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SUMMARY 

The spindle assembly checkpoint (SAC) is a highly conserved eukaryotic surveillance 

mechanism that maintains genomic integrity by delaying mitotic progression until all 

chromosomes have become properly attached to the mitotic spindle via their 

kinetochores. Malfunction of this checkpoint leads to chromosome segregation errors 

and has been implicated in tumorigenesis. SAC protein localization to unattached 

kinetochores is considered to be required for checkpoint signaling. 

This study employs the model organism Schizosaccharomyces pombe to investigate 

the role of different checkpoint components and their interactions with each other 

during the SAC signaling cascade. We examined the link between Mad1 and Bub1 to 

explore the connection between upstream and downstream events during checkpoint 

signaling. We found that conserved motifs in Bub1 and Mad1 are essential for Mad1 

localization to the kinetochore and checkpoint activity. Furthermore, we revealed a 

hitherto unknown additional function of Mad1 in creating the checkpoint signal. 

Bub1 seems to act upstream of Mad1, and certain motifs in one of the kinetochore 

proteins are required for kinetochore recruitment of the Bub3-Bub1 complex. Here we 

provide evidence that a subset of these motifs is sufficient for this recruitment and 

checkpoint activity. 

The ultimate effector of checkpoint signaling is the mitotic checkpoint complex. It was 

recently found that the composition of this complex is different from previously 

assumed. While early work suggested the presence of one Cdc20 molecule in the 

complex, latest results revealed that the mitotic checkpoint complex actually contains 

two Cdc20 molecules when bound to the APC/C. We observed the same situation in 

fission yeast and describe the role of conserved motifs within the checkpoint protein 

Mad3 in binding to those Cdc20 molecules. We furthermore indicate a function of the 

APC/C subunit Apc15 in the checkpoint that was unexpected based on work in other 

model organisms. 

Taken together, we added new facets to the picture of spindle assembly checkpoint 

signaling and highlight similarities and differences between organisms, which 

illustrate how conserved, yet versatile this signaling pathway is. 
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ZUSAMMENFASSUNG 

Der „spindle assembly checkpoint“ (SAC) ist ein hoch konservierter, eukaryontischer 

Überwachungsmechanismus der die genomische Integrität aufrechterhält, indem er 

das Fortschreiten der Mitose so lange verhindert, bis die Mikrotubuli der mitotischen 

Spindel sich an alle Kinetochore angeheftet haben. Eine Fehlfunktion dieses 

Kontrollmechanismus führt zu Fehlern bei der Chromosomensegregation und kann 

zur Tumorentstehung beitragen. SAC-Proteine konzentrieren sich an unangehefteten 

Kinetochoren, was als Voraussetzung für die Entstehung des SAC-Signals gilt. 

Diese Studie verwendet den Modellorganismus Schizosaccharomyces pombe um die 

Rolle der einzelnen SAC-Proteine und deren Interaktionen während der SAC-

Signalkaskade aufzudecken. Wir haben die Verbindung zwischen Mad1 und Bub1 

untersucht, um die Verknüpfung zwischen frühen und späteren Vorgängen des SAC-

Signalwegs zu verstehen. Dabei haben wir herausgefunden, dass konservierte 

Motive in Bub1 und Mad1 essentiell sind, um Mad1 an Kinetochore zu rekrutieren 

und ein SAC-Signal zu generieren. Zudem haben wir gezeigt, dass Mad1 eine 

zusätzliche und bisher unbekannte Funktion im SAC hat. 

Bub1 spielt früher als Mad1 eine Rolle in der SAC-Signalkaskade und bestimmte 

Motive in einem der Kinetochorproteine werden für die Rekrutierung des Bub3-Bub1 

Komplexes an die Kinetochore benötigt. Wir zeigen, dass ein kleiner Teil dieser 

Motive bereits für die Rekrutierung und die Aktivität des Checkpoints ausreicht. 

Der letztendliche Effektor des Checkpoint-Signals ist der „mitotische Checkpoint 

Komplex“. Es wurde kürzlich gezeigt, dass die Zusammensetzung dieses Komplexes 

von bisherigen Annahmen abweicht. Während frühere Arbeiten darauf hinwiesen, 

dass ein Molekül des Cdc20 Proteins Teil des Komplexes ist, haben neueste 

Ergebnisse gezeigt, dass der Komplex tatsächlich zwei Cdc20 Moleküle enthält, 

wenn er an den APC/C gebunden ist. Wir beobachteten eine vergleichbare Situation 

in Spalthefe und beschreiben wie konservierte Motive im Checkpoint Protein Mad3 

zur Bindung dieser Cdc20 Moleküle beitragen. Zudem zeigen wir, dass die APC/C 

Untereinheit Apc15 in S. pombe für Checkpoint-Aktivität benötigt wird, was basierend 

auf Arbeiten in anderen Organismen unerwartet war. 

Zusammenfassend konnten wir neue Aspekte des „spindle assembly checkpoint“ 

Signalwegs aufzeigen und haben sowohl Übereinstimmungen als auch Unterschiede 

zwischen Organismen gefunden, was verdeutlicht wie konserviert aber zugleich 

wandlungsfähig dieser Signalweg ist. 
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1 Introduction 

1.1 The cell cycle 

Cell division is essential for the asexual reproduction of eukaryotes, for embryonic 

development, for the growth of multi-cellular organisms and for tissue renewal. 

Hence, cell division is one of the most fundamental processes of life. The cell cycle is 

a highly coordinated series of events that eventually leads to the formation of new 

daughter cells. The cell cycle is divided into four major phases. During S phase, the 

DNA is replicated and subsequently distributed into the two daughter cells during 

mitosis and cytokinesis (M phase). Gap phases (G1 and G2) separate those two 

events of genome duplication and segregation, thereby providing time for nutrient 

uptake, protein synthesis and growth (Morgan, 2007). The phases between two 

mitoses, G1, S and G2, are also referred to as interphase. The time that a cell spends 

in each of those phases is highly variable between organisms and even the order in 

which the events occur is flexible to some extent. During a short time in Drosophila 

melanogaster embryonic development, nuclear division cycles occur without 

intervening cytokinesis and gap phases, generating a syncytium with a common 

cytoplasm and thousands of nuclei (Vidwans and Su, 2001). While budding yeast has 

a long G1 but no distinct G2 phase, fission yeast spends 70% of its time in G2 and 

only about 10% in each other phase of the cell cycle (Forsburg, 2003). Fission yeast 

furthermore only completes its cell division by cytokinesis once it has passed through 

G1 and S phase (Figure 1-1). Cells can exit the cell cycle after G1 to stop proliferation 

and enter a resting state, so-called G0 phase. This occurs with damaged and 

senescent, but also terminally differentiated or otherwise ‘quiescent’ cells (Morgan, 

2007). 

Key regulators that ensure a timely order of the different events during the cell cycle 

are cyclin-dependent kinases (CDK) and their activators (cyclins). The activity of 

CDKs varies throughout the cell cycle leading to a cyclical change of phosphorylation 

status of their substrates, which subsequently influences cell cycle progression. 

Driver of the CDK activity change are cyclins, which show fluctuating synthesis and 

degradation rates in the different cell cycle stages, while CDK abundance is constant 

(Morgan, 1995, 1997). Upon entry into G1 phase, cyclin abundance and therefore 
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CDK activity is low but increases to allow progression through interphase and 

mitosis. In order to exit mitosis at the end of M phase, CDK activity needs to drop 

again (Morgan, 2007; Coudreuse and Nurse, 2010). To reduce CDK activity, 

proteasomal degradation of mitotic cyclin B is mediated by a multi-subunit E3 

ubiquitin ligase called the anaphase promoting complex/cyclosome (APC/C) 

(Morgan, 2007; Pines, 2011) 

To monitor progression through the cell cycle and ensure proper division, eukaryotes 

have evolved a sophisticated network of regulatory proteins that form ‘checkpoints’. 

These are transition points where cell cycle progression can be delayed by negative 

signals. Checkpoints are present at all phases of the cell cycle (Hartwell and Weinert, 

1989; Hoyt et al., 1991; Li and Murray, 1991). 

 

 

 

Figure 1-1 The fission yeast cell cycle 
Fission yeast spends most of its time (about 70%) in G2 phase and about 10% in each of the other 
three phases. In contrast to mammalian cells, fission yeast undergoes closed mitosis where the 
nuclear envelope stays intact. Although septation is initiated at the end of mitosis, completion of 
cytokinesis only happens after progression through G1 and S phase. During interphase, the spindle 
pole body (SPB, red dot) resides on the cytoplasmic side of the nuclear envelope. The SPB duplicates 
in the cytoplasm during late G2 phase and upon mitotic entry settles into pockets formed in the nuclear 
envelope. Intranuclear microtubules are formed and the two SPBs separate to form a bipolar spindle. 
After anaphase, the two SPBs are extruded back into the cytoplasm (Ding et al., 1997). 
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1.2 The model organism fission yeast 

The fission yeast Schizosaccharomyces pombe (S. pombe) got its species name 

from the Swahili word for beer or alcohol (‘pombe’), when it was first isolated in 1893 

by Paul Lindner from East African millet beer. Using S. pombe as a research tool was 

pioneered in the 1940s by Swiss geneticist Urs Leupold, even though his strains 

were not derived from the original African beer isolate but instead from, probably 

rancid, French wine (Hall and Linder, 1993; Hoffman et al., 2015). The strains that 

are nowadays used in research labs are all descendants from Urs Leupold’s yeast 

strains. S. pombe is, together with its distant cousin, the budding yeast 

Saccharomyces cerevisiae, from which it has diverged 400-1000 million years ago 

(Heckman et al., 2001; Wood et al., 2002), one of the most important model 

organisms for the study of cell and molecular biology of eukaryotes. Both yeasts are 

unicellular organisms and therefore provide the advantage that one can work 

simultaneously with a high number of individuals for the discovery of rare mutants. 

This is also facilitated by a generation time of only 2.5 hours at 30 °C in full medium. 

Since yeast is a eukaryote, like mammalian cells, it can be easily used to study 

processes that are conserved from yeast to humans but absent or significantly 

different in bacteria. The genome sequence of S. pombe was published in 2002 

(Wood et al., 2002). The fission yeast genome consists of three relatively large 

chromosomes that together carry about 5000 protein-coding genes. Publication of 

the full genome sequence paved the way for more detailed research on the fission 

yeast genomic features and annotating functions to them. A big advantage for this 

endeavor was the active homologous recombination mechanism of yeast, with 1 

centimorgan genetic distance corresponding to only 6250 base pairs (bp) in S. 

pombe (Fowler et al., 2014) and 2500 bp in S. cerevisiae (Olson et al., 1986) – in 

contrast to about 1 million bp in humans (Kong et al., 2004). Furthermore, while 

budding yeast underwent a whole-genome duplication, fission yeast only contains a 

region of about 50 kb in the sub-telomeric part of chromosomes I and II that seems to 

have duplicated (Wolfe and Shields, 1997; Wood et al., 2002). Another difference 

between fission and budding yeast is the visible chromosome condensation in fission 

yeast that allows easier microscopic analysis of individual chromosomes and their 

segregation in mitosis (Russell and Nurse, 1986). Other aspects that make fission 

yeast more similar to many metazoans than budding yeast, are its large modular 

centromeres and the presence of conserved centromere-binding proteins, like 
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Swi6/HP1, chromatin modifiers, telomere and centromere proteins as well as 

components of the RNA interference pathway, which is non-functional in S. 

cerevisiae (Forsburg, 2003). 

In contrast to budding yeast, which separates the newly formed bud from the mother 

cell, fission yeast cells are rod-shaped and only grow at their cell ends without width 

change, eventually undergoing a symmetric cell division followed by formation of a 

medial septum (Mitchison, 1990). In addition to vegetative growth, fission yeast also 

has a sexual cycle where, upon nutrient starvation, two haploid cells of opposite 

mating types (h+ and h-) mate. This leads to formation of a diploid zygote that enters 

the meiotic pathway and generates four haploid nuclei. A spore wall forms around 

each nucleus producing an ascus with four spores within the zygote, the so-called 

tetrad, which eventually germinates and re-enters the vegetative cycle (Forsburg and 

Rhind, 2006). Fully wild-type cells can switch between h+ and h- and are called h90. 

This switching ability ensures that a culture or colony will always contain cells of both 

mating types. 

S. pombe has played an important role in cell cycle research. In the 1970s, Paul 

Nurse identified the cdc2 gene in fission yeast (Nurse et al., 1976). The cdc2 gene 

codes for the central cyclin-dependent kinase CDK1 and turned out to be identical to 

the cdc28 gene discovered in budding yeast by Leland Hartwell. Both Nurse and 

Hartwell showed that it is a major factor during cell cycle progression. Furthermore, 

Nurse cloned the corresponding human gene by complementation of the fission 

yeast cdc2 mutant. This, for the first time, provided strong evidence that the cell cycle 

machinery is conserved across eukaryotes. The findings by Hartwell and Nurse, 

together with similar research performed by Tim Hunt, who discovered cyclins in sea 

urchin eggs, culminated in the award of the Nobel Prize in Physiology or Medicine in 

2001 to the three researchers. 

1.3 Mitosis 

M phase is the most visually distinct phase of the cell cycle and includes both the 

nuclear division (mitosis) and the cellular division (cytokinesis). During mitosis, the 

sister chromatids of the chromosomes are separated into two identical sets and each 

set ends up in its own nucleus. In 1882, German anatomist Walther Flemming coined 

the term “mitosis” when describing his observation of a thread-like stainable scaffold 

within the nucleus during cellular division (Greek “mitos” means “thread”) (Paweletz, 
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2001). Mitosis can be divided into several individual phases that occur sequentially in 

a highly coordinated and timed manner: prophase, prometaphase, metaphase, 

anaphase and telophase. At the onset of prophase, chromatin fibers condense into 

discrete chromosomes, and the microtubule organizing centers (centrosomes or 

spindle pole bodies) separate and nucleate tubulin to form the mitotic spindle (Pereira 

and Schiebel, 1997). A breakdown of the nuclear envelope marks entrance into 

prometaphase and thereby allows microtubules to contact the condensed 

chromosomes. While metazoan and plant cells undergo a so-called ‘open mitosis’ 

with a complete disassembly of the nuclear envelope, many fungi, including fission 

yeast, perform a ‘closed mitosis’ where the nuclear envelope stays intact and mitosis 

occurs within the nucleus. During a closed mitosis, the spindle pole bodies (SPBs), 

which are embedded in the nuclear envelope, nucleate microtubule formation inside 

of the nucleus (De Souza and Osmani, 2007). In late prometaphase, microtubules 

originating from the centrosomes, which are functionally equivalent to SPBs, begin to 

search for and attach to kinetochores, large proteinaceous microtubule-binding 

structures that form on the chromosomal centromeres (Westhorpe and Straight, 

2013; Godek et al., 2015; Pesenti et al., 2016). In metaphase, stable end-on 

attachments are formed between the kinetochores and microtubules (Kops et al., 

2010) and the two centrosomes begin to exert force on the chromosomes towards 

opposite ends of the cell, resulting in alignment of the chromosomes at the 

metaphase or equatorial plate in the middle of the spindle. A failure to achieve bi-

polar attachment or to correctly position the metaphase plate results in chromosome 

mis-segregation or asymmetric cell division (Gregan et al., 2011; Tan et al., 2015). 

Cohesin is a multi-subunit protein complex that holds sister chromatids together and 

thereby resists the pulling force of the microtubules Once proper bi-polar attachment 

is achieved for every single chromosome, cohesin complexes that initially formed a 

ring around the sister chromatids are rapidly opened and the chromatids are pulled 

towards opposite spindle poles (anaphase A). Trigger for these events is the 

activation of the APC/C which ubiquitinates its key substrates cyclin B and securin, 

thereby marking them for proteasomal degradation (Peters, 2006; Primorac and 

Musacchio, 2013). APC/C substrates, including cyclin B and securin, contain short 

sequence motifs (degrons) for interaction with APC/C coactivators. The most 

widespread degrons are D (destruction) and KEN (lysine-glutamate-asparagine) box 

(Glotzer et al., 1991; Pfleger et al., 2001; Primorac and Musacchio, 2013). While 

degradation of cyclin B leads to a reduction in CDK activity, loss of securin frees and 
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thereby activates its binding partner separase. Active separase then cleaves the 

Scc1 kleisin subunit of cohesion and thereby opens the cohesion ring (Oliveira and 

Nasmyth, 2010). In anaphase B, the sister chromatids are further pulled apart by the 

elongating spindle. Telophase is the reversal of pro- and prometaphase events: the 

spindle disassembles, a new nuclear envelope forms around the separated 

chromosomes and the chromosomes decondense (Sullivan and Morgan, 2007). 

Cytokinesis is the last step to complete cell division: the cleavage furrow develops 

where the metaphase plate used to be and pinches off the cytoplasm to form two 

daughter cells, each with its own nucleus containing the chromosomes (Burgess and 

Chang, 2005). 

As described before, mitosis can happen with or without nuclear envelope breakdown 

during prophase. Another deviation from the general scheme is Caenorhabditis 

elegans, where the nuclear envelope persists until anaphase (Lee et al., 2000). The 

only traditional mitotic stages that are very well conserved are anaphase and 

cytokinesis, because disjunction and segregation of replicated sister chromatids as 

well as the generation of new cells are minimum requirements for cell reproduction 

(Pines and Rieder, 2001). 

1.4 The kinetochore 

The kinetochore is the proteinaceous structure that links the centromeres of the 

chromosomes to spindle microtubules and thereby allows forces generated by 

microtubule dynamics to power chromosome movement. It consists of nearly 100 

proteins that are hierarchically assembled onto centromeric DNA (Foley and Kapoor, 

2013; Jia et al., 2013). The kinetochore is composed of several layers: the inner 

kinetochore, the outer kinetochore and the ‘corona’. The centromeres are able to 

bind nucleosomes that contain the histone H3 variant centromeric protein A (CENP-

A). This centromeric chromatin then interacts with several inner kinetochore proteins 

collectively known as constitutive centromere-associated network (CCAN) 

(Westhorpe and Straight, 2013; Pesenti et al., 2016; Weir et al., 2016). The outer 

kinetochore serves as microtubule-binding interface, and its core is the KMN network, 

a 10-subunit super-complex of KNL1 (composed of Knl1 (Spc7 in S. pombe) and 

Zwint), the MIS12 complex (MIS12-C, composed of Nnf1, Mis12, Dsn1, and Nsl1), 

and the NDC80 complex (NDC80-C, composed of Ndc80, Nuf2, Spc24, Spc25) 

(Foley and Kapoor, 2013; Pesenti et al., 2016). The CCAN subunit CENP-C has 
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been shown to contact CENP-A (Carroll et al., 2010; Guse et al., 2011; Kato et al., 

2013) and also provides a link between the inner and outer kinetochore via direct 

interaction with the MIS12 complex in humans and flies (Przewloka et al., 2011; 

Screpanti et al., 2011). A second link between inner and outer kinetochore is formed 

by the CCAN subunit CENP-T, which directly connects to the NDC80 complex (Hori 

et al., 2008; Bock et al., 2012; Schleiffer et al., 2012; Malvezzi et al., 2013; Nishino et 

al., 2013). The outer kinetochore is not only the main microtubule receptor, but it also 

serves as a recruitment platform for numerous other proteins, including spindle 

assembly checkpoint (SAC) components and additional regulators of kinetochore-

microtubule attachment (Musacchio and Salmon, 2007; Jia et al., 2013; Pesenti et 

al., 2016). The outermost kinetochore layer forms a fibrous corona consisting of a 

dynamic network of resident and temporary proteins stretching out 100-150 nm from 

the outer kinetochore. Two of the proteins in the corona are the microtubule-

interacting motor protein CENP-E and the microtubule interactor CENP-F (Wan et al., 

2009; Varma et al., 2013). Depletion of any of the KMN protein components in vivo 

reduces the ability of cells to establish functional kinetochore-microtubule 

interactions, with the most severe defects seen in cells depleted of NDC80-C 

components, suggesting that this complex is largely responsible for direct 

attachments (DeLuca and Musacchio, 2012; Kim and Yu, 2015). In vitro force 

measurements (McIntosh et al., 2008; Powers et al., 2009) as well as in vitro binding 

assays with purified NDC80-C (Cheeseman et al., 2006) are consistent with the 

hypothesis that this complex couples kinetochores to depolymerizing microtubules. 

KNL1 also showed an ability to bind microtubules in vitro, albeit weaker than a 

combination of KNL1 and MIS12-C, probably reflecting a stabilizing influence by 

MIS12-C (Cheeseman et al., 2006). It was furthermore shown that the MIS12 

complex interacts with the C-terminus of KNL1 (Kiyomitsu et al., 2007; Petrovic et al., 

2010) and with the Spc24/Spc25 subunits of the NDC80 complex while the KNL1-

binding region of Nsl1 is not required for high-affinity binding of MIS12-C to NDC80-C 

(Petrovic et al., 2010). KNL-1 functions as the binding platform for several spindle 

assembly checkpoint components (Kiyomitsu et al., 2007; Krenn et al., 2014; Silio et 

al., 2015; Vleugel et al., 2015b). 

To correct any errors that might have occurred during kinetochore-microtubule 

binding, cells have evolved a correction machinery involving Aurora B, a kinase 

subunit of the chromosomal passenger complex (CPC) (Hauf et al., 2003; Lampson 

et al., 2004; Cimini et al., 2006; Carmena et al., 2012). Through phosphorylation of 
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members of the KMN network by Aurora B, the interaction of those proteins with 

microtubules is weakened to resolve erroneous attachments and create free 

kinetochores that can then re-bind microtubules for a proper bi-orientation 

(Cheeseman et al., 2006; Ruchaud et al., 2007). 

1.5 The spindle assembly checkpoint (SAC) 

To ensure that the cells only progress into anaphase and separate their 

chromosomes once all of them are properly bi-oriented on the mitotic spindle, a 

dedicated control system delays transition from metaphase into anaphase until all 

errors are corrected. This control system is called the ‘spindle assembly checkpoint’ 

(SAC) or ‘mitotic checkpoint’. Improperly attached kinetochores create a signal to 

delay the cell in prometaphase in order to gain time for error correction (Musacchio 

and Salmon, 2007; Lara-Gonzalez et al., 2012; Jia et al., 2013). It was shown by 

laser-ablation experiments that the checkpoint senses unattached kinetochores and 

only becomes satisfied when the last kinetochore attaches to microtubules (Rieder et 

al., 1995). Applying tension to a mis-attached chromosome with a micromanipulation 

needle, which simulates proper attachment and bi-orientation to the mitotic spindle, 

also strongly reduces a checkpoint-induced mitotic delay (Li and Nicklas, 1995). 

Recent work suggests that SAC signaling is graded and that the intensity of the SAC 

inhibitory signal correlates with the number of unattached kinetochores (Collin et al., 

2013; Dick and Gerlich, 2013; Uchida and Hirota, 2016). The discovery of the first 

spindle assembly checkpoint components dates back to the early 1990’s. Two 

independent genetic screens in budding yeast identified three MAD (mitotic arrest-

deficient) and three BUB (budding uninhibited by benzimidazole) genes through 

discovery of mutants that fail to arrest in mitosis in response to loss of microtubule 

function (Hoyt et al., 1991; Li and Murray, 1991). All three encoded MAD proteins, 

Mad1, Mad2 and Mad3 (or BubR1, depending on the organism), and two of the three 

BUB proteins, Bub1 and Bub3, are indeed highly conserved core components of the 

SAC. The checkpoint function of the serine/threonine kinases Mps1 (Mph1 in S. 

pombe) and Aurora B (Ark1 in S. pombe), another two core components of the SAC, 

was revealed a few years later (Weiss and Winey, 1996; Biggins and Murray, 2001) 

(Figure 1-2). In addition to these core checkpoint proteins, it was shown that specific 

mutants of kinetochore proteins can impair proper kinetochore formation and SAC 

activation, resulting in precocious sister chromatid separation often followed by 
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chromosome mis-segregation (He et al., 2001). Many studies revealed that 

checkpoint proteins enrich at unattached kinetochores during the onset of mitosis, 

marking the initial step of SAC signaling (Musacchio and Salmon, 2007; Lischetti and 

Nilsson, 2015). In the specific kinetochore mutants with impaired SAC function, this 

enrichment fails and no signal is generated. To arrest the cells in prometaphase, the 

signal created at unattached kinetochores needs to be translated into an inhibitor of 

cell cycle progression. This is achieved by negative regulation of APC/C activity. 

Cdc20 (Slp1 in S. pombe) is a mitotic activator of the APC/C and the ultimate 

molecular target of the SAC (Hwang et al., 1998; Kim et al., 1998; Peters, 2006; 

Primorac and Musacchio, 2013). Cdc20 binds to the APC/C as a co-activator and 

recruits APC/C substrates by binding to D-boxes in the substrates (Glotzer et al., 

1991; King et al., 1996; Fang et al., 1998b). The checkpoint proteins Mad2 and Mad3 

can sequester Cdc20 and without free Cdc20, APC/C activity is impaired, which 

blocks ubiquitination and subsequent degradation of its substrates securin and cyclin 

B, ultimately preventing progression into anaphase. It was shown that not only 

unattached kinetochores but also tubulin or spindle pole body mutants, microtubule 

motor defects and absence or mutation of kinetochore components all activate the 

spindle assembly checkpoint (Hardwick et al., 1999). 
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Figure 1-2 Domain organization of spindle assembly checkpoint proteins in 
Schizosaccharomyces pombe 
All proteins are drawn to scale, see text for details (S.p. = Schizosaccharomyces pombe; S.c. = 
Saccharomyces cerevisiae; H.s. = Homo sapiens). 
Ark1 (Aurora B ortholog), Mph1 (Mps1 ortholog) and Bub1 contain kinase domains. The Mad3 proteins 
in S. pombe and S. cerevisiae lack the C-terminal pseudo-kinase domain present in the H.s. Mad3 
ortholog BubR1. Mad3 and BubR1 contain several motifs that facilitate Slp1/Cdc20-binding but S. 
pombe Mad3 seems to lack the GLEBS motif, required for binding to Bub3. The tetratricopeptide 
repeats (TPR) in Bub1 and BubR1 have been shown to interact with the kinetochore component 
KNL1. Both Bub3 and Slp1 (Cdc20 ortholog) contain WD40 repeats folding into 7-bladed propellers. 
The Slp1 C-box and IR tail are both required for interaction with the APC/C. Mad2 is formed by the 
globular HORMA domain (for Hop1, Rev7, Mad2), a complex structure of a core, formed by beta-
sheets and alpha-helices, and a C-terminal ‘safety belt’ that undergoes a pronounced conformational 
change when switching from open to closed, which in case of Mad2 is required for binding to either 
Mad1 or Slp1. 
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1.6 The SAC signaling cascade 

The spindle assembly checkpoint involves many different steps to transduce the 

signal from the enrichment of the SAC proteins at the kinetochore to the inhibition of 

Cdc20 and the APC/C. The signaling cascade includes protein-protein interactions, 

formation of multi-subunit protein complexes, conformational changes and the post-

translational modifications of proteins (Figure 1-3). The nature and order of events 

has been studied by genetics, biochemistry, structural biology and microscopy if 

living cells in various organisms. Pioneering work by Conly Rieder revealed that the 

SAC signal is generated by the kinetochore (Rieder et al., 1995), and consistent with 

this finding, it was later demonstrated that most SAC components are recruited to 

unattached kinetochores in a hierarchical manner and exhibit varying rates of 

turnover (Howell et al., 2004; Shah et al., 2004). A key unresolved question is how 

the SAC machinery distinguishes attached from unattached kinetochores. One 

hypothesis proposes that the kinetochore has different conformations depending on 

microtubule attachment status and thereby either allows checkpoint signaling or 

silences it (Aravamudhan et al., 2015). Another hypothesis suggests that a 

competition for kinetochore binding between SAC proteins and microtubules 

constitutes a direct mechanism for the detection of unattached kinetochores (Hiruma 

et al., 2015; Ji et al., 2015). 

1.6.1 Generation of the checkpoint signal 

It was shown that the KMN network of the outer kinetochore not only serves as the 

receptor for microtubules, but also directly or indirectly interacts with most SAC 

proteins, thus coupling SAC signaling to microtubule binding (Jia et al., 2013). The 

two most upstream components of the SAC signaling pathway are the kinases 

Aurora B and Mps1 (Lischetti and Nilsson, 2015). Aurora B is part of the 

chromosomal passenger complex (CPC) and is concentrated at the centromere, 

depending on interactions between other CPC components and histone H3 and H2A 

phosphorylations (van der Horst and Lens, 2014). Aurora B dynamically modulates 

kinetochore-microtubule contacts by mediating phosphorylation of Ndc80 and Knl1, 

which reduces their microtubule-binding affinity (Jia et al., 2013) and thereby 

destabilizes incorrect interactions between the kinetochore and the mitotic spindle 

and allows the establishment of new, corrected attachments (Cheeseman et al., 

2006; DeLuca et al., 2006). The dependency between Aurora B and Mps1 differs 
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between organisms. While in budding yeast Aurora B (Ipl1) and Mps1 seem to 

localize independently (Maure et al., 2007), metazoan Mps1 localization to 

kinetochores has been shown to depend on Aurora B kinase activity (Vigneron et al., 

2004; Santaguida et al., 2010; Saurin et al., 2011), and also in fission yeast Mps1 

(Mph1) localization to the kinetochore requires Aurora B (Ark1) kinase activity 

(Heinrich et al., 2012). In contrast to the strong effect of Aurora B on Mps1 

localization, Mps1 is only partially and largely indirectly required for localization of 

Aurora B (Hewitt et al., 2010; Santaguida et al., 2010; Saurin et al., 2011; Heinrich et 

al., 2012). 

Another function of Mps1, besides its involvement in Aurora B regulation, is the 

phosphorylation of multiple MELT motifs (MELT standing for the amino acids Met, 

Glu, Leu, Thr) in the KMN network component KNL1 (Figure 1-3 A). This 

phosphorylation promotes recruitment and direct binding of the Bub1-Bub3 complex 

(London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012; Primorac et al., 

2013; Krenn et al., 2014; Zhang et al., 2014). Recent work showed that Mps1 not 

only phosphorylates the MELT core but also adjacent SHT motifs and both 

modifications are crucial for Bub1-Bub3 recruitment (Vleugel et al., 2015b). 

Kinetochore-localization of Bub1-Bub3 initiates enrichment of the other checkpoint 

components Mad1, Mad2 and Mad3/BubR1 at the kinetochore (Millband and 

Hardwick, 2002; Kadura et al., 2005; Essex et al., 2009; Vanoosthuyse et al., 2009; 

Windecker et al., 2009; Heinrich et al., 2012; London and Biggins, 2014; Moyle et al., 

2014). 

In metazoans, Mps1 not only modifies KNL1 but also promotes recruitment of the 

RZZ complex (Rod, Zwilch and Zw10) to the kinetochore, which has been shown to 

be required for Mad1 kinetochore localization (Karess, 2005; Kops et al., 2005a; 

Maciejowski et al., 2010; Santaguida et al., 2010; Silio et al., 2015). In addition, the 

RZZ complex also localizes a dynein/dynactin complex, a minus-end directed 

microtubule motor, to kinetochores through the adaptor protein spindly (Barisic and 

Geley, 2011). This allows dynein to strip Mad1-Mad2 from kinetochores once they 

have attached to microtubules and move the complex along the microtubules to the 

spindle poles, thereby contributing to SAC silencing (Howell et al., 2001; Sivaram et 

al., 2009). So far, there have been no functional homologs of the RZZ components 

identified in yeast. In fission yeast, dynein is not involved in stripping of Mad2 from 

the kinetochore (Courtheoux et al., 2007). 

 



1  Introduction 

13 

 

Figure 1-3 The spindle assembly checkpoint signaling cascade 
Adapted from Heinrich et al. (2012); Sacristan and Kops (2015); see text for details. 
The upper panel illustrates a general scheme of checkpoint signaling at the kinetochore and in the 
nucleoplasm triggered by unattached kinetochores. The insets show critical steps in checkpoint 
signaling in greater detail: 
(A) Localization of kinetochore components and recruitment of upstream checkpoint proteins. 
(B) Kinetochore recruitment of the Mad1-Mad2 complex and the ‘Mad2 template model’. 
(C) MCC formation (including details of Mad3-Slp1 interaction) and APC/C inhibition. 
Solid lines indicate a direct modification or protein-protein interaction, dashed lines show a connection 
between proteins that is indirect or unclear. The extension at O-/C-Mad2 represents the C-terminal 
‘safety belt’ required for Mad1- and Slp1-binding and the Mad2-binding motif (MIM) on both Mad1 and 
Slp1 is highlighted in brown. 
‘O-Mad2’ = open Mad2; ‘C-Mad2’ = closed Mad2; ‘Slp1

M
’ = core MCC Slp1; ‘Slp1

A
’ = APC/C-bound 

Slp1; ‘P’ = phosphorylation; ‘U’ = ubiquitin 
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1.6.2 The role of Bub1 and Bub3 at the kinetochore 

Bub1 is recruited to the kinetochore via its direct interaction with KNL1 and through 

binding to Bub3, which is also recruited to KNL1 (Kiyomitsu et al., 2007; Kiyomitsu et 

al., 2011; London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012). The N-

terminus of Bub1 contains two regions that are important for these interactions. An 

array of three divergent motifs that each adopt a tetratricopeptide repeat(TPR)-like 

fold occurs both in the very N-terminus of Bub1 and Mad3/BubR1 (Bolanos-Garcia et 

al., 2009; Bolanos-Garcia et al., 2011) and respectively binds to KI motif 1 and 2 (KI 

stands for Lys-Ile) within KNL1 (Krenn et al., 2012). It was shown that deletion of 

these TPR motifs in S. pombe Bub1 reduces its kinetochore localization and leads to 

loss of Bub3 and Mad3 recruitment, which in turn abolishes SAC function 

(Vanoosthuyse et al., 2004). Work with human cells, done by different groups, 

showed contradictory results (Taylor et al., 1998; Klebig et al., 2009; Krenn et al., 

2012). While Taylor et al. (1998) and Krenn et al. (2012) demonstrated that the TPR 

motifs in the N-terminus of Bub1 are neither required nor sufficient for its kinetochore 

recruitment, Klebig et al. (2009) saw a complete loss of Bub1 at the kinetochore upon 

deletion of this domain. Introduction of point mutations into the TPR motifs perturbed 

interaction of Bub1 and KNL1 in vitro but had no effect on Bub1 kinetochore 

localization in vivo (Krenn et al., 2012). Overall, this suggests that the TPR region 

only plays a marginal role in kinetochore recruitment of Bub1. In addition to the TPR 

motifs, the Bub1 N-terminus contains a GLEBS motif (short for Gle2-binding 

sequence), which is alternatively referred to as Bub3-binding motif. This motif was 

shown to be the main contributor to kinetochore localization of Bub1 (Taylor et al., 

1998; Logarinho et al., 2008; Klebig et al., 2009; Vanoosthuyse et al., 2009; 

Windecker et al., 2009). The GLEBS motif was initially described as an interaction 

site between the yeast nuclear pore component Nup116 (Nup98 in vertebrates) and 

the mRNA export factor and Bub3 homolog Gle2/Rae1 (Bailer et al., 1998). The Bub1 

GLEBS motif mediates binding to Bub3 (Taylor et al., 1998; Wang et al., 2001; 

Larsen et al., 2007; Klebig et al., 2009; Vanoosthuyse et al., 2009). The Bub1-Bub3 

complex is recruited to KNL1 MELT motifs (London et al., 2012; Shepperd et al., 

2012; Yamagishi et al., 2012; Primorac et al., 2013; Krenn et al., 2014; Zhang et al., 

2014; Vleugel et al., 2015b) (Figure 1-3 A). Recent work suggests that only a limited 

number of MELT repeats are “active” and that this activity correlates with the 

presence of an additional vertebrate-specific SHT motif adjacent to the MELT 
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sequence, both of which are phosphorylated by the Mps1 kinase (Vleugel et al., 

2015b). The interaction between Bub1 and Bub3 via the GLEBS motif is crucial for 

kinetochore localization of Bub1. A deletion of the Bub1 GLEBS motif in fission yeast 

cells led to a loss of both Bub1 and Bub3 at the kinetochores (Windecker et al., 

2009), showing that these two proteins need to be in a complex with each other for 

proper localization. Consistently, a reduction or deletion of either Bub1 or Bub3 

results in loss of kinetochore localization of the other binding partner (Taylor et al., 

1998; Kerscher et al., 2003; Vanoosthuyse et al., 2004; Logarinho et al., 2008; 

Windecker et al., 2009; Shepperd et al., 2012; Yamagishi et al., 2012). In vitro 

analyses showed a strong requirement of Bub1 for binding of Bub3 to KNL1 

(Yamagishi et al., 2012; Primorac et al., 2013). While human cells lacking the Bub1-

Bub3 interaction show a clear checkpoint defect (Klebig et al., 2009), fission yeast 

cells expressing bub1-ΔGLEBS retain a functional checkpoint (Vanoosthuyse et al., 

2009; Windecker et al., 2009). Along those lines, depletion of Bub3 shows a similar 

outcome. While in most organisms altered levels of Bub3 led to checkpoint defects 

(Kalitsis et al., 2000; Campbell and Hardwick, 2003; Lopes et al., 2005; Logarinho et 

al., 2008), fission yeast cells lacking bub3 fail to localize Bub1, Mad1, Mad2 and 

Mad3 to the kinetochore but nevertheless show active checkpoint signaling (Tange 

and Niwa, 2008; Vanoosthuyse et al., 2009; Windecker et al., 2009). Although we still 

lack a molecular explanation for this difference, it was proposed that, at least in S. 

pombe, Bub3 acts as an inhibitor of Bub1 (Yamagishi et al., 2012). If Bub1 is not 

associated with Bub3, as in bub1-ΔGLEBS or bub3Δ, Bub1 could retain activity, even 

though kinetochore localization is lost. Furthermore, problems with checkpoint 

inactivation could arise when Bub1 remains active due to lack of interaction with 

Bub3. Indeed, it was shown in fission yeast that Bub3 is necessary for efficient SAC 

silencing (Vanoosthuyse et al., 2009). Furthermore, the presence of an active 

checkpoint despite the lack of kinetochore localization of Bub1 and the Mad proteins 

in bub3Δ or bub1-ΔGLEBS suggests that kinetochore enrichment of the checkpoint 

components is not absolutely required for checkpoint signaling. 

