed this study with Dr Adrian Streit. I performed all experiments in this 

study. I did subcutaneous infection of rats and gerbils, collection and culture 

of feces and counting worm output from the culture. I isolated parasitic adults 

from rats and gerbils and extracted total RNA. I prepared transcriptome 

libraries for sequencing for in all biological and technical replicates. The 

sequencing was done in the in house sequencing service facility Bioinformatic 

analyses were done by Dr. Christian Rödelsperger. I wrote the manuscript 

with Dr Streit. This work has been submitted to Experimental Parasitology.  
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2.2 Comparative transcriptomics analyses of different developmental stages 
of S. papillosus 

2.2.1 Overview of the differentially expressed genes 
 
In order to compare the gene expression profiles, ten transcriptome libraries 

from six developmental stages of S. papillosus were prepared and analyzed. 

Principal component analyses of the estimated expression levels quantified as 

FPKM (Fragments per kilobase transcript per million mapped reads) were 

estimated using Cufflinks [229]. The principal component analysis indicates 

that 55% of the variations can be explained by the first two principal 

components (Figure 10). The ten transcriptomes basically form three clusters, 

a cluster with young larvae and males, a cluster with parasitic and free-living 

females, and a cluster with infective larvae. The samples within a cluster are 

highly correlated in terms of gene expression values when compared with 

samples from other clusters. The median Spearman’s correlation coefficients 
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for within-clusters comparison and between-clusters comparison were 0.92 

(Q1: 0.82 and Q3: 0.99) and 0.73 (Q1: 0.68 and Q3:0.82) respectively (Figure 

10). Variations between different developmental stages are considerably 

larger than the variation between biological replicates. Therefore, the 

identified transcriptome profiles robustly capture gene expression differences 

during the development of S. papillosus. Pairwise differential gene expression 

analysis showed that the number of differentially expressed genes vary widely 

from 0.2% (L1/L2 stage from parasitic females in comparison with L1/L2 from 

free-living) to 45% (iL3s in comparison with parasitic females stage) (Figure 

11). Comparison between free-living and parasitic females showed only 10% 

of genes were significantly differentially expressed and of that, only 4.4% 

(917) of genes were up-regulated in parasitic females. Overall, 73% of S. 

papillosus genes are found as significantly differentially expressed (FDR< 

0.05) in at least one comparison. This observation indicates that the evolution 

of small set of genes is enough to acquire parasitism. This relatively small set 

of infection-associated genes is consistent with previous studies, which found 

that 909 and 1188 genes were up-regulated in parasitic females in S. ratti and 

S. stercoralis respectively [11]. Other studies in Strongyloides spp. identified 

much smaller candidate sets for parasitism-associated genes[72][195]. 
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Figure 10. Principal component analysis of S. papillosus different stages 
transcriptomes replcates. The expression values show a subdivision of 
transcriptomes into distinct clusters that are defined by developmental stages 
and sex from different batches of RNA-Seq dataset. 
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Figure 11. Numbers of significantly differentially expressed genes between 
different developmental stages of S. papillosus transcriptomes. Dark blue and 
orange colors indicate significant enrichment (FDR <0.05 and enrichment 
value > 1) and no enrichment respectively. 
 
 

In order to better understand the evolution of gene expression in different 

developmental stages, the genes were classified into three groups based on 

sequence similarity to S. ratti using Orthomcl [196]. Homologous genes 

maintained as single copy in both species were treated as one-to-one 

orthologs, and paralogous gene clusters were classified as ancient and recent 

duplications depending on the presence and absence of S. ratti genes in the 

clusters respectively. Based on this definition, 9302 one-to-one orthologs, 

2952 ancient duplicated genes, 3443 recently duplicated genes and 2759 

orphan singletons with no homolog in either S. papillosus or in S. ratti were 

found. The enrichment of these different orthology classes among 
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differentially expressed genes was also tested. In the majority of the cases, 

one-to-one orthologs were highly enriched among genes differentially 

expressed between different developmental stages (Figure 12). One of the 

interesting findings is the strong depletion of recent duplicates in all 

comparison, except two female parasitic stage comparisons. Enrichment of 

duplicates among female parasitic stage-specific genes suggests a role of 

gene duplication in the evolution of parasitism in Strongyloides. In 

phylogenetic analyses of Neurotransmitter-gated ion channel (NGIC) genes 

(one-to-one orthologous) from S. papillosus and S. ratti were grouped 

together (Figure 13). This indicates the robustness of the computational 

approach used for assigning orthologous classes. The majority of one-to-one 

orthologs are up regulated in iL3 stage in comparison with free-living and 

parasitic females in both species. In general, one-to-one orthologs have 

similar expression patterns in S. papillosus and S. ratti, which implies a high 

degree of conservation. 

 
Figure 12. Pairwise comparison of S. papillosus transcriptome based on their 
expression. FL= Free-living; iL3= infective larvae 3; L1/L2=stage 1 and 2 
larvae. This analysis reveals that most comparisons are enriched in one-to-
one orthologs indicating that developmentally regulated genes tend to be 
conserved at the sequence level. 
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Figure 13. Gene expression, sequence evolution and phylogenetic tree of S. 
papillosus (green) and S. ratti (black) NGIC gene family. The heatmap around 
the phylogenetic tree indicates differential expression pattern of each gene in 
three different comparisons. In the heatmap, up-regulation, down-regulation 
and no change are shown in green, red and black respectively. This tree 
shows that the majority of one-to-one orthologs in the NGIC gene family have 
similar expression pattern in S. papillosus and S. ratti. 
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2.2.2 Expressions of Astacin and CAP gene family members  
 
Protein domain enrichment analyses were performed to identify the functional 

component of the differentially expressed genes (Figure 14 A). 221 gene 

families show enrichment in at least 2 different comparisons, with Pkinase, 

HSP20, motile sperm, collagens, different sub families of GPCR and few other 

families in more than 5 comparisons. One of the interesting findings is the 

enrichment of astacin and CAP gene families among genes up-regulated in 

parasitic females compared with free-living females (Figure 14 B). This is 

consistent with the recent observation of astacin and CAPs enrichment in the 

parasitic females of S. ratti and S. stercoralis [11], and further supports the 

hypothesis proposed by Hunt et al. [11], that the expansions of astacins and 

CAPs are associated with the evolution of parasitism in Strongyloides spp. 

Apart from the enrichment of these two gene family members in the parasitic 

female stage, a considerable number of astacin and CAP genes were also up-

regulated in iL3 stage. In these analyses, more than 200 genes with astacin 

domains show significant differential expression, of which 131 genes show 

up-regulation in parasitic females and 67 in iL3 stage in one or more 

comparisons. Similarly, 94 and 49 CAP domain genes show up regulation in 

parasitic females and iL3 in at least one comparison respectively.  
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Figure 14. Age classification and domain enrichement of the S. papillosus 
transcriptomes. A) Box plot representation of the age of genes as measured 
in dS (synonymous substitutions rate). The median age of recently duplicated 
genes is lower than the one of ancient duplicated genes and one-to-one 
orthologs; B) Enrichment of protein domains among genes up regulated in 
paraistic females compared with free-living females (FDR < 0.05 and 
enrichment value > 1).  
 

Upregulation of members of the same gene families in different 

developmental stages raised a question of how variable expression patterns 

can arise within a single gene family. Recent work in the nematode 

Pristionchus pacificus showed evidence for subfunctionalization in terms of 

developmental regulation in the HSP20 gene family [197]. A Phylogenetic tree 

was reconstructed using S. papillosus CAP protein sequences and its 

differential expression matrix, and two different sets of paralogous gene 

clusters with interesting differential expression pattern, labeled as Cap-A and 

Cap-B were found (Figure 16). Genes in Cap-A was up-regulated specifically 

in the iL3 stage and showed no significant change in other comparisons 

(Figure 15 A). Similarly, genes in Cap-B are up-regulated predominantly in the 

female parasitic stage (Figure 15 B). This confirms that different members of 
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the CAP gene family have different expression profiles and the expression 

pattern is not conserved within this family.   

