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Abstract 

 
 
     Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established 

symptomatic treatment for Parkinson’s diseases (PD). However, knowledge on local 

electrophysiological biomarkers within the STN and their cortical connectivity profile is still 

scarce. Such information would be necessary for optimal positioning of the DBS leads based 

on PD network pathophysiology. 

     This thesis describes the introduction and exploration of a novel technique for 

electrophysiological measurements during DBS surgery. Combined electroencephalography 

(EEG) with stepwise local field potentials recordings during insertion of the DBS lead was 

performed intraoperatively, thereby, allowing to capture local STN and cortico-subthalamic 

physiology with high speactral and spatial specificity. Our results revealed that strong beta 

oscillatory activity in the STN was located more dorsally than the STN-ipsilateral motor 

network phase coupling; the respective frequency bands were in the low and high beta-band, 

respectively. Moreover, the spot within the STN, where this STN-cortical phase coupling 

occurred, correlated highly with the STN spot where the phase of beta oscillations modulated 

the amplitude of high-frequency oscillations. This STN location was furthermore, 

characterized by information flowed from the ipsilateral motor cortex to the STN in the high 

beta-band suggesting a pathologically synchronized network with a direct STN-motor cortex 

connection via the hyperdirect pathway. Interestingly, the very same STN spot showed a 

resonance like responses to electrical stimulation suggesting a decoupling of pathologically 

synchronized STN-motor cortex connectivity during therapeutic DBS.   

     In conclusion, this PhD thesis provides first evidence that macroelectrode recordings with 

the chronic electrode concurrent with EEG recordings are a reliable method for STN 

localization during DBS surgery. Additionally, combining LFP and EEG recordings during 

mapping of STN offered a new way of DBS targeting on the basis of pathological local 

biomarkers and network activity. 

  



7 

 

1. Introduction 

     Any morphological and/or neurochemical disturbance in the brain might lead to 

dysfunctions in cognitive and/or motor performance. Parkinson’s disease (Jankovic, 2008; 

Lang  and Lozano 1998), dystonia (Breakefield et al., 2008; Tarsy  and Simon 2006), major 

depression (Brunoni et al., 2008; Gold  et al., 1988), and obsessive-compulsive disorder 

(Abramowitz et al.; Kuelz et al., 2004) are examples of such disorders. There is a considerable 

amount of research reporting the changes in functional and effective connectivity in various 

cortical and subcortical areas that are responsible for clinical symptoms and functional 

abnormalities in these diseases (Anand et al., 2005; Colosimo et al., 2005; Fernández-Seara et 

al., 2015; Menzies et al., 2008; Nicoletti et al., 2010; Szeszko et al., 2005; Whitwell et al., 

2011); however, specific electrophysiological changes or signatures of local (e.g., subcortical 

or cortical site) and long-range cortico-subcortical communication have received little 

attention. 

     For instance, the dopamine depletion in Parkinson’s disease  (PD)  patients is believed to 

directly modulate the normal state of the cortico-basal ganglia loop (Fig. 1), which could cause 

functional changes in various brain regions (Bergman et al., 1998; Bernheimer et al., 1973; 

Levy et al., 2002; Obeso et al., 2004; Obeso et al., 2000). Indeed, the loss of dopaminergic 

neurons, which project from substantia nigra pars compacta (SNc) to the dorsal striatum, not 

only disturbs the local balance but also affects ongoing brain rhythms in large-scale areas of 

the brain (Bergman et al., 1998; Brown, 2003; Obeso et al., 2008; Terman et al., 2002; Utter 

and Basso, 2008). Electrophysiological data has suggested that enhanced beta oscillations 

(BO) at the level of the subthalamic nucleus (STN), globus pallidus pars interna (GPi), and 

motor cortical area are responsible for motor impairment in PD, typically inducing resting 

tremor and rigidity in humans (Brittain and Brown, 2014; Deffains et al., 2014; Hammond et 

al., 2007; Little and Brown, 2014; Novak et al., 2011; Ray et al., 2008; Silberstein et al., 2003; 

Steigerwald et al., 2008; Weinberger et al., 2012; Zaidel et al., 2010). The origins of these 

pathological BO remain controversial. One theory argues that abnormal BO could be generated 

in the STN-GPe (globus pallidus externus) network. It suggests that the reduction in dopamine 

results in a stronger coupling strength in the STN-GPe loop (Plenz and Kital, 1999). As a 
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Figure 1: Basal ganglia loop. The basal ganglia are a group of heavily 

coupled subcortical nuclei. The striatum is the primary receptive 

nucleus of the basal ganglia receiving afferent projections from cortical 

areas including: the dorsolateral prefrontal cortex (DLPFC), the 

supplementary eye field (SEF), the frontal eye fields (FEF), primary 

motor cortex (M1) and also from dopaminergic neurons of the 

substantia nigra pars compacta (SNc). Medium spiny neurons (MSNs) 

in striatum are connected to the basal ganlia output structures through 

D1-receptors (direct pathway) and D2-receptors (indirect pathway). 

D1-type MSNs project to the Globus pallidus internus (Gpi) and the 

substantia nigra pars reticulata (SNr) facilitating movement, whereas 

the D2-type MSNs, decrease movement, projects to the Globus pallidus 

externus (GPe) and the subthalamic nucleus (STN) (Belujon and Grace, 

2011; Hikosaka et al., 2000; Little and Brown, 2014). The direct 

connection from the motor area to STN, the so-called hyperdirect 

pathway, plays an important role in PD and therapeutic interventions. 

 

consequence, intermittent synchronized oscillations are produced in the beta oscillatory band; 

a state different from complete synchronization (Park et al., 2010). Moreover, a recent study 

suggested that changes in the striatum network dynamics are able to generate beta 

synchronization as well (McCarthy et al., 2011). 

    Apparently, compensation for the loss of dopamine, for example, by levodopa medication, 

might be a possible treatment approach to reduce symptoms in PD (Lloyd et al., 1975); 

however, resistance to medication and side effects in the long run are serious limitations of this 

intervention (Rascol et al., 2003). Neuromodulation by deep brain stimulation (DBS) is a 

possible alternative which has shown promising results in alleviating PD symptoms (Deuschl 

et al., 2013; Okun, 2012; Schuepbach et al., 2013). 

1.1 Subcortical localization during surgery 

     STN DBS is the most typical surgical procedure to treat Parkinson’s disease (Krack and 

Hariz, 2013; Lozano and Lipsman, 2013; Odekerken et al., 2013; Schuepbach et al., 2013). 

Optimal positioning of the implanted DBS lead plays a critical role in the effectiveness of this 

PD treatment modality and long-term quality of patients (Deuschl et al., 2006; Guo et al., 2013; 

Maks et al., 2009; Voges et al., 2002; Witt et al., 2013). In clinical practice, microelectrode 

recording (MER) of single cell activity is a well-established technique for delineating STN 

boundaries in PD (Hutchison et al., 1998; Seifried et al., 2012); it is commonly used to target 
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other subcortical structures as well (Gaze et al., 1964; Hutchison et al., 1994; Starr et al., 2000). 

Although such spike activity recording is a reliable and robust method, it suffers from a number 

of drawbacks related to DBS implantation during surgery and inherent electrophysiological 

problems. One of the major issues with MER through microrecording electrodes with multiple 

trajectories is the increased risk of surgical complications related to injured blood vessels (i.e., 

hemorrhages) (Park et al., 2011; Zrinzo et al., 2012). One large study (Ludvic Zrinzo et al., 

2012) compared two groups of patients, one undergoing pure image-guided DBS lead 

placement without MER and another one on the basis of MER recordings. The researchers 

concluded that the approach without MER had a significantly lower risk of hemorrhage than 

the other approach. However, macroelectrode LFP recordings might provide additional 

advantages in comparison to pure image-guided approaches without the risks related to MER; 

this might be particularly important for novel therapeutic approaches and for increasing 

targeting specificity while decreasing surgery-related risks (Chen et al., 2006; Telkes et al., 

2016). Furthermore, very recent findings indicate that LFP could be employed as a biomarker 

for more efficient and effective closed-loop DBS application (Arlotti et al., 2016; Little and 

Brown, 2012; Little et al., 2013; Rosin et al.; Rossi et al., 2007; Tass et al., 2012). Moreover, 

from a signal processing and engineering perspective, LFP recordings could offer greater 

longevity, that is, they may be more robust over time compared to spike recordings where 

amplitudes change significantly from day to day (Cynthia et al., 2011; Nurmikko et al., 2010). 

Additionally, macroelectrode recordings can be performed with much lower bandwidth 

compared to single cell recordings, which in turn require much higher sampling rates. For 

chronic closed-loop DBS applications, higher bandwidth necessitates higher power 

requirements and thus leads to an increase in the heat and size of chronically implanted devices 

(Polikov et al., 2005). Recording LFPs instead offers the capability of acquiring physiological 

information for targeting while using the standard DBS electrodes, which are used for chronic 

implantation anyway and which pose a smaller complication risk by design. Given network 

neuromodulation of DBS (Alhourani et al., 2015), advanced physiological biomarkers based 

on connectivity measures between distal brain regions can only be determined with LFP 

(Litvak et al., 2011; Oswal et al., 2016)  but not with spike activity.   
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1.2 Network and local biomarkers in Parkinson patients 

     PD is a neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, 

posture instability, speech problems, and, in the progressive state, cognitive impairment as 

well (Hughes et al., 1992; Jankovic, 2008). Neuroimaging techniques such as functional 

magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and positron emission 

tomography provide valuable insights into various functional, structural, and morphological 

changes of PD (Lenka et al., 2015; Politis, 2014). fMRI studies in PD suggest that during 

medication OFF state, increased cortico-subcortical functional connectivity takes place 

between the cortical areas involved in motor processes and the STN compared to healthy 

control subjects (Fernández-Seara et al., 2015). Increased connectivity between the motor area 

and cerebellum occurs as well (Wu and Hallett, 2013). On the other hand, during dopamine 

administration (medication ON), functional connectivity was enhanced between the mesial 

premotor loop and cortico-striatal interactions with amelioration of bradykinesia (Michely et 

al., 2015). In this line of research, using probabilistic tractography with DTI, clinical 

effectiveness of activated DBS contacts was shown to positively correlate with as cortical 

network connectivity to the STN (Accolla et al., 2016)  involving the superior frontal gyrus 

and the thalamus (Vanegas-Arroyave et al., 2016).  These advanced imaging methods provide 

considerable spatial resolution, but miss a fine temporal resolution of spontaneous brain 

activity. Electrophysiological signals enable researchers to investigate functional and/or causal 

interactions between different brain regions and brain network dynamics with high temporal 

resolutions (Buzsáki et al., 2012; Marcel van et al., 2009). Moreover, in recent years, closed-

loop DBS by real-time modulation of pathological oscillations has shown promising results in 

pilot trials when compared to conventional open-loop DBS (Arlotti et al., 2016; Little et al., 

2013; Rossi et al., 2007). Therefore, neurophysiological recordings have received greater 

attention in recent years as a valuable measure to monitor disease state and understand PD 

pathophysiology (Little and Brown, 2012).  

     There is increasing evidence that enhanced BO in both the cortical and subcortical regions 

correlate with the clinical features and pathophysiology of PD (Brittain and Brown, 2014; 

Brown, 2003; Brown, 2007; Little and Brown, 2014; Marreiros et al., 2013; Stein and Bar-

Gad, 2013). Enhanced BO (14-35 Hz) have been detected in the dorso-lateral part of the STN 
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(Deffains et al., 2014; Kühn et al., 2009; Novak et al., 2011; Ray et al., 2008; Steigerwald et 

al., 2008); moreover, the normalized power in the beta range is shown to correlate with 

postoperative improvement (Zaidel et al., 2010). At the cortical level, the rigidity of patients 

with PD can be predicted by the relative spectral power of beta and gamma oscillations in 

bilateral frontal areas (Cao et al., 2015). Nonlinear complex interactions of different frequency 

bands, referred to as cross-frequency coupling, have been observed in the primary motor cortex 

and also in the dorso-lateral part of the STN in PD. More specifically, the phase of subthalamic 

BO modulates the amplitude of HFO (B-HFO) in the STN (López-Azcárate et al., 2010; Özkurt 

et al., 2011; Yang et al., 2014), while the phase of cortical BO modulates broadband gamma 

oscillations in the cortex (de Hemptinne et al., 2013a; Qasim et al., 2016). Furthermore, high-

frequency oscillations (HFO, >150 Hz) have been shown to be associated with PD symptoms 

via an inverse correlation with akinesia (Wang et al., 2014). Both pharmacological treatment 

with L-dopa (Barbeau, 1969) and neurostimulation by DBS (Schuepbach et al., 2013) have 

shown changes in functional connectivity of the cortico-STN area in comparison to 

pathological states, i.e. when no medication or neurostimulation was applied. A 

magnetoencephalography (MEG) study (Litvak et al., 2011; van Wijk et al.) in which 

simultaneous resting state recordings of subcortical-LFP and cortical-MEG were performed in 

the OFF medication state showed that STN-motor cortex coherence in the high beta band 

changed due to L-dopa medication. In a recent MEG study (Oswal et al., 2016), cortical-STN 

connectivity was investigated during therapeutic DBS. This study provided evidence for 

reduced functional connectivity in high beta band, specifically between the STN and the 

ipsilateral motor area. It is not clear, however, how the electrophysiological signatures within 

the STN are related to the pathological network activity, and how this interaction is modulated 

by therapeutic interventions. 

1.3 Hypotheses and aims 

(i) Simultaneous EEG and LFP recordings across the STN during DBS surgery allow detecting 

subthalamic biomarkers for direct cortico-subcortical connectivity in PD patients (Study 1). 

(ii) Beta oscillations in the STN and cortico-subthalamic connectivity can be disentangled 

during DBS surgery in PD (Study 2).  
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Figure 2, Electrophysiology during the DBS surgery. (A) 

Chronic DBS electrode (here: Medtronic Inc) for therapeutic 

stimulation and capable of LFP recordings and test electrode 

capable of MER and LFP recordings (here: microtargeting 

FHC Inc) (B) Pictogram shows the subcortical mapping 

procedure while inserting the chronic DBS lead millimeter by 

millimeter. Due to the physical characteristics of the electrode 

(four 1.5 mm macroelectrode contacts, separated by 0.5 mm; 

contact 0 and 3 are the lowest and highest contacts), every 2 

mm the contact N+1 will be located in the same spatial position 

that was previously occupied by N. (C) Topography and 

experimental set-up of EEG electrode placement during DBS 

surgery. 

 

 

  

(iii) Resonance characteristics in the STN area are related to STN-motor network connectivity 

and predict clinical effects of DBS in PD (Study 3). 

(iv) Delivering stimulation on specific phases of the detected oscillations maximizes the 

disruption of the pathological activity (Study 4). 

These hypotheses necessitate methodological innovations, which are specified in the following 

paragraphs: while image-based localization combined with MER (tip of the test electrode Fig. 

2A, upper figure) is the gold standard method for optimally targeting the STN (Hutchison et 

al., 1998; Seifried et al., 2012), there are some concerns with employing MER recordings with 

test electrodes during DBS surgery:  

(a) increased surgery-related risk factors, (b) misplacement of the chronic DBS electrode when 

replacing the MER test electrodes, and (c) different DBS effects induces by the test electrodes 

used for MER and the chronic electrodes due to distinct physical characteristics (Fig. 2A), (d) 

implications of novel neuromodulation interventions, such as closed-loop DBS or connectivity 

based localization (Little and Brown, 2012; McClelland, 2011; Paffi et al., 2015; Park et al., 

2011; Telkes et al., 2016; Zrinzo et al., 2012). Implementing macroelectrode recordings with 

the chronic electrode would address these issues. The lack of such an approach in the past 

might be related to the limited capabilities of real-time recording hardware and software for 

analysis of multidimensional neural activity at the time when neurophysiological monitoring 
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was introduced to DBS surgery. Thanks to advanced data acquisition systems, high-level 

computer language, and high-speed data processing tools capable of on-line monitoring of 

brain oscillations, researchers are now able to search for various electrophysiological 

biomarkers during DBS surgery for refining the targeting. One of the aims of this PhD thesis 

was therefore to implement and explore the chronic DBS electrodes for identifying the STN 

boundaries by applying macroelectrode LFP recordings simultaneous to EEG recordings. 

Since MER spike activity in the dorsal part of STN has been shown to be highly correlated 

with LFP beta oscillation, previous studies have already attempted to delineate the STN entry 

based on electrophysiological features captured with macroelectrode recordings (Chen et al., 

2006; Telkes et al., 2016; Winestone et al., 2012). However, it remains unknown how robust 

and reliable these LFP features are during STN mapping. This thesis proposes a novel 

technique to address this issue.  

     Higher neuronal discharge rates (Deffains et al., 2014), synchronization in the beta 

frequency range (Priori et al., 2004; Weinberger et al., 2013; Ray et al., 2004), HFO 

(Hirschmann et al., 2016; Wang et al., 2014), and beta-coupled HFO have been detected in the 

dorsolateral motor part of STN (Yang et al., 2014) and have been shown to correlate with the 

severity of the disease (Neumann et al., 2016; Özkurt et al., 2011; Sharott et al., 2014). Recent 

evidence suggests that DBS of the STN mediates the effects on PD symptoms by modulating 

cortical motor activity, presumably via a direct cortico-subthalamic connection (de Hemptinne 

et al., 2013b; Kuriakose et al., 2010; Li et al., 2012; Walker et al., 2012; Weiss et al., 2015). 

However, little is known about the spatio-temporal interaction between the cortico-subcortical 

interaction and local STN markers in the basal ganglia loop. BO, HFO, beta-coupled HFO and 

STN-cortical motor coupling which lie in close proximity to each other in the dorsal STN, 

cannot be disentangled using standard postoperative measurements with DBS electrodes, since 

their positions are fixed (Fogelson et al., 2006; Gilbertson et al., 2005; Kato et al., 2015; Lalo 

et al., 2008; Litvak et al., 2010; Oswal et al., 2016; Whitmer et al., 2012; Williams et al., 2002). 