Further C-terminal of the GLEBS motif, Bub1 contains two additional highly 

conserved motifs, termed cm1 and cm2 (cm for conserved motif). In human cells, 

deletion of either of them resulted in decreased kinetochore localization of Bub1. 

While deletion of cm2 showed reductions in checkpoint activation, chromosome 

congression and kinetochore recruitment of Mad1, Mad2 and BubR1, deletion of cm1 

entirely abolished SAC activity and kinetochore recruitment of Mad1, Mad2 and 
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BubR1, whereas chromosome congression was not influenced (Klebig et al., 2009). 

In agreement with these results, deletion or mutation of a region of Bub1 contain cm1 

in budding yeast (Warren et al., 2002) or fission yeast (Heinrich et al., 2014) 

abolished SAC activity and Mad1 recruitment despite retaining Bub1 kinetochore 

localization. It was therefore suggested that this motif serves as an interaction site 

between Mad1 and Bub1, potentially together with Bub3 (Brady and Hardwick, 2000; 

Warren et al., 2002). The receptor for cm1 on Mad1 is supposed to be a 3-amino-

acid motif (RLK) in the C-terminus downstream of the Mad2 binding site, since 

mutation of this motif abolishes binding of Mad1 to Bub1-Bub3 in budding yeast 

(Brady and Hardwick, 2000). Recent work in budding yeast showed that the Mad1-

Bub1 interaction depends on Bub1 phosphorylation by Mps1 (London and Biggins, 

2014). Experiments in C. elegans also revealed a Mad1-Bub1 interaction, but with 

the C-terminal kinase domain of Bub1 and the coiled-coil upstream of the Mad2 

binding site of Mad1 serving as interacting regions (Moyle et al., 2014). Early work 

using in vitro translated human proteins also already reported an interaction between 

Mad1 and Bub1 (Seeley et al., 1999). Although it seems likely that this interaction, be 

it direct or indirect, is conserved across organisms, it is most likely not the sole 

pathway for Mad1 kinetochore recruitment. Artificial tethering of fission yeast Mph1 to 

kinetochores in interphase resulted in co-recruitment of Bub1-Bub3 but not Mad1, 

suggesting the existence of additional Mad1 recruitment mechanisms apart from 

Bub1 (Ito et al., 2012). While in metazoans, the RZZ complex is such an additional 

mechanism for Mad1 kinetochore localization (Karess, 2005; Kops et al., 2005a; 

Maciejowski et al., 2010; Santaguida et al., 2010; Silio et al., 2015), no functional 

homologs of the RZZ components have been identified in yeast so far. 

At its C-terminus, Bub1 contains a kinase domain, but the kinase activity is not 

required for Bub1 kinetochore localization and only has a minor influence on SAC 

activity. Mutating the kinase domain to render it kinase-dead (Warren et al., 2002; 

Yamaguchi et al., 2003; Vanoosthuyse et al., 2004; Klebig et al., 2009) or deleting it 

entirely (Warren et al., 2002; Yamaguchi et al., 2003; Klebig et al., 2009) still allows 

checkpoint signaling. 

Analyses of the turnover rates of Bub1 and Bub3 at the kinetochore showed that 

Bub1 remains stably associated (Howell et al., 2004; Shah et al., 2004) while Bub3 

undergoes a more rapid turnover (Howell et al., 2004). This suggests a dynamic 

interaction between Bub1 and Bub3 and the existence of a Bub3-free pool of Bub1 at 
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the kinetochore. It is unknown how the Bub1-Bub3 complex is disassembled and 

which additional function(s) Bub3 might have in checkpoint signaling. 

Recent work revealed another conserved motif within Bub1, termed ABBA motif 

because it is found and functionally relevant in A-type cyclins, Bub1, BubR1 and 

Acm1. This motif was also shown to have a function in SAC signaling. A peptide 

containing the Bub1 ABBA sequence was able to bind Cdc20 in vitro and cells with 

mutation of the motif showed reduced levels of Cdc20 at kinetochores and reduced 

SAC activity (Di Fiore et al., 2015). It has been suggested that Bub1 interacts via the 

ABBA motif with Cdc20 to localize it to kinetochores and facilitate its phosphorylation 

by Bub1 and Plk1 (Jia et al., 2016). In addition to the ABBA motif, Bub1 also uses 

KEN boxes to recruit Cdc20 for efficient phosphorylation leading to catalytic inhibition 

of the APC/C (Tang et al., 2004; Kang et al., 2008). 

A recently described Bub3 chaperone, BuGZ, which was independently identified in 

human glioblastoma multiforme brain tumor stem cells and mouse embryonic stem 

cells, shows a KNL1-dependent kinetochore localization and can bind to Bub3 via its 

GLEBS motif. Knockdown of BuGZ reduces Bub3 protein levels, resulting in less 

Bub3 at kinetochores. Interestingly, this leads to a reduction of Bub1 levels, but the 

checkpoint remains active. However, the cells show chromosome alignment defects. 

Phylogenetic analysis indicates that BuGZ orthologs are highly conserved among 

eukaryotes, but are absent from yeast. These results suggest that BuGZ has evolved 

to facilitate Bub3 activity and chromosome congression in higher eukaryotes (Jiang et 

al., 2014; Toledo et al., 2014). Nevertheless, the question remains how Bub1 can be 

recruited to the kinetochore without competing with BuGZ for Bub3 binding. A relay 

model proposes that BuGZ recruits Bub3 to KNL1, subsequently dissociates from 

and frees Bub3, allowing it to bind free Bub1. But because Bub1-Bub3 mainly exists 

as a constitutive complex throughout the cell cycle, the priming model instead 

suggests a BuGZ-facilitated priming of KNL1 for Bub1-Bub3 binding (Ji and Yu, 

2014). Future experiments are needed to test these and other possible models. 

1.6.3 The role of Mad1 and Mad2 at the kinetochore 

Mad1 and Mad2 form a stable heterotetramer in a 2:2 ratio (Sironi et al., 2002). This 

complex can assemble independently of other checkpoint proteins (Chen et al., 

1999), is present throughout the cell cycle (Chen et al., 1999; Brady and Hardwick, 

2000) and is recruited to unattached kinetochores and de-localizes from kinetochores 
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upon microtubule binding (Lara-Gonzalez et al., 2012; Foley and Kapoor, 2013). 

During interphase, the complex localizes to the nuclear rim through interaction with 

the nuclear pore complex component Tpr (Mlp1/2 in S. cerevisiae, Nup211 in S. 

pombe) (Lee et al., 2008; Schweizer et al., 2013). At the onset of mitosis, the Mad1-

Mad2 complex is recruited to unattached kinetochores (Sironi et al., 2001; Sironi et 

al., 2002), most likely via Bub1 (London and Biggins, 2014; Moyle et al., 2014) and in 

metazoans also via RZZ (Karess, 2005; Kops et al., 2005a; Maciejowski et al., 2010; 

Santaguida et al., 2010; Silio et al., 2015). At the kinetochore, Mad1-Mad2 serves as 

a platform for downstream spindle assembly checkpoint signaling (Figure 1-3 B). 

1.6.3.1 Functions of Mad1 and Mad2 

Mad1 is essential for SAC signaling as cells lacking Mad1 also lack Mad2 

kinetochore localization and are unable to activate the SAC (Luo et al., 2002; Martin-

Lluesma et al., 2002; Gillett et al., 2004; Essex et al., 2009; Heinrich et al., 2012). In 

contrast, artificial kinetochore-recruitment of Mad1 showed co-recruitment of Mad2 

and constitutively stimulated checkpoint signaling, regardless of microtubule 

attachment (Maldonado and Kapoor, 2011). Furthermore, targeting Mad1 to 

kinetochores during metaphase is sufficient to reestablish SAC activity after initial 

silencing (Ballister et al., 2014; Kuijt et al., 2014). These results led to the suggestion 

that the sole function of Mad1 is to serve as binding platform for Mad2 at the 

kinetochore (Figure 1-3 B). 

The Mad1 dimer at the core of the Mad1-Mad2 complex consists of a long inter-

molecular coiled-coil in its N-terminus, followed by a Mad2-interacting motif (MIM) 

and a structured C-terminal region (Sironi et al., 2002; Kim et al., 2012). The stretch 

that binds Mad2 (MIM) is <20 amino acids long and crucial for interaction with Mad2 

(Luo et al., 2002). The C-terminus of Mad1 downstream of the Mad2-interacting motif 

consists of another coiled-coil region followed by a globular ‘head’ domain containing 

alpha-helices and beta-sheets (Kim et al., 2012). Both the Mad1 N-terminus and the 

C-terminus have been implicated in kinetochore targeting of Mad1. Yeast two-hybrid 

results suggest that the Mad1 N-terminus binds to the kinetochore component 

Ndc80/Hec1 (Martin-Lluesma et al., 2002) and findings in X. laevis point to a role of 

the N-terminus in kinetochore recruitment (Chung and Chen, 2002). On the other 

hand, the crystal structure of the Mad1 C-terminus adopted a fold similar to that of 

the kinetochore-targeting domains of the Ndc80 complex component Spc25 (Kim et 
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al., 2012), indicating that the Mad1 C-terminus could have a similar binding mode to 

kinetochores. Nevertheless, Kim et al. were unable to single out a particular domain 

or motif as the sole kinetochore-targeting region and instead suggest that Mad1 has 

an unusually extensive kinetochore-binding interface with multiple quasi-independent 

contacting sites, one of which involves the C-terminus (Kim et al., 2012). In contrast 

to the data from human cells and X. laevis, which suggests an involvement of the 

Mad1 N-terminus in kinetochore targeting, data from budding and fission yeast 

strongly implicates the Mad1 C-terminus (Kastenmayer et al., 2005; Scott et al., 

2005; Heinrich et al., 2014). The coiled-coil region of the Mad1 C-terminus contains 

the conserved RLK motif (Arg-Leu-Lys), which was shown to be important for 

checkpoint activity by facilitating kinetochore localization of Mad1 and interaction with 

Bub1 (Brady and Hardwick, 2000; Kim et al., 2012; London and Biggins, 2014) 

(Figure 1-3 B). The molecular basis of the inter-species difference regarding the 

requirement of different regions of Mad1 for kinetochore binding is not understood. 

Mad2 is a relatively small protein that folds as a HORMA domain (Aravind and 

Koonin, 1998) and is able to adopt two distinct conformations. Binding of closed 

Mad2 (C-Mad2) to the Mad2-interacting motif (MIM) in Mad1 recruits cytosolic open 

Mad2 (O-Mad2) through dimerization. This interaction in turn facilitates a 

conformational change from O- to C-Mad2 and subsequent binding of C-Mad2 to 

Cdc20. Mad1 and Cdc20 both contain a similar Mad2-interacting motif which enables 

them to interact with C-Mad2 in a mutually exclusive manner (Luo et al., 2002; Sironi 

et al., 2002). The C-terminal region of Mad2 that entraps Mad1 or Cdc20 respectively 

is often referred to as ‘safety belt’ or ‘seatbelt’ since it undergoes a strong 

conformational change and thereby wraps like a safety belt around the stretch of 

Mad1 or Cdc20 that contains the MIM (Luo et al., 2002; Sironi et al., 2002; Luo et al., 

2004; Mapelli and Musacchio, 2007). Mps1 was shown to be essential for targeting of 

the Mad1-Mad2 complex to unattached kinetochores, for maintenance of that 

complex at kinetochores and for recruitment of O-Mad2 to the kinetochore-localized 

Mad1-C-Mad2 complex, all suggesting that the major role of Mps1 kinase during SAC 

activation is to facilitate C-Mad2 production at unattached kinetochores for 

subsequent binding to Cdc20 and assembly of the mitotic checkpoint complex 

consisting of C-Mad2, Cdc20, BubR1/Mad3 and Bub3 (Hewitt et al., 2010; Tipton et 

al., 2013). 
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1.6.3.2 The ‘Mad2 template model’ 

Long before structural data became available, it was already shown in vitro and in 

vivo that APC/C activity is inhibited by binding of Mad2 to the APC/C co-activator 

Cdc20 (Fang et al., 1998a; Hwang et al., 1998; Kim et al., 1998). This interaction is 

essential as neither Mad2 mutants that are unable to bind Cdc20 (Sironi et al., 2001; 

De Antoni et al., 2005a; Nezi et al., 2006) nor Cdc20 mutants lacking the Mad2-

interacting motif (Hwang et al., 1998; Kim et al., 1998) are able to activate the SAC. 

Numerous cell biological, biochemical and structural experiments were performed to 

elucidate the different steps happening during the spindle assembly checkpoint 

signaling cascade. One focus lay on finding an explanation how Cdc20 inhibition is 

linked to SAC signaling. 

Early work suggested an ‘exchange model’, which proposes that Mad1 recruits O-

Mad2 to the kinetochore and facilitates its conformational change from open to 

closed Mad2. C-Mad2 subsequently dissociates from Mad1 and binds Cdc20 (Luo et 

al., 2004). This model depicts Mad1 as a catalyst of the conversion of O-Mad2 into C-

Mad2, which, in turn, is required for Mad2 to bind Cdc20 (De Antoni et al., 2005a; 

Nezi et al., 2006). However, this model is weakened by structural data, indicating that 

Mad1 and Cdc20 bind to the same site on Mad2, which implies that Mad1 and Cdc20 

compete for Mad2 binding, ruling out a role for Mad1 as direct activator of Mad2 for 

Cdc20 binding (De Antoni et al., 2005a). The ‘Mad2 template model’ takes this 

finding into account and also incorporates the discovery that the two Mad2 

conformers, O- and C-Mad2, can form a conformational dimer with each other (De 

Antoni et al., 2005a; De Antoni et al., 2005b; Mapelli et al., 2007). In this model, 

kinetochore-bound Mad1 forms a stable complex with C-Mad2 (Sironi et al., 2002; 

Simonetta et al., 2009), which acts as a kinetochore receptor or ‘template’ for 

asymmetric dimerization with a free O-Mad2 molecule which is then converted into C-

Mad2 and able to bind Cdc20 (De Antoni et al., 2005a; De Antoni et al., 2005b; 

Nasmyth, 2005; Yu, 2006; Mapelli et al., 2007) (Figure 1-3 B). In the ‘Mad2 template 

model’, the Mad1-bound C-Mad2 pool at the kinetochore and the free O-Mad2 pool 

are distinct and non-exchanging. The model therefore does not imply that Mad1 and 

Cdc20 compete for Mad2 binding, resolving the contradictions of the Mad2 exchange 

model (De Antoni et al., 2005a; Nasmyth, 2005; Nezi et al., 2006). 

It has been shown that the Mad2-interacting motif of Mad1 and Cdc20 integrates into 

the beta-sheets of the Mad2 HORMA domain (Sironi et al., 2001; Luo et al., 2002; 
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Luo et al., 2004) by also adopting a beta-sheet fold (Luo et al., 2002; Luo et al., 

2004). To resolve this interaction, a partial unfolding is necessary, which can explain 

the exceptional stability of the Mad1-Mad2 complex (Chen et al., 1999; Sironi et al., 

2001). The finding that two Mad2 molecules form an asymmetric dimer rather than 

binding to the same conformation is strengthened by in vitro binding experiments (De 

Antoni et al., 2005b) and sterical clashes in the crystal structure (Mapelli et al., 2007). 

Although Yang et al. (2008) report the crystal structure of a symmetric C–C Mad2 

dimer and that it is able to inhibit Cdc20 from activating the APC/C in vitro, it is 

questionable if this unusual complex exists in vivo. The cells that were used to 

analyze SAC activity were supposed to produce solely C-Mad2 by expressing a 

mutant that renders Mad2 to be constitutively closed (Mad2-L13A) without the ability 

to adopt the open conformation. But it seems that also a wild type copy of Mad2 was 

expressed in the same cells, which can adopt both open and closed conformation 

and interact with the constitutively closed Mad2. This could potentially allow the 

formation of the asymmetric O-C Mad2 complex, which can inhibit Cdc20. 

It was shown that Mad2 requires two highly conserved residues, Arg133 and Gln134 

(Arg126, Gln127 in S. cerevisiae) for dimerization (Sironi et al., 2001; De Antoni et 

al., 2005a; De Antoni et al., 2005b; Mapelli et al., 2007). Mutation of either one or 

both amino acids interferes with Mad2 dimerization (Sironi et al., 2001; Sironi et al., 

2002; De Antoni et al., 2005a; De Antoni et al., 2005b; Nezi et al., 2006; Mapelli et 

al., 2007) and SAC activity (De Antoni et al., 2005a; Nezi et al., 2006). Nevertheless, 

these mutations still allow Mad2 to undergo its conformational change and therefore 

do not interfere with Mad1 binding (Sironi et al., 2001; Nezi et al., 2006). While the 

mutants also retained the ability to bind to Cdc20 in vitro (Sironi et al., 2001; Nezi et 

al., 2006), although with slower kinetics (Sironi et al., 2001; Simonetta et al., 2009), 

this interaction was not detectable in vivo (Nezi et al., 2006). This explains the SAC 

defect that was observed and underlines the importance of the Mad2 dimerization 

and conformational change for binding of Cdc20 and effective downstream 

checkpoint signaling. The ‘template model’ furthermore suggested that the Cdc20-

bound C-Mad2 can recruit another O-Mad2 through O-C Mad2 heterodimerization. 

Hence, the Mad2-Cdc20 complex would serve as a ‘template’ for formation of new 

Mad2-Cdc20 complexes and thereby amplify itself by self-propagation away from the 

kinetochores, potentially explaining the sensitivity of the spindle checkpoint (Yu, 

2006). However, it was recently shown that the dimerization surface of Mad2 in the 

Mad2-Cdc20 complex is, when not bound to kinetochores, blocked by Mad3 (Chao et 
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al., 2012; Mariani et al., 2012). It seems the dimerization interface of Mad2 is 

required for Cdc20-Mad2 binding at the kinetochores and for stabilization of this 

complex away from kinetochores (Mariani et al., 2012). 

Since O-Mad2 is interacting with a kinetochore-bound stable Mad1-C-Mad2 complex, 

Mad2 needs to be present in excess over Mad1. Furthermore, all Mad1 is associated 

with Mad2, at least in human cells (Shah et al., 2004). Experiments performed in 

budding yeast (Chen et al., 1999; Ghaemmaghami et al., 2003), X. laevis (Chen et 

al., 1998; Chung and Chen, 2002) and human cells (Fava et al., 2011) all support the 

assumption that the levels of Mad2 exceed those of Mad1, resulting in a Mad1-free 

pool of Mad2. In addition to measuring the levels of Mad1 and Mad2, FRAP 

experiments performed in mitotic cells revealed the dynamics of these proteins at 

kinetochores and gave information about the different Mad2 pools (Howell et al., 

2000; Howell et al., 2004; Shah et al., 2004; Vink et al., 2006). Mad1 at kinetochores, 

presumably bound to Mad2, is mostly nonexchangeable (Howell et al., 2004; Shah et 

al., 2004). In contrast, two equally sized pools of kinetochore-associated Mad2 either 

cycle on and off rapidly or are more stably bound (Shah et al., 2004). While the 

dynamic pool that only transiently localizes to kinetochores most likely corresponds to 

O-Mad2 being recruited to the Mad1-C-Mad2 complex, the latter presumably 

represents the stably bound pool (Howell et al., 2004; Shah et al., 2004; Vink et al., 

2006). It was furthermore shown that the O-Mad2 conformation is the physiological 

state of cytosolic Mad2 in the absence of Mad1 or Cdc20 (Luo et al., 2004; De Antoni 

et al., 2005a). All these findings are in agreement with the Mad2 ‘template model’ and 

support the critical role of Mad2 dimerization and conformational change during the 

spindle assembly checkpoint signaling. 

1.6.4 The mitotic checkpoint complex (MCC) 

1.6.4.1 Proteins that form the MCC 

The mitotic checkpoint complex (MCC) is the ultimate effector of the spindle 

assembly checkpoint and associates with the APC/C, thereby inhibiting its E3 

ubiquitin ligase activity and preventing mitotic exit (Musacchio, 2015b). It was shown 

that Mad2-Cdc20 alone is not sufficient for SAC signaling, as cells lacking 

Mad3/BubR1 are still able to form the Mad2-Cdc20 complex but nevertheless fail to 

arrest in mitosis (Hardwick et al., 2000; Chen, 2002; Nilsson et al., 2008; Li et al., 
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2010). These findings place Mad3/BubR1 downstream of Mad1 and Mad2 in the SAC 

signaling cascade and show that it is another essential component for a functional 

checkpoint. It was originally proposed that MCC isolated from mitotic HeLa cells 

contains a single copy of Mad2, BubR1, Bub3, and Cdc20 (Sudakin et al., 2001), but 

newer results expand this view. A ‘core’ MCC containing a single copy of each 

subunit seems to bind a second molecule of Cdc20 (Primorac and Musacchio, 2013; 

Izawa and Pines, 2015; Musacchio, 2015b) (Figure 1-3 C). Recent structures of 

APC/C-bound MCC obtained by electron microscopy also showed simultaneous 

binding of two Cdc20 molecules (Alfieri et al., 2016; Yamaguchi et al., 2016). 

Mad3, BubR1 and Bub1 share a common ancestor called Madbub, which contains 

conserved motifs for checkpoint signaling (as seen in Mad3 and BubR1) as well as a 

functional kinase domain (as seen in Bub1) (Suijkerbuijk et al., 2012a). While the 

kinase domain in Bub1 is active, the same domain in BubR1 has been shown to be a 

non-functional ‘pseudokinase’ due to several inactivating mutations (Suijkerbuijk et 

al., 2012a). Although the BubR1 kinase domain is inactive and does not contribute to 

SAC signaling, the kinase domain has been shown to enhance protein stability (Lara-

Gonzalez et al., 2011; Suijkerbuijk et al., 2012a; Suijkerbuijk et al., 2012b). The 

BubR1 and Mad3 orthologs differ in the presence or absence of the C-terminal 

kinase domain. Organisms like budding or fission yeast express Mad3-like proteins 

that have lost the kinase domain, whereas organisms such as D. melanogaster, X. 

laevis or H. sapiens express BubR1-like proteins that still contain the kinase domain 

(Suijkerbuijk et al., 2012a; Vleugel et al., 2012). 

Both BubR1 and Mad3 contain a variety of different domains and motifs that are 

important for kinetochore localization, MCC formation, Bub3 binding and SAC 

activity. Both proteins contain two KEN boxes (KEN1 and KEN2, KEN standing for 

the amino acids Lys, Glu, Asn), which are crucial for checkpoint activity (Burton and 

Solomon, 2007; King et al., 2007; Sczaniecka et al., 2008; Malureanu et al., 2009; 

Elowe et al., 2010). KEN1, which is embedded in a helix-loop-helix motif in the very 

N-terminus of Mad3/BubR1, is required for MCC formation (Davenport et al., 2006; 

King et al., 2007; Sczaniecka et al., 2008; Elowe et al., 2010; Lara-Gonzalez et al., 

2011). Once the core MCC is formed, it can interact with a second, most likely 

APC/C-associated Cdc20 molecule. KEN2 is located further downstream and is not 

required for core MCC assembly (Burton and Solomon, 2007; King et al., 2007; Chao 

et al., 2012). Instead, it blocks substrate recruitment to the APC/C, potentially by 

occupying the substrate-binding pocket between Cdc20 and the APC/C subunit 
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Apc10 (Lara-Gonzalez et al., 2011; Chao et al., 2012). Recent work furthermore 

assigns KEN2 a function in binding the second Cdc20 molecule (Izawa and Pines, 

2015; Alfieri et al., 2016; Yamaguchi et al., 2016). The region between the two KEN 

boxes folds into a TPR domain similar to Bub1 (D'Arcy et al., 2010), which has been 

shown to interact with KNL1 (Kiyomitsu et al., 2011; Krenn et al., 2012), suggesting a 

direct interaction with the kinetochore. A region between the TPR domain and KEN2 

contains another motif termed the ‘D-box mimic’, which directly interacts with the 

WD40-repeats of Cdc20 (Burton and Solomon, 2007; Chao et al., 2012; Izawa and 

Pines, 2015). It was suggested that the D-box mimic blocks the D-box binding site in 

Cdc20, which is required for substrate binding. This mode of action was called 

‘pseudosubstrate inhibition’ as BubR1 blocks access of the APC/C to its substrates 

by competing with these substrates for Cdc20 binding (Burton and Solomon, 2007). 

While only one D-box mimic can be found in Mad3, BubR1 contains a second such 

motif in its middle region and the latest MCC-APC/C structures show that both motifs 

interact with Cdc20 (Alfieri et al., 2016; Yamaguchi et al., 2016). Mad3 and BubR1 

contain two more motifs that mediate interaction with Cdc20. These motifs were 

named A-motif, Phe-box or ABBA motif, depending on the publication, but all 

describe the same motifs required for interaction with Cdc20 or Cdh1, another co-

activator of the APC/C (Burton et al., 2011; Di Fiore et al., 2015; Diaz-Martinez et al., 

2015). ABBA motif might be the most descriptive name, as it can be found in cyclin A, 

BubR1, Bub1, and Acm1 (Di Fiore et al., 2015). The motif is embedded in an ‘internal 

Cdc20-binding site’, which was shown to be involved in interaction of BubR1 with 

Cdc20 and facilitates kinetochore recruitment of Cdc20 (Lischetti et al., 2014; Di 

Fiore et al., 2015). However, it should be noted that others did not observe any 

influence of BubR1 on Cdc20 kinetochore localization (Diaz-Martinez et al., 2015). 

Interestingly, also Bub1 contains an ABBA motif, which is crucial for kinetochore 

recruitment of Cdc20 (Di Fiore et al., 2015; Vleugel et al., 2015a). Furthermore, both 

Mad3 and BubR1 contain a GLEBS motif for interaction with Bub3 (Larsen et al., 

2007). This motif is truncated in S. pombe Mad3, which supposedly lacks the 

capability to interact with Bub3 (Sczaniecka et al., 2008). BubR1, but not Mad3, 

additionally contains a kinetochore attachment regulatory domain (KARD) motif 

preceding the C-terminal kinase, mediating a phosphorylation-dependent interaction 

with the PP2A phosphatase (Suijkerbuijk et al., 2012b; Kruse et al., 2013; Xu et al., 

2013). 
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Cdc20, another component of the MCC and co-activator of the APC/C is similarly rich 

in motifs for interaction with other proteins. The initial activation of Cdc20 requires 

binding of the chaperonin CCT to the WD40 repeats of Cdc20 (Camasses et al., 

2003). In its N-terminus, Cdc20 contains a C-box motif important for its co-activator 

function by mediating interaction with the APC/C (Schwab et al., 2001; da Fonseca et 

al., 2011; Primorac and Musacchio, 2013; Hein and Nilsson, 2014). Another motif in 

the Cdc20 N-terminus is the Mad2-interacting motif (MIM), also referred to as the 

KILR motif (for the amino acids Lys, Ile, Leu, Arg), which was shown to have a 

double function: mediate binding to the APC/C or interaction with Mad2. Mutation of 

all four amino acids resulted in loss of ability to bind and activate the APC/C and 

abolished formation of the MCC (Izawa and Pines, 2012). Interestingly, mutation of 

only the Arg residue retained APC/C interaction and activation but eliminated binding 

of Cdc20 to Mad2 (Kim et al., 1998; Zhang and Lees, 2001; Nilsson et al., 2008; 

Izawa and Pines, 2012). The Cdc20 β-propeller, formed by WD40 repeats, contains 

several degron binding sites for interaction with BubR1/Mad3 and other Cdc20 

substrates that contain D-boxes, KEN-boxes or ABBA motifs (Musacchio, 2015b). 

The last two amino acids in the C-terminus of Cdc20 are highly conserved forming 

the IR tail (IR standing for the amino acids Ile, Arg), which was shown to be important 

for binding the APC/C subunit Apc3 and an active checkpoint (Vodermaier et al., 

2003; Izawa and Pines, 2012; Hein and Nilsson, 2014; Zhang et al., 2016). 

All these findings together showed that the MCC consists of C-Mad2, Cdc20, 

BubR1/Mad3 and Bub3 and binds to the APC/C, which can already be associated 

with a second Cdc20 molecule. Recent studies indicate that Mad2 is present in sub-

stoichiometric amounts in the MCC-APC/C complex and may play a catalytic role 

(Nilsson et al., 2008; Kulukian et al., 2009; Han et al., 2013). Thus, the BubR1-Cdc20 

complex has been proposed to be the final inhibitor of the APC/C (Han et al., 2013). 

Although in many species Bub3 is part of the MCC, its role in MCC function is 

unclear. Bub3 forms a complex with BubR1/Mad3 (Hardwick et al., 2000; Fraschini et 

al., 2001; Larsen et al., 2007), but neither in vitro nor in vivo studies could find a 

synergistic effect of Bub3 with Mad2 and Mad3/BubR1 in MCC formation and APC/C 

inhibition (Fang, 2002; Kulukian et al., 2009; Izawa and Pines, 2015; Alfieri et al., 

2016; Yamaguchi et al., 2016). Furthermore, fission yeast MCC lacks Bub3 entirely in 

the complex and only consist of Mad2, Mad3 and Slp1 (Sczaniecka et al., 2008; 

Chao et al., 2012). 
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1.6.4.2 Formation of the MCC 

Formation of the mitotic checkpoint complex happens in a stepwise manner and 

involves interactions between many different motifs in the proteins that make up the 

MCC (Figure 1-3 B,C). It was shown that the MCC can form away from kinetochores 

(Kulukian et al., 2009) and directly binds cytosolic APC/C (Herzog et al., 2009), 

thereby blocking its activity. The first step is the formation of the Mad2-Cdc20 

complex, which involves entrapping of the Mad2-interacting motif (MIM/KILR) of 

Cdc20 with the Mad2 ‘safety belt’ (Nilsson et al., 2008; Sczaniecka et al., 2008; 

Kulukian et al., 2009). In a second step, Mad3/BubR1 and Bub3 bind to this pre-

formed complex and lastly associate with the APC/C (Sudakin et al., 2001). It was 

shown that the full MCC is a more effective inhibitor of the APC/C than Mad2 alone 

(Sudakin et al., 2001; Fang, 2002; Kulukian et al., 2009). While the interaction of 

Mad2 with Cdc20 only involves one region in each of the proteins for their binding, 

the interaction of Mad3/BubR1 with the Mad2-Cdc20 complex is more complex and 

involves several different motifs and receptors throughout the proteins (Figure 1-3 C). 

The N-terminal KEN1 box of Mad3 is embedded in a helix-loop-helix motif which 

simultaneously interacts with Mad2 and Cdc20. Interaction with Mad2 positions KEN1 

towards the KEN receptor on top of the WD40 propeller of Cdc20 (Figure 1-4), 

underlining the necessity of Mad2 for Mad3-Cdc20 interaction and MCC formation 

(Tipton et al., 2011; Chao et al., 2012). The Mad2-Mad3 interaction shields the Mad2 

dimerization site. This blocks O-Mad2 from accessing Cdc20-bound C-Mad2, so that 

the complex cannot serve as a ‘template’ for further C-Mad2-Cdc20 sequestration 

(Mariani et al., 2012). The crystal structure of the fission yeast MCC only contained 

one Cdc20 molecule and indicated an interaction of a D-box mimic of Mad3 with the 

D-box recognition site in the WD40 repeats of Cdc20 (Chao et al., 2012). The new 

structures of APC/C-bound MCC with two Cdc20 molecules revealed that BubR1 

contains two D-box mimics. The D-box in the middle segment of BubR1 (D2) binds to 

the ‘core’ Cdc20 (Cdc20MCC), while the N-terminal D-box (D1), located between the 

TPRs and the second KEN box, interacts with the second Cdc20 (Cdc20APC/C) and 

forms the interface between Cdc20APC/C and Cdc20MCC (Alfieri et al., 2016; 

Yamaguchi et al., 2016) (Figure 1-4, Figure 1-5). This explains how mutating D1 

disrupts MCC binding to a second Cdc20 molecule without affecting ‘core’ MCC 

integrity (Izawa and Pines, 2015) while mutation of D2 leads to a decrease of MCC 

formation (Diaz-Martinez et al., 2015). The D-box receptor in Cdc20 is a channel 
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between blades 1 and 7 of the WD40 propeller (Chao et al., 2012; Alfieri et al., 2016; 

Yamaguchi et al., 2016) (Figure 1-4, Figure 1-5). Cdc20 with a mutated D-box 

receptor showed reduced binding to a pre-formed recombinant core MCC in vitro but 

could still be incorporated into the core MCC in vivo, indicating that the D-box 

receptor is required for binding of a second Cdc20 molecule to the core MCC (Izawa 

and Pines, 2015). BubR1 contains an ABBA motif (A1) in close proximity to D1 and 

the second KEN2 box. While these motifs were not part of the fission yeast MCC 

crystal structure, the new EM structures show that all three are binding to Cdc20APC/C 

(Alfieri et al., 2016; Yamaguchi et al., 2016) (Figure 1-4, Figure 1-5), again confirming 

the results from previous studies, which indicated that the second KEN box is not 

involved in ‘core’ MCC formation but rather mediates binding to the second Cdc20 

molecule (Burton and Solomon, 2007; Lara-Gonzalez et al., 2011; Izawa and Pines, 

2015). The second ABBA motif (A2), located in the middle region of BubR1, contacts 

Cdc20MCC (Alfieri et al., 2016) and mutation of this motif was shown to cause a 

reduction in MCC formation (Di Fiore et al., 2015; Diaz-Martinez et al., 2015). 

Cdc20MCC and Cdc20APC/C bind to the respective ABBA motifs of BubR1 through an 

ABBA receptor located between blades 2 and 3 of the WD40 repeats of Cdc20 (Di 

Fiore et al., 2015; Alfieri et al., 2016) (Figure 1-4, Figure 1-5). Mutation of two 

residues within the receptor retained the ability of Cdc20 to activate the APC/C but 

weakened binding of BubR1 in vitro and in vivo (Di Fiore et al., 2015). Lastly, a CRY 

degron in Cdc20 mediates interaction between the two Cdc20 molecules (Alfieri et 

al., 2016; Yamaguchi et al., 2016) (Figure 1-4, Figure 1-5). 

