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Abstract

Liquid chromatography coupled to mass spectrometry (LC-MS) has become the most commonly

used method for proteomics in recent years. This is mainly due to its relative affordability in

comparison to gel-based methods combined with its fast and straight forward usage. The

possibility to identify thousands of proteins by tandem mass spectrometry (MS/MS) in a few

hours let LC-MS/MS become a widely used high-throughput method in the life sciences. The

current state-of-the-art mass spectrometers though makes it necessary to digest proteins into

peptides: too large and too highly charged molecules cannot be measured with sufficiently

high resolution in high throughput. Peptides on the other hand can be detected and identified,

most often employing database search engines. This bottom-up approach comes with the

drawback that identified peptides have to be re-assembled to protein sequences. This step is

called protein inference and is not trivial: due to peptide ambiguities a correct solution of the

inference cannot be given in most cases. A peptide that was found in the original database used

for the identification, can sometimes be assigned to more than one protein. The reason for this

can have multiple causes, for example homologous proteins and protein domains, isoforms or

simply redundant sequences originating from multiple entries for the same protein or sequence

fragment. These shared peptides lead to a set of proteins, which are built-up of the same sets

or sub-sets of sequences. This problem is known as the "protein ambiguity" and without further

assumptions or additional knowledge it remains uncertain, which protein of such a set was

actually present in the measured sample, unless a unique peptide, which belongs to only one

protein, was detected.

The work presented herein addresses open problems in protein inference. At first, the

problem and its causes are addressed in detail. Additionally some of the basic algorithms for

peptide identification as well as possibilities to merge their results are introduced. During this

work the tool "PIA - Protein Inference Algorithms" was developed. PIA was compared to four

other inference methods in an in-depth assessment. In this analysis the differences, but also the

similarities of these tools and their reports were highlighted. During the development of PIA

special care was taken, that no single proteins, but protein groups are reported. Furthermore, it

allows a user to chose from multiple algorithms for the inference and set a multitude of different

filters, as well as to merge the results of multiple search engines. The community standard
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file formats mzIdentML and mzTab can be used for data import and export, thus giving the

opportunity to easily include PIA into bigger proteomics pipelines. PIA can be executed in the

workflow environment KNIME or directly via the command line. Additionally, it provides a user

friendly web interface, which can be accessed with any current browser. Besides comprehensive

and easily browsable result lists, PIA offers an intuitive visualisation of the relations between

the MS spectra, peptides and proteins, which are contained in a generated protein result list.
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Zusammenfassung

Flüssigkeitschromatographie gekoppelt mit Massenspektrometrie (LC-MS) ist in den letzten

Jahren zu der am meisten verbreiteten Methode der Proteomik geworden. Dies ist beson-

ders auf die relative Kostengünstigkeit gegenüber gelbasierten Methoden, sowie der schnellen

und einfachen Handhabung zurückzuführen. Die Möglichkeit, tausende Proteine innerhalb

weniger Stunden mittels Tandemmassenspektrometrie (MS/MS) zu identifizieren, macht die

LC-MS/MS zu einer weit verbreiteten Hochdurchsatzmethode in den Lebenswissenschaften.

Der technische Stand der Massenspektrometer macht es jedoch nötig, dass Proteine zu Peptiden

verdaut werden, da zu große Moleküle und solche mit zu hohem Ladungszustand nicht mit ge-

nügend hoher Auflösung im Hochdurchsatzverfahren vermessen werden können. Die Peptide

hingegen können detektiert und meist mittels Datenbank Suchmaschinen identifiziert werden.

Dieser bottom-up Ansatz hat jedoch den Nachteil, dass die identifizierten Peptide wieder zu

Proteinsequenzen zusammengesetzt werden müssen. Dieser Schritt wird als Proteininferenz

bezeichnet und ist nicht trivial: aufgrund von Peptidambiguitäten kann es oftmals keine genaue

Lösung der Inferenz geben. Es kann vorkommen, dass ein Peptid in der zugrundeliegenden

Datenbank, welche zur Identifikation benutzt wurde, mehreren Proteinen zugewiesen wird.

Dies kann mehrere Gründe haben, beispielsweise homologe Proteine und Proteindomänen,

Isoformen oder einfach redundante Sequenzen (mehrere Einträge für dasselbe Protein oder

Sequenzfragmente). Diese gemeinschaftlichen Peptide führen zu einer Menge von Proteinen,

welche aus denselben Mengen oder Untermengen von Sequenzen aufgebaut sind. Dieses Pro-

blem ist bekannt als die „Proteinambiguität“(„protein ambiguity“) und ohne weitere Annahmen

oder zusätzliches Wissen kann nicht klar entschieden werden, welches Protein einer solchen

Proteinmenge in der gemessenen Probe vorhanden war. Es sei denn, ein Peptid, welches nur

einem Protein zugewiesen werden kann, wurde ebenfalls detektiert.

Die vorliegende Arbeit befasst sich mit dem Problem der Proteininferenz. Zunächst wird

das Problem und seine Ursachen genau vorgestellt. Außerdem wird auf einige der Grundle-

genden Algorithmen zur Peptididentifikation sowie Möglichkeiten um deren Ergebnisse zu

vereinheitlichen eingegangen. Im Laufe dieser Arbeit wurde das Tool „PIA - Protein Inference

Algorithms“ entwickelt. Dieses wird alleine und zusammen mit vier weiteren Proteininferenz-

methoden in einer ausführlichen Begutachtung analysiert. In dieser Untersuchung werden
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die Unterschiede, aber auch Gemeinsamkeiten, der Tools und deren Ergebnislisten herausge-

arbeitet. PIA ist speziell darauf ausgelegt, dass es keine einzelnen Proteine, sondern immer

Proteingruppen als Ergebnisse liefert. Außerdem gibt es dem Benutzer die Entscheidung aus

mehreren Algorithmen für die Inferenz zu wählen und eine Vielzahl an Filtern zu setzen, sowie

die Ergebnisse mehrerer Suchmaschinen zu vereinen. Es beherrscht sowohl für den Import

als auch den Export die Community-Standarddateiformate mzIdentML und mzTab und bietet

dadurch einen einfachen Einbau in größere Proteomik-Pipelines. PIA kann sowohl in der Work-

flowumgebung KNIME als auch über die Kommandozeile ausgeführt werden. Zusätzlich bietet

es ein benutzerfreundliches Web-Frontend, welches über jeden aktuellen Browser aufgerufen

werden kann. Neben ausführlichen und leicht inspizierbaren Ergebnislisten bietet PIA auch

eine intuitive Visualisierung der Verhältnisse zwischen MS-Spektren, Peptiden und Proteinen,

welche zu der Erstellung einer Ergebnislisten geführt haben.
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Chapter 1

Introduction

1.1 Motivation

Since the discovery of the deoxyribonucleic acid (DNA) in the late 19th century and the discov-

ery of its potential to encode the genetic information of all known living organisms, it shaped

the history of biology during the 20th century. A climax was reached when Watson and Crick

described the double-helix structure of DNA3 and roughly 50 years later when the Human

Genome Project4 published the final sequencing results of the human DNA in 2004, after more

than 13 years of work. Only about four years later, the so-called Next Generation Sequencing

(NGS)5 technologies were introduced. These highly parallelized methods were much more

advanced than the traditional Sanger sequencing and it allows nowadays the sequencing of a

single person’s genome in almost a day’s time6. All this led to the start of the "1000 Genomes

Project" in 2008, aiming at the complete sequencing of at least thousand humans from different

ethnic backgrounds and finding variations in the genetic code. These efforts resulted in a much

more comprehensive overview of the genetic variation inside one species alone7,8.

All these studies of the genome brought many valuable new insights, but could by far not

solve all biological problems. Additionally, several paradigms, which were considered to be

true, had to be re-inspected. For example it was no longer possible to assume a conclusion of an

organism’s complexity from the number of protein-coding genes. The publication of the human

genome revealed that man has about 20,000 – 25,000 protein coding genes9, more recent

estimations place the numbers at just 19,000 genes10, which is even less than the genome of the

nematode C. elegans (about 20,000)11. On the other hand, the genome alone cannot explain

the complete phenotype. One of the most obvious example for this is the metamorphosis of

a caterpillar into a butterfly. Both have exactly the same gene sequence, but their physiology

could not be more different. Furthermore, it is known today that one gene codes for more than

one protein, for example through alternative splicing12. Apart from the pure genome sequence,

1



1. Introduction

it seems more important nowadays to know which genes are activated and thus translated into

proteins or influence the organism in any other way, like being coding templates for miRNAs.

To address challenges in these new directions, several new disciplines emerged within the

life sciences. Most of them are so called "omics", which address the collective characterisation

and quantification of all biological molecules of a respective "ome". An "ome", on the other

hand, describes the complete set of a specific biological molecule in a species or sample. Thus,

for example the genome describes the complete set of a species’ genes and "genomics" is

the scientific field addressing it. Besides "transcriptomics" and "metabolomics", the field of

"proteomics" was developed. The name proteome was coined 1994 by Marc Wilkins on a

conference and one year later in a publication13.

1.2 LC-MS/MS Proteomics

Mass spectrometry allows the characterisation of molecules by their mass to charge ratio. In

proteomics this is used to either detect and identify whole proteins (top-down) or, more often,

peptides of digested proteins (bottom-up) in a sample. To measure a biological component

with a mass spectrometer, it has to be ionised first which is for example done by electrospray

ionisation. The knowledge of the mass however does not suffice to fully identify a component,

as there may be several entities in a searched database with nearly the same mass14. For

this reason, the ions are fragmented and the fragment spectra (MS/MS or MS2) together

with their parent ion’s mass are used for identification. This is feasible, as the parent ions

fragment preferentially at the peptide bond. Thus, the MS/MS spectra can either be used for

identification by so-called database search engines like SEQUEST15, Mascot16 or X!Tandem17,

which match measured spectra against theoretical spectra calculated from protein sequence

database entries, or for de novo peptide or protein identifications18,19.

The current state-of-the-art mass spectrometers still cannot nearly create complete MS/MS

spectra of complete proteins in high-throughput, i.e., spectra which contain ions to explain

the complete amino acid sequence. As this though is feasible for peptides, the bottom-up or

also called shotgun technique20 has become the method of choice for high-throughput protein

identification in recent years. There the proteins of a sample of interest are enzymatically

digested to peptides. For the digestion mainly enzymes which cut at specific positions within a

protein and thus produce predictable peptides are used, to minimise the search space used by

database search engines. The complex peptide mixture is often separated by liquid chromatog-

raphy (LC)21 prior to measurement. This approach is referred to as "liquid chromatography

coupled to tandem mass spectrometry", or short LC-MS/MS. It is performed, because the mass

spectrometer can detect and fragment only a limited number of ions per time. Also, with this

additional temporal separation due to physico-chemical features the signal inference for the

measured molecules is decreased.
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The Protein Inference Problem

1.3 The Protein Inference Problem

One drawback of bottom-up proteomics is, that the database search engines as well as de novo

approaches identify only peptides through the calculation of peptide spectrum matches (PSMs).

As researchers are more often interested in the actual proteins rather than the peptides, which

are created only to obtain detectable molecules for the mass spectrometers, it is necessary

to generate protein lists, which contain database accessions, from the identified PSMs. The

step from PSMs to proteins is called "protein inference"22. This step is not trivial, because

a significant number of tryptic peptides in a database search is not unique for one protein

entry but shared by multiple entries. This holds especially true for higher organisms, due to

homologous proteins and protein domains or isoforms contained in databases. These shared

(sometimes also called "degenerated") peptides lead to sets of proteins, which are built up of

the same set or subset of peptides. This problem is known as the protein ambiguity and without

further assumptions or knowledge it cannot be decided which of the proteins of a set are in

the sample, unless a unique peptide was found. Often for each such protein ambiguity group

only a representative accession number is reported in the result list and the other proteins are

reported as "similar proteins" or "group members".

For a more complete result list, all these potential proteins (according to the inference

algorithm) should be reported, as was already suggested by Nesvizhskii et al.22 in 2005. The

set of PSMs selected for the protein inference, the logic and algorithm of the inference and

the selection of reported representatives vary significantly between inference algorithms. For

some methods - usually the commercial ones, but also some freely available - the details of

their algorithms are scarcely documented, so that results cannot be explained or it cannot

be judged whether they are reasonable. Though additionally to the search engines’ inherent

inference algorithms there are quite a lot of stand-alone programs for protein inference from

PSMs (e.g., ProteinProphet23, Scaffold24 and IDPicker25), some of them support only specific

search engines and most are limited in their settings for inference parameters.

Merging the results from multiple search engines is also desirable to either increase the

number of identified spectra passing an FDR threshold and thus the number of corresponding

proteins, or to amplify the evidence of peptides detected in the analysed sample26. This poses a

major problem, because each search engine’s algorithm generates its own value for the quality

of a PSM, generally a score or probability value (throughout this thesis and in this context

score always means the score or probability, if not further specified). These scores are usually

not directly comparable but need the calculation of another comparable score27–29.
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1. Introduction

1.4 Contributions of this Thesis

This work addresses and discusses some challenges caused by protein ambiguity. Furthermore

it introduces a tool suite, which allows to import data from virtually all available search engines,

due to support of current standard formats, lets a user inspect and assess the identified PSMs

and peptides, gives the user full control of the protein inference, and visualises the dependencies

between PSMs, peptides and proteins.

In Chapter 2 the experimental background for a proteomics experiment is given. It is

described, how the biological sample is processed and the mass spectrometrical data is created.

Though this gives the basis of all proteomics studies, only a short overview of the most important

aspects for the rest of this thesis can be provided. This includes a general overview of liquid

chromatography, followed by two of the mainly used ionisation methods. The basic concepts

of mass spectrometers are explained, as well as some of the current experimental issues.

The further processing after the data collection and the computational background is de-

scribed in Chapter 3. We outline how the generated spectra are automatically interpreted by

de novo, spectral library and database search engines. Like most high-throughput methods,

also the MS proteomics suffers from the identification of false positives. Therefore, strategies

to maintain a good quality of results are given. To highlight the theoretical and practical

dimensions of the peptide and protein ambiguity problem some of the most commonly used

protein databases are in silico digested and analysed. This shows that most peptides in manu-

ally curated databases are unique for one protein, though in databases containing isoforms, the

fraction of shared peptides is much higher. These numbers are further compared with results

of two MS/MS datasets, one containing mouse and the other containing human sample data.

This analysis confirms, that in real life experiments more shared peptides are identified than

the in silico digestion would suggest.

Chapter 5 is separated into two different assessments of protein inference algorithms. In

the first part, the performance of PIA alone is analysed. The implementation of PIA is tested

with different settings on three datasets, a real-life mouse dataset created at the Medizinisches

Proteom-Center (MPC) and two ground truth datasets, one containing yeast and the other

also mouse samples. For the ground truth datasets, the proteins contained in the samples are

claimed to be known. The analysis of PIA’s performance on the real-life dataset showed, that it

performs well on reporting protein identifications and a merge of peptide identifications from

multiple search engines can boost the results from single search engines, also on protein level.

Using the yeast ground truth dataset it is possible to show, that the actually reported proteins

are also contained in the sample, according to the provided reference set of accessions. Finally,

an assessment of the results on the second ground truth dataset could verify, that PIA does also

perform well on identifying the expected number of protein isoforms in a sample.
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Contributions of this Thesis

The second part of Chapter 5 compares the results of PIA to four more methods for protein

inference. Therein, a workflow is created which allows unbiased interpretation of the inference

results based on several well-defined metrics. This in-depth assessment gives no final conclu-

sion on which method performs better, but highlights several considerations for choosing an

appropriate inference method. For example, the complexity of the database used for peptide

identification has great influence on some of the methods. Furthermore, some methods also

report protein sub-groups, which might not be desired by the user and must be taken into

account when selecting the tool used for a study. On the assessed metrics, PIA outperforms the

other methods slightly, which highlights, that it creates high quality protein reports.

Furthermore, PIA comprises currently to the best of my knowledge the most comprehen-

sive set of inference methods and respective settings and filters. Together with an intuitive

visualisation of the complex relations between PSMs, peptides and proteins in an MS-based

proteomics analysis and the report of these in easily browsable interfaces, it allows in-depth

analysis of the data as well as the reliable creation of protein lists. As PIA is relatively robust

when using large datasets and protein databases, it facilitates the analysis of common single

species analyses as well as metaproteomics datasets.

The actual concepts and goals of the tool suite "PIA - Protein Inference Algorithms" is high-

lighted in Chapter 6. This chapter describes the main principles as well as the implementation

of the methods. Furthermore, all implemented algorithms are explained and the different

ways to execute a PIA analysis are highlighted. Here it is important to notice, it cannot only

be called by the command line and thus integrated into any pipeline, but there are also more

user-friendly methods like the integration into the KNIME workflow environment as well as an

intuitive web frontend.

In the last chapter, the conducted work is concluded and an outlook for further studies

based on the work of this thesis is given.
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Chapter 2

Experimental Background

In the last decades, many different mass spectrometers and protocols for sample preparation

and analysis were established for use in proteomics. This chapter gives an overview of some

widely used methods and instrument types, ordered by their chronological appearance in a

general mass spectrometry based proteomics workflow. As each of these steps is a large scientific

field in itself and beyond scope of this work, only the basic principles will be discussed herein.

Likewise, only the relevant steps for bottom-up mass spectrometrical proteomics experiments

are covered, which are necessary for the further understanding of the work in this thesis. The

expression "bottom-up" or synonymously also "shotgun" proteomics derives from the identically

termed genomic sequencing counterparts. Here, the whole genome, respectively chromosomes,

are broken down into smaller fragments which could easily be sequenced at once. Similarly,

in bottom-up proteomics, the proteins are cut or, more accurately, digested into peptides of

smaller size. The reason behind this and the fact, that at the time of writing mainly bottom-up

MS proteomics is performed instead of top-down, is due to the inability of currently used mass

spectrometers to measure whole proteins, at least in complex samples and high-throughput.

At present, the lengths of a peptide should be from 5-45 amino acids to be measurable on most

machines.

2.1 Sample Preparation

At some time before starting an MS analysis, a sample must be prepared. There are internal

standards which may consist of some well defined peptides or proteins, which are processed

with buffers etc. and directly given to the LC-MS/MS. These kind of samples are mainly run

for reasons of quality control, though. Most of the real-life proteomics experiments consist of

either samples collected from patients, test animals or plants (e.g., tissues, body fluids, post-

mortem samples) or harvested from cell cultures (e.g., from samples which were treated and

untreated by a drug or genetically modified in any way). The exact starting point of the sample

7



2. Experimental Background

preparation varies depending on the kind of sample and optionally the applied quantification

method. For experiments which use labels to differentiate between states of treatments, like the

"Stable Isotope Labeling by Amino Acids in Cell Culture" (SILAC,30), the sample preparation

already starts with growing the cells: they are incorporating isotopic labelled amino acids from

the growth medium into their proteins. For other samples, for example label free proteomics

of patient data, the sample preparation starts after collecting the samples. In Figure 2.1 an

overview of a protein identification workflow is shown, which shows the collection and any

pre-processing as the first two steps.

After harvesting respectively collecting the samples, the cells are usually broken up and

the proteins are extracted. Either only some sub-cellular compartments, e.g. mitochondria

or nuclei, or the whole contents of the cell are used for further analysis steps. Sometimes

also a intra-cellular separation is performed, either on the organelles or e.g. by cleaving outer

membrane proteins from the cell. Other protocols are using body fluids, extracellular matrices

or a secretion for further analysis instead of the cellular contents.

For a bottom-up proteomics experiment, the samples’ proteins need to be digested into

peptides. The actual digestion into peptides can either be performed in-gel31 or in-solution32,

both alternatives having disadvantages and advantages: While in-gel digestion is more robust

against impurities, which are interfering with the digestion, the peptide extraction cannot be

automated as easily. In-solution methods on the other hand are easily automated, but the

proteome may be incomplete solubilized and the digestion impeded by contaminating sub-

stances33. Trypsin is the mainly used enzyme for the digestion, because it tends to produce

peptides of a suitable length for mass spectrometry analysis. Furthermore, due to biotechnolog-

ical improvements, the nowadays commercially available trypsin is well suited for laboratory

usage (overnight digestions and room temperature) and the cleavage sites are very strict and

thus predictable34: it cleaves after each lysine (Lys, K) and arginine (Arg, R), if they are not

followed by a proline (Pro, P) or, which happens less often, masked by a modification. Other

widely used enzymes are for example chymotrypsin and Lys-C, both also with well predictable

cleavage sites but leading to less suitable average peptide lengths and consequently laboratory

protocols. Pepsin is used less frequently, since the cleavage sites are hard to predict and thus

the data analyses typically turns out to be more error prone and cumbersome.

If the sample is too complex and the LC separation (explained in Section 2.2) not suffi-

cient, another fractionation procedure like isoelectric focusing (IEF) or "Polyacrylamide gel

electrophoresis" (PAGE) can be performed. After the separation of the proteins or peptides, a

resulting lane can be sliced into several bands, which are processed and measured separately,

in successive MS runs. This pre-fractionation furthermore increases the separation capacity

and leads to possibly more and better identifications (and also quantifications) of peptides and

thus proteins.
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Sample collection
(cell culture, tissue, ...)

Digestion into peptides

any pre-processing
(breaking up cells,
fractionation, purifying...)

High-Performance
Liquid Chromatography

MS and MS/MSPeptide/Spectrum
identification

Protein Inference

Figure 2.1: Simplified overview of a bottom-up mass spectrometry protein identification
workflow. Usually such a workflow starts with the collection of samples and any required
pre-processing steps. To perform a high-throughput protein identification with current
technology, the proteins are digested into peptides and given onto a HPLC, which is coupled
to a mass spectrometer. For the peptide identification, MS/MS spectra are identified either
by database search engines or de novo. Based on these peptides the protein inference
reports a list of proteins, which have evidence to be in the sample.

2.2 Liquid Chromatography

A mass spectrometer can only measure a limited number of compounds per time. Therefore,

complex samples like full cell lysates, which contain several thousand proteins or peptides,

are commonly separated by liquid chromatography (LC) before injection into the mass spec-

trometer20. The mainly used LC methods are commonly abbreviated HPLC, which stands for

high-performance LC, but may also stand for high-pressure LC, due to the high pressure flow

through the columns.

The basic principle of the LC used for MS proteomics is the adsorption of proteins or peptides

dissolved in an appropriate solvent (mobile phase) by the packing material (stationary phase) of

a column21. Though various other techniques like ion-exchange or affinity chromatography are

also used, the currently most widely used method is the reversed-phase chromatography (RPC

or RP-HPLC). In contrast to a hydrophilic stationary phase in the normal phase, a hydrophobic

stationary phase (column) is used for RPC. After loading the column with analytes of a sample,

a gradient of solvent mixtures with different polarities in order to increase the separation is

used as the mobile phase. The RPC and the gradient cause the less hydrophobic particles to

elute before the more hydrophobic analytes. Thus, the complexity of the sample is spread over

the time of the gradient and ideally each analyte elutes at a well defined retention time only.
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As a rule of thumb, the slower the gradient and the longer the used column, the better is the

separation. For MS-based proteomics, gradients between one and three hours and column

lengths between 25–50 cm are commonly used at the time of writing.

To further enhance the performance of the separation process, different LC techniques

can be coupled. For example, in order to analyse phosphorylated proteins respectively pep-

tides, electrostatic repulsion-hydrophilic interaction chromatography (ERLIC,35) is frequently

used to enrich phosphopeptides before using a default LC-MS approach for identification and

quantification.

2.3 Ionisation Methods

Before it is possible to measure a biological molecule like a peptide or protein with a mass

spectrometer, these molecules have to be ionised. For the ionisation mainly two methods are

used in proteomics: "Matrix Assisted Laser Desorption/Ionisation" (MALDI) and "Electro-Spray

Ionisation" (ESI).

2.3.1 Matrix-Assisted Laser Desorption/Ionisation

When using matrix-assisted laser desorption/ionisation (MALDI36,37) to ionise analytes, the

samples have to be spotted onto a target plate and mixed with a matrix. These treated samples

are pulsed by a laser in such a way, that mainly singly charged ions of the sample are generated

and measured by the MS. To run a complex sample with MALDI, it is common to perform a prior

separation of the sample via two-dimensional differential gel electrophoresis (2D-DIGE,38),

followed by the MALDI measurement of single spots on the gel. These contain in the ideal case

only one peptide respectively protein species per spot. Usually only the most interesting (e.g.

differently expressed) spots of a DIGE experiment are spotted on a MALDI plate and measured

in this way.

Though it is possible to further fragment the ions created by MALDI before identification

(see Section 2.4.2), more often peptide mass fingerprints are identified using database search

engines39. For this, the peaks of a measured spectrum are matched against the peptides of

proteins in a database, assuming that each peak originates from one peptide and that multiple

peptides of the same protein can be found in one spectrum. The need to separate complex

samples with a time-consuming and expensive method like DIGE limits the number of identified

compounds, but MALDI allows also to make spatial profiles of tissue samples. For this technique,

called MALDI imaging, a whole tissue slice is fixed an a mounting plate, if desired treated with

an enzyme to digest the proteins to peptides, and coated with matrix. Afterwards, the tissue

will be rastered and pulsed by a laser to measure an MS spectrum for each raster point. With
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this method, identifications are hardly possible, but the samples can be classified spatially by

hierarchical clustering of the spectra or other machine learning approaches.

MALDI is not a high-throughput method for protein identification, at least not any more

compared with advances in other technologies. Its application for proteomics though was

acknowledged with the Nobel prize for chemistry in 200240.

2.3.2 Electrospray Ionisation

Electrospray ionisation (ESI) is, at the time of writing, the most widely used method when

performing MS-based proteomics experiment. When using this technique, the capillary of an

LC is coupled to an ESI source. In this source, a high voltage electrostatic field is generated

between the outlet of the solvent (usually referred to as the needle) and the cathode, which

leads through an orifice into the mass spectrometer. The applied flow of the LC lets the solvent

emerge from the needle’s tip in a stream of droplets. Simultaneously, the solvent’s surface gets

charged by the applied electric field21. These charged droplets are attracted by the electrode

and shrink in size while travelling through the field, due to the evaporation of the solvent.

Therefore, the droplets get higher charged respectively to their size, until the Rayleigh limit41

is reached: the droplets explode, finally creating a stream of ionised single molecules, in the

case of proteomics protein ions, respectively peptide ions, which are transferred into the mass

spectrometer for further analysis, as outlined in Figure 2.2.
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solvent containing
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Figure 2.2: Schematic overview of an electrospray ionisation (ESI) ion source. Under high
voltage, charged droplets containing the solved analytes fly through an electrostatic field.
While travelling to the cathode, the droplets shrink due to evaporation of the solvent and
become higher charged respectively to their size. When the charge-to-volume ratio reaches
a certain limit, the droplets explode and finally ionised single molecules are generated
which are transferred into the mass spectrometer.
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2.4 Mass Spectrometers

In the mass spectrometer, the signal intensity of a certain mass-to-charge (m/z) ratio associated

with a specific molecule is recorded. Currently, there are several types of mass spectrometers

in use, which originate from different methods to differentiate between ions. In time-of-flight

(TOF) machines, the time needed by an ion to travel through an electric field of specific

strength and length is used to derive its m/z. A quadrupole mass analyser (mostly abbreviated

as quadrupole) consists of four parallel metal rods. If specific alternating voltage fields are

applied to these rods, only ions of a specific m/z ratio can pass the quadrupole, while other ions

have an unstable trajectory and are thus filtered out42. The quadrupole is used in combination

or as a filter with other types of MS. If used as sole technique, most often a triple-quadrupole

(QQQ) is used. A quadrupole can also act as an ion trap. There are different kinds of ion traps,

but all are used to hold ions (of a specified m/z) until a sufficient amount of them coming from

the ion source is stored to be detected43. After the ions are separated by their m/z ratios, their

intensity is subsequently measured by a detector.