By contrast, intraoperative electrophysiological recordings during DBS surgery could help to 

compile a highly precise mapping of the STN region in a stepwise manner on a millimeter 

scale, but they are limited with regard to simultaneous cortical recordings. In the few studies 

in which cortical activity was recorded during DBS implantation in the STN to unravel cortico-

subcortical connectivity (de Hemptinne et al., 2013a; Shimamoto et al., 2013; Whitmer et al., 
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2012) it was performed with implanted electrode grids which covered the inspilateral 

sensorimotor cortex and not with the spatially more extended bilateral EEG recordings applied 

in our approach. 

     We hypothesized that the ongoing oscillations recorded by EEG (Fig. 2B) simultaneous to 

macroelectode  recordings in the STN during implantation of DBS electrodes would unravel 

different oscillatory regions and connectivity profiles of the STN to the cortex. Moreover, we 

expected electrical stimulation in different subcortical depths across the STN to provide a 

complementary measure of connectivity to verify the functional relevance of the detected 

subthalamic biomarkers. Furthermore, delivering electrical stimulation at various subcortical 

depths in the STN might reveal different evoked response components reflecting particular 

pathological sub-regions and cortico-subcortical hubs. Finally, the thesis explored on the basis 

of the spatial specificity achieved by the previous studies, whether improving the temporal 

specificity of stimulation, i.e. delivering stimulation on specific phases of the previously 

detected oscillations, would maximize the disruption of the pathological activity; for this 

purpose, a simulation study on the basis of intraoperative physiological data was conducted. 

2. Included studies 

2.1 Subthalamic cross-frequency coupling mediates direct cortico-subcortical 

connectivity in Parkinson’s disease 

    In the first study, combined EEG and stepwise LFP recordings in the STN of 12 PD patients 

during implantation of DBS electrodes was introduced as a novel approach to investigating 

cortio-subthalamic connectivity and relevant bio-markers within the STN. For subcortical 

invasive recordings, we did not perform the analysis based on the micro tip of the test electrode 

(Fig. 2A, upper figure) for our intraoperative measurements, which is common for most MER 

studies. Instead, the non-insulated macro tip of the cannula, which is also known as the 

mactroelectrode (and which has physical characteristics similar to the chronic DBS electrode), 

was applied. This technique was combined with simultaneous scalp EEG (non-sterile EEG 

electrodes were placed before surgery) with surface electrodes (Ag/AgCl electrodes, MedCaT 

GmbH, Netherlands) covering the head around the burr holes (Fig. 2C) in accordance with the 

international 10–20 EEG system (Alpha-Omega, Nazareth, Israel). These simultaneous 
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recordings enabled us to unravel local electrophysiology in the STN and to probe 

simultaneously the respective connectivity to the cortical area. 

     In the same vein, recent research indicates that DBS of the STN in PD mediates its clinical 

effects by modulating cortical oscillations, presumably via a direct STN-motor cortex 

connection (hyperdirect pathway) (Brittain and Brown, 2014; Chiken and Nambu, 2015; Little 

and Brown, 2014). However, a subthalamic electrophysiological marker for this cortico-

subcortical pathway has not yet been found. Enhanced BO and, more recently, beta-coupled 

HFO have both been linked to the pathophysiology of Parkinson’s disease and, as such, may 

serve as candidate markers (de Hemptinne et al., 2015; Hirschmann et al., 2016; Özkurt et al., 

2011; Wang et al., 2014). In this study, maximum BO and beta-coupled high-frequency 

oscillations were separated in the dorsal subthalamic nucleus both spatially and spectrally, with 

peaks in the lower (13-20 Hz) and upper (21-35 Hz) beta-frequency range, respectively. The 

spot of maximum beta-coupled HFO, but not the more dorsally located spot of peak BO, 

correlated highly with cortico-subthalamic phase coupling calculated by the debised Weighted 

Phase Lag Index (dWPLI), which was most pronounced in the ispilateral medial motor cortex. 

This cortical area also displayed the highest long-range beta-coupled high-frequency 

oscillations between cortical BO in the ipsilateral motor cortex and HFO in the STN, which 

matched the spot of maximum local beta-coupled HFO. In this coherent loop, the STN activity 

was led by activity in the motor area. In the same line of evidence, low frequency electrical 

stimulation - when applied at the different sites of the dorsal STN - revealed the highest short-

latency cortical-evoked potentials projecting to the ipsilateral motor area at the spot of highest 

beta-coupled HFO in the STN as well. Furthermore, the subthalamic-motor area phase 

coupling correlated significantly with the severity of motor symptoms in the medication OFF 

state. These converging evidences suggest that subthalamic beta-coupled HFO represent a 

node in segregated functional loops and may serve as local markers of the hyperdirect pathway 

between the motor area and STN for refined targeting of deep brain stimulation in Parkinson’s 

disease. 
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2.2 Spatial specificity of beta oscillation and cortico-subthalamic connectivity in 

Parkinson’s disease 

     In the second study, simultaneous cortical-EEG and subcortical-LFP was acquired during 

the DBS surgery with the same approach as applied in the first study. However, the quadripolar 

final DBS electrode (model 3389: four 1.5 mm macroelectrode contacts, separated by 0.5 mm, 

Medtronic Inc., Minneapolis, USA) was used during STN localization, instead of the test 

electrode. We recorded 32 to 38 cortical EEG sensors covering the frontal, central, temporal, 

parietal, and midline regions, which was a larger cortical region than recorded in the first study. 

For the subcortical-LFP mapping the quadripolar DBS electrode was passing through the STN 

region in steps of 1 mm. Due to the physical characteristics of the chronic DBS electrodes, 

each area in the STN is recorded several times; i.e. first by the lowest electrode contact, then 

(after inserting the electrode lead 2 mm) by the next contact etc (Fig. 2B). This technique 

allows us to check the reliability of the recording and determine the oscillatory region with 

high accuracy during DBS implantation. In comparison with the first study, the coverage of 

the cortical area with EEG electrodes that could uncover different STN-cortical connections 

was considerably higher. This study included recordings in 21 PD patients during DBS 

surgery. We could identify spatially and spectrally distinct beta oscillatory regions in the STN, 

which were robustly detectable at different time points by several DBS electrode contacts 

during STN mapping. At the same time, cortico-subthalamic phase coupling was calculated 

with dWPLI at each depth. This measurement is more robust and efficient in detecting true 

phase interaction between the cortex and subcortical area than common phase measurements 

such as the imaginary part of coherence (Nolte et al., 2004). We found the site in the STN that 

had the most significant phase coherence to the ispilateral medial motor cortex, a finding which 

was also reproducible across different DBS electrode contacts during STN mapping. Thereby, 

cortico-subthalamic coupling could be separated in the dorsal STN both spatially and 

spectrally. The site of cortico-subthalamic coupling which projected to the ispilateral medial 

motor cortex but not the beta oscillatory region was highly correlated with the clinical severity 

of PD (motor score assessed by UPDRS III). These findings suggest that STN-motor cortex 

coupling and the beta oscillatory region might be detected and disentangled in a reliable 

manner intraoperatively and may serve as markers during DBS surgery.  
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2.3 Resonance characteristics in the subcortical area predict clinical effects of deep 

brain stimulation and subthalamic-motor network connectivity in Parkinson’s disease  

    In the first two studies, we proposed and tested a novel technique to target the STN with 

macroelectrode LFP measurements instead of performing single-cell recording with a 

microelectrode. The findings differentiated two oscillatory regions in the dorso-lateral motor 

STN: the first one, which was located more dorsally, exhibited pronounced beta activity, 

whereas the second more ventral site had the highest phase-coupling to an ipsilateral cortico-

subcortical motor network. This leads to the question how these oscillatory regions respond to 

DBS and which relevance they have for the therapeutic intervention.  

   In order to address how oscillatory regions change in response to external perturbation, low 

frequency electrical stimulation (1 Hz and 5 Hz electrical stimulation), delivered at various 

depths, was applied during simultaneous LFP recordings at adjacent contacts in 13 PD patients. 

Before DBS was applied, the resting state STN spectral characteristics and the functional 

phase-coupling between STN and cortical areas were captured as well. The subcortical evoked 

potentials (sEPs) after DBS showed a distinct spatial and temporal pattern in the STN. This 

stimulation response was prominent in the dorsal part of the STN and was highly correlated 

with the region in the STN where resting motor-subthalamic coherence and HFO reached their 

highest values; there was no correlation found between the spatial location of the highest STN-

motor coupling and the beta oscillatory region. During low frequency DBS, the amplitude of 

the recorded sEPs underwent several oscillations before neutralized by the inherent subcortical 

resistance. Here, this energy dissipation property of the brain region under electrical 

stimulation is referred to as damping. An oscillation model was used to establish the damping 

characteristics of different subcortical sites in response to electrical stimulation. The results 

demonstrated that the most prominent sEPs site in the dorsal STN was also less resistant (i.e. 

low damping) to DBS and that maximum energy absorption occurred in this area. This novel 

approach might bring new insights about the way DBS affects oscillatory brain regions. 

Interestingly, the damping of the system increased (decrease in sEP amplitude) during 

therapeutic high-frequency stimulation, thus, reflecting a resonance inhibiting effect on the 

system; notably, the clinicaly effective electrode contact matched with the electrode contact 

position with the most prominent sEPs response. These findings suggest that this node in the 
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STN might facilitate the electrical responses to decouple pathological cortico-subcortical 

connectivity during high-frequency DBS.   

2.4 Phase-dependent modulation as a novel approach to therapeutic brain stimulation 

    In the last study, we were interested in triggering DBS pulses on the basis of the pathological 

oscillatory activity rather than applying traditional open-loop DBS. Closed-loop DBS 

interventions could provide us with the opportunity to optimize stimulation protocols for 

perturbation of pathological oscillatory activity in PD patients.  

   Here, a data-driven model was explored in two PD patients to reveal phase specificity of 

pathalogical oscillations to external stimulation. By delivering stimulation pulses relative to 

the ongoing oscillation phase, an alternative approach, namely, the targeted perturbation of 

pathological rhythms might be obtained. In this study, the phase sensitivity of a pathological 

oscillation was investigated using the phase model approach (Pikovsky et al., 2002) to 

reconstruct the phase response curve (PRC) of the LFP signals recorded in the STN. However, 

due to hardware limitations (e.g., latency), the optimal and precise DBS timing was not applied 

in real-time; instead the PRC was derived off-line on the basis of LFP recorded from the motor 

part of the STN. In order to measure PRC empirically, we determined specific electrode contact 

that displayed pronounced oscillatory activity in the beta-band, which is a known 

pathophysiological marker of motor area in the STN (Priori et al., 2004; Weinberger et al., 

2006); the PRC was obtained by the method proposed by Rosenblum and Pikovsky 

(Rosenblum and Pikovsky, 2001). Similar PRCs were identified for both PD patients, 

indicating the phase specificity of pathological beta oscillations in the STN. 

    On the basis of these findings, phase-specific interventions appear to be the most 

straightforward approach for disrupting the beta synchronization in the STN. Also, phase 

locked stimulation in relation to the BO might induce plastic changes of the pathological 

oscillations by inducing long-term potentiation/depotentiation-like effects (Huerta and 

Lisman, 1995).  

3. Discussion 

    In this PhD thesis, the synchronized oscillatory activity within and between the STN and 

cortical regions was studied in PD patients when at rest and in the medication OFF state during 
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the implantation of DBS electrodes. Here, novel subcortical and cortical recording methods 

were proposed and tested: cortical activity was captured by intraoperative EEG, while 

macroelectrode recordings were performed in the STN. Moreover, the response of oscillatory 

regions to electrical stimulation were investigated during low-frequency and therapeutic high-

frequency DBS.  

3.1 Biomarkers in the subthalamic nucleus and cortico-subcortical connectivity 

     Enhanced beta oscillations, HFO, and their coupling, namely, B-HFO, in basal ganglia 

loops are shown to be correlated with the state of PD and with changes in response to 

pharmacological and/or neurostimulation interventions (Brittain and Brown, 2014; Little and 

Brown, 2014). A recent study, in which cortical and subcortical oscillatory activities were 

recorded with a chronic device suggested that dyskinesia corresponded to strong oscillation in 

the STN, motor cortex, and to their phase coherence coupling in the same band (Swann et al., 

2016). These electrophysiological biomarkers and their connection to the cortex at the same 

time have rarely received attention. In this PhD thesis, considerable evidence is provided for 

delineating the spatial and spectral specificities of physiological biomarkers both within the 

STN and the cortex, particularly as it pertains to cortico-subthalamic functional and effective 

connectivity. 

     Several features of STN-LFP, such as excessive beta oscillatory activity or coupling of the 

beta phase to the amplitude of HFO (B-HFO) have been reported as potential biomarkers in 

PD, and have recently shown the potential to be used as feedback signals for closed-loop DBS 

(de Hemptinne et al., 2015; Little and Brown, 2012; Little et al., 2013). Although, both BO 

and B-HFO were identified in the motor territory of the STN, their role and mechanism in the 

STN is still unclear. Here, we showed that the maximum BO and beta-coupled HFO were 

separated in the dorsal STN spectrally, with peaks in the low and high frequency-beta band, 

respectively. BO in the low-frequency beta band may serve a rather, local, i.e. subcortical 

function, while high-frequency beta oscillations may serve the distal communication to the 

cortex (Friston et al., 2015; Oswal et al., 2016). Low beta oscillation might be generated from 

the reciprocal connectivity between the subcortical structures STN and GPi (Plenz and Kital, 

1999). This interpretation may be supported by the recent MEG study of Oswal and colleagues 

(Oswal et al., 2016). They have suggested the hyperdirect pathway to be characterized by high 
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beta band oscillations and low beta band activity to mediate local subcortical function. Here, 

confirm this hypothesis by demonstrating in all studies that the STN-motor network 

synchronization was strongest in the upper beta-range as well. Furthermore, the peak beta 

frequency within the STN was always in the low beta range in our recordings.  

    The results of the presented intraoperative studies match with the postoperative studies using 

simultaneous MEG and STN-LFP recordings in DBS patients. These previous studies suggest 

that the frequency of cortico-STN coherence with the ipsilateral M1 lies in the upper beta band 

(~25 Hz) (Litvak et al., 2011; van Wijk et al., 2016). However, the spatial specificity of the 

spot in the STN which connected to the cortical motor network remained unknown since these 

post-operative measurements did not allow to move the electrode, i.e. map the across the STN. 

The novel method implemented in this work employed millimeter by millimeter measurements 

of cortico-subcortical phase coherence during DBS surgery and revealed the spatial specificity 

of the STN-motor network. The most prominent STN-motor network was located ventral to 

the beta oscillatory region, but was still within the dorsolateral motor part of the STN. 

    Previous studies applied bipolar LFP recordings in the STN region to cancel out artifacts 

(e.g. related to movements) or to address the same referencing issue (Bastos and Schoffelen, 

2016); however, this method decreases the spatial specificity of the recordings considerably. 

To best our knowledge, this work showed for the first time that the power spectrum of 

monopolar recordings is robust and reliable for detecting the oscillatory regions in the STN. 

On the basis of the repeated recording technique that calculated the power spectrum of the 

same spatial location at different time points, it could be demonstrated that the findings were 

reproducible and could be applied in an operation environment. 

    In summary, a novel technique for electrophysiological recordings during DBS surgery has 

been introduced, which is capable of detecting the spot of STN-motor cortex coupling. This 

spot may serve as a marker of the hyperdirect pathway and could potentially facilitate 

intraoperative, connectivity-based targeting during DBS surgery in PD. Furthermore, the STN 

localization with the chronic electrode may reduce the surgery-related risk, a proposal that 

needs to be verified in future studies. 
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3.2 How does deep brain stimulation influence subcortical oscillatory activity? 

    There are several lines of evidence suggesting a reduction of low beta power in the STN  

(Eusebio et al., 2012) and reduced phase coherence connectivity between the STN and mesial 

premotor regions in the high beta band (Oswal et al., 2016) during therapeutic DBS. However, 

most of these studies did not provide proper spatial specificity or a direct oscillatory response 

to DBS. Furthermore, in most of studies artefact-rejection methods were employed to recover 

the brain signals from DBS related artefacts during electrical stimulation. However, it remains 

unclear how these methods could fully reject the stimulation artefact from genuine induced 

DBS oscillations due to the nonlinear nature of artefacts (Noury et al.). In this PhD thesis, a 

novel strategy is proposed to record neural responses during STN DBS. 

    To examine the neural response to STN DBS during different stimulation conditions, the 

LFPs were acquired with a very high sampling rate providing high temporal resolution of the 

evoked activities during mapping the STN area millimeter by millimeter. This high temporal 

and spatial resolution revealed a distinct sEP pattern, which had a significant correlation with 

STN-motor cortex connectivity. The spatial co-location of prominent sEPs with strong STN-

motor coupling and with HFO might explain the emergence of a short latency evoked response 

in the STN. At the same time, no correlation was found between the spatial location of the beta 

oscillatory region and the STN-motor network coherence. It can, therefore, be speculated that 

an information flow from the cortical motor area to the STN through a hyperdirect pathway 

may jam the synchronized pathological activity of beta range oscillations to produce high 

frequency rhythms in the STN. Two recent studies support this speculation by providing 

neurophysiological evidence for the relevance of HFO as a functional marker of the motor 

state in PD (Hirschmann et al., 2016; Wang et al., 2014). Furthermore, increases of the HFO 

power have been shown within the STN at movement onset, indicating that HFO in the STN 

plays a prominent role in the motor circuit (López-Azcárate et al., 2010; Özkurt et al., 2011). 

