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Abstract

Since their theoretical prediction in 1934 and the serendipitous discovery of the first pulsar
in 1967, neutron stars remain among the most challenging objects in the Universe. Thanks
to the advancement of theory, experiments, and observations, many aspects of their nature
have been deciphered, yet their inner structure is still unknown. Gravitational waves emit-
ted by neutron star oscillations can be used to obtain information about their equation of
state, that is, the equation of state of dense nuclear matter. As discovered in the 1970s,
certain oscillation modes can be secularly unstable to the emission of gravitational radi-
ation, via the so-called Chandrasekhar-Friedman-Schutz (CFS) mechanism, thus rendering
gravitational-wave asteroseismology a promising probe of the neutron star interior, espe-
cially after the recent birth of gravitational-wave astronomy. After its initial growth phase,
the instability is expected to saturate, due to nonlinear effects. The saturation amplitude
of the unstable mode determines the detectability of the generated gravitational-wave sig-
nal, but also affects the evolution of the neutron star through the instability window,
namely the region where the instability is active. In this work, we study the saturation of
CFS-unstable f-modes (fundamental modes), due to low-order nonlinear mode coupling.
Using the quadratic-perturbation approximation, we show that the unstable (parent) mode
resonantly couples to pairs of stable (daughter) modes, which drain the parent’s energy
and make it saturate, via a mechanism called parametric resonance instability. The sat-
uration amplitude of the most unstable f-mode multipoles is calculated throughout their
instability windows, for typical and supramassive newborn neutron stars, simply modelled
as polytropes in a Newtonian context. Contrary to previous studies, where the saturation
amplitude is treated as a constant, we find that it changes significantly throughout the
instability window and, hence, during the neutron star evolution. Using the highest val-
ues obtained for the saturation amplitude, a signal from an unstable f-mode may even lie
above the sensitivity of current, second-generation, gravitational-wave detectors.
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Chapter 1
Introduction

You will smile and hold my hands tight.
A star will ring on the damp sky.

I may

cry.

Tasos Livaditis, Simple talk (1950)
English translation: P. P.

1.1 Prologue: Music of the spheres

Driven by his vision of a harmonious Cosmos, sculpted by music and mathematics, Py-
thagoras of Samos (c. 569-475 BC) believed that the celestial bodies are carried around
the sky by crystalline spheres, which produce musical sounds with their motion. This idea
became key for ancient cosmogony, with Plato (c. 427-347 BC) stating that:

Above, on each of its circles, is perched a Siren, accompanying its revolution,
uttering a single sound, one note; from all eight® is produced the accord of a
single harmony.?

Due to their elegance, the Pythagorean views survived until the 17th century, when Jo-
hannes Kepler (1571-1630) struggled to prove their validity, by studying the planetary
motions. Unfortunately, the inspiring ideas in his Mysterium Cosmographicum (1597)
were for naught. The rapid development of astronomy, to which Kepler himself contrib-
uted greatly, revealed that the sheet where the “Music of the spheres” was written is blank.

However, the Universe is far from being a quiet place. Modern science has shown that
the celestial bodies do produce sounds, albeit different from the ones Pythagoras postu-
lated. Like every object in the Universe, stars possess characteristic oscillation frequencies.
Quakes or other cataclysmic events can excite these oscillations and make the star “ring”,
much like the sound one gets when ringing a bell. Alas, even though the ringing of a
star may bring tears to the Greek poet Tasos Livaditis (1922-1988), the vacuum of space
makes it inaudible, so we cannot really hear the sounds of the stars. Or can we?

'Téooc AeBuditng, Amdij xovpévta (Maxpdwnoog, 1950). Ioinon, Téuog mpdhtoc, oe. 105. Abrva: Kédpog,
déxartn éxdoon (2002).

*Five spheres for the planets known at the time (Mercury, Venus, Mars, Jupiter, Saturn), two spheres for
the Sun and Moon, plus one for the distant stars.

3 The Republic of Plato, X617b. Translated by Allan Bloom. New York: Basic Books, 2nd ed. (1991).



2 Introduction

1.2 Asteroseismology

Even though we are not able to directly hear the stars ringing, we may instead see them!
In fact, the theory of stellar pulsation was developed in order to explain the observations
of classical variable stars, such as the Cepheids and RR Lyrae stars.

There are two general types of stellar oscillations: radial, where the star expands and
contracts while maintaining its spherical shape, and nonradial, where the shape of the
star deviates from sphericity (Fig. 1.1). Nonradial pulsation theory can be traced back to
the work of Lord Kelvin (Thomson 1863), preceding that of radial pulsation, developed
by Ritter (1879). An analytic solution for the nonradial oscillations of a nonrotating,
homogeneous, compressible stellar model was obtained by Pekeris (1938), whereas Cowling
(1941) studied the nonradial oscillations of polytropic stars. Nonradial pulsation did not
draw much attention until the work of Ledoux (1951), who proposed nonradial oscillations
as an explanation for the double periodicity and the large temporal variations in the
broadening of spectral lines observed in 8 Canis Majoris (a prototype of -Cephei-type
variable stars). For a description of the above studies, the reader is referred to the work
of Ledoux and Walraven (1958).

=2

m=0 m=1 m=2 m=3

Figure 1.1: Radial (I = 0) and nonradial (I # 0) stellar oscillation modes, depicted as spherical
harmonics Y;™.

Since then, nonradial stellar pulsation has been suggested as an explanation for several
observations. For instance, the solar five-minute oscillations, discovered by Leighton et al.
(1962), were interpreted by Ulrich (1970) and Leibacher and Stein (1971) as nonradial os-
cillation modes, a picture which was later confirmed by Deubner (1975), when he managed
to match a series of observations with theoretical estimates. As a result of this discovery,
many observations in the past few decades unveiled thousands of modes in the Sun.

But, apart from explaining the observations, there is more we can learn from stellar
oscillations. Quoting Eddington (1926, § 1):
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At first sight it would seem that the deep interior of the sun and stars is less
accessible to scientific investigation than any other region of the universe. Our
telescopes may probe farther and farther into the depths of space; but how can
we ever obtain certain knowledge of that which is hidden behind substantial
barriers? What appliance can pierce through the outer layers of a star and test
the conditions within?

Today, we know that this “which is hidden behind substantial barriers” can be studied with
the help of oscillation modes. Helioseismology uses solar oscillations to probe the internal
structure of the Sun, via the comparison of theoretical models with the observed oscillation
spectrum, just like seismic wave data can be used to study the Earth’s interior. One of
the most famous programs dedicated to this kind of research is the Global Oscillation
Network Group (GONG), a community-based project which has developed a “network of
extremely sensitive, and stable solar velocity imagers located around the Earth to obtain
nearly continuous observations of the Sun’s five-minute oscillations” (gong.nso.edu).

In principle, this concept can be extended to other stars too. Various oscillation
modes have been found in stars which were previously considered as nonpulsating, such
as white dwarfs, Ap stars, and early type-O and B stars. Since distant stars cannot be
resolved into a two-dimensional disk image, like the Sun, the identification of modes is
very hard. However, much information can be (and has been) obtained by observations
of stellar oscillations. After all, asteroseismology provides the only observational method
for studying the stellar interior. More details on the studies and methods briefly outlined
above can be found in the work of Unno et al. (1989) and Aerts et al. (2010).

So far, we have described applications of asteroseismology via electromagnetic signals.
Another promising possibility is the utilisation of gravitational waves. Predicted by the
general theory of relativity (Einstein 1916, 1918), gravitational waves are spacetime oscil-
lations, due to the change in a body’s gravitational field. Since any system with a time-
varying quadrupole moment —which measures the system’s deviation from axisymmetry—
emits gravitational radiation, nonradial oscillations of stars should generate gravitational
waves.

Large interferometers, with arm lengths up to 4 km, have been set up around the
world, in order to detect minute length changes, associated with gravitational waves
impinging on the Earth. On the 14th of September 2015, the Advanced Laser Interfero-
meter Gravitational-wave Observatory (LIGO; Abramovici et al. 1992; Aasi et al. 2015)
in the USA detected gravitational waves directly for the first time, from a pair of coales-
cing black holes (Abbott et al. 2016b), with a second detection following a few months
later, from a similar source (Abbott et al. 2016a), thus signifying the long-awaited onset
of gravitational-wave astronomy. More detectors are scheduled to operate in the next
few years (Advanced VIRGO, Italy; Caron et al. 1997; Acernese et al. 2015; LIGO-India;
Unnikrishnan 2013; KAGRA, Japan; Somiya 2012; Aso et al. 2013), whereas there are
already plans about space-borne interferometers (eLISA; Amaro-Seoane et al. 2012), as
well as more advanced (third-generation) terrestrial detectors (Einstein Telescope; Pun-
turo et al. 2010; Sathyaprakash et al. 2012). In addition, gravitational-wave signatures
are sought in pulse arriving times from known pulsars (Pulsar Timing Array; Hobbs et al.
2010). An extensive review on gravitational-wave sources and detectors can be found in
Sathyaprakash and Schutz (2009).

In practice, gravitational-wave asteroseismology can only be applied in very compact
stars, like neutron stars, where the gravitational fields involved are large (for a review
on gravitational waves from compact objects the reader is referred to Kokkotas and Ster-
gioulas 2006). This is a very interesting prospect, because it gives us a unique opportunity


http://gong.nso.edu

4 Introduction

to peep through the keyhole of a largely unexplored area of physics, where matter and
gravitational fields are found at their extremes.

1.3 Neutron stars inside out

With a mass of order a solar mass and a radius of about 10 km, neutron stars consti-
tute nature’s high-energy laboratories. Their theoretical prediction is usually attributed
to Baade and Zwicky (1934b,a) who, just two years after the discovery of the neutron by
James Chadwick, proposed that highly compact objects, consisting of closely packed neut-
rons, could be formed after a supernova explosion. However, there is evidence that Lev
Landau had already postulated their existence, even before the discovery of the neutron
(Yakovlev et al. 2013), albeit not in such an explicit and prescient manner. A few years
later, Tolman (1939) and Oppenheimer and Volkoff (1939) derived the general relativistic
hydrostatic equilibrium equations and then, modelling a neutron star as a degenerate cold
Fermi gas of neutrons, obtained an upper limit for its mass equal to ~ 0.7 M, where M
is the solar mass. Considering more sophisticated equations of state, this upper limit is
shifted to higher masses, which is necessary to explain the observations, as we will see
below.

The observation of the first neutron star did not come until 1967, when Jocelyn Bell and
Antony Hewish detected a radio source emitting pulses with a period of 1.33s (Hewish
et al. 1968). The unexpected source was initially given the nickname LGM-1, which
stands for “Little Green Men”, humorously suggesting that the signal originated from an
extraterrestrial civilisation. Discoveries of more pulsars (pulsating stars) followed in the
next years, dissolving the mystery and associating the pulses with fast rotation rates and
large magnetic fields (~ 108 —10'2 G), thus classifying pulsars as neutron stars, since they
are the only theoretically predicted objects which can support such properties.

In 1974, Russell Hulse and Joseph Taylor made another important discovery, by de-
tecting the first pulsar in a neutron star binary system (Hulse and Taylor 1975; see also
Damour 2015). As it was immediately realised (Wagoner 1975), the Hulse-Taylor binary
could serve as an indirect test for the existence of gravitational waves, which should lead to
a decrease of the system’s orbital period. The prediction of general relativity was indeed
confirmed with remarkable accuracy, with Hulse and Taylor being awarded the Nobel prize
in 1993. Ever since, a number of pulsar binaries have been discovered and are still being
used to test Einstein’s theory of gravity (for a review, see Will 2014).

Currently, we know of more than 2500 pulsars and neutron stars have been related to
many types of systems. Soft y-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs)
are thought to be types of magnetars, namely neutron stars with extremely high magnetic
fields (up to ~ 10 G; Duncan and Thompson 1992). Neutron stars are also believed to
be the engines powering low-mass X-ray binaries (LMXBs), where a neutron star accretes
matter from a companion star and spins up. This mechanism could be the origin of
millisecond pulsars, which, as their name suggests, rotate with periods ~ 1 — 10ms. The
fastest-spinning pulsar known today is rotating at 716 Hz and is a member of such a binary
system (Hessels et al. 2006).

From the above we see that much information has been gathered so far about neutron
stars. However, it is not enough to infer the biggest unknown that plagues neutron star
physics: their equation of state. Equations of state are often categorised as soft or stiff,
depending on how fast pressure increases as a function of density (the faster, the stiffer).
Stiff equations of state are less “compressible” and can support larger masses than soft
ones (for instance, see Glendenning 2000, Secs. 5.3.12 and 5.3.13), meaning that neutron
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Mass (M)

Radius (km)

Figure 1.2: Mass—radius curves for popular hadronic (black lines) and strange quark (green lines)
matter equations of state. The maximum allowed mass depends on the stiffness of the equation
of state. Also shown are: the general relativity limit (GR; the star collapses to a black hole for
any equation of state), the Buchdahl limit (P < oo; the maximum mass for an incompressible
star), the causality limit (the speed of sound exceeds the speed of light), and the rotation limit
from the fastest known pulsar, spinning at 716 Hz (Hessels et al. 2006). Orange lines correspond
to redshifted radius values. Credit: Lattimer (2012).

star mass measurements could serve as tests for the proposed equations of state (e.g., see
Kiziltan et al. 2013). This can be seen in Fig. 1.2, where the mass-radius curve is plotted
for various popular equations of state. Typical neutron star masses lie around 1.4 Mg, but
the recent observations of pulsars with masses 1.97 = 0.04 Mg (Demorest et al. 2010) and
2.01 £0.04 Mg (Antoniadis et al. 2013) rule out some soft equations of state.

The final word about the equation of state of matter at supranuclear densities has
to come from the collaboration of theory [i.e., quantum chromodynamics (QCD), where
many complications still need to be tamed], experiments, and observations, with the latter
being, at the moment, the most promising source of information (Lattimer and Prakash
2007). Theoretically, mass-radius measurements from a certain number of sources could
allow us to construct the equation of state of neutron stars (Lindblom 1992). However, as
it can be seen from Fig. 1.2, it would be rather hard to pick the correct equation of state,
unless very accurate measurements are provided for the mass and the radius, with the
latter being currently much less precisely known than the former. The additional informa-
tion channel of gravitational radiation can, in principle, contribute towards this direction,

via the application of gravitational-wave asteroseismology (Ferrari 2010; Andersson et al.
2011).

1.4 Odes from modes

Gravitational waves from neutron stars may occur in the form of either a burst or a
continuous emission.
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The main scenarios associated with burst emission are: i) Binary neutron star mergers,
where a pair of neutron stars, orbiting around each other, emit (continuous) gravitational
radiation, leading to the gradual shrinking of their orbit, until they finally coalesce and
produce a gravitational-wave burst. The oscillations induced on the massive post-merger
neutron star remnant should leave their imprint on the gravitational-wave signal, thus al-
lowing asteroseismological studies to be performed (Stergioulas et al. 2011; Bauswein and
Janka 2012; Bauswein et al. 2012, 2014). ii) Pulsar glitches, where a small and sudden
increase in the neutron star rotation rate occurs. According to current understanding,
glitches can be explained as the redistribution of the star’s angular momentum, resulting
from a starquake or the spin lag between the superfluid core and the solid crust. This pro-
cess can induce a time-varying quadrupole moment and, hence, emission of gravitational
waves (Warszawski and Melatos 2012). iii) Giant magnetar flares, which are rare, but
very powerful, events (Mazets et al. 1979; Hurley et al. 1999, 2005; Palmer et al. 2005),
attributed to the reconfiguration of the star’s magnetic field and potentially accompanied
by gravitational-wave emission (Zink et al. 2012).

The basic mechanisms related to continuous gravitational-wave emission are: i) Non-
axisymmetric deformations, often dubbed “mountains”, which can be caused, for example,
by magnetic forces (Gualtieri et al. 2011; Mastrano et al. 2011) or elastic forces in the
crust (Bildsten 1998; Ushomirsky et al. 2000; for a review, see Jones 2002). ii) Nonradial
oscillation modes, driven unstable by the emission of gravitational radiation due to the
Chandrasekhar-Friedman-Schutz (CFS) mechanism. The latter is the case we are going
to focus on.

The CFS mechanism (Chandrasekhar 1970; Friedman and Schutz 1978a,b) results in a
secular instability, where the mode amplitude grows exponentially on a time scale which is
related to the mode’s gravitational-wave emission rate. Among the best gravitational-wave
emitters are the f-modes, which are the fundamental oscillations of the star and become
unstable for relatively large rotation rates (Ipser and Lindblom 1990). On the other
hand, viscosity, which mainly depends on the temperature, acts against the instability
by damping the modes, giving rise to the instability window, namely a region in the
temperature—spin plane where the instability is active (Ipser and Lindblom 1991).

Later studies showed that another class of oscillations, the r-modes, become unstable
for any rotation rate of the star (Andersson 1998; Friedman and Morsink 1998). The
r-modes are horizontal fluid motions driven by rotation (Papaloizou and Pringle 1978)
and, due to their much larger instability windows (Lindblom et al. 1998; Owen et al. 1998;
Andersson and Kokkotas 2001), they are considered a very promising gravitational-wave
source.

Subsequent studies on the r-mode instability naturally raised the question of the max-
imum amplitude that the oscillation can attain, before it is halted by nonlinear effects. As
it was shown, coupling of the unstable r-mode to other modes of the star can work as an
energy drain and saturate the instability at low levels (Schenk et al. 2001; Morsink 2002;
Arras et al. 2003; Brink et al. 2004b,a, 2005), rendering a possible detection quite hard
—in the most optimistic cases, the signal may be detectable with Advanced LIGO from
within the Local Galactic Group (~ 1Mpc; Bondarescu et al. 2007, 2009; see also Aasi
et al. 2015).

A similar mechanism ought to operate for the f-mode instability as well. So far,
the evolution of unstable f-modes in the nonlinear regime has been studied only via
hydrodynamic simulations (Shibata and Karino 2004; Ou et al. 2004; Kastaun et al. 2010;
see also Kastaun 2011 for a similar study on the r-mode instability). However, the CFS
instability sets in on secular time scales, way beyond the current capabilities of nonlinear
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simulations. To circumvent this issue, they either artificially increase the gravitational-
wave growth rate of the mode, or start with a very high mode amplitude and then track
its decay. In both cases, the mode amplitude acquires large values, which may never
be actually achieved, because the coupling mechanism is expected to operate at lower
amplitudes.

