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vorgelegt

von Tatiana Fomina

aus Magnitogorsk, Russland

September - 2016



ii

Tag der mündlichen Prüfung: 13.03.2017
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Prüfungskommission: Dr. Moritz Grosse-Wentrup

Prof. Dr. Niels Birbaumer

Prof. Bernhard Schölkopf

Dr. Axel Lindner



iii

Erklärung / Declaration:

I hereby declare that I have produced the work entitled “Brain-Computer Inter-

faces for patients with Amyotrophic Lateral Sclerosis”, submitted for the award

of a doctorate, on my own (without external help), have used only the sources

and aids indicated and have marked passages included from other works, whether

verbatim or in content, as such. I swear upon oath that these statements are true

and that I have not concealed anything. I am aware that making a false declara-

tion under oath is punishable by a term of imprisonment of up to three years or

by a fine.
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Abstract

Electroencephalographic (EEG) brain-Computer Interfaces (BCIs) hold promise

to restore communication with completely locked-in (CLIS) patients with Amy-

otrophic Lateral Sclerosis (ALS). However, these patients cannot use existing EEG-

based BCIs, possibly because such systems rely on brain processes that are im-

paired in ALS. We propose to use for BCI for ALS patients high cognitive processes

connected to consciousness, because ALS patients should be able to use such BCI

as long as they are fully conscious. We introduce a BCI based on neurofeedback

from precuneus, brain area linked to consciousness. We describe two cases of

successful use of the BCI by ALS patients, with stable online performance over

the course of disease progression. Additionally, we show that training time can

be improved by replacing the neurofeedback with direct instructions, contrasting

self-referential and neutral thoughts. We further investigate self-referential think-

ing in ALS and find differences in the EEG correlates of self-referential thinking

between ALS and healthy controls. This finding raises the question of awareness

and consciousness in CLIS ALS. We propose a method that may serve as basis

for consciousness detection in CLIS ALS patients: EEG-based identification of

the Default Mode Network (DMN), brain resting-state network closely linked to

consciousness.
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Chapter 1

Synopsis

The Synopsis is structured as follows. First, I describe Amyotrophic Lateral Scle-

rosis (ALS) and ALS patients’ need for Brain-Computer Interfaces (BCI). Then, I

introduce electroencephalography as one possible BCI tool and discuss the state of

the art in EEG-based BCIs and their performance with ALS patients. In Sections

1.5 – 1.8, I describe an alternative BCI for ALS patients based on neurofeedback,

as was suggested in the papers ”Toward Cognitive Brain-Computer Interfaces for

Patients with Amyotrophic Lateral Sclerosis” (Chapter 2) and ”Self-Regulation

of Precuneus Brain Rhythms: A Novel Brain Computer Interface for Patients

with Amyotrophic Lateral Sclerosis” (Chapter 3). In Section 1.9, I introduce an

improved BCI with direct instructions, described in the paper ”A Cognitive Brain-

Computer Interface for Patients with Amyotrophic Lateral Sclerosis” (Chapter 4).

Because such a BCI with direct instructions is based on self-referential thinking,

self-referential processing in ALS was investigated. The resulting paper ”Self-

Referential Processing in Amyotrophic Lateral Sclerosis: an Electroencephalogra-

phy study” (Chapter 5) is summarized in the section 1.10. These results lead to the

question of consciousness in late-stage ALS and I describe a possible approach to

answer it (”Identification of the Default Mode Network with Electroencephalogra-

phy”, Chapter 6). In conclusion, I summarize the results and outline the directions

for future research.

1
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1.1 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease or Motor

Neurone Disease (MND), is a neurodegenerative disease, characterized mainly by

the loss of motor functions due to motor axon retraction, followed by loss of the

motor neuron and finally muscle atrophy [1, 2]. ALS is the most common motor

neuron disease. In Europe, about 2.16 people per 100,000 are diagnosed with ALS

every year [3]. ALS has been increasingly in the public eye since 2014, when the

ALS Ice Bucket Challenge campaign was started in order to raise awareness about

ALS.

ALS is a highly inhomogeneous disease with its causes remaining largely unknown.

Only 10% of the cases are familial ALS, which is believed to be inherited and

caused by genetic mutation in a heterogeneous set of genes [3–5]; the rest of the

cases are sporadic. The disease onset usually happens after the age of 40, though

rare ALS cases of juvenile ALS have also been reported [3, 5]. Based on the on-

set region, ALS is divided into bulbar and spinal types. Bulbar ALS, observed

in about 25% of the cases, usually starts with difficulty speaking or swallowing.

More common spinal ALS presents with difficulty walking or with reduced manual

dexterity. Other symptoms include muscle weakness and atrophy, muscle cramps,

exaggerated reflexes and muscle twitching. As ALS progresses, neuron and muscle

atrophy continuously affects other body parts, leading to the paralysis of all mus-

cles apart from the extraocular muscles (locked-in slate, LIS) and eventually full

paralysis (completely locked-in state, CLIS). Life expectancy after disease onset is

estimated as 3–5 years, but the actual life length varies greatly, spanning the range

from a few months to decades [3, 5]. The disease progression is usually measured

with the ALS Functional Rating Scale Revised (ALSFRS-R) [6], a 12-item ques-

tionnaire with a score between 48 (normal function) and 0 (severe disability). Most

of the patients die from respiratory failure, and only some choose artificial ventila-

tion, which increases the life expectancy. There is no cure for ALS and treatment

is mostly limited to supportive care. The only drug that have been shown to slow

down the progression of the disease, Rilusole, prolongs median survival by only

about two to three months [7].

ALS has long been believed to be confined to motor neural pathways, but re-

cent neurological evidence suggests that ALS is a complex multisystem disorder

with cortical and subcortical pathology beyond motor areas. The analysis of the
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spreading pattern of pTDP-43 protein associated with ALS [8] showed that ALS

is limited to motor cortices only in the early stages of the disease. As the disease

progresses, the pathological protein agglomerations spread throughout the cortex,

eventually affecting almost the whole brain [8]. The involvement of the whole

brain is further supported by the morphological and metabolic studies. Abrahams

et al. showed that ALS is associated with changes in the white matter [9] and

Schmidt et al. later reported alterations in functional and structural connectiv-

ity [10]. Additionally, metabolism is reduced in the entire cortex [11]. Growing

evidence points towards even broader effects of ALS, involving in particular dis-

orders of serotonergic systems. Dentel et al. found pathological agglomerates of

pTDP-43 protein in the central serotogenic neurons of the brain stem (raphe nu-

clei) [12], which possibly causes decreased serotonin concentrations in the brain of

ALS patients [12, 13] and degeneration of the serotonin projections [12].

The effect of ALS and related physiological alterations on the non-motor func-

tions is not completely clear. Cognitive abnormalities are reported in as many as

half of ALS patients [5, 14, 15]. Cognitive decline correlates with the severity of

symptoms [16] and affects word generation, immediate free recall, attention, men-

tal control tasks [14, 15] and emotion control [17, 18]. The majority of observed

psychological symptoms are considered to be signs of frontotemporal dysfunction

[14, 19]. Several studies specifically investigated the connection between fron-

totemporal dysfunction and cognitive decline in ALS. Ludolph et al. and later

Abrahams et al. found with positron emission tomography (PET) that reduced

word fluency correlates with reduced metabolism in the medial prefrontal cortex

(MPFC) in ALS [11, 20]. Mantovan et al. showed that observed memory deficits in

ALS patients are connected to frontal lobe dysfunction detected with single photon

emission computer tomography (SPECT) [21]. Furthermore, in 15% of the cases,

ALS co-occurs with another neurodegenerative disease - fronto-temporal demen-

tia (FTD) [22, 23], characterized by neuronal death in the frontal and temporal

lobes. Clinically, FTD and ALS are usually seen as separate diseases, though re-

cent evidence suggests the two might actually be two parts of the same disease,

with symptoms of one or the other being more prevalent in the early disease stages

[5, 14, 24].
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1.2 Communication in ALS

ALS symptoms include difficulty in articulating words and eventually the inability

to talk at all. From that stage till the LIS patients experience communication

problems but can still communicate, either with simple eye-movements or with

commercial eye-tracking systems. Those who reach CLIS, however, lose the ability

to volitionally control any muscle, including oculomotor muscles, and so lose all

the means of communication.

Therefore, a system that would allow communication independent from voluntary

movements would greatly improve the quality of life of CLIS ALS patients and

their relatives. Such a system has to be easy to use, portable and compatible

with the patients’ life support systems. In the absence of any types of voluntary

movements, the system has to rely solely on the remaining signals from the central

nervous network - brain signals. Such system is called a Brain-Computer Interface

(BCI) and it can be used as an artificial communication channel as long as the

patient is able to generate communication messages with his/her brain. Various

techniques can be used for non-invasive brain signal recording, however, most of

them are not portable (functional magnetic resonance imaging, fMRI, positron

emission tomography, PET) or require a special shielded room for the recordings

(Magnetoencephalography, MEG). Electroencephalography (EEG) is safe, cheap,

portable and can be used easily both at patients’ homes and in clinical environ-

ments. This makes EEG a suitable technology for building the BCI, that would

allow to restore communication with ALS patients.

1.3 Electroencephalography

Electroencephalography (EEG) is a non-invasive method for recording brain ac-

tivity through electrodes placed on the scalp. Its principle is based on a neuron’s

property of inducing voltage fluctuations via firing. Neurons communicate to each

other by releasing neurotransmitters into the synaptic cleft. Neurotransmitters

bind to receptors at dendrites and cause change in the post-synaptic potential

through the opening or closing of ion channels in the cell membrane. Ion flux

propagates through the brain tissue due to volume conduction and causes a change
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of potential in the electrodes. EEG records the activity of groups of neurons spa-

tially oriented in the same way and firing in a synchronous manner, which gives

rise to signals strong enough to be recorded on the surface of the head.

At the EEG electrodes, the synchronised activity of neurons is seen as oscillations.

These oscillations are often referred to as ”neural oscillations” or ”brain rhythms”.

They occur in different frequencies and are usually analysed as power spectrum

in the frequency domain. The EEG spectrum is separated into several frequency

bands: δ (0.1 – 4 Hz), θ (4 – 7 Hz), α (8 – 15 Hz), β (16 – 30 Hz), γ (30 – 100 Hz).

Normally, EEG power spectrum has a characteristic α peak. It is usually observed

around 10–14 Hz. The peak frequency is different in different people, and even

for the same person, it changes throughout lifetime [25]. This peak increases in

rest in the absence of any input [25]. Another peak is the µ peak registered over

the motor cortices. It also increases in rest state, as the neurons start firing in

synchronous manner in the absence of any input. The peak decreases as a response

to tasks or events - an effect known as the event-related desynchronisation.

A wide range of cognitive processes are associated with neuronal oscillations in dif-

ferent frequencies easily detectable by EEG [25–29]. For example, θ is connected

with spatial orientation, workload, episodic memory, memory encoding and selec-

tive attention (for reviews on θ see [25–27]); α correlates with episodic memory,

workload and sensory processing [25, 28]; and γ is involved in auditory and visual

processing and selective attention [28, 30]. Despite a large body of EEG research,

the exact match between cognitive processes and neuronal oscillations is still not

known for several reasons. First, most of the studies are based on a low density

EEG, which makes source localization highly inaccurate. Second, lack of estab-

lished paradigms makes meta-analysis difficult and leads to ambiguous results of

non-unique mapping between oscillations and cognitive processes [28, 29].

1.4 EEG-based BCI for ALS: state of the art

EEG-based brain-computer interfaces (BCIs) are communication channels that do

not depend on the peripheral nerves and muscles [31] and thus may allow com-

pletely locked-in (CLIS) patients in late stages of ALS to communicate with the

world. So far, different implementations of EEG-based BCIs have been proposed,

that work reasonably well with healthy subjects and paralyzed patients; however it
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remains difficult to use them with CLIS ALS patients [32]. Birbaumer et al. have

suggested that long term paralysis in ALS patients causes a dream-like state [32],

making communication impossible. They based their hypothesis on a theory of

ideomotor silence and the similarity between the ALS CLIS, in which patients are

not able to interact with the world and can only simulate such interaction in their

mind, and the REM sleep state, in which similar simulations happen in dreams.

Another possible explanation was suggested by Grosse-Wentrup et al. : that exist-

ing BCIs are not suitable for ALS patients, because they rely on processes impaired

in ALS [33].

In particular, paradigms dependent on low-level sensory- and/or motor processes

are unlikely to be available to ALS CLIS patients due to the degeneration of

sensorimotor cortex. For example, BCIs based on modulation of sensorimotor-

rhythms (SMRs) [34] are probably not suitable for CLIS patients since ALS causes

a degeneration of neurons in primary motor cortex [1]. The same is true for tactile

BCIs [35] as sensory neurons are also largely affected by ALS [36]. Other BCIs

such as P300 speller systems [37, 38] or BCIs based on steady state visual evoked

potentials [39] require gaze fixation, which is difficult for patients in late stages of

ALS due to impaired oculomotor control [40]. Auditory Event-Related Potential

[41] do not require eye fixations, but do not work well with CLIS ALS patients

either, due to abnormal ERPs and reduced selective attention in late stage ALS

patients [14, 42].

Grosse-Wentrup et al. suggested to avoid impaired low-level sensory- and/or motor

processes, and to use instead high cognitive processes, that correlate with posterior

γ [28, 30] as a BCI signal [33]. This way they avoided both the brain area and

the processes primarily affected by ALS. Grosse-Wentrup et al. employed operant

conditioning, a type of learning in which changes in the behaviour happen as a

result of observing the feedback, to train the participants to self-regulate the brain

oscillations. They achieved an average decoding accuracy of 70.2% with healthy

participants, however performance of the LIS ALS patient was barely above the

chance level.
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1.5 Towards Cognitive BCI for CLIS ALS

In the paper ”Towards Cognitive BCI for patients with ALS” (Chapter 2), it

was hypothesised that low performance of ALS patient in the previous study on

neurofeedback-based BCI [33] might be caused by a decreased learning rate in late

stages ALS [43] and thus may be improved by starting the training earlier in the

disease. Thus, the neurofeedback BCI study of Grosse-Wentrup et al. [33] was

replicated with a moderately impaired ALS patient.

Similarly to Grosse-Wentrup et al., operant conditioning in combination with neu-

rofeedback was employed. The subject was provided with feedback on the amount

of parietal γ power he generated and asked to either up- or down-regulate it in

pseudo-randomized manner. No instructions were provided on how to achieve the

modulations, instead the subject was asked to try different mental strategies. As

expected, significant modulations in γ frequency range were observed and resulted

in two-class decoding accuracy of 79,2%. Unfortunately, despite Independent Com-

ponent Analysis (ICA) - based artefact attenuation, it was not possible to exclude

muscle contaminations for two reasons. First, the modulation was not specific to

the feedback frequency band (55 – 85 Hz), but rather spanned the whole γ range

(40 – 85 Hz), which is characteristic for muscle activity. Second, the modulation

was spatially spread over the whole cortex, with the maximum of modulation out-

side the feedback area. At the same time, modulation in the individual θ range

was highly localized, both in space and in the frequency domain. The θ range,

while still being connected to high cognitive processes [25–27], is less likely to be

contaminated by muscle artefacts than γ band. Importantly, the maximum of

modulation was observed in between the two hemispheres in the precuneus, the

brain area involved in a number of cognitive processes [44] and a hub of the Default

Mode Network (DMN), linked to consciousness [45].

1.6 The Default Mode Network, the Precuneus

and Consciousness

The Default Mode Network is the brain’s resting state network. It has been

initially discovered by comparing BOLD signal during rest to that during task

performance [46]. Raichle et al. have noticed that while task-specific regions and
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networks are more activated when participants are performing correspondent tasks,

the DMN regions are activated when participants are task-free, in wakeful rest,

or daydreaming and mind-wandering. The DMN consists of the medial prefrontal

cortex (MPFC), posterior cingulate cortex/precuneus, inferior parietal lobe, lat-

eral temporal cortex and hippocampal formation. Later research has discovered

that DMN regions have a property of functional connectivity: the BOLD signal

from different DMN parts detected by fMRI is highly correlated, while being anti-

correlated to the task-positive networks [47]. This highlights the co-activation and

probably communication between different parts of the DMN and is widely used

for fast and reliable identification of the DMN from resting state only. Instead

of comparing resting state activations to task activations, the DMN is identified

by putting a seed in the precuneus and finding all the regions with activations

correlating with the seed’s activity.

Despite the DMN is deactivated during the majority of tasks, some tasks have the

opposite effect of DMN activation. Those are mostly tasks in some way related to

the concept of ”self”: remembering one’s past experiences, envisioning the future,

or making moral judgements (for a detailed review see [48]). Thus, self-referential

activity is considered to be one of the main DMN functions [48].

The DMN seems to be involved in promoting the state of consciousness. Crone et

al. compared DMN deactivations during auditory stimuli presentation in healthy

participants, minimally conscious patients and patients in a vegetative state. They

found that the level of the DMN deactivation correlates with the level of conscious-

ness [45]. Another study demonstrated a correlation between level of consciousness

and connectivity within the DMN [49]. DMN activation alterations have been ob-

served in a number of disorders of consciousness [48, 50]. Additionally, the DMN

shows reduced connectivity in sleep [51, 52], when the level of consciousness is

reduced. All these arguments taken together point towards the DMN playing a

vital role in consciousness.

The precuneus, being a functional core of the DMN [53, 54], is also closely con-

nected with consciousness and high cognitive processes. In particular, it is involved

in visuo-spatial imagery, episodic memory retrieval and self-processing (for a re-

view see [44]). Precuneus function is reduced in vegetative state [55] and anaes-

thesia [56]. It is also one of the first regions to restore its activity when vegetative

state patients recover consciousness [57, 58].
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The important role of the precuneus in consciousness makes precuneus activity a

suitable target for a BCI for ALS patients. As long as patients are fully conscious,

the DMN and precuneus in particular are likely to function similarly to a healthy

brain. Once the DMN function is disrupted, patients are likely to enter a state of

altered consciousness [45, 49], in which meaningful communication is not possible

any more.

1.7 BCI based on neurofeedback

The optimal neurofeedback signal for a BCI for ALS patients should arise from

the brain area that is minimally affected by ALS and be associated with processes

that are not impaired by ALS. For example, the oscillations in the motor cortex

are suboptimal due to degeneration of the pyramidal motor neurons in ALS. It

is not clear what cognitive functions are available to CLIS ALS patients given

the cortex-wide morphological alterations (discussed in Section 1.1). Thus, it is

beneficial to use the precuneus, a brain area linked to consciousness, for the BCI

for patients with ALS, because consciousness is a fundamental pre-requisite for

communication. While successful communication is possible with patients who

cannot talk, or cannot move, or cannot see, no communication is possible with

unconscious patients, no matter how advance the technology is.