    One possible approach to probe the neural oscillatory characteristics is to directly perturb 

the system with external stimulation. The resulting neural activity response may reveal 

valuable information about the properties of the system. Intrinsic dynamical properties of 

cortical sites were revealed by transcranial magnetic stimulation (Harquel et al., 2016; 

Rosanova et al., 2009). In parallel to this approach, cortical evoked potentials were recorded 
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during various DBS frequencies (between 5 and 30 Hz) in the STN of PD patients (Eusebio et 

al., 2009). Eusebio and colleagues showed that the amplitude of cEP in the ipsilateral 

sensorimotor cortex increased significantly at as timulation frequency of 20 Hz as compared 

to 5 Hz stimulation, thereby, suggesting that the basal ganglia–cortical network involving the 

STN has a tendency to resonate at 20 Hz in PD. They also pointed out that under L-dopa 

administration damping was increased in the basal ganglia- cortical network, thereby, 

potentially limiting this loop to resonance at 20 Hz oscillation. However, to the best of our 

knowledge, no study up to now has investigated the dynamical properties of different 

subcortical sites across the STN in response to DBS. The present results are thus in line with 

the study performed by Eusebio and colleagues. While this previous study applied dopamine 

to reduce the resonance effect, this work applied electrical stimulation for the same purpose. 

In fact, the reduction of sEPs during high-frequency stimulation indicated that the damping of 

the stimulated subcortical site increased during the intervention and that the pathologically 

increased resonance state of the system was reduced. Since the sEPs dynamically changed with 

respect to the neural activity, these results could offer a practical and reliable marker for closed-

loop stimulation.  

3.3 Future outlook 

    DBS is used for many years in PD patients achieving considerable clinical effects 

(Schuepbach et al., 2013).  The underlying electrophysiological mechanisms of this 

intervention are, however, still not completely clear. The present work provides novel methods 

for electrophysiologically-driven DBS implantation and new insights into the 

neurophysiological manifestations of PD. The studies showed the feasibility and reliability of 

monopolar macroelectrode recordings through the chronic electrode (DBS lead model 3389) 

to locate the STN boundaries during surgery in a relatively large group of PD patients (more 

than 35 patients). The STN mapping was reproducible under real intraoperative conditions. 

This method has potentially important surgical implications by providing an alternative to the 

common practice of inserting microelectrode test electrodes prior to the implantation of the 

chronic electrode. It may, thereby, reduce surgical complications and avoid lead misplacement, 

which has to be demonstrated in future studies. Moreover, recording cortical activity as an 

additional neural information source provided a new biomarker for targeting the pathological 
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PD network, and will, thereby, facilitate network based DBS implantations. In this regard, 

antidromic cortical activation has been shown to play a key role during STN DBS in the 

suppression of pathological cortical and subcortical oscillations in human and animal studies 

(Gradinaru et al., 2009; Kahan et al., 2014; Li et al., 2012; Li et al., 2007; Walker et al., 2012). 

This underlines the importance of the M1-STN direct connection (hyperdicret pathway) in PD. 

Based on this evidence, the present work suggested a new intraoperative technique for the 

detection of the hyperdirect pathway to facilitate network based DBS lead placement; an 

approach that will help to maximize the perturbation of the pathological brain network in PD.  

    Continues high-frequency DBS has been shown therapeutically effective in reducing PD 

motor symptom and disrupting ongoing pathological oscillations; adaptive intervals of 

stimulation might potentially increases both the therapeutic effect and efficacy of stimulation 

(Little et al., 2013). However, maximal perturbation of the pathological beta activity could be 

reached by our proposed targeted perturbation method. Delivering DBS based on specific 

phases of the ongoing beta oscillation may not only optimize the pathological disruption, but 

could also induce plastic changes (Cagnan et al., 2015). A recent computational model of PD 

confirmed our approach to target specific phases of the beta oscillatory cycle (Holt et al., 2016). 

    The spatial specificity of the STN-motor network connection and prominent sEPs at distinct 

STN sites were demonstrated at a resolution of about 1 mm. With the current design of DBS 

leads (DBS lead model 3389; 1.5 mm contact height, 1.27 mm diameter, cylindrical design 

with a surface area of about 22 mm2) a spatially precise targeting based on these 

electrophysiological markers seems less feasible. However, recent advances in high density 

DBS lead technology may provide a tool for directional steering of the stimulation with a 

higher spatial resolution in the submillimeter range (contact surface area of about 100 µm2) 

(Connolly et al., 2016; Contarino et al., 2014; Pollo et al., 2014). Such increased spatial 

precision of stimulation and recording would enable us to specifically target the spot of B-

HFO/maximum M1-STN coherence. 

       In conclusion, this work provides sufficient evidence that macroelectrode recordings with 

the chronic electrode (DBS lead model 3389, Medtronic Inc., Minneapolis, USA) are a safe 

and robust method for targeting the STN during DBS surgery. Additionally, combining LFP 

and EEG recordings in the surgical environment offered a new way of DBS targeting on the 
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basis of pathological network activity. Applying these techniques, the correlation between 

various electrophysiological markers in PD could be revealed for the first time.  
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Abstract 

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson’s disease mediates its effects as a 

network-modulating therapy by influencing cortical oscillatory activity via cortico-subthalamic pathways. A 

STN marker for this hyperdirect pathway has not yet been found. Using a novel mapping technique, we 

demonstrated that the subthalamic spot of maximum beta-coupled high-frequency oscillations (B-HFO), but not 

the more dorsally located spot of peak beta oscillations, correlated with cortico-subthalamic phase coupling to 

the ipsilateral motor cortex. In a second line of evidence, focal electrical stimulation revealed that the highest 

short-latency cortical-evoked potentials projecting to the ipsilateral motor cortex could be induced at the spot of 

highest B-HFO in the STN as well. Moreover, the cortico-subthalamic synchronization correlated with the 

severity of motor symptoms. These converging findings suggest that B-HFO may serve as local markers of the 

hyperdirect pathway between motor cortex and STN. 
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Introduction 

Subthalamic nucleus (STN) pathophysiology often correlates with the clinical outcome of deep brain 

stimulation (DBS) in Parkinson’s disease (PD) (Kühn et al., 2008; Kühn et al., 2006; Kühn et al., 2009; Ray et 

al., 2008). Increased beta oscillations (BO, 13-35 Hz) have been detected in the dorsal part of the STN and the 

power in this frequency-band is known to correlate with postoperative improvement (Zaidel et al., 2010). More 

recently, high-frequency oscillations (HFO, >150 Hz) have been associated with PD symptoms, e.g. via an 

inverse correlation with akinesia (Wang et al., 2014), and were also shown to peak in the dorsal STN (Yang et 

al., 2014). These HFO might couple to lower frequency oscillations and reveal a statistical relationship between 

phase and amplitude in two different frequency bands (cross-frequency coupling). This phase amplitude 

coupling (PAC) may refer to different phenomena, i.e. when the phase of subthalamic BO modulates the 

amplitude of HFO (B-HFO) in the STN (López-Azcárate et al., 2010; Özkurt et al., 2011; Yang et al., 2014), or 

when the phase of cortical BO modulates broadband gamma oscillations in the cortex (de Hemptinne et al., 

2013; Qasim et al., 2016). Although subthalamic B-HFO are found throughout the STN (López-Azcárate et al., 

2010; Yang et al., 2014), they peak in the dorsal STN (Yang et al., 2014) like BO (Holdefer et al., 2010; 

Steigerwald et al., 2008).  

One parallel line of research indicates that the dorsal STN not only hosts the local physiological markers BO 

and B-HFO, but also shows significant anatomical connectivity with the ipsilateral motor cortex (M1) via a 

direct connection. This connection, known as the hyperdirect pathway, is demonstrated in tracer studies in 

nonhuman primates (Haynes and Haber, 2013). These observations tally with postoperative physiological 

recordings using externalized DBS electrodes for simultaneous recordings of local field potentials (LFPs) and 

magnetoencephalography (MEG) in PD patients. In these LFP-MEG studies, the highest cortico-subthalamic 

coupling (CSC) was found in the beta band between the dorsal STN and the M1, suggesting that the hyperdirect 

pathway is involved (Hirschmann et al., 2011). This CSC was measured at a higher beta-frequency (21-35Hz) 
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(Litvak et al., 2011; Oswal et al., 2016; van Wijk et al., 2016) than the maximum subthalamic power (13-20 Hz) 

opening the possibility that they are involved in different cortico-basal ganglia loops.  

Furthermore, recent evidence suggests that DBS of the STN in Parkinson’s disease mediates its effects by 

modulating cortical oscillatory activity, presumably via a direct cortico-subthalamic connection (de Hemptinne 

et al., 2015; Kuriakose et al., 2010; Li et al., 2012). However, little is known about the spatio-temporal 

interaction between the local STN markers (BO and B-HFO) and their involvement in the coherent loops 

connected to the cortex (CSC). BO and B-HFO, which lie in close proximity to each other in the dorsal STN, 

cannot be disentangled using standard postoperative measurements with externalized DBS electrodes, since 

they provide poor spatial resolution and their positions are fixed (Fogelson et al., 2006; Hirschmann et al., 2011; 

Kato et al., 2015; Lalo et al., 2008; Litvak et al., 2011; Oswal et al., 2016; Whitmer et al., 2012; Williams et al., 

2002). By contrast, intraoperative electrophysiological recordings during DBS surgery enable us to compile a 

highly precise mapping of the STN region in a stepwise manner on a sub-millimeter scale, but are limited with 

regard to simultaneous cortical recordings. In the few reports in which cortical physiology is evaluated during 

STN surgery (de Hemptinne et al., 2013; Shimamoto et al., 2013; Whitmer et al., 2012) it has not yet been 

combined with high-precision mapping of the STN to unravel the connectivity of different local STN markers to 

cortical areas. Our intention was to close this gap. We hypothesized that combined EEG and stepwise LFP 

recordings in the STN of PD patients during implantation of DBS electrodes unravels BO and B-HFO in the 

dorsal STN, thus enabling us to examine their spatial specificity as biomarkers for direct cortico-subcortical 

connectivity. Furthermore, we reasoned that lower and upper beta-frequency bands are differently involved in 

this cortico-subcortical connectivity. Moreover, when applied at the different levels of the dorsal STN during 

simultaneous recordings of cortical evoked potentials, we expected focal electrical stimulation to provide a 

complementary measure of connectivity to verify the functional relevance of the physiological biomarkers in 

the STN.  
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Results 

The patients enrolled in this study were examined before surgery using the motor part of the Unified 

Parkinson’s Disease Rating Scale (UPDRS III) and by applying an L-Dopa test (medication “ON” and “OFF”). 

The mean UPDRS III score was 25.5±6.15 and 40±8.49 in the ON state and OFF states, respectively. The 

clinical information, which was assessed on average 4.5±1.92 months before surgery, is summarized in Table 1. 

Intraoperative recordings during DBS surgery were performed in 15 subthalamic nuclei of 12 PD patients The 

calculation of the beta band showed a mean peak frequency of 19.93±3.59 Hz, with a different power 

distribution as a function of depth (Fig. 2A). Comparative analysis of all recordings of the dorsal and the ventral 

part revealed a significantly higher average of power (p = 0.004; Mann–Whitney U test) for the dorsal STN 

(Fig. 2B).  

Phase-amplitude coupling in STN 

A calculation of the cross-frequency coupling (i.e. PAC) between the phase of lower frequencies (10-40 Hz) 

and the amplitude of higher frequencies (100-350 Hz) across all STN depths showed spatial specificity with 

regard to the power spectrum, PAC and preferred coupling phase (Fig. 3A). On the group level, significant PAC 

was observed between the phase of 26.23±3.70 Hz and the amplitude of 260.92±41.05 Hz oscillations. These 

beta-coupled high-frequency oscillations (B-HFO) peaked in the dorsal part of the STN at 1.54±0.46 mm below 

the STN entry (Fig. 3B).  Comparative analysis of all recordings of pre-STN, dorsal and ventral STN revealed a 

significantly higher average B-HFO in the dorsal STN than in the pre-STN and ventral STN, respectively (Fig. 

3B). At the STN depth of maximum PAC, the high frequency amplitude oscillated consistently at a specific beta 

phase (Fig. 3C), i.e. the mean preferred coupling phase was at -38.468±16.484°.  

Cortico-subcortical connectivity 

Functional connectivity analysis with phase coherence showed significant CSC in the beta-band (25.07±3.64 

Hz, Fig. 4A). This beta CSC revealed a specific spatial pattern at the cortical level, (electrodes projecting to the 
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medial motor cortex of the ipsilateral hemisphere, i.e. the C1/3 electrodes, Fig. 4B) as well as within the STN 

(peaking in the dorsal part of the STN 1.65±0.43 mm below the STN entry).  

Effective connectivity analysis with PSI confirmed the ipsilateral medial motor area as the region with the 

highest cortico-subcortical coherence with the ipsilateral STN and also revealed an information flow from 

cortex to STN in the beta band. The ipsilateral PSI of the central cortical region was significantly higher than 

the corresponding contralateral PSI (p = 0.01; Mann–Whitney U test).  

The effective connectivity was further characterized by electrical stimulation when passing through the dorsal 

STN in steps of 0.5 mm to detect (hyper)direct cortico-subcortical connectivity. The short latency cortical-

evoked potential (CEP) was identified 2.54±0.73 ms after stimulation, indicating a direct pathway (Fig. 5A) 

with a specific spatial pattern at both subcortical and cortical level. The hyperdirect pathway peaked in the 

dorsal part of the STN and projected to central electrodes of the ipsilateral hemisphere (Fig. 5B). Group results 

with a total of 1,927 stimuli revealed topographic specificity of CEP on the cortical level, i.e. that CEP 

projected to C3 (Fig. 5C).  In the STN, the sites that led to the highest CEP also revealed the strongest local 

PAC (i.e. B-HFO) and the highest connectivity (i.e. dWPLI) to the motor cortex (Fig. 5D).  

Beta power, phase-amplitude coupling and phase coherence 

The prominent BO within the STN (19.93±3.60 Hz) peaked at the STN entry and decreased gradually from the 

dorsal to the ventral border, whereas the average beta-coupled (26.23±3.70 Hz) HFO peaked at 1.54±0.46 mm 

below the STN entry. Statistical analysis revealed that the peak beta frequencies of both B-HFO (26.23±3.70 

Hz) and CSC (25.07±3.64 Hz) differed significantly from those of BO (P= 0.01; Mann–Whitney U test and P= 

0.01; Mann–Whitney U test, respectively), whereas the peak beta frequencies of B-HFO and CSC did not differ 

significantly from each other (P= 0.9; Mann–Whitney U test). In each patient, the site of maximum B-HFO 

(r=0.76; P=0.003; Spearman test) in the STN – but not the site of peak BO (r=-0.44; P=0.14; Spearman test) – 

correlated highly with the site of maximum cortico-subcortical phase coherence to the ispilateral M1 (Fig. 6B). 

On the group level, the site of maximum B-HFO (1.54±0.46 mm below STN entry) also differed significantly 
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from the site of peak BO (0.29±0.28 mm below STN entry; P= 0.001; Mann–Whitney U test). Table 2A 

summarizes the relationship between the different physiological markers. Notably, the cortico-subthalamic 

synchronization was the only physiological marker (Table 2B) that correlated significantly (r=0.72, P=0.014) 

with the severity of motor symptoms in the medication OFF state (Fig. 6). 

Phase-amplitude coupling in the cortex and between cortex and STN 

The maximum cortical PAC, i.e. the beta-coupled (19.92±0.20 Hz) broadband gamma oscillations 

(108.29±16.66), was located in M1. However, in 11 out of 12 patients, it was located more laterally than the 

cortico-subcortical connectivity measures, which projected to C1/3 (Fig. 4C). This cortical PAC showed a 

consistently preferred coupling phase at a mean of -12.36 ± 18.45°. Furthermore, effective connectivity analysis 

within the central cortical areas with PSI revealed an information flow from the lateral to the medial M1 in the 

beta band (25.17±2.79 Hz).  

Notably, the highest long-range PAC, i.e. the B-HFO between ipsilateral cortical BO (27.22±4.07 Hz) and high-

frequency STN activity, also projected to lateral M1 in 9 out of 12 patients (Fig. 4D, E). This long-range PAC 

showed a consistently preferred coupling phase at a mean of 5.49± 42.56°. Interestingly, the high-frequency 

activity of this cortico-subcortical PAC, i.e. of the long-range B-HFO, was located at the same site within the 

STN as the maximum PAC in the STN, i.e. local B-HFO.  

Direct and indirect cortico-subcortical loops 

In summary, the results indicate two connectivity patterns: (i) A direct connection between the medial M1 and 

STN (at the site of subthalamic PAC, i.e. local B-HFO) captured via phase coherence (dWPLI), phase-slope 

index (PSI) and short-latency cortical evoked potential (CEP). (ii)  An indirect connection between M1 and 

STN, which is captured via long-range phase-amplitude coupling (PAC, i.e. long-range B-HFO) between cortex 

(at the site of cortical PAC, i.e. beta-coupled broadband gamma oscillations) and STN (at the site of 
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subthalamic PAC, i.e. local B-HFO) and which is – at least partly – mediated via information flow (PSI) from 

lateral to medial M1. Both of these loops converge on local B-HFO in the STN.  

Discussion 

Deep brain stimulation of the STN is an established therapy in movement disorders such as Parkinson’s disease 

(Krack and Hariz, 2013; Lozano and Lipsman, 2013; Schuepbach et al., 2013). The mechanism of action has, 

however, still not been completely elucidated (Chiken and Nambu, 2015; Little and Brown, 2014). Previous 

findings in animals (Gradinaru et al., 2009; Li et al., 2012) suggest that antidromically activated responses in 

the motor cortex play an important role in mediating the beneficial effects of STN-DBS in PD. Human DBS 

studies measuring short-latency cortical evoked potentials following STN stimulation also indicate such a direct 

cortico-subcortical connection (Kuriakose et al., 2010; Walker et al., 2012). In this context, ex vivo tracing 

studies in animals revealed the hyperdirect pathway as the anatomical substrate for such a direct link between 

the STN and the motor cortex (Haynes and Haber, 2013). These observations were paralleled by imaging 

findings in humans, showing that these regions are also directly connected (Brunenberg et al., 2012; Kahan et 

al., 2014). However, specific knowledge about a physiological marker within the STN that reflects the 

functional substrate for this cortico-subcortical pathway is still somewhat limited. In this study, we provide 

converging evidence suggesting that cross-frequency coupling, i.e. B-HFO, in the STN is a physiological 

biomarker of the hyperdirect pathway.  