Another, currently very popular kind of ion trap is the Orbitrap, which is often coupled to a

linear trap quatrupole (LTQ) as marketed by Thermo Fisher Scientific. An Orbitrap consists of a

cylindrical outer and an axial inner electrode44. Injected ions orbit around the inner electrode

and ions of same m/z ratios are packed into bands. These perform harmonic oscillations

depending on their m/z ratios. The ions are detected all at once by their induced current on

the outer electrode and a Fourier transformation is used to extract a mass spectrum.

Considerable advancements have been made concerning the m/z and temporal resolutions

of mass spectrometers, which now can create some tens of spectra per second and Orbitraps can

differentiate between ions with a resolution of up to 240,00045,46 at 200 m/z. The resolution

or "resolving power" R of a mass spectrometer is defined by its ability to distinguish between

two neighbouring peaks. The formula for the resolution is

R=
M
∆M

,

where M is the mass of a peak and∆M is nowadays most often the full width at half maximum

(FWHM) of a peak47. This can be surpassed by "Fourier transform ion cyclotron resonance"

(FTICR) mass spectrometers, which have resolutions of up to 1,000,000, but are much more

expensive and not applicable for high-throughput analyses.

2.4.1 Liquid Chromatography coupled to Mass Spectrometry

As explained before, the current method of choice for MS based proteomics is the (high-

performance) liquid chromatography coupled to mass spectrometry (LC-MS). Here, the pep-

tides are passed to a mass spectrometer after separation by LC in such a way, that molecules
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are eluted and measured on the MS at a specific retention time. This separation is usually

performed directly before the measurement and thus called online, whereas techniques, where

the separation is performed and the fractions are collected for later measurement are called

off-line separation. The LC improves the resolution by separating different analytes in the

sample. Furthermore, it is necessary to allow the identification of peptides using tandem mass

spectrometry.

To visualise successively recorded MS spectra, retention time (RT) m/z maps are generated

(Figure 2.3). These maps are the basis for quantitative methods working with ion or ion trace

quantification, like many label-free techniques48. As the quantification using MS is a very

broad field itself, it will not be discussed in further detail in this work.

Figure 2.3: Detail of a RT-m/z map created by the OpenMS module TOPPView. The
intensity of detected ions is colour-coded, going from white/light-grey (least intense) over
yellow to violet (most intense). In the white "gaps" between the MS scans, MS/MS spectra
were recorded: black circles indicate the triggering parent m/z and its RT, the end of the
adjacent lines the actual RT of the recorded MS/MS. In the depicted map ion traces of
several features (presumably peptides) are visible, one larger and more intense in the
centre. On a higher zoom levels, the m/z of individual isotope levels would be visible.
These features can be used for quantification approaches using mass spectrometry.

2.4.2 Tandem MS

The identification of peptides based on a mass spectrum alone poses big challenges when

using database approaches. The main reason is, that many peptides with identical masses

within an instrument-specific tolerance window exist in current protein databases. In order

to solve ambiguities on MS level one identifications, tandem MS (MS/MS or MS2) spectra

are created. It is assumed that ions of a certain m/z ratio at a single retention time belong

to a specific peptide in the sample. In a data dependent acquisition (DDA), the ions with the

highest intensity after a MS level one scan over the complete m/z range are subsequently
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fragmented (compare Figure 2.3). For this, the selected parent ions of the specified m/z ratio

and inside a certain tolerance window are collected and some kind of energy is applied to break

the peptide ions. For most experiments considered in this thesis, the fragmentation used is

collision induced dissociation (CID): the peptide ions are accelerated by an electrical potential

and collided with a collision gas, which induces a fragmentation49. It is important to know,

that the backbone of peptides breaks for specific fragmentation methods preferentially on well

defined positions50 (e.g. mainly b and y ions are created by CID), which will be explained in

the next section. Thus, it is feasible to match these peptide fragment spectra to the original

peptide sequences, as described in Section 3.1.

Structure of Peptides

Proteins and peptides are biochemically amino acids concatenated by peptide bonds. The

peptide bond is a special chemical bond, which connects the α-carboxyl group of one amino

acid with the α-amino group under the loss of a water molecule51. Therefore, the formation

of a peptide bond is a condensation. Most important is the fact, that an arbitrary number of

amino acids can be concatenated by peptide bonds. These polypeptides contain all a backbone

with repetitive elements and different side-chains for the respective amino acids, see Figure

2.4. The end of the peptide backbone, which has a free amino group, is called the N-terminus,

the other end, with a free carboxyl group, is the the C-terminus. The peptide or protein

sequence is usually read from the C- to the N-terminus. All the proteins of the known living

organisms are composed of 22 proteinogenic amino acids in varying sequences. Besides the

peptide bonds, there can be further static bonds between the side-chains of amino acids, like

disulfide bridges, as well as transient connections like hydrogen bonds, which form secondary

and tertiary structure elements. These though will be no further discussed in this work.
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Figure 2.4: A peptide consisting of three amino acids. The sketch shows three amino acids
connected by peptide bonds between the carboxyl and amino groups of two neighbouring
amino acids. The side-chains are abbreviated with R1, R2 and R3 respectively. Each peptide
consists of this basic structure with a variable number of inner amino acids.
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Peptide Fragmentation and Creation of Ion Series

In MS-based proteomics, the fact that peptides break preferentially at the backbone is used

to create tandem MS spectra, which can be matched to amino acid sequences. Furthermore,

the preferred fragmentation site depends on how the energy to induce it was applied. When

applying collision induced dissociation (CID), the peptides tend to break between the C and

N atom of a peptide bond and thus creating mainly b- and y-ions52. Fragments produced by

electron transfer dissociation (ETD) on the other hand produce mainly c- and z-type ions53.

The nomenclature of the produced ions depends on the position of the backbone break: a, b

and c ions contain the N-terminus of a peptide, while the corresponding x, y and z ions contain

the C-terminus. An index at the ion, like b2, indicates the number of contained amino acid

side chains in the ion, see also Figure 2.5.
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Figure 2.5: Nomenclature of ion series. This sketch highlights the breaking positions for
the creation of ions and their nomenclature on a small peptide, in green the positions
between the first and second amino acid, in red between the second and third. The a, b
and c ions contain the free amino group of a peptide, while the x, y and z ions contain the
C-terminus. The indices indicate the number of amino acid side chains in the respective
fragment.

Whether an ion is detected or formed at all depends on many factors, like the type of

applied fragmentation energy, but also the amino acid sequence and possible modifications.

Also, only charged ions can be detected at all by the mass spectrometer, therefore the created

fragment has to contain at least one charge and thus form an ion. All measured fragment ions

of a precursor form an ion series or ion ladder. For the identification of the original peptide, it is

important to create and measure a complete as possible ion series of the analytes, as explained

later.

Annotation of Tandem Mass Spectra

With the knowledge of the preferred fragmentation site, it is possible to match a tandem MS

spectrum to an amino acid sequence. For this, it is assumed that the most intense peaks of a

spectrum correspond to the ion types created by breaking of the peptide at these fragmentation

sites. Using this, the weight differences for each amino acid in a fragment and preferably some
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more information about a tandem MS spectrum, like the precursor mass and charge, the amino

acid sequence of a the originally analysed peptide can be recovered as explained in Section 3.1.

After (or for de novo methods also during) matching a spectrum to an amino acid sequence,

the spectrum can be annotated by the sequence as shown in Figure 2.6. Here the matching of

the b- and y-ion series for the peptide DEVDGGPAGPPGGAAK on a spectrum is depicted. In

Table 2.1 the masses of the respective ion series and the annotated fragments are shown. In

the example it can be seen that the singly charged y-ion series can be annotated completely

from y4 up to y14, and the b ions from b2 to b12. With the usage of doubly charged ions it is

possible to annotate the complete peptide sequence in this case. Annotations like this make a

manual inspection of interesting results in a high-throughput identification possible.

Figure 2.6: Annotated MS/MS spectrum for the peptide DEVDGGPAGPPGGAAK. The
figure shows an annotated MS/MS spectrum for the peptide with the sequence DEVDG-
GPAGPPGGAAK from a 2+ charged precursor ion. In red the ion series for the y-ions is
annotated and in blue for the b-ions. The distances between two peaks are characteristic
for specific amino acids. Both series are almost complete (compare Table 2.1) and most
high abundant peaks are explained by the sequence, which lead to a relatively high Mascot
Ion Score in this case (68.86). But there are also some non-annotated peaks with high
intensity, for example around 689.07 m/z. This specific fragment could be a neutral loss
of water (688.83 m/z) or ammonium (689.32 m/z), which both are in the tolerance range
for a spectrum of the used LTQ Orbitrap Elite (0.4 Da). As in almost all spectra, there are
also several low abundant peaks, of which some are belonging to contaminants or also
noise. The annotated spectrum was generated with the PRIDE Inspector 2.5.
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Table 2.1: The ion series for y- and b-ions of the 2+ charged peptide DEVDGGPAGPPG-
GAAK identified by Mascot. This table shows the m/z values for all possible y- and b-ions
of the given sequence. The highlighted masses correspond to the annotated peaks in
Figure 2.6. These theoretical values are often used by database search engines to match
a spectrum to a peptide, but can also be generated by de novo sequencing strategies.

y ion series
seq

b ion series
pos y y++ b b++ pos
15 1279.628 640.318 D
14 1150.586 575.797 E 116.035 58.521 1
13 1051.517 526.263 V 245.077 123.043 2
12 936.490 468.749 D 344.146 172.577 3
11 879.469 440.238 G 459.173 230.090 4
10 822.447 411.728 G 516.194 258.601 5
9 725.395 363.201 P 573.216 287.112 6
8 654.357 327.683 A 670.268 335.638 7
7 597.336 299.172 G 741.305 371.157 8
6 500.283 250.646 P 798.327 399.667 9
5 403.230 202.119 P 895.380 448.194 10
4 346.209 173.608 G 992.432 496.720 11
3 289.188 145.098 G 1049.454 525.231 12
2 218.150 109.579 A 1106.475 553.742 13
1 147.113 74.061 A 1177.513 589.260 14

K 1248.550 624.770 15
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Chapter 3

Computational Background

After the measurement of a biological sample by a mass spectrometer, the data needs to be

interpreted. A contemporary MS run generates tens of thousands of spectra to be analysed

and interpreted, which obviously cannot be done by hand. This chapter gives an overview

of the computational background required for analyses of data obtained from bottom-up MS

proteomics experiments. First, the interpretation and identification of LC-MS/MS data is

explained in Section 3.1, which in this work is confined to the peptide-spectrum matching.

After briefly discussing the concepts of several widely used search engines, some common

protein databases are explained. In Section 3.2 approaches to estimate and maintain the

quality of peptide identifications are highlighted and in Section 4 an examination of some

protein databases regarding shared peptides is given. This directly leads to the necessity of

defining some terms to model the characteristics and relations of inferred proteins, which is

discussed in Section 3.4. The Human Proteome Organization (HUPO) and the efforts of its

Proteomics Standards Initiative (PSI) for computational mass spectrometry are finally described

in Section 3.5. The definition of standards is important to let bioinformaticians and developers

focus on the tasks of analysing data or creating tools and not how to extract information from

vendor data.

3.1 LC-MS/MS Data Interpretation

After the measurement in an mass spectrometer, a scientist is provided with the spectral data of

the samples. In the currently most widely used MS based proteomics method, the bottom-up

or shotgun approach, the actual proteins were digested into peptides, as described in the prior

chapter. Thus, in theory the data of any MS/MS spectrum contains only the fragment ions of a

single peptide ion. As the induced breakage of the peptide ions is well defined, it is possible to

identify the sample peptide from an MS/MS spectrum. In the early years of MS proteomics, the

spectra were only few per run and could be inspected and annotated "by hand" by the scientists.
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In a modern high-throughput setting, where usually some ten-thousand MS/MS spectra are

generated in each run, this is no longer possible. To overcome this, there are currently three

computational strategies for data analysis: de novo sequencing, database searching and spectral

library searching. An implementation of any of these techniques in proteomics is called a "search

engine" (SE), sometimes more precisely a "peptide search engine" or (less precisely) "protein

search engine", which obviously is not to be confused by web search engines. A SE usually

calculates a SE specific probability or score value for a peptide spectrum match (PSM), i.e. a

value for how well a peptide matches the given spectrum. As it is tedious to always exactly

differentiate between scores and probabilities, the more commonly used term "score" is used

throughout this work as a designator for both, unless stated otherwise.

3.1.1 Peptide Search Engines

In a de novo sequence analysis19, the software does the same as a scientist would do by hand:

by inspecting the peaks of a MS/MS spectrum for amino acid specific distances, respectively

their ion series (for example mainly b- and y-ions for CID spectra), the original peptide sequence

can be recovered. The more complete an ion series can be restored, the better the spectrum

might be scored. As this most naive approach is rather time consuming, faster strategies were

implemented recently18. All these de novo approaches obviously lack the link from peptides

to proteins. A mapping of the identified peptides to a protein database can be performed

afterwards to recover this knowledge. The mapping should probably be error tolerant, to allow

for example amino acid mutations, which hinder a database search approach. For unsequenced

species, i.e. species which genome is unknown and therefore also no protein database is

available, de novo approaches are still widely used.

For sequenced species, database searches are the current standard for peptide identifica-

tions in MS-based proteomics. Therefore it will be discussed in more detail in the following

section.

Spectral library searches build on de novo and/or database searches. In these approaches,

the spectra of well matching PSMs from prior searches are used and matched against newly

measured spectra. These approaches have the advantage of circumventing any theoretically

generated spectra. Furthermore, for the quality of the match also the intensity of the ions can

be used. The identification of peptides, which were not at least once identified before, is impos-

sible, though. Also, the spectral libraries are dependent on the generating mass spectrometer,

and partially also on the used setup. For samples measured by the SWATH54 method, adjusted

implementations of spectral library identifications are currently the most promising attempt.

This is due to the fact, that SWATH fragment spectra often contain intensity peaks of multiple

peptides. The identification of chimeric spectra though is a big problem for most database

search engines.
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3.1.2 Database Search Engines

The idea behind protein database searches in MS-based proteomics is to start with a protein

database, which contains entries for the proteins of the analysed sample, and to match the

measured spectra against theoretical in silico spectra or spectrum models, generated from

peptides. To create in silico peptides from the databases’ proteins, mostly regular expressions

describing the cleavage sites of enzymes are used. During the creation also missed cleavages

are allowed, which occur regularly in real world samples. As the mass of a measured precursor

ion is known, the number of peptides from the database, against which a measured spectrum

has to be matched can be greatly reduced. The theoretical MS/MS spectra or spectrum models

are created from the in silico peptides taking into account the preferred breaking of bonds in the

peptide backbone during the MS/MS fragmentation. Depending on the algorithm, either arbi-

trary scores or e-values are returned to measure the quality of a peptide match for a spectrum.

Most algorithms return more than one of these as quality measures. Eventually, a spectrum

can only be identified correctly, if its original peptide is present in the database. Therefore,

the choice of the underlying sequence database is one of the biggest issues for all database

searches. During the last two decades a plethora of different methods and implementations for

database searches emerged. Some of the search engines, which are most common and were

also used in other parts of this work, are summarised in the paragraphs after the following

issues.
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Figure 3.1: Schematic overview of a protein database search. The proteins in a database
are in silico digested using the specified cleavage sites. Each spectrum is optionally pre-
processed (e.g. using a noise filter) and all peptides fitting into the specific precursor
window are selected from the database. These peptides are matched against the spectrum
and scores are calculated. Finally, either all possible or only a selected number of the best
matches are reported together with the scores.
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Common Issues of Peptide Search Engines

A parameter, that greatly influences the outcome of a database search, is the choice of the

allowed modifications and number of missed cleavage sites. Static modifications, which usually

originate from the sample preparation like the common carbamidomethylation of cystein, do

not increase the search space, but are rather a mass shift for the affected amino acids. Any

variable modification, though, increases the search space and thus usually the runtime and

a search with and without the modification may lead to significantly different results. Some

of these modifications are very common, like the oxidation of methionine, which is used as a

default setting in most searches. While the modifications are used to more accurately explain

MS/MS spectra, the usage of inaccurately set variable modifications may lead to an increase

in false positives. Some search engines (e.g., Mascot and X!Tandem) give the opportunity to

perform a "second round" or refinement search to restrict the increased runtime. With this

approach, the spectra are matched in a first round with only some modifications and in a

second step, more modifications are allowed, but only matching against peptides belonging to

proteins, which were already identified by some peptides in the first round. Some of the above

mentioned search engines also have a more elaborate scoring scheme to handle modifications,

which will not be further explained in this work.

One big issue in almost all high-throughput methods is the estimation of false positives.

The scores and probabilities, which are calculated by the SEs, may give a hint, whether a

specific match is good or bad. But with most implementations it is possible to match any

sequence against any spectrum, yielding presumably a relatively bad score. Some approaches

to overcome this problem are given in Section 3.2. Furthermore, the SEs report, which peptide

of a given set of peptides best matches a given spectrum and score this. While the peptide scores

are thus comparable for matches of a specific spectrum, the scores are not per se comparable

between different spectra55. This bias can be adjusted by calibrating the scores, though this is

not a wide spread method yet.

SEQUEST

SEQUEST15 was one of the first protein database search algorithm for high-throughput mass

spectrometry. Several consecutive calculations of different scoring types are performed. The

first score, the Sp, takes into account the theoretical fragments, the actually measured ions

matching these, the continuity of matched ion series (which series, e.g. b- and y-ions, must

be given) and also the presence of immonium ions for several amino acids of the matched

sequence. Based on this score, the top ranked peptide matches for a spectrum (500 matches in

the original implementation) are further analysed performing a cross-correlation. For this, the

theoretical and the measured spectra are aligned and shifted along the m/z axis, computing

the correlation for each shift. For a good match of a peptide to a spectrum, the correlation
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should be significantly better at one shift position than on all other. This should be at a

zero-shift for a well calibrated mass spectrometer. This analysis is reflected in the X Corr

score, which is in this and most other works used as the main score of SEQUEST. Additionally

the difference to the next best match of the same spectrum is reported as ∆Cn, primarily to

distinguish correct matches from false positives. The original implementation is rather slow,

when compared to more recent algorithms. Nevertheless, SEQUEST is still widely used, though

mainly using faster, parallelised implementations now. For a long time, the original algorithms

were patented and distributed exclusively by Thermo Finnigan. Meanwhile several open source

implementations exist, most of them further decreasing the necessary runtime. Among the

more recent implementations are for example Tide56 and Comet57.

Mascot

One very widely used commercial software is Mascot16, developed by Matrix Science, which is

based on MOWSE58 and handles besides MS/MS ion searches also peptide mass fingerprints.

Though the actual used algorithm is not explained in detail and its implementation is not open

source, some of the basics are known. Mascot’s scoring algorithm is probability based, i.e. it re-

ports the probability that a peptide matches randomly in the given database. This approach has

benefits, like an easily interpretable score, but also a dependency on the underlying database

content as drawback. For the actual scoring, the most intense peaks, which lead to the lowest

randomly matching probability score on the given ion series, are used. The capability to run

Mascot on a server environment, using multiple nodes, makes it a good choice if short runtimes

for many spectra are required.

X!Tandem

X!Tandem, which was originally called TANDEM17 and released in 2003, claims in its origi-

nal publication to be the first non-propriety and open-source implementation of a database

search engine. The scoring system described in59 calculates in a first step the dot-product of a

measured MS/MS spectrum and the theoretical spectra of the database’s peptides, which fall

in a specified precursor mass tolerance. The dot-products are further refined to the so called

HyperScore, multiplying it with the faculties of the numbers of matching b-, y- and possibly

other ion series which were selected for scoring. The scores are assumed to be distributed

under an extreme value (or Gumbel) distribution. The logarithmic values of the counts can

be interpreted as results of a survival function and can thus be seen as e-values. An E-value

(or e-value for expectation value) is a score, that describes for the experiment how many ran-

dom hits in the database are expected to have the same or a better score. Logarithmic counts

plotted against the original score allow a linear interpolation for the high scoring portion of

the plot. Thus, the e-value of the peptide with the best HyperScore is calculated and reported.
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X!Tandem is a very fast and commonly used search engine, which gets regular updates and

supports community standard file formats for import and export.

OMSSA

OMSSA60 stands for Open Mass Spectrometry Search Algorithm and is another open source

search engine, developed by the NCBI and released only shortly after X!Tandem. The first step

of the search algorithm of OMSSA is a noise filter, filtering out the low intensity peaks and

allowing for charge 1+ spectra only one peak in a 27 Da window, for higher charged peaks

two peaks in a 14 Da window. These values are chosen, as they are smaller than the residue

mass of the smallest amino acid, which is glycine with an immonium ion mass of 30 MW. These

two peaks are allowed, to allow peaks of two different ion series in one bin. These filtered

peaks are than matched against the theoretical spectra of peptides within the precursor mass

tolerance. The base score for OMSSA is the number of matching peaks for a PSM. It is assumed,

that the distribution of these scores for all matched peptides follows a Poisson distribution.

This assumption is finally used to calculate an e-value for each PSM. Though OMSSA was, and

to a certain degree still is, used in many workflows, it is no longer maintained and thus its

usage will probably slowly cease.

MS-GF+

A more recent search engine, which gained much popularity during the last years is MS-GF+61.

A unique feature of this algorithm is the usage of the "generating function approach"62,63, which

is not used in any other database search algorithm. In this approach, not only all peptides

that fall within the mass tolerance in the database are scored against a respective spectrum,

but all possible amino acid sequences. With this the generating function estimates an e-value

given the best score for a spectrum obtainable by the peptides in the database and the best

score for all possible peptides falling into the respective mass window. With this approach it is

claimed that no further estimation of false positives is necessary, as all possible peptides are

tested for each spectrum. MS-GF+ fully integrates community standard formats and is open

source, programmed in Java, which makes it very portable. The runtime and memory imprint

of MS-GF+ is, compared to other search engines, relatively high, but the developers claim in

its publication, that it is much more sensitive than other search engines, i.e. it reports more

high quality PSMs than others, and is readily available for all types of MS/MS experiments.

3.2 Estimating the Quality of Identifications

As with all high-throughput technologies, mass spectrometry suffers from the identification

of false positives due to multiple testing: every single feature (in this case PSMs) may be
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identified with a relatively low error probability. But the fact, that there are ten-thousands

of these features makes the probability that none is a false positive small. The score of most

search engines describes in some way the probability of a PSM to be a random hit, as described

above. But most of these estimates are dependent on the sample, the instrument and/or the

database. Additionally, the distribution of the scores is not known. To overcome this problem,

one of the most widely used strategy in MS proteomics is the target-decoy-approach (TDA)64,65.

This approach allows the estimation of a false discovery rate (FDR)66 and thus controlling the

allowed number of false positives in a list of reported identifications.

The original idea behind the TDA is, that the search engines are presented with sequences,

which are not part of the original (target) database, but are decoys, which when matched

represent false identifications. This approach is based on the assumption that a search engine

may match a target sequence with the same likelihood as a decoy. For this, it is necessary

that roughly the same number of target and decoy peptide sequences fall into the precursor

tolerance for any given spectrum. This was shown to be true in the original manuscript64,

but with increased accuracy of modern MS instruments tends to hold only for large enough

databases, more accurately large enough decoy parts of databases.

3.2.1 Creation of Decoy Databases

For the creation of decoy databases several tools exist, for example the DecoyDatabase utility

in OpenMS or the DecoyDatabaseBuilder67. Three conceptually different strategies to create

decoys exist: the creation of random protein sequences, the reversing and the shuffling of

existing proteins. The creation of totally random protein sequences is the least used of these

strategies, as usually some biological aspects, like the frequency of amino acid usage in proteins

and protein lengths, are desired to match between decoy and target databases. Using reversed

sequences as decoys simply reverses the amino acid sequences, while when using shuffling, the

original amino acids of a protein are permutated to create the decoy sequence. There has always

been some debate in the literature, whether it is better to use reversed or shuffled proteins

as decoys67,68, until now without any conclusive result and both strategies are used next to

each other. An argument for reversing the targets is that the average length of peptides are

identical for targets and decoys. Shuffling, on the other hand, creates more seldom palindromic

sequences. Also, there was always some debate, whether a combined target-decoy database

should be used for identification or both databases should be used separately. In this work,

when not stated otherwise, combined target-decoy databases with shuffled decoys were used.

3.2.2 Estimation of the False Discovery Rate

The goal of the FDR estimation is to estimate the amount of false positives (FP) and thus to

limit the ratio of FPs in the reported identifications. As it cannot be known after a database
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search, whether a target identification is FP or true positive (TP), the decoy identifications are

used as placeholders for FPs. The idea behind this is, that under the assumption that decoy

and target matches are equally likely on noisy spectra, each decoy identification (which is a

true negative, TN) in a ordered list of PSMs stands for another FP with a similar score in the

neighbourhood. This allows to calculate a local FDR in a list of PSMs, that is ordered by the

scores. The original formula to calculate the FDR for any given rank i in the ordered list would

be

F DRi =
F Pi

T Pi + F Pi
,

where F Pi respectively T Pi are the number of FP and TP identifications up to the rank i. The

actual values for T Pi and F Pi are not known, as explained before. But the sum of them is the

number of target identification #tar getsi up to rank i in the list. For F Pi it is assumed that it

is the same as #deco ysi , the number of decoys at the given rank. Therefore, the used formula

throughout this work is

F DRi =
#deco ysi

#tar getsi
.

This is one of the proposed and widely used formulas for the FDR calculation using the

target decoy approach69. There is also a slightly different formula, which is not used throughout

this manuscript64.

Often the q-value instead of the local FDR is used as a meta-score in MS proteomics. The

value for a local FDR increases with every found decoy in the ordered list and decreases with

subsequent targets. The q-value at a given position is the smallest possible FDR value at this or

any following position in the list. Therefore, the q-value is monotonically increasing with steps

at each decoy in the list. This allows setting an FDR threshold and filtering for a specific false

discovery rate. The most commonly used threshold at the time of writing is 0.01 or 1%, which

effectively allows 1% false identifications to be in the final list of reported PSMs. Provided the

used FDR estimation is correct. Though the calculation was only explained for PSMs here, it

can be similarly performed on the peptide and protein level.

3.2.3 Smoothing the FDR and Combining Search Results

The stepwise increases in the q-value can be smoothed as shown by Jones et al. in27. This

smoothing is performed by interpolating the q-values between two decoy identifications based

on the scores, which were originally used for sorting. The resulting meta-score was named the

FDR Score.

As each SE has its own algorithms and assumptions for the score calculation, combining

the results of different SEs is not straight forward. Also, in general the scores cannot be linearly

scaled to convert one score into another, as is depicted in Figure 3.2. Jones et al. therefore

proposed a recalculation of the FDR Score to reflect, how good the agreement over multiple
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search engines is for the reported PSMs. Basically, the PSMs are sorted into groups reflecting

the combinations of search engines and for each set the average FDR Score is calculated for the

PSMs, respectively PSM sets. A PSM set includes the identical PSMs for a spectrum identified

by different search engines. For these, the average FDR Score is a geometric mean of the PSMs’

single FDR Scores. For the groups of PSMs, which were identified by only a single search engine,

the average FDR Score is set to the same value as the previously calculated FDR Score. Finally, in

each group of PSM (sets) for each SE combination, the PSM (sets) are ordered by their average

FDR Scores and a Combined FDR Score is calculated in the same way, as the FDR scores were

calculated from the original SE scores.
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Figure 3.2: Plotting the scores of PSMs identified by different search engines. Shown are
the plots of 1% FDR valid PSMs found by both of the respective search engines. The density
of the plotted scores is color-coded, ranging from dark blue (less dense) to red (densest).
These plots highlight, that there is no linear dependency between the scores, thus a direct
comparison of results originating from different search engines is not possible.

