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2. Berichterstatter: Prof. Dr. Werner Vogelsang







Abstract

In the last years, scattering processes comprising pairs of the massive weak gauge bosons
gain more and more attention. Those reactions provide particularly promising means
to investigate the very mechanism responsible for electroweak symmetry breaking in
the Standard Model of particle physics and to search for new physics entering via the
weak sector of the theory. Precisely predicting the differential distributions of the final-
state particles in realistic conditions is an essential prerequisite to potentially reveal
tiny deviations induced by physics beyond the Standard Model.

In this thesis we present a calculation of the next-to-leading order (NLO) electroweak
corrections to W-boson pair production at CERNs Large Hadron Collider (LHC), as
well as a detailed analysis of vector-boson scattering (VBS) processes at a future high-
energy proton–proton collider.

In particular, our calculation of the NLO electroweak corrections to the hadronic
process pp → W+W− → 4 leptons takes the leptonic W-boson decays as well as all off-
shell effects fully into account and, thus, is the first prediction providing NLO accuracy
everywhere in phase space. Employing realistic event selection criteria, we study the
influence of the corrections in situations that are typical for the experimental analyses
in the high-energy region and for Higgs-boson precision studies in the channel H →
WW∗, to which direct W-boson pair production represents an important irreducible
background. We observe non-trivial distortions of the differential distributions that, if
not properly included in upcoming analyses, could easily be misidentified as first signs of
new physics. Furthermore, we compare our predictions to previous results obtained by
employing the so-called double-pole approximation. At small and intermediate scales
the two approaches show the expected agreement at the level of fractions of a percent,
while in the TeV range the differences may easily reach several tens of percent.

Due to the comparably small production cross sections and the generally large QCD
backgrounds, studying VBS reactions at hadron colliders is an intricate task, and even
with the target luminosity of several 100 fb−1 presumably collected at the end of LHC
Run II, dedicated differential analyses will hardly be realizable. In our analysis we there-
fore investigate the opportunities of a potential follow-up project of the LHC which is
proposed to operate at a center-of-mass energy of 100 TeV and assumed to deliver a
total integrated luminosity of 30 ab−1. For several decay modes we perform a detailed
signal-to-background analysis, revealing the excellent possibilities for future measure-
ments of VBS processes at yet unprecedented energy scales that such a machine facil-
itates. With process-specific event-selection criteria we manage to significantly reduce
the background contribution, while due to the deep energy reach definitely sufficient
events of the VBS signal remain for a detailed examination at the differential level.





Zusammenfassung

Seit einigen Jahren ist das Interesse an Streureaktionen, an denen Eichboson-Paare der
schwachen Wechselwirkung beteiligt sind, stetig gestiegen. Diese Prozesse bieten beson-
ders erfolgversprechende Möglichkeiten sowohl die elektroschwache Symmetriebrechung
im Standardmodell der Teilchenphysik zu erforschen, als auch nach ersten Anzeichen
schwach-wechselwirkender Neuer Physik zu suchen. Präzise Vorhersagen der differenzi-
ellen Verteilungen der Endzustandsteilchen unter möglichst realistischen Bedingungen
sind eine Grundvoraussetzung um winzige Veränderungen, welche durch Physik jenseits
des Standardmodells verursacht würden, als solche erkennen zu können.

In der vorliegenden Arbeit wird sowohl die Berechnung der elektroschwachen Kor-
rekturen in nächst-zu-führender Ordnung (next-to-leading order, NLO) des W-Boson
Paarproduktionsprozesses am Large Hadron Collider (LHC) als auch eine detaillier-
te Studie zur Untersuchung von Vektor-Boson-Streuung (VBS) an einem zukünftigen
hochenergetischen Proton–Proton Beschleuniger vorgestellt.

Unsere Berechnung der elektoschwachen NLO Korrekturen des hadronischen Streu-
prozesses pp → W+W− → 4 Leptonen bezieht die leptonischen Zerfälle der W-Bosonen
sowie alle off-shell Beiträge vollständig mit ein und ist somit die erste Vorhersage welche
über den gesamten Phasenraum NLO Genauigkeit liefert. Mit Hilfe einer realistischen
Ereignisauswahl wird der Einfluss der Korrekturen auf typische experimentelle Analysen
untersucht. Hier konzentrieren wir uns zum einen auf die Hochenergie-Region und zum
anderen auf den Bereich in dem Präzisionsstudien des Higgs-Bosons im Zerfallskanal
H → WW∗ durchgeführt werden, da hierzu die direkte W-Boson Paarproduktion einen
wichtigen irreduziblen Untergrund darstellt. Wenn die vorhergesagten nicht-trivialen
Änderungen der differenziellen Verteilungen nicht in geeigneter Weise in den bevor-
stehenden Analysen berücksichtigt werden, können diese leicht mit ersten Anzeichen
Neuer Physik verwechselt werden. Zusätzlich werden unsere Vorhersagen mit früheren
Ergebnissen verglichen, welche auf der sogenannten Doppelpol-Näherung basieren. Bei
kleinen und mittleren Energieskalen bestätigt sich die erwartete Übereinstimmung im
Promillebereich, während wir im Hochenergie-Bereich eine deutliche Diskrepanz zwi-
schen den zwei Methoden von bis zu einigen zehn Prozent aufzeigen können.

Die Untersuchung von VBS Reaktionen an Hadron Beschleunigern ist durch die ver-
gleichsweise geringen Produktions-Wirkungsquerschnitte und dem meist großen QCD
Untergrund eine sehr komplizierte Aufgabe und selbst mit einer Luminosität von eini-
gen 100 fb−1, welche bis zum Ende von LHC Run II erreicht werden sollte, wird eine
detaillierte Analyse auf differentieller Ebene kaum möglich sein. In unserer Studie un-
tersuchen wir daher das Potenzial eines möglichen LHC-Nachfolgeprojektes, welches bei
einer Schwerpunktsenergie von 100 TeV eine Luminosität von 30 ab−1 liefern soll.



x Zusammenfassung

Anhand einer detaillierten Signal-zu-Untergrund Studie verschiedener Zerfallskanäle
zeigen wir die exzellenten Bedingungen unter denen zukünftige Messungen an bisher un-
erreichten Energieskalen an solch einer Maschine durchgeführt werden könnten. Durch
prozessspezifische Ereignisselektionen können die Untergrundbeiträge erheblich verrin-
gert werden, während aufgrund des zugänglichen Hochenergiebereiches genügend Ereig-
nisse des VBS Signales verbleiben würden um dieses eingehend auf differenzieller Ebene
untersuchen zu können.
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Chapter 1

Introduction

The main objective of particle physics is to reveal the fundamental constituents of
matter and to explain the very principles governing their interaction. A major part of
our present knowledge about these elementary particles is incorporated in the Standard
Model of particle physics (SM), which exists in its present form for already 40 years.

The SM addresses three of the four known fundamental interactions of nature, namely
the strong, the weak, and the well-known electromagnetic interaction. Describing these
forces at the level of elementary particles, the SM is formulated as a quantized gauge
theory, where the interactions are mediated by the exchange of associated force carri-
ers, the gauge bosons. The strong interaction, which is responsible for the formation
of hadrons, such as protons and neutrons, is described by Quantum Chromodynamics
(QCD) [1] and the corresponding gauge bosons are called gluons. The weak and electro-
magnetic forces are collectively described by the so-called electroweak (EW) theory [2],
incorporating the massless mediator of the electromagnetic force, the photon, and the
three massive weak gauge bosons called W+, W−, and Z boson. The very existence of
these massive gauge bosons in the SM originates from an involved dynamical mecha-
nism that breaks the gauge symmetry of the EW theory, the Higgs mechanism [3]. Since
this procedure of electroweak symmetry breaking (EWSB) possesses an essential role
in the SM, the experimental observation of the massive W± and Z bosons in 1983 at
the European Organisation for Nuclear Research (Conseil Européen pour la Recherche
Nucléaire, CERN) [4] can be seen as one of the most important steps in establishing the
SM. Indeed, after this discovery various collider experiments have been performed to
further peruse the distinct structure of the theory, revealing an astonishing agreement
with the SM predictions.

However, for many years the ultimate confirmation of the Higgs mechanism, the
existence of the Higgs boson, was pending. For almost two decades the Higgs boson
was the last missing particle predicted by the SM such that its experimental observation
was already eagerly awaited when the Large Hadron Collider (LHC) at CERN began
its operation in 2008. Eventually, in July 2012, the discovery of a particle has been
announced by the two independent LHC experiments ATLAS [5] and CMS [6], that
so far is entirely consistent with a 125 GeV SM Higgs boson [7] and, thus, completes
the particle spectrum of the SM. Further determining the properties of this Higgs-like
particle is one of the main tasks of the LHC Run II. Started in 2015, this run presently
collects data at a centre-of-mass (c.m.) energy of 13 TeV, which is almost twice the



2 Introduction

energy reached in Run I.
Irrespective of the outstanding success the SM experienced in the past decades, sev-

eral experimental observations and theoretical arguments indicate that also physics
beyond the SM (BSM) has to exist. Among the most pressing experimental evidences,
there are the cosmological observations of dark matter and dark energy, which both can
not be satisfactorily addressed within the SM. While the origin of dark energy, how-
ever, is still completely unknown, with dark matter we denote the preponderant part of
the matter content of our universe (∼85 %), that, although gravitationally interacting,
seems not to emit any kind of electromagnetic radiation like ordinary matter. Only the
remaining ∼ 15 % are presently believed to account for the kind of matter that we try
to describe within the SM. Although very massive unobserved objects made of ordinary
matter (e.g. Massive Astrophysical Compact Halo Objects, MACHOs) can not be ex-
cluded with current astronomical data, another conceivable explanation would be that
dark matter consists of particles which are not included in the SM, like for example
additional Weakly Interacting Massive Particles (WIMPs).

Such a particle-physics-related explanation is further supported by some particular
shortcomings of the SM. An explanation of the observed neutrino oscillations, for ex-
ample, requires for non-zero neutrino masses, while neutrinos have to remain exactly
massless in the SM. Another example is the distinct discrepancy between the predicted
and measured value in one of the most precise measured quantities, the anomalous
magnetic moment of the muon.

Various theories have been developed to account for these experimental evidences, ex-
tending the SM by additional particles and/or interactions. Justifying the considerable
agreement of collider data with SM predictions observed so far, most of these theories
include the SM as a low-energy approximation and new-physics effects are generally
assumed to enter the theory at some higher, yet unprobed, energy scale. Attempts to
include the fourth known fundamental interaction, the gravitational force, in such a
more fundamental theory were, however, so far unsuccessful, as no consistent quantized
theory of gravitation is known to date. Indeed, the strength of gravitation is tens of
orders of magnitude weaker than the three remaining forces, and can therefore safely
be neglected when searching for new-physics effects in the interaction of elementary
particles at energy scales that are accessible in collider experiments.

Consequently, the prospects of the present LHC Run II, but especially of future
collider experiments, should not be seen in further confirming the SM, but to eventually
observe deviations from the SM predictions. A smoking gun signal of BSM physics
would for example be a prominent peak in the differential distribution of the decay
products of a new particle, similar to the resonance peak of the Higgs boson in the
invariant di-photon mass that mainly led to its observation in 2012. At the end of
2015, such a signal has simultaneously been reported by ATLAS [8] and CMS [9],
both observing a small excess at around 750 GeV in the di-photon mass. Although
the experimentalists explicitly pointed to the limited statistical significance, this excess
caused considerable interest especially in the theoretical community and was extensively
discussed as the first sign of new physics. However, both experiments could not confirm
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their observation in the analyses of the new datasets presented in August this year [10]
and the alleged excess turned out to be only a statistical fluctuation.

It is therefore clear that the eventual detection of new particles not only requires a
clean experimental environment, allowing for a proper identification of its decay prod-
ucts, but also sufficient statistics, especially in the tails of differential distributions
reaching far into unprecedented energy regimes, is of utter importance. Under these
aspects, processes with weak gauge bosons provide a particularly suitable testbed to
search for BSM physics. Especially in the leptonic decay channels of the weak gauge
bosons the SM processes exhibit very distinct and well detectable final states. Even
at hadron colliders, where one is genuinely plagued by competing QCD-induced pro-
cesses that lead to the same signature in the detector, so-called QCD backgrounds, the
purely EW processes remain very well distinguishable and therefore allow for precise
measurements. Moreover, the gauge-boson self-interaction is very sensitive to the exact
realisation of EWSB. Possible new-physics effects entering via the EW sector could have
large effects on the internal structure of the theory such that deviations from the SM
predictions should already be detectable well below the production threshold of new
particles.

In order to reveal such BSM effects above the large SM background, knowing the con-
tributing SM processes to the highest possible accuracy is mandatory. The inclusion
of quantum corrections, so-called higher-order corrections, may lead to considerable
modifications of theoretical predictions performed at the lowest possible order (leading
order, LO). For particular processes, these corrections may reach several 100 %, as they
include additional contributions, which are, however, not separately detectable. Espe-
cially missing higher-order corrections of the EW theory may easily be misinterpreted as
signs of new physics. Despite the fact that EW corrections are generally much smaller
than the corresponding corrections in the strong force (QCD corrections), they have a
particularly large influence in the tails of distributions, where new-physics searches are
conventionally performed. However, also for present and upcoming precision studies
at rather low or intermediate energy domains, including not only the dominant QCD
corrections but additionally the effects of EW corrections becomes more and more im-
portant to fully exploit the potential of these analyses.

In this thesis, we concentrate on two slightly related process classes that both provide
particularly promising means to further challenge the SM at hadron colliders, namely
weak-boson pair production and vector-boson scattering (VBS) reactions. While for
weak-boson pair production we focus on the particular process featuring two oppositely
charged W bosons (pp → W+W−), for VBS the genuine 2 → 2 scattering processes
VV → VV, with V denoting either a W± boson or the Z boson, are considered.

Our objectives of studying these two process classes, however, fairly differ: For the
W-pair production process we aim for predictions at the highest possible accuracy and
present our calculation of the full next-to-leading order (NLO) corrections in the EW
coupling [11]. For realistic LHC event-selection criteria we quantify the impact of the
individual contributions by means of differential distributions of the final-state particles,
as well as discuss the validity of EW corrections employing the so-called double-pole
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approximation [12], which is partly based on an expansion about the W-resonance poles.
With an envisaged integrated luminosity of several 100fb−1 at the end of LHC Run II,
certainly enough statistics will be collected to probe this process in energy regions where
a precise knowledge of the distinct effects of EW corrections possesses an essential part
in the theoretical predictions.

Studying VBS processes at hadron colliders is unfortunately much more involved,
since large irreducible backgrounds heavily complicate the extraction of the signal con-
tribution. Although the techniques to efficiently suppress the background by imposing
dedicated selection criteria are in principle very well known, their application unavoid-
ably also reduces the signal cross section. Consequently, the dedicated search for new-
physics effects in the EW sector via VBS processes is strongly limited by the very low
cross sections in the remaining phase space. Despite the higher luminosity and deeper
energy reach of LHC Run II compared to Run I, the investigation of VBS processes at
the differential level will hardly be possible at the LHC.

Much more powerful means for studying VBS reactions would be provided by a
future high-energy proton–proton collider operating at a c.m. energy of 100 TeV, that
is currently discussed as a possible follow-up project of the LHC. In order to explore
the prospects of probing VBS processes at such a machine, we perform a dedicated LO
analysis, where we examine the signal and background contributions of several VBS
processes. While present LHC studies definitely should be performed at the highest
possible accuracy, the omission of higher-order corrections is, however, well justified at
such an early stage of the project, where the possible experimental setup still represents
the largest source of uncertainties.

This thesis is divided in two parts and organized as follows:

In the first part, we discuss the basic theoretical concepts needed to perform accu-
rate predictions for scattering processes at hadron colliders. We begin with a detailed
introduction to the SM in Chap. 2, where we separately discuss the EW and subse-
quently the QCD part of the theory. In Chap. 3 we comment in a general way on
the problems one is confronted with in the calculation of higher-order corrections and
present methods to handle those. After discussing the regularization procedure and
different renormalization schemes in the first two sections of this chapter, in Sec. 3.3
we introduce the issue of infrared divergences, which occur in intermediate results of
explicit higher-order calculations. The additional requirements to perform predictions
at hadron colliders are then discussed in Chap. 4. Section 4.1 is dedicated to the intro-
duction of the parton model and the necessary factorization properties of the scattering
process. Subsequently, in Sec. 4.2 we present in detail the subtraction formalism that
will be applied in our calculation of EW corrections to handle the infrared singularities
appearing in the phase-space integration, and in Sec. 4.3 some details on the explicit
calculation of one-loop integrals are given.

In the second part of this thesis, we turn to the explicit application of the presented
theoretical foundations and discuss two particularly important processes for collider
phenomenology. In Chap. 5 we outline our calculation of the EW correction to the W-
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boson pair production process at the LHC and discuss our results by means of integrated
and differential distributions for several event-selection setups. Chapter 6 comprises the
details of our LO studies of vector-boson scattering processes at a future hadron collider
operating at 100 TeV. In a detailed signal-to-background analysis of the SM processes
we comment in particular on the prospects in the search for new physics. Finally, in
the last chapter we summarize our main results and provide a short outlook.





Part I

Theoretical Background and Basic
Concepts





Chapter 2

The Standard Model of Particle Physics

The Standard Model of particle physics (SM) describes all known elementary particles
and their interactions. Its formulation as a relativistic quantum field theory combines
the fundamental principles of special relativity and quantum mechanics with the well-
known concepts and mathematical techniques of classical field theory.

As a field theory, the SM is most conveniently formulated within the Lagrangian
formalism, where the Lagrangian density (Lagrangian) L contains all relevant informa-
tion on the fields and their interactions in form of kinetic, mass, and interaction terms.
Within this formalism, the dynamics of the theory is derived by the principle of least
action δS = 0, where the action S is defined as the four dimensional space-time integral
over the Lagrangian,

S =

∫
d4x L . (2.1)

In the following, we work in natural units, i.e. we set ~ = c = 1 throughout, which
results in all quantities having dimensions of mass to some power. In particular, the
action defined in Eq. (2.1) becomes a dimensionless quantity, which implies that the
Lagrangian has to be of mass-dimension four.

Given the Lagrangian of a theory, it is in principle straightforward to derive the
so-called Feynman rules which serve as building blocks for any calculation of physical
observables, see e.g. Refs. [13–16]. The Lagrangian of the SM is, however, strongly
constrained by the compliance with fundamental symmetry principles, such that we
start with a detailed discussion of the Lagrangian in this section. Within the SM, we
generally distinguish between two kinds of symmetries, namely space-time symmetries
and gauge symmetries. Since these symmetries are described by means of groups and
their associated algebras, we provide a short introduction to group theory and, in
particular, discuss the relevant symmetry groups of the SM in App. A. Further details
on the individual properties of the groups that we simply assume in the following can
be found there.

The group associated with the space-time symmetries of the SM is the so called
Poincaré group. This group generalizes the underlying group of special relativity, the
Lorentz group, by incorporating beside Lorentz rotations and Lorentz boosts also the
translation on the four-dimensional space-time, the Minkowski space. The fields appear-
ing in the SM Lagrangian are objects belonging to a specific irreducible representation
of the Poincaré group, which are characterised by their mass and spin. The requirement
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of renormalizability1 of the SM further restricts the fields that may appear in the La-
grangian to only three different kinds of spin values, namely bosonic spin-0 (scalars) and
spin-1 fields (vectors) and fermionic spin-1

2 fields (spinors). Fields of a higher spin value
may not enter the SM Lagrangian, since it is not possible to construct Lorentz-invariant
operators of mass dimension four without spoiling renormalizability [17].

The second and completely distinct kind of symmetries are the gauge symmetries,
or internal symmetries, that determine the interaction among the SM fields. In the
SM these symmetries have to be respected at each individual space-time point, which
further defines the so-called local gauge symmetries, where the spin-1 vector bosons,
mediating the interactions among the SM fields, act as gauge bosons corresponding to
a specific gauge group. The gauge group of the SM,

SU(3)C ×SU(2)W×U(1)Y , (2.2)

is a product group of three fundamental Lie-groups. The colour group SU(3)C is the
internal group of Quantum Chromodynamics (QCD) that describes the strong interac-
tion. The eight gauge bosons of QCD are called gluons (g) and the fermions interacting
with these gluons are called quarks (q). SU(2)W and U(1)Y are the symmetry groups of
the weak isospin (IW) and the weak hypercharge (Y), respectively, which together build
the electroweak (EW) sector of the SM (EWSM). The four gauge bosons of the EWSM
are usually denoted by W i (i = 1, 2, 3) and B. Finally, the fermions of the SM that do
not interact strongly are called leptons (ℓ), where we further differentiate between the
electrically charged leptons (l) and the electrically neutral neutrinos (ν). With respect
to their associated gauge group, all gauge bosons transform under the adjoint represen-
tation, while the fermionic fields either live in the fundamental representation if they
take part in the respective interaction, or in the trivial representation if they do not.

The EWSM is for a particular reason much more involved than the strongly inter-
acting part, namely the appearance of massive gauge bosons in the EW sector. Since
explicit mass terms for gauge bosons would immediately violate gauge invariance, a
dynamical mechanism is required to generate the experimentally observed gauge bo-
son masses in the EW sector. The only known possibility for introducing gauge boson
masses without spoiling gauge invariance, is the Englert-Brout-Higgs-Guralnik-Hagen-
Kibble mechanism [3], or, shortly, the Higgs mechanism. The spontaneous breaking of
the SU(2)W × U(1)Y symmetry (EWSB) via a complex scalar field eventually leads to
gauge invariant mass terms for three of the four gauge bosons of the EW sector. The
strongly interacting part of the SM, on the other hand, remains unbroken and there-
fore SU(3)C is an exact symmetry in the SM. The QCD Lagrangian, which exclusively
describes quarks and massless gluons, will be discussed separately in Sec. 2.2.

For the quantization of the classical Lagrangian of the SM, usually the path-integral
formalism [18] is applied, which allows for a clean treatment of the divergences appearing

1 A theory is called renormalizable if all ultraviolet divergences that occur in higher orders of the
perturbative expansion may be reabsorbed by a finite number of appropriate redefinitions of the
input parameters and fields. The renormalization of the SM will be discussed in detail in Sec. 3.2.
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in the quantization of non-Abelian gauge theories. These divergences appear, because
the functional integral over the gauge fields automatically contains infinitely many
physically equivalent field configurations, as they are related among each other by
gauge transformations. The Faddeev–Popov procedure [19] allows to re-parametrize
the classical Lagrangian such that the resulting effective Lagrangian reads

LSM, eff = LSM, cl. + Lfix + LFP , (2.3)

containing two additional terms, the gauge-fixing term (Lfix) and the Faddeev–Popov
term (LFP), respectively. The gauge-fixing term selects one configuration out of each
set of fields that transform into each other, and therefore restricts the path-integral to
physically non-equivalent field configurations. This allows to split off the divergence
arising from the integration over the gauge group, which subsequently can be absorbed
in the normalization of the functional integral. LFP introduces anti-commuting scalar
fields, the Faddeev–Popov ghosts, to the theory, which by definition violate the spin-
statistics theorem. This is, however, unproblematic as they are unphysical degrees of
freedom that only appear as intermediate particles within higher-order corrections, but
never as external particles.

Finally, from the effective Lagrangian (Eq. (2.3)) the Feynman rules of the SM can
be derived in a straightforward way. These rules allow for a pictorial representation
of the mathematical expressions describing the interaction among the different kinds
of particles, which tremendously facilitates handling and description of reappearing
building blocks in any calculation. The Feynman rules assign a set of symbols to
the most fundamental building blocks, namely to external particles, the interaction
among different particles (vertices), and the propagation of intermediate particles. The
assignment for all SM particles is collected in App. C.

In the upcoming two sections we now discuss separately the Lagrangian of the EW
sector and the QCD sector. We thereby closely follow the presentation of Ref. [14],
which we also recommend for further insights.

2.1. The Electroweak Sector of the SM

In this section we discuss the Glashow–Weinberg–Salam (GWS) model [2], which gov-
erns the EW part of the SM, in detail. The GWS model describes the interaction among
all fermionic fields of the SM, the four gauge bosons associated with the symmetry group
SU(2)W ×U(1)Y, and the complex scalar Higgs field. Via the Higgs mechanism [3], the
EW symmetry is spontaneously broken, which eventually leads to mass terms for the
fermions as well as for three of the four gauge bosons of the theory. In the following, we
first separately introduce the three gauge invariant terms of the classical Lagrangian,

LGWS, cl. = LGauge + LFermions + LHiggs , (2.4)

before extracting the physical consequences following from the Lagrangian. The quan-
tization of the classical Lagrangian will be discussed in Sec. 2.1.5.
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2.1.1. Gauge Part

The gauge part of the Lagrangian (2.4) reads

LGauge = −1

4
Bµν(x)Bµν(x) − 1

4
W i

µν(x)W i,µν(x) , (2.5)

with the two field-strength tensors of the U(1)Y and SU(2)W symmetry groups

Bµν(x) = ∂µBν(x) − ∂νBµ(x) , (2.6)

and

W i
µν(x) = ∂µW i

ν(x) − ∂νW i
µ(x) + g2ǫijkW j

µ(x)W k
ν (x) , (2.7)

respectively. In Eqs. (2.5) and (2.7), the summation over the repeated Lorentz- and
group-indices is implicitly understood. Here, g2 is the coupling strength of the weak
interaction and the structure constants of the SU(2)W are denoted by ǫijk, the totally
antisymmetric tensor in three dimensions. Since U(1)Y is an Abelian group, no self-
interaction term and therefore also no structure constant appears in Eq. (2.6). Note
again, that no explicit mass terms for the gauge bosons can be added to the Lagrangian,
since such a term would immediately violate gauge invariance.

2.1.2. Fermionic Part

Already several years before the theoretical formulation of the GWS model, it was
shown by Wu et al. [21] that the electroweak interaction is not invariant under the
parity transformation (P), which transforms right-handed and left-handed Weyl spinors
into one another. Actually, it even turned out that only left-handed fermions take part
in the radioactive processes that are nowadays distributed to the weak force, whereas
both chiralities interact electromagnetically in a uniform way. Note, however, that the
combined symmetry transformation of charge conjugation and parity (CP) again is a
symmetry of the unbroken EWSM, implying that right handed anti-fermions do interact
weakly. Since direct mass-terms in the Lagrangian would spoil this SU(2)W gauge
invariance, with respect to the Poincaré group, the fermion states of the EWSM are
given as massless left- and right-handed Weyl spinors.

For the formulation of the GWS model as a gauge theory, these experimental observa-
tions imply that left-handed fermions transform under the two-dimensional fundamen-
tal representation (Ia

W
= σa/2, with the Pauli matrices σa), whereas the right-handed

fermions have to transform trivially under the SU(2)W part (Ia
W

= 0), and, thus, could
be omitted completely in purely weak processes. However, since both chiralities carry
a weak hypercharge and therefore transform in a non-trivial way under the UY(1) sub-
group, the right-handed fermions have to be included as SU(2)W-singlets in the unified
theory. According to the Gell-Mann–Nishijima relation,

Q = I3
W

+
Y

2
, (2.8)
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Fermions of the EWSM
Generation

I3
W

Y Q
1 2 3

le
p

to
n

s
ℓ

neutrinos νi νe νµ ντ

1/2 −1
0

0 0

charged leptons li e µ τ
−1/2 −1 −1

0 −2

q
u

ar
k
s

q up-type quarks ui u c t
1/2 1/3 2

30 4/3

down-type quarks di d s b
−1/2 1/3 −1

30 −2/3

Table 2.1.: The quantum numbers of the fermionic fields of the EWSM: I3
W, Y, and

Q denote third component of the weak isospin, the weak hypercharge, and the electric
charge, respectively. The upper part of each line belongs to the left-handed repre-
sentation of the corresponding field, the lower part to the right-handed. The electric
charge Q is independent of the chirality and is obtained accordingly to Eq. (2.8). For
a more transparent presentation the primes indicating EW eigenstates are omitted in
this arrangement. Adapted from [20].

the electric charge Q is calculated irrespective of the chirality from the generators I3
W

and Y in the actual representation, thus setting the weak hypercharges for the right-
and left-handed fermionic fields. In nature we observe three generations of quarks
and leptons, which show exactly the same transformation properties under the EW
gauge groups. In Tab. 2.1 we collect the quantum numbers of the left- and right-
handed components of all fermionic fields of the EWSM. Note that since neutrinos are
found to be electrically neutral, Eq. (2.8) implies that right-handed neutrinos must also
transform trivially under UY(1), and therefore can be completely removed from the
particle spectrum, as they do not interact at all. As we will see below, this omission,
in particular, prevents the neutrinos from receiving a mass-term in the same manner
as the remaining fermions2.

Finally, we can write the fermionic fields of the EWSM in the following manner

L′L
i =

(
ν ′L

i

l′Li

)
, Q′L

i =

(
u′L

i

d′L
i

)
, l′Ri , u′R

i , d′R
i , (i = 1, 2, 3) , (2.9)

where the superscripts L and R denote the chirality of the fields and the subscript i is
the label for the three generations. The reason for the convention to label the eigenstates
of the EW interaction with an additional prime, will become apparent in the discussion
of the Higgs part of the EW Lagrangian. Introducing the covariant derivative of the

2From the observation of neutrino oscillations we know that non-zero neutrino masses have to exist,
which—due to the omission of the right-handed component—cannot be explained within the SM.
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EWSM,

Dµ = ∂µ − ig2W i
µIi

W + ig1Bµ
Y

2
, /D = γµDµ , (2.10)

we can finally write down the Lagrangian of the fermionic part,

LFermion =
∑

j

i
(
L̄′L

j /DL′L
j + Q̄′L

j /DQ′L
j + l̄′Rj /Dl′Rj + ū′R

j /Du′R
j + d̄′R

j /Dd′R
j

)
, (2.11)

that describes the kinematics of massless fermionic fields and the interaction with the
gauge bosons of the EWSM. Here, the bar above a fermionic field denotes the cor-
responding anti-field, which shows exactly the opposite quantum numbers listed in
Tab. 2.1. Note, that even though labeled equally, the covariant derivative /D in Eq. (2.11)
takes a different form, depending on the actual quantum numbers of the field it acts on.
In Eq. (2.10) beside the coupling constant of the weak interaction, g2, we also introduced
the coupling constant of the U(1)Y-part, which we denote by g1.

2.1.3. Higgs Part

The Higgs part of the classical Lagrangian of Eq. (2.4) describes the kinematics of a com-
plex scalar SU(2)W doublet Φ, the Higgs doublet, and the interaction of this field with
the gauge bosons and fermions introduced above. The self-interaction potential of the
scalar V (Φ) is chosen in such a way that the ground state Φ0 acquires a non-vanishing
vacuum expectation value (vev) which spontaneously breaks the SU(2)W ×U(1)Y sym-
metry into the conserved electromagnetic U(1)EM symmetry, and eventually leads to
mass terms for three of the four gauge bosons as well as for the fermions. Note, that
if we postulate a vacuum that is invariant under Poincaré transformations, only scalar
fields can acquire non-vanishing vevs via the spontaneous breaking of a local symmetry.
Additionally, since we demand the vacuum to be electrically uncharged, according to
Eq. (2.8), this implies for the ground state Φ0

QΦ0 =

(
σ3

2
+

1

2
YΦ

)
Φ0 =

1

2

(
YΦ + 1 0

0 YΦ − 1

)(
φ01

φ02

)
!

= 0 , (2.12)

which restricts the weak hypercharge of the Higgs doublet to be YΦ = ±1, in order to
obtain one (electrically) neutral component that acquires the non-vanishing vev. By
convention we choose the + sign for the weak hypercharge, such that an arbitrary Φ
reads

Φ(x) =

(
φ+(x)

φ0(x)

)
, (2.13)

with an (electrically) charged upper and a neutral lower component. The most general
renormalizable Lagrangian for this Higgs doublet,

LHiggs = (DµΦ)†(DµΦ) − V (Φ) − Y(Φ, Q′, L′, u′, d′, l′) , (2.14)
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contains a kinetic term with the covariant derivative of Eq. (2.10), the Higgs self-
interaction potential V (Φ), and the Yukawa interaction between Φ and the fermionic
fields, Y(Φ, . . . ). The Higgs potential reads

V (Φ) = −µ2Φ†Φ +
λ

4
(Φ†Φ)2 , (2.15)

where both, the mass-parameter µ2 and the coupling constant λ have to be chosen
positive, for the Higgs potential to be bounded from below and to acquire a non-
vanishing vev, respectively. The Yukawa interaction,

Y(Φ, . . . , l′) =
∑

i,j

(
L̄′L

i Glep

ij l′Rj Φ + Q̄′L
i Gup

ij u′R
j Φc + Q̄′L

i Gdown

ij d′R
j Φ + h.c.

)
, (2.16)

contains couplings of the Higgs doublet to the left- and right-handed fermion fields.
Here, we introduced the Yukawa coupling matrices of the fermion fields, Gferm

ij , that
will be further specified below, and the charge conjugate of the Higgs doublet, Φc =
iσ2Φ∗ = [

(
φ0∗ , −φ−)]⊺, where φ−(x) = [φ+(x)]∗. We want to point out, that if we

would not have removed the right-handed neutrino fields completely from the theory,
an additional term of the form L̄′L

i Gν
ijν ′R

j Φc occurred in Eq. (2.16).
The energy of the ground state of the Higgs potential, i.e. the vev v, is given by

v = |Φ0| =
√

2µ2/λ, which specifies the ground state up to an U(1)em phase to be

Φ0 =


 0√

2µ2

λ


 =:

(
0
v√
2

)
. (2.17)

Expanded about the minimum this yields

Φ(x) =

(
χ+(x)

1√
2

[
v + H(x) + iχ0(x)

]
)

, Φc(x) =

(
1√
2

[
v + H(x) − iχ0(x)

]

−χ−(x)

)
, (2.18)

for Φ and its charge conjugate, respectively. Here, H(x) is the real scalar Higgs field and
the fields χ0(x), χ+(x) and χ−(x) are called would-be Goldstone fields. Whereas the
Higgs field corresponds to the neutral scalar Higgs particle H of the SM, the latter three
fields are not related to physical particles and can be eliminated by a suitable gauge
transformation (the unitary gauge)3. However, the three degrees of freedom do not
simply disappear from the theory, but reappear as the additional longitudinal degrees
of freedom of the gauge bosons, that have been rendered massive.

2.1.4. The Physical Content of the EWSM

The physical content of the SM can be extracted in the most transparent way in the uni-
tary gauge (u.g.), where the unphysical would-be Goldstone fields completely decouple

3Details on the choice of gauges for the quantization procedure will be discussed in Sec. 2.1.5.
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from the theory and the physical particles can be classified as eigenstates of the electric
charge Q and the mass. In this gauge Eq. (2.18) reads Φ(x) = 1√

2
[(0, v + H(x))]⊺, which

inserted into the Higgs Lagrangian of Eq. (2.14) yields

Lu.g.
Higgs =

1

2
(Dµ(v + H))†(Dµ(v + H))

− µ2H2 +
µ2

v
H3 + λH4

− 1√
2

(v + H)
∑

i,j

(
l̄′Li Glep

ij l′Rj + ū′L
i Gup

ij u′R
j + d̄′L

i Gdown

ij d′R
j + h.c.

)
. (2.19)

In the second line we can directly identify the trilinear and quartic self couplings of the
Higgs field as well as the bilinear term, the so-called the mass term, yielding MH =

√
2µ.

As we will explain in the following two sections, the first and last lines of Eq. (2.19), in
particular, incorporate terms that are bilinear in the individual bosonic and fermionic
fields, respectively, and, thus, define their masses.

Boson mass terms

Since all four gauge bosons of the EW sector have vanishing hypercharge, according to
Eq. (2.8) the eigenstates of the electrical charge operator Q are simultaneously eigen-
states of I3

W
. Defining

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) , (2.20)

yields

QW 3
µ(x) = QBµ(x) = 0 , QW±

µ (x) = ±W±
µ (x) , (2.21)

thus, beside the two uncharged gauge bosons W 3 and B, we have one positively and one
negatively charged gauge boson, W+ and W−, respectively. Expressed in these fields
the mass terms for the gauge fields contained in the first line of Eq. (2.19) read

1

4
v2g2

2W−
µ W+µ +

1

8
v2(g1Bµ + g2W 3

µ)2 , (2.22)

where we identify the mass of the charged W± bosons

MW =
g2v

2
. (2.23)

The masses of the two neutral gauge fields follow from the diagonalization of the cor-
responding mass-squared matrix

(MB,W 3)2 =
v2

4

(
g2

1 g1g2

g1g2 g2
2

)
. (2.24)
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Since the determinant of this matrix vanishes, one eigenvalue has to be equal to zero,
while the other one is given by its trace. The mass eigenstates are obtained through a
rotation of the two uncharged fields

(
Aµ

Zµ

)
=

(
cW −sW

sW cW

)(
Bµ

W 3
µ

)
, (2.25)

where we have defined the weak mixing angle θW,

cW = cos θW =
g2√

g2
1 + g2

2

, sW = sin θW . (2.26)

Aµ is the photon field, which we identify as the massless field corresponding to the
unbroken U(1)em symmetry and Zµ yields the Z boson with the mass

MZ =
v

2

√
g2

1 + g2
2 =

MW

cW

. (2.27)

Fermion mass terms

In the third line of Eq. (2.19) we notice a restriction of the left-handed SU(2)W doublets
defined in Eq. (2.9) onto the upper or lower parts, respectively, caused by the Higgs
field and its charge conjugate in the unitary gauge.

In principle we can directly read off the masses of the fermions (f), but since the
mass eigenstates of the fermionic fields are not equal to the EW eigenstates, the mass
matrices Mf

ij = 1/
√

2Gf
ijv are not diagonal. Note again, that due to the complete

removal of right-handed neutrinos from the theory and the omission of the associated
term already in Eq. (2.16), no mass term for neutrinos is included in Eq. (2.19).

In order to diagonalize the mass matrices we define left- and right-handed mass
eigenstates according to

fL
i =

∑

j

Uf,L
ij f ′L

j , fR
i =

∑

j

Uf,R
ij f ′R

j , (2.28)

with the unitary matrices Uf,L and Uf,R. These matrices build bi-unitary transforma-
tions that diagonalize the mass matrices, resulting in the fermion masses

mfi
=

1√
2

∑

j,l

Uf,L
ij Gf

jlU
†f,R
li v . (2.29)

Since all those masses can be chosen real, the Hermitian conjugate parts of Eqs. (2.16)
and (2.19), and, thus, the anti-particles, receive the same masses. Defining fi = fL

i +fR
i ,

the mass terms of the fermions can be written very compactly as

−
∑

fi

mfi
f̄ifi , (2.30)
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since terms of the form f̄L
i fL

i and f̄R
i fR

i vanish, leaving only the couplings defined in
Eq. (2.16), namely mfi

f̄R
i fL

i and mfi
f̄L

i fR
i .

The terms proportional to the Higgs field H in the last line of Eq. (2.19) can now be
understood as the interaction of the Higgs field with the fermions, where the coupling
strength mfi

/v is proportional to the mass of the respective fermion.