Determining the saturation amplitude of CFS-unstable modes is also important for
neutron star evolution. The instability is expected to be relevant in fast rotators, e.g.,
newborn neutron stars or members of LMXBs. The r-mode instability can affect both
types of systems (Levin 1999; Bondarescu et al. 2007, 2009), whereas the f-mode in-
stability is mainly applicable in nascent stars (Passamonti et al. 2013). According to
observations of LMXBs, many sources seem to reside well inside the theoretically expec-
ted r-mode instability window (e.g., see Gusakov et al. 2014a, Fig. 2 and Table I). On
the other hand, evolutionary scenarios suggest that the star spends a limited amount of
its life inside the window, if one assumes the saturation amplitudes obtained from the
mode coupling studies (Bondarescu et al. 2007). This paradox could possibly be resolved
if a) the instability window has a different shape and/or size than expected, implying
additional sources of dissipation or even exotic forms of matter (Andersson and Kokkotas
2001, Secs. 4.3-4.6), or b) the saturation amplitude is even smaller than the estimates
of the mode coupling analysis, which manifests the need for a refined calculation, using
more realistic models, or the action of more effective saturation mechanisms. It has been
shown that large-amplitude viscous effects should also play a role in the saturation of
unstable - (Alford et al. 2012) and f-modes (Passamonti and Glampedakis 2012), but
the predicted amplitudes are higher than those achieved via mode coupling. Another pro-
posed mechanism involves the interaction of superfluid vortices with superconducting flux
tubes, saturating the r-mode to lower amplitudes (Haskell et al. 2014), but still not low
enough to explain the paradox (this mechanism is relevant only for mature, cold stars,
where superfluidity operates, so it does not apply to f-modes; for the interested reader, a
review on superfluidity of nuclear matter can be found in Lombardo and Schulze 2001).
An alternative scenario explaining the observations suggests the occurrence of resonances
between “normal” and “superfluid” modes, which alter the instability region (Gusakov et al.
2014b,a).

Another important issue that has to be addressed by neutron star evolutionary scen-
arios is their maximum spin rate. If angular momentum is conserved during the core
collapse of the neutron star progenitor, then angular velocities close to the break-up limit
should be theoretically feasible (~ 1ms; e.g., see Heger et al. 2000). Observations of
young pulsars, however, imply initial rotation periods ~ 10 — 100 ms, with the fastest
known young pulsar rotating with a period of only 16 ms (Marshall et al. 1998). This
contradiction suggests the involvement of some mechanism which either spins down the
star at an early stage in its life or makes it spin slowly from the outset. The same problem
applies to LMXBs, where accretion should spin the neutron star up to frequencies close
to break-up, contrary to observations, which indicates that some process prevents further
spin-up of the star (Chakrabarty et al. 2003).

As first suggested by Friedman (1983), the onset of a CFS instability could serve
as an upper limit for neutron star angular velocities. If the star enters the instability
window of an unstable mode, then the emission of gravitational waves results in angular
momentum loss, which spins down a newborn star or balances the accretion torque in an
LMXB (Lindblom et al. 1998; Andersson et al. 1999a,b, 2000; Bondarescu and Wasserman
2013; Alford and Schwenzer 2014a, 2015). The saturation amplitude of the unstable mode
determines the evolutionary route of the neutron star inside the instability window. In
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LMXBs, the same process could also work with neutron star mountains (Bildsten 1998;
Ushomirsky et al. 2000). For more mechanisms which may be responsible for the spin-down
of nascent neutron stars, see Ott et al. (2006).

From the discussion above, it becomes apparent that the calculation of the saturation
amplitude of CFS-unstable modes is an important ingredient for neutron star physics. As-
teroseismology can provide much information about neutron star bulk and internal prop-
erties, using either r-modes (Alford and Schwenzer 2014b; Mytidis et al. 2015; Kokkotas
and Schwenzer 2016), or f- and, possibly, w-modes (Andersson and Kokkotas 1996, 1998;
Kokkotas et al. 2001; Benhar et al. 2004; Gaertig and Kokkotas 2011; Doneva et al. 2013;
Doneva and Kokkotas 2015) —the latter, also called gravitational-wave modes, result
from the coupling of fluid and gravitational-wave oscillations, and exist only in a general
relativistic framework (Kokkotas and Schutz 1986, 1992).

Even though f-modes have much smaller instability windows and larger growth time
scales than r-modes, they could still play a significant role in the evolution of newborn
neutron stars (Passamonti et al. 2013). In fact, according to recent work (Doneva et al.
2015), unstable f-modes with large instability windows and very short growth time scales
can develop in “supramassive” neutron stars, which are supported against gravitational
collapse due to their fast rotation (Cook et al. 1992, 1994). A possible gravitational-wave
detection from such objects has auspicious implications for neutron star physics, since
only a few known equations of state are consistent with their existence (e.g., see Lasky
et al. 2014). But, in order to reach inarguable conclusions, the estimation of the f-mode
saturation amplitude is an important step.

1.5 Outlook

Our aim in this work is to check how nonlinear mode coupling affects the evolution of an
unstable f-mode in neutron stars and obtain estimates about its saturation amplitude.

In Chapter 1 we presented a brief history of the field and the reasons which motivate
such an enterprise, starting from the concept of asteroseismology and how it can be applied
in neutron stars, so that the equation of state of dense nuclear matter is determined.
Then, we discussed neutron stars as gravitational-wave sources, focusing on the presence
of unstable oscillation modes and reviewing their significance both for gravitational-wave
asteroseismology and neutron star evolution. In the rest of the chapters we will provide
detailed information about the concepts introduced here.

In Chapter 2 we are going to derive the linear perturbation formalism, with the help
of which the various classes of modes emerge, like polar (e.g., f-modes) and axial (e.g.,
r-modes). Chapter 3 is devoted to the f-mode CFS instability, where we will see how
the instability works. In Chapter 4 we will obtain the nonlinear perturbation formalism,
needed to introduce mode coupling, and discuss the mechanism responsible for the satur-
ation of unstable modes, the so-called parametric resonance instability. The application
of the mode coupling analysis to CFS-unstable f-modes, in both typical and supramassive
neutron stars governed by polytropic equations of state, is presented in Chapter 5. We
should note that, throughout this work, we use Newtonian gravity, with gravitational
radiation introduced via post-Newtonian analysis (see Chapter 3). Chapter 6 concludes
our study with a summary and some final remarks. At the beginning of each chapter we
review their contents in more detail.

Most of the lengthy derivations of formulae used throughout the chapters are addressed
in appendices. In Appendix A we present the Lane-Emden formalism for polytropic stars,
together with Chandrasekhar’s extension for rotating configurations. Low-order rotational
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corrections to the eigenfrequencies and eigenfunctions of polar modes are derived in Ap-
pendix B. Explicit formulae for the polar mode growth and damping rates, due to gravit-
ational waves and viscosity, are given in Appendix C. In Appendices D and E we obtain
the equations of motion of nonlinear perturbations and an expression for the polar mode
coupling coefficient, respectively. Several important results for a parametrically unstable
coupled mode network are derived in Appendix F. Finally, the couplings responsible for
the saturation of an unstable f-mode, for one of the models used in Chapter 5, is presented
in Appendix G.






Chapter 2

The oscillation modes:
Linear perturbation scheme

Starting with the standard equations of hydrodynamics (Sec. 2.1), we are going to derive
the linear perturbation formalism (Sec. 2.2), used to obtain the oscillation modes of a star.
We will first consider the simple case of a nonrotating star (Sec. 2.3), in which the various
classes of modes are defined (Sec. 2.4), namely polar and azial modes. The former class
contains the (fundamental) f-modes, the (pressure) p-modes, and the (buoyancy) g-modes,
and the latter comprises the (rotational) r-modes. An additional class of modes, called
hybrid modes, will also be discussed. For the sake of completeness, we provide the analytic
formulae for the eigenfrequencies and eigenfunctions of the modes of a homogeneous star
(Sec. 2.5), even though they are not used throughout this study. Finally, we consider the
general case of a rotating star (Sec. 2.6), making use of the slow-rotation approximation,
i.e., introducing (up to second-order) rotational corrections to the eigenfrequencies.

2.1 The fluid equations

Assuming a star which is uniformly rotating with an angular velocity €, then the inviscid
fluid equations, in a reference frame rotating with the star, are expressed as

dp
hallad . = 2.1.1
g TV (pv) =0, (2.1.1)
?;t)—i—(v-V)v—i—Qﬂxv—i—Qx(QXT‘):—VPP—VCI), (2.1.2)
and
V20 = 4nGp, (2.1.3)

where p is the density, p the pressure, ® the gravitational potential, » the position, v the
velocity, and G the gravitational constant. In order to close, the system above has to be
supplemented with an equation of state, namely

p = p(p, 1) (2.1.4)

In neutron stars, u usually corresponds to entropy or composition. If the star has a
finite temperature,’ it deviates from isentropy, whereas stratification leads to composition
gradients, both affecting the pressure distribution throughout the star.

!That is, a temperature higher than the Fermi temperature of the system, so that thermal pressure is
comparable to degeneracy pressure.

11
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For a star in equilibrium, time derivatives and velocities vanish, so the Euler equation
(2.1.2) becomes

\Y
YPLax(@xr) = -Vo. (2.1.5)
p
Alternatively, one can express the centrifugal term as Q X (2 x r) = —V®,,, which makes
Eq. (2.1.5)
\Y
719 = V(D — Byyy), (2.1.6)
where )
rot = 5 €2 % r2. (2.1.7)

Thus, ® — &, is the “effective” gravitational potential, due to the contribution of the
centrifugal force in hydrostatic equilibrium. As for the rest of the equations, the continuity
equation (2.1.1) vanishes identically, whereas the Poisson equation (2.1.3) and the equation
of state (2.1.4) remain unchanged.

2.2 Linear perturbation formalism

There are two ways of describing a fluid in hydrodynamics. The evolution of a physical
quantity can be defined either at a given position in space (Fulerian description), or in a
certain fluid element (Lagrangian description). Fluid perturbations can be defined using
either framework (see, for instance, Lynden-Bell and Ostriker 1967 and Unno et al. 1989,
Chapter III).

The Eulerian perturbation, denoted by &, can be thought of as the perturbation of a
physical quantity at a given position and is defined as

f(ro,t) = fo(ro) +df(ro, 1), (2.2.1)

where fy denotes the equilibrium value of the physical quantity f, at the given position
9. On the other hand, the Lagrangian perturbation, denoted by A, is the perturbation
of this physical quantity in a certain fluid element and can be expressed as

f(’l“,t) = fO(TD) + Af(’l",t), (2'2'2)

where r¢ and r are the initial and final positions of the fluid element respectively. Defining
the displacement vector as & = r — 7, then the relation between Lagrangian and Eulerian
perturbations can be found as

Af(rt) = f(ro+&,t) = folro) = f(ro,t) + (€ - Vo) f(r.t) — fo(ro) + O (€7).

Thus, to linear order in &,

Af(’f’, t) - 5f("‘0; t) + (E ' VO) f(’r, t)? (2'2'3)

with Vo f(r,t) =V f(r,?)],_,,- The subscript 0 for equilibrium quantities will be omitted
below.

Imposing “small” perturbations on the equilibrium and retaining only first-order per-
turbative terms, Egs. (2.1.1)—(2.1.4) become

ddop

90V o x o= Y8 L VPs, s, (2.2.5)
ot p PP

V25® = 4nGép, (2.2.6)
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and

==, (2.2.7)

where I'1 is the adiabatic exponent and is defined as

Jlnp
Iy = . 2.2.
' (8111/))“ (228)

We will consider perturbations for which Ap =~ 0. If u corresponds to entropy, this
means that the fluid displacement occurs adiabatically, because the thermal relaxation
time scale is much longer than the oscillation period (however, cf. Gualtieri et al. 2004).
On the other hand, if p is associated with composition, then this condition means that
the composition of the displaced fluid element is “frozen”; weak interaction processes need
much more time than an oscillation period to restore chemical equilibrium between the
displaced fluid element and the surrounding matter (Reisenegger and Goldreich 1992).

By definition, Av = d¢/dt = é+(v-V)£ , where the dot indicates partial differentiation
with respect to time. But, since we work on the rotating frame, v = 0 in the background.
By also using Eq. (2.2.3), this means that Av = &€ = 6v. Then, the perturbed Euler
equation (2.2.5) can be written as

E+BE) +CE) =0, (2.2.9)
where
B&) =20 x ¢ (2.2.10)
and 5
c(e) = Vpp - fo&,o + V5. (2.2.11)

Operator C can be written in terms of £ by using Eqgs. (2.2.4), (2.2.6), and (2.2.7) to
replace the perturbations dp, d®, and Jp, respectively (see, for example, Schenk et al.
2001, Sec. II B, or Lynden-Bell and Ostriker 1967, Sec. 2.1).

Equation (2.2.9) is the equation of motion for linear perturbations. Seeking harmonic
solutions, of the form &(r,t) = &(r)e™?, it becomes

— W +iwB(€) +C(€) = 0. (2.2.12)

This is the equation which, supplemented with the appropriate boundary conditions, forms
an eigenvalue problem, which needs to be solved in order to obtain the eigenfrequencies w
and eigenfunctions £ of stellar oscillation modes.

2.3 Nonrotating stars

In the case of a nonrotating star (2 = 0), the centrifugal term in Eq. (2.1.5) is zero and the
star is spherically symmetric. Using spherical polar coordinates (7,6, ¢), this means that
all equilibrium quantities (i.e., density, pressure, and gravitational potential) depend only
on the radial coordinate r. This, together with the fact that the Coriolis term vanishes in
Eq. (2.2.5), simplifies the calculation greatly.

Based on Unno et al. (1989, Chapter III) and Aerts et al. (2010, Chapter 3), we are
going to derive the eigenvalue equation system and the corresponding boundary condi-
tions, from which we can get the eigenfrequencies w and eigenfunctions £ of the oscillation
modes of a nonrotating star. The fast-track reader may go straight to Sec. 2.3.7, after
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taking a look at the most important results of Secs. 2.3.1-2.3.6, which are: the eigen-
value equation system (2.3.16)—(2.3.18), its boundary conditions (2.3.24)—(2.3.27), and
the expressions for the eigenfunctions of polar and axial modes, given by Egs. (2.3.19)
and (2.3.53) respectively.

2.3.1* Separation of variables
Time separation

As discussed in the previous section, we can separate the harmonic time dependence of
perturbed quantities, i.e., 6f(r,0,¢,t) = df(r,0,¢)e“’. We proceed with splitting the
equation of motion (2.2.5) into its radial and horizontal parts, namely

10dp 06® bpdd
w2 + -t P 2.3.1
&t p Or + or + p dr 0 (2.3.1)

and 5
~ W, + V) <5 + 5<1>> =0, (2.3.2)

where we used Eq. (2.1.5), & and &, are the radial and horizontal components of the
displacement vector &, and the horizontal component of the gradient operator is defined

* 1/ 0 1 0
Vi=—10,=,—=]. 2.3.3
+ r<’ae’smea¢> (2:33)
Using Eq. (2.3.2), the perturbed continuity equation (2.2.4) is written as
dp & dp 19 1 o (op
—+ =+ == r)+—=Vi|—+d0) =0, 2.3.4
p+pdr+r28r(rf)+w2 = p+ ( )
where the angular part of the Laplacian operator is given by
1 0 0 0?
2 _
Vl = m |:Sln 9% (Sln 9) 8¢2:| (235)

In a similar manner, the perturbed Poisson equation (2.2.6) and the perturbed equation
of state (2.2.7) become

10 [ ,000
e <7° - > + V2% = 47Gop (2.3.6)
and 5 15
p P
= =P ye, 2.3.7
p Tip < ( )

respectively, where we assumed Ap ~ 0 (see Sec. 2.2) and A is the so-called Schwarzschild

discriminant, given by

dlnp 1 dlnp
A= . 2.3.8
dr r, dr ( )

We can now use Eq. (2.3.7) to eliminate dp from Egs. (2.3.4), (2.3.1), and (2.3.6), to
obtain

0 V2 1)
5 (T2§1~) 4+ ——& + <If1)p + w) ;p + V 0P =0, (2.3.9)

0 9o
( i Pg) 3p — (W + gA) & + - =0 (2.3.10)
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and 5 5 5
1 2 2 p o
|:7“2 o (r (97“) + VL] 0® — 4rGp (F1p A§r> =0, (2.3.11)
where 1D
g= FTE (2.3.12)

which is the local gravitational acceleration.

Angular separation

Since the coefficients in Egs. (2.3.9)-(2.3.11) depend only on the radial coordinate r and
the only differential operator with respect to the horizontal coordinates 6 and ¢ is the
angular part of the Laplacian operator V2, a separation of radial and horizontal variables
is possible. The angular dependence of perturbed quantities [say, f(6,¢)] has to be an
eigenfunction of the angular part of the Laplacian operator, namely

or )
1 0 (. of 1 0%f
sin 6 00 <81n089> * sin2f 062 —Af

where —A is the eigenvalue.

The coefficients of this partial differential equation depend only on the colatitude
variable 6, so a separation between the angular variables themselves may be pursued. The
angular dependence is written as f(6,¢) = f1(0)f2(¢) and, substituted to the equation

above, gives
1 . . d /. df1> 9 1 d%f
———sinf— (sinf— | + Asin“0 = ————.
f1(0) deo ( deg fa(¢) de?
Both sides of this equation have to be equal to a constant (say, «), since they are expres-
sions of different variables. Starting from the right-hand side, we get

2
C(li(;;Q = _af2(¢)a

which yields the solution
f2(9) = e=V7o9,

This solution has to be periodic in ¢, i.e., satisfy the constraint fo(¢) = fa(¢ + 27), so
that it is unique for a certain position in space. This implies that o = m?2, where m € Z.
So, the corresponding expression for fi(#) is

% [(1 — %) ff;} + <A— f;) fi(z) =0,

where x = cos#. This is known as the associated Legendre equation and it can be shown
that it has a regular solution when A = (I + 1), where [ is a non-negative integer and
|m| < I. This solution is

£1(6) = P (cos 0),

where P/ are the associated Legendre polynomials (e.g., see Abramowitz and Stegun
1972, Chapter 8).
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After normalising the angular dependence function (6, ¢), so that

s 27
L[ .05 0.0)5in00006 = b (2314)
=0 J $=0

where 4§, is the Kronecker delta and the star denotes complex conjugation, we obtain the
final expression for f(6, ¢), namely

20+ 1 (1l —m)!
47w (I +m)!