On the other hand, the Astacin tree indicates that more than half of the 

Astacin gene family members show stage specific differential expression in 

parasitic females and iL3 stages (Figure 17). Two major clusters (Asta-A and 

Asta-B) in the Astacin tree were found. Whereas genes in Asta-A show no 

shared expression pattern, individual subclusters in Asta-B show shared but 

heterogeneous patterns of differential expression. For easy understanding, 

Asta-B was subdivided into five distinct subclusters based on their differential 

expression pattern. Genes in paralogous cluster Asta-B1 and Asta-B5 showed 

up-regulation in parasitic females (Figure 18 A and D), and Asta-B2 and Asta-

B3 genes in iL3 (Figure 18 B and C). Subcluster Asta-B4 shows strong trends 

of downregulation in various comparisons including iL3. Even though, a large 

number of Astacin genes have no specific expression profiles, genes in 

clusters Asta-B1, Asta-B5, Asta-B2 and Asta-B4 reflect the previous 

observation of different functions performed by members of this gene family 

(Figure 17). These indicate that despite a large over-representation of Astacin 

and CAP proteins in parasitic stages, distinct members of the same gene 

family have increased levels of expression in other developmental stages as 

well (Figure 15 and 17).  

Figure 15. The expression values of different developmental satages S. 
papillosus CAP gene family. A) CAP-A and; B) CAP-B  
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Figure 16. Phylogenetic tree and expression patterns of different 
developmental stages of S. papillosus CAP genes. A) Genes in the phylogenetic 
tree are colored based on gene class. Gray rectangles denote two arbitrarily defined 
paralogous clusters CAP-A and CAP-B, which represent relatively closely related 
gene sets with similar expression profiles. Blue doted lines indicate sub-clusters 
chosen for in-depth sequence analysis to test for positive selection; B) The heatmap 
shows the differential expression pattern for each gene across all pairwise 
comparison of S. papillosus developmental stages. Up-regulation, down-regulation 
and no change in gene expression are shown in green, red and black respectively in 
the heatmap. 
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Figure 17. Phylogenetic tree and expression patterns of Astacin genes from 
different developmental stages of S. papillsosus. Leaves (genes) in the 
phylogenetic tree are colored based on gene class. Gray rectangles denote arbitrarily 
defined paralogous clusters Asta-B1, Asta-B2, Asta-B3, Asta-B4 and Asta-B5. Blue 
doted lines indicate subclusters chosen for in-depth sequence analysis to test for 
positive selection; B) The heatmap shows differential expression pattern for each 
gene in the tree across all pairwise comparison of S. papillosus developmental 
stages. Up-regulation, down-regulation and no change in gene expression are shown 
in green, red and black respectively. 
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Figure 18. The expression values of S. papillosus different developmental 
stages Astacin genes families. A) Asta-B1; B) Asta-B2; C) Asta-B3 and D) 
Asta-B5 are shown as box plot. 
 

This stage-specific expression of different sets of duplicated genes in parasitic 

females and iL3 stage indicates the possibility of sub-functionalization 

mechanism acting on Astacin and CAP gene families, where gene duplication 

is followed by partition of function or expression between duplicates. Similar 

patterns of sub-functionalization has been observed in the heat shock protein 

family (HSP20) of P. pacificus, where distinct paralogous gene clusters have 

higher expression levels in different developmental stages [197]. This shows 

that sub-functionalization is one of the dominant mechanisms in retention of 

duplicated genes in nematodes. Similar cases of sub-functionalization aided 

duplicated gene retention have been reported in different organism ranging 

from yeast [198] to insects [201][202]. Even though the expansion of CAP and 

Astacin gene families as identified in Strongyloidides cannot be proven to be 

the causative event leading to parasitism in this family, previous experimental 

studies have given first hints on what role these families may have during 

infection. CAP proteins are cystine rich secretary proteins, functioning as 

immunomodulatory molecules in parasitic nematodes [201]. They play a 
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crucial role in parasite establishment and immune modulation upon Necator 

americanus infection. Because of their inhibitory effect on neutrophill and 

platelet activity, these proteins are considered as a potential vaccine 

candidate against hookworms [205]. On the other hand, Astacins are 

metallopeptidase found in variety of different species [204]. Functional roles 

for Astacin proteases in parasitic nematodes include host tissue penetration 

by iL3s [205], cuticle formation and ecdysis [208][211] and tissue digestion, 

penetration and migration [210]. The identification of candidate genes 

associated with parasitism is of utmost importance for the development of 

potential treatments, especially in a family of nematodes such as 

Strongyloidides, of which has the potential to infect a wide range of vertebrate 

hosts including humans. The fact that gene duplications have previously been 

reported to be associated with parasitism in plants, arthropods, and 

trematodes [213][214] further support the nature of CAPs and Astacins as 

strong parasitism-associated candidate genes.  

The current results confirm and extend previous findings on the evolution of 

parasitism-associated genes in Strongyloides nematodes. Astacin and CAP 

gene family evolution is a result of discrete and continuous changes in the 

environment, such as host switches and adaptation of the host immune 

response, but further studies in other systems are needed to bring these 

findings into the broader context of general evolution of parasitism in parasitic 

nematodes.  

2.2.3 Contributions 
 
Praveen Baskaran and I designed this study. I did all the parasitological 

works. I isolated total RNA and prepared transcriptome libraries for 

sequencing from all the six developmental stages in all replicates. The 

sequencing was done in the in house sequencing service facility. Praveen 

Baskaran and Dr. Christian Rödelsperger did all the bioinformatic analyses. I 

wrote the manuscript with Praveen, Dr. Christian Rödelsperger and Dr. Adrian 

Streit. This work has been submitted to Genome Biology and Evolution.  
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2.3 Genetic diversity and reproduction in the human parasitic nematode 
Strongyloides stercoralis  

2.3.1 Different genotypes of S. stercoralis isolated from humans and dogs 
 

Although some degree of host specialization was proposed in the literature, S. 

stercoralis is considered a species which lives in humans, dogs and other 

non-human primates [15][121][213]. To address the zoonotic importance and 

genetic diversity of S. stercoralis, the SSU region covering the HVR-I and 

HVR-IV were successfully sequenced for 340 and 99 single Strongyloides 

larvae isolated from humans and dogs respectively. All the S. stercoralis 

larvae isolated from humans, had the same nucleotide sequence at HVR-IV 

as the published S. stercoralis full length SSU sequence (AF279916), which I 

used as a reference (human type genotype). From a total of 99 single 

Strongyloides larvae genotyped from dogs, only 14 had the human type 

genotype and the rest (85 larvae) differed at three positions (two indels, one 

base substitution, called dog type genotype) (Table 2 and Figure19).  

 

Figure 19. Nucleotide sequence of S. stercoralis 18S rDNA HVR-IV isolated 
from humans and dogs. Nucleotide differences at HVR-IV of S. stercoralis 
with dog type genotype are given in red. Deletion sites are given by (-) S. 
stercoralis with the human type genotypes from humans and dogs have 
similar nucleotide arrangement as reference sequence (AF279916). 
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Table 2. S. stercoralis larvae SSU HVR-I and HVR-IV genotypes from 
humans and dogs. 

Genotype I: 4T from position 176 to 179 and T at position 458 (KF926658); 
Genotype II: 5T from position 176 to 179 and T at position (KF926659); 
Genotype III: 5T from position 176 to 179 and A at position 458 (KF926660) 
[153]; Human type HVR-IV genotype: identical nucleotide arrangement at 
HVR-IV to AF279916 SSU reference sequence (KU724124); Dog type HVR-
IV genotype: differed by two indels and one base substitution from the 
reference sequence (KU724129).  
 

With respect to the HVR-I, three genotypes in humans as described by Schär 

et al. [153] were found and the same nomenclature for different HVR-I 

genotypes was used as described by Schär et al. [153] (Table 2). In humans, 

the highest proportions of S. stercoralis worms have genotype II (298) 

followed by genotype I (28) and genotype III (14) (Table 2). The majority of 

the S. stercoralis genotyped from dogs, had genotype I (88) followed by 

genotype II (10) and geneotype III (1) (Table 2). All 10 worms of HVR-I 

genotype II, three with HVR-I genotype I and one with HVR-I genotype III 

derived from dogs had the human type genotype at HVR-IV. Nine of the 

Strongyloides larvae sequenced from dogs were identical to Strongyloides 

procyonis (AB272234), a species known to occasionally occur in dogs [214]. 