The Standard Model Lagrangian

The complete classical part of the Lagrangian of the SM (Eq. (2.3)) can be expressed
in terms of the physical fields, which we just defined in the previous sections as mass
and charge eigenstates, and reads

Lu.g.
SM, cl. =

∑

fi=li,qi

[
f̄i

(
i/∂ − mfi

)
fi − eQf f̄iγ

µfi(Aµ +
sW

cW

Zµ) +
eI3

W,f

sWcW

f̄L
i γµfL

i Zµ

]

+
∑

i

e√
2sW

[
ν̄L

i γµlLi W+
µ + l̄Li γµνL

i W−
µ

]

+
∑

i,j

e√
2sW

[
ūL

i γµVijdL
j W+

µ + d̄L
i γµV†

iju
L
j W−

µ

]

−
∑

fi=li,qi

e
mfi

2sWMW
f̄ifiH

− 1

4

∣∣∣∂µAν − ∂νAµ − ie
(
W−

µ W+
ν − W−

ν W+
µ

)∣∣∣
2

− 1

4

∣∣∣∣∂µZν − ∂νZµ + ie
cW

sW

(
W−

µ W+
ν − W−

ν W+
µ

)∣∣∣∣
2

− 1

2

∣∣∣∣∂µW+
ν − ∂νW+

µ − ie
(
W+

µ Aν − W+
ν Aµ

)
+ ie

cW

sW

(
W+

µ Zν − W+
ν Zµ

)∣∣∣∣
2

+
1

2

∣∣∣∣∂µH + iMZZµ + i
e

2cWsW

ZµH

∣∣∣∣
2

+

∣∣∣∣iMWW+
µ + i

e

2sW

W+
µ H

∣∣∣∣
2

− 1

2
M2

HH2 − e
M2

HH3

4sWMW
− e2 M2

HH4

32s2
WM2

W

+
∑

qi

[
gsq̄iγ

µGa
µT aqi

]
− 1

4
Ga

µνGa,µν . (2.31)

In addition to the already discussed mass termes, in this form we can directly identify
the couplings of the fermions to the (partly) massive vector bosons and the Higgs
bosons, as well as all bosons self-interaction terms. For completeness, we added in
the last line the gauge boson interaction terms of the QCD-Lagrangian, which will
be discussed in Sec. 2.2. The electric charge e is defined as the coupling constant
multiplying the photon–fermion vertex appearing in the first line and is given in terms
of the fundamental gauge couplings as

e =
g1g2√
g2

1 + g2
2

. (2.32)
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In the third line of Eq. (2.31), which describes the coupling between the quark mass
eigenstates and the charged W± bosons, we introduced the unitary matrix

V = Uu,LUd,L,† , (2.33)

the Cabibbo–Kobayashi–Maskawa (CKM) matrix [22]. This matrix parametrizes the
mixing of the mass eigenstates of the three different quark generations in charged current
processes. The analogous matrix in the lepton sector is not needed, since the transition
matrix of the massless—and in particular mass degenerate—neutrino fields Uν,L can be
chosen such, that it diagonalizes the lepton–W-bosons interaction vertex4.

The Feynman rules that can be derived from the Lagrangian Lu.g.
SM, cl. are collected in

App. C.

2.1.5. Quantization of the EWSM

The general form of the gauge fixing Lagrangian in any Rξ gauge reads

Lfix = − 1

2ξa
(Ca{Aµ, X ; x})2 , (2.34)

with the arbitrary gauge parameters ξa and the local gauge fixing functionals Ca for
every gauge boson. The gauge fixing functional depends on the gauge fields and—in a
spontaneously broken theory—on the would-be Goldstone fields. The Faddeev–Popov
Lagrangian in its most general form can be written as

LFP = −
∫

d4zūa(x)
δCa{Aµ, X ; x}

δAc
ν(z)

Dcb
ν ub(z) , (2.35)

with the covariant derivative in the adjoint representation of the particular gauge group,
Dab

µ , and the Grassmann-valued (anti-commuting) scalar ghost and anti-ghost fields, ua

and ūa.
In a spontaneously broken theory like the EWSM, mixing terms between gauge-boson

fields and the unphysical would-be Goldstone fields of the form Vµ∂µχ may appear,
which in general lead to non-diagonal propagator structures. However, if we choose
the following four linear gauge-fixing functionals for the physical eigenstates defined in
Eqs. (2.20) and (2.25),

CA =∂µAµ ,

CZ =∂µZµ − MZξ′
Zχ0 ,

C± =∂µW±
µ ∓ iMWξ′

Wχ± , (2.36)

which depend on the five gauge parameters ξa (a = A, Z, W) and ξ′
a (a = Z, W), the

special choice ξ′
W = ξW and ξ′

Z = ξZ cancels these mixing contributions, such that the

4On the other hand this means that the consideration of non-degenerate finite neutrino masses for
example through the inclusion of right-handed neutrinos, would spoil this diagonalization. Instead,
the same procedure as in the quark sector needed to be applied in the lepton sector.
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terms quadratic in the gauge fields allow for well-defined gauge-boson propagators. This
set of gauges is called ’t Hooft gauges and the gauge-fixing Lagrangian can be written
compactly as

Lfix, GWS = − 1

2ξA
(CA)2 − 1

2ξZ
(CZ)2 − 1

ξW
C+C− . (2.37)

From the chosen gauge-fixing functionals, the Faddeev–Popov Lagrangian can be eval-
uated according to Eq. (2.35) and reads in the physical basis of the gauge bosons

LFP, GWS = −
∑

X

∫
d4y d4z ūa(x)

δCa(x)

δX(y)

δX(y)

δθb(z)
ub(z) . (2.38)

The sum over X extends all particles appearing in the gauge-fixing functionals, namely
Aµ, Zµ, W±

µ , χ±, and χ0, and with θa(x) we denote the space-time dependent group
parameter of the underlying local gauge group. Expanding both Lagrangians we find
that the three would-be Goldstone bosons and all ghost fields but one are rendered
massive,

Mχ± = Mu± =
√

ξWMW , Mχ0 = MuZ =
√

ξZMZ , MuA = 0 , (2.39)

and the corresponding propagators read

Pχa(k2) = Pua(k2) =
i

k2 − ξaM2
a

. (2.40)

Since the physical result of the calculation must not depend on the choice of the gauge,
and therefore of ξa, the gauge dependence of the masses underlines once again the
unphysical nature of the would-be Goldstones and the ghost field.

The unitary gauge corresponds to ξa → ∞, such that the masses of all unphysical
fields (but uA) tend to infinity and therefore decouple from the rest of the theory (uA

becomes a free, non-interacting field). In this gauge, the Lagrangian of the quantized
theory takes exactly the same form as the classical Lagrangian, which we discussed in
the previous section, since all unphysical fields are absent. However, in the unitary
gauge, the generic gauge-boson propagator takes the special form

PV(k2) =
−igµν

k2 − M2
V

+
i(1 − ξV)kµkν

(k2 − M2
V)(k2 − ξVM2

V)

ξV→∞−−−−→
−i

(
gµν − kµkν

M2
V

)

k2 − M2
V

, (2.41)

approaching a constant value in the limit kµ → ∞. In the explicit calculation of higher-
order corrections, were we have to deal with internal loop-momenta going to infinity
(see Chap. 3), this behaviour unnecessarily leads to additional complications.

The most convenient choice for higher-order calculations is the ’t Hooft–Feynman
gauge, ξa = 1, where the masses of all unphysical fields are equal to the corresponding
physical fields. Although in this gauge the unphysical fields remain in the theory, the
simple form of the gauge-boson propagator,

PV(k2)
ξV=1−−−→ −igµν

k2 − M2
V

, (2.42)
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ensures the favourable high-energy behaviour

PV ,χ ,ua ∼
k2≫0

1

k2

k2→∞−−−−→ 0 , (2.43)

for the gauge bosons, the would-be Goldstone bosons, and the ghost fields.

2.2. The QCD Part of the SM

Quantum Chromodynamics is the unbroken local gauge theory that describes the in-
teraction of the colour-charged quarks via the exchange of massless gauge bosons, the
gluons. Since the underlying gauge group SU(3)C is a non-Abelian group, also the
gluons carry colour-charge and interact among each other. In contrast to the EW in-
teraction, the strong interaction does not distinguish between left- and right-handed
fermions and parity is a conserved quantity in purely strong interactions. Another very
distinct difference to the EW interaction is that colour-charged particles never appear
isolated, but are always grouped together to build compound colour neutral objects,
the hadrons. This feature is called confinement of quarks and gluons and we will come
back to the consequences this property implies in the Secs. 3.2.3 and 4.1.

The classical Lagrangian of QCD reads

LQCD, cl. =

nf∑

f=1

Nc∑

i,j=1

q̄f,i(i /Dij − mqf
δij)qf,j − 1

4
Ga

µνGa,µν , (2.44)

where qf,i is a massive Dirac spinor belonging to the fermionic quark field of flavour f
and colour i. The first sum includes the three generations of up- and down-type quarks
introduced in Sec. 2.1.2, such that we have nf = 6 quark-flavours that only differ in
their mass with respect to QCD, while the second sum runs over the Nc = 3 colours
in which each quark exist. Note that in Eq. (2.31) we completely suppressed the colour
degrees-of-freedom, and the sum over qi of Eq. (2.31) corresponds to the flavour-sum
of Eq. (2.44). /Dij is the gamma-contracted covariant derivative in the fundamental
representation,

/Dij = γµDµ
ij = γµ(∂µδij + igsT a

ijGa,µ) , a = 1, . . . , 8 , (2.45)

with the kinetic term for the quark fields and the coupling to the eight gluon fields Ga,
whose strength is given by the strong coupling constant gs. The kinetic term of the
gluon field is given in terms of the gluonic field-strength tensor,

Ga
µν = ∂µGa

ν − ∂νGa
µ − gsfabcGb

µGc
ν , (2.46)

with the structure constants of the SU(3)C-group fabc that govern the self interaction
among the gluon fields.

The quantization of the classical QCD Lagrangian proceeds in the same lines as in
the EWSM, resulting in an effective Lagrangian including two additional terms. We
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choose the gauge fixing functional for the massless gluons analogous to the one of the
massless photon in Eq. (2.36). The gauge fixing Lagrangian therefore simply reads

Lfix, QCD = − 1

2ξ

[
∂µGa

µ(x)
]2

, (2.47)

and the Faddeev–Popov Lagrangian is given by

LFP, QCD = −ūa(x)∂µDab
µ ub(x) , (2.48)

with the covariant derivative in the adjoint representation Dab
µ = ∂µδab − gsfabcGc

µ and
the eight massless ghost fields of the QCD sector.

The Feynman rules that arise from the effective Lagrangian of QCD, are collected in
App. C.



Chapter 3

Quantum Corrections

In the previous chapter, where we discussed the Lagrangian of the SM in great detail,
we have already stated that this Lagrangian serves as foundation for every calculation
of observables in high energy physics. In this chapter, we now first want to specify
this statement and set the footing for precise theoretical predictions in particle physics.
Subsequently we discuss in a general form the difficulties that arise when explicitly
performing such a calculation. The next chapter will then be dedicated to the actual
techniques used for the calculations presented in this thesis and the additional compli-
cation we are confronted with at hadron colliders.

As is comprehensively discussed in any textbook on relativistic quantum field theory,
e.g. Refs. [13–16], via the S matrix,

S = T exp

[
i

∫
d4x LI

]
, (3.1)

the interaction Lagrangian LI is directly related to the probability P ∝ |〈f |S|i〉|2 =
|Sfi|2 for a given initial state |i〉 to evolve into a certain final state |f〉. In Eq. (3.1),
T is the usual time-ordering operator acting on the field operators appearing after the
series expansion of the exponential. The quantity that we finally calculate with the
help of the Feynman rules is the invariant matrix element Mfi, which is defined as the
non-trivial part of the S matrix,

Sfi = 〈f |S|i〉 = 〈f |i〉 + i(2π)4δ4(
∑

pi −∑
pf )Mfi , (3.2)

where we implicitly assume the initial- and final-state particles to be momentum eigen-
states, such that we additionally extract the momentum conserving delta function from
Mfi. The relation of Eq. (3.2) is formally obtained by applying the Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula [23], which is discussed e.g. in Refs. [13,14]. The
full (partial) integration of the absolute square of the invariant matrix element1 over the
respective final-state phase space Φ finally defines the total (differential) cross section
σ (dσ/dO) of the process under consideration,

σ =

∫
dO dσ

dO =
1

F (pa, pb)

∫
dΦ|M|2 =

1

2s

∫
dΦ|M|2 . (3.3)

1To keep the notation as clear as possible, additional labels corresponding to the summation and
averaging over internal degrees of freedom are suppressed. See App. B for details.
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O denotes any experimentally measurable observable, like e.g. the transverse momen-
tum of a charged lepton pT,l, such that dσ/dO yields the differential cross section for
the respective observable. In addition, the definition of Eq. (3.3) includes the flux-factor
F (pa, pb) which generally depends on the initial-state momenta pa and pb and the corre-
sponding masses (c.f. Eq. (B.3) of App. B). For our purposes with massless initial-state
particles the flux-factor always reduces to a simple function of the center-of-mass (c.m.)
energy s and reads F = 2(pa + pb)

2 = 2s.
Still, we have not yet discussed one very important requirement for the applicability

of this widely used method to calculate Sfi, that we, however, already implicitly implied
in writing Eq. (3.1), namely perturbativity. A theory is called perturbative if the ob-
servables may be approximated by a power series, where the strength of the interaction
serves as expansion parameter. Obviously, only if the coupling parameter of a quantum
field theory is much smaller than one, such a series expansion, and thus ultimately the
utilization of the Feynman rules, is meaningful. This requirement is generally fulfilled
for the EW sector, but, as we will discuss in Sec. 3.2.3, the application of perturbative
methods in QCD is only possible in the high energy regime. The reason is the distinct

running of the strong coupling αs(Q2) = g2
s

4π , which becomes weaker at higher scales Q,
while towards lower scales we eventually reach the non-perturbative regime of QCD.
We will discuss this very important feature of QCD in detail in the next chapter.

However, as long as perturbative methods are applicable, based on Eq. (3.1), the
S-matrix can in principle be calculated to any order in the coupling constant, approxi-
mating the observable to arbitrarily high precision. In practise, on the other hand, the
explicit calculations of higher-order corrections are very cumbersome already for rather
simple processes, such that the practical calculation relies on a fast convergence of the
series expansion.

For a given process, the lowest possible order in the coupling constant defines the
leading order (LO) cross section, σLO, while the successive inclusion of additional in-
teractions is regarded as additive correction, ∆σ, defining the next-to-leading order
(NLO), next-to-next-to-leading order (NNLO), etc. In the SM, with the strong force
and the unified EW force, we have two different interactions, such that one further
differentiates between QCD and EW LO processes and the corresponding corrections
to those processes. In the energy regime we will be dealing with in the following, the
coupling strengths are very roughly given by

QCD : αs ∼ O
(

1

10

)
, EW : α ∼ O

(
1

100

)
, (3.4)

such that the LO process with the most strong and fewest EW couplings usually leads to
the largest contribution. For example for the process qq̄ → qq̄, by applying the Feynman
rules, we obtain diagrams with internal gluons as well as diagrams with internal photon
and Z bosons, leading to contributions to the squared matrix elements, |M|2 = MM∗,
of the orders O(α2

s), O(αsα), and O(α2). In Fig. 3.1 we show the typical illustration
of the three LO contributions representatively for one diagram each, where the dashed
lines separate the two pieces contributing to |M|2.
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g g

(a) O(α2
s)

γ/Z g

(b) O(αsα)

γ/Z γ/Z

(c) O(α2)

Figure 3.1.: Representative LO contributions to |M|2 for the process qq̄ → qq̄ at the
lowest possible order in the strong- and EW-coupling constant. (a) shows the O(α2

s)
contribution which generally leads to the largest contributions, while (b) and (c) show
a mixed QCD-EW contribution and the purely EW contribution, respectively.

In general, the QCD corrections to a specific process turn out to be much larger and,
thus, more important to be known than the EW corrections. However, already a naive
comparison of the typical sizes of the two coupling constants given in Eq. (3.4), adum-
brates that NLOEW corrections are of similar size as the NNLOQCD corrections, and
therefore definitely have to be taken into account in order to reach the highest possible
precision in theoretical predictions of cross sections. Additionally, for reasons that will
be discussed below, EW corrections often show a much stronger kinematic dependence
than QCD corrections. This may lead to significant distortions in the differential dis-
tributions of observables due to EW corrections, which makes their consideration often
even more important than the inclusion of NNLO QCD corrections. In the following,
however, we will only focus on the issues one is confronted with in the computation
of NLO corrections, and will not address any additional complication arising in the
computation of corrections exceeding this perturbative order.

On the basis of Eq. (3.3) we can generally define the NLO cross section as

σNLO = σLO + ∆σNLO, ∆σNLO = σvirt + σreal , (3.5)

where the NLO correction contribution, ∆σNLO, is conveniently divided into two parts,
namely a virtual and real contribution. The virtual contribution includes all (one-)
loop diagrams, in which internally one additional (virtual) particle is produced and
subsequently re-absorbed. Showing exactly the same final state as the LO process,
experimentally there is no way of distinguishing higher-order virtual corrections from
the LO, which is the reason why we need to consider their effects in the first place.
The second contribution defined in Eq. (3.5), however, the real corrections, contains one
additional external (real) particle, which might be observed in the final state. Especially
the additional radiation of massive particles would (almost) certainly be separately
detected, thus, leading to a distinct signature in the detector. If, on the other hand,
the additional particle is massless and becomes very soft or is emitted collinearly to
another particle, the separate detection may become unfeasible, and consequently also
parts of the real corrections can be mistaken for the associated LO process.

Based on these considerations, we notice that the most convenient definition of the
real contribution only includes the additional radiation of massless particles, while an
additional massive particle in the final state defines a distinct process. In Sec. 3.3 we
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(a) virtual correction (b) real correction

Figure 3.2.: Representative NLOQCD contributions of O(α3
s) to |M|2 for the LO pro-

cess qq̄ → qq̄.

will come back to this subtle point and discuss further implications of this definition.
When inspecting the vertices in the particular Feynman diagrams, we note that for

every closed loop two additional couplings2 are needed, while the real emission only
yields one additional interaction. To stay in the same perturbative order, the virtual
cross section is therefore defined as the interference of the one loop matrix element with
the LO matrix element, yielding two times the real part of their product integrated
over the LO phase space Φ = ΦLO, while the real cross section is obtained by squaring
the real emission diagrams,

σvirt =
1

2s

∫
dΦLO 2Re[M1loopM∗

LO], σreal =
1

2s

∫

+1
dΦ+1|Mreal|2 . (3.6)

Here, due to the additionally appearing particle in the final state, the phase-space inte-
gration for |Mreal|2 needs to be extended accordingly. Figure 3.2 shows representative
examples of the virtual and real NLOQCD corrections to the process qq̄ → qq̄ at O(α3

s).
In tree-level diagrams, i.e. diagrams without loops, all internal momenta are fixed by

the momenta of the external particles. The momentum flow in loops, however, can not
be observed and has to be integrated over the entire Minkowski space. Typically, the LO
process is a tree-level process3 and loop diagrams first enter via the virtual contributions
at the NLO level of the calculation. This integration over the unconstrained loop
momenta is a delicate task, since towards both integration boundaries, i.e. for very
high, so-called ultraviolet (UV), loop momenta, as well as for very low loop momenta the
integrand may diverge. Whereas UV divergences occur in any higher-order calculation,
only if massless particles (e.g. photons with mγ = 0) are involved, also in the low-
momentum region singularities occur, which otherwise are regularized by the finite
mass. For an arbitrarily soft photon momentum q = |qµ|, the fermion propagator Pf

inside an exemplary loop diagram takes the form

kµ kµqµ Pf ∼ 1

(k + q)2 − m2
f

k2=m2
f−−−−→ 1

2k · q + q2
, (3.7)

2Note that the quartic gauge boson couplings are quadratic in the respective coupling constant (see
App. C), such that the number of vertices must not necessarily change.

3One of the rare, but very important counterexamples is Higgs production in gluon-gluon-fusion [24],
where already at LO a heavy quark loop appears.
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where we immediately see the divergent behaviour for q = |qµ| → 0. However, for
massless fermions (mf = 0) Eq. (3.7) also diverges in the collinear limit,

qµ ‖ kµ →֒ k · q ∼ k2 = m2
f → 0 , (3.8)

such that we have to treat a third kind of divergence. Due to their similar behaviour,
soft and collinear divergences will be treated in a combined manner and are commonly
referred to as infrared (IR) singularities.

Note that in a (hypothetical) theory with only massive particles, no IR singularities
would appear, since the physical mass acts as regulator in the respective soft and/or
collinear limits, thus, leading to an (IR) finite result. As we have already seen in the
previous chapter, the SM includes massless and massive particles, such that in concrete
calculations we are confronted with both conditions, which we will further discuss in
Sec. 3.3.

We want to emphasize, that both kinds of divergences, UV and IR divergences, are,
however, completely unphysical as they only enter through our description and actual
classification, while nature itself is finite. Nevertheless, for the calculation of predictions
exceeding the LO, we need techniques to handle the occurring singularities in such a
way, that we finally obtain a finite, well-defined result. The UV divergences can be
isolated and finally reabsorbed by two consecutive procedures, namely regularization
and renormalization, which we separately discuss in Secs. 3.1 and 3.2, respectively.

Possible IR singularities of the virtual contributions, however, are still present af-
ter the renormalization procedure. As we will discuss in Sec. 3.3, IR sigularities also
appear in the phase-space integration of the real matrix-element squared, if the addi-
tionally emitted massless particle becomes soft and/or collinear to its emitter. Accord-
ing to the well known Bloch–Nordsieck theorem [25], the soft singularities appearing
in the virtual and real emission contribution exactly cancel in their sum at any order
of the perturbative expansion. However, the same is not true in this general form for
collinear singularities, such that further constraints and definitions have to be discussed
in Sec. 3.3.

3.1. Regularization of UV Divergences

As we have already pointed out, one essential part of the calculation of higher-order
corrections comprises the calculation of the loop diagrams. The integration over the
internal loop momentum qµ has to be performed over the entire Minkowski space,
which might lead to a divergence, when the absolute value of the internal momentum
q = |qµ| becomes large, as for example in the fermionic one-loop correction to the photon
propagator,

kµ kµ

qµ ∼
∫

d4q
1

(q2 + m2)((q + k)2 − m2)

q̃≫k,m

∫
d4q

1

q4
∼
∫

dq
1

q

q→∞−−−→ ∞ . (3.9)
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In order to handle such a behaviour, we first need a regularization prescription, that
allows us to separate the unphysical divergence from the finite, and thus physically
relevant, contribution.

In the literature several regularization schemes have been discussed, as for example
the hard cut-off, Pauli-Villars [26], lattice-regularization [27], or four dimensional reg-
ularization (FDR) [28] which, however, all have the major drawback of being either
very cumbersome in practical applications or even do not respect gauge or Lorentz in-
variance. The most elegant regularization prescription known today respecting both
of these fundamental principles of the SM is dimensional regularization [29], where the
space-time is extended from four to D = 4 − 2ǫ dimensions. In principle, this reg-
ularization scheme may also be applied to treat possible IR divergences occurring in
loop-integrations, but in the following we will limit the discussion to the treatment of
UV divergences, while IR singularities will be discussed separately in Sec. 3.3.

After the integration over the D-dimensional solid angle ΩD, the factor qD−1 may
cure any pole in the remaining integration of the arbitrary integrand f , if D is chosen
accordingly,

∫
d4q

(2π)4
f(q) → µ4−D

∫
dDq

(2π)D
f(q) ∼ 2πD/2

Γ(D/2)
µ2ǫ

∫ ∞

0

dq

(2π)D
qD−1f(q) . (3.10)

Here, the arbitrary reference scale µ of mass dimension one is included in order to keep
the mass dimension of the Lagrangian fixed. Γ denotes the Euler Gamma-function,

Γ(x) =

∫ ∞

0
dy yx−1e−y , (3.11)

which can be regarded as the analytic continuation of the factorial as it fulfills the
recursion relation

Γ(x + 1) = xΓ(x), Γ(1) = 1 , (3.12)

for arbitrary x. For negative integers the Γ-function exhibits simple poles, which, via
Eq. (3.12), can be related to the pole at zero,

Γ(ǫ)
ǫ̃→0

1

ǫ
− γE +

1

2
(γ2

E +
π2

6
)ǫ + O(ǫ2) + . . . , (3.13)

where γE ≈ 0.5772 . . . is the irrational Euler-Mascheroni constant. For an arbitrary
dimension D = 4 − 2ǫ, the integration in Eq. (3.10) can always be performed yielding
results that may still depend on ǫ. All terms appearing in the final result have to be
carefully expanded in ǫ and possible divergences will ultimately show up as 1

ǫ -poles in
the limit D → 4 (ǫ → 0).

Having separated the UV divergences for every one-loop diagram from the remaining
finite part, we now turn to the renormalization of the parameters of the theory to absorb
and remove those divergences from the calculation.
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3.2. Renormalization

The basic idea of renormalization is to redefine the input parameters (masses, cou-
plings, etc.) of the theory in such a way, that in well-defined relations between physical
quantities no UV-divergent terms remain. If it is possible to obtain UV-finite results
up to arbitrary loop-order with a finite amount of renormalization-conditions, we call
the theory renormalizable. In particular, this means that only a finite number of loop
integrals may lead to singularities, a fact to which we come back in Sec. 4.3.

In 1971 the renormalizability of non-Abelian gauge theories, also including sponta-
neous symmetry breaking, has been proven in a general form by ’t Hooft [30], such
that both gauge theories within the SM (the EWSM and QCD) are renormalizable
theories. An important consequence of this proof is that no couplings with a negative
mass dimension may appear in the SM Lagrangian.

Practically, in the counterterm approach, we obtain finite, renormalized, parameters
from the originally divergent, bare, parameters by shifting the divergence into so-called
counterterms. The renormalized parameters λr are defined from the bare parameters
λ0 by a multiplication with a (divergent) renormalization constant Zλ, which, however,
can be expanded in the respective coupling constant αX ,

λ0 = Zλλr = (1 + δZλ + O(α2
X))λr , δZλ = O(αX) . (3.14)

Although a renormalization of all (independent) masses and couplings of the theory is
sufficient to obtain finite matrix elements [31], it is convenient to renormalize also the
fields (Λi) appearing in the Lagrangian,

Λi,0 =
√

ZΛi
Λi,r . (3.15)

Since many terms of the Lagrangian are quadratic in the fields, it is common to include
the squareroot in the definition. By inserting the properly expanded definitions, we can
split the original, bare Lagrangian, L0, depending on the bare fields and parameters,
into a renormalized Lagrangian Lr and the so-called counterterm Lagrangian δL,

L0(Λ0,i, λ0) = Lr(Λr,i, λr) + δL(Λr,i, λr) , (3.16)

where Lr shows the same dependence on the renormalized fields and parameters, as the
bare Lagrangian on the bare quantities and δL contains all terms proportional to the
renormalization constants δZi.

Note that the whole procedure does not change the original theory at all, but we only
rearrange the elements appearing in the perturbative expansion, in order to separate the
finite, renormalized, quantities. From δL, new Feynman rules have to be derived, which
for the EW part of the SM can be found, e.g., in App. A of Ref. [31]. Although the
Feynman rules are already uniquely defined by this procedure, we still have to fix the
renormalization constants by specifying a certain renormalization scheme, that finally
fixes the definition of the physical parameters. For a reason that will become clear soon
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enough, the fixing of the renormalization constants appearing in the EW part and in
the QCD part is usually not performed in the same scheme. In the following we present
the two schemes that are commonly used for explicit higher-order corrections in the
respective coupling constants.

3.2.1. On-Shell Renormalization

The renormalization of the EW theory is most elegantly performed in the on-shell (OS)
scheme [32], where the renormalized parameters equal the experimentally measured
parameters in every order of the perturbative expansion. This means that we do not
choose the original gauge couplings (g1 and g2, induced in Eqs. (2.10) and (2.7), respec-
tively) and the independent parameters of the Higgs Lagrangian (Eq. (2.14)), but the
set

MW, MZ, MH, mfi
, Vij , e , (3.17)

which consists of the physical parameters we have defined in Sec. 2.1.4. As we have seen
there, these experimentally measurable parameters are directly related to the parame-
ters of the underlying gauge theories extended by the requirements of EWSB, such that
a renormalization of both sets is, in principle, equivalent. However, a renormalization
of experimentally measurable parameters seems to be the most natural way. Addition-
ally, in this physical basis, no renormalization of the unphysical ghost and would-be
Goldstone fields needs to be performed to obtain finite results at the one-loop level.

Following the notation of Eqs. (3.14) and (3.15) the bare parameters and the bare
fields of the SM-Lagrangian of Eq. (2.31) are expressed as product of the renormalized
quantities and the renormalization constants [31],

e0 = Zeer = (1 + δZe)er ,

M2
W,0 = M2

W,r + δM2
W ,

M2
Z,0 = M2

W,r + δM2
Z ,

M2
H,0 = M2

H,r + δM2
H ,

mfi,0 = mfi,r + δmfi
,

Vij,0 = (U1VrU2)ij = Vij,r + δVij ,

W±
0 =

√
ZWW±

r = (1 +
1

2
δZW)W±

r ,
(

A0

Z0

)
=

( √
ZAA

√
ZAZ√

ZZA

√
ZZZ

)(
Ar

Zr

)
,

=

(
1 + 1

2ZAA
1
2ZAZ

1
2ZZA 1 + 1

2ZZZ

)(
Ar

Zr

)
,

H0 =
√

ZHHr = (1 +
1

2
δZH)Hr ,

fL
i,0 =

√
Zf,L

ij fL
j,r = (δij +

1

2
δZf,L

ij )fL
j,r ,
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fR
i,0 =

√
Zf,R

ij fR
j,r = (δij +

1

2
δZf,R

ij )fR
j,r . (3.18)

In the OS scheme, the renormalization conditions for the masses MW, MZ, MH and
mfi

identify the renormalized masses with the (measured) physical masses. They are
defined as the real parts of the poles of the respective propagators, which are located at
momenta k2 = M2, where M denotes the respective physical mass. It is worth noting
that the radiative EW corrections generally yield non-diagonal corrections to the mass
matrices, such that the bare fields are no longer mass eigenstates. With the above
defined matrix valued field renormalization constants, however, it is possible to obtain
the renormalized fields as mass eigenstates to all orders in perturbation theory.

At one-loop, the renormalized CKM matrix is directly connected to the renormaliza-
tion constants of the left handed quark fields,

Vij,r = Vij,0 − 1

2
V0,ilδZd,AH

lj − 1

2
δZu,AH†

ik V0,kj , (3.19)

where we defined the anti-Hermitian part of the left-handed fermion field renormaliza-
tion constant,

δZf,AH
ij =

1

2
(δZf,L

ij − δZf,L†
ij ) . (3.20)

For (mass-)degenerate up- and down-type quarks the anti-Hermitian part vanishes, such
that in this case we obtain Vij,r = Vij,0. Actual calculations are often performed with
the (light) quark masses set to zero, such that in these cases no renormalization of the
CKM matrix elements needs to be performed [33].

The electric charge, e (c.f. Eq. (2.32)), is finally defined as the coupling of two on-shell
external electrons (e) to a photon (γ) in the so-called Thomson limit. It is defined at
vanishing photon momentum and implies that all corrections to the eeγ-vertex vanish.
When performing the renormalization, it turns out that its formulation is independent
of the actual kind of fermion, which reflects the universality of the electric charge
within the SM. In practical calculations, the electric charge will be substituted by the
fine structure constant,

α = α(Q2)|Q2=0 =
e2

4π
, (3.21)

where the dependence on the scale Q reflects the dependence of the renormalization
condition on the photon momentum, which is set to zero in the Thomson limit. The
couplings of the massive EW vector bosons are typically defined at the so-called EW-
scale Q2 = MZ, which, however, does not necessarily require a new renormalization.
The running of the EW coupling can be expressed by

α(Q2) =
α

1 − (∆α(Q2))ferm
, (3.22)

where (∆α(Q2))ferm are the universal fermionic contributions of the corrections appear-
ing in the renormalization of α at non-zero momentum transfer.
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The actual formulae for all renormalization constants at one-loop order are deduced
and explicitly given in Chap. 4 of Ref. [31], such that we refrain from listing them here
as well. These results are used to formulate the Feynman rules for the counterterms
that allow for the cancellation of the UV divergences of EW one-loop diagrams already
at the amplitude level.

3.2.2. The Complex-Mass Scheme

A particular consequence of the quantum-mechanical nature of the SM is that all mas-
sive particles tend to decay into lighter particles, whenever a decay is not forbidden
due to the conservation of individual quantum numbers. Especially for the massive
vector bosons W± and Z, the Higgs boson H, and the heaviest quark, the top quark
t, the lifetimes (τ) are very small, such that it is impossible to directly detect these
particles. Only via the careful study of the possible decay products, conclusions about
their properties, like e.g. mass, spin, charge, or even their actual lifetime, can be drawn.

On the theoretical side, the finite lifetime of a particle of mass M results in an
additional imaginary part in the propagator,

P(p2) ∼ 1

p2 − M2 + iMΓ
, (3.23)

which means that the propagator follows a Breit-Wigner shape around the mass M of
the decaying particle. Here, Γ = 1/τ is the inverse lifetime, called total decay width
of the unstable particle. In a perturbative calculation, however, such an additional
term naturally arises due to the inclusion of higher-order diagrams contributing to
the self-energy of the massive particle, such that special care has to be taken when
including a finite width already at the LO. Additionally, in gauge theories, such a
mixing of perturbative orders may lead to gauge dependent results when truncating
the expansion at a fixed order, which under certain conditions may lead to completely
wrong results [34].

With the complex-mass scheme [35–37] a gauge independent formalism exists to in-
clude finite decay widths in theoretical predictions. In this scheme, the decay width
does not only affect the propagator as defined in Eq. (3.23), but the masses of the
unstable heavy particles are consistently replaced everywhere in the amplitude by the
corresponding complex values,

M2 → µ2 = M2 − iMΓ . (3.24)

According to Eq. (2.27), this, in particular, leads to a complex weak mixing angle,

cos2 θW = c2
W

= 1 − s2
W

=
µ2

W

µ2
Z

. (3.25)

For calculations involving unstable particles only at tree-level, this strict complexifica-
tion is already enough for a gauge independent inclusion of finite decay widths [35].
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Also the calculation of NLOQCD-corrections to processes involving unstable particles
does not require any further modification. When it comes to virtual EW corrections
involving massive vector bosons, however, the on-shell renormalization outlined in the
previous section needs to be generalized resulting in complex renormalized masses for
the unstable particles. Therefore, in the complex-mass scheme, the real-valued squared
bare masses M2

0 are decomposed into a complex-valued renormalized squared masses
µ2 and a complex counterterm δµ2. As before, the renormalized mass is obtained by
subtracting the counterterm from the bare mass,

µ2 = M2
0 − δµ2 = M2 − iΓM , (3.26)

which now defines the real valued renormalized mass M and width Γ, to be extracted
from the experiment. Additionally, the field renormalization of all SM fields has to be
generalized to complex valued field renormalization constants, as is discussed in detail
in Refs. [36] and [37], where also all renormalization conditions are explicitly given.

The renormalization in the complex-mass scheme finally leads to Feynman rules in-
volving a complex coupling and, in particular, complex masses for all unstable particles,
which are therefore excluded from being external particles.

3.2.3. MS Renormalization

As we have already stated in Sec. 2.2, in contrast to the EW theory, within QCD
the quarks and gluons can only be observed in colour-neutral compound states. This
confinement makes the application of an on-shell renormalization procedure to QCD
ambiguous, since we can neither measure the mass of an isolated quark, nor is there a
meaningful way to define the Thomson limit in QCD.

The renormalization of QCD is therefore usually carried out in the so-called modified
Minimal Subtraction (MS) scheme [38]. In the Minimal Subtraction (MS) scheme [39]
only the UV divergent terms, which appear as 1

ǫ -poles in dimensional regularization,
have been distributed to the renormalization constants, thus rendering the renormalized
quantities finite. However, there obviously remains some arbitrariness in the inclusion
of finite terms to the subtraction prescription. When it was realized that the 1

ǫ -poles
usually result from the term

(4π)ǫ Γ(1 + ǫ)

ǫ
= (4π)ǫΓ(ǫ)

ǫ̃→0
∆UV :=

1

ǫ
− γE + ln 4π + O(ǫ) , (3.27)

the minimal subtraction prescription was extended to include also the finite contribution
(−γE +ln 4π) in the definition of the UV-divergent part ∆UV, the subtraction of which,
thus, defines the MS-scheme.

Using again the notation of Eqs. (3.14) and (3.15), the renormalized quantities of the
QCD Lagrangian (c.f. Sec. 2.2) and the corresponding renormalization constants are
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defined as

gs,0 = Zggs,r ,

mq,0 = Zmq mq,r ,

ξ0 = Zξξr ,

Ga
0 =

√
ZGGa

r ,

qi,0 =
√

Zqi
qi,r ,

ua
0 = Zuua

r . (3.28)

For the renormalization at the one-loop order, we need the expansion of the renormal-
ization constants up to the term linear in the strong-coupling constant,

Zi = 1 + δZi + O(α2
s) , δZi = O(αs) , (3.29)

where in the MS-scheme δZi now only contains terms proportional to ∆UV, defined in
Eq. (3.27). By shifting the divergences into the counterterm Lagrangian, in the same
manner as in the on-shell renormalization we obtain finite renormalized parameters.
However, due to the lack of physical constraints fixing the renormalization, the de-
pendence on the reference mass scale µ, that needed to be introduced in dimensional
regularization, will not only remain in the renormalized coupling constant, but in gen-
eral also in the renormalized quark masses,

αs,r → αs(µ), mq,r → mq(µ) , (3.30)

defining the running coupling constant and the running quark masses. This dependence
generally makes the proper treatment of quark masses and their renormalization a
very delicate task, that, however, goes beyond the scope of the work presented in this
thesis. For predictions at present high energy colliders, it is well justified to treat
all quarks, but the top quark and, in some cases also the bottom quark, as massless
particles. Then, the massless particles do not require a mass renormalization, while the
mass renormalization of the massive quarks can consistently be performed in the on-
shell scheme. Indeed, an on-shell renormalization for the top-quark mass is meaningful
because of its short lifetime. In contrast to the light quarks, before the top-quark starts
hadronizing, it rather decays weakly, such that a reconstruction of the top-quark mass
can be performed. Therefore, for our purposes, after renormalization we are only left
with a running coupling constant αs(µ), that depends on an arbitrary scale µ, while all
masses are either zero or fixed by an OS renormalization condition. In the following we
call this scale the renormalization scale, and identify µ = µR.

We already observed a certain scale dependence of the weak coupling constant α
(Eq. (3.22)), but it turns out that the dependence of αs on the arbitrary renormalization
scale is much stronger. However, when measuring physical quantities in experiment, in
the end all explicit and implicit dependences on the arbitrary scale µR have to cancel,
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since observables are genuinely independent of arbitrarily introduced scales. For an
observable R this condition can mathematically be formulated as

µ2
R

d

dµ2
R

R = 0 , (3.31)

which is one of the so-called renormalization group equations (RGE), that are treated
in great detail in Ref. [40]. If the series expansion is, however, truncated at a fixed
order, the artificial dependence on the renormalization scale does not entirely cancel.

For the strong coupling αs one defines the β-function,

β(αs) = µ2
R

∂αs

∂µ2
R

=
∂αs

∂ ln µ2
R

, (3.32)

that describes the running of αs with the variation of µR. The perturbative expansion
of β up to the one-loop order reads

β(αs) = −b0α2
s + O(α3

s) , b0 =
11CA − 4nf TF

12π
, (3.33)

where CA = 3 and TF = 1
2 denote the Casimir operator of the adjoint, and the Dynkin

index of the fundamental representation of SU(3)C (cf. Eq. (A.16) ff.), respectively,
while nf is the number of active quark-flavours. Solving the differential equation of
Eq. (3.32) at the one-loop order yields

αs(µ2
R) =

1

b0 ln(
µ2

R

Λ2 )
, (3.34)

where we absorbed the integration constants in the constant mass scale Λ = ΛQCD. In
the SM, we can have maximally nf = 6 active quark flavours, such that the parameter
b0 in Eq. (3.33) is always positive. Therefore Eq. (3.34) predicts

αs(µ2
R)

µR→∞−−−−→ 0 , (3.35)

and we obtain a meaningful perturbative theory up to arbitrarily high scales µR.
This behaviour is called asymptotic freedom of the strong force, and allows for the

perturbative description of QCD at sufficiently high energy scales, corresponding to very
small distances. Note, that an analogous relation as Eq. (3.33) also holds within QED.
There, however, we have CA = 0 for the Abelian U(1)-gauge group and consequently
QED is not asymptotically free. When turning to smaller scales, i.e. larger distances,
Eq. (3.34) also implies that for µR ≃ Λ the strong coupling becomes of the order of one
and at some point perturbation theory will eventually break down. Empirically one
finds ΛQCD ∼ 100 − 400 MeV, which restricts the applicability of perturbative methods
to energy regions >∼ 1 GeV, as we will discuss in Sec. 4.1.