”Self-Regulation of Brain Rhythms in the Precuneus: A Novel BCI Paradigm for

Patients with ALS” introduces the new BCI based on modulation of precuneus

oscillations in θ and γ frequency bands. The choice of frequency bands was based

on the previous studies. Grosse-Wentrup et al. showed that healthy subjects can

learn to modulate γ in parietal areas [33] and the following study (Section 1.5,

Chapter 2) confirmed that an early stage ALS patient can learn it too. At the same

time, even stronger modulations in the θ range were observed in the precuneus.

Additionally, θ and γ are coupled [59], associated with multiple cognitive processes

[26–29] and correlate with the DMN activity [60, 61], which makes those frequency

bands a suitable choice for the BCI. Bandpower modulations can provide a basis

for simple binary BCI communication: for example, a volitional increase in the

amplitude of neuronal oscillations may be used to communicate a ”yes”, while a

decrease may signal a ”no” response to a question.
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The BCI was introduced to the patients in several steps. As the first step, two

ALS patients were trained to modulate the brain oscillations: one in θ and one

in γ frequency range. They were provided with a setup that asked them in a

pseudo-randomized manner to either up- or down-regulate the oscillations in the

precuneus (for more technical details on the method, see Chapter 3). After each

training session, the performance and the pattern of modulations were evaluated.

Once a consistent modulation was observed over several sessions and it was pos-

sible to successfully decode it, an online state classifier was introduced and the

classifier decision was added to the feedback at the end of each trial. Finally, the

patient could use the BCI to answer simple ”yes/no” personal questions. It is of

high importance to do transitions gradually and to increase the complexity slowly.

First, the BCI system has to remain understandable, predictable and intuitive for

the patients. Second, the advance to the next step should be done only when the

system performance gets stable enough, to avoid patient’s frustration and loss of

trust in the system.

Within all these steps, the neurofeedback signal was adjusted. The BCI training

loop consists of a computer and a human and both parts of the loop have to

adjust to each other in order to achieve optimal performance [62]. While in online

neurofeedback sessions the patient have been trained to modulate brain activity;

offline the setup was adjusted in order for it to be able to pickup the modulations

that the patient created. Furthermore, the brain is a non-stationary system and

an ALS patient’s brain even more so due to the disease progress. Constant system

adjustment allows to compensate for the alterations in the brain’s state. For the

same reasons the classifier was re-trained several times during the study.

Both of the patients learned to control the neurofeedback BCI and did not lose

this skill in the progress of their disease. One of the patients reported using self-

referential memories to control BCI and the other could not formulate the strategy,

and reported being able to control the BCI by simply ”wanting” the neurofeedback

signal to change in one direction or the other. The post hoc analysis confirmed

that the observed modulations arise from the precuneus and do not happen due to

artifacts (such as muscle or eye movements, that can be also detected in θ and γ

frequency bands). The precuneus origin of the signal was further supported by a

fMRI experiment, in which one of the patients was asked to up- or down-regulate

the oscillations inside an fMRI scanner.
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The proposed BCI has yet to be tested with CLIS ALS patients. (It was not

possible to test the BCI with patients in CLIS, because neither of the two patients

lived until the CLIS.) However, the stability of GH’s performance despite the

dramatic progress of his disease and the use of consciousness-related processes for

the BCI hold a promise that such a system should be suitable for ALS patients in

all disease stages. Unfortunately, the long training time makes it difficult to test.

Due to the decline in learning abilities in ALS [43], training has to start in an early

disease stage and has to continue on regular basis while the disease is progressing.

This is difficult to achieve on a large scale. Progression of ALS from the diagnosis

to CLIS can take up to tens of years [5], and not all ALS patients survive until the

CLIS. Thus, the proposed paradigm, despite being promising from the scientific

point of view, might be economically infeasible. In further research this issue

was addressed by replacing the operant conditioning with another method: direct

instructions, which shortened the training time.

1.8 Operant conditioning and direct instructions

During the training, the patients were provided with real-time information about

their precuneus activity and asked to try different mental strategies in order to

change the activity in the desired direction. The operant conditioning in combi-

nation with neurofeedback training is widely used in therapies aiming to up- or

down-regulate neural oscillations to improve cognitive functions or well-being. For

example, α and θ neurofeedback training was used first for treatment of alcoholics

[63] and later for creative performance enhancement [64] and Attention-Deficit Hy-

peractivity Disorder (ADHD) treatment [65]. Most patients cannot explain how

they achieve the modulations, but Niv et al. suggested that DMN modulations

is a primary mechanism of the neurofeedback training [66]. For BCI, the operant

conditioning with neurofeedback was first used by Birbaumer et al. and was later

proven successful in multiple studies [33, 67, 68]. Operant conditioning offers an

intuitive BCI, that - once it is learned - can be used naturally without additional

cognitive effort, similar to the way we use hands or legs, or learn to talk or ride

a bicycle. The problem highlighted by previous studies is the long training time

required before patients can reliably use the BCI. Additionally, controlling such a

BCI is a skill that should be acquired early in the disease due to decreased learning

rates in late stage ALS [43].
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A cognitive non-motor BCI with direct instructions is an alternative approach to

BCI. It was first suggested by Anderson et al., who successfully classified brain

activations during five different mental tasks: the baseline resting state task, the

mental letter composing task, the non-trivial multiplication task, the visual count-

ing task and the geometric figure rotation task [69]. The cognitive BCI with direct

instructions offers the benefits of being ready to use without the need for a long

period of initial training, at the cost of being less intuitive and high in mental

effort required to keep the thoughts on the required task.

1.9 BCI based on direct Instructions

To improve the training time for the BCI, the previously used operant-conditioning

was replaced by direct instructions. Following the strategy of one of the ALS pa-

tients from the neurofeedback BCI study (Chapter 3), participants were instructed

to use self-referential memories to control the BCI. Self-referential thinking is a

high cognitive process that is not likely to be impaired in ALS. It is known to cor-

relate positively with θ bandpower [70] and thus can be detected with EEG. Self-

referential thinking is also known to engage the DMN, thus one can expect more

activity in the precuneus for self-referential than for not self-referential thoughts.

Additionally, self-referential thinking is an easy intuitive task that requires mod-

erate mental effort to perform.

In the study ”A Cognitive Brain-Computer Interface for Patients with Amy-

otrophic Lateral Sclerosis” (Chapter 4), participants were asked to remember

positive self-referential memory to up-regulate the precuneus activity and to con-

centrate on their breathing to down regulate it. No neurofeedback was provided

in order to simplify the setup and avoid distraction. Twelve healthy participants

and five ALS patients were able to generate distinct patterns in the θ and α fre-

quency bands, allowing classification rates of above 60%. The source localization

performed on the data of healthy participants (Chapter 6) confirmed that the

modulation arose from the DMN.

In the next stages, such a cognitive BCI can be integrated with neurofeedback

on the current θ and α over the precuneus, which would allow for combining the

benefits from the direct instructions with those from operant conditioning. Inte-

gration with neurofeedback training might also further improve the performance.
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Later, an online classifier should be introduced to provide an online BCI. Never-

theless, before further improvements are incorporated, it is necessary to validate

the chosen processes and to ensure that self-referential processes are unaffected by

ALS. Otherwise, such a BCI would not offer ALS patients any advantage over a

motor-imagery BCI or any other BCI type.

1.10 Self-referential processing in ALS

Self-referential thinking can be used as a basis for EEG-based BCI for ALS pa-

tients, because self-referential thinking, being a main cognitive process, is unlikely

to be impaired in ALS patients. ”Self-referential thinking in Amyotrophic Lat-

eral Sclerosis: an Electroencephalography study” examined whether self-referential

thinking is indeed spared in ALS. In particular, the self-referential processing in

ALS was investigated by comparing the EEG correlates of it in ALS patients and

healthy controls. For that ten healthy participants and ten ALS patients in differ-

ent disease stages (ranging from the very first symptoms to LIS and CLIS) were

recruited. The EEG data were collected while participants were making judge-

ments about themselves, their close friends and celebrities (for more details see

chapter 5). To exclude confounding effects, such as not understanding the task,

not following the instructions, or falling asleep, a fourth non-self-referential condi-

tion was introduced as control condition. In this condition participants were asked

to count the syllabuses in the word they hear.

Following previous fMRI studies with a similar setup [71], modulations in the me-

dial prefrontal cortex (MPFC) were expected. To test this, an ANOVA was per-

formed on bandpowers in θ, α, β, low and high γ frequency bands for both groups

of subjects. For healthy participants, there was a significant difference between

the four conditions with different degree of self-referential processing. The differ-

ence remained significant after removing the control (counting) condition from the

analysis and analysing only the three self-referential conditions (judgements about

oneself, friend or celebrity). For ALS patients, there was a significant difference be-

tween the four conditions with different degree of self-referential processing as well.

However, after removing the control (counting) condition, the difference in band-

powers between the remaining three self-referential conditions was not significant

any more. The results showed that EEG correlates of self-referential processing

differ between healthy participants and ALS patients.
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It was not possible to separate the effect of ALS from that of the long-term paral-

ysis or the medication. Most of the ALS patients take rilusole and/or painkillers.

To the best of my knowledge, none of those medicine has been reported to induce

changes in self-referential thinking. Nevertheless, it is not possible to say whether

the observed differences in MPFC activations between ALS patients and healthy

controls are directly connected with ALS. Irrespective of the cause of alterations

in self-referential thinking, the results suggest that self-referential processing is a

suboptimal process for the BCI for ALS patients.

Altered self-referential processing is one of the major FTD symptoms [72]. This

further supports the connection between ALS and FTD and the hypothesis of an

ALS-FTD disease continuum [5, 14, 24]. However, none of the patients were diag-

nosed with FTD and all of the patients who were able to communicate appeared

fully conscious and mentally healthy. Due to the lack of communication, nothing

can be said about the two CLIS ALS who participated in the study. Other neu-

roimaging studies also found ALS related alterations in patients without cognitive

disorders [4]. In particular, Portet et al. reported abnormal event-related poten-

tials (ERPs) in patients without cognitive impairement [14]. Similar results were

reported by Pinkhardt [42], who found an increased ERP response to non-relevant

stimuli in all examined ALS patients, even those who did not show any symptoms

of attention disorder. In an attempt to explain these observations, Tsermentseli

et al. suggested that neuroimaging might detect alterations preceding the clini-

cal symptoms. The results on altered self-referential processing in ALS (chapter

5) align well with this hypothesis. Cognitive deficits progress slower than mo-

tor [43] and it might be that for many ALS patients, cognitive symptoms never

get detected and diagnosed because by the time such symptoms develop, motor

symptoms advance to CLIS, making further psychological testing impossible.

Furthermore, alterations in self-referential processing have important implications

for understanding of the CLIS ALS state of consciousness. Laureys et al. suggested

a 2-D scale of consciousness with one axis being wakefulness, and the other being

awareness [73]. There are different levels of consciousness on both axes, ranging

from fully conscious state (awake,aware) to coma (not awake, not aware), to vege-

tative state (awake, not aware) and lucid dreaming (not awake, aware). As of now,

CLIS patients are shown on the scheme with a doted line overlapping with fully

conscious state, because CLIS patients’ consciousness cannot be measured with

conventional behavioural methods. The results of the study on self-referential
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processing in ALS suggest that CLIS ALS patients are probably awake (since they

produced different activity in counting and self-referential conditions), but possi-

bly not fully aware, or at least not fully self-aware. Thus, CLIS ALS patients may

reside in altered state of consciousness. Further studies have to investigate level

of consciousness in CLIS ALS patients.

1.11 EEG DMN for consciousness estimation

Alterations of self-referential processing in ALS suggest that ALS patients might

have an altered state of consciousness. The Coma Recovery Scale (revised) (CRS-

R) [74] is routinely used for examining patients with disorders of consciousness, as

well as for differentiating between vegetative state and minimally conscious state.

CRS-R is based on tests for auditory, motor and oromotor functions. Unfortu-

nately, all those functions are impaired in CLIS ALS and cannot be used as a

measure of consciousness. No other behavioural testing can be performed due to

the absence of communication means. Thus, neuroimaging techniques are the only

feasible option for consciousness estimation in CLIS ALS.

FMRI can be used for consciousness estimation in paralyzed patients, since the

connectivity of the DMN correlates with the level of consciousness [49]. The DMN

is known to be less active in sleep, including the REM sleep [51, 52] and thus

could be used for verification of the thought extinction theory, suggesting that

ALS patients reside in a REM-like state [68]. Unfortunately, fMRI is difficult to

use with CLIS patients. CLIS ALS patients are dependent on artificial ventilation

systems and their transportation into fMRI scanner can be difficult and potentially

dangerous.

EEG, being cheap, easy to use, and highly portable, serves as a promising al-

ternative. EEG-based entropy monitors are widely used in clinical settings for

anaesthesia depth estimation [75]. However, they are likely to rely primarily on

the EMG component of the data and muscle tone relaxation and are probably not

suitable for consciousness estimation in CLIS ALS patients due to muscle atrophy

in late stage ALS. Other studies showed that EEG entropy might correlate with

the levels of consciousness, but entropy estimation from the EEG data remains

difficult [76] and does not allow to reliably differentiate REM steep from the awake

state [77].
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EEG-based identification of the DMN might offer an alternative approach to con-

sciousness estimation in CLIS ALS as it might allow to combine the benefits of

using EEG with the DMN sensitivity to the state of consciousness. Previously,

Knyazev et al. has attempted to localize DMN with EEG [78], however they man-

aged to recover only one node of the DMN. In ”Identification of the DMN with

the EEG” (Chapter 6) an alternative method for DMN localization with EEG was

proposed. Using the data collected in the BCI study (Chapter 4), I compared

the EEG power in α and θ frequency bands in two conditions: recalling positive

self-referential memories and concentrating on breathing. I employed the fact that

self-referential thinking activates the DMN, while tasks that are not connected

with self-referential processing deactivate it. With this approach, I was able to

localize the MPFC, precuneus/posterior cingulate, and left temporal node.

In the future, this approach can lead to a method for consciousness estimation in

CLIS ALS. However, it has to be validated first: one possibility is to do simul-

taneous EEG/fMRI recordings and compare the DMN recovered with traditional

methods with the EEG DMN. Unfortunately, the simultaneous EEG/fMRI record-

ings are normally done with smaller number of electrodes (16-64), which can affect

the source localization resolution. Another possibility is reproducing the study on

the DMN in minimally conscious and vegetative state patients [49] with EEG and

direct evaluation of whether the EEG DMN correlates with the levels of conscious-

ness in the same way that the fMRI DMN does.

1.12 Future research

Future research should focus primarily on consciousness characterization in CLIS

ALS. The level of consciousness in CLIS ALS should define the type of communi-

cation that is needed for such patients and the type of BCI that can be used in

order to achieve it. If CLIS ALS patients are unconscious, maybe they do not need

any BCI at all. On the other hand, if they are in an altered state of consciousness

which still allows basic communication, then they would need an easy to use BCI

with a very simple, intuitive interface. The latter can be achieved by developing

a BCI that would either not require training or allow for training earlier in the

disease.
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ALS patients’ level of consciousness might also restrict the types of questions ALS

patients can be asked. This is especially relevant for BCI validation. ALS patients

might not be able to retrieve memories or recognize others, while still being able

to answer simple questions about the present moment, i.e. ”Are you in pain?”,

”Is it night now?”, ”Do you hear me?”.

If ALS patients’ consciousness is altered in the late stages, the neurofeedback

BCI might be an optimal solution. Such a BCI is based on processes tightly

connected with consciousness and thus holds the promise to remain functional as

long as consciousness is preserved. Training time can be improved, as proposed

above, with direct instructions. However, it might be beneficial to use for the

direct instructions other DMN functions not related to self-referential processing,

as other processes might be less affected by ALS. Other functions of the DMN in

ALS patients, such as future envision and theory of mind [48], should be addressed

in future studies. If those functions are not altered in ALS, they can be used as

a basis for a cognitive BCI with direct instructions. Another way to facilitate

training is to use transfer learning [79]. It would allow to make use of the data

collected from other patients, thus shortening the time between the start of the

training and delivering the system that allows for online communication.

Other nodes of the DMN and other frequency bands should be investigated. It has

been shown that DMN correlates with θ [60]. Other studies found the DMN to be

closely connected with α frequency range, and even used that as a basis for DMN

identification [78, 80]. In ”Self-Regulation of Brain Rhythms in the Precuneus:

A Novel BCI Paradigm for Patients with ALS” θ and γ frequency ranges were

compared. Both candidate bands were found suitable, however, θ seems to be more

stable across sessions. Frequency bands might have to be adjusted individually for

every patient. In this case, such an adjustment should be automated, so that the

BCI can be made independent from researchers and patients can use it on their

own.

Consciousness is not stationary and can change over time. It is likely that late

stage ALS patients have periods with more and less consciousness or that they

fall asleep for short time periods [81]. In this case, it would be beneficial to

build a system that can constantly monitor the patient’s consciousness state and

offer communication only when the patient enters the brain state suitable for

communication.
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Even if ALS patients’ consciousness is not altered, their attention is reduced [42].

It has to be taken into account when designing the BCI for ALS patients. The

interface has to be as simple as possible and the use of the BCI should be intuitive.

This can be achieved with operant conditioning and neurofeedback. Such a BCI,

once learned, does not require additional mental effort and patients can use the

BCI even in late stages of the disease.

To be able to deliver this system to more patients, the system has to be made more

independent: patients should be able to train on their own, without the need for a

researcher to intervene. It can be achieved by switching to a commercially available

BCI system with dry electrodes or to a system with smaller numbers of electrodes.

It has to be noted, however, that in the latter case accurate source localization

might not be possible.

Another way to make such a BCI system more independent is by using invasive

methods instead of EEG. Electrocorticography (ECoG) is a small electrode array

that is implanted between scalp and dura. It is less invasive than microelectrodes

arrays implanted directly into the brain, and allows to get better signal quality

than EEG. ECoG data is less contaminated by muscle artefacts and has a better

signal-to-noise ratio (SNR) due to the absence of bone and skin signal attenua-

tion. My BCI studies can serve as preliminary studies for implementing such a

system. In that sense, the main result of my research is the proof-of-concept and

the identification of the region, on which ECoG should be placed. Once it has been

shown that precuneus oscillations can be used for BCI, the next step would be to

implant an ECoG array on the precuneus area in between the two hemispheres.

Then, patients can be trained in a similar manner as they were trained with the

EEG-based BCI. Frequency bands can be adjusted dynamically and individually.