It is unclear in how far all these interactions are conserved between BubR1 and 

Mad3, especially since Mad3 is shorter than BubR1 and does not seem to contain as 

many Cdc20 binding sites as BubR1. In addition to the two KEN boxes, S. pombe 

Mad3 contains one D-box and two ABBA motifs, first suggested by the MCC crystal 

structure (Chao et al., 2012) and motif searches with the ABBA consensus sequence 

Fx[ILV][FHY]x[DE] (Di Fiore et al., 2015). S. cerevisiae Mad3 does not contain any 

amino acid sequence matching the ABBA consensus but does contain a D-box in its 

C-terminus, mutation of which reduces Cdc20 binding (Burton and Solomon, 2007). It 

remains to be seen with which of the two Cdc20 molecules the ABBA and D-box 

motifs that are present in Mad3 are interacting. 
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Figure 1-4 Interactions of BubR1 with two Cdc20 molecules 
Adapted from Alfieri et al. (2016) 
The schematic representation of the top view of the Cdc20

MCC
 and Cdc20

APC/C
 WD40 domains (blades 

are numbered) shows the positions where BubR1 KEN-boxes (K1, K2), D-boxes (D1, D2) and ABBA 
motifs (A1, A2) interact with the two Cdc20 molecules. The CRY degron mediates Cdc20

MCC
 

interaction with Cdc20
APC/C

 and the MIM sequence of Cdc20
MCC

 provides a Mad2 binding surface. ‘N’ 
and ‘C’ mark the N-terminal and C-terminal ends of BubR1. The solid line depicts a segment of BubR1 
that is fully visible in the cryo-EM structure (Alfieri et al., 2016) while dashed lines indicate more 
flexible and therefore invisible segments (for cryo-EM structure of MCC-APC/C see Figure 1-5). 

1.6.4.3 Inhibition of the APC/C 

In order to prevent the APC/C from ubiquitinating Cyclin B and Securin, which would 

promote mitotic exit, Cdc20 needs to be inhibited from activating the APC/C. When 

the MCC binds the APC/C, Cdc20MCC takes a different position than in the APC/C-

Cdc20 complex. As an activator, Cdc20 is positioned opposite of Apc10 and together 

they form a D-box receptor. Within the core MCC, Cdc20 is shifted away from Apc10 

(Herzog et al., 2009; Alfieri et al., 2016; Yamaguchi et al., 2016). This displacement 

of Cdc20 brings it closer to the catalytic core of the APC/C, which might allow the 

ubiquitination and subsequent proteolysis of Cdc20, thus turning the APC/C co-

activator into an APC/C substrate. As mentioned earlier, it was proposed (Primorac 

and Musacchio, 2013), and shown (Izawa and Pines, 2015), that the core MCC 

inhibits APC/C already in complex with the regulatory subunit Cdc20 (APC/C-Cdc20). 

Cdc20APC/C faces Apc10 and both together form the D-box receptor for binding of 

APC/C substrates. Newest electron microscopy structures of the MCC-APC/C 

complex showed strong conformational variability. The whole complex can adopt 

either an open or a closed conformation, which differ in the rotation of the MCC-

Cdc20APC/C assembly relative to the APC/C (Figure 1-3 C). Furthermore, the catalytic 

core of the APC/C formed by the subunits Apc2 and Apc11 can be found in an up or 

down position, which determines if the APC/C is catalytically active towards 
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Cdc20MCC
 (Alfieri et al., 2016; Yamaguchi et al., 2016). It was shown that Cdc20 

abundance fluctuates during the cell cycle and that Cdc20 is ubiquitinated by the 

APC/C and subsequently degraded both at mitotic exit (Sullivan and Morgan, 2007) 

and in an MCC-dependent manner during active checkpoint signaling (Reddy et al., 

2007; Mansfeld et al., 2011; Foster and Morgan, 2012; Uzunova et al., 2012). Cdc20 

degradation can counteract its synthesis in mitosis and reduces the amount of Cdc20 

that needs to be inactivated by the checkpoint. Cdc20 may release Mad2 and Mad3 

from the APC/C, which could help checkpoint inactivation once the upstream 

signaling has stopped (Reddy et al., 2007). Upon MCC disassembly, Mad2 has to be 

re-converted from C-Mad2 to O-Mad2 (Luo et al., 2004; Fava et al., 2011). This 

ensures the presence of free O-Mad2 available for Cdc20 binding. The molecular 

mechanisms underlying the disassembly of the MCC and the ‘recycling’ of Mad2 

have just started to be revealed (Musacchio, 2015a). 

‘Empty’ apo-APC/C without Cdc20 has its catalytic core in the ‘down’ position, which 

masks the binding site for the E2 ubiquitin-conjugating enzyme, leading to 

autoinhibition of the APC/C (Chang et al., 2014). If the APC/C is in complex with 

Cdc20, the catalytic core shifts into the ‘up’ position and is freed from autoinhibition, 

allowing the complex to be active and bind and ubiquitinate its substrates 

(Yamaguchi et al., 2016; Zhang et al., 2016). The MCC docks into the APC/C in a 

cavity directly below Cdc20APC/C, and interacts with Cdc20APC/C such that the two 

Cdc20 WD40 domains of Cdc20APC/C and Cdc20MCC are arranged in an almost 

perpendicular fashion (Alfieri et al., 2016). In response to MCC binding, the WD40 

domain of Cdc20APC/C is tilted by roughly 40° and rotated 90° about its central axis 

(Alfieri et al., 2016; Zhang et al., 2016), which disrupts the D-box-binding site formed 

by the interface of Cdc20APC/C and Apc10 (Chang et al., 2014, 2015). While the IR tail 

of Cdc20APC/C becomes disengaged from Apc3, the N-terminal domain of Cdc20APC/C 

maintains the same interactions with Apc8 and Apc1 as seen in APC/CCdc20 (Alfieri et 

al., 2016; Zhang et al., 2016). BubR1 mediates contacts between the two Cdc20 

molecules and furthermore interacts through its TPRs with the winged-helix B (WHB) 

domain of Apc2, which is part of the catalytic core of the APC/C (Alfieri et al., 2016; 

Yamaguchi et al., 2016). During active checkpoint signaling when the MCC is bound 

to the APC/C, the catalytic core is in the ‘up’ position but the MCC-APC/C complex is 

closed, which blocks E2 access (Alfieri et al., 2016; Yamaguchi et al., 2016). The C-

terminal IR tail of Cdc20MCC binds to a site on Apc8A that is structurally equivalent to 

the Cdc20APC/C C-box binding site on Apc8B (Chang et al., 2015; Alfieri et al., 2016; 
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Yamaguchi et al., 2016). Furthermore, the lower surface of the Cdc20MCC WD40 

domain interacts with the Apc4 helix-bundle domain (HBD), close to the binding site 

for the ubiquitin-conjugating enzyme (Brown et al., 2015; Chang et al., 2015; Alfieri et 

al., 2016). During checkpoint silencing, the MCC presumably rotates into the open 

position, with the catalytic core still facing up, which allows access for ubiquitin-

conjugating enzymes that mediate ubiquitination of Cdc20MCC (Yamaguchi et al., 

2016). 

 

 

Figure 1-5 Cryo-EM structure of the MCC-APC/C complex 
Adapted from Alfieri et al. (2016) 
Overall and close-up views show details of the MCC-APC/C complex. Cryo-EM densities of Cdc20-
binding KEN-boxes (K1, K2), D-boxes (D1, D2) and ABBA motifs (A1, A2) in BubR1 are shown, as 
well as Cdc20

MCC
 CRY box and MIM. Interactions of the BubR1 A1 motif with the Apc10

D-box co-receptor
 

and Apc1; BubR1
TPR

 with Apc2
WHB

; and Cdc20
MCC

 with Apc4
HBD

 are indicated. 

The structures of closed MCC-APC/C and APC/C bound to coactivators are similar 

except for a region containing the platform subunits Apc4, Apc5 and Apc15, which 

displayed major conformational differences (Alfieri et al., 2016). It was shown that the 

N-terminal helix of Apc15 influences the transition between open and closed 

conformations of the MCC-APC/C complex and is necessary to stabilize the complex 

in the open position (Alfieri et al., 2016). Depletion of Apc15 selectively impairs 
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Cdc20 ubiquitination during checkpoint signaling without affecting MCC binding to the 

APC/C or APC/C ubiquitination activity towards other substrates (Mansfeld et al., 

2011; Foster and Morgan, 2012; Uzunova et al., 2012). In agreement with these 

findings, new results showed that APC/C-Cdc20 lacking Apc15 retained substrate 

ubiquitination activity and could be inhibited by the MCC, but ubiquitination of 

specifically Cdc20MCC was impaired (Yamaguchi et al., 2016). EM structures of the 

complex lacking Apc15 showed an increase in the population with the MCC rotated 

into the closed configuration, accompanied by relative rotation in Apc4 and Apc5 

regions (Alfieri et al., 2016; Yamaguchi et al., 2016). Only few complexes adopted the 

open position but those were still catalytically inactive since Apc2-Apc11 was in the 

‘down’ position, which is typically observed in apo-APC/C and prohibits binding of 

ubiquitin-conjugating enzymes (Alfieri et al., 2016; Yamaguchi et al., 2016). The shift 

towards a majority of the MCC-APC/C complexes in the closed position when lacking 

Apc15 underlines the importance of Apc15 for stabilization of the MCC in the open 

position to allow Cdc20 ubiquitination. 

1.6.5 Influence of protein levels on SAC signaling 

For the spindle assembly checkpoint to work reliably and robustly, all aforementioned 

protein modifications, protein-protein interactions and various complex formations 

need to take place in a controlled and ordered fashion to sense unattached 

kinetochores and propagate the checkpoint signal. In addition, the checkpoint needs 

to tolerate fluctuating protein abundances. A single unattached kinetochore is 

sufficient to delay anaphase onset (Rieder et al., 1994) and the cells quickly exit 

mitosis upon removal of the last unattached kinetochore by laser ablation (Rieder et 

al., 1995). Early work by Rieder et al. (1994) observed no difference in the delay of 

mitotic exit evoked from a single or several unattached kinetochores and therefore 

suggested that the checkpoint generates a switch-like ‘all-or-none’ response. More 

recent reports instead argue that the checkpoint is rather a quantitative signal (Kops 

et al., 2005b) and that the extent of APC/C inhibition correlates with the number of 

unattached chromosomes and the strength of the SAC signal, consistent with a 

graded SAC response (Collin et al., 2013; Dick and Gerlich, 2013). 

The checkpoint does not only need to work reliably, it also needs to be robust 

towards natural fluctuations in protein abundance. While concentrations of some 

checkpoint proteins were determined in cell extracts from mammalian cells and 



1  Introduction 

32 

budding yeast and showed a low abundance (Howell et al., 2000; Ghaemmaghami et 

al., 2003; Poddar et al., 2005; Nilsson et al., 2008), it was unknown if this would also 

go along with a strong fluctuation that is often seen for low abundant proteins (Bar-

Even et al., 2006; Newman et al., 2006). Such variations could potentially cause 

problems in checkpoint signaling. New data from S. pombe show that although the 

checkpoint proteins are low abundant, their noise level is kept low as well, thus 

ensuring robust checkpoint signaling (Heinrich et al., 2013). 

Normal cells have a robust mitotic checkpoint in which one or more unattached 

kinetochores can produce a signal that is strong enough to inhibit all cellular APC/C 

activity and thereby block progression into anaphase. This is not necessarily true 

when checkpoint components are mutated or their concentrations are altered. 

Striking examples for this are Mad1 and Mad2. Overexpression of Mad1 sequesters 

the complete pool of free Mad2 and thereby leads to a checkpoint defect which could 

be reversed by increasing the amount of Mad2 in X. laevis egg extract (Chung and 

Chen, 2002). In fission yeast, Mad1 overexpression also caused a checkpoint defect 

but only showed a reduction, not a full sequestration, of the pool of free Mad2 

(Heinrich et al., 2013). In contrast, Mad2 overexpression causes a mitotic arrest (He 

et al., 1997; Chen et al., 1998; Fang et al., 1998a; Kim et al., 1998; Howell et al., 

2000; De Antoni et al., 2005a; Sotillo et al., 2007; Essex et al., 2009; Rossio et al., 

2010; Rowald et al., 2016) and can overcome the requirement for Mad1 to induce a 

checkpoint arrest in fission yeast and X. laevis, indicating a formation of the inhibitory 

Mad2-Cdc20 complex independently of Mad1 (Chen et al., 1998; Millband and 

Hardwick, 2002). In contrast, human cells, budding yeast and C. elegans require the 

presence of Mad1 for a SAC arrest induced by Mad2 overexpression (Sironi et al., 

2001; Essex et al., 2009; Rossio et al., 2010). However, one report showed that 

artificial tethering of Mad2 to Cdc20 can render Mad1 dispensable for a checkpoint 

arrest in budding yeast (Lau and Murray, 2012). One can speculate that the relative 

abundance of Mad1 to Mad2 and the strength of the Mad2-Cdc20 interaction are 

critical for checkpoint signaling. But not only overexpression of checkpoint proteins 

can cause problems, also lowering the abundance can have negative effects on SAC 

activity. Reduced levels of Mad2 and BubR1 in human cells and mice by expression 

from only one intact gene copy instead of two lead to loss of checkpoint activity, 

resulting in higher chromosome mis-segregation rates and enhanced tumor 

development (Michel et al., 2001; Dai et al., 2004). Fission yeast also reacted to 

expression of lower Mad2 or Mad3 levels by reducing or completely losing its ability 
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to arrest in mitosis, depending on the expression level (Heinrich et al., 2013). This is 

in agreement with data from budding yeast, where a reduction of Mad2 expression 

resulted in an increased rate of chromosome loss, which could be rescued by 

simultaneous reduction of Mad1 levels (Barnhart et al., 2011). At least in fission 

yeast, a key to checkpoint activity seems to be the relative levels between Mad2, 

Mad3 and Slp1, the proteins that form the MCC. Reducing the level of Slp1 in cells 

that were checkpoint defective due to lower Mad2 or Mad3 levels rescued checkpoint 

activity (Heinrich et al., 2013). In turn, overexpression of Slp1 to about twice the 

endogenous level enhanced the effect of lowering Mad2 or Mad3, and the checkpoint 

was impaired even when Mad2 and Mad3 were unchanged (Heinrich et al., 2013). 

This is in agreement with data from budding yeast showing that overexpression of 

Cdc20 by about threefold impaired the SAC (Pan and Chen, 2004), suggesting that 

Mad2 and Mad3 become limiting under this condition. 

1.7 Checkpoint silencing 

Once kinetochores have been properly attached to the mitotic spindle, the spindle 

assembly checkpoint signal needs to be quickly and robustly silenced. How the signal 

is turned off once the checkpoint has been satisfied is only partially understood but 

recent findings start to shed light onto this process. The checkpoint silencing 

mechanism involves protein delocalization from kinetochores, disruption of inhibitory 

protein-protein interactions, MCC disassembly and reversal of mitosis-specific 

phosphorylations (Etemad and Kops, 2016). Mps1 is the initiator of MCC production 

and, in human cells and fission yeast, is one of the SAC proteins that needs to be 

delocalized from kinetochores upon microtubule attachment, as preventing its 

removal by artificial kinetochore tethering of Mps1 retains SAC proteins at 

kinetochores and delays SAC silencing (Jelluma et al., 2010; Heinrich et al., 2012; Ito 

et al., 2012). If Mps1 kinase activates the SAC by phosphorylating some proteins at 

the kinetochore, the reversal of these phosphorylation events is likely required to 

silence the checkpoint. Mitotic phosphorylations are counteracted by phosphatases 

such as PP1 (protein phosphatase 1). PP1 inhibition delays mitotic exit (Pinsky et al., 

2009; Vanoosthuyse and Hardwick, 2009) and PP1 recruitment to the N-terminus of 

KNL1 has been shown to be required for counteracting Aurora B function and 

support checkpoint inactivation (Meadows et al., 2011; Rosenberg et al., 2011). 

Therefore, the balance of kinase and phosphatase activity at the kinetochore is likely 
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central for SAC silencing and KNL1 seems to be placed as a bridge between 

checkpoint activation (via Bub1) and checkpoint silencing (via PP1). Like seen for 

Mps1, artificial tethering of Mad1 to bi-oriented chromosomes also prolonged a 

checkpoint-dependent mitotic arrest after chromosomes have become attached 

(Maldonado and Kapoor, 2011; Ballister et al., 2014; Kuijt et al., 2014). Removal of 

Mad1 and Mad2 from kinetochores and transport to the minus-ends of the 

microtubules is a dynein-dependent process (Howell et al., 2001) but additional 

dynein-independent de-localization of Mad1 and Mad2 has also been observed 

(Courtheoux et al., 2007; Gassmann et al., 2010). 

Another important part of SAC silencing is the prevention of additional MCC 

formation and disassembly of the MCC that is already present. The p31comet protein 

was identified as a Mad2 interactor and can block Mad2 dimerization and MCC 

formation. p31comet adopts a very similar fold as Mad2, blocks the Mad2-Mad2 

dimerization interface and thereby prevents binding of an O-Mad2 molecule to C-

Mad2 (Xia et al., 2004; Mapelli et al., 2006; Yang et al., 2007; Teichner et al., 2011; 

Westhorpe et al., 2011). p31comet seems to act predominantly on the C-Mad2 that is 

part of the MCC, as O-Mad2 recruitment to Mad1-C-Mad2 complexes at kinetochores 

is unaffected in cells with altered p31comet levels (Westhorpe et al., 2011). It is unclear 

how p31comet can distinguish between these two C-Mad2 pools. The p31comet-

dependent removal of C-Mad2 from the MCC has been suggested to support Mad2 

recycling in an active checkpoint, potentially by facilitating the transition from C-Mad2 

to O-Mad2 (Westhorpe et al., 2011). Both MCC disassembly and MCC extraction 

from the APC/C are ATP-dependent processes that depend on energy from ATP 

hydrolysis (Miniowitz-Shemtov et al., 2010; Teichner et al., 2011). The requirements 

for p31comet activity and ATP hydrolysis were connected by the recent discovery of 

the AAA+ ATPase TRIP13/PCH2. TRIP13/PCH2 binds to C-Mad2 which is then 

converted to O-Mad2 in a manner that depends on ATP hydrolysis and on the activity 

of p31comet (Eytan et al., 2014; Wang et al., 2014; Ye et al., 2015). 

Upon inactivation of the upstream SAC signal, not only APC/C-MCC complexes are 

disassembled but also free MCCs not bound to the APC/C (Ma and Poon, 2011). 

MCC disassembly is additionally facilitated by MCC-dependent Cdc20 ubiquitination 

by the APC/C during SAC silencing and helps to recycle the MCC components 

(Reddy et al., 2007; Mansfeld et al., 2011; Foster and Morgan, 2012; Uzunova et al., 

2012). The APC/C subunit Apc15 is important for the turnover of the MCC on the 

APC/C (Mansfeld et al., 2011; Uzunova et al., 2012). Human and budding yeast cells 
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lacking Apc15 exhibit a delayed exit from mitosis without having problems to activate 

the SAC, indicative for a malfunction in checkpoint silencing (Mansfeld et al., 2011; 

Foster and Morgan, 2012; Uzunova et al., 2012). In human cells depleted of Apc15, 

MCC components and ubiquitinated Cdc20 are not released from the APC/C, which 

prevents crucial substrate ubiquitination by the APC/C at the metaphase-to-anaphase 

transition once the SAC has been satisfied (Mansfeld et al., 2011; Uzunova et al., 

2012). Both p31comet-dependent inhibition of Mad2 and ubiquitination of Cdc20 are 

critical mechanisms of checkpoint inactivation. They act in parallel to promote Mad2 

dissociation from Cdc20 (Jia et al., 2011). 

If Mps1 kinase activates the SAC by phosphorylating some proteins at the 

kinetochore, the reversal of these phosphorylation events is likely required to silence 

the checkpoint. Mitotic phosphorylations are counteracted by phosphatases such as 

PP1 (protein phosphatase 1). PP1 inhibition delays mitotic exit (Pinsky et al., 2009; 

Vanoosthuyse and Hardwick, 2009) and PP1 recruitment to the N-terminus of KNL1 

has been shown to be required for counteracting Aurora B function and support 

checkpoint inactivation (Meadows et al., 2011; Rosenberg et al., 2011). Therefore, 

the balance of kinase and phosphatase activity at the kinetochore is likely central for 

SAC silencing and KNL1 seems to be placed as a bridge between checkpoint 

activation (via Bub1) and checkpoint silencing (via PP1). 

Neither the dynein-mediated stripping of Mad1 and Mad2 from kinetochores nor the 

Mad2-interactor p31comet are conserved in yeast. Instead, disassembly of the MCC on 

the APC/C seems to be the more evolutionarily ancient mechanism as Apc15-

dependent checkpoint inactivation through MCC disassembly and Cdc20 

ubiquitination as well as kinase-counteracting phosphatases have also been found in 

yeast (reviewed in Lara-Gonzalez et al., 2012). 

Although cells can arrest in mitosis for a long time, satisfaction and silencing of the 

SAC is not necessarily required to exiting mitosis. This alternative mode of exit, which 

requires ubiquitination and proteolysis of cyclin B, is termed ‘mitotic slippage’ (Hunt et 

al., 1992; Andreassen and Margolis, 1994; Brito and Rieder, 2006) and can occur in 

cancer cells escaping treatment with spindle poisons (Rieder and Maiato, 2004; 

Gascoigne and Taylor, 2008; Orth et al., 2008; Gascoigne and Taylor, 2009; Chan et 

al., 2012). If the slow decline in cyclin B levels and thereby CDK activity is indeed the 

cause for slipping out of mitosis is currently debated. Recent results in S. cerevisiae 

showed an increase in cyclin B levels (Clb2 in S. cerevisiae) shortly before mitotic 

slippage and only then an abrupt degradation (Vernieri et al., 2013). Until now, the 
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APC/C was the only known ubiquitin ligase to mediate the degradation of cyclin B in 

mitosis and it was suggested that either a possible failure of the SAC mechanism 

after a prolonged arrest could lead to APC/C activity (Lee et al., 2010), or, at least in 

budding yeast, the sudden activation of the APC/C rather than a ‘residual’ activity in 

arrested cells causes the mitotic exit (Vernieri et al., 2013). These views both got 

challenged now by Balachandran et al. (2016) who show that slippage also happens 

when the APC/C is inactive and identify another ubiquitin ligase (CRL2ZYG11) as the 

one targeting cyclin B in the cells that slip out of a SAC arrest when the APC/C is 

inhibited. Mitotic slippage was in part viewed as a breakdown of the checkpoint 

mechanism in response to artificial and prolonged spindle drug treatment. The 

discovery of the CRL2ZYG11 pathway of cyclin B degradation suggests for the first time 

that slippage is a genuine cellular safety mechanism (Brandeis, 2016). 

1.8 Aim of this study 

The spindle assembly checkpoint is a highly conserved and essential cellular 

safeguard that prevents eukaryotic cells from missegregating chromosomes. Despite 

extensive knowledge about the individual proteins that make up the checkpoint 

signal, which was obtained by cell biological, biochemical and structural studies, the 

complex interplay between checkpoint proteins in vivo still remains only partially 

understood. 

One salient question is the connection between the Bub1-Bub3 complex and Mad1. 

While in vivo studies indicated an interaction between Mad1 and Bub1, an 

understanding of the detailed mechanism was largely missing. Therefore, I wanted to 

address if this functional connection is conserved across species by analysis of point 

mutants of fission yeast Mad1 and Bub1 that were shown to abolish the interaction 

between these two proteins in budding yeast. Since a crystal structure of the Mad1 

C-terminus revealed a highly organized globular fold and furthermore contained the 

putative Bub1-binding motif, I wanted to determine if and how the Mad1 C-terminus is 

involved in checkpoint signaling. 

Moreover, I also wanted to investigate how the kinetochore-recruitment of Bub1-Bub3 

to phosphorylated MELT motifs of Spc7/KNL1 influences checkpoint activity and how 

this is linked to recruitment of Mad1 to promote checkpoint signaling. 

Another aspect of the checkpoint that was explored for a long time without being fully 

understood is the nature of the mitotic checkpoint complex and how it manages to 
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prevent Cdc20 from activating the APC/C prematurely in mitosis. Following reports 

about several motifs in human BubR1 that mediate interaction with Cdc20 and the 

finding that the human MCC can simultaneously bind two Cdc20 molecules, I tested if 

this property is conserved in S. pombe. In addition to immunoprecipitation 

experiments to reveal a possible binding of a second Slp1/Cdc20 molecule to the 

MCC, I also mutated motifs in Mad3 that were shown to mediate Cdc20 binding in 

BubR1 of other organisms to dissect their role in MCC formation and checkpoint 

signaling. In the context of these experiments, we found that S. pombe differed from 

other organisms in that deletion of the APC/C subunit Apc15 resulted in a defect in 

checkpoint activity rather than checkpoint silencing. The phenotype is similar to some 

Mad3 mutants, which raises interesting further questions about the biochemistry of 

the APC/C inhibition by the MCC. 
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Introduction

Mad1 is part of the spindle assembly checkpoint, a conserved mito-

tic signalling pathway that protects genome integrity by monitoring

chromosome attachment to the mitotic spindle and delaying ana-

phase until all chromosomes have achieved proper attachment [1].

Mad1 forms a tetrameric complex with the checkpoint protein Mad2

[2]. At unattached kinetochores, Mad1-bound Mad2 dimerizes with

soluble Mad2 to induce binding of the latter to Cdc20 [1,3], an

essential co-activator of the anaphase-promoting complex/cyclo-

some (APC/C) [4]. This enables binding of Mad3 (BubR1 in many

organisms) to Cdc20 to form the mitotic checkpoint complex (MCC),

which is a potent inhibitor of the APC/C [4–6]. In S. pombe, the kin-

ases Ark1 and Mph1, as well as Bub1 and Bub3, are required to bring

Mad1:Mad2 to unattached kinetochores [7]. Similar dependencies

exist in other organisms [1]. Consistent with the important role of the

Mad1:Mad2 complex in initiating Cdc20 inhibition, preventing the

Mad1:Mad2 interaction abolishes checkpoint activity [8–11]. Hence,

Mad1 is important to present Mad2 at unattached kinetochores.

Mad1 has approximately 80 kDa; yet, the stretch that binds

Mad2 is <20 amino acids long. This raises the question whether the

remaining parts only have a structural role. The Mad1 part N-termi-

nal to the Mad2-binding site is predicted to form a long coiled-coil.

The structure of the C-terminal end of this coiled-coil (a1) together
with the Mad2-binding site bound to Mad2 as well as a C-terminal

helix (a2) indicated that a1 mediates Mad1 dimerization [2].

Another structure of the C-terminal part following a2 showed

another intermolecular coiled-coil (a3) and a globular head [12]

(see Figs 1A and 4A). The Mad1 C-terminus has repeatedly been

implicated in kinetochore binding [12–14]; some studies have

suggested a role for the N-terminus [15,16]. Budding yeast Mad1

interacts with Bub1, which requires a conserved motif (RLK, Arg-

Leu-Lys) in the Mad1 a3 helix [17] and a conserved stretch in Bub1

[18]. This interaction is important for checkpoint activity [17], and

in human cells, the RLK motif is required for kinetochore localiza-

tion of Mad1 [12]. Overall, these observations indicate that the

structured parts of Mad1 are required to bring the Mad1:Mad2

complex to kinetochores to allow checkpoint signalling, potentially

through an interaction between Mad1 and Bub1.

Here, we show using fission yeast that the Mad1 C-terminus

promotes checkpoint activity in a way that is independent of its role

in bringing the Mad1:Mad2 complex to kinetochores.
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Results and Discussion

Mad1-RLK motif and Bub1-conserved motif 1 are required for
kinetochore localization of Mad1 and checkpoint activity

To assess potential roles of Mad1 apart from Mad2-binding, we

focused on the RLK motif (amino acid (aa) 580–582) within a3 [17].

When we mutated all motif residues to alanine in S. pombe, kineto-

chore localization of Mad1 and Mad2 was impaired (Fig 1A, C–E),

whereas localization to the nuclear envelope stayed intact (Supple-

mentary Fig S1A and D). Checkpoint activity was lost in the Mad1-

RLK/AAA mutant (Fig 1F), although kinetochore localization of

Ark1, Bub1, Bub3 and Mad3 was preserved (Fig 1E, Supplementary

Fig S1B) and although Mad1-RLK/AAA was present at normal levels

(Fig 1G) and the Mad1:Mad2 interaction was intact (Fig 1H). This

suggests that the failure to bring Mad1:Mad2 to kinetochores causes

the checkpoint defect. A similar loss of Mad1 localization and check-

point activity occurred when only the outward-facing amino acids R

and K of the RLK motif were mutated or when the C-terminus was

truncated (Fig 1). The latter supports results from budding yeast

[19]. Like RLK/AAA, the RLK/ALA mutation preserved Mad2 inter-

action, whereas truncation of the C-terminus led to a gradual loss of

this interaction (Fig 1H). Although the Mad1 C-terminus was neces-

sary for kinetochore binding (Fig 1C and D), it did not seem suffi-

cient (Supplementary Fig S2). In contrast to the C-terminus, the

Mad1 N-terminus was required for nuclear envelope localization,

but was at least partly dispensable for kinetochore localization

(Supplementary Fig S2).

The RLK motif has been implicated in binding to Bub1 in bud-

ding yeast [17,18], which involves a region of Bub1 that contains

the “conserved motif 1” (cm1; [20]). Indeed, mutation of Bub1-cm1

phenocopied Mad1-RLK mutants (Fig 1I–L). Bub1 itself (Fig 1K) as

well as Bub3 and Mad3 (Supplementary Fig S1I) still localized to

kinetochores, but Mad1 and Mad2 were strongly reduced (Fig 1J

and K, Supplementary Fig S1I) and cells lacked checkpoint activity

(Fig 1L). We conclude that the C-terminus of Mad1 (with the RLK

motif) and Bub1-cm1 are involved in recruiting Mad1 to kinetoch-

ores and both regions are important for checkpoint function.

The Mad1 RLK motif and Bub1-cm1 promote checkpoint activity
independently of their role in Mad1 kinetochore localization

Since Bub1 and Mad1 have been observed to interact in budding

yeast [17], it is conceivable that Bub1 and Mad1 interact through cm1

and RLK motif and that this interaction is required for Mad1

kinetochore localization and checkpoint activity. Surprisingly, we

were unable to detect an interaction between these two proteins

when immunoprecipitating either of them from cells with an active

checkpoint (Supplementary Fig S3A and B), similar to the situation in

human cells [12]. To test whether the loss of checkpoint activity in the

Mad1-RLK/AAA or Bub1-cm1 mutant (Fig 1F and L) is at all related to

the loss of Mad1 from kinetochores, we tested checkpoint activity after

artificially recruiting Mad1 to kinetochores through fusion to the

kinetochore protein Mis12 (Fig 2). Although the levels of tethered

Mad1 at unattached kinetochores were slightly lower than for wild-

type Mad1 (Fig 2E and F), the checkpoint was functional at least in a

large fraction of the cells (Fig 2B and D). Tethering of Mad1-RLK/

AAA, however, did not provide checkpoint activity (Fig 2B), even

though Mad2 was co-recruited to the kinetochore at similar levels as

in tethered wild-type Mad1 (Fig 2F). Similarly, artificially recruiting

Mad1 in either bub1D or bub1-cm1 cells did not restore the check-

point (Fig 2D and E). This suggests that Bub1-cm1 and the Mad1

C-terminus have an additional role within the spindle assembly

checkpoint, apart from recruiting Mad1 and Mad2 to kinetochores.

Figure 1. The Mad1 RLK motif and Bub1-cm1 are required for Mad1 kinetochore localization and checkpoint activity.

A Domain structure of Mad1; point mutations and truncations employed in this study.
B Schematic of fission yeast nuclei in prometaphase. Shown are the three chromosomes (light blue), the mitotic spindle (black) and kinetochores decorated with GFP-

tagged SAC components (green). Plo1-mCherry (purple) is specifically recruited to spindle pole bodies (SPBs) in mitosis [37]. In interphase and early mitosis,
kinetochores cluster at SPBs. In the conditional nda3-KM311 tubulin mutant, microtubule formation is impaired at restrictive temperature (16°C) and spindle pole
bodies are unable to separate. Signals from the three chromosomes can typically not be microscopically resolved at early mitosis.

C Cells expressing plo1+-mCherry, nda3-KM311 and the indicated Mad1-GFP fusion proteins were grown at the permissive temperature for nda3-KM311 (30°C).
Representative nuclei of mitotic cells are shown; Plo1 was used as marker for mitosis (scale bar: 2 lm; see Supplementary Fig S1A for a larger field of view).

D The same strains as in (C) were analysed at the restrictive temperature for nda3-KM311 (16°C), which prevents microtubule formation. Cells were followed by live-
cell microscopy and the Mad1-GFP signals were quantified at the kinetochore as cells entered mitosis (a.u. = arbitrary units; error bars = s.d.; n ≥ 20 cells).

E Cells expressing plo1+-mCherry, nda3-KM311, the indicated GFP fusion proteins and either wild-type Mad1 (mad1+) or mad1-RLK/AAA were imaged at 16°C.
Representative nuclei of mitotic cells are shown. Scale bar: 2 lm.

F Cells expressing plo1+-mCherry and nda3-KM311 and the indicated mutations or truncations in mad1 were analysed by live-cell imaging at 16°C. The time that each
cell spent in prometaphase was determined by the localized Plo1-mCherry signal at SPBs (circle). Cells that had not yet exited mitosis when filming stopped are
indicated by triangles.

G Immunoblotting of cell extracts using anti-GFP (to detect the Mad1-GFP fusion proteins) and anti-Cdc2 (loading control) antibodies. A dilution series was loaded for
each strain to compare intensities.

H Anti-Mad1 immunoprecipitations of the indicated strains were analysed for the presence of Mad1 and Mad2 using anti-GFP (left), anti-Mad1 (right) and anti-Mad2
antibodies. Input and flow through are shown in Supplementary Fig S1C.

I Domain structure of Bub1 (TPR: tetratricopeptide repeats; Bub3 binding: Bub3-binding motif, also called GLEBS; cm1: conserved motif 1; kinase: kinase domain).
J Cells expressing mad1+-GFP, plo1+-mCherry, nda3-KM311 and either wild-type Bub1 (bub1+) or the Bub1-cm1-mutant (bub1-cm1-mut) were imaged at 30°C as in (C).

Representative nuclei of mitotic cells are shown (scale bar: 2 lm; see Supplementary Fig S1H for a larger field of view). The Bub1-cm1 mutant contains aa changes
S381A, T383A and T386A (alignment in Supplementary Fig S1E). The cellular abundance of wild-type and mutant Bub1-GFP was similar (Supplementary Fig S1F).

K Bub1-GFP or Mad1-GFP signals were quantified at the kinetochore as in (D) (a.u. = arbitrary units; error bars = s.d.; n ≥ 24 cells for Bub1-GFP, n ≥ 18 cells for
Mad1-GFP).

L Checkpoint function of the indicated strains was analysed as in (F).

Source data are available online for this figure.
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Mutations in the C-terminus of Mad1 abolish checkpoint
signalling although kinetochore localization of Bub1, Mad1 and
Mad2 is intact

If Bub1 and Mad1 have an additional role in the checkpoint, unre-

lated to Mad1 kinetochore localization, it should be possible to iden-

tify separation-of-function mutants that preserve kinetochore

localization but are deficient in checkpoint signalling. We screened

for such mutations in the structured and conserved C-terminus of

Mad1. An initial screen narrowed down the region of interest to the

very C-terminus (Supplementary Fig S4A). We noticed a conserved,

negatively charged surface patch on “top” of the Mad1 “head,”

which we either mutated (EDD/QNN) or which we removed by

truncating the protein before the last a helix (Dhelix) (Fig 3A). Both

mutants maintained Mad1 kinetochore localization (Fig 3B and C),

but strongly or entirely lost checkpoint activity (Fig 3D), despite

being present at similar levels as wild-type Mad1 (Fig 3E). Both

immunoprecipitation (Fig 3F) and co-recruitment to the kinetochore

(Fig 3G, Supplementary Fig S4C) demonstrated that the interaction

of Mad1 with Mad2 was largely preserved. In addition, Bub1 still
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Figure 2. The Mad1 RLK motif and Bub1-cm1 have a role in signalling beyond their role in Mad1 kinetochore localization.