Biomarkers in the subthalamic nucleus 

Although different local STN markers, such as beta oscillations  (Zaidel et al., 2010; Schlaier et al., 2013), high-

frequency oscillations (López-Azcárate et al., 2010; Özkurt et al., 2011; Wang et al., 2014) and their coupling, 

i.e. B-HFO (de Hemptinne et al., 2013; de Hemptinne et al., 2015; López-Azcárate et al., 2010; Özkurt et al., 

2011) are already known to be prominent in the dorsal part of the STN, their mutual relation is not yet known..  
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The B-HFO observed in the dorsal STN may be related to different PAC mechanisms. An increasing number of 

studies in PD patients show that low-frequency oscillations can modulate high-frequency oscillations by means 

of phase-amplitude coupling between local and distant sites of interconnected cortical-basal ganglia loops (de 

Hemptinne et al., 2015; Swann et al., 2015; Yang et al., 2014). Since a comparison of STN spike activity and 

local field potentials revealed that beta-locked STN neurons did not correlate with the B-HFO, the latter are 

probably not a purely “local” phenomenon (Yang et al., 2014).  

In our study, the maximum BO and B-HFO were separated in the dorsal STN spectrally, with peaks in the lower 

(13-20 Hz) and upper (21-35 Hz) beta-frequency range, respectively. A spatial separation between BO and B-

HFO in the STN was also apparent, with a more dorsal location of the former. These findings suggest that BO 

and B-HFO are involved in segregated basal-ganglia and cortico-subcortical loops; a hypothesis which might be 

supported by the observed differences in peak frequencies within these loops serving indirect and hyperdirect 

pathways (Oswal et al., 2016). These different cortico-subcortical loops allow for sequential information 

processing, i.e. only the selected motor program is initiated, executed and terminated at the selected timing 

(Deffains et al., 2016; Jahanshahi et al., 2015; Nambu et al., 2002). 

Functional connectivity 

We observed that the STN-M1 synchronization was strongest in the upper beta-range (25.07±3.64 Hz) and 

correlated with the beta-frequency range of both the long-range B-HFO and the local B-HFO, but not with the 

peak frequency within the STN (19.97±3.6 Hz). These findings tally with postoperative studies using 

simultaneous MEG and STN-LFP recordings in DBS patients (Hirschmann et al., 2011; Litvak et al., 2011; van 

Wijk et al., 2016). They suggest that the frequency of cortico-STN coherence with the medial and lateral 

ipsilateral (pre)motor cortex  usually lies in the upper beta band (~25 Hz) and therefore differs from the average 

beta oscillation (~17 Hz) in the STN.  

Reports evaluating the cortical physiology with electrocorticography during STN surgery confirmed this beta-

CSC and revealed additional cortical-STN drive in the broad gamma band (de Hemptinne et al., 2013). 



10 
 

Interestingly, the latter study also revealed a PAC from the STN to the motor cortex, but not in the other 

direction, as was to be expected from the CSC findings of that particular study as well as of preceding studies. 

This might be related to the fact that the DBS electrodes used for these connectivity measurements were of poor 

spatial resolution, i.e. there was no specific spotting of the local B-HFO with high-precision STN mapping. This 

very technique enabled us to demonstrate that the locations of the B-HFO and the CSC in the dorsal STN are 

highly correlated, thus suggesting that the local PAC is a marker of the hyperdirect pathway connected to M1.  

Effective connectivity 

In a second line of evidence, while studying effective cortico-subcortical connectivity, i.e. the directionality of 

interaction (PSI), we detected an information flow from M1 to STN. This suggests that the B-HFO in the STN 

is driven by motor cortex activity rather than by basal-ganglia loops. Moreover, the topographical specificity of 

this connectivity in the motor cortex matches earlier MEG source localization of cortico-STN coherence well, 

indicating that precisely this cortical area is the origin of the hyperdirect pathway (Hirschmann et al., 2011).  

Finally, when focal electrical stimulation was applied at the spot of maximum B-HFO in the dorsal STN, which 

was also the spot with the maximum cortico-subcortical connectivity, the induced cortical-evoked potentials 

showed the same cortical topography in the ipsilateral medial M1 as the other connectivity measures. When 

stimulating across the dorsal STN in steps of 0.5 mm, this spot of maximum B-HFO and CSC also revealed the 

highest amplitudes of cortical-evoked potentials projecting to the cortex at a short latency, which is suggestive 

of a (hyper)direct connection. The simultaneous activation of prefrontal regions is possibly related to the spread 

of stimulation current to those associative and limbic regions of the STN that have connections with prefrontal 

areas. This could be due to the rather non-focal characteristics of electrical as opposed to optogenetic 

stimulation (Gradinaru et al., 2009). Moreover, recent studies in non-human primates (Haynes and Haber, 2013) 

and humans (Alkemade and Forstmann, 2014) question the existence of distinct anatomical subdivisions, 

proposing instead that the functional zones within the STN overlap. However, the most highly evoked potential 

was always found in the motor area of the cortex. 
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Notably, a more laterally located M1 spot revealed local PAC on the one side (similar to recent reports 

by  (Swann et al., 2015) and connectivity to STN on the other, captured via long-range PAC. However, 

this connection seems to be rather indirect since the effective connectivity measures projected to more 

medially located areas in M1. Importantly, the present study demonstrates that B-HFO in the STN is 

connected to both of these direct and indirect cortico-subcortical loops and may thereby serve as 

network hub. 

Clinical relevance 

There is increasing evidence to suggest that DBS of the STN is a network-modulating therapy that influences 

wide-spread cortical activity and synchronization in PD (Dejean et al., 2009; Weiss et al., 2015). Several lines 

of research have reported pathologically altered cortical physiology (Herz et al., 2014) and cortico-subcortical 

coupling in PD patients (Litvak et al., 2011; Williams et al., 2002), 6-ODHA-treated rats (Magill et al., 2001; 

Sharott et al., 2005) and MPTP-treated monkeys (Devergnas et al., 2014). In parallel to these 

electrophysiological findings, recent fMRI studies in PD patients also suggest that modulated functional 

connectivity takes place between the cortical areas involved in motor processes and the STN (Fernández-Seara 

et al., 2015).  

In the present study, we captured local PAC and long-range PAC, both of which were reduced by therapeutic 

interventions in PD, i.e. the B-HFO in the STN following Levodopa administration (López-Azcárate et al., 

2010) and cortical beta-coupled gamma oscillations in M1 during DBS (de Hemptinne et al., 2015). This 

indicates a pathophysiological origin of this neural synchronization and may suggest subthalamic PAC as a 

biomarker for treatment monitoring and modulation.  

We detected a positive correlation between the strength of cortico-subcortical phase coupling in the upper beta 

band and the severity of motor symptoms (UPDRS III). This finding is consistent with two recent studies in 

primates (Devergnas et al., 2014) and humans (Kato et al., 2015) in which a correlation between STN-M1 
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coherence and severity of Parkinsonism was also found. As in our study, both the clinical evaluation and the 

recording of STN-M1 connectivity were obtained in resting state and in the medication OFF state. Their 

interaction might reflect the pathological default network in PD. 

Interestingly, recent findings indicate that the cortical area with the highest STN-M1 beta band connectivity 

showed the most obvious power reduction during subthalamic DBS (Whitmer et al., 2012). In the same vein, 

recent work by de Hemptinne and colleagues revealed that exaggerated PAC in the M1 of PD patients might 

serve as a more robust biomarker than cortical beta power (de Hemptinne et al., 2015). Along these lines, we 

recently demonstrated that subthalamic stimulation facilitated movement-related desynchronization of 

widespread cortical activity and predicted clinical improvement from DBS  (Weiss et al., 2015). 

Future Perspectives 

At present, the standard DBS electrode design limits the differential modulation of the reported STN markers. 

Since BO, HFO and B-HFO are all most prominent in the dorsal STN (de Hemptinne et al., 2013; López-

Azcárate et al., 2010; Özkurt et al., 2011; Schlaier et al., 2013; Wang et al., 2014; Yang et al., 2014; Zaidel et 

al., 2010), i.e. within an area of about 2 mm length, they cannot be targeted specifically with the large circular 

electrode contacts (with a length of 1.5 mm) used nowadays in clinical practice. However, recent technological 

refinements have allowed for directional steering of the stimulation in pilot studies to achieve a wider 

therapeutic window in this patient group (Contarino et al., 2014; Pollo et al., 2014). Such increased spatial 

accuracy of stimulation would, for instance, enable us to specifically target the spot of B-HFO instead of the 

spot of peak BO in future. The clinical relevance of these markers could then be established in more powered 

studies while potentially reducing stimulation-induced side effects and/or addressing different PD symptoms 

with multi-contact DBS (Weiss et al., 2013) or phase-specific modulation (Azodi-Avval and Gharabaghi, 2015).  
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Conclusion 

We have demonstrated for the first time that local B-HFO serve as subthalamic markers of the hyperdirect 

pathway between M1 and STN. By taking stepwise LFP recordings across the STN, we separated the respective 

peak of the B-HFO both spatially and spectrally from the peak of the local beta oscillations within the dorsal 

STN. More specifically, the motor cortical area with maximum cortico-subcortical phase coherence in the beta-

band controlled the activity of the STN beta activity. Furthermore, the spot of maximum phase amplitude 

coupling within the STN, i.e. of the local B-HFO, was also the spot of long-range B-HFO between cortex and 

STN. These cumulative findings suggest that local B-HFO in the STN is induced by cortical activity rather than 

by basal-ganglia loops and might lead to refined targeting of DBS in Parkinson’s disease in the future. 
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Materials and Methods 

Patients and neurosurgical procedure  

We recorded spontaneous brain activity from 12 PD patients (two females; age: 69.42±1.99 years, mean ± STD; 

disease duration: 13.42 ± 2.15 years) during implantation of DBS electrodes in the STN after overnight 

withdrawal of dopaminergic medication (Table 1).  Intraoperative propofol medication was discontinued at least 

30 minutes before electrophysiological recordings were initiated (Raz et al., 2008). The STN was localized via 

direct targeting on preoperative magnetic resonance imaging (Foltynie et al., 2011) and then intraoperatively by 

its firing pattern and background activity (Shamir et al., 2012; Winestone et al., 2012). The placement of the 

DBS electrode in the STN was confirmed by postoperative MRI; coordinates of the clinically applied active 

contact (DBS lead model 3389, Medtronic Inc., Minneapolis, USA) were referenced to the mid-commissural 

point: x = 12.91 ± 0.94 (mean ± SEM), y = 3.31 ± 2.54, z = 3.75 ± 2.54 mm for the left hemisphere, and x = 

12.1 ± 1.13, y = 2.16 ± 0.66, z = 3.75 ± 0.83 mm for the right hemisphere. The study was conducted with the 

patients’ informed consent and in accordance with the guidelines approved by the local ethics committee of the 

University Hospital Tuebingen. 

Data collection and preprocessing  

Cortical and subcortical electrophysiological signals were recorded in awake patients at rest. We evaluated 

LFPs with intraoperative test electrodes and up to three trajectories according to the ben-gun setup, 

(microTargeting FHC Inc., USA) passing through the STN region in steps of 0.5 mm, together with 

simultaneous scalp EEG with surface electrodes (Ag/AgCl electrodes, MedCaT GmbH, Netherlands) covering 

the head around the burr holes in accordance with the international 10–20 EEG system (Alpha-Omega, 

Nazareth, Israel). We recorded more than one trajectory in three of the twelve subjects. The clinically most 

effective trajectory was chosen for experimentation in these cases. The non-sterile EEG electrodes were 

positioned before surgery and covered intraoperatively with the conventional sterile surgical cover. We did not 
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apply the micro tip of the test electrode for our intraoperative measurements, but the non-insulated macro tip of 

the cannula, which is also known as the mactroelectrode. While its impedances are similar to those of the 

chronic electrode, this mactroelctrode can also record spike activity (Winestone et al., 2012). It has a surface 

area of approximately 12 mm2 (diameter: ~1.0 mm; length: ~1.0 mm), whereas one contact of the chronic 

electrode has a surface area of 22 mm2 (diameter, 1.27 mm; length, 1.5 mm). On the basis of these different 

surfaces, we expected to achieve a higher spatial resolution with the applied approach (Kent and Grill, 2014).  

LFPs were recorded from -7 mm to +8 mm relative to the dorsal STN border (Fig. 1B) while EEG was recorded 

at 19 to 29 sensors covering central, parietal and a part of frontal regions (Fig. 1A). Although EEG electrodes 

were placed in a standardized clinical fashion, their exact position in relation to the underlying cortical anatomy 

was not clear, since no verification was performed. We refer to the C row of electrodes as the central region or 

M1, even though these electrodes might also capture signals from the premotor area.  

This resulted in a total of 273 LFP recording sites with a mean of 28.20±4.76 seconds of recording at each level. 

Since the cortical sensors (EEG) remained fixed during the progression of the subcortical sensors (LFP), the 

EEG signals of each side could be concatenated for further analysis (e.g. cortical PAC). This resulted in a mean 

of 479.4118+76.8378 seconds of recording for each side. EEG and LFPs signals were continuously sampled at 

1.4 KHz and amplified by a factor of 50 and 20, respectively. The reference electrodes were attached to the ears 

and the ground was placed on the nasion. The impedance was set at ~1 KΩ and below 0.5 KΩ, for the 

intracranial and the EEG electrodes, respectively. Representative raw signals are shown in Fig. 1A. Stimulation 

pulses (monopolar, bi-phasic, 1 Hz, 1.5 mA and 5 Hz, 2mA, 90 μsec, current-controlled) were applied in steps 

of 0.5 mm at the different levels of the dorsal STN region for at least 20 s at each level while the evoked 

potentials were captured with the cortical EEG electrodes.  Some studies applied invasive recordings with 

subdural electrode strips to capture cortical physiology during DBS surgery (de Hemptinne et al., 2013; Qasim 

et al., 2016; Whitmer et al., 2012). Notably, a recent study measured simultaneously invasive 

(electrocorticography) and non-invasive (EEG) recordings during surgery and demonstrated no significant 

differences in the signal-to-noise ratio; specifically, HFO could be detected with both methods (Burnos et al., 
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2016). A simulation study (Jing et al., 2007) demonstrated furthermore that EEG potentials were not affected by 

the bure holes if the recordings were performed at least 40 mm away; we therefore implemented a minimum 

distance of 50 mm between bure holes and electrodes in our set-up..  

Data analysis of EEG and LFPs were performed in Matlab (version 2012b, Mathworks, Massachusetts, USA) 

using custom-made scripts (https://github.com; get_wplfphase.m), and in Fieldtrip, an open source analysis 

toolbox (Oostenveld et al., 2011). Signals were epoched in 1 s data segments and all artifacted epochs were 

removed by the Fieldtrip artifact rejection method. Line noise at 50 Hz and the harmonics were removed with a 

notch filter. Due to movement and respiration artifacts, frequencies below 3 Hz were not taken into 

consideration.  

LFP power analysis 

Power analysis of LFPs was computed using the Hanning taper (Mitra and Pesaran, 1999), providing maximum 

spectral estimation. We determined the individual frequency peak (95% confidence limit within a given 

frequency band) in the beta band (13–35 Hz) for each STN level and then averaged the power in three 

contiguous bins (±1 Hz) around this peak. This average maximum value was then normalized by dividing it by 

the total power from 3-95 Hz. This LFP power analysis is particularly well suited for identifying the 

predominant oscillatory areas of the STN (Trottenberg et al., 2007; Zaidel et al., 2010) and for resolving the 

individual variability of frequency peaks for each patient (de Solages et al., 2010). 

Cross-frequency coupling 

Possible cross-frequency interactions between the phase of low frequency oscillations and the amplitude of high 

frequency oscillations in the STN LFPs and between EEG and STN LFPs were investigated by phase amplitude 

coupling (PAC). To quantify PAC, we used the modulation index (MOI) (Canolty et al., 2006). The LFP signals 

X(t) contain both phase and amplitude components. X(t) was filtered via convolution with complex Morlet 
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wavelets (width 7) to extract the instantaneous phase (Xφ(t)) and amplitude (XAmp(t)). A raw MOI value was 

then calculated: 

   

1

1 N
iX n

Amp

n

MOI X n e
N





 
                                                                                                                                 1 

where || denotes the absolute value. Statistical significance of MOI was estimated using temporally shuffled 

amplitudes, creating 200 surrogate MOI values and comparing them with raw MOI to obtain a z-score 

measurement (Onslow et al., 2011; Penny et al., 2008). PAC was considered significant below an alpha level of 

0.05 and the false discovery rate was corrected for multiple comparisons. We calculated MOI using frequencies 

ranging from 10–40 Hz for the phase signals and from 100-350 Hz for amplitude in 2 Hz and 4 Hz bins, 

respectively. This analysis was performed across all sites and for each patient. Within the STN, we determined 

the maximum frequency of phase (Fφ) and amplitude (FAmp) on the site showing the maximum MOI. The total 

MOI for each patient was calculated by averaging the coupling between phases and amplitudes centered around 

the peak frequencies across each individual STN level (de Hemptinne et al., 2013). This value was normalized 

from 0-1 for each patient across the STN depths (Yang et al., 2014) and later used for group analysis. We next 

extracted the preferred coupling phase by taking the angle of phase-locking factors on the frequency range at 

which PAC exhibited significant values (Lega et al., 2016). The cortical PAC was quantified with the MOI as 

well by frequencies ranging from 10–40 Hz for the phase signals and from 50-350 Hz for the amplitude in the 

same frequency resolution as indicated above. 

Cortico-subcortical connectivity 

To investigate the cortico-subcortical functional connectivity, the Weighted Phase Lag Index (WPLI) (Vinck et 

al., 2011) was calculated between EEG and LFP as a measure of phase consistency between two distal regions 

for each level within STN (Cohen, 2014).  
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where S is the cross-spectrum density matrix, imag the imaginary part and sgn the sign function. Since this 

measure eliminates zero phase lag signals, it is insensitive to the volume conduction of neural activity; a 

common challenge during EEG recordings. Due to the small number of trials, the debiased WPLI (dWPLI) was 

used to provide reliable phase coherence estimation (Phillips et al., 2012; Vinck et al., 2011); for stable 

estimations of dWPLI, the data was epoched in half-second segments. Furthermore, this measurement is more 

efficient in detecting true phase interaction than common phase measurements like the imaginary part of 

coherence (Nolte et al., 2004). In our case, dWPLI was normalized by its standard deviation, which was 

computed by the jackknife method; absolute values larger than 1.96 (corresponding to p<0.05) were considered 

statistically significant (Hohlefeld et al., 2013; Luft et al., 2013; Nolte et al., 2008). 