Finally, with Eq. (3.34) we can relate the strengths of αs at two arbitrary scales µR

and Q independently of the exact value of ΛQCD, which defines the one-loop running
of αs,

αs(Q2) =
αs(µ

2
R)

1 + αs(µ2
R)b0 ln(Q2

µ2
R

)
. (3.36)
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3.3. Infrared Singularities

After we have removed all UV divergences of the one-loop amplitudes by applying a
suitable renormalization procedure, we still have to take care of possible IR divergences.
These divergences appear in the virtual as well as in the real contribution of any calcu-
lation that includes massless particles, whenever the momentum of the particle becomes
soft or collinear to another particle.

Within the SM, the only truly massless particles are the photon, the gluons and
the neutrinos. However, compared to the energies reachable with todays particle ac-
celerators (O( TeV)), at least the masses of the electron (me ∼ 0.5 MeV), the muon
(mµ ∼ 106 MeV) and the four lightest quarks (mu,d,c,s

<∼ O(1 GeV)) can safely be
neglected in calculations of scattering matrix elements. With mτ ∼ 2 GeV and
mb ∼ 4 GeV, the tau-lepton and the bottom-quark masses are already in an energy
regime where either the massive or the massless treatment may be advantageous, de-
pending on the available energy of the collider and the aim of the calculation.

In any case, a massless treatment of fermions tremendously facilitates the evalua-
tion of matrix elements and, due to the omission of various different mass-scales, also
stabilizes—and therefore speeds-up—a numerical phase-space integration. The draw-
back, on the other hand, are the additional IR divergences, that would not appear if
we kept the masses of the particles finite.

The method that is commonly used in the calculation of high-energetic particle colli-
sions at LHC energies is to treat all light fermions mentioned above as exactly massless
for the evaluation of the matrix element and subsequently introduce a suitable regular-
ization prescription to cure possible IR divergences appearing in the loop-momentum
and phase-space integrations. If not stated otherwise, from now on we therefore will
treat all SM particles, but the massive EW-gauge bosons (W±, Z), the Higgs boson (H)
and the top quark (t), as massless particles, which consequently all may appear in the
real correction contribution.

As we have already mentioned above, the Bloch–Nordsieck (BN) theorem [25] guaran-
tees the exact cancellation of the soft singularities stemming from the real contribution
against their counterparts in the virtual correction. For the collinear singularities, on
the other hand, according to the Kinoshita–Lee–Nauenberg (KLN) theorem [41], this
cancellation only occurs in sufficiently inclusive regions.

For final-state radiation, the demand of inclusiveness is usually ensured by the ap-
plication of a suitable recombination procedure of (nearly) collinear final-state parti-
cles. While such a procedure is easily realizable in calculations and, more importantly,
respects the general experimental difficulty to separately resolve arbitrarily close final-
state particles, an analogous treatment for the initial-state collinear radiation is not
possible. Before we discuss the removal of these remaining IR-singular contributions
by an appropriate redefinition of the initial state in Sec. 4.1, we now first focus on the
exploration of the explicit cancellation of the remaining IR-singularities.



3.3. Infrared Singularities 37

In particular, the light strongly interacting particles4 in the final state are impos-
sible to individually detect as such, but, due to ongoing soft-particle emission, they
rather lead to unfocused signatures in the detector, that are indistinguishable among
each other. Consequently, in the final state, the light particles of QCD are collec-
tively described as jets, and the IR safety is ensured by a recombination procedure, the
jet-algorithm. While top-quarks are too heavy to appear as final-state particles (see
Sec. 3.2.3), for the second heaviest quark, the bottom quark, elaborate experimental
techniques exist to distinguish the so-called b-jets from jets produced by the remaining
four quark flavours [42]. Due to the possibility of the separate detection of b-jets, also in
theoretical predictions including external b quarks, these contributions can be treated
separately from the remaining quark flavours, as we will also exploit in Part II of this
thesis.

In contrast to QCD radiation, for the additional emission of photons off leptons,
however, depending on the lepton flavour, it is experimentally possible to individually
detect both particles even in the collinear configuration, since the particles are detected
in different layers of the detector. To comply with this possibility also in a theoretical
prediction, the application of a recombination procedure in the calculation has to be
dropped, leading to so-called collinear-unsafe observables. As we will discuss in detail
in Sec. 4.2, the inclusion of the non-collinear safe phase-space regions leads to additional
contributions ∝ α/π ln(mp), that are enhanced by the logarithm of the corresponding
particles mass mp. The remaining IR-singular contributions in the collinear region,
however, also appear in the situation where inclusiveness is guaranteed by the appli-
cation of a recombination procedure, such that, by virtue of the KLN theorem, these
contributions always cancel in the sum of real and virtual contributions.

Prior to the introduction of a suitable treatment of the occurring IR divergences, we
want to stress once more that the exclusion of massive particles from the real correc-
tions does not give rise to uncanceled singular contributions in the virtual part of the
calculation. However, although the particle mass acts as regulator, preventing the vir-
tual contribution from a divergent behaviour, only the virtual corrections are affected
by the logarithmic enhancement at energy scales that are much larger than the mass
of the corresponding particle. Those Sudakov-logarithms [43], in particular, give rise
to the aforementioned strong kinematic dependence of the EW corrections and will be
subject to further discussion in Chap. 5 of this work.

In principle, the regularization of the IR-singular contributions could be performed
in similar lines as the regularization of UV divergences, namely in dimensional reg-
ularization (see Sec. 3.1), where the phase-space and loop integrations are extended
to D = 4 − 2ǫ dimensions and the cancellation of the divergent parts is performed
analytically (see e.g. Ref. [44]). Another, yet easier, approach is to perform the phase-
space integration consistently in four space-time dimensions and imply the BN and
KLN theorems. Since the phase-space integrals over the real and virtual contributions

4That is, the massless gluon and the light quarks, which are treated as exactly massless particles in
the calculation.
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are, however, not only separately divergent, but are also of different dimensionalities
(c.f. Eq. (3.6)), a dedicated subtraction procedure is required, that shifts the divergences
from one phase space onto the other. This technique is particularly well suited if the
phase-space integration is performed by Monte Carlo methods and slightly different re-
alizations are broadly used in the community [45–52]. The underlying idea is to subtract
a sufficiently simple auxiliary subtraction function |Msub|2 from the real contribution
that exhibits the same singular behaviour in the soft and collinear limits, such that the
real phase-space integration can safely be performed in D = 4 dimensions,

∫
dΦ+1

(
|Mreal|2 − |Msub|2

)
= finite , (3.37)

without introducing a further regularization prescription. Subsequently, this subtrac-
tion function has to be re-added in a suitable form to the virtual contribution, which,
by construction, cancels the IR singularities appearing in the loop integration. At that
step, the dependence on the applied regularization scheme (R.S.) of the IR singularities
becomes apparent. Very similarly to the procedure elaborated for the renormalization
of the UV divergences, in QCD, the IR singularities are typically isolated from the re-
spective finite parts of the amplitude by dimensional regularization. For the calculation
of EW corrections, which in the real part reduces to massless QED corrections, it is
very convenient to introduce small regulator masses for the (massless) fermions and
the photon and regularize the IR singularities by mass regularization. Note, however,
that this procedure is only applicable, because QED is an Abelian theory, while the
introduction of a regulator mass for the gluons in QCD would immediately spoil the
SU(3)C-gauge invariance5.

Independent of the actual regularization scheme applied, the explicit construction of
the process independent subtraction functions, is not unique and in the literature many
different subtraction methods to apply in NLO QCD corrections [45–50] and NLO EW
corrections [51,52] have been proposed and refined over the last decades.

However, all subtraction methods collectively rely on the universality of the IR sin-
gularities, which allows for the decomposition of the real phase-space integral into a
non-radiative part with LO-kinematics,

∫
dΦ̃LO, and a part containing the IR region,

∫
dΦ+1 =

∫
dΦ̃LO ⊗

∫
dΦIR . (3.38)

As we will see, the subtraction function can be constructed in the same factorized form,

|Msub(Φ+1)|2 = f(ΦIR) ⊗ |MLO(Φ̃LO)|2 , (3.39)

with an auxiliary function f that contains the IR singular part. If this function is chosen
sufficiently simple, the integration over the IR region can be performed analytically,
yielding ∫

dΦ+1|Msub(Φ+1)|2 = FR.S.
IR ⊗

∫
dΦ̃LO|MLO(Φ̃LO)|2 , (3.40)

5If the real corrections do not include the non-Abelian three-gluon vertex, mass regularization may of
cause also be applied to regularize QCD corrections.
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where all IR singularities are separated in the regularization scheme dependent functions
FR.S.

IR =
∫

dΦIRf(ΦIR).
The main advantage of the subtraction method is that the subtraction function

|Msub|2 can be constructed in a process independent way. The auxiliary functions
may either be attributed to one single particle (soft divergence) or to a pair of two par-
ticles (collinear divergence) of the process under consideration. This feature makes the
application of such a subtraction method especially suitable for processes with many
particles in the final state, where the explicit elaboration of the singular behaviour
otherwise becomes a very intricate procedure. Nevertheless, beside the actual form of
the auxiliary function f , the appropriate mapping of all momenta from the real phase
space onto the LO phase space Φ̃LO is of utter importance for the realizability of such
a subtraction procedure. In Sec. 4.2 we will discuss in detail the subtraction formalism
that is commonly applied in the calculation of EW corrections and explicitly list all
formulae relevant for the implementation of this method.

Owing to the BN and KLN theorems, for soft- and final-state collinear (fsc) sin-
gularities the integrated auxiliary functions Fsoft and Ffsc, respectively, now exhibit
exactly the right singular behaviour in order to cancel the singular terms of the virtual
contribution,

∫
dΦ̃LO

(
|Mvirt|2 + [FR.S.

fsc + FR.S.
soft ] ⊗ |MLO|2

)
= finite , (3.41)

thus yielding a finite result. As already mentioned above, the initial-state collinear (isc)
singularities included in Fisc do not entirely cancel against the virtual contributions.
Nevertheless, by including them also in the subtraction formalism, we already isolated
them from the finite part of real phase-space integration and, thus, prepared the further
treatment. The final removal of these singularities will be discussed in Sec. 4.1.





Chapter 4

Next-to-Leading Order Predictions at
Hadron Colliders

After the rather general discussion of the obstructions one is confronted with in the com-
putation of quantum corrections in the previous chapter, we now turn to the explicit
calculation of NLO corrections to processes studied at hadron colliders. In the first
section we introduce the parton model and discuss the factorization theorem, which
are two fundamental concepts that all predictions for scattering processes at hadron
colliders strongly rely on. In Sec. 4.2 we discuss in detail the subtraction technique
presented in Refs. [51,52]. We explicitly list all subtraction terms and integrated coun-
terparts as implemented in our calculation of EW corrections, which will be presented
in Chap. 5 of this thesis. Subsequently, in Sec. 4.3 we shortly introduce the notation
and the techniques used in the actual calculation of one-loop integrals.

4.1. Parton Model and Factorization Theorem

In Sec. 3.2.3 we have seen that the application of perturbative methods for the cal-
culation of scattering processes within QCD is well justified due to the property of
asymptotic freedom. As discussed there, this justification is, however, only limited to
the high-energy region, while towards smaller energy scales the strong coupling be-
comes larger, and at a certain point a perturbative treatment is no longer possible.
Additionally, as a result of this increasing coupling strength, quarks and gluons are at
our disposal only confined in colour-neutral objects, the hadrons.

In order to investigate elementary particles via hadron collisions, one therefore first
of all needs a prescription on how to extract objects from the hadrons to which the
aforementioned perturbative techniques are applicable. The (naive) parton model [53]
from the late 1960s was a first attempt towards such a prescription and a refined version
is now the basis for the description of scattering processes involving hadrons.

In the parton model, a high-energetic scattering process of an elementary particle
with a hadron is described in the so-called infinite momentum frame. In that frame,
the hadron (H) moves very fast e.g. in the z-direction (P µ

H = p0(1, 0, 0, 1)), and its mass
becomes completely irrelevant (p0 ≫ mH). The massless constituents of the hadron,
the partons, all move in the same direction, and for the time of scattering, due to the
time dilation, no interaction among the partons occurs. This implies that the parton
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momenta will not show any component transverse to the hadron momentum and we can
attribute a certain momentum fraction (0 < ξa < 1) of the momentum of the hadron
to every parton a.

A single high-energetic scattering reaction of an elementary particle A with a hadron
therefore turns out to be a partonic scattering reaction of A with exactly one of the
partons of H, while the remaining partons remain unaffected. The probability of finding
parton a with a specific momentum fraction ξa ∈ (ξ, ξ + dξ) is given by ga|H(ξ)dξ and
we call ga|H(ξ) the (naive) parton distribution function (PDF) of the parton a inside
the hadron H.

In the infinite momentum frame, with the PDFs we therefore have objects at our
disposal that encode the complete non-perturbative structure of the hadrons. Unfor-
tunately, there is no way (yet?) to calculate the PDFs from first principles and their
determination strongly relies on experimental input. Since the structure of a hadron
is, however, obviously independent of the actual scattering reaction it is probed by,
informations on PDFs can be extracted from basically every scattering experiment in
which the actual kind of hadron, e.g. a proton or an anti-proton, is involved.

Historically, the structure of the proton has first been investigated in deep-inelastic
scattering (DIS) experiments at the HERA collider at DESY, where in electron-proton
(eP) collisions high-energetic virtual photons (γ∗) directly probed the electrically charged
partons, the quarks. For an arbitrary hadron H, the cross section of such a scattering
reaction into a certain final state F can then be expressed as

σγ∗H→F (pγ∗ , PH) =
∑

a

∫ 1

0
dξga|H(ξ)σ̂γ∗a→F (pγ∗ , pa) . (4.1)

Here, the sum extends over all partons a of H, ga|H(ξ) gives the probability to find the
parton a carrying the momentum-fraction ξ of the momentum of H, pa = ξPH, and
σ̂γ∗a→F denotes the partonic cross section of the γ∗a initial state into the final state F .

4.1.1. The QCD-Improved Parton Model

Until now we have only discussed the naive parton model, which for precise calculations
has to be refined upon including higher-order effects, leading to the so-called QCD-
improved parton model. In Sec. 3.3 we indicated that the inclusion of higher-order
corrections, in particular, introduces initial-state collinear singularities in the real part
that will not entirely cancel against a virtual counterpart. However, the factorization
theorem implies that those remaining singular contributions are process independent
and can be absorbed into the naive PDFs by a suitable redefinition.

In dimensional regularization, the collinearly divergent part of the DIS cross section
of Eq. (4.1) at NLOQCD that can be attributed to the initial state takes the form

− αs

2π

Γ(1 + ǫ)

ǫ

∫ 1

0
dξ

(
4πµ2

R

ŝ

)ǫ(∑

b

∫ 1

ξ

dz

z
Pab(z) gb

(
ξ

z

))
σ̂γ∗a→F (pγ∗ , pa) , (4.2)
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where we dropped for convenience the additional label H in the subscript of the PDFs.
µR denotes the renormalization scale (c.f. Sec. 3.2.3) and ŝ = (pγ + pa)2 is the c.m. en-
ergy of the partonic scattering reaction. The functions Pab(z) are the regularized
Altarelli-Parisi splitting functions in D = 4 dimensions, which can be interpreted as the
probability of a parton a to emerge collinearly from parton b, carrying the momentum-
fraction z. For a consistent calculation of NLOQCD corrections, we require the four
LO-splitting functions, Pqq, Pqg, Pgq, Pgg, that include exactly one splitting and can,
for example, be found in App.C of Ref. [47]. Note that at LO, the two (anti-)quarks
appearing in Pqq always have to be of the same flavour, while at higher orders also non-
flavour diagonal splittings Pqq′ as well as splittings from quarks to anti-quarks (and vice
versa) occur.

Similarly to the renormalization procedure of the UV divergences, the divergent part
of Eq. (4.2) can now be absorbed into the bare naive PDFs ga,0,

ga,0(ξ) = fa(ξ, µ2
F) (4.3)

+
αs

2π

∑

b

∫ 1

ξ

dz

z
fb

(
ξ

z
, µ2

F

)[
Γ(1 + ǫ)

ǫ

(
4πµ2

R

µ2
F

)ǫ

Pab(z) − CF.S.
ab (z)

]
,

defining the (factorized) PDFs fa(ξ, µ2
F) which now depend on the additionally intro-

duced factorization scale µF. This scale can be interpreted as to separate the perturba-
tive region (short-distance physics, αs small, c.f. Sec. 3.2.3), where we can calculate the
hard scattering cross section, from the non-perturbative region (long-distance physics,
αs large), which is completely attributed to the PDFs. As we have already seen in the
MS-renormalization scheme, in such a renormalization procedure there always remains
some arbitrariness in the treatment of finite terms, such that in Eq. (4.3) an additional
factorization-scheme–dependent finite term CF.S.

ab is included. After the renormalization
of the PDFs, the previously divergent expression in Eq. (4.2) now takes the form of a
finite collinear factorization term,

αs

2π

∫ 1

0
dξσ̂γa→F (pγ , pa)

∑

b

∫ 1

ξ

dz

z
fb

(
ξ

z
, µ2

F

)[
ln

(
ŝ

µ2
F

)
Pab (z) − CF.S.

ab (z)

]
, (4.4)

that explicitly depends on the factorization scale and has to be taken into account in
any higher-order calculation if PDFs are involved.

The actual value of the PDFs at different scales can be determined by the Dokshitzer-
Gribow-Lipatow–Altarelli-Parisi (DGLAP) evolution equations [54],

∂

∂ ln µ2
F

fa(ξ, µ2
F) =

αs

2π

∑

b

∫ 1

ξ

dz

z
fb

(
ξ

z
, µ2

F

)
Pab(z) , (4.5)

which directly follow from Eq. (4.3) and the fact that the bare PDFs, before the renor-
malization procedure, do not depend on µF,

µ2
F

∂ga,0(ξ)

∂µ2
F

= 0 . (4.6)
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In the form given here, Eq. (4.5) is a coupled integro-differential equation, which deter-
mines the evolution of the renormalized PDFs at NLOQCD for all strongly interacting
partons, namely the quarks and gluons. The process-independent collinear splittings
of those particles have been absorbed into the respective PDFs, such that these PDFs
now serve as basic ingredient for any NLO calculation for hadron-collision processes.

We want to stress once more that physical observables must not depend on any
theoretically introduced scale like µF or µR. However, due to the truncation of the per-
turbative expansion at a fixed order, unavoidably a residual scale dependence remains.
This fact is sometimes used as a indication of the so-called theoretical uncertainty of the
calculation. By varying the unphysical scales of the process by a constant factor (e.g. 2)
around a smartly chosen central scale1, upper and lower bounds for (differential) cross
sections may be obtained. If the inclusion of higher-order corrections does not only
lead to narrower scale-variation bands, but this band is also entirely contained in the
error estimate of the former order, in general, the theory uncertainty is said to be under
control.

4.1.2. Factorization of QED Singularities

For the calculation of EW corrections to hadron collisions, the initial-state singularities
in the calculation of the partonic scattering reaction stem from the collinear splitting
of quarks and photons, which are proportional to the EW-coupling constant α. The
proper factorization of these remaining singularities into the respective PDFs can be
performed along the same lines as in QCD, but additionally requires the introduction of
a photon PDF fγ . A combined QCD and QED evolution for NLO PDFs then reads [55]

∂

∂ ln µ2
F

fa(ξ, µ2
F) =

∑

b

∫ 1

ξ

dz

z

[
αs

2π
PQCD

ab (z) +
α

2π
PQED

ab (z)

]
fb

(
ξ

z
, µ2

F

)
, (4.7)

where a and b can now stand for quarks, gluons and photons. While the relevant QCD
splittings have only been mentioned above, we list the non-zero contributions to PQED

ab

for further applications. At LO the relevant splittings read [56]

PQED
qq (z) =

1 + z2

1 − z
, PQED

qγ (z) = z2 + (1 − z)2 , PQED
γq (z) =

1 + (1 − z)2

z
. (4.8)

Since QED splittings, however, may also occur in leptonic processes, showing exactly
the same analytical form, for later applications we additionally identify

Pff (z) = PQED
qq (z) , Pfγ(z) = PQED

qγ (z) , Pγf (z) = PQED
γq (z) , (4.9)

defining the three general QED-splitting functions for any charged fermion f . It is
worth noting that by going beyond the LO in the splitting functions, we not only

1 The choice of the central scale is a delicate task, since no “right” scale exists. Usually it is fixed to
a typical energy scale of the process (e.g. MZ), but also running scales are used that have to be
determined for every phase-space point, like e.g. the invariant mass of two final state particles. We
will come back to this issue in Part II of this thesis.



4.1. Parton Model and Factorization Theorem 45

receive the aforementioned non-flavour diagonal splittings for the quarks, Pqq′ , but also
mixed QCD-QED splittings have to be included in Eq. (4.7). In addition, starting at the
order α2, in PQED

ab also photon-to-photon as well as quark-to-lepton and lepton-to-quark
splittings in principle become possible [57].

As already indicated above, the calculation of EW corrections presented in this thesis
has been performed by applying a mass regularization to treat the IR QED singularities.
In this scheme, the redefinitions of the quark and photon PDFs necessary to absorb these
initial-state collinear singularities are given by [56]

gq,0(ξ) = fQED
q (ξ, µ2

F)

+
Q2

qα

2π

∫ 1

ξ

dz

z
fQED

q

(
ξ

z
, µ2

F

)

×
[
ln

(
m2

q

µ2
F

)[
PQED

qq (z)
]

+
+
[
PQED

qq (z)
(
2 ln(1 − z) + 1

)]

+
− CF.S.

qq (z)

]

+
3Q2

qα

2π

∫ 1

ξ

dz

z
fQED

γ

(
ξ

z
, µ2

F

)[
ln

(
m2

q

µ2
F

)
PQED

qγ (z) − CF.S.
qγ (z)

]
, (4.10)

gγ,0(ξ) = fQED
γ (ξ, µ2

F)

+
Q2

qα

2π

∑

b

∫ 1

ξ

dz

z
fQED

b

(
ξ

z
, µ2

F

)

×
[
ln

(
m2

q

µ2
F

)
PQED

γq (z) + PQED
γq (2 ln z + 1) − CF.S.

γq (z)

]
, (4.11)

where Qq and mq denotes the charge and the (regulator-) mass of the respective quark q.
In comparison to Eq. (4.3), here we explicitly list the full expression for the two relevant
PDFs, while gluonic initial states do not yield any initial-state collinear singularity and,
thus, the gluon PDF does not require a redefinition. Note that due to the structure
of the QED-splitting functions (Eq. (4.8)) the sum of Eq. (4.3) yields two terms for the
quark PDF (b = q, γ), while only one term (b = q) contributes for the photon PDF.

Based on the standard definitions of QCD, also in QED the factorization scheme
dependent constants are usually defined either in the so-called MS or DIS-like scheme,

CMS
qq (z) = CMS

qγ (z) = CMS
γq (z) = 0 , (4.12)

CDIS
qq (z) = −CDIS

γq (z) =

[
PQED

qq (z)

(
ln

(
1 − z

z

)
− 3

4

)
+

9 + 5z

4

]

+

,

CDIS
qγ (z) = PQED

qγ (z) ln

(
1 − z

z

)
− 8z2 + 8z − 1 . (4.13)

Here, and already in Eq. (4.10), we made use of the usual plus prescription [. . . ]+, which
is defined via its action on a test function g within an integral,

∫ 1

0
dx [f(x)]+ g(x) =

∫ 1

0
dx f(x) [g(x) − g(1)] . (4.14)
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P1

pa = ξ1P1

X

fa|H1
(ξ1, µ2

F)H1

P2

pb = ξ2P2

X

fb|H2
(ξ2, µ2

F)H2

Fσ̂ab→F(pa, pb, µ2
F)

Figure 4.1.: Representation of the scattering reaction of two hadrons, H1 and H2, into
a specific final state F. X denotes the hadron remnants, including all partons that are
not involved in the actual scattering reaction. Adapted from Ref. [20].

The actual form of the factorization constant needed for the collinear factorization
term (c.f. Eq. (4.4)) may therefore differ, depending on the conventions applied in the
experimental extraction of the PDF. More details on the factorization of photon PDFs
in dimensional and mass regularization can be found in Ref. [56] and the references
therein.

4.1.3. Hadron-Hadron Collisions

Now that we have absorbed QCD and QED initial-state singularities into the respective
process-independent PDFs, we can finally turn to the theoretical description of hadron-
hadron collisions. Following the same strategy as in Eq. (4.1), the scattering reaction
of two hadrons (H1 and H2) can be written as sum over all possible partonic scattering
reactions, which now simply have to be weighted by two PDFs, each corresponding
to one of the hadrons. Integrating over the respective momentum fractions ξi of the
partons i yields the hadronic cross section, which therefore reads

σH1H2→F(P1, P2) =
∑

a,b

∫ 1

0
dξa

∫ 1

0
dξbfa|H1

(ξa, µF)fb|H2
(ξb, µF)σ̂ab→F(pa, pb, µF) ,

=
∑

a,b

fa|H1
fb|H2

⊗ σ̂ab→F(pa, pb, µF) . (4.15)

Here, the sums over a and b comprises all partons appearing as initial state in the
respective partonic cross sections of the scattering reaction into the particular final state
F, σ̂ab→F. A schematic representation of this final formula is given in Fig. 4.1. Note that
the short-hand notation defined in the second line of Eq. (4.15) suppresses the explicit
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dependence of the PDFs on the factorization scale µF. In cases where the same partons
of identical hadrons are considered (in particular proton–proton collisions), additionally
the hadron labels in the subscripts of the PDFs may be dropped in future applications
of Eq. (4.15).

As already mentioned above, the only part of the partonic cross section that depends
on µF is the collinear factorization term. Additionally, we want to stress that our
definition of the partonic cross section already implicitly includes all applied phase-
space cuts via a so-called cut function Θcut, such that we may symbolically write

σ̂ab→F(pa, pb, µF) =

∫
dΦ

dσ̂ab→F

dΦ
Θcut(Φ) . (4.16)

In addition to all phase-space cuts that define the particular fiducial phase space, also
the possible recombination of final-state particles to collinear-safe objects, as well as
the filling of histograms corresponding to particular observables is implemented via this
function.

4.2. The Dipole Subtraction Formalism

In this section we discuss the details of the dipole subtraction technique which has been
worked out in Refs. [51] and [52] and is widely used in the calculation of EW correc-
tions. The method is based on the dipole formalism presented by Catani and Seymour
for massless QCD [46, 47], which later has been refined to apply as well to massive
strongly interacting particles [50]. Although the treatment of QCD is therefore to some
extent very similar, we refrain from discussing the dipole subtraction formalism as well
for QCD but refer the interested reader to the publications cited above. With the re-
striction to EW processes, we omit the discussion of any complication arising due to
the colour structure, which would make the treatment a bit more complex than for
the corresponding (electric) charge appearing in the EW theory. Additionally, follow-
ing Refs. [51,52], we will regularize the IR singularities with small regulator masses
and avoid the less intuitive treatment of dimensional regularization, commonly applied
in QCD calculations. As already indicated in Sec. 3.3, the dependence on the regula-
tor masses will only explicitly appear in the integrated counterparts of the subtraction
functions, while for the joint phase-space integration of the subtraction function and
the real matrix element (c.f. Eq. (3.37)) all (light) fermion masses and the photon mass
can be set exactly to zero.

In the dipole formalism, the subtraction function that cancels the singularities en-
tailed by the radiation of an additional photon can be constructed from the auxiliary

functions g
(sub)
ff ′ , the so-called dipoles, and the LO matrix element [51],

|Msub(Φ+1)|2 = −
∑

f 6=f ′

Qf σf Qf ′σf ′e2g
(sub)
ff ′ (pf , pf ′ , k)

∣∣∣MLO

(
Φ̃LO

)∣∣∣
2

. (4.17)

Here, the sum runs over all possible emitter and spectator fermions, f and f ′, respec-
tively, while σf and Qf e denote their direction of movement in the diagram and their
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a γ
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γ
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(sub)
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a γ

j

g
(sub)
ai :
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Figure 4.2.: Generic diagrams for the different emitter-spectator pairs for photonic
radiation. Particles in the initial state are labeled with a and b, while i and j denote the
final-state particles of the underlying LO scattering reaction. Adapted from Ref. [51].

charge, with e defined in Eq. (2.32). We set σf = +1(−1) for incoming (outgoing)
fermions and outgoing (incoming) anti-fermions, such that charge conservation implies

∑

f

Qf σf = 0 . (4.18)

The kinematics of the singular configurations is fully transferred to the dipole splitting

functions g
(sub)
ff ′ that depend only on the momentum of the photon, k, and the momenta

of the corresponding emitter and spectator fermions, pf and pf ′ . Additionally, for the
evaluation of MLO in Eq. (4.17), an appropriate mapping from the real phase space onto
a Born-type phase space Φ̃LO, comprising one external particle less, has to be specified.
Note that in contrast to the original publications, we may restrict the discussion to
unpolarized splitting functions, since at the LHC no polarized proton-beams are used,
such that no predictions for individual polarizations of the particles are necessary. The

unpolarized splitting functions follow from the polarized splitting functions g
(sub)
ff ′,± in

the obvious way,

g
(sub)
ff ′ = g

(sub)
ff ′,+ + g

(sub)
ff ′,− . (4.19)

We distinguish between the four emitter-spectator pairs represented in Fig. 4.2, and
here and in the following we consistently label initial-state particles with a and b, while
i and j always correspond to final-state particles.
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Conceptually, for final-state photon radiation, we further distinguish between emit-
ting particles that have to be recombined with the photon at some point to obtain
a meaningful, collinear-safe result, and particles that can be treated separately from
the photon, even in the collinear region. In the former case, the final state is always
treated fully inclusive, such that the KLN theorem applies and all IR singularities
connected to final-state emission cancel in the sum of real and virtual contributions.
The latter approach is referred to as collinear-unsafe treatment of nearly collinear pho-
tons and in general leads to additional contributions ∝ α/π ln(mp) that are enhanced
by the logarithm of the corresponding particle’s mass mp. As we will discuss below,
the collinear-safe treatment follows in a certain well defined limit from the much more
involved collinear-unsafe treatment.

Apart from singularities due to real photon radiation, also the collinear splitting of
a photon into a fermion–anti-fermion pair, γ → f f̄ , and the collinear emission of a
fermion, f → fγ∗, with the photon taking part in the hard scattering reaction, may
appear in a calculation of EW corrections. In the latter splitting, the asterisk indicates
the off-shellness of the photon connecting the splitting to the remaining amplitude.
For the former splitting we further distinguish between the final-state photon splitting
γ∗ → f f̄ , resulting in a collinear fermion–anti-fermion pair in the final state, and the
initial-state photon splitting γ → f f̄∗, with the anti-fermion transferred to the hard
scattering process and the fermion scattered into the direction of the incoming photon,
i.e. the beam direction. Note that since σf and Qf have already been factored out, the
reversed splitting γ → f∗f̄ yields exactly the same splitting function and is therefore
not considered separately.

While the singularities due to collinear final-state photon splittings γ∗ → f f̄ can
safely be neglected whenever the charged final-state fermions are required to be sep-
arately detectable, the same is not true for the singularities introduced by the two
additional initial-state splittings, γ → f f̄∗ and f → fγ∗. Both splittings only become
relevant for a NLO prediction if the photon is consistently treated as parton, i.e. a
LO photon PDF is taken into account. As already discussed in Sec. 4.1, their ultimate
absorption requires the proper redefinition of the respective PDFs. However, in a simi-
lar manner as for the real photon radiation we additionally apply a dipole subtraction
inspired method to facilitate the integration over the real phase space Φ+1. The treat-
ment of these additional splittings appearing only in photon-induced processes will be
discussed in Sec. 4.2.2.

4.2.1. Subtraction Functions and Integrated Counterparts – Photon
Radiation

In order to cancel all IR divergences appearing due to real photon radiation in the
integration over the real phase space (Eq. (3.37)), in the soft and collinear limits the
following asymptotic conditions must be fulfilled

|Msub|2 ˜ |Mreal|2 for k → 0 or pf · k → 0 . (4.20)
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Obviously, these conditions do not uniquely specify the splitting functions g
(sub)
ff ′ , but

since the real matrix element shows a well known form in both of these limits (see,
e.g., [51] and references therein), their analytic form is already strongly restricted.

Denoting the momenta corresponding to Φ̃LO by a tilde, we generally require

p̃f
−→
k→0

pf , p̃i
−→

pi·k→0
pi + k, p̃a

−→
pa·k→0

xapa , (4.21)

for the momentum of the (initial-/final-state) emitter in the respective limit and

p̃f ′ −→
IR−limit

pf ′ , k̃n
−→

IR−limit
kn , (4.22)

for the momenta of the spectator fermion f ′ and the momenta of the remaining particles
of the real phase space, kn. In Eq. (4.21), xa = (p0

a−k0)/p0
a denotes the energy fraction

of the fermion a after photon emission.

Additionally, the mapping will be constructed in such a way that the mass-shell
conditions

p̃2
f = p2

f = m2
f , p̃2

f ′ = p2
f ′ = m2

f ′ , k̃2
n = k2

n = m2
n , (4.23)

are fulfilled for arbitrary photon momenta k.

In the following, we present the definitions of g
(sub)
ff ′ and the phase-space mappings

for the individual emitter-spectator pairs, as well as the explicit form of the respective
integrated counterpart as worked out in Refs. [51] and [52]. We list all formulae relevant
for the implementation of the dipole subtraction method for non-collinear safe observ-
ables of massless, unpolarized fermions and refer the reader to the original publications
for further details.

Initial-state emitter and initial-state spectator

For an emitter a and a spectator b in the initial state the unpolarized auxiliary function

g
(sub)
ab is defined as

g
(sub)
ab (pa, pb, k) =

1

(pa · k)xab

[
2

1 − xab
− 1 − xab

]
, (4.24)

where xab and yab are variables of scalar products of the relevant momenta in the
singular region,

xab =
pa · pb − pa · k − pb · k

pa · pb
, yab =

pa · k

pa · pb
. (4.25)

The modified momenta of the phase space Φ̃LO, satisfying the requirements of Eqs. (4.21)–
(4.23), are chosen as

p̃µ
a = xabp

µ
a , p̃µ

b = pµ
b , k̃µ

n = Λµ
νkν

n , (4.26)



4.2. The Dipole Subtraction Formalism 51

which means that the spectator momentum is kept fixed, while the remaining momenta
are modified by the Lorentz transformation

Λµ
ν = gµ

ν − (Pab + P̃ab)
µ(Pab + P̃ab)ν

P 2
ab + PabP̃ab

+
2P̃ µ

abPab,ν

P 2
ab

, (4.27)

with

P µ
ab = pµ

a + pµ
b − kµ, P̃ µ

ab = xabp
µ
a + pµ

b . (4.28)

These definitions are already sufficient to obtain a finite result in the real phase-space
integration of Eq. (3.37). Due to the modification of the incoming momentum pµ

a → p̃µ
a ,

however, via the (modified) squared partonic c.m. energy

s̃ = 2(p̃a · pb) = 2xab(pa · pb) = xabs , (4.29)

the non-radiative part of the phase-space measure Φ̃LO also exhibits a dependence on
xab, such that the complete analytic integration of the subtraction functions can not be
performed, but an additional convolution over x = xab remains,

∫
dΦ+1 |Msub,ab(Φ+1)|2 = − α

2π
QaσaQbσb

×
∫ 1

0

dx

x
G(sub)

ab (s, x)

∫
dΦ̃LO,ab(x)

∣∣∣MLO

(
Φ̃LO,ab(x)

)∣∣∣
2

, (4.30)

where the additional argument s indicates that for the integration over x, the squared
partonic c.m. energy is kept fixed to its original value. Note that since it would un-
necessarily further complicate the notation, in this chapter we refrain from using the
additional hat ( .̂ ) to indicate partonic values. In order to perform the convolution

numerically, it is convenient to separate the IR-singular endpoint part of G(sub)
ab ,

G
(sub)
ab (s) =

∫ 1

0
dx G(sub)

ab (s, x) , (4.31)

such that we can write Eq. (4.30) in the following form

∫
dΦ+1 |Msub,ab(Φ+1)|2 = − α

2π
QaσaQbσb

×
{∫ 1

0
dx

[
G(sub)

ab (s, x)
]

+

1

x

∫
dΦ̃LO,ab(s, x)

∣∣∣MLO

(
Φ̃LO,ab(x)

)∣∣∣
2

+ G
(sub)
ab (s)

∫
dΦ̃LO,ab(s, 1)

∣∣∣MLO

(
Φ̃LO,ab(1)

)∣∣∣
2
}

, (4.32)

where the integration over x can now be safely performed due to the plus prescription
(see Eq. (4.14)). The functions G(sub)(s, x) and G(sub)(s) contain all remaining mass
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singularities and are given by

G(sub)
ab (s, x) = Pff (x)

[
ln

(
s

m2
a

)
− 1

]
+ 1 − x , (4.33)

G
(sub)
ab (s) = L(s, m2

a) − π2

3
+ 2 , (4.34)

where Pff (x) is the LO fermion-to-fermion splitting function defined in Eq. (4.9) and
the singular terms of G(sub) are contained in the function

L(s, m2) = ln

(
m2

s

)
ln

(
m2

γ

s

)
+ ln

(
m2

γ

s

)
− 1

2
ln2
(

m2

s

)
+

1

2
ln

(
m2

s

)
. (4.35)

As we can see, in Eq. (4.34) only the emitter mass ma gives rise to logarithmic sin-
gularities, while the spectator mass can be set to zero everywhere in the calculation.
Beside logarithmic singularities due to the regulator mass of the emitter, Eq. (4.35) also
depends on logarithms of the photon regulator mγ , which is required for the soft-photon
regularization. The dependence on both regulator masses eventually drops out in the
combination with the (mass-regulated) virtual contribution.

Initial-state emitter and final-state spectator

Although the case with an initial-state emitter a and a final-state spectator i shows
some similarities with the reversed case (final-state emitter and initial-state spectator),
for the sake of clarity we refrain from a joint treatment but discuss the reversed case
separately below.

The unpolarized dipole splitting function for an initial-state emitter and a final-state

spectator g
(sub)
ai is given by

g
(sub)
ai (pa, pi, k) =

1

(pa · k)xai

[
2

2 − xai − zai
− 1 − xai

]
, (4.36)

with the variables

xai =
pa · pi + pa · k − pi · k

pa · pi + pa · k
, zai =

pa · pi

pa · pi + pa · k
. (4.37)

For this dipole, only the momenta of the emitter and spectator are modified to define
the ingredients of the LO phase space Φ̃LO,

p̃µ
a = xaip

µ
a , p̃µ

i = pµ
i + kµ − (1 − xai)p

µ
a , (4.38)

while all other momenta of the process remain unchanged. As in the previous case,
the necessary modification of the incoming momentum pµ

a → p̃µ
a implies a dependence

of Φ̃LO on the respective rescaling factor xai = x, which inhibits the full analytic
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integration of the photonic phase space. As the fixed variable during the x-integration
we choose the square of the conserved momentum,

Pai = pi + k − pa = p̃i − p̃a , (4.39)

such that we can finally write the subtraction function as
∫

dΦ+1 |Msub,ai(Φ+1)|2 = − α

2π
QaσaQiσi

×
{∫ 1

0
dx

[
G(sub)

ai (P 2
ai, x)

]
+

1

x

∫
dΦ̃LO,ai(P

2
ai, x)

∣∣∣MLO

(
Φ̃LO,ai(x)

)∣∣∣
2

+ G
(sub)
ai (P 2

ai)

∫
dΦ̃LO,ai(P

2
ai, 1)

∣∣∣MLO

(
Φ̃LO,ai(1)

)∣∣∣
2
}

, (4.40)

where we again make use of the plus prescription to enable a stable numerical integration
over x and define the endpoint contributions as

G
(sub)
ai (P 2

ai) =

∫ 1

0
dx G(sub)

ai (P 2
ai, x) . (4.41)

Using again the function L(P 2, m2) of Eq. (4.35) and Pff (x) defined in Eq. (4.9), the
explicit form of the IR-singular functions reads

G(sub)
ai (P 2

ai, x) = Pff (x)

[
ln

( |P 2
ai|

m2
ax

)
− 1

]

− 2

1 − x
ln(2 − x) + (1 + x) ln(1 − x) + 1 − x , (4.42)

G
(sub)
ai (P 2

ai) = L(|P 2
ai|, m2

a) +
π2

6
− 1 . (4.43)

Final-state emitter and final state-spectator

The unpolarized auxiliary function g
(sub)
ij , corresponding to an emitter-spectator pair

ij from the final state, is defined by

g
(sub)
ij (pi, pj , k) =

1

(pi · k)(1 − yij)

[
2

1 − zij(1 − yij)
− 1 − zij

]
, (4.44)

with the variables of the corresponding momenta,

yij =
pi · k

pi · pj + pi · k + pj · k
, zij =

pi · pj

pi · pj + pj · k
. (4.45)

For this case we choose the mapping onto the LO phase space Φ̃LO as

p̃µ
i = pµ

i + kµ − yij

1 − yij
pµ

j , p̃µ
j =

1

1 − yij
pµ

j , (4.46)
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which only affects the corresponding final-state momenta, while, in particular, the entire
initial state remains unaffected.