A Representative images of cells expressing nda3-KM311 and the indicated GFP fusion proteins. Cells were imaged at the permissive temperature for nda3-KM311
(30°C). Fusion to the kinetochore protein Mis12 artificially tethers Mad1 to the kinetochore. Some constructs were expressed from the inducible nmt81 promoter,
P(nmt81); the endogenous mad1 gene was deleted in these strains. Scale bar: 10 lm.

B Checkpoint function of cells expressing plo1+-mCherry, nda3-KM311 and the indicated Mad1-GFP fusion proteins [same strains as in (A)] was analysed at 16°C as in
Fig 1F.

C Immunoblotting of cell extracts using anti-GFP and anti-Cdc2 (loading control) antibodies. Strains are the same as in (A) and (B). The asterisk indicates a cross-
reaction of the antibody.

D Checkpoint function of cells expressing plo1+-mCherry, nda3-KM311 and the indicated bub1 variants and Mad1-GFP fusion proteins was analysed as in Fig 1F.
E Representative nuclei of mitotic cells of the strains analysed in (D). Scale bar: 2 lm.
F Mad1-GFP (from cells in (B)) or Mad2-mCherry signals were quantified at the kinetochore as cells entered mitosis (a.u. = arbitrary units; error bars = s.d.; n ≥ 20

cells). Representative nuclei are shown on the right. (Scale bar: 2 lm; see Supplementary Fig S3C for a larger field of view).

Source data are available online for this figure.
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Figure 3. The top of the globular C-terminal head of Mad1 is required for checkpoint signalling, but not for kinetochore localization of Mad1:Mad2.

A Position of the head mutations in Mad1. The inset shows a homology model of the C-terminus of Schizosaccharomyces pombe Mad1 (aa 562-676) based on the
crystal structure of the dimeric H. sapiens Mad1 C-terminal domain (PDB code: 4ZDO, [12]). (black: RLK motif (aa 580-582); blue: last helix of the C-terminal head (aa
662-676); purple: aa E670/D673/D676).

B Cells expressing plo1+-mCherry, nda3-KM311 and the indicated Mad1-GFP fusion proteins were imaged as in Fig 1C. Representative nuclei of mitotic cells are shown
(scale bar: 2 lm; see Supplementary Fig S4B for a larger field of view).

C The same strains as in (B) were analysed at the restrictive temperature for nda3-KM311 (16°C) as in Fig 1D. Mad1-GFP signals were quantified at the kinetochore as
cells entered mitosis (a.u. = arbitrary units; error bars = s.d.; n ≥ 22 cells).

D Checkpoint function of the indicated strains was analysed at 16°C as in Fig 1F.
E Immunoblotting of cell extracts using anti-GFP and anti-Cdc2 (loading control) antibodies. A dilution series was loaded for each strain to compare intensities.

Strains are the same as in (D).
F Anti-Mad1 immunoprecipitations of the indicated strains were analysed for the presence of Mad1 and Mad2 using anti-GFP and anti-Mad2 antibodies. Input and

flow through of the immunoprecipitation are shown in Supplementary Fig S4D.
G Cells expressing nda3-KM311, the indicated mad1-GFP constructs and either mad2+-mCherry or mad2-R133A-mCherry were followed by live-cell imaging at 16°C. The

Mad2-mCherry/Mad1-GFP ratio at kinetochores was determined as cells entered mitosis (a.u. = arbitrary units; error bars = s.d.). Mad1-wt + Mad2-wt: n = 13;
Mad1-wt + Mad2-R133A: n = 21; Mad1-QNN + Mad2-wt: n = 16; Mad1-QNN + Mad2-R133A: n = 14; Mad1-Δhelix + Mad2-wt: n = 10; Mad1-Δhelix + Mad2-
R133A: n = 8; statistical analysis in Supplementary Fig S4E. Representative images for Mad1-GFP and Mad2-mCherry localization in Supplementary Fig S4C.

H Strains were followed by live-cell imaging as in (G) and Fig 2F. The Mad2-mCherry/Mad1-GFP ratio at kinetochores was determined as cells entered mitosis
(a.u. = arbitrary units; error bars = s.d.; n ≥ 14 cells; statistical analysis in Supplementary Fig S4F). Representative nuclei are shown on the right (scale bar: 2 lm).

Source data are available online for this figure.
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localized to kinetochores (Supplementary Fig S4G). Hence, in these

Mad1 mutants Bub1, Mad1 and Mad2 are at kinetochores; yet,

checkpoint signalling is strongly impaired.

The C-terminal part of Mad1 (a3 and head) has been proposed to

fold back onto Mad1-a2 [2], which would bring the Mad1 head in

close vicinity to Mad2. Because Mad1-bound Mad2 needs to dimer-

ize with additional Mad2 to support checkpoint function [3,21], we

suspected that the Mad1 C-terminal head promotes this dimeriza-

tion. As in human cells [22], the Mad2/Mad1 ratio at kinetochores

is reduced in a dimerization-deficient Mad2 mutant (Mad2-R133A

[23]; Fig 3G), presumably because Mad2 cannot be recruited to the

kinetochore through Mad2:Mad2 dimerization, but only through

binding to Mad1. In both the Mad1-EDD/QNN and -Dhelix mutant,

the Mad2/Mad1 ratio at kinetochores was similar to Mad1 wild-type

cells, and in both mutants, there was less Mad2 relative to Mad1 at

kinetochores when the Mad2-R133A mutant was expressed instead

of wild-type Mad2 (Fig 3G). This strongly indicates that Mad2

dimerization is intact. Similarly, the Mad2/Mad1 ratio after artifi-

cially tethering Mad1-RLK/AAA was more similar to wild-type than

to Mad2-R133A-expressing cells (Fig 3H). Hence, the Mad1 C-termi-

nal head and the RLK motif promote checkpoint function, but seem-

ingly not through facilitating Mad2 dimerization.

Our data indicate that the C-terminal head of Mad1 has a previ-

ously unrecognized role in checkpoint signalling, which is neither

related to the requirement for the C-terminus to bring Mad1 to kinet-

ochores (Fig 1) nor related to the role of Mad1 in recruiting Mad2,

either directly or through Mad2:Mad2 dimerization (Figs 2 and 3).

Since very similar findings have been made in human cells [11], this

function of Mad1 is probably conserved across eukaryotes. Current

models for the spindle assembly checkpoint mainly see Mad1 as a

passive platform for presenting Mad2 at kinetochores. Our findings

revise this picture and make Mad1 an active player in checkpoint sig-

nalling. How the Mad1 C-terminus promotes checkpoint activity and

how Bub1 fits into the picture remains unclear (Fig 4). Our finding

that the very C-terminal Mad1 head is required for checkpoint activ-

ity without being required for any of the known Mad1 functions

provides a basis to elucidate the molecular mechanism. How the

head is arranged with respect to the remainder of the molecule is still

unclear (Fig 4). In any case, we suspect that the head, like similar

folds in other kinetochore proteins [24–27], mediates a protein–

protein interaction (Fig 4B). The interacting partner could be Mad2

or another (checkpoint) protein. Although we find Mad2 dimerization

apparently intact in the Mad1-EDD/QNN, Mad1-Dhelix or Mad1-

RLK/AAA mutant (Fig 3), it remains possible that these regions are

involved in promoting the conformational change of Mad2 that is

required for binding of free Mad2 to Cdc20 [28,29] (Fig 4B). It would

be interesting to perform cross-linking experiments to determine

which arrangement the Mad1 C-terminus takes in vivo and which

proteins the different regions interact with (Fig 4B).

Materials and Methods

Schizosaccharomyces pombe strains

Strains are listed in Supplementary Table 1. For the amino acid (aa)

numbering of Mad1, note that we corrected the annotation of the

start codon, which shifted by 13 aa (Supplementary Information).

In general, mutants were integrated into the endogenous locus

using PCR-based gene targeting [30] and replaced the wild-type

allele. P(nmt81)-(mis12-)mad1-(AAA)-GFP constructs were inte-

grated into the leu1 locus using the pDUAL system [31], and the

endogenous mad1+ gene was deleted. Schizosaccharomyces pombe

strains with the following mutations or modifications have been

described: nda3-KM311 [32], mad1+-GFP�kanR, mad2+-

GFP�kanR, mad3+-GFP�kanR, plo1+-mCherry, ark1+-GFP [7],

bub1+-GFP�kanR [33], bub3+-GFP�kanR [10], mad1D::ura4+
[34], bub1Δ::ura4+ [35].
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Figure 4. Mad1 C-terminus and Bub1-cm1 promote checkpoint
signalling independently of their role in Mad1:Mad2 kinetochore
recruitment.

A Schematic of the Mad1 and Bub1 proteins with suggested functions for
the Mad1-RLK motif, the Mad1 C-terminal head and Bub1-cm1.

B It is unknown how Mad1 a3 and head arrange with respect to a2. A
straight conformation is shown in (A), folding back [2] is shown in (B). How
the Mad1 C-terminus promotes checkpoint signalling remains unclear.
Findings and ideas are indicated by black arrows and discussed in the text.
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Culture conditions

For live-cell imaging, cells were grown at 30°C in either rich med-

ium (YEA) or Edinburgh minimal medium (EMM) containing the

necessary supplements. Mad1 constructs expressed from P(nmt81)

at the leu1 locus were cultured for 19 h in EMM without thiamine to

induce expression, then washed three times with EMM containing

16 lM thiamine and resuspended in EMM containing 16 lM thia-

mine before shifting to 16°C for imaging.

Live-cell imaging to assess checkpoint functionality

Live-cell imaging was performed on a DeltaVision microscope

(Applied Precision/GE Healthcare) as previously described [7].

Quantification of GFP and mCherry signals in the nucleus and at
the kinetochore

To determine the intensity of checkpoint protein-GFP or -mCherry

signals at the kinetochores, mitotic cells were identified by the

appearance of localized Plo1-mCherry signal at SPBs, or by localized

Mad1-GFP or Mad2-mCherry signal at kinetochores. In cells express-

ing constitutive kinetochore-tethered Mad1 (Mis12-Mad1) and lack-

ing a fluorescent tag on Plo1 (so that entry into mitosis could not be

judged), signals were measured for 50 min before the kinetochores

unclustered. The unclustering (Supplementary Fig S2D) indicates

that the cell is in mitosis. An area was placed around kinetochores

(for checkpoint protein-GFP or -mCherry strains) or SPBs (for Plo1-

mCherry strains; because kinetochores cluster at the SPB in early

mitosis, this captures the signal at kinetochores). The GFP or

mCherry signal in this area was traced over time. To determine sig-

nal intensity at the kinetochore, the total signal intensity per area of

a similarly sized region in the nucleoplasm was subtracted from the

total signal intensity per area around the kinetochore.

Fluorescence microscopy of asynchronous cell cultures

Images of living cells were acquired with a CoolSnap EZ (Roper)

camera using a 63 × /1.4 Plan Apochromat oil objective on a Zeiss

AxioImager microscope and were processed with MetaMorph soft-

ware (Molecular Devices Corporation). Typically, a Z-stack of about

3 lm thickness, with single planes spaced by 0.3 lm, was acquired

and subsequently projected. Shown are sum intensity projections of

the Z-stack for checkpoint proteins and maximum intensity projec-

tions of the Z-stack for Plo1.

Immunoprecipitation

Immunoprecipitation was performed as previously described [10]

using rabbit anti-Mad1 [10] or mouse anti-GFP (Roche,

11814460001) antibodies and protein A-coated magnetic beads

(Dynabeads, Invitrogen 10002D).

Cell extracts, SDS–PAGE and immunoblotting

Protein extraction was performed as previously described [7]. Mouse

anti-GFP (Roche, 11814460001), rabbit anti-Mad1 [10], rabbit anti-

Mad2 [36], mouse anti-HA (Roche, 12CA5) or rabbit anti-Cdc2

(Santa Cruz, SC-53) were used as primary antibodies. Secondary

antibodies were anti-mouse or anti-rabbit HRP conjugates (Dianova,

115-035-003, 111-035-003) and were read out using chemilumines-

cence.

Supplementary information for this article is available online:

http://embor.embopress.org
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Figure S1 Additional analysis of Mad1-RLK and Bub1-cm1 mutants 

A Mad1-RLK mutants and C-terminal truncations localize to the nuclear rim 

Representative images of cells expressing plo1+-mCherry, nda3-KM311 and the indicated mad1-

GFP fusions. Cells were grown at permissive temperature for nda3-KM311 (30 °C). A localized 

Plo1-mCherry signal indicates that cells are in mitosis (scale bar: 10 µm). 

B Ark1, Bub1 and Bub3 localize to kinetochores in the mad1-RLK/AAA mutant  

Cells expressing plo1+-mCherry, nda3-KM311 and the indicated GFP fusion proteins were 

analysed at the restrictive temperature for nda3-KM311 (16 °C) as in Fig 1E. Representative 

nuclei of mitotic cells are shown (scale bar: 2 µm). 

C Mad1 is efficiently depleted by immunoprecipitation 

Input and flow through of the anti-Mad1 immunoprecipitation shown in Fig 1H. To detect the 

Mad1-RLK mutants, anti-GFP antibody was used; to detect the Mad1 truncations, anti-Mad1 

antibody was used. Cdc2 serves as loading control. The C-terminal truncations Mad1-1-600 and 

Mad1-1-526 contain more Mad2 in the flow through, in agreement with inefficient binding of Mad2 

to Mad1 (Fig 1H). 

D Mad2 localisation to kinetochores is strongly reduced in the mad1-RLK/AAA mutant 

Representative images of cells expressing mad1+ or mad1-RLK/AAA, as well as mad2+-GFP, 

plo1+-mCherry and nda3-KM311. Cells were grown at permissive temperature for nda3-KM311 

(30 °C). Mad2-GFP localisation to the nuclear rim in interphase is similar between wild type and 

mad1-RLK/AAA cells, but localisation to the kinetochore in mitosis is impaired in the mad1-

RLK/AAA mutant (scale bar: 10 µm).  

E Alignment of the Bub1 region containing the conserved motif 1 (cm1). 

Sequences from OrthoMCL group OG5_130700 were aligned using M-Coffee. Selected 

sequences are shown with Clustal X colouring scheme. Red asterisks indicate the amino acids 

mutated in the bub1-cm1 mutant (S381A, T383A and T386A).  

F Bub1-cm1 mutant is present at similar levels as wild type Bub1 

Extracts were analysed by immunoblotting using anti-GFP (to detect Bub1-GFP or Bub1-cm1-

mut-GFP) and anti-Cdc2 (loading control) antibodies. Percentages on top indicate how much of 

the extract was loaded. 

G Bub1-cm1 mutant localisation resembles Bub1 wt localisation 

Representative images of cells expressing bub1-GFP (wild type or cm1 mutant), plo1+-mCherry 

and nda3-KM311. Cells were grown at permissive temperature for nda3-KM311 (30 °C). Both wild 

type Bub1 and Bub1-cm1 enrich in the nucleus in interphase. Inset: Plo1-mCherry marks mitotic 

spindle pole bodies, and both Bub1 and Bub1-cm1 localize to the region of the mitotic spindle 

(most likely by localizing to unattached kinetochores). Scale bar: 10 µm. Insets are additionally 

magnified 1.87-fold.  
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H Mad1-GFP localisation to the nuclear rim is not impaired by the bub1-cm1 mutation 

Representative images of cells expressing bub1 (wild type or cm1 mutant), mad1+-GFP, plo1+-

mCherry and nda3-KM311. Cells were grown at permissive temperature for nda3-KM311 (30 °C). 

Nuclei of mitotic cells with Mad1-GFP signal from these panels are shown in Fig 1J. Scale bar: 10 

µm. 

I Bub1-cm1 mutation affects kinetochore localisation of Mad2 but not Mad3 and Bub3 

Representative nuclei of mitotic cells expressing bub1 (wild type or cm1 mutant), the indicated 

GFP fusions, plo1+-mCherry and nda3-KM311. Cells were grown at permissive temperature for 

nda3-KM311 (30 °C). Scale bar: 2 µm 

  



  



Figure S2 The Mad1 N-terminal part is not required for kinetochore localisation, 

the C-terminal part is not sufficient 

A Domain structure of the Mad1 protein and N-terminal truncations 

A fragment of S. cerevisiae Gcn4p (aa250-277; GCN4 zipper) was used to aid coiled-coil 

formation of the remaining alpha-helical parts and dimerization [1, 2].  

B N-terminal truncation mutants of Mad1 are expressed, but to different levels 

Immunoblotting of cell extracts using anti-GFP and anti-Cdc2 (loading control) antibodies. A 

dilution series was loaded for each strain to compare intensities. The N-terminal Mad1 truncations 

were expressed, but not all to the same level as wild type Mad1-GFP (also see (C)).   

C Truncation of the Mad1 N-terminus abolishes nuclear rim localisation 

Representative images of cells expressing plo1+-mCherry, nda3-KM311 and the indicated mad1-

GFP fusions. Cells were grown at permissive temperature for nda3-KM311 (30 °C). Scale bar: 10 

µm; scale bar in inset: 2 µm. Nuclear rim localisation was lost in all N-terminal truncations, 

whereas kinetochore localisation was at least partly preserved in mutants that retained parts of 

the N-terminal coiled-coil. The C-terminal part of Mad1 was not sufficient for kinetochore 

localisation.  

D Only the shortest N-terminal Mad1 truncation (Mad1-306-676) preserves kinetochore 

localisation of Mad1-GFP at the restrictive temperature for nda3-KM311 

The same strains as in (C) were shifted to the restrictive temperature for nda3-KM311 (16 °C) 

and imaged as in Fig 1C. Mad1-GFP signals were quantified at the kinetochore as cells entered 

mitosis (a.u. = arbitrary units; error bars = s.d.; n ≥ 20 cells). The kinetochore localisation of 

Mad1-458-676 was almost undetectable in live cell imaging (left panel), but was visible at 16 °C 

when the same image acquisition settings as in (C) were used (right panel; representative nuclei 

of mitotic cells). Mad1-458-676 localisation seems weaker at 16 °C than at 30 °C. The schematic 

depicts the situation in the example pictures and shows a nucleus with unclustered chromosomes 

(light blue). Unclustering occurs in the absence of microtubules when cells delay in mitosis.  

E Mad2-mCherry shows the same localisation pattern as Mad1-GFP in the truncation 

mutants 

Cells expressing mad2+-mCherry, nda3-KM311 and the indicated mad1-GFP fusions were 

imaged at 30 °C. Representative nuclei of cells in mitosis are shown. Scale bar: 2 µm. Mad1-306-

676 and Mad1-458-676 co-recruit Mad2 to the kinetochore, indicating that the interaction with 

Mad2 is preserved.  

F The shorter N-terminal Mad1 truncation (Mad1-306-676) largely preserves checkpoint 

activity. 

Checkpoint function in the indicated strains was analysed as in Fig 1F. Checkpoint activity in 

Mad1-306-676 was largely preserved (although the abundance seemed lower than wild type 

Mad1 (B,C)). Checkpoint activity in Mad1-458-676 was impaired, which coincided with an 



impairment of localisation to the kinetochore that was more pronounced at 16 °C (C,D,E). The 

two shortest Mad1 fragments (Mad1-564-676 and 585-676) were checkpoint-deficient, which was 

expected from the lack of the Mad2-interaction motif.  

 

Supplementary References 

1. Kammerer RA, Schulthess T, Landwehr R, Lustig A, Engel J, Aebi U, Steinmetz MO (1998) An 
autonomous folding unit mediates the assembly of two-stranded coiled coils. Proc Natl Acad Sci U S A 95: 
13419-13424 

2. O'Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-
stranded, parallel coiled coil. Science 254: 539-544 
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Figure S3 Absence of evidence for Bub1-Mad1 interaction and 

supplementary data for Mad1 kinetochore-tethering 

A Mass spectrometry of immunoprecipitations of Mad1 and Bub1. Mad1-GFP was either 

immunoprecipitated from cells that were released from a cdc25-22 arrest (at G2/M), were treated 

with the microtubule drug MBC and were harvested in mitosis (86 % mitotic cells) or from cells 

that were delayed in mitosis by the spindle assembly checkpoint due to the nda3-KM311 tubulin 

mutant. Bub1-GFP was immunoprecipitated from cells that were delayed in mitosis by the spindle 

assembly checkpoint due to the nda3-KM311 mutant. Samples were analysed by mass 

spectrometry. The table shows the number of identified peptides (pep.) and the amino acid 

sequence coverage (seq.cov.) reached for each protein, which are semi-quantitative measures 

for the abundance of the protein in the immunoprecipitate. Mad2 and Nup211 were recovered as 

interaction partners in the Mad1 immunoprecipitates, Bub3 and outer kinetochore proteins were 

recovered as interaction partners in the Bub1 immunoprecipitate.  

B Anti-Mad1 immunoprecipitations from cells that were delayed in mitosis by the spindle 

assembly checkpoint due to the nda3-KM311 tubulin mutant were analysed for the presence of 

Mad1, Mad2, Bub1 and Bub3 using anti-Mad1, anti-Mad2, anti-HA (Bub1) and anti-GFP (Bub3) 

antibodies. Input and flow through are shown on the left. A 1:2 dilution is additionally loaded for 

each sample.  

C Mad2 colocalizes with Mad1-RLK/AAA 

Representative images of cells expressing mad2+-mCherry, nda3-KM311 and the indicated mad1 

wild type or RLK/AAA-GFP fusions. Cells were grown at permissive temperature for the nda3-

KM311 mutant (30 °C). P(nmt81) indicates expression of the construct from the nmt81 promoter 

rather than from the endogenous mad1 promoter. Scale bar: 10 µm.  

  



  



Figure S4 Supplementary data for C-terminal Mad1 mutants 

A Additional Mad1 mutants screened for kinetochore targeting ability and spindle assembly 

checkpoint activity  

Individual residues in Mad1 were mutated to alanine, with the exception of S633, which was 

mutated to glycine. Checkpoint activity was assayed in cells expressing plo1+-mCherry and nda3-

KM311 as in Fig 1F. Mad1 localisation to kinetochores was scored as cells entered mitosis. 

B Mad1-EDD/QNN and Mad1-helix show similar localisation to wild type Mad1 

Representative images of cells expressing plo1+-mCherry, nda3-KM311 and the indicated mad1-

GFP fusions. Cells were grown at permissive temperature for the nda3-KM311 mutant (30 °C). 

Scale bar: 10 µm 

C Mad2-mCherry localisation is not perturbed by mad1-EDD/QNN or mad1-helix 

Representative images of cells expressing mad2+-mCherry, nda3-KM311 and the indicated 

mad1-GFP fusions. Cells were grown at permissive temperature for the nda3-KM311 mutant 

(30 °C). Scale bar: 10 µm 

D Input and flow through of the anti-Mad1 immunoprecipitation shown in Fig 3F. Cdc2 was 

used as loading control. 

E Statistical analysis of Mad2/Mad1 ratios shown in Fig 3G. Intensity curves of the 

indicated strains were compared by a pooled component test [3]. The cumulative p-value is 

plotted in red. A p-value of 0.05 is shown as dashed blue line. Only time points with at least 7 

cells of all strains were considered. The experiment index (i) increases with each time point. 

There is a statistically significant difference between the Mad1-GFP wild type or mutants strains 

expressing mad2+-mCherry and the same strains expressing the Mad2 dimerization mutant 

mad2-R133A-mCherry (upper row), indicating that in both Mad1 mutants Mad2 dimerization is not 

impaired. Differences between Mad1 wt and Mad1 mutant strains expressing wild type mad2+-

mCherry were not statistically significant (lower row).  

F Statistical analysis of Mad2/Mad1 ratios shown in Fig 3H. Intensity curves of the indicated 

strains were compared by a pooled component test [3] as in (E). There is a statistically significant 

difference between the Mis12-Mad1-GFP wild type or RLK/AAA strains expressing mad2+-

mCherry and the Mis12-Mad1-GFP wild type strain expressing the Mad2 dimerization mutant 

mad2-R133A-mCherry. This indicates that Mad2 dimerization in Mis12-Mad1-RLK/AAA-GFP is 

not impaired. 

G Bub1-GFP localisation is not perturbed in untagged mad1-EDD/QNN or mad1-helix 

cells 

Representative nuclei of cells expressing bub1+-GFP, plo1+-mCherry, nda3-KM311 and the 

indicated mad1 variants (wild type, EDD/QNN or helix). Cells were grown at permissive 

temperature for the nda3-KM311 mutant (30 °C). Scale bar: 2 µm 



H Expression level of untagged mad1-helix is reduced compared to mad1+ and mad1-

EDD/QNN 

Immunoblotting of cell extracts using anti-Mad1 and anti-Cdc2 (loading control) antibodies. The 

Mad1 antibody targets an N-terminal peptide [4]. Cell extracts of two different clones expressing 

mad1-helix were loaded. Both Mad1 mutants were detectable but Mad1-helix abundance was 

lower than wild type Mad1 or Mad1-EDD/QNN abundance. Note that C-terminal GFP-tagging of 

Mad1-helix seems to rescue protein stability (Fig 3E). Bub1 localisation in all strains was 

preserved (G).  
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Supplementary Table 1 | S. pombe strains

Figure 1C,D
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SM001 h- leu1 mad1-RLK/AAA(R580A/L581A/K582A)-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST146 h+ leu1 mad1-RLK/ALA(R580A/K582A)-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SM090 h+ mad1-1-600-GFP<<kanNT3 plo1+-mCherry<<natR nda3-KM311
SM091 h+ mad1-1-526-GFP<<kanNT3 plo1+-mCherry<<natR nda3-KM311

Figure 1E
SK842 h+ leu1 mad2+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SL905 h- leu1 mad2+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 mad1-RLK/AAA
SL759 h- leu1 mad3+-GFP<<kanR  plo1+-mCherry<<natR nda3-KM311
SL907 h- leu1 mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 mad1-RLK/AAA 

Figure 1F,G
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SK893 h+ leu1 ade6-M216 mad1∆::ura4+ plo1+-mCherry<<natR nda3-KM311
SM001 h- leu1 mad1-RLK/AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST146 h+ leu1 mad1-RLK/ALA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SM090 h+ mad1-1-600-GFP<<kanNT3 plo1+-mCherry<<natR nda3-KM311
SM091 h+ mad1-1-526-GFP<<kanNT3 plo1+-mCherry<<natR nda3-KM311

Figure 1H
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SM001 h- leu1 mad1-RLK/AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST146 h+ leu1 mad1-RLK/ALA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SM090 h+ mad1-1-600-GFP<<kanNT3 plo1+-mCherry<<natR nda3-KM311
SM091 h+ mad1-1-526-GFP<<kanNT3 plo1+-mCherry<<natR nda3-KM311

Figure 1J
SK892 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST045 h- bub1-STT/AAA mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure 1K
SL901 h+ leu1  bub1+-GFP<<kanR  plo1+-mCherry<<natR nda3-KM311
SP705 h- leu1 bub1-STT/AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 
SK892 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST045 h- bub1-STT/AAA mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure 1L
SL901 h+ leu1 bub1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 
SI437 h+ leu1 ade6-M216 (ura4DS/E?) bub1::ura4+ plo1+-GFP<<kanR nda3-KM311 
SP705 h- leu1 bub1-STT/AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 

Figure 2A,B,C
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SK893 h+ leu1 ade6-M216 mad1∆::ura4+ plo1+-mCherry<<natR nda3-KM311
SM814 h+ ade6-M216 mad1∆::ura4+ pDUAL-Pnmt81-mis12-mad1+-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311
SM815 h+ ade6-M216 mad1∆::ura4+ pDUAL-Pnmt81-mis12-mad1-RLK/AAA-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311
SM827 h+ (ade6-M216?) mad1∆::ura4+ pDUAL-Pnmt81-mad1+-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311
SM828 h+ (ade6-M216?) mad1∆::ura4+ pDUAL-Pnmt81-mad1-RLK/AAA-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311

Figure 2D,E
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SL777 h+ leu1 ura4? his2? ade6-M216 plo1+-mCherry<<natR mad1+-GFP<<kanR bub1∆::ura4+ nda3-KM311
ST045 h- bub1-STT/AAA mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SM814 h+ ade6-M216 mad1∆::ura4+ pDUAL-Pnmt81-mis12-mad1+-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311
ST150 h+ ade6-M216 mad1∆::ura4+ bub1∆::ura4+ Pnmt81-mis12-mad1-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311
ST490 h+ mad1∆::ura4+ bub1-STT/AAA Pnmt81-mis12-mad1-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311

Figure 2F
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SK893 h+ leu1 ade6-M216 mad1∆::ura4+ plo1+-mCherry<<natR nda3-KM311
SM814 h+ ade6-M216 mad1∆::ura4+ pDUAL-Pnmt81-mis12-mad1+-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311
SM815 h+ ade6-M216 mad1∆::ura4+ pDUAL-Pnmt81-mis12-mad1-RLK/AAA-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311
SM827 h+ (ade6-M216?) mad1∆::ura4+ pDUAL-Pnmt81-mad1+-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311
SM828 h+ (ade6-M216?) mad1∆::ura4+ pDUAL-Pnmt81-mad1-RLK/AAA-GFP<<leu1+ plo1+-mCherry<<natR nda3-KM311
ST162 h- mad1+-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST167 h- (ura4-D18?) mad2+-mCherry<<natR mad1∆::ura4+  pDUAL-Pnmt81-mis12-mad1+-GFP<<leu1+ nda3-KM311
ST168 h- (ura4-D18?) mad2+-mCherry<<natR mad1∆::ura4+  pDUAL-Pnmt81-mis12-mad1-RLK/AAA-GFP<<leu1+ nda3-KM311
ST170 h- (ura4-D18?) mad2+-mCherry<<natR mad1∆::ura4+  pDUAL-Pnmt81-mad1+-GFP<<leu1+ nda3-KM311

Figure 3B,C,F
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST174 h- leu1 mad1-EDD/QNN(E670Q/D673N/D676N)-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST190'' h- leu1 mad1-1-661-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure 3D,E
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SK893 h+ leu1 ade6-M216 mad1∆::ura4+ plo1+-mCherry<<natR nda3-KM311
ST174 h- leu1 mad1-EDD/QNN-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST190'' h- leu1 mad1-1-661-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure 3G
ST162 h- mad1+-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST443 h+ leu1 mad1-EDD/QNN-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST448 h- leu1 mad1+-GFP<<kanR mad2-R133A-mCherry<<natR nda3-KM311
ST460 h+ ade6-M216 leu1 mad1-1-661-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST486 h+ leu1 mad1-EDD/QNN-GFP<<kanR mad2-R133A-mCherry<<natR nda3-KM311
ST488 h+ leu1 mad1-aa1-661-GFP<<kanR mad2-R133A-mCherry<<natR nda3-KM311

Figure 3H
ST167 h- (ura4-D18?) mad2+-mCherry<<natR mad1∆::ura4+  pDUAL-Pnmt81-mis12-mad1+-GFP<<leu1+ nda3-KM311
ST168 h- (ura4-D18?) mad2+-mCherry<<natR mad1∆::ura4+  pDUAL-Pnmt81-mis12-mad1-RLK/AAA-GFP<<leu1+ nda3-KM311
ST447 h+ ade6-M216 mad1∆::ura4+ pDUAL-Pnmt81-mis12-mad1+-GFP<<leu1+ mad2-R133A-mCherry<<natR nda3-KM311

Figure S1A,C
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SM001 h- leu1 mad1-RLK/AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST146 h+ leu1 mad1-RLK/ALA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311



SM090 h+ mad1-1-600-GFP<<kanNT3 plo1+-mCherry<<natR nda3-KM311
SM091 h+ mad1-1-526-GFP<<kanNT3 plo1+-mCherry<<natR nda3-KM311

Figure S1B
SL894 h+ leu1 ade6-M210 ark1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 
SL891 h+ leu1 ark1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 mad1-RLK/AAA 
SL900 h- leu1 bub1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 
SL898 h- leu1 bub1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 mad1-RLK/AAA 
SM092 h- leu1 ade6-M216 bub3+-S(GGGGS)3-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SL358 h- leu1 bub3+-S(GGGGS)3-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 mad1-RLK/AAA 

Figure S1D
SK842 h+ leu1 mad2+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SL905 h- leu1 mad1∆::mad1-RLK/AAA mad2+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 

Figure S1F
SP784 h+ leu1 rpl42::cyhR(sP56Q) bub1∆::rpl42+hphNT1
PX938 h- leu1 bub1+-GFP<<kanR
SP297 h- leu1 bub1-STT/AAA-GFP<<kanR

Figure S1G
SK442 h+ leu1 bub1+-GFP<<kanR plo1+-mCherry<<natR 
SP705 h- leu1 bub1-STT/AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 

Figure S1H
SK892 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST045 h- bub1-STT/AAA mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure S1I
SK713 h- leu1 plo1+-mCherry<<natR mad2+-GFP<<kanR nda3-KM311
ST053 h+ leu1  bub1-STT/AAA mad2+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 
SL759 h- leu1 mad3+-GFP<<kanR  plo1+-mCherry<<natR nda3-KM311
ST051 h+ leu1  bub1-STT/AAA mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311 
SM092 h- leu1 ade6-M216 bub3+-S(GGGGS)3-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST050 h- leu1  bub1-STT/AAA bub3+-S(GGGGS)3-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure S2B
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SK893 h+ leu1 ade6-M216 mad1∆::ura4+ plo1+-mCherry<<natR nda3-KM311
ST141 h+ leu1 ade6-M216 GCN4(250-277)-mad1-306-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST441 h+ leu1 GCN4(250-277)-mad1-458-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST408 h- leu1 GCN4(250-277)-mad1-564-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST417 h+ leu1 ade6-M216 GCN4(250-277)-mad1-585-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure S2C,D
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST141 h+ leu1 ade6-M216 GCN4(250-277)-mad1-306-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST442 h+ leu1 GCN4(250-277)-mad1-458-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST408 h- leu1 GCN4(250-277)-mad1-564-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST417 h+ leu1 ade6-M216 GCN4(250-277)-mad1-585-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure S2E
ST162 h- mad1+-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST748 h- leu1 (ade6-M216?) GCN4(250-277)-mad1-306-676-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST750 h+ leu1 (ade6-M216?) GCN4(250-277)-mad1-458-676-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST752 h- leu1 (ade6-M216?) GCN4(250-277)-mad1-564-676-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST754 h+ leu1 (ade6-M216?) GCN4(250-277)-mad1-585-676-GFP<<kanR mad2+-mCherry<<natR nda3-KM311

Figure S2F
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SK893 h+ leu1 ade6-M216 mad1∆::ura4+ plo1+-mCherry<<natR nda3-KM311
ST141 h+ leu1 ade6-M216 GCN4(250-277)-mad1-306-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST142 h+ leu1 ade6-M216 GCN4(250-277)-mad1-306-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST441 h+ leu1 GCN4(250-277)-mad1-458-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST442 h+ leu1 GCN4(250-277)-mad1-458-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST408 h- leu1 GCN4(250-277)-mad1-564-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST409 h- leu1 ade6-M216 GCN4(250-277)-mad1-564-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST417 h+ leu1 ade6-M216 GCN4(250-277)-mad1-585-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST419 h- leu1 ade6-M216 GCN4(250-277)-mad1-585-676-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure S3A
SM822 h+ plo1+-mCherry<<natR mad1+-GFP<<kanR cdc25-22
SK671 h- lys1 hph<<ark1-as3 (L166A, S229A) plo1+-mCherry<<natR mad1+-GFP<<kanR nda3-KM311
SK676 h- lys1 hph<<ark1-as3 (L166A, S229A) plo1+-mCherry<<natR bub1+-GFP<<kanR nda3-KM311

Figure S3B
SL355 h+ leu1 (ade6-M216?) nda3-KM311 bub1+-HA<<hph bub3+S(GGGGS)3-GFP<<kanR plo1+-mCherry<<natR

Figure S3C
ST162 h- mad2+-mCherry<<natR mad1+-GFP<<kanR nda3-KM311
ST167 h- (ura4-D18?) mad2+-mCherry<<natR mad1∆::ura4+  pDUAL-Pnmt81-mis12-mad1+-GFP<<leu1+ nda3-KM311
ST168 h- (ura4-D18?) mad2+-mCherry<<natR mad1∆::ura4+  pDUAL-Pnmt81-mis12-mad1-RLK/AAA-GFP<<leu1+ nda3-KM311
ST170 h- (ura4-D18?) mad2+-mCherry<<natR mad1∆::ura4+  pDUAL-Pnmt81-mad1+-GFP<<leu1+ nda3-KM311
ST171 h- (ura4-D18?) mad2+-mCherry<<natR mad1∆::ura4+ pDUAL-Pnmt81-mad1-RLK/AAA-GFP<<leu1+ nda3-KM311

Figure S4A
SP903 h- leu1 mad1-L533A-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SP965 h? leu1 ade6-M216 mad1-F592A-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SP986 h+ leu1 mad1-R593A-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SP983 h+ leu1 mad1-V596A-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SP967 h+ leu1 mad1-G601A-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST115 h+ leu1 ade6-M216 mad1-R613A-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SP476 h+ leu1 ade6-M216 mad1-S616A-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SP511 h+ leu1 mad1-P661A-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SP513 h+ leu1 mad1-P661A/S633G-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
SP597 h- leu1 mad1-ELK/AAA(E670A/L672A/K674A)-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST148 h- leu1 mad1-ELK/AAA plo1+-mCherry<<natR nda3-KM311



Figure S4B,D
SK891 h+ leu1 mad1+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST174 h- leu1 mad1-EDD/QNN-GFP<<kanR plo1+-mCherry<<natR nda3-KM311
ST190'' h- leu1 mad1-1-661-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure S4C
ST162 h- mad1-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST443 h+ leu1 mad1-EDD/QNN-GFP<<kanR mad2+-mCherry<<natR nda3-KM311
ST460 h+ ade6-M216 leu1 mad1-1-661-GFP<<kanR mad2+-mCherry<<natR nda3-KM311

Figure S4G
SK443 h- leu1 plo1+-mCherry<<natR bub1+-GFP<<kanR
ST764' h- (leu1?)  mad1-aa1-661 bub1+-GFP<<kanR  plo1+-mCherry<<natR nda3-KM311
ST766 h- leu1 (ura4-D18?) mad1-EDD/QNN bub1+-GFP<<kanR  plo1+-mCherry<<natR nda3-KM311

Figure S4H
JY265 h- leu1
SP010 h- leu1 mad1Δ::ura4+
ST812 h+ leu1 rpl42::cyhR(sP56Q) mad1-aa1-661
ST812' h+ leu1 rpl42::cyhR(sP56Q) mad1-aa1-661
ST481 h+ leu1 mad1-EDD/QNN



Supplementary Information 

Re-annotation of the Mad1 start codon 

In the Schizosaccharomyces pombe genome database (www.pombase.org; Jan 8th, 2014), the mad1+ 

coding sequence is annotated to start at position 1,277,098 on chromosome II. Alignment with the 
sequence of other Schizosaccharomyces species [5] indicates that the first 13 amino acids 

(MSSKLTVYQATTS) are not conserved and that it is likely that the start codon is amino acid 14, another 
Methionine. To corroborate this notion, we performed mass spectrometric analysis of immunopurified 

Mad1, digested with either Asp-N, Lys-C or Trypsin. We identified peptides supporting both the first as 
well as the second Methionine as start codon. In one experiment, where peptides for both termini were 

found (see below; LTVYQATTSM(ox)ADSPR (amino acid 5-19) supporting the first Methionine, and 
(ac)ADS(ph)PRDPFQSR (amino acid 15-25) supporting the second Methionine), the intensity of the 

second peptide was 170-times higher than of the first. Together with the phylogenetic evidence, this 

suggests that the second Methionine is the more prominent start codon, although the first one can be 
used. The annotation in the Schizosaccharomyces pombe genome database will be revised accordingly 

(Val Wood, personal communication).  
 