Directionality between EEG and LFP, i.e. the effective connectivity, was calculated on the basis of the phase-

slope index (PSI) (Nolte et al., 2008). 
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where * stands for the complex conjugates and δf is the frequency resolution. Here, depending on the 

information flow between STN (which is taken as a reference) and cortex, PSI has a positive (direction flow 

from cortex to STN) or negative sign (direction flow from STN to cortex). We also studied the information flow 

within the central region of the cortex between lateral and medial M1. Since the more lateral EEG electrode is 

taken as a reference, PSI has a positive (direction flow from medial to lateral M1) or negative sign (direction 

flow from lateral to medial M1). 
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Subdivisions of STN  

Previous electrophysiology studies on PD regarded the STN region with prominent beta oscillations as the 

motor area (Deffains et al., 2014; Holdefer et al., 2010; Novak et al., 2011; Ray et al., 2008; Steigerwald et al., 

2008; Zaidel et al., 2010) and considered it differed from the associative/limbic area. Moreover, these two 

different subregions are topographically defined as the dorsolateral and ventromedial region, respectively, with 

the border running halfway along the STN (Deffains et al., 2014). This approach was also taken in the present 

study.  

Statistical analysis 

Statistical analysis was conducted using the statistics toolbox for Matlab and the level for statistical significance 

was defined as p=0.05. Nonparametric Mann–Whitney U test was used to compare two groups and Kruskal–

Wallis ANOVA with Tukey’s post hoc test was conducted to evaluate statistical differences when more than 

two groups were compared. Correlation analysis was performed with the Spearman's rank test. Unless otherwise 

stated, all values were expressed as mean ± SEM. The normalization values were calculated on the basis of the 

following formula; 

       'V min   . / max min  V V V V  
,                                                                                                         4 

where V is the raw vector.  
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Figures: 

 

 

 

Figure 1: Experimental setup. (A) Topography of EEG electrode placement during DBS surgery and raw 

signals of simultaneous STN-LFP and EEG recordings of one representative PD patient. (B) Cumulative 

number of analyzed LFP recordings at each recording depth.   
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Figure 2: Group data of neural oscillations in the STN. (A) Histogram (upper plot) of beta (13-35 Hz) activity 

in relation to the STN entry. Distribution (lower plot) of peak frequencies (in 5 Hz bins) of the highest beta 

band power of each patient.  (B) Significant beta oscillation in dorsal-STN; box plots show the median, the 

25th/75th percentiles and the maximum/minimum values of the beta oscillations in the dorsal and ventral STN, 

respectively. Outliers are depicted by crosses. 
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Figure 3: Phase-amplitude coupling in the STN. (A) Power spectrum, B-HFO and preferred coupling phase 

(lower plot) for one representative patient at different depths of the dorsal STN shows a peak at a depth of 1.5 

mm below STN entry. (B) Group results of averaged B-HFO at different STN depths reveal spatial specificity 

in the dorsal part of STN (left). Box plots show the median, the 25th/75th percentiles and the 

maximum/minimum values of the B-HFO in pre-STN, dorsal and ventral STN, respectively. Outliers are 

depicted by crosses (right). (C) Multiple individual results of preferred phase coupling of B-HFO in STN. 
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Figure 4: Cortico-subcortical connectivity and cross-frequency coupling. (A) Phase coherence between left 

STN-LFP and all EEG electrodes in one representative patient across different STN depths. (B) Topographic 

group data showing the spatial specificity of LFP-EEG phase coherence, i.e. C1/3; results for the right LFP-

EEG coherence were flipped to the left side. Box plot compares ipsi- and contralateral phase coherence of the 

central region. (C) Cortical beta phase-broadband gamma coupling and (D) B-HFO between cortical BO and 

high-frequency activity in the STN of the central region in one representative patient. (E) Group data showing 

box plots with the median, the 25th/75th percentiles and the maximum/minimum values of the cortico-STN B-

HFO for the central EEG electrodes ipsi- and contralateral, respectively. 
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Figure 5: Evoked potentials and relationship between different physiological STN markers (A) Cortical-evoked 

potential recorded at various cortical sites following 1 Hz electrical stimulation in the STN at different depths 

for one representative patient. (B) The amplitude (left side) of the cortical-evoked potentials (CEP) recorded at 

C3 for one representative patient following 1 Hz electrical stimulation at different STN depths with the 

corresponding cortical topography at maximum CEP (right side). (C) Cortical topography of maximum CEP 

over nine hemispheres. (D) Group results of cortical evoked potential, PAC and dWPLI across different STN 

depths.  
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Figure 6: Correlation between cortico-subcortical connectivity and motor symptoms. The phase coherence 

between STN and motor cortex correlated significantly with the severity of motor symptoms (UPDRS III in 

OFF state).  
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Table 1: Demographic and clinical data of the twelve patients analyzed in this study.  

F = female; M = male. L=left; R=right; + = cathode; − = anode; G = IPG case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case  Age (years)/ 

gender 

Recording 

 side(s) 

UPDRS III  

OFF/ON 

DBS contacts 

right/left 

DBS frequency/ 

amplitude/duration 

PD1 66/ M L+R 17/11 10-/G+ 

2-/G+ 

125/2.0/60 

125/2.3/60 

PD2 69/ M L+R 41/28 10-/G+ 

2-/G+ 

130/1.7/60 

130/1.7/60 

PD3 63/ M L 23/21 10-/G+ 

2-/G+ 

130/0.9/60 

130/1.6/60 

PD4 72/ M L+R 62/41 10-/G+   

2-/G+ 

130/1.5/60 

130/1.8/90 

PD5 73/ M L 40/20 10-/G+ 

2-/G+ 

130/2.2/90 

130/2.0/90 

PD6 73/ F L 32/18 11-/G+ 

3-/G+ 

130/3.0/60 

130/3.0/60 

PD7 71/ M L 32/19 10-/+G 

2-/+G 

130/1.0/60 

130/1.0/60 

PD8 66/ M R 63/45 10-/G+ 

 3-/G+ 

120/1.5/60 

120/1.5/60 

PD9 67/ F L 28/14 10-/G+ 

2-/G+ 

130/1.8/60 

130/1.8/60 

PD10 73/ M L 36/31 8-/G+ 

 3-/G+ 

125/1.5/60 

125/1.5/60 

PD11 67/ M R 50/37 10-/G+ 

2-/G+ 

130/2.4/90 

130/2.2/90 

PD12 73/ M R 56/21 10-/G+ 

2-/G+ 

130/1.2/60 

130/1.8/60 
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Table 2: Relationship between different physiological markers (A) and correlation with motor symptoms (B). 

 

 A 

 

 

 

 

 

 

B 

 

Spatial relationship between different physiological markers   R2 P-value 

BO and local B-HFO (STN) 0.366 0.218 

BO and phase coherence (dWPLI) 0.369 0.214 

Local B-HFO and phase coherence (dWPLI) 0.76 0.003 

Correlation between UPDRS III and physiological markers     R2 P-value 

Beta power in STN (BO) 0.519 0.102 

Cortical PAC 0.134 0.713 

Local B-HFO (STN) 0.359 0.309 

Cortico-subcortical coherence 0.724 0.0142 

Long range B-HFO (cortico-subcortical) 0.116 0.845 
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Abstract 

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a common intervention for 

the treatment of Parkinson’s disease. However, the underlying neurophysiology in the STN 

and related cortico-subcortical networks mediating the therapeutic effects is still unclear. To 

address this, we simultaneously recorded electroencephalography and local field potentials 

(LFP) with chronic DBS electrodes at various depths along the trajectory to STN in 21 patients 

with Parkinson's disease (PD). We show empirically the power spectrum of monopolar LFP 

recordings to be a robust and reliable tool for detecting specific oscillatory regions in the STN. 

Using this novel technique, we identified the oscillatory beta area in the STN which was 

robustly detectable across different DBS electrode contacts during mapping. Intracranial LFP 

measurements together with intraoperative EEG recordings revealed strong cortico-

subthalamic phase coupling to the ipsilateral motor area. At this site, the information flowed 

was mediated from the cortical motor cortex to the STN in the oscillatory high beta band 

suggesting a pathologically synchronized network with a direct connection, i.e.via the 

hyperdiect pathway. The STN site connected to the cortical motor area was spatially specific 

and located differently than the oscillatory beta region in the STN. While the spectral peak of 

the cortico-subthalamic connectivity was in the high beta-band, the oscillatory region showed 

its peak in the low beta-range. Moreover, the cortico-subthalamic synchronization correlated 

with the severity of the motor symptoms in the medication OFF state. These findings provide 

evidence for the existence of two distinct networks in the dorsal STN which could be detected 

during surgery.  
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Introduction 

    Parkinson’s disease is a neurodegenerative disorder which is characterized by pathological 

electrophysiological changes caused by dopamine depletion (Brittain and Brown, 2014; Little 

and Brown, 2014). The lack of dopamine in the basal ganglia loop seems particularly relevant 

for the appearance of pathological bursts during single-cell recording (Filion and Tremblay, 

1991; Sharott et al., 2005) and of beta oscillations during in local field potentials recordings 

(Weinberger et al., 2006). In this regard, both the reduction of pathological activity during 

therapeutic deep brain stimulation (DBS) and the neural activity of subthalamic nucleus (STN) 

at rest have repeatedly been shown to correlate with the pathophysiology of PD (de Hemptinne 

et al., 2015; Hirschmann et al., 2016; Sharott et al., 2014; Zaidel et al., 2010). Intraoperative 

electrophysiological measurements of single-unit neuronal activity is the most common 

techniques to detect the borders of the STN (Hutchison et al., 1998; Novak et al., 2011). 

However, this method suffers from a number of limitations during DBS surgery. Increased 

surgery-related risk factors, such as hemorrhages, or misplacement of the chronic DSB lead 

while replacing the test electrode are concerns related to the microelectrode recording 

procedure (McClelland, 2011; Paffi et al., 2015; Zrinzo et al., 2012). Macroelectrode recording 

with the chronic DBS electrode could instead offer a novel approach to target subcortical 

structure. Local field potentials (LFP) recorded by the chronic DBS lead are a summation signal 

of excitatory and inhibitory potentials (Buzsáki et al., 2012). These signals have recently been 

used for feedback control of adaptive DBS in PD (Little et al., 2013). Features in LFP 

oscillations have been shown to highly correlate with single-cell activity, particularly with 

regard to the beta oscillations of LFPs and the beta oscillatory cells within the STN 

(Weinberger et al., 2006). Hence, LFPs could be a reliable candidate for STN localization. 

Accordingly, some studies have shown LFP spectral features to be informative with regard to 

the clinically most effective DBS location in the STN (Chen et al., 2006; Yoshida et al., 2010). 
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However, bioplorization of the electrode contacts and relatively large step sizes during 

recording have reduced the spatial accuracy during STN mapping in pervious studies.  

    A direct link between the STN and the motor cortex, i.e. the hyperdirect pathway, has been 

suggested to play a prominent role during therapeutic stimulation for disrupting pathological 

oscillatory activity and reducing motor symptoms of PD (Gradinaru et al., 2009; Li et al., 

2012). The STN-motor cortex interaction has been shown to be clinically relevant for the state 

of the disease during the administration of L-dopa medication or STN-DBS (de Hemptinne et 

al., 2015; Litvak et al., 2011; Oswal et al., 2016). However, previous studies performed cortico-

subcortical coherence analysis while the position of the DBS electrode contacts was fixed, 

thereby, providing only poor spatial resolution in the targeted area. Despite this importance of 

local STN activity and pathological brain networks in PD (Hirschmann et al., 2011; Litvak et 

al., 2011; Oswal et al., 2016), to date research on both local and network biomarkers during 

STN mapping is scarce. Furthermore, optimal positioning of the implanted DBS leads plays a 

vital role in the treatment effectiveness and long-term life quality in PD patients with DBS 

therapy (Deuschl et al., 2006; Guo et al., 2013; Maks et al., 2009). Hence, we hypothesized 

that combined intraoperative EEG and stepwise LFP recordings with the chronic electrode 

along the trajectory to STN will reveal STN-cortex connectivity patterns and their relationship 

to local STN biomarkers. To the best of our knowledge, this is the first study on the spatial and 

spectral specificity of the hyperdirect pathway and its relationship to local electrophysiological 

markers during STN mapping. 

 

Materials and methods 

Patients and neurosurgical procedure  

    We recorded brain activity from 21 patients who were diagnosed with idiopathic Parkinson’s 

disease (seven females; age: 67.05±3.53 years, mean ± STD; disease duration: 13.40 ± 2.33 
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years) during bilateral implantation of deep brain stimulation electrodes in the STN. 

Intraoperative propofol medication was stopped at least 30 minutes before electrophysiological 

recordings were initiated (Azodi-Avval and Gharabaghi, 2015). During the neurophysiological 

recordings, patients were not under sedation and awake. The study was conducted with the 

patients’ informed consent and according to the guidelines approved by the local ethics 

committee of the University Hospital Tuebingen. 

Data collection and preprocessing  

    Cortical and subcortical electrophysiological signals were recorded in awake patients at rest. 

We evaluated LFPs with chronic DBS electrodes (quadripolar DBS lead model 3389; 1.27 mm 

in diameter, 1.5 mm contact length and 0.5 mm contact-to-contact separation, Medtronic Inc., 

Minneapolis, USA) along the trajectory throughout the STN region in steps of 1 mm. 

Simultaneously we recorded scalp EEG with surface electrodes (Ag/AgCl electrodes, MedCaT 

GmbH, Netherlands) covering the head around the burr holes in accordance with the 

international 10–20 EEG system (Alpha-Omega, Nazareth, Israel). The non-sterile EEG 

electrodes were placed before surgery and covered intraoperatively with the conventional 

sterile surgical covering procedure. LFPs were recorded from -8 mm to +9 mm relative to the 

upper STN border, while EEG was measured at 32 to 38 sensors covering frontal, central, 

temporal, midline and parietal regions (Fig. 1A). Although EEG electrodes were placed in a 

standardized clinical fashion, their exact position in relation to the underlying cortical anatomy 

remains clear. We will refer to the C row of electrodes as the central region or M1, even though 

these electrodes might capture signals from the premotor area as well.  

    For online recordings and evaluation, the LFP and EEG signals were streaming to a 

dedicated system running Matlab; the communication link was established through an Ethernet 

network. We gathered the data in blocks of 10 ms; at the end of the recording period, signal 

blocks were concatenated without any missing sample for further analysis. The data were also 
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stored offline by the data acquisition system (Alpha-Map, Alpha-Omega, Israel). We 

considered 30 seconds of recordings of simultaneous EEG and LFP at each depth for further 

analysis. Cortical and intracranial signals were continuously sampled at 1.4 KHz and amplified 

by a factor of 50 and 20, respectively. The reference electrodes were attached to the ears and 

the ground was placed on the nasion. The impedance was set at ~1 KΩ and below 0.5 KΩ for 

the intracranial and the EEG electrodes, respectively. Representative raw signals are shown in 

Fig. 1A.  

    Data analysis of EEG and LFPs was performed in Matlab (version 2014b, Mathworks, 

Massachusetts, USA) using custom-made scripts, and in Fieldtrip, an open source analysis 

toolbox (Oostenveld et al., 2011, http://fieldtrip.fcdonders.nl/). Signals were epoched in half 

second data segments, and all artifacted epochs were removed by the Fieldtrip artifact rejection 

method. Line noise at 50 Hz and the harmonics were removed with a notch filter. Due to 

movement and respiration artifacts, frequencies below 3 Hz were not taken into consideration.  

Online and offline power spectrum and coherence analysis 

    The power spectrum of monopolar LFP channels was computed using the Hanning taper 

(Mitra and Pesaran, 1999) for both online and offline analysis. For group analysis of LFP 

power, the beta frequency power was normalized by dividing it by the total power from 3-95 

Hz; this was based on the individual beta frequency peak for each patient. During the 

intraoperative online recording, we calculated the power spectrum of all four DBS electrode 

contacts separately between 5-45 Hz, as well as the phase coherence coupling between DBS 

contact pairs (01-12-23) and all EEG cortical activity in the same frequency range. This 

procedure was done at each depth along the trajectory towards the target in the steps of 1 mm. 

Phase coherence coupling was measured with the Weighted Phase Lag Index (WPLI) (Vinck 

et al., 2011) between EEG and LFP. This method is more efficient in detecting genuine phase 

interaction than common phase measurements like the imaginary part of coherence (Nolte et 
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al., 2004).  Directionality between cortical EEG and subcortical LFP was calculated on the 

basis of the phase-slope index (PSI) (Nolte et al., 2008). Here, depending on the information 

flow between the subcortical site (which is taken as a reference) and the cortex, PSI has a 

positive (flow direction from cortex to subcortical site) or negative sign (flow direction from 

subcortical site to cortex). In this study, dWPLI and PSI were normalized by their standard 

deviation, which was computed by the jackknife method; absolute values larger than 1.96 

(corresponding to p<0.05) were considered statistically significant (Hohlefeld et al., 2013; Luft 

et al., 2013; Nolte et al., 2008). 

    Considering the physical characteristics of DBS contacts and the step size resolution, the 

spatial position of the lowest DBS contact (contact 0) will be covered by the second lowest 

contact (contact 1) after descending the lead by 2 mm. This technique allowed us to determine 

the reliability of detected oscillatory region by moving the electrode across the STN, thereby, 

recording each position several times by different electrode contacts (Fig. 1B).  