Using the FDR Scores for the combination of identifications obtained from different search

engines is included in PIA and therefore explained here. There are several other commonly

used methods, like the calculation of the Consensus Score28 or employing iProphet70. Merging

the results from multiple search engines is desirable to either increase the number of identified

spectra passing an FDR threshold and thus hopefully also the number of corresponding proteins

or to solidify the evidence of peptides detected in the analysed sample26.
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3.3 Protein Databases

While in de novo approaches a reported peptide depends on the used algorithm, in database

searches, only peptides contained in the underlying database can be reported. Therefore

the choice of the database is a crucial point. UniProtKB71 and the protein part of the NCBI

databases72 are probably the two most commonly used database resources for MS proteomics

at present. Besides these, there are many other databases like the species specific WormBase

(for C. elegans) and the Saccharomyces Genome Database (SGD, for S. cerevisiae). Mainly only

the simple amino acid sequences in the (relatively loosely defined) FASTA format are used to

match spectra by a search engine. Though most databases offer much more information about

the containing proteins, like the genes, gene ontology terms, secondary structure elements and,

if known, also clinical knowledge of the respective protein.

Most protein entries of the databases originate from genome annotations. Correct genome

annotation, especially the identification of translation start- and stop-sites and in higher organ-

isms also the annotation of exon-intron-structures is one of the oldest fields in bioinformatics.

But it is still error prone and in silico annotated proteins usually need validation on multiple

layers. For this, the UniProtKB gives five levels of protein existence (PE), in decreasing order of

reliability these are:

PE=1 Experimental evidence at protein level

PE=2 Experimental evidence at transcript level

PE=3 Protein inferred from homology

PE=4 Protein predicted

PE=5 Protein uncertain

For the numbers of proteins with the respective PE, see Table 3.1.

The UniProtKB also includes the annotation of protein isoforms, which have alternative

sequences of a gene product compared to the canonical sequences. These may be splice variants,

alternative promoter usage, alternative initiation or ribosomal frameshifting73. Often, only

the canonical sequence is used for spectrum identification, though this may not be the actual

expressed protein in an analysed sample. The entries in UniProtKB are further structured into

the curated Swiss-Prot and the automatically annotated TrEMBL part. The entries in Swiss-Prot

are non-redundant, manually annotated and most have a high level for the protein existence

(see Table 3.1). For the human and mouse portions of the Swiss-Prot, the numbers of entries

are almost equal to the the numbers of annotated protein-coding genes. The entries in TrEMBL

are computational analysed transcript data, enriched with automatic annotation.

It is advisable to perform the peptide searches on a database, which covers all the proteins

of the species contained in the analysed sample74. For UniProtKB these are the "complete pro-

teomes" (or only "proteomes"), which are available for most common species used in analyses.
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Table 3.1: Table showing the numbers of proteins with the respective protein existence
level. The numbers are shown for the human part of the Swiss-Prot and the human
complete proteome of the UniProt release 2015_11. For both databases, most entries have
experimental evidence at protein level (PE=1), but for the complete proteome, a large
proportion consists of predicted proteins only.

Database PE proteins (%)

Swiss-Prot
(H. sapiens)

1 14,696 (72.77)
2 4,136 (20.48)
3 651 (3.22)
4 123 (0.60)
5 588 (2.91)

Proteome
(H. sapiens)

1 51,298 (73.20)
2 4,595 (6.56)
3 1,206 (1.72)
4 12,388 (17.68)
5 588 (0.84)

The complete proteomes not only contain the complete Swiss-Prot part of the species but also

the TrEMBL entries, which can be mapped to annotated proteins on the genome. Whether

additional sequences for isoforms or known single nucleotide polymorphisms (SNPs) should

be included depends on the goal of the respective study.

To match as many good spectra as possible, it is also good practice to use a database

containing common laboratory contaminants, like amylase and keratin. The number of entries

in a database used for spectrum identification influences the quality of the results. While,

when using a too small database, it might be impossible to match many good quality spectra

and an estimation of false positive matches is impeded, a too big database will lead to an

overestimation of false positives.

3.4 Specifications of the Terminology for Protein Ambiguity Groups,

Sub-Groups and Clusters

In the beginning of the MS/MS proteomics, it was popular to report "long lists" and often it was

considered, that "the longer the list, the better the analysis". At this time grouping of proteins

was sometimes neglected and proteins were reported independently, even if proteins were

identified only by shared peptides and there was no actual evidence which could distinguish

one protein from another. Nesvizhskii et al. highlighted already in 200522, that it is necessary

to report groups of proteins together, if there is no way to decide, which protein has more

evidence than any other with the same (sub-)set of peptide identifications. The necessity for

a protein inference due to the shared peptides will be further highlighted in Chapter 4. In

this section some terms describing the relationship of reported proteins will be explained. In
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this work, mostly the same terms are used as in the mzIdentML75 documentation and in "A

standardized framing for reporting protein identifications in mzIdentML 1.2"76.

Groups of accessions, which are inferred from exactly the same PSMs or spectra, are called

a "protein ambiguity group" (PAG), or shorter only group. As a matter of concept, a PAG can

also consist of only one accession and its PSMs. Groups, which are inferred by a sub-set of

the PSMs of another group, are termed sub-groups. Depending on the used protein inference

and its reporting method, these sub-groups are reported or not. Furthermore, the identical

sub-group can be assigned to multiple PAGs, if each contains the same sub-set of peptides. A

cluster is a set of groups, which for some reason belong together, for example depending on

the respective data or additional biological knowledge. PIA for example puts groups deriving

from the same connected component in its intermediate data into one cluster.

To explain the importance and difficulties of reporting ambiguity groups, sub-groups and

clusters correctly, it will be explained in more detail with the aid of Figures 3.3, 3.4 and 3.5.

These figures are generated based on identifications of the iPRG 2008 benchmark dataset,

which will be further explained in Chapter 5.

Throughout this work, the inference from identified spectra to corresponding proteins will

be performed on three levels: peptide spectrum matches (PSMs), peptides (respectively amino

acid sequences) and proteins (respectively database accessions representing protein sequences).

One way to depict the relationship between these three layers is by drawing a directed acyclic

graph with arrows describing a "belongs to"- or "contains"- connection, as further explained in

Section 6.2.5 and shown in Figures 3.3, 3.4a and 3.5a. These graphs show three clusters with

increasing complexity between the different layers.

Figure 3.3: Sample of the connections between a single accession/protein, peptides and
spectra. For the given sample, the accession P14206 (green) has evidence by four peptides
(orange). Three spectra (lightblue) were identified for the left peptide, the other three
peptides have one identified spectrum each. The blue circles are used to connect all nodes
correctly, the reasoning behind this is explained in detail in Section 6.4.2.
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Figure 3.4: Sample showing the connections between accessions, peptides and PSMs for
a more complex cluster. In a) the same visualisation method as in Figure 3.3 is used. The
accessions Q9CR57 and Q9CWK0 belong to the same connection group and therefore
form a PAG. The accession Q569Z0 was identified by one more peptide than the PAG
with Q9CR57 and Q9CWK0, which makes this PAG a sub-group of the group containing
Q569Z0 only. The group of Q922F9 forms another sub-group of Q569Z0’s group, which
does not contain the two peptides of the PAG with Q9CR57 and Q9CWK0. b) shows the
same relations by drawing overlapping peptide sets with their corresponding accessions.

The graph in Figure 3.3 shows the relatively straight-forward relations of exactly one

protein, its peptides and PSMs. The protein (in the green box) was identified by four peptides

(orange). Of these peptides, only one was detected by three PSMs (light-blue), the remaining

three by one PSM each. To ascertain the graph to be acyclic and thus allow from each node to

any other node exactly one path along the graph, connection nodes (blue circles) are added

into the graph. The algorithm for the creation of the graph is discussed in Section 6.4.2. Each

accession is constructed in a way, that it belongs to a connection node. Thus it is easy to see,

when a set of accessions are identified by the same set of peptides and PSMs: these accessions

are attached to the same node. In Figure 3.4a this is the case for the two accessions Q9CR57

and Q9CWK0, which therefore form a PAG. The accession Q569Z0 was identified by one more

peptide than the PAG with Q9CR57 and Q9CWK0, which makes this PAG a sub-group of the

group containing Q569Z0 only. The group of Q922F9 forms another sub-group of Q569Z0’s

group. The graph in Figure 3.5a shows a rather complex example, which additionally contains

sub-groups without any common peptides.

Another way to visualise the relationships between proteins, peptides and PSMs is by

drawing overlapping peptide sets with their corresponding accessions, as shown in Figure 3.4b

and Figure 3.5b. These overlapping sets are easier to interpret for a human, but much more

complex to be created by an algorithm. In the less complex example (Figure 3.4b), one can

directly see, that there is one group which contains all the peptides of the two subgroups. In

the complex example, the actual relations are still hard to comprehend. But it is easy to see,

that there is one big group (Q3U8U8), which contains almost all other sub-groups. Only the
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Figure 3.5: Sample showing the connections for a rather complex sample. additionally to
Figures 3.3 and 3.4, this example contains sub-groups having no common peptides with
any other group. While the visualisation in a) is getting hard to interpret, the sets in b)
can still be interpreted by a human: one group containing Q3U8U8 encircles almost all
peptides, except the one identified for the pink group containing five accessions.

group visualised in pink with five accessions has one additional peptide as well as only one

shared with the big group.
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3.5 The Proteomics Standards Initiative of the Human Proteome

Organization

The Human Proteome Organization (HUPO) is an international scientific organisation, which

acts according to its following mission statement (cited from www.hupo.org):

"To define and promote proteomics through international cooperation and collaborations by fos-

tering the development of new technologies, techniques and training to better understand human

diseases."

The HUPO was launched in 2001 and is since actively involved in the development of

proteomics. To achieve the goals of its statement, among other things the HUPO organises the

"Annual HUPO World Congress", one of the biggest proteomics conferences worldwide, and

furthermore has several initiatives, which work on various proteomics associated topics. For

the work in this thesis, the activities of the HUPO "Proteomic Standards Initiative" (HUPO-

PSI) are of special interest, as these address common bioinformatics challenges and provide

community standard file formats, which allow scientists to focus on analysing data instead of

writing parsers and converters.

3.5.1 Goals of the HUPO-PSI

The HUPO-PSI was founded in 200277 with the goal to define community standards for data

representation in proteomics and thus facilitate data comparison, exchange and verification.

The initiative is open for scientists but also industry members and journal representatives and

everyone interested in defining and improving standard formats and guidelines may join and

contribute to their development. There are three kinds of output generated by the HUPO-PSI:

guidelines, standard formats and controlled vocabularies (CVs).

The "minimum information about a proteomics experiment" (MIAPE) guidelines78 contain

specifications about the minimal needed information to report complete results of specific tech-

niques or experiments. If all points in the appropriate document are described in a publication,

it should be possible to fully understand and even reproduce the experiment. The standard

data formats facilitate the exchange between software packages. They aim not at replacing the

vendor formats, but allow easier development of tools by using single application programming

interfaces (APIs) instead of needing importers for every vendor’s format. Though it is not a

necessary part of the standard development, for most of the formats the participating develop-

ers or the community created a Java API alongside. Furthermore, the formats are at least in

part human readable (mostly XML) and thus allow to extract information even without an API.

Many fields in the standard formats are filled with values from controlled vocabularies (CVs),

like the name of a specific analysis software, a physical unit or the name of a mass spectrometer
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used for the analysis. The separated curation of the CVs from the standards allows a faster and

easier update of the contained terms, than the complex update of a standard’s schema79.

If a new standard format is developed or changes outside the CVs are needed, the HUPO-

PSI follows a self-created "document process". This includes public review and peer-reviewing

of the specifications and, if necessary, revisions of the proposal. In this way the HUPO-PSI

makes sure, that in the end outputs are developed, which suffice a community consensus.

3.5.2 Standard Formats for Peptide and Protein Identification

The HUPO standard for raw MS data is the mzML80, which uses the best aspects of the two prior

standards for raw data: mzData and mzXML. The new standard was developed in cooperation

by the original developers of its predecessors, the HUPO-PSI and the Seattle Proteome Center

at the Institute for Systems Biology. The mzML format has reached a relatively stable and

mature status at the time of writing and converters for many vendor formats exist. Also, many

search engines have native support to use mzML files as input.

As the FASTA format for sequence databases is neither standardised, nor holds much infor-

mation besides the sequence, accession and sometimes a short description, the HUPO-PSI is

currently developing a format which can be used by sequence search programs and associated

tools or repositories. The proposed name for this format is PEFF, which stands for "PSI Extended

Fasta Format". PEFF files will be text-based and backwards compatible with FASTA files, but

will contain additional information like isoforms, splice variants, known mutations and post

translational modification sites. The current schematics propose to encode these additional

information into the sequence headers. At the time of writing this thesis, the PEFF format

though was still under development without any publication or wide usage.

To communicate and store peptide and protein identification data, there are currently two

formats with different scopes: mzIdentML75 and mzTab81. MzIdentML aims to capture all

available data which might be generated by a search engine, including all analysis settings,

protein database sequences and even the product ions used for the identification. While this

format is suited to provide a software tool with information, it is not practical to exchange

and review identifications between scientists. For this, the tab separated mzTab format was

developed, which by far is not complete in terms of information and does not suffice the MIAPE

guidelines, but can be viewed by most spreadsheet software. While reporting of protein ambi-

guities was considered for both formats, mzTab has no support for the report of sub-proteins

respectively sub-groups, same-sets and other complex protein relations. For mzIdentML, a

guideline on how to report these cases was recently published and is further explained in the

following paragraphs.
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Reporting Protein Identifications in mzIdentML 1.2

The recommended ways of reporting protein identifications in mzIdentML 1.2, which are

highlighted in the following paragraphs, have been published in76. This framing describes

methods to clearly model the identification and inference of single proteins, groups and clusters

described before in Section 3.4.

A single protein should in mzIdentML be encoded as a ProteinDetectionHypothesis (PDH).

Each PDH is assigned to (at least) one ProteinAmbiguityGroup (PAG), for which the creating

software has enough evidence to report it as an independent entity. A PAG as at least one

score and a value, whether it passed a certain threshold for reporting. The groups may also

have further scores like e.g. FDR or p-values. Each PDH must furthermore be annotated as

a "leading protein" or "non-leading protein", to give some proteins more evidence. The "non-

leading protein" can be used to flag members of sub-groups. Also, one member that is flagged

as "leading protein" may be flagged as "group representative". Otherwise it is assumed, each

"leading protein" could be used as representative. Each PDH can contain its own scores and

additional information to define it as a sequence or spectrum subset or otherwise subsumable

of another PDH. The cluster affiliation should be added to a PAG, if the exporting software

supports this.

This framework enables the representation of quite complex relations between identified

and inferred proteins. Unfortunately, the version 1.2 of the mzIdentML standard was at the

time of writing this thesis not yet finalised and published. Most of the recommendations though

can also be encoded into mzIdentML 1.1 and are already incorporated by PIA.
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Chapter 4

Analysis of the Uniqueness of Peptides

and Proteins

One of the biggest drawbacks of bottom-up MS proteomics is the fact, that peptides are detected,

although the actual molecules of interest are most often proteins. This is due to the fact,

that even modern MS instruments are not optimized for the analysis of complete proteins in

high-throughput, but are specialized on measuring smaller molecules, as already discussed in

Chapter 2. From this arises the need to infer proteins from the identified peptides.

The easiest way to infer proteins from identified peptides would be to simply argue, if the

peptide was identified with a probability surpassing a certain threshold, the corresponding

protein was in the sample. Unfortunately, it cannot be decided which exact protein was present

in a sample with peptides, which originate from multiple proteins in the database used for

the spectrum identification. Approaches for the protein inference will be discussed in the

following chapters, here the uniqueness of peptides and accessions is highlighted first. As

already mentioned before, the currently most widely used approach for spectrum identification

is the database search. Therefore, it is dependent on the used databases, whether a peptide

belongs to only one accession in the searched database (this will be called unique in the

following) or is shared by several accessions respectively proteins. A peptide, which is unique

in one database (for example the Swiss-Prot portion of UniProtKB) may be shared in a database

containing more entries (for example a complete proteome of UniProtKB). Sometimes a shared

peptide is also called degenerated in analogy to the so-called degeneracy of the genetic code,

which could in principle encode 64 amino acids but does so for only 21 amino acids in most

organisms.

Some of the most common reasons for the origin of shared peptides are shown in Figure

4.1. For a peptide of six amino acids, the probability for two sequences being equal is roughly
� 1

20

�6
= 1.5625 · 10−8 assuming only 20 amino acids and a uniform distribution of amino

acids. Thus, though a peptide can be shared just by coincidentally having the same amino
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acid sequence, mostly a biological background can be found. If no species specific database

was used, there are often homologous proteins contained. These differ only by short stretches

or even single amino acids and have for the biggest part identical sequences. Also truncated

sequences or protein fragments, which are completely overlapped by another protein, are often

found in bigger databases, like the reference proteomes of UniProtKB. For higher organisms,

alternative splicing leads to proteins, which have at least partially the same peptides as related

splice variants.

Homologous proteins:

Protein 1

Protein 2

Truncations and fragments:

Protein 3

Protein 4

Exon 4Exon 1

Splice variants:

Exon 2 Exon 3

Protein 5

Protein 6

Protein 5

Protein 6

Figure 4.1: Some of the most common reasons for the origin of shared peptides. Regions
with identical amino acid sequences have the same colour, those possibly containing
unique peptides are highlighted with boxes. The first depicted reason is the occurrence of
homologous proteins in the database, for example from different species. These usually
are very similar and differ only in short sequences or single amino acids. The next example
shows truncations or fragments of proteins, which are completely overlapped by another
protein entry in the database. More complex are splice variants, which occur in higher
species only. Here, alternative splicing of the mRNA can lead to proteins, which are
concatenated of translations originating from different exons on the DNA. Under specific
conditions during the maturation of the messenger RNA exons are spliced out and thus
the resulting proteins do not contain the respective amino acid sequences. In the depicted
example, there are four exons and protein 5 contains all of the translated sequences, while
protein 6 contains only the sequences from exons 1 and 3.

4.1 In Silico Digestion of UniProtKB Databases

To get an overview on the number of unique peptides and of accessions, which contain at

least one unique peptide sequence, the tryptic peptides of some UniProtKB databases are

analysed here. For this, all protein sequences in the Swiss-Prot part of UniProtKB for H. sapiens
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and M. musculus were in silico digested, using the regular expression [RK]|{P} as the default

enzymatic cleavage site. This means, a cleavage is expected after each arginine (R) and lysine

(K), except either is followed by a proline (P), which is the expected case when peptides are

digested by Trypsin and the amino acid sequence is read in the usual way from the N- to

C-terminus. As the digestion might not be perfect, the entries were digested allowing zero,

one and two missed cleavages. All sequences, which were shorter than 6 AAs, which are

usually neglected by SEs, as they are too small to be detected by the MS machines and are

mostly shared, or longer than 45 AAs, which are too big for most MS measurements, were

discarded. The same digestions were performed to the complete proteome sets of the two

species and to the whole Swiss-Prot portion without any taxonomy restriction. For all these

studies the UniProtKB release 2015_11 was used. A similar approach was performed in74,

though with older databases and without considering the missed cleavage sites. The results of

the in silico digestion are shown in Table D.1. The table shows the number of accessions in the

used database. Furthermore, the number of accessions with at least one unique peptide, the

total number of peptides and the number of unique peptides are given for either zero, one and

two allowed missed cleavages.

The analysis shows, that the number of accessions, peptides and their uniquenesses varies

greatly, depending on the underlying database. The first obvious point is the varying number

of total entries in the databases. The Ensembl information pages (accessed 21.12.2015) lists

20,313 protein-coding genes for human and 22,533 for mouse for the genome releases GRCh38

(human) respectively GRCm38 (mouse). The human numbers correlate roughly with the num-

ber of entries in the human Swiss-Prot, whereas for the mouse the evidence in this manually

curated database is still missing for approximately 6,000 proteins. The complete proteome

datasets, which additionally contain non-manually curated entries, is 2.9 times bigger for the

mouse and 3.4 times bigger for the human database, which both is much bigger than the anno-

tated numbers of genes. The complete proteome sets, though, are the recommended datasets,

if a proteome wide analysis should be performed, as these contain entries for all proteins which

are thought to be expressed in the respective organisms, including alternative variants and

fragments. The complete Swiss-Prot with 549,832 accessions of 13,251 taxonomies (including

different species’ strains) should be rarely used, unless for pre-searches such as conducted in

metaproteomic projects82. Nevertheless, the data is given in the table for comparison.

In the Swiss-Prot databases, between 96% and 98% of the peptides are unique, whereas only

54% – 55% of the peptides in the complete proteomes are unique. This decreased uniqueness is

expected and can be explained due to the alternative sequences and fragments of protein entries

in these databases, which generally share a mutual part of their sequences with the respective

canonical entries but also have some unique parts. The uniqueness is generally increased by

allowing missed cleavages, though this effect is with 0.5% – 2.5% very small. Interestingly,

each analysed database has about 2.6 times more peptides in overall when allowing one missed
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Figure 4.2: Fraction of unique tryptic peptides in common databases. This figure shows
the results of an in silico digestion of often used databases from the UniProtKB. Shown are
the results of human and mouse entries of Swiss-Prot, the human and mouse proteomes
and the complete Swiss-Prot of the UniProtKB release 2015_11. The protein sequences
of each database were digested using the tryptic regular expression [RK]|{P}, allowing
0, 1 and 2 missed cleavages and discarding peptides shorter than 6 or longer than 45
amino acids. The fraction of unique peptides is depicted in a light colour, the shared
peptides in a dark colour. The percentage of unique peptides is given above the bars. The
reference proteome databases contain a significantly higher fraction of shared peptides
than the respective taxonomical Swiss-Prot databases. For both species, these fractions are
similar, while for the digest of the complete Swiss-Prot database the fraction is between
the taxonomic Swiss-Prot and reference proteomes. The actual numbers are given in the
appendix in Table D.1.

cleavage and 4.2 times more when allowing two missed cleavages than the strict enzymatic

rule.

The number and percentage of protein entries, which contain at least one unique peptide,

varies not only greatly between the databases but is also greatly influenced by the allowed

missed cleavages. In the taxonomically filtered Swiss-Prot databases almost each accession

has a unique tryptical peptide (98.67% – 99.73%), independent of the number of allowed

missing restriction sites. In the proteome sets, the percentage of entries with unique peptides is

significantly increased, when increasing the number of allowed miscleavage sites. The largest

increase is already achieved by allowing one missed site with 10% in the human and 8% in

the mouse data, whereas allowing two missed sites increases the uniqueness by an additional

approx. 1.5% in both species to 87.6% for the human and 80.6% for the mouse database.

Though these percentages are much less than the almost 100% for the Swiss-Prot databases,
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Figure 4.3: Fraction of accessions in common databases containing at least one unique
peptide. In this figure, the fractions of accessions with at least one unique peptide (light
colour) and accessions with shared peptides only (dark colour) are given. For this analysis
the same databases and in silico digestion as in Figure 4.2 was used. The percentage
of accessions containing at least one unique peptide is given above the bars. For the
taxonomic databases the fraction of accessions without unique peptides is decreased by
half in comparison to the fraction of shared peptides in Figure 4.2, though this is only
1%-2% in the Swiss-Prot databases. Interestingly, for the complete Swiss-Prot database,
the fraction of accessions with unique peptides is decreased in comparison to the relative
fractions on peptide level.

it is interesting to notice, that the uniqueness for the complete proteomes is on accession

level 20%-30% higher than on peptide level. For the complete Swiss-Prot, the uniqueness on

accession level is relatively constant with 72.4% – 74.9% and interestingly even slightly lower

than on the respectively peptide level.

4.2 Peptide and Protein Uniqueness in Example Datasets

To compare these theoretical values with real data, two datasets from exemplary human and

mouse samples were compared. The human samples consist of a tryptic digestion of lysed

A549 cells, a human cancer cell line. These samples are measured in the MPC regularly as an

in-house standard on all machines. The mouse samples originate from an immortalised murine

myoblasts cell line, for which the publication is pending (for the sample preperation see Section

5.1.1). Both samples were measured on an LTQ Orbitrap Elite (Thermo Fisher Scientific),

coupled to an UltiMate 3000 RSLC nano LC system (Dionex). The samples were measured
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on a 2 h gradient and generated approx. 26,000 MS/MS spectra per run. These experiments

can be considered as standard measurements, i.e. the results should reflect usual values for

MS/MS experiments. For the human and mouse samples 20 MS/MS runs were analysed and

the spectra identified using X!Tandem. To maintain a PSM FDR of 1%, concatenated target-

decoy databases were created of the databases, which were analysed for the in silico digestion.

For all samples, two missed cleavages were allowed.

Table 4.1: Table showing the uniqueness of identifications on an exemplary human
dataset. The original data was generated by an Orbitrap LTQ Elite (Thermo Fisher Sci-
entific), coupled to an UltiMate 3000 RSLC nano LC system (Dionex). Samples are from
lysed A549 cells, a human cancer cell line. Identification was performed by X!Tandem
against the respective target-decoy database of the given type (compare to Table D.1 and
text) and the identifications are filtered on a 1% PSM FDR threshold. Up to two missed
cleavages where allowed for the spectrum identification. Peptides were inferred directly
from the sequences of PSMs not considering modifications or charge states. Proteins
reflect the number of different accessions linked to the identified spectra, "unique" on
protein level reflects the number of accessions, which have at least one identified peptide
not shared by any other accession. The numbers are the total identifications, in brackets
are the unique percentages of these identifications.

Database
proteins (with

unique peptide)
peptides (unique) PSMs (unique)

Swiss-Prot
(H. sapiens)

3,244 (79.96%) 11,396 (91.43%) 15,079 (88.05%)

Proteome
(H. sapiens)

9,045 (14.84%) 10,886 (38.70%) 14,299 (37.33%)

Swiss-Prot 18,287 (5.78%) 9,504 (24.82%) 12,810 (21.82%)

Table 4.2: Table showing the uniqueness of identifications on an exemplary mouse dataset.
The samples in this table originate from an immortalised murine myoblasts cell line. The
setting were the same as for the data in Table 4.1. The numbers are the total identifications,
in brackets are the unique percentages of these identifications.

Database
proteins (with

unique peptide)
peptides (unique) PSMs (unique)

Swiss-Prot
(M. musculus)

2,326 (85.91%) 11,056 (93.05%) 14,697 (90.31%)

Proteome
(M. musculus)

5,261 (20.31%) 11,150 (39.94%) 14,703 (38.43%)

Swiss-Prot 16,040 (6.51%) 9,953 (27.19%) 13,617 (24.00%)

The average values regarding the uniqueness of identifications on PSM, peptide and pro-

tein level for the 20 runs of each sample are collected in the Tables 4.1 and 4.2 respectively.

Comparing these data with the theoretical values in Table D.1 gives some important insights.

The first point to consider is the fact, that PSMs are measured, and not peptides directly. As

several PSMs may stand for the same peptide, there are generally less peptides than PSMs in a
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sample. For the peptide inference in this analysis, only the sequence is considered, no modi-

fications or charge states. The uniqueness on the PSM level is generally slightly (1.4% – 3%)

lower than on peptide level. On the peptide level the differences to the theoretical digestions

become apparent. For the taxonomical Swiss-Prot databases, the uniqueness is decreased by

approximately 5% for both species, on the complete proteomes by approximately 16%. When

searched against the complete Swiss-Prot, the uniqueness is decreased by more than 50%.

This indicates, that many peptides with homologous entries in different species are actually

identified by MS experiments. Also the missed cleavages must be considered: while increasing

the number of allowed missed cleavages, also the percentage and number of theoretical unique

peptides is increased, the biggest part of identified spectra have no missing cleavage site. The

percentage of identified accessions, which have at least one uniquely identified peptide, is even

further decreased from the theoretical values than the theoretical values of the peptides.

4.2.1 Conclusion and discussion

These analyses highlight the need for a protein inference on the collected data. Well curated

databases like taxonomical parts of Swiss-Prot contain a high percentage of unique peptides.

The actually identified peptides in real-life samples though do not reflect this percentage,

but the number of identified unique peptides are usually lower than the theoretical. When

searching for novel biomarkers in a sample, also the less curated databases, like the reference

proteome sets, are favourable, which contain even less percentages of unique peptides and

therefore increase the need for a protein inference, if the proteins are the molecules of interest

in an LC-MS/MS experiment.