Peptide 1 supporting translation from first Methionine:  

 
 
 



Peptide 2 supporting translation from second Methionine:  
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SUMMARY

The spindle assembly checkpoint (SAC) ensures that
sister chromatids do not separate until all chromo-
somes are attached to spindle microtubules and bi-
oriented. Spindle checkpoint proteins, including
Mad1, Mad2, Mad3 (BubR1), Bub1, Bub3, and Mph1
(Mps1), are recruited to unattached and/or tension-
less kinetochores. SAC activation catalyzes the con-
version of soluble Mad2 (O-Mad2) into a form
(C-Mad2) that binds Cdc20, BubR1, and Bub3 to
form the mitotic checkpoint complex (MCC), a
potent inhibitor of the anaphase-promoting complex
(APC/C). SAC silencing de-represses Cdc20-APC/C
activity allowing poly-ubiquitination of Securin and
Cyclin B, leading to the dissolution of sister chroma-
tids and anaphase onset [1]. Understanding how
microtubule interaction at kinetochores influences
the timing of anaphase requires an understanding of
how spindle checkpoint protein interaction with the
kinetochore influences spindle checkpoint signaling.
We, and others, recently showed that Mph1 (Mps1)
phosphorylates multiple conserved MELT motifs in
the Spc7 (Spc105/KNL1) protein to recruit Bub1,
Bub3, and Mad3 (BubR1) to kinetochores [2–4]. In
budding yeast, Mps1 phosphorylation of a central
non-catalytic region of Bub1 promotes its associa-
tion with the Mad1-Mad2 complex, although this as-
sociation has not yet been detected in other organ-
isms [5]. Here we report that multisite binding of
Bub3 to the Spc7 MELT array toggles the spindle
checkpoint switch by permitting Mph1 (Mps1)-
dependent interaction of Bub1 with Mad1-Mad2.

RESULTS AND DISCUSSION

Bub3-Bub1 Binding to Spc7 MELT Motifs Toggles the
Spindle Checkpoint Switch
The N terminus of the fission yeast KNL1 homolog, Spc7, con-

tains 12 MELT motifs that can be phosphorylated by Mph1
2642 Current Biology 26, 2642–2650, October 10, 2016 ª 2016 Elsev
(Mps1) kinase in vitro [3, 4]. To examine the role of MELT motifs

in controlling Bub1 binding and checkpoint signaling, we created

a sequence of mutants, spc7-12TA, spc7-9TA, spc7-7TA, spc7-

5TA, spc7-3TA, or spc7-1TA, in which some or all of the

threonine and serine residues in these motifs were mutated to

non-phosphorylatable alanine (Figure S1A). Binding of Bub1 to

kinetochores was assayed in these mutants by quantitative fluo-

rescence microscopy in cells that were arrested in mitosis by

overexpression of Mad2. This revealed a wide dynamic range

of Bub1 binding to kinetochores in individual cells and, as

the number of phosphorylatable MELT sites was reduced,

progressively lower average binding to kinetochores and

inversely higher levels of nucleoplasmic Bub1 (Figures 1A,

S1B, and S1C), while the total Bub1 abundance stayed constant

(Figure S1E).

In parallel, we measured the ability of individual spc7 mutant

cells, bearing a cold-sensitive allele of b-tubulin (nda3-KM311)

and a marker for high Cdk1 activity (Plo1-GFP), to mount a

spindle checkpoint arrest. While most spc7-1TA, spc7-3TA,

spc7-5TA, and spc7-7TA cells fully arrested, spc7-9TA and

spc7-12TA cells mounted only a partial checkpoint response

compared to wild-type cells (Figures 1B, S1C, and S1D). Similar

results were observed in population studies of synchronized

nda3-KM311 spc7 mutant cells, which express a marker that

only appears in anaphase (Nsk1-GFP). While a partial check-

point response was still mounted in spc7-7TA cells, spc7-9TA

and spc7-12TA cells were largely defective (Figures 1C and

S1G). We note that the checkpoint in spc7-12TA cells is not as

defective as in cells lacking mad3, suggesting that the spindle

assembly checkpoint (SAC) can be partially activated in this

mutant (Figures 1B and 1C).

Spindle checkpoint protein homeostasis is crucial for the

robustness of the checkpoint response in that even minor

changes in the protein concentration of Mad1, Mad2, Mad3,

and Cdc20 alter the threshold at which cells are able to delay

anaphase onset in response to unattached kinetochores [6]. To

examine whether the switch-like spindle checkpoint response

from the Spc7-MELT array is sensitive to changes in Bub1 and

Bub3 levels, we altered the expression of these proteins in a

mutant defective in their kinetochore binding. Deletion of Bub3

strongly suppressed the checkpoint deficiency in spc7-12TA

cells, as previously observed (Figures 1D and S1H) [4]. This

effect is not due to the upregulation of Bub1 protein levels
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(Figure S1F). Conversely, expression of an extra copy of Bub1

also strongly suppressed the checkpoint deficiency of spc7-

12TA cells, whereas expression of an extra copy of Bub3 had

no effect (Figure 1D). We conjecture that the inability of cells to

mount a checkpoint response, when Bub3-Bub1 is not recruited

to kinetochores, can be overcome by an excess of non-kineto-

chore-bound Bub1 over Bub3. Together, these results suggest

that the toggle switch for the spindle checkpoint at kinetochores

is not only dependent on the availability of phosphorylatable

MELT motifs but also on the relative abundance of Bub1 and

Bub3.

Bub3 Inhibits Bub1-Dependent SAC Signaling When Not
Bound to Spc7/KNL1
This prompted us to examine whether Bub3 acts as an inhibitor

of Bub1 when not bound to kinetochores. Importantly, crystallo-

graphic data have revealed that the phosphorylated threonines

in MELT motifs from the budding yeast KNL1 homolog,

Spc105, form ionic bonds with the Bub3 b-propeller toroid and

that mutation of Arg217 and Arg239 in Bub3 abolishes localization

of Bub3 and Bub1 to kinetochores and prevents budding yeast

cells frommounting a spindle checkpoint response [7]. However,

since Bub3 is also a component of the mitotic checkpoint com-

plex (MCC) in budding yeast, it is unclear whether checkpoint

failure in this mutant is due to an inability of Bub3 to interact

with Spc105 or because these mutations disrupt the structural

integrity of the MCC complex, or both. Importantly, Bub3 is not

essential for checkpoint activation and Bub3 is not a component

of the MCC in fission yeast [8].

For this reason, we created a bub3-R201A,K221A mutant at

the endogenous locus, which, based on crystallography and ho-

mology, should be defective in binding phospho-MELT repeats

of Spc7 but whichwould not influenceMCC stability (Figure S2A;

hereafter referred to as bub3-RA,KA mutant). In bub3-RA,KA

cells, Bub1 remained in the nucleus but failed to accumulate at

the kinetochore (Figure 2A), even though interaction of Bub1

with the Bub3-RA,KAmutant protein remained intact (Figure 2B).

Consistently, the Bub3-RA,KA-GFP protein failed to localize to

the kinetochore (Figure 2A). This was probably due to the inability

of Bub3-Bub1 to interact with phosphorylated Spc7 MELT re-

peats, since GST-Spc7-T9E proteins were unable to precipitate

the Bub3-Bub1 complex from extracts of bub3-RA,KA cells (Fig-

ure 2C). Indeed, no GFP foci were observed in interphase or

mitotic bub1-GFP bub3-RA,KA spc7-9TE or bub3-RA,KA-GFP

spc7-9TE cells, indicating that interaction of the Bub3-Bub1

complex with phosphorylated Spc7 is disrupted in the bub3-

RA,KA mutant (Figure 2A).

To our surprise, expression of bub3-RA,KA from its endoge-

nous locus displayed little defect in checkpoint signaling (Fig-
Figure 1. Levels of Bub1-Bub3 at Kinetochores Threshold the Activity

(A) Bub1 bound to kinetochores decreases as MELT motifs are abolished. Levels

in individual spc7 mutant cells arrested in mitosis by overexpression of Mad2. R

(B) Switch-like checkpoint response of the Spc7 MELT array. The duration of m

individual nda3-KM311 spc7 mutant cells at the restrictive temperature.

(C) Anaphase onset was determined by measuring the appearance of Nsk1-GFP

(D) An extra copy of Bub1 rescues the checkpoint defect in spc7-12TA cells. Lo

indicates the same control culture data as in (C).

See also Figure S1.
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ure 2D). We noted, however, that the steady-state level of the

Bub3-RA,KA-GFP protein was �40% lower than the corre-

sponding Bub3-GFP wild-type protein, as judged by western

analysis (Figure 2E). To examine whether this accounted for

the lack of effect of the bub3-RA,KA allele on checkpoint

signaling, we integrated a second copy of the mutant bub3-

RA,KA gene at the lys1 locus. By itself (i.e., in a Dbub3 back-

ground), the lys1::bub3-RA,KA allele also had only a minor effect

on checkpoint signaling (Figure S2B). However, when both

copies were expressed in the same cell (2xbub3-RA,KA), the

total amount of the Bub3-RA,KA-GFP protein was 10% greater

than that seen in wild-type cells (Figure 2E) and the defect in

checkpoint signaling was comparable to that observed in

spc7-9TA cells (Figures 2D and 1C). Importantly, the check-

point-signaling defect in the 2xbub3-RA,KA mutant was sup-

pressed in bub1(DGLEBS) cells, which lack the GLEBS domain

in Bub1 that is required for Bub3 binding [9], or when a second

copy of Bub1 (2Xbub1) was introduced, indicating that, when

not bound to phosphorylated MELT motifs, Bub3 exerts its

dose-dependent inhibitory effect on checkpoint signaling

through interaction with Bub1 (Figure 2D). The fact that check-

point signaling is not completely abrogated in spc7-12TA or

bub3-RA,KA mutants suggests that a fraction of Bub1 can

escape the inhibitory effect of Bub3.

Mph1/Mps1 Kinase and Dis2/PP1 Phosphatase
Antagonistically Regulate the Interaction ofMad1-Mad2
with Bub1
We reasoned that kinetochore association of Bub3-Bub1 may

relieve the inhibitory effect of Bub3 by altering the interaction

of Bub1 with other components of the spindle checkpoint. To

test this, we prepared extracts from nda3-KM311 bub1-6HA

cells expressing mad1-GFP, mad2-GFP, or mad3-GFP and

tested them for co-immunoprecipitation. We found that Mad1,

Mad2, andMad3 all interacted with Bub1 in checkpoint-arrested

cells; however, the interaction between Mad1 and Bub1 was

weak, possibly because themad1-GFP allele was not fully func-

tional (Figures 3A and S3A). Notably, the interaction ofMad2with

Bub1 was observed in checkpoint-arrested, but not log-phase,

cells, whereas the formation of Mad1-Mad2 and Mad3-Bub1

complexes was observed in both conditions, although this was

increased in checkpoint-arrested cells (Figure 3B).

In budding yeast, Mps1-mediated phosphorylation of Bub1 re-

cruits the Mad1-Mad2 complex to kinetochores and this is

required for checkpoint signaling [5]. This prompted us to assess

the phosphorylation requirements for the interaction of Bub1

with Mad1, Mad2, and Mad3 in fission yeast. We found that, in

the absence of Dis2, the major form of type 1 phosphatase

(PP1), the interaction of both Mad1 and Mad2 with Bub1 was
of the SAC

of Bub1-GFP, normalized against inner kinetochore Fta3-RFP, were calculated

epresentative images are shown on the right. Scale bar, 1 mm.

itosis prior to anaphase was determined by live-cell imaging of Plo1-GFP in

at the times indicated in nda3-KM11 nsk1-gfp spc7 mutant cells.

g-phase cultures of the illustrated strains were treated as in (C). Dashed line



Figure 2. Bub3 Inhibits the Spindle Checkpoint When It Is Not Bound at Kinetochores

(A) Bub1 and Bub3 do not bind the kinetochore in bub3-R201A,K221A mutant cells. Log-phase cultures of wild-type (left) or spc7-T9E cells (right) expressing

sid4-TdTomatowere fixed, and the percentage of cells with a <2 mmmitotic spindle (left; scale bar, 1 mm) or the percentage of all spc7-9TE cells (right; scale bar,

5 mm) that were positive for GFP foci was determined. Filled arrowheads indicate mitotic cells with GFP foci and open arrowheads indicate those without.

(B) Bub1 interacts with Bub3-RA,KA in vivo. Log-phase NP-40 extracts from the indicated strains were immunoprecipitated with rabbit anti-GFP (I) or normal

rabbit serum (PI). Complexes were analyzed by immunoblot using anti-HA or sheep anti-GFP antibodies.

(C) Bub3-RA,KA does not interact with Spc7-9TE in vitro. Fusion proteins, purified by Sepharose beads (left), were incubated with the indicated extracts and

analyzed by immunoblot using anti-HA or anti-sheep GFP antibodies (right). Mw, molecular weight marker.

(D) Maintenance of the spindle checkpoint is defective in 2xbub3(RA,KA) cells. The indicated nda3-KM11 strains were fixed at the times shown, and the

percentage of anaphase cells (Nsk1-GFP positive) was determined.

(E) Bub3-RA,KA is less stable than Bub3. Extracts from the indicated cells were analyzed by immunoblotting using sheep anti-GFP and anti-Tat1 (tubulin)

antibodies. Quantification of normalized GFP levels is shown (Bub3 RA,KA-GFP ± 0.185; 2XBub3 RA,KA-GFP ± 0.23 [±SD]).

See also Figure S2.
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enhanced, whereas, to our surprise, the interaction of Mad3 with

Bub1 was diminished (Figures 3C and S3B). Since cells lacking

Mph1 kinase are checkpoint defective, we arrested cdc25-22

allele cells in late G2 before releasing them synchronously into

mitosis in the presence of carbendazim (CBZ), an inhibitor of

microtubule polymerization. The addition of CBZ completely

blocked the onset of anaphase in control cells, but not in

Dmad3 cells, and it only delayed anaphase onset in spc7-12TA

cells by 5 min (Figure S3C). Importantly, we found that, as in

budding yeast, the interaction of Mad2with Bub1 in CBZ-treated

prometaphase cells was dependent onMph1 (Mps1) kinase (Fig-

ures 3D and S3D).

We and others previously showed that localization of Mad1

and Mad2 to kinetochores is dependent on a conserved RLK

motif of Mad1 and a conserved central motif of Bub1 (cm1)

[10–12]. The motif cm1 contains three conserved residues,

Ser381, Thr383, and Thr386, which are phosphorylated in

checkpoint-arrested fission yeast cells (A.H.-A. and J.B.A.M.,

unpublished data). Mutation of these residues (Bub1(SATATA))

abolishes recruitment of Mad1 and Mad2 to kinetochores and

disables checkpoint signaling [10].We found that the association

of bothMad1 andMad2 to Bub1 also depends on these residues

(Figure 3E and S3E), but the interaction of Mad3 with Bub1 does

not (Figure S3E). Together, these data indicate that Mph1 (Mps1)

kinase and Dis2 (PP1) phosphatase antagonistically regulate the

interaction of Mad1 and Mad2 with Bub1 in fission yeast, most

likely through phosphorylation of the conserved central motif

of Bub1.

Bub3 Licenses Phospho-Dependent Interaction of Bub1
with the Mad1-Mad2 Complex
We next sought to understand how kinetochore association of

Bub3-Bub1 protein influences checkpoint signaling. In fission

yeast, Bub3 is not required for spindle checkpoint arrest as

Bub3 is not a component of the MCC, but, instead, it is neces-

sary for efficient checkpoint activation and silencing [8, 13, 14].

Indeed, Bub1 interacts with both Mad2 and Mad3 in check-

point-arrested cells lacking Bub3 (Figure 4A). This suggests

that Bub3 is not strictly required for the interaction of the

Mad1-Mad2 complex with Bub1. Notably, however, we found

that the interaction of Mad2 with Bub1 was drastically reduced

in spc7-12TA cells compared to wild-type cells, while the inter-

action of Mad3 with Bub1 increased (Figures 4B and S4A).

Importantly, the interaction of Mad1 and Mad2 with Bub1 in

spc7-12TA was restored by the deletion of Bub3, indicating

that Bub3 acts as a negative regulator of Bub1:Mad2 interaction
Figure 3. The Mitotic Interaction between Mad2 and Bub1 Is Antagoni

(A) Bub1 interacts with both Mad2 and Mad3 in vivo. Following incubation at

immunoprecipitatedwith rabbit anti-GFP (I) or normal rabbit serum (PI), and comp

anti-GFP antibodies.

(B) Bub1 and Mad2 interact specifically in mitosis. The indicated cells were incu

(C) Bub1 interactions with Mad2 and Mad3 are differentially regulated by PP1.

normalized Bub1-6HA levels is shown (±SD).

(D)Mph1 kinase is required for Bub1 to interact withMad2. The strains shownwere

200 mg/ml and cells were collected 15 min later. Extracts were immunoprecipita

(E) Bub1-conservedmotif 1 (cm1) is required for its interaction withMad2. The indi

Migration of molecular markers (in kilodaltons) is shown to the left of each blot.

binding.

See also Figure S3.
when it is not bound at kinetochores (Figures 4C and S4B).

Conversely, the deletion of Bub3 decreases the interaction of

Mad3 with Bub1 in spc7-12TA cells (Figure S4C). This antago-

nistic relationship suggests that Mad3 may participate in

Bub3-dependent regulation of Mad1-Mad2 binding to Bub1.

Identification of Mad3 mutants that specifically fail to associate

to Bub1, but retain the ability to form the MCC, would help clarify

this issue.

Taken together, our data indicate that the Spc7 (KNL1) MELT

array acts as a multisite phospho-dependent toggle switch for

the spindle checkpoint at kinetochores, which relies on the

conversion of Bub3 from an inhibitor to a facilitator of spindle

checkpoint signaling by controlling the interaction of Mad1-

Mad2 with Bub1. Once occupancy of Spc7 (KNL1) by Bub3-

Bub1 drops below a critical threshold, the rate of MCC

generation drops below the rate of MCC turnover, permitting

APC/C activation and anaphase onset. This would explain

why kinetochore binding of Bub3-Bub1 reduces as cells enter

metaphase but does not completely disappear until late

anaphase. We postulate that, just like Mad2, Bub3-Bub1 un-

dergoes a conformational change that is dependent on its inter-

action with phosphorylated MELT motifs of Spc7 (KNL1), which

permits the interaction of Mad1-Mad2 with Bub1 (Figure 4D).

Reconstitution and structural studies will be needed to test

this hypothesis.

Importantly, in human cells, the spindle checkpoint behaves

like a rheostat rather than a toggle switch in response

to increasing levels of microtubule-kinetochore detachment

[15, 16]. This is seemingly at odds with the finding that only a

small number of MELT motifs in KNL1 are needed to mount a

checkpoint response [17–19]. However, these latter experiments

were performed in the presence of reversine, an inhibitor ofMps1

kinase. More recent analysis indicates that human cells possess

two distinct means to recruit the Mad1-Mad2 complex to kinet-

ochores: the KNL1-Bub3-Bub1 (KBB) pathway and a second

KNL1-independent mechanism mediated by the RZZ-spindly

complex, which is absent in yeast [20]. One possibility thatmerits

further analysis is that the RZZ-spindly complex obscures the

switch-like behavior of the KBB pathway, which is only revealed

in the presence of reversine. We contend that modulation of

Bub3 levels by BuGZ [21, 22], phosphorylation of Bub3 by

PKM2 kinase [23], or simply alteration of kinetochore number

(and therefore number of MELT motifs) influences either the

threshold or amplitude of the KBB toggle switch and, in doing

so, contributes to chromosome instability in aneuploid cancer

cells.
stically Regulated by Mph1 Kinase and Dis2/PP1 Phosphatase

18�C for 6 hr, extracts were prepared from the illustrated strains and then

lexes were analyzed by immunoblot using anti-HA, rabbit anti-Mad1, and sheep

bated at either 30�C or 18�C for 6 hr and then immunoprecipited as in (A).

The indicated strains were treated and analyzed as in (A). Quantification of

shifted to 35.5�C for 4 hr and released at 25�C. After 10min, CBZwas added at

ted and analyzed as in (A).

cated strains were treated and analyzed as in (D). Mw,molecular weight marker.

5% input of NP-40 yeast extracts (E) is shown. Asterisks indicate unspecific
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EXPERIMENTAL PROCEDURES

See the Supplemental Experimental Procedures.
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and four figures and can be found with this article online at http://dx.doi.org/
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20. Silió, V., McAinsh, A.D., and Millar, J.B. (2015). KNL1-Bubs and RZZ pro-

vide two separable pathways for checkpoint activation at human kineto-

chores. Dev. Cell 35, 600–613.
ferentially at the Kinetochore or in the Nucleoplasm

trains were incubated for 4 hr at 18�C. Extracts were prepared and immuno-

immunoblot using anti-HA, rabbit anti-Mad1, and sheep anti-GFP antibodies.

d3 differentially. Indicated strains were treated and analyzed as in (A).

dicated strains were treated and analyzed as in (A).

e-bound or non-kinetochore-bound interactions. Bub3 at the kinetochore (left)

ze C-Mad2 formation and arrest anaphase. When kinetochore recruitment is

-Mad2 is abolished, resulting in the failure to generate an inhibitory signal and

r deleting Bub3, allowing interaction between Bub1 and Mad1-Mad2 in the

b3 (right). Mw, molecular weight marker. Migration of molecular markers (in

(E) is shown. Quantification of normalized Bub1-6HA levels is shown (±SD).

Current Biology 26, 2642–2650, October 10, 2016 2649

http://dx.doi.org/10.1016/j.cub.2016.07.040
http://dx.doi.org/10.1016/j.cub.2016.07.040
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref1
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref1
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref2
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref2
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref2
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref3
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref3
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref3
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref3
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref4
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref4
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref4
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref5
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref5
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref5
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref6
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref6
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref6
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref6
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref7
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref7
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref7
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref7
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref8
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref8
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref8
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref9
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref9
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref9
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref9
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref9
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref10
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref10
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref10
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref10
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref11
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref11
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref11
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref12
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref12
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref12
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref13
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref13
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref13
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref14
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref14
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref14
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref15
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref15
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref15
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref16
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref16
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref17
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref17
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref17
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref17
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref18
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref18
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref18
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref19
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref19
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref19
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref19
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref20
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref20
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref20


21. Jiang, H., He, X., Wang, S., Jia, J., Wan, Y., Wang, Y., Zeng, R., Yates, J.,

3rd, Zhu, X., and Zheng, Y. (2014). A microtubule-associated zinc finger

protein, BuGZ, regulates mitotic chromosome alignment by ensuring

Bub3 stability and kinetochore targeting. Dev. Cell 28, 268–281.

22. Toledo, C.M., Herman, J.A., Olsen, J.B., Ding, Y., Corrin, P., Girard, E.J.,

Olson, J.M., Emili, A., DeLuca, J.G., and Paddison, P.J. (2014). BuGZ is
2650 Current Biology 26, 2642–2650, October 10, 2016
required for Bub3 stability, Bub1 kinetochore function, and chromosome

alignment. Dev. Cell 28, 282–294.

23. Jiang, Y., Li, X., Yang, W., Hawke, D.H., Zheng, Y., Xia, Y., Aldape, K.,

Wei, C., Guo, F., Chen, Y., and Lu, Z. (2014). PKM2 regulates chromo-

some segregation and mitosis progression of tumor cells. Mol. Cell 53,

75–87.

http://refhub.elsevier.com/S0960-9822(16)30791-6/sref21
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref21
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref21
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref21
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref22
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref22
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref22
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref22
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref23
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref23
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref23
http://refhub.elsevier.com/S0960-9822(16)30791-6/sref23


Current Biology, Volume 26
Supplemental Information
Bub3-Bub1 Binding to Spc7/KNL1 Toggles

the Spindle Checkpoint Switch by Licensing

the Interaction of Bub1 with Mad1-Mad2

Maria del Mar Mora-Santos, America Hervas-Aguilar, Katharina Sewart, Theresa C.
Lancaster, John C. Meadows, and Jonathan B.A. Millar



 



 



 



 



Supplemental Figure Legends 
 
Figure S1, related to Figure 1 
(A) Diagram showing wild type Spc7 and the mutant alleles used in this study. Red lines indicate unmutated 
MELT motifs. (B) bub1-GFP fta3-RFP pREP3x-mad2 cells expressing the spc7 mutant alleles illustrated or wild 
type spc7 were grown to mid-log phase in the presence of thiamine and then arrested in metaphase by growing in 
the absence of thiamine for 18 hours. Following fixation, the level of Bub1-GFP in the nucleus but not at 
kinetochores was calculated in individual cells. (C) Graphs to show the cumulative distributions of the data from 
Figures 1A (left panel) and 1B (right panel). (D) (Left panel) Kymographs of the spindle region of representative 
mitotic cells expressing the tubulin mutant nda3-KM311 and plo1-GFP from Figure 1B. Cells were followed by 
live-cell microscopy at 16°C and Plo1-GFP appearance highlighted by closed squares and its disappearance by 
open squares. The wild type cell still showed a localized Plo1-GFP signal when recording was stopped. Frames 
removed for space constraints are represented as <n>. Time between frames: 5 minutes. (Right panel) Graphs 
show Plo1-GFP maximum intensity over time for the representative cells shown. Points indicated by circles and 
squares were determined by a custom MATLAB script. Closed circles mark the time-point before the first strong 
increase in Plo1-GFP signal and open circles the one after the last strong decrease. Time points where Plo1-GFP 
intensity increases above (closed squares) or decreases below (open squares) 1.3x the baseline and are used to 
determine the time spent in mitosis. (E) nda3-KM311 bub1-6HA mad2-GFP cells in the presence and absence of 
Spc7-12TA were grown to mid log phase before shifting to 18 ºC for 4 hours to arrest in mitosis and then 
harvested. NP-40 extracts were separated by SDS-PAGE and analysed by immunoblotting using anti-HA and 
anti-Tat1 antibodies. (F) Log phase cultures of bub1-6HA, bub1-6HA Δbub3 and bub1(ΔGLEBS)-6HA cells 
expressing nda3-KM311 mad2-GFP were arrested in mitosis for 6 hours at 18 ºC and then harvested. NP-40 
extracts were separated by SDS-PAGE and analysed by immunoblotting using anti-HA and anti-Tat1 antibodies. 
(G) Representative cells expressing the tubulin mutant nda3-KM311 and the anaphase marker nsk1-GFP in the 
presence and absence of Mad3 from Figure 1C were grown to mid log phase before being synchronised in G2 by 
lactose gradient and incubated at 18 ºC for 3 hours. Bar, 2µm. (H) Log phase cultures of the illustrated strains 
expressing nda3-KM311 nsk1-GFP were synchronised in G2 by lactose gradient and incubated at 18 ºC for the 
times indicated. Cells were fixed and the percentage of anaphase cells (Nsk1-GFP positive) determined. Dashed 
lines indicate control data reproduced from Figure 1D. Asterisks indicate unspecific binding. 
 
Figure S2, related to Figure 2 
(A) Alignment of Bub3 from the indicated organisms. (B) Log phase cultures of the illustrated strains expressing 
nda3-KM311 nsk1-GFP were synchronised in G2 by lactose gradient and incubated at 18 ºC for the times 
indicated. Cells were fixed and the percentage of anaphase cells (Nsk1-GFP positive) determined. Dashed lines 
indicate control data reproduced from Figure 2D. 
 
Figure S3, related to Figure 3 
(A) Following incubation for 6 hours at 18 ºC to arrest in mitosis, NP-40 extracts were prepared from mad1-
GFP, mad2-GFP and mad3-GFP strains expressing nda3-KM311 bub1-6HA. These were then 
immunoprecipitated with rabbit anti-GFP (I) or rabbit serum (PI) and complexes analysed by immunoblot using 
anti-HA and sheep anti-GFP. (B) Log phase cultures of mad1-GFP, mad2-GFP or mad3-GFP cells expressing 
nda3-KM311 bub1-6HA and either dis2+ or ∆dis2 were treated as in (A). Extracts of mad2-GFP or mad3-GFP 
cells expressing nda3-KM311 bub1-6HA and either dis2+ or ∆dis2 were inmunoprecipitated with rabbit anti-
Mad1(I) or rabbit serum (PI) and complexes analysed by immonoblot using anti-HA, sheep anti-GFP and rabbit 
anti-Mad1 antibody. (C) sid4-tdTomato cdc25-22 cells in the presence or absence of Mad3 and Spc7-12TA were 
grown to mid log phase before shifting to 35.5 ºC for 4 hours to arrest at the G2/M boundary. This was followed 
by release at 25 ºC. After 10 min, either CBZ at 200 µg/ml or an equal volume of DMSO was added and cells 
fixed at the times indicated. The percentage of anaphase cells (Nsk1-GFP positive) was determined. (D) Mid log 
phase bub1-6HA mad2-GFP cdc25-22 strains expressing either mph1 or Δmph1 were shifted to 35.5 ºC for 4 
hours and released at 25 ºC. After 10 min, CBZ was added at 200 µg/ml and cells collected 15 min later. Extracts 
were immunoprecipitated and analysed as in (A). (E) mad1-GFP or mad3-GFP ∆dis2 cdc25-22 strains 
expressing either bub1-6HA or bub1-SATATA-6HA were treated as in (D) and analysed as in (A). (Mw) 
Molecular weight marker. 5% input of NP-40 yeast extracts (E). Asterisk shows non-specific binding. 
 
 
 



Figure S4, related to Figure 4 
(A) Log phase cultures of cdc25-22 bub1-6HA mad2-GFP cells expressing either spc7 or spc7-T12A were 
shifted to 35.5 ºC for 4 hours to arrest at G2/M and then released at 25 ºC. After 10 min, CBZ was added at 200 
µg/ml and cells were collected 15 min later. NP-40 extracts were immunoprecipitated with rabbit anti-GFP (I) or 
rabbit serum (PI). Immunoprecipitated material was subsequently analysed by immunoblot using anti-HA and 
sheep anti-GFP. (B) Following incubation for 4 hours at 18 ºC to arrest in mitosis, NP-40 extracts were prepared 
from mad3-GFP strains expressing nda3-KM311 bub1-6HA. Extracts were immunoprecipitated with rabbit anti-
Mad1 (I) or rabbit serum (PI) and complexes were analysed by immunoblot using anti-HA and rabbit anti-Mad1. 
(C) Log phase nda3-KM311 bub1-6HA mad3-GFP strains expressing either spc7 bub3+ or spc7-12TA ∆bub3 
were incubated at 18 ºC for 4 hours. Extracts were immunoprecipitated and analysed as in (A). (Mw) Molecular 
weight marker. 5% input of NP-40 yeast extracts (E). Asterisk shows non-specific binding.  
  
 
  



Supplemental Experimental Procedures 
 
Cell culture and synchronisation 
 
Media, growth and maintenance of strains were as described previously [S1]. Strains used in this study are listed 
below. YES 10-40% lactose gradients were prepared in a Fisherbrand gradient mixer. Cells in mid log phase 
were placed on the top and after centrifugation, synchronised early G2 cells were taken from the top of the broad 
band of cells concentrated at the centre of the gradient. For cdc25-22 arrest, cells were grown in YES medium 
overnight at 25 ºC to mid log phase and then shifted to 35.5 ºC for 4 hours. To release, the culture was rapidly 
cooled to 25 ºC. For mitotic arrests, mid log phase nda3-KM311 cells growing in YES were arrested at 18 ºC for 
different durations. Mad2 overexpression assays were made by growing pREP3x-mad2 strains in minimal 
glutamate medium supplemented with 5 µg/ml thiamine overnight at 30 ºC. Mid log phase cells were washed 
twice with the same medium lacking thiamine, and inoculated into fresh media. Cells were then incubated for 
either 16 or 18 hours at 30 ºC.  
 