If the final-state photon-radiation is treated collinearly safe, the complete analytic
integration of the subtraction function over the photonic part of the real (N + 1)-
particle phase space can be performed, without affecting the remaining momenta of the
N -particle LO phase space Φ̃LO. As in the two cased discussed above, the evaluation of
the real phase-space integral of Eq. (3.37) requires to assess the cut function Θcut twice,
once for the real (N + 1)-particle phase space Φ+1 corresponding to |Mreal|2 and once
for the integration of |Msub|2 over the modified LO phase space Φ̃LO, respectively.

However, if the final-state fermion-photon system is not recombined to one quasi-
particle in the collinear limit, the events associated with |Msub,ij|2 have to be treated
as (N + 1)-particle events. Still, the (N + 1) momenta must reduce to the momenta
used for the calculation of |MLO(Φ̃LO)|2 in the soft and collinear limit, which can be
achieved by setting

pµ
i → zp̃µ

i , kµ → (1 − z)p̃µ
i , (4.47)

with p̃i defined in Eq. (4.46) and z = zij from Eq. (4.45). The spectator momentum, as
well as the remaining momenta of the process kn stay unaffected. Explicitly including
the momentum and cut dependence, the final-state emitter cases of Eq. (3.37) read in
the general collinear-unsafe treatment

∫
dΦ+1

[
|Mreal(Φ+1)|2Θcut(Φ+1) (4.48)

−
∑

x=a,j

|Msub,ix|2Θcut

(
zixp̃

(ix)
i , (1 − zix)p̃

(ix)
i , p̃(ix)

x , {kn}
)]

,

where x denotes the possible initial- and final-state spectators. While the modification
in the subtraction part of the real phase-space integration reduces to an additional
numerical integration over the z-variable that only affect the phase-space cuts, it con-
siderably complicates the explicit calculation of the integrated counterpart. For the
parametrization of the photonic phase space we make use of the conserved momentum

Pij = pi + pj + k = p̃i + p̃j , (4.49)

such that the subtraction function for a final-state emitter and final-state spectator in
the collinear-unsafe case reads

∫
dΦ+1 |Msub,ij(Φ+1)|2 = − α

2π
QiσiQjσj (4.50)

×
∫

dΦ̃LO,ij

∫ 1

0
dz

(
G

(sub)
ij (P 2

ij)δ(1 − z) +
[
Ḡ(sub)

ij (P 2
ij , z)

]
+

)

× |MLO(Φ̃LO)|2 Θcut

(
zp̃i, (1 − z)p̃i, p̃j , {kn}

)
.
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Here, the soft singularity of the function Ḡ(sub)
ij (P 2

ij , z) has been isolated with the help
of the plus prescription,

Ḡ(sub)
ij (P 2

ij , z) = G
(sub)
ij (P 2

ij)δ(1 − z) +
[
Ḡ(sub)

ij (P 2
ij , z)

]
+

. (4.51)

The given form of Eq. (4.51) allows for a direct transition to the collinear-safe case,
where the full z-integration can be carried out and only the term proportional to

G
(sub)
ij (P 2

ij) remains. The functions G
(sub)
ij and Ḡ(sub)

ij (P 2
ij , z) are explicitly given by

G
(sub)
ij (P 2

ij) = L(P 2
ij , m2

i ) − π2

3
+

3

2
, (4.52)

Ḡ(sub)
ij (P 2

ij , z) = Pff (z)

[
ln

(
P 2

ijz

m2
i

)
− 1

]
+(1 + z) ln(1 − z) + 1 − z , (4.53)

with L(P 2, m2) defined in Eq. (4.35). The aforementioned additional collinear singular-

ity ∝ ln mi appearing in the collinear-unsafe treatment is contained in Ḡ(sub)
ij (P 2

ij , z).

Final-state emitter and initial-state spectator

The case of an emitter i from the final state and a spectator a from the initial state is
kinematically identical to the reversed emitter-spectator case, only that the roles of i

and a are interchanged. The dipole splitting function g
(sub)
ia is defined as

g
(sub)
ia (pi, pa, k) =

1

(pi · k)xai

[
2

2 − xai − zai
− 1 − zai

]
, (4.54)

where we use the variables xai and zai from Eq. (4.37). The modified momenta p̃i and
p̃a are defined in the same way as in the reversed emitter-spectator case and are given
in Eq. (4.38).

If the final-state emission is treated in a collinear-safe way, the analytic form of the
integrated subtraction function can be obtained from Eq. (4.40) by simply exchanging
i and a. The IR-singular functions to be inserted are given by

G
(sub)
ia (P 2

ai) = L(|P 2
ai|, m2

i ) − π2

2
+

3

2
, (4.55)

G(sub)
ia (P 2

ai, x) =
1

1 − x

[
2 ln

(
2 − x

1 − x

)
− 3

2

]
, (4.56)

where Pai is the conserved momentum defined in Eq. (4.39) and L(P 2, m2) is given in
Eq. (4.35).

For a collinear-unsafe treatment of the final-state radiation, however, as discussed in
the previous paragraph, the subtraction function has to be evaluated for an (N + 1)-
particle phase space, where the momenta must behave as defined in Eq. (4.47) with
z = zai. The additional numerical integration over z requires a further refinement
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of Eq. (4.40) in order to isolate the soft singularities appearing at z → 1. Thus, the
collinear-unsafe generalization of the integrated subtraction function for an final-state
emitter and initial-state spectator reads

∫
dΦ+1 |Msub,ia(Φ+1)|2 = − α

2π
QaσaQiσi (4.57)

×
{∫ (1,1)

(0,0)
d(x, z)

([
G(sub)

ia (P 2
ai, x)

]
+

δ(1 − z) +
[
ḡsub

ia (x, z)
](x,z)

+

)

× 1

x

∫
dΦ̃LO,ia(P 2

ai, x)
∣∣∣M0

(
Φ̃LO,ia(x)

)∣∣∣
2

Θcut

(
zp̃i(x), . . .

)

+

∫ 1

0
dz

(
G

(sub)
ia (P 2

ai) δ(1 − z) +
[
Ḡ(sub)

ia (P 2
ai, z)

]
+

)

×
∫

dΦ̃LO,ia(P 2
ai, 1)

∣∣∣M0

(
Φ̃LO,ia(1)

)∣∣∣
2

Θcut

(
zp̃i(1), . . .

)}
.

In addition to the IR singular functions of Eqs. (4.55) and (4.56) here we defined

ḡsub
ia (x, z) =

1

1 − x

(
2

2 − x − z
− 1 − z

)
, (4.58)

Ḡ(sub)
ia (P 2

ai, z) = Pff (z)

[
ln

(−P 2
aiz

m2
i

)
− 1

]
− 2 ln(2 − z)

1 − z

+(1 + z) ln(1 − z) + 1 − z , (4.59)

with the LO fermion-to-fermion splitting Pff (x) defined in Eq. (4.9). Since ḡsub
ia contains

poles in x and z, to this function a double plus prescription,

∫ (1,1)

(0,0)
d(x, y) [f(x, y)]

(x,y)
+ g(x, y) =

∫ (1,1)

(0,0)
d(x, y)f(x, y) [g(x, y) − g(1, y) − g(x, 1) + g(1, 1)] , (4.60)

is applied, while the collinear singularity ∝ ln mi is contained in Ḡ(sub)
ia (P 2

ai, z).

4.2.2. Dipole Subtraction for Photon-Induced Processes

In contrast to the previous section, we now treat the collinear emission of an additional
fermion in photon-induced processes. As mentioned in the beginning of this section, for
our purpose the discussion can be limited to the additional fermions stemming from one
of the two initial-state splittings γ → qq̄∗ or q → qγ∗, depicted in Fig. 4.3. The reason
for the further restriction to quarks is due to the fact that we require the charged final-
state leptons to have a non-vanishing transverse momentum (pT), such that no lepton
can be emitted collinearly to the beam-pipe. Moreover, a l → lγ∗ splitting would
require a finite lepton content in the hadron already at the LO, which does not exist. It
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h
(sub)
γq :

γ q

q̄∗

b pb

k pq

h
(sub)
qq (λ):

q q

γ∗

b pb

pq
p′

q

Figure 4.3.: Generic diagrams for the splittings γ → qq̄∗ and q → qγ∗ with an initial-
state spectator b. Adapted from Ref. [52].

is worth noting that in order for the calculation to apply also in the case of a vanishing
lepton pT, we would additionally need to include the photon-to-lepton splitting PQED

γl

in Eq. (4.11) to properly cure the singularity due to the γ → ll̄∗-splitting.
For both types of initial-state splittings depicted in Fig. 4.3, the appearing collinear

singularities can be attributed to one single external leg and |Msub|2 can be constructed
from a single term ∝ Q2

q with the spectator x being either the second particle b from the
initial state (as shown in the figure) or any particle from the final state. The formulae
for both cases are derived in great detail in Chap. 3 and 5 of Ref. [52], such that we
restrict the discussion in this thesis to our actual implementation, where we choose the
spectator from the final state, i.e. we set x = b.

Collinear singularities from γ → qq̄∗ splittings

For an initial-state spectator b, the subtraction function related to the γ → qq̄∗ splitting
that has to be subtracted from the real amplitude is defined as

|Msub,γb(Φ+1)|2 = NcQ
2
qe2 h(sub)

γq (k, pq, pb)
∣∣∣MLO

(
Φ̃LO

)∣∣∣
2

, (4.61)

where Nc = 3 is the colour factor of the quark q with relative electric charge Qq. The
radiator function is given by

h(sub)
γq (k, pq, pb) =

1

xqγ(k · pq)
Pfγ(xqγ) , (4.62)

where we defined the auxiliary quantity,

xqγ = x =
k · pb − k · pq − pq · pb

k · pb
, (4.63)

and used the LO photon-to-fermion splitting function Pfγ(x), which we already defined
in Eq. (4.9). The modified incoming anti-quark momentum and the modified final-state
momenta k̃n defining Φ̃LO are given by

p̃µ
q̄ (x) = xkµ and k̃µ

n = Λµ
ν kν

n , (4.64)
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which is exactly the same definition as in Eq. (4.26), with Λµ
ν defined in Eq. (4.27).

The integrated counterpart reads

∫
dΦ+1 |Msub,γb(Φ+1)|2 =

αQ2
qNc

2π

×
∫ 1

0
dx H(sub)

γq (s, x)

∫
dΦ̃LO(x)

∣∣∣MLO

(
Φ̃LO(x)

)∣∣∣
2

, (4.65)

with all IR singularities contained in the function

H(sub)
γq (s, x) = Pfγ(x) ln

(
s(1 − x)2

m2
q

)
+ 2x(1 − x) , (4.66)

where
s = (k + pb)

2 = 2k · pb , (4.67)

is again the squared partonic c.m. energy.

Collinear singularities from q → qγ∗ splittings

In the case of an initial-state q → qγ∗ splitting, with the photon of helicity λγ = ±
taking part in the hard scattering reaction, the matrix element of the LO subprocess
γb → X can be written as

MLO(Φ̃LO) = Mγb→X(k̃, pb, λγ) = T µ
γb→X(k̃, pb)ελγ ,µ(k̃) , (4.68)

where T µ
γb→X(k̃, pb) is the amplitude without the photon polarization vector ελγ ,µ(k̃),

pb the momentum of b, and k̃ the momentum of the photon in the collinear limit,

k̃µ = k̃µ(x) = x

(
pµ

q −
m2

q

s̄
pµ

b

)
, (4.69)

with

x = xqq =
pb · pq − pq · p′

q − pb · p′
q + m2

q

pb · pq
, (4.70)

and
s̄ = 2pb · pq = (pq + pb)

2 − m2
q = s − m2

q . (4.71)

Due to the polarization of the photon, the squared real matrix element is not propor-
tional to a polarization-summed squared LO amplitude |Mγb→X |2 as it was the case
for all splittings discussed so far, with fermions connecting the splitting to the hard
scattering reaction. Only after averaging over the azimuthal angle φ′

q of the q → qγ∗

splitting plane around the collinear axis (i.e. the beam axis) the spin correlation drops
out and the averaged squared real amplitude becomes proportional to a LO squared
amplitude,

〈|Mqb→qX(Φ+1)|2〉φ′
q p̃qp′

q→0
Nc Q2

qe2 hqq(pq, p′
q) |Mγb→X (Φ̃LO)|2 , (4.72)
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where the collinear singularities are encoded in the function

hqq(pq, p′
q) =

−1

x(pq − p′
q)2

[
Pγf (x) +

2xm2
q

(pq − p′
q)2

]
, (4.73)

which is valid in D = 4 space–time dimensions up to terms that are further suppressed
by additional factors of mq. Pγf (x) is the splitting function defined in Eq. (4.9).

However, the subtraction functions can also be defined upon the spin-correlated
squared Born amplitudes

B2 µν
LO (Φ̃LO) = T µ

γb→X(k̃, pb)
∗T ν

γb→X(k̃, pb) , (4.74)

with spin-dependent auxiliary functions h
(sub)
qq,µν that additionally depend on the helicity

of the quark q, κq. For a massless initial-state spectator b the subtraction function can
be defined as

|Msub(κq)|2 = Nc Q2
qe2 h(sub)

qq,µν(pq, p′
q, pb, κq) B2 µν

LO (Φ̃LO) , (4.75)

with

h(sub),µν
qq (pq, p′

q, pb, κq) =
−1

(pq − p′
q)2

[
−gµν − 4(1 − x)

x2

k̃µ
⊥k̃ν

⊥
k̃2

⊥ − x2m2
q

(4.76)

+
κf

x

(
2 − x +

2x2m2
q

(pq − p′
q)2

)(
εµ

+(k̃)∗εν
+(k̃) − εµ

−(k̃)∗εν
−(k̃)

)]
,

where we further used the auxiliary parameter x defined in Eq. (4.70) and the momenta
of Φ̃LO are given by

P µ = pµ
q + pµ

b − p′µ
q , P̃ µ = P̃ µ(x) = k̃µ(x) + pµ

b ,

k̃µ
⊥ = p′µ

q −
p′

qk̃

pbk̃
pµ

b , k̃µ
n = Λµ

ν kν
n , (4.77)

where the Lorentz transformation matrix Λµ
ν is again defined by P µ and P̃ µ as in

Eq. (4.27). In Eq. (4.76) we kept the dependence on mq, but as before, we can set mq = 0
in the numerical integration of (|Mqb→qX |2 − |Msub|2) and the regulator dependence is
only relevant in the integrated counterpart, which reads

∫
dΦ+1 |Msub,qb(Φ+1)|2 =

αQ2
qNc

2π
(4.78)

×
∫ 1

0
dx H(sub)

qq (s, x)

∫
dΦ̃LO(x)

∣∣∣MLO

(
Φ̃γb→X(x)

)∣∣∣
2

, (4.79)

with all IR singularities contained in the function

H(sub)
qq (s, x) = ln

(√
s(1 − x)

xmq

)[
Pγf (x) + τ(2 − x)

]
− 1 − x

x
. (4.80)
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Figure 4.4.: Labeling convention for the relevant momenta of a N -point integral.

4.3. One-Loop Integrals

After having discussed the regularization and renormalization procedures in the previ-
ous chapter, we now turn to the actual calculation of one-loop diagrams. The additional
integration over the loop momentum q in the virtual part can be decomposed into a
finite number of one-loop N -point tensor integrals, where N denotes the number of ver-
tices in the loop. The two illustrative examples from the previous chapter in Eqs. (3.7)
and (3.9) therefore both show diagrams requiring the calculation of 2-point integrals,
while in Fig. 3.2a an example diagram involving a 3-point integral is depicted.

In dimensional regularisation, the N -point tensor integrals are most conveniently
defined in the form [31]

T N
µ1...µP

(p1, . . . , pN−1, m0, . . . , mN−1) =

(2πµ)4−D

iπ2

∫
dDq

qµ1
· · · qµP∏N−1

i=0 ((q + pi)2 − m2
i + iε)

, (4.81)

where the tensor rank P is given by the number of integration momenta in the numer-
ator. The arguments pi and mi denote the relevant momenta and masses, where one
conveniently labels the particles inside the loop clockwise, starting with the momentum
q (p0 = 0) and the mass m0, followed by the particle with momentum q + p1 and mass
m1, and so on, as depicted in Fig. 4.4. Consequently, the N external incoming momenta
are labeled by pi − pi−1.

The possible number of external momenta connected to a loop can evidently not
exceed the number of external legs, such that for a given process only a finite number
of distinct N -point integrals may appear. Moreover, for renormalizable theories, such
as the SM, we additionally have P ≤ N [31], which implies that for every N only a
limited number of tensor structures P contributes to Eq. (4.81).

However, as already stated in Chap. 3, the loop integration may lead to UV-divergent
results for a fixed space-time dimension. In the basis of tensor integrals, these divergent
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contributions appear if D ≥ 2N −P and, consequently, in a renormalizable theory with
P ∈ (0, N), at most 4-point integrals may lead to UV-divergent contributions in D = 4
space-time dimensions. After renormalizing the input parameters of the theory, all
occurring divergences are reabsorbed and we finally obtain a UV-finite result.

For the analytic evaluation of the tensor integrals, we can exploit the fact that every
N -point tensor integral of rank P can be decomposed into a linear combination of all
symmetric rank-P tensors that can be constructed from gµν and the external momenta
pµ

i . The coefficients of this decomposition can be expressed in terms of scalar N -point
integrals T N

0 , where we conveniently label the N -point tensor integral by the N -th
character of the alphabet, e.g. T 1

0 = A or T 3
µνρ = Cµνρ. It turns out, that the UV-

divergent contributions are attributed to only eight of the tensor coefficients, which are
explicitly given in Eq. (4.55) of Ref. [31].

The Passarino–Veltman reduction algorithm [58] is based on the above mentioned
decomposition to scalar integrals. However, this numerical reduction algorithm becomes
unstable in certain regions of phase space and in particular for N -point integrals where
N ≥ 5. The reason is that the reduction algorithm is based on the external momenta
which, in intermediate steps, may appear in so-called inverse Gram determinants,

[
detZ(N)

]−1
=

∣∣∣∣∣∣∣∣

2p1p1 . . . 2p1pN
...

. . .
...

2pN p1 . . . 2pNpN

∣∣∣∣∣∣∣∣

−1

, (4.82)

that get large if two momenta become collinear to each other. For linearly dependent
momenta (i.e. in the collinear limit) the Gram determinant even vanishes, which makes
a further reduction impossible.

For a stable and efficient calculation of one-loop integrals over the full phase space,
however, a method that is not spoiled by small or vanishing Gram determinants is
required. The one-loop library Collier [59] is based on a smart algorithm that ensures
a fast and numerically stable calculation of the tensor coefficients. Mainly based on the
results of Refs. [60,61], depending on the actual N -point integral to calculate, different
methods are exploited in Collier. While for N = 1, 2 directly explicit numerically
stable expressions are used, for N = 3, 4 a reduction to scalar integrals is performed.
Per default, this reduction relies on the Passarino–Veltman reduction algorithm [58],
but is superseded by a more involved method if the former does not provide sufficient
numerical accuracy (which typically results from the aforementioned small/vanishing
Gram determinants). The tensor integrals with N > 4 are directly reduced to lower
rank and lower N integrals by exploiting the dedicated methods of Refs. [60].

In addition, since Collier supports the complex-mass scheme for unstable particles
as well as provides the results either in dimensional or mass regularization, it can be
applied to calculations of loop-integrals appearing in QCD and EW corrections.
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Phenomenological Applications





Chapter 5

Next-to-leading-order Electroweak
Corrections to pp → W+W− → 4 Leptons
at the LHC

In this chapter we discuss in detail the calculation of the NLO EW corrections to the
proton–proton collision process

pp → νµµ+e−ν̄e + X , (5.1)

which has recently been published in Ref. [11]. This process is dominated by the in-
termediate state of a pair of resonant W bosons decaying leptonically via W+ → νµµ+

and W− → e−ν̄e, which is why the process is commonly referred to as W-boson pair
production. In Fig. 5.1 we show a representative LO diagram of the hadronic scattering
reaction of Eq. (5.1), containing, in thicker lines, a particular partonic subprocess with
two resonant W bosons.

P1

pa = ξ1P1

X

fa|p1
(ξ1, µ2

F)p1

P2

W+

W−

νµ

µ+

e−

νe

pb = ξ2P2

X

fb|p2
(ξ2, µ2

F)p2

Figure 5.1.: Representative diagram of the hadronic scattering reaction of Eq. (5.1).
The partonic scattering reaction is emphasized by thick lines, while the remaining part
is identical to Fig. 4.1.
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The restriction on the fully leptonic final state avoids the inclusion of additional
QCD background diagrams, which considerably facilitates the theoretical prediction
and, even more importantly, also gives rise to the cleanest signatures in experiments.
We further focus on a final state with charged fermions of different generations to avoid
mixing with the pp → ZZ → l−l+νν̄ production process.

As already mentioned in the main introduction, the W-boson pair production process
is particularly suited for probing the EW sector of the SM, since, for reasons that will
be discussed below, the production cross section is very sensitive to the non-Abelian
structure of the EWSM. A potential deviation of measured (differential) cross sections
from the values predicted by the SM could consequently directly be interpreted as sign
of physics beyond the SM. To unambiguously reveal such a deviation and clearly dis-
tinguish it from the effect of unknown higher-order corrections, theoretical predictions
at the highest possible accuracy are mandatory. In order to reach such an accuracy
for W-pair production at the LHC, radiative corrections of both, the strong and the
EW interactions need to be considered and properly combined. In particular, the de-
cay and off-shell effects of the W bosons, including fully differential kinematics and
the phase-space regions below the W-pair threshold, have to be carefully taken into
account.

In the following we first shortly review the theoretical and experimental status of
the W-pair production process, and motivate why precise predictions, including EW
corrections, are particularly important for this process. In Sec. 5.2, we present the
details of our calculation and prepare the discussion of the phenomenological results.
Those are discussed subsequently in Sec. 5.3 for several realistic event-selection setups,
before Sec. 5.4 finally provides our conclusions.

5.1. Theoretical and Experimental Status

Beginning at the LO, W-pair production at the LHC is a purely EW process of O(α4)
dominated by quark–antiquark annihilation, (q̄q/qq̄) → WW → 4 fermions. However,
as most of the processes at hadron colliders, due to the strongly interacting particles in
the initial state, also the purely EW W-pair production process is plagued by large QCD
corrections. The NLO QCD corrections are known since the 1990s, first for on-shell
W bosons [62], followed by calculations also including leptonic W decays [63, 64]. The
latter subsequently has been implemented in the public available Monte Carlo program
MCFM [65]. For LHC energies of 8 TeV (13 TeV) the NLO QCD corrections increase the
inclusive WW cross section by about 54% (58%) [66], making their inclusion in phe-
nomenological studies obviously indispensable. The matching of the fixed-order NLO
QCD predictions to parton-shower programs of the calculation without [67] and includ-
ing [68] leptonic W decays as well as the inclusion of QCD resummation effects [69]
helped to further diminish the dependence on the unphysical renormalization and fac-
torization scales.

However, with the production of W-boson pairs in gluon–gluon scattering via quark
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loops, gg → WW, starting at NNLO QCD, an entirely new partonic channel opens
up, which prevents the perturbative expansion from a fast convergence. Although this
channel is of the order O(α2

sα4), and therefore naively strongly suppressed, due to the
large gluon flux at the LHC its contribution amounts to more than 10% of the LO
(q̄q/qq̄)-induced process [66]. At its LO, which solely comprises one-loop amplitudes,
this channel was first considered for on-shell W bosons in Ref. [70] and later refined by
including leptonic W decays [71], additional jet production, gg → WWg → 4ℓg [72],
and non-standard couplings [73].

The complete NNLO QCD corrections for inclusive W-pair production are known
since 2014 [66], supplementing and improving upon previous partial results for the two-
loop [74] and the one-loop squared [74] virtual corrections in the high-energy limit, as
well as fully taking into account all double-real corrections. Recently, this calculation
has been extended to predict also fiducial cross sections and arbitrary kinematical dis-
tributions [75]. The NNLO correction increase the inclusive W-pair cross section at the
LHC by another 9% (12%) at a c.m. energy of 8 TeV (13 TeV) with respect to NLO
QCD and show a residual theoretical uncertainty of about ∼ 3% in the (q̄q/qq̄)-induced
channel.

Since this year, also the full NLO QCD prediction for gg → WW with leptonic W-
boson decays are known [76], which, depending on the exact phase-space definition,
give rise to another percent correction, with respect to the LO (q̄q/qq̄) cross section.

Experimental analyses of the LHC data on W-boson pairs recorded during Run I, that
have been independently performed by the ATLAS [77] and the CMS collaboration [78],
definitely confirmed that the reached experimental precision requires to include all
above mentioned QCD corrections in theoretical predictions. At the time the first Run I
analyses were performed, the full NNLO result of Refs. [66,75] was not yet available and
the reported deviation of the data from the theory prediction was already mistakenly
discussed as a first sign of new physics. Eventually, taking the missing higher-order
correction into account, however, resolved the tension between the SM prediction and
measured data. As was pointed out in Ref. [79], parts of the discrepancy also have been
caused by an inappropriate extrapolation of the experimental result from the fiducial to
the inclusive cross section, needed to compare to the theoretical prediction. This once
more demonstrates the additional value of flexible Monte Carlo generators, which allow
to supply any differential distribution for arbitrary cut-selection criteria and therefore
render such vague extrapolations redundant. The first results on W-pair production
from LHC Run II [80, 81], which have been directly compared to predictions for the
fiducial phase space, do not show any serious deviation from the SM.

In addition, with the Run I data-set the constraints on non-standard γWW and ZWW
couplings, so-called anomalous trilinear gauge couplings (aTGC), already became com-
petitive with the constraints obtained at the predecessor experiments at the pp̄ collider
Tevatron and the e+e− collider LEP. The analyses of the upcoming LHC Run II data,
which is presently recorded at a so far unprecedented c.m. energy of

√
spp = 13 TeV,

will certainly further tighten these limits on aTGCs.
W-pair production is, however, not only important as signal process and as back-
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ground in new-physics-searches, but also represents a very important irreducible back-
ground in precision studies of the Higgs-boson properties. The Higgs boson decay
channel to two W bosons, H → WW∗, already played an essential role in the Higgs
boson discovery [5, 6], and the data presently recorded in Run II will allow to perform
further precision studies focussing on the Higgs–to–W-boson coupling. For such a study,
both, the Higgs signal process, pp → H → WW∗, and the irreducible direct production
of two W bosons, the pp → WW∗ background, have to be precisely known. In par-
ticular, this requires predictions at an invariant mass of the W-boson system around
the Higgs-boson mass, MWW ∼ MH, which lies below the W-pair production threshold,
such that at least one of the W bosons is produced far off its mass shell.

So far, we have only mentioned and encouraged the importance of QCD corrections to
the W-pair production process of Eq. (5.1). However, to provide theoretical predictions
at the level of accuracy that is required to fully exploit the potential of the present
and, especially, of the upcoming experimental measurements, certainly also the EW
corrections have to be considered.

It is well known for many years, that the leading EW corrections above the EW scale
O(MW) are given by single as well as double logarithms (Sudakov logarithms [43]). As
we already shortly mentioned in Sec. 3.3, these logarithms occur because the real radia-
tion of (truly) massive particles is never considered as part of the real corrections, while
their counterpart in the virtual contribution can not be excluded. Depending on the
squared ratio of the relevant energy scale Q to the EW scale MW, the uncompensated
logarithms of the virtual contribution increase with the energy, and for Q = 1 TeV their
relative contribution to the LO is given by [82]

α

4πs2
W

log

(
Q2

M2
W

)
≃ 1.3% ,

α

4πs2
W

log2

(
Q2

M2
W

)
≃ 6.6% . (5.2)

Depending on the process and the exact setup, based on these logarithms, EW cor-
rections at LHC energies may therefore easily grow to some 10% in the high-energy
region.

The EW corrections for on-shell W-pair production at the LHC were first considered
in logarithmic approximation at NLO and NNLO in Refs. [83,84], confirming the global
statement about their size made in Eq. (5.2). Those predictions, however, are only valid
in the Sudakov regime where the absolute values of the Mandelstam variables

ŝ = (p1 + p2)2 , t̂ = (p1 − k1)2 , û = (p1 − k2)2 , (5.3)

of the W bosons have to be much larger than the square of the W-boson mass MW,
where pi denote the momenta of the initial-state quarks and ki are the momenta of
the W bosons. Therefore, the logarithmic approximation neither applies at low and
intermediate energies, nor in the dominant kinematical domain of forward-produced
W bosons at high energies, the Regge limit, where ŝ is large, but t̂ and û are both
of the order of M2

W. This shortcoming was overcome by the complete NLO EW cal-
culations for the production of on-shell W pairs [85, 86]. These calculations included
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the quark–antiquark- and photon–photon-induced channels, revealing large and non-
uniform corrections to kinematical distributions that go beyond the qualitative level
based on logarithmic approximations. In Ref. [86] special emphasis was put on the
photon–photon- and the quark–photon-induced channels, which both turned out to be
quite sizable at TeV scales. However, it should be noticed that the quark–photon-
induced subprocess leads to an additional jet in the final state, which, compared to
the effects of NLO QCD corrections exhibiting the same final state, strongly diminishes
the importance of this channel. Moreover, precise predictions for channels including
initial-state photons are presently limited by the large uncertainties in current photon
distribution functions, especially at large momentum fractions of the photon (ξγ > 0.1),
where the PDF uncertainties can be as large as 100% [55]. The photon-PDF is, how-
ever, subject to present investigations (e.g. Refs. [87,88]), such that this situation
should certainly improve in the near future.

In order to further improve the accuracy of radiative EW corrections to W-boson pair
production at the LHC all off-shell effects and decay correlations of the W bosons have
to be fully taken into account. Only such a calculation allows to accurately address the
additional EW corrections stemming from soft and/or collinear photon emission off the
final-state leptons and reveal the importance of the aforementioned phase-space region
below the W-pair threshold at 2MW for LHC predictions.

In Ref. [12] the leptonic W decays have been fully taken into account in a calculation
employing the so-called double-pole approximation (DPA), which is based on an expan-
sion of the loop amplitudes about the poles of the W resonances and will be discussed in
more detail below. For the lepton-induced process e+e− → W+W− → 4 fermions, this
approximation has been shown to be very accurate for predictions that are dominated
by two resonant W bosons, such as total cross sections or observables only depending on
the angular components of the final-state leptons. To be more precise, the comparison
of the full off-shell NLO corrections for e+e− → 4 fermions [36, 89] to results obtained
in the DPA, as delivered by the Monte Carlo program RacoonWW [90–92], revealed
an accuracy of the total cross section of ∼ 0.5% (∼ 2%) for leptonic centre-of-mass
energies <∼ 500 GeV ( <∼ 2 TeV).

The increasing deviation towards larger energies together with the fact that it is
genuinely impossible at hadron colliders to fix the partonic c.m. energy to a specific
value, makes a simple transfer of this estimation to the LHC ambiguous. On the one
hand, for observables that are dominated by two resonant W bosons, we still expect
good agreement, while especially for high scattering energies in the TeV range and
in regions of phase space where diagrams without intermediate WW states become
important, much larger deviations are possible.

To unambiguously quantify the effect of the EW corrections to non-doubly-resonant
contributions at the LHC, we therefore require to refine the former calculation of
Ref. [12] and include in addition also all corrections to the non-resonant contributions.

The calculation we present in this thesis, in particular, is the first that accounts for
EW corrections at partonic c.m. energies around the Higgs mass

√
ŝ ∼ MH < 2MW,

which lies below the WW threshold at 2MW, where the DPA, by construction, is not
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applicable. As mentioned above, this region is particularly interesting for precision
studies of the Higgs boson via the decay channel H → WW∗, to which direct W-pair
production represents a very important irreducible background.

5.2. Outline of the Calculation

The LO partonic channels contributing to the W-pair production process of Eq. (5.1)
are of the order O(α4) and read

q̄q/qq̄/γγ → νµµ+e−ν̄e , (5.4)

where the antiquark–quark (q̄q/qq̄) annihilation channel, to which we refer in following
as q̄q, comprises the five (massless) down-type (q = d, s, b) and up-type (q = u, c)
quarks, while the massive top quarks are not considered as active quarks in the proton
at LHC energies.

In Fig. 5.2 we show the complete set of tree-level diagrams for the d̄d initial state,
while analogous diagrams exist for all other quarks, and Fig. 5.3 shows some represen-
tative diagrams of the γγ channel. As can be seen from the figures, both production
modes include diagrams with two W-boson propagators that possibly become on-shell
(first row in Figs. 5.2 and 5.3), but also singly- and non-resonant background graphs.
The first diagram of Fig. 5.2 includes the trilinear gauge coupling between two W bosons
and a Z boson/γ in the lowest accessible order, which makes the W-pair production
process particularly sensitive to the exact realization of EWSB in the SM. Additionally,
new physics entering via the weak sector of the SM could result in deviations from the
SM coupling strength of this vertex, and parametrized as aTGC, such deviations are
heavily search for at the LHC.

We neglect the extremely small CKM mixing of the third generation with the first
two generations, such that the massive top quark only appears as internal particle
in b̄b-induced subprocesses. Consequently, due to the top mass, we require slightly
adapted LO matrix elements for the b̄b-induced channels. Owing to the unitarity of
the CKM matrix, in the squared amplitude for a particular partonic initial state ij
also the dependence on the quark mixing of the first two generations drops out after
summing over the possible intermediate quarks,

|Mij |2 ∝
∑

k

V†
qiqk

Vqkqj
= (V†V)qiqj

= δij , (5.5)

and, consequently, the calculation may be performed with the CKM matrix set to the
unit matrix straight away. Since we treat all partons as being exactly massless, the
partonic cross sections of the s- and c-quark induced processes are completely identical
to the d- and u-quark initiated processes, respectively. For the LO calculation we
therefore require the partonic matrix elements for the subprocesses,

ūu/d̄d/b̄b/γγ → νµµ+e−ν̄e , (5.6)
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Figure 5.2.: Tree-level diagrams for the partonic (charged-current) process d̄d →
4 leptons.

γ

γ

W

W

ℓ1

ℓ̄2

ℓ3

ℓ̄4

γ

γ

W

W

W

ℓ1

ℓ̄2

ℓ3

ℓ̄4

W

γ

γ

ℓ2

ℓ2

ℓ1

ℓ̄4

ℓ3

ℓ̄2

γ

γ

W

ℓ1

ℓ̄2

ℓ3

ℓ̄4

Figure 5.3.: A representative set of tree-level diagrams for the γγ induced process.
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which easily follow from the LO matrix elements of the processes e+e−/γγ → 4 fermions
that have been presented in the Weyl-van-der-Waerden spinor formalism [93] in Refs. [90]
and [94], respectively. Applying the notation of Eq. (4.15), the hadronic cross section
at LO finally follows upon convoluting the partonic LO cross sections σ̂LO

ab with the
respective PDFs and reads

σLO = fγfγ ⊗
∫

4
dσ̂LO

γγ +
∑

q,q̄

fq̄fq ⊗
∫

4
dσ̂LO

q̄q

∣∣∣∣∣
+(q↔q̄)

, (5.7)

where the sum includes all five massless quark flavours. As indicated in the equation, in
the following, only specific partonic contributions to the cross sections receive additional
labels, while the two hadrons are implied to be two protons at the LHC.

As defined in Eq. (3.5) the NLO EW corrections, i.e. corrections including an ad-
ditional order of α, require the calculation of the virtual part, including all one-loop
diagrams, and a real part, composed of all diagrams with one additional external mass-
less particle. For NLO corrections at hadron colliders, additionally, a finite factorization
term has to be taken into account that eventually takes care of the remaining initial-
state singularities, as discussed in detail in Sec. 4.1. Since the corrections to the clearly
subdominant γγ induced LO channel have already been shown to be at the percent
level in the accessible energy regime [94,95], we see no reason for additionally including
them in our NLO prediction.

The hadronic cross section of the NLO EW contribution for W-pair production is
therefore given by

∆σNLOEW
=

∑

q,q̄
mt=0

fq̄fq ⊗
(∫

5
dσ̂real

q̄q +

∫

4
dσ̂virt

q̄q +

∫ 1

0
dx

∫

4
dσ̂fact

q̄q

) ∣∣∣∣∣
+(q↔q̄)

+
∑

q,q̄
mt=0

fqfγ ⊗
(∫

5
dσ̂real

qγ +

∫ 1

0
dx

∫

4
dσ̂fact

qγ

) ∣∣∣∣∣
+(q↔γ),(q↔q̄)

, (5.8)

comprising all corrections to the dominant q̄q-induced channels as well as additional
real corrections with an (anti-)quark–photon-initial state, to which we refer in the
following simply as qγ-subprocess. As indicated, at the NLO, we completely neglect the
effect of the top quark mass, which means that also the matrix elements with external
bottom quarks internally include only massless up-type weak isospin partners and are,
thus, identical to those with external down quarks. As will be discussed below, this
approximation is well justified for the contributions with a b̄b initial state, while for
the bγ-induced channel the situation is more involved, and needs further clarification
(see Sec. 5.2.4).

In the following we will separately discuss the individual contributions of Eq. (5.8)
and, in particular, the cancellation of the individual IR singularities by the application
of the dipole subtraction formalism of Sec. 4.2. Besides presenting the calculation of
the full NLO EW corrections, in Sec. 5.2.3 we also briefly review the essential parts
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of the calculation of the NLO EW corrections in the framework of the double-pole
approximation (DPA), as presented in Ref. [12]. Note that this calculation is also based
on full matrix elements for all tree-level contributions, such that differences to the full
calculation are limited to the virtual contribution only. In Sec. 5.2.4 we finally shortly
summarize the various checks that have been performed to ensure the correctness of
the implementation.

5.2.1. Real Corrections and Factorization Terms

The real corrections comprise bremsstrahlung corrections to the q̄q-induced subpro-
cesses, with one additional photon in the final state,

q̄q → νµµ+e−ν̄e + γ , (5.9)

as well as the (anti-)quark–photon-induced contributions with an additional q/q̄ in the
final state,

qγ/γq → νµµ+e−ν̄e + q ,

q̄γ/γq̄ → νµµ+e−ν̄e + q̄ . (5.10)

Considering the definitions of Eqs. (3.3), (3.6), and (3.37), we can devide the ab-induced
partonic real-emission cross section into a finite and a singular term,

∫

5
dσ̂real

ab =

∫

5
dσ̂real,fin

ab +

∫

5
dσ̂real,sing

ab , (5.11)

where the singular cross section corresponds to the situation in which the emitted parti-
cle becomes soft and/or collinear to another external particle. In the dipole subtraction
formalism that has been discussed in detail in Sec. 4.2, the singular cross section is given
as ∫

5
dσ̂real,sing

ab =

∫

5
dΦ5|Msub(Φ5)|2 , (5.12)

with the subtraction functions |Msub|2 that are defined for the considered initial states
(ab = q̄q/qγ) in Eqs. (4.17), (4.61), and (4.75). The factorization terms of Eq. (5.8)
consist of two contributions for every partonic channel ab,

dσ̂fact
ab (µF) = dσ̂fact,a

ab (µF) + dσ̂fact,b
ab (µF) , (5.13)

which correspond to the redefinition of the associated initial-state distribution. Since
the factorization contribution is the only partonic contribution of the cross section ex-
plicitly depending on an arbitrary scale, this dependence on µF is emphasized explicitly.