The reason for the decreased uniqueness in real life databases is not obvious and can only be

guessed. The occurrence of too small (less than 6 AAs) or too big (more than 45 AAs) peptides

in the databases can be ruled out, as these were filtered out in the analyses. One explanation

could be, that for many of the shared identified peptides actually more than one protein was

in the sample. If this was the case, than these peptides have a higher abundance than other

peptides, which are not shared, and therefore are more often fragmented and recorded by

MS/MS spectra. Also, MS/MS spectra originating from high abundant precursors get better

identifications.
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Chapter 5

Assessment of Protein Inference

Methods

After explaining the necessity to perform a protein inference in a LC-MS/MS experiment in the

prior chapters, this chapter presents different protein inference approaches and benchmarks

their results. This includes widely used implementations as well as the methods implemented

in PIA, which will be described in detail in the next chapter. The first part of this chapter

contains a description of the subsequently analysed datasets. In Section 5.2, PIA and its

application to complex datasets is assessed, before in Section 5.3 it is compared with other

inference algorithms and an in-depth assessment of the results obtained from multiple datasets

of varying complexity is performed.

The contents of this chapter are, partly literally, published in the articles

"PIA: An Intuitive Protein Inference Engine with a Web-Based User Interface.", Uszkoreit

et al. J Proteome Res. 2015 Jul 2;14(7):2988-97.1 (mainly in Section 5.2) and

"In-depth analysis of protein inference algorithms using multiple search engines and

well-defined metrics.", Audain and Uszkoreit et al. J Proteomics. 2016 Aug

4;150:170-182.2 (mainly in Section 5.3)

The figures depicted in this chapter are created after the original figures used in the

stated publications.

5.1 Description of the Benchmark Datasets

To ideally benchmark a protein inference algorithm a dataset should be used, which contents at

least on the protein level are completely known. Such a dataset is often called a "ground truth"

or "gold standard" dataset. Furthermore, the dataset should be complex enough, that useful
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analyses of different inference algorithms can be conducted. Creating and measuring such a

dataset with LC-MS/MS methods though is cumbersome and expensive. The commonly used

ISB 18 dataset83 contains 18 highly purified proteins, of which the sequences are perfectly

known. But even this dataset contains 93 identified contaminants like keratins and other

proteins of human origin and several more proteins originating from nutrient solutions used

to feed the hosts, which were used to express the proteins of interest. However, the number

of 111 known proteins in the dataset proved to be too small to perform any useful assessment

of protein inference: all proteins were identified by almost all tested algorithms, without

returning any significant amount of false positives (data not shown here). The sample has

furthermore no information about any protein ambiguities, which should be detected by any

protein inference, like the existence of different isoforms.

For peptide level analyses there exist several complex datasets, for example a dataset

containing one synthetic peptide for almost each human gene84. Also for quantitative analyses

there are several spike-in datasets available as shown in85. Still, at the time of writing only

two public accessible complex datasets claiming gold-standard-status could be found: the

dataset created for the 2008 Proteome Informatics Research Group (iPRG) study (abbreviated

as iPRG 2008 dataset) and the "Gold Standard of Protein Expression in Yeast" dataset described

by Ramakrishnan et al.86 ("yeast gold standard"). Besides these gold standards, the benchmark

results of two further complex datasets will be discussed: one murine myoblast cell line sample

prepared at the MPC ("mouse dataset") and one human lung cancer dataset downloaded

from ProteomeXchange (PXD000603). All datasets will be further described in the following

paragraphs.

5.1.1 Mouse Dataset

For the creation of the mouse dataset, cultured cells of a murine myoblast cell line were used.

A complete description of these cells is not possible in this thesis, as the publication by a

colleague is still pending. The cells were harvested and centrifuged for 5 min at 800 g. The

cell pellet was resuspended in lysis buffer (3 mM Tris-HCl, 7 M urea, 2 M thiourea, pH 8.5),

homogenised, and lysed via sonification (six times for 10 s, on ice). After centrifugation

(15 min, 16,000 g), the supernatant was collected, and protein content was determined by

Bradford protein assay. For the following tryptic in-solution digestion, 20 µg of sample was

diluted in 50 mM ammoniumbicarbonate (pH 7.8) to a final volume of 100 µL, reduced by

adding DTT, and alkylated with iodacetamide as described in87. After digestion, the peptide

concentration was determined by amino acid analysis, and 200 ng of the peptide sample was

subsequently analysed by a label-free mass spectrometry approach using an UltiMate 3000

RSLC nano LC system directly coupled to an LTQ Orbitrap Elite mass spectrometer (both

Thermo Fisher Scientific, Dreieich, Germany).
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For spectrum identification, an mzML file was created from a Thermo RAW file using the

msConvertGUI of ProteoWizard88, which was further converted by OpenMS into an MGF file

(Mascot Generic Format, the de-facto standard for text based spectrum files used by almost

all search engines). This MGF was searched against a decoy database of the mouse complete

proteome set downloaded from UniProtKB on 26.11.2014 (44,467 entries). A shuffled decoy

database was created using the DecoyDatabaseBuilder67. The used search engines were set

to allow a parent mass tolerance of 5 ppm and fragment mass tolerance of 0.4 Da as well as

one missed cleavage. Oxidation of M, acetylation of the protein N-terminus, Glu to pyro-Glu,

and Gln to pyro-Glu were used as variable modifications, the latter three corresponding to the

default and recommended settings for X!Tandem. Additionally, carbamidomethylation of C

was used as a fixed modification, due to the sample preparation.

5.1.2 Gold Standard of Protein Expression in Yeast

The RAW data files for the yeast dataset were downloaded from http://www.marcottelab.
org/MSdata/Data_02. The measured samples contain proteins of wild-type yeast, grown

in rich medium and harvested in log phase. This dataset was published and analysed by

Ramakrishnan et al86. Of the original 32 RAW files (eight different mass spectrometer settings

with four SCX salt steps each) available, the four runs of the mass spectrometer with the highest

number of spectra were used (070119-zlmudpit07-1). For these runs, the RAW files were

converted to mzML using msConvertGUI and further processed to MGF files using OpenMS.

The expressed proteins contained in the sample were identified by MS- and non-MS-based

methods and are available as a reference set. This original reference set contains 4,265 protein

entries, which needed refinement due to merged accessions in newer databases, as explained

later. The complete search parameters will be given in the respective assessment description.

5.1.3 iPRG 2008 Dataset

The used MGF files and the provided concatenated target-decoy database, containing reversed

sequences as decoys, were downloaded from the homepage of the Proteome Informatics Re-

search Group (iPRG,89). These data were also provided for the Association of Biomolecular

Resource Facilities (ABRF) iPRG 2008 study, which aimed to "assess the quality and consis-

tency of protein reporting on a common data set", as stated on the study’s slides. More details

on the actual study design will be described in Section 5.2.3. For this study, mouse samples

were trypsin-digested, and peptides were labelled by four-plex iTRAQ and fractionated via

strong cation exchange (SCX) chromatography. The fractions were measured by LC-MS/MS

on a 3200 QTrap (some fractions were measured multiple times with different exclusion lists),

which resulted into 29 files. These data were analysed by members of the iPRG by a variety

of search engines and protein inference tools. The results were used to create a list of protein

47

http://www.marcottelab.org/MSdata/Data_02
http://www.marcottelab.org/MSdata/Data_02


5. Assessment of Protein Inference Methods

clusters that are detectable in the data. A protein cluster contains multiple database accessions,

which share some peptide information (compare Section 3.5.2). For each cluster, the number

of expected identifications was identified using the iPRG’s members analyses. The expected

number of reported protein groups in a cluster was set to the number returned by at least

three of the six iPRG group members. Furthermore, the clusters were assigned to five different

classes, of which only the first three classes were graded in the further assessment. Class 1

(16 clusters) contains "consensus multiple identifications", i.e. at least three members of the

iPRG identified a minimum of two protein groups per cluster and each cluster was identified

by at least one protein group by each iPRG member. Class 2 (11 clusters) contains "debatable

multiple identifications", meaning most iPRG members identified at least one protein group for

each cluster and for some clusters the expected number is set to two after discussion. Finally,

class 3 (182 clusters) contains a "consensus single identification" per cluster: each cluster was

identified by one protein group by each iPRG member. More information on this can be found

on the iPRG’s homepage.

For the peptide identification, a mass spectrometer specific precursor and fragment toler-

ance of 0.45 Da was set and one missed cleavage was allowed. For the fixed modifications,

four-plex iTRAQ on K and N-termini as well as methylthio on C were used, due to sample

preparation, and for the variable modifications oxidation of M was used.

5.1.4 Human PXD000603 Dataset

The PRIDE submission PXD000603 contains the data of a lung cancer study, analysed with

an LTQ Orbitrap. Of this dataset, the RAW files of the lung cancer samples (LC1-LC12) were

converted into the mzML format using ProteoWizard. For the sample preparation and measure-

ment, please refer to the information in the PRIDE archive and the respective publication90.

5.1.5 Human PXD001118 Dataset

This PRIDE submission contains HCD (higher energy collisional dissociation) fragmentation

spectra, in contrast to all other datasets which have CID fragmentations. For the analyses

only the MGF file containing this fragmentation type was evaluated. The measured sample

originates from an enriched histone study. Thus, these samples are not as complex as the other

datasets. For the sample preparation and measurement, please refer to the information in the

PRIDE archive and the respective publication91.

5.2 Assessment of PIA

To evaluate the reliability and to describe the behaviour of PIA, it was assessed on one real-life

in-house dataset, of which the precise protein contents are not known, and on two public
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datasets with knowledge of the protein contents. The in-house dataset is a label-free mass

spectrometry analysis of a murine cell culture sample (see Section 5.1.1). The first dataset

with known protein content is part of the Gold Standard of Protein Expression in Yeast (Section

5.1.2). The other dataset that also contains known proteins was produced for the iPRG 2008

study of the ABRF (Section 5.1.3). All three datasets were used to measure and compare the

performances of the PIA algorithms using the common search engines Mascot (version 2.4.1),

MS-GF+ (v9949), and X!Tandem (Sledgehammer, 2013.09.01.1). PIA intermediate XML files,

containing compilations of the original SE’s outputs (compare 6.2.1), were generated with

various search engine’s result files per dataset and used to generate protein group results with

different PIA settings and filters.

All benchmarking datasets, including the plotted search results, and used KNIME workflows

have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository

with the dataset identifiers PXD000790, PXD000792, and PXD000793.

5.2.1 Assessment of the Mouse Dataset

With this assessment the application of PIA on a current dataset was analysed. For this, the

searches performed by Mascot, MS-GF+, and X!Tandem were first analysed separately and

then through a combination of all searches. The numbers of identified protein groups using

Spectrum Extractor (Section 6.2.4) as inference method are plotted against the protein FDR

q-value in Figure 5.1. For Mascot searches, three protein inferences were performed using

allowed PSM FDR Score values below 0.30, below 0.10, and below 0.01 (the latter value is

recommended by us), respectively. Although decreasing the allowed FDR level also decreases

the total number of reported protein groups, the number of target protein groups in the low-

FDR range is increased, i.e., the very beginning of the list contains fewer false positives. This

effect can be seen when comparing the Mascot plots with FDR ≤ 0.30 and FDR ≤ 0.10 on the

q-value of 0.01: the latter reports more groups up to this threshold. This increase of reported

high-quality proteins is observable only until a certain FDR level is reached, below which the

number of reported proteins rapidly decreases, as can be seen in the plot of Figure 5.1 when

allowing only PSMs up to an FDR below 0.01. Additionally, the number of groups identified

when using only MS-GF+, X!Tandem, and PSMs with an FDR Score below 0.01 are plotted,

which show equal trends even though there are different numbers of reported protein groups

at given q-values. Finally, the number of reported groups when using the combination of

all search engines and keeping the PSM FDR level (using the Combined FDR Score) at 0.01

exceeds the number of reported proteins for each single search engine at every q-value. This

indicates that a combination of search engine results with PIA improves the number of true

identifications in a list of protein groups.
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Figure 5.1: Performance of PIA on the mouse dataset. Plotted is a pseudo ROC curve
of the number of target (in contrast to decoy) protein groups against the protein FDR
q-values for protein inferences using the PSMs from three different search engines and
Spectrum Extractor. The number of protein groups determined after a combination of
search engine results with PIA exceeds the number of protein groups identified when
using results of a single search engine at every q-value while using the same PSM FDR
threshold. Although decreasing the allowed FDR level also decreases the total number of
reported proteins, the number of protein groups in the low-FDR range is increased, i.e.,
the beginning of the protein list contains fewer false positives. This increase of reported
high-quality proteins is observable only until a certain FDR level is reached, below which
the number of reported proteins rapidly decreases, as plotted for the Mascot data (blue
curves).

5.2.2 Assessment of the Yeast Gold Standard Dataset

For the performance measurement in this assessment, a shuffled decoy database created with

the DecoyDatabaseBuilder of the protein database from the Saccharomyces Genome Database

(SGD, www.yeastgenome.org, downloaded on 28.05.2014, 6,717 entries) was used for pro-

tein identification. As some of the entries in the reference set are no longer in the SGD database

due to newer protein annotations, the reference set of proteins known to be in the sample was

adjusted and finally contains 4258 accessions, 7 entries fewer than the original reference set.

For the peptide identification a mass spectrometer specific precursor tolerance of 25 ppm, a

fragment tolerance of 0.5 Da, one missed cleavage and the variable modifications for oxidation

of M and protein N-terminal acetylation were allowed.

The performance of PIA using the Spectrum Extractor and Occam’s Razor inference, with

the need for one unique peptide per reported protein group, was assessed for each search

engine and the combination of search engines on this dataset. As for this dataset the proteins

contained in the sample are known, the local FDR and q-value of the ranked protein results can

be calculated using the proteins contained in the reference set as true positive identifications

and all other identifications as false positives. With these values, a pseudo ROC curve plotting

the number of true positives against the corresponding q-values depicts the quality of the
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results. In Figure 5.2, the curves for the combination by PIA and the X!Tandem results alone

with at least one unique peptide per protein group are shown.
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Figure 5.2: Performance of PIA on the yeast gold standard dataset. For this dataset, the
expected identifications are known, which allows the number of true positive identifi-
cations to be plotted against the q-value in a pseudo ROC curve. Plots are shown for
protein inferences run with Spectrum Extractor and Occam’s Razor for a combination of
search engines and the usage of X!Tandem results only. Generally, Spectrum Extractor
outperforms Occam’s Razor in the very high confidence regions, but it also tends to report
fewer protein groups in the overall perspective, if no protein level FDR threshold is set.

Although the general behaviour is similar, it is interesting to note that, for the assessed

dataset, Spectrum Extractor usually yields better performance in the very low q-value regions

but the overall number of reported proteins is higher with Occam’s Razor, if no protein level

FDR threshold is set. Although these observations are dataset dependent, the data show overall

good results for the analysed inference algorithms and do not make many false reports, as

the plotted curves all stop before a q-value of 0.035. For all analysed settings, the protein

group containing the accessions YLR227W-B and YPR158C-D was identified at around rank 60,

although it is not in the reference set. The quality of the identification, though, indicates that it

is a false negative, missing in the reference set. Usually, it can be said that Spectrum Extractor

reports fewer proteins because it uses a spectrum only for exactly one peptide, if the search

engine reports more than one PSM per spectrum. Again, the combination of search results by

PIA yields more highly evident protein groups, like in the assessment of the mouse dataset.

5.2.3 Assessment of the iPRG 2008 Dataset

In this dataset, the expected number of identified protein groups per cluster was calculated by

the ABRF group members. For classes 1, 2, and 3, these numbers are assessed and result in

a total maximum of 258 true positive (TP) identifications. A false positive (FP) identification
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has too many identifications per cluster, whereas a false negative (FN) identification has too

few identifications.
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Figure 5.3: Performance of PIA on the iPRG 2008 dataset. (note that the y axes differ).
Number of (a) total reported proteins, (b) true positives, (c) false negatives, and (d) false
positives for the inferred proteins generated by PIA for either a combination of the search
engine results or each search engine alone as well as the average result of the iPRG 2008
participants. For the PIA analysis, Spectrum Extractor with a FDR threshold of 0.01 was
used on the PSM and protein levels. It can be seen that a combination by PIA outperforms
the average iPRG results except when using the MS-GF+ results alone.

In Figure 5.3, the results of the (a) totally reported, (b) TP, (c) FN, and (d) FP identifications

are shown for protein inferences conducted by PIA in comparison to the average outcome of

the iPRG 2008 study. With PIA, the PSMs with an FDR below 0.01 for each search engine

alone and in combination were inferred to a protein group list using Spectrum Extractor; for

the comparison, only protein groups with an FDR below 0.01 were used. The combination of

search results yields the highest number of reported proteins and also outperforms most of the

iPRG study participants; only 4 of the 23 participants reported more proteins. More interesting

is that the number of true positives is much higher in the report from the combination than the

single search engines, which is surpassed by only six iPRG participants. Also the false negative

rates with the assessed PIA settings are better than the average iPRG participant’s results. An
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exception is the MS-GF+ search, which reports the fewest total protein groups and therefore

also has the highest number of false negatives, whereas the PIA combination is outperformed

by only six of the iPRG participants. The relatively high number of false positives in all runs

except the MS-GF+ run corresponds mainly to clusters, which are also stated as dubious in the

slides of the ABRF study. For these, many ABRF group members and study participants found

more than the expected number of distinguishable detectable isoforms. The number of false

positives can be decreased by stricter inference parameters, such as the need to have at least

one unique peptide per protein, although stricter settings also decrease the total number of

reported proteins and thus true positives.

5.2.4 Comparison of Estimated and True Protein Level FDR

For the datasets with known content, plots of the target decoy estimated protein level q-values

against the (claimed) true protein level q-values are shown in Figure 5.4. These plots show

significant differences between the datasets. For the iPRG 2008 dataset, the estimated error is

consistently much lower than the actual value, although the ratio goes down with the number

of reported proteins. For the yeast gold standard dataset, the actual values are underestimated

on the top of the protein list and overestimated after a certain value (for the combination of

all search engines at an FDR of 0.03). These differences are presumably due to the underlying

ways of how the actual protein content was measured. For the iPRG 2008 dataset, prior search

results of the same actual MS data were used; thus, identifying more proteins than those that

are claimed to be valid is more probable with different search engines. For determination of

the yeast dataset’s content, other technologies were also used, which allows to create a more

complete compilation of the contained proteins. For an in-depth analysis of the estimation

between true and estimated protein q-values of protein inference algorithms, more datasets

of complex protein mixtures having exactly known content would be needed, which are not

available at the time of writing this thesis.
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Figure 5.4: The "true" protein level q-value plotted against the estimated q-value. For the
datasets with known content, the true FDR and q-value can be calculated allowing only
the proteins of the reference sets to be true positives. These values are plotted against the
estimated q-value using the target decoy approach. For the yeast dataset the estimated
q-values are too low at the top of the list until about 0.02, after which the estimation is
always too high. For the iPRG 2008 dataset, the values of the target decoy approach are
always underestimating the true values.

5.3 Assessment of Protein Inference Algorithms using a Workflow

Framework and Well-Defined Metrics

In the following sections, we evaluate and benchmark five common tools for protein inference:

ProteinProphet23, MSBayesPro92,93, ProteinLP94, Fido95 and PIA. To achieve this, the three

search engines Mascot, X!Tandem, MS-GF+ and their combinations were used with every

protein inference tool. We implemented a workflow in the highly customisable KNIME96

workflow environment using a series of OpenMS97 nodes and several new workflow nodes

(available at https://github.com/KNIME-OMICS) to study all combinations of these search

algorithms and inference algorithms. We provide different metrics to benchmark the algorithms

under study. Amongst others, the numbers of reported proteins, peptides per protein and

uniquely reported proteins per inference method are used to assess the performance of each

inference method. Four datasets of different complexities and from different species were

employed to evaluate the performance of protein inference algorithms: the yeast gold standard

dataset (Section 5.1.2), the iPRG 2008 dataset (Section 5.1.3) and the two PRIDE datasets

PXD000603 (Section 5.1.4) and PXD001118 (Section 5.1.5).
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5.3.1 Description of the Analysed Inference Methods

PIA - Protein Inference Algorithms

PIA’s algorithms and background information will be discussed in detail in Chapter 6. Therefore,

only the applied settings will be explained here. In this analysis, we employed the Spectrum

Extractor for protein inference. In short, this algorithm assigns to each spectrum only the

peptide, which increases the total probability or score of the according protein. This is only

meaningful, if a spectrum was assigned to more than one peptide by the search engines. If this

was not the case, it basically behaves like Occam’s Razor and reports the smallest set of protein

groups, which explain all PSMs, and therefore can be classified as a parsimonious approach.

Fido

Fido performs a fast Bayesian inference to report protein groups, given peptide probabilities.

Its speed is achieved by three graph-transforming procedures: partitioning, clustering and

pruning for computing the posterior probabilities of proteins. For each connected component

of peptides and accessions Fido collapses protein nodes that are connected to identical sets of

peptides and prunes spectral nodes (with user specified parameters), which results in splitting

of the connected components95,98. Fido and the underlying generative (Bayesian) model

relies on reasonable probabilities for the observed peptides, which are besides the three model

parameters (gamma, alpha and beta) the only input to the algorithm. A parameter estimation,

employing and expectation-maximization (EM) algorithm, can be conducted to yield the best

parameter setting. This, though, was not performed in this study but the recommended (0.5,

0.1 and 0.01 for gamma, alpha and beta respectively) parameters were used. This is due to

the case, that Fido did not perform well on the EM algorithm, as explained later.

ProteinProphet

ProteinProphet is one of the most widely used protein inference algorithms in proteomics. This

is mainly due to its implementation into the Trans-Proteomic Pipeline (TPP,99), which allows

easy processing of MS/MS data from RAW files, identification with different search engines

and peptide validation/combination - using iProphet70 - and finally the generation of protein

lists with ProteinProphet. ProteinProphet takes a pepXML file as input that contains peptides

with associated probability scores. Different peptide identifications corresponding to the same

protein are combined together to estimate the probability that their corresponding protein is

present in the sample. Finally, a protein grouping is employed adjusting the individual peptide

probabilities, making the approach more discriminative.
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ProteinLP

The ProteinLP model works with the joint probability that both a protein and its constituent

peptides are present in the sample. To obtain a linear model, a mathematical transformation of

this joint probability is used. The marginal probability of a peptide being present is expressed

as a formula in terms of the linear combination of these variables. The model assumes that

the marginal probability of each identified peptide being present is known, then the protein

inference problem is formulated: the algorithm tries to find a minimal set of proteins while

peptide probabilities should be as close to its known value as possible.

MSBayesPro

MSBayesPro is a Bayesian protein inference algorithm for LC-MS/MS proteomics experiments.

Besides peptide probabilities derived from the spectrum scoring it also incorporates "peptide

detectabilities" in its probabilistic model. A non-parametric model for estimating protein prob-

abilities is used. To estimate posterior protein probabilities, MSBayesPro requires peptide

identification probabilities and a set of peptide detectabilities, which makes the detectability

an important distinguishing feature of MSBayesPro.

5.3.2 Benchmark Workflow

The presented protein inference comparison workflow is based on KNIME96 and OpenMS97.

We made use of the existing OpenMS nodes, but we also implemented additional nodes for

some of the analysed inference tools. The developed workflow can be split into seven different

steps (Figure 5.5). The first step (A) configures basic variables like the regular expression to

identify decoys in the FASTA protein database and the allowed FDR q-value threshold. Also, if

a gold-standard dataset is analysed, the reference protein list is loaded, which contains the set

of accessions known to be in the sample. Step (B) performs conversion to mzML, optional peak

centroiding for spectra recorded in profile mode, and removal of MS1 spectra. The remain-

ing tandem spectra are searched in step (C) using three different search engines (X!Tandem,

Mascot, and MS-GF+), employing the adapter nodes provided by OpenMS. Furthermore, the

results are filtered for peptides with a minimum length of seven amino acids and exported to

idXML files, OpenMS’s internal storage format, for further processing. In step (D) all possible

combinations for the results of the three search engines are created. Peptide posterior error

probabilities (PEPs) are calculated with the IDPosteriorErrorProbability tool, which

is a standalone OpenMS node used for estimating the probability of peptide hits to be incor-

rectly assigned100. For the assessment of combined search engine results, identifications are

combined using the Consensus ID28 incorporated in OpenMS with the PEPMatrix algorithm.

After calculating the PSM FDR using the target decoy information, all peptides with FDR q-
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value > 0.01 are filtered out and no longer considered in the analyses. To evaluate the FDR

on the protein level later on, the target and decoy PSMs below the 0.01 FDR q-value threshold

are passed together to all protein inferences.

(C) Peptide Identification
- X!TAndem, Mascot, MS-GF+

(B) MS File
Preprocessing

(A) Database and Settings
- Tolerances
- DecoyDatabaseBuilder
- Load Reference Protein List

(D) Merging and Filtering PSMs
- Posterior (Error) Probability
- Consensus Score

(E) Model for the
Peptide Detectability

(F1) PEPs and q-Value Exporter
(F2) Predicting Peptide
Detectability Values

(F3) Protein Inference Analysis
- PIA, Fido, ProteinProphet,
  ProteinLP, MSBayesPro

(G) Report of Protein Inferences
and Benchmarking Metrics

Figure 5.5: Simplified representation of the workflow used for the peptide identification
and protein inference in KNIME. As input of the workflow, raw MS data in mzML format
is used; the output consists of graphs and tables, as well as a complete report of the
analysed protein inferences. This workflow can be split into seven different stages, A-G.
(A) Settings and database, import of protein knowledge for ground truth datasets, (B)
spectrum file pre-processing, (C) peptide identification, (D) merging of PSMs (E) model
creation for peptide detectability, (F) protein inferences, (G) calculating tables and graphs
of the inferences.

Since MSBayesPro requires a peptide detectability additional to the probability during its

inference process, we compute a detectability model of all results in step (E) using the OpenMS

node PTModel101. The IDFilter node was used to get the high scoring identifications (500

distinct peptides or at least one fourth of all available peptides) to train a model with PTModel.

Additionally, we provide a subset of the PSMs for low-confidence peptides (i.e. those 500

peptides with lowest identification scores/probabilities or the lowest scoring fourth of all

available peptides) as training input to the model. In the next step (F) of the workflow the

final list of peptides with the corresponding probability and detectability values are passed
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to the PIA, Fido, ProteinProphet, ProteinLP and MSBayesPro nodes to generate protein lists.

PIA used the SpectrumExtractor algorithm with the recommended settings (using the best

PSM FDR Score per peptide as basis for protein score with multiplicative protein scoring).

For Fido the recommended parameters for gamma, alpha and beta (0.5, 0.1 and 0.01) were

used for each run. ProteinProphet takes a pepXML file as input that contains peptides with

associated probability scores. The pepXML files were refined using ProteinProphet’s xinteract

to correct the decoy annotations and FASTA file connection, which was lost in the idXML format.

Afterwards, ProteinProphet was executed without any parameters except MINPROB0.05 to

include only peptides with probabilities of at least 5% into the inference. For this, it is important

to remember, that the PSMs were filtered on an FDR of 0.01 beforehand, such that for most

runs of ProteinProphet all PSMs have probabilities above 5%. MSBayesPro incorporates besides

peptide probabilities derived from the spectrum scoring also the peptide detectability from the

PTModel node in the probabilistic model, while ProteinLP does not need any further parameters

except the peptide probabilities.

The FDR q-values on protein level were calculated, based on the target-decoy approach,

to control the number of false identifications102. Finally, in (G) the inference reports are

generated, including both numbers and graphs explained in Section 5.3.3. For each search

engine combination the number of FDR filtered PSMs is reported to give an overview of the

identification step. For all protein level metrics besides the pseudo-ROC curves, the analyses

were restricted to the high confidence proteins with a q-value below 0.01, or equivalently 1%.

5.3.3 Benchmark Metrics

Benchmarking requires both a high-quality dataset and defined metrics to evaluate the im-

provements and potential pitfalls for the benchmarked tools103. We used a set of metrics based

in previous studies to benchmark protein inference algorithms and tools104,105, and added

some additional metrics. An overview of the metrics assessed in this analysis is given in Table .