In spite of the differences, the known S. stercoralis SSU sequence was the 

most closely related sequence in the databases, as judged by BLAST 

analysis to all variants except the S. procyonis ones, indicating that all these 

worms are very closely related with or belong to the species S. stercoralis. 67 

Strongyloides larvae isolated and sequenced from pigs at HVR-I and HVR-IV 
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were different from S. stercoralis but similar to Strongyloides ransomi 

(AB453327).  

Given that the larvae were sampled from people and dogs from the same 

households, and repeatedly worms with different genotypes were present in 

the same host individual, one would expect that there exists ample 

opportunity for worms of different genotypes to hybridize. In particular, the 

less frequent alleles would be expected to be present mostly in heterozygous 

state. However, like in a previous study [153], which was limited to human 

hosts, I did not find a single worm that was heterozygous for two different 

SSU alleles. There are two alternative explanations for these observations. 

Either, S. stercoralis in the current study area never reproduces sexually or 

productive mating occurs only within SSU genotypes. Should the latter be the 

case, the different SSU types would have to be considered different species. 

Absence of sexual reproduction may have two reasons. Firstly, the worms in 

this study area reproduce only through the homogonic cycle, which is non-

sexual in all species of Strongyloides where it has been tested [48]. The 

second possible reason for the absence of sexual reproduction is that S. 

stercoralis may reproduce asexually also in the free-living generation.  

2.3.2 Different mitochondrial cox1 haplotypes of S. stercoralis isolated from 
humans and dogs  
 

Next, I asked if the different SSU genotypes of S. stercoralis isolates also vary 

at their cox1 mitochondrial gene sequences, which are only maternally  

inherited. I successfully sequenced 552 bp of the cox1 gene for a subset of 78 

S. stercoralis larvae (57 from humans and 21 from dogs). The 57 larvae 

sequenced from humans were grouped into 7 haplotypes with pairwise 

nucleotides difference ranging from 0.18 to 2.71 % (Table 3). The 21 larvae 

sequenced from dogs were grouped into 11 haplotypes with pairwise 

nucleotides difference ranging from 0.54 to 6.16 %. Two of these haplotypes 

were identical with two of the haplotypes found in human derived worms 

(haplotype 2 and 3) and occurred exclusively in worms with a human type 

SSU haplotype. Also, all 4 dog-derived individuals with a human type SSU 
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haplotype had one of the two human type cox1 sequence variants. The 

pairwise nucleotides difference between the different human and dog isolates 

range from 0.18 to 7.61 %. The corellation between the SSU genotypes and 

cox1 haplotypes are given in Table 4. Next, I constructed a maximum 

likelihood phylogenetic tree using the different S. stercoralis cox1 haplotypes 

isolated from humans and dogs by MEGA6 [215]. The human and dog 

isolates with different haplotypes were grouped in separate clades and each 

clade forming two sub-clades with strong nodes (Figure 20). The dog isolates 

that have similar cox1 nucleotide sequences (haplotype) as in human isolates 

were grouped in the same clade, indicating these larvae with this haplotype 

could be shared between humans and dogs (zonootic). In general S. 

stercoralis form more diverse populations in both humans and dogs than 

previously thought. Also with respect to their mitochondrial genome cox1, the 

few worms from dogs with a "human-type" SSU haplotype were very close to 

human derived worms of the same SSU type. All these observations suggest 

that in the current study area there exists a dog-specific polulation (incapable 

of infecting humans) and a predominantly human specific one, which can also 

infect dogs. 
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Table 3. Pairwise nucleotide diversity between different S. stercoralis cox1 
haplotypes from humans and dogs. 

The first column shows the accession number of different haplotypes of S. 
stercoralis sequences deposited in the NCBI nucleotide database from this 
study. Haplotypes 1 and 4-7 were isolated from human and Haplotypes 8-16 
were isolated from dogs. Haplotypes 2 and 3 were found in both hosts.  

 

Table 4. Correlation between S. stercoralis SSU genotypes and cox1 
haplotypes isolated from humans and dogs. 
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Figure 20. Maximum-likelihood reconstruction of phylogenetic tree based on 
partial sequence of cox1 S. stercoralis isolated from humans and dogs. 
Necator americanus (AJ417719) served as an outgroup. In brackets are the 
numbers of worms that have the indicated cox1 haplotype. The numbers with 
KX prefix are the GenBank accession numbers of the respective S. stercoralis 
haplotype deposited in the NCBI nucleotide database.  
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2.3.3 Reproduction infree-living generation of a laboratory isolate of S. 
stercoralis  
 

Interestingly, as had been seen previously in Schär et al. [153], among the 

more than 450 larvae from humans and dogs genotyped, I did not find a 

single worm, which appeared heterozygous for two different SSU haplotypes. 

This indicates that the worms with different SSU haplotypes do not interbreed, 

either because productive mating occurs only within a haplotype group, or 

because S. stercoralis in this study area reproduces only non-sexually. Based 

on cytological observations, it was proposed for multiple species of 

Strongyloides [48], among them S. stercoralis [216], that the free-living 

generations reproduce by sperm dependent parthenogenesis (pseudogamy). 

However, this hypothesis was disproved for some species of Strongyloides 

using molecular genetic approaches. Specifically, sexual reproduction was 

shown to occur in the free-living generations of S. ratti [45],  S. papillosus [51], 

and S. vituli [56], but so far not for S. stercoralis. During the sampling for the 

field study, I did observe free-living adults of both sexes in appreciable 

numbers. The free-living generations of the laboratory isolate UPD strain of S. 

stercoralis is capable of reproducing through the heterogonic cycle [217]. I 

used this isolate to address the question if reproduction in free-living stages of 

S. stercoralis is sexual or not. First, I tested if males are required for 

successful reproduction. To this end, I isolated virgin young free-living 

females from one-day-old fecal cultures and cultured them individually at 

22°C (n=192 females) or at 25°C (n=192 females) for 3 days. None of these 

384 worms produced progeny. These results indicated that males/sperm are 

needed to produce viable progeny in S. stercoralis. However, this finding does 

not exclude reproduction by sperm dependent parthenogenesis 

(pseudogamy) as has been proposed [216]. In order to determine if males 

contribute to the genetic material of the progeny, I set up crosses of single 

virgin females and males from one-day-old fecal cultures as described in 

Materials and Methods. Of 18 pair crosses, I genotyped both parents and 

eight of their progenies using ytP274 as a molecular genetic marker, which 

exists in two alleles (T or C) in the laboratory isolate (PV001) at position 231 
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of the marker. The genotyping results (Table 5) showed the inheritance of 

paternal alleles by the progenies with no indication for a deviation from 

Mendelian segregation, and with this they were inconsistent with clonal 

reproduction. These preliminary results, based on only a single marker, 

suggest that the reproduction in the free-living stages of the laboratory strain 

of S. stercoralis is sexual but we do not know yet if this is also the case for the 

wild isolates that I investigated. Determining if sexual reproduction occurs 

within SSU genotypes of wild isolates is therefore one of the most urgent 

questions to be addressed that arises from this study. 

Table 5. Genotypes of S. stercoralis free-living parents and their progenies 
using ytP274 as a molecular genetic marker. 

 

The first column is number of the cross, the second and third column are 
genotypes of mother and father. The fourth column is genotypes of all the 
eight progenies genotyped per crosses. The ytP274 marker consists of a 
single nucleotide polymorphism T/C at position 231. 
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This study reports the first large-scale genotyping of S. stercoralis from 

humans and dogs collected from the same locations at the same time. The 

rural communities in Cambodia mostly share their premises with their animals 

and the general hygiene and sanitation condition is ideal for human to animal 

and animal to human transmission of as soil transmitted helminthes including 

S. stercoralis [36].  Based on SSU and mitochondrial cox1 genotypes, the S. 

stercoralis worms in the current study area fall into multiple groups, which 

might be separate populations. These separate populations might represent 

closely related species or subspecies, which parasitize the same host but are 

not able to interbreed or a species complex of asexually reproducing worms. 

Although the Strongyloides spp. populations in humans and dogs are largely 

separate, dogs do carry at low numbers but fairly high prevalence S. 

stercoralis that is indistinguishable from S. stercoralis in humans. This 

suggests that S. stercoralis can be transmitted between humans and dogs.  