Since the SNR is better for ECoG, it is reasonable to expect even higher classi-

fication accuracy. Putting the array directly on the precuneus would also allow

to avoid possible mistakes in source localisation due to individual differences in

cortex folding.
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Abstract—Brain-Computer Interfaces (BCIs) often rely on low-
level cognitive processes known to be impaired in late stages
of amyotrophic lateral sclerosis (ALS). We propose a BCI for
ALS patients based on self-regulation of neuronal oscillations in
the superior parietal lobule, which is less affected by ALS than
motor and sensory cortices. We describe a case of self-regulation
of band power in gamma range (55–85 Hz) based on feedback
from the parietal cortex by an ALS patient, resulting in a mean
offline two-class decoding accuracy of 79.2% across four sessions.
Despite a good offline decoding accuracy, a source localisation
analysis revealed that gamma-power modulation was not spatially
localized, suggesting confounding by non-cortical artifacts. Theta-
power in contrast, showed a strong localized response in the
precuneus. As such, this may be an alternative possibility of
using self-regulation of neuronal oscillations for cognitive BCI.

I. INTRODUCTION

Brain-computer interfaces (BCIs) based on electroen-
cephalography (EEG) promise to provide an alternative com-
munication channel to locked-in patients in late stages of
amyotrophic lateral sclerosis (ALS). Up to date, different
implementations of EEG-based BCI have been proposed,
though, none of them has been shown to be available to
completely locked-in state (CLIS) patients [1]. Many existing
BCI paradigms use processes that are likely to be impaired
in ALS. For example, BCIs based on volitional modulation of
sensorimotor-rhythms (SMRs) [2] are probably not suitable for
CLIS patients since ALS is associated with a degeneration of
neurons in the primary motor cortex [3]. The same is true for
tactile BCIs [4] as sensory neurons are also largely affected
by ALS [5]. Other BCIs such as P300 speller systems [6], [7]
are based on gaze fixation on a target letter, which is hard
to achieve in late stages of ALS due to impaired oculomotor
control [8]. Thus, paradigms dependent on low-level sensory
and/or motor processes are unlikely to be available to CLIS
ALS patients.

CLIS ALS patients may be able to use cognitive BCIs based
on higher cognitive processes, such as attention, memory or
emotions, associated with brain areas that are less affected by
ALS. One of such brain areas is the superior parietal cortex [9],
[10]. Previously, we have successfully used neurofeedback to
train 11 healthy subjects and one ALS patient to self-regulate
the power of γ (55–85 Hz) oscillations in the superior parietal
cortex [11]. However, the classification accuracy achieved
by the locked-in ALS patient was not sufficient for online
communication. The low performance of the ALS patient may

have been caused by a decline in learning abilities in the late
stage of ALS [12]: the patient had scored 0 out of 48 in
the revised ALS functional rating scale (ALSFRS-R) at the
beginning of the training. We hence hypothesized, first, that
ALS patients in earlier disease stages are able to gain better
control of neuronal oscillations in the superior parietal cortex,
and, second, that these patients can maintain this skill when
progressing into the completely locked-in state.

In the present work, we report on a pilot-study to test the
first hypothesis. We trained an early-stage ALS patient with an
ALSFRS-R score of 33 to self-regulate γ-power (55–85 Hz)
in the superior parietal cortex. While the patient achieved an
offline decoding accuracy 79.2% across four training sessions,
a source level analysis revealed that the patient generated γ-
modulations over almost the entire cortex, which may be an
artifact of contamination of the γ-range by muscular (EMG)
signals. However, we additionally found a strong modulation
in θ-range (2–5 Hz) in the precuneus and the occipital lobe
that was anti-correlated with bandpower changes in the γ-
range. The precuneus, being part of the default mode network
(DMN) [13], is tightly linked to high cognitive processes and
consciousness [13]. Because θ-oscillations are less confounded
by EMG signals, θ-power in the precuneus may be a promising
target for building a cognitive BCI for patients in late stages
of ALS.

II. METHODS

A. Patient data and the individual frequency bands

We recruited one ALS patient for the present study. At the
beginning of the study this male patient was 59 years old,
had been diagnosed with bulbar ALS eight months before,
and scored 33 out of 48 points on the revised ALS functional
rating scale (ALSFRS-R). We conducted four training sessions
over the course of one month in the patient’s home. The patient
gave informed consent to participate in this study according
to guidelines set by the Max Planck Society. The study was
approved by an ethics committee of the Max Planck Society.

As the EEG rhythms in ALS patients may slow down, we
identified the patient’s individual frequency bands [14]. For
that, we recorded a five-minute eyes-closed and a five-minute
eyes-open resting-state EEG of the patient. The individual α
peak was located at 10 Hz; the lower border of the individual
α band / upper border of the individual θ band was determined
by the intersection of the spectral power of channel Oz
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between eyes-open and eyes-closed resting states [14]. The
individual lower border of θ was set at 2 Hz.

B. Neurofeedback training

The patient performed four neurofeedback sessions over
the course of one month. Training was identical to the one
described in [11]. During every training session we recorded
an EEG with 121 active electrodes at 500 Hz sampling
frequency using a QuickAmp amplifier (BrainProducts GmbH,
Gilching, Germany). Prior to each training session, a five-
minute eyes-open resting-state baseline was recorded. This
data were used to calibrate a beamformer aimed at the right
superior parietal cortex [15]. The scalp topography (identical
to [11]) for the beamformer was obtained by distributing 300
dipoles in the superior parietal cortex and computing their
projection to the EEG electrodes using a three-shell spherical
head model. During the neurofeedback training, the recorded
data were spatially filtered with the precomputed beamformer.
Next, γ-power (55–85 Hz) of the beamformed signal was
computed with FFT in combination with a Hanning window
on the last 5s of data. This estimate was standardized by the
mean and standard deviation of resting-state γ-power.

Feedback was provided both in the visual and auditory
domains. The current estimate of γ-power was mapped to
the vertical position of a white ball displayed centrally on a
computer screen in front of the subject (Fig. 1). The screen’s
center position was chosen to represent median resting-state
γ-power (baseline), and the top and bottom of the screen rep-
resented plus and minus two standard deviations, respectively.
Concurrently, auditory feedback was provided. If the feedback
signal exceeded the baseline, a humming sound was played;
otherwise - a wind sound was played. The volume of each
sound was scaled linearly with the distance of the current
γ power signal from the baseline. The feedback signal was
updated at 25 Hz. All online signal processing was carried
out with BCI2000 [16] and its extension BCPy2000.

Every session consisted of three blocks of 10 one minute
trials per condition in pseudorandomized order with 10 s inter-
trial breaks. In every trial, a yellow block at the top or bottom
of the screen indicated the current target for the white ball.
The patient did not receive any instructions on how to control
the feedback signal. Following each session, he was asked to
write down the thoughts and feelings associated with up- and
down regulation of the feedback signal. We have evaluated the
performance during the neurofeedback training by computing
the median of the standardized beamformed signal over each
trial and comparing the sign of it with the target direction of
the correspondent trial.

To ensure the safety of the neurofeedback procedure for the
patient, we did not further reward up- or down regulatation of
γ-power beyond plus/minus two standard deviations of resting-
state γ-power. Additionally, after every session the patient was
asked if he had noticed any negative effect of the training
procedure.

±2 standard deviations 
of gamma-power 
during resting-state

Baseline
(median gamma-power
 during resting-state) 

Fig. 1. Visual feedback shown to the patient during the neurofeedback
training.

C. Offline analysis

1) Preprocessing: The raw EEG data of each session
was cleaned from artifactual components by an independent
component analysis (ICA), as described in [11].

2) Offline classification: The beamformer, that was also
used for the online feedback, was then applied to the cleaned
data, followed by log-bandpower estimation. The resulting
one-dimentional vector was used for offline leave-one-trial-out
classification with a support vector machine (SVM).

3) Frequency specificity: To investigate the frequency
specificity of the beamformed signal, we computed the signed
coefficient of determination R2 for trial-averaged bandpower
in frequencies ranging from 1–249 Hz.

4) Dynamic statistical parametric maps (dSPM): To in-
vestigate source-level modulations of bandpower, we applied
dSPM, a noise-normalized minimum norm estimate [17], to
the preprocessed data filtered in the γ (55 – 85 Hz) band
as well as to the pre-processed data filtered in the θ (2–5 Hz)
band with 3rd order Butterworth filter. First, the forward model
x[t] = As[t] was computed, with the matrix A specifying
the projection of K = 3 · 15028 current dipoles spread over
the 15028 cortex locations s[t] ∈ RK on the N = 124
electrodes x[t] ∈ RN . We generated the forward model with
the BrainStorm toolbox [18], using standardized electrode
locations and a standardized three-shell spherical head model.
Then, the activity of each source was estimated from the
measurements of the electrical potential on the surface of the
scalp at N electrode locations as described in [17]:

s̃[t] = Wx[t], with W = ΣAT (AΣAT + C)−1. (1)

Here, Σ is the spatial covariance of the dipole strength vector
Σ = s[t]s[t]T , approximated by the identity matrix, and C is
the sensor noise covariance matrix, computed individually for
each session from the eyes-open resting-state data We then
estimated a noize-normalized current dipole power q̃i[t] at
each time point t and location i [17]. We made no assumptions
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on dipole orientations and thus averaged the three dipoles for
each location,

q̃i[t] =

∑
j∈Gi

s̃2j [t]

∑
j∈Gi

wjCwT
j

(2)

where, wj is the jth row of the unmixing matrix W and Gi

is the set of indices of dipoles located at i [17]. We averaged
the current dipole power over each trial.

To estimate the effect of the neurofeedback training, we then
averaged the current dipole power estimate over all trials of
each conditions and computed the difference D. To test the
null-hypothesis H0: D = 0 that there is no difference between
the two conditions, we estimated p-values for each source.
For that we randomly permuted the condition labels of the
trials 103 times. We then counted the instances in which the
resulting |DHO| exceeded |D| and estimated the probability
that |DHO| > |D|. We thereby obtained a p-value for each
source location. As a last step, we corrected the significance
level using a false discovery rate (FDR) of αFDR = 0.05 [19]
to compensate for the multiple comparisons for each of the K
cortical sources. To plot the results, we set the D = 0 for the
sources for which we did not reject the null-hypothesis.

III. EXPERIMENTAL RESULTS

A. Neurofeedback training

Throughout four sessions, the ALS patient has modulated
median γ (55 – 85 Hz) power in the required direction in
197 trials out of 240 (Fig. 2). The patient reported that
he achieved up-regulation of parietal γ-power by inducing
positive emotions. He reported that he down-regulated the
feedback signal by inducing negative emotions. The patient
reported no negative side-effects of this strategy or of the
training procedure as a whole.

B. Offline classification

The patient achieved the following offline decoding accura-
cies in the four sessions: 86.7%, 80.0%, 88.3%, 61.7%. This
results in a mean offline decoding accuracy of 79.2%. For each
individual session a decoding accuracy of 60.0% is required
to reject the null-hypothesis of chance-level performance at
significance level α = 0.05 [20]. The patient performed above
this threshold in all four sessions.

C. Frequency specificity

The modulation of the beamformed signal averaged over
all sessions is the most prominent in the γ band (Fig. 3).
Additionally, there is a modulation in the opposite direction
in the individual θ band.

D. Dynamic statistical parametric maps (dSPM)

On source level, we found a significant modulation in γ
band (55 – 85 Hz) over almost entire cortex (Fig. 4A) and
in the individual θ (2 – 5 Hz) band over the precuneus and
occipital lobe (Fig. 4B).

0 10080604020
Trials

0

+

-

gamma up
gamma down

120

Fig. 2. Neurofeedback performance: median standartized γ power in the
superior parietal cortex computed for each trial: green circles represent the
trials where the patient was asked to down-regulate his γ power; blue crosses
mark the trials where he was asked to up-regulate it. Green line shows the
mean of down-regulation trials; blue line – mean of up-regulation trials. Red
line marks the baseline.
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Fig. 3. Mean neurofeedback spectral specificity. Gray area mark the individual
θ band and the feedback γ band.

IV. DISCUSSION

We have trained one ALS patient to self-regulate band
power in the γ range using neurofeedback. Such self-
regulation can potentially serve as a basis for BCI for CLIS
ALS patients. However, modulation in γ band was not lo-
calized in the area targeted by the feedback, but spread over
the entire cortex. While in general spacial specificity is not
crucial for controlling the BCI, it is essential for ensuring the
cortical nature of the modulation. In this case, lack of spatial
specificity of the modulation does not allow us to exclude
potential contamination of the feedback signal by the EMG
activity.
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Fig. 4. Brain areas showing significant modulation in A) γ range (55 – 85
Hz); B) θ range (2 – 5 Hz), both FDR corrected at α = 0.05.

We found higher spatial specificity of the modulation in the
individual θ band. Even though the feedback was limited to the
γ range, the patient also significantly modulated the θ power in
the precuneus. The posterior θ has been previously connected
with emotional processing (for review see [21]). It agrees with
the the strategy used by the patient and further supports the
hypothesis that observed self-regulation of parietal oscillations
arouses from a high-level cognitive process. Θ band is also less
likely to be affected by the EMG signals.

It can be beneficial to further explore the modulation in the
individual θ band over the precuneus. Precuneus is considered
to be a hub of the Default Mode Network and is tightly linked
to the consciousness [13]. Neural oscillations associated with
the consciousness can be an interesting alternative approach to
the problem of developing BCI for CLIS ALS based on high
cognitive processes.

Our study is limited to only one ALS patient. It has still to
be studied whether other ALS patients in various stages of the
disease are able to learn to control their neural oscillation in
superior parietal cortex. It is possible that feedback frequen-
cies or even aimed sources of activity have to be adjusted
individually for each subject.
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Abstract. Electroencephalographic (EEG) brain-computer interfaces (BCIs) hold

promise in restoring communication for patients with completely locked-in stage (CLIS)

amyotrophic lateral sclerosis (ALS). However, these patients cannot use existing EEG-

based BCIs, arguably because such systems rely on brain processes that are impaired in

the late stages of ALS. Here, we propose a BCI for ALS patients based on self-regulation

of brain rhythms in the precuneus, as measured by high-density EEG in combination

with online source localization. Because there is a tight connection between the

precuneus and consciousness, precuneus oscillations are likely generated by high-level

cognitive processes, which are less likely to be affected by ALS than processes linked

to the peripheral nervous system. We describe two cases of successful self-regulation

of precuneus oscillations (one in the theta range and one in the gamma range) by ALS

patients, with stable online performance over the course of disease progression. One

patient achieved a mean online decoding accuracy in a binary decision task of 70.55%

across 26 training sessions, and the other patient achieved 59.44% across 16 training

sessions. We provide empirical evidence that these oscillations were cortical in nature

and originated from the intersection of the precuneus, cuneus, and posterior cingulate.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is mainly

characterized by loss of motor neurons [1]. As the disease progresses, patients gradually

lose the ability to move their limbs, talk, swallow, move their eyes and eyelids, and

breathe. Eventually, the patients enter a completely locked-in state (CLIS) in which

they cannot communicate. It has long been believed that ALS is purely a motor
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disease, but recent evidence suggests that ALS eventually affects the whole brain.

Schmidt et al. found that, even in early ALS, the alterations in functional and structural

connectivity are spread beyond the motor cortices, with the degree of those alterations

decreasing with distance from the motor cortex [2]. Braak et al. connected ALS with

misfolding of the pTDP-43 protein [3]. They also found that agglomerates of the

misfolded proteins are spread beyond the motor cortex with disease progression. It is

not clear how these structural alterations affect cognitive functions and whether patients

residing in a CLIS for a prolonged time are still conscious. Kübler and Birbaumer have

suggested that long-term paralysis might disable a patient’s ability for goal-directed

thinking [4] and that CLIS patients reside in a state of mind similar to REM sleep [5].

If an ALS patient in a CLIS is conscious, such patient would benefit from restoring

communication. To communicate, such ALS patient would need a method that does

not depend on peripheral nerves or muscles. One such method could be a brain-computer

interface (BCI) [6].

In clinical settings, BCI systems based on an electroencephalogram (EEG) are

particularly advantageous due to their mobility, safety, and low price. Various

EEG-based BCI-systems have been proposed, yet none has been shown to enable

communication with CLIS ALS patients [5]. Current BCI paradigms are often based on

low-level cognitive processes that are likely impaired in ALS. For example, BCIs based on

volitional modulation of sensorimotor-rhythms (SMRs) in motor and sensory cortices or

tactile BCIs [7] are unsuitable for CLIS ALS patients because of the degenerated neurons

in their primary motor [1] and sensory [8] cortices. P300 speller systems [9,10] are also

unsuitable for these patients because of their impaired gaze fixation [11]. However, some

BCIs are based on low-level processes that are likely unaffected by ALS [12], including

auditory BCIs [13, 14], but they do not yet provide decoding accuracies sufficient for

communication when used by severely paralyzed patients [15].

Communication is needed only as long as patients remain conscious. If they are

conscious, their brain structures supporting consciousness are probably not yet affected

by ALS. We propose to use activity in those brain structures for communication with

CLIS ALS patients. One brain area connected with consciousness and self-referential

processing is the precuneus, a part of the superior parietal cortex [16]. Activation

of the precuneus has been shown to correlate with one’s degree of self-relevance of

retrieved judgements [17], and connectivity in the precuneus has been shown to correlate

with one’s degree of consciousness [18]. In contrast, precuneus deactivation has been

observed in various stages of sleep [19,20] and in vegetative states [21]. These correlations

suggest that altering the precuneus would likely alter one’s conscious state to a state

close to sleep or a vegetative state, making communication impossible. Though we do

not know to what extent ALS affects the precuneus, previous research suggests that a

conscious patient who has the capacity for communication might have normal precuneus

function. Thus, we propose to communicate with CLIS ALS patients by using the neural

oscillations in their precuneus.

In this work, we investigate the possibility of basic communication with ALS
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patients by using self-regulation of brain rhythms in the precuneus. We have two

hypotheses: First, ALS patients in early disease stages are able to gain control of

brain rhythms in the precuneus. Second, they can maintain this skill as their disease

progresses.

We tested these hypotheses by training two ALS patients (with a revised ALS

functional rating scale (ALSFRS-R [22]) of 33 and 36 out of 48 in the beginning and

10 and 33 by the end of the study) to self-regulate their precuneus oscillations. One

patient used the θ frequency range (2–5 Hz), building on our previous work with the same

patient [23]. The other patient used the γ frequency range (55–85 Hz), as motivated by

our previous work with another subject [24]). We trained them by neurofeedback, which

was derived by beamforming from high-density EEG recordings. With the resulting

BCI the two patients achieved a mean online accuracy of 70.55% (over 26 sessions) and

59.44% (over 16 sessions), respectively.

We were not able to assess the performance of our BCI in the CLIS: One of the

patients died before entering the CLIS. The other patient moved away, making further

training infeasible.

2. Methods

Section 2.1 provides information on the ALS patients who participated in the study.

Section 2.2 explains the neurofeedback training procedure. In Section 2.3, we describe

the online BCI. The evaluation of patients’ performance is explained in Section 2.4,

including an investigation of the spectral- and spatial specificity of brain rhythm

modulation.