The number of FDR filtered protein groups represents the first intuitive metric for a quick

overview of the inference performance (see Figure 5.11). A protein (ambiguity) group is an

indistinguishable entity reported by an algorithms (compare Section 3.5.2). In such groups,

the sets of peptides overlap perfectly in the set of proteins which are reported for the respective

group. In addition, we studied the overlap of protein groups between all inference algorithms

since the number of protein groups reported may identical and yet their identities may be

different. The proportions of mutually reported groups were calculated to gain deeper insight

into the consensus of the reported groups (see Figure 5.10 and E.3). We additionally created

Venn diagrams to visualise the overlap of reported protein groups in a widely known and

intuitive way (see Figure E.2).
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We studied the behaviour of the number of reported protein groups along FDR q-values

(0-5%) on protein level using pseudo-ROC curves (Figure E.1). We also highlighted the true

positive protein groups for the assessed ground truth datasets, the yeast and the iPRG 2008

dataset. Furthermore, we reported the number of identified peptides per protein groups (see

Figure E.4). For all the current metrics we use the protein groups and protein sub-groups if

the inference algorithm reports them by default, which is the case for Fido, ProteinLP and MS-

BayesPro. A protein sub-group in this analysis is a protein group whose peptides are completely

explained by another protein group, like defined in the prior chapter.

Some of these metrics cannot be taken as absolutely distinguishing numeric values for

comparison and using either higher or lower values as better results between datasets. This

is obviously true for the plots, which need human interpretation. But also a higher number of

reported protein groups is not per se a better quality feature, if these numbers are increased

by false positives, as discussed in Section 5.3.7. These metrics were rather chosen to highlight

the differences and similarities between inference algorithms on a range of datasets and using

varying protein databases.

Table 5.1: Assessed metrics of this analysis and a short explanation.

Metric Explanation
Number of target protein
groups

The number of target protein groups under a given FDR.
This can give only a first hint, whether an inference
method was comparable to the other methods, unless
used with true-positives of a ground truth dataset.

Pseudo-ROC curves: num-
ber of target groups against
FDR q-value

Can be used to visual inspect the trends of inferences and
compare, which inference yields most under a given FDR.
Can also be used with true positives only on a ground
truth dataset.

Area under the curves (AUC)
of pseudo-ROCs

The AUC indicates, not only whether high number of
reported (true positive) targets are reached, but also
whether this happens at low FDR values. Normalising
this on the total amount of proteins allows inter-dataset
comparison.

Numbers of TP, FP, TN and
FN

Only applicable for ground truth datasets. This allows
also the comparison of precision and recall between the
methods.

Overlap of reported groups Shows the consensus of analysed methods. We calculated
also the fractions of groups, that are identified by all, 4, 3,
2 and 1 more method(s) or by the given method uniquely.

Number of peptides per pro-
tein group

Gives a quality measure for the reported protein groups.
This can either be given in a heatmap-like plot or as single
value giving the number or fraction of groups with more
than X peptides.
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5.3.4 Benchmarked Databases and Search Parameters

The tandem mass spectra of the four datasets were searched against appropriate protein se-

quence databases using the target decoy approach (TDA, compare Section 3.2) with three

different search engines: X!Tandem (version Sledgehammer 2013.09.01.1), MS-GF+ (version

beta v10089) and Mascot (version 2.5). The first two tools are not the most recent versions, but

the ones shipped with the version 2.0 of OpenMS, which was the most current stable release

at the time of writing and used for all employed OpenMS tools and utilities.

Table 5.2: Databases used in the study, downloaded from UniProtKB on 10.02.2016
(release version 2016_01). For the Yeast Gold Standard dataset, the used databases are
almost equally complex, the Swiss-Prot and proteome being identical, while the mouse
and human databases differ significantly.

Database Dataset Species
Number of

target
proteins

iPRG2008 provided

iPRG 2008 M. musculus

53,883
Mouse Swiss-Prot 16,761

Mouse UniProt Proteome 50,189
Mouse Proteome with isoforms 58,239

Yeast Swiss-Prot
Yeast Gold
Standard

S. cerevisiae (strain
ATCC 204508 /

S288c)

6,721
Yeast UniProt Proteome 6,721

Yeast Proteome with isoforms 6,743
Human Swiss-Prot PXD000603

and
PXD001118

H. sapiens
20,187

Human UniProt Proteome 69,986
Human Proteome with isoforms 91,923

To analyse the influence of database complexities in protein inference, each dataset was

searched against three different taxonomy databases: (i) UniProtKB/Swiss-Prot, (ii) UniProt

reference proteome, and (iii) UniProt reference proteome containing known isoforms for each

gene, in contrast to the first two, which contain only the longest isoform for each gene (Table

5.2). Only two databases were analysed for the yeast dataset, because the Swiss-Prot and

the reference proteome sets are identical in this case. The iPRG 2008 dataset was addition-

ally identified using the provided mouse database. The decoy databases were created with

the DecoyDatabaseBuilder by shuffling the protein sequences and appending them to the tar-

get database creating a concatenated target-decoy database. An exception was the provided

iPRG 2008 database, where the provided target-decoy sequences with reversed decoys were

used. We used the same search parameters wherever possible for each search engine, for the

individual settings of each dataset see Table 5.3. For the digestion of proteins to peptides a

fully tryptic digestion was selected, except for the histone dataset, where the cleavage at lysine

was masked by a fixed modification and therefore neglected. The workflows, search engine

results and all of the final results are available via ProteomeXchange and GitHub.
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Table 5.3: The datasets and search engine settings used for the comparison of inference
algorithms. All settings were chosen according to the description of the dataset in the
respective publication or repository.

Dataset
Instrument and
Fragmentation

Peptide /
Fragment
Tolerances

Modifications and Enzyme’s
cleavage regular expression

iPRG 2008
3200 QTRAP

CID
0.45 Da
0.45 Da

Fixed: iTRAQ 4-plex (K, N),
Methylation (C)
Variable: Oxidation (M)
Cleavage: [KR]|{P}

Yeast Gold
Dataset

LTQ Orbitrap
CID

25 ppm
0.5 Da

Variable: Oxidation (M)
Cleavage: [KR]|{P}

PXD000603 LTQ Orbitrap XL
CID

10 ppm
0.8 Da

Fixed: Carbamidomethyl (C)
Variable: Oxidation (M)
Cleavage: [KR]|{P}

PXD001118 LTQ Orbitrap Velos
HCD

10 ppm
0.02 Da

Fixed: Propionyl (N-Term and K)
Cleavage: [R]|{P} (K is blocked
by modification)

5.3.5 Combination of Search Engine Results on PSM Level

Running the aforementioned workflow, we analysed 420 protein lists due to the combination

of the three different search engines, five inference tools and four datasets using ten different

databases. We analysed the number of FDR filtered PSMs for each single search engine and

their combinations before performing any protein inference evaluation. The benefit of com-

bining search engine results for spectrum identification has already been shown extensively in

other publications (106,27, and Section 3.2.3). It is generally accepted that search engines in

combination yield more valid PSMs, especially in low-resolution fragment ion measurements.

Figure 5.6 shows exemplary the numbers of PSMs for the PXD000603 dataset matched

against the human proteome database with isoforms. X!Tandem and MS-GF+ identified

more PSMs than Mascot in almost all combination; the only exception was in the Swiss-Prot

PXD000603 run, where X!Tandem was slightly outperformed by Mascot, and the UniProt pro-

teome PXD001118 run. In the latter MS-GF+ alone was performing surprisingly suboptimal

(X!Tandem reported 3.4, Mascot 2.7 times as many PSMs), due to relatively high-ranking

decoy PSMs. The second biggest discrepancy between two single search engines was when

the PXD000603 dataset was searched against the proteome database with isoforms, where

MS-GF+ reported 1.55 times as many PSMs as Mascot. The average ratio between the lowest

and highest single search engine was 1.62 (1.44 excluding the two prior mentioned outliers).

Each combination of two search engines returned more than the respective single SEs. The

combination of all three engines yielded the most PSMs for each dataset, increasing the report

of the best single result by 90% on average and ranging from 17% (iPRG 2008 dataset with

proteome database) to 173% (UniProt proteome database on the PXD001118 dataset). For

61



5. Assessment of Protein Inference Methods

all analyses in this work it must be considered that we inspected only the Consensus ID with

the PEPMatrix algorithm provided by OpenMS for the combination of PSM results and the

posterior error probabilities (PEPs) calculated by IDPosteriorErrorProbability.

XT + MA + MS 34,127

MA + MS 25,558

XT + MS 30,084

XT + MA 18,553

MS−GF+ (MS) 17,998

Mascot (MA) 11,554

X!Tandem (XT) 12,765

0 5000 10000 15000 20000 25000 30000 35000

Figure 5.6: Number of PSMs reported by the single search engines and their combinations
for the PXD000603 dataset. The spectra were matched using the specified search engine
against the human proteome database with isoforms and combined using Consensus ID.
As expected, each combination of search engines yields more FDR 1% valid PSMs than
the respective search engines alone, also the combination of all three together yields more
than each combination of two search engines.

5.3.6 General Assessment of the Protein Inference Algorithms

Figure 5.7 shows pseudo-ROC curves for the number of reported target protein groups against

the local protein FDR q-values for the PXD000603 dataset using the combination of all three

search-engines and the respective Swiss-Prot database (similar plots for all datasets are shown

in Figure E.1). The overall number of reported protein groups under a certain q-value varies

slightly between the different inference algorithms, while most algorithms follow the same

general trend.

When looking at the actual numbers, Fido outperforms the other inference algorithms at

1% FDR q-value for the more complex datasets yeast and PXD000603 with 5.8% respectively

0.2% more protein groups. However, all other approaches except MSBayesPro outperform Fido

significantly on the iPRG 2008 dataset. The main reason in this particular case is the highly

unbalanced composition of target (34,127) versus decoy (332) PSMs. This resulted in much

larger groups for target proteins reported by Fido, leading to reduced posterior probabilities

of them, eventually boosting the ranks and therefore the q-values of decoys. The MSBayesPro
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results show significantly fewer reported protein groups than all other approaches on each

q-value. Additionally to the normal Fido results, the protein Groups were processed to not

contain any sub-groups of other reported groups. These results are labelled as "Fido w/o

Subgroups" of "FidoNoSubs" in the plots. These plots show a small decrease in the number of

reported groups, though the general trend is the same as for the unprocessed results.
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Figure 5.7: Pseudo-ROC curves showing the number of reported protein groups against
the FDR q-value for the PXD000603 datasets using the Swiss-Prot database and the com-
bination of all three search engines. The plots indicate that the main trend is similar for
all inference algorithms. On this dataset, ProteinLP performs a little bit worse than the
other algorithms, while MSBayesPro performs significantly poorer than all other methods
on all datasets (compare Figure E.1).

The pseudo-ROC curves highlight additionally to the raw numbers of reported protein

groups also, whether a high value is reached early on the q-value scale. To get a value for the

comparison of this between algorithms, that does not need a human inspection, the area under

the curve (AUC) of the pseudo-ROC curves was calculated. For this, only the FDR q-values

up to 1% were analysed, as this is usually used as the cutoff in current analyses. To make a

comparison between the datasets possible, the number of protein groups were normalised on

the highest reported value for the given set at the 1% FDR threshold. Thus, the calculated AUC

for each run and inference is a value between 0 and 1. Boxplots for the AUCs from the merge

of all search engines are given in Figure 5.8, Figure 5.8a shows the data for the Swiss-Prot

databases only, while Figure 5.8b incorporates all analysed databases.

The plot of the Swiss-Prot databases further confirms the findings of the pseudo-ROC curves

alone: most algorithms perform similar, while MSBayesPro performs poorer on all datasets,
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Figure 5.8: Boxplots of the area under the curve (AUC) values for all datasets matched
against (a) the Swiss-Prot and (b) all databases. The AUCs were calculated up to 1% FDR
on protein group level and normalised to the maximal number of reported groups per
dataset and database combination. The plots show, that PIA is the most robust algorithm
when changing the complexity of the used database. Fido, on the other hand, is very
dependent on the database complexity. Furthermore, MSBAyesPro performed very poorly,
independent of the dataset or database.

while the actual difference to the other methods varies greatly. Furthermore it becomes ob-

vious, that PIA performs best on all datasets, except for the yeast dataset. When comparing

all analysed datasets and databases (Figure 5.8b), another trend becomes apparent. For the

least complex yeast dataset, the variance is relatively small for all methods and as the analysed

databases for this dataset are differing by only 22 protein entries, the compared results are rel-

atively equal. On the other datasets, where the databases differ up to 4.5 times in the number

of entries, not only the number of reported 1% FDR valid protein groups differ, but also the

ratios of these between the analysed algorithms. Especially Fido’s results are strongly depen-

dent on the database complexity, but also the variance of ProteinProphet over all databases is

increased, as compared to Swiss-Prot alone. On the other hand, the values for PIA are over all

combinations the most stable. This indicates, that PIA constantly reports a large fraction of

possible protein groups up to the 1% hreshold earlier than the other algorithms, even if some

might overall report more groups up to this level.

5.3.7 Analysis of the Ground Truth Datasets

The number of reported protein groups for a given threshold is a basic metric to evaluate the

performance of a given inference algorithm. However, it should be complemented with other

metrics to label a protein inference superior to any other. In fact, it is more relevant to see
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whether the true protein groups are reported. There are only few publicly available datasets

containing ground truth data for peptides84 and only relatively small protein datasets83. Of

both analysed ground truth datasets, only the yeast gold standard can be considered as a

complex mixture for current high throughput MS, identifying several thousand proteins per

MS run. In the iPRG 2008, on the other hand, only several hundred proteins can be detected.

We used three Venn diagrams for the reference set using Swiss-Prot database to examine the

content of correctly identified proteins in the yeast dataset (Figure E.2). We consider a protein

group as true positive if it contains at least one accession of the reference set of accessions,

which are known to be in the sample. Figure E.2a shows all the proteins identified in the

yeast dataset by every inference algorithm without discrimination of true and false positives

regarding the reference set. The yeast reference set contains 4,253 protein entries that are

known to be in the sample (also validated by 2D-DIGE).
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Figure 5.9: Venn diagrams showing the number of reported protein for each inference
algorithm at 1% FDR for the ground truth yeast dataset using the Swiss-Prot database
Number of reported proteins that are not in the reference set and thus false positives. For
the overlap of all reported proteins and the false negatives, see Figure E.2.While Fido
reports many false positives uniquely, it can be seen that the overlap of all algorithms
excluding MSBayesPro is the largest fraction, and also the total overlap is the third largest
fraction. This might indicate, that the identification of the real true positives for this
dataset might be incomplete, which is a big problem for all ground truth datasets.

The number of reference proteins reported by PIA, Fido, ProteinLP, MSBayesPro, and Pro-

teinProphet were 1,095, 1,193, 1,149, 215 and 1,152 respectively (Figure E.2b). If more than

one entry of the reference set was matched to one protein group, these were counted as often as

the reference set matched. Therefore, e.g. the intersection of all methods except MSBayesPro
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has a higher number of true positives than for all reported groups. Fido identified 98, 44, and

41 more reference proteins than PIA, ProteinLP and ProteinProphet, respectively. Most of the

proteins uniquely identified by Fido (78%) are included in the reference set. However, the

inference algorithms are also reporting proteins that are not included in the reference set (Fig-

ure 5.9). The number of proteins uniquely reported by PIA, Fido, ProteinLP, MSBayesPro and

ProteinProphet, that are not included in the reference set were 2, 12, 1, 0 and 0, respectively.

This shows, that Fido uniquely reports the highest number of protein groups (12 groups) that

are not in the reference set (FPs), but also the highest number of uniquely reported TPs.

Even more important is the fact, that 14 proteins were reported in consensus of all methods

except MSBayesPro and 7 more in consensus of all methods. This raises the question, whether

these proteins are rather true positives, which for some reason were not detected or validated

by other methods at the time of creating the ground truth dataset. This is a general problem

for ground truth datasets and could also be observed with other numbers for the iPRG 2008

dataset (not shown).

Also, we studied the protein clusters for the iPRG 2008 dataset. A cluster is a set of

proteins with partially shared peptides and in the iPRG 2008 study a certain number of these

protein groups should be reported as true positives (see Section 5.2.3 and the the original

study’s homepage89). This allows the calculation of numbers for false positives (i.e. too many

reported protein groups in a cluster), false negatives (too few reported groups in a cluster) and

true positives (exact number of reported group in a cluster). With these values the precision

(precision = T P
T P+F P ), recall (recal l = T P

T P+FN ) and the F1 score (F1 = 2 · precision·recal l
precision+recal l ) as a

combined metric of the precision and recall can be calculated, see Table 5.4 for the combination

of all search engines and Table D.2 for all possible combinations, ordered by decreasing F1

score, as this allows an unbiased analyses of all the available values for each combination of

algorithm and search engine results. It must be highlighted, that TP, FP, FN and TN in this

context is relative to the number of correct protein groups per cluster, and not whether a

protein was reported and is in the reference set, as in the preceding discussion for the yeast

dataset.

The tables show, that PIA has a very good precision on all combinations, and also the

highest F1 scores, except for the Mascot and MS-GF+ searches alone. ProteinLP yielded the

same recall rates as PIA, but the precision was decreased. ProteinProphet had always a very

high precision, which means it reported almost no false positives. This, though, was achieved

by a relatively small overall size of the report and therefore low values for true positives and

high false negatives. Fido on the other hand had high values for the overall reported groups, but

with this also many false positives, which lead to the worst precision of all analysed algorithms.

MSBayesPro suffered on the fewest reported groups and thus the smallest values for the recall.

Even with a a perfect precision these values lead to the poorest F1 scores.
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Table 5.4: The numbers of reported true positive, false negative, false positive, the result-
ing precision, recall and F1 score and the total number of protein groups for the iPRG 2008
dataset using the Swiss-Prot database. The table shows the respective numbers for each
inference algorithm and the combination of all search engines ordered by decreasing F1
score. For discussion of the table, see the text. Results of all search engine merges are
given in Table D.2.

Run TP FN FP precision recall F1 score
total number
of groups

PIA 231 27 5 0.98 0.90 0.94 304
ProteinLP 231 27 20 0.92 0.90 0.91 319
ProteinProphet 192 66 1 0.99 0.74 0.85 199
Fido 99 159 120 0.45 0.38 0.42 236
MSBayesPro 57 201 0 1.00 0.22 0.36 77

5.3.8 Evaluation of the Overlap between Inference Algorithms

The next inspected metric is the number of reported protein groups per algorithm as well

as the fraction of protein groups reported by other inference algorithms (Figure 5.10). The

plots represent the numbers of protein groups reported for the PXD000603 datasets for the

combination of the three search engines. First, we analysed the impact of the complexity of the

underlying database used for the identification by comparing results with Swiss-Prot (Figure

5.10a), UniProt proteome (Figure 5.10b) and UniProt proteome with isoforms (Figure 5.10c).

The overlap of protein groups reported by all inferences (green) is bigger when using the least

complex database (Swiss-Prot) for identification. The same can be seen in the plots for all

analysed datasets, given in the appendix (Figure E.3). Here it is important to remember, that

the yeast Swiss-Prot and UniProt proteome database are identical.

Figure 5.10 shows that Fido increases more than any other algorithm the number of

uniquely reported proteins when more complex databases are used (especially Figure 5.10b

and 5.10c). This is mainly because Fido reports sub-protein groups (groups whose peptides

are contained in another group). In contrast, PIA, ProteinLP and ProteinProphet seemed more

robust against changes in the database complexity. PIA and ProteinLP tended to report the most

groups on more complex databases (e.g. on PXD000603 PIA reports 16% more groups than

ProteinProphet for the UniProt proteome without isoforms and 15% more for the proteome

with isoforms). On the iPRG 2008 dataset, PIA and ProteinLP reported on average 42% and

40% more than ProteinProphet, respectively. Here, Fido and ProteinProphet reported similar

numbers of protein groups for the Swiss-Prot dataset. However, on the other two databases

(more complex ones) Fido reported 33% fewer than ProteinProphet. In less complex databases

Fido performs better than the other inference algorithms (e.g. an average of 5% more protein

groups than ProteinProphet on the yeast dataset). These analyses and the prior discussed Venn

diagrams show that even if the actual numbers of reported protein groups may be similar be-
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Figure 5.10: Number of protein groups reported and their overlap for the PXD000603
datasets using different inference algorithms and databases. The plots show the number of
protein groups under a 1% FDR q-value for the PXD000603 dataset with the corresponding
(a) Swiss-Prot, (b) UniProt proteome and (c) UniProt proteome with isoforms databases.
The bars colour-codes represent the overlap: protein groups reported by all inferences are
in green (bottom), groups reported by 2, 3 and 4 groups in blue with increasing darkness.
Unique groups are red. It can be seen, that with increasing complexity of the database, the
reports’ consensus decreases. While Fido’s results are decreasing, the number of uniquely
reported groups increases more than in the other groups. This can be explained due to
reported sub-proteins. PIA, ProteinLP and ProteinProphet seem to be relatively robust
against the changes in database complexity.

tween the inference algorithms, the actually reported groups and their overlaps differ between

the algorithms.

5.3.9 Impact of Multiple Search Engines on the Protein Level

Not only the PSMs, but also the number of reported protein groups is often increased when

more search engines are combined compared with the results of single search engines (Figure

5.11). Interestingly, in the given example though, the numbers from MS-GF+ alone yields

the most FDR 1% valid results for all inference algorithms, while for all other combinations

the combination of more search engines leads to more protein groups. Furthermore, for each

single dataset a pattern for the ratios between the inference algorithms and search engine

combination can be observed. For example Figure 5.11 shows that Fido reports the largest

number of protein groups, followed by PIA and ProteinProphet, then ProteinLP and MSBayesPro

always reporting significantly fewer groups. However, the combinations of search engine and

inference algorithm should be selected carefully, as some seemed not to produce optimal results.

For example in the given plot, when X!Tandem alone is used the number of reported groups is

fewer with respect to all other combinations.
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Figure 5.11: Number of protein groups reported using different inference algorithms and
search engine results on the Swiss-Prot database for the PXD000603 dataset. The bars
represent the number of FDR 1% valid protein groups reported for all analysed inference
algorithms and combinations of search engine identifications. For most combinations
the same pattern for a ratio between the inference algorithms can be seen, as well as an
increase in the number of reported protein groups when combining search engines.

As a further assessed quality metric for reliable identifications, we analysed the number of

peptides per protein groups for each protein inference algorithm, as recommended by Omenn

recently107. The numbers of peptides per protein group were plotted for the results of the

PXD000603 dataset with the Swiss-Prot database in a heatmap-like way in Figure E.4 and

also given in Table 5.5. Independently of the inference algorithm, most protein groups are

reported with few peptides and only a small fraction is represented by ten or more peptides. In

the shown dataset, the number of inferred protein groups with ten or more peptides from the

single search engines’ results with PIA, Fido and ProteinProphet are on average 5.7% (ranging

from 5.1% - 6.7%) of all reported groups. Using the results from multiple search engines

increases these groups in average to 6.5%, though for the X!Tandem-Fido combination the

percentage is decreased by 0.2%. The actual numerical values are always increased by at least

five protein groups with ten or more peptides in the merged results than in the runs using

single search engines’ results. The choice of at least ten peptides per protein was not based

on specific observations, but the table shows that for this dataset almost 95% of the groups
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have less peptides. Therefore, protein groups with at least ten peptides are of reasonable good

identification quality.

Table 5.5: This table shows the total numbers of reported protein groups and the number
of groups with at least 10 peptides per group for the given search engines and inference
algorithms. Given are the results for each single search engine and the merge of all three
search engines for the PXD000603 dataset and the Swiss-Prot database. The first column
represents the total number of 1% FDR valid groups and the second the respective number
and percentage of groups with at least 10 peptides per group. The table shows, that the
merge of search engines always increases the number of groups, that have more than 10
peptides. Also in most cases the fraction of these groups is increased, except for Fido,
which has the biggest fraction of groups with at least 10 peptides using the X!Tandem
results alone.

X!Tandem Mascot MS-GF+ Merged
PIA 1214 64 (5.3%) 1442 74 (5.1%) 1631 93 (5.7%) 1615 101 (6.2%)
Fido 996 67 (6.7%) 1439 80 (5.6%) 1679 96 (5.7%) 1619 105 (6.5%)
ProteinLP 989 64 (6.5%) 1229 77 (2.3%) 1651 93 (5.6%) 1295 104 (8.0%)
MSBayesPro 749 24 (3.2%) 958 26 (2.7%) 1303 31 (2.4%) 963 36 (3.7%)
ProteinProphet 1027 64 (6.2%) 1282 73 (5.7%) 1629 91 (5.6%) 1474 99 (6.7%)

5.3.10 Difference between Protein Level FDR and q-value

Interestingly, the inference of Fido in some runs that include results from Mascot alone is sig-

nificantly increased regarding numbers of protein groups compared to all other inferences. Ad-

ditionally, this can be seen on the combination of Mascot and MS-GF+ results in the iPRG 2008

dataset with the provided database (both not shown here). This effect can be explained by

the fact that the local FDR and the FDR q-value on protein level differ under certain circum-

stances (Figure 5.12). Under specific conditions the local FDR (and therefore the q-value of

all preceding elements in a sorted report) returns to a low value, after increasing rapidly due

to several reported decoys. If during this increase and decrease of the local FDR many targets

are reported the respective pseudo-ROC shows a step or a peak, if this occurs at the end of the

list. This effect could be observed in several of the created pseudo-ROC curves for Fido and

ProteinLP in this analysis. Though except for only a few combinations this effect occurs on

q-values exceeding the threshold of 0.01 (i.e. somewhere between 0.01 – 0.05, in the given

Figure 5.12 at 0.022). For all analyses discussed here we used the q-value, as it is currently a

widely accepted method. This behaviour though shows that a method controlling both FDR

q-value and local FDR might be more applicable in general.

5.3.11 Ranks of Uniquely Reported Protein Groups

Though it cannot be used as a metric, but only as an observation, an evaluation of the ranks

of the uniquely reported protein groups sorted by probability/score revealed some unintuitive
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Figure 5.12: Pseudo-ROC plots of the protein groups reported for the PXD000603 datasets
using the merged results of all search engines on the proteome database with isoforms and
either the FDR q-values or the local FDR. This plot shows for the Fido results, that under
certain circumstances the q-value can differ significantly from the local FDR. If this effect
emerges below the given q-value threshold (usually 1%), the affected method generates
more reports than expected. Larger differences between the local FDR and q-values can be
seen at two ranges: one at q-values of 0.001 and a much more significant one for q-values
of 0.022. The respective plot for the PIA q-values is given as a reference: here no larger
discrepancies could be detected and therefore the PIA local FDR values were not plotted.

distributions (Figure 5.13). If we assume that the top ranking protein groups are the most valid,

an intuitive distribution should represent protein groups that are not reported in consensus

(unique) at the end of the reported lists with low scores. For PIA almost all uniquely reported

groups are at the end of the list, as expected. On the other hand, Fido and ProteinLP distributed

the unique groups over the complete range of indices, only with a tendency to the end of the

list. The most extreme case is ProteinProphet which reports its unique groups at the very

beginning. This reveals that the intuitive assumption that the majority of the uniquely reported

groups are located at the end of the report is not correct for most of the analysed algorithms.

5.3.12 Discussion

We have evaluated in detail the performance of different inference algorithms using four

different datasets and a set of well-define metrics. MSBayesPro needs detectability predictions

for each peptide as an input of the inference algorithm. These values can only be calculated
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Figure 5.13: Distribution of the ranks of uniquely reported protein groups. This plot
shows for the analysed inference methods, on which ranks in the reported list of protein
groups uniquely reported groups occur. Depicted is the data from the merge of PSMs
from Mascot, X!Tandem and MS-GF+ for the PXD000603 dataset using the Swiss-Prot
database. For PIA it can be seen, that almost all uniquely reported groups are at the end
of the list. Fido and ProteinLP, on the other hand, distribute the unique groups over the
complete range of indices, though with a tendency to the list’s end. The most extreme
case is ProteinProphet which reports its unique groups at the beginning. This reveals that
an intuitive assumption, that the relatively high consensus of reported groups is found in
the top of the report, is not correct for all algorithms.

using the results of preceding experiments or estimated using algorithms like the PTModel.