 

Results 

Spectral changes along the trajectory of a DBS electrode 

    The power spectrum calculation of the DBS contacts (0-3) at each depth is shown in Fig. 2A 

along the trajectory to the STN. The power spectrum shows the spectral and spatial specificity, 

in the beta band and at the position of 0 mm. In fact, the persistence of the beta peak pattern in 

the same spatial location captured with different DBS contacts at different time points 

underlined the reliability of the detected beta oscillatory region. This beta oscillatory region 

was confirmed in the whole patient group and revealed a mean peak frequency of 16.94±0.87 

Hz (Fig. 2B). The same pattern was demonstrated with both monopolar and bipolar recordings 

(Fig. 2C). Moreover, the linear correlation between the normalized beta power at the upper 

STN border recorded with different contacts revealed the high reliability of the technique (Fig. 
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2C, lower plot; for monopolar R=0.84, P=0.00001 and bipolar R=0.87, P=0.00001). Notably, 

the reliability of bipolar LFP recordings was less in comparison to monopolar measurements.  

Comparative analysis of all recordings of pre-STN, dorsal and ventral STN revealed a 

significantly higher average beta oscillatory power in the dorsal STN than in the pre-STN and 

ventral STN for both the monopolar and bipolar analysis (Fig. 2D). 

Spatial and spectral specificity of STN-motor cortex connectivity 

    We furthermore investigated whether the cortex, particularly the motor area had a functional 

or effective connection to a specific part of the STN. This cortico-subcortical connectivity 

analysis with dWPLI was performed between all DBS contact pairs (01, 12, 23) and cortical 

EEG electrodes. We explored whether the STN-cortical coupling had spatial and spectral 

specificity across PD. Fig. 3 shows significant STN-ipsilateral motor network phase coupling 

at 2 mm in the high beta-frequency (22.43±1.75 Hz) range for the contact pair 01. This result 

was confirmed in the same spectral range with the contact pair 12 when it passed the same 

spatial location. Interestingly, the effective connectivity analysis with PSI  confirmed the 

ipsilateral medial motor area as the region with the highest cortico-subcortical information flow 

from the cortex to the same site in the STN and in the same frequency range (21.29±1.72 Hz).   

    The group average cortical topography revealed a specific spatial pattern at the cortical level, 

(electrodes projecting to the medial motor cortex of the ipsilateral hemisphere, i.e. the C1/3 

electrodes, Fig. 4A) as well as within the STN (peaking in the dorsal part of the STN 1.59±0.56 

mm below the STN entry). There was no difference between the cortical topography and the 

subcortical location of effective and functional connectivity, and also no difference in the 

frequency range. Phase coherence and PSI of the ipsilateral motor cortical region was 

significantly higher than of the other cortical areas (p = 0.01; Mann–Whitney U test, Fig. 4B). 
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Electrophysiological biomarkers and clinical correlation 

    The prominent beta oscillatory (BO) region within the STN (16.94±0.87 Hz) peaked at the 

STN entry and decreased gradually from the dorsal to the ventral border, whereas the STN-

motor coupling (22.43±1.75 Hz) peaked at 1.59±0.56 mm below the STN entry. Statistical 

analysis revealed that the peak beta frequencies of both STN (16.94±0.87 Hz) and coherence 

(22.43±1.75 Hz) differed significantly from each other (P= 0.0004; Mann–Whitney U test and 

P= 0.01). In each patient, the sites of maximum BO (r=0.18; P=0.36) did not show any 

correlation to the site of maximum cortico-subcortical phase coherence to the ipsilateral M1. 

Notably, the cortico-subthalamic synchronization was the only physiological marker that 

significantly correlated (r=0.61, P=0.006) with the severity of motor symptoms in the 

medication OFF state (Fig. 5).  

Discussion 

    Deep brain stimulation of the STN provides an intervention to directly perturb pathological 

brain oscillations in PD (Little and Brown, 2014). But the spatial specificity of STN DBS with 

respect to the neurophysiological activity within STN and its coupling to the cortex is still less 

clear. In this study, we applied a novel intraoperative mapping approach and could identify the 

maximum neural oscillatory region in STN and the site which had the most relevant phase 

coherence to the ipsilateral motor area, i.e. indicative for the hyperdirect pathway. 

Beta oscillatory region in the STN  

    Applying microelectrodes for single-cell or LFP recording is the most established way to 

delineate the STN boundary (Benazzouz et al., 2002; Contarino et al., 2012; Hutchison et al., 

1998; Novak et al., 2011). However, there are some concerns employing this method for DBS 

lead implantation. Misplacement of the final electrode (Paffi et al., 2015), when replacing the 

test electrodes for microrecording, and surgical risks such as hemorrhages might be related to 

this procedure (Zrinzo et al., 2012). Here, we proposed and evaluated a novel recording method 
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which could potentially resolve the issues related to the use of test electrodes. Our findings 

showed that monopolar recordings of LFP channels from the final electrode are a robust and 

reproducible way to monitor the oscillatory regions in the STN, particularly the beta-band 

oscillations. A local increase of beta LFP oscillation in the STN has been shown to correlate 

with the pathophysiology of the disease and with single-cell recordings (Kühn et al., 2009; 

Sharott et al., 2014). This pathological beta oscillation in the low beta-range was reduced 

during therapeutic stimulation and has recently been used as a feedback signal for closed-loop 

DBS in PD patients (Little et al., 2013). Therefore, the close relationship between beta LFP 

oscillations and pathophysiology of PD could provide a reliable biomarker to targeting the 

respective area in the STN. Previous studies that searched for the STN boundary through LFP 

measurements with the chronic electrode, bipolarized the electrode contacts and used a 

stepwise mapping of 2mm (Chen et al., 2006; Telkes et al., 2016). Based on our findings with 

monopolar recordings in steps of 1 mm, we conclude that these previous approaches were 

limited in detecting the beta band oscillatory region with high spatial accuracy. 

Strong subthalamic cortical motor coupling  

    Our findings demonstrated significant functional and effective connectivity between the 

STN and ipsilateral motor area. Notably, the results were reproducible in the same spatial 

location of STN at different time points and with different electrode contacts. This finding 

underlined the existence of an STN region with strong connectivity to the motor cortical area. 

Both postoperative EEG and MEG recordings with simultaneous STN LFP recordings have 

previously provided evidence for the functional STN-M1 connectivity in the high beta-band 

(Litvak et al., 2011; Oswal et al., 2016; van Wijk et al., 2016). These results were confirmed 

by electrocorticography (ECoG) measurements as well which offered a better localization and 

higher signal-to-noise ratio (Whitmer and White, 2012). In this line of research, the clinical 

effectiveness of activated DBS contacts located in the dorsal STN was shown to positively 
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correlate with connectivity to the superior frontal gyrus and the thalamus when using 

probabilistic tractography with diffusion tensor imaging (DTI) (Vanegas-Arroyave et al., 

2016). Another DTI study, correlated the STN anatomy and predominant beta oscillatory 

activity in STN with the connect pattern to the cortex (Accolla et al., 2016). However, these 

studies were limited by the relatively poor spatial resolution of DTI; moreover, the position of 

the DBS lead was fixed due to the postoperative recordings, thereby, limiting the specificity of 

the findings within the STN. These issues could be solved in this study by step-wise (in 1 mm 

steps) recordings during surgery capturing cortico-subcortical connectivity across the STN, 

enabling us to have a better spatial resolution in compare the neuroimaging localization. 

    Direct glutamatergic projections of the motor cortex to STN, i.e. the hyperdirect pathway, 

plays a prominent role in mediating the DBS effects by regulating abnormal activity in M1 

(Chiken and Nambu, 2015; Gradinaru et al., 2009; Li et al., 2012). Hence, the identification of 

a hyperdirect M1-subthalamic nucleus pathway could be the key element for the clinical effects 

and optimal electrode placement. Although some studies have attempted to localize the STN-

cortex connection based on preoperative tractography (Petersen et al., 2016; Whitmer et al., 

2012b), it is not clear to what extent this method can use for the individual DBS treatment 

planning. The main concern with this technique is the brain shift (Khan et al., 2008) that may 

occur during stereotactic surgery and the poor spatial resolution of DTI which may lead to 

targeting errors during electrode implantation (Accolla et al., 2016). However, the 

intraoperative online measurement of cortico-subcortical connectivity by combined recording 

of EEG and LFP signals with the final electrode will likely reduce these potential targeting 

errors. Furthermore, the presented technique may allow targeting the pathological network in 

PD by disturbing abnormal activity between the STN and motor area. 
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Implications for clinic therapy 

    There is increasing electrophysiological evidence to suggest that STN-DBS is modulating 

abnormal cortical and subcortical activity, as well as their functional coupling during 

therapeutic high-frequency stimulation (Dejean et al., 2009; Weiss et al., 2015). Reduction of 

the excessive beta synchronization in the cortical motor area and of subthalamic-motor cortex 

coherence in the high beta-band during DBS indicated that clinical importance of the STN-

motor network functional connection for the pathophysiology PD (de Hemptinne et al., 2015; 

Oswal et al., 2016). Furthermore, experimental data with a non-human primate model of PD 

showed the disease severity to correlate positively with STN-M1 coherence in beta band 

(Devergnas et al., 2014). In the present study, we demonstrated that the severity of PD motor 

symptoms can be predict by STN phase coupling to the ipsilateral motor cortex. The spatial 

specificity of this connectivity in the STN could be considered as a marker for targeting this 

pathological network during DBS in PD.   
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Figures: 

 

 

 

 

Figure 1: Experimental setup and LFP recorded in STN-cortex loop. (A) An example of 

recorded EEG and LFP signals with the quadripolar DBS electrode along the trajectory to the 

STN (left plot). The topography of EEG electrode placement during DBS surgery (right plot). 

(B) Pictogram shows the subcortical mapping procedure while descending the DBS lead. The 

DBS electrode contains four macroelectrode contacts (length 1.5 mm each), which are 

separated by 0.5 mm. Contact 0 was the most caudal and contact 3 the most rostral electrode 

contact.  
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Figure 2: Oscillatory power spectrum in the STN. (A) An example of LFP signals recorded 

with the chronic DBS electrode (spectral plot from 5-45 Hz) while descending it in steps of 1 

mm. The shaded area indicates the spatial extend of the STN (B) Distribution of beta peak in 

the STN. (C) Group normalized beta oscillation for the monopolar DBS contact 0 and the 

biplorized pair 01 along the trajectory throughout the STN (upper plot). Correlation between 

contact 0 / contact 1 (left plot) and contact pair 01 / contact  pair 12 (right plot), respectively, 

at the upper STN border. (D) Significant beta oscillation in the dorsal STN with both 

monopolar (contact-0) and bioplorized (pair contact 01) analysis; box plots show the median, 

the 25th/75th percentiles and the maximum/minimum values of the beta oscillations in the dorsal 

and ventral STN, respectively. Outliers are depicted by crosses. 
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Figure 3: Cortico-subcortical connectivity measurement. Reproducibility of phase coherence 

and directionality between left STN-LFP and EEG electrodes in one representative PD patient 

across different STN depths. 
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Figure 4: (A) Topographic group data are showing the spatial specificity of LFP-EEG phase 

coherence and effective connectivity (left plot). (B) The STN-motor cortex connectivity shows 

significant laterality to the ipsilateral side. 
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Figure 5: Correlation between cortico-subcortical connectivity and motor symptoms. The 

phase coherence between STN and motor cortex correlated significantly with the severity of 

motor symptoms (UPDRS III in the medication OFF state). 
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Abstract 

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established therapy for the 

symptomatic treatment of Parkinson’s disease (PD). The subcortical dynamics in response to DBS in 

relation to local STN biomarkers and electrophysiological motor network patterns are still unclear. To 

address this, we simultaneously recorded electroencephalography and stepwise local field potentials 

(LFPs) with quadripolar chronic DBS electrode along the surgical trajectory to the STN in 13 PD 

patients. In the resting state, two oscillatory regions were found in STN, in the beta-band and high 

frequency oscillation (HFO)-band. Furthermore, the LFP activity in responses to DBS at different 

stimulation frequencies and in different subcortical depths across the STN was investigated.  We 

observed that the subcortical evoked potentials (sEPs) had distinct spatial and temporal properties in 

STN. The sEPs were prominent in the dorsal part of the STN; their location in the STN correlated 

highly with the region in the STN where the resting motor-subthalamic coherence and the HFO reached 

their highest values as well. There was, however, no correlation with the beta oscillatory region. 

Moreover, an oscillation model was applied to the sEPs to extract the dynamic properties at different 

subcortical depths. The findings indicated that the area with the most prominent sEPs in the dorsal 

STN was also the one with the least resistant to DBS (i.e. low damping values) and the maximum 

energy absorption (i.e. resonance properties). During therapeutic stimulation, the damping of the 

system increased, reflecting a resonance inhibiting effect. The spatial location of the clinically most 

effective contact matched with the location of the strongest sEPs. These findings suggest that this spot 

in the STN may facilitate the electrical stimulation effects by decoupling the pathological STN-motor 

cortex coupling during therapeutic DBS.   
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Introduction 

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the most common neurosurgical 

procedure for the symptomatic treatment of Parkinson’s disease (PD) (Krack and Hariz, 2013; Lozano 

and Lipsman, 2013; Odekerken et al., 2013b). However, the optimal site of stimulation within the STN 

for effective treatment is still not completely understood. Higher discharge rates (Deffains et al., 2014), 

synchronization in the beta oscillation frequencies range (BO, 14-35 Hz) (Priori et al., 2004; Ray et 

al., 2008; Yoshida et al., 2010), high frequency oscillations (Hirschmann et al., 2016; Wang et al., 

2014), and beta-coupled high frequency oscillations have all been located in the dorsolateral motor 

part of the STN (Yang et al., 2014); this area has, therefore, been suggested as the best site for DBS. 

This region in the STN is anatomically linked to the motor cortical circuit (Chiken and Nambu, 2015; 

Haynes and Haber, 2013) and has significant functional connectivity in the oscillatory beta band to 

motor/premotor cortical areas (Fogelson et al., 2006; Hirschmann et al., 2011; Li et al., 2012; Litvak 

et al., 2011; Oswal et al., 2016; van Wijk et al., 2016). Moreover, relevant correlations between each 

these different electrophysiological biomarkers and the severity of different PD motor symptoms has 

been demonstrated (Hirschmann et al., 2016; Kato et al., 2015; Kühn et al., 2009; López-Azcárate et 

al., 2010; Wang et al., 2014; Weiss et al., 2015). Given the spatial and spectral diversity of oscillatory 

activity in basal ganglia loop (Brittain and Brown, 2014; Little and Brown, 2014), choosing the best 

site for effective treatment seems to remain an ongoing challenge.  

    Nonetheless, both pharmacological treatment with L-dopa (Barbeau, 1969; Chaudhuri and Schapira, 

2009; Nagatsu and Sawada, 2009) and neurostimulation by DBS (Lozano and Lipsman, 2013; 

Odekerken et al., 2013a; Schuepbach et al., 2013) have shown promising results in the alleviation of 

PD symptoms. There are several lines of research reporting changes of pathological beta 

synchronization both at the local level (STN or cortical region) and in the long-distance cortico-

subcortical communication by the administration of dopaminergic medication (Litvak et al., 2011; 

Oswal et al., 2016). Similarly, neural modulation by delivering subthalamic high-frequency DBS led 
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to the suppression of beta oscillations within the STN in the low beta-band (Kühn et al., 2008; Whitmer 

et al., 2012); and to the reduction of coupling between the phase of the beta rhythm and the amplitude 

of broadband gamma activity in the primary motor cortex of PD patients (de Hemptinne et al., 2013; 

de Hemptinne et al., 2015). Furthermore, long range STN–cortical interactions could be functionally 

decoupled during DBS (Oswal et al., 2016). However, the impact of DBS modulation on neural 

oscillations in relation to the site of stimulation within the STN is still not well investigated. 

     Direct perturbation of neural activity by electrical stimulation can be used to probe dynamical 

system properties. In fact, if the applied frequency of the electrical stimulation is close enough to the 

natural frequency of the system, the amplitude of the evoked response reaches maximum values; 

accordingly, maximum power absorption of the stimulation occurs in the system (=minimum energy 

dissipation). This kind of response is also referred to as resonance. In a study by Eusebio and 

colleagues (Eusebio et al., 2009), different STN DBS stimulation frequencies revealed the natural 

frequency (resonance frequency) of the system in PD to the at 20 Hz; the maximum cortical evoked 

potential occurred at 20 Hz STN DBS. In parallel to this approach, the intrinsic dynamical properties 

of different cortical areas were revealed by transcranial magnetic stimulation (Rosanova et al., 2009). 

However, no study has investigated the subcortical dynamical properties of DBS and their relationship 

to local and distant physiological biomarkers. 

    We hypothesized that the effectiveness of DBS would be predicted by the dynamical properties of 

local oscillatory activity and its cortico-subcortical functional coupling. In order to test this, we 

recorded scalp EEG signals covering the central, frontal, partial, and midline regions during 

intraoperative mapping of the STN via LFPs acquired from the quadripolar chronic DBS electrode 

during DBS implantation surgery. We expected that the local oscillatory responses to stimulation in 

the STN region would reveal their involvement in different cortico-subcortical loops. 
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Materials and Methods 

Patients and neurosurgical procedure  

    Thirteen patients (two females; age: 66.07±4.46 years, mean ± STD; disease duration: 11.38 ± 2.32 

years), who underwent implantation of DBS electrodes in the STN, were recruited for this study. 

Patients did not receive dopamine for at least 12h before surgery according to the standard operational 

procedures. Intraoperative propofol medication was discontinued at least 30 minutes before 

electrophysiological recordings were initiated (Azodi-Avval and Gharabaghi, 2015). The study was 

conducted with the patients’ informed consent and in accordance with the guidelines approved by the 

local ethics committee of the University Hospital Tuebingen. 

Data collection and pre-processing  

    Spontaneous cortical activity was recorded with EEG surface electrodes (Ag/AgCl electrodes, 

MedCaT GmbH, Netherlands) during DBS operation from 30 up to 39 sensors covering frontal, central 

and parietal regions (Fig. 1A). EEG signals were sampled at 1.4 kHz and stored in the NeuroOmega 

system for further offline analyses. LFP activity from the quadripolar DBS electrode lead (four ring 

contacts, Medtronic, Model 3387) was collected at two sampling rates, 1.4 kHz and 4.8 kHz 

simultaneously, while the electrode was descended in steps of 1 mm for mapping of the STN region. 