2.1. Subjects

Two male ALS patients were recruited from the local community. At the beginning of

the training, the first patient, GH, was 59 years old. He was diagnosed with bulbar ALS

eight months before, with his first symptoms appearing 18 months prior to the study.

Throughout the study, his ALSFRS-R score decreased from 33 to 10. We conducted

29 training sessions with GH over 18 months. GH had been trained to modulate his

posterior γ (55–85 Hz) power in an earlier study [23]. At the beginning of the training,

the second patient, LS, was 63 years old. He was diagnosed with bulbar ALS four

years before. Throughout the study, his ALSFRS-R score decreased from 36 to 33.

We conducted 22 training sessions with LS over 8 months. Prior to the training, LS

participated in a pilot study that was unrelated to the paradigm reported in the present

work. On sessions 12 and 13, LS had a broken rib. All recordings were carried out in

the patients’ homes. Both patients gave informed consent. The study was approved by

the Max Planck Society’s ethics committee.
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2.2. Neurofeedback training

2.2.1. Hardware EEG recordings were done with an EEG cap with 121 actiCAP active

electrodes at a sampling frequency of 500 Hz with a QuickAmp amplifier (BrainProducts

GmbH, Gilching, Germany). Electrodes were placed according to the extended 10-20

system, using electrode P7P as the initial reference. All recordings were converted to a

common average reference.

2.2.2. Experimental paradigm Every training session consisted of three blocks. Each

block started with a five-minute resting phase, during which the subject was instructed

to focus on a cross in the middle of a computer screen and let his mind wander. The

data acquired in this phase were used to calibrate a beamformer that we aimed at the

precuneus. The details of the beamforming procedure are described in Section 2.2.4.

These data were also used to estimate the natural variations of resting log-bandpower

over the ranges of 2–5 Hz for GH and 55–85 Hz for LS. To do so, we spatially filtered

the recorded data with the precomputed beamformer (as described in Section 2.2.4) and

applied a fast Fourier transform (FFT) with a sliding Hanning window of 5 s with a step

length of 40 ms. We used this estimate to calibrate the feedback, as described below.

In each of the three blocks, the resting phase was followed by the neurofeedback

training phase, which consisted of 20 trials, each lasting 1 min with a pause of 5± 0.5 s

between one and the next. In every trial the patient was asked in pseudorandom order

either to up-regulate or to down-regulate his θ (GH) or γ (LS) log-bandpower in his

precuneus. The number of trials per condition was balanced in each block. The patient

received continuous feedback on the current state of the log-bandpower in his precuneus

(the log-bandpower computations are described in Sections 2.2.3 and 2.2.4).

In this training, the patient received simultaneous visual and auditory feedback.

While visual feedback is more intuitive, patients with progressing ALS eventually

lose oculomotor control, making visual feedback useless. Once this happens, patients

must rely only on auditory feedback. The patient received both types of feedback

to allow for a smooth transition. For visual feedback, the estimated log-bandpower

was mapped to the vertical position of a white ball displayed on the computer screen

in front of the subject (Figure 1). The screen’s center position represented the

median resting-state bandpower (baseline), and the blocks in the top and bottom

of the screen represented the median minus two and plus two standard deviations,

respectively. For auditory feedback, we used two distinct sounds from a publicly

available sound repository (http://freesound.org): If the estimated log-bandpower

exceeded the baseline, a humming sound played continuously (http://freesound.

org/people/freesound/sounds/50168); otherwise, a wind sound played continuously

(http://freesound.org/people/homejrande/sounds/17383). The volume of each

sound increased linearly as the difference increased between the current log-bandpower

and the baseline. The feedback signal was updated at 25 Hz. All online signal processing

and stimuli presentation was performed with BCI2000 [25] and its extension BCPy2000.
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Figure 1. Example of the feedback screen. The vertically moving white ball

corresponds to the estimated log-bandpower. The fixation cross in the center represents

the median resting-state bandpower (baseline); the boxes at the top and bottom

represent the median resting-state bandpower minus two and plus two standard

deviations, respectively. Subjects were instructed to move the white ball to the yellow

box (either top or bottom).

The patient was prompted to up- and down-regulate with both auditory and visual

instructions. Auditory instructions were given at the beginning of each trial: The

name of the sound corresponding to the trial task was read out in German by a

male voice (”Summen” for up-regulation; ”Windrauschen” for down-regulation). Visual

instructions were shown throughout the trial: A yellow box at the top or the bottom of

the screen indicated the target for up- or down-regulation, as shown in Figure 1.

Beginning in session 14, we did not provide GH with targets, but instead asked

him questions, which he answered with our BCI. A decrease in θ bandpower meant

”yes”, and an increase in θ bandpower meant ”no”. GH had provided twenty personal

questions (ten with a ”yes” answer and ten with a ”no” answer), which we presented to

him in each block in pseudorandom order.

In the training trials, every time the ball was in the target area (log-bandpower of

two standard deviations or more away from the baseline in the desired direction for three

cumulative seconds, a ”winning” sound was played (http://freesound.org/people/

fins/sounds/171670/) and one point was awarded. The patient’s number of collected

points was shown on the screen throughout training. At the end of the trial, additional

points were awarded for successful online classification (Section 2.3).

The patients did not receive any instructions on how to control the feedback signal.

Following each session, they were asked to write down their thoughts and feelings

associated with up- and down-regulation of the feedback signal.

Due to technical problems, only two blocks of the experiment are available for GH’s

sessions 1, 6, 12, 25, 28 and LS’ sessions 3, 11, 22, resulting in 20 trials for each condition;

only one block of experiment is available for LS’ session 12, resulting in 10 trials per

condition.
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Figure 2. A) Initial beamformer topography for GH (sessions 1–12); B) Final

beamformer topography for GH (sessions 13–29); C) Beamformer topography for LS.

D) Medial view of the brain right hemisphere with the dipoles (marked with black

dots) fitted to the topographies A–C.

2.2.3. Online feedback We provided online feedback in the γ band to LS and in the

θ band to GH. The γ feedback frequency band for LS was set to 55–85 Hz to avoid

contamination by 50 Hz line noise. For GH, we identified his personal θ band by

recording EEG data during two resting states: eyes closed for 5 min and eyes open

for 5 min. GH’s individual α peak was located at 10 Hz; the lower border of the GH

individual α band / upper border of the GH individual θ band was determined as the

intersection of the spectral power of channel Oz between the eyes-open and eyes-closed

resting states [26], which we determined to be at 5 Hz. The individual lower border of

θ was initially set at 2 Hz, resulting in an initial feedback range of 2–5 Hz. We adjusted

the feedback frequency band, in order to capture the strongest observed modulations,

first to 2–4 Hz (sessions 4–12) and then to 1–5 Hz (sessions 13–29).

To estimate the current log-bandpower, we spatially filtered the recorded data

with the precomputed beamformer (as described in Section 2.2.4) and applied a FFT

with a sliding Hanning window of 5 s with a step length of 40 ms. The estimate

was standardized by using the median and standard deviation of the estimated log-

bandpower from the resting state.

2.2.4. Beamforming To estimate the bandpower in the precuneus, we used linearly

constrained minimum-variance (LCMV) beamforming [27]. LCMV beamforming is an

adaptive spatial filter that attenuates the activity of sources outside the region of interest

(ROI), while preserving the activity from sources within the ROI. The ROI activity y[t]

is estimated as the dot product between the spatial filter w∗ and measurements of the

electrical potential on the surface of the scalp at N electrode locations x[t] ∈ RN :

Self-Regulation of Precuneus: A Novel BCI for Patients with ALS 43



y[t] = w∗Tx[t]. The spatial filter is obtained by solving the optimization problem

w∗ = argmin
w
{wTΣEEGw} s.t. wTa = 1, (1)

which has the analytic solution [27]

w∗ = (aTΣ−1EEGa)−1aTΣ−1EEG. (2)

Here, ΣEEG ∈ RN×N is a spatial covariance matrix of EEG data computed for every

subject and session from the resting-state data (pre-filtered for 1–100 Hz with 3-rd order

Butterworth filter); a ∈ RN is the topography of the ROI dipole projection on the scalp.

As an initial beamformer topography a ∈ RN for GH (Figure 2A), we took the

topography of the independent component (IC, for the details see Section 2.4.1) that

showed significant modulation in the individual θ (2–5 Hz) range in our previous study

with GH [23]. On session 13, we updated the topography by performing and independent

component analysis (ICA) on the concatenated data from all previous sessions and

selecting the non-artefactual IC with the highest modulation (as measured by the R2).

The final beamformer topography is shown in Figure 2B.

For LS, we selected the IC topography that was visually similar to GH topographies

(Figure 2C) from ICA decomposition computed (as explained in Section 2.4.1) for the

data collected for the pilot study unrelated to the paradigm reported in the present

work. The LS beamformer topography remained constant throughout the study.

For each beamformer topography, we localized a corresponding dipole. We spread

K = 3 · 15028 current dipoles over 15028 cortical locations, with three dipoles at

every location being mutually orthogonal. Then, we generated the leadfield matrix

A, specifying the projection of dipole activity s[t] ∈ RK on the N = 121 electrodes

x[t] ∈ RN . The leadfield matrix was generated with the BrainStorm toolbox [28] for

standardized electrode locations and a standardized three-shell spherical head model.

For each topography and dipole position, we then fitted the linear combinations of

three mutually orthogonal dipole topographies to the beamformer topographies and, for

each topography, selected the dipole with the lowest square error. The resulting dipole

locations for all three beamformer topographies are shown in (Figure 2D). We note

that dipole A (corresponding to the initial GH beamformer topography) lies slightly

outside the precuneus. During the first 12 sessions, GH thus received feedback from the

intersection of the cuneus and the precuneus. We investigate the effects of this change

in feedback topography in Section 3.3

2.2.5. Safety There are no studies on how neurofeedback affects ALS progression. To

avoid abnormal θ and γ powers, and to ensure the safety of the neurofeedback procedure

for the patients, we did not reward the patients for up- or down-regulating bandpower

beyond plus or minus two standard deviations of their resting-state bandpower. This

way patients were trained to modulate oscillations within their natural range of

variations. Additionally, after every session the patients were asked if they had noticed

any negative effects of the training. None of the patients reported any negative effects

of the study.
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2.3. BCI: Online classification

Beginning in session four for GH and in session nine for LS, we performed online

classification. The data corresponding to each trial were classified online with a pre-

trained classifier, providing one bit of information per trial.

To accomplish this, a linear ν-support vector machine (ν-SVM) classifier [29] was

trained on all previously collected data by using the lib-svm toolbox [30]. To prevent

the classifier from focusing on artefacts, we pre-processed the data prior to the classifier

training. We performed ICA (as explained in Section 2.4.1), manually selected the

artefactual ICs, and then randomly permuted these ICs across the trials within each

session. Then, we re-projected the ICs back on on the scalp and used this data to train

the classifier. In this way, we ensured that artefactual ICs did not carry any information

on the class labels without altering the overall power of the EEG. We used the trial-

averaged θ (GH) or γ (LS) log-bandpower on all channels as the 121-dimensional feature

vector. The optimal ν-parameter was estimated by ten-fold crossvalidation (CV): The

ν-parameter was changed from 0.05 to 1 in steps of 0.05 and the mean CV classification

accuracy was estimated for every value. The ν-parameter yielding maximal CV accuracy

was used for training the final ν-SVM.

Feedback on online classification was provided to the patient after each trial. For

a successful classification, a ”winning” sound (http://freesound.org/people/fins/

sounds/171670/) was played and 10 points were added to the final score.

For GH, prior to session 15 the classifier was retrained using the three most-recent

sessions. For LS, prior to session 11 the classifier was retrained using his five most

successful previous sessions. From session 18 onward we classified the trial by the sign

of the difference between the baseline and the median γ bandpower in the precuneus

(as estimated by the beamformer). The details of the classifier change are discussed in

Section 3.3.

2.4. Offline analysis

2.4.1. ICA-based artefact attenuation EEG recordings are often contaminated by

muscle (EMG) [31] and ocular (EOG) artefacts [32]. To attenuate the effects of these

artefacts, we used second-order blind identification (SOBI) independent component

analysis (ICA) [33]. Specifically, the data from each session were first high-pass filtered

with a third-order Butterworth filter with cutoff frequency of 0.1 Hz, then reduced

to 64 dimensions by principle component analysis (PCA), and finally separated into

independent components (ICs). The ICs were then visually inspected and rejected as

artefactual if they fulfilled any of the following criteria [34]: (1) The IC spectrum did

not follow the cortical 1
f
-behaviour; (2) The IC topography was not dipolar; (3) The IC

time series contained EOG-like activity (eyelid blinks, eye movements); (4) The IC time

series contained any other artefacts (50-Hz line noise, large spikes). The remaining ICs

were re-projected on the scalp to obtain the data cleaned from artefacts of muscular

and ocular activity.
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2.4.2. Topography of bandpower modulation To investigate the topographies of the

bandpower modulations, we computed the signed R2 for every EEG channel. First, we

estimated log-bandpower for each trial by using a FFT with a Hanning window of 1

min (trial length). Then we averaged the log-bandpower over the feedback frequency

range. Lastly, we computed signed R2, i.e., the percentage of variance in the data that

is explained by the class labels, for every channel in every session and then averaged it

over sessions.

2.4.3. Offline classification To estimate how discriminable the up- and down-regulated

states are, we employed a linear discriminant analysis (LDA). For every session, the

block-specific precomputed beamformer was applied to the ICA-cleaned data, and then

the log-bandpower for each trial was estimated by using a FFT with a Hanning window

of 1 min (trial length). We then averaged the log-bandpower over the frequency range

of the feedback. The resulting one-dimensional vector was used for offline leave-one-

trial-out crossvalidation (LOOCV) accuracy estimation with the LDA classifier.

2.4.4. Spectral specificity of bandpower modulation We analyzed the spectral specificity

of the neurofeedback training using both the ICA-cleaned data and the raw data. For

that, we first applied the block-specific precomputed beamformer to the data and then

computed the log-bandpower for each trial by using a FFT with a Hanning window of

1 min (trial length). Then, we computed the signed R2 for all training sessions and all

frequencies from 1 Hz to 250 Hz in non-overlapping windows of 1 Hz width. Lastly, we

averaged the signed R2 across all training sessions.

2.4.5. Spatial specificity of the bandpower modulation: Dynamic statistical parametric

maps and statistical testing To test whether the bandpower modulation arose from the

precuneus, we employed noise-normalized minimum norm estimate dynamic statistical

parametric maps (dSPM) [35]. We spread K = 3 · 15028 current dipoles over 15028

cortical locations, with three dipoles at every location being mutually orthogonal. Then,

we generated the leadfield matrix A specifying the projection of dipole activity s[t] ∈ RK

on the N = 121 electrodes x[t] ∈ RN . The leadfield matrix was generated with the

BrainStorm toolbox [28] for standardized electrode locations and a standardized three-

shell spherical head model. The ICA-cleaned data was filtered in the γ (55–85 Hz, LS)

or θ (2–5 Hz, GH) band. Then the activity of each source was estimated from the

ICA-cleaned EEG measurements at N electrode locations, as described in [35]:

s̃[t] = Wx[t], with W = ΣdA
T (AΣdA

T + C)−1. (3)

Here, Σd is the spatial covariance of the dipole strength vector, approximated by the

identity matrix, and C is the sensor noise covariance matrix, computed for each session

from the resting-state data. We then estimated a noise-normalized current dipole power

q̃i[t] at each time point t and location i [35] by averaging the three dipoles for each

location,
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q̃i[t] =

∑
j∈Gi

s̃2j [t]

∑
j∈Gi

wjCwT
j

(4)

where wj is the jth row of the unmixing matrix W and Gi is the set of dipole indices

located at i [35].

To estimate the effect of the neurofeedback training, we then averaged the current

dipole power estimate over all trials from all sessions of each condition and computed

the difference D between the up- and down-regulation conditions. To test the null

hypothesis H0: D = 0 that there is no difference in activity between the two conditions,

we estimated a p-value for each cortical location. To do this, we randomly permuted

the condition labels of the trials 103 times. We then counted the number of times the

resulting |DH0| exceeded |D| and divided this number by the number of permutations to

obtain a p-value for each source location. Lastly, we corrected the significance level by

using a false discovery rate (FDR) of αFDR = 0.05 [36] to compensate for the multiple

comparisons at each of the 15028 cortical locations. To plot the results, we set D = 0

for the locations at which we did not reject the null hypothesis.

2.4.6. Spatial specificity of the bandpower modulation: Functional magnetic resonance

imaging (fMRI) Following the fifth neurofeedback session, patient GH participated

in an additional fMRI study. This fMRI study followed the same design as the

neurofeedback training, except that no feedback was provided. Instead, GH was asked

to carry out the same thought patterns he previously used to control the EEG-based

neurofeedback. Eighteen trials per condition were recorded in pseudorandomized order

in a 3T Siemens TRIO (Erlangen, Germany), using a multi-band gradient echo planar

sequence with 48 slices (3 mm isotropic voxel, MB 3, TR 1500 ms, TE 30 ms). The

BOLD data was then motion-corrected, high-pass filtered at 0.01 Hz, and spatially

smoothed with a kernel of 7 mm using the LIPSIA software package [37]. We then

employed a linear SVM with leave-one-trial-out cross-validation to compute voxel-wise

decoding accuracy in differentiating the experimental conditions that correspond to

up- and down-regulation of precuneus θ power in the neurofeedback sessions. Here,

trial-averaged BOLD signals of the center voxel and its six adjacent voxels were used

as features. Parameter tuning of the SVM was carried out by an inner-loop cross-

validation. We tested each voxel for a decoding accuracy significantly above chance-level

by a binomial test [38], using a false discovery rate (FDR) of αFDR = 0.01. We could

not do the fMRI study with LS, because he could not formulate an explicit strategy for

controlling the BCI and was thus unable to control his precuneus γ in the absense of

continuous feedback.
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3. Experimental Results

The results section is structured as follows. First, we report the general results: average

neurofeedback training performance (offline classification accuracy), BCI performance

(online classification accuracy), patients’ strategies and the resulting bandpower

modulation topographies. Then, we describe changes in performance across sessions.

We note that our setup does not enable us to distinguish between effects that are due

to disease progression and those that result from repeated training. In sections 3.4– 3.5,

we provide further evidence of the precuneus origin of the modulations by analysing

spectral and spacial specificity of the modulations.

3.1. Neurofeedback training and BCI performances

GH and LS achieved an average online decoding accuracy of 70.55% and 59.44% across

all sessions, respectively. Their offline decoding accuracies across all sessions are 70.09%

and 75.87%, respectively. GH performed 29 sessions (820 trials per condition), with 26

sessions (710 trials per condition) classified online. LS performed 29 sessions (610 trials

per condition), with 26 sessions (440 trials per condition) classified online. For both

patients we rejected the null hypothesis of chance-level performance at the significance

level α < 0.01 [38] offline as well as online.