Plasmid and strain construction 
 
DNA containing full length spc7 and ~500 bp 5’ promoter and ~200 bp of 3’ UTR was cloned into the SphI and 
BamHI sites of pLYS1U [S2]. Integration at the lys1 locus was confirmed by PCR. To create mutants of spc7, 
fragments of 1.4 Kb flanked by unique restriction sites MscI and AgeI were synthesised by GeneArt (Life 
TechnologiesTM) with the following threonines or serine mutated to alanine T77, S221, T257, T338, T366, 
T395, T413, T422, T453, T507, T529, T552 (spc7-12TA) or T257, T338, T366, T395, T422, T453, T507, T529, 
T552 (spc7-9TA) or T338, T366, T395, T422, T453, T507, T529 (spc7-7TA) or T257, T366, T422, T507, T552 
(spc7-5TA) or T257, T422, T552 (spc7-3TA) or T507 (spc7-1TA) or with the following threonines mutated to 
glutamic acid T257, T338, T366, T395, T422, T453, T507, T529, T552 (spc7-9TE). These fragments were 
excised from the GeneArt vector pMA-RQ using MscI and AgeI and cloned into pLYS1U-Spc7. Wild type and 
mutants were transformed into spc7::natMX6/spc7+ heterozygous diploid [S3] after digestion with NotI. 
Carboxy-terminal tagging with GFP was performed by two-step PCR-based gene targeting as described 
previously [S4, S5] using oligos listed below. bub1-6HA or bub1-ΔGLEBS-6HA expressed at the endogenous 
locus were created by cutting the plasmid pBub1-6HA [S6] with the single ClaI site lying within bub1 sequence. 
To express an additional copy of bub1, the genomic sequence of bub1 was cloned as a 4 Kb fragment using 
restriction sites BamHI and KpnI into pJK148 [S7]. Plasmids were linearised with NruI and integrated into 
strains with the leu1.32 auxotrophic marker. Stable integrations at the leu1 locus were confirmed by PCR. A 
fragment containing full length bub3 or bub3-R201A,K221A and ~500bp 5’ promoter and ~300bp of 3’ UTR and 
a bub1 fragment containing the specific mutations in  S381A, T383A and T386A  (called bub1-SATATA) was 
synthesised by GeneArt (Life TechnologiesTM) and excising from the GeneArt vector pMA-RQ using SfiI. Bub3 
fragments were transformed into a bub3::ura4 strain [S8] or SalI or BssHII used to clone it into pLYS1U or 
pLYS1K. The bub1 mutant was first cloned as a 2.3 Kb fragment using restriction sites XhoI and SpeI into pBSK-
bub1+. This Plasmid was then linearised with BamHI and SphI and transformed into a bub1::ura4 strain [S6]. 
Integration of bub1-SATATA and bub3-R201,K221A at their endogenous loci was selected for on agar plates 
containing 0.5 mg/ml 5-FOA (Fermentas) and verified by PCR-sequencing. To generate 6HisGST-spc7 and 
6HisGST-Spc7-9TE, a gene fragment encoding Spc7 residues 241-561 was amplified by PCR from pLYS1U-
spc7 or pLYS1U-Spc7-9TE plasmids respectively using Gateway Technology (ThermoFisher Scientific). 

List of the strains used in this study annotated by initial appearance  
 
Figure 1A 
JM8876: h? bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7:ura4+pREP3x-mad2 
JM8878: h? bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-1TA:ura4+pREP3x-mad2 
JM8880: h? bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-3TA:ura4+pREP3x-mad2 
JM8882: h? bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-5TA:ura4+pREP3x-mad2 
JM8884: h? bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-7TA:ura4+pREP3x-mad2 
JM7080: h? bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-9TA:ura4+pREP3x-mad2 
JM8888: h? bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-12TA:ura4+pREP3x-mad2 
 
 



Figure 1B 
JM9533: h? nda3-KM311 plo1-GFP:kanR mad3::ura4 
JM9519: h? nda3-KM311  plo1-GFP:kanR spc7::natMX6 lys1::spc7:ura4 
JM9522: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-1TA:ura4 
JM9523: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-3TA:ura4 
JM9525: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-5TA:ura4 
JM9527: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-7TA:ura4 
JM9529: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-9TA:ura4 
JM9531: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4 
 
Figure 1C 
JM7964: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7:ura4  
JM7969: h+ nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR mad3::ura4  
JM8530: h? nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-1TA:ura4 
JM8531: h? nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-3TA:ura4  
JM8533: h? nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-5TA:ura4 
JM8535: h? nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-7TA:ura4 
JM7965: h+ nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-9TA:ura4 
JM7967: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4 
 
Figure 1D 
JM7964: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7:ura4 
JM7967: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4 
JM9293: h+nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4 leu1::bub1 
JM8706: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4 bub3::ura4 
JM9311: h? nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4  
          his::bub3:kanR 
 
Figure 2A 
JM8891: h+ sid4-TdTomato:natMX6 bub3-L-GFP:kanR 
JM8893: h+ sid4-TdTomato:natMX6 bub3-RA,KA-L-GFP:kanR 
JM7375: h+ nda3-KM311 sid4-TdTomato:natMX6 bub1-GFP:kanR bub3::hygR lys::bub3:ura4 
JM7378: h- nda3-KM311 sid4-TdTomato:natMX6 bub1-GFP:kanR bub3::hygR lys::bub3-RA, KA:ura4 
JM9134: h- sid4-TdTomato:hygR bub3-L-GFP:kanR spc7::natMX6 lys1::spc7-9TE:ura4 
JM9136: h+sid4-TdTomato:hygR bub3-RA,KA-L-GFP:kanR spc7::natMX6 lys1::spc7-9TE:ura4 
JM9166: h? sid4-TdTomato:hygR bub1-GFP:kanR bub3:hygR spc7::natMX6 lys1::spc7-9TE:ura4 
JM9168: h? sid4-TdTomato:hygR bub1-GFP:kanR bub3-RA,KA:hygR spc7::natMX6 lys1::spc7-9TE:ura4 
 
Figure 2B   
JM7546: h- bub1-6HA:ura4 bub3::hygR lys1::bub3-GFP:kanR 
JM7548: h- bub1-6HA:ura4 bub3::hygR lys1::bub3-RA,KA-GFP:kanR 
 
Figure 2C   
JM7546: h- bub1-6HA:ura4 bub3::hygR lys1::bub3-GFP:kanR 
JM7548: h- bub1-6HA:ura4 bub3::hygR lys1::bub3-RA,KA-GFP:kanR 
 
Figure 2D   
JM8097: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR mad3::hygR 
JM8933: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3:hygR 
JM8889: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3-RA,KA:hygR 
JM8935: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3-RA,KA:hygR lys::bub3-RA,KA:ura4 
JM9003: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3-RA,KA:hygR lys::bub3-RA,KA:ura4  

          bub1(∆GLEBS) ade6-M210 
JM9662: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3-RA,KA:hygR lys::bub3-RA,KA:ura4   

         leu1::bub1 
 



Figure 2E   
JM4300: h+ nda3-KM311 
JM8990: h- bub3-L-GFP:hygR 
JM9068: h- bub3-RA,KA-L-GFP:hygR 
JM9104: h- bub3-RA,KA-L-GFP:hygR lys1::bub3-RA,KA-L-GFP:kanR 
 
Figure 3A 
JM8826: h+nda3-KM311 bub1-6HA:ura4 
JM8729: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 
JM8733: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 
 
Figure 3B   
JM8729: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 
JM8733: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 
 
Figure 3C  
JM8729: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 
JM9399: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 dis2::natR 
JM8733: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 
JM9374: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 dis2::natR 
 
Figure 3D  
 JM9392: h? cdc25-22 bub1-6HA:ura4 mad2-GFP:kanR dis2::natR 
JM9403: h? cdc25-22 bub1-6HA:ura4 mad2-GFP:kanR dis2::natR mph1::hygR 
 
Figure 3E   
JM9392: h? cdc25-22 bub1-6HA:ura4 mad2-GFP:kanR dis2::natR 
JM9488: h? cdc25-22 bub1(SATATA)-6HA:ura4 mad2-GFP:kanR dis2::natR 
 
Figure 4A 
JM8729: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 
JM8901: h+ nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 bub3::hygR 
JM8733: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 
JM8903: h+ nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 bub3::hygR 
 
Figure 4B  
JM8729: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 
JM8970: h- nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 spc7::natMX6 lys1::spc7-12TA:ura4 
JM8733: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 
JM8972: h- nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 spc7::natMX6 lys1::spc7-12TA:ura4 
 
Figure 4C 
JM8729: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 
JM8970: h- nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 spc7::natMX6 lys1::spc7-12TA:ura4 
JM9229: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 spc7::natMX6 lys1::spc7-12TA:ura4 bub3::hygR  
 
Supplemental Figure 1B 
JM8876: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7:ura4+pREP3x-mad2 
JM8878: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-1TA:ura4+pREP3x-mad2 
JM8880: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-3TA:ura4+pREP3x-mad2 
JM8882: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-5TA:ura4+pREP3x-mad2 
JM8884: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-7TA:ura4+pREP3x-mad2 
JM7080: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-9TA:ura4+pREP3x-mad2 
JM8888: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-12TA:ura4+pREP3x-mad2 
 
 



Supplemental Figure 1C 
JM8876: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7:ura4+pREP3x-mad2 
JM8878: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-1TA:ura4+pREP3x-mad2 
JM8880: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-3TA:ura4+pREP3x-mad2 
JM8882: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-5TA:ura4+pREP3x-mad2 
JM8884: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-7TA:ura4+pREP3x-mad2 
JM7080: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-9TA:ura4+pREP3x-mad2 
JM8888: bub1-GFP:kanR fta3-mRFP:hygR spc7::natR lys1::spc7-12TA:ura4+pREP3x-mad2 
JM9533: h? nda3-KM311 plo1-GFP:kanR mad3::ura4 
JM9519: h? nda3-KM311  plo1-GFP:kanR spc7::natMX6 lys1::spc7:ura4 
JM9522: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-1TA:ura4 
JM9523: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-3TA:ura4 
JM9525: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-5TA:ura4 
JM9527: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-7TA:ura4 
JM9529: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-9TA:ura4 
JM9531: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4 
 
Supplemental Figure 1D 
JM9533: h? nda3-KM311 plo1-GFP:kanR mad3::ura4 
JM9519: h? nda3-KM311  plo1-GFP:kanR spc7::natMX6 lys1::spc7:ura4 
JM9527: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-7TA:ura4 
JM9531: h? nda3-KM311 plo1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4 
 
Supplemental Figure 1E 
JM8729: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 
JM8970: h- nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 spc7::natMX6 lys1::spc7-12TA:ura4 
 
Supplemental Figure 1F  
JM8729: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 
JM8901: h+nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 bub3::hygR 
JM8741: h? nda3-KM311 mad2-GFP:kanR bub1(ΔGLEBS)-6HA:ura4   
 
Supplemental Figure 1G 
JM7969: h+ nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR mad3::ura4  
JM7964: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7:ura4 
 
Supplemental Figure 1H 
JM7964: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7:ura4 
JM7967: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4 
JM8690: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7:ura4  

         bub1(∆GLEBS) ade6-210 
JM8698: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4  

bub1(∆GLEBS) ade6-210 
JM8700: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7:ura4 bub3::ura4 
JM8706: h- nda3-KM311 fta3-mRFP:hygR nsk1-GFP:kanR spc7::natMX6 lys1::spc7-12TA:ura4 bub3::ura4 
 
Supplemental Figure 2B 
JM8097: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR mad3::hygR 
JM8935: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3-RA,KA:hygR lys::bub3-RA,KA:ura4 
JM8107: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3::hygR lys1::bub3-RA, KA:ura4 
JM9660: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3-RA,KA:hygR leu1::bub1 
JM9667: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3:hygR leu1::bub1 
JM9668: h? nda3-KM311 fta3-TdTomato:natMX6 nsk1-GFP:kanR bub3:hygR lys::bub3:ura4 leu1::bub1 

 
Supplemental Figure 3A 
JM8725: h? nda3-KM311 mad1-GFP:kanR bub1-6HA:ura4 



JM8729: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 
JM8733: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 
 
Supplemental Figure 3B  
JM8725: h? nda3-KM311 mad1-GFP:kanR bub1-6HA:ura4 
JM9452: h+ nda3-KM311 mad1-GFP:kanR bub1-6HA:ura4 dis2::natR 
JM9399: h? nda3-KM311 mad2-GFP:kanR bub1-6HA:ura4 dis2::natR 
JM9374: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 dis2::natR 
 
Supplemental Figure 3C 
JM4267: h+ cdc25-22 sid4-tdtomato:natMX6 nsk1-gfp:KanR  
JM9231: h+ cdc25-22 sid4-tdtomato:natMX6 nsk1-gfp:KanR mad3::hygR 
JM9116: h? cdc25-22 nsk1-gfp:KanR spc7::natMX6 lys1::spc7(T12A):ura4  
 
Supplemental Figure 3D  
JM8978: h? cdc25-22 bub1-6HA:ura4 mad2-GFP:kanR  
JM9319: h+ cdc25-22 bub1-6HA:ura4 mad2-GFP:kanR  mph1::hygR 
 
Supplemental Figure 3E 
JM9455: h- cdc25-22 mad1-GFP:kanR bub1-6HA:ura4 dis2::natR 
JM9465: h? cdc25-22 mad1-GFP:kanR bub1(SATATA)-6HA:ura4 dis2::natR 
JM9376: h? cdc25-22 mad3-GFP:kanR bub1-6HA:ura4 dis2::natR 
JM9479: h? cdc25-22 mad3-GFP:kanR bub1(SATATA)-6HA:ura4 dis2::natR 
 
Supplemental Figure 4A 
JM8978: h? cdc25-22 mad2-GFP:kanR bub1-6HA:ura4 
JM9083: h- cdc25-22 mad2-GFP:kanR bub1-6HA:ura4 spc7::natMX6 lys1::spc7-12TA:ura4 
 
Supplemental Figure 4B 
JM8733: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 
JM8972: h- nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 spc7::natMX6 lys1::spc7-12TA:ura4 
JM9219: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 spc7::natMX6 lys1::spc7-12TA:ura4 bub3::hygR 
 
Supplemental Figure 4C 
JM8733: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 
JM9219: h? nda3-KM311 mad3-GFP:kanR bub1-6HA:ura4 spc7::natMX6 lys1::spc7-12TA:ura4 bub3::hygR 
 
List of oligonucleotides used in this study 
 
Construction of pLYSU-Spc7  
SphI FW 
5’TTTATAGCATGCTTCTTACAACCGCACATT 3’ 
BamHI 
5’TTTATAGGATCCGCGCATTACGGGTTTAACA 3’ 
 
Construction of pJK148-bub1 
BamHI FW 
5’CGCGGATCCCTACAACCTGTTTTTCGCTCATATTCG 3’ 
KpnI RV 
5’CGCGGTACCGTTGTTTAGGAAAGAAAAACTAACCCCAATAAA 3’  
 
C-terminal GFP-tagging of mad3 and bub3 alleles 
mad3w 
5’GATGGCCAACCTGGGACCTGGC3’ 
 
 



mad3x 
5’TCCAGTGAAAAGTTCTTCTCCTTTACTCATGAATTCGATATCAAGCTTATCGATACCGTCGACTTC
TTTCGATACTTCCTCATC3’ 
mad3y 
5’GTTTAAACGAGCTCGAATTCATCGATATTAGATTAACAACTATTGT3’ 
mad3z 
5’TATAGAGGTGTAATTACTTATC3’  
 
bub3w 
5’CGACCTAAAATTTCATCCGATTCATCA3’ 
bub3x 
5’GGGGATCCGTCGACCTGCAGCGTACGACATGAATTCGATATCAAGCTTATCGATACCGTCGACTG
ACTTTAACTTTGGAGCTGCAAAGTTGGATTC3’ 
bub3y 
5’GTTTAAACGAGCTCGAATTCATCGATAATCGCTCATCAAAAAGCTTCATCCATGTA3’ 
bub3z 
5’CCAAATAGTGTCACATTGTTTTTATATTAAGTA3’ 
 
Gateway cloning for expression of Spc7 fusion proteins 
attB FW 
5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGCCACGAGAGAGCAGGTTAATGAT3’ 
attB RV 
5’GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAGTTTCCACGGATTTGAAAAGCCAC3’ 

 
Fixed cell fluorescence microscopy 

Cells were fixed in 3.7 % formaldehyde for 10 min and mounted in Vectashield mounting medium containing 
DAPI. Fluorescence imaging of cells expressing GFP, RFP or TdTomato tagged proteins was performed on a 
Nikon TE-2000 inverted microscope with a 100x 1.49 N.A. objective lens equipped with a Photometrics 
Coolsnap-HQ2 liquid cooled CCD camera (Photometrics, Tucson, AZ). Images were collected and analysed 
using Metamorph (version 7.5.9.0 MAG Biosystems Software). Exposure times of 1 second were used for GFP, 
RFP and TdTomato and 0.25 seconds for DAPI (shown in blue in all images). Stacks of 18 z-sections (0.2µm 
apart) were taken and projected images were made followed by intensity adjustments. Experiments were 
conducted at least three times and the mean value presented, more than 250 cells were counted in each repeat.  

Protein quantification 

bub1-GFP fta3-RFP pREP3x-mad2 cells expressing various spc7 mutant alleles or wild type spc7 were grown to 
mid-log phase in the presence of thiamine and then arrested in metaphase by growing in the absence of thiamine 
for 18 hours. Following fixation, Bub1-GFP levels were measured in individual cells both at kinetochores via 
colocalisation with Fta3-RFP and in the nucleoplasm. In each case background levels of cellular fluorescence 
were first removed and for kinetochore-bound Bub1-GFP signal was normalised against background-subtracted 
Fta3-RFP levels. Average signal intensity measurements in a 10 pixel diameter circle (0.32µm2) localised at the 
maximal intensity of the RFP signal were calculated using MetaMorph (version 7.5.9.0 MAG Biosystems 
Software). Measurements were taken over three experiments and the individual profiles plotted. Cumulative 
distributions were generated using R [S9, S10]. Quantification of protein levels across multiple immunoblots 
was conducted with ImageJ (Gel Analyzer) and distribution of signal between experiments represented with 
standard deviation throughout. Quantification was performed in the linear range as determined via serial 
exposure intensity analysis. Tat1 (anti-Tubulin) was used to normalise signal intensities were possible.     

Single cell analysis of checkpoint maintenance  

Cells were grown in YEA medium at 30°C and mounted in # 1.5 glass-bottom culture dishes (Ibidi) that had 
been coated with 100 µg/ml lectin (Sigma, L1395). Imaging was performed on a DeltaVision Core system 
(Applied Precision/GE Healthcare) equipped with a climate chamber (set to 16°C). Cells were incubated on the 
microscope stage at 16°C for 1.5 hours before recording. Pictures were taken with a CoolSnap HQ camera using 



a 60x/1.4 Plan Apo oil objective (Olympus) and the ‘optical axis integration’ algorithm of the SoftWorx software 
(Applied Precision/GE Healthcare). All images were deconvolved using SoftWorx software. The time of 
appearance and disappearance of Plo1-GFP at spindle pole bodies was determined by a custom MATLAB 
(MathWorks) script. The custom MATLAB (MathWorks) script is applied to images of single cells and first 
determines the maximum intensity within a region of interest, smoothed over five time points. The first and 
second derivative are used to detect the first strong increase in signal as well as the last strong decrease in signal. 
The Plo1-GFP maximum intensity before and after these time points is considered the ‘baseline’. Additional 
parameters are used to ensure that the baseline intensities at the start of the increase and at the end of the 
decrease are in the same range - unless in cells where Plo1-GFP has not delocalised by the end of image 
acquisition. The time point where Plo1-GFP intensity increases above or decreases below 1.3x the baseline are 
taken as start and stop to determine the time in mitosis. The automatically detected values are displayed to the 
user and can be corrected manually, if necessary. Kymographs were assembled using a custom MATLAB 
(MathWorks) script. Cells that died during mitosis were removed from the analysis. 

in vitro binding assay 

Expression of fusion proteins was induced in Escherichia coli BL21 DE3 plysS cells by incubation with 1mM 
isopropyl-β-D-thiogalactoside (IPTG) for 3.5 hours at 37ºC. Cells were lysed in ice cold lysis buffer containing 
150 mM NaCl, 1 % NP40, 10 mM TrisCl pH 8, 10 % glycerol, 1 mM DTT, 1 mM PMSF and Complete mini 
EDTA-free Protease Inhibitor Cocktail Tablets (Roche Applied Science) followed by sonication with 20 sec 
pulse for six cycles (Sonics, Vibra-Cell). Fusion proteins were purified from bacterial lysates via their affinity to 
glutathione-Sepharose beads for 30 min (GE Healthcare). For the in vitro assay, yeast lysates (5 mg) were 
incubated with 6HisGST-Spc7 or 6HisGST-Spc7-9TE bound to Sepharose beads for 2 hours. Beads were 
washed six times with lysis buffer and proteins were eluted by the addition of SDS-sample buffer heated at 95 ºC 
for 5 min. 

Immunoblot analysis  

Cell lysates were prepared by lysing cells in NP40 buffer (1 % NP40, 10 mM TrisCl pH 7.5, 150 mM NaCl, 10 
% glycerol) containing 1 mM PMSF, Complete mini EDTA-free Protease Inhibitor Cocktail and Phosphatase 
Inhibitor Tablets (Roche Applied Science). Concentration was determined using a Bradford assay. Proteins were 
separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to nitrocellulose membranes and 
probed with the following antibodies: anti-HA peroxidase rat antibody (Roche Applied Science), mouse anti-
Tat1 antibody (a gift from Keith Gull), sheep anti-GFP antibody (a gift from Kevin Hardwick), rabbit anti-Mad1 
antibody [S11]. Proteins were visualized using the enhanced chemiluminescence (ECL) detection system 
according to the manufacturer’s instructions (GE Healthcare). In all cases statistics are derived from at least three 
independent experiments. 

Co-immunoprecipitation  

Yeast extracts (2 mg) were incubated with normal rabbit serum for 30 min and subsequently with protein A-
Sepharose beads (GE Healthcare) for 45 min at 4 ºC. After centrifugation, beads were kept as pre-immune (PI) 
and the same extract was incubated with polyclonal anti-GFP (Immune systems) or rabbit anti-Mad1 antibody 
[S11] for 2 hours followed by an incubation with protein A-Sepharose beads for another 45 min and the beads 
were kept as immune (I). Beads were washed six times with NP40 buffer and bound proteins were solubilised by 
the addition of SDS-sample buffer heated at 95 ºC for 5 min.  
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Abstract 

The mitotic checkpoint is a cellular safeguard that prevents eukaryotic cells from missegregating 
chromosomes. The effector of this conserved signalling pathway is the ’mitotic checkpoint 
complex’ (MCC). In the classical model for checkpoint signalling, the MCC prevents anaphase by 
sequestering Cdc20, the activator of the anaphase-promoting complex/cyclosome (APC/C). More 
recently, work in human cells showed that the MCC binds two Cdc20 molecules, one in the 
classical mode, and the other one through additional binding sequences in the MCC component 
Mad3/BubR1. Here, we show in fission yeast that the ’one Cdc20 mode’ is sufficient for 
checkpoint activity at low Cdc20 concentrations, but that the ’two Cdc20 mode’ is required at 
physiologic Cdc20 concentrations. Our analysis of several Mad3 point mutants strongly 
corroborates recent structural data on the Cdc20-MCC interaction. We find a strong similarity 
between mutants in the Mad3 C-terminus deletion of the APC/C subunit Apc15. This contrasts 

with results in other organisms and indicates an interesting divergence in phenotype, although the 
underlying molecular mechanisms are likely conserved.  

 

  



 

 

Introduction  

The spindle assembly checkpoint (SAC, or ‘mitotic checkpoint’) is a signalling pathway that 
secures correct chromosome segregation in dividing, eukaryotic cells. Proteins of this pathway 
bind to kinetochores that are not properly attached to the mitotic spindle. Concentration of these 
checkpoint proteins at the kinetochore starts a signalling cascade of protein-protein interactions 
and post-translational modifications that ultimately prevent the anaphase-promoting complex 
(APC/C) from initiating anaphase [1-3]. Suboptimal functioning of the SAC has been implicated in 
the chromosome missegregation observed in cancer cells [4-6]. SAC dysfunction may therefore 
contribute to the genetic malleability of cancer cells that hampers treatment.  

The key downstream effector of the SAC is the mitotic checkpoint complex (MCC), which consists 
of the proteins Mad2 and Mad3/BubR1, as well as the APC/C-activator Cdc20 [1, 2]. MCC 
formation is initiated when Mad2 binds Cdc20 through a ‘seatbelt mechanism’ that involves a 
structural change within Mad2 from its ‘open’ to its ‘closed’ form [7, 8]. Mad3/BubR1 binds to this 
Mad2-Cdc20 complex and contacts both Mad2 and Cdc20 [9-11]. We refer to this assembly as 
the ‘core MCC’ [1, 12]. In many eukaryotes, Bub3 is an additional subunit of the MCC that binds 
to Mad3/BubR1, but evidence for an essential role of Bub3 as part of the MCC is lacking [13-16]. 
The mad3+ gene of several fission yeast species, including S. pombe, is truncated before the 
interaction site with Bub3 (Supplementary Figure 1A), but the checkpoint remains intact.  

The APC/C is an E3 ubiquitin-ligase that initiates anaphase and mitotic exit by targeting several 
proteins, including the CDK1-activating subunit cyclin B, for proteasomal degradation [17]. Cdc20 
(S. pombe Slp1) plays a dual role in APC/C activation, serving as substrate adaptor and as bona 
fide APC/C activator that promotes E2 efficiency [18]. Just like Cdc20, the entire MCC can bind to 
the APC/C. An initial cryo-electron microscopy structure of this complex suggested that Cdc20 
within MCC is displaced with respect to the position where it normally binds when activating the 

APC/C [19]. Recent work demonstrated that the core MCC binds a second Cdc20 molecule [12, 
16, 20]. In the entire APC/C-MCC assembly, this second Cdc20 molecule (Cdc20A) is closer to its 
activating position on the APC/C, albeit rotated and tilted compared to APC/C-Cdc20 in the 
absence of the MCC [20]. The notion that the MCC may bind two Cdc20 molecules emerged from 
the analysis of conserved regions within Mad3/BubR1 [17]. In the core MCC, Mad3/BubR1 binds 
Cdc20 through a KEN (Lysine-Glutamate-Asparagine) motif in its N-terminus (Mad3-KEN1) [9, 
14, 21-25]. A second, conserved KEN motif further C-terminal in Mad3/BubR1 (KEN2) was known 
to be important for checkpoint activity, but not for core MCC formation [14, 21-24, 26]. The recent 
high resolution structures, along with biochemical experiments, now revealed that KEN2 contacts 
a second molecule of Cdc20 [12, 16, 20].  



 

 

Additional motifs adjacent to Mad3/BubR1-KEN2 also contact this second Cdc20 molecule 
(Figure 1A): a D-box-mimicking motif N-terminal of KEN2 binds Cdc20A and is required for full 
checkpoint activity [12, 16, 20]; and an ABBA motif [27] close to KEN2 also binds Cdc20A, 
although its role for checkpoint activity in vivo has not been addressed [16, 20]. All these motifs 
resemble APC/C degradation signals that allow substrates to be recognized by the APC/C and its 
coactivators, Cdc20 or Cdh1 [28]. Overall, this suggests that Mad3 is a pseudosubstrate inhibitor 
[15, 21], where the Mad3 stretch surrounding KEN2 occupies substrate-recognition sites on 
Cdc20A, thereby preventing substrate recruitment to the APC/C [14]. 

Despite the existing high resolution views of the MCC and APC/C-MCC interaction [16, 20], the 
functional analysis of different Mad3 motifs in vivo is currently lacking behind. Here, we dissect 
the role of these motifs in the fission yeast S. pombe, which is an ideal organism to study this 
problem, because Mad3 has over evolutionary timescales been trimmed down to a minimal 

Cdc20-inhibitory fragment [3, 15] (Figure 1). While our results substantiate the structural and 
biochemical analyses in human cells, we also identify interesting differences that will yield deeper 
insight into checkpoint signalling.  



 

 

Results and Discussion 

Several conserved motifs in the Mad3 C-terminus are required for checkpoint activity 

To address the relative importance of sequence motifs within Mad3 for checkpoint functionality, 
we mutated the KEN boxes and several conserved motifs in the C-terminus (Figure 1A) and 
replaced the endogenous S. pombe mad3+ gene with the respective mutated gene. Both the wild 
type gene as well as the mutants were C-terminally tagged with GFP and showed similar protein 
abundance (Figure S1F). We tested checkpoint activity by using a conditional cold-sensitive 
tubulin mutation to abolish microtubule formation (nda3-KM311 [29]) and measured the time that 
single cells delayed in mitosis by following localization of Plo1-mCherry to spindle pole bodies 
[30]. Formation of the MCC was analyzed by immunoprecipitation of Mad3-GFP from mitotic cells 
(see Methods). As expected [24], mutation of Mad3-KEN1 abolished checkpoint activity (Figure 
1B) as well as formation of the core MCC (Figure 1C). In contrast, but also in agreement with 
previous results [24], mutation of KEN2 strongly diminished checkpoint activity, but without 
impairing core MCC formation (Figure 1B,C). Mutation of the D-box-mimicking motif [9] lead to a 
partial checkpoint defect (Figure 1B, Supplementary Figure S1G). We identified two potential 
ABBA motifs within the C-terminal part of Mad3 (Figure 1A). Mutation of ABBA1 strongly 
diminished checkpoint activity; mutation of the ABBA2 lead to a weaker checkpoint defect (Figure 
1B). Truncating the Mad3 C-terminus containing ABBA2 as well as adjacent conserved 
sequences (mad3-DCterm) abrogated checkpoint activity (Figure 1B). Similar to the KEN2 

mutant, this truncation did not abolish core MCC formation (Figure 1C).  

We wanted to exclude that any of the effects caused by C-terminal truncation of Mad3 were 
influenced by a potential loss of Bub3 interaction. In many eukaryotes, the GLEBS (or B3BD) 
motif that mediates interaction of Mad3 with Bub3 is downstream of Mad3-KEN2 [31-33] (Figure 
1A). In several fission yeast species, including S. pombe, Mad3 ends after the KEN2, but before 
the GLEBS motif (Supplementary Figure S1A), making it unlikely that S. pombe Bub3 directly 

binds to Mad3. Nevertheless, immunoprecipitation of S. pombe Mad3 co-precipitates Bub3 and 
vice versa [34] (Supplementary Figure S1C-E). We find that this interaction is likely indirect, 
since it is abolished by deletion of bub1+ (Supplementary Figure S1D,E) and largely unaffected 
by truncation of the Mad3 C-terminus (Supplementary Figure S1D). Bub1 is a plausible 
mediator of the Bub3-Mad3 interaction, because it forms a complex with Bub3 [32, 35, 36], and 
the human Bub1 ortholog interacts directly with Mad3/BubR1 [37]. We conclude that our 
functional analysis of Mad3 as part of the MCC is unaffected by Bub3.  

In conclusion, several motifs within Mad3, surrounding KEN2, are required for checkpoint activity 



 

 

without being required for core MCC formation, and are non-redundant in their function. Recent 
analysis of the human APC/C-MCC assembly suggests that these motifs contact a second Cdc20 
molecule, other than the one that is part of the core MCC (Figure 1D) [12, 16, 20].  

Conserved motifs in the Mad3 C-terminus allow binding of a second Cdc20Slp1 molecule to 

the MCC 

To directly test binding of additional Cdc20 to the core MCC, we expressed N-terminally 
superfolder GFP (sfGFP)-tagged Slp1Cdc20 from the endogenous promoter at the endogenous 
locus and expressed an additional copy of untagged Slp1Cdc20 under the endogenous regulatory 
sequences from an exogenous locus. Immunoprecipitation of sfGFP-Slp1Cdc20 from mitotic cells 
co-purified untagged Slp1Cdc20 (Figure 1E, lane 2). When we prevented core MCC formation 
through deletion of mad2 or the Mad3-KEN1AAA mutation, co-purification of untagged Slp1Cdc20 
with sfGFP-Slp1Cdc20 was abolished (Figure 1E, lane 4, 5), indicating that tagged and untagged 
Slp1Cdc20 do not directly bind to each other, nor does untagged Slp1Cdc20 directly bind to the GFP 
antibody. Consistent with results from human cells [12], binding of this additional, untagged 
Slp1Cdc20 did not require the MIM/KILR motif in the Slp1Cdc20 N-terminus that mediates binding to 
Mad2 (slp1-mr63 mutant; Figure 1E, lane 3). In contrast, mutation of Mad3-KEN2 or truncation of 
Mad3 (Mad3-DCterm) abolished the interaction (Figure 1E, lane 6, 7). Hence, additional Cdc20 

(Cdc20A) interacts with the core MCC through the Mad3 C-terminal sequence motifs, but not by 
canonical Mad2-binding. Although the interaction of the Mad3 C-terminal part with Cdc20 is likely 
to be direct, the interaction needs the presence of the core MCC: when mad3-KEN1 is mutated, 
the interaction between Mad3 and Slp1Cdc20 is abolished, even if the C-terminal Mad3 sequences 
that are required for binding of additional Slp1Cdc20 remain intact (Figure 1E, lane 5). Hence, the 
C-terminal Mad3 motifs are required for Cdc20 interaction, but not sufficient. 

A Cdc20Slp1 mutant that is unable to bind Mad2 can be prevented from initiating anaphase 

The expression of Cdc20 that is unable to bind to Mad2 (like Slp1Cdc20-mr63) leads to a 
checkpoint defect in several species [38-40]. We reasoned that Cdc20 that is unable to bind to 
Mad2 should still be subject to checkpoint control through the Mad3 C-terminus, as long as core 
MCC can be formed. We therefore co-expressed tagged, wild type sfGFP-Slp1Cdc20 and 
untagged, mutant Slp1Cdc20-mr63. Expression of Slp1Cdc20-mr63 alone leads to checkpoint failure, 
as expected (Supplementary Figure S1H) [39]. The checkpoint was also non-functional when 
equal levels of wild type and mutant Slp1Cdc20-mr63 were expressed (Figure 1F). However, when 
expression of Slp1Cdc20-mr63 was reduced, the checkpoint could be partially restored, as long as 
wild type Slp1Cdc20 was present (Figure 1F, Supplementary Figure S1H). As expected, 



 

 

Slp1Cdc20-mr63 bound to the MCC (Figure 1G). To make APC/C activation entirely dependent on 
Slp1Cdc20-mr63, we mutated the C-box in the Slp1Cdc20 copy that was Mad2-binding proficient. The 
C-box is essential for Cdc20’s ability to bind and activate the APC/C [41-43], but is not required 
for the core MCC to bind the APC/C [44]. The checkpoint rescue was enhanced when the tagged, 
Mad2-binding competent Slp1Cdc20 carried a mutation in the Cdc20 C-box (Figure 1F). In this 
situation, APC/C activation solely relies on Slp1Cdc20-mr63, which remained efficiently inhibited by 
checkpoint activity despite lacking the Mad2-binding sequences (Figure 1F). Mutation of Mad3-
KEN2 abolished binding of Slp1Cdc20-mr63 to the core MCC and lead to a checkpoint defect 
(Figure 1F,G). Similarly, truncation of the Mad3 C-terminus lead to a checkpoint defect (Figure 
1F). Hence, Slp1Cdc20-mr63, which is unable to bind Mad2, can be inhibited by the mitotic 
checkpoint through the Mad3 C-terminus as long as core MCC formation is initiated by Mad2-
binding-competent Slp1Cdc20.  

The ‘core MCC’ inhibition mode is sufficient at high checkpoint protein to Cdc20Slp1 ratio 

Although each of the Mad3-KEN boxes is required for the SAC, mutation of KEN1 tends to 
abolish checkpoint activity more than mutation of KEN2, both in our assays (Figure 2A, inset) 
and in human cells [14, 26]. This hints to a more crucial role of KEN1. Indeed, Mad3-KEN1 is 
needed for interaction of both Cdc20M and Cdc20A with the MCC, whereas Mad3-KEN2 is only 
needed for interaction of Cdc20A (Figure 1E) [12]. Because Cdc20M can be tightly captured in the 
core MCC, we reasoned that core MCC formation alone could theoretically be sufficient for 
checkpoint activity, as long as the amount of Cdc20 is low enough. We therefore lowered 
Slp1Cdc20 abundance by expressing the gene from the promoter of rad21 (cohesin) [45]. This 
considerably reduced the Slp1Cdc20 level (Supplementary Figure S2A) and partially rescued 
checkpoint activity in the mad3-KEN2AAA and mad3-DCterm mutants, but not in mad3-KEN1AAA 

cells (Figure 2A). Increasing the abundance of Mad2 and Mad3 slightly enhanced the effect 
(Figure 2B). The mitotic delay was dependent on core MCC formation, since using the Mad2-

binding deficient Slp1Cdc20-mr63 mutant instead of wild type Slp1Cdc20 abolished the delay (Figure 
2B). We obtained similar results when expressing slp1cdc20 from the adh1 promoter, which 
increases Slp1Cdc20 abundance in interphase but lowers the level in mitosis (Supplementary 
Figure 2A,C). To have yet better control over Slp1Cdc20 abundance, we expressed the gene from 
the regulatable nmt41 promoter [46]. When titrating down Slp1Cdc20 abundance, the mitotic arrest 
in response to microtubule depolymerization progressively improved in mad3-KEN2AAA and 
mad3-DCterm cells (Figure 2C, D). This confirmed the effect we had seen by expression from the 

rad21 or adh1 promoter. We conclude that the mitotic checkpoint can rely solely on core MCC 
formation at low Slp1Cdc20 concentrations.  