2.3.4 Contributions 
 
I, Dr. Adrian Streit and Pro. Dr. Peter Odermatt designed this study. Fabian 

Schär and I collected the worm samples from humans and dogs. I performed 

the PCR, sequencing and sequence analyses. I wrote the manuscript with Dr. 

Adrian Streit. A manuscript about this work is being prepared for submission.  
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2.4 Genetic and phylogenetic analyses of O. ochengi isolates using complete 
mitochondrial genome sequences 

2.4.1 Mitochondrial genome size, content and organization 
 

I conducted short read whole genome sequencing experiments with 11 adult 

single O. ochengi worms (3 males and 8 females). The mitochondrial 

sequences were retrieved from these data. For two individuals, one of the 

mitochondrial subtype “ochengi” and one of the variant “Siisa” (c.f. [191] 

[190]), I manually assembled and annotated the full mitochondrial genomes. 

The resulting reference genomes were deposited in GenBank under the 

accession numbers KX181289 (variant ochengi) and KX181290 (variant 

Siisa). Both sequences are 13,744 bp long (Figure 21) but differ at 158 single 

nucleotide positions. Compared to O. volvulus (AF015193) [218] and O. 

flexuosa (HQ214004) [219], the O. ochengi mitochondrial genome is slightly 

smaller due to shorter intergenic regions. The gene content and order is the 

same as in O. volvulus [218]. The mitochondrial genome of O. ochengi 

contains 12 protein-coding genes (cox1–cox3, nad1–nad6, nad4L, atp6 and 

cob), 22 transfer RNA (tRNA) genes, a small subunit ribosomal RNA gene 

(rrnS) also called 12S, and a large subunit ribosomal RNA gene (rrnL) also 

called 16S, and an AT-rich 318 bp non coding region. Like all other 

nematodes species whose mitochondrial genomes were sequenced (except 

for T. spiralis [220]), O. ochengi also lacks the protein-coding gene atp8. The 

nucleotide compositions of the entire mitochondrial genome of O. ochengi are 

very A-T rich (73.22%) and there is a bias for the nucleotide T being on the 

coding strand. Of G-C base pairs, the G is preferentially on the coding strand. 

The nucleotide composition of the coding strand of the type "ochengi" 

reference sequence (KX181289) is: A=2607 (18.97%), T=7456 (54.25%), 

G=2765 (20.12%) and C=916 (6.66%) (Table 6).  
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Figure 21. The mitochondrial genome of O. ochengi (KX181289). All genes 
are transcribed clockwise. Protein-coding and rRNA genes are indicated with 
the standard nomenclature. The tRNA genes are indicated with the one-letter 
code of their corresponding amino acids. There are two tRNA genes for 
Leucine: L1 for codons CUN and L2 for UUR; and two tRNA genes for Serine: 
S1 for codons UCN and S2 for AGN. “NCR” refers to the non-coding region. 
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Table 6. Positions and nucleotide sequence lengths of mitochondrial genes in 
O. ochengi (KX181289 and KX181290). 

For protein coding genes, the initiation and the termination codons and for 
tRNA genes the anticodons are indicated. 
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Table 7. Codon usages of the 12 protein-coding genes in the mitochondrial 
genome of O. ochengi (KX181289). 
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2.4.1.1 Protein-coding genes 

 

The O. ochengi mitochondrial genome encodes 12 protein-coding genes. All 

O. ochengi mitochondrial genes are transcribed in the clockwise direction. 

The order of the protein coding genes of O. ochengi is: cox1->nad6->cob-

>cox3->nad4L->nad1->atp6->cox2->nad3->nad5->nad2->nad4 (Figure 18 

and Table 6). The predicted translation initiation and termination codons for 

the 12 protein coding genes of O. ochengi are given in Table 6. The most 

common initiation codon for O. ochengi was ATT (7 of 12 protein genes), 

followed by TTG (4 of 12 protein genes) and CTT (1 of 12 protein genes). The 

termination codons TAA and TAG were used each six times. A total of 3,457 

amino acids are encoded by the O. ochengi mitochondrial genome. The A+T 

percentage of protein coding genes of O. ochengi ranges from 66.85 % to 

79.01 % (Table 8). 

All codons are used except for Ala (GCC), Pro (CCC), Ser (TCC), and Thr 

(ACC), which is consistent with the strong bias against the C nucleotide. 

Codons composed of A and T nucleotides are predominantly used, reflecting 

the very strong bias toward A+T in the mitochondrial genome of O. ochengi. 

The codon usages in the mitochondrial genome of O. ochengi (KX181289) 

are given in Table 7.  The most frequently used codons are Phe (TTT: 

18.03%), followed by Leu (TTG: 8.96%), Val (GTT: 7.58%), Tyr (TAT: 6.40%), 

Gly (GGT: 5.50%), IIe (ATT: 5.07%) and Ser (TCT: 4.58%). The least utilized 

codons are Leu (CTA and CTC) and Arg (CGA and CGC), each codon used 

only once. 
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Table 8. Nucleotide compositions, SNPs and pairwise nucleotide differences 
in the whole mitochondrial genome of O. ochengi (KX181289) and 
(KX181290). 

NCR and EMG stand for “non-coding regions” and “entire mitochondrial 
genome” respectively.  

 

2.4.1.2 Ribosomal and transfer RNA genes  

The rrnS and rrnL genes of O. ochengi were identified based on their 

sequence similarities with O. volvulus. The rrnS and rrnL are located between 

nad4L and tRNA (Y) and tRNA (H) and nad3 respectively. The length of the 

rrnS and rrnL genes of O. ochengi are 684 and 972 bp respectively (Table 6). 

The A+T content of rrnS and rrnL are 74.27 % and 77.06 % respectively 

(Table 8). A total of 22 tRNA sequences (vary in length from 55 to 64 bp) were 

identified in the mitochondrial genome of O. ochengi. The predicted 

secondary structures (not shown here) and locations of the O. ochengi tRNAs 

were the same as in O. volvulus [218]. Twenty of the 22 mitochondrial tRNA 

genes share a common secondary structure in which the TΨC arm and the 

variable loop are exchanged with a TV-replacement loops [221]. Two serine 

tRNA genes (S: UCN and S: AGN) contain typical D replacement loops [221]. 

In the mitochondrial genome of O. ochengi, some tRNA genes overlap with 

the adjacent genes. Five mitochondrial tRNA sequences overlap with the start 

of protein coding genes by 1–5 nucleotides (tRNA(L: CUN)-cox3, tRNA(K)-

nad4L, tRNA(Y)-nad1, tRNA(S:AGN)-nad2, tRNA(T)-nad4). Two 
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mitochondrial tRNA sequences overlap with the end of protein coding genes 

by 2–23 nucleotides (nad1-tRNA(F) and cox2- tRNA(H)). Two tRNAs, 

tRNA(Y) and tRNA(H) overlap with rrnS and rrnL by 7 and 3 nucleotides 

respectively. Three pairs of O. ochengi tRNAs share 1-7 nucleotides overlap 

with each other (tRNA(L:UUR)-tRNA(N), tRNA(C)-tRNA(S:UCN) and 

tRNA(E)- tRNA(S:AGN)).  

 

2.4.1.3  Non-coding sequences 

A 318 bp long AT rich (83.02%) non-coding region is located between the 

cox3 and the tRNA(A) genes. There are also 19 short intergenic regions 

varying in length from one to 46 bp. The longest of them (46 bp) is located 

between tRNA(E) and nad6.  

 

2.4.2 Sequence comparsion of mitochoderial genes  

First, I performed a pairwise sequence comparison between the reference 

sequences for the two-mitochondrial clades. The results for the entire 

mitochondrial genome as well as separate comparisons of the protein coding 

genes, ribosomal RNA genes and the NCR are presented in Table 8. Overall; 

the two sequences differ at 158 positions (1.15%). Next, I conducted pairwise 

sequence comparisons between the 11 Onchocerca individuals from this 

study and the published sequences of O. volvulus (AF015193), O. gutturosa 

(unpublished) and O. flexuosa (HQ214004) (Table 9). Since for some of these 

no fully assembled mitochondrial genomes are available, this comparison was 

limited to protein coding genes. The pairwise nucleotide diversities within the 

species O. ochengi range from 0.029% to 1.36%. The samples fall into two 

groups confirming the existence of the two mitochondrial clades “ochengi” and 

“Siisa”.  