Real Photon Radiation

The diagrams contributing to the real photon radiation process of Eq. (5.9) are obtained
by attaching a final-state photon to every charged particle of all diagrams of the LO
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q̄q induced process. Consequently, in the phase-space integration of the real matrix
elements we have to take care of initial- and final-state IR singularities. Applying the
dipole subtraction formalism, all singularities can be isolated by means of a subtraction
function and the numerical phase-space integration over the finite part of the real cross
section,

∫

5
dσ̂real,fin

q̄q =

∫

+1
dΦ5

[ ∣∣∣Mq̄q→νµµ+e−ν̄eγ

∣∣∣
2

Θcut(Φ5)

−
6∑

i,j=1
i6=j

|Msub,ij|2 Θcut(Φ̃ij(x, z))
]

, (5.14)

can safely be performed. As in Eq. (4.48), Θcut denotes the application of phase-space
cuts that depend on the particular real phase-space point (Φ5) and its actual mapping
onto the LO phase space (Φ̃ij(x, z)), respectively. The definitions of the individual
contributions Msub,ij, as well as the mappings of real momenta that are necessary for
the evaluation of the subtraction part and the phase-space cuts for all emitter-spectator
pairs are listed in Sec. 4.2.1.

The integrated counterpart of the subtraction function, where (parts of) the one-
particle phase space containing the IR singularities have been integrated out analyti-
cally, can schematically be written as

∫

5
dσ̂real,sing

q̄q =

∫

4̃
dσreal,endp

q̄q +

∫ (1,1)

(0,0)
d(x, z)

∫

4̃(x,z)
dσ̂real,conv

q̄q . (5.15)

While the endpoint part dσ̂real,endp
q̄q includes all real-emission IR singularities with 4-

particle kinematics (Φ̃LO), in the convolution part the LO phase space can not be fully
factorized and the integration over x and/or z still has to be performed numerically.
To be more precise, the endpoint part reads

dσ̂real,endp
q̄q = − α

2π

6∑

i,j=1
i6=j

(−1)i+jQiQjG
(sub)
ij (s) · dσ̂LO

q̄q , (5.16)

with the functions G
(sub)
ij for the emitter-spectator–pairs ij defined in the Eqs. (4.34),

(4.43), (4.52), and (4.55), respectively. By construction, this contribution shows exactly
the same IR singular behaviour as the virtual corrections, such that their sum results
in an IR finite expression (see Sec. 5.2.2).

Also the convolution part in Eq. (5.15) still contains IR singular contributions, which

belong to the integrated subtraction functions of an initial-state emitter G(sub)
ab and

G(sub)
ai that are defined in Eqs. (4.33) and (4.42), respectively. Finally, these singularities

are compensated due to the inclusion of the factorization term dσ̂fact
q̄q . Exemplary, we

give the factorization contribution of the u quark for the specific initial-state ūu that,
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according to the PDF redefinition of Eq. (4.10), reads

fū|H1
fu|H2

⊗
∫ 1

0
dx

∫

4
dσ̂fact,u

ūu (µF)

=
αQ2

u

2π

∫ 1

0
dξūfū|H1

(ξū, µF)

∫ 1

0
dξu

∫ 1

ξu

dz

z
fu|H2

(
ξu

z
, µF

)

×
[
ln

(
m2

u

µ2
F

)[
PQED

qq (z)
]

+
−
[
PQED

qq (z) (2 ln(1 − z) + 1)
]

+
+ CF.S.

qq (z)

]

×
∫

4
dσ̂LO

ūu (ξū, ξu) , (5.17)

while the contributions for the ū quark, as well as the contributions for all other flavours,
follow analogously. Note that for all q̄q-induced processes only the (flavour-diagonal)
quark-to-quark splitting function PQED

qq , defined in Eq. (4.8), is considered here, while

the factorization term belonging to the photon-to-quark splitting PQED
qγ of Eq. (4.10)

will be treated along with the qγ-induced processes in the next section. Additionally,
we want to point out that since

∫ 1
0 dx

∫ 1
x

dy
y f(x, y) =

∫ 1
0 dx

∫ 1
0 dzf(x, z) for any test

function f , the integration over the z-variable in Eq. (5.17) and the integration over x
in Eqs. (4.32) and (4.40) are indeed identical such that the dependence on the regulator
mass mu in the initial state exactly cancels.

The z-integration in Eq. (5.15), finally, gives rise to additional finite contributions
that are, however, logarithmically enhanced by the mass of the final-state emitter mi

over some hard scale Q, as can be explicitly read off Eqs. (4.53) and (4.59). As discussed
in detail in Sec. 4.2.1, the additional numerical integration over z has to be performed
only for final-state leptons that can be fully isolated from collinear photons, i.e. if the
radiation is treated collinear unsafe. In our calculation this will be only relevant for the
final-state muon, while electrons and collinear photons are always recombined. This is
necessary for a realistic treatment, since both, electrons and photons, are detected as
showers in the electromagnetic calorimeter, while the muon detection is realized in a
geometrically separated part of the detector, the muon chamber, which, thus, allows for
a separate detection even in the collinear region. The difference between treating the
radiation off final-state muons collinearly unsafe or collinearly safe will be discussed in
Sec. 5.3.6.

Photon Induced Processes

In Fig. 5.4 we show two representative diagrams contributing to the qγ-induced process,
which, however, already include all possible types of splittings that give rise to IR
singularities in the real phase-space integration. In order to obtain an additional final-
state quark, either a γ → qq̄∗ or a q → qγ∗ splitting has to take place in the initial
state, while the particles indicated with the asterisks connect to all possible LO diagrams
showing the respective particle in the initial state.

The finite part of the real qγ-induced cross section could in principle be defined in
the same manner as for the q̄q process in Eq. (5.14). The subtraction terms and the
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Figure 5.4.: Two representative diagrams for the partonic qγ-induced subprocess.

necessary mapping of the momenta, as well as the associated integrated counterparts,
have already be worked out in Sec. 4.2.2. As pointed out there, in the case of the
q → qγ∗ splitting, the subtraction function has to be defined upon the spin-correlated
squared Born amplitudes B2 µν

LO for the underlying γγ-induced process.

However, as discussed e.g. in Ref. [12], the singularities related to this splitting can
also be tackled by applying a so-called effective collinear factor (ECF). In this approach,
the entire real part of the qγ-induced cross section, including the subtraction terms
related to the γ → qq̄∗ splittings, is multiplied by a factor that restores the correct
leading quark-mass dependence in the collinear region of the q → qγ∗ splitting, while
for the remaining phase space it reduces to a factor of one up to mass-suppressed, and
therefore negligible, terms. Since no spin-correlated amplitudes have to be additionally
calculated when applying the ECF, we decided to implement this approach in our
calculation.

By taking the ratio of Eq. (4.73) to its massless version we obtain a function that
shows the desired kinematical dependence over the real phase space. In the partonic
c.m. frame the ECF explicitly reads [12]

fECF(Eq, mq, x, θ) =
sin2 θ

2(
sin2 θ

2 +
m2

qx2

4E2
q (1−x)2

)2





sin2 θ

2
+

m2
qx4

4E2
q (1−x)2

1 + (1 − x)2





, (5.18)

where Eq is the energy of the incoming quark of mass mq, x = k0
γ/Eq denotes the

momentum fraction of the incoming quark that is passed to the photon taking part in
the hard scattering reaction, and θ is the angle between the incoming and the outgoing
quark. The mass mq acts as regulator mass for the collinear singularity and is supposed
to be much smaller than Eq.

In contrast to an approach which exclusively applies the subtraction method, now,
due to fECF(mq), the finite part of the real cross section explicitly depends on the
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regulator mass mq,

∫

5
dσ̂real,fin

qγ (mq) =

∫

+1
dΦ5 fECF(mq) ×

[ ∣∣∣Mqγ→νµµ+e−ν̄eq

∣∣∣
2

Θcut(Φ5)

− |Msub,γ→qq̄∗ |2 Θcut(Φ̃LO)
]

, (5.19)

while the subtraction function Msub,γ→qq̄∗ (Msub,γb in Eq. (4.61)), taking care of the
γ → qq̄∗ splitting, is regulator independent. For this contribution, the regulator de-
pendence is fully shifted to the integrated counterpart, Eq. (4.65), that only comprises
a mass singular convolution term. Similar to the procedure for the q̄q-induced sub-
processes, by including the appropriate photon-factorization term, the regulator depen-
dence of this part eventually exactly cancels,

∫ 1

0

[∫
dσ̂real,conv

qγ(γ→qq̄∗) +

∫
dσ̂fact,γ

qγ

]
6= F(mq) , (5.20)

which we here symbolically write as not being a function F of mq.

Since the factorization term corresponding to the q → qγ∗ splitting, σ̂fact,u
uγ , by con-

struction shows exactly the same dependence on the regulator mass mq as the finite
real part (Eq. (5.19)), the entire qγ-induced contribution to the NLO cross section will
not exhibit any regulator dependence anymore,

∫

5
dσ̂real

qγ +

∫ 1

0
dx

∫

4
dσ̂fact

qγ = (5.21)

∫

5
dσ̂real,fin

qγ

︸ ︷︷ ︸
=F(mq)[Eq. (5.19)]

+

∫ 1

0

[ ∫
dσ̂real,conv

qγ(γ→qq̄∗) +

∫
dσ̂fact,γ

qγ

]

︸ ︷︷ ︸
6=F(mq)[Eq. (5.20)]

+

∫ 1

0

∫
dσ̂fact,q

qγ

︸ ︷︷ ︸
=F(mq)

6= F(mq) .

For completeness, we list the two factorization contributions of Eq. (5.21) for the specific
initial-state uγ,

fu|H1
fγ|H2

⊗
∫ 1

0
dx

∫

4
dσ̂fact,γ

uγ (µF)

=
3αQ2

u

2π

∫ 1

0
dξufu|H1

(ξu, µF)

∫ 1

0
dξγ

∫ 1

ξγ

dz

z
fγ|H2

(
ξγ

z
, µF

)

×
[
ln

(
m2

q

µ2
F

)
PQED

qγ (z) + CF.S.
qγ (z)

]

×
∫

4
dσ̂LO

uū (ξu, ξγ) , (5.22)

for the factorization of the photon, corresponding to the redefinition of the quark PDF
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Figure 5.5.: 10 Hexagon diagrams for the partonic process d̄d → 4 leptons. The
remaining 30 hexagon diagrams are obtained by reversing the fermion flow in one or
both of the fermion lines of the outgoing fermions and by exchanging ℓ1 ↔ ℓ̄2 and/or
ℓ3 ↔ ℓ̄4.

(Eq. (4.10)) and

fu|H1
fγ|H2

⊗
∫ 1

0
dx

∫

4
dσ̂fact,u

uγ (µF)

=
αQ2

u

2π

∫ 1

0
dξγfγ|H2

(ξγ , µF)

∫ 1

0
dξu

∫ 1

ξu

dz

z
fu|H1

(
ξu

z
, µF

)

×
[
ln

(
m2

q

µ2
F

)
PQED

γq (z) + PQED
γq (2 ln z + 1) + CF.S.

γq (z)

]

×
∫

4
dσ̂LO

γγ (ξu, ξγ) . (5.23)

for the factorization of the quark, corresponding to the redefinition of the photon PDF
in Eq. (4.11). For the other quarks and the reversed partonic channel evidently equiv-
alent contributions have to be taken into account to eventually obtain the complete
cancellation of the regulator dependence.

5.2.2. Full Virtual Corrections

The calculation of the virtual EW corrections to the full q̄q → νµµ+e−ν̄e process requires
the evaluation of O(103) different one-loop diagrams per q̄q channel, which comprise
self-energy (2-point), vertex (3-point), box (4-point), pentagon (5-point), and hexagon
(6-point) diagrams. In all these loop diagrams, up to three loop propagators may belong
to one of the massive gauge bosons W± or Z, while, as pointed out before, all fermions,
including the top-quark, are treated massless at NLO. With six loop propagators, the
hexagon diagrams shown in Fig. 5.5 exhibit the most complicated topology.

The calculation of the one-loop contributions proceeds along the same lines as for
the related e+e−-induced process, which has been discussed in great detail in Ref. [36].
In the following, we therefore only sketch the calculation of the one-loop contributions,
and refer to Ref. [36] for further details.
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For the four-particle final-state, we assign the external momenta qi and pj in the
following way

q̄(q1) q(q2) → νµ(p1) µ+(p2) e−(p3) ν̄e(p4) , (5.24)

and further define the kinematic invariants,

ŝ = (q1 + q2)2, sjk = (pj + pk)2, tij = (qi − pj)
2,

i = 1, 2 ,

j, k = 1, . . . , 4 .
(5.25)

The amplitudes for all diagrams have been generated with FeynArts [96] and further
algebraically reduced with in-house Mathematica routines. The final result for the
one-loop matrix element is most conveniently expressed in terms of form factors F σ

n and
so-called standard matrix elements (SME) M̂σ

n, only depending on the spin structure
(σ) and the momenta of the external particles [36],

Mσ
1loop =

10∑

n=1

F σ
n ({ŝ, sjk, tij})M̂σ

n(q1, q2, p1, p2, p3, p4) . (5.26)

Due to the chiral coupling structure of the W bosons, it turns out that only two spin
combinations of the external fermions yield a non-vanishing result for the one-loop
amplitude, which we label with σ = ±. The 20 possible SMEs are explicitly given in
Eq. (3.48) of Ref. [36], while for the form factors Fn no closed form exists. They are
composed of the N -point tensor integrals T N , which require a numerical evaluation
for every phase-space point, and the respective counterterms, needed to cancel the
occurring UV divergences.

As discussed in Sec. 4.3, the numerical evaluation of N -point tensor integrals requires
a very stable and efficient reduction algorithm to obtain sufficient accuracy over the
entire phase space. For our calculation we applied the Denner-Dittmaier reduction-
algorithm, via choosing the DD branch in the one-loop library Collier [59]. This
one-loop library supports complex masses for all unstable particles, which is of utter
importance for a consistent application of the complex-mass scheme (see Sec. 3.2.2).
After the tensor reduction, the finite, UV, and IR-divergent parts of the loop-integration
are separately calculated, which allows for the cancellation of the UV divergence via
the counterterm approach directly at the amplitude level. The required counterterms
in the complex-mass scheme are explicitly derived in Sec. 4 of Ref. [36].

The remaining IR-singularities, which in our calculation are regularized in mass reg-
ularization, eventually cancel after including the endpoint part of the real correction,
dσ̂real,endp

q̄q (Eq. (5.16)),

∫

4
dσ̂virt,fin

q̄q =

∫

4
dσ̂virt

q̄q +

∫

4
dσ̂real,endp

q̄q , (5.27)

thus defining the finite part of the virtual corrections.
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Figure 5.6.: Generic diagram for virtual factorizable corrections to q̄q → WW →
4 leptons appearing in DPA, where the blobs stand for tree-level or one-loop insertions.

5.2.3. Virtual Corrections in the Double-Pole Approximation

In this section we briefly review the application of the DPA for the calculation of the
virtual corrections for W-pair production, which has been presented in Ref. [12], and dis-
cuss the most important differences to the calculation employing full virtual corrections.
For a general introduction to pole approximations or more details on the DPA for W-pair
production in particular, we refer the interested reader to Refs. [12,83,90,95,97–99].

Generally, for W-pair production in the DPA, one only considers diagrams with two
resonant W bosons. However, following the approach of Ref. [92] we can consistently
restrict the application of the DPA to the virtual part only and employ full matrix
elements for all tree-level contributions. To be more precise, the doubly-resonant loop
contributions can be classified into two gauge-invariant categories, known as factorizable
and non-factorizable corrections.

The former comprise all corrections that can be attributed either to the production
or to the decays of the resonant W bosons, as depicted in the corresponding generic
diagram of Fig. 5.6, while the latter includes all diagrams connecting these two parts.
The calculation of the factorizable corrections in principle proceeds along the same
lines as the calculation of the full virtual corrections, by simply restricting Eq. (5.26)
to include only the aforementioned corrections to either the production or the decay
of two resonant W bosons. The factorizable corrections in the DPA only comprise 14
SMEs and explicitly read [12,91]

Mσfact,DPA
1loop =

7∑

n=1

F σ
n (ŝ, r̂)Mσ

n(q1, q2, k̂+, k̂−, k2
+, k2

−) . (5.28)

Here we denote the momenta of the two resonant W bosons by

k+ = p1 + p2, k− = p3 + p4 , (5.29)

while k̂+ and k̂− are their on-shell projections, fulfilling k̂2
+ = k̂2

− = M2
W. In the on-

shell projection, which is mandatory to maintain gauge invariance, each phase-space
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Figure 5.7.: Typical diagrams contributing to the virtual non-factorizable corrections
to q̄q → WW → 4 leptons appearing in DPA, where the blobs stand for any tree-level
subdiagram.

point is identified with a phase-space point with on-shell W bosons, such that for each
component µ the difference |kµ

± − k̂µ
±|2 is of the order O(k2

± − M2
W). In the actual

definition of such a projection some ambiguities remain, but all these variants only
differ by effects beyond the DPA accuracy. We use the definition applied in Ref. [91]
(see App. A therein), where in Eq. (3.1) also the explicit form of the 14 SMEs is given.
In the DPA the form factors of Eq. (5.28) now just include 2 → 2 and 1 → 2 loop
contributions and therefore only depend on two invariants, which we choose as

ŝ = (q1 + q2)2 = (k̂+ + k̂−)2 , r̂ = (q1 − k̂+)2 = (q2 − k̂−)2 , (5.30)

where ŝ is defined identically as in Eq. (5.25). Since the considered loop corrections do
not involve unstable-particle effects, the loop-integration can well be performed with
real masses and the less intricate OS-renormalization (see Sec. 3.2.1) can be applied to
define the counterterms to cancel the occurring UV divergences.

Owing to the fact that the exchange of a massive particle between the various produc-
tion and decay subprocesses would shift at least one of the W bosons off its mass shell,
the non-factorizable corrections comprise only contributions where a soft photon is ex-
changed, as illustrated in Fig. 5.7. Note that here the terminology “non-factorizable”
refers to the non-trivial off-shell behaviour of the correction, which is not a simple
product of resonant propagators, and not to the factorization of the result. Indeed, the
non-factorizable corrections factorize into a single correction factor times the lowest-
order amplitude, such that the virtual corrections in DPA read

∫

4
dσ̂virt,DPA

q̄q =

∫

4
dΦ4

{
2 Re

[
Mfact,DPA

1loop

(
MDPA

LO

)∗]
+
∣∣∣MDPA

LO

∣∣∣
2

δvirt
non−fact

}
. (5.31)

The LO DPA matrix element MDPA
LO comprises only double-resonant contributions, like

the ones shown in the first row of Fig. 5.2, and the correction factor reads

δvirt
non−fact =

∑

a=1,2

∑

b=3,4

(−1)a+b+1 αQaQb

π
Re
(
∆virt(q1, q2; k+, pa; k−, pb)

)
, (5.32)
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with ∆virt defined as in Eq. (2.20) of Ref. [12]. In this final result for the non-factorizable
correction factor all UV and IR-singularities cancel [91]1, such that no renormalization
procedure has to be applied additionally.

However, since the virtual corrections in DPA by definition do not comprise any
corrections to the single-resonant diagrams (see Fig. 5.2), in particular, the IR divergent
parts stemming from those contributions are not contained in Eq. (5.31). Therefore, in
the form of Eq. (5.16), the endpoint contribution adds additional, uncompensated, IR
singularities to the virtual contributions. However, the DPA version of the endpoint
contribution,

dσ̂real,endp,DPA
q̄q = − α

2π

6∑

i,j=1

i6=j

(−1)i+jQiQjG
(sub)
ij (ŝ) · dσ̂LO,DPA

q̄q , (5.33)

which is obtained from Eq. (5.16) by simply replacing all momenta in G
(sub)
ij with their

respective on-shell expressions and considering the DPA LO cross section,dσ̂LO,DPA
q̄q ,

does not include these additional contributions. Therefore, in the same manner as for
the full virtual correction (Eq. (5.27)), the finite part of the virtual corrections in DPA
is defined as ∫

4
dσ̂virt,DPA,fin

q̄q =

∫

4
dσ̂virt,DPA

q̄q +

∫

4
dσ̂real,endp,DPA

q̄q . (5.34)

As mentioned already several times, the DPA is by construction restricted to regions
in phase space where two resonant W bosons dominate the cross section. In particular,
this prevents its application in the region close to and below the W-pair threshold at
M4ℓ = 2MW. Following Ref. [12], we therefore apply an improved Born approximation
in the region of phase space where M4ℓ < 2MW + 5 GeV. This approximation is based
on the leading universal corrections of the coupling constant α and includes additional
contributions stemming from photon exchange near the threshold, which have been
worked out in Refs. [100,101]. Note, however, that for all meaningful applications of
the DPA, the influence of this phase-space region will be strongly suppressed due to the
application of realistic phase-space cuts on the final state leptons.

In the following we briefly summarize the two most important differences between
the DPA and the calculation solely based on the full four-fermion (4f) matrix elements,
namely in complexity and validity.

• From the practical point of view, the DPA is simpler to work out, since the multi-
plicities of the underlying loop amplitudes for production and decays of resonant
W bosons are much smaller. The complexity of the DPA loop calculations is
the one of 2 → 2 production and 1 → 2 decay processes, which comprises about
O(102) diagrams per partonic channel and mostly real particle masses, while the

1 ∆virt can be expressed in terms of the scalar coefficients B0, C0, D0, and E0, the only of which con-
taining a UV divergent part (B0) exclusively appears in the finite combination (B0(. . . ) − B0(. . . )).



5.2. Outline of the Calculation 83

full 2 → 4 particle loop calculation involves O(103) diagrams up to hexagon topol-
ogy with complex internal masses.

As a result of this difference and due to the possibility of an efficient numerical
expansion of 2 → 2 loop amplitudes into tree-level-like form factors [90, 95], the
numerical evaluation of the DPA can become almost comparable in speed to a
tree-level calculation, while the full 4f calculation is CPU intensive.

• The strength of the full off-shell calculation rests in its NLO accuracy everywhere
in phase space, i.e. the intrinsic perturbative uncertainty ∆4f of this approach
is generically given by the size of the higher-order corrections that are not yet
calculated. For the purely EW corrections, we thus expect ∆4f ∼ δ2

EW with the
relative NLO EW correction factor

δEW =
∆σNLOEW

σLO
. (5.35)

As just pointed out, the validity of the DPA, is restricted to regions in phase
space where the double resonance of the W-boson pair dominates the cross sec-
tion. Taken literally, this restricts the DPA to four-lepton final states with in-
variant masses M4ℓ > 2MW + nΓW and |Mliν̄i

− MW| <∼ nΓW, where n ∼ 2−3 is
some small number and liν̄i generically stands for the two lepton–neutrino pairs
from the W-boson decays. In practice this means that the DPA is applicable if
the contributions from regions below the W-pair threshold and also the off-shell
regions are sufficiently suppressed.

The theoretical uncertainty ∆DPA of the DPA is, thus, not only based on the
typical size of missing higher-order corrections, but also influenced by the intrin-
sic uncertainty of the pole expansion. Assuming that all LO contributions are
based on full matrix elements and that the relative correction in DPA, δDPA

EW , is
normalized to the full LO cross section σLO, i.e.

σDPA
NLO EW = σLO + ∆σDPA

EW = σLO

(
1 + δDPA

EW

)
, δDPA

EW =
∆σDPA

EW

σLO
, (5.36)

we estimate ∆DPA to

∆DPA ∼ max

{(
δDPA

EW

)2
,

α

π

ΓW

MW
ln(...)

︸ ︷︷ ︸
<∼ 0.5%

,
∣∣∣δDPA

EW

∣∣∣× |σLO − σDPA
LO |

σDPA
LO

}
. (5.37)

The first term on the right-hand side (r.h.s.) of Eq. (5.37) corresponds to the
missing higher-order EW corrections, similar to the NLO limitation of ∆4f . The
second term indicates the size of the off-shell contributions to the EW corrections
in regions where the DPA applies. This estimate is based on the typical size of the
respective effects: the off-shell contributions amounting to a fraction ∼ ΓW/MW,
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and the EW corrections being of order ∼ α/π times some moderate logarithmic
factor (see also Refs. [12,36,89,90]). The last term on the r.h.s. of Eq. (5.37)
mimics the failure of the DPA upon blowing up the relative correction δDPA

EW by
the factor |σLO − σDPA

LO |/σDPA
LO that is deduced from the LO cross sections based

on the full 4f or DPA matrix elements.2 As we will discuss in Sec. 5.3.7, the last
term in ∆DPA is surprisingly large in some transverse-momentum distributions in
the TeV range.

5.2.4. Independent Checks of the Calculation

In order to guarantee reliable and accurate results, in addition to the calculation pre-
sented in this thesis, within our collaboration a completely independent, and to some
extent orthogonal, calculation of all contributions has been performed. We find mutual
agreement of the squared amplitudes at individual phase-space points, and all cross
sections agree within statistical uncertainties of the final Monte Carlo phase-space in-
tegration.

While the implementation presented in this thesis closely follows the diagrammatic
approach of Refs. [36,89], where NLO EW corrections to e+e− → 4 fermions via W-
boson pairs were calculated, and builds on Ref. [12] for the real corrections and the
Monte Carlo integration, the second calculation is based on the program Recola [102]
that provides the automated generation of NLO EW amplitudes. For the explicit eval-
uation of the one-loop tensor integrals, the two calculations employ the two different
branches of the one-loop library Collier [59], DD and Coli.

For the treatment of the IR singularities, both implementations resort to the dipole
subtraction approach that we discussed in detail in Sec. 4.2 employing mass regulariza-
tion. Technically, the IR singularities can also be treated in dimensional regularization,
and we have checked numerically that the sum of virtual and real corrections is, inde-
pendently of the regularization scheme, infrared finite. As discussed above, the final
result only depends on the factorization scale µF and, in the case of collinear unsafe
photon radiation off final-state muons, on the physical muon mass mµ. While our
diagrammatic calculation employed the ECF of Eq. (5.18) to treat the q → qγ∗ split-
ting (see Sec. 5.2.1), the second calculation used the dipole approach throughout. For
the sum of the real contribution and the factorization term of the qγ-induced process
(Eq. (5.21)), both procedures yield identical results, which, thus, comprises a stringent
check of both approaches.

The calculation based on Recola fully includes the top mass at the NLO, while
our calculation approximates all NLO matrix elements with external bottom quarks by
those with external down quarks. For the q̄q-induced channels we find the difference

2The last uncertainty factor in Eq. (5.37) can also be written as ∆σDPA
EW /σDPA

LO × |σLO − σDPA
LO |/σLO,

where ∆σDPA
EW /σDPA

LO would then be interpreted as the intrinsic relative EW correction of the DPA
and |σLO − σDPA

LO |/σLO is the relative deviation of the DPA LO from the full 4f LO cross section.
However, we chose the form of Eq. (5.37) to be compatible with the definition of δDPA

EW made in
Ref. [12] and the earlier e+e− references such as Ref. [89].
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Figure 5.8.: Representative diagram for a bγ induced subprocess, showing an inter-
mediate massive top quark that leads to an on-shell resonance.

between these two approaches on the relative correction δNLO
q̄q to be below 0.02% in all

three phenomenological setups (c.f. Secs. 5.3.1 and 5.3.2). Therefore, the approximation
can safely be applied, without any notable loss in precision. Note, moreover, that the
additional separate computation of the b̄b-induced matrix elements for all contribu-
tions unnecessarily prolongs the evaluation of the matrix element by roughly a factor
of 1.5 compared to the entirely massless treatment, where the phase-space pointwise
calculation of the partonic channels ūu and d̄d is sufficient.

For the bγ-induced subprocesses, however, the situation is very different, since these
contributions are enhanced by the presence of top-quark resonances, as depicted in
Fig. 5.8, which is simply a slightly distinct representation of the left diagram of Fig. 5.4.
The approximation with massless top quarks obviously fails in this case, especially in
our inclusive setup, where no jet veto is applied to the final state bottom quark. In this
setup, the bγ-contribution is of the same size as the genuine EW corrections. However,
single top production is an entirely different process and can also experimentally be
well separated from our signal process, such that we decided to additionally apply a
b-jet veto, i.e. we identify δqγ ≡ δq 6=b

qγ .

To verify the correctness of the Recola result we additionally compared the massive
matrix element for several phase-space points to a matrix elements generated with
Madgraph [103] and found perfect agreement.

5.3. Phenomenological Results

In this section we present the results of our calculation for three phenologically relevant
event-selection setups. Therefore, after listing the exact values of the input parameters
we used and presenting our default setup in Sec. 5.3.1, we define the three event-selection
setups in Sec. 5.3.2.

By means of integrated results and differential distributions the separate contribu-
tions to the cross section are presented in the Secs. 5.3.3–5.3.5. In Sec. 5.3.6 we discuss
the difference between the two possible treatments of the photon radiation off muons,
while in Sec. 5.3.7 we examine the quality of the DPA with respect to the full off-
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shell calculation. Note that large parts of this section have recently been published in
Ref. [11].

5.3.1. Input Parameters and Calculational Setup

For our numerical studies we consider proton–proton collisions at the LHC at hadronic
c.m. energies of

√
spp = 8 TeV and 13 TeV. We use the SM input parameters

Gµ = 1.1663787 × 10−5 GeV−2 , α(0) = 1/137.035999 ,

MOS
W = 80.385 GeV , ΓOS

W = 2.085 GeV ,

MOS
Z = 91.1876 GeV , ΓOS

Z = 2.4952 GeV ,

MH = 125.9 GeV , mµ = 0.1057 GeV ,

mt = 173.07 GeV , Γt = 2 GeV , (5.38)

following Ref. [104]. The finite value of the top mass mt is exclusively applied at the LO,
and the muon mass mµ only becomes relevant in the case of a collinear-unsafe treatment
of photon emission off final-state muons. All the remaining fermions are considered as
massless everywhere in the calculation. As discussed in Sec. 5.2, the CKM matrix is set
to the unit matrix, without restricting the validity of our calculation.

Throughout, we apply the complex-mass scheme for the W and Z resonances, which
also leads to a complex weak mixing angle θw and complex couplings, as discussed in
Sec. 3.2.2. The complex vector-boson masses µV are given by

µ2
V = M2

V − iMVΓV , V = W, Z , (5.39)

with the real mass values MV and constant vector-boson decay widths ΓV. The gauge-
boson mass and width values given in Eq. (5.38), however, correspond to the “on-shell”
(OS) masses and widths, that have been measured at the former particle accelerators
LEP and Tevatron using a running-width prescription. Consequently, we convert these
OS values MOS

V and ΓOS
V (V = W, Z) to the “pole values” denoted by MV and ΓV

according to [105],

MV = MOS
V /

√
1 + (ΓOS

V /MOS
V )2 , ΓV = ΓOS

V /
√

1 + (ΓOS
V /MOS

V )2 , (5.40)

which leads to

MW = 80.357 . . . GeV , ΓW = 2.0842 . . . GeV ,

MZ = 91.153 . . . GeV , ΓZ = 2.4942 . . . GeV . (5.41)

Although the tiny difference in the phenomenological results between using MOS
V and

MV would hardly be visible, for consistency we use the latter as input for our numerical
results.

In the q̄q-induced contributions we determine all couplings in the Gµ scheme, where
α is defined in terms of the input parameters given in Eqs. (5.38) and (5.41),

αGµ =

√
2 GµM2

W

π

(
1 − M2

W

M2
Z

)
. (5.42)
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This setting minimizes universal weak corrections beyond NLO in the high-energy tails
of distributions where high-energy logarithms due to soft/collinear W/Z bosons domi-
nate the EW corrections. However, we set α = α(0) for the couplings of the incoming
photons in the photon-induced (qγ and γγ) channels, since α(0) is the relevant electro-
magnetic coupling for real (external) photons. Therefore, the squared matrix elements
for the qγ → 2l2ν + q and γγ → 2l2ν subprocesses scale like α(0)α4

Gµ
and α(0)2α2

Gµ
,

respectively.

For the calculation of the hadronic cross section, we use the O(α)-corrected PDF
set NNPDF2.3QED [55], which also includes a distribution function for the photon.
Since the considered LO cross section and the EW corrections do not depend on the
strong coupling, our result show no dependence on the renormalization scale µR and
only a very weak dependence on the factorization scale µF. As has been explicitly
shown in Ref. [12], the dependence basically vanishes when considering only the relative
corrections such that we see no benefit in introducing a specific dynamical scale, but
choose the fixed value

µF = MW . (5.43)

Following the arguments of Ref. [106], we employ a DIS-like factorization scheme for
the QED corrections, because EW corrections are not taken into account in the fit of
the PDFs to data.

In subprocesses with a final-state quark or antiquark, a parton i is only considered as
a jet, if its transverse momentum pT,i and its rapidity |yi| allow for a proper detection
in experiment. For a parton i we require

pT,i > pdef
T,jet = 25 GeV, |yi| < |ydef

jet | = 5 , (5.44)

for being treated as a jet. If the parton does not meet these two requirements, it is
treated as invisible jet, which means that no additional jet-related cuts are applied and
its momentum contributes to the missing transverse momentum ~p miss

T . Note that our
real matrix elements exhibit at most one final-state parton which either leads to a jet
or remains undetected, such that no dedicated jet-algorithm has to be applied.

Similarly to the jets, final-state photons with rapidities outside the range accessible
to the detector,

|yγ | > 5 , (5.45)

are considered as invisible photons, and the corresponding momentum is part of the
missing momentum.

As mentioned above, we provide two different setups concerning the treatment of
nearly collinear photons: In the collinear-safe setup, nearly collinear photons are recom-
bined with either of the two charged final-state leptons, whereas in the collinear-unsafe
setup, we apply the photon recombination procedure only to final-state electrons while
photons collinear to muons remain unrecombined. This recombination procedure mim-
ics the experimental concept of “dressed leptons” used by ATLAS (see e.g. Ref. [107]),
which avoids the experimental problem to separately resolve an electron and a nearly
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collinear photon. As measure for the collinearity of photons and leptons, their distance
Rij in the rapidity–azimuthal-angle plane is used, where

Rij =
√

(yi − yj)2 + ∆φ2
ij , (5.46)

with yi,j denoting the rapidities of particle i and j and ∆φij their azimuthal angle
difference, respectively. Whenever this separation is smaller than

Rrecomb
γl = 0.1, (5.47)

we add the photon momentum to the respective lepton momentum and subsequently
discard the photon from the event, while the momenta of all other particles in the event
remain unaffected.

5.3.2. Event Selection

We compare results for three different event-selection setups: (i) defined by basic parti-
cle identification only (“inclusive setup”), (ii) designed by ATLAS for relatively enhanc-
ing the WW signal (“ATLAS WW setup”), and (iii) inspired by Higgs-boson analyses
in the decay channel H → WW∗ (“Higgs-background setup”), where direct W-pair
production comprises an irreducible background. For the latter two setups we present
results for fully integrated and differential cross sections, while for the inclusive setup
only fully integrated numbers are given.

(i) Inclusive Setup

After a potential photon recombination we define an event for the process pp →
νµµ+e−ν̄e + X by requiring the µ+ and e− to have transverse momenta

pT,l > 20 GeV , (5.48)

in the central rapidity region of the detector,

|yl| < 2.5 . (5.49)

For final states with an identified jet (cf. Eq. (5.44)) we demand this jet to be well
separated from the lepton system, by rejecting any event with

Rjet,l < 0.4 . (5.50)

In order to suppress overwhelmingly large QCD corrections from additional jet radia-
tion, we employ a jet veto, i.e. we reject any event with

pT,jet > 100 GeV . (5.51)
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(ii) ATLAS WW Setup

Moreover, we consider an event selection that is inspired by the analyses of the 7 TeV
dataset for pp → W+W− + X performed by the ATLAS collaboration [77]. In addition
to the aforementioned lepton cuts we impose a stronger transverse-momentum cut on
the hardest charged lepton (the leading lepton) and require the two charged leptons to
be well separated from each other by imposing the cuts

pleading
T,l > 25 GeV , Re−µ+ > 0.1 , Me−µ+ > 10 GeV , (5.52)

where Me−µ+ denotes the invariant mass of the charged lepton system,

Me−µ+ =
√

p2
e− + p2

µ+ . (5.53)

For a cleaner signature we further demand a non-vanishing missing transverse momen-
tum,

|~p miss
T | > 25 GeV , (5.54)

and remind the reader that, according to the discussion in the previous section, unde-
tected jets and photons do also contribute to this quantity. To further suppress the
influence of QCD corrections, we veto all events with hard final-state jets obeying

pT,jet > 25 GeV . (5.55)

Note that according to Eq. (5.44), all events with a detected jet are discarded due to
this cut.

(iii) Higgs-Background Setup

Inspired by the recent analyses of the decay of the Higgs boson to WW∗ independently
performed by ATLAS [108] and CMS [109] we study the influence of EW corrections on
the main irreducible background, namely pp → WW∗ → νµµ+e−ν̄e + X, in a realistic
cut scenario. Essentially following Ref. [108], we extend the ATLAS WW setup of
Eqs. (5.52)–(5.55) by two additional cuts,

10 GeV < Me−µ+ < 55 GeV, ∆φe−µ+ < 1.8 , (5.56)

which are designed to favour the signal topology of the H → WW∗ analysis and therefore
significantly suppress direct WW∗ production. Additionally, we adjust the threshold of
the transverse-momentum cut to the value used in the experimental analysis,

|~p miss
T | > 20 GeV . (5.57)
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LHC σLO
q̄q [fb] δNLO

q̄q [%] δq 6=b
qγ [%] δγγ [%] δEW [%]

Inclusive
8 TeV 238.65(3) −3.28 0.44 0.84 −2.01

13 TeV 390.59(3) −3.41 0.49 0.73 −2.20

ATLAS WW
8 TeV 165.24(1) −3.56 −0.26 1.01 −2.81

13 TeV 271.63(1) −3.71 −0.27 0.87 −3.11

Higgs bkg
8 TeV 31.59(2) −2.52 −0.21 0.60 −2.13

13 TeV 49.934(2) −2.54 −0.22 0.52 −2.25

Table 5.1.: LO cross sections and relative EW corrections to pp → νµµ+e−ν̄e+X at the
LHC at 8 TeV and 13 TeV, in the inclusive setup (top), the ATLAS WW setup (middle),
and the Higgs-background setup (bottom). The numbers in parentheses represent the
Monte Carlo uncertainty on the last given digit.

5.3.3. Results on Integrated Cross Sections

In Tab. 5.1 we present the integrated cross section of the quark-initiated LO process,
σLO

q̄q , for pp → νµµ+e−ν̄e + X at the LHC for the energies
√

spp = 8 TeV and
√

spp =
13 TeV within the three different setups defined in Sec. 5.3.2. The numbers include the
five q̄q-initiated contributions induced by the light quarks. Due to the small bottom-
quark PDFs, the b̄b channel comprises less than 2% of this LO cross section in all
considered setups.

According to our definition of Eq. (5.8), the NLO corrections of O(α) consist of virtual
one-loop and photonic real-emission contributions to the q̄q-induced processes, as well
as additional qγ-initiated tree-level subprocesses. Note that the bγ-contributions have
been explicitly excluded from qγ (see Sec. 5.2.4). Since the LO γγ-induced subprocess
gives rise to a (sub-)percent correction to σLO

q̄q , in the following we treat δγγ = σLO
γγ /σLO

q̄q

as part of the EW corrections δEW, which are, thus, given by

δEW = δNLO
q̄q + δq 6=b

qγ + δγγ (5.58)

Similarly to the situation at LO, the corrections stemming from subprocesses with
initial-state bottom-quark pairs account for less than 2% of the full NLO correction.
As stated above, the effect of the finite top mass is therefore entirely negligible in this per
mill correction. As default setup for the photonic real-emission contributions we choose
the collinear-unsafe setup, as defined in Sec. 5.3.1. The difference to the collinear-safe
setup is discussed in detail in Sec. 5.3.6 below.