3.2. Patients’ reports and topographies of bandpower modulation

GH reported that he could control his precuneus θ bandpower by alternating pleasant

and sad thoughts, with exception of session 12, when he tried to repeat words ”yes”

or ”no” in his head. GH’s strategy is in agreement with previous studies connecting

emotional processing with posterior θ modulations (for a review, see [39]). LS could not

precisely describe how he controlled his precuneus γ bandpower, but he reported that

he controlled the ball by thinking ”yes” or ”no” or by wanting the ball to go in the

desired direction.

Despite different strategies and different feedback frequency bands, the average

signed R2 topographies are similar for both patients (Figure 3). Both topographies

resemble the beamformer topographies used for training (Figure 2), indicating successful

neurofeedback training. Note that for GH channels in central areas show slight negative

correlation, while for LS all the channels are positively correlated with the condition

(required direction of precuneus bandpower modulation).

3.3. Performance variations and training effects

For each individual session, an online decoding accuracy of 60.0% is required to reject

the null hypothesis of chance-level performance at the significance level α = 0.05 [38].

GH performed above this threshold in 22 out of 26 BCI sessions (Figure 4). We note here

the difference between online and offline classification accuracies. Online classification

accuracy depends on the ability of the pre-trained nu-SVM classifier to generalize from
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Figure 3. A. Signed R2 topography for the θ bandpower modulations of patient GH

averaged over all training sessions. B. Signed R2 topography for the γ bandpower

modulations of patient LS averaged over all training sessions. Note the different colour

scales.
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Figure 4. BCI online (yellow) and offline (green) performance and ALSFR-R score

(gray) for patient GH. Circles and asterisks mark the two classifiers; crosses and dots

mark the two feedback topographies. Red line corresponds to chance level classification

accuracy (two-class classification).

previous sessions to the current one. Offline classification accuracy is always computed

only for the data from one session and serves as a measure of neurofeedback training

efficiency. Thus, high offline accuracies do not necessary result in high online accuracies,

as it is possible that the patient induces activation patterns that are discriminable within
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Figure 5. Training effects. Signed R2 topography for the θ bandpower modulations

of patient GH averaged over: A) Sessions 1–12 (topography 1); B) Sessions 13–29

(topography 2); C) Sessions 4–8 (first sessions classified online); D) Sessions 10–14

(before classifier update); E) Sessions 15–19 (after classifier update); F). Sessions 25–

29 (final sessions)

one session, but are changing from session to session (for example due to strategy changes

or ALS-related changes). Despite a fast disease progression, as indicated by a decline

of the ALSFRS-S score by 23 points over the course of the study, GH’s offline accuracy

remained roughly stable across the whole study. His initially high online accuracy

declined to chance-level performace in sessions 14 and 15, but recovered after updating

the online classifier in session 15.

The pattern of bandpower modulation also remained stable, becoming more

localized and converging to Figure 3 after an update of the beamformer topography

(Figure 5 A–B). The central electrodes showed initially positive correlation with the

condition and changed to negative after an update of the beamformer. Changes in the

modulations topography motivated the classifier update, that led to increase in online

classification accuracies (Figure 5 C–F). Despite the progress of ALS, the modulations

topography remained consistent (Figure 5 F).

LS performed above the decoding accuracy of 60.0%, that is required to reject the

null hypothesis of chance-level performance at the significance level α = 0.05 [38], in

10 out of 16 online decoding sessions (Figure 6). LS also showed convergence to the

beamformer topography as a result of training (Figure 7, A, B, and D). However, LS’

performance was likely impaired in several sessions by pain from a broken rib. LS broke

a rib before session 12, but expressed the desire to continue the training. This event
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Figure 6. BCI online (yellow) and offline (green) performance and ALSFR-R score

(gray) for patient LS. Circles, asterisks, and crosses mark the three classifiers; the red

dot marks the sessions when LS had a broken rib. Red line corresponds to chance level

classification accuracy (two-class classification).
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Figure 7. Training effects: Signed R2 topography for the γ bandpower modulations

of patient LS averaged over A) Sessions 1-5; B) Sessions 7–10 (first sessions classified

online); C) Session 12–13 (broken rib); D) Sessions 15–22 (recovery).

coincided with a drop in online decoding accuracy to chance-level. The averaged R2

topography over those two sessions showed almost no modulation (Figure 7, C). LS

performance only recovered after we updated the online decoding algorithm in session

18 (cf. Section 2.3).

Self-Regulation of Precuneus: A Novel BCI for Patients with ALS 51



3.4. Spectral specificity of the bandpower modulation
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Figure 8. Spectral specificity of the neurofeedback training for patient GH: signed

R2 averaged over all training sessions before and after the ICA artefact attenuation.

The shaded area shows the frequency range of the online neurofeedback (1–5 Hz).

Here, we compare modulations of precuneus activation for different frequencies

before and after ICA artefact attenuation. Such comparison allows us to estimate the

contribution of artefacts to the neurofeedback training.

For both patients the maximum of R2 lies within the feedback frequency range

(Figures 8 & 9, shaded area), indicating successful neurofeedback training. Furthermore,

ICA-based attenuation of the artefacts increases the R2 within the feedback frequency

range. This suggests that the induced modulations are primarily of cortical nature.

We note that GH also shows a modulation in the γ range and LS exhibits, to a

lesser extent and only visible after ICA-based artefact reduction, regulation of brain

rhythms in the θ range. This finding is consistent with previously reported relations

between the θ and the γ band [40].

For GH, we also observe a negative correlation between theta (2 – 5 Hz) and alpha

(6 – 12 Hz) rhythms, which is in agreement with previous findings [26]. We do not

observe such a negative correlation for LS.

3.5. Spatial specificity of the bandpower modulation: dSPM

For both patients, the maximum bandpower modulation (Figures 10 & 11) coincides

with the precuneus and extends to the cuneus and the posterior cingulate. According to

GH’s reports, he controlled his θ bandpower by alternating pleasant and sad thoughts.
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Figure 9. Spectral specificity of the neurofeedback training for patient LS: signed R2

averaged over all training sessions before and after the ICA artefact attenuation. The

shaded area shows the frequency range of the online neurofeedback (55 – 85 Hz).
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Figure 10. Significant bandpower differences, averaged over all of GH’s training

sessions.

These reports agree with previous studies that found the posterior cingulate cortex

to be activated during emotional evaluation [41]. Positively correlated regions in

the precuneus and the frontal medial cortex are parts of the Default Mode Network

(DMN) [42]. The DMN is known to be activated by self-referential thoughts [43, 44].
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Figure 11. Significant bandpower differences, averaged over all of LS’ training

sessions.

Deactivation in the pre-motor areas indicates an involvement of the task positive

network, which is known to be anticorrelated with the DMN [45].

LS’ γ bandpower modulation pattern (Figure 11) is in general similar to GH’s, with

the strongest modulation found in the precuneus. However, it is much less localized:

almost the entire cortex shows a significant modulation. While spatial specificity is

generally not crucial for controlling a BCI, the broad modulation suggests a spatially

unspecific contamination by residual EMG activity.

Figure 12. fMRI decoding results of patient GH.

3.5.1. Spatial specificity of the bandpower modulation: fMRI The fMRI decoding

results (Figure 12) agree with those of the dSPM source localization, with a statistically

significant modulation at the intersection of the precuneus, cuneus, and posterior
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cingulate as well as in the medial prefrontal cortex. Deeper brain structures are unlikely

to be detectable by EEG.

4. Discussion

In this work, we proposed a novel BCI for ALS patients based on self-regulation of

brain rhythms in the precuneus. In particular, we tested two hypotheses: First, ALS

patients in early disease stages are able to gain control of neuronal oscillations in the

precuneus. Second, they can maintain this skill as the disease progresses. The available

evidence supports both hypotheses. Both patients were able to modulate the posterior

brain rhythms and use these modulations to control the BCI online. These modulations

originated from the intersection of the precuneus, cuneus, and posterior cingulate and

were specific to the frequency band in which the patients were trained (θ or γ). Patient

GH was able to maintain this skill despite the dramatic decrease in his ALSFRS-R score

throughout the training. Patient LS showed almost no disease progression throughout

training, shortly lost the ability to control the BCI due to a broken rib, but was able to

rapidly recover the skill.

Other EEG-based BCIs have been reported to work well for ALS patients in early

to moderate disease stages [4, 5, 46]. However, as the disease progresses, LIS and CLIS

patients appear to gradually loose the ability to control conventional BCIs [4, 46]. We

were not able to test our novel approach in the CLIS because of the death of one of the

patients and a relocation of the other.

ALS gradually affects the whole brain [3, 18]. Because the precuneus is linked to

consciousness [21] and consciousness is required for any type of communication, we

argue that BCIs based on brain activity in the precuneus have the best chance of

maintaining communication with CLIS patients for as long as this is supported by their

degree of consciousness. More specifically, the intersection of the precuneus, cuneus,

and posterior cingulate is one of the nodes of the DMN [42]. The DMN, comprising the

precuneus/posterior cingulate cortex, medial prefrontal cortex, and the temporoparietal

junction, is a resting-state network that is active in the absence of any tasks with

high cognitive demand. It has been linked to autobiographical memory, envisioning the

future, theory of mind and moral decision making (for a review see [47]). Abnormalities

in the DMN have been linked to various neuropsychiatric disorders [48]. Failure of

precuneus-based BCI in CLIS may indicate alterations in the state of consciousness

that prohibit communication.

For conscious CLIS patients, BCIs based on self-regulation of brain rhythms in the

precuneus still hold the promise of restoring communication and thus improving ALS

patients’ life quality [49]. Thus, further investigation is needed on the performance of

BCIs based on self-regulation of brain rhythms in the precuneus in CLIS ALS. Because

our study is limited to two patients with bulbar ALS, it will also be important to

investigate whether other patients can control this type of BCI. Training should be

started early, because patients’ learning abilities can decline as ALS progresses [50]. In

Self-Regulation of Precuneus: A Novel BCI for Patients with ALS 55



the future, longitudinal studies with ALS patients could be made easier by developing

simple and robust EEG-based neurofeedback systems that can be used by patients and

patient’s caretakers and do not require the constant presence of a researcher.
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Abstract

Brain-computer interfaces (BCIs) are often based on the control of sensorimotor processes, yet
sensorimotor processes are impaired in patients suffering from amyotrophic lateral sclerosis
(ALS). We devised a new paradigm that targets higher-level cognitive processes to transmit
information from the user to the BCI. We instructed five ALS patients and twelve healthy
subjects to either activate self-referential memories or to focus on a process without mnemonic
content while recording a high-density electroencephalogram (EEG). Both tasks are designed
to modulate activity in the default mode network (DMN) without involving sensorimotor
pathways. We find that the two tasks can be distinguished after only one experimental
session from the average of the combined bandpower modulations in the theta- (4–7 Hz) and
alpha-range (8–13 Hz), with an average accuracy of 62.5% and 60.8% for healthy subjects and
ALS patients, respectively. The spatial weights of the decoding algorithm show a preference
for the parietal area, consistent with modulation of neural activity in primary nodes of the
DMN.

Keywords: EEG, brain-computer interface, brain-machine interface, ALS, locked-in.

1. Introduction1

1.1. Amyotrophic Lateral Sclerosis2

Amyotrophic Lateral Sclerosis (ALS) describes a variety of conditions that have the3

progressive degeneration of upper and lower motor-neurons in common [1]. There is no4

known cure for ALS. The progressive paralysis leads to death due to respiratory failure within5

an average of three to five years [2]. While modern life-support technology like artificial6

respiration and nutrition allows for a prolonged life, it in turn also prolongs the psychological7
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and social burden of being in a paralysed and eventually totally locked-in state. In this state,8

all voluntary muscle control is lost, including oculomotor functions [1, 3].9

The crucial ability lost in 80 to 95% of ALS patients over the course of the disease is10

communication [4]. The inability to communicate emotions, thoughts, and needs is the most11

daunting problem that both ALS patients and the social environment inevitably have to face12

during the progress of the disease [5]. Establishing and maintaining communication may not13

prolong survival, but it greatly increases the quality of life for ALS patients [6].14

1.2. Brain-Computer Interfaces15

One way to enable communication via non-muscular modalities is a brain-computer16

interface (BCI). The term refers to a direct interface with the nervous system through a17

range of techniques, currently limited by technical and surgical constraints [7]. A BCI18

communication system delivers the messages or commands of an individual to the external19

world without peripheral nerves and muscles through the understanding of brain activity20

[3], the most commonly used of which is non-invasive electroencephalography (EEG). The21

acquired signals are processed and classified as digital commands to control an application [8].22

BCIs have already been used successfully in clinical settings, e.g. for stroke rehabilitation,23

the treatment of mental illness, and early-stage ALS patients [9]. This has raised hopes24

that BCIs could also provide autonomy for and enable communication with late-stage ALS25

patients. However, this mission has proven to be very challenging, as BCIs are often based on26

motor- and sensory processes, such as the voluntary modulation of sensorimotor rhythms [10].27

Patients suffering from ALS show degeneration of neurons in the primary motor cortex [11]28

and are impaired in their ability to modulate these rhythms in later stages of the disease [12].29

Visual speller systems, like the P300 speller or the SSVEP system, require subjects to fixate30

on target stimuli through gaze. They can be used during the progress of the disease, but fail in31

the latest stages due to the loss of oculomotor control [13]. BCIs that rely on covert attention32

can be operated without gazing movements [14, 15, 16], but the retinal jitter that is necessary33

to perceive a visual stimulus could be affected by the disease as well. Circumventing the visual34

modality by porting the P300 speller to an auditory [8] or tactile setting [17], or using acoustic35

odd-ball BCIs for yes/no communication [18] have mostly been tested on healthy subjects and36

patients in earlier stages of the disease. One study reported a promising results when testing37

a word-based acoustic odd-ball paradigm in two later-stage ALS patients, however they were38

not completely locked-in [? ]. The usefulness of slow cortical potentials [19] for establishing a39

reliable communication with completely locked-in patients remains unclear as well. A recent40

meta-study [20] addressed these issues and concludes that, to this day, no reliable EEG-based41

communication method has been established for completely locked-in patients.42

Some of the cortical processes impaired in ALS can be avoided by training subjects via43

neurofeedback to self-regulate neural activity in cortical areas that subserve higher functions44

[21, 22]. One major issue with this approach is the amount of training that is needed for45

patients to successfully modulate activity. The need for extensive training decreases the46

feasibility of the system, especially for patients in later stages of the disease. Another issue47

is the use of visual stimuli, which only works if the patient is not yet completely locked-in.48

Additionally, if the training starts too late in the progress of the disease the patient may be49

unable to achieve a classification accuracy that is necessary for communication.50
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Finally, the state of consciousness in completely locked-in patients remains unclear. It51

has been argued that the long-term paralysis in the final stages of the disease extinguishes52

goal-directed thinking [23], and patients may reside in a state-of-mind similar to REM sleep53

[12].54

1.3. The Current Work55

We propose to employ a cognitive strategy for realising a BCI that targets higher cognitive56

functions without relying on neurofeedback-driven learning mechanisms. This cognitive57

strategy should fulfil three important criteria: First, it should target processes that are at the58

very basis of human nature and therefore be immediately accessible for everyone. Second,59

these processes should be generally unrelated to motor processes, circumventing the issues60

with previous BCIs in ALS patients. And third, they should remain accessible to ALS patient61

for as long as they possess the cognitive capacity for communication.62

While most brain areas are eventually affected by ALS, with the possible exception of the63

occipital lobe, parietal and prefrontal areas appear to be affected later in the course of disease64

progression than sensorimotor regions [24]. Based on these findings, we chose to target the65

Default Mode Network (DMN), a large-scale cortical network that has first been discovered66

in PET- [25] and later in fMRI-recordings [26]. It consists of three major subdivisions: the67

medial prefrontal cortex (MPC); the temporoparietal junction (TPJ); and its most important68

hub, the posterior cingulate cortex, combined with the precuneus. The DMN has been69

connected to social behaviour, mood control, motivational drive, self-referential judgements,70

and recollection of prior experiences [27, 28, 29]. Therefore, it plays an important role in the71

human ability to generate “spontaneous cognition”, like daydreaming or mind-wandering,72

which is a basic and non-motor related human ability.73

Recently, the DMN has also been connected to consciousness in brain-damaged patients:74

Connectivity patterns within the DMN during resting-state have been found to be negatively75

correlated with the degree of clinical consciousness impairment. Participants in the study76

ranged from fully conscious healthy controls over locked-in patients with spinal cord injuries77

or stroke to minimally conscious and comatose patients [30]. While comatose and vegetative78

patients showed the least connectivity within the DMN, patients with spinal cord injuries79

and stroke damage showed almost no difference to healthy controls. Therefore, the successful80

modulation of brain activity in this network could serve as an indicator for the state of81

consciousness of a patient. Under the assumption that completely locked in ALS patients are82

not in a comatose, unconscious state and goal-directed thinking is still possible, we hypothesise83

that the DMN will still exhibit activity patterns as described in [30]. If this is not the case,84

attempts to communicate would probably be meaningless.85

To target processes in the DMN, we devised a novel, stimulus-independent cognitive86

strategy that modulates the activation and deactivation of the DMN by taking its self-87

referential properties into account. Based on previous, stimulus-driven studies in fMRI, we88

instructed subjects to alternate between self-referential thoughts, which activate the DMN89

[31, 32, 33], and focusing on their breathing, which we expect to deactivate the DMN because90

it is devoid of self-referential mnemonics [26]. The current work investigates the hypothesis91

that this strategy elicits bandpower changes in the EEG over areas consistent with the DMN92

regions found in fMRI. These changes should be sufficiently strong to enable above chance-level93

decoding accuracies in healthy subjects and patients with ALS, without the need of any94
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Informed Consent & 
Instructions on the 
Cognitive Strategy

Instructions Resting Phase Training Phase

5 Minutes  
(Eyes Open)

5 Minutes  
(Eyes Closed)

Run 1

25 Minutes  
20 Trials

Run 2

25 Minutes  
20 Trials

Run 3

25 Minutes  
20 Trials

Figure 1: The experimental procedure. During all trials and the eyes open resting phase, a fixation cross
appeared in the center of the screen. ALS patients were only asked to perform the two resting states and the
first training run (depicted as boxes with solid borders).