Among the 9 “ochengi” type individuals, the pairwise nucleotide diversities 

were between 0.029% and 0.211%. The pairwise nucleotide diversity between 

the two type “Siisa” individuals was 0.144%. The pairwise nucleotide diversity 

between the two-mitochondrial clades ranges between 1.25% and 1.29%. 
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Among the protein-coding genes, cox3, nad1, nad6 and cox2 would be 

suitable candidate loci for future population genetics studies, as they were the 

most variable between the Onchocerca isolates in the current study. The 

pairwise nucleotide diversities between the protein coding genes of O. 

ochengi and O. volvulus, O. gutturosa and O. flexuosa are around 3.3%, 7.1% 

and 10.3% respectively (Table 9).  

Table 9. Pairwise nucleotides diversity between the 12 protein coding 
mitochonderial genes of Onchocerca spp. 

In the first column are: 11 O. ochengi isolates from this study, O. volvulus 
(AF015193) and O. gutturosa (unpublished sequence obtained from M. 
Blaxter, University of Edinbourgh) and O. flexuosa (HQ214004).The numbers 
are pairwise  percentage nucleotide differences.  

 

2.4.3 Phylogenetic analysis 

 
From previous molecular genetic data based on nuclear SNP markers it was 

concluded that the two mitochondrial types interbreed freely and therefore 

belong to the same species [191]. On the other hand, O. ochnegi and O. 

volvulus are well-accepted different species as they are most probably not 

able to interbreed due to different chromosome numbers. O. ochengi has 

2n=5 chromosomes and O. volvulus has 2n=4 chromosomes, possibly after 

loosing one pair of its chromosome due to chromosome fusion [25][222]. 

Somewhat puzzlingly, earlier studies [190][191] which were based on rather 

little sequence information, found the mitochondrial types "ochengi" and 

"Siisa" to be about equally distant from each other as either of them is from O. 
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volvulus. To resolve this, I conducted phylogenetic analyses of all the 11 O. 

ochengi individuals and 11 other Spirurida nematodes using Maximum 

Likelihood (ML) based on concatenated mitochondrial amino acid sequences 

of 12 protein-coding genes (Figure 22). This phylogenetic analysis clearly 

confirms the presence of the two mitochondrial clades "ochengi" and "Siisa", 

which are much more closely related to each other than either of them is to O. 

volvulus.  

Figure 22. Maximum-likelihood reconstruction of a phylogenetic tree based on 
the amino acid sequences of 12 protein-coding mitochondrial genes. Included 
are the sequences of the 11 adult O. ochengi from this study and the 
sequences of three other species of Onchocerca and of 8 other Spirurida 
nematodes of variable phylogenetic distance to O. ochengi. F and M stands 
for O. ochengi females and males, respectively.  
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It was hypothesized that O. volvulus and O. ochengi evolved from a common 

ancestor after humans acquired this infection from their cows upon cattle 

domestication in Africa about 10,000 years ago [24]. Usually, the pairwise 

nucleotide difference between the mitochondrial genomes of two 

interbreeding strains of the same species of nematodes is up to 6%, whereas 

between different species it is usually more than 10% [223]. The pairwise 

nucleotide difference of about 1.3% between the two-mitochondrial clades of 

O. ochengi is well in the range of expected mitochondrial genome sequence 

variation within the same species. Interestingly, the pairwise nucleotide 

difference between O. volulus and O. ochengi of only 3.3% is within the range 

of what would be expected for within-species variation in nematodes. This 

further supports the hypothesis that O. ochengi and O. volvulus are two 

closely related sister species, and therefore O. ochengi in cattle is a suitable 

animal model for many aspects of the biology, although not the pathology, of 

O. volulus, the causative agent of human onchocerciasis also called river 

blindness [188].  

2.4.4 Contributions 

 
I designed this study with input from Dr. Adrian Streit. Dr Alfons Renz 

provided adults Onchocerca worm samples in nodules. I isolated the adults’ 

worms from the nodules by collagenase digestion. I extracted genomic DNA 

from individual worms. I extracted genomic DNA from individual worms and 

prepared the genomic DNA libraries for sequencing. The sequencing was 

done in the in house sequencing service facility. Dr. Christian Rödelsperger 

did all the bioinformatic analyses. I and Dr Adrian Streit wrote the manuscript. 

A manuscript about this work is in preparation for submission.  
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3. Materials and Methods 

3.1 Culture and isolation of the parasites  
 
3.1.1 Strongyloides ratti  

 

Strongyloides ratti strain ED321 was used in these experiments [224]. For the 

characterization of the infection dynamics, four weeks old male wistar rats and 

gerbils were purchased from Charles River (Sulzfeld, Germany). Four rats 

and four gerbils were subcutaneously inoculated with about 500 iL3s as 

described [224]. The animals of the same species were housed together. 

Starting from six days after infection, feces were collected overnight from the 

animals by placing them in caches underneath lined with wet paper towels at 

room temperature for five days per week until no worms were detected in the 

feces in two consecutive samples (four weeks in the rats or two months in the 

gerbils). From gerbils, after two months, feces were collected once a month 

from the gerbils until no worms were detected anymore (infections in the 

gerbils lasted for about 6 months). During the first 4 weeks and 8 weeks of 

infections for rats and gerbils respectively, fecal samples were split in half and 

one part incubated at 19°C and the other part at 22°C for 48 hours. In the 

gerbils 8 weeks post infection, the entire samples were incubated at 19°C. 

The worms were recovered from the cultures using Baermann technique 

[225]. Total worm outputs and total worm sex ratios (the number of iL3s (from 

the homogonic cycle) and free-living females and males) were determined 

from feces cultured at different temperature for each group of animals. The 

same experiment, as described above was repeated with different host 

animals purchased at a different time, infected with different batch of iL3s 

resulting in two independent biological replicates. 

For the determination of worm burdens, other groups of male rats and gerbils 

each with four animals were infected with 500 iL3 as described above. The 

total worm output was determined on days 6, 8 and 11 after infections. The 
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animals were sacrificed on the 12th day after infection. The small intestines 

were dissected from the rats, slit longitudinally and then carefully washed with 

Phosphate-buffered saline (PBS). The cleaned intestinal tissues were spread 

inside down over wire mesh placed on top of Bearmann funnel filled with 

prewarmed PBS and incubated for 3 hours at 37°C according to method 

described by Harvey et al. [195]. Parasitic females were then handpicked from 

the sediment with a worm pick and washed in fresh PBS at least two times, 

before being counted and then stored at -80 °C in TRIzol (Ambion, USA) for 

total RNA extraction used in RNA-Seq experiments. The same experiment as 

described above was repeated with host animals purchased at a different time 

and with a different batch of iL3s. The worms from the four animals of each 

group were pooled for RNA isolation resulting in two biological replicates. The 

rats were kept in Techniplast type 4 cages with elevated tops in an in-house 

animal facility, which is subject to regular inspections by the veterinary 

authorities of Tübingen (Veterinäramt Tübingen). All experiments with animals 

were in accordance with national and international animal wellfare legislation 

and guidelines. The permits were granted by the Regierungspräsidium 

Tübingen (AZ35/9185.82-5). 