The omission of virtual and photonic real-emission corrections of O(α) to the γγ-
induced contributions is justified by their small size already at LO. In Tab. 5.1, besides



5.3. Phenomenological Results 91

the LO cross sections, we list the relative contributions of the different types of cor-
rections normalized to σLO

q̄q . The generally negative O(α) corrections (δNLO
q̄q and δqγ)

are somewhat reduced by the positive LO γγ correction, so that their sum (δEW) leads
to a small negative correction of roughly −(2−3)% on the integrated cross section for
all investigated setups. However, as is already well known from previous studies of
W-boson pair production at hadron colliders [12, 83–86], the EW corrections become
very important in differential distributions where they lead to significant distortions.

5.3.4. Differential Cross Sections in the ATLAS WW Setup

In this section we inspect some important differential cross sections evaluated in the
ATLAS WW setup for the collinear-unsafe photon scenario. Here and in the following
sections, we show, for an LHC energy of

√
spp = 13 TeV, absolute predictions for dσ/dO

as histograms binned in the observable O in the upper panel, followed by the relative
corrections of type i,

δi(O) =
dσi

dO /
dσLO

q̄q

dO , (5.59)

directly below.

In Fig. 5.9, we display the transverse-momentum distribution of the electron. We first
concentrate on the left-hand side (l.h.s.) of the figure. In the upper panel, LO refers
to σLO

q̄q induced by q̄q channels only, γγ to σLO
γγ induced by photon–photon collisions,

and EW to the full NLO EW prediction, i.e. the sum of the LO cross section with all
considered corrections. The b̄b-induced contribution to σLO

q̄q (not shown separately) is
only relevant at low pT,e− , dropping below 2% already at pT,e− ∼ 300 GeV. The lower
panel compares the relative corrections induced by the q̄q, qγ, and γγ channels as well as
their sum (EW, c.f. Eq. (5.58)). The corrections in the q̄q channels dominate and exhibit
their known negative logarithmic increase due to weak Sudakov high-energy logarithms
∝ α/(πs2

W
) ln2(pT,e−/MW), reaching ∼ −45% at pT,e− = 1 TeV. This huge negative

correction is only partly compensated by the positive contribution of the γγ-induced
tree-level process, whose impact steadily grows from about 1% at small transverse
momentum to more than 10% at 1 TeV. The contribution of the qγ-induced channel is
completely insignificant within the ATLAS WW setup.

The behaviour of the qγ contribution is enforced by the jet-identification criterion and
the specific choice of the jet veto within the ATLAS WW setup, Eqs. (5.44) and (5.55),
respectively. Both only affect the qγ-induced contribution, since it is the only contribu-
tion that can give rise to a jet. On the r.h.s. of Fig. 5.9 we illustrate the dependence on
the jet veto (JV) by means of the transverse-momentum distribution of the electron,
where we show the qγ-induced contribution together with the full EW correction for
three different values of the jet veto. If we loosen the cut of Eq. (5.55) to only reject jets
with pT,jet > 100 GeV (the value within our inclusive setup, Eq. (5.51)), the qγ-induced
contribution becomes positive and leads to a correction of +0.62% for the integrated
cross section, resembling the situation in the inclusive setup. However, the complete
omission of a jet veto results in a positive correction of almost 70% at pT,e− = 1 TeV,
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Figure 5.9.: Individual contributions to the differential cross section with the default
ATLAS jet veto of pT,jet > 25 GeV (left) and jet veto (JV) dependence (right) of the
transverse-momentum distribution of the electron in pp → νµµ+e−ν̄e + X in the AT-
LAS WW setup. The lower panels show the relative size of the various corrections.
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even rendering the total EW correction δEW positive for pT,e− >∼ 400 GeV. In the latter
case we obtain a positive correction of σqγ = 3.914(2)fb (δqγ = +1.44%) to the inte-
grated cross section from the qγ channel alone, leading to a total EW correction of only
δEW = −1.40%. The reason for this immense increase is a known mechanism, referred
to as “giant K factor” [110], which was already discussed for qγ-induced corrections to
W-pair production in the literature [12,86]. In such processes, topologies that first oc-
cur at NLO introduce kinematic configurations in which one massive gauge boson may
become quasi-soft, leading to large double-logarithmic corrections for large transverse
momenta. In QCD, such corrections may grow to several 100%. For qγ collisions the
size is mitigated by the smallness of α and the photon PDF with respect to αs and the
gluon PDF, respectively, in spite of some enhancement due to diagrams with incoming
photons coupling to W bosons, which do not have a QCD counterpart. Note also that
overwhelmingly large QCD corrections (as a consequence of a missing jet veto) would
force us to calculate EW corrections for W-pair production in association with hard
jets, a task that goes beyond the scope of this work.

In the following we always apply the jet veto in order to suppress configurations with
hard jets and soft W bosons, which are less interesting for the investigation of W-boson
pairs. For the ATLAS WW and Higgs-background setups, the jet veto actually implies
that qγ-induced events may only contribute to the zero-jet cross section, so that any
potential final-state jet must remain undetected (cf. Eq. (5.44)). This eventually leads
to a small negative contribution of the qγ-induced processes in the ATLAS WW setup
of σqγ = −0.744(2)fb (δqγ = −0.27%), the value quoted in Tab. 5.1.

In Fig. 5.10 we turn to distributions in the transverse invariant masses of four or two
leptons. Owing to the incomplete information about the momenta of the two neutrinos
at a hadron collider, it is experimentally not possible to fully reconstruct the invariant
mass of the W+W− system (MWW) in leptonic final states. However, in the transverse
plane the sum of the neutrino momenta can be inferred from the missing transverse
momentum (~p miss

T ), motivating the following definition of the transverse mass of the
four-lepton decay system [111],

MT,WW =
√

(ET,e−µ+ + Emiss
T )2 − (~pT,e−µ+ + ~p miss

T )2 , (5.60)

with the vector sum ~pT,e−µ+ of the transverse momenta of the final-state charged lep-
tons, the missing transverse momentum ~p miss

T and the corresponding transverse energies
given by

ET,e−µ+ =
√

(~pT,e−µ+)2 + M2
e−µ+ and Emiss

T = |~p miss
T | . (5.61)

The various contributions to the observable MT,WW are shown in Fig. 5.10 (l.h.s.) to-
gether with the invariant mass Me−µ+ of the charged-lepton system (r.h.s.). In the
high-energy regions, the relative corrections to the two observables exhibit a very sim-
ilar quantitative behaviour: As for the transverse momentum of the electron, the EW
correction is dominated by the negative correction to the q̄q-induced contribution. The
positive contribution of the γγ-induced tree-level process partly compensates for the
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Figure 5.10.: Transverse-mass distribution of the four-lepton system (left) and
invariant-mass distribution of the charged-lepton system (right) in pp → νµµ+e−ν̄e +X
in the ATLAS WW setup (upper panels), together with the relative impact of the in-
dividual corrections (lower panels). Note that the γγ contribution is scaled by a factor
of ten only in the upper panels.
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Figure 5.11.: Rapidity distribution of the electron (left) and distribution in the
azimuthal-angle separation of the two charged leptons (right) in pp → νµµ+e−ν̄e + X
in the ATLAS WW setup. The lower panels show the relative impact of the various
contributions. Note that the γγ contribution is scaled by a factor of hundred only in
the upper panels.

strong negative correction, while the contribution from qγ initial states remains in-
significant due to the jet veto. At the scale of 1 TeV, we observe a negative total EW
correction of about −15% for both observables, i.e. about half the size as in the pT,e−

distribution at the same scale. Note, however, that dσ/dpT,e− falls off much steeper
with pT,e− than the shown invariant-mass distributions with increasing masses.

In Fig. 5.11 we show rapidity and angular distributions of the charged leptons within
the ATLAS WW setup. The corrections to the rapidity distribution of the electron
(left) are uniformly distributed and resemble the corrections to the integrated cross
sections given in Tab. 5.1. The azimuthal-angle separation of the two charged leptons
(right), on the other hand, receive some distortion due to the EW corrections towards a
separation of ∆φe−µ+ = π of the two charged leptons. This back-to-back configuration
in the transverse plane is favoured by events with W-boson pairs with large transverse
momenta, which explains the tendency to receive more negative EW corrections in the
q̄q channels.
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Figure 5.12.: Distributions in the invariant mass of the charged-lepton system (left)
and in the azimuthal-angle separation of the two charged leptons (right) in pp →
νµµ+e−ν̄e + X in the Higgs-background setup. The lower panels show the relative
impact of the various contributions. Note that the γγ contribution is scaled by a factor
of hundred only in the upper panels.

5.3.5. Differential Cross Sections in the Higgs-Background Setup

A very important irreducible background to the decay of a Higgs boson to a W-boson
pair, H → WW∗, originates from the direct W-pair production process pp → WW∗ →
νµµ+e−ν̄e + X. In the following, we study the influence of the EW corrections on
this dominant background in the Higgs signal region defined by the additional cuts of
Eq. (5.56) and Eq. (5.57). Since this setup is meant to favour the Higgs signal and to
suppress any background as much as possible, we observe a reduction of σLO

q̄q by almost
a factor of six compared to the ATLAS WW setup (cf. Tab. 5.1). We also observe
some reduction of all relative corrections, resulting in a total EW correction of only
−2.25% for the 13 TeV prediction (we again provide results for 13 TeV in the collinear-
unsafe photon scenario). This reduction can be explained by looking at the differential
distributions of the two observables to which the cuts of Eq. (5.56) are applied.

In Fig. 5.12 we show these observables, namely the invariant mass (left) and the
azimuthal-angle separation (right) of the two charged leptons, within the Higgs-back-
ground setup. As discussed above, the large relative corrections to the invariant-mass
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Figure 5.13.: Transverse-momentum distribution of the electron (left) and transverse-
mass distribution of the four-lepton system (right) in pp → νµµ+e−ν̄e + X in the
Higgs-background setup. The lower panels show the relative impact of the various
contributions. Note that the γγ contribution is scaled by a factor of ten only in the
upper panels.

distribution of the two charged leptons in the ATLAS WW setup were observed for large
Me−µ+ , a region that is completely removed by the additional cuts, so that smaller EW
corrections are expected. In the allowed range of the invariant mass of the charged-
lepton system we now observe quite uniformly distributed corrections from all contribu-
tions (Fig. 5.12, left). For the azimuthal-angle separation (Fig. 5.12, right), the region of
phase space exhibiting the most pronounced EW corrections in the ATLAS WW setup
has been cut away, but the cuts affect the LO distribution and the corrections in the
allowed range in a non-trivial way. Towards the new maximal value of ∆φcut

e−µ+ = 1.8
we observe a strong decrease of the cross section and a reduction of the EW corrections.

The transverse-momentum distribution of the electron and the transverse-mass dis-
tribution of the W-pair in the Higgs-background setup are shown in Fig. 5.13. We point
out that both observables exhibit a much steeper decrease of the LO cross section in the
shown kinematic range than within the ATLAS WW setup (cf. Figs. 5.9 and 5.10): The
distributions in the Higgs setup drop faster with increasing scales by roughly a factor
of 100 compared to the situation in the ATLAS WW setup. The corrections induced
by the qγ and γγ channels almost cancel each other at low scales and are suppressed
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Figure 5.14.: Invariant-mass distribution of the four-lepton system in two different
plot ranges in pp → νµµ+e−ν̄e + X in the Higgs-background setup. The lower panels
show the relative impact of the various contributions. Note that the γγ contribution is
scaled by a factor of hundred only in the upper panels.

at high scales. The EW corrections are,thus, almost entirely due to corrections to the
q̄q channels. They distort the shapes of the distributions significantly in a non-trivial
way. While the EW corrections to the MT,WW distribution (Fig. 5.13, right) show the
onset of the typical decrease towards larger scales, the EW corrections to the pT,e−

distribution are significant only for pT,e− <∼ 100 GeV.

In Fig. 5.14 we investigate the (experimentally unobservable) invariant-mass dis-
tribution of the four-lepton system, where the Higgs-boson resonance is located at
MWW = MH ≈ 125 GeV. Between MWW = 80 GeV and the on-shell W-pair thresh-
old at MWW = 2MW ≈ 160 GeV, we observe a very strong increase by almost five
orders of magnitude in the MWW distribution. Although we clearly see that the direct
production of a W-boson pair within the Higgs-background setup is still dominated
by on-shell W-pairs with MWW

>∼ 2MW, it is still interesting to look into the region
below this threshold, where at least one of the W bosons is forced to be off-shell. At
MWW = MZ, the Z-boson resonance is visible, though very strongly suppressed, since
at least one of the W bosons has to be far off shell there. The distinct structures
and the strong positive enhancement of the EW corrections below the W-pair thresh-
old can be attributed to the kinematic redistribution of events by collinear final-state
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LHC 13 TeV σLO
q̄q [fb] δcoll. unsafe

q̄q [%] δcoll. safe
q̄q [%]

inclusive 390.59(3) −3.41 −2.91

ATLAS WW 271.63(1) −3.71 −3.18

Higgs bkg 49.934(2) −2.54 −1.95

Table 5.2.: LO cross sections for pp → νµµ+e−ν̄e + X at the LHC running at 13 TeV
in the inclusive cut scenario (top line), the ATLAS WW setup (middle line), and the
Higgs-background setup (bottom line). In the last two columns we list the relative
corrections to the q̄q-induced contributions in our default setup (collinear unsafe) and
the collinear-safe setup. The numbers in parentheses represent the numerical error on
the last given digit.

radiation of photons off the charged leptons. This effect systematically shifts events
to lower values of MWW, leading to pronounced positive corrections where the spec-
trum falls off steeply with decreasing values of MWW. This well-known feature near
kinematical thresholds has recently also been discussed in a similar setup for the EW
corrections to off-shell Z-pair production [112]. At the invariant W-pair mass close to
the Higgs-boson mass of 125 GeV we observe a positive EW correction of about +15%,
but we remind the reader that MWW is not an observable for purely leptonically de-
caying W-boson pairs, in contrast to the respective situation for Z-boson pairs, where
the invariant mass MZZ is fully reconstructible if the decay into four charged leptons
is considered. Above the WW threshold, where resonant W bosons dominate, the EW
correction shows again the tendency to become more negative with increasing MWW.
We point out, however, that this negative increase is much slower than observed in the
transverse-momentum and transverse-mass distributions (in particular in the ATLAS
WW setup, cf. Figs. 5.9 and 5.10), because the region of large invariant mass MWW is
dominated by forward-scattered W bosons owing to t-channel diagrams, and thus not
by the Sudakov regime where all momentum invariants have to be large. Finally, we
note that within the Higgs-background setup the corrections due to the photon-induced
channels do not play a significant role for this observable.

5.3.6. Collinear-Safe Versus Collinear-Unsafe Case

In this section we discuss the impact of the recombination of nearly collinear photons
with final-state leptons on total and differential cross sections. In all results shown up
to now, the recombination procedure described at the end of Sec. 5.3.1 was applied only
to electrons, while muons were treated in a collinear-unsafe way. In Tab. 5.2 we list
σLO

q̄q for our three phenomenological cut scenarios at the LHC operating at an energy
of

√
spp = 13 TeV, together with the corrections from the q̄q-induced channels for our
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Figure 5.15.: Transverse-momentum distribution of the muon (left) and invariant-mass
distribution of the four-lepton system (right) in pp → νµµ+e−ν̄e+X in the ATLAS WW
setup. The lower panels show the relative size of the q̄q contribution within our default
(collinear-unsafe) setup compared to the collinear-safe case.

default setup (collinear-unsafe case) and for the case where we apply the recombination
procedure to both charged leptons (collinear-safe case). For integrated cross sections
we observe slightly reduced corrections (by about 0.5%) in all three cut scenarios in the
fully collinear-safe setup. This is due to the missing enhancement of final-state radiation
by the mass singularity that appears in the collinear-unsafe treatment of muons. In the
fully collinear-safe treatment of the real radiation more muons pass the cuts (after
recombination with photons), so that the correction tends to be less negative.

This effect can most directly be observed in the transverse-momentum distribution
of the muon and in the W-pair invariant-mass distribution, which are both shown in
Fig. 5.15 in the ATLAS WW setup. In the pT,µ+ distribution, which is widely monoton-
ically falling, the collinear-unsafe correction factor signals larger negative corrections
than its collinear-safe counterpart over the entire plot range, apart from the first bins
where the maximum of the distribution is located. In the MWW distribution the con-
verse situation is observed: For MWW

>∼ 165−175 GeV, where the distribution is rather
flat, hardly any difference between collinear-unsafe and collinear-safe event selection is
visible, because events are shifted more or less uniformly by photon recombination. For
MWW

<∼ 2MW, however, much more events migrate from larger to smaller invariant
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Figure 5.16.: Rapidity distribution of the muon (left) and transverse-momentum dis-
tribution of the electron (right) in the ATLAS WW setup. The lower panels show the
relative size of the q̄q contribution within our default (collinear-unsafe) setup compared
to the collinear-safe case.
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LHC 13 TeV σLO
q̄q [fb] σLO,DPA

q̄q [fb] δq̄q [%] δDPA
q̄q [%]

inclusive 390.59(3) 384.96(9) −3.41 −3.43

ATLAS WW 271.63(1) 265.31(3) −3.71 −3.68

Higgs bkg 49.934(2) 48.88(2) −2.54 −2.54

Table 5.3.: LO cross sections for pp → νµµ+e−ν̄e + X at the LHC running at 13 TeV
in the inclusive setup (top line), the ATLAS WW setup (middle line), and the Higgs-
background setup (bottom line). In the last two columns we list the relative EW
corrections to the q̄q-induced contributions including the full virtual corrections (δq̄q)
and applying the DPA within the virtual contributions (δDPA

q̄q ), both normalized to σLO
q̄q .

The numbers in parentheses represent the numerical error on the last given digit.

masses in the collinear-unsafe case because of the mass-singular enhancement of final-
state radiation, leading to larger positive corrections as compared to the collinear-safe
case.

As can be seen on the l.h.s of Fig. 5.16, the rapidity distribution of the final-state
muon does not exhibit significant distortions when applying the recombination proce-
dure, since recombining leptons and collinear photons does not systematically change
the lepton direction. The difference between the two treatments directly reflects the
difference observed in the integrated results over the full phase space. The r.h.s. of
Fig. 5.16 finally shows the transverse-momentum distribution of the electron, where
only towards very low momenta any deviation between the two approaches can be rec-
ognized. Since the electron itself is not directly affected by the change of the treatment,
the small deviation at low pT,e− only reflects that events with high pT muons are more
likely to exhibit a low pT electron, and vice versa.

5.3.7. Comparison to the Double-Pole Approximation

In this section we discuss the validity and quality of the DPA, by comparing integrated
and differential results in DPA to results of our full 4f calculation. In Tab. 5.3 we list
the LO cross sections σLO

q̄q and σLO,DPA
q̄q for our three setups at the LHC at an energy

of
√

spp = 13 TeV. The difference of the LO results of approximately 2% indicates that
non-doubly-resonant contributions only contribute at the expected level of O(ΓW/MW),
which is, however, not good enough to achieve percent-level accuracy even after includ-
ing higher-order corrections. Note that we include the DPA LO cross section σLO,DPA

q̄q

in our discussion for illustration only, but that in the DPA version of Ref. [12] all tree-
level contributions are fully taken into account. As discussed already in Sec. 5.2.3, we
define the relative corrections of the full 4f prediction and the DPA upon normalizing
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Figure 5.17.: Rapidity distribution of the electron (left) and invariant-mass distribu-
tion of the charged-lepton system (right) in pp → νµµ+e−ν̄e + X in the ATLAS WW
setup. The lower panels show the relative size of the EW corrections to the q̄q channels
in our default setup compared to the results based on the DPA.

to the full LO cross section,

δq̄q(O) =
dσNLO

q̄q

dO /
dσLO

q̄q

dO , δDPA
q̄q (O) =

dσNLO,DPA
q̄q

dO /
dσLO

q̄q

dO , (5.62)

so that they only differ within the virtual contributions of the NLO calculation. For
integrated cross sections, the two corrections show very good agreement, as can be seen
in the rightmost columns of Tab. 5.3.

A similar observation can be made for the rapidity distributions of the leptons, which
is illustrated for the electron on the l.h.s. of Fig. 5.17 in the ATLAS WW setup. In the
upper panel we observe the clear deviation of σLO,DPA

q̄q from the full LO prediction, being
of the same order of magnitude as the EW corrections to the q̄q-induced processes. The
lower panel shows the excellent agreement of the two versions for the relative corrections,
with differences at the 0.1% level only.

The r.h.s. of Fig. 5.17 illustrates the same comparison for the invariant-mass distri-
bution of the charged-lepton system in the ATLAS WW setup. For Me−µ+

<∼ 500 GeV,
the DPA is accurate within 1%, but the difference grows to about 2−3% in the TeV
range. This increasing difference between the full 4f calculation and the DPA can
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Figure 5.18.: Transverse-momentum distributions of the electron (left) and of the
charged-lepton system (right) in pp → νµµ+e−ν̄e + X in the ATLAS WW setup. The
lower panels show the relative size of the EW corrections to the q̄q channels in our
default setup compared to the results based on the DPA.

already be inferred from the LO cross sections σLO
q̄q and σLO,DPA

q̄q in the upper panel,
which signals the increasing impact of singly-resonant contributions not being included
in the DPA. The difference between full and DPA NLO EW corrections is well covered
by the last term of our estimate given in Eq. (5.37). In view of the typically expected
accuracies in LHC data analyses, the DPA is certainly sufficient for this observable.

Finally, in Fig. 5.18 we turn to the transverse-momentum distributions of the electron
(left) and the charged-lepton system (right): For the pT,e− distribution, the comparison
between the full 4f and the DPA calculation reveals similar qualitative features as
for the Me−µ+ distribution. The differences are, however, larger in size, reaching the
5% (10%) level for transverse momenta pT,e− of about 500 GeV (1 TeV). Again the
deterioration of the DPA can already be seen at LO and attributed to an enhanced
impact of the singly-resonant background diagrams shown in the second and third line
of Fig. 5.2, which are not included in σLO,DPA

q̄q . Schematically the relevant diagrams
are illustrated on the l.h.s. of Fig. 5.19. The enhancement is due to events where one
single lepton is recoiling against the other three in the final state. Thus, for large
pT,e− the cross section dσLO

q̄q /dpT,e− receives large contributions from events where the
electron is back-to-back to the three other leptons. For doubly-resonant diagrams (first
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Figure 5.19.: Illustration of diagrammatic structures dominating the pT,e− (left) and
pT,e−µ+ (right) distributions shown in Fig. 5.18 for high transverse momenta.

line in Fig. 5.2) this situation is less likely for large pT,e− , where the W-decay lepton
pairs mostly appear back-to-back as a result of the boost from the W rest frames to
the laboratory system. The comparison of σLO

q̄q with σLO,DPA
q̄q at high pT,e− shows that

singly-resonant contributions dominate over doubly-resonant parts already for a pT,e− of
some 100 GeV. Kinematically, it is, thus, easier to produce leptons with high transverse
momenta directly rather than through the decay of W bosons. The difference between
full and DPA NLO EW corrections is again reproduced quite well by the last term of
our estimate of Eq. (5.37).

The difference between the full 4f and the DPA calculation is pushed to the extreme
in the distribution of the transverse momentum of the charged-lepton system, pT,e−µ+ .
Here the enhancement of background diagrams is due to events where one neutrino
recoils against the two charged leptons and the other neutrino, a situation that is
supported by singly-resonant diagrams as illustrated on the r.h.s. of Fig. 5.19, but not
by doubly-resonant graphs, where the two charged leptons tend to recoil against each
other for high transverse momenta. Looking at equal sizes of transverse momenta on
the horizontal axes of the two distributions in Fig. 5.18, the enhancement seems stronger
in the case of the pT,e−µ+ distribution, but at the same time it should be realized that
the spectrum on the r.h.s. drops much faster than the one of pT,e− on the l.h.s. for
increasing pT. This is due to the fact that pT,e−µ+ contains only part of the transverse
momentum of the three-lepton system recoiling against the single neutrino and that it
is very unlikely to produce a large pT,e−µ+ via the doubly-resonant contributions. In
conclusion, we can state that transverse-momentum distributions are reproduced by the
DPA only up to some 100 GeV owing to the growing influence of background diagrams
that do not show two simultaneously resonant W bosons. For predictions of such pT

spectra in the TeV range, the calculation of EW corrections should be based on a full
four-fermion calculation.
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5.4. Conclusions and Outlook

Electroweak di-boson production processes represent a very interesting class of particle
reactions at the LHC. They provide an ideal test-ground for the non-Abelian self-
interactions among the electroweak gauge bosons, but also form an important class of
backgrounds to many new-physics searches and to precision studies of the Higgs boson.
Precise calculations for these processes, including radiative corrections of strong and
electroweak interactions, are, thus, phenomenologically very important and have seen
great progress in recent years. On the one hand, QCD predictions are being pushed to
the next-to-next-to-leading-order level and are extended by including leading corrections
beyond fixed orders. On the other hand, calculations of electroweak corrections become
more and more refined by including decays of the unstable bosons and off-shell effects.

In this chapter we have presented the details of the first calculation of next-to-leading-
order electroweak corrections to W-boson pair production at the LHC that fully takes
into account leptonic W-boson decays and off-shell effects. This calculation is based
on the complex-mass scheme for the treatment of the intermediate electroweak gauge
bosons and provides next-to-leading-order precision over the entire phase space with
resonant and/or non-resonant W bosons. Thus, it goes beyond previous calculations
which are restricted to on-shell or nearly resonant W bosons.

We have discussed the electroweak corrections using different realistic event-selection
setups, comprising one that is typical for the study of W-boson pairs as a signal process
and another one that is typical for an analysis of Higgs-boson decays H → WW∗,
where W-boson pair production represents an irreducible background. In particular,
we have compared the full off-shell results to previous results in the so-called double-
pole approximation, which is based on an expansion of the loop amplitudes about
the poles of the W resonances. At small and intermediate scales, i.e. in particular in
angular and rapidity distributions, the two approaches show the expected agreement
at the level of fractions of a percent, but larger differences appear for invariant-mass
and transverse-momentum distributions in the TeV range. For transverse-momentum
distributions, the differences can even exceed the 10% level in the TeV range where
background diagrams with one instead of two resonant W bosons grow in importance
because of the suppression of the doubly resonant contributions in these kinematical
regimes.

To fully exploit our calculation in upcoming LHC data analyses, our state-of-the-
art results on electroweak corrections should be combined with QCD-corrected cross
sections. A possible way to achieve this, would be to apply differential reweighting
factors for the electroweak corrections to differential distributions obtained in high-
precision QCD-based predictions. Predictions obtained in this way would be accurate
to the level of very few percent for integrated cross sections and distributions that
are dominated by energy scales up to few 100 GeV. For transverse-momentum and
invariant-mass distributions in the TeV range, the precision will deteriorate and most
likely be limited by our knowledge of QCD corrections, while electroweak corrections
are sufficiently well under control.



Chapter 6

Vector-Boson Scattering Processes at a
100 TeV Collider

This chapter is dedicated to the prospects of vector-boson scattering processes at a
future high-energy hadron collider. After a short general introduction to vector-boson
scattering reactions, in Sec. 6.2 we motivate their study at such a machine and present
the details of our analysis. We want to stress already here that in contrast to the
previous chapter, now the entire discussion will be restricted to the LO of all considered
processes, since our goal is rather to examine the general capabilities of a future high-
energy collider than to perform a precision study.

In Sec. 6.3 we discuss the main results of our studies of Refs. [113] and [114] and
Sec. 6.4 contains our summary and conclusions.

6.1. Vector-Boson Scattering at Hadron Colliders

Weak vector-boson scattering (VBS) processes form a very important class of reactions
to either further constrain the SM or alternatively find first signs of physics beyond the
SM (BSM). Generally, we refer to VBS as the 2 → 2 scattering reaction of four massive
EW gauge bosons,

V1V2 → V3V4 , Vi = W±, Z , (6.1)

depicted in Fig. 6.1. At the LO, which is of O(α2), the subdiagrams contributing to a
particular scattering reaction depend on the charges of the involved gauge bosons and
may comprise quartic gauge couplings as well as t-, u-, and s-channel exchanges of the
massive gauge bosons and the Higgs boson (c.f. Fig. 6.2).

V1

V2 V3

V4

O(α2)

Figure 6.1.: Generic VBS diagram, where the blob includes all subdiagrams of O(α2)
that are allowed by the charges of the four external gauge bosons.
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Figure 6.2.: Possible contributions to the generic diagram of Fig. 6.1. From left to
right: the quartic gauge coupling and t-, u-, and s-channel exchanges of either an EW
gauge boson (wavy line) or the Higgs boson (dashed line).

j

j

q

q̄

O(α2)

f̄
f

f̄
f

Figure 6.3.: Representative diagram of a VBS reaction at a hadron collider. Including
the production and decay vertices this is at tree-level a purely EW process of O(α6).

The specific interplay between these contributions makes this process class partic-
ularly sensitive to the exact realization of EWSB in the SM as well as to possible
new physics effects potentially entering via the EW gauge sector. It is for example
well known, that the additional contributions involving the Higgs boson prevent the
cross section of the longitudinal gauge-boson modes VLVL → VLVL from an unphys-
ical growth with the scattering energy that would eventually even lead to unitarity
violation in the TeV range.

We also want to stress that the s-channel production (i.e. the omission of the decay-
vertex in the right-most diagram of Fig. 6.2) is also separately referred to as vector-
boson fusion (VBF) into a weak boson or a Higgs boson, respectively. In the following
discussion, however, we concentrate on the full VBS process of Eq. (6.1), from which
the VBF processes are obtained straightforwardly by omitting particular subdiagrams.

As we already discussed in Sec. 3.2.2, the unstable massive EW gauge bosons are not
experimentally accessible as external particles of scattering reactions, such that their
study in collider experiments requires the inclusion of the incoming fermions and decay
products, respectively. At hadron colliders, VBS is therefore studied in reactions of the
type

qq → VV + qq → 4f + 2j , V = W±, Z , (6.2)

where the initializing weak bosons are emitted from two (anti-)quarks (qq) that sub-
sequently give rise to two jets (j) in the final state, as depicted in Fig. 6.3. Moreover,
in order to perform a reliable prediction for this purely EW process, all diagrams of
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Figure 6.4.: Representative EW-background diagrams of O(α6).

O(α6) leading to the specific six-particle final-state 4f + 2j, have to be taken into
account. Beside the VBS topology, depicted in Fig. 6.3, this requires the inclusion of
EW-background diagrams comprising also diagrams without any direct interaction of
the weak bosons. In Fig. 6.4 we show some representative background diagrams of the
genuine O(α6) process.

Since in the semi-leptonic (4f = 2ℓ2q) or even purely hadronic (4f = 4q) decay
mode of the weak bosons the experimental distinction between the VBS topology and
the background contributions is unnecessarily complicated due to the additional jets in
the final state, we focus in the following exclusively on the purely leptonic decay mode
(4f = 4ℓ).

With this constraint, the jets emerging from the two quark lines can be used to
suppress the background contributions and therefore restrict the phase space to regions
that are dominated by the VBS topology. To be more precise, due to the recoil of
the high momentum transfer to the VBS system, the two jets are typically located
in the forward and backward regions of the detector, while in the central region only
the leptonic decay products of the weak bosons are expected. The various background
contributions, on the other hand, also give rise to jet activity in the central region of
the detector and can therefore be considerably reduced by requiring widely separated
jets in the final state, as we will explicitly show in our results.

Actually, the powerful suppression of the background becomes even more important
as also QCD-induced contributions of the order O(α2

sα4) exist, which lead to the same
six-particle final-state 4ℓ+2j. In Fig. 6.5 we show some representative QCD-background
diagrams, where, depending on the total charge of the final-state leptons, also diagrams
with external gluons may occur. Already the simple estimate of the two different
coupling strengths of Eq. (3.4), and additionally the genuinely high gluon-luminosity
at hadron colliders suggest that the cross section will be clearly dominated by the
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Figure 6.5.: Representative QCD-background diagrams of O(α2
sα4) for the purely

leptonic decay mode.

QCD-induced contributions. Note, however, that a study of VBS in the semi-leptonic
or hadronic decay mode would additionally require to take QCD-background graphs
into account that are of the orders O(α4

sα2) and O(α6
s), respectively. The complication

of both, the theoretical prediction as well as the possible measurement, is therefore
reduced to a minimum by focusing on the fully leptonic decay channel of the weak
gauge bosons, i.e. by considering the hadronic processes

pp → 4ℓ + 2j . (6.3)

Note that these hadronic processes comprises beside the two aforementioned contribu-
tions of the order O(α6) and O(α2

sα4), to which we refer in the following as EW-induced
and QCD-induced contributions, respectively, also interference contribution of the or-
der O(α5αs). However, as has been explicitly shown in Ref. [115], these interference
contributions become negligible in the regions of phase space where VBS processes are
typically investigated, such that we can safely neglect them in our study.

By means of the final-state leptons, it is possible to differentiate between six processes
which contribute to four distinct VBS process classes. In the following we refer to these
process classes as same-sign W-pair production via VBS (W+W+jj and W−W−jj),
W±-Z production via VBS (W+Zjj and W−Zjj), Z-pair production via VBS (ZZjj),
and opposite-sign W-pair production via VBS (W+W−jj). Note that although we refer
to the processes only as massive vector-boson production (W±, Z), the diagrams with
the exchange of photons instead of Z bosons have to be fully taken into account in order
not to violate EW-gauge invariance.

Among the four process classes, the same-sign W-pair process provides a particularly
clean signature in the fully leptonic decay mode, since due to the conservation of the
electric charge no gluon-induced contributions may appear in the QCD-background di-
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Figure 6.6.: Representative diagrams for t̄t-production decaying via W+bW−b̄ to the
4ℓ + 2j final state.

agrams. The opposite-sign W-pair process, on the other hand, is exceptionally plagued
by a huge QCD background. Only for this process, the QCD contributions comprise
diagrams with up to two resonant top quarks, as depicted in Fig. 6.6, which are ad-
ditionally amplified by the genuinely large gluon flux at hadron colliders. In order to
sufficiently suppress this overwhelming t̄t background, additional techniques have to be
applied in order to study the corresponding VBS signal process, as will be discussed in
Sec. 6.3.4.

6.2. Studying VBS at 100 TeV

In order to distinguish the specific signal of VBS reactions from the various background
contributions one is unavoidably confronted with at hadron colliders, dedicated phase-
space cuts for the different process classes are mandatory. Although the basic principles
to improve on the signal-to-background ratio are very well known, at present colliders
one is plagued by the relatively low cross sections in the remaining phase-space regions.
The first experimental studies of VBS processes at the LHC at a c.m. energy of

√
s =

8 TeV by ATLAS [116–118] and CMS [119] for example, are based on merely a few events
in the signal region, allowing only for very loose exclusion bounds for new physics.

While this situation will certainly improve with the higher luminosity and the higher
energy reach of 13 TeV in LHC Run II, a dedicated study of differential distributions
of the final-state particles will remain hardly performable. As already discussed in the
previous chapter, this differential insight is, however, of particular importance, since
possible deviations from the SM are expected to have a large impact in the tails of
distributions, while total cross sections are considerably less sensitive to the effects of
new physics. Since very recently, also a first calculation of the full NLO EW corrections
to same-sign W-pair production via VBS is available [120], such that precise theoretical
predictions, taking QCD and EW corrections into account, should be available very
soon.

Therefore, the particle-physics community already discusses follow-up projects for
future high-energy colliders, operating at even higher energies. For hadron-hadron
colliders those are in particular the Future Circular hadron-hadron Collider (FCC-
hh) [121] at CERN and the Chinese Super proton-proton Collider (SppC) [122], which
were both envisaged operating at 100 TeV. For the sake of notation we refer to both
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concepts in the following simply as FCC, meaning a 100 TeV proton-proton collider.

This year, various studies of SM [113, 123] and BSM [124] processes have been per-
formed to obtain first insights on how and which kind of physics can be explored at the
FCC. In Ref. [113], we have shown that, assuming an integrated luminosity of 30 ab−1,
the FCC delivers a sufficient amount of events to study differential distributions of all
VBS processes up to very high energy scales with reasonable statistics.

In the remaining part of this chapter we present our study of VBS processes at
100 TeV performed in Ref. [113] as well as some results of our forthcoming analysis
presented in Ref. [114].

6.2.1. Setup of the Analysis

In both our analyses [113, 114] we concentrate on the four VBS processes W+W+jj,
W+Zjj, ZZjj, and W+W−jj, each in a specific fully leptonic decay channel, such that
no interference contributions among the process classes have to be taken into account. In
the former study we additionally investigated single-vector boson production processes
via VBF by means of the two processes Zjj and W+jj, which will be presented in
Sec. 6.3.5.

Apart from the QCD background for the opposite-sign W-boson channel, the treat-
ment of which will be discussed separately below, all numerical calculations are per-
formed with the Vbfnlo Monte Carlo package [125]. The implementations of the VBS
processes in Vbfnlo are based on the NLO QCD calculations of Refs. [126–129] and
Refs. [115,130,131] for the EW and QCD-induced processes, respectively.

In particular, these explicit calculations revealed that in the region of phase space
where VBS is typically investigated, the impact of the NLO corrections can be strongly
reduced by a specific choice of the renormalization and factorization scale. Although the
corrections still show a certain kinematic dependence and obviously remain significant
for precise predictions, this outcome also rectifies our restriction to the LO, especially
at such an early stage of the FCC project. The recent elaborate review of Ref. [132]
contains, among other topics, more details on the genuine size of QCD corrections to
VBS and VBF processes. Our specific scale choices for the EW and QCD-induced
contributions will be discussed in the next section.

Note that although we refer to the processes as VVjj-production, the Vbfnlo imple-
mentations on which our predictions are based, fully include all off-shell and finite-width
effects of the EW gauge bosons in a modified version of the complex-mass scheme (see
Sec. 3.2.2) where the weak mixing angle remains real [126]. For processes with interme-
diate Z bosons, also the photon contributions and the respective interference terms are
considered throughout.

For all EW-induced contributions, two particular approximations have been exploited
in order to considerably speed up the computation time of the matrix elements. On
the one hand, they do not include any subprocesses where the incoming quarks directly
fuse to an intermediate weak boson subsequently decaying to the considered final state.
These s-channel contributions are regarded as part of the triple gauge-boson produc-
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tion processes pp → VVV, which populate completely different regions of phase space
than VBS processes, and therefore can be safely neglected in studies concentrating on
the VBS kinematics. Additionally, all interference contributions of t- and u-channel
diagrams in processes with identical final-state (anti-)quarks are disregarded.

The general validity of these two approximations has been shown in Ref. [133] for the
related Higgs production via VBF process (pp → Hjj). After the application of VBS-
specific phase-space cuts, the NLO QCD predictions applying the approximation agreed
with the full results at the level of fraction of a percent. For the LO cross section of the
W+W+jj process similar results have been obtained in Ref. [130]. In the predictions
performed with the Vbfnlo package we additionally disregard all contributions with
external bottom quarks. While this common procedure can be well rectified due to
the small b-quark PDF for initial-state b-quarks and motivated by a very efficient b-jet
veto for final-state b’s, a rigorous proof of this approximation is left to further studies.

The calculation of the QCD-induced background contribution for W+W−jj is per-
formed with the Helac-Dipoles [134] package. As already mentioned in the previous
section, this background in particular comprises gluon-induced contributions with on-
shell top-quarks, decaying via W-boson emission into a 4ℓ + 2b final state. Although
disregarding all final-state b-quarks in the other contributions, for this t̄t-background
we only neglect incoming bottom quarks, while a realistic b-jet veto is applied to the
final-state b’s, as will be discussed in Sec. 6.3.4. Moreover, in the same manner we also
fully include t̄t contributions with one or two additional light jets, which are of the
orders O(α3

sα4) and O(α4
sα4), respectively. Although suppressed due to their higher

order in the strong coupling constant αs, the resonant contributions of these processes
give rise to very large cross sections and are therefore included in our study as part
of the combined t̄t+jets sample. Note again, that these contributions also include all
non-resonant diagrams, interference and off-shell effects of the top quarks as well as the
W-bosons.