0, 6) = (-1)™ P/ (cos 0)e™ = Y™ (6, ), (2.3.15)

which are the well known spherical harmonics Y;™ (6, ¢).

Hence, as expected, perturbations on a spherical star assume the form of spherical
harmonics. Replacing &, dp, and @ in Egs. (2.3.9)—(2.3.11) as &-(r, 0, ¢) = &(r)Y;" (6, ¢)
etc. we get

d (W+1)]6p 11+1)
—— r) — — — = b = 2.3.1
2dr (&) § [Flp w2r2 ] p w2r? 0 0, (2.3.16)
1/d Pg 9 dod
<dT - F1p> op— (w?+ gA4) & + o 0, (2.3.17)
and 1d [ ,did\ I(1+1) 5p
r2 dr (T dr > 72 0% — dnGp (Flp A§r> 2319

We now have a system of three equations for the variables &, dp, and é®, which depend
only on r. From Eq. (2.3.2) we can derive the expression for the displacement vector & as

€(r0.0) = |60, 60 5 ) 51 3| 10,00 (23.19)
where
&n = % (ip + 5<I>> (2.3.20)

2.3.2* Boundary conditions

In order to solve Egs. (2.3.16)—(2.3.18) as an eigenvalue problem, we need some boundary
conditions at the centre and the surface of the star.
Near the origin (r — 0), we have

g— 0, p,p= const., A— 0.

Equations (2.3.16)—(2.3.18) then become

d I(1+1) (5p
T (r2.) — S < , 5<1>> (2.3.21)
d (op w2
~ 2.3.22
dr(erw) &~ 0, (2.3.22)
and
d [ ,dé®

g <7’ dr) I(1 4 1)5® ~ 0. (2.3.23)
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The solution of Eq. (2.3.23) is
0P = 017’1 + CQT’i(lJrl),

where c¢1, ¢ are constants. Since §® must be regular at the centre, co = 0. This yields the
first boundary condition for the centre, which can be alternatively written as

dé® 109

———=0 at r—0. (2.3.24)

dr 7

This form is more useful for the dimensionless formulation, presented in Sec. 2.3.3 be-
low. The same practice is applied to the variables & and (ép/p + d®) in Egs. (2.3.21)
and (2.3.22), and their solutions are

((ZD + 5@) xrl and & o rlTh

Therefore, the second boundary condition at the centre can be written as

I (o
F-2<p+Mv:0atr%Q (2.3.25)
w?r \ p
At the surface (r = R; R being the stellar radius) the density and the pressure vanish,
so Eq. (2.3.18) is written again like Eq. (2.3.23). The solution which vanishes at infinity
is
0P x r_(l+1),

so the first boundary condition at the surface is

dé® [+1
_l’_
dr r
The second boundary condition at the surface depends on the treatment of the stellar
atmosphere and may, consequently, be quite complicated. Assuming that the star is

assigned a definite boundary at » = R, then the pressure is zero at the perturbed surface.
Thus, the Lagrangian pressure perturbation must vanish at the surface, i.e.,

=0 at r=R. (2.3.26)

Ap=0 at r=R. (2.3.27)

Equations (2.3.16)—(2.3.18), together with the boundary conditions (2.3.24)—(2.3.27),
form a boundary value problem with w? as an eigenvalue. Each solution corresponds to a
mode of oscillation, with eigenfrequency w and eigenfunctions (&,,dp, 0P).

2.3.3* Dimensionless formulation

A particularly helpful practice, especially when numerical calculations are involved, is the
development of a dimensionless formulation for the equations governing the problem. We
introduce the following dimensionless variables:

w="=, (2.3.28)
T

m::1<®+w@), (2.3.29)
gr \ p
1

ys = —0D, (2.3.30)



18 The oscillation modes: Linear perturbation scheme

and
Ya = ;dd(;f) (2.3.31)
By also defining the dimensionless radius
z=r1/R, (2.3.32)

we can rewrite Egs. (2.3.16)—(2.3.18) as four first-order differential equations, namely,

dys I(1+1)
dz VY - 2.3.
Ty (Vg =3)y1 + [ ol Vg | y2 + Vs, (2.3.33)
dy2 — ~2 * * %
vy = (@& = Ay 4 (AT = U+ 1)y — A'ys, (2.3.34)
dx ’
and
d
v = UAY + UV + 10+ 1) = UVl ys = Uy, (2.3.36)
where
|4 1 dlnp  pgr
BV =F.r 2.3.
Vg Fl Fl dlnr Flp’ ( 3 37)
dIn M, 47rpr3
- = 2.3.
v dlnr M, ’ (2.3.38)
r\3 M
“a= (E> A (2.3.39)
AT =—r4, (2.3.40)
and
2 w?
= GME 2.3.41
Y T GM/R® (2.3.41)
with
M. = / dmprdr, (2.3.42)
0

denoting the mass enclosed inside a radius r, and M being the total mass of the star.
Accordingly, the boundary conditions (2.3.24)—(2.3.27) are rewritten as

lys —ys = 0, (2.3.43)
1@y — lys = 0, (2.3.44)
at the centre (z — 0), and
(14 1)ys +ya = 0, (2.3.45)
Y1 —y2 +y3 =0, (2.3.46)

at the surface (x — 1).
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2.3.4* The Cowling approximation

A useful way to simplify the calculation of mode eigenfrequencies and eigenfunctions is to
neglect the perturbation of the gravitational potential, i.e., d® ~ 0. This is known as the
Cowling approximation (Cowling 1941) and is mainly valid for modes with large degrees
[ and overtones n (see Sec. 2.4 below). The major advantage of this technique is that it
reduces the order of the system (2.3.16)—(2.3.18) by two, with a corresponding reduction
in the number of boundary conditions. In particular, the last terms of Egs. (2.3.16)
and (2.3.17) are ignored, while Egs. (2.3.18), (2.3.24), and (2.3.26) are no longer needed.

Applying a transformation of the variables & and dp to the new variables & and 7,

defined by
5: r2§T exp (—/ 'Ogdr>
o I'ip

n= 5—pexp (/ Adr) = w?rép exp (/ Adr)
P 0 0

respectively, Egs. (2.3.16) and (2.3.17) result in the simple canonical form

and

dé (+1)  pr?]
— =h - — 2.3.47
dr (r) [ w? Iip g ( )
and
A A 2.3.48
dr  r2h(r) (" +g4) &, ( )
where
" Py
h(r) = exp [—/ (A+> dr].
(r) ; Tip
If we further define the speed of sound as
[Tip
Cs = ]
p
then Eqgs. (2.3.47) and (2.3.48) can take the form
dé 2 L12 -
—==hr)—= | — — 2.3.4
T =h (B -1) (2.3.49)
and
dn 1 2 2\ £
1 - N 2.3.50
dr  72h(r) ( )& ( )
where IV is known as the Brunt-Viiséla frequency and L; is the so-called Lamb frequency,
given by
N2 = _—gA
and - )
1
Ll2 — ( +2 )CS
r

respectively. Also known as buoyancy frequency, N is the angular frequency at which
a vertically displaced fluid parcel will oscillate, around its equilibrium position, within a
stratified environment.
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2.3.5*% Mode trapping
By performing a local treatment of Egs. (2.3.49) and (2.3.50), their coefficients can be
treated as constants. Then, joining the two equations, we get

d2¢ 1

@‘FWTCE((JJ?—L%) ((JJQ—NQ)EZO.

This is a Helmholtz equation,” so

(w? = L}) (w* = N?) (2.3.51)

and ) ‘
E(r), n(r) < et

where k, represents the radial wavenumber. Thus, Eq. (2.3.51) is a dispersion relation.
The following cases might occur:

2 2 A2
322%:%2 }:>kf > 0,
or

2 2 2
]L\fl2<<b:2<<]\L[l2 } = k2 <0.
If k2 > 0, the radial wavenumber is real, so waves can propagate in the radial direction or,
equivalently, the variables display an oscillatory behaviour. On the other hand, if k2 < 0,
the radial wavenumber is imaginary and the variables are exponentially damped. These
modes are often called evanescent.
Since the angular dependence of the oscillation variables is of the spherical harmonic
type, they all satisfy Eq. (2.3.13). This is a Helmholtz equation as well, with the help of
which we can introduce the horizontal wavenumber

I(1+1) _Ll2
=

k2 = (2.3.52)

r 2’
Points where k. = 0 indicate that there is no motion in the radial direction for a certain
mode, which only travels in the horizontal direction with a wavenumber kj, given by
Eq. (2.3.52). These points are known as turning points and imply that the various modes
are actually trapped in specific stellar regions, namely regions where either w? > le, N2
or w? < L? N2. Pressure and buoyancy modes, which will be introduced later in Sec. 2.4,
are confined in the high- and low-frequency region respectively. In general, the turning
points can be determined by the equation k, = 0, which yields w = L; or w = N. From
these two equations we acquire the so-called propagation diagram of the star (for instance,
see Fig. 1 in Osaki 1975 and Fig. 15.2 in Unno et al. 1989).

Mode trapping is visualised in a more intuitive way in Fig. 2.1, where a ray represent-
ation is used for pressure and buoyancy waves. As the pressure waves propagate into the
star, the deeper parts of the wavefronts experience a higher sound speed and, therefore,
travel faster. Hence, the direction of propagation is bent, in the same way as light rays
are refracted when experiencing a higher speed of light in a medium.

“The Helmholtz equation describes the spatial part of the wave equation and its general form is V2u(r) +
k*u(r) = 0, where k represents the wavenumber.
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Figure 2.1: Propagation of pressure (left) and buoyancy (right) waves, in a Sun-like star. Here,
each ray represents a wave and is always vertical to the corresponding wavefront. The pressure
(sound) rays are bent by the increase in sound speed with depth, until they reach the inner turning
point (indicated by the dotted circles). At the surface, the waves are reflected due to the rapid
decrease in density. On the other hand, the buoyancy waves are confined around the centre of the
star. The pressure waves correspond to modes with a frequency of 3 mHz and degrees (in order of
increasing penetration depth) I = 75, 25,20, and 2. The line passing through the centre illustrates
the radial mode. The buoyancy wave corresponds to a mode with frequency 190 uHz and degree
I =5. Credit: Cunha et al. (2007), (©) Springer-Verlag 2007. With permission of Springer.

2.3.6* A trivial solution

In the equations derived so far in this section we implicitly assumed that the eigenvalues are
nonzero. However, there is also a trivial solution, for which w = &, = dp = p = §® =0,

but EJ_ ;é 0.
In order to derive Eq. (2.3.4), we used Eq. (2.3.2) to calculate the divergence of £ |,
assuming of course that dp, d® # 0. If we take the trivial solution above, we get

vl'gj_zoa

or

EJ_:VLX(UGT),

where e, is the radial unit vector and U an arbitrary scalar function. Expanding U into
spherical harmonics, we get

Then, replacing into the equation for £ |, we obtain, for a single “mode”,

Um(r) 1 0 0
0,¢) =~ —, ——= | Y,"(0, ¢). 2.3.
eno.0) = T (0, L0 -2 v (23.53)
This represents a steady eddy motion of the fluid, confined on spherical surfaces. In a
rotating star, these modes become oscillatory, driven by the Coriolis force, as we will
discuss in Sec. 2.4.
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2.3.7 Mode orthogonality, decomposition, and energy
For a nonrotating star, the eigenvalue equation (2.2.12) becomes
C(¢) = w2 (2.3.54)

Operator C is Hermitian® (Lynden-Bell and Ostriker 1967), which means that the solutions
to Eq. (2.3.54) are orthogonal, i.e.,

<£a> EB) = /52 : Eﬁpdgr = Ia(saﬁa (2355)

where the indices correspond to different solutions and the parameter I, can be thought
of as the “moment of inertia” of the perturbation. Replacing the eigenfunction of polar
modes (2.3.19) in Eq. (2.3.55) and using the orthogonality relation of spherical harmonics
(2.3.14), we obtain

I, = / pridr / / Y™ (0, ¢) Y™ (6, 6) sin §dOd¢

oy;™ oy;™ 1 oy oy ™\ .
/ {hpTQdT//( 90 20 +sin29 8225 8ld> )sm0d9d¢

=/0 (€2 +1(1 + 1)&7] pridr. (2.3.56)

Equation (2.3.55) implies that a general perturbation € can be decomposed as
£) = da(t)éa(r)e, (2.3.57)
[0

where q,(t) is the amplitude coefficient for the mode £,. Furthermore, we may define an
energy for the perturbations as (Schenk et al. 2001)

By = 21,02 |qa]?. (2.3.58)

Since linear perturbations yield the linear homogeneous differential equation (2.3.54),
the eigenfunctions &, are determined only to within a constant factor. This suggests that,
if we were to compare their amplitudes g, or energies F,, we would first need to normalise
them in the same manner. We set the mode energy at unit amplitude equal to some
arbitrary value E,it, namely

Punit = 21,w2. (2.3.59)
Then, Eq. (2.3.58) becomes
By = |gal® Funit. (2.3.60)

Now, mode eigenfunctions can be compared against the same standards. Since the mode
energy should not depend on the normalisation, a different normalisation choice E! ..
would just rescale the amplitudes, according to the relation

‘ a} unlt ’qﬂt‘ Eumt (2361)

In principle, mode amplitudes are regulated by initial conditions. However, as we
will see in Chapter 4, in some cases they can also be uniquely determined by saturation
mechanisms, due to nonlinear mode coupling.

3Defining the inner product on the space of complex vector functions & as (£,€') = J&- & pd3r, with
the density being the weight function, an operator is Hermitian if, for any &, &, it satisfies the relation

(€.c-¢)=(c-&¢).
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2.4 Classes of modes

According to the analysis presented in Sec. 2.3, an oscillation mode in a nonrotating star
is uniquely described by a single spherical harmonic Y;™. The degree [ denotes the total
number of nodal lines on the stellar surface along which no motion occurs, with the fluid
on each side oscillating in antiphase. The order m characterises the azimuthal dependence
of the spherical harmonic, ¢"™?, so |m/| determines the number of longitudinal nodal lines.
The number of latitudinal nodal lines is, accordingly, | — |m| (see Fig. 1.1).

Expanding an arbitrary perturbation in vector spherical harmonics, we get

l
§(r,0,0) =Y > W)Y (0, ¢)er + V(1) VY0, )
I m=-—1

+ U™ (r)VY™(0,9) x e,]. (2.4.1)
We can distinguish two types of modes in nonrotating stars:
1. Polar, or spheroidal, modes, for which U™ = 0.

2. Awial, or toroidal, modes, for which W™ = V" = 0.

2.4.1 Polar modes

Polar modes constitute the “regular” mode spectrum of the star. Their eigenfrequencies
are finite in the nonrotating limit and their eigenfunctions are given by Eq. (2.3.19). Apart
from the degree [ and order m, they are also assigned an overtone n, describing the number
of radial nodes in their eigenfunctions. In a spherically symmetric star, these are concentric
spherical shells within the star, with the fluid oscillating in antiphase on each side. We
have three types of polar modes:

1. Fundamental, or f-modes: Fundamental oscillations of the fluid, with no nodes in
their eigenfunctions (n = 0). Their behaviour resembles that of surface gravity waves,
like, for instance, sea waves, caused by the density discontinuity at the surface.

II. Pressure, or p-modes: Acoustic waves, where the pressure gradient acts as the restor-
ing force. They are the high-frequency overtones of the f-mode (n > 1), with their
eigenfrequency increasing as the overtone increases.

III. Gravity, or g-modes: Gravity waves, where the restoring force is buoyancy. They
are the low-frequency overtones of the f-mode (n > 1), with their eigenfrequency
decreasing and approaching zero as the overtone increases. Henceforth, to avoid
confusion with gravitational waves, we will refer to them either as buoyancy modes
or just g-modes.

Parametrising deviations from isentropy or stratification in the star through the vari-
able 1 (see Sec. 2.1), then buoyancy effects arise when the Lagrangian perturbation of p
is zero, namely, when the oscillation of a fluid element occurs adiabatically or its com-
position is frozen, respectively (see Sec. 2.2). This leads to a density difference between
the displaced fluid element and its surroundings, which drives it back to its equilibrium
position (Finn 1986, 1987; see also McDermott et al. 1983, McDermott 1990, Strohmayer
1993, and Miniutti et al. 2003). This behaviour can be described by the Schwarzschild
discriminant A, defined by Eq. (2.3.8), which determines the degree of convective stability
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(A < 0) or instability (A > 0). Replacing the equation of state (2.1.4) in Eq. (2.3.8), we

get
. 1 (Olnp\ dlnp
Iy \Olnp , dr '
Usually, it is convenient to parametrise our ignorance about the equation of state using
a polytrope, namely an equation of state of the form

p=Kp', (2.4.2)
where K is the polytropic constant and I' is the polytropic exponent (see Appendix A for
a review). Replacing Eq. (2.4.2) in Eq. (2.3.8), we obtain

' —T'dlnp
A= .
Iy dr

(2.4.3)

Then, I' < I'; denotes convective stability, thus we get the g-modes as described above. If
I' > I'y, the star is unstable to convective phenomena, in which case the buoyancy force
tends to increase the displacement of a fluid element. Such displacements are often called
g -modes —as opposed to the convectively stable gT-modes, or simply g-modes.

A sample of the polar mode spectrum of a star obeying various polytropic equations
of state is presented in Table 2.1. The eigenfrequencies of a polytrope with I' = 2 are
plotted in Fig. 2.2, for three different values of I';. We notice that, as the difference
I'y — T is decreased, g-mode eigenfrequencies are pushed towards zero, because convective
phenomena become less pronounced. The eigenfunctions of a few polar modes with [ = 2
are presented in Fig. 2.3, for a polytropic star with I' = 2 and I'; = 2.1, where both the
radial and horizontal components of Eq. (2.3.19), &-(r) and &,(r), are plotted, with the
modes normalised according to Eq. (2.3.59), so that their energy at unit amplitude equals
the rest mass energy of the star, namely Fy.ii = Mc?, ¢ being the speed of light.