Both modelling approaches have drawbacks when experimenting with analytical methods (e.g.,

enrichment, different fractionation methods) for which there are no preceding reference results.

In these cases, these inference algorithms depending on detectabilities will not perform well.

Prediction of detectability increases the running time and the predicted model (MSBayesPro)

is not available making the integration into bioinformatics pipelines difficult.

A uniqueness of the Fido implementation in OpenMS is that it requires a decoy database and

can perform an estimation maximization to find the best values of the parameters (α, β , and γ)

by combining a ROC optimization (in a supervised manner) with FDR estimation. Fido is a very

fast implementation with a small memory footprint. With its integration into OpenMS it can

easily be used in bigger workflows. In most of the analyses Fido reports more protein groups

than the other algorithms. The underlying generative (Bayesian) model relies on reasonable

probabilities for the observed peptides, which are besides the three model parameters the
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only input to the algorithm. Although being relatively robust for multiple types and shapes

of distributions of these input probabilities, even with parameter estimation, it cannot correct

for heavily ill-shaped distributions. Therefore for Fido, one should be careful with inputs of

extreme probabilities for the peptides, such as 0.0 or 1.0. In a Bayesian model these extrema

strictly exclude every combination not using this peptide although other information suggests

differently (which is especially a problem when assigning a probability of 1.0 to so many

peptides as was observed for X!Tandem in several cases). A second problem is the lack of

discriminative power between equal scores. Since the parameter estimation of Fido tries to

create well-calibrated and well-discriminating results at the same time, this creates an issue.

Extreme values for peptide probabilities as inputs are likely to generate extreme probabilities

for the proteins. If more than a minor percentage of the proteins are assigned probabilities

of 1.0 and these include decoy proteins, the first q-value-cutoff considered in a corresponding

receiver operating curve (ROC) results in an uninformative straight line in the upper part of

the curve covering all proteins of probability 1.0. This, in turn, limits the usefulness of the

parameter estimation at all. These factors make the results of Fido less constant than the other

algorithms and demand more benchmark and tuning of the pipeline. This also explains the

significant decrease of reported protein groups for the more complex databases when using

Fido.

ProteinLP and Fido have as a main concept not the parsimony of peptides or spectra but

the probability of proteins’ occurrences given the PSM or peptide probabilities. By design,

they report sub-proteins if the respective probabilities are sufficiently high. This difference

to the parsimonious approaches such as PIA or ProteinProphet should be considered when

choosing an inference algorithm. If many sub-protein groups were reported (like in the data

given in Figures 5.10b and 5.10c, which show many unique groups for Fido), the FDR q-value

did increase due to reported decoy sub-groups as well, and thus the total number of reported

protein groups decreased. In some combinations of databases, datasets and search engines the

number of reported groups rises significantly above the reports of other inference algorithms.

This is due to an effect of the protein FDR q-value and the local protein level FDR values

(Figure 5.12). During this effect, the local FDR may exceed a given threshold significantly

and drop below it after reporting many target proteins towards the end of the report. This

leads to distinct steps in a corresponding pseudo-ROC curve and suggests to employ more

advanced methods than the q-value or local FDR alone, either combining these two approaches

or employing algorithms like Mayu108.

ProteinProphet, which is one of the oldest approaches, has a very low memory imprint and

thus scales well to process big datasets. It is more conservative in reporting protein groups

than other approaches, but also reports less false-positives in the reference datasets. It can be

observed in the Venn diagrams and the iPRG 2008 cluster analyses that it consistently reports a

low amount of unique proteins reducing the possibility of false positive identifications (Figure
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E.2). One of its main strength is the integration into the Trans-Proteomic Pipeline, which

incorporates multiple search engines like X!Tandem, SEQUEST, Comet or Mascot.

ProteinLP consumes the highest amount of memory and time. Although, it performs well

for most of the datasets in all the analysed metrics it is outperformed by other inference options.

Among parsimonious approaches, PIA mostly reports more target protein groups than

ProteinProphet in the studied datasets. PIA consumes a relatively large amount of memory

analysing a not-FDR filtered or very big dataset. It reports high numbers of confident protein

groups and like other parsimonious approaches it is relatively fast. However, ProteinProphet

yields less false positive identification when it is used to analyse the ground truth datasets

(section 5.3.7). For both of these datasets Fido reports more proteins than other algorithms

but also more possible false positives (proteins that are not labelled in the reference set). Still,

there is one big issue with the ground truth datasets: many proteins could be identified in

consensus by all inference algorithms, which were not in the reference set. Thus, these were

labelled as false positives, though they might also be true positives. For iPRG 2008 this would

definitely have been the case, if the dataset was analysed by other search engines and inference

algorithms at the time of the creation of the reference set. For this dataset, the references are

the identifications of the initiators of the study. Also for the yeast dataset, a re-analysis or

validation by additional proteomics methods might change the reference set of accessions.

A feature that should be considered when choosing an inference algorithm is the robust-

ness when using complex databases for spectrum identification. While PIA, ProteinLP and

ProteinProphet were only slightly affected by this, Fido and MSBayesPro reported significantly

fewer valid protein groups at 1% FDR q-value when using more complex databases. Table 5.5

and Figure E.4 show the number of peptides per protein group under 1% FDR. These present a

small drawback for parsimonious approaches, which reported slightly fewer groups with many

peptides than Fido and ProteinLP. The latter reported also more single peptide proteins, but

ProteinProphet had also on some combinations the highest percentage of groups with more

than ten peptides. The "two peptides"-rule, i.e. at least two peptides per protein are required,

which is applied quite often in proteomics to control protein false discoveries107, can affect and

change the results of the experiment depending of the inference algorithm used and further

increase the quality of the results, though at the cost of sensitivity.

Also, the interoperability and ease-of-use of an inference algorithm will influence its appli-

cation by a user. All analysed algorithms except PIA need special non-standard input formats.

It would be very beneficial for users, if standard formats like mzIdentML or even the search

engines’ default result files could be used as input. PIA also has the advantage that it works with

spectrum identifications coming from various file formats, search engines and bioinformatics

workflows. It is the only implementation that works natively with standard file formats such

as mzIdentML and mzTab. ProteinProphet uses the pepXML format that does have converters

for many search engine results and is well known in the proteomics community109. PIA and
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Fido are the only algorithms at the moment which can be fully integrated into an OpenMS

workflow and thus inside KNIME.

5.3.13 Conclusion of the Assessment

We introduced a workflow that uses three search engines and five open-source, generally

applicable protein inference algorithms for a fair and in-depth comparison. The workflow and

inference methods were tested on four datasets with different complexities of protein databases.

While there is no explicit best inference algorithm, different considerations for choosing a tool

can be given.

The analysis of identifications using protein databases with varying complexity shows some

algorithm specific results. Due to the occurrence of more decoys, all inference algorithms report

fewer groups when more complex databases are used. The numbers of reported groups by PIA,

ProteinProphet and ProteinLP, though, are much less dependent on the database complexity

than Fido and MSBayesPro are. If the detection of specific isoforms is important in the scien-

tific context, this stability could compensate for slightly less reported protein groups, though.

Furthermore, the increasing demand for analysing metaproteomics datasets, i.e. datasets

containing the proteomic analyses of a multitude of species, like gut or soil samples, needs

inferences, which are robust to very bg protein databases. Therefore, depending on the re-

quired analysis, it might be better to use an inference that is a bit slower and more memory

consuming like PIA, but more robust against size variations.

Depending on the underlying report, the FDR q-value may be not sufficient to filter for

good identifications. This is especially the case if the local FDR exceeds a given threshold for a

big part of the report, but finally drops below the threshold again. To improve on this problem,

other strategies should be developed. Another very interesting comparison of protein inference

algorithms and the fundamental search engines would be an analysis of the reported isoforms

or splice variants matched on a gold standard dataset, containing the knowledge of isoforms

and splice variants. This could not be tested thoroughly, due to the lack of publicly available

datasets at the time of writing. We also expect that more complex "gold standard" datasets will

lead to a fairer comparison of protein inference algorithms.

ProteinProphet has a more conservative approach and reports less false positives in all the

analyses. This also fits to the fact, that it has often the highest fraction of proteins with more

than ten peptides on a percentage basis. The parsimonious approaches are less dependent on

the search engine scores distribution than Fido. Although being relatively robust for multiple

types and shapes of distributions of the input probabilities, even with parameter estimation,

Fido cannot correct for heavily ill-shaped distributions like some results from X!Tandem in the

discussed analyses.
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Furthermore, the created workflow could easily be adjusted to benchmark different protein

inference algorithms in the future and thus gives a fair framework for testing of protein infer-

ence algorithms in general. Overall, one possibility for future improvements to the inference

methods could be the use of additional information during the inference process, especially,

since data from the MS1 level, like deviation from predicted retention time or intensities, is

readily available in almost all experiments. Another source of information could come from

technical replicates, where agreeing identifications may boost the confidence of its correctness.

Many of these aspects might not impact a daily analysis, but should be taken into consid-

eration when choosing a protein inference. For example many analyses are run using only a

respective taxonomical Swiss-Prot portion of UniProt. On these databases, most algorithms

perform relatively equal. It should be considered, though, whether one would use a parsimo-

nious approach or not. If the goal is to look for protein isoforms as well, or even analyse a

metaproteomic sample, either PIA or ProteinProphet should be selected, based on the given

assessments. PIA actually shows the best overall performance: it reports many qualitatively

good proteins early under 1% FDR (Figure 5.8), has the best combination of precision and

recall when using the F1 score as comparative metric and is robust against issues of big protein

databases for spectrum identification. Furthermore, it is platform independent and can be used

in different ways (command line, KNIME and web frontend), which makes it a good overall

choice.
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5.4 Advanced Application Example: Protein Isoform Detection

5.4.1 Motivation

For many entries in the UniProt databases, there are isoforms additionally to the canonical

sequences. Most MS-based proteomics studies were conducted using the canonical sequences

only in the past. Lately, also the reference proteome sets are used, which contain some isoforms

(compare also Chapter 4 for nomenclature and number of entries).

Generally, it is not only of interest to identify the canonical sequence, but also decide,

whether a specific isoform appears in a studied sample. Several current studies are aiming at

the detection, identification and quantification of protein isoforms and their functional analy-

ses110–112. This is a not trivial task, as much of the canonical protein sequence and its isoforms

are identical, due to the concept. Furthermore, identifying peptides against an database con-

taining all isoforms can lead to problems with the inference algorithms, as explained in Section

5. PIA provides a valuable framework for the isoform analysis, as it is not deeply impacted by

the usage of increased databases and gives good visualisation and browsing opportunities to

inspect isoforms in-depth. In this section, a publicly accessible dataset (PXD002279112) was

analysed and some of the observed isoforms are explained in detail.

5.4.2 Analysed Dataset

The analysed dataset was created to gain insight into the protein isoforms encoded by the

human SLC12A3 gene. This gene translates into three isoforms, which are summarized under

the accession P55017 in UniProt. For the MS-based proteomics analysis, urine samples were

measured on a Q-Exactive using HCD after digestion using trypsin or Lys-C. For more infor-

mation on the sample preparation, please refer to the original manuscript112 or the PRIDE

download page.

As an application example for isoform identification using PIA, the RAW file of the sec-

ond sample of the tryptic digest (QE1_150213_OPL4021_TRAS_SLC12A3_T2.raw) was down-

loaded and converted into mzML using msconvert. For the identification of spectra Mascot,

MS-GF+ and X!Tandem were used with the UniProt reference proteome for H. sapiens including

all isoforms (version 2016_01, see Table 5.2). Carbamidomethylation of cystein was set as

fixed modification, oxidation of methionine, Gln-> pyroglutamate of N-terminal glutamine

and N-terminal acetylation as variable modifications. Two missed tryptic cleavages, a precur-

sor tolerance of 10 ppm and a fragment tolerance of 20 mmu were allowed, as stated in the

publication.

The identifications of Mascot, MS-GF+ and X!Tandem were combined with PIA, using the

FDR Score. For the protein inference, the Spectrum Extractor was used with all PSMs fulfilling
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an FDR Score threshold of 0.01. Overall, 1.326 protein groups were identified on an FDR

threshold of 1%.

5.4.3 Detected Isoforms

In the analysis, only the isoform entries, which also have an additional canonical entry in the

database and are identified by the accession suffix "-X", were assessed. Alternatively there

are entries, which have the term "isoform" in the protein description. Of the identified 1.326

protein groups, 27 (2%) were matched to isoforms only, i.e. they had no canonical accession in

the group. More often though, the groups contain canonical and isoforms (564 groups, 43%),

while the remaining 735 groups (55%) contained only canonical accessions. For six of the

groups with isoforms only, also a group with the canonical accession was detected.

Groups containing canonical accessions and the respective isoforms can be easily explained:

for them only common enzymatic sequences are identified. In some cases, several isoforms

become sub-sets of the reported group, as their sequences and more are completely explained

by the peptides of the reported group. As explained before, the existence of the sub-groups’

proteins in the sample cannot be excluded based on the identifications only. Sometimes for

isoform only groups, no unique peptide for the reported isoforms are identified. Then the spe-

cific isoforms are reported, because they are the intersecting set of accessions of the respective

peptides - and other isoforms are in sub-groups.

In Figure 5.14 an example of the analysed dataset is given. The protein group with the

accessions [P01133, P01133-3] and [P01133-2] are both reported. The isoform P01133-2

misses a stretch if amino acids in the middle of the sequence and is otherwise identical to

the canonical sequence, while P01133-3 misses another stretch toward the C-terminal of the

protein. There are 7 peptides identified, which are in the sequence missing in P01133-2, but

none in the missing stretch of P01133-3. Also, no peptide spanning the characteristic gap

created by the sequence lost of P01133-3 is identified, therefore the group [P01133, P01133-3]

with common sequences is reported. For P01133-2 a unique sequence was detected, which

spans the characteristic gap between amino acid 314–355 in the canonical sequence and is

thus reported as well.

Another interesting example is the report of isoform O00159-2. This isoform is a truncation

of the canonical form, missing the first 35 amino acids. The N-terminal peptide of this isoform

was identified, while there is no tryptic cleavage site at position 35 in the canonical sequence.

Hence, the report of the isoform group, but also the canonical group, as a peptide inside the

first 35 amino acids was detected as well. It is arguable though, whether there might be a

semi-tryptic cleavage which created the N-terminal peptide of the isoform. This though is not

verifiable with the given methods.
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Figure 5.14

The original aim of the study, for which this dataset was created, was the analysis of

the proteins given by the accessions P55017, P55017-2 and P55017-3. P55017-2 has the

addition of the amino acid sequence GARPSVSGAL at amino acid 807, while P55017-3 has this

additional sequence as well as the missing of one amino acid at position 95. Figure 5.15 shows

the cluster containing the P55017 isoforms. It can be seen, that the specific additional peptide

GARPSVSGALDPK, which specify P55017-2 and P55017-3, is identified in the sample, shifting

the favour for the report towards these isoforms. Furthermore, the peptide with the sequence

KVRPTLADLHSFLKQEGR was detected, which contains the position, that is missing in isoform

P55017-3. Additionally, 40 common peptides are identified. Thus, only a group for [P55017-2]

is reported, as there is no further unique peptide. Still, also the other two peptides may be

present in the sample.

Figure 5.15
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5.4.4 Conclusion

For analyses of the kind described in this section, the web-interface and also the current KNIME

nodes of PIA are ideally. Here, the cluster combinations and all peptides and PSMs leading to

the reported protein groups can be inspected in-depth. The visualisations and the concept to

always report protein groups instead of representatives helps in inspecting the relationships,

which can become quite complex.
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Chapter 6

PIA - Protein Inference Algorithms

In this chapter the set of algorithms and tools called "PIA - Protein Inference Algorithms" will

be described in detail. PIA is a flexible software suite for combining PSMs from different search

engine runs and turning these into consistent results. PIA can be integrated into proteomics

data analysis workflows in several ways, using KNIME or the command line, as described in

Section 6.3). Additionally, a user-friendly graphical web interface can be run either locally or

(e.g., for larger core facilities) from a central server.

The contents of this chapter are in parts published in:

"PIA: An Intuitive Protein Inference Engine with a Web-Based User Interface.", Uszkoreit

et al. J Proteome Res. 2015 Jul 2;14(7):2988-97.1

6.1 Design Goals

As explained in Chapter 5, several protein inference algorithms exist already. Most of them,

though, suffer from one of the following points: limited support to report details of protein

ambiguity groups, inflexibility of settings, restrictions regarding the import of identified spec-

tra and export of protein results, no visualisation of the PSM, peptide and protein relations.

Furthermore, the actual algorithms of the protein inference are not always open, especially in

commercial products.

One aspect which makes a protein inference necessary for bottom-up MS proteomics is

the existence of shared peptides, for which the originating protein can not be detected unam-

biguously (see Chapter 4). This is especially true for eukaryotic organisms due to homologous

proteins or domains and multiple protein isoforms. These shared peptides lead to sets of pro-

teins, the protein ambiguity groups, which are built up of the same (sub-)set of peptides and

it cannot be decided which of the proteins were actually present in the sample unless discrim-

inating (unique) peptides are found or any other knowledge about the proteins’ existence in
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a sample can be used for the inference. Often for each such group only one representative

protein accession is reported in the result list and the other proteins are - if at all - reported

as "similar proteins" or "group members". For a complete result list, all these possible proteins

(according to the inference algorithm) should be reported.

The set of PSMs selected for protein inference, the inference algorithm, and the selection

of reported representatives vary significantly between inference methods as shown in105. For

some, mainly the algorithms included in commercial search engines and tools, but also some

freely available algorithms, the details are scarcely described, so that results cannot be com-

pletely explained or it cannot be judged whether they are reasonable for a specific question.

Additionally to the search engine inherent inference algorithms, there are also stand-alone

programs for protein inference from PSMs, some of which were highlighted in the preceding

chapter. Many of these implementations support only specific search engines and most are

limited in their settings for inference parameters.

Merging the results from multiple search engines is desirable to either increase the number

of identified spectra passing an FDR threshold and thus hopefully also the number of corre-

sponding proteins, or to solidify the evidence of peptides detected in the analysed sample, as

discussed in Section 3.2.3. This poses a major problem, because each search engine’s algo-

rithm generates its own value for the quality of a PSM, generally a score or probability value.

These scores are usually not directly comparable. They thus need to be translated to a directly

comparable, search-engine independent score27–29 prior to combining different search results.

The implementation of "PIA - Protein Inference Algorithms" addresses several of these

concerns. It is based on this concept and designed to only work on protein groups, never

the single accessions alone. It also provides concepts to report all sub-groups and creates

comprehensive exports into standard formats, which support these information. PIA reports

consistent and comparable protein ambiguity groups as result of one of the implemented

flexible protein inference methods. The implementation allows the choice of several protein

inference and scoring methods and direct access to all required parameters. Essential analyses

like the calculation of false discovery rates (FDR) on the PSM level and the protein level are

directly included. For import and export, PIA supports the standard formats mzIdentML75 and

mzTab81 for protein identifications developed by the HUPO Proteomics Standards Initiative

(PSI) and thus virtually all search engine results. Additionally, importers for the most commonly

used search engines are provided as well as algorithms for the combination of PSMs obtained

from different data sets and/or search engines.

To give the user easy access, PIA is fully integrated into KNIME96, providing nodes to

connect the protein inference to OpenMS97 workflows, including quantitative analyses. This

also encompasses KNIME nodes to visualise the relationship between PSMs, peptides and

proteins as well as the logic used for the inference. This same functionality is also included

in an intuitive web-based graphical user interface (written for JavaServer Faces, JSF). This
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interface can either be used in local installation or via a public web server. For scripting and

automation, all functionalities can also be called via the command line. PIA is open-source

software and completely written in Java.

6.2 Basic Concepts

The implementation of PIA is based on some assumptions and principles, which will be dis-

cussed in the following paragraphs. The concepts mainly encompass the separation into two

steps, compilation of search engine results and a following analysis, the three conceptual layers

consisting of the PSMs, peptides and proteins, the implemented protein inference and scoring

methods and finally the visualisation of the protein inference.

6.2.1 Compilation and Analysis Steps

Before doing any analysis, the imported search engine results are structured into a tree like

graph containing PSMs, peptides, proteins and additional group nodes. This graph can be

stored in an intermediate XML file together with additional search engine settings and iden-

tification information. This information is especially useful to later perform exports into fully

annotated standard formats like mzIdentML. The structured data enables the algorithms of

PIA to quickly access the hierarchical information connecting all PSMs to peptides and proteins

and vice versa and provides an intuitive visualisation of these connections. The methods, how

this graph is generated, is further discussed in Section 6.4.2 and Figure 6.8. If the compilation

is stored, it must be performed only once per set of search engine results.

It is important to note, that the information stored in PSMs and proteins, respectively their

relations, are not checked or updated by PIA. The importer relies on the information given by

the search engines or any preceding steps. This must be especially noted, if a file which might

be filtered in any way or for which PSMs are connected to only few proteins, like PRIDE-XML,

is imported. It is thus recommended that before importing from these files, peptide indexing

to a suitable database or a similar preprocessing is performed.

6.2.2 The Three Layers of Data in PIA

For the analysis it is important to know, that PIA structures the data into three layers:

• PSMs: A peptide spectrum match (PSM) refers to a match from an MS/MS spectrum to

an amino acid sequence with charge state and identified modifications, which derives

from one search engine run and contains the search engine’s scores.

• Peptides A peptide in contrast refers to an amino acid sequence without charge state,

either regarding modifications or not, depending on user settings used for the inference.
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• Proteins A protein refers to an entry in a database (the raw amino acid sequence with-

out any post-translational modifications), mandatorily containing an accession and, if

available, a complete amino acid sequence and further descriptions.

On the PSM level results from multiple search engines for the same LC-MS run are as-

sembled into PSM sets, which combine the identical identifications originating from different

search engines. To assemble these sets, all basic PSM information (m/z, retention time, source

ID, spectrum title, sequence, modifications and charge) available from all input files is used. If

all input files have information for the source ID, which refers to the actual identified spectrum

for each PSM, the source ID, sequence and modifications (with their correct locations) are

sufficient to construct the PSM sets. If the assembly of PSM sets is not needed, then it can be

turned off, e.g., in case a compilation of successive LC-MS/MS runs is intended.

To evaluate the quality of the identification data and to calculate the FDR, a search against

a target-decoy database is always recommended (compare e.g. Elias et al64, Käll et al.69

and Section 3.2). If such a search was conducted, then not only can a regular expression

to distinguish decoy accessions from targets be set but also decoys generated by an internal

target-decoy search can be used (e.g., used by Mascot and ProteomeDiscoverer). FDR, q-value,

and FDR Score for each PSM are then calculated from this data. For PSM sets, the Combined

FDR Score is computed as a comparable quality value for results from different search engines

(compare Section 3.2.3).

For an inspection of the data on the peptide level, all PSMs and PSM sets with the same

amino acid sequence are grouped into peptides. Additionally, it can be specified as to whether

modifications should be considered in order to distinguish peptides. This peptide step can be

used to review the peptides and associated PSMs of proteins of interest or to obtain a general

overview of the identified peptides. If spectral counting as a fast, though not very reliable,

method for peptide and protein quantification should be performed, this can be easily done on

the peptide level, as shown in87,113,114.

Before accessing the protein layer, a protein inference must be performed. The protein

inference in PIA depends on the choice of the method for the protein scoring, the inference

algorithm, and selected filters. The implemented methods for these will be discussed in the

following sections. PIA is based on the principle to always report protein ambiguity groups

and no single accessions. Therefore, on the protein level groups are reported. These, though,

might contain only a single accession. Furthermore, a group may have sub-groups, which are

groups that consist of a sub-set of the PSMs and peptides of the respective protein group, see

Section 3.4.

The data on each level can be filtered by a multitude of parameters, for example sequence,

m/z value, mass deviation, retention times and scores etc. Independent of the used frontend,
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export into mzIdentML, mzTab, idXML and CSV formats are possible for any further analysis

or submission into repositories like PRIDE115.

6.2.3 Protein Scoring Methods

Depending on the type of PSM scores (arbitrary search engine score, p-values, or e-values),

different rules for the protein scoring are applicable and can be chosen. Currently three protein

scoring algorithms are implemented:

• Additive scoring

For this scoring, the PSM scores are simply summed up to calculate the final protein

score. This score should only be used, when PSM scores are used, for which higher

scores represent better values, like the Mascot Ion Score. This scoring schema is very

common and also used by Mascot and ProteomeDiscoverer.

• Multiplicative scoring

This scoring method multiplies the PSM scores and should therefore be applied, if a

probability or p-value like score is used as basis. To avoid numerical problems with very

small numbers, the negative logarithmic values are added for the actual protein score.

Thus, the protein score tends to grow with the number of assigned peptides.

• Geometric mean scoring

The geometric mean is the n-th root of the product of n numbers. This scoring can be

used for both kinds of PSM scores, either with higher or lower score better. The resulting

protein score gives a tendency towards the mean of the original PSM scores, it will lay in

between the highest and lowest used PSM score. This value of the protein score therefore

does not reflect the amount of assigned peptides. Also for this score, logarithmic values

are used if PSM scores with lower score better are used.

Besides the better numerical correctness, the usage of logarithmic values in the multiplica-

tive scorings has additionally the benefit, that for the resulting protein score a higher numerical

value is always better. As this is true for all of the three implemented scoring methods, no

special care regarding this must be taken in any surrounding workflows.

Additionally to selecting the method, one of the available PSM scores must be selected. All

search engine scores (like Mascot Ion Score, X!Tandem Hyperscore and X!Tandem expectation

value etc.) but also the FDR Score and the Combined FDR Score can be used for the basis of the

protein scoring. Furthermore it must be decided, whether all PSMs or only the best scoring

PSM per peptide should be considered for the calculation of protein scores.
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6.2.4 Protein Inference Methods

Currently PIA supports three different inference methods. Each of these can additionally be

customized by several filters on the PSM, peptide and protein level (compare Section 6.4.2).

These filters can also be seen as additional settings for quality standards, as they allow to set

score thresholds or to require at least a certain number of spectra or peptides per protein.

As discussed before, PIA is based on the principle to always report protein ambiguity groups

instead of single protein accessions. Also, no representative is chosen, as it is in general not

possible to decide for any accession to be superior in a protein group.

All currently implemented inference methods are purely deterministic, in contrast to proba-

bilistic algorithms like Fido95 or MSBayesPro92. Though in theory the framework of PIA would

also allow the implementation of probabilistic algorithms.

The following paragraphs explain the implemented "Report All", "Occam’s Razor" and "Spec-

trum Extractor" in more detail.

Report All

This is the simplest possible inference method, returning any possible protein group in the

compilation of search results. Taking the PIA intermediate structure, the reported proteins are

very rapidly calculated, as only one protein group for each group in the graph containing at

least one protein node needs to be created. The advantage of this method is its short runtime,

with the disadvantage of calculating no sub proteins. This method does not report protein lists

that would be accepted in current publications, but it can be used to obtain a quick overview

of the PSM and peptide data for a protein, which is actually not reported by any other method.

Occam’s Razor

Here, the goal is to use the principle of maximum parsimony to report a minimal set of protein

groups, which explains the occurrence of all the identified peptides that pass the selected filters.

Given the example in Figure 6.1 (and assuming no further filters), the protein groups with

single proteins Protein 3, Protein 4 and Protein 5 would be reported (marked with red boxes).

This method also reports subgroups; in the example, the group containing Protein 1 and Protein

2 would be a subgroup of Protein 3.

As the data is already structured into the intermediate format, each single cluster or con-

nected component of accessions, peptides and PSMs can be processed concurrently. To speed

up the calculation of reported protein groups, parallelization is implemented and uses as many

threads as are available or allowed by the user.
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Figure 6.1: This figure highlights differences of the three inference methods in PIA. The
connections between several accessions and peptides are shown. The spectra are not
shown, except the one spectrum "index=191", which has identifications for two peptide
sequences, which are found in seperate accessions. For simplicity, there is only one acces-
sion per group depicted.
Assuming no further filters, the "Report All" algorithm would report all five protein groups,
each one with all its possible peptides and spectra. "Occam’s Razor", acting as a parsimo-
nious approach on the peptide level, would report the three groups marked by the red
boxes. The remaining two groups containing Protein 1 and Protein 2 are both reported
as sub-groups of the group containing Protein 3. Assuming that Protein 3’s group would
get a better score with the peptide identified for the spectrum index=191 than the group
of Protein 4, the blue marked groups of Protein 3 and Protein 5 would be reported when
using the "Spectrum Extractor".