To ensure the correctness of our implementations we have cross-checked the results
for the QCD-induced contributions calculated with the Vbfnlo package against the
results obtained with Helac-Dipoles and found full agreement within the numerical
accuracy of the two codes on the integrated as well as on the differential level in all
considered observables.

Our predictions for the single-vector boson production processes via VBF are also
performed with the Vbfnlo package and are based on the implementation of the NLO
QCD calculation presented in Ref. [135].

6.2.2. Input Parameter and Default Selection Cuts

In this section we present the input parameters and a default set of selection cuts
that are used in our numerical analysis. In addition to these selection criteria, for
each considered process class dedicated cuts are applied, which will be derived process-
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specifically in the next section. For all our results we use the SM masses and widths,

MW = 80.385 GeV , ΓW = 2.097547 GeV ,

MZ = 91.1876 GeV , ΓZ = 2.508827 GeV ,

MH = 125.09 GeV , ΓH = 0.004066 GeV ,

mt = 172.5 GeV , Γt = 1.340488 GeV ,

mb = 4.75 GeV .

(6.4)

Note that the mass and width of the top quark, as well as the mass of the bottom
quark will only be relevant in the calculation of the top-background contributions of
the W+W−jj-process.

The EW coupling constant is computed in the Gµ scheme from the above input
parameters and the Fermi constant Gµ = 1.1663787 × 10−5 GeV−2, via

αGµ =

√
2 GµM2

W

π

(
1 − M2

W

M2
Z

)
. (6.5)

The CKM mixing of the quark generations (c.f. Eq. (2.33)) is neglected throughout,
which means we assume a diagonal CKM matrix. For all contributions but the t̄t-
background of the W+W−jj-process, we use the MMHT2014lo68cl set [136] and the
corresponding values of αs as provided by the LHAPDF6 repository [137]. The top-
background contributions are consistently calculated in the 4-flavour scheme and we
employ the MSTW2008lo68cl nf4 PDF set [138].

The factorization and renormalization scales, µF and µR, are set process-specifically:
All EW-induced processes are of O(α6), and, thus, independent of µR. For µF , we
use the momentum transfer Qi from the incoming to the outgoing (anti-)quark on the
upper and lower fermion lines, respectively,

µF = Qi , (6.6)

which has been shown reproduce the shapes of NLO distributions much better than a
fixed scale. The same applies to the QCD-induced processes of O(α2

sα4), where we use
the total transverse energy HVV

T of each event as reference scale, such that

µF = µR = HVV
T /2 , (6.7)

with
HVV

T =
∑

i

pT, i + ET(V1) + ET(V2) . (6.8)

Here, the summation runs over the transverse momenta pT, i of all final-state partons i
of the process. The transverse energy of each gauge boson is computed from its mass
and the momenta of its leptonic decay products according to

ET(Vi) =
√

p2
T(Vi) + M2

Vi
, (6.9)
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where Vi is the corresponding weak gauge boson, W± or Z.
Similarly, for the top-quark induced background processes of the orders O(α2

sα4),
O(α3

sα4), and O(α4
sα4) we use

µF = µR = Htop
T /2 , (6.10)

with the transverse energy Htop
T being computed from the transverse energy of the top

quarks or anti-quarks,

ET(t) =
√

p2
T(t) + m2

top , ET( t̄ ) =
√

p2
T( t̄ ) + m2

top , (6.11)

and the transverse momenta of all light partons in the final state of an event, yielding

Htop
T =

∑

i

pT, i + ET(t) + ET( t̄ ) . (6.12)

For the reconstruction of jets from partons, we use the anti-kT jet algorithm [139]
with a cone radius of R = 0.4. In the final state we demand at least two jets with a
minimum transverse momentum of

pT,jet ≥ 50 GeV . (6.13)

The two hardest jets fulfilling this cut are called tagging jets and are additionally re-
quired to reside in opposite hemispheres of the detector,

yj1 × yj2 < 0 . (6.14)

In addition to the jet cuts, we impose cuts on the transverse momenta and the rapidities
of the charged leptons,

pT,l ≥ 20 GeV , |yl| ≤ 5 , (6.15)

and require a jet-lepton separation in the rapidity-azimuthal angle plane,

∆Rjet,l ≥ 0.4 . (6.16)

Since the VBS topology favours two widely separated tagging jets and central decay
products, a very powerful tool to further suppress the background is provided by re-
quiring the charged leptons to be located between these two tagging jets in rapidity,

ytag
j, min < yl < ytag

j, max . (6.17)

In order to suppress contributions from virtual photons, γ∗ → l+l−, in processes with
intermediate Z bosons, i.e. the process classes ZZjj and W+Zjj, we furthermore impose
the minimal invariant-mass cut on oppositely charged leptons,

Ml+l− > 15 GeV , (6.18)

which we refined for our second study to apply only to same-flavour pairs, Me+e− and
Mµ+µ− . This, however, only affects the ZZjj process class and in the results we explicite
quote the difference between to two applied methods.

In addition to these minimal cuts, dedicated process-specific selection cuts are devised
for each channel.
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6.3. Phenomenological Results

In this section we present the results of our analyses of various VBS (Secs. 6.3.1-6.3.4)
and VBF (Sec. 6.3.5) processes performed to explore the capabilities of a future 100 TeV
proton-proton collider. For each process we devise specific selection cuts to improve on
the signal-to-background (S/B) ratio by simultaneously reduce the cross section of the
signal process as little as possible.

6.3.1. Same-sign W-pair Production via VBS

As already mentioned in the introduction, the same-sign W-pair-plus-dijet process,
pp → W±W±jj, provides the cleanest signature of all VBS processes, as due to charge
conservation no gluon induced subprocesses contribute to the QCD-background. More-
over, since for the same reason each quark line has to be connected to at least one
massive EW boson, the fully inclusive cross section, i.e. without applying any phase-
space cuts, of both, the EW-induced and the QCD-induced, contributions is finite.
These two properties make this process class particularly suitable to study the genuine
properties of VBS reactions at hadron colliders.

In the following we concentrate on the pp → W+W+jj process, which, due to the
positive charge of the proton, yields a slightly larger cross section than the production
of two negatively charged Ws, and consider the particular final state νee

+νµµ+jj. Re-
sults for the related W−W−jj process are obtained thereof by charge conjugation and
parity reversal. Note, however, that these transformations also include the initial-state
protons, requiring to change the respective proton PDFs to anti-proton PDFs.

In Fig. 6.7 we show the energy dependence of the EW- and QCD-induced contri-
butions of the fully inclusive cross section, revealing a dominance of the EW-induced
process above a hadronic c.m. energy of about 33 TeV. This demonstrates that kine-
matic properties of specific contributions might well become equally important as the
size of the involved couplings, which would rather suggest an obviously larger QCD
contribution independently of the energy regime.

By looking at the differential distribution of the invariant mass of the two tagging
jets, mjj, in the fully inclusive setup, depicted on the left-hand side (l.h.s.) of Fig. 6.8,
the increasing dominance towards larger energies becomes apparent. While the region
that is preferably populated by QCD contributions is also accessible with lower energies,
the production of two jets with a large invariant mass, as favoured by the EW-induced
process, only becomes competitive at more powerful colliders. However, even at 7 TeV,
where the QCD-induced process exceeded the EW contributions by roughly a factor of
1.7 at the inclusive level, process-specific cuts allow to achieve a S/B ratio of ∼ 27, as
explicitly shown in the NLO analysis of Ref. [140].

For such an efficient suppression of the QCD-background contributions, beside the
invariant dijet mass, also the rapidity separation of the two jets,

∆yjj = |yj1 − yj2| , (6.19)
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Figure 6.7.: Energy dependence of the EW-induced (blue line) and QCD-induced (red
line) contributions to the fully inclusive cross section for pp → νee

+νµµ+jj. The lower
panel shows the ratio of the EW- to the QCD-induced contribution.
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Figure 6.8.: Invariant mass (l.h.s.) and rapidity separation (r.h.s.) of the two tagging
jets for the EW-induced (blue line) and QCD-induced (red line) contributions to pp →
νee

+νµµ+jj, without any selection cuts.

plays a very important role, as it exhibits particularly distinctive shapes for the two
production mechanisms. On the right-hand side (r.h.s.) of Fig. 6.8 we show the rapidity
separation in the fully inclusive setup. From the two plots of Fig. 6.8 we observe that
the two jets from the QCD-induced W+W+jj processes are mostly produced with a
small invariant mass and close to each other in rapidity, while the VBS contribution to
the EW-induced processes gives rise to a dijet system of large invariant mass and large
rapidity separation.

We will use this distinct kinematic property of the VBS production mode as the
most important ingredient for the efficient suppression of the QCD-background in all
process classes. Although for the W+W+jj process already the application of our
default selection cuts of Eqs. (6.13)–(6.17) yields a S/B ratio of 24, we additionally
impose the specific selection cuts

mjj > 500 GeV , ∆yjj > 1.5 , (6.20)

to define our VBS setup for the W+W+jj process. In Tab. 6.1 we list the cross sections
for the two separate contributions together with the achieved S/B ratios for the three
different selection criteria discussed so far. Since our result for the S/B ratio of 29 only
slightly improved with respect to the 7 TeV analysis of Ref. [140] mentioned above,
we want to stress that our VBS-specific cuts of Eq. (6.20) are very loose, especially
compared to the applied VBS cuts of the 7 TeV analysis (mjj > 600, ∆yjj > 4), which
yield an EW-signal of only 0.2 fb [140]. In Fig. 6.9 we show the invariant mass distri-
bution and rapidity separation of the two tagging jets, now after the application of our
default cuts and the additional VBS-specific cuts of Eq. (6.20), respectively. Compared
to Fig. 6.8 we recognize the huge impact due to the application of the default cuts,
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FCC - W+W+jj σEW [fb] σQCD [fb] S/B

fully inclusive 125.05(4) 92.1(1) 1.36

default cuts 49.936(8) 2.081(2) 24.00

VBS cuts 49.335(8) 1.683(1) 29.33

Table 6.1.: Cross-section contributions for the EW-induced W+W+jj production pro-
cess together with the irreducible QCD background and the S/B ratio within the fully
inclusive setup, our default selection cuts of Eqs. (6.13)–(6.17), and our VBS selection
cuts, applying in addition to the default setup also the cuts of Eq. (6.20). The numbers
in parentheses represent the Monte Carlo uncertainty on the last given digit.
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Figure 6.9.: Invariant mass (l.h.s.) and rapidity separation (r.h.s.) of the two tagging
jets for the EW- and QCD-induced contributions to pp → νee

+νµµ+jj within our
default selection cuts of Eqs. (6.13)–(6.17) (green and purple line) and the additional
VBS-specific cuts of Eq. (6.20) (blue and red line).
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Figure 6.10.: Transverse-momentum distributions of the hardest tagging jet (l.h.s.)
and the anti-muon (r.h.s.) for the EW-induced (blue line) and QCD-induced (red line)
contributions to pp → νee+νµµ+jj, within the selection cuts of Eqs. (6.13)–(6.17) and
Eq. (6.20).

leading already to a dominance of the EW-induced contribution over almost the entire
kinematic range. Our VBS-specific cuts of Eq. (6.20) are finally devised such that they
eliminate the remaining QCD-dominated regions, as can be seen in Fig. 6.9.

While the EW-induced contribution is only marginally affected by the VBS-specific
cuts (−0.6 fb ≃ −1%), they reduce the QCD background by 19% and, thus, improving
the S/B ratio by another 5% compared to the default selection criteria. Due to the
steep decrease of the mjj-distribution in Fig. 6.9 it is obvious that much higher S/B-
ratios can be easily achieved by simply increasing the cut value towards larger invariant
dijet mass, which, however, would also significantly decrease our signal cross section.

In the final VBS setup, the impact of the QCD-background contributions on the
differential distributions of the individual final-state particles is also very small, as we
representatively demonstrate for the hardest tagging jet (j1) and the anti-muon (µ+).
In the Figs. 6.10 and 6.11 we show their transverse-momenta and rapidity distributions,
respectively, which are all clearly dominated by the EW-induced process over the entire
kinematic range.

The transverse-momentum distribution of the hardest tagging jet in the EW-induced
process exhibits a peak at about 170 GeV, while the QCD-induced contribution tends
to produce slightly softer jets. The respective distribution of the anti-muon is less
distinctive and only shows a slightly steeper decrease towards larger energy scales for
the QCD-induced contribution.

In 6.11 we observe that the majority of the tagging jets in the QCD mode are typically
produced at smaller rapidities than in the EW case, where the two peaks in dσ/dyj1

occur at values as large as ±4. The anti-muons, on the other hand, are mostly located
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Figure 6.11.: Rapidity distributions of the hardest tagging jet (l.h.s.) and the anti-
muon (r.h.s.) for the EW-induced (blue line) and QCD-induced (red line) contributions
to pp → νee+νµµ+jj, within the selection cuts of Eqs. (6.13)–(6.17) and Eq. (6.20).

at central rapidities in both production modes.
The tails of the invariant mass distributions of the gauge-boson system are most

sensitive to the exact realization of EWSB in the SM or possible new physics effects.
In the W+W+jj channel, however, this quantity is not fully reconstructible due to the
presence of two final-state neutrinos, which escape the detector without observation.
In this case, the transverse mass of the W+W+ system is considered instead, that is
defined by

MTWW
=
√(

E ll
T + E miss

T

)2 −
(
~p ll

T + ~p miss
T

)2
, (6.21)

with
E ll

T =
√

(~p ll
T )2 + M2

ll , E miss
T = |~p miss

T | , (6.22)

where, ~p ll
T denotes the transverse momentum of the charged-lepton system, and ~p miss

T

is the total transverse momentum of the neutrino system.
The transverse-mass distribution depicted on the l.h.s of Fig. 6.12 clearly exhibits

the dominance of the EW signal over the entire kinematic range. Thus, even after the
application of a severe cut on MTWW

that might be necessary in new physics searches,
the impact of the QCD-induced background on the VBS signal will remain small, or
might even be further reduced. On the r.h.s. of Fig. 6.12 we show the number of events
above a specific minimal value of MTWW

, assuming an integrated luminosity of 30 ab−1.
Given the steep decrease of the MTWW

distribution towards larger energy scales of four
orders of magnitude for a 6 TeV increase of the invariant mass, it is remarkable that
above 10 TeV still O(102) signal events are delivered at the FCC. This explicitly reveals
the potential of the FCC to test the SM via VBS reactions up to very high energy
scales.
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Figure 6.12.: Transverse-mass distribution of the gauge-boson system (l.h.s.) and
total number of events (N) produced above a certain minimal value Mmin

TWW
for the

same observable (r.h.s.) for the EW-induced (blue line) and QCD-induced (red line)
contributions to pp → νee

+νµµ+jj, within the selection cuts of Eqs. (6.13)–(6.17) and
Eq. (6.20). For the computation of the number of events an integrated luminosity of
30 ab−1 is assumed.

6.3.2. W±Z Production via VBS

In contrast to the same-sign W-pair production channel that is free of gluon-induced
background processes, the remaining VBS reactions are plagued by considerably larger
QCD backgrounds. Additionally, the fully inclusive cross sections of all other processed
are not by themselves finite. For this reason we begin our investigation after the appli-
cation of our default cuts.

We concentrate again on the positively charged W-boson in the W±Zjj channel,
which yields a slightly larger cross section than the W−Zjj mode, and consider the
representative pp → e+νeµ

+µ−jj process.
In Fig. 6.13 we show the invariant mass and rapidity separation of the two tagging jets

after our default cuts have been applied. This illustrates clearly the different behaviour
of the dijet system in the W+Zjj mode compared to the W+W+jj channel considered
in the same setup in Fig. 6.9. The invariant dijet mass is still dominated by QCD
corrections up to around mjj ∼ 4 TeV, and only for rapidity separations larger than
roughly ∆yjj = 7 the EW-induced process begins to yield the largest contribution.
However, due to the interplay between the two observables already the considerably
looser process-specific selection criteria

mjj > 2500 GeV , ∆yjj > 5 , (6.23)

lead to a reduction of the QCD-induced contribution of almost 90%, while actually 60%
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Figure 6.13.: Invariant mass (l.h.s.) and rapidity separation (r.h.s.) of the two tagging
jets for the EW-induced (blue line) and QCD-induced (red line) contributions to pp →
νee

+µ−µ+jj, within our default selection cuts of Eqs. (6.13)–(6.18).

of the EW-induced process remains in our signal region, resulting in a S/B ratio of 1.8.
In Tab. 6.2 we list the cross section of the two considered selection criteria including
the corresponding S/B ratio.

Figure 6.14 shows the invariant mass and the rapidity separation of the two jets after
our process-specific VBS cuts of Eq. (6.23) have been applied. As before, a better S/B
ratio can be easily achieved by raising the cut on mjj towards larger invariant masses
since the QCD-induced process shows a much steeper decrease in this observable.

Even though the purely leptonic decay mode of the W±Zjj process class also contains
a neutrino in the final state that is invisible to the detector, the invariant-mass distribu-
tion of the leptonic decay products, MWZ, can be reconstructed. Following Ref. [141],
the unknown longitudinal component of the neutrino momentum is constrained by the
solution of the quadratic equation

M2
W+ = (pνe + pe+)2 , (6.24)

which physically means that we assume all neutrinos being produced by an on-shell
decay of the W+-boson. For kinematic configurations that do not allow for a (real)
solution of Eq. (6.24), the MWZ histogram is not filled, thus resulting in a slightly
reduced cross section for the corresponding observable. In our VBS setup this reduction
amounts to ∼ 11 % for the EW- as well as for the QCD-induced contribution and hence
does not change the S/B ratio. However, this effect has to be taken into account also
in the theoretical prediction in order to accurately predict the outcome of a possible
measurement, where the momentum of the neutrino always has to be reconstructed.

On the l.h.s of Fig. 6.15 we show the reconstructed invariant-mass distributions of
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Figure 6.14.: Invariant mass (l.h.s.) and rapidity separation (r.h.s.) of the two tagging
jets for the EW-induced (blue line) and QCD-induced (red line) contributions to pp →
νee

+µ−µ+jj, within our default selection cuts of Eqs. (6.13)–(6.18) and the process-
specific VBS cuts of Eq. (6.23).
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An integrated luminosity of 30 ab−1 is assumed.
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FCC - W+Zjj σEW [fb] σQCD [fb] S/B

default cuts 8.464(2) 23.38(1) 0.36

VBS cuts 5.0771(7) 2.786(2) 1.82

Table 6.2.: Cross sections for the EW-induced W+Zjj production process together
with the irreducible QCD background and the signal-to-background ratio, S/B, within
our default selection cuts of Eqs. (6.13)–(6.18) and the VBS selection criteria, with the
additional cuts of Eq. (6.23). The numbers in parentheses represent the Monte Carlo
uncertainty on the last given digit.

the leptonic decay products, for the EW- and QCD-induced contribution. Since there
exists no particle within the SM exhibiting the appropriate quantum numbers and mass
to resonantly produce an on-shell W+Z system, both contributions are characterized
by a broad continuum.

In particular BSM models, however, so-called W′ bosons are predicted, potentially
decaying into the WZ system which, thus, would lead to a clear signal above the SM
continuum in the MWZ distribution. Among the most prominent examples showing
such a signature are Kaluza-Klein models, where the compactification of an additional
space-time dimension leads to towers of gauge bosons with masses that would allow for a
resonant decay into the W±Z-gauge boson system. The impact of such new resonances
on VBS signatures was discussed, e.g., in [142].

On the r.h.s of Fig. 6.15 we show the number of events expected in the reconstructed
MWZ distribution above a specific value of MWZ. Assuming an integrated luminosity
of 30 ab−1, within our VBS selection criteria this distribution would be experimentally
accessible at least up to 8 TeV, where we still expect O(102) events in the EW-induced
contribution.

6.3.3. Z-pair Production via VBS

The ZZjj channel is of particular phenomenological importance, both, in the high
energy region, where it is sensitive to new scalar resonances, but also in lower energy
regions where this process comprises the most important background contribution to
Higgs production via VBF in the H → ZZ decay mode.

From the experimental point of view, the ZZjj channel provides the cleanest signature
of all VBS processes in the fully leptonic decay channel, since the kinematics of the
gauge-boson system is fully reconstructable, without any additional constraints. Note
that this process with four charged leptons in the final state is slightly more affected
by the lepton cuts of our default selection given in Eqs. (6.15)–(6.18). Much more
importantly to consider, however, is the rather small branching fractions of Z → l−l+ of

merely 3.4 %, compared to ∼ 11 % for W± → l±
(– )

ν [104], as well as the smaller couplings
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FCC - ZZjj σEW [fb] σQCD [fb] S/B

default cuts 2.9575(9) 1.8773(8) 1.58

VBS cuts 2.1825(7) 0.2279(2) 9.58

Table 6.3.: Cross sections for the EW-induced ZZjj production process together with
the irreducible QCD background and the signal-to-background ratio, S/B, within our
default selection cuts of Eqs. (6.13)–(6.18) and the VBS selection cuts, with the ad-
ditional cuts of Eq. (6.25). The numbers in parentheses represent the Monte Carlo
uncertainty on the last given digit.

of the Z bosons to the incoming quarks (see Tab. C.4 in App. C), which consequently
results in much smaller cross sections for ZZ production via VBS than for the two
process classes considered before.

Nevertheless, we concentrate in the following on the purely leptonic decay mode ZZ →
e−e+µ−µ+ and show that this process may be studied with sufficient statistics at the
FCC. In Tab. 6.3 we list the EW- and QCD-induced contributions to the cross section
within our default cut setup of Eqs. (6.13)–(6.18) and after the additional application
of the process-specific VBS cuts of

mjj > 2000 GeV , ∆yjj > 3 , (6.25)

which reduce the cross section of the QCD induced contribution by almost 90 %, while
74 % of the EW-signal cross section pass the additional cuts, resulting in a S/B ratio
of almost 10.

Applying the cut of Eq. (6.18) to all pairs of oppositely charged leptons, i.e. addi-
tionally including a cut on the two pairs e−µ+ and e+µ−, result in the cross sections
σEW = 2.1506(7) and σQCD = 0.2235(2). Since this corresponds to a difference to our
default setting, where the cut is only applied to same-flavour pairs, listed in Tab. 6.3 of
less than −2 % for both production modes, we can safely state that such a treatment
does not notably change the result.

Figure 6.16 illustrates the influence of the VBS-specific cuts of Eq. (6.25) on the two
directly affected dijet observables mjj and ∆yjj. While for invariant masses larger than
roughly 1.5 TeV the EW-induced cross section already dominates without the additional
cuts of Eq. (6.25) their application leads to a clear dominance over the whole kinematic
range in both observables.

Within these selection criteria, the invariant mass of the ZZ system constructed from
the four final-state leptons is shown in Fig. 6.17 for two different kinematic ranges.
In the low energy region, on the l.h.s., we can identify the Z-boson peak at around
91 GeV, appearing in both production modes, while the Higgs resonance is only part of
the purely EW process. Note, in particular, that the EW-induced process is more than
three orders of magnitude larger at the Higgs resonance than the QCD-background
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Figure 6.16.: Invariant mass (l.h.s.) and rapidity separation (r.h.s.) of the two tagging
jets for the EW-induced and QCD-induced contributions to pp → e−e+µ−µ+jj, within
our default selection cuts of Eqs. (6.13)–(6.18) (green and purple line) and the additional
application of the VBS-specific cuts of Eq. (6.25) (blue and red line).
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Figure 6.18.: Total number of events (N) produced with MZZ > Mmin
ZZ (l.h.s.) and

with mjj > mmin
jj (r.h.s.) for the EW-induced (blue line) and QCD-induced (red line)

contributions to pp → e−e+µ−µ+jj, within the selection cuts of Eqs. (6.13)–(6.18) and
Eq. (6.25). An integrated luminosity of 30 ab−1 is assumed.

contribution, although we did not even apply specific selection cuts to pronounce this
region. Instead, our selection cuts of Eq. (6.25) are designed especially to suppress the
QCD background in the high energy region, which is shown for the same observable on
the r.h.s. of Fig. 6.17. The broad continuum above the Z-pair production threshold of
MZZ = 2MZ ≈ 180 GeV is clearly dominated by the EW-induced contribution above
which new physics effects entering via the EW-sector could be visible as distinct peaks,
similar to the Higgs peak.

Compared to the fast decrease of the QCD-induced contribution in the mjj distribu-
tion (l.h.s. of Fig. 6.16) the MZZ observable almost shows a constant differential S/B
ratio above the Z-pair threshold. This becomes even more apparent if we consider the
number of events above a specific minimal value for these two observables, depicted
in Fig. 6.18. The number of events with an invariant four-lepton mass above Mmin

ZZ is
shown on the left up to Mmin

ZZ = 14 TeV, above which less than 10 events are expected if
an integrated luminosity of 30 ab−1 is assumed. Every cut value on MZZ basically yields
the same S/B ratio as our integrated result and for every 10 events of the EW-induced
process one QCD-background event is expected. The situation is quite different in case
of the invariant dijet mass, which we show on the r.h.s. of Fig. 6.18. Here, up to a cut
value of ∼ 40 TeV presumably sufficient events to perform differential measurements are
predicted. As expected from the results for the W+W+jj and W+Zjj process classes,
the S/B ratio can most easily be improved by further raising the cut on mjj, which is
also apparent from Fig. 6.16. Based on Fig. 6.18 we can state that even for cut values
on the invariant dijet mass as large as 10 TeV still O(104) events are expected for the
EW-induced signal process, while the QCD-background is already suppressed by a least
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two orders of magnitude and therefore of minor importance.

6.3.4. Opposite-sign W-pair Production via VBS

The purely EW opposite-sign W-pair production process via VBS exhibits the largest
cross section of all VBS reactions. For the considered final state with different types of
leptons, νee

+µ−ν̄µjj, within our default cut setup of Eqs. (6.13)–(6.17) we obtain with
99.38(8) fb almost twice the cross section of the W+W+jj process (c.f. Tab. 6.1).

However, in contrast to the same-sign W-pair VBS process, also the QCD back-
grounds for the oppositely charged W-pair process are much larger. The aforementioned
gluon-induced contributions are one reason, but additional contributions stemming from
the top-quark pair production processes (t̄t) account for the major part of the back-
ground. Considering the dominant decay mode of the top quarks into W bosons and
bottom quarks, the latter may be misidentified as light-flavour tagging jets, thus leading
to the same 4ℓ2j final state as the EW-signal process. Assuming an ideal (i.e. 100%
efficient) b-tagging efficiency, these contributions obviously may be omitted entirely,
but if realistic efficiencies are assumed for the b-jet veto, some events of this large back-
ground contribution will definitely remain in the sample. Additionally, modes where a
t̄t pair is produced in association with one or two additional light-flavour jets that may
mimic the tagging jets of a VBS event are even more problematic than t̄t-production
without additional jets. As we will see, these modes will remain the major source of
background.

For a realistic estimate of the background contribution, in addition to the genuine
QCD background with two light-flavour jets in the final state, we therefore fully include
a t̄t + jets sample in our analysis. This sample comprises of the three LO processes

pp → 4ℓbb̄ , pp → 4ℓbb̄j , pp → 4ℓbb̄jj , (6.26)

to which we refer in the following simply as t̄t, t̄tj, and t̄tjj, respectively. The calcula-
tion of all QCD-background contributions is performed with the Helac-Dipoles [134]
package in which all non-resonant diagrams, interference and off-shell effects of the top
quarks as well as the W bosons are fully taken into account.

Considering the t̄t process, the two resulting tagging jets always stem from the two
b quarks. We apply the realistic b-tagging efficiencies listed in Tab. 6.4 to both final-
state b-quarks and discard any event in which at least one of them has been identified
as such.

For the t̄tj process, only one of the two b quarks must be misidentified as light-flavour
tagging jet, while the additional light jet mimics the second tagging jet and the second
b-jet remains untagged and therefore entirely unconstrained (note that Eq. (6.13) only
applies to the two tagging jets). Actually, this is even the only configuration we take
into account for the t̄tj process, since the other possibility—two misidentified b-jets
and an unconstrained light (i.e. massless) jet—is the real-correction contribution to the
t̄t process, which is not well defined without the virtual contribution. Only due to the
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pveto
T j [GeV] 1.4 < |ηveto

j | |ηveto
j | < 1.4

50 - 80 65% 75%

80 - 120 70% 80%

120 - 170 70% 80%

> 170 65% 75%

Table 6.4.: Assumed b-tagging efficiencies as functions of the transverse momentum
of the jet for different rapidity ranges (adapted from Ref. [142]).

finite bottom-quark mass, the process with the unconstrained b-jet yields a finite and
therefore well defined contribution.

The same procedure is applied to the t̄tjj process, where consequently both light jets
have to mimic the tagging jets and the two b-jets remain unconstrained in the event.

In order to suppress the t̄t + jets background as much as possible we further apply
a central-jet veto, which means we reject any event with an additional observed jet in
the rapidity interval between the two tagging jets,

ytag
j,min < yveto

j < ytag
j,max . (6.27)

For this jet veto to apply, we require the additional jet to exhibit at least a transverse
momentum of pveto

T,j ≥ 50 GeV to be well detectable. Note that the contributions of
the EW VBS signal and the QCD-induced W+W−jj background never exhibit more
than two jets and, thus, always pass the cut of Eq. (6.27). Additional jet activity
would occur in these reactions only in higher-order corrections that include real-emission
contributions. It is, however, a well-known feature of the VBS-signal processes, that
extra parton emission typically occurs close to the tagging jets, see e.g. Ref. [143]
and references therein. In contrast to t̄t production and the genuine QCD-induced
background, even at NLO, the EW-signal contribution therefore exhibits hardly jet
activity in the central-rapidity region, such that a central-jet veto is a very powerful
tool to suppress these kind of background contributions.

In addition to the default cut setup of Eqs. (6.13)–(6.17), the realistic b-jet veto, as
well as the central-jet veto of Eq. (6.27), the following process-specific cuts are imposed
to define the VBS-cut setup,

mjj > 2000 GeV , ∆yjj > 5 . (6.28)

Even with these rather stringent cuts on the dijet system, however, the t̄t + jets contri-
bution clearly dominates the EW VBS signal. While the genuine QCD background is
already reduced to less than half the signal contribution of about 58 fb, just the gluon–
gluon-induced channels of the t̄t+jets background by far exceed the signal cross section,
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FCC - W+W−jj σEW [fb] σQCD [fb] σt̄t+jets [fb] S/B

VBS cuts 58.27(2) 22.257(8) ∼ 190 (gg-only) > 0.25

+ MTWW
> 1 TeV 3.589(2) 0.3895(7) 4.23(3) 0.8

Table 6.5.: Cross sections for the EW-induced W+W−jj production process together
with the irreducible backgrounds, comprising the QCD contribution and the t̄t+jets
contribution, and the signal-to-background ratio, S/B. Results are given for our VBS
selection setup (first row), which is defined by the default selection cuts of Eqs. (6.13)–
(6.17) supplemented by the process-specific cuts of Eqs. (6.27) and (6.28), and the
additional application of the MTWW

-cut of Eq. (6.29) (second row). The numbers in
parentheses represent the Monte Carlo uncertainty on the last given digit.

as they account for already ∼ 190 fb. In the first row of Tab. 6.5 the cross sections of
the three considered contributions are listed.

In Fig. 6.19 we show the transverse mass of the diboson system, MTWW
, constructed

from the momenta of the charged leptons and the missing transverse momentum (c.f.
Eq. (6.21)) for two different mass ranges. On the left, where we entirely omitted the
dominating t̄t+jets contribution, we observe a prominent peak, which is a reminiscent of
the Higgs-boson resonance at MWW = MH and therefore only appears in the EW-signal
contribution. In contrast to the sharp peak in MZZ shown on the l.h.s. of Fig. 6.17 for
the related ZZjj-process, the peak in the transverse mass is clearly smeared out towards
lower scales, since the longitudinal component remains unobserved in MTWW

. Above the
W-pair production threshold of MWW = 2MW ∼ 160 GeV we notice a slight decrease
of the signal as well as the background contribution. On the r.h.s. we show the same
observable, now in the high-energy region, where the steep decrease of the dominating
t̄t + jets contribution towards larger invariant masses is plainly visible, which finally
allows to study the VBS signal contribution in a cleaner environment.

By applying a cut on the transverse mass of the gauge-boson system, the dominant
t̄t + jets contribution can finally be drastically reduced. In the second row of Tab. 6.5
we list the resulting cross sections obtained by applying the cut

MTWW
> Mmin

TWW
= 1 TeV , (6.29)

additionally to the former VBS setup, which results in a S/B-ratio of 0.8. The obtained
signal cross section of 3.6 fb is still large enough for a dedicated analysis, and even
slightly more stringent cuts on the transverse diboson mass to further improve on the
S/B-ratio might be possible. In Fig. 6.20 we show the invariant mass and rapidity
separation of the two tagging jets, where all the cuts mentioned above have been applied.
While the genuine QCD-background contribution is well suppressed by the applied cuts,
the t̄t + jets background dominates the EW VBS signal up to invariant dijet masses of
about 7 TeV and jet-rapidity separations as large as 8.
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Figure 6.19.: Transverse-mass distribution of the gauge-boson system for two different
plot ranges for the EW-induced (blue line), QCD-induced (red line) and t̄t+jets (black
line, only r.h.s.) contributions to pp → νee

+µ−ν̄µjj, within our VBS selection criteria
defined by the default cuts of Eqs. (6.13)–(6.17), the process-specific cuts of Eq. (6.28),
as well as the realistic b-jet veto and the central-jet veto of Eq. (6.27) for the t̄t+jets
contribution.

t̄t + jets
LOQCD

LOEW

pp → νee
+µ−ν̄µjj

W+W−jj:

MTWW
> 1TeV

VBS cuts

√
spp = 100TeV

dσ
dmjj

[

fb
TeV

]

mjj [TeV]

20151050

10−3

10−4

t̄t + jets
LOQCD

LOEW

pp → νee
+µ−ν̄µjj

W+W−jj:

MTWW
> 1TeV

VBS cuts

√
spp = 100TeV

dσ
d∆yjj

[fb]

∆yjj

121110987654

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 6.20.: Invariant mass (l.h.s.) and rapidity separation (r.h.s.) of the two tagging
jets for the EW-induced (blue line) QCD-induced (red line) and t̄t+jets (black line) con-
tributions to pp → νee

+µ−ν̄µjj, within our constrained VBS selection criteria defined
by the default cuts of Eqs. (6.13)–(6.17), the process-specific cuts of Eq. (6.28), the
additional MTWW

-cut of Eq. (6.29), as well as the realistic b-jet veto and the central-jet
veto of Eq. (6.27) for the t̄t+jets contribution.
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FCC W+jj σEW [fb] σQCD [fb] S/B

VBF I (Eq. (6.30)) 6980.1(8) 41324(10) 0.17

VBF II (Eq. (6.32)) 1488.1(4) 1227.8(8) 1.21

Table 6.6.: Cross sections for the EW-induced W+jj production processes together
with the irreducible QCD background and the signal-to-background ratio, S/B, within
our two different VBF-cut scenarios discussed in the text. The numbers in parentheses
represent the Monte Carlo uncertainty on the last given digit.

Although more stringent cut on the invariant dijet mass or the transverse mass of the
lepton system would definitely help to further improve on the S/B ratio, the dedicated
study of the W+W−jj process via VBS would benefit most from additional techniques
to suppress the t̄t+ jets background, which do not further diminish the signal contribu-
tion. Since an improvement of the b-tagging efficiencies of Tab. 6.4 will almost certainly
be achieved until the FCC starts its operation, we are very confident that at such a
machine also the same-sign W-boson pair production process via VBS will be subject
to precise investigations.

6.3.5. Single Gauge-Boson Production via VBF

The genuine QCD-background contributions to single gauge-boson production via VBF
are much larger compared to the gauge-boson pair production processes via VBS dis-
cussed so far. In order to yield sufficiently large S/B ratios to investigate the VBF
process at a future FCC, the techniques applied so far have to be slightly modified. In
the following we consider the representative e−e+jj and νee

+jj final states for the two
VBF processes Zjj and W+jj, respectively.

Extending our default cut setup of Eqs. (6.13)–(6.18) by the two typical VBF-specific
cuts on the dijet system

mjj > 2000 GeV , ∆yjj > 5 , (6.30)

the QCD-background contributions still dominate both considered VBF-signal processes
by roughly a factor of five. The corresponding cross sections and the S/B ratio are given
in Tabs. 6.6 and 6.7 for the W+jj and Zjj process, respectively, where we refer to this
setup as VBF I.

In Fig. 6.21 we representatively show the two dijet observables for the W+jj process
within this cut setup. Although simply raising the mjj-cut value would definitely
slightly improve on the poor S/B ratio, the QCD-induced contribution would still
dominate the cross section at least up to a cut value of mcut

jj = 12 TeV. In order to
further improve on the S/B ratio without loosing also most of the signal, we rather
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FCC Zjj σEW [fb] σQCD [fb] S/B

VBF I (Eq. (6.30)) 1079.5(3) 5164(1) 0.21

VBF II (Eq. (6.32)) 154.4(1) 138.0(1) 1.12

Table 6.7.: Cross sections for the EW-induced Zjj production processes together with
the irreducible QCD background and the signal-to-background ratio, S/B, within our
two different VBF-cut scenarios discussed in the text. The numbers in parentheses
represent the Monte Carlo uncertainty on the last given digit.
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Figure 6.21.: Invariant mass (l.h.s.) and rapidity separation (r.h.s.) of the two tagging
jets for the EW-induced (blue line) and QCD-induced (red line) contributions to pp →
νee

+jj, within our VBF I cut setup, defined by the default selection cuts of Eqs. (6.13)–
(6.17) and Eq. (6.30).
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Figure 6.22.: Distribution of the y⋆
l variable (l.h.s.) and rapidity distribution of the

positron (r.h.s.) for the EW-induced and QCD-induced contributions to pp → νee
+jj,

within the selection cuts of Eqs. (6.13)–(6.16) and Eq. (6.30), without (green and purple
line) and with (blue and red line) the lepton rapidity-gap cut of Eq. (6.17).

consider other distributions, that might reveal a distinct difference between the EW-
induced and the QCD-induced contribution. A particularly important cut for the QCD-
suppression is for example the already applied cut on the lepton rapidity relative to the
tagging jets, Eq. (6.17), since the QCD-background typically features leptons that are
not located in between the tagging jets. We illustrate the impact of this cut in Fig. 6.22
by means of the y⋆

l variable on the l.h.s., which is defined as

y⋆
l = yl −

ytag
j1

+ ytag
j2

2
, (6.31)

giving the relative position of the charged lepton with respect to the two tagging jets,
and the rapidity distribution of the positron on the r.h.s.. In both plots we show the
EW- and QCD-induced contributions without (green and purple line) and with (blue
and red line) the cut of Eq. (6.17). While the EW-induced contribution, that is mainly
located around small values in both distributions, looses only ∼ 5 %, the cut has a large
impact on the QCD-background contribution, reducing its contribution by 40 %.

By further restricting the lepton(s) to the central rapidity region and additionally
slightly amplifying our VBF I cut setup, a considerable improvement of the S/B ratio
can be effected. Therefore, we define the selection criteria VBF II by supplementing
the default cuts of Eqs. (6.13)–(6.18) by

mjj > 3000 GeV , ∆yjj > 6 , |yl| ≤ 1 . (6.32)

The integrated cross sections and the S/B ratios obtained by imposing these more
severe cuts are also given in Tabs. 6.6 and 6.7. Considering Fig. 6.23, which shows
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Figure 6.23.: Invariant mass (l.h.s.) and rapidity separation (r.h.s.) of the two tagging
jets for the EW-induced (blue line) and QCD-induced (red line) contributions to pp →
νee

+jj, within our VBF II cut setup, defined by the default selection cuts of Eqs. (6.13)–
(6.17) and Eq. (6.32).

the distributions of the resulting invariant dijet mass and jet-rapidity separation, we
notice that even higher S/B ratios can now again be easily achieved by raising the
mjj-cut towards higher energy scales, as the corresponding distribution shows a much
steeper decrease of the QCD-induced contribution than in the VBF I cut setup, shown in
Fig. 6.21. Even more severe cuts on the jet-rapidity separation, on the other hand, would
further diminish the EW-contribution unnecessarily, without significantly improving on
the S/B ratio.