Eigenfrequencies of polar modes in different polytropes can be found in Table I (and
Table II, where the Cowling approximation is used; see Sec. 2.3.4) of Robe (1968). Asymp-
totic representations of g- and p-modes were obtained by Smeyers et al. (1995, 1996) and
Smeyers (2003, 2006). For a general description of nonradial oscillations in nonrotating
neutron stars, including modes from a solid crust (which we ignore), see McDermott et al.
(1988). Stellar pulsation in relativistic stars has also been broadly studied, since the pi-
oneering work of Thorne and Campolattaro (1967). Some interesting studies, among the
extensive literature, include Detweiler (1975), Lindblom and Detweiler (1983), Detweiler
and Lindblom (1985), Kokkotas and Schutz (1986, 1992), where w-modes (see Sec. 1.4) are
introduced, the review by Kokkotas and Schmidt (1999), Ferrari et al. (2003), where the
oscillation modes of newborn neutron stars are computed, Gualtieri et al. (2014), where
the effects of superfluidity are taken into account, and Kriiger et al. (2015), where the
influence of internal composition, temperature, and a solid crust is considered.

It should be noted that Eq. (2.3.54) [or, equivalently, the system (2.3.16)—(2.3.18)| does
not depend on the azimuthal order m. This is a consequence of the spherical symmetry of
the equilibrium state, which demands that the results be independent from the choice of
polar axis for the coordinate system. As a result, the eigenvalue w? degenerates (21 + 1)-
fold with respect to m (m = —I,—=l+1,...,0,...,0 — 1,1). The exponential dependence
of the mode has the form e (m#+!) which shows that, for nonzero m, the pattern of the
oscillation propagates with a phase velocity —w/m in the azimuthal direction; a mode with
positive m represents a wave travelling in one direction, while a mode with a negative m is
a wave travelling in the opposite direction. In the nonrotating limit, there is no distinction
between these two modes.
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Figure 2.2: Polar mode spectrum of a star obeying a polytropic equation of state with a polytropic exponent I' = 2. Mode eigenfrequencies, normalised as
@ =w//GM/R3, are plotted against the mode degree [. The directions of increasing overtone n are also shown. The adiabatic exponent I'; is decreased
from (a) T'; = 2.2, to (b) I'1 = 2.1, to (c) 'y = 2.01, thus pushing g-mode eigenfrequencies closer to zero.
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Table 2.1: Eigenfrequencies of polar modes, normalised as & = w//GM /R3, given for different
values of the mode degree [, for a star obeying various polytropic equations of state. The subscript
in p- and g-modes denotes their overtone n.

(a) T=2T; =22

I 2 3 1 5 G 7 8 9 10 11
P> | 57300 62994 6.8045 7.2620 7.6831 80752 84437 8.7927 9.1249 9.4430
p1 | 3.6928 4.2005 4.6508 5.0410 53943 57196 6.0228 6.3081 6.5784 6.8356
F | 12281 17008 2.0396 2.3135 2.5488 27584 2.9405 3.1258 3.2699 34472
g1 0.3515 0.4236 0.4792 0.5247 0.5636 0.5978 0.6286 0.6568 0.6830 0.7071
go | 02434 03058 0.3564 03990 04357 04680 0.4969 05231 0.5470  0.5690
gs | 01875 02413 02864 03254 0.3595 0.3809 04172 04421 04649  0.4860
g1 | 01520 01999 02403 02758 03073 0.3358 0.3616 0.3852 0.4070 0.4272
g5 | 01293 01708 02073 02397 02690 0.2956 0.3199 0.3423 0.3631 0.3824
g6 | 01120 0.1493 01824 02123 02394 02643 02872 0.3085 0.3283 0.3468
g7 | 0.0989 01326 01630 0.1906 02159 02392 02609 02810 0.2999 0.3176
gs | 0.0885 01194 01473 0.1730 01967 0.2186 02391 0.2583 0.2763 0.2932
go | 0.0802 01085 0.1345 0.1584 0.1806 0.2014 02208 0.2390 0.2562 0.2725
gio | 00732 0.0995 01237 0.1461 01671 01867 02051 02225 02389 0.2545
(b)T'=2T; =21
I 2 3 1 5 G 7 8 9 10 11
P> | 55743 61357 6.6331 7.0832 7.4970 7.8820 8.2437 85860 89118 9.2233
p1 | 35785 4.0932 45300 49168 52654 55860 58845 6.1652 64310 6.6833
f 1.2277  1.6996 2.0381 2.3120 2.5474 2.7570 2.9481 3.1245 3.2862 3.3853
g1 0.2566  0.3081 0.3479 0.3805 0.4083 0.4329 0.4550 0.4752 0.4940 0.5119
g2 | 01770 0.2220 0.2586 0.2893 0.3158 0.3391 0.3599 03788 0.3961 0.4121
gs | 01361 01750 02077 0.2358 0.2605 02824 03022 03202 0.3367 0.3519
ga 0.1109  0.1449 0.1741 0.1998 0.2226 0.2432 0.2619 0.2790 0.2947 0.3093
g5 | 0.0937 01238 01502 01737 01948 02140 02316 02479 0.2629 0.2769
g6 | 0.0812 01081 0.1321 0.1537 01734 01914 02080 02234 02377 0.2511
g7 0.0716  0.0961 0.1180 0.1380 0.1563 0.1732 0.1889 0.2035 0.2171 0.2300
gs | 0.0641 00864 01067 0.1253 01424 01583 0.1731 0.1870 0.2000 0.2123
go | 0.0580 0.0786 0.0974 0.1147 0.1308 0.1458 0.1598 0.1730 0.1855 0.1972
gio | 0.0530 0.0721 0.0896 0.1058 0.1209 0.1351 0.1485 0.1611 0.1730 0.1843
(c) T =2, T, =201
I 2 3 1 5 G 7 g 9 10 11
P2 5.4305 5.9849 6.4754 6.9187 7.3259 7.7046 8.0600 8.3963 8.7162 9.0219
p1 | 34733 3.9866 44213 48033 51479 54642 57584 6.0349 62062 6.5457
f 1.2270 1.6984 2.0367 2.3105 2.5459 2.7556  2.9468 3.1257 3.2894  3.4487
g1 | 0.0836  0.1001 0.1128 0.1232 0.1321 0.1400 0.1470 0.1535 0.1596  0.1655
g2 0.0574 0.0720 0.0838 0.0937 0.1022 0.1097 0.1164 0.1225 0.1281 0.1332
gs | 0.0441 00567 00672 0.0763 0.0843 0.0914 0.0978 0.1036 0.1089 0.1138
g1 | 0.0359 0.0469 00564 0.0646 0.0720 0.0787 0.0847 0.0902 0.0953 0.1000
gs 0.0303 0.0401 0.0486 0.0562 0.0630 0.0692 0.0749 0.0802 0.0850 0.0895
g6 | 0.0263 0.0350 0.0427 0.0497 0.0561 0.0619 0.0673 0.0722 0.0769 0.0812
gr | 00232 00311 00382 0.0446 0.0506 0.0560 0.0611 0.0658 0.0702 0.0744
gs 0.0207 0.0280 0.0345 0.0405 0.0460 0.0512 0.0560 0.0605 0.0647 0.0686
go | 0.0188 0.0254 00315 00371 00423 00471 0.0517 0.0559 0.0600 0.0638
gio | 0.0171  0.0233 00290 0.0342 00391 0.0437 00480 0.0521 0.0559  0.0596
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Table 2.1: (continued)

(d)T=3T,=31

l 2 3 4 5 6 7 8 9 10 11
D2 7.0082 7.7283 83758 8.9686 9.5185 10.0336 10.5198 10.9815 11.4221 11.8443
p1 4.3897 5.0078  5.5473 6.0316  6.4747 6.8857 7.2706 7.6341 7.9793 8.3083
f 1.0432  1.4903 1.8267 2.1056 2.3483 2.5657 2.7643 2.9481 3.1209 3.2643
g1 0.1311 0.1605 0.1844 0.2049 0.2230 0.2394 0.2545 0.2684 0.2815 0.2938
g2 0.0868 0.1100 0.1294 0.1463 0.1612 0.1747 0.1870 0.1984 0.2090 0.2190
g3 0.0656 0.0849 0.1014 0.1160 0.1290 0.1408 0.1517 0.1617 0.1711 0.1799
ga 0.0530 0.0695 0.0839 0.0967 0.1084 0.1190 0.1288 0.1379 0.1464 0.1545
gs 0.0445 0.0589 0.0717 0.0833 0.0938 0.1035 0.1125 0.1208 0.1287 0.1361
g6 0.0383 0.0512 0.0627 0.0732  0.0828 0.0917 0.1000 0.1078 0.1152 0.1221
g7 0.0337 0.0453 0.0558 0.0654 0.0743 0.0825 0.0902 0.0975 0.1044 0.1109
gs 0.0301 0.0406 0.0502 0.0591 0.0673 0.0750 0.0823 0.0891 0.0956 0.1017
go 0.0272  0.0369 0.0457 0.0540 0.0616 0.0688 0.0756 0.0821 0.0882 0.0940
gio | 0.0248 0.0337 0.0420 0.0496 0.0568 0.0636 0.0700 0.0761 0.0819 0.0875

(e) I'=3,T; =301

l 2 3 4 5 6 7 8 9 10 11
P2 6.8952 7.6063 8.2456 8.8308 9.3735 9.8817 10.3614 10.8168 11.2514 11.6678
p1 43110 49234 54573 59362 6.3743 6.7804 7.1606 7.5196 7.8604 8.1855
f 1.0432  1.4902 1.8266 2.1055 2.3482 2.5656 2.7642 2.9482 3.1222 3.3075
g1 0.0422 0.0516 0.0593 0.0658 0.0716 0.0769 0.0817 0.0862 0.0904 0.0944
g2 0.0279 0.0353 0.0416 0.0470 0.0518 0.0561 0.0600 0.0637 0.0671 0.0703
g3 0.0211  0.0273 0.0326  0.0372 0.0414 0.0452 0.0487 0.0519 0.0549 0.0578
ga 0.0170  0.0223 0.0269 0.0311 0.0348 0.0382 0.0413 0.0443 0.0470 0.0496
gs 0.0143 0.0189 0.0230 0.0267 0.0301  0.0332 0.0361 0.0388 0.0413 0.0437
ge 0.0123 0.0164 0.0201 0.0235 0.0266 0.0294 0.0321 0.0346 0.0370 0.0392
g7 0.0108 0.0145 0.0179 0.0210 0.0238  0.0265 0.0290 0.0313 0.0335 0.0356
gs 0.0097 0.0130 0.0161 0.0190 0.0216 0.0241 0.0264 0.0286 0.0307 0.0326
go 0.0087 0.0118 0.0147 0.0173 0.0198 0.0221 0.0243 0.0263 0.0283 0.0302
gio | 0.0080 0.0108 0.0135 0.0159 0.0182 0.0204 0.0225 0.0244 0.0263 0.0281

2.4.2 Axial modes

As shown in Sec. 2.3.6, there is a class of modes which are trivial in a nonrotating star.
Their eigenfrequencies are zero in the nonrotating limit and their eigenfunctions are given
by Eq. (2.3.53). However, when rotation is introduced, these modes are driven by the
Coriolis force and become oscillatory. They are called rotational, or r-modes, and their
eigenfrequencies on the rotating frame, to first order in 2, are (Papaloizou and Pringle

1978; Saio 1982)
2mf2
=—. 2.4.4
RN TOEY (244)
These modes are of the inertial type, like Rossby waves on the Earth’s atmosphere and
oceans, and comprise horizontal fluid motions, where only the horizontal component of
the velocity is perturbed. A schematic of the r-modes is shown in Fig. 2.4.

2.4.3 Hybrid modes

Although not shown by our previous analysis, there is another class of modes, which are
also trivial in the nonrotating limit. These modes arise in stars where no buoyancy effects
are present. A zero-buoyancy star has to be governed by a barotropic equation of state,
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Figure 2.4: Schematic of r-modes with various degrees [ and orders m. Credit: Saio (1982),
(© American Astronomical Society (AAS). Reproduced with permission.

ie, p = p(p). If we assume a polytrope, then the Schwarzschild discriminant takes the
form (2.4.3) and vanishes if I' = I';.

In this case, g-modes also become trivial and, along with the r-modes, form the so-
called hybrid rotational modes, or generalised r-modes. Their eigenfrequencies are confined
in the range [—2(2, 2Q] and their eigenfunctions have both polar and axial components,
in the nonrotating limit (Lindblom and Ipser 1999; Lockitch and Friedman 1999). These
modes are characterised by their order m, but do not have a fixed degree [. It is worth
noting, however, that the purely axial r-modes are retrieved in the [ = m case and their
eigenfrequencies are given by Eq. (2.4.4).

2.5* The homogeneous model

The boundary value problem, given by Eqgs. (2.3.16)—(2.3.18) and (2.3.24)—(2.3.27), can
only be solved numerically for most equations of state, even for relatively simple ones, such
as polytropes. For the simplified case of a homogeneous star —which technically corres-
ponds to a polytrope with I' — co— there are analytic solutions for the eigenfrequencies
and the eigenfunctions, which are thus worth investigating.

It was Thomson (1863) who first solved the problem of nonradial oscillations in a ho-
mogeneous, incompressible fluid sphere. He found that, in this model, the eigenfrequencies
of the f-modes, sometimes also called Kelvin modes, are

o 2(1-1)

= —" 2.5.1

where @ is the dimensionless eigenfrequency, defined by Eq. (2.3.41). Their eigenfunctions
are given by Eq. (2.3.19), with

&(r)=Cor'™" and  &(r) = & /1, (2.5.2)
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Cy being an arbitrary constant (see Sec. 2.3.7). These are the only polar modes found in
this model. The presence of p-modes is prohibited by the absence of compressibility in the
medium (V-& = 0). The latter, combined with uniform density, results in a zero-buoyancy
fluid, so g-modes do not exist either (see Smeyers and van Hoolst 2010, Secs. 5.8.3, 8.5, and
10.4.1). When rotation is included, the hybrid rotational modes, discussed in Sec. 2.4.3,
also appear and admit analytic solutions (Lindblom and Ipser 1999; Lockitch and Friedman
1999; also, see Kokkotas and Stergioulas 1999 for the purely axial r-modes with [ = m).

Pekeris (1938) generalised this study to homogeneous, compressible fluid spheres. As
shown by Chandrasekhar (1963, 1964) and Chandrasekhar and Lebovitz (1964), using a
variational principle (subsequently extended by Clement 1964, 1965 for rotating fluids), the
f-modes of this model coincide with the Kelvin modes presented above (see also Smeyers
and van Hoolst 2010, Sec. 8.5), but now the other classes of polar modes are also allowed.
Their eigenfrequencies are given by

&y = Dpy£4/D2, +1(1+1), (2.5.3)

r
Dn,l:—2+71[(n—1)(2n+3+2l)—|—3+2l],

where

with n > 1. For large values of the overtone n, the asymptotic behaviour of the eigenfre-
quencies is (Ledoux and Walraven 1958)

- 1I(1+1)
2
~ 2D, —
wl,n :l+ 2 Dil
and
T ll(l—Fl)

w ~ —

Thus, for a given [, the oscillation spectrum is divided in two classes: one of pos-
itive eigenvalues, approaching infinity for increasing n, and one of negative eigenvalues,
approaching zero for increasing n. The first class is the p-modes, while the second class
corresponds to g~ -modes, i.e., fluid motions associated with convective instabilities (see
Sec. 2.4.1). This can be seen from the calculation of the Schwarzschild discriminant (2.3.8)
for the homogeneous model, namely

1 2r

A=——_=
F1T2—R2

For the incompressible model, I'y = I' — oo, which yields A = 0 everywhere. For the
compressible star, I'; is finite, so A > 0 everywhere, with the star exhibiting convective
instabilities. This can be interpreted by the fact that, for a compressible fluid, a homo-
geneous configuration is not a state of minimum potential energy (Ledoux and Walraven
1958).

The eigenfunctions of the polar modes for the compressible model are again given by
Eq. (2.3.19) and were found by Sauvenier-Goffin (1951) as

1 d l(l+1
“0) = grave {dr o 12 = )+ P (0% - RQ)} (25.4)

and

(2.5.5)
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where
AnGp 2 2
0P(r) = ——F——ain (77 — )
) =-graeun (" —F)
8 27, 2(1+1)
B=—-6—4l+ — — —
nLTT rop,
and
n_l P 25+
4 =V-E(r) =) Cy <E) ;
j=0
with

2525 +5+2)-B
C'2j+2=C'2j[ J(2] ) ]

2(j +1)(25 + 3+ 20)

It should be noted that only one §® is associated with a pair of positive and negative
eigenvalues, but the same does not apply for &.. Moreover, for the g~-modes, the overtone
number n does not coincide with the number of nodes in &,; the g, -mode has n — 1 nodes.

2.6 Rotating stars

Taking rotation® into account, the situation changes significantly. Due to the Coriolis
force and the distortion of the (spherical) equilibrium configuration by the centrifugal
force, modes cannot be described by a single spherical harmonic any more. Even though
the azimuthal dependence remains of the form ¢™?, the latitudinal dependence becomes
more complicated. As we will see, rotation lifts the degeneracy of the modes on the
azimuthal order m (see Sec. 2.4.1), with every eigenfrequency splitting into 2/ + 1 different
values, much like the Zeeman effect of spectral lines when a magnetic field is introduced.
As a result, modes with opposite values of m are no longer equivalent: the mode with a
positive pattern speed —w/m (negative m) travels in the direction of rotation (prograde
mode), whereas the mode with a negative pattern speed (positive m) travels against the
direction of rotation (retrograde mode), but their eigenfrequencies are differently affected
by rotation. Furthermore, as we discussed in Secs. 2.4.2 and 2.4.3, another class of modes,
the inertial modes, becomes relevant in rotating stars, due to the action of the Coriolis
force.

We should note that, since we expressed the Euler equation (2.1.2) on the rotating
frame, we will refer to perturbations as measured in this frame. If we also assume an
inertial frame with coordinates (r/, 68, ¢'), then the transformation between the two frames
is simply obtained as

(r’, 0, ¢’) =(r,0,6+Qt).