3.1.2 Strongyloides papillosus 

The S. papillosus isolate LIN, originally isolated from sheep and maintained in 

rabbits [51] was used this experiment. Pathogen-free female rabbits (New 

Zealand White) purchased from Charles River Laboratories (Sulzfeld, 

Germany) were used to raise the parasite. The rabbits were subcutaneously 

inoculated with about 2000 infective larvae (iL3) [51]. Starting ten days post 

infection (p.i), the feces were collected overnight, mixed with sawdust and 

cultured at 25oC as described [51]. Worms of different developmental stages 

were isolated after the times specified below using the Baermann technique 

as described [51]. Stage 1 and 2 larvae (L1/L2) derived from parasitic adults 

females were isolated after 8 hours of culture. Free-living males and females 

were collected after 28 hours of culture. L1/L2, which were progenies of free 

living generations were collected after 48 hours of culture. To isolate iL3s, the 

culture dishes were placed in larger dishes with water as described [51] and 

after 7 days of culture the iL3s that had crawled into the water were collected. 
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These larvae were a mixture of iL3s from the direct and the indirect cycle. The 

isolate LIN, when kept in rabbits, has a strong tendency towards the indirect 

cycle [51] such that the majority of the iL3s were the progeny of free-living 

animals. At 22 days p.i, the rabbits were sacrificed to harvest the parasitic 

adults. The small intestines were dissected from the rabbits, its contents 

removed, slit longitudinally and carefully washed with PBS. The cleaned 

intestinal tissues were spread inside down over wire mesh placed on top of 

Bearmann funnel, filled with PBS and incubated at 37 oC for 3 hours 

according to method described by Harvey et al. [195]. The worms were then 

handpicked from the sediment of Baermann funnel, washed with PBS, 

counted and stored at -80 oC in TRIzol reagent (Ambion, CA, USA). All animal 

experiments were in accordance with national and international animal 

wellfare guidelines and legislation. The rabbits were kept in an in-house 

animal facility, which is regularly inspected by the local authorities 

(Veterinäramt Tübingen). The permits were granted by the 

Regierungspräsidium Tübingen (AZ35/9185.82-5).  

3.1.3 Strongyloides stercoralis 

This project was performed in collaboration with Prof. Dr. Peter Odermatt and 

his group from the Swiss Tropical and Public Health Institute at Basel, 

Switzerland and the group of Dr. Sinuon Muth from the National Center for 

Parasitology, Enthomology and Malaria Control at Phnom Penh, Cambodia. 

Stool samples were collected from humans and dogs in the same household 

in Anlong Svay and Chom Long villages, which are rural communities in 

Northern Cambodia. S. stercoralis larvae were isolated according to methods 

described by Schär et al. [153]. Briefly, stool samples were collected for two 

consecutive days from each member of the household who agreed to 

participate in the study. All the fecal samples collected from humans were 

analyzed within 3 hours after collection using Baermann and Kato-Katz 

methods [153]. The sediment from each sample was checked with a 

microscope and samples positive for S. stercoralis larvae were preserved in 

70% alcohol in eppendorf tubes. Fecal samples were collected from dogs, 

pigs and cats from S. stercoralis positive households with the help of owners 

and field workers. On the day of collection, about 3 g of feces was placed on a 
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freshly prepared agar plates from each sample and incubated for 36 hours at 

28°C to allow S. stercoralis larvae to develop to adults and migrate onto the 

agar. Then the plates were examined under the microscope for the presence 

of moving larvae or free-living adults. Positive plates were washed with 70 % 

alcohol and the worms were collected in 1.5 ml Eppendorf tubes. All the 

samples collected from humans and animals were transported to the Max 

Planck Institute for Developmental Biology at Tübingen, Germany for 

molecular taxonomy. This experiment was conducted by the approval of the 

National Ethics Committee for Health Research (NECHR), Ministry of Health, 

Cambodia and the ethics committee of the cantons of Basel-Stadt and Basel-

Land (EKBB), Switzerland. All participants were informed on the study 

procedures and provided written informed consent prior to enrolment. All data 

handled was strictly confidential. Individuals positive for S. stercoralis were 

treated with Ivermectin (200 µg/kg BW over two days).  

3.1.4 Onchocerca ochengi  

Several skin nodules containing adult Onchocerca worms were collected from 

different cattle in Ngaoundéré abattoir, Adamawa Region, Cameroon [27]. 

The nodules were stored in 80% ethanol and shipped to the Max Planck 

Institute for Developmental Biology in Tübingen for molecular analyses. 3 

adult males and 8 adult females (9 O. ochengi and 2 Onchocerca spp. Siisa) 

were used in the current analyses.  

3.2 RNA isolations and RNA-Seq library preparation 

 

S ratti and S. papillosus frozen in TRIzol (see above) were thawed, vortexed 

and refrozen in liquid Nitrogen at least three times. Then total RNA was 

isolated using standard TRIzol extraction method according to the 

manufacturer’s instructions (Ambion Inc., USA). The integrity of the RNA was 

verified by gel electrophoresis and the concentration was quantified using 

Qubit fluorimeter measurement (Invitrogen Inc., USA). RNA-Seq libraries 

were prepared from one µg of total RNA using TruSeq RNA Library 

preparation kit v2 (Illumina Inc., USA) according to manufacturer’s 
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instructions. The libraries were quantified with Qubit® 2.0 (Invitrogen Inc., 

USA) and Bionalyzer (Agilent Inc., USA) and then normalized to 5 nM. Paired 

end sequencing was done in one multiplexed lane using HiSeq2000 platforms 

(Illumina Inc., USA) at the in-house genome center.  

 
3.3 DNA isolation and DNA-Seq libraries preparations 

 

Adult O. ochngi worms were isolated from the nodule tissue by collagenase 

digestion as described by Kläger et al. [187]. Briefly, nodules were incubated 

at 37 oC overnight in 0.2% collagenase with PBS solution and then washed 

several times with PBS. DNA was extracted from single worms using the 

Epicenter DNA extraction kit (Epicenter, USA) according to the manufacturer’s 

instructions. The DNA was quantified using Qubit fluorimeter measurement 

(Invitrogen Life Technologies, USA). Before library preparation, partial cox1, 

12S, and 16S were amplified using the primer pairs reported earlier [191] and 

sequenced using one of the primers used for the amplification. The partial 

cox1, 12S and 16S were blast-aligned against the NCBI nucleotide database 

to determine if the worms were O. ochengi or Onchocerca spp. Siisa 

according to the published in the sense of the older literature [24][190][191]. 

The DNA libraries were prepared using the Low Input DNA library preparation 

kit (Rubicon Genomics, USA) according to the manufacturer’s instructions 

from 50 ng of genomic DNA. The libraries were quantified using Qubit and 

Bioanalyzer (Agilent Technologies, USA) and then normalized to 2.5 nM. The 

samples were sequenced as paired ends in one multiplexed lane using 

HiSeq2000 platform (Illumina Inc, USA) at the Max Planck Institute for 

Developmental Biology in-house genome facility.    

3.4 Molecular genotyping of S. stercoralis single larvae  

 

Single worm crude DNA preparations from ethanol-fixed samples were 

performed in PCR tubes [51] as follows: Single larvae were picked and 

washed two times with PBS and then incubated in 10 μl 1X lysis buffer (20 
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mM Tris-HCl pH 8. 3, 100 mM KCl, 5 mM MgCl2, 0.9 % NP-40, 0.9 % Tween 

20, 0.02 % Gelatine, 240 μg/ml Proteinase K) at 65 ºC for 2hrs, followed by 

incubation at 95 oC for 15 min. 25 μl reaction volume PCR were prepared 

using: 2.5 μl of 10X ThermoPol Reaction buffer (New England BioLabs), 0.5 

μl of 2mM dNTPS, 0.5 μl of 10 mM of each reverse and forward primers 

(specified below), 1.25 units Taq DNA polymerase (New England BioLabs), 2 

μl of worm lysate as template and 20.7 μl of nuclease free water. The 

thermocycling conditions were: initial denaturation at 94 °C for 2 min, followed 

by 35 cycles of 94 °C for 30 sec, 55°C for 15 sec, 72 °C for 2 min, and a post 

amplification final extension at 72°C for 10 min followed by cooling to 4 °C. 

Five μl of the PCR products were used for 2% agarose gel electrophoresis 

and visualized with ethidium bromide to analyze the PCR fragments. 0.5 μl of 

PCR product were used for sequencing with the primers indicated below. The 

sequencing reactions were done using the BigDye® Terminator v3.1 Cycle 

sequencing Kit according to the manufacture’s protocol (Applied Biosystems, 

USA) and sequenced at the in house sequencing facility. 

The HVR-I of the SSU was amplified using primers RH5401 and RH5402. The 

PCR products were sequenced using primer RH5403. A 420 bp fragment of 

the sequence was used for the analyses because this region is usually 

invariable in the same species of nematodes and was used for molecular 

taxonomy in other studies [226][227]. However, there wer reports of 

polymorphisms within S. stercoralis at two positions:  stretch of Ts starting at 

position 176 consisted of either 4Ts or 5Ts and at position 458 a T or an A 

compared to the reference sequence AF279916 [121][153]. The HVR-IV of 

the SSU was amplified using the primer pair 18SP4F and 18SPCR and 

sequenced using primer 18SP4F. A 620 bp fragment of the sequences was 

used for the analysis. In Strongyloides spp. HVR-IV had been described to 

vary between species of Strongyloides, but not normally within the same 

species [121][153] and it was recommended for species diagnosis [121][153]. 