 

 

Since KEN2 became at least partially dispensable at low Slp1Cdc20 concentrations, we asked 
whether some organisms may dispense with a second KEN box. In several Drosophila species, 
the KEN2 motif seems to have become QEN (Glutamine instead of Lysine) (Supplementary 
Figure S1A,B). Introducing this change into the S. pombe mad3 gene, however, did not impair 
checkpoint activity (Supplementary Figure S1F,I). In contrast, the same change was not 
tolerated at KEN1 (Supplementary Figure S1I). Although the interpretation is complicated by 
instability of the Mad3-KEN1QEN protein (Supplementary Figure S1F), this supports the 
different functionality of KEN1 and KEN2, as is also illustrated by a pre-KEN2 sequence in human 
BubR1 that is important for inhibitory activity and not shared with KEN1 [16].  

An intact Mad3 C-terminus and Apc15 are required for MCC disassembly 

We noticed that the amount of MCC was increased when binding of Cdc20A was prevented by 
Mad3-KEN2AAA or Mad3-DCterm (e.g. Figure 1E,G). Since it is difficult to rationalize how these 

mutations would enhance assembly, we hypothesized that MCC disassembly is impaired. Indeed, 
in Mad3-KEN2AAA and Mad3-DCterm cells, the MCC (including Slp1Cdc20) was present in 

interphase cells, where it is normally absent in S. pombe (Figure 3A-D, Supplementary Figure 
S3A). Since the Slp1Cdc20 protein normally accumulates exclusively in mitosis [47] 
(Supplementary Figure S2A), this suggests that Slp1Cdc20 is stabilized by incorporation into the 
partially defective MCC. Deletion of bub1+ largely abolished the presence of MCC in interphase 
(Figure 3A). Minor amounts of the MCC could still be detected in interphase Mad3-KEN2AAA or 
Mad3-DCterm cells after bub1+ deletion (Figure 3A) – presumably because Mad2 dimerization 

can initiate some MCC formation even in the absence of Bub1 [9, 48]. The causative events and 
sequence of steps in MCC disassembly are not entirely clear [17, 49, 50]. However, the APC/C 
subunit Apc15 plays a key role in MCC disassembly in human cells and budding yeast [51-53]. 
Consistently, we also detected MCC in S. pombe apc15D interphase cells (Figure 3A-C). Hence, 

Apc15 and the Mad3 C-terminus, which is required for integration of a second Cdc20 into the 
MCC, are required for MCC disassembly in S. pombe. Disassembly of the core MCC seems to 
require Cdc20 ubiquitination [54, 55]. It is conceivable that interaction of Cdc20A with the core 
MCC is required to promote the ubiquitination and disassembly.  

An intact Mad3 C-terminus and Apc15 are required for MCC binding to S. pombe APC/C 

In human cells and budding yeast, deletion of APC15 (budding yeast MND1) impairs checkpoint 
silencing, and therefore prolongs mitosis [51-53]. Surprisingly, deletion of apc15+ in S. pombe 
considerably impairs activation of the spindle assembly checkpoint (Figure 4A) (K. Hardwick 
personal communication). Overall, deletion of apc15+ and mutations of the Mad3 C-terminus 



 

 

therefore have a similar phenotype: an inability to properly activate the SAC and a defect in MCC 
disassembly. Unlike in mad3-KEN2AAA cells, we find both sfGFP-Slp1 and untagged Slp1 in an 
sfGFP-Slp1 immunoprecipitation from apc15D cells (Figure 4B). Hence, in apc15D cells, the 

entire MCC assembles – yet, cells show a checkpoint defect. We reasoned that competition 
between the MCC and Slp1Cdc20 for binding to the APC/C may be deficient in these cells. Indeed, 
the MCC-APC/C interaction is strongly diminished in both apc15D and in mad3-KEN2AAA or 

mad3-DCterm cells. When we immunoprecipitated Mad3-GFP from mitotic cells, we found 

considerably less of the APC/C subunit Lid1/Apc4 associated compared to wild type cells (Figure 
4C), and immunoprecipitation of the APC/C subunit Cut9/Apc6-GFP brought down considerably 
less Mad2 and Mad3 (Figure 4D). Slp1Cdc20 was still found associated with the APC/C in apc15D, 

mad3-KEN2AAA and mad3-DCterm cells, explaining how these cells exit mitosis. Given the 

strong similarities in phenotype between deletion of apc15+ and mutations in the Mad3 C-
terminus, we tested whether Apc15 also becomes dispensable for the SAC at lower Cdc20 
concentrations. Indeed, lowering the abundance of Cdc20 efficiently rescued checkpoint activity 
in apc15D cells (Figure 4E). This was even more efficient than in mad3-DCterm cells – possibly 

because the MCC in mad3-DCterm only captures one Slp1Cdc20, whereas it likely captures two 

Slp1Cdc20 molecules in apc15D cells. Hence, sequestration of Slp1Cdc20 should be very efficient in 

apc15D cells (Figure 5). Indeed, immunoprecipitation of Mad3-GFP left hardly any Slp1Cdc20 in 

the supernatant of apc15D cells when lower levels of Slp1Cdc20 were expressed from the rad21 

promoter (Figure 4F). We therefore argue that inhibition of the APC/C by the MCC encompasses 
(i) sequestration of one Slp1Cdc20 in the core MCC, (ii) inhibition of a second Slp1Cdc20 molecule 
through the Mad3 C-terminus, and (iii) competition between the MCC and other free Slp1Cdc20 for 
APC/C binding. Only (iii) is defective in apc15D cells, whereas (ii) and (iii) are defective in mad3D-

Cterm cells (Figure 5). All, (i), (ii) and (iii) are defective in the mad3-KEN1AAA mutant – 

explaining the different extents of checkpoint impairment.  

Which subcomplexes are present and how are they disassembled?  

We want to point out that an apparently complete depletion of Mad3 by immunoprecipitation does 
not deplete the APC/C subunit Lid1/Apc4 from checkpoint-active wild type cells, nor does it 
deplete Slp1Cdc20 (data not shown). Because this indicates that not all APC/C is in complex with 
the MCC, this is an apparent contradiction to the competition model (Figure 5). However, co-
depletion of both Mad2 and Mad3 depletes the majority of Slp1Cdc20 (data not shown). This 
indicates that a fraction of Slp1Cdc20 is bound to Mad2, without being simultaneously bound to 
Mad3. For this fraction to act as a competitor on the APC/C, it would be able to bind the APC/C. 
This would be in contrast to findings in budding yeast that Mad2-Cdc20 does not efficiently 



 

 

associate with the APC/C [51]. We currently do not have the right combination of antibodies and 
tags to perform sequential immunoprecipitates to further resolve the existing subcomplexes, and 
the resolution of gel filtration may not be high enough. Another puzzling aspect are the dynamics 
of these complexes. Both mad3-DCterm and apc15D cells can considerably delay anaphase 

when Slp1Cdc20 levels are lowered (Figure 2, 4E). These mutants also show impaired MCC 
disassembly (Figure 3). Yet, when we release these mutants from a checkpoint-mediated arrest, 
they exit mitosis efficiently (data not shown). It would be interesting to know whether this release 
relies on new Slp1Cdc20 synthesis, or whether any of the existing complexes must be 
disassembled for this release from the checkpoint-mediated arrest. Differences between the 
disassembly of free MCC and APC/C-bound MCC have been observed previously [56]. It is 
unclear whether different free MCC complex or subcomplexes could have different requirements 
for disassembly.   

Why does lack of Apc15 have different functional consequences in different eukaryotes?  

Whereas fission yeast cells lacking Apc15 have a checkpoint defect (Figure 4A), both human and 
budding yeast cells lacking the Apc15 ortholog have a functional checkpoint [51-53]. This 
discrepancy can be explained because fission yeast cells without Apc15 seem to lack MCC-
APC/C interaction (Figure 4C,D). In contrast, absence of the human and budding yeast Apc15 
does not seem to impair MCC-APC/C interaction [16, 20, 51]. Because these organisms also 
differ in the presence or absence of Bub3 within the MCC, one could speculate that Bub3 in the 
human and budding yeast MCC can compensate for the absence of Apc15 and possibly mediate 
binding to the APC/C. However, Bub3 was not visible in electron microscopy structures of the 
human APC/C-MCC [16, 20], which suggests that it is not tightly bound to the APC/C. It is 
possible that structural changes in the remaining APC/C that are caused by the absence of 
Apc15 have different consequences on MCC binding in these organisms. A direct structural 
comparison of the APC/C could shed light on this question.   

 

 



 

 

Materials and Methods  

S. pombe strains 

Strains are listed in Supplementary Table S1. In general, mutants or tags were integrated into the 
endogenous locus using PCR-based gene targeting [57] and replaced the wild type allele. The 
apc15∆::kanR and mad2∆::hygR deletions were created by replacement of the endogenous locus 
with a resistance cassette using PCR-based gene targeting. To create strains with expression of 
a second slp1+ gene, the slp1+ genomic region from 1,504 base pairs (bp) 5′ to 549 bp 3′ of the 
open reading frame was integrated into the leu1 locus using the pDUAL system [58]. The 
hygroR<<Pnmt41-slp1+ promoter change at the endogenous locus was created as described 
[46]. Schizosaccharomyces pombe strains with the following mutations or modifications have 
been described: cdc25-22 [59], nda3-KM311 [29], mad2+-GFP≪kanR, mad3+-GFP≪kanR, 
plo1+-mCherry [60], kanR<<Prad21-slp1+ [61], hph<<Pmad2(259bp)-mad2+-GFP<<kanR, 
hph<<Pmad3(150bp)-mad3+-GFP<<kanR [45], bub1∆::ura4+ [62], mad3∆::ura4+ [36]. 

Mutations within Mad3 were:  

name original aa sequence mutation reference 

KEN1AAA 18-QSKENIE-24 18-QSAAAIE-24 [24] 

Dbox-mimic L/K 210-TNSVNPLQT-218 210-TNSVNPKQT-218 this study 

Dbox-mimic 
VNPL/ANPA 

210-TNSVNPLQT-218 210-TNSANPAQT-218 
this study 

ABBA1 mut 240-FKFSVYSDADG-250 240-FKASAASAADG-250 this study 

KEN2AAA 269-RRKENNI-275 269-RRAAANI-275 [24] 

ABBA2 mut 297-GKFQVHCDEEV-307 297-GKAQAACAEEV-307 this study 

DCterm Mad3-aa1-310 Mad3-aa1-281 this study 

 

Mutations within Slp1Cdc20 were:  

name original aa sequence mutation reference 

mr63 126-NTRVLAFKLD-135 126-NTRVLPYKLD-135 [39] 

Cbox-mut 86-RSDRFIPSR-94 86- RSAAAAASR-94 [41] 

Culture conditions 

For live-cell imaging and protein extraction, cells were grown at 30°C in rich medium (YEA), 
unless indicated otherwise. Strains with slp1+ expressed from Pnmt41 were grown in Edinburgh 



 

 

minimal medium (EMM) containing the necessary supplements. For immunoprecipitation from 
synchronized cultures, strains expressing cdc25-22 were grown at 25°C in EMM containing the 
necessary supplements until they reached a concentration of 6-8 x 106 cells/mL. Cells were 
arrested at the G2/M transition by shifting to 36°C for 5 hours, and released by reducing the 
temperature. For mitotic cells, the cultures were released by shifting to 16°C with addition of 50 
µg/mL Carbendazim (MBC, Sigma, 378674) and were harvested after 65 minutes. For 
synchronous interphase cells, the arrested cultures were shifted to 25°C and harvested after 50 
minutes. For harvest of asynchronously growing cells, cultures were grown at 30°C in rich 
medium (YEA) until they reached a concentration of 6-8 x 106 cells/mL. 

Live cell imaging 

Imaging on a DeltaVision Core system (Applied Precision/GE Healthcare) was performed as 
previously described [63], with the exception of using 40-100 µg/ml lectin (Sigma, L1395) to coat 
# 1.5 glass-bottom culture dishes (Ibidi). For imaging strains with Pnmt41-slp1+, YAM2 [64] was 
added at final concentrations between 0 nM (only the solvent, DMSO) and 350 nM. YAM2 was 
added to cells before shifting to 16°C. The time of appearance and disappearance of Plo1-
mCherry at spindle pole bodies was analyzed as described previously [65].  

Fluorescence microscopy 

Methanol-fixed cells were washed once with PEM/50 %methanol (PEM = 100 mM PIPES, 1 mM 
EGTA, 1 mM MgSO4; pH 6.8 with KOH) and once with PEM. For DNA staining, cells were 
resuspended in 500 μL PEM containing 1 μg/mL DAPI (Sigma) and incubated at RT for 10 min. 
Cells were pelleted, washed once with 500 μL PEM and resuspended in 500 μL PEM. For 
microscopy, 2.7 μL of the pellet was mounted. Images were acquired with a CoolSnap EZ 
(Roper) camera using a 63x/1.4 Plan Apochromat oil objective on a Zeiss Axio Imager.M1 
microscope and were processed with MetaMorph software (Molecular Devices Corporation). 14 
individual planes spaced by 0.3 μm were acquired. To create color-combined pictures, out-of-
focus planes were removed; 11 sections of the GFP channel (sum intensity projection), 11 
sections of the mCherry channel (maximum intensity projection) and 4 sections of the DAPI 
channel (maximum intensity projection) were projected to a single image and signal intensity was 
adjusted for all pictures in a similar way. 

Immunoprecipitation 

Asynchronously growing or synchronized cells were harvested, washed with EMM and frozen as 
droplets in liquid N2. Cell extracts were prepared using a ball mill (RETSCH MM400), followed by 



 

 

resuspension in extraction buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 2 mM EDTA, 0.5 % NP-
40, 1 mM PMSF) or low-salt extraction buffer (25 mM Tris-HCl pH 7.5, 50 mM NaCl, 0.1% NP-40, 
1 mM PMSF, 1mM DTT, 10µM Bortezomib (Velcade, LC laboratories, B-1408)) supplemented 
with protease inhibitors (Complete EDTA-free, Roche, 1187358001) and phosphatase inhibitors 
(PhosSTOP, Roche, 4906837001) to a protein concentration of 10 mg/mL. The extract was spun 
down for 10 min at 16,600 rcf at 4 °C and the supernatant was collected. Protein G-coated 
magnetic beads (Dynabeads, Invitrogen 10003D) were coupled to mouse anti-GFP antibodies 
(Roche, 11814460001, 8 µg per 100 µL beads) and incubated with the supernatant for 15 min at 
4 °C. Samples were taken before (‘input’) and after (‘supernatant’) incubation with the beads. The 
beads were washed 5 times with extraction buffer or no-salt extraction buffer (50 mM Tris-HCl pH 
7.5, 20% glycerol, 1 mM PMSF, 1mM DTT, 10µM Bortezomib) including protease and 
phosphatase inhibitors, and elution from the beads was performed by adding 100 mM citric acid. 

The pH of the eluate was raised with 1M Tris pH 9.2, and 2x SDS sample buffer (125 mM Tris pH 
6.8, 4 % SDS, 0.02 % bromophenol blue, 20 % glycerol, 200 mM DTT) was added. 

Cell extracts, SDS-PAGE, immunoblotting 

Protein extraction was performed as previously described [66], with the exception of 
resuspension of the cell pellet in 100 µl 2x SDS sample buffer (125 mM Tris pH 6.8, 4% (w/v) 
SDS, 20% (v/v) glycerol, 200 mM DTT, 0.02% (w/v) bromophenol blue) and using a ball mill 
(RETSCH MM400) for cell disruption. Proteins were separated by SDS-PAGE and transferred 
onto PVDF membranes (Immobilon-P, Millipore) using a semi-dry transfer system (Amersham 
Biosciences). Mouse anti-GFP (Roche, 11814460001), rabbit anti-Mad2 (this study and [47]), 
rabbit anti-Mad3 (this study), mouse anti-tubulin (Sigma, T5168), rabbit anti-Cdc2 (Santa Cruz, 
SC-53), rabbit anti-Slp1 (this study and [39]) and rabbit anti-c-myc (Cell Signaling Technology, 
2278) were used as primary antibodies. Secondary antibodies were anti-mouse or anti-rabbit 

HRP conjugates (Dianova, 115-035-003, 111-035-003) and were read out using 
chemiluminescense.  
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Figure Legends  

Figure 1 The Mad3 C-terminus binds to Slp1Cdc20 and is required for checkpoint 

activity  

(A) Domain structure of H. sapiens BubR1 and S. pombe Mad3 and alignment of yeast Mad3 C-
terminal sequences containing Slp1Cdc20-binding motifs. See text for details. (B) Cells expressing 
plo1+-mCherry, the conditional tubulin mutant nda3-KM311 and the indicated mutations or 
truncations in mad3 were analyzed by live-cell imaging at the restrictive temperature of 16°C. The 
time that each cell spent in prometaphase was determined by localization of Plo1 to SPBs 
(circle). Cells that had not yet exited mitosis when filming stopped are indicated by triangles, cells 
that died during the experiment by filled circles. (C) Anti-GFP immunoprecipitates from mitotic 
cells of the indicated Mad3-GFP strains were analyzed by immunoblotting using anti-GFP, anti-
Slp1 and anti-Mad2 antibodies. (D) Schematic of the likely assembly of the ‘core MCC’ with a 
second Slp1Cdc20 molecule bound via the different motifs in the Mad3 C-terminus. (E) Anti-GFP 
immunoprecipitates from mitotic sfGFP-Slp1 cells with the additional genetic modifications 
indicated on top were analyzed by immunoblotting using anti-GFP, anti-Slp1, anti-Mad3 and anti-
Mad2 antibodies. The tagged sfGFP-Slp1Cdc20 was expressed from the endogenous promoter at 
the endogenous locus, untagged Slp1Cdc20 (Slp1 or Slp1-mr63) was expressed from the 
endogenous regulatory sequences at the exogenous leu1 locus. (F) Checkpoint function of the 
indicated strains was analyzed as in (B). Wild type Slp1Cdc20 was expressed under the 
endogenous regulatory sequences from the exogenous leu1 locus and Slp1Cdc20-mr63 was 
expressed at the endogenous locus either from the endogenous promoter (Pslp1) or from the 
rad21 promoter, which reduces the amount of Slp1Cdc20 (Prad21) (wt, wild type). (G) Anti-GFP 
immunoprecipitates from mitotic cells of the indicated strains were analyzed by immunoblotting 

using anti-Slp1, anti-Mad3 and anti-Mad2 antibodies.  

Figure 2 The Mad3 C-terminus is less important for checkpoint activity at lower 

Slp1Cdc20 levels 

(A) Checkpoint function of the indicated strains was analyzed as in Figure 1B. Slp1Cdc20 was 
expressed at the endogenous locus from either its endogenous promoter (Pslp1) or from the 
rad21 promoter (Prad21), which lowers levels (see Supplementary Figure S2A). (B) Checkpoint 
function of the indicated strains was analyzed as in Figure 1B. Mad2 and Mad3 were 
overexpressed to about 200% and 120% of wild type levels, respectively. Slp1Cdc20 or Slp1Cdc20-
mr63 were expressed from the rad21 promoter at the endogenous locus. (C) Checkpoint function 



 

 

of the indicated strains was analyzed as in Figure 1B and mitotic arrest was assumed when cells 
spent more than 5 h in mitosis. Slp1Cdc20 was expressed from the regulatable nmt41 promoter at 
the endogenous locus and expression level was controlled with increasing concentrations of 
YAM2. Shown is the mean with SEM. (D) Representative example of one experiment 
summarized in (C). Checkpoint function of the indicated strains was analyzed as in Figure 1B. (E) 

Schematic indicating that the Mad3 C-terminus becomes dispensable at low Slp1Cdc20 levels 
because all Slp1Cdc20 can be sequestered in the ‘core MCC’.  

Figure 3 The Mad3 C-terminus and Apc15 are required for MCC disassembly 

(A) Anti-GFP immunoprecipitates of asynchronously growing cells of the indicated strains were 
analyzed by immunoblotting using anti-GFP, anti-Slp1 and anti-Mad2 antibodies. (B) Cells of the 
indicated genotypes were synchronized at the G2/M transition, released into mitosis and 
analyzed for cell cycle stage using Plo1-mCherry and DNA staining. Example pictures are shown 
at the bottom, quantitative analysis on top. Cells with Plo1 on SPBs were considered to be in 
mitosis, cells with two close nuclei were considered to be in anaphase (n > 150 cells per time 
point; scale bar 10 μm). Cells for the experiment in (C) were harvested at the last time point. (C) 
Anti-GFP immunoprecipitates from interphase cells of the indicated strains were analyzed by 
immunoblotting using anti-GFP, anti-Slp1 and anti-Mad2 antibodies. (D) Schematic for MCC 
persistence in different strains. 

Figure 4 The Mad3 C-terminus and Apc15 are required for MCC binding to the APC/C 

(A) Checkpoint function of the indicated strains was analyzed as in Figure 1B. (B) Anti-GFP 
immunoprecipitates of mitotic cells from the indicated strains were analyzed by immunoblotting 
using anti-Slp1, anti-Mad3 and anti-Mad2 antibodies. sfGFP-Slp1Cdc20 was expressed from the 
endogenous promoter at the endogenous locus, Slp1Cdc20-mr63 was expressed from the 
endogenous regulatory sequences at the exogenous leu1 locus. (C) Anti-GFP 
immunoprecipitates from mitotic Mad3-GFP cells, with the additional genetic modifications 
indicated on top, were analyzed for binding of myc-tagged Lid1/Apc4. Immunoblots were 
performed with anti-GFP, anti-myc, anti-Slp1, anti-Mad2 and anti-tubulin (loading control) 
antibodies (*cross-reaction band). (D) Anti-GFP immunoprecipitates from mitotic Cut9/Apc6-GFP 
cells, with the additional genetic modifications indicated on top, were analyzed for binding of the 
MCC. Immunoblots were performed with anti-GFP, anti-Slp1, anti-Mad3 and anti-Mad2 
antibodies. (E) Checkpoint function of the indicated strains was analyzed as in Figure 1B. 
Slp1Cdc20 was expressed at the endogenous locus from either the endogenous promoter (Pslp1) 
or from the rad21 promoter (Prad21). (F) Anti-GFP immunoprecipitates, as well as input and 



 

 

supernatant after precipitation, from mitotic cells of the indicated Mad3-GFP strains were 
analyzed by immunoblotting using anti-GFP, anti-Slp1, anti-Mad2 and anti-Cdc2 (loading control) 
antibodies. Slp1Cdc20 was expressed at the endogenous locus from either the endogenous 
promoter (Pslp1) or from the rad21 promoter (Prad21). In the strain with 2x Prad21, Slp1Cdc20 was 
expressed at the endogenous locus and at the exogenous leu1 locus, both controlled by the 
rad21 promoter.  

Figure 5 Model for the molecular changes in mad3-DCterm and apc15D cells 

In both mad3-DCterm and apc15D cells, the MCC does not associate with the APC/C, and MCC 

disassembly is impaired. We hypothesize that reduction of Slp1Cdc20 rescues the checkpoint 
defect in apc15D cells more efficiently, because sequestration within the MCC is more efficient.  
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Figure S1 Bub1 is required for the interaction between Mad3 and Bub3 

(A) Alignment of the Mad3 C-terminus and BubR1 middle region containing the GLEBS motif. (B) 
It has recently been proposed that D. melanogaster contains a KAN sequence instead of the 2nd 
KEN [67]. We rather think that the motif analogous to KEN2 in Drosophila is QEN, which shows 
higher conservation among different Drosophila species (see alignment in B). The proposed KAN 
motif is boxed. (C) Mass spectrometry of Mad3-GFP and Bub3-GFP immunoprecipitates from 
cells that were delayed in mitosis by the spindle assembly checkpoint due to the nda3-KM311 
mutation. The table shows the number of identified peptides (pep.) and the amino acid sequence 
coverage (seq.cov.) for each protein, which are semi-quantitative measures for the abundance of 
the protein in the immunoprecipitate. Mad2, Bub1 and Bub3 co-purified efficiently with Mad3, 
Bub1 and some Mad3 co-purified with Bub3. (D) Anti-GFP immunoprecipitates from 
asynchronously growing Mad3-GFP cells, with additional genetic modifications as indicated, were 
analyzed by immunoblotting using anti-Mad3 and anti-myc antibodies (#likely degradation product 
of Mad3; *cross-reaction bands; wt, wild type). (E) Anti-GFP immunoprecipitates from mitotic cells 
of the indicated Mad3-GFP strains were analyzed by immunoprecipitation using anti-Mad3 and 
anti-myc antibodies. Tubulin was detected in the input samples as a loading control. (F) 
Immunoblot of cell extracts from the indicated strains using anti-Mad3, anti-GFP and anti-Cdc2 
(loading control) antibodies. A dilution step was loaded for each strain to compare intensities 
(*cross-reaction band overlapping with the Mad3-GFP band). (G) Checkpoint function of the 
indicated strains was analyzed as in Figure 1B. Data for wild type and mad3Δ are the same as in 
Figure 1B. (H) Checkpoint function of the indicated strains was analyzed as in Figure 1B. 
Slp1Cdc20 and Slp1Cdc20-mr63 were expressed at the endogenous locus from either the 
endogenous promoter (Pslp1) or from the rad21 promoter (Prad21). Data for Pslp1/wt are the 
same as in Figure 1F. (I) Checkpoint function of the indicated strains was analyzed as in Figure 

1B. 

Figure S2 Levels of Slp1Cdc20 expressed from different promoters and phenotype of 

Padh1-slp1+ cells 

(A,B) Immunoblotting of cell extracts from cells expressing Slp1Cdc20 from different promoters. 
Some strains additionally contained the mad3-DCterm mutation or apc15 deletion. Cells also 

expressed the tubulin nda3-KM311 mutant. Samples were taken directly before (0 hrs) and 10 hrs 
after shifting the cultures to the restrictive temperature. A sample containing only sfGFP-tagged 
Slp1 was loaded as a control. In 2x Prad21 strains, Slp1Cdc20 was expressed at the endogenous 
locus as well as at the exogenous leu1 locus, both copies controlled by the rad21 promoter. In 
(B), cells expressed slp1+ from the regulatable nmt41 promoter and some samples were treated 



 

 

with YAM2 to suppress expression. (C) Checkpoint function of the indicated strains was analyzed 
as in Figure 1B. Slp1Cdc20 was expressed at the endogenous locus from the endogenous 
promoter (Pslp1) or from the adh promoter (Padh1).  
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Supplementary Table S1

Figure 1B

SL759 h- leu1 mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SL756 h- leu1 ade6-M210 mad3∆::ura4+ plo1+-mCherry<<natR nda3-KM311

SP259 h+ ade6-M216 mad3-KEN(20)AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU599, SU599' h- leu1 mad3-Dbox(L/K)-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU581 h+ leu1 ade6-M216 mad3-ABBA1mut-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SP710 h+ leu1 mad3-KEN271AAA-GFP<<kanR nda3-KM311 plo1+-mCherry<<natR

SU582, SU582' h+ leu1 ade6-M216 mad3-ABBA2mut-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU074 h+ leu1 mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

SU075 h- leu1 mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

Figure 1C

SP694 h+ leu1 mad3+-GFP<<kanR plo1+-mCherry<<natR cdc25-22 lid1+-13xmyc<<natR 

SU048 h+ mad3-KEN271AAA-GFP<<kanR plo1+-mCherry<<natR lid1+-13xmyc<<natR cdc25-22

SU050 h+ mad3-KEN20AAA-GFP<<kanR plo1+-mCherry<<natR lid1+-13xmyc<<natR cdc25-22

SU052 h+ leu1 mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR lid1+-13xmyc<<natR cdc25-22

Figure 1E

SU526 h- slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

SU519 h+ pDUAL-Pslp1(long2)-slp1-Tslp1<<leu1+ slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

SU380 h- ade6-M210 pDUAL-Pslp1(long2)-slp1-mr63-Tslp1<<leu1+ slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

SU538 h+ pDUAL-Pslp1(long2)-slp1-Tslp1<<leu1+ slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 mad2::hygR plo1+-mCherry<<natR cdc25-22

SU393 h- pDUAL-Pslp1(long2)-slp1-mr63-Tslp1<<leu1+ mad3-KEN20AAA-Tadh1-hphNT1 slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

SU392 h- pDUAL-Pslp1(long2)-slp1-mr63-Tslp1<<leu1+ mad3-KEN271AAA-Tadh1-hphNT1 slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

SU531 h+ pDUAL-Pslp1(long2)-slp1-mr63-Tslp1<<leu1+ slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 mad3-∆Cterm(282-310)-Tadh1-hphNT1 plo1+-mCherry<<natR cdc25-22

Figure 1F

SK827 h- ade6-M216 plo1+-mCherry<<natR nda3-KM311

SK828 h+ leu1 ade6-M216 plo1+-mCherry<<natR nda3-KM311

ST508, ST508', ST508''h? pDual-Pslp1(long2)-slp1<<leu1+ ade6-M216 or 210 plo1+-mCherry<<natR nda3-KM311 slp1-mr63

SU389, SU389', SU389''h+ pDUAL-Pslp1(long2)-slp1-Tslp1<<leu1+ kanR<<Prad21-slp1-mr63 plo1+-mCherry<<natR nda3-KM311

SU390 h- pDUAL-Pslp1(long2)-slp1-Tslp1<<leu1+ kanR<<Prad21-slp1-mr63 plo1+-mCherry<<natR nda3-KM311

SU514, SU514' h- pDUAL-Pslp1(long2)-slp1-Cboxmut-Tslp1<<leu1+ kanR<<Prad21-slp1-mr63 plo1+-mCherry<<natR nda3-KM311

SU397 h+ pDUAL-Pslp1(long2)-slp1-Tslp1<<leu1+ mad3-KEN271AAA-GFP<<kanR  kanR<<Prad21-slp1-mr63 plo1+-mCherry<<natR nda3-KM311

SU398 h- pDUAL-Pslp1(long2)-slp1-Tslp1<<leu1+ mad3-KEN271AAA-GFP<<kanR  kanR<<Prad21-slp1-mr63 plo1+-mCherry<<natR nda3-KM311

SU502, SU502' h+ pDUAL-Pslp1(long2)-slp1-Tslp1<<leu1+ kanR<<Prad21-slp1-mr63 mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

Figure 1G

SU528'' h- pDUAL-Pslp1(long2)-sfGFP-opt_S((GGGGS)3)RIPGLIN-slp1-Tslp1<<leu1+ kanR<<Prad21-slp1mr63 plo1+-mCherry<<natR cdc25-22 

SU530' h- pDUAL-Pslp1(long2)-sfGFP-opt_S((GGGGS)3)RIPGLIN-slp1-Tslp1<<leu1+ kanR<<Prad21-slp1mr63 mad3-KEN271AAA-Tadh1-hphNT1 plo1+-mCherry<<natR cdc25-22 

SU526 h- slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

Figure 2A

SL760 h+ leu1 mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SP710 h+ leu1 mad3-KEN271AAA-GFP<<kanR nda3-KM311 plo1+-mCherry<<natR

SU074 h+ leu1 mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

SU075 h- leu1 mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

SP259 h+ ade6-M216 mad3-KEN(20)AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU331 h+ leu1 mad3+-GFP<<kanR kanR<<Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

SU332 h- leu1 mad3+-GFP<<kanR kanR<<Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

SU327 h- leu1 mad3-KEN271AAA-GFP<<kanR kanR<<Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

SU561 h+ kanR-Prad21-slp1+ mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

SU562 h- leu1 kanR-Prad21-slp1+ mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

SU324 h- ade6-M216 leu1 mad3-KEN(20)AAA-GFP<<kanR kanR<<Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

SU325 h+ ade6 mad3-KEN(20)AAA-GFP<<kanR kanR<<Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

Figure 2B

SU535 h+ kanR-Prad21-slp1 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU536 h- leu1 kanR-Prad21-slp1 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU533 h+ leu1 kanR<<Prad21-slp1mr63 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU534 h- leu1 kanR<<Prad21-slp1mr63 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU555 h+ leu1 kanR-Prad21-slp1 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3-KEN271AAA-GFP<<kanR  plo1+-mCherry<<natR nda3-KM311

SU556 h- leu1 kanR-Prad21-slp1 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3-KEN271AAA-GFP<<kanR  plo1+-mCherry<<natR nda3-KM311

SU554, SU554' h- leu1 kanR<<Prad21-slp1-mr63 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3-KEN271AAA-GFP<<kanR  plo1+-mCherry<<natR nda3-KM311

SU557 h+ kanR-Prad21-slp1 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR nda3-KM311

SU558 h- leu1 kanR-Prad21-slp1 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR nda3-KM311

SU559, SU559' h+ leu1 kanR<<Prad21-slp1-mr63 hphNT1<<Pmad2(259bp)-mad2+-GFP<<kanR hphNT1<<Pmad3(150bp)-mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR nda3-KM311

Figure 2C,D

SU545, SU545' h- leu1 ade6-M210 hygroR<<Pnmt41-slp1 mad3∆::ura4+ plo1+-mCherry<<natR nda3-KM311

SU546 h- leu1 hygroR<<Pnmt41-slp1 mad3-KEN271AAA-GFP<<kanR plo1+-mCherry<<natR nda3?