Recording LFP with a high sampling rate provides a better temporal resolution for detecting fast 

evoked responses to electrical stimulation. 

    LFP signals were first recorded for at least 30 seconds with the chronic DBS electrode at each depth; 

thereafter, stimulation pulses (bi-phasic, 1 Hz, 1.5 mA; 5 Hz, 1 / 2 / 3 mA, 100 μsec, current-controlled) 

were applied at the same depth for 30 seconds as well. The reference electrodes were attached to the 

ears and the ground was placed on the nasion. The impedance was set at ~1 KΩ and below 0.5 KΩ, 

for the intracranial and the EEG electrodes, respectively.  

    Data analysis of EEG and LFPs were performed in Matlab (version 2014b, Mathworks, 

Massachusetts, USA) using custom-made scripts, and in Fieldtrip, an open source analysis toolbox 
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(Oostenveld et al., 2011, http://fieldtrip.fcdonders.nl/). Signals were epoched in half seconds segments 

for resting-state data recording, and all artifacts epochs were removed by the Fieldtrip artifact rejection 

method. Line noise at 50 Hz and the harmonics were removed with a notch filter.  

LFP power analysis 

    Power analysis of LFPs was computed using the Hanning taper for the lower frequency band (5-45 

Hz) and discrete prolate spheroidal sequences tapers (DPSS, smoothing bandwidth ± 5 Hz) for the 

higher frequency band (60-350) (Fries et al., 2008; Mitra and Pesaran, 1999; Schoffelen et al., 2011). 

This LFP power analysis is particularly well suited for identifying the predominant oscillatory areas 

of the STN (Trottenberg et al., 2007; Zaidel et al., 2010) and for resolving the individual variability of 

frequency peaks for each patient (de Solages et al., 2010). 

    To calculate high oscillatory activity at each depth, we determined the individual frequency peak 

(within a given frequency band) for each STN level and then averaged the power in three contiguous 

bins (± 5 Hz) around this peak. This maximum average value was then normalized by dividing it by 

the total power from 50-350 Hz. 

Cortico-subcortical connectivity 

    To investigate the cortico-subcortical functional coupling, the Weighted Phase Lag Index (WPLI) 

(Vinck et al., 2011) was calculated between EEG and LFP as a measure of phase consistency between 

two distal regions for each level within the STN (Azodi-Avval and Gharabaghi, 2015).  
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where S is the cross-spectrum density matrix, imag the imaginary part and sgn the sign function. Since 

this measure eliminates zero phase lag signals, it is insensitive to the volume conduction of neural 

activity; a common challenge during EEG recordings. Due to the small number of trials, the debiased 

WPLI (dWPLI) was used to provide reliable phase coherence estimation (Vinck et al., 2011; Phillip et 

al., 2014). In our case, dWPLI was normalized by its standard deviation, which was computed by the 
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jackknife method; absolute values larger than 1.96 (corresponding to p<0.05) were considered 

statistically significant (Hohlefeld et al., 2013; Luft et al., 2013; Nolte et al., 2008).  

Resonance properties in subcortical region 

    In order to establish damping measurements of different subcortical sites in response to electrical 

stimulations, an oscillation model was used. Here, damping refers to the energy dissipation properties 

of a brain region under electrical stimulation. If the amplitude of the evoked potentials response (sEPs) 

to a single DBS pulse (such as a 1 Hz stimulation) undergoes many oscillations (EPs) before dumping 

(i.e. the inherent resistance) brings it to baseline again, this response is known as the underdamped 

oscillation (Fig. 2A). A high damping factor of a brain site prevents the system from being resonant 

(with high sEPs after stimulation), while a low damping value of the stimulated area results in response 

with many oscillations. The damping factor becomes important when the system (e.g. the brain site) 

is under continuous electrical stimulation; the closer the stimulation frequency is to the natural 

frequency of the system, the higher the number of cycles (longer decay time) (Fig. 2B). Here, to capture 

the damping properties of the underdamped oscillation, a mathematical model was applied. The 

oscillation can be written as a second-order autonomous differential equations, 

2

0 02 0x x x                                                                                                                                  2 

where 0  is the angular frequency and dimensionless and   is a constant called the damping ratio. 

Assuming 02  , we can model the resulting evoked response after stimulation with the following 

equation, which is the solution of the equation (2), 

   sinnt

dx t Ae t
  

                                                                                                                     3 

where, 

 2

2 11 2d n t t        

where d  is the damped frequency reflecting how the sinusoidal oscillation decays exponentially over 

time, and n  is the underdamped frequency. To estimate the damping experimentally from real data, 
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the logarithmic decrement method was used. This method is based on the ratios of two peak oscillations 

written as following, 
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Taking the natural logarithm from this expression, we have a logarithmic decrement as following, 
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Moreover, when solving this equation with regard to the damping, we have 

 
2

1

2
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 
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In this study, by delivering DBS at fixed frequencies in different subcortical depths along the surgical 

trajectory, the resonance area within the STN could be revealed. 

Statistical analysis 

    The statistical analysis was conducted by using the statistics toolbox for Matlab, and the level of 

statistical significance was defined as p=0.05. Nonparametric Mann–Whitney U-test was used to 

compare two groups. Correlation analysis was performed with the Spearman's rank test. Unless 

otherwise stated, all values were expressed as mean ± SEM. The normalization values were calculated 

on the basis of the following formula: 

       'V min   . / max min  V V V V  
,                                                                                         7 

where V is the raw vector.  

 

Results 

    The patients enrolled in this study were examined before surgery using the motor part of the Unified 

Parkinson’s Disease Rating Scale (UPDRS III) while applying the L-Dopa test (medication “ON” and 

“OFF”). The mean UPDRS III score was 24.15±7.80 and 49.77±12.58 in the ON state and OFF states, 
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respectively. The clinical information is summarized in Table 1. Intraoperative recordings during DBS 

surgery were performed in 13 PD patients.  

STN mapping: power evaluation 

    We evaluated the power spectrum of the four DBS contacts (0 to 3) during mapping the STN. The 

calculation of the spectrum revealed spectral and spatial specificity for all patients. There was a 

prominent peak in the beta band, which was validated with other DBS contacts when the electrode was 

moved towards the target. The physical properties of the DBS lead provided the opportunity to record 

in same spatial STN location for several times (Fig. 1B). The resulting exemplary power spectrograms 

of one PD patient during STN mapping procedure is showed in Fig. 1B: The first peak in beta range 

appeared in the lowest contact (DBS 0) at 0 mm, i.e. when it entered the STN. Which descending the 

electrode further (after 2 mm), the same oscillatory region was detectable with the second lowest 

contact (DBS 1). The same pattern could be observed at DBS contact 2 (when descending another 2 

mm), i.e when the lowest DBS contact 0 was at a depth of 4 mm below the STN entry (Fig. 1B). With 

this approach, the beta oscillatory region in the STN could be identified in all patients in an effective 

and robust way; the peak beta frequency was concentrated in the low beta-band 16.17±0.89 Hz. 

Resting state cortico-subcortical connectivity 

    We next investigated the dynamic communication between simultaneously recorded subcortical 

neural activity in the STN and with ongoing cortical oscillations with the robust measure of phase 

coherence. To examine the spatial or spectral specificity of this phase coupling the respective 

coherence values were calculated at each depth during mapping the STN. The phase coupling between 

the STN and cortical sensors showed significant functional connectivity in the high beta-band. 

Exemplary data is shown for two PD (Fig. 3A). Group analysis revealed the spectral specificity of 

LFP-EEG coherence for the high beta-band (22.17±4.46 Hz; Fig. 3B), a spatial specificity at 2.41± 

0.56 mm blow STN border. The peak of group cortical topography of this cortico-subthalamic 

coherence was located in the ipsilateral motor area (Fig. 3B).  
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Spatial and temporal properties of diminishing evoked potentials 

    To examine the responses of the STN region to low frequency stimulation at different subcortical 

depths, we DBS with 5 Hz and with 1 Hz. In the case of 5Hz stimulation, the intensity was randomly 

changed between 1 to 3 mA in steps of 1 mA. Fig. 4A shows the average response of subcortical 

evoked responses at different sites to 1 and 5 Hz DBS in two exemplary patients. The sEPs during 

mapping of STN show temporal and spatial specificity as well. Notably, various current intensities 

lead to the same spatial and temporal properties of sEPs, indicating that the intensity did not alter the 

latency and spatial location of sEPs. The variability of sEP amplitudes and temporal properties across 

the patient group (Fig. 4B), thus, reflects the related anatomical and oscillatory properties of the 

respective regions. Prominent sEPs occurred at 2.83±0.71 mm below STN border with a latency of 

5.11±0.25 msec, 8.08±0.34 msec and 11.18±0.42 msec for P1, P3 and P5, respectively (Fig. 5C). The 

amplitudes of these peaks were 513.82±139.55 µV, 270.76±109.31 µV and 162.3±116.62 µV. To 

check whether these peaks declined linearly, we next ran the Spearman's rank test (Fig. 4C, right). 

High-frequency oscillations in the STN 

    Spectral analysis was performed in both resting state and during low frequency stimulation and 

detected HFO activity 2.50 ± 0.88 mm below the upper STN boundary, respectively. Fig. 5A, B display 

the power activity in the high-frequency range from 50 Hz to 400 Hz. Interestingly, the resting state 

HFO peak (322.54±3.72 Hz) and frequency of oscillating sEPs (338.12±12.56 Hz) were significantly 

correlated with each other (r=0.60, P=0.02). 

Damping of subcortical regions 

     The subcortical responses to DBS revealed different morphologies of evoked responses which 

reflect the oscillatory properties of the respective area. Here, we measured the damping by using 

equation 6. Fig. 6A shows the damping factors for two exemplary patients; the results revealed a bell-

shaped pattern of these factors within the STN for all patients. Consistent with the equations 2 and 3, 

both factors depended on the nature of the post-stimulation diminishing sEPs and had an inverse 
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relationship to each other (Fig. 6A). The lower damping factor of each patient correlated significantly 

with the highest HFO value in the STN (Fig. 6B). 

Local HFO activity in STN and STN-motor network predict damping properties    

    The maximum local HFO activity (2.50±0.88 mm) in the STN co-located with the ipsilateral STN-

motor cortex phase coupling in the beta-band (22.17±4.46) which was 2.41±0.56 mm below the STN 

entry; this finding is compatible with a motor cortex-STN interaction via a direct connection 

(hyperdirect pathway). Moreover, the spatial location of the most prominent sEPs (lowest subthalamic 

damping) was 2.83±0.71 mm below STN border. In each patient, the sites of maximum sEPs (r=0.91; 

P=0.0003; Spearman test) in the STN and highest local HFO, but not the site of maximum beta 

oscillations, correlated highly with the ipsilateral STN-motor cortex phase coherence. Notably, the 

location of maximum HFO power was different from the location of maximum beta oscillations, but 

correlated significantly with the location of maximum sEPs (r=0.84; P=0.0005; Spearman test). 

 

Discussion 

    STN-DBS can serve as a powerful therapeutic tool for symptomatic PD treatment, reducing the 

pathological activity at both local and network levels (Oswal et al., 2016). Despite considerable 

research on the neurophysiology in PD patients and during STN-DBS, it is still not completely 

understood which physiologically defined spot within the STN may provide the best clinical response 

to electrical stimulation. We demonstrated for the first time that the dynamical properties of the STN 

region may be informative with regard to other pathological biomarkers in the basal ganglia loop and 

may even predict the best spot for therapeutic effects. 

Different roles of beta-band and HFO oscillatory regions 

    Prominent beta oscillations play a crucial role in the state of Parkinson’s disease (Brittain and 

Brown, 2014; Eusebio and Brown, 2007); there is considerable evidence supporting the claim that the 

degree of changes in beta synchronization in the STN and the cortical motor circuit, induced by L-
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dopa medication, correlates with bradykinesia and rigidity (Kühn et al., 2009; Litvak et al., 

2011(Fogelson et al., 2006). More recently, resting tremor in PD has been linked to the appearance of 

HFO in the STN (Hirschmann et al., 2016), which in turn has been inversely correlated with 

contralateral akinesia/rigidity scores (Wang et al., 2014). It has. Therefore, been suggested that local 

and long-range neural activities, particularly beta oscillation and their coupling with broadband gamma 

oscillations, may play a crucial role in the state of the Parkinson’s disease (de Hemptinne et al., 2013; 

Swann et al., 2015). In fact, pathological low beta oscillations in STN decreased during high-frequency 

DBS, while the high beta-range seemed to play a critical role in STN-motor cortex coupling (Oswal et 

al., 2016; van Wijk et al., 2016). However, to the best of our knowledge, the evoked responses to DBS 

have not been studied in the different subcortical regions yet; nor have these local sEPs be compared 

to cortico-subcortical coupling or different local oscillatory patterns in the STN.  

   Delivering electrical stimulation at different subcortical depths across the STN will result in evoked 

responses on the basis of the neurophysiological properties of a stimulated region. Perturbing 

corticothalamic circuits by transcranial magnetic stimulation showed intrinsic electrophysiological 

properties of cortical sites (Rosanova et al., 2009). To date, no study has used a similar approach for 

different subcortical regions or in the PD state.  Therefore, this study represented the first attempt to 

identify distinct oscillatory regions in the STN while simultaneously tracing cortico-subcortical 

interactions during DBS surgery. We observed different sEPs after the onset of DBS, reflecting the 

dynamical properties of the stimulated region. High spatial and spectral correlation between HFO and 

prominent sEPs suggested that the appearance of short-latency evoked activity most likely reflects the 

perturbation of the HFO oscillatory region. This argument is confirmed by the observation that short- 

and long-latency sEPs co-located with HFO and BO, respectively. (Supplementary figure) 

Damping might facilitate cortico-subcortical DBS modulation 

    In the pathophysiology of PD patients, DBS is known to disrupt afferent and efferent coupling and 

information flow of cortico-subcortical communication in the cortico-STN loop (Chiken and Nambu, 
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2015; Li et al., 2012). In our study, we demonstrated the co-location of HFO-STN, low damping site 

and strong STN-motor cortex coupling. Consistent with our results, HFO-STN has previously been 

shown to correlate with motor symptoms and to be involved in motor circuit pathophysiology 

(Hirschmann et al., 2016; Wang et al., 2014).  Notably, the temporal properties of sEPs in our study 

were consistent for different stimulation frequencies (1 Hz, 5Hz and 130 Hz) and intensities. It is, thus, 

likely that the frequency of sEPs conveys information about the neuronal characteristics of the 

stimulated region. 

    Eusebio and colleagues recorded cortical evoked potentials while stimulating at various DBS 

frequencies (between 5 and 30 Hz, in steps of 5 Hz) in the STN of PD patients and showed that the 

amplitude of cEP (recorded from the skull) increased significantly in the ipsilateral sensorimotor 

cortex at 20 Hz compared to other DBS frequencies. This indicated that, in PD patients, 20 Hz may be 

the frequency at which the basal ganglia-cortical network involving the STN tends to resonate. They 

also pointed out that under L-dopa administration the damping was raised in the basal ganglia-cortical 

network, thereby potentially limiting this loop to resonance at 20 Hz oscillation. Our results 

complement this study; instead of limiting the resonance effect with dopamine medication, we rather 

applied therapeutic stimulation to achieve a similar phenomenon. In fact, the reduction in sEPs during 

high- frequency stimulation suggests that the damping of the cortico-subcortical system (Fig. 7) 

increased, thereby, changing the system from the pathological resonance state to a rather normal 

condition. These results could offer practical and reliable markers for closed-loop stimulation, as sEPs 

have been to dynamically change with respect to the underlying neural activity.   
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Figures: 

 

 

 

 

Figure 1: Experimental setup and recordings in the cortico-subcortical loop. (A) An example of 

recoded LFP signals with the quadripolar chronic DBS electrode during low-frequency stimulation; 

LFPs were recorded bipolarly from contacts 01 and stimulation was performed with contact 2 as an 

active and contact 3 as a return contact (right plot). Topography of EEG electrode placement during 

DBS surgery (left plot). (B) Identification of the STN boundary by calculating the power spectrum 

during mapping of the STN with four DBS contacts (0 to 3), showing the distinct spatial and spectral 

specificity of the beta oscillatory region starting at a depth of 0 mm (STN entry). 
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Figure 2: Underdamped oscillations and damping. (A) An example of an underdamped oscillation 

where the amplitude gradually decreased over time. y1/ y2 and t1/ t2 are representing the maximum first 

and second peak to peak amplitude and the period of oscillations, respectively. T refers to the period 

of oscillations and d  is the damped frequency. (B) The plot indicates the relationship between the 

amplitude of evoked response and the stimulation frequency in terms of decreasing damping. The 

lower the damping, the more resonance in the system. 
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Figure 3: Cortico-subcortical functional connectivity. (A) Phase coherence between left STN-LFP and 

all EEG electrodes in two representative patients across different STN depths. (B) Topographic group 

data showing the spatial specificity of LFP-EEG phase coherence, i.e. C1/3; results for the right LFP-

EEG coherence were flipped to the left side (upper plot). Distribution of peak frequencies (in 5 Hz 

bins) of the significant STN-cortex of each patient (lower plot).   
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Figure 4:  Temporal and spatial characteristics of short-latency evoked response. (A) Two 

representative patients: LFPs were recorded bipolarly from contacts 01 while contacts 2- 3+ were 

stimulated with 1 Hz (left plot) and 5 Hz (right plot) across different sites. (B) Variability of evoked 

responses to 1 Hz and 5 Hz DBS across patients. (C)  Box plots are showing amplitudes and latencies 

for all patients; each dot represents a PD patient (Left). Significant correlation between the amplitude 

of P1-P2 and P2-P3 is indicating a linear decreas of the diminishing oscillations.  
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Figure 5: High-frequency oscillation in the STN. (A) Power spectrum in one representative patient. 