subject training. A preliminary version of this work has been published recently in conference95

proceedings [34].96

2. Methods97

2.1. Experimental Paradigm98

Healthy subjects were placed in a chair approximately 1.25 m away from a 17” LCD screen99

with a resolution of 1280x1024 pixels and a 60 Hz refresh rate. The background of the screen100

was black, with a white fixation cross appearing in the centre. Prior to the experimental101

session, two five-minute resting state EEGs were recorded. Subjects were asked to let their102

mind wander and to keep their eyes open in the first resting-state and closed in the second103

one.104

After the resting-state sessions, subjects performed three experimental blocks with brief105

intermissions. Each experimental block consisted of ten trials in which the participants were106

asked to ”remember a positive experience” and ten trials in which the participants were asked107

to ”focus on their breathing”, in pseudo-randomised order. We chose a trial time of 60 seconds108

to give participants enough time to concentrate on the high-level tasks that they were asked109

to do in each trial. Each trial began with 5.5±0.50 seconds rest, followed by a 60 second trial,110

in the beginning of which acoustic and visual instructions were given to indicate which of111

the two cognitive tasks should be performed. To ensure comprehension, both cognitive tasks112

were explained to participants in a briefing before the experiment. For ALS patients, the113

experimental paradigm remained the same. However, they were asked to only perform one114

experimental block. Figure 1 illustrates the paradigm.115

2.2. Experimental Data116

The study was conducted at the Max Planck Institute for Intelligent Systems in Tübingen,117

Germany. Recordings with ALS patients were conducted in their homes. Twelve healthy118

subjects (eight male and three female, mean age 29.3 ± 8.3 years) and five ALS patients119

(cf. Table 1) were recruited from the local community and in cooperation with the University120

Clinics Tübingen. Participants received 12 Euro per hour for their participation. One healthy121

subject was excluded due to noisy recordings. This left eleven healthy subjects for the final122

analysis. All participants were naive to the setup. They were informed by the experimenter123

about the procedure with standardised instructions and signed a consent form to confirm124
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Table 1: ALS Patient Data

Patient Age Sex ALSFRS-R1 Impairment
P1 59 F 0 Residual eye-movements
P2 54 M 48 Mild limb impairments
P3 75 M 42 Mild limb impairments
P4 81 M 23 No limb functionality
P5 51 F 12 Locked-in, eye-movements

1Revised amyotrophic lateral sclerosis functional rating scale [35]. The rating scale was filled
out after the recording session by the experimenter.

their voluntary participation in advance. For subject P1, informed consent was given by her125

legal guardian. The study was approved by the ethics committee of the Max Planck Society.126

A 124-channel EEG was recorded at a sampling frequency of 500 Hz using actiCAP active127

electrodes and a QuickAmp amplifier (BrainProducts GmbH, Gilching, Germany). Electrodes128

were placed according to the extended 10-20 system with the left mastoid electrode as the129

initial reference. All recordings were converted to common average reference. The application130

was realised with the BCI2000 and BCPy2000 toolboxes [36].131

2.3. EEG Analysis132

We performed an offline analysis of the acquired data to attenuate confounding elec-133

tromyographic activity, to investigate differentiability of the activity-patterns associated with134

self-referential thoughts and focus on breathing, and to analyse the spatial distribution as135

well as the dynamics of the induced bandpower changes.136

2.3.1. Attenuation of EMG artifacts137

EEG recordings are likely to be contaminated by scalp-muscle artifacts [37]. Subjects may138

have been able to involuntarily influence the EEG signal by altering the tonus of their scalp139

muscles. In order to identify such EMG confounds, we employed independent component140

analysis (ICA) [38]. The continuous data of one session was first reduced to 64 components by141

principal component analysis, and then separated into independent components (ICs) using the142

SOBI algorithm [39]. We then sorted the ICs according to their neurophysiological plausibility143

[40], manually inspected the topography, spectrum, and time-series of each component, and144

rejected those for which at least one of the following criteria applied: (1) Components displayed145

a monotonic increase in spectral power starting around 20 Hz. This is characteristic for146

muscle activity. (2) Eye-blinks were detectable in the time series. (3) The topography did147

not show a dipolar pattern. (4) The time series seemed to be contaminated by other sources148

of noise, like large spikes and 50 Hz line noise (adapted from [41]). The remaining ICs were149

reprojected onto the scalp. As discussed in [38], it is unreasonable to expect a complete150

removal of artifacts using ICA, but careful application “is a useful means of rejecting the151

most dubious results on the scalp”.152

A Cognitive BCI for Patients with ALS 64



2.3.2. Preprocessing153

We restricted our analysis to the time-window of 4.5 to 60 seconds per trial, as instructions154

were played back for the first two seconds and were shown on the screen for the first four155

seconds of each trial. To reduce the feature space for later classification and to capture the156

effect of self-referential processing, we restricted our analysis to the θ- and α-frequency bands157

of the EEG signal. Mu et al. [42] found that self-referential processing correlates with θ158

and α spectral power in a stimulus-driven task. θ-band activity is generally modulated by159

memory load and retrieval of episodic information from long-term memory [43]. α-bandpower160

is linked to inner-directed attention demand in self-referential processing [42]. In particular,161

parietal α-power has been associated with the DMN in EEG studies [44]. As our classification162

algorithm will be trained on all subjects simultaneously, we used standard boundaries for θ-163

and α-bandpower. Based on [43], θ-bandpower ranges from 4 Hz to 7 Hz, and α-bandpower164

was set to 7 Hz to 13 Hz. For each trial, we windowed every channel’s time-series with a165

Hann window. We then computed the trial-wise log-bandpower of the averaged, combined166

θ- and α-range at every channel location using the Fourier transform. This served as the167

124-dimensional feature-space.168

2.3.3. Pattern Classification169

Due to the long trial duration, the number of trials was limited to 60 and 20 for healthy170

subjects and ALS patients, respectively. With a 124-dimensional feature space, standard171

machine learning techniques are unlikely to learn a good decoder when trained on each172

subject’s data individually. We resolved this problem by using a transfer learning technique,173

which is capable of simultaneously learning decoders for all subjects while accounting for174

inter-individual differences [45]. In this framework, a linear regression model is learned for175

each subject individually, while penalising deviations of the regression weights from a Gaussian176

prior that is learned on the data of all other subjects. This leads to the following loss function,177

min
W ,µ,Σ

LP (W ,µ,Σ;X,Y , λ) = min
W ,µ,Σ

1

λ

∑

s

‖Xsws − ys‖2

+
∑

s

1

2

[
(ws − µ)TΣ−1(ws − µ)

]
.

(1)

Here, ys denotes a vector containing all trials’ stimuli for one subject, which we represent178

by {−1, 1} for the two cognitive tasks ”focus on your breathing” and ”remember a positive179

memory”, respectively. Xs denotes the feature matrix for subject s with dimensionality180

[number of trials] × [number of features], in our case 60 trials (20 for patients) and one181

bandpower-estimate at each of the 124 channels. ws denotes the regression weights for each182

subject, and µ and Σ refer to the mean and the covariance matrix of the unknown Gaussian183

prior over w. Finally, λ refers to the importance of the subjects’ individual information184

relative to the prior. It is determined by a maximum likelihood estimation on the whole185

dataset.186

The prior is updated iteratively though an expectation-maximisation procedure in two187

steps. First, we keep µ and Σ constant and solve with respect to ws for a given subject,188

ws =

(
1

λ
ΣXT

sXs + I

)−1(
1

λ
ΣXT

s ys + µ

)
. (2)
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In the second step, we update our information about the prior by updating its parameters189

µ and Σ,190

µ∗ =
1

S

∑

s

ws, (3)

Σ∗ =

∑
s(ws − µ)(ws − µ)T

Tr (
∑

s(ws − µ)(ws − µ)T)
+ εI. (4)

We add εI to (4), with ε set to 1
10

of the smallest non-zero eigenvalue, to ensure a full rank191

matrix.192

For each subject, we computed the parameters of the prior across all other subjects.193

We then used a five-fold cross-validation procedure within the test subject with a random194

separation of the data into folds while balancing the number of trials for each class in every195

fold, to obtain an estimate of the classification accuracy given the computed parameters.196

To account for the high variance of cross-validation with such few trials, we repeated this197

procedure 1000 times and averaged the classification accuracy across these repetitions.198

2.3.4. Statistical Test on Decoding Accuracy199

As discussed in [46], it cannot be assumed that the chance-level decoding accuracy matches200

the theoretical chance-level of 50% when performing cross-validation on a small number of trials.201

To test whether our strategy achieved above chance-level decoding accuracies, we compared202

the decoding accuracy during trial-time with the accuracy obtained on the pre-trial baseline.203

Specifically, we tested the null-hypothesis H0: trial-time classification accuracy = baseline204

classification accuracy by a two-tailed pair-wise t-test, given the mean classification-accuracy205

value of each subject during baseline and during trial-time.206

2.3.5. Spatial Distribution207

To investigate the spatial distribution of induced bandpower modulations, we averaged all208

16 priors that were obtained by the transfer learning algorithm and multiplied it with the209

covariance matrix of the averaged 16 feature sets, as described by Haufe et al. [47]. This results210

in a topography that depicts the components within the feature space that are modulated by211

the cognitive strategy.212

2.3.6. Dynamics of Induced Bandpower Changes and Timecourse of Classification Accuracy213

In a further post-hoc analysis, we investigated the effect of our strategy on event-related214

(de-)synchronisation (ERD/ERS) during the course of a trial. We computed log-bandpower215

changes over time, relative to the last 3 seconds of the rest phase before each trial. We used a216

sliding window of one seconds with a step size of 100 ms to compute bandpower in frequencies217

from 1 to 40 Hz. We restricted this analysis to channel Pz due to its central parietal position218

over the posterior cingulate cortex.219

Lastly, we investigated cumulative classification accuracy over the course of the trial.220

First, we employed the previously described pattern classification algorithm to train on the221

averaged, combined θ- and α-bandpower during the baseline and instruction phase of each222

trial, respectively. Second, we used an expanding window starting at 4.5 seconds, with an223

increment of one second, until it span the whole trial. We repeated the classification procedure224
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at each increment 100 times, with random splits of the data into training- and test set, and225

averaged the resulting accuracy across these repetitions.226

3. Results227

We rejected an average of 57 ICs (± 1.7) per subject during artifact attenuation. Figure228

2 shows the accuracy of the classification on the combined, averaged α and θ-bandpower229

for the ALS patients and healthy subjects in red and blue, respectively. ALS patients and230

healthy subjects achieved a decoding accuracy of 60.8% and 62.5%, respectively, with an231

across-group average of 62.0%. A two-tailed pair-wise t-test between trial-time and pre-trial232

baseline classification accuracies rejected the the null-hypothesis with t = −3.87, p = 0.0015233

for the combined subject groups.234
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Figure 2: Classification accuracies for both patients and healthy subjects. The dashed grey line represents
chance-level classification accuracy at 50%, the black reference line represents the mean classification accuracy
of 62.0%. P1 to P5 are patients, S1 to S11 are healthy subjects.

Figures 3 shows the spatial distribution of bandpower modulation. We observe that the235

cognitive strategy leads to bandpower modulations that are concentrated over parietal areas.236

The first row of Figure 4 shows the ERS/ERD patterns, averaged across all trials of the237

healthy subjects, at channel Pz for the self- and non-self-referential condition, respectively.238

In the self-referential condition, we observe a distinct ERS in the α-range and, to a lesser239

extent, in the β-range (∼20 Hz), while the non-self-referential conditions shows an ERD first,240

followed by an ERS. All other frequencies display an ERD. In the self-referential condition,241

the α-ERS starts with stimulus presentation and remains roughly constant throughout the242

whole trial. In the non-self-referential condition, the α-bandpower first shows an ERD, until243

the effect turns into an ERS around 30 seconds. These different dynamics are also visible244

in the ERS/ERD differences between conditions (Figure 4, second row), in which an initial245

α-ERS diminishes at around 20 seconds. Subject-specific differences in ERD/ERS patterns246
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Figure 3: Classifier topography (see Section 2.3.5). A higher weight indicates a stronger modulation of
combined θ- and α-power across conditions.

are shown in Figure 5. It is apparent that some subjects show a stronger α-ERS in the247

self-referential condition (S6, S9, and S11), while other subjects exhibit a stronger α-ERS in248

the non-self-referential condition (S4 and S5). The transfer learning approach, that we used249

for decoding, is flexible enough to accomodate these subject-specific differences, resulting in250

high classification accuracies in subjects S4 and S6 in spite of a reversed α-ERD/ERD.251

The ALS patients exhibit a slightly different pattern (Figure 6). Both, the non- and the252

self-referential conditions, show a distinct ERS in the θ− and in the α-range. In constrast to253

the healthy subjects, the α-ERD is on average stronger in the non-self-referential condition254

throughout the whole time-course of a trial. As indicated by the patient-specific ERD/ERS255

shown in Figure 7, however, these observations are primarily driven by patient P1 (it is256

noteworthy that patient P1 is the only patient in this study with an ALS-FRS score of zero).257

Figure 8 displays the classification performance over the course of the trial, based on258

the combined, averaged α- and θ-bandpower for the ALS patients and healthy subjects in259

red and blue, respectively. ALS patients achieved a peak decoding accuracy of 61.8% after260

59 seconds trial-time. Healthy subjects achieved a peak accuracy of 62.4% after 55 seconds261

trial-time. Several differences in the course of classification performance can be seen between262

the two groups. Healthy subjects show a steep increase in performance shortly after the263

instruction phase, while the performance of ALS patients increases more gradually after about264

35 seconds into the trial. Also, the standard error of measurement is noticeably smaller in265

healthy subjects compared to ALS patients.266
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Figure 4: Average ERD/ERS in healthy subjects over the course of the trial. Time t = 0 denotes the
presentation of the stimulus.

4. Discussion267

The current study tested whether healthy subjects and ALS patients in various stages of268

the disease are able to use a cognitive paradigm for BCI control. Using a linear classifier in a269

transfer learning approach, we were able to successfully distinguish a self-referential from a270

non-self-referential condition with an average decoding of 62.5% and 60.8% for the healthy271

subjects and ALS patients, respectively. We found that the cognitive strategy primarily272

induced θ- and α-ERD/ERS over parietal areas. Most importantly, we found that even ALS273

patients in the latest stages of disease progression (P1 and P5) were capable of self-modulating274

activity in the the targeted areas without any training.275

It has been argued that completely locked-in ALS patients reside in a state-of-mind similar276

to unconsciousness or REM sleep [23]. Therefore, they would be incapable of goal-directed277

thinking and hence unable to operate any BCI. In our current work, we targeted high-level278

cognitive processes that are associated with the DMN. This network has been related to the279

level of consciousness in clinical populations. We therefore hypothesised that a conscious280

state-of-mind is necessary to voluntarily modulate activity in this network. In agreement281

with our hypothesis, we found that neural activity between the two employed conditions282

significantly differed in both patients and healthy controls. This indicates that both groups283

were able to voluntarily modulate neural activity according to the experimental conditions.284

Importantly, we found a strong ERD/ERS in patient P1 with a ALS-FRS score of zero;285

this patient only retained minimal residual ocular control for communication. Based on this286

positive result, we argue that the unreliability of previous attempts to establish BCI control287

in late-stage ALS may have been caused by the employed paradigms that mostly relied on the288
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Figure 5: Bandpower differences between conditions for each healthy subject over the course of the trial.
Time t = 0 denotes the presentation of the stimulus.
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Figure 6: Average ERD/ERS in ALS patients over the course of a trial. Time t = 0 denotes the presentation
of the stimulus.

subjects’ responses to external stimuli or the modulation of SMRs. We point out, however,289

that previous fMRI studies found weakened activity in several regions of the DMN in ALS290

patients [48]. Specifically, areas that are involved in stimulus perception and recognition as291

well as in working memory were shown to be affected. This included the precuneus that may292

be responsible for the α-ERD/ERS elicited in this study. It thus remains an open question for293

how long late-stage ALS patients can maintain BCI control based on the cognitive paradigm294

introduced here.295

We note that, due to the long trial time of 60 seconds and the decoding accuracies of 62.5%296

and 60.8% for the healthy subjects and ALS patients, respectively, the resulting information297

transfer rate (ITR) is low. Figure 8 indicates that this long trial-time is needed by patients298

to execute the cognitive strategy. While the maximum ITR of our novel paradigm is thus299

well below those achieved by other paradigms in healthy subjects, we note that the ITR300

is of secondary importance when working with severely paralysed patients in late stages of301

ALS. Instead, the primary challenge remains to establish any form of communication with302

completely locked-in ALS patients. Our work establishes a novel cognitive paradigm for303

achieving this goal.304

The successful implementation of this novel cognitive strategy has a number of implications305

for further development of BCI systems for ALS patients. First, recordings were conducted306

with a 124-channel wet-electrode EEG system. Such conventional EEG systems are often only307

accessible in clinical environments. They are not very cost-efficient or portable. Also, nursing308

staff or family members of the ALS patient may not have the necessary expertise to setup such309

a conventional EEG system for online-communication. To create a communication method310

that is available to everyone, it would be beneficial to transfer the paradigm to a commercially311
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Figure 7: Bandpower differences between conditions for each ALS patient over the course of the trial. Time
t = 0 denotes the presentation of the stimulus.
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available, less expensive, and portable EEG system. As our novel paradigm primarily induces312

bandpower changes over parietal areas (cf. Figure 3), we expect that it can also be realised on313

a low-density and low-cost system that focuses on parietal areas only. Second, our strategy314

achieved classification accuracies above baseline without the need for prior subject training.315

Still, the results of the post-hoc analysis indicate that the induced effect varies between316

subjects. One reason for this finding could be the choice of the non-self-referential condition.317

Focusing on breathing has been shown to decrease overall activity in the DMN, but it also318

increases synchronisation within the DMN [49]. These two effects may be difficult to separate319

when investigating EEG bandpower-values, as an increase in synchronisation can lead to an320

increase in spectral-power, indistinguishable from the self-referential activation. Focusing321

on breathing could also be prone to distractions and mind-wandering, which in turn also322

increases DMN activity. A potential direction to address this problem in future studies could323

be the choice of a different non-self-referential strategy. One candidate could be a verbal324

spelling task, as verbal execution has been found to lower DMN activity [50]. It may also be325

sufficiently demanding to avoid involuntary mind-wandering.326
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Abstract.

Self-referential processing is a key cognitive process, associated with the serotogenic

system and the default mode network (DMN). Decreased levels of serotonin and

reduced activations of the DMN observed in amyotrophic lateral sclerosis (ALS)

suggest that self-referential processing might be altered in patients with ALS. Here,

we investigate the effects of ALS on the electroencephalography (EEG) correlates

of self-referential thinking. We find that EEG correlates of self-referential thinking

differ between healthy individuals and those with ALS. In particular, thinking about

themselves or others significantly modulates the bandpower in the medial prefrontal

cortex (MPFC) in a healthy population, but not in ALS patients. This finding supports

the view of ALS as a complex multisystem disorder that spreads beyond the motor

cortices, and points towards possible alterations of consciousness in ALS patients.