SU560, SU560' h- leu1 hygroR<<Pnmt41-slp1 mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

SU544, SU544' h- leu1 hygroR<<Pnmt41-slp1 plo1+-mCherry<<natR nda3-KM311

Figure 3A

SU722 h+ leu1 ura4D18? plo1+-mCherry<<natR mad3+-GFP<<kanR bub3+-13xMyc<<hphMX6

SP710 h+ leu1 mad3-KEN271AAA-GFP<<kanR nda3-KM311 plo1+-mCherry<<natR

SU752' h- bub3+-13xMyc<<hphMX6 mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR

SP841 h+ leu1 apc15∆::kanR mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU724 h+ leu1 ura4D18? ade6-M216 bub1::ura4+ plo1+-mCherry<<natR mad3+-GFP<<kanR bub3+-13xMyc<<hphMX6

SU771 h- leu1 ade6-M216 ura4? mad3-KEN271AAA-GFP<<kanR plo1+-mCherry<<natR bub1::ura4+

SU754 h- ura4D18? ade6-M216 bub1::ura4+ bub3+-13xMyc<<hphMX6 mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR

SU773 h- leu1 ade6-M216 ura4? apc15∆::kanR mad3+-GFP<<kanR plo1+-mCherry<<natR bub1::ura4+ 

Figure 3B,C

SP694 h+ leu1 mad3+-GFP<<kanR plo1+-mCherry<<natR lid1+-13xmyc<<natR cdc25-22



SU052 h+ leu1 mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR lid1+-13xmyc<<natR cdc25-22

SU746 h+ leu1 apc15∆::kanR mad3+-GFP<<kanR lid1+-13xmyc<<natR plo1+-mCherry<<natR cdc25-22

Figure 4A

SP840 h- leu1 apc15Δ::kanR mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SP831 h? leu1 ade6-M210 apc15Δ::kanR mad3Δ::ura4+ plo1+-mCherry<<natR nda3-KM311

Figure 4B

SU526 h- slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

SU381 h- pDUAL-Pslp1(long2)-slp1-mr63-Tslp1<<leu1+ slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

SU768 h- ade6-M210 pDUAL-Pslp1(long2)-slp1-mr63-Tslp1<<leu1+ slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 apc15∆::kanR plo1+-mCherry<<natR cdc25-22

SU392 h- pDUAL-Pslp1(long2)-slp1-mr63-Tslp1<<leu1+ mad3-KEN271AAA-Tadh1-hphNT1 slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

Figure 4C

SP694 h+ leu1 mad3+-GFP<<kanR plo1+-mCherry<<natR cdc25-22 lid1+-13xmyc<<natR 

SU050 h+ mad3-KEN20AAA-GFP<<kanR plo1+-mCherry<<natR lid1+-13xmyc<<natR cdc25-22

SU048 h+ mad3-KEN271AAA-GFP<<kanR plo1+-mCherry<<natR lid1+-13xmyc<<natR cdc25-22

SU052 h+ leu1 mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR lid1+-13xmyc<<natR cdc25-22

SU746 h+ leu1 apc15∆::kanR mad3+-GFP<<kanR lid1+-13xmyc<<natR plo1+-mCherry<<natR cdc25-22

Figure 4D

SU774 h+ leu1 cut9-GFP<<kanR plo1+-mCherry<<natR cdc25-22

SU914 h+ leu1 cut9-GFP<<kanR mad3-KEN20AAA-Tadh1-hphNT1 plo1+-mCherry<<natR cdc25-22

SU916 h+ leu1 cut9-GFP<<kanR mad3-KEN271AAA-Tadh1-hphNT1 plo1+-mCherry<<natR cdc25-22

SU918 h+ leu1 cut9-GFP<<kanR mad3-∆Cterm(282-310)-Tadh1-hphNT1 plo1+-mCherry<<natR cdc25-22

SU920 h+ leu1 apc15∆::kanR cut9-GFP<<kanR plo1+-mCherry<<natR cdc25-22

Figure 4E

SK827 h- ade6-M216 plo1+-mCherry<<natR nda3-KM311

SP800 h+ apc15∆::kanR plo1+-mCherry<<natR nda3-KM311

SP840 h- leu1 apc15∆::kanR mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SP457 h+ ade6-M216?  kanR-Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

SP793 h+ apc15∆::kanR kanR-Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

SP794 h- leu1 apc15∆::kanR kanR-Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

Figure 4F

SU910 h+ leu1 apc15∆::kanR kanR<<Prad21-slp1+ mad3+-GFP<<kanR lid1+-13xmyc<<natR plo1+-mCherry<<natR cdc25-22

SU912 h- apc15∆::kanR kanR<<Prad21-slp1+ leu1+<<Prad21-slp1+ mad3+-GFP<<kanR lid1+-13xmyc<<natR plo1+-mCherry<<natR cdc25-22

SU746 h+ leu1 apc15∆::kanR mad3+-GFP<<kanR lid1+-13xmyc<<natR plo1+-mCherry<<natR cdc25-22

Figure S1C

SK675 h- lys1 hph<<ark1-as3 (L166A, S229A) plo1+- mCherry<<natR mad3+-GFP<<kanR nda3- KM311

SK678 h+ lys1 hph<<ark1-as3 (L166A, S229A) plo1+- mCherry<<natR bub3+-S(GGGGS)3-triplemye- GFP<<kanR nda3-KM311

Figure S1D

SU722 h+ leu1 ura4D18? plo1+-mCherry<<natR mad3+-GFP<<kanR bub3+-13xMyc<<hphMX6

SU752' h- bub3+-13xMyc<<hphMX6 mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR

SU724 h+ leu1 ura4D18? ade6-M216 bub1::ura4+ plo1+-mCherry<<natR mad3+-GFP<<kanR bub3+-13xMyc<<hphMX6

SU754 h- ura4D18? ade6-M216 bub1::ura4+ bub3+-13xMyc<<hphMX6 mad3∆Cterm(282-310)+-GFP plo1+-mCherry<<natR

SU043 h- leu1 bub3+-13xMyc<<hphMX6

Figure S1E

SU926 h+ leu1 bub3+-13xMyc<<hphMX6 mad3+-GFP<<kanR plo1+-mCherry<<natR cdc25-22

SU928 h+ leu1 ade6-M216 bub1::ura4+ bub3+-13xMyc<<hphMX6 mad3+-GFP<<kanR plo1+-mCherry<<natR cdc25-22

Figure S1F

SL756 h- leu1 ade6-M210 mad3∆::ura4+ plo1+-mCherry<<natR nda3-KM311

SL759 h- leu1 mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SP259 h+ ade6-M216 mad3-KEN(20)AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU599 h- leu1 mad3-Dbox(L/K)-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU581 h+ leu1 ade6-M216 mad3-ABBA1mut-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SP710 h+ leu1 mad3-KEN271AAA-GFP<<kanR nda3-KM311 plo1+-mCherry<<natR

SU582 h+ leu1 ade6-M216 mad3-ABBA2mut-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU074 h+ leu1 mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

SU703 h- leu1 mad3-Dbox(VNPL/ANPA)-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU714 h- leu1 ade6-M216 mad3-KEN20QEN+-GFP<<hphR plo1+-mCherry<<natR nda3-KM311

SU570 h+ leu1 ade6-M216 mad3-KEN271QEN-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure S1G

SL759 h- leu1 mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SL756 h- leu1 ade6-M210 mad3∆::ura4+ plo1+-mCherry<<natR nda3-KM311

SU703, SU703' h- leu1 mad3-Dbox(VNPL/ANPA)-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

Figure S1H

SK827 h- ade6-M216 plo1+-mCherry<<natR nda3-KM311

SK828 h+ leu1 ade6-M216 plo1+-mCherry<<natR nda3-KM311

SP457 h+ ade6-M216?  kanR-Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

SM842 h+ leu1-32 plo1+-mCherry<<natR nda3-KM311 slp1-mr63

SU391, SU391', SU391''h- leu1 kanR<<Prad21-slp1-mr63 plo1+-mCherry<<natR nda3-KM311

Figure S1I

SL760 h+ leu1 mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SL756 h- leu1 ade6-M210 mad3∆::ura4+ plo1+-mCherry<<natR nda3-KM311

SP259 h+ ade6-M216 mad3-KEN(20)AAA-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU714 h- leu1 ade6-M216 mad3-KEN20QEN+-GFP<<hphR plo1+-mCherry<<natR nda3-KM311

SU570 h+ leu1 ade6-M216 mad3-KEN271QEN-GFP<<kanR plo1+-mCherry<<natR nda3-KM311



Figure S2A

SU526 h- slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

SK828 h+ leu1 ade6-M216 plo1+-mCherry<<natR nda3-KM311

SP457 h+ ade6-M216?  kanR-Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

SP793 h+ apc15∆::kanR kanR-Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

ST930 h- kanR<<Prad21-slp1+ leu1+<<Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

ST928' h- apc15Δ::kanR kanR<<Prad21-slp1+ leu1+<<Prad21-slp1+ plo1+-mCherry<<natR nda3-KM311

SU789 h- leu1 natNT2<<Padh1(s)-Slp1 plo1+-mCherry<<natR nda3-KM311

SU908 h- leu1 natNT2<<Padh1(s)-slp1 mad3-∆Cterm(282-310)-Tadh1-hphNT1 plo1+-mCherry<<natR nda3-KM311

SU791 h- leu1 natNT2<<Padh1(s)-Slp1 apc15∆::kanR plo1+-mCherry<<natR nda3-KM311

Figure S2B

SM544 h+ leu1 mad2+-GFP<<kanR mad3+-GFP<<kanR plo1+-mCherry<<natR nda3-KM311

SU544 h- leu1 hygroR<<Pnmt41-slp1 plo1+-mCherry<<natR nda3-KM311

SU560 h- leu1 hygroR<<Pnmt41-slp1 mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

SU526 h- slp1::Pslp1-sfGFPopt-slp1-S(GGGGS)3-RIPGLIN-slp1 plo1+-mCherry<<natR cdc25-22

Figure S2C

SP800 h+ apc15∆::kanR plo1+-mCherry<<natR nda3-KM311

SP710 h+ leu1 mad3-KEN271AAA-GFP<<kanR nda3-KM311 plo1+-mCherry<<natR

SU074 h+ leu1 mad3-∆Cterm(282-310)+-GFP-hphNT1 plo1+-mCherry<<natR nda3-KM311

SU789 h- leu1 natNT2<<Padh1(s)-Slp1 plo1+-mCherry<<natR nda3-KM311

SU791 h- leu1 natNT2<<Padh1(s)-Slp1 apc15∆::kanR plo1+-mCherry<<natR nda3-KM311

SU907 h- leu1 natNT2<<Padh1(s)-slp1 mad3-KEN271AAA-Tadh1<<hphNT1 plo1+-mCherry<<natR nda3-KM311

SU908 h- leu1 natNT2<<Padh1(s)-slp1 mad3-∆Cterm(282-310)-Tadh1-hphNT1 plo1+-mCherry<<natR nda3-KM311
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3 Discussion 

3.1 The Mad1 C-terminus is actively involved in the spindle assembly 

checkpoint and links the Bub1-Bub3 complex with downstream 

checkpoint signaling (results part 2.1) 

3.1.1 Analyzing the interaction between Mad1 and Bub1 

Extensive work on the spindle assembly checkpoint and its molecular basis made the 

checkpoint appear to be resting on two important pillars: (i) the recruitment of the 

Bub1-Bub3 complex to kinetochores, which is Mps1-dependent, and (ii) dimerization 

of Mad1-bound and free Mad2 at kinetochores. This promotes Mad2 binding to 

Cdc20 and finally formation of the MCC to mediate APC/C inhibition. However, it is 

only partially understood how these two pillars are connected to create the 

checkpoint signal. Early work in S. cerevisiae suggested the presence of a Mad1-

Bub1-Bub3 complex during mitosis and showed that formation of this complex 

depends not only on the other checkpoint proteins Mad2 and Mps1, but also on a 

conserved RLK motif in the C-terminus of Mad1 (Brady and Hardwick, 2000). Another 

budding yeast study indicated, that the central region of Bub1 is necessary for the 

interaction between Mad1 and Bub1 (Warren et al., 2002). Later it was shown that 

this central region encompasses the conserved motif 1 (cm1), which is important for 

kinetochore localization of Mad1 and checkpoint activity in human cells (Klebig et al., 

2009). Although this suggested a role for Bub1 in Mad1 kinetochore-recruitment, a 

direct interaction between these two proteins was not observed in human cells (Kim 

et al., 2012; Kruse et al., 2014; Overlack et al., 2015). But despite all this work, the 

Mad1 kinetochore receptor remained elusive and it was still unclear if the interaction 

between Mad1 and Bub1 is direct, how Mad1 would be incorporated into the Bub1-

Bub3 complex and if this interaction mechanism is conserved across species, making 

it an evolutionary conserved feature of checkpoint signaling. 

In our study, we wanted to address whether the link between Mad1 and Bub1 is 

conserved across species. We were showed in fission yeast that mutation of Bub1-

cm1 abolished checkpoint activity and greatly reduced kinetochore recruitment of 

Mad1 and Mad2 without influencing kinetochore localization of Bub1. This was in 
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accordance with the effect observed in human cells (Klebig et al., 2009). Similar to 

the mutation of Bub1-cm1, mutation of the conserved Mad1 RLK motif also abolished 

checkpoint activity and kinetochore localization of Mad1 and Mad2 without affecting 

Bub1 recruitment. Despite this striking similarity between the two mutants, we were 

unable to detect an interaction between Mad1 and Bub1 in co-immunoprecipitation 

experiments. One reason for this apparent lack of interaction could be that only a 

small fraction of the two proteins binds to each other. Indeed, newer experiments 

using a differently tagged Bub1 were able to detect co-immunoprecipitation of Bub1 

with Mad1 (data not shown and part 2.2, Figure S3B). Furthermore, a study 

performed in budding yeast showed an Mps1-dependent interaction between Mad1 

and Bub1 and corroborated the previous finding that the central region of Bub1 

containing the cm1 is responsible for this interaction (London and Biggins, 2014). 

Additionally, fusion of the middle region of S.c. Bub1 to kinetochores was sufficient to 

co-recruit Mad1 (London and Biggins, 2014). Recent results from work performed 

with C. elegans also showed an interaction between Mad1 and Bub1 that is important 

for checkpoint activity (Moyle et al., 2014). This stands in contrast to a previous 

fission yeast study, which showed that artificial kinetochore recruitment of Bub1 

through tethering of Mps1 to kinetochores does not automatically co-recruit Mad1 (Ito 

et al., 2012). Taken all these findings together, it is still unclear whether mediating 

Bub1-Mad1 interaction is the most important and conserved function of the Bub1-

cm1 and Mad1-RLK motifs, or whether they contribute to checkpoint function in 

another way. 

3.1.2 The conserved RLK motif in the Mad1 C-terminus has an additional 

function in the checkpoint 

Mutation of the conserved RLK motif in Mad1 abolished kinetochore localization of 

Mad1 and Mad2 as well as overall checkpoint activity in our study in S. pombe. 

Interestingly, artificial tethering of the RLK/AAA mutant to the kinetochore co-

recruited Mad2 but did not restore checkpoint activity. This is in agreement with a 

similar finding in human cells (Ballister et al., 2014). Kinetochore-tethered Mad1 was 

also not sufficient to restore checkpoint activity in bub1Δ cells or cells that contained 

a Bub1-cm1 mutant. This clearly indicated that both Bub1, most likely through its 

conserved motif 1, and Mad1-RLK have an additional function in the SAC that goes 
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beyond kinetochore recruitment of Mad1. Mad2 was co-recruited to kinetochore-

tethered wild type Mad1 and Mad1-RLK/AAA to a similar extent and Mad2 

dimerization at kinetochores did not seem to be influenced. This indicates that a step 

downstream of Mad2 dimerization is defective in this Mad1 mutant. The defective 

step(s) could be C-Mad2 binding to Cdc20 or BubR1/Mad3 binding to the Mad2-

Cdc20 complex. It would be possible to test this by immunoprecipitation of Mad2. I 

found a complete loss of either Mad2-Cdc20 or MCC in cells containing Mad1-

RLK/AAA (data not shown), which would indicate a defect in Mad2-Cdc20 binding. 

However, in this experiment the Mad1 mutant was not kinetochore-tethered, so that it 

remains unclear whether the observed effects are due to loss of Mad1 from 

kinetochores or result from the specific defect of Mad1-RLK/AAA cells. In any case, 

size exclusion and anion exchange chromatography would be able to further dissect 

whether conversion from O-Mad2 to C-Mad2 is defective, or whether C-Mad2 cannot 

bind Cdc20. Size exclusion chromatography of a cell extract can separate free Mad2 

and a subsequent anion exchange chromatography of the isolated fraction can 

further distinguish O-Mad2 and C-Mad2 (Luo et al., 2004; Mapelli et al., 2007). 

Furthermore, artificial tethering of C-Mad2 to Cdc20 followed by analysis of MCC 

formation could provide information whether Mad1 and/or Bub1 are required only for 

Mad2-Cdc20 binding or whether they are additionally needed for incorporation of 

Mad3 into the MCC. These further analyses will contribute to fully revealing the 

functions of the RLK motif of Mad1 and Bub1-cm1, possibly in conjunction with each 

other, during checkpoint signaling. 

3.1.3 The Mad1 C-terminal domain has an additional, unknown function 

beyond Mad2 dimerization 

Since the RLK motif was required for Mad1 kinetochore recruitment as well as for 

some additional step in SAC signaling, we searched the Mad1 C-terminal region for 

separation-of-function mutants that retain kinetochore localization but impair 

checkpoint activity (part 2.1, Fig. S4A and Fig. 3). We were able to identify two 

mutants in the C-terminal domain (CTD) of Mad1 that showed the desired phenotype. 

One mutant contained three point mutations (EDD/QNN) in the last alpha-helix of the 

CTD, the other was a complete deletion of this alpha-helix (Δhelix). Like kinetochore-

tethered Mad1-RLK/AAA, both mutants retained co-localization of Mad2 and did not 
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influence Mad2 dimerization. This again indicates a role of the Mad1 C-terminus 

further downstream. MCC formation was greatly reduced, but not completely 

abolished in Mad1-EDD/QNN (data not shown). As previously suggested for Mad1-

RLK, the Mad1-CTD could also be involved in mediating Mad2-Cdc20 binding and/or 

subsequent incorporation of Mad3 into the MCC, which could be investigated by 

analyzing the pools of O- and C-Mad2 by chromatography and by testing the binding 

of Mad3 to artificially tethered Mad2-Cdc20. Work performed in human cells also 

showed an importance of the Mad1 C-terminus in checkpoint signaling beyond Mad2 

recruitment (Ballister et al., 2014; Kruse et al., 2014), indicating that the function of 

the Mad1 C-terminus in SAC signaling is conserved across eukaryotes. 

One idea how the Mad1 C-terminus could potentially influence downstream 

checkpoint signaling events is based on the structure of the Mad1-Mad2 

heterotetramer (Sironi et al., 2002). This suggests that the two alpha-helices 

downstream of the Mad2 binding site can fold back onto each other (part 2.1, Fig. 4), 

which would place the Mad1-CTD close to the Mad2 binding site and thereby Mad2. 

Since so far no structure is available that covers all parts of Mad1 from the Mad2 

binding site up to its C-terminus, it remains to be seen if this model holds true in vivo 

or if the Mad1 structure is maybe more dynamic. 

In any case, more experiments are necessary to identify the full role of Mad1 in SAC 

signaling. Unbiased approaches like yeast two-hybrid screens to detect protein-

protein interactions or immunoprecipitations followed by mass spectrometry (IP-MS) 

could help to reveal potential interaction partners with the Mad1 C-terminus. 

Preliminary results of IP-MS experiments showed that Mad1-RLK/AAA and 

Mad1Δhelix co-immunoprecipitated less Nup211, a component of the nuclear pore 

complex, compared to wild type Mad1. Otherwise, no difference was detected 

between the mutants and the wild type protein (data not shown). It is unclear if 

problems to localize to the nuclear rim in interphase could have an effect on the 

function of Mad1 at kinetochores in mitosis. In addition to the search for interaction 

partners, chemical cross-linking followed by mass spectrometry (CX-MS) could be 

utilized to further investigate the folding of Mad1 in its native state. While 

conventional methods to determine the structure of a molecule like X-ray 

crystallography, NMR spectroscopy or electron microscopy need concentrated 

homogeneous samples of the protein complex – often from recombinant expression, 

CX-MS could be performed on complexes purified from a cell extract. 
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While previous models for the spindle assembly checkpoint mainly saw Mad1 as a 

passive platform for presenting Mad2 at kinetochores, it became apparent with our 

and other recent findings that Mad1 is in fact an active player in checkpoint signaling. 

Nevertheless, we still do not fully understand how the checkpoint signal is 

propagated, but Bub1 as well as the Mad1 C-terminus seem to be connected and 

both play an important role.  
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3.2 Bub3-Bub1 binding to Spc7/KNL1 licenses the interaction of Bub1 

with Mad1-Mad2 at kinetochores and thereby initiates checkpoint 

signaling (results part 2.2) 

3.2.1 Phosphorylation of MELT motifs in Spc7 influences checkpoint 

activity, potentially by mediating Bub1 turnover at kinetochores 

Upon detection of unattached kinetochores, kinetochore localization of Bub3-Bub1 is 

important for Mad1-Mad2 recruitment to facilitate checkpoint signaling (London and 

Biggins, 2014; Moyle et al., 2014). It was shown that Mph1 (Mps1) phosphorylates 

multiple conserved MELT motifs in the Spc7 (Spc105/KNL1) protein to recruit Bub1, 

Bub3, and Mad3 (BubR1) to kinetochores (London et al., 2012; Shepperd et al., 

2012; Yamagishi et al., 2012), but the exact number of MELT repeats varies greatly 

between species (Vleugel et al., 2012; Tromer et al., 2015). Experiments performed 

in human cells revealed that a majority of MELT repeats can be mutated before an 

effect on SAC activity is observed (Vleugel et al., 2013; Zhang et al., 2014; Vleugel et 

al., 2015b). Spc105/KNL1 in Drosophilids contain repeats that differ from the MELT 

motif consensus observed in yeast, C. elegans and human orthologs (Schittenhelm 

et al., 2009). Deletion of the region of D. melanogaster Spc105 containing the 

repeats had no influence on Spc105 functionality (Schittenhelm et al., 2009). While 

this led to the assumption that the repeats are functionally unimportant in D. 

melanogaster, a later analysis showed that the truncation used to investigate the role 

of the motifs still contained two MELT-like motifs (Krenn et al., 2014), which 

complicates the interpretation of the results. 

Since the N-terminus of fission yeast Spc7 contains 12 MELT motifs that can be 

phosphorylated by the Mph1 kinase in vitro (Shepperd et al., 2012; Yamagishi et al., 

2012), we wanted to examine the role of MELT motifs in controlling Bub1 recruitment 

and checkpoint signaling and thereby address if this feature of the checkpoint is 

conserved across eukaryotes. S. pombe cells with some or all of the threonine and 

serine residues in the MELT motifs mutated to non-phosphorylatable alanine showed 

a gradual dependency of Bub1 kinetochore recruitment on the number of 

phosphorylatable MELT sites. Interestingly, the ability to arrest in mitosis did not 

follow the same gradual pattern. Instead, cells with at least five functional MELT 

motifs still showed an active checkpoint while cells with three or less functional MELT 
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motifs only mounted a partial checkpoint response. These results together indicate 

that Spc7 contains multiple functional binding sites for Bub1, but activity of only a 

subset of them is sufficient to promote checkpoint signaling, which is in agreement 

with similar results from human cells (Vleugel et al., 2013; Zhang et al., 2014; Vleugel 

et al., 2015b). The fact that not all MELT motifs are required for mounting a 

checkpoint response both in fission yeast and mammalian cells potentially explains 

why the exact number of MELT repeats is not strongly conserved. One can 

furthermore speculate that the MELT repeats are constantly phosphorylated and 

dephosphorylated during an active SAC and that this might be the molecular 

mechanism giving rise to turnover of Bub1 at kinetochores. Still unanswered are the 

questions why MELT repeats evolve rapidly, which factors drive this evolution and 

how changes in the number of MELT motifs force other cellular components that are 

functionally connected to KNL1 to adapt to the new situation (Tromer et al., 2015). 

3.2.2 Bub3 has opposed functions in the nucleoplasm and at the 

kinetochore 

In contrast to mammalian cells and budding yeast, Bub3 is not essential for 

checkpoint signaling in fission yeast (Tange and Niwa, 2008; Vanoosthuyse et al., 

2009; Windecker et al., 2009). It was proposed that, at least in S. pombe, Bub3 has 

an inhibitory function on Bub1 (Yamagishi et al., 2012), and Bub1 might be released 

upon association with the kinetochore. We wanted to further investigate this theory to 

reveal the function of Bub3 during checkpoint activation in fission yeast. In budding 

yeast, an interaction between Bub1 and Mad1 could be detected, suggesting that 

kinetochore-localized Bub3-Bub1 subsequently recruits Mad1-Mad2 to kinetochores 

(Brady and Hardwick, 2000; London and Biggins, 2014). Contrary to this finding, we 

were initially unable to detect a Bub1-Mad1 interaction in fission yeast. However, 

newer experiments showed an interaction between a small fraction of Bub1 and 

Mad1. We hypothesized that release of the Bub3-mediated Bub1 inhibition could be 

required for Bub1-Mad1 interaction. We saw that mutation of MELT motifs, which 

prevents Bub3-Bub1 kinetochore recruitment (Primorac et al., 2013; Vleugel et al., 

2015b), inhibits Bub1-Mad1 complex formation. Interestingly, deletion of Bub3 in 

combination with MELT motif mutation rescued Bub1-Mad1 binding. This result 

indicates that Bub3-mediated inhibition of Bub1 indeed needs to be released to allow 
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Bub1-Mad1 interaction. The Bub1-release and subsequent Mad1-interaction can 

happen both in the nucleoplasm (Bub3 deletion) or at the kinetochore (Bub3-Bub1 

binding to MELT). This attributes Bub3 a dual role during checkpoint signaling: in the 

nucleoplasm, it inhibits Bub1 from binding to Mad1-Mad2 but once Bub3-Bub1 is 

recruited to kinetochores, Bub3 turns into a facilitator of the spindle assembly 

checkpoint by controlling the interaction of Bub1 with Mad1-Mad2. Preventing the 

Bub1-Mad1 interaction in the nucleoplasm inhibits premature checkpoint activation. 

One could speculate that the Bub3-Bub1 complex undergoes a conformational 

change upon binding to phosphorylated MELT motifs of Spc7, which in turn permits 

the binding to Mad1-Mad2. Reconstitution and structural studies will be needed to 

test this hypothesis. Deletion of Bub3 in S. pombe abolishes kinetochore localization 

of Bub1, Mad1, Mad2 and Mad3 without affecting checkpoint activity (Tange and 

Niwa, 2008; Vanoosthuyse et al., 2009; Windecker et al., 2009). Interestingly, I saw 

that although artificial kinetochore-recruitment of Mad1 or deletion of Bub3 each by 

themselves are checkpoint proficient, a combination of both abolished checkpoint 

activity (data not shown). This finding further corroborates that Bub1 and Mad1 need 

to be at the same location, both in the nucleoplasm or both at the kinetochore, and 

likely in a complex with each other to facilitate checkpoint signaling. 
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3.3 Cdc20 can be inhibited in several different ways to ensure mitotic 

checkpoint activity (results part 2.3) 

3.3.1 Different motifs in the Mad3 C-terminus bind to Cdc20 to mediate 

SAC activity 

It was shown in mammalian cells and yeast that both BubR1 and Mad3 contain a 

number of conserved motifs that all mediate binding to Cdc20. Recent structures of 

the human MCC-APC/C complex also revealed with which of the two Cdc20 

molecules in the complex each of the motifs interacts (Alfieri et al., 2016; Yamaguchi 

et al., 2016). Despite these high resolution views of the MCC and MCC-APC/C 

interaction, the functional analysis of the different Mad3 motifs in vivo is currently 

lacking behind. Therefore, I wanted to dissect the role of these motifs in fission yeast, 

where Mad3 has over evolutionary timescales been trimmed down to a minimal 

Cdc20-inhibitory fragment (Malureanu et al., 2009; Vleugel et al., 2012). While both 

S. pombe Mad3 and mammalian BubR1 contain two KEN boxes, differences were 

seen in the number and/or location of putative ABBA motifs and the D-box. While 

position of the first ABBA motif and D-box between the TPR region and the second 

KEN box seems to be conserved, S. pombe Mad3 lacks a second D-box. 

Furthermore, human BubR1 contains the second ABBA motif C-terminal of the 

GLEBS motif, while Mad3 might contain the second ABBA motif at its very C-

terminus and is lacking a functional GLEBS (Figure 1-2). Since the MCC-APC/C 

structure is derived from human proteins, it was unclear if the fission yeast MCC is 

also able to bind two Cdc20 molecules, and if so, if Mad3 establishes exactly the 

same interactions with them as seen in the human complex. Live cell imaging 

analyses revealed that all Cdc20-binding motifs (KEN1, KEN2, ABBA1, ABBA2, D-

box) are important for the activity of the spindle assembly checkpoint, albeit to similar 

extents. Immunoprecipitation experiments showed that the fission yeast MCC, like 

human MCC, can associate with at least two Cdc20 molecules. While mutation of 

KEN1 abolished MCC formation entirely, mutation of KEN2 or deletion of the Mad3 

C-terminus containing ABBA2 (ΔCterm) retained core MCC formation but inhibited 

binding of additional Cdc20. To further address the importance of the two KEN motifs 

in the checkpoint, I mutated them to QEN, which is the motif found at the KEN2 site 

in Drosophila species. While changing S. pombe KEN2 to QEN had no effect on 
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checkpoint activity, mutating KEN1 to QEN decreased the stability of Mad3 and 

abolished the checkpoint entirely. This supports the different functionality of KEN1 

and KEN2 (Yamaguchi et al., 2016). 

Overall, the results showed that, although all motifs mediate binding to Cdc20, they 

are nevertheless non-redundant in their function. It was shown for human BubR1 that 

KEN1, ABBA2 and D-box 2 contact the core MCC Cdc20 while D-box 1, ABBA1 and 

KEN2 interact with APC/C-associated Cdc20. Since the position of these motifs 

within Mad3 differs from their location within BubR1, it remains to be seen how each 

of them mediates interaction between Cdc20MCC and Cdc20APC/C in S. pombe. My 

results obtained so far indicate a crucial interaction of KEN1 with Cdc20MCC and 

KEN2 and ABBA2 with Cdc20APC/C. Chemical cross-linking followed by mass 

spectrometry could be a helpful tool to investigate the exact inter-molecular 

interactions between Mad3 and Cdc20. Another approach to elucidate the 

interactions between the Mad3 motifs and the different Cdc20 molecules would be 

the in vitro reconstitution of a core MCC with each of the motifs mutated separately 

and subsequent addition of free Cdc20 to analyze binding to this molecule. To further 

address the function of each of the two Cdc20 molecules especially during 

checkpoint silencing, separation-of-function mutants could be created and expressed 

together. While one molecule contains a mutation in the ABBA receptor region and 

thereby can only become Cdc20MCC, the other molecule contains a mutation of the 

Mad2-binding site, which confines it to being Cdc20APC/C. Downstream analysis of for 

example ubiquitination of each of the molecules or their ability to activate the APC/C 

can dissect their different roles. 

3.3.2 A Mad2-binding deficient Cdc20 molecule can be inhibited from 

activating the APC/C 

It was shown that mutation of the Mad2-binding site in Cdc20 leads to a checkpoint 

defect in several species (Hwang et al., 1998; Kim et al., 1998; Nilsson et al., 2008). 

We reasoned that Cdc20 that is unable to bind to Mad2 should still be subject to 

checkpoint control through the Mad3 C-terminus, as long as core MCC can be 

formed. Live cell imaging assays revealed that mutation of this region leads to a non-

functional checkpoint when present as the only version of Cdc20 or when equal 

levels of wild type and mutant Cdc20 were expressed. However, upon reduction of 
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mutant Cdc20 expression, the checkpoint could be partially restored as long as wild 

type Cdc20 was present. The checkpoint rescue was further enhanced upon 

mutation of the Mad2-binding proficient Cdc20 copy in its C-box motif, which is 

essential for Cdc20 to activate the APC/C and thereby made APC/C activation in my 

assay entirely dependent on the Mad2-binding deficient Cdc20 mutant. I furthermore 

showed in immunoprecipitation experiments that Mad2-binding deficient Cdc20 can 

be inhibited by the mitotic checkpoint through the Mad3 C-terminus as long as core 

MCC formation is initiated by Mad2-binding-competent Cdc20. This shows that the 

ability of Cdc20 to bind to Mad2 is only required for formation of the core MCC but 

neither for binding of the MCC to additional Cdc20 nor for APC/C activation. 

3.3.3 The ‘core MCC’ inhibition mode is sufficient at high checkpoint 

protein to Cdc20 ratio 

Although each of the Mad3-KEN boxes is required for the checkpoint, mutation of 

KEN1 tends to abolish checkpoint activity more than mutation of KEN2 (Lara-

Gonzalez et al., 2011; Diaz-Martinez et al., 2015). This indicates a more crucial role 

of KEN1. Indeed, Mad3-KEN1 is needed for interaction of both Cdc20MCC and 

Cdc20APC/C with the MCC, whereas Mad3-KEN2 is only needed for interaction of 

Cdc20APC/C. Because Cdc20MCC can be tightly captured in the core MCC, we 

reasoned that core MCC formation alone could theoretically be sufficient for 

checkpoint activity, as long as the amount of Cdc20 is low enough. Indeed, lowering 

the Cdc20 abundance by expressing the gene from the promoter of rad21 (cohesin) 

or adh1 or from the regulatable nmt1 promoter partially or fully rescued checkpoint 

activity in the Mad3-KEN2 mutant and ΔCterm, but not in the KEN1 mutant. Mutation 

of the Mad2-binding site in Cdc20 abolished the mitotic delay, indicating that it was 

dependent on core MCC formation. This shows that core MCC formation is sufficient 

to promote a checkpoint arrest at low Cdc20 levels. 

Immunoprecipitation experiments revealed, that even in wild type cells with an active 

checkpoint, both Cdc20 and the APC/C are not completely sequestered by the MCC, 

but also present as unbound forms. This raises the question how the cells 

nevertheless manage to arrest in mitosis without premature activation of the free 

APC/C by the free Cdc20. The apparently free Cdc20 could potentially be bound to 

Mad2, which keeps it inhibited from interacting with and/or activating the APC/C. 
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Another possibility is that the free Cdc20 is indeed completely unbound but in a 

conformational state that is unable to bind the APC/C. Sequential 

immunoprecipitations could be helpful to address the presence of different 

subcomplexes like Mad2-Cdc20 or Mad2-Cdc20-APC/C. 

3.3.4 Mad3 C-terminus and Apc15 are required for MCC-APC/C interaction 

and MCC disassembly 

We noticed that mutation of KEN2 or deletion of the Mad3 C-terminus increased the 

amount of MCC and also led to presence of MCC even in interphase, where it is 

usually absent in S. pombe due to disassembly during checkpoint silencing. In 

human cells and budding yeast, it was shown that the APC/C subunit Apc15 plays a 

crucial role in MCC disassembly (Mansfeld et al., 2011; Foster and Morgan, 2012; 

Uzunova et al., 2012) and consistently, I was able to detect interphasic MCC also in 

fission yeast cells lacking Apc15. This shows that also in S. pombe, Apc15 is 

required for MCC disassembly. But in contrast to human cells and budding yeast, 

where APC15 deletion caused a prolonged mitotic arrest and impaired checkpoint 

silencing, deletion of apc15 in fission yeast cells resulted in a failure to activate the 

checkpoint. This shows that while Apc15 is involved in MCC disassembly in human 

cells and both budding and fission yeast, it seems to play an additional role during 

checkpoint activation in fission yeast. While mutation of KEN2 and deletion of the 

Mad3 C-terminus lost association of additional Cdc20 with the core MCC, deletion of 

apc15 retained this interaction and assembled a full MCC. I furthermore showed that 

Mad3-KEN2 mutation, Mad3-ΔCterm or deletion of apc15 all resulted in reduced or 

abolished binding of the MCC to the APC/C and Cdc20 was still associated with the 

APC/C. Those findings together could explain the checkpoint defect of apc15 

deletion. Although the full MCC is formed, it cannot associate with the APC/C and 

therefore cannot inhibit free Cdc20 from binding and activating the APC/C. Just like 

the Mad3 C-terminus, Apc15 also becomes dispensable for the checkpoint at lower 

Cdc20 levels, indicating a complete sequestration of the available Cdc20 within the 

MCC, so that the APC/C remains Cdc20-free. We therefore envision that inhibition of 

the APC/C by the MCC encompasses (i) sequestration of one Cdc20 in the core 

MCC, (ii) inhibition of a second Cdc20 molecule through the Mad3 C-terminus, and 

(iii) competition between the MCC and other free Cdc20 for APC/C binding. Only (iii) 
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is defective in apc15 cells, whereas (ii) and (iii) are defective in mad3-Cterm cells. 

All, (i), (ii) and (iii) are defective in the mad3-KEN1 mutant – explaining the different 

extents of checkpoint impairment. 

The structural analysis of MCC-APC/C revealed a role of Apc15 in stabilization of the 

MCC in a position on the APC/C that allows Cdc20 ubiquitination (Alfieri et al., 2016; 

Yamaguchi et al., 2016), which ultimately leads to MCC disassembly. How the failure 

of MCC-APC/C association in apc15Δ fission yeast cells can be explained on a 

structural level remains unclear. Strikingly, fission yeast also differs from many other 

eukaryotes in its lack of Bub3 in the MCC. The reasons for those differences are still 

unclear but one hypothesis could be that Apc15 in fission yeast took over the role of 

Bub3 in targeting the MCC to the APC/C. One possibility to address this question is 

to artificially fuse Bub3 or the GLEBS motif that binds Bub3 to the C-terminus of S. 

pombe Mad3 to mimic the interaction between BubR1 and Bub3 in other organisms 

that contain Bub3 in the MCC. Investigating MCC-APC/C interaction with this fusion 

construct in an apc15Δ background could provide an answer. 

Although comparisons of the spindle assembly checkpoint signaling cascade in 

various organisms from yeast to humans generally show a striking degree of 

conservation, detailed investigations of the molecular mechanisms underlying the 

signaling also revealed differences between the organisms. This underlines that the 

checkpoint is an evolutionary conserved mechanism that likely has adapted to new 

cellular situations as the organisms diverged from each other. It would be interesting 

to understand in which way these changes are adaptive to the physiology and 

ecology of this organism. Despite a wealth of information about the function of the 

checkpoint, as well as about its various components and their interaction with each 

other, we still need more work to entirely grasp this highly complicated signaling 

network.
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