Spectrum Extractor

The "Spectrum Extractor" is a spectrum-centric algorithm, in contrast to the two other imple-

mentations, which are peptide-centric. The major difference in this concept is that a spectrum,

which gets assigned to a peptide once, never gets assigned to another peptide. This concept is

closer to reality, as, in most cases, one MS/MS spectrum contains the fragment ion data of only

one peptide, although this may not always receive the highest score by search algorithms. This

inference method is very similar, although not equal, to the inference method called Protein
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Extractor116 implemented in the LIMS ProteinScape (Bruker, Bremen, Germany). If, instead

of a score for a single PSM, a PSM set score (e.g., the Combined FDR Score) was selected as the

base score for the inference, then the combined PSM sets from multiple search engine runs are

used for the inference.

If only one peptide per spectrum is assigned, the algorithm’s results are identical to the

Occam’s Razor. It should be considered, though, that also search engines like X!Tandem, which

report only the best peptide match per spectrum, yield multiple peptides if the best score can

be assigned to several sequences. As the occurrence of two peptides with similar scores in one

spectrum reflect most probably not the reality, it is always recommended to use the Spectrum

Extractor to get the most reliable protein results, unless the data was preprocessed in a way

which deconvolutes multiple peptides per spectra.

The first step of the Spectrum Extractor is the creation of a protein group for each group in

the PIA intermediate structure containing any accession. These groups contain every possible

peptide of the respective group, regarding the selected filters. Afterwards, the following steps

are performed:

1. For every protein group that has not yet been reported, examine each peptide. If a

peptide is already reported, then allow it to be reported in this protein group with the

prior set PSMs and score. Otherwise, construct the peptide with all still available PSMs

fulfilling the given inference filters.

If a spectrum is present in more than one peptide in a protein group, then use it for

protein scoring only in the peptide where it has the best score.

Should there be more than one peptide in a protein group for which the spectrum has

the best score, collect all spectra that may account for the affected peptides. If there

are peptides that are in all of the affected spectra, then one of these peptides is used

with all of the spectra while scoring, and all other peptides are not considered during

scoring. If the affected spectra are distributed over several peptides, calculate the score

of these peptides without the questionable spectra. For this, it is important whether it

was selected to score the peptide by each PSM or the best peptide only. The peptide with

the best score gets all of its spectra assigned. If there are peptides with the same score

and spectra, then all of their spectra are assigned, but only one is considered for protein

scoring. Repeat these last steps until all spectra are assigned to peptides.

2. Calculate the score for each protein group, and select the group with the best score.

Check whether this protein group is a subgroup of any already reported protein group

regarding peptides or PSMs. If it is a same set (i.e., the protein groups contain the

same PSMs and peptides) or sub protein group, then assign it to the respective group

appropriately. If it is not, then add the protein group and all of its peptides and PSMs to

the set of reported items and report this protein group.
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3. Repeat steps 1 and 2 until there are no further protein groups to be reported.

Also this inference algorithm can be run parallelized. To do this, it is important to prior

sort the clusters in the PIA intermediate structure in such a way, that clusters with not disjoint

sets of spectra are binned together. These new bins can then be processed in parallel.

6.2.5 Visualisation of the Inference

PIA allows an intuitive visualisation of the relationship between proteins, peptides and PSMs of

an analysed dataset. For this, a representation of the PIA intermediate structure (Sections 6.2.1

and 6.4.2) is used. Figure 6.1 shows such a representation of one cluster, i.e. one connected

component in the intermediate structure. In this way the proteins, respectively their accessions,

are shown on the top (green boxes) and connected via group nodes (blue circles) to peptides

(orange boxes) and spectra (light blue boxes). An arrow towards another node represents a

"belongs to" relationship. For example to Protein 1 in Figure 6.1 belongs first a group node, to

this three more group nodes, to each one of them belonging one peptide. To one of the groups

belongs one more group node etc. To a peptide belongs always at least one spectrum node,

to an accession always exactly one group node. A group node is necessary only to uphold the

correct connections.

This representation of connections between the three layers gives an easy to comprehend

overview, as long as the visualised connected component is not too complex. It is implemented

into three of the available frontends of PIA: the KNIME nodes, web-frontend and the PRIDE

Inspector implementation. In the web-frontend, only a static image for a given cluster is ren-

dered, while in the other two implementations the JUNG2117 (Java Universal Network/Graph

Framework) framework was used, which allows manipulation of the visualisation. This in-

cludes zooming and panning as well as collapsing of spectrum, peptide and accession nodes

to yield a more accessible overview. Regardless of the implementation, filtered out spectra

and peptides are greyed out in the representation and, if any component was selected, the

connected components in the current report are highlighted, showing e.g. exactly why a certain

protein was reported and the reasons behind another not being reported, which for example

can be due to filters or being a sub-protein.

6.3 Frontends for PIA

PIA is fully developed in Java, and all of its components can be used directly from the command

line; thus, it can be integrated into any scripted identification pipeline. However, there are

currently three more user friendly ways to conduct an analysis using PIA: a web frontend,

KNIME nodes and the PRIDE Inspector.
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6.3.1 The PIA Web Frontend

The web interface is written for JavaServer Faces (JSF), which requires a running installation of

a JavaServer Pages web server (e.g., Apache Tomcat118 or GlassFish Server119). The interface

may then be accessed via any current browser either locally, via a network, or via the Internet

from any modern computer. If the server is equipped with enough memory and hard drive

space, this way of performing a very large PIA analysis is the most suitable. In any way, it is

the best way to easily learn all concepts of PIA while conducting an analysis.

Project Management

As explained in the prior paragraphs, before performing an actual analysis, the data must be

structured. The web frontend provides a special section for this, the project manager. In this

context, a project refers to a compilation of search engine results into the PIA intermediate

format. If a new project should be created, the user is presented with an interface where search

engine result files can be uploaded and the project can be assigned with a descriptive name

(Figure 6.2). If a Mascot server is accessible from the server’s site, searches can be directly

imported without the need to copy them on the local computer first. Usually the format of

an imported file is assigned automatically, but can be adjusted if the detected format is not

correct. Finally, the user can start the compilation.

A list of all finished and still running compilations can be shown. From this list all projects

on the server can be accessed and further analysed.

Wizard Mode

The default and most intuitive procedure of an analysis using the web interface is the wizard

(Figure 6.3). after selecting a project, the wizard assists a user through the default steps of an

analysis by performing an FDR calculation on the PSM level, choosing a protein inference and

scoring method, and performing the inference. For each step, the settings are suggested based

on the imported data and preceding steps. Additionally, after each step, some descriptive

statistics are shown. On these a basic quality check can be performed. The wizard can be

aborted at any time, which directs the user to a more advanced interface.

Advanced Mode

In the advanced mode, all settings can be adjusted to the user’s demands. The interface allows

also for an in-depth inspection of the identification results, the results of the combination

from different search runs, and the inferred peptides from the (combined) PSMs. For this, the

listed results on each level can be expanded to show the results of the underlying level, as

shown in Figure 6.4. For filtering and exporting the PSM, peptide, and protein lists, the user
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Figure 6.2: Screenshot showing the "New Project" screen of the web frontend. In this
interface a user can easily upload search engine result files for compilation into the PIA
intermediate format.

can select a variety of variables and thus filter for score, mass deviation, sequence, or other

attributes. Furthermore, the visualisation described in Section 6.2.5 can be accessed on each

level, highlighting the connections of the respective PSM, peptide or protein.

6.3.2 PIA KNIME Nodes

KNIME, the KoNstanz Information MinEr96, is an open source workflow and data analysis

environment. To integrate PIA into new or existing KNIME workflows, special nodes are

developed and can be downloaded using the KNIME repositories. Besides PIA, there are

several other nodes for bioinformatics tools. To integrate PIA into already existing proteomics

workflows or facilitate the creation of new workflows, the PIA nodes are compatible with

the respective OpenMS nodes for identification and quantification. Using an environment like

KNIME has several benefits like the reusage of approved workflows, but also the reproducibility

of conducted experiments.

Using the "Generic KNIME Nodes"(GKN120,121) it is possible to quickly create nodes which

execute a command line tool and return the results as files. A first implementation for PIA into

KNIME was created in this way. Treating PIA as command line tool only has several drawbacks,

though. One of the major problems was the selection of the single analysis steps like FDR

calculation, PSM filtering etc. These had to be concatenated, one node for each analysis step.
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Figure 6.3: Screenshots of the web interface’s wizard, the most convenient way to perform
a PIA analysis. The wizard is part of the web interface and guides the user through the
analysis while suggesting default values for most of the used parameters. The wizard
starts with the calculation of the PSM FDR values for each search engine run (step 1) and
shows statistics on these values such as the number of target and decoy PSMs as well as
the distribution of mass deviations (step 2). In the third step, the PSMs are inferred to
peptides, and an overview of the number of identifications per peptide is shown. In step
four, the protein inference method is selected and processed. The final step 5, shows a
short overview of the inferred proteins.

To prevent this and make a more user-friendly experience, a new set of PIA KNIME nodes

was developed (Figure 6.5). All KNIME extensions are Java classes, which greatly facilitated

an implementation of PIA. The new nodes consist of a "PIA Compiler" which performs the task

of structuring search engine results into the intermediate format. This node takes a list of

URLs to the file system, pointing to the search engine result files. The compiled XML file is

directly stored as an compressed XML object inside the workflow. This file can be written to

the file system for permanent storage or backup, either compressed or uncompressed. For a

subsequent analysis using PIA, it can simply be passed to the "PIA Analysis" node.
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Figure 6.4: Screenshot showing the inferred protein groups in the advanced mode. For
each protein group, the accessions (with sequence coverage), the score, and the number
of peptides, PSMs, and spectra are listed. Additionally, information of the underlying
peptides as well as the (combined) PSMs can be shown by expanding the respective rows
in the list.

Figure 6.5: Screenshot showing the smallest possible KNIME workflow for a PIA analysis.
List Files selects some search engine result files from the file system. These are merged
by the PIA Compiler into the PIA intermediate format, compressed and stored inside the
workflow. This compressed file can directly be passed to the PIA Analysis, which conducts
the complete analysis.

The "PIA Analysis" node allows the user to adjust all possible PIA settings and filters in

dialogs before running the analysis, like the wizard in the web frontend. The input file can

either be passed directly from the "PIA Compiler" node or from an "Input File" node, which

points to an intermediate XML file on the file system. After running the analysis three tables

are generated, one for each of the PSM, peptide and protein levels. These results can directly

be used by subsequent KNIME nodes. This way allows exporting the tables to CSV or XLS files

using the respective KNIME nodes. Furthermore, the "PIA Analysis" node allows an export
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to one of the file formats supported by PIA, including mzIdentML, mzTab and idXML, which

facilitates further analysis outside the KNIME environment. An export of the results to an

idXML file, which is OpenMS’s intermediate format, enables the usage of the inferred proteins

in quantitative workflows. The "PIA Analysis" node additionally contains a view, which allows

an in-depth inspection of the results and the visualisation mentioned in Section 6.2.5.

Figure 6.6: Screenshot of the "PIA Analysis" view in KNIME. This view allows an in-depth
inspection of the results on the protein, peptide and PSM level as well as the visualisation
mentioned in Section 6.2.5.

6.3.3 Implementation of PIA in PRIDE-Inspector

The PRIDE Archive (PRoteomics IDEntifications) is a centralised, standards compliant reposi-

tory for MS proteomics experiment results122. This includes identification as well as quantifica-

tion analyses. The ProteomeXchange project had as a goal the creation of one central point for

MS proteomics submissions and thus the facilitation of the submission process for scientists123.

Deposition of scientific data in a central repository has several benefits: firstly it allows the

inspection of data connected to a publication and thus verification of the results by independent

scientists. Currently this is required for an increasing number of journals. Secondly, it allows

dissemination of the data for re-analysis with different questions or e.g. newer databases for

identification. Additionally, the PRIDE repository allows the inspection of annotated spectra if

a so called "complete submission" of a dataset was conducted. This eliminates the submission
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of these annotations included into a manuscript. This was required by some journals and was

a very tedious task in the past.

For the easy inspection of submitted data and to conduct some basic quality control tasks,

the "PRIDE Inspector" was developed124,125. In the recent release of version 2.5, some parts

of PIA were included to allow a basic inference for datasets containing peptide identifications

only. This implementation is based on the ms-data-core-api126, a Java library for all kinds of

MS proteomics data and also the basis for most of PRIDE Inspector’s functionality. Currently,

only "Occam’s Razor" is supported as inference algorithm, which uses all peptides in an opened

file, regardless of the score or probability. Furthermore, the already mentioned visualisation

for the relations between PMS, peptides and proteins is included.

6.3.4 Command Line Execution

The command line execution is meant for pipelining outside the KNIME environment. Basically,

two Java classes of PIA are executable: the PIACompiler and the PIAModeller. The compiler is

used to create the intermediate XML file, the modeller for every other aspect and is therefore

the class which is executed by default when starting PIA’s executable JAR file.

The PIACompiler has the following three arguments:

• outfile Path to the created PIA XML file

• name (optional) Name of the PIA compilation, used mainly internally

• infile Path to a search engine result file, this can be given multiple times to compile more

than one file into the PIA-XML.

The following command line snippet shows, how a PIA compilation can be called on the

command line:

Listing 6.1: Calling PIACompiler on the command line.

j ava −cp pia . j a r de . mpc . p ia . in te rmedia te . compi ler . PIACompiler \

− i n f i l e /path/ to / searchengine / r e s u l t \

[− i n f i l e /path/ to / searchengine / r e s u l t 2 . . . \]

−name "name of compi la t ion " \

−o u t f i l e /path/ to / compi la t ion . p ia . xml

Running a PIA analysis via the command line requires the creation of a parameter file, that

describes the consecutive analysis steps. This file has to be in an XML format, loosely following

the Common Tools Description (CTD) schema used by the OpenMS tools: for each analysis

step there is an NODE element. The action is described by the name tag of the NODE. If the

respective step needs further arguments, they are given by ITEM elements enclosed by the
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respective NODE. Though such a pipeline described by an XML document could be created

manually, it is recommended to use the respective KNIME nodes created by GKN and only

perform small changes manually. Listing F.1 shows an example of such an pipeline XML file.

This example conducts a default analysis: first the creation of PSM sets is activated and two

scores, Mascot Ion score and X!Tandem expect, will be used for FDR estimation. The next

setting instructs PIA to only use the top identification per spectrum for the FDR estimation,

using "s.*" as the decoy-pattern. Then, the FDR for all input files will be calculated followed by

the Combined FDR Score. For the peptide level there is only the setting whether modifications

are considered for the peptide inference, which is turned off in the given sample. On the protein

level, one inference filter is added, to use PSMs with an Combined FDR Score ≤ 0.01 (LEQ =

"less or equal"). Finally, the protein inference using the Spectrum Extractor with multiplicative

scoring using only the best PSM per peptide and the Combined FDR Score as base score is

performed.

The PIAModeller class, which is called to perform an analysis on the command line, needs

at least two parameters (infile and paramFile) and to actually write out any results it requires

at least one export parameter. The recommended parameters for usage are:

• infile Path to the used PIA-XML file, which was created by the PIACompiler

• paramFile Path to the parameter XML file, which should be executed. This can also be

created or extended, but manual usage of this is discouraged and should be performed

by the GKN KNIME nodes only.

• execute (optional) Execute the parameter file given by paramFile. This is the default

behaviour and does not need to be stated.

• psmExport outfile format [fileID spectralCount] (optional)

Exports the analysis on the PSM level. The results on the PSM level file will be written to

outfile in the format specified by format (for supported formats see Section 6.4.2). The

fileID specifies, whether the overview/merge (0, default) or the PSMs of only one input

file should be exported. If a CSV export is performed, with spectralCount set to "yes" the

export will be in a spectral count friendly format, i.e. each accession of a PSM will be

exported into a separate line.

• peptideExport outfile format [fileID exportPSMs exportPSMSets
oneAccessionPerLine] (optional)

Exports the analysis on the peptide level to the given file path specified by format (see

Section 6.4.2). The fileID specifies, whether the overview/merge (0, default) or the

peptides of only one input file should be exported. Setting exportPSMs or exportPSMSets

to "yes" (default "no") allows to also export the PSMs and PSMSets of the peptides, if this
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is optional for the selected format. Setting oneAccessionPerLine to "yes" writes for each

accession the whole information into one row (for CSV only).

• proteinExport outfile format [exportPSMs exportPSMSets exportPeptides
oneAccessionPerLine] (optional)

Exports the analysis on the protein level to the file path given by outfile in the format speci-

fied by format (see Section 6.4.2). Setting exportPSMs, exportPSMSets or exportPeptides

to "yes" (default "no") allows the export of the PSM, PSMSet or peptide information of the

proteins, if this is optional for the selected export format. Setting oneAccessionPerLine

to "yes" writes for the CSV export for each accession the complete exported information

into one line.

6.4 Technical Details of the Implementation

The implementation of PIA is divided into three parts: (1) the core with all algorithms, visu-

alisation and the command line execution as the base project and based on it (2) the KNIME

nodes and (3) the web frontend using JavaServer Faces. For an overview of the architecture,

see Figure 6.7. All code of PIA is open source and licensed under a Three-Clause-BSD-License.

At the time of writing this theses, all of the source code was deposited at GitHub. The following

paragraphs highlight some technical and programmatic details of the respective implementa-

tions.

KNIME SDK

Commonly used libraries

Apache Commons jMzIdentML

jMzTab

ms-data-core-api mascotdatfile

xtandemparser

biojava sqlite4java

PRIDE toolsuite

JUNG

log4j

PIA core library

Tools

Intermediate Modeller Visualisation

RichFaces

JavaServer Faces

Command Line
Interface

PIA
KNIME Nodes

PIA
Web Frontend

Figure 6.7: Architecture of PIA.
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6.4.1 Commonly used Libraries

For many commonly used tasks, PIA used available open source libraries. Two widely used

libraries used throughout the code are not restricted to biology or proteomics tasks: The Apache

Commons project provides a variety of libraries for many reusable Java components. These

are for example used for general String manipulations, parsing of command line arguments

and escaping of XML tags. As an easy to implement and configurable logging interface, log4j

is used. All other external libraries will be further discussed in their context in the following

paragraphs.

6.4.2 The PIA Core Library

PIA’s core is completely written in Java and all of its functionality is compatible with the Java

1.6 API. The main project is hosted at https://github.com/mpc-bioinformatics/pia.

It uses Apache Maven127 for the management of dependencies and the building process. Maven

allows the developer to define the required dependencies of a project and their exact versions.

These dependencies are usually stored on Maven servers and can be accessed during the build

process. Thus, shipping of all required dependencies with the source code is not needed. Nor

must a developer take care of downloading them manually before building the project.

The source of the core library is structured into four main Java packages: intermediate,

modeller, tools and visualisation as shown in Figure 6.7. The intermediate package

contains all functionality to create, save and read the PIA intermediate structure. Furthermore,

all importers are stored in this package. In the modeller package, almost all the remaining

logic required for a PIA analysis is stored, like the handling of the three layers, the scoring,

filtering and the actual protein inference. Routines to correctly parse controlled vocabularies

(CVs), PRIDE and OpenMS files, as well as special logic for standard formats and constants are

defined in the tools package. Finally, all classes concerned with any kind of visualisation are

located in the visualization package.

Importers

Before an actual analysis can be conducted, the results of one or more search engine runs

must be imported. PIA’s main source of information are the peptide spectrum matches and

the associated accessions. To create a PSM its charge, experimental m/z value, the peptide

sequence, any modifications and scores and the respective set of accessions are essential.

Furthermore, the delta between measured and theoretical mass, retention time, number of

missed cleavages, titles of the matched spectra and their ID in the original spectrum file as well

as the information, whether the PSM matches a decoy, can be extracted from the search results
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and used for the analysis. For an accession, only the actual ID is mandatory, but a description

and the protein sequence is also imported, if available.

Currently there are several different importers for native and processed search results,

supporting the following file formats:

• Mascot DAT

For the import of Mascot results the MascotDatfile128 library is used. The DAT format

used by Mascot is plain text, which can be easily accessed and contains all the information,

which PIA is able to process.

• X!Tandem XML

The XML files created by a X!Tandem search are an extension of the the specifications of

the Biopolymer Markup Language (BIOML) and the General Analytical Markup Language

(GAML). These files also contain all possible information PIA can use. The Tandem-

Parser129 is used to parse these information.

• Thermo MSF

Thermo’s ProteomeDiscoverer uses so called "Magellan Storage Files" (MSF) to save the

search results, which actually are SQlite databases. To extract the PSM information of

these files, a not-published library, developed at the MPC, is used. This library can handle

files created by ProteomeDiscoverer 1.2 - 1.4 and was tested for searches running Mascot,

SEQUEST and MS Amanda.

• Tide TXT

Tide56 is a newer implementation of the original SEQUEST algorithm, which can process

database searches much faster than the original implementation. One of the supported

export formats is a plain text format, containing only the mandatory information for

peptide spectrum matches.

• PRIDE XML

PRIDE XML was the original format for all uploads submitted to the PRIDE repository

before the mzIdentML standard was developed. Unfortunately it has some shortcomings

concerning the grouping of proteins. Only the final results given by a converter are saved

and therefore many PSMs are filtered out, as are accessions contained in sub-groups of

proteins. But if no protein inference was conducted before storing a PRIDE XML file,

most information is still contained in the file. The pride-jaxb library developed by the

EBI is used to parse PRIDE XML files.

• idXML

OpenMS uses idXML as an internal format. All search engine adapters and identification

preprocessing tools developed by the OpenMS team export to this format. To facilitate
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seamless integration of PIA into OpenMS workflwos an importer and exporter using

Java’s JAXB architecture was developed. There are plans to extract this functionality in

the future into a dedicated library and give a Java parser for idXML files to the community.

• mzIdentML

MzIdentML is the HUPO-PSI format for all identification results produced by MS pro-

teomics. With the possibility to import this format, virtually all search engines are sup-

ported by PIA. For parsing, the jMzIdentML library130 was used.

To permit a PSI standard compliant export of a PIA analysis, not only the search results

are imported, but also some information about how a search was conducted. This includes all

settings provided by the respective format like the processed protein database, allowed missed

cleavages and modifications, the enzyme used for digestion etc.

Compilation of Search Engine Results

To allow fast access to the data used in an analysis, it is structured into a tree-like graph by

the PIACompiler class. To achieve this, the PSMs are assigned to their peptides, defined by

their amino acid sequence, after collecting data from all search engine runs. While doing so, a

map from the peptides to the proteins’ accessions is built to accelerate subsequent evaluations

(Figure 6.8a). Next, all PSMs and peptides in the map are structured into clusters, which form

maximal connected sets with their mapped proteins/accessions, i.e., all data in one cluster has

no connection to any other cluster (Figure 6.8b). These sets can be subsequently processed in

parallel to consecutively insert each peptide into its corresponding acyclic graph compartment

along with its protein accessions. The graph is constructed in a straightforward way and

consists of nodes for proteins, peptides with their PSMs, and additional group nodes (Figure

6.8c). The group nodes connect the protein and peptide nodes such that the following rules

are valid:

1. Each peptide and each protein belongs exactly to one group,

2. a group can have other groups as children,

3. there are no circles in the graph, even with respect to the (undirected) group-group

relations,

4. there is exactly one path from each protein to its peptides (with PSMs) and vice versa,

which allows the relations between proteins and peptides/PSMs to be retrieved rapidly.

Each disjoint cluster forms a separate tree in the created graph and is the basis for PIA’s

visualization (see Section 6.2.5). After the compilation is finished, the graph data is stored in

an XML file.
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Figure 6.8: Compilation of the search engine results into a directed graph is performed
in three steps. PSMs can be easily grouped into peptides according to their amino acid
sequences; therefore, PSMs are left out in this figure. The connection information between
peptides (green) and proteins (blue) is stored in a map shown in (a), where each peptide
belongs to one or more proteins. This map can be divided into closed clusters, where
each peptide maps to all its proteins and there is no mapping from one cluster to any
other, as depicted by two such clusters in (b). The information on these closed clusters
can be processed in parallel to create a set of acyclic graphs shown in (c), where it is
easy to retrieve for a given protein all peptides (and PSMs) or vice versa by following
the connections between nodes. This data structure is the actual intermediate format
used by PIA to quickly retrieve information. The yellow group nodes store no additional
information, but they are necessary to connect the remaining nodes correctly and to
uphold the set of rules given in the text (see Section 6.4.2).

Structure of the Intermediate PIA XML File

The compiled identifications are stored in an XML file. This XML file is created, and subse-

quently loaded for an analysis, using JAXB. Listing F.2 shows an example of a PIA intermediate

file. The structure is split into five parts: input information, the PSMs, accessions, peptides and

groups. The input information is mainly used to carry settings, which are needed to create a

standard compliant export after an analysis. It consists of three lists: <filesList> contains

101



6. PIA - Protein Inference Algorithms

information of the actual compiled search result files, <Inputs> of the matched databases and

<AnalysisSoftwareList> of the softwares used for identification and processing prior to

the compilation. For all these information, mainly tags also used in mzIdentML are used. This

greatly facilitates an export, for example the <Inputs> and <AnalysisSoftwareList> can

be copied to an mzIdentML file, as can most of the tags included in a <file> element.

The <spectraList> holds a collection of <spectrumMatch> elements. These elements

represent one PSM each, containing all mandatory and optional information discussed in the

importers section (Section 6.4.2). Additionally, it maps via the fileRef argument to the actual

search engine results file it originates from. Accessions of all compiled files are listed in the

<accessionsList>. If an accession was defined in more than one imported file, it has multi-

ple <FileRef> tags. It may also contain multiple Description and SearchDatabaseRef
tags, if these were defined. The <Sequence>, though, is always unique and warnings are

given, if data with differing sequences for the same accession are imported. The <peptide>
tags inside the <peptidesList> contain, besides their sequence, references to all associated

PSMs. Furthermore, the respective accessions are linked and the actual position of the peptide

sequence in the protein sequence, if this was reported by the search engine.

To completely represent the directed graphs of the generated intermediate structure, <group>
tags are needed. These are collected inside the <groupList>. Each group may be connected

to any number of accessions, peptides and other groups, as explained in the previous section

concerning the compilation of the intermediate structure.

Filters

Filters are one of the most important settings in a PIA analysis. They work on either of the three

levels of PIA and have a big impact on the outcome of the protein inference. They are imple-

mented inside the modeller package and are, except for the PSM and peptide level score filters

and the PSMTopIdentificationFilter, instantiated by the RegisteredFilters class.

This class is an enumeration and returns appropriately initialized instances of SimpleType-
Filters, a template class of the basic AbstractFilter. For the score filters and the PSM-
TopIdentificationFilter additional settings of the basis score are necessary, therefore

they have special classes.

All instantiations of a filter need a comparator (greater than, equal, contains, regular

expression...), the compared argument (a numerical or string value) and whether the filter

should pass the respective objects fulfilling the comparator and argument or the complement.

Based on these settings filters can be created, to either refine the PSMs and peptides passed to

an inference algorithm or the elements passed to the creation of a report.

Table 6.1 shows an overview of the filters implemented at the time of writing this thesis.

The names of the filters should suffice to explain their filtering behaviour.
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6. PIA - Protein Inference Algorithms

Export

PIA allows exporting the PSM, peptide and protein results into different file formats for further

processing or storage of the results. Each level allows the export into a basic CSV format, that

can easily be processed by R or Excel, but also to the PSI standardised mzTab format. The PSM

and protein level allow additional export into mzIdentML, which has no native concept for

peptides at the moment. As explained in Section 3.5.2, mzIdentML has an elaborate framework

to report protein ambiguities and groups, which is supported by the PIA exports. The export

of peptide level information to both PSI formats is work in progress at the time of writing the

thesis. A full support is planned for the version 1.2. of the mzIdentML standard.