Note, however, that even though the application of the VBF II cuts reduces the total
cross section of both considered VBF processes by roughly 95 % with respect to the
looser VBF I cuts of Eq. (6.30), the remaining cross sections are still much larger than
the ones obtained for the VBS processes in the previous sections. Figure 6.24 clearly
indicates that even after the application of much more severe cuts on the invariant dijet
mass, to further improve on the S/B ratio, the FCC would be capable to deliver a
sufficient amount of events to precisely study the details of VBF processes.

6.4. Summary and Conclusions

Studying VBS reactions provides direct insight into the consequences of EWSB in the
SM and is therefore of utter importance in present and upcoming searches for new
physics entering via the weak sector. Unfortunately, taking the couplings to production
and decay fermions into account, the lowest possible order to study VBS is already via
processes of O(α6), which consequently provide relatively small cross sections. More-
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Figure 6.24.: Total number of events (N) produced with with mjj > mmin
jj for the EW-

induced (blue line) and QCD-induced (red line) contributions to pp → νee
+jj (l.h.s.)

and pp → e−e+jj (r.h.s.), within the cut setup VBF II, comprising the selection cuts
of Eqs. (6.13)–(6.18), and Eq. (6.32). An integrated luminosity of 30 ab−1 is assumed.

over, at hadron colliders additional background contributions of the order α2
sα4 have

to be taken into account which generally lead to much larger cross sections than the
purely EW contribution.

In this chapter we demonstrated that a future proton-proton collider operating at a
c.m. energy of 100 TeV would provide excellent opportunities for detailed studies of the
different VBS reactions. For each of the four VBS process classes W±W±jj, W±Zjj,
ZZjj, and W+W−jj we discussed one representative final state in detail and pointed
out how dedicated event-selection criteria can be used to efficiently suppress the con-
sidered background contributions. A particular role in the suppression of background
contributions is played by the cuts on the dijet-system, as the final-state jets feature
entirely different kinematic properties for both production modes. While the final-state
jets of the VBS signal contribution are generally widely separated in rapidity and ex-
hibit large invariant dijet masses, the major part of the-QCD background processes
features much closer final-state jets leading to small invariant dijet masses. Exploiting
these facts the signal-to-background ratios of all process classes have been considerably
improved.

The same-sign W-boson pair production process via VBS is of particular interest, as
this process possesses by far the cleanest signal. Due to the charge structure, the EW
contribution dominates the QCD background already at the fully inclusive level, such
that even comparably loose additional VBS cuts drastically reduce the background,
while the signal contribution is only marginally affected. Basically over the entire
remaining phase space, the VBS process dominates the cross section and could therefore
easily be studied by means of several differential distributions.
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For two of the process classes, W±Zjj and ZZjj, we observed in principle a rather
similar behaviour. We demonstrated how the specific application of the additional cuts
on the invariant dijet mass and the rapidity separation of the jets affect the resulting
cross-section contributions and the obtained signal-to-background ratios. By means
of the invariant di-boson mass, we have shown that both processes exhibit perfect
possibilities to search for new physics effects in the weak sector, that would directly
affect these distributions.

The last VBS process we investigated was the opposite-sign W-boson pair roduction
process via VBS, which is plagued by exceptionally large QCD backgrounds due to top-
quark pair production. Our analyses incorporate this process with up to two additional
light jets, including all off-shell contributions of the top quarks and the W bosons. By
applying realistic b-tagging efficiencies and an additional cut on contributions featuring
more than two detected final-state jets, we demonstrated how this a priori overwhelming
t̄t background can be reduced to the same size as the signal process, without decreasing
the latter. Upcoming improvements on b-tagging efficiencies will certainly help to
further diminish the top background and, thus, allow for dedicated studies of opposite-
sign W-boson production via VBS.

In the case of VBF processes featuring single vector bosons the effective suppression
of the genuine QCD background is much more involved, since the dijet systems of both
production modes show rather similar kinematic patterns. For the particular processes
W+jj and Zjj we demonstrated that already quite stringent cuts have to be applied to
yield signal-to-background ratios slightly larger than one. However, the enormous cross
section of these processes at the FCC would still allow for dedicated investigations of
the VBF process at such very constrained phase spaces.

From our results we can definitely approve the excellent opportunities of a future
high-energy proton-proton collider to explore the details of VBS. To fully exploit the
capabilities of the FCC, precise measurement of high-energetic final-state jets at least
up to rapidities as large as ±5 should be realizable. For the optimal balance between
higher signal purity and a sufficiently large signal cross section in the fiducial phase
space further studies will have to be performed when more details on the exact detector
setup and differential measurement efficiencies are known. Moreover, those subsequent
studies should additionally include the effects of higher-order corrections in QCD as
well as in the EW theory, to reach the accuracy needed to adequately describe the
future measurements at the FCC.



Chapter 7

Summary and Outlook

With the experimental observation of a SM-like Higgs boson in 2012 at the LHC, the
field of particle physics has definitely entered a new era. Concluding a decades-long
search for the last missing piece of the SM, this great achievement finally completed
the particle spectrum predicted by the theory and confirmed the realisation of EWSB
via the Higgs mechanism. Now, two of the main prospects of particle physics are to
further reveal the very details of this involved mechanism and eventually—maybe even
simultaneously—find the first signs of new physics at high-energy colliders.

Studying purely EW processes comprising weak gauge bosons at hadron colliders
provides particularly promising means to accomplish these purposes. On the one hand,
hadron colliders probe a wide range of energy scales, reaching deep into the TeV regime,
and on the other handd processes containing several weak bosons are exceptionally sen-
sitive to the exact realisation of EWSB. Moreover, if purely leptonic decays of the weak
bosons are considered, these processes lead to fairly clean signatures in the detector,
allowing for very precise experimental measurements. In order to detect an unfore-
seen and presumably very tiny signal above a large SM background, however, precisely
knowing the latter is of utter importance.

We commenced this thesis with a detailed outline of the SM and the basic concepts
that are required to perform theoretical predictions for hadron collider processes. Sub-
sequently, the second part comprised the discussion of two important phenomenological
applications of this theoretical foundation. One main goal of this work was to provide
theoretical predictions at the highest possible accuracy for the purely EW W-boson pair
production process at the LHC. Including the trilinear weak gauge-boson interaction at
the lowest order that is experimentally accessible, this process is particularly suitable to
further challenge the weak sector of the SM at the LHC. Since the dominant source of
theoretical uncertainties at hadron colliders is genuinely associated to the omnipresent
strong sector of the SM, in the last years a huge effort was put into the calculation of
higher-order QCD corrections with the result that since very recently this process is
known to the next-to-next-to-leading order QCD in a fully differential form.

Due to the involved EW structure of the W-boson pair production process, however,
also corrections in the EW interaction play a crucial role in upcoming precision analyses.
In Chap. 5 we presented the first calculation of the full EW corrections to the hadronic
process pp → W+W− → 4 leptons. After a detailed outline of the calculation, we have
shown the effect of the EW corrections on several differential distributions for realistic
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event-selection setups. Particularly at high energy scales, where new-physics searches
are commonly performed, the impact of these corrections could easily be misinterpreted
as first signs of new physics, if they are not properly included in the experimental
analysis. In addition, we discussed the improvement compared to a former calculation
applying the so-called double-pole approximation. Here, we observed the expected
deviations in peculiar phase-space regions, while for integrated results the validity of
the approximation has been ascertained.

Subsequently, in Chap. 6, we turned to the genuine 2 → 2 scattering reaction of weak
gauge bosons. In principle, these VBS processes provide at least equally promising
means to examine the SM and to search for new physics in the EW sector as the formerly
discussed W-pair production process. Unfortunately, the much lower cross sections of
the experimentally accessible states hardly allow for detailed differential analyses at the
LHC. Moreover, we have also discussed how large QCD-induced background contribu-
tions additionally impede the extraction of the signal of interest. For VBS reactions, we
therefore performed a dedicated signal-to-background analysis, where we investigated
the opportunities at a future high-energy hadron collider operating at 100 TeV. For all
process classes we devised process-specific selection criteria that drastically reduce the
otherwise overwhelming QCD backgrounds and therefore prospectively facilitate precise
experimental measurements of the purely EW contributions.

In this second phenomenological study we have revealed the great potential of a future
high-energy hadron collider to observe BSM effects in VBS processes, but nevertheless
we still hope for a detection of first signs of new physics in a not-so-distant future. The
enormous amount of data presently recorded in LHC-Run II and its much deeper energy
reach, that will soon allow for precision studies of many processes at yet unprecedented
energy scales, may perhaps lead to some unforeseen surprises. Additionally, for most of
the processes of interest the proper combination of accurate NLO EW corrections and
state-of-the-art predictions of the QCD effects is already available, such that also from
the theoretical side a mandatory step for a qualified interpretation of the upcoming
data is now close to be completed.

We surely have very exiting times ahead of us, and it might even well be possible
that with the first observation of BSM physics the LHC will be once more responsible
for the beginning of new era of particle physics.
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Appendix A

Group Theory

Since group theory builds the footing of the SM, we give some basic definitions and
clarify the notation in this appendix. However, we will only mention the aspects needed
for the formulation of the SM, such that we refer the reader to Refs. [144] and [145] for
a more rigorous treatment of the subject. After a short general introduction, we first
discuss the concept of gauge theories and the gauge groups of the SM in App. A.1 and
then the space-time symmetries in App. A.2.

A group is a mathematical set of objects (G) with a prescription (◦, group multipli-
cation) under which the set is closed

f, g ∈ G : f ◦ g = h ∈ G . (A.1)

This group multiplication has to be associative ((f ◦ g) ◦ h = f ◦ (g ◦ h)) and an unique
identity element (e : g ◦ e = e ◦ g = g) as well as the inverse element (g−1 : g ◦ g−1 =
g−1 ◦ g = e) for every element g must be part of the set. We call a group Abelian if the
group multiplication is commutative (f ◦ g = g ◦ f) for every pair of elements of the
group, otherwise non-Abelian. As representation (R) of a group we denote a mapping
(D) of the elements of G onto a set of linear operators (for finite dimensional groups we
can speak of matrices), that respects the group multiplication, i.e.

D(g)D(f) = D(g ◦ f) . (A.2)

We call a representation unitary, if all D(g) are unitary operators (O† = O−1) and irre-
ducible, if it cannot be written as a direct sum of representations of a lower dimension.

A (finite dimensional) Lie group is a group where all elements of the group can be
parametrized by a set of n continuous parameters ω = (ω1, . . . , ωn). The parametriza-
tion is chosen such that g(0, . . . , 0) corresponds to the unity element, which obviously
also has to hold in any representation, DR(0, . . . , 0) = 1. For elements (infinitely) close
to the identity the parameters are also (infinitely) close to zero, such that for a group
element in this region a Taylor expansion of the form

DR(dω) = 1 + idωaXa
R + . . . , (A.3)

holds in every representation, where

Xi
R = −i

∂

∂ωi
DR(ω1, . . . , ωn)|(ω)=(0,...,0) , (A.4)
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are the generators of the group in a given representation. The inclusion of “i” in the
definition of Eq. (A.4) ensures that unitary representations are generated by hermitian
operators. In every representation, the XR have to fulfil the commutator relation (Lie
algebra)

[Xa
R, Xb

R] = Xa
RXb

R − Xb
RXa

R = ifabcX
c
R , (A.5)

with the structure constants fabc. Equation (A.5) holds independently of the repre-
sentation, such that the structure constants contain all information about the group
multiplication, and therefore uniquely define the group. For groups with unitary repre-
sentations, on which we are mainly interested, one can show that the structure constants
are always real. In a given representation R every group element of a Lie group can be
reached by consecutively applying infinitesimal transformations of the form of Eq. (A.3)
and respecting the Lie algebra (Eq. (A.5)), which can be written as

DR(ω) = exp(iωaXa
R) . (A.6)

Furthermore, the structure of Lie algebras allows for every representation to define the
(quadratic) Casimir operator, which commutes with all elements of the Lie algebra. Due
to Schur’s lemma, the Casimir operators in irreducible representations are proportional
to the unit matrix in the respective dimension nR of the representation R.

A.1. Gauge Theories

Given a Lagrangian L(Φ, ∂µΦ) that only depends on an arbitrary field Φ(x) and its
derivative ∂µΦ(x). Let Φ(x) transform under a specific irreducible representation of
the Lie group (G),

Φ
G−−→ Φ′ = U(ω)Φ , U(ω) = exp(−igωata

R) , (A.7)

where ω = (ωa) denotes the (spacetime-independent) group parameters and ta
R are

the generators of G in the representation under which Φ transforms. For conventional
reasons, with respect to Eq. (A.6) the additional factor of −g has been introduced,
where g will later be identified as the coupling strength. The transformation U(ω) is
called a global gauge symmetry, if it leaves the Lagrangian L invariant1.

Having constructed a Lagrangian that exhibits certain global symmetries it is straight
forward to promote this symmetry to a local gauge symmetry, that holds at every in-
dividual space-time point. In this way, interactions among the fields via the exchange
of gauge bosons can be brought to the theory in a very elegant and fundamental way.
The difference between a global and a local gauge symmetry is, that the group pa-
rameters of the latter are space-time dependent, ω = ω(x). This obviously spoils the

1More precisely, the condition has to be posed on the action (Eq. (2.1)), but as internal symmetries
per definition leave the measure of the Minkowski space d4x invariant, there is no difference in the
argumentation.
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transformation properties of the terms involving derivatives,

∂µΦ(x)
G−−→ ∂µΦ′(x) = ∂µ[U(ω)Φ(x)] 6= U(ω(x))∂µΦ(x) , (A.8)

such that a Lagrangian depending only on Φ and ∂µΦ cannot stay invariant. However,
the invariance can be retrieved also locally by promoting the derivative to the so-called
covariant derivative

∂µ −→ Dµ = ∂µ + igAµ(x) , Aµ(x) := Aa
µ(x)ta

R , (A.9)

which introduces as many gauge fields Aa
µ(x) to the theory, as there are generators

in the corresponding Lie algebra. By definition, the gauge fields show exactly the
transformation properties under G to compensate for the additional terms in Eq. (A.8),
namely

Aµ(x)
G−−→ A′

µ(x) = U(ω(x))Aµ(x)U †(ω(x)) − i

g
U(ω(x))(∂µU †(ω(x))) . (A.10)

Recalculating Eq. (A.8), now with the covariant derivative Dµ instead of ∂µ, yields

DµΦ(x)
G−−→ D′

µΦ′(x) = D′
µ(U(ω(x))Φ(x)) = U(ω(x))[DµΦ(x)] , (A.11)

which makes the Lagrangian L(Φ, DµΦ), constructed from a globally invariant La-
grangian, also invariant under local gauge transformations. Moreover, we introduced
interaction to the former non-interacting theory, which is mediated through the ex-
change of the gauge fields. Also, the term of the Lagrangian that is responsible for
the dynamics of the gauge fields therefore directly follows from the definition of the
covariant derivative. The field-strength tensor is defined as

Fµν := − i

g
[Dµ, Dν ] , (A.12)

and shows the following transformation properties under G,

Fµν
G−−→ F ′

µν = U(ω(x))FµνU †(ω(x)) , (A.13)

such that

− 1

2
Tr[FµνFµν ] = −TR

2
F a

µνF a,µν = LGauge , 2 (A.14)

results in a gauge invariant Lagrangian, that suffices all requirements discussed in
Chap. 2 to be part of the SM Lagrangian. In Eq. (A.14) the components of Fµν = F a

µνta
F

read
F a

µν = ∂µAa
ν − ∂νAa

µ − gfabcAb
µAc

ν , (A.15)

with the structure constants fabc of the underlying gauge group. It is worth mentioning,
that for non-Abelian symmetry groups (fabc 6= 0) the inclusion of a kinetic term for

2The generators ta
R are normalized according to Eq. (A.16).
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the gauge bosons automatically yields self interaction among them. Such field theories
play a crucial role in the SM and are generally called Yang-Mills theories.

The SM (= SU(3)C×SU(2)W ×U(1)Y) consists of two special unitary groups (SU(N))
and one unitary group (U(1)Y). U(1)Y is a one dimensional Abelian group, depending
on one real parameter. SU(N) groups are formed by the unitary N×N-matrices with
determinant equals 1 and generally the dimension of these non-Abelian groups reads
nG = N2 −1, and, thus, SU(2)W is a three dimensional and SU(3)C an eight dimensional
group. In every representation of the SU(N) groups one can choose the generators in
such a way that they are normalized according to

Tr[ta
Rtb

R] = TRδab , (A.16)

with a positive constant TR, the Dynkin index. For both SU(N) groups appearing in
the SM we choose in the fundamental representation TF = 1

2 , such that the generators
read

Ii
Y := ti

F (SU(2)) =
σi

2
, i = 1, . . . , 3 , (A.17)

T a := ta
F (SU(3)) =

λa

2
, a = 1, . . . , 8 , (A.18)

with the three Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (A.19)

and the eight Gell-Mann matrices,

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 , λ3 =




1 0 0

0 −1 0

0 0 0


 ,

λ4 =




0 0 1

0 0 0

1 0 0


 , λ5 =




0 0 −i

0 0 0

i 0 0


 , λ6 =




0 0 0

0 0 1

0 1 0


 ,

λ7 =




0 0 0

0 0 −i

0 i 0


 , λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 , (A.20)

respectively. The generators of the adjoint representation are given by the structure
constants fabc times the imaginary unit:

(tb
A)ac = ifabc , a, b, c = 1, . . . nG (A.21)

i.e. the dimension of the adjoint representation is always the same as the dimension
of the group. Usually, the structure constants of the SU(2)W group are denoted by
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ǫijk, whereas the general symbol fabc is also used to denote the structure constants of
SU(3)C. Finally, the Casimir operators of the SM gauge groups are given by

nR∑

j=1

tj
Rtj

R = CR1nR×nR
, (A.22)

where the constants CR in the fundamental and adjoint representation read,

SU(3) : CF = 4
3 , CA = 3 , (A.23)

SU(2) : CF = 3
4 , CA = 2 , (A.24)

U(1) : CF = 1 , CA = 0 . (A.25)

A.2. Space-time Symmetries

In this appendix some features of the Lorentz and Poincaré group, their algebras, and
their representations are collected. The proceeding closely follows Chap. 10 of Ref. [145],
which is also recommended for further details.

The proper orthochronous Lorentz group L
↑
+

3 is defined as the set of Lorentz
transformations Λ with Λ0

0 ≥ 0 and detΛ = 1 that leave the Minkowski metric g =
diag(1, −1, −1, −1) invariant, Λ⊺gΛ = g. This constraint fixes ten of the 16 parameters
of the 4 × 4 matrix Λ, such that six free parameters remain to characterize every
proper orthochronous Lorentz transformation. The most convenient and illustrative
parametrization distinguishes between three rotations (Ri) in the spatial dimensions of
the Minkowski space and three boosts along the spatial coordinate axes (Li),

(Ri)
µ
ν =




1 0 0 0

0

0 (Ri)
k
l

0




, (L1)µ
ν =




cosh ξ sinh ξ 0 0

sinh ξ cosh ξ 0 0

0 0 1 0

0 0 0 1




, (A.26)

where (Ri)
k
l denotes the usual 3 × 3 rotation matrices and the boost along the x-

axis (L1) was chosen exemplary. The boosts are parametrized by the boost parameter
(rapidity) ξ = tanh−1(v/c), where v/c is the relative velocity (with respect to the speed
of light) between the coordinate systems.

The three rotations build the non-trivial subgroup S0(3), while the three indepen-
dent boosts are one-parameter subgroups. Note that since the boost parameters ξ are
unbounded, the Lorentz group is a non-compact group. Due to a general principle of

3Often referred to as the Lorentz group. However, the latter formally consists of the set L
↑
+, L

↑
−,L↓

+,

and L
↓
−, therefore additionally including the parity transformation (P = diag(1, −1, −1, −1)), the

time-reversal transformation (T = diag(−1, 1, 1, 1)), and the combination PT , respectively.
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group theory, the finite dimensional irreducible representations of the Lorentz group
can therefore not be unitary representations. Since, on the other hand, the symmetry
transformations on the space of physical states must be realized by unitary operators,
we conclude, that the physical states cannot be represented by the finite dimensional
representations of the Lorentz group, but, if ever, they are represented by the infinite-
dimensional representations. However, studying the finite-dimensional representations
will provide the necessary starting point to classify the transformations of the fields
that govern the particles’ dynamics, while the infinite-dimensional representations can
subsequently be constructed by the so-called method of the induced representation.

Every proper orthochronous Lorentz transformation can be expressed as

Λ(ω) = exp(− i

2
ωµνJµν) , (A.27)

with the generators of the Lorentz transformations, Jµν , and a totally anti-symmetric
tensor, ωµν . The generators fulfil the Lie algebra of the Lorentz group,

[Jµν , Jρσ ] = i(Jρνgµσ − Jσνgµλ + Jµρgνσ − Jµσgνλ) . (A.28)

Further one separately defines the generators of the rotations (Ji) and boosts (Ki),

Ji =
1

2
ǫijkJjk , Ki = Ji0 , i = 1, 2, 3 , (A.29)

and finds that the generators Ji are hermitian, whereas the Ki are anti-hermitian.
However, the two linearly independent combinations

T 1 ,2
i =

1

2
(Ji ± iKi) , i = 1, 2, 3 , (A.30)

yield two hermitian generators. They separately fulfil the su(2) Lie algebra,

[T a
i , T b

j ] = iǫijkT a
k δab , i = 1, 2, 3 a, b = 1, 2 , (A.31)

which therefore defines the Lie algebra of the direct product of two independent SU(2)
groups, SU(2)×SU(2). The irreducible representations of two groups that share the
same Lie algebra, however, can be classified in the same way, which means that every
product of two fundamental representations of SU(2) yields a representation of the
Lorentz group.

Denoting the two-dimensional fundamental representation of SU(2) by D(1
2 ), the two

fundamental representations of the Lorentz group follow to be

D

(
1

2
, 0

)
, D

(
0,

1

2

)
, (A.32)

which are called right-handed fundamental representation and left-handed fundamental
representation, respectively. The notation is defined in such a way, that in the right-
handed fundamental representation the generators T 1 of the first SU(2) are chosen in the
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fundamental representation and T 2 in the trivial representation (T 2
i = 0), while for the

left-handed fundamental representation the opposite is true. All fields appearing in the
SM transform in one of the representations D(0, 0), D(1

2 , 0), D(0, 1
2), D(1

2 , 0)⊕ D(0, 1
2),

and D(1
2 , 1

2), which are denoted as scalar fields, right-handed and left-handed Weyl-
spinors, Dirac spinors and vector fields, respectively.

Note, however, that even though the Lorentz group and SU(2)×SU(2) share the same
Lie algebra, unitary representations of SU(2)×SU(2) cannot be unitary representations
of the Lorentz group due to the “i” in the definition of the generators T 1 ,2

i in Eq. (A.30).

The proper orthochronous Poincaré group P
↑
+

4 is a generalization of the Lorentz
group by additionally including four-dimensional translations. It is defined as the group
of transformations

g(a, Λ) : xµ → x′µ = Λµ
νxν + aµ , (A.33)

where Λµ
ν is a (proper orthochronous) Lorentz transformation and aµ a four-dimensional

translation. The group multiplication law reads

g(a, Λ)g(a′, Λ′) = g(Λa′ + a, ΛΛ′) . (A.34)

Every (proper orthochronous) Poincaré transformation can be expressed as

g(a, Λ) = exp(− i

2
ωµνJµν + iaµP µ) , (A.35)

where Jµν are the generators of the Lorentz group, satisfying the commutator relation
Eq. (A.28), and the four generators of the translation are called Pµ, which form an
Abelian group

[Pµ, Pν ] = 0 . (A.36)

The generators of the translations and of the Lorentz group are connected by the relation

[Pµ, Jνρ] = i(Pνgµρ − Pρgµν) , (A.37)

which, together with Eq. (A.28) and Eq. (A.36) defines the Poincaré algebra.
The irreducible representations of the Poincaré group can be characterised by means

of the eigenvalues of the two Casimir operators, P 2 and W 2, where

Wµ = −1

2
ǫµνρσP νJρσ , (A.38)

is the Pauli-Lubanski vector. According to Schurs lemma, in irreducible representations
the Casimir operators are proportional to the unit matrix of the respective dimension
of the representation and read

P 2 = m2
1 , (A.39)

W 2 = −m2s(s + 1)1 s = 0,
1

2
, 1, . . . , (A.40)

where we call the eigenvalues mass and spin of the respective irreducible representation.

4As for the Lorentz group, also this group is often referred to as the Poincaré group.





Appendix B

Kinematics and Scattering

In this appendix we present the complete formula connecting the squared matrix ele-
ment to the cross section and give some useful kinematic relations for hadron collider
physics.

2 → n scattering reactions

In order to calculate the cross section, σ, of a certain scattering process of elementary
particles into the particular final state F, ab → F, the summed and averaged squared
matrix element,

〈|Mab→F |2〉 =
1

n(fa)n(fb)

∑

fa,fb,fF

|Mab→F|2 , (B.1)

needs to be integrated over the phase space depending on the respective process. Here,
the sum extends all initial- and final-state degrees of freedom (f), such as colour and
helicity, and the additional division by their quantity in the initial state n(fa) and n(fb)
results in the respective average.

For a 2 → n process the general cross section formula reads

σ =

∫
dσ =

∫ 〈|M2→n(pi; pf )|2〉
F (pi) · Sn(f)

Θcut(Φn)dΦn(pi; pf ) , (B.2)

with the flux factor F (pi), the symmetry factor for the final-state particles Sn(f), the
cut function Θcut(Φn) , and the n-particle phase space dΦn(pi; pf ). In general, the
flux factor depends on the momenta and masses of the two initial-state particles, but
for massless initial-state particles (a and b), which we exclusively treat in this work, it
reduces to a simple function of the c.m. energy,

F (pa, pb) = 4
√

(pa · pb)2 − m2
am2

b

(ma=mb=0)−−−−−−−−→ 4pa · pb = 2s . (B.3)

The final-state symmetry factor simply reads Sn = ni! for every set of ni identical
particles in the final state The cut function Θcut(Φn) contains all phase-space cuts
on the final-state momenta leading to the particular fiducial phase space. Moreover,
a possible recombination of final-state particles to collinear-safe objects as well as the
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filling of the desired histograms is implemented via this function. Finally, the n-particle
phase space generally can be transformed to the form

dΦn(pa, pb; pn) =
n∏

i=1

( d3pi

(2π)32p0
i

)
(2π)4δ(4)

(
pa + pb −

n∑

j=1

pj

)∣∣∣
p0

i =
√

p2
i +m2

i

=
1

(2π)3n−4

n∏

i=1

(d3pi

2p0
i

)
δ(4)

(
pa + pb −

n∑

j=1

pj

)∣∣∣
p0

i
=

√
p2

i
+m2

i

. (B.4)

Kinematics

From special relativity it is known that the four-momentum pµ of a particle of mass m
and with three-momentum p is given by

pµ = (E, |p| sin θ cos ϕ, |p| sin θ sin ϕ, |p| cos θ) , (B.5)

where E denotes the energy of the particle E =
√

p2 + m2 and the three-momentum is
given in the usual spherical coordinates θ, ϕ, and the modulus of three-momentum |p|.

2 → n scattering processes are most conveniently parametrized in the centre-of-mass
system (c.m.s.) of the reaction with the beam line in the direction of the z-axis, which
implies θ = 0 and no ϕ dependence of the momenta of the incoming particles. However,
at hadron colliders we need to distinguish between two such frames. The first is the
laboratory frame (lab) where the colliding hadrons (H1, H2) have the four-momenta

pµ
H1

= (EB, 0, 0, EB) , pµ
H2

= (EB, 0, 0, −EB) , (B.6)

where EB denotes the beam energy. In this system the c.m. energy is twice the beam
energy Elab = 2EB =

√
sHH. The second c.m.s. involved is the partonic c.m.s. (pcms)

of the colliding partons (a, b),

pµ
a = (E, 0, 0, E) and pµ

b = (E, 0, 0, −E) . (B.7)

The pcms is connected to the partonic reaction in the laboratory frame via a boost
along the z-axis. If the partons carry the respective momentum fractions ξ1 and ξ2 of
the hadrons

pµ
a, lab = ξ1pµ

H1
= ξ1(EB, 0, 0, EB) , pµ

b, lab = ξ2pµ
H2

= ξ2(EB, 0, 0, −EB) , (B.8)

the boost that transforms the momenta of Eq. (B.8) to the form Eq. (B.7) reads

(L3)µ
ν =




cosh ξ 0 0 sinh ξ

0 1 0 0

0 0 1 0

sinh ξ 0 0 cosh ξ




, ξ =
1

2
ln

(
ξ1

ξ2

)
. (B.9)
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and for the involved energies the following equation holds,

√
ŝ = Epcms =2E =

√
(pa + pb)2

=
√

(pa, lab + pb, lab)
2

=
√

ξ1ξ2Elab =
√

τsHH , (B.10)

where we introduced the variable

τ = ξ1ξ2 =
ŝ

sHH

, (B.11)

which is often used for parametrizing the convolution with the PDFs.
Since the final-state phase space is parametrized in the pcms, but cuts and the re-

sulting observables are defined in the laboratory frame, it is convenient to parametrize
the four-momenta in variables that show simple transformation properties under the
boost defined in Eq. (B.9):

transverse momentum : pT =
√

(p1)2 + (p2)2 , (B.12)

rapidity : y =
1

2
ln

(
E + p3

E − p3

)
, (B.13)

transverse mass : mT =
√

p2
T + m2 m→0−−−→ pT , (B.14)

In these variables, the four-momentum of Eq. (B.5) shows the following transformation
property under the boost defined in Eq. (B.9)

pµ =




mT cosh y

pT sin ϕ

pT cos ϕ

mT sinh y




L3−→




mT cosh(y + ξ)

pT sin ϕ

pT cos ϕ

mT sinh(y + ξ)




m→0−−−→ pT




cosh(y + ξ)

sin ϕ

cos ϕ

sinh(y + ξ)




, (B.15)

i.e. in order to transform between pcms and lab frame, depending on the direction,
only the rapidities have to be summed or subtracted. In experiments the usage of the
pseudorapidity variable,

η = − ln

(
tan

θ

2

)
m→0−−−→ y , (B.16)

is preferred, since θ is the angle from the beam pipe and therefore directly measur-
able. However, as indicated, for massless particles there is no difference between the
pseudorapidity and the rapidity.





Appendix C

Feynman Rules

In this appendix we list the Feynman rules necessary for the computation of any invari-
ant matrix element Mfi including the physical particles of the SM. The assignments are
given in the Weyl-van der Waerden (WvdW) spinor-formalism, worked out in Ref. [93],
which we used for the calculation presented in Chap. 5. In particular, in Tabs. C.1,
C.2, C.3, and C.5 we explicitly list the assignments for all SM physical particles in
the ’t Hooft–Feynman gauge, ξa = 1 (c.f. Sec. 2.1.5). For a complete list, including
would-be Goldstone bosons, ghost fields and counterterms, we refer the reader to the
appendix of Ref. [14].

For the computation of the invariant matrix element Mfi for a specific process f → i
it is necessary to:

• draw all relevant Feynman graphs for the reaction of interest (determines sort and
number of external lines) in the respective order (determines number of loops).

• assign the factors for external particles (Tab. C.1), vertices (Tabs. C.2, C.3) and
propagators (Tab. C.5), while respecting momentum conservation at each vertex.

• integrate over all (n-dimensional) loop momenta kl with the measure
∫ dnkl

(2π)n and

assign factors of (−1) for each closed fermion and ghost loop.

• split off a global factor of the imaginary unit i, include a symmetry factor to
respect possible permutations of internal fields, and assign relative algebraic signs
to graphs that are connected by permuting only external fermion lines.

In Tabs. C.4, C.6, and C.7 we list the coupling assignments for the different particles
of the electroweak sector. The sine and cosine of the weak mixing angle θW are defined
in Eq. (2.26) and are denoted by sW and cW, respectively. In Tab. C.4, where we list the
particular chiral couplings C±

Vfifj
, we use the following abbreviations in the assignment

of the Zf̄f vertex,

g+
f = − sin θW

cos θW

Qf , g−
f =

I3
W,f − sin θ2

W
Qf

sin θW cos θW

. (C.1)

Note that whereas in Tabs. C.3 and C.5 the labels i and j belong to the fundamental
representation of the colour group SU(3)C, in Tabs. C.2 and C.4, for convenience, we
use the same symbols for flavour assignments. However, since in the latter case QCD
is of no relevance, this should not lead to any confusion.
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Particle Expression Diagram

incoming fermion Ψσ(k)
mf =0

=

{(kA

0

)
σ = R

( 0
kȦ

)
σ = L

f
k

A

incoming anti-fermion Ψσ(k)
mf =0

=

{
(kA, 0) σ = R

(0, kȦ) σ = L

f
k

A

incoming photon εγ

λ,ȦB
(k) =





√
2g+,ȦkB

〈g+k〉∗ λ = +
√

2kȦg−,B

〈g−k〉 λ = −

γ
k

AB

incoming gluon εga

λ,ȦB
(k) =





√
2g+,ȦkB

〈g+k〉∗ λ = +
√

2kȦg−,B

〈g−k〉 λ = −

ga
k

AB

outgoing fermion Ψσ(k)
mf =0

=

{
(0, kȦ) σ = R

(kA, 0) σ = L

f
k

A

outgoing anti-fermion Ψσ(k)
mf =0

=

{( 0
kȦ

)
σ = R

(kA

0

)
σ = L

f
k

A

outgoing photon ε∗ γ

λ,ȦB
(k) =





√
2kȦg+,B

〈g+k〉 λ = +
√

2g−,ȦkB

〈g−k〉∗ λ = −

ga
k

AB

outgoing gluon ε∗ ga

λ,ȦB
(k) =





√
2kȦg+,B

〈g+k〉 λ = +
√

2g−,ȦkB

〈g−k〉∗ λ = −

ga
k

AB

Table C.1.: Feynman rules for (massless) external particles in the WvdW formalism.
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Vertex Expression Diagram

fermion–boson ie


 0 C−

Vfifj
δD

A δĊ
Ḃ

C+
Vfifj

ǫȦĊǫBD 0




A
f i

k1

B
fj

k2

CD

V
k3

fermion–Higgs −ie
2sW

mfi
δij

MW

(
δB

A 0

0 δȦ
Ḃ

)
A

f i

k1

B
fj

k2

H
k3

boson–Higgs −2ieǫȦĊǫBDCV1V2H

AB
V1

k1

B
V2

k2

H
k3

3-bosons

i
4eCV1V2V3

{ ǫȦĊǫBD(K1 − K2)ĖF

+ ǫĊĖǫDF (K2 − K3)ȦB

+ ǫȦĖǫBF (K3 − K1)ĊD}

AB
V1

k1

CD
V2

k2

EF

V3

k3

3-Higgs −ie 3
2sW

M2
H

MW

H1

k1

H2

k2

H3

k3

4-bosons

ie2

4 CV1V2V3V4
{ 2 ǫȦĊǫBDǫĖĠǫF H

− ǫȦĖǫBF ǫĊĠǫDH

− ǫȦĠǫBHǫĊĖǫDF }

AB
V1

CD

V2

EF

V3

GH
V4

4-Higgs −ie2 3
4s2

W

M2
H

M2
W

H1

H2 H3

H4

2-Higgs–
2-bosons

−2ie2ǫȦĊǫBDCHHV1V2

H1

H2

AB

V1

CD
V2

Table C.2.: Feynman rules for EW vertices in the WvdW formalism. The particular
values for the couplings are given in Tabs. C.4, C.6, and C.7, respectively.



158 Feynman Rules

Vertex Expression Diagram

quark–
gluon

−igsT c
ij

(
0 δD

A δĊ
Ḃ

ǫȦĊǫBD 0

)
A

qi

k1

B
qj

k2

CD

gc

k3

3-gluon

−gs

4 fabc { ǫȦĊǫBD(K1 − K2)ĖF

+ ǫĊĖǫDF (K2 − K3)ȦB

+ ǫȦĖǫBF (K3 − K1)ĊD}

AB
ga

k1

CD
gb

k2

EF

gc

k3

4-gluon

ig2
s

4 { ǫȦĖǫBF ǫĊĠǫDH [facef bde − 2fadef bce]

+ ǫȦĠǫBHǫĊĖǫDF [fadef bce − 2facef bde]

+ ǫȦĊǫBDǫĖĠǫF H [facef bde + fadef bce] }

AB
ga

CD

gb

EF

gc

GH
gd

Table C.3.: Feynman rules for QCD vertices in the WvdW formalism.

C±
Vfifj

C±
γfifj

C±
Zfifj

C±
W+uidj

C±
W+νilj

C±
W−diuj

C±
W−liνj

C− −Qf δij g−
f δij

1√
2sW

Vij
1√

2sW
δij

1√
2sW

V†
ij

1√
2sW

δij

C+ −Qf δij g+
f δij 0 0 0 0

Table C.4.: Coupling assignments for Vf f̄ couplings.
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Propagator Expression Diagram

fermion
iδij

k2−m2
f

(
mf δB

A KAḂ

KȦB mf δȦ
Ḃ

)
i j

k

B A

gluon
−2iǫȦĊǫBDδab

k2

a b
k

AB CD

EW gauge boson
−2iǫȦĊǫBD

k2−M2
V

k

AB CD

Higgs boson i
k2−M2

H

k

Table C.5.: Feynman rules for the propagators in the WvdW formalism.

CP1P2P3
CW+W−H CZZH CW+W−A CW+W−Z

1
sW

MW
1

c2
W

sW
MW 1 cW

sW

Table C.6.: Non-zero coupling assignments for three electroweak boson couplings.

CP1P2P3P4
CW+W−ZZ CW+W−AZ CW+W−AA CW+W+W−W− CHHZZ CHHW+W−

− c2
W

s2
W

cW

sW
−1 1

s2
W

1
2c2

W
s2

W

1
2s2

W

Table C.7.: Non-zero coupling assignments for four electroweak boson couplings.
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[140] B. Jäger and G. Zanderighi, NLO corrections to electroweak and QCD pro-
duction of W+W+ plus two jets in the POWHEGBOX, JHEP 11 (2011) 055,
[arXiv:1108.0864 [hep-ph]].

[141] ATLAS collaboration, Search for the Higgs boson in the H → W W → lnujj decay
channel at

√
s = 7 TeV with the ATLAS detector, Phys. Lett. B718 (2012) 391,

[arXiv:1206.6074 [hep-ex]].

http://dx.doi.org/10.1103/PhysRevD.80.034022
http://arXiv.org/pdf/0907.0580
http://dx.doi.org/10.1103/PhysRevLett.111.052003
http://arXiv.org/pdf/1305.1623
http://dx.doi.org/10.1007/JHEP07(2014)148
http://arXiv.org/pdf/1405.3972
http://arXiv.org/pdf/1610.08420
http://dx.doi.org/10.1103/PhysRevD.77.013002
http://arXiv.org/pdf/0710.4749
http://dx.doi.org/10.1088/1126-6708/2009/08/085
http://arXiv.org/pdf/0905.0883
http://dx.doi.org/10.1103/PhysRevD.69.093004
http://arXiv.org/pdf/hep-ph/0310156
http://dx.doi.org/10.1140/epjc/s10052-015-3397-6
http://arXiv.org/pdf/1412.3989
http://dx.doi.org/10.1140/epjc/s10052-015-3318-8
http://arXiv.org/pdf/1412.7420
http://dx.doi.org/10.1140/epjc/s10052-010-1462-8
http://arXiv.org/pdf/1007.2624
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arXiv.org/pdf/0802.1189
http://dx.doi.org/10.1007/JHEP11(2011)055
http://arXiv.org/pdf/1108.0864
http://dx.doi.org/10.1016/j.physletb.2012.10.066
http://arXiv.org/pdf/1206.6074


174 Bibliography
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