Hence, a perturbation in the inertial frame has an exponential dependence of the form
el(mé’+wnt) " where the eigenfrequency in the inertial frame wy, is given by

win = w — mf. (2.6.1)

In principle, the following discussion applies to magnetic fields as well (e.g., see Gough and Taylor 1984,
Dziembowski and Goode 1984, or Unno et al. 1989, § 19), which are ignored here.
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2.6.1 Mode orthogonality, decomposition, and energy

Since operator B is nonvanishing in this case, the solutions to Eq. (2.2.12) do not obey
the orthogonality relation (2.3.55). Even though the operator £(w) = —w? —iwB + C is
Hermitian for real values of w (Lynden-Bell and Ostriker 1967), two different solutions of
Eq. (2.2.12), (wa,&4) and (wp,£&p), are eigenfunctions of two different operators, L(w4)
and L(wp), so they are not necessarily orthogonal (Schenk et al. 2001).

However, instead of a configuration space mode expansion, like Eq. (2.3.57), one can
use a phase space mode expansion, in which the set of vectors [£ 4,iw4& 4] form a basis on
the space of pairs of complex vector functions [¢,&’] (Dyson and Schutz 1979). Then, a
perturbation can be decomposed as (Schenk et al. 2001)

§(r,t) } [ £a(r) ] iwat
: = t ) e'At,
S 2. Q40 | e ()
where, as in the case of nonrotating stars, Q4 is the amplitude coefficient for the solution
&€4. We notice that, if (wa,€,4) is a solution to Eq. (2.2.12), then (—wg4,&%) is also a

solution. Identifying these two solutions by the same index, «, and assuming that &(r,t)
is real, we get

[g(""’t) ] =§aj{cza<t>[ o ]ewath(t)[ N ]e—’“at}. (2.6.2)

E(T‘, t) iwa&a(r _iwaéz

The eigenfunctions &, satisfy a modified orthogonality condition, given by (Schenk et al.
2001)

(wa + wﬂ)<€a)£[3’> - <£avZB(€B)> = ba5a6, (263)
whereas the mode energy, on the rotating frame, is defined as
E, = |Qa‘2waba7 (264)

which is reduced to Eq. (2.3.58) for 2 = 0.

The discussion in Sec. 2.3.7 about mode normalisation applies in the case of rotating
stars too, with the mode energy at unit amplitude set equal to an arbitrary value FEyit,
as

Euwit = Wabou (265)

which makes Eq. (2.6.4)
Ea - ‘Qa’2Eunit- (266)

For a different normalisation choice E’_.., the amplitudes Q. scale as

unit?

|Qla}2 Ellmit = |Qa|2 Eunit- (267)

2.6.2 The slow-rotation approximation

Typically, in order to obtain the eigenfunctions &, for 2 # 0, the eigenvalue equation
(2.2.12) has to be solved from scratch, which is a far-from-trivial task. However, rotation
can also be introduced perturbatively, namely by considering the effects of rotation to the
various quantities as perturbations.

To do this, we will expand every quantity in a series with respect to ). Eigenfrequencies
and eigenfunctions (on the rotating frame) are expanded as

wa () = w® + w0 (Q) + w® Q%) +0(9?),

£,(Q) =9 + eV () +£2 (0% +0 (29,
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where the superscript (0) corresponds to the solution in the nonrotating limit, obtained by
Eq. (2.3.54), and the rest of the terms are rotational corrections. Equilibrium quantities,
i.e., density, pressure, and gravitational potential, are affected only to second order by
), because the centrifugal force, which spoils the sphericity of the unperturbed star, is
proportional to Q2 [see Eq. (2.1.5)]. Thus,

p(Q) = p + p? (Q%) + 0 (%)

and likewise for the pressure and the gravitational potential. In a similar manner, operator
C is written as

c=cO+c® Q%) +0(0Y),
whereas operator B is, by definition,
B=8BY(@Q).

Substituting the above in Eq. (2.2.12) and distinguishing between zeroth-, first-, and
second-order terms, we obtain (omitting the subscript «, for simplicity)

w(©2¢(0) — (0) (gm) 7 (2.6.8)
—0@2¢) 4 ) (5@)) — 200, MO 4,0 (E(O’) _o, (2.6.9)
and

—w02¢@) 4 0 (5(2)) — 2w @M@ 4 5,0 B0 (5(1))

— 200, @£0) _ ,(112£0) 4, ()M (g(m) Lc® (5@) — o0, (2.6.10)
respectively, with Eq. (2.6.8) coinciding with Eq. (2.3.54), as expected. Using Egs. (2.6.9)
and (2.6.10) we find the O (Q) and O (9Q?) corrections to the eigenfrequencies and the
eigenfunctions.

First- and second-order corrections to polar mode eigenfrequencies are given by (Saio
1981)

wlM =m0 (2.6.11)
and )
502
(2) _ &2
w? = 0 (2.6.12)

respectively, with their derivation presented in Appendix B. From Eq. (2.6.11) we see that
the degeneracy in m is already resolved at first order in €). The parameter C, given by
Eq. (B.1.10), contains first-order effects of the Coriolis force, whereas C3 includes second-
order effects of both the Coriolis and the centrifugal force. A general expression for w? is
obtained from Eq. (B.2.8). For the specific case of polytropic stars with the same central
density as their nonrotating counterparts (see Appendix B.2.2), it is given by Eq. (B.2.14),
which can then be written in the form of Eq. (2.6.12). From Eq. (B.2.16) we see that Cs
can be further decomposed as

Cy = X +m?Y. (2.6.13)

In Fig. 2.5 we show the correction parameters C1, X, and Y, as functions of the degree [,
for the polar modes of Fig. 2.2b, namely, for a polytrope with I' = 2 and I'y = 2.1.
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Figure 2.5: First-order (C;) and second-order (Cy = X + m?Y’) correction parameters, plotted
against the mode degree [, for the polar modes of a star obeying a polytropic equation of state
with a polytropic exponent I' = 2 and an adiabatic exponent I'y = 2.1. In the graphs for f- and
p-modes (left) the overtone increases downwards, and the dashed line corresponds to Cy = 1/1 (see
text). In the graph of Cy for g-modes (top right) the overtone increases upwards and the dashed
line corresponds to Cy = 1/I(I + 1) (see text). In the graphs of X and Y for g-modes (middle
right and bottom right respectively) the dashed lines indicate the limiting values of X and Y for
increasing ! and n.
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From Eq. (B.1.10) we can derive two asymptotic relations for the parameter C;:

&> & =Ci—0 (2.6.14)

and

En> & = C1 — (2.6.15)

1
(1+1)
where &, and &, are the radial and horizontal components of the polar mode eigenfunction
(2.3.19). From Fig. 2.5 we see that Eq. (2.6.14) applies to p-modes and Eq. (2.6.15) to
g-modes, as the overtone n increases. The latter is plotted as a dashed line in the graph
where C] for g-modes is shown.

The maximum value of C} can also be obtained, by assuming that &, = k&, where &
is a constant. Replacing in Eq. (B.1.10) we get

2k +1

C1= K211+ 1)

Then, we solve dC1/dk = 0 to find that C; achieves its maximum value for k = [. So,

1 &

Cl,max = l <:>§h l

Comparing Eq. (2.6.16) with Eq. (2.5.2) we see that C obtains its maximum value for the
case of f-modes in a homogeneous star (Kelvin modes). However, this behaviour seems
to apply to f-modes in polytropic stars as well, as it can be seen from Fig. 2.5, where
C1, max is plotted as a dashed line. A change of the polytropic exponent I' does not affect
the result.

Hence, the behaviour of the parameter C is summarised as follows:

I. f-modes: C) :%

II. p-modes: Cy —0 as n— oo

III. g-modes: C; — l(l—li—l) as n — oo

Equivalent expressions for the asymptotic behaviour of X and Y are hard to derive,
due to their complexity. However, from Fig. 2.5 we see that, for the case of g-modes,
X — 1and Y — 0 as the degree | and overtone n are increased.

Changing the adiabatic exponent I';y does not affect the behaviour of the three para-
meters for f- and p- modes, whereas it induces small changes for g-modes.

The impact of first- and second-order corrections to the eigenfrequency of the | = 2
f-mode, in a polytropic star with I' = 2, is presented in Fig. 2.6, where the eigenfrequency
is plotted against the angular velocity of the star (normalised to the break-up limit, see
Sec. 3.2). The degeneracy in m is lifted by rotation and the eigenfrequency splits into
2] + 1 different values, one for each m. Eigenfrequencies corrected up to first (second)
order in  are shown as dashed (solid) lines.

Eigenfunction corrections have the general form

Z c)e? (2.6.17)

(2.6.16)

and

Z ey (2.6.18)
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Figure 2.6: Eigenfrequencies of the [ = 2 f-mode, in a polytropic star with a polytropic exponent
I' = 2, plotted against the angular velocity of the star. The (21 4+ 1)-fold degeneracy in m is
lifted when rotation is introduced. The eigenfrequencies are normalised as @ = w/\/GM/R3
and the angular velocity € is normalised to the break-up limit Q. Dashed (solid) lines denote
eigenfrequencies corrected up to first (second) order in Q.

namely, they are expanded in terms of the eigenfunctions of the nonrotating star, with

CS) 5126) being the first- and second-order correction coefficients respectively. From

Egs. (2.6.17) and (2.6.18) we see that the rotationally-corrected mode can no longer be
described by a single spherical harmonic. First-order correction coefficients are given by

)

Eq. (B.1.12). Alternatively, the components of the first-order eigenfunction correction ﬁﬁl ,

and c

{él), and {él) are expressed in closed form in Egs. (B.1.14)—(B.1.16), respectively.

We should note that higher-order effects should become important for large angular
velocities, but the analysis is quite cumbersome already at second order in Q. A third-
order perturbation formalism has been, nevertheless, developed by Soufi et al. (1998; see
also Karami 2008). In addition, a non-perturbative method for the computation of modes
in rapidly rotating stars was presented by Ligniéres et al. (2006) and Reese et al. (2006).
Tables with results on first-, second-, and third-order corrections to the eigenfrequencies,
for various stellar models, can be found in Reese et al. (2006), Karami (2009), and Ballot
et al. (2010). A review on the different approaches dealing with the effects of rotation on
oscillation modes is given by Reese (2010; see also Dziembowski 2010).

The influence of rotation on the oscillation modes of neutron stars has caught the
attention of several authors. Strohmayer (1991) calculated first-order corrections to the
eigenfrequencies and eigenfunctions of the nonradial oscillations of a neutron star, includ-
ing modes due to the presence of a solid crust (not discussed here). The problem has
also been studied in the framework of general relativity. Some indicative studies include
Kojima (1992, 1993), where the perturbation equations are derived to first order in 2 (see
also Stavridis and Kokkotas 2005, for a more recent study), Ferrari et al. (2004), where
the effects of rotation on the oscillation modes of newborn neutron stars are examined,
Vavoulidis et al. (2007), where the slow-rotation approximation is applied to crust modes,
and Gaertig and Kokkotas (2008), where the oscillation modes of rapidly rotating neutron
stars are studied. For a more general investigation of rotating relativistic stars, the reader
is referred to Stergioulas (2003) and Friedman and Stergioulas (2013).



Chapter 3

The f-mode instability

As shown in Secs. 2.4 and 2.5 for g~ -modes, oscillation modes may not always be stable.
Convective instabilities are just a manifestation of dynamical instabilities, namely, in-
stabilities associated with the absence of hydrostatic equilibrium in the star, either locally
or globally. These instabilities evolve on a dynamical time scale, i.e.,

R3
Tdyn ™~ aM’
which is of order the free-fall time of the star.! Another interesting class of instabilities
is related to the presence of dissipation mechanisms. These are called secular instabilities
due to their slow evolution, on time scales related to the corresponding dissipative process
and will be our main focus on this chapter. Finally, thermal instabilities may occur when
the star is driven away from thermal equilibrium, e.g., at the commencement of helium
burning in the degenerate helium core of a star, resulting in the so-called helium flash.
These are not relevant for neutron stars and will not be discussed.

First, we will briefly review the studies about the equilibrium figure of a rotating,
self-gravitating body (Sec. 3.1), which revealed that a star is not necessarily deformed by
rotation into an oblate spheroid, but may also be shaped like a triaxial ellipsoid, should it
rotate sufficiently fast. Depending on the assumed density profile, there is an upper limit
on the maximum rotation that a star can support (Sec. 3.2), which determines whether it
can actually admit such a state. The possible equilibrium figures were subsequently shown
to be related to secular instabilities (Sec. 3.3), associated with damping mechanisms, like
viscosity and gravitational radiation. Some intuition on the concept of a secular instability
can be gained by means of simplistic mechanical examples (Sec. 3.4). Then, we shall discuss
in detail the mechanism behind the gravitational-wave-driven secular instability, known
as the Chandrasekhar-Friedman-Schutz (CFS) instability (Sec. 3.5), and how it sets in via
various oscillation modes. Finally, we are going to see how viscosity affects the modes and
counteracts the instability, giving rise to the so-called instability window (Sec. 3.6).

3.1* Figures of equilibrium
The existence of instabilities in a rotating, self-gravitating body was first realised during

the study of the possible equilibrium figures that such a body can admit. We are going to
briefly present the main contributions to this problem, following Chandrasekhar (1969).

!Namely, the time needed for the star to collapse due to gravity, if pressure were removed.

37
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Aa
Pole
Pole
¢
C Q
Pole
Pole
NEWTON CASSINI

Figure 3.1: Left: Illustration from Newton’s Principia, depicting his Gedankenexperiment about
the effect of rotation on the shape of the Earth. Right: Caricature about Newton’s and Cassini’s
views on the shape of the Earth. Credit: Chandrasekhar (1969, § 1).

The effect of small rotation on the shape of the Earth was first considered by Isaac New-
ton (1687, Philosophiae Naturalis Principia Mathematica, Book III, Propositions XVIII-
XX). In a thought experiment, Newton imagined two wells, one at the equator and the
other at the pole, going as deep as the centre of the Earth and filled with a fluid (see
Fig. 3.1 for his original illustration). Regarding the Earth as homogeneous and based
on the fact that the two fluids must be in equilibrium, he used a series of simple argu-
ments and derived a relation between the oblateness of the Earth f and the centrifugal
acceleration at the equator, given by

5 Q%R

= 4GM/R?’

where f = (R.—R,p)/R., with R. and R,, being the equatorial and polar radii respectively.
It was known at the time that the relation between the centrifugal acceleration and the
gravitational acceleration at the equator is

% ~ i
GM/R? ™ 290°

from which Newton found that, for a slowly rotating, homogeneous Earth,

1

This result was experimentally confirmed in 1738 by Maupertuis and Clairaut, ending a
long debate about the influence of rotation on the shape of the Earth (see Fig. 3.1). Today,
accounting for the Earth’s inhomogeneous structure, we know that f ~ 1/294.

Extending Newton’s arguments to large rotation, Maclaurin (1742) found that the
eccentricity of a rotating, homogeneous, incompressible body, defined as

/ R2
— P
e = 1—@7

2(3 — 2¢%) arcsin e —

is related to its angular velocity as

LA E(1 —e?), (3.1.1)

e3 e?
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Figure 3.2: Angular velocity (normalised to /7Gp; left) and angular momentum (normalised to
VGMB3R; right) vs. eccentricity, for a homogeneous, self-gravitating body. The Jacobi ellipsoids
branch off the sequence of Maclaurin spheroids at e ~ 0.81267. Credit: Chandrasekhar (1969,
§ 32).

where

Q
VTGp’

p being the body’s density (the derivation of this equation can be also found in Shapiro
and Teukolsky 1983, Sec. 7.3). Maclaurin reached the conclusion that rotating bodies in
equilibrium must have an oblate shape (Maclaurin spheroids), which was disputed later by
Jacobi (1834), who explicitly showed that “ellipsoids with three unequal axes can very well
be figures of equilibrium” (Jacobi ellipsoids)! This remarkable result was subsequently ex-
amined by Meyer (1842), who demonstrated that the Jacobi ellipsoidal sequence bifurcates
from the Maclaurin spheroidal sequence at the point where e ~ 0.81267.

The behaviour of the two sequences with respect to angular velocity and angular mo-
mentum is shown in Fig. 3.2. The angular momentum J is defined as

J =19,

Q= (3.1.2)

where I is the moment of inertia of the ellipsoid about the axis of rotation R,. If R,
R.1, and R, > denote the principal axes of the ellipsoid, with R, < Rc1 < R 2, then I is
obtained as

1
I:EM(@J+R;%
where the mass M of the ellipsoid is given by

4 —
M = —pR?
3 P,
with R = (RpReJRe,g)l/ 3. The angular momentum is conveniently normalised as
J B @Rﬁ,l + Rz,z ~

—_— = = Q.
GMPR 10 R

Also, in this context, the eccentricity of the ellipsoid is calculated with respect to the
semimajor axis R 2, namely

e= 41— = (3.1.3)
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The formulae above apply to Maclaurin spheroids for Re 1 = Re2 = Re.

In Fig. 3.2 we see how the Jacobi sequence bifurcates from the Maclaurin sequence
at e &~ 0.81267, where O? ~ 0.37423. We can also notice that, although the angular
momentum increases monotonically with respect to the eccentricity, the same does not
happen with the angular velocity. As the angular momentum increases, Maclaurin spher-
oids rotate faster, until a maximum angular velocity is reached at e ~ 0.92995, where
anax ~ 0.449331. From this point on, further increase of the angular momentum results
in the spin down of the spheroid, until it becomes an infinitely thin disk. The same happens
to the Jacobi ellipsoid as well, whose maximum angular velocity occurs at the bifurcation
point and drops thereafter, until the ellipsoid becomes an infinitely long “needle”.

Based on the work of Dirichlet (1861), an additional class of homogeneous ellipsoids of
equilibrium was found by Dedekind (1861). Dedekind ellipsoids are congruent? to Jacobi
ellipsoids and branch off the Maclaurin spheroidal sequence at the same point as the
latter. However, as opposed to Jacobi ellipsoids, they do not rotate uniformly. In fact,
they remain stationary in the inertial frame, with their ellipsoidal shape being preserved
by internal motions of the fluid, characterised by uniform vorticity.