(B) Time-frequency analysis after low-frequency stimulation.   
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Figure 6: (A) Damping values of two patients PD1 and PD11. (B) Significant correlation between 

damping factor   and normalized HFO power (r=0.79, P=0.001). 
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Figure 7: Recorded sEPs during 130 HZ stimulation and reduction of its amplitue after 20 sec of 

stimulation. 
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Supplementary figure: Recorded LFP and sEPs during resting state and low-frequency stimulation. It 

is evident that the maximum HFO (2 mm) and beta oscillatory region (0 mm) co-locate with the 

regions of maximum short and long sEPs after DBS. 
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Closed-loop paradigms provide us with the opportunity to optimize stimulation protocols
for perturbation of pathological oscillatory activity in brain-related disorders. In this vein,
spiking activity of motor cortex neurons and beta activity of local field potentials in
the subthalamic nucleus have both been used independently of each other as neuronal
signals to trigger deep brain stimulation for alleviating Parkinsonism. These approaches
were superior to the standard continuous high-frequency stimulation protocols used in
daily practice. However, they achieved their effects by bursts of stimulation that were
applied at high-frequency as well, i.e., independent of the phase information in the
stimulated region. In this context, we propose that, by timing stimulation pulses relative
to the ongoing oscillation, an alternative approach, namely the targeted perturbation
of pathological rhythms, could be obtained. In this modeling study, we first captured
the underlying dynamics of neuronal oscillations in the human subthalamic nucleus by
phased coupled neuronal oscillators. We then quantified the nature of the interaction
between these coupled oscillators by obtaining a physiologically informed phase response
curve from local field potentials. Reconstruction of the phase response curve predicted
the sensitivity of the phase oscillator to external stimuli, revealing phase intervals that
optimally maximized the degree of perturbation. We conclude that our specifically timed
intervention based on the coupled oscillator concept will enable us to identify personalized
ways of delivering stimulation pulses in closed-loop paradigms triggered by the phase
of pathological oscillations. This will pave the way for novel physiological insights and
substantial clinical benefits. In addition, this precisely phased modulation may be capable
of modifying the effective interactions between oscillators in an entirely new manner.
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oscillators, phase response curve, Parkinson’s disease, deep brain stimulation

INTRODUCTION
Brain neuromodulation by deep brain stimulation (DBS) is
meanwhile a recognized form of treatment for several neuro-
logical and neuropsychiatric disorders such as severe Parkinson’s
disease (PD) (Schuepbach et al., 2013), dystonia (Vidailhet et al.,
2005), and essential tremor (Deuschl et al., 2011). However,
general application of this therapeutic modality remains lim-
ited. This might be due to stimulation-induced side effects
and/or partial efficacy of the intervention which is proba-
bly related to a misalignment between stimulation parame-
ters and the current disease state (Moro et al., 2006; Mure
et al., 2011). While patients often display variable clinical symp-
toms, the stimulation parameters, such as continuous high-
frequency stimulation, are predefined and remain unchanged
until manual modifications are performed by the physician in
charge.

Closed-loop paradigms modulating the stimulation parame-
ters on the basis of online recorded physiological markers provide
us with the opportunity to adjust stimulation protocols and

improve therapeutic efficacy. In this regard, the first studies in
both non-human primates (Rosin et al., 2011) and Parkinsonian
patients (Little et al., 2013) addressed the current limitations by
applying stimulation in an adaptive manner only when specific
physiological markers were detected. More specifically, adaptive
DBS of the globus pallidus internus controlled by spiking activ-
ity of motor cortex neurons was more effective than continuous
high-frequency stimulation in a non-human primate model of
PD (Rosin et al., 2011). In a recent clinical study, adaptive DBS
of the subthalamic nucleus (STN)—triggered by beta-band activ-
ity (a physiological marker of motor impairment in PD) and
recorded in the immediate vicinity of the stimulating electrode in
the STN—was shown to be more energy-efficient than, and clin-
ically superior to continuous high-frequency DBS (Little et al.,
2013). Despite being superior to the standard stimulation pro-
tocols, these closed-loop approaches nonetheless achieved their
effects by bursts of stimulation applied at high frequency inde-
pendent of the phase information in the stimulated region (Rosin
et al., 2011; Little et al., 2013).
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In this context, we propose that, by timing stimulation pulses
relative to the ongoing oscillation in the respective area, an alter-
native approach—namely the targeted perturbation of patho-
logical rhythms—can be introduced. We therefore performed a
modeling study to determine the essential dynamics of neuronal
oscillations in the human subthalamic nucleus by phased coupled
neuronal oscillators in an aim to identify those phase intervals in
which stimulation would maximize the degree of perturbation of
pathological rhythms.

MATERIALS AND METHODS
The present modeling study is based on intraoperative elec-
trophysiological recordings of two PD patients who underwent
standard DBS surgery with bilateral electrode implantation in the
STN and was performed in accordance with the guidelines of the
local ethics committee of the Medical Faculty of the University
of Tuebingen. This data represents spontaneous brain activity
recorded for about 3 min through the final quadripolar DBS elec-
trode (model 3389, Medtronic, Inc., Minneapolis, MN) which
was implanted in one brain hemisphere while electrode insertion
was prepared for the second side. The STN was localized via direct
targeting on preoperative magnetic resonance imaging (Foltynie
et al., 2011) and then during surgery with online electrophysi-
ology (Chen et al., 2006; Holdefer et al., 2010). In accordance
with standard operating procedures, dopamine medication was
not administered for the last time 12 or more hours prior to
surgery to avoid interference with intraoperative recordings and
clinical testing (Hammond et al., 2007). In addition, intraopera-
tive propofol medication was discontinued about 30 min before
electrophysiological recordings were initiated (Raz et al., 2010).
Local field potential (LFP) signals were continuously sampled at
1.4 KHz and amplified by factor 50. The reference electrodes were
attached to the ears and the ground was placed on the nasion. The
impedance for the intracranial electrode was ∼1 K�. Stereotactic
planning (Machado et al., 2006) was based on multimodal pre-
operative images (1 mm slice thickness) from contrast-enhanced
magnetic resonance imaging (MRI) and computer tomography
(CT) imaging (Siemens, Erlangen, Germany). Standard elec-
trophysiological recordings (AlphaOmega, Nazareth, Israel) and
clinical test stimulation were performed intraoperatively to adjust
electrode localization. This was later confirmed by postoperative
MR and CT imaging.

PHASE SYNCHRONIZATION
The implanted quadripolar electrode (Figure 1A) enabled us to
independently record four oscillatory sources, i.e., local field
potentials (LFP), in the target region and to quantify their neu-
ral interaction. For this purpose, we used the phase approach
proposed by Rosenblum and Pikovsky (2001) to reconstruct the
phase response curve (PRC) of the LFP signals recorded in the
STN. The concept of phase synchronization between coupled
oscillators has not been used to derive a phase-response curve of
brain signals yet, but has already been applied in several electro-
physiological studies in different functional systems (Kralemann
et al., 2013; Zhu et al., 2013). However, brain signals are par-
ticularly suited for such an approach as filtered LFP signals at a
given frequency band have a sinusoidal waveform similar to an

oscillator. Therefore, phase modeling might capture the neural
network dynamics of coupled oscillators (Wang, 2010).

Data analysis of LFPs were performed in Matlab (The
Mathworks, Natick, Massachusetts, USA) using custom-made
scripts, DAMOCO toolbox (Kralemann et al., 2007, 2008) and
Fieldtrip, an open source analysis toolbox (Oostenveld et al.,
2011). To reconstruct the PRC, the power of LFP was first com-
puted by the multitaper method. Maximum spectral estimation
was provided by a single Hanning taper (Mitra and Pesaran,
1999). This approach enabled us to identify the specific electrode
contact that displayed pronounced oscillatory activity in the beta-
band—a known pathophysiological marker of motor impairment
in PD (Little and Brown, 2012)—and which we used as a reference
for the further computing. We next applied the Weighted Phase
Lag Index (WPLI) (Vinck et al., 2011) to detect the electrode con-
tact displaying the most prominent phase synchronization with
this reference electrode. WPLI is defined as follows:

WPLILFP−LFP

= n−1 ∑N
n = 1

∣∣ imag (SLFP − LFP n)
∣∣ sgn

(
imag (SLFP − LFP n)

)
n−1

∑N
n = 1 imag (SLFP − LFPn)

(1)

where S is the cross-spectrum density matrix, imag the imaginary
part and sgn the sign function. Moreover, WPLI is insensitive to
volume conduction effects since it eliminates zero phase lag sig-
nals. Thereby, it is more sensitive to detect true phase interaction
as compared to common phase measurements such as the imagi-
nary part of coherence (Nolte et al., 2004). The value of WPLI was
standardized by an estimate of its standard deviation and values
beyond threshold of 3 (corresponding p < 0.003) were consid-
ered statistically significant (Nolte et al., 2004; Hohlefeld et al.,
2013, 2014). This statistically significant frequency range (see
Figure 2B) was used for further analysis, i.e., phase extraction.

PHYSIOLOGICALLY INFORMED PHASE RESPONSE CURVE
Having determined the significant frequency interval of neural
interaction for each patient, we went on to filter the LFP in that
particular, i.e., patient-specific, frequency range using a Kaiser
FIR filter with the MATLAB filtfilt function to avoid phase dis-
tortions. The unwrapped phase of each sample of the filtered LFP
was then computed using the Hilbert transform (Figure 1B). The
method proposed by Rosenblum and collaborators (Kralemann
et al., 2007, 2008) was then used to empirically reconstruct the
phase coupling function between the two electrode contacts in
the STN that had already been determined. This method adapts
the empirical phases to a generic model of two coupled oscillators
as follows:

ϕ̇1 = ω1 + F2−→1(ϕ1, ϕ2)
ϕ̇2 = ω2 + F1−→2(ϕ2, ϕ1)

(2)

where the dot represents the derivative, while ϕ and ω are
the phase and autonomous frequency, respectively. Since the
extracted phase is non-universe θ1,2, a transformation is needed
to provide an invariant description of the coupled dynamics. The
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FIGURE 1 | (A) Deep brain stimulation lead positioned in the subthalamic
nucleus region with four electrode contacts (0–3) and respective local field
potential (LFP) recordings. (B) The LFPs from the electrode contact (black)
with the most pronounced oscillatory activity in the beta-band and the
electrode contact (red) with the most prominent phase synchronization to
the first contact are captured as coupled neural oscillators. In a second
step, the phase of these oscillators is extracted by Hilbert transform. (C)

Illustration of the typical characteristics of a phase response curve (PRC)
with positive (orange) or negative (blue) values indicating an earlier or later
start of the perturbated cycle, respectively, i.e., the perturbation could
cause a positive (orange) phase shift (phase advance), or a negative (blue)
phase shift (phase delay), depending on the timing of the perturbating
stimulus. The black curve represents the ongoing oscillation in the
absence of any perturbation.

transformation from the unwrapped phase to the genuine phase
of N observations is defined as following,

ϕ = θ + 2π
∑

n �= 1

Sn

in

(
einθ − 1

)
(3)

where

Sn = 1

N

∑N

j = 1
einθ(j).

After this phase correction is performed, the coupling func-
tion F of two coupled systems can be approximated by the Fourier
series:

F =
∑

n,m
An,me−i(nϕ2 + mϕ1) (4)

with coefficients

An,m =
2π∫

0

∫
ϕ1e−inϕ1 − imϕ2

where n and m are indices synonymous to the n:m phase locking
the indices of two oscillators and A refers to the coefficients of
the respective Fourier series (Kralemann et al., 2007, 2008). The
resulting PRC reflects the interaction of the oscillators. When the
PRC results in positive or negative values (Smeal et al., 2010), it
indicates the cycle to start sooner or later, respectively, i.e., a per-
turbation could cause a positive phase shift (phase advance), or a
negative phase shift (phase delay) (Figure 1C).

RESULTS
The recording of local field potentials (LFP) revealed that the
most upper electrode contact of the quadripolar lead has the
highest spectral power in the beta-frequency band (15–30 Hz,
Figure 2A), indicating that it is located in the sensorimotor part
of the STN (Figure 2A) (Holdefer et al., 2010; Yoshida et al.,
2010; Zaidel et al., 2010; Novak et al., 2011; Deffains et al.,
2014). Using this electrode contact as a reference, the neighbor-
ing contact revealed the most prominent phase synchronization
when applying the Weighted Phase Lag Index (WPLI). This phase
coherence showed a significant synchronization in the frequency
range between 23–27 and 17–22 Hz for P1 and P2, respectively
(Figure 2B), indicating that there is a pathological increase of
functional connectivity in the sensorimotor part of the STN
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FIGURE 2 | (A) Power spectrum of LFPs recordings at the four
different contacts (0–3) for patient 1 and 2, respectively, revealed
that the most upper electrode contact (3, black) of the quadripolar
lead has the highest spectral power in the beta-frequency band. (B)

Computing phase synchronization between electrode contact 3 (black)

and the others applying the Weighted Phase Lag Index (WPLI)
showed that the most prominent coupling is with contact 2 (red).
The statistically significant frequency range for WPLI is indicated in
gray. The dashed line represents the significance threshold
(3, corresponding p < 0.003).

FIGURE 3 | Empirically determined PRC phase response curves (PRC) of patient 1 and 2, respectively, with the averaged curve indicated in red. The
strongest phase-coupling effect in both P1 and P2 was observed around ϕ = 0.6 with the highest positive value, i.e., the maximum phase advance.

(Pogosyan et al., 2010). By applying a modeling approach of two
neural oscillators characterized by phase dependency, we suc-
ceeded in quantifying this interaction by a phase response curve.
The inherent variability of the PCRs resulting from the empir-
ical data was resolved using the similarity method (Kralemann
et al., 2013). PRC extracted from both P1 and P2 showed a sim-
ilar pattern with two different domains (Figure 3): a phase delay
in the 0 < ϕ <∼ 0.3 and ∼0.7 < ϕ < 1.0 intervals and a strong
phase advance in the ∼0.3 < ϕ < 0.7 interval. The strongest
phase-coupling effect was observed around ϕ = 0.6.

DISCUSSION
The beta-band functional connectivity observed within the STN
tallies well-with earlier work, indicating that this synchroniza-
tion reflects a pathological marker for different motor features
of PD (Pogosyan et al., 2010; Hohlefeld et al., 2013). We also

located the most prominent phase synchronization in the dorsal,
sensorimotor part of the STN (Pogosyan et al., 2010), i.e., the area
known to be clinically most effective in suppressing PD symp-
toms during DBS (Herzog et al., 2004; Yokoyama et al., 2006;
Schlaier et al., 2014). It remains to be experimentally disentan-
gled, whether additional physiological markers may capture a
broader spectrum of PD symptoms and may therefore be better
suited for closed-loop applications. However, more sophisticated
approaches of simultaneous sensing and stimulation with online
signal processing may decrease the battery life span and should
therefore be balanced with potential clinical benefits (Little and
Brown, 2014).

On the basis of these findings, phase-specific interventions
appear to be the most straightforward approach for specifically
perturbating pathological synchronization. The PRC disentan-
gles the timing of the regional interaction in the dorsal STN to
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FIGURE 4 | Illustration of a closed-loop modulation protocol,

recording and stimulating with two adjacent DBS electrode

contacts in the STN, triggered by the ongoing oscillatory phase

estimated on the basis of the PRC curve. To determine this precise
timing, a closed-loop system will require a physiological calibration for

each patient including the estimation of WPLI and PRC based on the
individual vivo recordings. After this calibration, i.e., based on the
subject-specific frequency range and the precise phase of maximum
perturbation, the respective phase information will be the feedback
signal to control the stimulation.

reveal the highest synchronization between the two oscillators at
phase 0.6 (Figure 4). In fact, the PRC also reveals phase sen-
sitivity of an oscillator to external perturbation (Smeal et al.,
2010). We therefore propose that the application of DBS stim-
uli at this phase, i.e., replacing one of the two oscillators by an
external stimulus, maximizes perturbation of the pathological
state. Along these lines, the effect of a perturbation on an oscil-
lating system is known to depend on the phase at which the
perturbation is applied (Pikovsky et al., 2001; Kralemann et al.,
2013). This assumption is further supported by physiologically
calibrated modeling results which suggest that precisely timed
stimulation pulses could indeed be used to shift the phase of
oscillations (Witt et al., 2013).

Moreover, when stimuli are properly phased with respect to
ongoing oscillations, they might even induce long-term potentia-
tion/depotentiation (LTP/LTD) effects (Martin et al., 2000; Kauer
and Malenka, 2007): both in vitro (Huerta and Lisman, 1993) and
in vivo (Pavlides et al., 1988) experimental studies reported LTD
induction when stimuli were applied during the positive phase of
the theta rhythm. Similarly, depotentiation of existing LTP was
achieved when stimuli were phase-locked to the negative phase
of theta (Huerta and Lisman, 1995). Phase-specific pulses may
therefore induce bidirectional modifications of synaptic strength
(Martin et al., 2000) with the potential to turn a whole network
into a synchronized or a desynchronized state (Pfister and Tass,
2010).

Future closed-loop modulation protocols will require simulta-
neous recording and stimulation. The presented findings suggest
that two adjacent DBS electrode contacts in the STN may be
used for this purpose, i.e., to record and to stimulate, respec-
tively. In such a scenario the stimulating contact would be
triggered by the ongoing oscillatory phase recorded at the adja-
cent electrode and estimated on the basis of the PRC curve.
To determine the precise timing, a physiological calibration of
the closed-loop system will be required for each patient before-
hand, including the estimation of WPLI and PRC based on the
individual vivo recordings. After this calibration, i.e., based on
the subject-specific frequency range and the precise phase of

maximum perturbation, the respective phase information will be
the feedback signal to control the stimulation. This approach can
be implemented with online algorithms, i.e., real-time calcula-
tion of the instantaneous phase based on the Hilbert transform
(Figure 4).

Phase-dependent stimulation protocols may therefore be capa-
ble of modifying the effective interactions between oscillators
in an entirely new fashion, potentially inducing lasting effects
mediated by LTP/LTD. Furthermore, with regard to different
neurological and neuropsychiatric disorders, such an approach
would transform brain stimulation from a symptomatic interven-
tion and temporary modulation—displaying its effects only for
the duration of stimulation—to a treatment option that induces
long-term plastic changes and durable effects lasting beyond
stimulation.
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