A portion of the mitochondrial gene cox1 was amplified using the primer pair 

TJ5207 and TJ5208 and sequenced using TJ5207. A 522 bp of the 

sequences was used for the analysis. All primer sequences are given in 
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appendix 1. The sequences of the nuclear and mitochondrial markers used 

are given in Appendix 2-4. 

3.5 Crossing free-living stages of S. stercoralis 

 

This experiment was done in the laboratory of Prof. Dr. James B. Lok at the 

School of Veterinary Medicine, University of Pennsylvania, USA. For this 

study the S. stercoralis laboratory isolate UPD and the isofemale line PV001, 

which is derived from UPD were used. Both lines were maintained in 

prednisolone treated (immuno-suppressed) dogs at the School of Veterinary 

Medicine, University of Pennsylvania, USA in accordance with protocols 

702342, 801905, and 802593 from the University of Pennsylvania Institutional 

Animal Care and Use Committee (IACUC). Feces were collected overnight 

and mixed with charcoal and cultured as previously described [226] and 

incubated at 22 oC unless specified differently. 

To determine if free-living females are able to produce viable progeny without 

males the worms were harvested from one-day-old fecal cultures using 

Baermann funnels and 192 (virgin) L3-L4 females were placed individually in 

24 well plates containing NGM agar spotted with 30 μl OP50 incubated at 22 

oC for 72 hours and the rest at 25 oC for 72 hours. Then the cultures were 

checked for the presence of viable progeny produced by the unmated 

females. Another 192 females were isolated from fecal cultures that had been 

incubated at 25 °C and treated the same except that they were incubated at 

25 °C throughout the experiment.  

For the crossing experiment, L3-L4 male and female larvae were isolated by 

the Bearmann method. Single (virgin) females and males were handpicked 

and transferred in male-female pairs on 6 cm NGM plates spotted with 50 μl 

of OP50 and 20 μl of water taken from a bermann funnel and incubated at 22 
oC for 24 hrs. From pairs, where the female contained developing embryos in 

the uterus, the males were transferred into PCR tube containing 10 μl of lysis 

buffer (see above) and frozen and stored at -20 oC for single worm crude DNA 

extraction as described above. The females were left on the agar plates until 
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all the eggs were laid and then the females were picked into a separate PCR 

tube with lyses buffer and frozen and stored at -20 oC. After all the eggs had 

hatched, all the L1/L2s were transferred individually into separate PCR tubes 

with lysis buffer and frozen and stored at -20 oC. Single worm crude DNA 

extractions and single worm PCR was performed as described above [51]. 

Genotyping was done for 36 parents from 18 crosses and eight progenies 

(144 larvae) from each cross, using ytP274 as molecular genetic marker (see 

appendix5).  

3.6 Data and sequences analyses  
 
3.6.1 Strongyloides ratti infections and transcriptomics 

 

The nightly worm output count and parasitic worm burden in both hosts were 

expressed as mean per animal ± one standard deviation. The male to female 

ratio was calculated by dividing total number of males by the total number of 

females (free-living and iL3s) per culture. The differences in overall worm 

output and overall proportion of males produced were evaluated statistically 

using a Student t-test in Microsoft Excel. Comparative analyses of S. ratti 

parasitic adults RNA-Seq datasets were done by aligning raw reads to the S. 

ratti reference genome (version 4, which was obtained together with gene 

annotations from collaborators at the Welcome Trust Sanger Institute [11] 

using Tophat (version 2.0.3). Estimation of expression levels and identification 

of differentially expressed genes was done by Cufflinks and Cuffdiff (version 

2.0.1) [228]. Both biological replicates were analyzed separately and for the 

final analysis, differentially expressed genes that showed significant 

differences (FDR corrected P-value <0.05) in both replicates were considered. 

3.6.2 Strongyloides papillosus transcriptomics 

Sequencing reads were preprocessed using Trimmomatic [229] to remove 

adapters and trim low quality reads. Preprocessed reads were aligned to the 

S. papillosus reference genome (PRJEB525) using Tophat version 2 [230], 

followed by expression level estimation using Cufflinks [229]. Differentially 

expressed genes were identified by all possible pairwise comparisons of the 
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samples using Cuffdiff. Genes with logFC greater than 1 or less than -1 with 

FDR (false discovery rate) less than 0.05 were treated as differentially 

expressed genes. Protein domain annotation of S. papillosus protein 

sequences was carried out using the hmmsearch program and the PFAM 

domain database obtained from the HMMER package (Version 3.0). Domain 

enrichment analysis of differentially expressed genes was done in R version 

3.2.5 and statistical significance (FDR < 0.05) was determined using a Fisher 

exact test. Multiple sequence alignments were generated using Clustal omega 

[231]. Ambiguously aligned sequences were removed and the multiple 

sequence alignment of the two protein families was corrected manually. In 

order to determine the homology relationship of S. papillosus genes, the S. 

ratti gene annotation (PRJEB125) was downloaded from WormBase 

(WBPS4) and classification of genes into different homology classes were 

preformed using orthomcl [196].   

3.6.3 Onchocerca ochengi mitochondrial genome analyses 

The mitochondrial DNA (mtDNA) was extracted from the whole genome 

sequences for all the eleven Onchocerca worm samples [62]. The extracted 

sequences were assembled manually and aligned to the complete 

mitochondrial genome sequence of O. volvulus (AF015193) [218] using 

MUSCLE [232] and assembled using SeqBuilder (DNASTAR, Inc). The 

protein coding genes and the two ribosomal RNA (rRNA) of the O. ochengi 

mtDNA were identified based on the O. volvulus mitochondrialprotein coding 

genes [218]. The codon usages of 12 protein genes were examined using the 

invertebrate mitochondrial genetic code [215] and the nucleotide composition 

of codon families and amino acid occurrence frequencies were computed 

[233]. The tRNA genes were identified by ARWEN v1.2 [221] using the 

metazoan mitochondrial tRNA sequences as source. The analyses of the 

pairwise nucleotide difference of 12 protein-coding genes of the eleven 

Onchocerca isolates from cattle (this study), O. volvulus (AF015193), O. 

gutturosa (unpublished) and O. flexuosa (HQ214004) were done by MEGA6 

[215]. Nucleotide sequences alignment containing all the eleven Onchocerca 

isolates were generated using the MUSCLE algorithm [232]. The nucleotide 

alignment was checked for SNPs and the Indels were removed from the 
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dataset. Protein coding genes pairwise nucleotide diversity was calculated 

between the isolates using Mega6 [215].  

3.6.4 Strongyloides stercoralis single worm sequence analyses 

The sequence data obtained from single worm genotyping of S. stercoralis 

from humans and dogs were blasted against the NCBI nucleotide database to 

confirm the species identification. The sequences were aligned using SeqMan 

Pro version 12 (DNAStar Inc., USA) and compared to the SSU reference 

sequence (AF279916) to find sequence differences (SNPs and Indels). The 

sequences of ytP274 of parent and progenies in the crossing experiment were 

analyzed mannually by visualy inspecting each chromatograph at position 

231. If only a signal for T or only for C was present the worm was scored as 

homozygous for the respective nucleotide, if two ovelapping signals were 

present the worm was scored as heterozygous.  

3.6.5 Phylogenetic analyses  

3.6.5.1 Strongyloides papillosus gene family trees 

Multiple sequence alignments were generated using Clustal omega [231]. 

Ambiguously aligned sequences were removed and the multiple sequence 

alignment of the two protein families was corrected manually. Prottest [234] 

was used to identify the best substitution model for tree reconstruction using 

corrected alignment and phylogenetic trees were generated using Phangron 

R package [235]. The interactive tree of life web server [236] was used to 

display the differential gene expression information of all comparisons for 

Astacin and Cap genes with the phylogenetic tree. The Codeml tool from 

phylogenetic analysis by maximum likelihood (PAML) analysis was used to 

test for selection and to detect positively selected sites (PSS) [237].  In order 

to determine the homology relationship of S.papillosus genes, we downloaded 

the S.ratti gene annotation (PRJEB125) from WormBase (WBPS4) and the 

classification of genes into different homology classes was preformed using 

orthomcl [196].  