On the inertial frame, the vorticity vector ¢, is defined as

Cin =V X Vin

and serves as a local measure of the fluid’s spin. For a fluid body, rotating uniformly with
an angular velocity €2, the fluid velocity vi, can be generally decomposed as

Vin =0+ Q X7,

where v is the fluid velocity measured in the frame rotating with the star, corresponding
to internal motions of the fluid, superposed on its rigid rotation. Replacing the velocity
in the vorticity equation, we get

Cin = ¢ + 242,

where ( is the vorticity, on the rotating frame, of the internal fluid motions.
Another important parameter for measuring the fluid’s tendency to rotate is circula-
tion, defined as

C = %Uin . dl, (3.1.4)

where ¢ represents a closed path along the fluid and dl is the differential displacement
vector along c. Using Stokes’s theorem, we can find a relation between the circulation and
the vorticity of the fluid as
C= / Ciy - dS,
S

where S denotes the area whose boundary is the closed curve ¢ and dS is the differential
normal area vector of S. In this sense, circulation is interpreted as the flux of vorticity
through S.

Based on the above, Jacobi ellipsoids have ¢ = 0 and Dedekind ellipsoids have 2 =0
(henceforth, we will refer to vorticity on the rotating frame). Homogeneous ellipsoids
where both ¢ and 2 are nonzero constants were found, as a generalisation of previous
work, by Riemann (1861), who proved that ellipsoidal figures of equilibrium are possible
in the following cases (Riemann’s theorem):

a) Q = const. and ¢ = 0, leading to the Maclaurin and Jacobi sequences.

*Two figures are said to be congruent when they have the same shape and size.
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b) Both € and ¢ are parallel to a principal axis of the ellipsoid, resulting in ellipsoidal
sequences, known as S-type ellipsoids, along which the ratio (/€ is constant. Thus,
Jacobi and Dedekind ellipsoids are S-type ellipsoids with ¢/ = 0 and oo, respectively.

c¢) Both € and ¢ lie on a principal plane (determined by two principal axes) of the ellipsoid.
Although this last case seems to be more general, it cannot encompass the previous
one and produces three distinct types of ellipsoids, known as types I, II, and III.

A comprehensive study of these and more results can be found in Chandrasekhar
(1969). Moreover, even though these classic studies concern homogeneous, incompressible
figures of equilibrium, they can be extended to compressible configurations, as we will see
below (Lai et al. 1993).

3.2 The Kepler limit

In Fig. 3.2 we saw that, for a homogeneous, incompressible, uniformly rotating star (Mac-
laurin spheroid), there exists an upper limit in the angular velocity. Beyond this point,
a further increase of the angular momentum results in a decrease of the angular velocity,
which is, however, compensated by a (faster) increase of the body’s moment of inertia.

Similar studies on uniformly rotating polytropes have shown that they too admit such a
maximum (Lai et al. 1993). In these configurations though there is also another important
limit, namely the so-called Kepler limit, also known as the break-up or mass-shedding limit.
This is the point where centrifugal acceleration equals gravitational acceleration at the
equator, or, equivalently, where the angular velocity of the star equals the angular velocity
of a particle in a circular Keplerian orbit at the equator (Jeans 1919, Chapter VII; 1929,
Chapter IX). For a homogeneous star, where the polytropic index n = 0 (see Appendix A),
this occurs when the eccentricity e = 1 or the angular momentum J — oo, namely at the
endpoint of the Maclaurin sequence. As the polytropic index increases, i.e., as the stellar
mass is concentrated more and more towards the centre, this point moves to finite angular
momenta and, for n = 0.5, it precedes the point where the angular velocity obtains its
maximum (see Fig. 3.5).3

If we consider the star as spherical, the Kepler limit Qx can be simply calculated as

GM
2 p_
U= T
or
GM

This approximation ignores the distortion of the equilibrium due to the centrifugal force. A
more accurate analytic formula can be obtained using the Roche model (see Appendix A),

where 3/2 )
2 GM 2
Qk = (3) o = V2 <3> TG {p), (3.2.1)

(p) being the mean density of the nonrotating star. In this approximation, the equatorial
radius R, is larger by a factor of 3/2 than the radius R of the nonrotating star, at the
Kepler limit. The derivation of Eq. (3.2.1) can be found in Shapiro and Teukolsky (1983,
Sec. 7.4). It should be noted of course that this is only an approximate relation, which
does not show the different values of Qk for different polytropic indices.

SHowever, cf. Shapiro et al. (1990), where it is shown that, for a polytropic index very close to 3, the

angular velocity again obtains its maximum before the point where mass shedding occurs.
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The fact that centrally condensed, uniformly rotating objects cannot support much
rotation is restricting. For example, in polytropic stars for which n > 0.808, mass shedding
occurs even before the bifurcation to the Jacobi ellipsoidal sequence (see Fig. 3.2) —more
accurately, the polytropic analogue thereof (James 1964). Larger angular momenta could
be achieved, however, if we allow for nonuniform rotation, i.e., differential rotation. In
this case, the angular velocity §2 is not a very useful parameter. A more general way
to parametrise rotation is through the ratio of the kinetic energy K to the gravitational
potential energy W of the star, namely

K
B=—, (3.2.2)
(W]
with )
K= 2/,01)2d3r
and .
W = 3 /p‘der.

Integrating the Euler equation (2.1.2) over the volume of the star, we can obtain the scalar
virial equation, i.e.,

2K—W|+3/pd3r:0

(see, for instance, Shapiro and Teukolsky 1983, Sec. 7.1, or Tassoul 2000, Sec. 2.8). Since
the volume integral over the pressure is always a non-negative quantity, we conclude that

1
0<p< 5 (3.2.3)
In terms of 3, Maclaurin spheroids cover the whole range given by Eq. (3.2.3). On the
other hand, uniformly rotating, compressible polytropes are much more confined (Lai et al.
1993), but even a small amount of differential rotation may allow 8 to vary over the full
range again (Bodenheimer and Ostriker 1973).

3.3* Maclaurin, Jacobi, or Dedekind?

As we saw in Sec. 3.1, there is a variety of admissible equilibrium figures for a rotating,
self-gravitating fluid body. However, so far we have assumed a perfect fluid. As we will
see below, the figure that the star will eventually admit is related to the presence of
dissipation mechanisms, which determine its evolution through the parameter space of
possible equilibria.

As first shown by Poincaré (1885), the Jacobi ellipsoid corresponds to a lower energy
state than the Maclaurin spheroid with the same angular momentum. But, since we have
assumed a perfect fluid, the equilibrium energy of the configuration is conserved. If we
introduce viscosity, energy can then be dissipated, thus allowing the transition to such a
lower energy state. This is an underlying consequence of the fact that viscosity conserves
angular momentum, but not circulation [Eq. (3.1.4)], in the fluid (e.g., see Lai et al. 1994).

In this sense, Maclaurin spheroids are unstable in the presence of viscous dissipation
beyond e =~ 0.81, where the bifurcation to the Jacobi sequence occurs. This point signifies
the onset of a secular instability. This idea was lingering for decades, ever since Thomson
and Tait (1883, § 778") were explicitly stating that:
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The equilibrium in the revolutional figure is stable, or unstable, according as
e is less than or greater than 0.81.

If there be any viscosity, however slight, in the liquid [...] the equilibrium
in any case of energy either a minimax [i.e., a saddle point] or a maximum
cannot be secularly stable: and the only secularly stable configurations are
those in which the energy is a minimum with a given moment of momentum
i.e., angular momentum]|.

The fact that this instability was taken for granted can also be seen in the work of Jeans
(1919, § 44; 1929, § 196):

Clearly the Maclaurin spheroids will be [secularly| stable up to the point at
which they meet the Jacobian ellipsoids. At this point of bifurcation they lose
their [secular| stability, and since the series of Jacobian ellipsoids turns upward
at this point, it follows that stability passes to them.*

Nevertheless, the viscosity-driven secular instability had not been rigorously proven, until
Roberts and Stewartson (1963), using perturbation analysis, showed that viscous Mac-
laurin spheroids become unstable, beyond the bifurcation point, to quadrupole f-modes
(see below) and derived a formula for the instability time scale.

On the other hand, the Dedekind ellipsoid corresponds to a lower energy and angular
momentum state than the Maclaurin spheroid with the same circulation. Now, viscosity
does not allow the transition to the Dedekind sequence, but gravitational radiation does,
because it emits angular momentum while conserving circulation (e.g., see Miller 1974
and Lai et al. 1994). In this case, as first shown by Chandrasekhar (1970), Maclaurin
spheroids suffer a gravitational-wave-driven secular instability to quadrupole f-modes,
beyond e ~ 0.81.

Quadrupole f-modes, often dubbed “bar modes”, are those for which [ = |m| = 2
and induce an ellipsoidal deformation on the star (see Fig. 1.1). As shown in Sec. 2.6,
rotation lifts the degeneracy on the azimuthal order m and, as a result, modes are split
into prograde (negative m) and retrograde (positive m), travelling with a pattern speed
o = —w/m around the star, where w is the mode eigenfrequency. In Fig. 3.3 we plot, for
a Maclaurin spheroid, the pattern speed oj, of the quadrupole f-modes, measured on the
inertial frame [see Eq. (2.6.1)] and normalised to the Kepler limit Qk, as a function of the
parameter [ (solid lines). Also shown are the angular velocity of the star (2, normalised to
the Kepler limit (dashed curve; compare to Fig. 3.2), and the line along which the pattern
speed is zero (dashed straight line). The points 85 and ;4 (dotted lines) will be explained
below.

At 8 = s we notice that the prograde (I = —m = 2) bar mode has a pattern speed
equal to the angular velocity of the star; at this point, an observer on the rotating frame
would just see a stationary ellipsoid. Thus, the prograde mode perturbs the star like a
Jacobi ellipsoid at Bs. On the other hand, the retrograde (I = m = 2) bar mode has a
pattern speed equal to zero at 5 = 5. On the inertial frame, this looks like a stationary
ellipsoid. Hence, the retrograde mode perturbs the star like a Dedekind ellipsoid at Bs. It
should have become obvious by now that this is the point of bifurcation to the Jacobi and
Dedekind sequences, which occurs at

Bs ~ 0.1375. (3.3.1)

*Jeans is referring to the fact that a Jacobi ellipsoid with the same angular momentum as a Maclaurin
spheroid can always be found beyond the bifurcation point, as seen in Fig. 3.2.
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Figure 3.3: Pattern speed oy,, measured on the inertial frame and normalised to the Kepler limit
Qk, of the quadrupole f-modes in a Maclaurin spheroid, plotted against the parameter 5 (solid
lines). Also shown are the angular velocity of the star 2 (normalised to the Kepler limit; dashed
curve) and the line along which the pattern speed is zero (dashed straight line). The points 8, and
Ba indicate the onset of the secular and dynamical instabilities respectively (dotted lines). Credit:
Andersson (2003), © IOP Publishing. Reproduced with permission. All rights reserved.

The viscosity- and gravitational-wave-driven secular instabilities set in through the pro-
grade and retrograde modes respectively. Ergo, for 8 > 5, the Maclaurin spheroid is
secularly unstable to quadrupole f-modes, due to viscous dissipation or emission of grav-
itational radiation.

A schematic of the Maclaurin sequence, bifurcating to the Jacobi and Dedekind se-
quences, can be seen in Fig. 3.4, where the equilibrium energy of the configurations is
plotted against the ratio of the equatorial radii. Also shown is the evolution of a star
towards the Dedekind sequence, due to the emission of gravitational waves. Based on
the discussion above, the star evolves along an equilibrium sequence with constant circu-
lation, until it settles on the Dedekind sequence, where it no longer emits gravitational
radiation (Lai and Shapiro 1995; see also Lai et al. 1994). Under the influence of viscosity,
the evolution would instead occur along an equilibrium sequence with constant angular
momentum, which drives the star towards the Jacobi sequence, where viscosity vanishes
(Press and Teukolsky 1973). Since the time scale of secular instabilities is much longer
than the dynamical time scale, such evolutions can be considered as quasi-static, namely,
the star evolves along an equilibrium sequence of S-type ellipsoids with constant circulation
or constant angular momentum.

So far, we have discussed the effects of viscosity and gravitational waves separately,
i.e., when only one of the two mechanisms is present. In real stars, however, they both
ought to be active. In fact, they tend to cancel each other out: viscosity damps differential
rotation in a Dedekind ellipsoid and gravitational waves are emitted by a Jacobi ellipsoid.
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Figure 3.4: Equilibrium energy E of the Maclaurin, Jacobi, and Dedekind sequences, plot-
ted against the ratio of the equatorial radii R i/Re2. The Maclaurin sequence corresponds to
Re1/Re2 = 1. The Jacobi (¢ = 0) and Dedekind (2 = 0) sequences branch off at 8 ~ 0.14.
At B ~ 0.27 the dynamical instability sets in. Also shown is a quasi-static evolution of a star,
subjected to the gravitational-wave-driven secular instability, along an equilibrium sequence of S-
type ellipsoids, where the circulation of the fluid is constant (see text). Credit: Andersson (2003),
©) IOP Publishing. Reproduced with permission. All rights reserved.

The evolution of a star where both mechanisms are involved depends on the ratio of the
time scales associated with each instability (Lindblom and Detweiler 1977; Detweiler and
Lindblom 1977; see also Lai and Shapiro 1995). When this ratio is close to unity, namely
when the two mechanisms are equally important, the Maclaurin spheroid could remain
stable up until the point where the dynamical instability occurs.

The dynamical instability is an “ordinary” fluid instability, not related to any dissipa-
tion mechanism. For Maclaurin spheroids, it sets in at e &~ 0.952887, where 02 ~ 0.440220
or

Bq ~ 0.2738. (3.3.2)

This result was first obtained by Riemann (1861), using an energy variational principle.
Later, Bryan (1889) showed that, at this point, the Maclaurin spheroid becomes dynam-
ically unstable to quadrupole f-modes. As seen in Fig. 3.3, at the point of dynamical
instability the prograde and retrograde modes merge, i.e., their eigenfrequencies on the
rotating frame are exactly opposite (they also acquire an imaginary part, not shown in
the figure).

Interestingly enough, s and S5 appear strongly independent from the equation of
state, or even the angular momentum distribution (if one considers differential rotation;
Bodenheimer and Ostriker 1973; Ostriker and Bodenheimer 1973; Lai and Shapiro 1995).
The angular velocity of uniformly rotating polytropes, as a function of the eccentricity, is
shown in Fig. 3.5, where the secular and dynamical instability points, as well as the Kepler
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Figure 3.5: Angular velocity (normalised to 1/7G(p)) vs. eccentricity, for polytropic analogues
of the Maclaurin sequence. The polytropes shown are: n = 0 (original Maclaurin spheroids; solid
line), n = 0.1 (dotted line), n = 1 (short-dashed line), n = 1.5 (long-dashed line), and n = 2.5
(dotted-dashed line). Also indicated, for each polytrope, is the Kepler limit (open circle), as well
as the secular (filled circle) and dynamical (triangle) instability points. Credit: Lai et al. (1993),
(© American Astronomical Society (AAS). Reproduced with permission.

limits, are also indicated. For an extensive review of secular and dynamical instabilities
in neutron stars, the reader is referred to Andersson (2003).

3.4* A mechanical example

Studying the circumstances under which a secular instability might take place, Jeans (1919,
§ 28; 1929, § 181) was stating that:

It [i.e., secular instability| has reference only to rotating systems or systems in
a state of steady motion.

In order to gain some insight, we can look into one of the two mechanical examples
devised by Lamb (1908; see also Jeans 1929, § 185), demonstrating the concept of secular
instability.

We assume a spherical bowl of radius a, rotating about its vertical axis with an angular
velocity €2, in the inner surface of which a particle with mass m is free to move, as shown
in Fig. 3.6. We also define a Cartesian reference frame, rotating with the bowl, with its
origin lying at the lowest point of the bowl and the z axis coinciding with the axis of
rotation. The Lagrangian £ of the particle is

1 : N 2
L= 3™m {a292 + a?sin® 0 (Q + <]5> ] —mga(l — cos @),
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Figure 3.6: Lamb’s mechanical analogue of secular instability, for a particle moving inside a
rotating bowl. Credit: Jeans (1929, § 185).

where the angle 6 is the colatitude coordinate, so that 8 = 0 corresponds to the bottom
of the bowl, as shown in Fig. 3.6, ¢ is the azimuthal coordinate, measured on the rotating
frame, with ¢ = 0 corresponding to the x axis, and ¢ is the gravitational acceleration.
From this we can obtain the equation of motion along 6, as

0+ [Z — (Q—l—(Z.))QcosG] sinf = 0.

Since 0L/0t = 0, the energy is conserved and given by

E = %ma2 [02 - (Q2 - ¢2) sin? 9} + mga(l — cosf).

We can now define the effective potential of the motion (including the effects of centrifugal
acceleration; see Sec. 2.1), as

1
Vet (0) = mga(1l — cosf) — imazﬂ2 sin? 0,

which we can use to obtain the equilibrium points for the particle, namely

dVegr
de

ma (g — a? cos 0) sinf = 0,

yielding
g
=0 or O =arccos (7a§22> .

The second solution is allowed only when

Q>./9

a
and is simply interpreted as the point where centrifugal acceleration balances gravity. The
stability of these equilibrium points can be determined via the second derivative of the
effective potential, which gives

d?Vegr 2 g
@ |, ma(g—a?) >0 N < "
and
2 2
dvgff :m<a2§22—92>>0<:>(2>\ﬁ.
dg G:arccos(ai) Q a

02
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Hence, the point Q = \/g% is a bifurcation point, where stability is exchanged between
the two equilibrium points.

Let us now introduce a small frictional force, of the form # = —k#. The equations of
motion, on the rotating Cartesian frame defined above, are then expressed as

P20y — OPr = ki — L%
a
and
i+ 200 — 0%y = —kj — 2.
a

It is convenient to define a new variable, p = x4y, so that the equations of motion above
can be cast into a single equation, namely

ﬁ+(2iQ+k)[)+(§—Q2>p:0.

If we perturb the particle slightly from its lowest equilibrium position, i.e., (z,y,2) =
(0,0,0), and seek solutions of the form p o e*, we obtain

At Aot
p=cre’t’ + coe™?,

where cq, co are constants and A, Ao are given by

1
AM:—iQiz‘\ﬁ—k [1;9\/5],
a 2 g

neglecting O (k‘2) terms. To express the solution on an inertial frame, with its axes fixed
in space, we can simply multiply p with e**. Then, the solution comprises two circular
motions, with angular frequencies wy,2 = :I:M. The counter-rotating (retrograde)
motion is always damped by friction. The corotating (prograde) motion is also damped,
unless €2 > \/g%, in which case its amplitude increases. Thus, for €2 > \/g%, the particle
is driven away from the equilibrium point and ascends the bowl, in a spiral of increasing
radius. Based on the stability analysis presented above, the particle will reach a new stable
equilibrium at z = a — g/0?.