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterised

mainly by the loss of motor neurons [1]. Although ALS has long been believed to be a

purely motor disease, there is a growing body of physiological evidence to suggest that

neuronal degeneration in ALS is not limited to motor cortices and motor pathways [2]. In

particular, Braak et al. related ALS to the buildup of pTDP-43 protein agglomerations

[3]; they showed that these agglomerations spread from the motor cortices to nearby

areas and, eventually, to most of the cortex. The broad effect of ALS was subsequently

confirmed with a neuroimaging study by Schmidt et al. [4], who found alterations

in functional and structural connectivity throughout the whole cortex. Given such

widespread physiological alterations in the brain, it is not surprising that ALS is often

accompanied by cognitive deficits [5]. Cases of impaired emotions [6] and pathological
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laughing and crying [7] have been reported in ALS patients. Zimmeerman et al. found

facial emotion recognition deficits in bulbar ALS [8]. Massman et al. examined 146

patients with a battery of neuropsychological tests [9] and found that ALS patients

performed worse than healthy individuals in word generation, immediate free recall,

attention and mental control tasks. They also found a correlation between the severity

of ALS symptoms and cognitive impairment. Later studies found approximately half

of the ALS patients that were examined to be cognitively impaired with alterations

of memory, executive functions, judgment and reasoning [10–12]. Several studies have

related the impaired cognitive functions to anatomical alterations in the prefrontal areas

of the brain. [10, 13–16]. Ludolph et al. found that decreased verbal fluency in ALS

correlated with reduced glucose metabolism in the prefrontal cortex [13]. Abrahams

et al. later confirmed the connection between decreased verbal fluency and reduced

activity in the prefrontal cortex by using positron emission tomography (PET) [14] and

found white matter changes in the frontal areas of the brains of ALS patients [15].

Mantovan et al. related abnormal memory retrieval to frontal lobe dysfunction by using

single photon emission computer tomography (SPECT) [16]. In addition to executive

functions and memory retrieval, the prefrontal cortex is also involved in one of the main

cognitive processes, namely self-referential thinking. Self-referential thinking, one of

the key elements of self-awareness and consciousness, has not been investigated in ALS

patients to date. Nevertheless, alterations in the prefrontal cortex (PFC) and the medial

prefrontal cortex (MPFC) in particular [14,15] lead us to hypothesize that self-referential

processing may be affected in the progress of ALS. This hypothesis is further supported

by ALS patients having decreased serotonin concentrations [17, 18], a neurotransmitter

connected to self-referential processing [19] (Figure 1). In the following paragraphs, our

motivation for this study is explained in further detail. Recent research suggests that

ALS affects deep brain structures, including the serotogenic system (Figure 1). Dentel

et al. found pathological agglomerates of pTDP-43 protein in the central serotogenic

neurons of the brainstem (raphe nuclei) [17]. These areas are involved in the regulation

of sleep-arousal [20,21], and their degeneration probably gives rise to the sleep disorders

that are observed in ALS patients [22–24]. Moreover, the raphe nuclei release serotonin

to the whole brain, and therefore one can expect the degeneration of raphe nuclei to

correlate with decreased serotonin concentrations in the brain, which has indeed been

observed in ALS [17,18]. Based on the serotonin’s strong relation with locomotion (for a

detailed review see [25]), Sandyk suggested a serotogenic model of ALS progression [25].

This model explains the ALS symptoms with degeneration of the serotonin projections

in the motor cortices [17] and serotonin deficiency. Serotonin-innervated neurons outside

of the motor cortices are involved in high cognitive processing and, in particular, self-

referential thinking (Figure 1): Hahn et al. have shown that the intensity of self-

referential thinking correlates with the concentrations of serotonin receptors in the

default mode network (DMN) [19]. The DMN, which comprises the precuneus/posterior

cingulate cortex, MPFC and the temporoparietal junction, is a resting-state network

that is active in the absence of any cognitively demanding tasks [26], and it is involved
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in self-referential processing [27]. Reduced serotonin projections in the DMN nodes

and altered DMN activity in ALS [28] lead to the question of whether self-referential

thinking is altered in ALS patients (Figure 1). Self-referential thinking is a cognitive

[17] [25] [27]

[28] [25]

ALS Serotonin DMN
Self-

referential

Figure 1. Motivation: Overview of the studies relating ALS and self-referential

processing

process and has been widely studied in healthy subjects using different experimental

techniques. Kelley et al. studied blood oxygen level-dependent (BOLD) brain activation,

using functional magnetic resonance imaging (fMRI) while the subjects performed trait

judgments about themselves and others; the study found that the subjects selectively

engaged the MPFC for self-referential judgments [29]. In a following BOLD fMRI study,

Heatherton et al. found that the right MPFC also differentiates thinking about oneself

and close friends [30]. D’Argembeau et al. found the cerebral metabolism in the ventral

MPFC (VMPFC) to correlate with the level of self-referential processing, comparing

PET measurements acquired while the subjects were thinking about themselves, others,

society or relaxing [31]. Later, Whitfield-Gabrieli et al. performed a similar BOLD

fMRI study comparing self-referential activations to the DMN. They suggested that

the VMPFC is related to self-referential thinking in the absence of attention to

external stimuli and that the dorsal MPFC (DMPFC) is related to the consideration

of psychological traits in people [32]. Several electroencephalography (EEG) studies

have also targeted self-referential processes (for a detailed review see [33]). Esslen

et al. compared EEG recordings during judgments about self and others and found,

using time-series analysis combined with source-localisation LORETA methods, that

the VMPFC is involved in self-referential thinking in pre-self-reflective time periods

while the DMPFC is involved in reflective time periods [34]. Mu et. al conducted a

similar study and found that event-related desynchronisation (ERD) is related to self-

referential thinking in the centro-parietal beta (20–27 Hz), the fronto-central gamma

(28–40 Hz) and the right parieto-occipital theta (5–7 Hz) [35]. Here, we investigate

whether self-referential processing differs between ALS patients and healthy controls.
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So that patients at various disease stages, ranging from early symptoms to completely

locked-in state (CLIS) could be included in the analysis, we decided to use neuroimaging

methods rather than behavioural methods, since the behavioural methods require two-

way communication (for a review of methods see [36]). For example, a memory test that

was used previously by Harvey et al. to study self-referential thinking in schizophrenic

patients [37] requires the patients to answer questions and cannot be used with CLIS

patients who cannot communicate in any way. In order to avoid unnecessary risks

associated with transporting patients, we decided to use EEG, which allowed us to

perform all the studies in the homes of the participants. We employed a widely used

setup to induce different depths of self-referential processing, ranging from thinking

of oneself to a close person to a celebrity [29, 31]. During the experiment, we asked

the participants to make judgments about themselves and others. We added a control

non-self-referential condition, for which we asked participants to count syllables. While

we found a significant difference between log-bandpower EEG during self-referential

and non-self-referential thinking both for healthy and ALS participants, we found a

significant difference between different self-referential conditions for healthy participants;

there was no significant difference between different self-referential conditions for ALS

patients. Our findings suggest that the log-bandpower EEG correlates of self-referential

processing differ between ALS patients and healthy controls.

Materials and Methods

Participants

EEG data were recorded from ten ALS patients (mean age 51.5 ± 11.7 years, ALSFRS-

R scores [38]: 0,0,0,1,12,14,17,32,35,40 out of 48) and ten healthy participants (mean

age 61.4 ± 6.4 years). All ALS and healthy participants were recruited from the

local community, were native German speakers and were not diagnosed with any

additional neurological diseases (apart from ALS). All recordings were carried out in the

participants’ homes. For safety reasons, it was recommended that severely paralysed

and artificially ventilated ALS patients were not transported. Healthy participants

were visited at their homes in order to make the conditions for ALS patients and

healthy participants comparable. For severely paralysed ALS patients, all the recordings

were performed in the constant presence of a caretaker. All participants or their legal

representatives gave informed consent according to the guidelines set by the Max Planck

Society and they received financial compensation for their participation. The study was

approved by the Max Planck Society’s Ethics Committee.

Hardware

EEG data were obtained using an EEG cap with 121 actiCAP active electrodes at

a sampling frequency of 500 Hz and a QuickAmp amplifier (BrainProducts GmbH,

Germany). The electrodes were placed according to the 10-5 system, using the electrode
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located over the left mastoid (TPP9h in 10-5 system) as the initial reference. All

recordings were converted to a common average reference.

Study design

The study design was based on similar fMRI [29, 30, 39] and EEG [35] studies with

healthy participants. We presented the participants with adjectives, as stimuli, and

asked them to make judgments about whether these adjectives described themselves, a

friend or a celebrity; this resulted in three levels of self-referential processing depth.

In order to identify the effects that were specific to self-referential processing and

were not related to general cognitive decline or decreased attention, we introduced

a fourth control condition that did not involve any self-referential thinking. In that

condition, the participants were asked to count the syllables of the adjective that

they were presented with. Prior to the experiment, the participants were asked to

choose a close friend (referred as “Friend”) and a celebrity (referred as “Celebrity”).

Throughout the experiment, all stimuli were presented to the subjects aurally, through

the CereProc text-to-speech system (CereProc Limited, United Kingdom). All stimuli

were in German, and all participants, independent of their disease stage, received the

same instructions. In the beginning of the experiment, two consecutive periods of resting

state, each of five-minute duration (eyes-open and eyes-closed), were recorded. The

subjects were instructed to relax and let their mind wander. In the eyes-open condition,

they were additionally asked to fixate their eyes on a cross in the middle of a computer

screen that was placed at a distance of 1.25 ± 0.2 m. The two resting-state datasets

were used to determine the individual frequency bands, as described in [40]. The next

part of the study consisted of 80 trials recorded in a single run. Each trial started

with the word “Pause” (German, “Pause”) being played. During this three second-

long pause, the participants were instructed to relax. After the pause, the participants

heard a cue: “Selbst” (German, “Self”), “Freund” (German, “Friend”), “Prominente”

(German, “Celebrity”) or “Zählen”(German, “Count”). Depending on the cue, the

participants were asked either to make judgments about themselves, their friend or the

celebrity, or to count the syllables of the adjective (Table 1). The adjective was then

played and the participants were asked to make the appropriate judgement according to

the cue that they had previously been given. All the adjectives were pseudo randomly

drawn from a list of 100 German adjectives [41].

Each trial had a ten-second duration (3s pause + 2s cue + 5s adjective). Participants

were asked to try to fixate their eyes on the cross and to move as little as possible for

the duration of the experiment.

Data analysis

Individual frequency bands The θ and α boundaries were determined individually for

each subject in both the eyes-open and eyes-closed resting conditions [40]. We employed

the established observation that there is more power in the α frequency band in the eyes-

EEG Correlates of Self-Referential Processing are Altered in ALS 84



Cue Activity

Self Judge whether the following adjective characterises the

participant themself

Friend Judge whether the following adjective characterises the

selected friend

Celebrity Judge whether the following adjective characterises the

selected celebrity

Count Count syllables of the following adjective

Table 1. Experimental setup: Cues and corresponding activities

closed state than in the eyes-open state [40]. We computed the log-bandpower (fast

Fourier transform (FFT) with a Hanning window of five-minute width) of the channel

Oz, overlapped the two log-bandpower spectra and determined the intersections around

the α peak. The upper θ (lower α) boundary was set, to the nearest integer, to the first

intersection point before the α peak. The lower θ was set to the half of the upper θ

(rounded up to the nearest integer). The upper α (lower β) boundary was set, to the

nearest integer, to the first intersection point after the α peak. The upper β boundary

was set to 30 Hz, the lower γ to 30 – 45 Hz and the upper γ to 55 – 85 Hz.

Independent component analysis artefact attenuation EEG recordings are often

contaminated by muscle (EMG) [42] and ocular (EOG) artefacts [43]. We attenuated the

effects of these artefacts by using second-order blind identification (SOBI) independent

component analysis (ICA) [44]. Specifically, the data from each subject were first high-

pass filtered with a third-order Butterworth filter with cutoff frequency of 0.1 Hz and

separated into independent components (ICs). The ICs were then inspected visually

and deemed to be cortical if they fulfilled the following criteria [45]: (i) the IC spectrum

followed the cortical 1
f
-behaviour, (ii) the IC topography was dipolar, (iii) the IC time

series contained no EOG-like activity (eyelid blinks, eye movements), and (iv) the IC

time series contained no other artefacts (50Hz line noise, large spikes). Only the cortical

ICs that satisfied one of these conditions were re-projected on the 121 electrodes in

order to obtain clean data with the muscular, ocular and other artefacts attenuated.

We obtained 18, 18± 3, 12 cortical ICs for healthy participants and 13, 6± 2, 12 cortical

ICs for ALS patients the implications of different number of cortical ICs is discussed

later in the Discussion section.

Beamforming Following the results of a previous fMRI study of healthy participants,

in the present study we expect to see modulation in right MPFC [30]. The MPFC is

situated on the inside between the two cerebral hemispheres, and thus is not directly

accessible by EEG measurements taken on the surface of the scalp. The MPFC activity

can be evaluated with a source localisation procedure. For this purpose, we first
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generated a forward model for K = 15,028 dipoles spread over the cortex with the

BrainStorm toolbox [46] for standardised electrode locations and a standardised three-

shell spherical head model. There is no established method for localising the MPFC

with EEG. Therefore, we manually selected the voxels that overlapped with areas that

were found to be modulated with self-referential thinking in a previous fMRI study

(Fig.2, [30]). We selected a larger area than that reported by Heatherton et al. in order to

account for the lower spatial precision of EEG as compared to fMRI. Source localisation

Figure 2. Beamformer target. Right hemisphere medial view: Voxels chosen for

the beamformer are shown in red.

was performed with linearly constrained minimum variance (LCMV) beamforming [47].

LCMV beamforming is an adaptive spatial filter that attenuates the activity of the

sources outside a region of interest (ROI), while preserving the activity from the sources

within the ROI. The ROI activity y[t] is estimated as the dot product between the spatial

filter w∗ and the EEG measurements at N electrode locations x[t] ∈ RN : y[t] = w∗Tx[t].

The spatial filter is obtained by solving the optimisation problem

w∗ = argmin
w
{wTΣEEGw} s.t. wTa = 1, (1)

which has the analytic solution [47]

w∗ = (aTΣ−1
EEGa)−1aTΣ−1

EEG. (2)

Here, ΣEEG ∈ RN×N is the spatial covariance matrix of the EEG data computed for

every subject from the experimental data (pre-filtered for 1–100 Hz with 3rd-order
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Butterworth filter); a ∈ RN is the average topography of the MPFC dipole projections

on the scalp, which are provided by the forward model.

Statistical testing We computed the log-bandpower estimates of the beamformed signal

from the MPFC for every subject and every trial, as now described. Each five-second

window after the adjective presentation onset was multiplied with a Hann window,

an FFT was performed, and the log-bandpower was calculated and averaged over the

individual frequency bands (θ, α, β, low γ, high γ). For visualisation purposes (Fig. 3),

we averaged the log-bandpower over the trials and subjects for each group (healthy and

ALS). We performed the same averaging for log-bandpower in the individual frequency

bands and then subtracted the averaged log-bandpower in the control condition from

the averaged log-bandpower in every other condition for every frequency band (Fig. 3,

inset). We performed analysis of variance (ANOVA) on the log-bandpower averaged

over the individual frequency bands using a general linear factorial model. The band

power was analysed for healthy subjects and for ALS patients separately in an n-way

mixed ANOVA, with condition (“self”, “friend”, “celebrity”) and frequency band (θ,

α, β, low γ, high γ) as within-subjects variables and subject as a between-subjects

variable. All tests of significance were performed at α = .05. For control, we performed

the same calculations with the four conditions (“self”, “friend”, “celebrity”, “count”).

This allowed us to identify the effects that were specific to self-referential processing

and to exclude possible confounding due to the inability of participants to follow the

instructions due to general cognitive decline, lack of concentration, misunderstanding

of instructions, falling asleep during the experiment, etc. After testing our hypothesis,

we performed an additional post-hoc exploratory analysis. Specifically, we pointed a

beamformer at each of the 15,028 dipoles, computed the log-bandpower estimates for

every subject and trial (pre-multiplied with the five-second width Hann window) and

performed ANOVA, as described above.

Results

First, we analysed the differences between the self-referential and control conditions

in order to ensure that the participants were able to follow the instructions. Both

healthy participants and ALS patients showed modulations of MPFC log-bandpower for

different conditions, with less log-bandpower in the control non-self-referential condition

than in the self-referential conditions (Fig. 3). We performed an ANOVA to test

whether the log-bandpowers averaged over the individual frequency bands (Fig. 3,

inset) were significantly different for the self-referential (“self”, “friend”, “celebrity”)

and control (“count”) conditions. A significant main effect of the condition (“self”,

“friend”, “celebrity”, “count”) on bandpower was found both for healthy participants

(F (3, 3983) = 9.17, p = 0.0000) and for ALS patients (F (3, 3999) = 5.94, p = 0.0005).

This agrees with previous EEG, fMRI and PET studies with healthy participants

[29–34], which also found that MPFC activity differs between self-referential and
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Figure 3. Mean MPFC log-bandpower for the conditions “self”, “friend”,

“celebrity”, “count” for a. healthy participants and b. ALS patients. Inset plot

shows for every frequency band the modulation of the mean log-bandpowers in the

self-referential conditions relative to the control (“count”) condition. The mean log-

bandpower is averaged over subjects and trials for every frequency band. γ1 indicates

low γ and γ2 indicates high γ.

non-self-referential processing. This also suggests that both healthy participants and

ALS patients engage the MPFC differently for self-referential and non-self-referential

(control) tasks. Thus, both groups were able to understand and follow the experimental

tasks. To investigate the effect of the degree of self-referentiality on the MPFC EEG, we

omitted the control (“count”) condition and performed the ANOVA again. We found

that a main effect of the self-referential conditions (“self”, “friend”, “celebrity”) on

bandpower remained significant for healthy participants F (2, 2984) = 4.03, p = 0.0179.

This agrees with previous EEG, fMRI and PET studies with healthy participants

[29–34], which also found significant modulation of the MPFC by different degrees

of self-referential processing. However, a main effect of the self-referential conditions

(“self”, “friend”, “celebrity”) on bandpower was not significant for ALS patients:

F (2, 2984) = 1.26, p = 0.2837. These results suggest that there are differences in the

MPFC activations between healthy individuals and ALS participants in self-referential

processing. After testing our hypothesis, we further investigated whether brain regions

beyond the MPFC are involved in self-referential processing in ALS patients. For this,
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Figure 4. Healthy controls: p-value brain map. Color shows voxels with p < 0.05

Figure 5. ALS patients: p-value brain map. Color shows voxels with p < 0.05

we performed an ANOVA on log-bandpowers in three self-referential conditions (“self”,

“friend”, “celebrity”) for all brain voxels. Figs. 4 and 5 show brain areas of healthy

controls and ALS patients for which the main effect of the self-referential condition on
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log-bandpower has a p-value below 5% (without correction for multiple comparisons).