To improve the interoperability between PIA and OpenMS, also an idXML exporter is

available. These exports contain indistinguishable_group tags introduced in OpenMS

2.0 and thus the created files can be used as input for the ProteinQuantification tool of OpenMS,

to set the reported groups.

6.4.3 KNIME Nodes

The KNIME-SDK, a special version of the Eclipse IDE131, allows the creation and testing of

nodes. A node must be embedded in a plug-in project and consists, besides some files for

the project’s settings, of at least four classes, the NodeDialog, NodeFactory, NodeModel
and NodeView. The NodeDialog handles the setting of input parameters before running the

node, the NodeModel includes all the logic as well as the storage and retrieval of settings

and special objects created by the node, the NodeView allows visualising the results and the

NodeFactory is an entry point which provides KNIME with all necessary information about

the node.

As PIA is completely written in Java, all of its functionality could straight forward be

implemented into the KNIME environment. To install new plug-ins into KNIME, repository

sites containing the latest builds of the extensions can be contacted. PIA currently resides on

the official "trunk" or "nightlies" repository of KNIME and thus allows an easy installation and

updating by the user. To ensure continuous integration of new features, the source code of

the PIA KNIME nodes is fetched each night from the GitHub repository by the build servers of

KNIME, tested and, if no errors occurred, it is deposited in the repository.

6.4.4 Web Frontend using JavaServer Faces

The web frontend uses JavaServer Faces (JSF) to combine a platform independent visualisation

with Java libraries running in the background. To create a modern interface and enable some

special features like the uploading of files and full Ajax support, the open source framework
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library RichFaces is used. To run a JSF application, a servlet container like Apache Tomcat

must be running on the server.

A JavaServer Faces application uses so called beans to handle the logic behind a ren-

dered web page. PIA’s web frontend consists of only three beans: the ViewerBean, the

CompilerBean and a CompilationManager. The ViewerBean manages loading of a com-

piled PIA project and all the modelling steps needed by a PIA analysis. This includes the

visualisation of the three layers, mainly with lists, but also tasks like the FDR estimation and

starting the actual protein inference and the setting of filters. Instances of the CompilerBean
contain the logic for the graphical interface behind the creation of a new PIA compilation. Both

beans are session scoped, which means they are instantiated once for a user calling the

respective page via a web browser. This also controls, that a user can open only one project at a

time. The CompilationManager on the other hand is started as soon as the servlet container

starts the application and has only one instance during the whole runtime of the server. The

manager is called to list the projects stored on the server and schedules the actual compilations.

This ensures, that only a limited number of compilations are run in parallel to prevent the

application from using up too much main memory.
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Chapter 7

Conclusion and Outlook

Protein inference, the step of creating a list of proteins from peptide spectrum matches, remains

a challenge in current mass spectrometry based bottom-up proteomics. There is no solution for

this problem, only different ways on how to infer highly reliable protein results are possible.

Therefore, it is important to always keep this problem in mind when analysing the results of

a proteomics experiment and always think of protein groups - maybe their representatives -

instead of single proteins in a report. The only way to circumvent this altogether is to use top-

down MS proteomics. These methods are evolving and might replace the bottom-up approaches

in the future. This will have several inherent benefits like the possibility to distinguish protein

isoforms more accurately and also make most protein inference strategies obsolete. At the time

of writing this thesis, the machines need much more improvement to allow high-throughput

mass spectrometry proteomics of complex samples, though.

Though the approaches of bottom-up proteomics are improved greatly in recent years,

there are still several challenges. One of the main issues LC-MS faces is, that it is not possible

to collect MS or MS/MS data of each peptide in a sample. Even if a given peptide is present

in the sample, it might not be detected due to insufficient ionisation. The current method of

choice for the identification in untargeted experiments is the data dependent acquisition. A

peptide, respectively its m/z value, which was selected for fragmentation is usually excluded

for the next 10–30 seconds. While this excludes the re-measuring of high intensive peptides, it

can be observed, that a peptide is often measured at the very beginning of its ion trail and after

its peak was reached. This forfeits the possibility to measure a more intense and thus better

suited MS/MS spectrum at the highest intensity. Another problem is the fact, that the window

for the selection of parent ions is relatively large and thus it is possible to accidentally fragment

the ions of multiple peptides at once. These chimeric spectra are usually hard to match to

peptides, as many of the m/z peaks are interpreted to be noise by several search engines.

An emerging trend at the time of writing is data independent acquisition (DIA) or SWATH, a

technique in which relatively large, static fragmentation windows are used to fragment all
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7. Conclusion and Outlook

ions in the analysed m/s range. These experiments are still often bottom-up, but in theory

all peptides should be fragmented at (almost) each retention time. The identification of the

resulting chimaric MS/MS spectra though is still a big issue.

In this thesis I presented a new protein inference engine called "PIA - Protein Inference

Algorithms", which is open-source and completely written in Java. Besides the usage of PIA

from the command line, three more user friendly methods were implemented: a web-based

user interface, the implementation into PRIDE Inspector and the development of a KNIME node.

All of these graphical frontends allow a browsable in-depth analysis of the results on the PSM,

peptide and protein level. Furthermore, an intuitive visualisation of the relations between

these three layers allows an explanation of the reasoning for reporting a certain protein or

discarding the evidence of another. This also allows to inspect the complex relations when

analysing protein isoforms, as shown in Section 5.4.

Currently, three different inference methods are implemented, which can be combined

with different scoring algorithms and a multitude of filters. PIA supports the native formats

of several search engines as well as the standard format mzIdentML as input. The generated

protein lists can either be stored into easily parsable formats like CSV and mzTab, but also

in a more comprehensive way into the community standard mzIdentML. PIA also includes an

implementation for merging peptide spectrum matches obtained from multiple search engines,

but can additionally import merges from other tools. One of the basic principles of PIA is the

fact, that it fully supports protein ambiguity groups and sub-groups instead of reporting single

accessions.

In Chapter 5, PIA and four other protein inference methods were assessed. The analysis

showed, that the assessed algorithms agree on most of the reported protein groups, though

there are several differences between them. Some of the algorithms strongly depend on the

underlying protein database complexity, especially the Bayesian approaches. PIA, as one of the

parsimonious approaches, is relatively robust against these changes in complexity. Additionally

it was highlighted, that the combination of search results from multiple peptide identification

algorithms increases the overall reported number of proteins as well as their quality, regarding

the number of peptides per protein. It was also shown, that the FDR as well as the q-value

calculated by the target-decoy-approach, under certain circumstances, cannot control the false

discovery rate sufficiently. On the set of given metrics, PIA performed very well and in most

cases outperformed the other methods. Furthermore, most of the analysed implementations

for protein inference have some restrictions on the data input. They either need the PSM data

in a special format or allow only one type of score, respectively probability. PIA on the other

hand has no restrictions on the used scores, as long as they are in the PSI ontology.

One drawback of the current implementation though is the parsing of the intermediate PIA

XML files. As these can become very large, especially when combining many search files, the

memory consumption rises accordingly. This, though, could be compensated with a new parser,
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which allows for indexing and accessing only the data, that is needed at a given time point.

This could also be achieved with the usage of a graph-database as storage for the intermediate

data instead of an XML format.

To give scientists using PIA an even bigger insight into the data, it is planned to enhance the

visualisation with a spectrum viewer. This could be achieved by connecting PIA with the files

containing the originally identified spectra. Furthermore, it would be possible to implement a

connection to databases containing e.g. gene-ontology (GO) terms and visualise these in the

generated outputs.

Also the methods for protein inference could be improved with further knowledge. For

example the peptide quantities could be used to improve not only the inferred proteins, but

also the results of protein quantifications, as the assignment of quantities of shared peptides is

still an unsolved problem in MS-based label free quantification.

These results show that PIA as a freely available open-source tool can valuably contribute

to the field of proteomics. In combination with the workflow environment KNIME, it allows the

creation and execution of any kind of complex workflow, including any pre- or post-processing

of the results. Thus, PIA does not entirely solve the problem of protein inference, which might

never be possible for bottom-up MS proteomics due to shared peptide sequences. But it is a

versatile tool, that can be used in many ways and workflows, to help scientists working in MS

proteomics to create high-quality protein results, using the peptide identifications originating

from virtually any spectrum identification algorithm.
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A. Abbreviations

Appendix A

Abbreviations

2D-DIGE two-dimensional Differential Gel Electrophoresis

CID Collision Induced Dissociation

CV Controlled Vocabulary

DDA Data Dependent Acquisition

DIA Data Independent Acquisition

DNA Deoxyribonucleic acid

ESI Electrospray Ionisation

FDR False Discovery Rate

FP False Positive

HUPO Human Proteome Organization

IDE Integrated Development Environment

JSF JavaServer Faces

LC Liquid Chromatography

LC-MS/MS Liquid chromatography coupled to tandem mass spectrometry

MALDI Matrix Assisted Laser Desorption/Ionisation

MGF Mascot Generic Format

MIAPE Minimum Information About a Proteomics Experiment

MPC Medizinisches Proteom-Center (an institute of the Ruhr-Universität Bochum)

MS (Ion) Mass Spectrum or Mass Spectrometry

MS/MS Tandem Mass Spectrometry

PAG Protein Ambiguity Group

PP ProteinProphet

PRIDE PRoteomics IDEntifications (database)

PSI Proteomics Standards Initiative (of teh HUPO)

PSM Peptide Spectrum Match

SDK Software Development Kit

TDA Target-Decoy Approach

TP True Positive

TPP Trans-Proteomic Pipeline
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Appendix B

Contributions

Chapter 5

Section 5.2

This work is part of the main PIA manuscript "PIA: An Intuitive Protein Inference Engine with

a Web-Based User Interface"1 published in the Journal of Proteome Research. Additionally to

myself, Alexandra Maerkens, Yasset Perez-Riverol, Helmut E. Meyer, Katrin Marcus, Christian

Stephan, Oliver Kohlbacher and Martin Eisenacher contributed to the work.

Section 5.3

This work was published before in "In-depth analysis of protein inference algorithms using

multiple search engines and well-defined metrics"2 in the Journal of Proteomics. In addition

to myself and Enrique Audain (we contributed equally as first authors), Timo Sachsenberg,

Julianus Pfeuffer, Xiao Liang, Henning Hermjakob, Aniel Sanchez, Martin Eisenacher, Knut

Reinert, David L. Tabb, Oliver Kohlbacher and Yasset Perez-Riverol contributed to the work.

Chapter 6

The contents of this chapter were partially published before in the Journal of Proteome Research1,

as was Section 5.2
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List of publications

Peer reviewed journal articles

Ordered by descending date of publication.

• Audain E, Uszkoreit J, Sachsenberg T, Pfeuffer J, Liang X, Hermjakob H, Sanchez A,

Eisenacher M, Reinert K, Tabb DL, Kohlbacher O, Perez-Riverol Y. In-depth analysis of

protein inference algorithms using multiple search engines and well-defined metrics. J

Proteomics. 2016 Aug 4;150:170-182.

Enrique Audain and Julian Uszkoreit contributed equally to this work

This contains the comparison of inference algorithm as shown in Section 5.3.

• Perez-Riverol Y, Gatto L, Wang R, Sachsenberg T, Uszkoreit J, da Veiga Leprevost F,

Fufezan C, Ternent T, Eglen SJ, Katz DS, Pollard TJ, Konovalov A, Flight RM, Blin K,

Vizcaino JA. Ten Simple Rules for Taking Advantage of Git and GitHub. PLoS Comput

Biol 12(7): e1004947. 14 July 2016

• Maerkens A, Olivé M, Schreiner A, Feldkirchner S, Schessl J, Uszkoreit J, Barkovits K,

Güttsches AK, Theis V, Eisenacher M, Tegenthoff M, Goldfarb LG, Schröder R, Schoser B,

van der Ven PFM, Fürst DO, Vorgerd M, Marcus K, Kley RA. New insights into the protein

aggregation pathology in myotilinopathy by combined proteomic and immunolocaliza-

tion analyses. Acta Neuropathologica Communications. 2016 Feb; 4(1):1-20.

This publication used PIA for parts of the analysis.

• Perez-Riverol Y, Xu QW, Wang R, Uszkoreit J, Griss J, Sanchez A, Reisinger F, Csordas A,

Ternent T, Del-Toro N, Dianes JA, Eisenacher M, Hermjakob H, Vizcaino JA. PRIDE Inspec-

tor Toolsuite: moving towards a universal visualization tool for proteomics data standard

formats and quality assessment of ProteomeXchange datasets. Mol Cell Proteomics. 2016

Jan;15(1):305-17.
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C. List of publications

Parts of PIA are implemented in PRIDE Inspector as described in this publication.

• Uszkoreit J, Maerkens A, Perez-Riverol Y, Meyer HE, Marcus K, Stephan C, Kohlbacher

O, Eisenacher M. PIA: An Intuitive Protein Inference Engine with a Web-Based User

Interface. J Proteome Res. 2015 Jul 2;14(7):2988-97.

This is the main publication of PIA.

• Perez-Riverol Y, Uszkoreit J, Sanchez A, Ternent T, del Toro N, Hermjakob H, Vizcaíno JA,

Wang R. ms-data-core-api: An open-source, metadata-oriented library for computational
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This publication describes the basis of PIA’s implementation into PRIDE Inspector.

• Uszkoreit J, Plohnke N, Rexroth S, Marcus K, Eisenacher M. The bacterial proteogenomic

pipeline. BMC Genomics. 2014, 15(Suppl 9):S19.

In this paper, the PSM FDR estimations and combinations of search results using PIA

are used for proteogenomics approaches.
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standardized framing for reporting protein identifications in mzIdentML 1.2. Proteomics.
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C, Helling S, El Magraoui F, Erdmann R, Meyer HE, Uszkoreit J, Eisenacher M, Suh J,
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protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glyco-

protein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2)

as new binding proteins in the human brain. Mol Cell Proteomics. 2014 Feb;13(2):475-
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Supporting Tables

Table D.1: Table showing the fraction of unique tryptic peptides in common databases.
This table shows the results of an in silico digestion of often used databases from the
UniProtKB. Shown are the results of human and mouse entries of Swiss-Prot, the human
and mouse proteomes and the complete Swiss-Prot of the UniProtKB release 2015_11.
The protein sequences of each database were digested using the tryptic regular expression
[RK]|{P}, allowing 1, 2 and 3 missed cleavages (m) and discarding peptides shorter than
6 or longer than 45 amino acids. The total number of accessions, the number of accessions
having at least one unique peptide, the total number of peptides and the number of unique
peptides are given together with the corresponding percentages of the whole database.

Database accessions m
accessions

with unique
peptides (%)

peptides unique peptides (%)

Swiss-Prot
(H. sapiens)

20,194
0 19,926 (98.67) 581,909 561,261 (96.45)
1 19,976 (98.92) 1,503,676 1,455,430 (96.79)
2 19,990 (98.99) 2,450,916 2,379,336 (97.08)

Proteome
(H. sapiens)

70,075
0 52,636 (75.11) 660,251 356,336 (53.97)
1 59,679 (85.16) 1,705,209 924,710 (54.23)
2 61,356 (87.56) 2,780,870 1,516,776 (54.54)

Swiss-Prot
(M. musculus)

16,740
0 16,665 (99.55) 498,064 485,477 (97.47)
1 16,691 (99.71) 1,280,698 1,252,243 (97.78)
2 16,695 (99.73) 2,079,548 2,038,603 (98.03)

Proteome
(M. musculus)

49,235
0 35,376 (71.85) 629,766 342,905 (54.45)
1 38,918 (79.05) 1,622,683 888,260 (54.74)
2 39,680 (80.60) 2,641,145 1,453,169 (55.02)

Swiss-Prot 549,832
0 398,238 (72.43) 6,451,378 5,002,565 (77.54)
1 409,011 (74.39) 17,230,789 13,599,567 (78.93)
2 411,566 (74.85) 28,675,635 22,941,276 (80.00)
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Table D.2: The numbers of reported true positive, false negative, false positive, the result-
ing precision, recall and F1 score and the total number of protein groups for the iPRG 2008
dataset using the Swiss-Prot database. The table shows the respective numbers for each
inference algorithm and each combination of search engines (XT=X!Tandem, MA=Mascot,
MS=MS-GF+).

Run TP FN FP precision recall F1 score
total number
of groups

PIA XT+MA+MS 231 27 5 0.98 0.90 0.94 304
PIA MA+MS 231 27 5 0.98 0.90 0.94 304
PIA XT+MS 228 30 5 0.98 0.88 0.93 298
PIA XT 228 30 5 0.98 0.88 0.93 297
PIA MA+MS 220 38 4 0.98 0.85 0.91 282
ProteinLP XT+MA+MS 231 27 20 0.92 0.90 0.91 319
ProteinLP XT+MA 231 27 20 0.92 0.90 0.91 319
ProteinLP XT+MS 228 30 19 0.92 0.88 0.90 314
ProteinLP XT 228 30 19 0.92 0.88 0.90 314
PIA MA 208 50 4 0.98 0.81 0.89 258
ProteinLP MA+MS 217 41 16 0.93 0.84 0.88 283
ProteinProphet MA+MS 203 55 1 1.00 0.79 0.88 249
ProteinLP MA 208 50 13 0.94 0.81 0.87 267
ProteinLP MS 209 49 15 0.93 0.81 0.87 261
ProteinProphet MA 198 60 1 0.99 0.77 0.87 242
ProteinProphet XT+MA+MS 192 66 1 0.99 0.74 0.85 199
ProteinProphet XT+MA 192 66 1 0.99 0.74 0.85 199
ProteinProphet XT+MS 191 67 1 0.99 0.74 0.85 197
ProteinProphet XT 191 67 1 0.99 0.74 0.85 197
ProteinProphet MS 190 68 2 0.99 0.74 0.84 224
PIA MS 154 104 3 0.98 0.60 0.74 159
Fido MA+MS 217 41 162 0.57 0.84 0.68 441
Fido MS 113 145 100 0.53 0.44 0.48 229
Fido XT+MS 98 160 112 0.47 0.38 0.42 225
Fido XT 98 160 112 0.47 0.38 0.42 225
Fido XT+MA+MS 99 159 120 0.45 0.38 0.42 236
Fido XT+MA 99 159 120 0.45 0.38 0.42 236
MSBayesPro XT+MA+MS 57 201 0 1.00 0.22 0.36 77
MSBayesPro XT+MA 56 202 0 1.00 0.22 0.36 73
Fido MA 73 185 95 0.43 0.28 0.34 173
MSBayesPro MA+MS 48 210 0 1.00 0.19 0.31 62
MSBayesPro XT 26 232 0 1.00 0.10 0.18 31
MSBayesPro MS 19 239 0 1.00 0.07 0.13 23
MSBayesPro XT+MS 15 243 0 1.00 0.06 0.11 20
MSBayesPro MA 15 243 0 1.00 0.06 0.11 18
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Figure E.1: Pseudo-ROC curves showing the number of reported protein groups against
the FDR q-value for the four analysed datasets using the respective Swiss-Prot database and
the combination of all three search engines: a) iPRG 2008, b) yeast, c) PXD000603, and
d) PXD001118 dataset. The plots indicate that the main trend is similar for all inference
algorithms. Depending on the dataset, different algorithms perform worse than others
for certain q-value ranges, like Fido in the iPRG 2008 dataset, PIA in the yeast dataset
and ProteinLP in the PXD000603 dataset. Only MSBayesPro performs significantly poorer
than all other methods on all datasets.
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(c) False positives

Figure E.2: Venn diagrams showing the number of reported protein for each inference
algorithm at 1% FDR for the ground truth yeast dataset using the Swiss-Prot database. (a)
Number of all reported proteins for the yeast dataset. (b) Number of reported proteins
included in the reference set, i.e. the true positives. (c) Number of reported proteins
that are not in the reference set and thus false positives. It can be seen that the overlap
of all algorithms excluding MSBayesPro is in all three cases the largest number. Though
MSBayesPro reports no groups uniquely and 88% of its reported groups are reported
in consensus with all other methods. Though most of the reported protein groups are
true positives, especially interesting are also the 7 collectively reported (and also the 14
collectively excluding MSBayesPro) groups, which are false positives. This might indicate
an error or incompleteness in the determination of the true positives for this dataset.
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Figure E.3: Number of protein groups reported for the datasets using different inference
algorithms and databases. Number of protein groups under a 1% FDR q-value for the
iPRG 2008 (a-c), yeast (d, e), PXD000603 (f-h) and PXD001118 (i-k) dataset with the
corresponding Swiss-Prot (a, d, f, i), UniProt proteome (b, d, g, j) and UniProt proteome
with isoforms (c, e, h, k) databases. For the colour codes, please see Figure 5.10 and
Section 5.3.8.

134



(a) X!Tandem (b) Mascot

(c) MS-GF+ (d) Merged

Figure E.4: Numbers of identified peptides per protein. The graphics show the numbers of
peptides identified per protein in a heatmap-like plot for identifications from a) X!Tandem,
b) Mascot, c) MS-GF+ and d) combination of all for the PXD000603 dataset and the
Swiss-Prot database. It can be seen, that the most proteins are identified with relatively
few peptides, while only few proteins have ten or more peptides in this dataset. With the
single search engines, PIA, Fido and ProteinProphet report on average 5.7% of proteins
with ten or more peptides, while with the merge of the PSM results they report 6.5%
with at least ten peptides, and also numerically at least 5 proteins more with these many
peptides. This shows that also on protein level a qualitative improvement is yielded by
merging search results.
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Appendix F

Additional Material

Listing F.1: Example for a PIA analysis pipeline XML file.

<?xml version="1.0" encoding="UTF−8" standalone="yes"?>
<tool docurl="http://www.medizinisches−proteom−center.de" name="pipeline"

version="0.1.23">
<description>

This file contains a pipeline for execution by PIA

</description>
<PARAMETERS>
<!−− PSM settings −−>
<NODE name="PSMCreatePSMSets">
<ITEM name="create sets" value="yes" type="string"/>
</NODE>
<NODE name="PSMAddPreferredFDRScore">
<ITEM name="score name" value="mascot_score" type="string"/>
</NODE>
<NODE name="PSMAddPreferredFDRScore">
<ITEM name="score name" value="xtandem_expect" type="string"/>
</NODE>
<NODE name="PSMSetAllTopidentificationsForFDR">
<ITEM name="number of top identifications" value="1" type="string"/>
</NODE>
<NODE name="PSMSetAllDecoyPattern">
<ITEM name="decoy pattern" value="s." type="string"/>
</NODE>
<NODE name="PSMCalculateAllFDR"/>
<NODE name="PSMCalculateCombinedFDRScore"/>

<!−− peptide settings −−>
<NODE name="PeptideConsiderModifications">
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<ITEM name="consider modifications" value="no" type="string"/>
</NODE>

<!−− protein settings −−>
<NODE name="ProteinAddInferenceFilter">
<ITEM name="filtername" value="psm_score_filter_psm_combined_fdr_score"

type="string" />
<ITEM name="comparison" value="LEQ" type="string"/>
<ITEM name="value" value="0.01" type="string"/>
<ITEM name="negate" value="no" type="string"/>
</NODE>
<NODE name="ProteinInfereProteins">
<ITEM name="inference" value="inference_spectrum_extractor"

type="string"/>
<ITEM name="scoring" value="scoring_multiplicative" type="string"/>
<ITEM name="used score" value="combined_fdr_score" type="string"/>
<ITEM name="used spectra" value="best" type="string"/>
</NODE>
</PARAMETERS>
</tool>
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Listing F.2: Example of a PIA intermediate XML file.

<?xml version="1.0" encoding="UTF−8" standalone="yes"?>
<ns3:jPiaXML date="2016−04−08T17:19:43.862+02:00" name="example file"

xmlns:ns2="http://psidev.info/psi/pi/mzIdentML/1.1"

xmlns:ns3="http://www.medizinisches−proteom−center.de/PIA/piaintermediate">
<filesList>
<file fileName="/tmp/example_1.idXML" format="idXML" id="1" name="example_1.idXML">
<AnalysisCollection>
<ns2:SpectrumIdentification spectrumIdentificationProtocol_ref="identProtocol_1_1"

id="specIdent_1_1">
<ns2:SearchDatabaseRef searchDatabase_ref="searchDB_1"/>
</ns2:SpectrumIdentification>
</AnalysisCollection>
<AnalysisProtocolCollection>
<ns2:SpectrumIdentificationProtocol analysisSoftware_ref="software_1"

id="identProtocol_1_1">
<ns2:Enzymes>
<ns2:Enzyme missedCleavages="2" id="enzyme_1_1">
<ns2:SiteRegexp>(?&lt;=[KR])(?!P)</ns2:SiteRegexp>
</ns2:Enzyme>
</ns2:Enzymes>
<!−− and other search parameters as in mzIdentML −−>
</ns2:SpectrumIdentificationProtocol>
</AnalysisProtocolCollection>
</file>
<!−− more files −−>
</filesList>

<Inputs>
<ns2:SearchDatabase location="" id="searchDB_1" name="swissprot−decoy−20160210.fasta">
<ns2:DatabaseName>
<ns2:userParam name="UniProt Swiss−Prot Decoy"/>
</ns2:DatabaseName>
</ns2:SearchDatabase>
</Inputs>

<AnalysisSoftwareList>
<ns2:AnalysisSoftware version="2.5.1" uri="http://www.matrixscience.com/" id="software_1"

name="mascot">
<ns2:SoftwareName>
<ns2:cvParam cvRef="PSI−MS" accession="MS:1001207" name="Mascot"/>
</ns2:SoftwareName>
</ns2:AnalysisSoftware>
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</AnalysisSoftwareList>

<spectraList>
<spectrumMatch charge="3" deltaMass="0.00174" fileRef="1" id="19293" isDecoy="false"

massToCharge="651.68085" missed="0" retentionTime="3713.77"

sequence="FIQVCTQLQVLTEAFR" spectrumIdentificationRef="specIdent_1_1">
<sourceID>index=9548</sourceID>
<Title>651.68085_3713.77_controllerType=0 controllerNumber=1 scan=9548_LC5</Title>
<Score cvAccession="MS:1001171" name="Mascot Ion Score" value="23.93"/>
<Score cvAccession="MS:1001172" name="Mascot Expect" value="0.343687"/>
<Modification description="Carbamidomethyl" location="5" mass="57.0214" residue="C"/>
</spectrumMatch>
<!−− many more spectrum matches −−>
</spectraList>

<accessionsList>
<accession acc="Q9UBV8" id="15640">
<Sequence>MASYPYRQGCPGAAGQAPGAPPGSYYPGPPNSGGQYGSGLPPG...</Sequence>
<FileRef fileRef="1"/>
<SearchDatabaseRef searchDatabaseRef="searchDB_1"/>
<Description fileRefID="1">PEF1_HUMAN Peflin OS=Homo sapiens</Description>
</accession>
<!−− more accessions−−>
</accessionsList>

<peptidesList>
<peptide id="12591">
<Sequence>FIQVCTQLQVLTEAFR</Sequence>
<spectrumRefList>
<spectrumRef spectrumRefID="19292"/>
<spectrumRef spectrumRefID="39679"/>
</spectrumRefList>
<occurrences>
<occurrence accessionRefID="15640" end="258" start="243"/>
</occurrences>
</peptide>
<!−− more peptides−−>
</peptidesList>

<groupsList>
<group id="1089" treeId="1045">
<accessionsRefList>
<accessionRef accRefID="12590"/>
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<accessionRef accRefID="12591"/>
</accessionsRefList>
<peptidesRefList>
<peptideRef pepRefID="9704"/>
</peptidesRefList>
</group>
<group id="1117" treeId="1064">
<accessionsRefList>
<accessionRef accRefID="3080"/>
</accessionsRefList>
<peptidesRefList/>
<childrenRefList>
<childRef childRefID="1116"/>
<childRef childRefID="1114"/>
</childrenRefList>
</group>
<!−− more groups−−>
</groupsList>
</ns3:jPiaXML>
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