In this mechanical example we can see how friction may induce a secular instability,
with the time scale of the amplitude growth being 74 ~ 1/k. To complete this simplistic
analogy with the viscosity-driven secular instability, it is worth noting that, at the bi-
furcation point, the angular frequency of the prograde circular motion w; is equal to the
angular velocity of the bowl §2, just like the pattern speed of the prograde bar mode equals
the angular velocity of the Maclaurin spheroid at the point of bifurcation to the Jacobi
sequence.

3.5 The CFS instability

As we saw in Sec. 3.3, quadrupole (I = m = 2) f-modes can induce a secular instability in
rotating stars, due to gravitational-wave emission (Chandrasekhar 1970). In an attempt
to derive a generic stability criterion for rotating stars, Friedman and Schutz (1978a,b)
made the astonishing discovery that, for any angular velocity €2, there is always a mode
driven unstable by gravitational radiation in an inviscid star!

The onset of the gravitational-wave-driven secular instability occurs when the retro-
grade quadrupole f-mode obtains a zero pattern speed on the inertial frame (see Fig. 3.3).
If the star rotates sufficiently fast, the mode is dragged forwards and appears as prograde
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on the inertial frame, but is still moving backwards on the rotating frame (its pattern speed
is positive, but still smaller than the angular velocity of the star). Hence, gravitational
radiation emitted by the mode carries positive angular momentum away from the star,
but the angular momentum of the retrograde mode itself is negative (the perturbed fluid
is rotating slower than the unperturbed star). As a consequence, the emission of gravita-
tional waves renders the angular momentum of the mode increasingly negative, which in
turn makes the energy of the mode grow.?

Friedman and Schutz (1978a,b) showed that this instability does not apply only to
quadrupole deformations. In fact, higher multipoles become unstable at lower rotation
rates (smaller values of 3), which implies that the instability is generic, i.e., all rotating,
inviscid stars are unstable to the emission of gravitational waves. The Chandrasekhar-
Friedman-Schutz (CFS) instability belongs to a larger class of instabilities, the rotational
dragging instabilities, occurring in the presence of i) a radiation mechanism, which deducts
angular momentum from the system, and ii) rotation, which distinguishes modes into
prograde and retrograde.

A standard way to introduce (the purely relativistic phenomenon of) gravitational
radiation in Newtonian models is by post-Newtonian analysis, where relativistic effects
are incorporated in an expansion, whose low- or high-order terms correspond to low-
or high-order deviations from Newtonian gravity (see, e.g., Thorne 1969). The power
radiated in the form of gravitational waves (GW) by a single mode can be thus expanded
in multipoles as (Thorne 1980; Lindblom et al. 1998)

d£ = — S _ 20+1 m2 mi2
<dt>GW_ > Niw(w—mQ)* (16D + (87" ?) (3.5.1)

lmin

First of all, we readily notice that the power emitted is negative (i.e., gravitational radiation
damps the mode), unless
w(w —m) <0, (3.5.2)

in which case the energy of the mode grows. The onset of the instability occurs when
w—m$ = wy, = 0, namely when the eigenfrequency of the mode on the inertial frame [see
Eq. (2.6.1)] changes sign, as anticipated from the discussion above. The angular velocity
at which this happens is called critical.

In Eq. (3.5.1), the constant N; is given by

4G (+1)(1+2)

A 2+ ) (353)

¢ being the speed of light, whereas d D" and 0J;" denote the mass and current multipole
moments respectively, which can be expressed as

oD = / rlop Yyrmdir (3.5.4)

°In the terminology of Friedman and Schutz (1978a,b), the canonical angular momentum J. of a retrograde
mode is negative and is related to its inertial-frame canonical energy E. as

Ec = UirlJc,

where o, is the mode’s pattern speed on the inertial frame. Then, considering perturbations described by
canonical displacements, E. > 0 (E. < 0) implies secular stability (instability). It can be shown that the
canonical energy of the mode on the rotating frame is given by

Ecr=E:.—QJe,

which can be used to derive Eq. (2.6.4).
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and
2

5#”:dLHU/}KMU+v&0(rxVEWﬁ&r (3.5.5)
(the Eulerian perturbations of density and velocity, dp and dv, are functions of all spatial
coordinates). Finally, the lower limit of the sum is given by [y, = max(2,|m|).

Comparing Egs. (3.5.4) and (3.5.5) to Eq. (2.4.1) we see that, in the nonrotating
limit, polar modes radiate via the mass multipoles, which are associated with density
perturbations (i.e., deformations of the star), whereas axial modes radiate via the current
multipoles, which correspond to horizontal velocity perturbations (i.e., horizontal fluid
motions inducing gravitomagnetic effects). When rotation is introduced, polar (axial)
modes also acquire axial (polar) components, in which case they radiate via both mass
and current multipoles, although mass (current) multipoles still make the most significant
contribution.

The approximate multipole formula (3.5.1) produces accurate results and converges
to the actual relativistic gravitational-wave luminosity as the compactness of the star,
estimated by GM /Rc?, decreases, namely, as relativistic effects become less significant. As
the compactness approaches typical neutron star values (& 0.2), the error of the multipole
formula grows (Balbinski and Schutz 1982). However, calculation of gravitational-wave
luminosities using a fully relativistic framework is far from trivial and many pieces of
neutron star physics are either missing or poorly understood, which often makes the use
of Newtonian and post-Newtonian models unavoidable.

Among polar modes, the [ = m f-modes are the most susceptible to the CF'S instability.
As we said before, critical rotation rates are lower for higher multipoles (e.g., see Ipser and
Lindblom 1990). However, the higher the multipole, the less efficient the gravitational-
wave emission associated with it. This is easy to understand by the fact that large values
of the degree [ and the order m imply that the stellar surface is divided into many regions
oscillating in antiphase (see Sec. 2.4), with the net deviation of the star from axisymmetry
being small (incidentally, this is the basis of the Cowling approximation; see Sec. 2.3.4).
On the other hand, a low multipole, like the quadrupole, induces a large-scale deformation
on the star, thus radiating more power in gravitational waves, but might not get unstable
at all; as subtly mentioned in Sec. 3.2, only stiff polytropes, for which n < 0.808, can
reach the point of secular instability to quadrupole f-modes before shedding mass at the
equator (James 1964).9 The high eigenfrequencies of p-modes prevent them from becoming
unstable, as opposed to g-modes, which may be unstable at quite low rotation rates, due to
their low eigenfrequencies (Lai 1999; Passamonti et al. 2009; Gaertig and Kokkotas 2009).
However, g-modes do not emit gravitational waves as efficiently as f-modes, because they
have nodes in their eigenfunctions.

On the other hand, axial modes, i.e., -modes and I = m hybrid modes, are secularly
unstable to the emission of gravitational waves at all rotation rates, namely, their critical
angular velocity is zero (Andersson 1998; Friedman and Morsink 1998)! Using Eqs. (2.4.4)
and (2.6.1), we can calculate the pattern speed of r-modes on the rotating and inertial
frames as

20
ATTY
and N
Oin = l(l n 1) [l(l + 1) — 2]

%Tn relativistic polytropes this limit becomes n < 1.3 (Stergioulas and Friedman 1998).
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respectively. Hence, r-modes are always retrograde on the rotating frame, but prograde
on the inertial frame (for [ > 2). The [ = m r-modes radiate gravitational waves more
efficiently and are the most important. For | # m hybrid modes the CFS instability
criterion (3.5.2) is not always satisfied (Lindblom and Ipser 1999; Lockitch and Friedman
1999). For a detailed review of the r-mode instability in neutron stars, the reader is
referred to Andersson and Kokkotas (2001).

Finally, a variation of the CFS instability appears for w-modes (Kokkotas et al. 2004),
which were briefly mentioned in Sec. 1.4, but are not discussed further in the present study.

3.6 The instability window

Even though the emission of gravitational waves may induce an instability in a rotating
star, viscosity acts against it, as we briefly discussed in Sec. 3.3, and tends to stabilise the
star.

Viscosity can, in general, be classified into two types: shear and bulk viscosity. Shear
viscosity is the result of momentum transport due to particle scattering in the fluid and
describes dissipation along directions which are transverse to the flow. On the other hand,
bulk viscosity is associated with dissipation during compressions and rarefactions of the
fluid, during which it is driven out of chemical equilibrium. For nuclear matter consisting
of neutrons, protons, and electrons, chemical equilibrium is established via the standard
neutron-decay and electron-capture reactions

n(+n)—=p(+n)+e +7

and
p(+n)+e” = n(+n)+ re.

Equilibrium implies that
HPn = Hp + Ue,

where p denotes the chemical potential of each species. These reactions, often referred
to as Urca processes, dissipate energy via neutrino emission, which, as opposed to shear
viscosity, cools the star down (Gamow and Schoenberg 1941; Haensel 1995).” Notice the
additional, “spectator” nucleon in these processes. This is necessary for the conservation
of energy and momentum in the degenerate neutron star matter (see, e.g., Shapiro and
Teukolsky 1983, Sec. 11.2). Such modified Urca processes (Chiu and Salpeter 1964) prevail
in the star, unless there are dense enough regions where the proton fraction (i.e., the proton
number density over the baryon number density) exceeds the critical value 1/9 (Lattimer
et al. 1991), in which case direct Urca processes (without the bystander particle) take over.

Following the procedure of Sec. 2.2, but replacing the Euler equation (2.1.2) with the
Navier-Stokes equation for a viscous fluid, one can obtain expressions for the damping of
the mode due to shear and bulk viscosity (e.g., see Ipser and Lindblom 1991).

Shear viscosity (SV) dissipates the energy of the perturbation at a rate

<dE> = —/2n5a“béa;bd3r, (3.6.1)

TAccording to Gamow, who, together with Schoenberg, introduced the term, Urca processes were named
after a casino in Rio de Janeiro, which drained gamblers’ money just like these processes drain the thermal
energy of the star (Haensel 1995)!
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where 7 is the shear viscosity coefficient and 6o is the shear tensor, which, in terms of
the contravariant components of the (Eulerian) velocity perturbation, is given by

1 2
50t = 3 <va5vb + Vot — 3g“bV06vc> , (3.6.2)

with g% denoting the spatial metric tensor and repeated (dummy) indices implying sum-
mation. For normal nuclear matter, comprising (nonsuperfluid) neutrons, (nonsupercon-
ducting) protons, and electrons, neutron collisions make the most significant contribution
to shear viscosity, in which case the parameter 7 is given by (Flowers and Itoh 1979; Cutler
and Lindblom 1987)

n=2347p"*T 2 gem s 1, (3.6.3)

where T is the stellar temperature and the density p is measured in cgs units.

If additional physics is added, shear viscosity changes accordingly. Should a solid
crust form on the neutron star, shear viscosity on the crust-core interface (Ekman layer)
is expected to provide an additional source of damping (for instance, see Bildsten and
Ushomirsky 2000, for its impact on r-modes). For temperatures below which neutrons
become superfluid and protons become superconducting (~ 10°K; e.g., see Epstein 1988,
Fig. 1) the most significant contribution to shear viscosity comes from electron scatter-
ing (Cutler and Lindblom 1987). An additional source of viscosity in the presence of
superfluidity is an effect called mutual friction, due to electron scattering off of superfluid
vortices (Lindblom and Mendell 1995). For the effects of superfluidity on the damping of
oscillations of relativistic neutron stars, see Gusakov et al. (2013). Also, for up-to-date
results about shear viscosity in neutron stars, see Shternin and Yakovlev (2008).

Bulk viscosity (BV) damps the energy of the mode as

(dE> = / Coodo*dr, (3.6.4)

where ( is the bulk viscosity coefficient and do is the expansion scalar, namely
do = V0v°. (3.6.5)

For normal nuclear matter, undergoing modified Urca processes, ¢ is given by (Sawyer
1989; Cutler et al. 1990)3

C=6x10""p?w T8 gem s (3.6.6)

Direct Urca processes lead to stronger damping (Haensel and Schaeffer 1992). For a recent
review on bulk viscosity of dense matter, see Alford et al. (2010).

Typically, the damping rate of the mode can be calculated a priori by taking viscous ef-
fects into account, i.e., by obtaining the solutions of the perturbed Navier-Stokes equation.
However, like gravitational radiation, viscosity is a secular effect in neutron star oscilla-
tions and can be thus incorporated a posteriori into the solutions of the perturbed Euler
equation (2.2.9). Assuming a time dependence for the perturbations of the form e*“~%),
with |y| < w, then the energy of the mode (2.6.4), which is a quadratic functional of the

displacement &, implies that

dE
= _9ovE 3.6.7
g = 2E (3.6.7)

8The result of Sawyer (1989) was published with a typographical error; see Lindblom (1995).
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with the growth/damping rate v including the effects of both gravitational radiation and
viscosity. Hence, v > 0 (7 < 0) signifies an unstable (stable) mode. A time scale associated
with the growth or damping of the mode can also be defined as’

T=—1/y. (3.6.8)

Making use of the formulae for the mode energy (2.6.4) and its rate of change due to
gravitational waves (3.5.1), shear viscosity (3.6.1), and bulk viscosity (3.6.4), we can obtain
an expression for the mode growth/damping rate  from Eq. (3.6.7), which depends on the
angular velocity 2 and the temperature T' of the star. This can be seen in Appendix C,
where 7 is evaluated for polar modes in the nonrotating limit. Then, solving the equation

¥ =vew +sv + v =0, (3.6.9)

we get a curve on the T'—() plane where the onset of the CFS instability occurs. This is the
instability window of the mode and can be seen in Fig. 3.7, for the quadrupole (I = m = 2),
octupole (I = m = 3), and hexadecapole (I = m = 4) f-modes of a typical neutron star
with M = 1.4 Mg and R = 10km (Mg denotes the solar mass), described by a polytropic
equation of state with a polytropic exponent I' = 2 and 3 (equivalently, with a polytropic
index n = 1 and 0.5).!% Tt is obvious that, when viscosity is taken into account, the angular
velocity where the instability sets in has a strong dependence on the temperature. As a
result, there might be modes which become unstable due to the emission of gravitational
waves, but the presence of viscosity completely suppresses the instability. Shear and bulk
viscosity dominate at temperatures below and above T' ~ 10° K respectively.

From Fig. 3.7 we see that the f-mode instability occurs at quite high rotation rates,
with the quadrupole f-mode not becoming unstable for the I' = 2 (n = 1) polytrope, as
expected (James 1964). Relativity has been shown to enhance the instability (Stergioulas
and Friedman 1998; Zink et al. 2010; Gaertig et al. 2011; see also Kriiger et al. 2010,
where differential rotation is included). The same applies to realistic equations of state,
which may lead to larger instability windows (Doneva et al. 2013). On the other hand,
the r-mode instability window is much deeper; for the quadrupole r-mode, the window
minimum lies at a few percent of the mass-shedding limit (Lindblom et al. 1998), but
increases for higher multipoles (see Andersson and Kokkotas 2001, Sec. 4.3).

Typically, the size of the instability window increases with the mass of the star (see,
e.g., Ipser and Lindblom 1991, Lindblom 1995, and Yoshida and Eriguchi 1995). As
briefly mentioned in Sec. 1.4, the most promising sources of the f-mode instability are
supramassive neutron stars, namely, rotating stars with a mass larger than the maximum
allowed mass of their nonrotating counterparts (see Sec. 1.3), which are supported by their
fast rotation against gravitational collapse (Cook et al. 1992, 1994). The origin of these
stars is discussed in Sec. 5.4. In such configurations, the f-mode instability can achieve
very short growth time scales (Doneva et al. 2015). This is shown in Fig. 3.8, where
the gravitational-wave growth time scale of the quadrupole (I = m = 2) and octupole
(I = m = 3) f-modes, defined as 7w = —1/vgw, is plotted against the (gravitational)
mass M and the parameter 3, for a neutron star described by the WFF2 equation of state
(Wiringa et al. 1988). From this plot, we see that the growth time scale due to gravitational
waves depends sensitively on the mass, decreasing by orders of magnitude as the mass

9Traditionally in the literature a negative damping time scale implies an unstable mode, e.g., see Ipser
and Lindblom (1991; note that, in this paper, the damping times presented in Table 2 are erroneous, with
the correct ones given in Lindblom 1995).

0T hese instability windows were not produced using the slow-rotation approximation described in Sec. 2.6.2,
because it does not suffice for the f-mode instability to develop (see Sec. 5.1.1).



1.000 100 ~s
0.995
i 098}
0.990 F
x r i
g 0.985j 096 —_— l=m=2
¢ ’ l=m=3
0.980 [ ==
t [ — [=m=4
I 0.94 - l=m
0975 i
0.970 -
; 092
L 1 L L 1 | L 1 L L 1 P L M B | L M B | L M B |
2x108 5x108 1x10° 2x10° 5x10° 5x107 1x10° 5x108 1x10° 5x10° 1x10'°
T(K) T(K)
(a)I'=2 (b)I'=3

Figure 3.7: Instability windows of the quadrupole (I = m = 2), octupole (I = m = 3), and hexadecapole (I = m = 4) f-modes, for a polytropic star with
M = 1.4 Mg and R = 10km, with a polytropic exponent (a) I' = 2 and (b) I' = 3. The angular velocity is normalised to the Kepler limit Qx. The I' = 2
polytrope is too soft for the quadrupole f-mode to become unstable (James 1964).
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Figure 3.8: Contour plots of the gravitational-wave growth time scale for the quadrupole (I =
m = 2) and octupole (I = m = 3) f-modes, vs. the (gravitational) mass M (normalised to the solar
mass M) and the parameter 3, for a neutron star described by the WFF2 equation of state (EOS).
Also shown are the Kepler limit, the gravitational-collapse limit (BH-limit), and the evolution of a
star with a baryon mass M, = 3 Mg, as it emits gravitational waves (dashed line; see text). Credit:
Doneva et al. (2015).

increases. Also shown in the graph are the Kepler limit, the gravitational-collapse limit
(where centrifugal acceleration on the star is not enough to prevent gravitational collapse
to a black hole), and the evolution of a gravitationally radiating star with a baryon mass
My = 3 My, which is defined as the sum of the masses of the star’s constituent particles
—as opposed to the gravitational mass M, where the (negative) gravitational binding
energy is added (see, e.g., Haensel et al. 2007, Sec. 6.2).