For the healthy controls, the p-value falls below 5% in the MPFC, with the DMPFC

being more prominent. The latter agrees with a previous fMRI study that found the

DMPFC to correlate specifically with trait judgments [32]. For ALS patients, no brain

region showed p-values below 5%. This observation suggests that there is an effect of

depth of self-referential processing on EEG of healthy controls, but not on EEG of ALS

patients. We did not correct for multiple comparisons in this exploratory analysis. As

such, one can expect 5% of the tested voxels to show false-positive results. We observed

more than 10% of the voxels to be statistically significant for healthy controls and less

than 5% for ALS patients, which means no cortical area of ALS patients gives rise

to EEG log-bandpower being significantly modulated by the depth of self-referential

processing.

Discussion

Our study broadens the scope of cognitive abnormalities in ALS patients. Impaired

memory functions and emotion processing have been observed previously in non-

demented ALS patients [5, 48, 49]. In combination, these cognitive deficits can give

rise to impaired self-awareness (anosognosia) [36]. We tested the hypothesis of altered

self-referential processing in ALS, and indeed we found alterations of the EEG correlates

of self-referential processing in ALS patients when compared to healthy controls. The

observed results cannot be explained simply by impaired attention [49] or the inability

of patients to understand a given task. Both patients and healthy participants showed

significantly distinct levels of activation in the MPFC for self-referential and counting

conditions. This suggests that both groups understood and were able to perform the

task. Thus, the alterations in neural processing that were detected by EEG were specific

to self-referential processing and might indicate that ALS patients have difficulties in

distinguishing themselves from others. Our results agree with the serotogenic model

of ALS progression [25] that discussed in the Introduction (Fig. 1). However, we

cannot exclude the possibility that the alterations to self-referential processing were

caused not by ALS directly, but rather by other confounding factors. For example,

long-term paralysis and inability to act and communicate can change the way one

sees oneself and others. Birbaumer et al. suggested that the inability to act leads

to thought-extinction [50]. Such thought extinction might be specific to thoughts

about oneself, as one cannot observe one’s own actions any more, but one can still

observe the actions of others. This hypothesis was proposed by Heilman et al. , who

argued that the lack of sensory feedback and the inability to observe one’s own body

acting can cause anosognosia [51]. Depression might also contribute to alterations

in self-referential thinking [52]. Although none of the participants in this study had

been diagnosed with depression, it should be noted that depression diagnosis with

CLIS patients is not possible and, thus depression cannot be excluded. Nevertheless,

previous studies found no correlation between depression and cognitive impairment in
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ALS [9]; another study showed that depression is relatively rare in ALS patients [53].

Our results may have been confounded by the preprocessing steps. In particular,

we observed fewer cortical ICs for ALS patients than for healthy controls. As such,

it would have been possible to have rejected the IC connected with self-referential

thinking for ALS patients. Nevertheless, this would mean that such IC follows the

criteria for cortical ICs in healthy participants, but not in ALS patients; this would

support our hypothesis that EEG correlates of self-referential thinking are altered in

ALS. Altered self-referential processing and lack of self-awareness is associated with

a number of neurodegenerative and psychiatric disorders [36]: schizophrenia [37, 54],

Alzheimer disease [55, 56], frontotemporal dementia (FTD) [36]. In fact, anosognosia

is so common in FTD, that it is used as a major criterion for diagnosis of FTD [57].

Physiologically, FTD is characterised by degeneration of frontal areas that leads to

cognitive processing disruption. FTD often co-occurs with ALS and shares genetic

correlates with ALS [2, 58]. Although it is usually considered to be an independent

disease, there might be a continuum between ALS and FTD, with symptoms of each

individual disease being more or less pronounced in different patients [2, 5, 10, 59]. Our

results support the theory of an ALS-FTD continuum since we found alterations in

EEG that were related to self-referential processing in ALS patients who had not been

diagnosed with FTD. None of the participants in the present study had been diagnosed

with FTD, and neither the experimenters nor the family reported any abnormalities

in the behaviour of the patients. We speculate that EEG correlates of self-referential

processing are able to detect changes in the brain at sub-clinical stages of the disease,

before they become apparent from the exhibited behaviour. Tsermentseli et al. and

Portet et al. previously reported similar observations whereby they found changes in the

BOLD fMRI signal and ERPs both in the cognitively impaired patients and in those

who showed no signs of cognitive impairment [5,10]. Tsermentseli et al. suggested that

neuroimaging alterations precede clinical symptoms in the cognitive domain. Similarly,

anatomical alterations precede the decline of motor functions; muscle atrophy develops

only when at least one third of the motor neurons are affected [60]. A longitudinal

study of 52 patients with sporadic ALS over an 18-month period showed that cognitive

deficits progress more slowly than motor deficits [48]. In this case, cognitive deficits,

and especially deficits in self-referential thinking, might develop in many ALS patients

in the late stages of the disease, in particular after entering the CLIS stage when,

due to the lack of communication means, they cannot be detected any more with

conventional behavioural tests and questionnaires. With self-referential processing being

a key component of consciousness [61], the question arises whether the consciousness

of the CLIS ALS patients is also altered. Alterations to consciousness [62] might

explain the decreased activation of the DMN observed in ALS patients [28] and the

difficulty of communication attempts using Brain-Computer Interfaces (BCI) in CLIS

ALS patients [63]. Future studies should address the problem of consciousness in CLIS

ALS patients. Even though established fMRI methods for consciousness estimation

exist [62], it can be difficult to use these methods with CLIS patients for safety reasons.
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EEG methods for consciousness estimation, for example entropy estimation, should be

used to determine the level of consciousness of CLIS ALS patients [64]. The issue of

consciousness in CLIS ALS has implications not only for ALS research and for the

developers of BCI systems, but more importantly for patients and their families. This

knowledge can affect the patient’s perspective on their disease and influence their end-

of-life decisions.
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Identification of the Default Mode Network with
Electroencephalography

Tatiana Fomina1,2, Matthias Hohmann1,2, Bernhard Schölkopf1, and Moritz Grosse-Wentrup1

Abstract— The Default Mode Network (DMN) is a brain
resting-state network that is closely linked to consciousness
and neuropsychiatric disorders. The DMN is routinely identified
with functional magnetic resonance imaging (fMRI) or positron
emission tomography (PET). However, both of these methods
impose restrictions on the groups of patients that can be
examined. We show that the DMN can also be identified by
electroencephalography (EEG). Instructing subjects to alternate
between self-referential memory recall and focusing on their
breathing induces a spatial pattern of spectral band power
modulation in the θ- and α-band (4–16 Hz) that is consistent
with the DMN pattern observed with PET and fMRI. Since
EEG is a portable, cheap, and safe technology, our work enables
the characterization of DMN alterations in patient groups that
are difficult to study with fMRI or PET.

I. INTRODUCTION
The brain is composed of large-scale cortical networks

that are intimately linked to high-level cognition [1], [2].
Among these networks, the default mode network (DMN)
[3], comprising the precuneus/posterior cingulate cortex,
medial prefrontal cortex, and the temporoparietal junction,
is of particular interest, because it has been linked to neu-
ropsychiatric disorders [4] and to the degree of consciousness
[5].

A variety of neuroimaging techniques have been used to
analyse the DMN. Functional Magnetic Resonance Imag-
ing (fMRI) or Positron Emission Tomography (PET) are
routinely used to identify the DMN, either by contrasting
resting-state to task-induced DMN deactivation levels [3],
[6] or by a functional connectivity analysis on resting-state
recordings [7]. Several attempts have been also made to
recover the DMN from magnetoencephalographic recordings
(MEG) [8], [9]. Using resting-state data, De Pasquale et
al. identified MEG correspondents of DMN with a topogra-
phy of interregional band power correlations in the θ- (3.5–7
Hz), α- (8–13 Hz), and β- (14–25 Hz) band [8]. Brookes et
al. identified MEG signatures of DMN activity by amplitude
envelope correlations in the α-band (8–13 Hz) [9].

However, fMRI, PET and MEG are difficult to perform
on certain groups of patients, such as severely paralysed
patients in late stages of amyotrophic lateral sclerosis (ALS),
that are dependent on artificial ventilation systems and thus

1Tatiana Fomina, Matthias Hohmann, Bernhard Schölkopf,
Moritz Grosse-Wentrup are with Max Planck Insti-
tute for Intelligent Systems, Spemannstrae 41, 72076
Tübingen, Germany tfomina@tuebingen.mpg.de,
matthias.hohmann@tuebingen.mpg.de,
bs@tuebingen.mpg.de, moritzgw@tuebingen.mpg.de

2Tatiana Fomina, Matthias Hohmann are with the IMPRS for Cognitive
and Systems Neuroscience, University of Tübingen, Österbergstr. 3, D-
72074 Tübingen, Germany

cannot be easily put into the MRI, PET, or MEG scanners.
In contrast, EEG is a portable, safe (non-invasive), cheap,
and widespread technology, that can be used at the patient’s
home. EEG-based DMN characterisation would enable the
investigation of alterations in DMN activity in a wide range
of patients groups that are difficult to examine with other
methods. In particular, the connectivity within the DMN
is negatively correlated with the degree of consciousness
impairment and thus could be used to distinguish the con-
scious state from the vegetative state in CLIS [5] patients,
for whom the degree of consciousness cannot be concluded
from behaviour due to the absence of communication.

Previous attempts to identify the DMN with EEG were
only partially successful. Knyazev et al. partially reproduced
DMN spatial features by first estimating current source den-
sity, then applying independent component analysis (ICA),
and comparing the resulting resting-state α band (8–12 Hz)
activation of the obtained ICs to that during social cognition
tasks [10]. However, spatial overlap of the identified EEG-
based DMN pattern with that of the fMRI-based DMN was
restricted to only one node of the DMN (precuneus/posterior
cingulate cortex). This prevented an analysis of the connec-
tivity within the DMN, which is relevant for characterizing
the degree of consciousness [5].

We devised a novel behavioural paradigm that allows us
to obtain an EEG-based DMN pattern more similar to the
regions identified by fMRI. We instructed healthy subjects
to alternate between two experimental conditions, recall-
ing of positive autobiographical memories and focusing on
breathing, and then computed dynamic Statistical Parametric
Maps (dSPM) [11] from high density EEG recordings in
the two conditions. Comparing source level activations, we
found θ- and α band power changes in the medial prefrontal
cortex, the posterior cingulate cortex, and the temporoparietal
junction - a pattern that is highly consistent with the DMN.

II. METHODS

A. Subjects

EEG data was recorded from eleven healthy subjects (eight
male and three female, mean age 29.3 ± 8.3 years). All
subjects gave informed consent to participate in the study
according to guidelines set by the Max Planck Society and
received 12 Euro per hour for their participation. The study
was approved by an ethics committee of the Max Planck
Society.
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B. Experimental Data

All data was recorded with 124 active electrodes at 500
Hz sampling frequency using actiCAP active electrodes and a
BrainAmp amplifier (both provided by BrainProducts GmbH,
Gilching, Germany). Electrodes were placed according to
the extended 10-20 system, with the electrode P7P as the
initial reference. All recordings were converted to common
average reference. The stimuli presentation was realised with
the BCI2000 and BCPy2000 toolboxes [12].

First, two resting states (eyes-open and eyes-closed) were
recorded. For each resting state, subjects were placed in front
of a computer screen at a distance of 1.25 ± 0.2 m and were
instructed to relax and let their mind wander for five minutes.
In the eyes-open condition, they were additionally asked to
fixate on a cross in the middle of the screen. After that,
the EEG in the conditions of self-reflective thoughts and
breathing was recorded in three blocks with a short break
(1-5 minutes) in between. Each block consisted of ten trials
for each condition presented in pseudo-randomized order,
resulting in 30 trials for each condition. In the beginning
of each trial, instructions appeared on the screen, asking
subjects either to recall positive autobiographic memories
or to concentrate on their breathing. Simultaneously, the
same instructions were read out by a male voice. After four
seconds, the instructions disappeared and subjects performed
the announced task while fixating on the white cross. After
one minute, the word ”Pause” appeared on the screen,
indicating the end of the trial. The pause lasted for 5.5±0.5
seconds, then the new trial began.

Due to technical problems, subject 9 had different number
of trials per condition (27 and 33 trials). For that subject
only the first 27 trials for each condition were used for the
analysis.

C. Data analysis

1) Preprocessing: We used the time window 4–30 sec-
onds of each trial and restricted our analysis to a combination
of θ and α frequency bands (4–16 Hz, individually adjusted
for each subject). The lower θ boundary was set to 4 Hz for
all the subjects, while the upper α boundary was determined
individually for each subject by determining the intersection
of the spectral power of channel Oz between eyes-open and
eyes-closed resting states [13]. For subject 5, the eyes-closed
recordings were corrupted by noise, so the upper boundary
of the individual α band was set to 14 Hz. The data was then
bandpass-filtered with a 3rd order Butterworth filter in the θ-
and in the α- frequency band, respectively, and downsampled
to 50 Hz.

2) Dynamic Statistical Parametric Mapping: To project
the sensor activations on the source level, we applied dSPM,
a noise-normalized minimum norm estimate, to the prepro-
cessed data. [11]. First, the forward model x[t] = As(t) was
computed, with the matrix A specifying the projection of
K = 15028 current dipoles spread over the cortex s[t] ∈ RK

on the N = 124 electrodes x[t] ∈ RN . We generated
the forward model with the BrainStorm toolbox [14], using

standardized electrode locations and a standardized three-
shell spherical head model. Then, the activity of each source
was estimated from the measurements of the electrical po-
tential on the surface of the scalp at N electrode locations
as described in [11]:

s̃(t) = Wx(t), with W = ΣAT (AΣAT + C)−1. (1)

Here, Σ is the spatial covariance of the dipole strength vector
Σ = s(t)s(t)T , approximated by the identity matrix, and C
is the sensor noise covariance matrix, computed individually
for each subject from their eyes-open resting-state data The
estimated time series s̃(t) were then normalized by the noise
variance, leading to noise normalized activity estimate z̃i(t)
at each time point t and location i [11]:

z̃i(t) =
s̃i(t)√
wiCwT

i

, (2)

where wi is the ith row of the unmixing matrix W. We then
estimated a noize-normalized current dipole power at each
time point t and location i [11]. We made no assumptions on
dipole orientation and thus averaged three dipoles for each
location:

q̃i(t) =

∑
j∈Gi

s̃2i (t)

∑
j∈Gi

wiCwT
i

, (3)

where Gi is the set of indices of dipoles located at i. As
a last step, we averaged the current dipole power over the
4–30 seconds of each trial.

3) Statistical testing: We computed the signed coefficient
of determination (signed R2) for every subject and source to
evaluate condition-induced differences between band power,
averaged across the θ- and the α-band (4–16 Hz). To test
the null-hypothesis H0: R2 = 0 that there is no difference
between the two conditions on the group level we first
estimated p-values for each subject. For that we randomly
permuted the condition labels of the trials 103 times. We then
counted the instances in which the resulting |R2

HO| exceeded
|R2| and estimated the probability that |R2

HO| > |R2|. We
thereby obtained a p-value for each of the K = 15028
sources and M = 11 subjects. Then, we computed the
empirical cumulative distribution function (CDF) of these
p-values across subjects for each source and quantified its
deviations from a uniform CDF with support from zero to
one by integrating the differences between the two CDFs. We
drew samples from the uniform CDF 103 times. This enabled
us to estimate the probability of observing the obtained p-
values under H0, because by construction p-values from
a null-distribution are uniformly distributed between zero
and one. As a last step, we corrected the significance level
using a false discovery rate (FDR) of αFDR = 0.05 [15] to
compensate for the multiple comparisons for each of the K
cortical sources.

To plot the results, we averaged the signed R2 across
subjects and set the signed R2 = 0 for the sources for which
we could not reject the null-hypothesis.
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R2

Fig. 1. The Default Mode Network (DMN) identified with EEG. Signed R2 between recalling of the positive autobiographical memories condition and
focusing on breathing condition, averaged over the subjects for significant sources only (FDR corrected at 0.05). Orange shows positive correlation with
the autobiographical memories condition, while blue areas are positively correlated with focusing on breathing.

III. RESULTS

Figure 1 displays the sources that we found to show a
statistically significant modulation on the group-level. We
find the most prominent modulation of band power in the
posterior cingulate cortex, which constitutes a hub of the
DMN [16]. In addition, we observe band power modulation
in the medial prefrontal cortex and in the left temporo-
parietal junction. With the exception of the right temporo-
parietal junction, our method thus identifies the core areas
of the DMN [3].

IV. DISCUSSION

Using the cognitive strategy of alternation between au-
tobiographical memories and focusing on breathing, we
identified a pattern of EEG band power modulation that is
highly consistent with the DMN as characterized by PET [6],
[18] and fMRI [3], [7], [17]. This is of particular significance
for two reasons. First, this EEG-based identification of the
DMN enables us to study oscillatory properties of the DMN
that are not accessible by PET or fMRI. And second, our
work makes it feasible to study DMN alterations in patient
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groups that are difficult to study by with PET, fMRI and
MEG, such as severely paralysed patients in late stages of
ALS.

We note, however, that the EEG-based DMN nodes are
smaller than those found by fMRI, despite the fact that
fMRI has a higher spatial resolution. One potential reason
for this observation is the low spatial resolution of EEG
source localization methods. Due to inter-subjects differences
in head shape and cortex folding, the spatial overlap between
individual DMN patterns may be smaller than each individual
DMN pattern on its own. On the group level, this may lead
to a spatial underestimation of the DMN. This problem could
be addressed by using individualised EEG forward models
derived from structural MRI scans.

The difference between the two conditions arises from the
properties of the DMN: self-referential thoughts, such as au-
tobiographical memories, activate the DMN [6], [18], while
task-related activity free from self-referential thoughts and
memories, such as focusing on the breathing, induces DMN
deactivation [3]. To capture the effect of self-referential pro-
cessing, we restricted our analysis to the θ and α frequency
bands (4-16 Hz), following the previous work of Mu et
al. who correlated self-referential processing with spectral
power in the θ and in the α range [19]. We combined the
two bands, since PET and fMRI analysis are not frequency-
specific and the DMN pattern obtained with those methods is
likely to consist of neurons oscillating in different frequency
ranges. Our choice of tasks, however, could also lead to
underestimation of the extent of the DMN. While focusing
on breathing has been shown to deactivate the DMN, it also
increases synchronization within the DMN [20]. Because
EEG is sensitive to synchronized oscillations, the increase in
synchronisation may lead to an increase in the spectral power
that is not distinguishable from changes in activation levels of
the involved cortical areas. Further refining the behavioural
paradigm may alleviate this problem.

Future studies need to investigate if EEG-based connectiv-
ity measures between nodes of the DMN correlate with levels
consciousness in similar ways to fMRI-based connectivity
patterns [5]. The EEG-based identification of the DMN
brings a new exciting possibility of DMN characterisation
to groups of patients that are difficult to study with other
methods.
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