3.6.5.2 Strongyloides stercoralis cox1 tree 
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The different S. stercoralis partial cox1 nucleotide sequences and the 

corresponding N. americanus (AJ417719) out-group sequence [240] were 

aligned using the MUSCLE [234].  A phylogenetic tree was reconstructed 

using the maximum likelihood method from MEGA6 [216].  

3.6.5.3 Onchocerca ochengi mitochondrial genes tree 
 

Considering the high degree of intraspecific variation in nucleotide sequences 

of mitochondrial genes of nematodes [239], the protein coding mitochondrial 

genes were used for phylogenetic analyses. The mitochondrial sequences of 

the samples from this study (nine of the mitochondrial type Ochengi and two 

of the type Siisa) and ten published and one unpublished Spirurida nematode 

sequence [Acanthocheilonema viteae (HQ186249), Brugia malayi 

(AF538716), Chandlerella quiscali (HM773029), Dirofilaria immitis: 

(AJ537512), Gongylonema pulchrum, Setaria digitata (GU138699), Thelazia 

callipaeda (JX069968), Wuchereria bancrofti (HQ184469), Onchocerca 

volvulus: (AF015193), Onchocerca flexuosa (HQ214004) and O. gutturosa 

(unpublished, provided By Prof. Dr. M. Blaxter, University of Edinbourg)] were 

used for the molecular phylogenetic analyses. The 12 protein coding genes of 

each nematode were aligned using MUSCLE [232]. The evolutionary history 

was inferred by using the Maximum Likelihood method based on the Poisson 

correction model [215]. The tree with the highest log likelihood (-40799.8035) 

is shown. The percentage of trees in which the associated taxa clustered 

together is shown next to the branches (bootstrapping). Initial tree(s) for the 

heuristic search were obtained automatically by applying Neighbor-Join and 

BioNJ algorithms to a matrix of pairwise distances estimated using a JTT 

model, and then selecting the topology with superior log likelihood value. The 

analysis involved 22 amino acid sequences. The coding data was translated 

assuming Invertebrate Mitochondrial genetic code table. Evolutionary 

analyses were conducted in MEGA6 [215].  
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Appendix  
 
1. Nuclear and mitochonderial PCR primers used in S. stercoralis genotyping  

 

2.  S. stercoralis SSU HVR-IV sequence (AF279916) 

AGTTAGAGGTTCGAAGGCGATCAGATACCGCCCTAGTTCTAACCGTAAA

CTATGCCTACTAGATGTATGAATTATTAGTTATAATAATTTATGCATCTTCT

CGGAAACGAAAGTCTTTCGGTTCCGGGGGAAGTATGGTTGCAAAGCTGA

AACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGG

CTTAATTTGACTCAACACGGGAAAACTCACCCGGGCCGGACACTATAAG

GATTGACAGATTGATAGCTCTTTCATGATTTAGTGGTTGGTGGTGCATGG

CCGTTCTTAGTTCGTGGATATGATTTGTCTGGTTGATTCCGATAACGAGC

Primer ID             Sequence (5’-3’) 

HVR-I_F (RH5401) AAAGATTAAGCCATGCATG [7][226] 

HVR-I_R (RH5402) CATTCTTGGCAAATGCTTTCG [7][226] 

HVR-IV_F (18SP4F) GCGAAAGCATTTGCCAA [121] 

HVR-IV_R (18SPCR) ACGGGCGGTGTGTRC [121] 

cox1_F (TJ5207) TTTGATTGTTACCTGCTTCTATTTT [This study] 

cox1_R (TJ5208) TTTTACACCAGTAGGAACAGCAA [This study] 

ytP274_F (TJ6026) CAGGACCACCTGGACAAGTT [This study] 

ytP274_R (TJ6027) CTTTCCATCCTGATGCCACT [This study] 
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GAGACTTTTATGTTATATTAAATATTATTATTTTGTTTATTTTAATATAAATA

ATTAATATTTTAATAACAGATTAATAGTGTTTAACTATTTGAGAGAGAGCG

ATAACAGGTCTGTGATGCCCTTAGATGTCCGGGGCTGCACGCGCGCTAC

AATGTAGTGATCATTATGTTCCTGTTTAGAGATAAATGGGTAAACATTGAA

AACATTACGTAACTGGGAATGAAAATTGCAATTATTTTTCATGAACGAGG

AATTCCAAGTAAACGTAAGTCATTAGC 

3. S. stercoralis SSU HVR-I sequence (AF279916) 

AAACCGCGGAAAGCTCATTATAACAGCTATAGACTACACGGTAAATATTT

AGTTGGATAACTGAGGTAATTCTTGAGCTAATACACGCTATTTATACCAC

ATTAGTGGTGCGTTTATTTGATTAAACCATTTTTATATTGGTTGACTCAAA

ATATCCTCGCTGATTTTGTTACTAAAACATACCGTATGTGTATCTGGTTTA

TCAACTTTCGATGGTAGGGTATTGGCCTACCATGGTTGTGACGGATAAC

GGAGAATTAGGGTTCGACTCCGGAGAGGGAGCCTGAGAAACGGCTACC

ACATCCAAGGAAGGCAGCAGGCGCGAAAATTACCCAATTTTAGTTAAAA

GAGGTAGTGACGAAAAATGACAACCAAATATTATTATTAATATTTGGATTG

AAAATCTTCAAGTTTAAAT 

 

4.  S. stercoralis cox1 sequence ((LC050212)) 

TTTGATTGTTACCTGCTTCTATTTTTTTGGTTTTTTTGGCTTGTTTTGTTGA

TAATGGTTTGGGTACTAGTTGAACAATTTATCCTCCTCTATCTACTTCAGG

TCATCCTGGTTCTAGTGTTGATTTGGCTATCTTCAGTTTACATCTTTCTGG

TATTAGCTCTATTTTAGGTGGTATTAATTTTATGTGTACTGTTAAAAATTTG

CGTTCTAGTTCTGTTTCTCTTAATAATATGAGTTTATTTATTTGAACTATTT

TTGTTACTGTTTTTTTATTGGTTTTGTCTCTACCTGTTTTAGCTGGTGCTAT

TACTATGTTGTTAATTGATCGTAATTTTAATGGTTCTTTTTTTGATCCTAGT

TTTGGTGGTAATCCTTTGATTTATCAGCATTTGTTTTGGTTTTTTGGTCAT

CCAGAAGTTTATATTTTAATTTTACCTGCTTTCGGTATTATTAGTCAATGTA

CTTTGTATTTGACTGGTAAAAAAGAAGTTTTTGGTTATTTGGGTATGGTTT

ATGCTATTTTAAGTATTGGTTTAATTGGTTGTGTAGTTTGAGCTCATCATA

TGTATACTGTTGGTATAGATTTTGATTCTCGTGCTTACTTTACTGCTGCTA

CTATGGTGATTGCTGTTCCTACTGGTGTAAAA 
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5.  S. stercoralis ytP274 sequence (This study)  

CAGGACCACCTGGACAAGTTGTATATGTAGAACCGGATGCTAATAGAATT

GAACCAATATCAGGGCCACCAGGACCACAAGGCCCCCCAGGACCTCAA

GGACCACCAGGAATTCAAGGACCTAGAGGTGAACCAGGAATAGGAATGC

CAGGACCGCCGGGATTATTTACAGGTTTAACAGAAATGGATCTTGCAAG

GATAGCTGCATATCCAGGAATCAAAGGTGAATGTGTTGAAAGAAAGGGA

GTGGATGATTATAGCAATGATTCAGAAGAGCTTCCTATATATGATAGAAA

GATTCACAGACAAAACAGTAAAGGAGAAAAAGGAGATAAAGGTGATCCT

GGACCACAAGGACCACCAGGTCTACCAGGACTTTCAGGAACAACAAAAA

CATCTGCTACCTACACAGCTCCAGGAGGCGTAGAAGTTTACCAAACAAC

ACAAGAATTATTGGGAGCTACAAATTCTTTTAGACAAGGTGCATTGGCTT

TCAGTATTTCATCCCAACAATTAATGATCAGAGTGGCATCAGGATGGAAA

G 
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