Chapter 4

Mode coupling;:
Quadratic perturbation scheme

In Chapter 2 we established a linear perturbation formalism, in order to describe the
oscillation modes of a star. However, as seen in Chapter 3, unstable modes may grow to
large amplitudes, at which the linear approximation is no longer accurate; higher-order
perturbative terms are bound to play an important role in the amplitude evolution, since
they introduce mode coupling. The result of this nonlinear interaction of the unstable
mode with other modes is the eventual saturation of the unstable mode’s amplitude.

As in previous work about the saturation of the r-mode instability (Schenk et al. 2001;
Morsink 2002; Arras et al. 2003; Brink et al. 2004b,a, 2005; Bondarescu et al. 2007, 2009),
we will consider quadratic perturbations and study their effects on the evolution of the f-
mode, mainly following the pioneering work of Dziembowski (1982; see also the follow-up
studies by Dziembowski and Krolikowska 1985 and Dziembowski et al. 1988). Research on
mode coupling in stellar oscillations can be traced back to Vandakurov (1979), although
it had been already introduced in the study of plasma waves (see, e.g., Stenflo et al. 1970,
Wilhelmsson et al. 1970, Verheest 1976, and Anderson 1976). Ever since, the subject
has attracted the attention of many investigators (among others, Takeuti and Aikawa
1981, Aikawa 1983, Buchler 1983, Buchler and Regev 1983, Dziembowski and Kovécs
1984, Aikawa 1984, Dappen and Perdang 1985, Buchler and Kovacs 1986b,a, Kumar and
Goldreich 1989, Verheest 1990, 1993, Wu and Goldreich 2001, Nowakowski 2005, and
Passamonti et al. 2007; see also the reviews by Dziembowski 1993 and Smolec 2014).

The process we will follow is similar to that of Chapter 2 for linear perturbations, but
now we are also going to consider quadratic terms to define the perturbations (Sec. 4.1).
We will show that, in the quadratic-perturbation approximation, modes couple in triplets,
which satisfy a resonance condition (Sec. 4.2). Coupling of an unstable mode to other
(stable) modes of the star can lead to the saturation of the unstable mode’s amplitude,
through a mechanism known as parametric resonance instability (Sec. 4.3). For the satur-
ation to be successful, some stability conditions, which determine the amplitude evolution
of the coupled triplet, have to be satisfied (Sec. 4.4), with some interesting behaviours
occurring throughout the parameter space, like limit cycles, chaotic orbits, and frequency
synchronisation.

Even higher than second-order terms could, in principle, be important at large os-
cillation amplitudes, but the complexity of the formulation and the requirements of our
problem allow us to choose simplicity over accuracy. Work that also includes cubic nonlin-
earities can be found in Buchler and Goupil (1984), Van Hoolst and Smeyers (1993), and
Van Hoolst (1994b,a). Also, for a more general investigation of systems with quadratic
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and cubic nonlinearities, the reader is referred to Nayfeh and Mook (1979, Chapter 6).

4.1 Quadratic perturbation formalism

In order to derive the equation of motion for quadratic perturbations, we have to follow
the procedure of Sec. 2.2, used for the derivation of the equation of motion for linear
perturbations (2.2.9), except that now we also want to retain second-order perturbative
terms.

We decompose the Eulerian perturbation of a quantity f, given by Eq. (2.2.1), as

of =b1f +daf, (4.1.1)

where the subscripts 1 and 2 denote first- and second-order perturbative terms respectively.
The Lagrangian perturbation of f, defined by Eq. (2.2.2), can be decomposed accordingly
and is related to the Eulerian, to quadratic order in &, as

A =610 + (6 V)f +af + (€ V)5 f + 36 [(€ V) V] (412)

[compare with Eq. (2.2.3)].
Perturbing the fluid equations (2.1.1)—(2.1.4) about their equilibrium, to quadratic
order, we obtain

D6
an + V- (pv) + V- (51pv) = 0, (4.1.3)
1 1
v +(v-V)v+2Q xv= _Vop 4] <> Vp — 61 <> Véip — Vi, (4.1.4)
ot P p P
V25® = 4nGép, (4.1.5)
and
A Ap 1 ar Ap\?
Lo 2P -+ ( : > (1/)) ; (4.1.6)
p p 2 Olnp/ , P

where we set v = dv (since we work on the rotating frame, the background velocity is
zero). In the perturbed equation of state (4.1.6), u corresponds to entropy or composition
and is assumed to be constant in a perturbed fluid element (Au =~ 0; see Sec. 2.2), whereas
the adiabatic exponent I'y is given by Eq. (2.2.8). Studies where nonadiabatic effects are
also considered can be found in Buchler and Goupil (1984) and Van Hoolst (1994a).

Following Dziembowski (1982), we will use the velocity v instead of the displacement
& to describe the perturbation. The equation of motion for quadratic perturbations can
then be written in the form

v+ B(W) +C(v) + N =0, (4.1.7)

where

B(v) =2Q xv (4.1.8)

o } 361]) B @aélp 8(51‘13
C(v)—pV <8t > 2o +VI1=Z5 ) (4.1.9)

and
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whereas quadratic terms are collectively denoted by N/, which, in terms of first-order
quantities, is given by

_9 v-v d1p (51P)2
N_at[v( ; )—vx(va) AR - R

TN (AL B RV GRS
dlnp /,

+ Vpp (v-V) (5;;)) + GV U V/(S“O,r)d?’r’} . (4.1.10)

+;V |[V-'v{£-V(pF1)+pF1

The details of the derivation of the equations above can be found in Appendix D.1.
With the help of Eq. (2.6.2), we may now expand the velocity in terms of the eigen-
modes of the star, i.e.,

t) = iwa [Qa(t)€a(r)e" — QL& (r)e "] (4.1.11)
Starting with the linear terms in Eq. (4.1.7), we get
QCY w <€on ) —zwat’ (4112)

where b, is given by Eq. (2.6.3). This is the equation of motion for the amplitude of the
mode, Q,. If quadratic terms are ignored (or, equivalently, if the perturbation is small),
then the amplitude Q, is constant. However, as we will see, a nonzero N couples the
mode denoted by a with other modes, leading to an energy exchange between them.

By further replacing Eq. (4.1.11) in N, we obtain

ZZ[ aﬂ'yQBQV l waerBerﬂ{) aﬁ’yQBQv Z( Wa—wg+wy )t

+FapyQpQie T et sl L B QEQrel T we T st (4.1.13)

where F' denotes the coupling coefficient, which is generally given by

Fopy = <Ea7N(£ﬂ7£ ))- (4.1.14)

Borrowing the notation of Schenk et al. (2001), a bar over an index means that the
corresponding mode eigenfunction in N has to be complex conjugated and its eigen-
frequency sign reversed. The derivation of the amplitude equation of motion can be
found in Appendix D.2, where an explicit formula for the coupling coefficient is also given
[Eq. (D.2.10)].

4.2 Resonant mode coupling

4.2.1 Coupled triplet equations of motion

Observing Eq. (4.1.13), we see that modes couple in triplets, which is a natural con-
sequence of the quadratic-perturbation approximation. This does not, however, restrict
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the number of couplings for a single mode; if a mode couples to a pair of other modes, it
can simultaneously couple to other pairs as well. Also, one can notice that not all terms
of Eq. (4.1.13) are equally significant. Rapidly varying terms do not contribute much
on long-term dynamics and average to zero, as opposed to slowly oscillating components
(see Dziembowski 1982). Hence, couplings which ultimately affect the mode amplitude
evolution ought to satisfy a resonance condition, e.g.,

Wo = wg + wy + Aw, (4.2.1)
where Aw is a small detuning (Aw < wg, k = «, (3,7); this is shown in Sec. 4.2.2, with

the help of the multiscale method. Assuming such a relation between the mode eigenfre-
quencies, we can single out a resonant mode triplet as

s iFa —iAw
Qo= 7 QpQe 8, (4.2.2a)
s iF5a * 1Aw
Qs = 2 QF Que™, (4.2.2b)
bs
2 iFa_ * _1Aw
Q, = bV % QuQhei ™, (4.2.2¢)
Y

From the derivation of Egs. (4.2.2) we see that, in such resonant mode couplings,
nonlinear effects develop on a secular time scale, which is large compared to the dynamical
time scale associated with mode eigenfrequencies.! As we discussed in Chapter 3, the same
applies to mechanisms like gravitational waves and viscosity, which usually damp the mode,
but may also drive it unstable, by increasing its amplitude. Hence, assuming that these
mechanisms act on the same (secular) time scale with nonlinear effects (see Sec. 4.2.2),
they can be incorporated manually in Eqgs. (4.2.2) as

: iH —tAw
Qo = YaQa + 7-QsQye Awt (4.2.3a)
: M, 1Aw
Qs =730 + 3~ Qac At (4.2.3b)
- iH * _iAw
Qy =@y + TQaQﬁe At (4.2.3¢c)
Y

where v represents the linear growth/damping rate of the mode due to gravitational
radiation and viscosity, and is given by Eq. (3.6.7). Furthermore, we replaced the coupling
coefficients with H = Fo3y = Fg5a = F,45; this has been shown by various authors (e.g.,
Buchler and Regev 1983), and was explicitly proven by Dziembowski (1982) for coupling
coefficients of polar modes in the nonrotating limit. This proof is outlined in Appendix E.

Nonresonant mode coupling has also been considered by various studies (e.g., Buchler
and Kovacs 1986a and Verheest 1990, 1993), but second-order amplitude terms make no

contribution in this case and nonlinear coupling is introduced at third-order.

n fact, this was explicitly assumed in a previous step, namely during the derivation of Eq. (4.1.12) in
Appendix D.2 [Eq. (D.2.6)]. Had we not made this assumption, the amplitude equation of motion would
be given by the more general Eq. (D.2.5). However, since only resonant triplets contribute to the amplitude
evolution, it is, in retrospect, valid.
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4.2.2* The multiscale method

Let us assume that we have an ordinary differential equation which includes a small para-
meter e. We write the solution to this equation in the form of an asymptotic series, in the
sense that

y(t) = > yn(t)e™.
n=0

In the beginning of the evolution, when ¢ is small, low-order terms dominate the solution.
However, as t grows larger, the contribution of higher-order terms cannot be neglected.
These terms are usually called secular, because their effects become important (compared
to low-order terms) at later stages of the evolution. This behaviour appears, for example,
in a damped harmonic oscillator, where the zeroth-order solution is simply an undamped
harmonic oscillation, with the damping effects occurring at higher orders.

The multiscale method (see, for instance, Nayfeh and Mook 1979, Sec. 2.3.3) is a way
to capture such higher-order effects from secular terms and make them appear in the low-
order terms. As a result, the low-order approximation of the solution would be valid on
secular time scales.

We define the time scales T,, = €™t and rewrite the asymptotic solution, so that

0o
y(t) — E yn(T(), T, Ts,.. .)en.

n=0

In other words, we let the terms of the series depend on more than one time scale. As
we will see, this allows us to “eliminate” secular effects from higher-order terms, thus
preventing these terms from becoming significant.

We are going to use this method, in order to study Eqs. (4.2.3). First, we remove the
exponential time dependence by setting Cj, = Qre™*! (k = «, 3,7) and the equations of
motion are written as

@—m@:%@+%%q, (4.2.4a)

Cp —iwgCg = v3C3 + TCWCO" (4.2.4b)
B

Cy —iw,Cy =v,Cy + b—CaC’B. (4.2.4¢)
Y

Now, we seek solutions of the form
_ .~ 2(2) 3
C = eCy(To, Th) + €2C,7 (To, Th) + O (€7),

where Ty = t and 17 = €t. Time derivatives then become

d 0 d7y, o 0 0

it oT, T amor  oTy  ‘omy

Replacing the solutions in Eqs. (4.2.4) and distinguishing between O(e) and O(e?) terms,
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we get
aacjoii) — iwaCél) =0,
a;,é:) - iwgCél) o,
Eﬁ) iw, G = 0,
and
8807%11) + agg) — iwaC® = 5,00 + 2’1’;[0[(31)0”(/1)7
8807%11) * (fTéj - iwﬂc,g) = %CE) + ?;0;“@97
68(;'1%1) n aigij'%z) — iy O = 4,00 4 ZZZ[C’S)CE(D,

respectively, where we also set v, = €9k, so that growth/damping and nonlinear terms
appear in the same order.
The first-order equations have simple solutions of the form

CiV Ty, Ty) = Ap(T1)e™ ™, (4.2.5)

which we substitute to the second-order equations, to get

ac? dA.\ iH 4

a 2 _ (x4 - o iwaTo i(wg+wy)To
T, twaCy; <fyaAa T, ) e + T AgAye V)50, (4.2.6a)
ac'? dA . i H .

B . (2) N P - 75 iwgTy t * i(wa—w~)To
T, iwpCy (75/1@ o ) e - b ArAqe v)To, (4.2.6b)
30'(72) . 2 N dA iwn Ty, VH % i(wa—ws)Ti
T it CF) = (%AW - dTZ) e To 4 aAaAﬁe (Wa—wp)To, (4.2.6¢)

As we mentioned earlier, the whole point of the multiscale method is to transfer long-term
effects from high- to low-order terms. In this case, we want to prevent the second-order

(2)

terms of the solution, C’k2 , from growing and becoming important. To accomplish this,
we have to eliminate the so-called secular terms. In the case of Egs. (4.2.6), terms that
include the factor e*70 have to vanish, because they produce secular terms, causing the
solution to grow in time.

Nonresonant case

If there is no resonance of the form w, ~ wg + w, between the modes, then the conditions
for the elimination of secular terms from Eqs. (4.2.6) are

dAyg

ks
ar, ek
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or
Ay T
Ak — ark-e k 17

which makes the first-order solutions (4.2.5)
Cr = eC,il) + O(€?) = eae te™rt 4 O(e?),
or, in terms of the original variables Q,
Qr = eape ' + O(?). (4.2.7)
Equation (4.2.7) shows that, if there is no resonance between the modes, their amplitudes
grow or decrease with time, depending on the sign of .
Resonant case

If a resonance of the form w, = wg + wy + Aw exists (Aw being a small detuning), then
the second terms on the right-hand sides of Eqs. (4.2.6) also contribute in the production
of secular terms in the solution. Then, the secular-term elimination conditions become

dAa A ZH —iAOT

dTl = ’YOZAOZ + EA'BA’YB s (428&)
dAdg | TH AGT

—2 =AgA —AX A e 4.2.
AT YpAp + by e (4.2.8b)
d4, iH x IAGTY

a7 Ay + b, AqAge ; (4.2.8¢)

where we set Aw = eA®. From Egs. (4.2.8) we obtain our original system (4.2.3).

4.2.3 Coupling selection rules

As we already mentioned, the three modes forming the coupled network have to obey a
resonance condition, given by Eq. (4.2.1). The structure of the coupling coefficient imposes
two more conditions, which have to be met in order for coupling to occur.

As shown in Appendix E.2, the angular dependence of the zeroth-order component
(with respect to rotation) of the coupling coefficient has the form

Zogy = / YY5Y, sin 0d6dg, (4.2.9)

where

Y, = YZT"
This integral is proportional to the Clebsch-Gordan coefficients [see Eq. (E.2.10)| and is
nonzero if

Mo = Mg+ m, (4.2.10)
and
li =1 + 1 —2A, (4.2.11)
where
;i >1; >0, and A=0,1,... Apax < %,

with the indices i, j, k taking the values «, 3,7, so that mode ¢ has the largest degree and
mode k has the lowest. Equations (4.2.10) and (4.2.11) constitute the selection rules which
the coupled mode triplet has to satisfy and restrict the search for possible couplings.?

*Equations (4.2.10) and (4.2.11) were derived for the coupling coefficient in the nonrotating limit, in which
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4.2.4 Mode normalisation

As discussed in Secs. 2.3.7 and 2.6.1, the amplitudes ) depend on mode normalisation.
We normalise the modes according to Eq. (2.6.5), by fixing their energy at unit amplitude
to some constant value Epi. Then, Eqs. (4.2.3) can be written as

: . H .

Qa = 'YOzQa + ZwaEi_tQBQ’ye ZAWta (42123)
unit

Qs = 15Qp + ZwaE ~Q3Qac et (4.2.12b)
unrt

Qy = 1@~ + szE ~Qa Qe (4.2.12¢)
unit

From this form of the amplitude equations of motion it is easier to see that the coupling
coeflficient ‘H has units of energy.

The value of the coupling coefficient is also normalisation-dependent. Since the energy
of a mode on the rotating frame, given by Eq. (2.6.6), should be normalisation-independent,
Egs. (4.2.12) may be cast into the alternative form

o = YaQu + iwa H Q3Q, e A%t (4.2.13a)
Q5 = 7595 + iwsH Q7 Que™ ", (4.2.13b)
Q, =17y +iw,H Qa Qe it (4.2.13c)
where
1/2
Q; = QB
and
_H
Evit

which are normalisation-independent quantities. Thus, for a different normalisation choice

E! i, the amplitudes are rescaled according to Eq. (2.6.7) and the coupling coefficient
transforms as 3/2
/ El
lad :< “mt> . (4.2.14)
H Eunlt

Finally, based on the above and Eq. (2.6.6), the energy of the coupled triplet is given

by
E=) Bp=FEumi) Q" =) 1%, (4.2.15)
k k k
with & = o, 8,7.

4.3 Parametric resonance instability

Having derived the amplitude equations of motion for a resonant coupled triplet (4.2.12),
we may now focus on the case where one of the modes (say, mode «) is unstable. Our goal

case each mode is described by a single spherical harmonic, thus reducing the angular part of the coupling
coefficient to the simple integral (4.2.9). However, they should also be valid when rotation is included, as
elegantly shown by Schenk et al. (2001), who also derived some additional, albeit less general, selection rules.
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is to check whether coupling of the unstable mode to other modes in the star can stop its
growth.

Let us assume that the unstable, or parent, mode (v, > 0) couples to two stable,
or daughter, modes (v~ < 0). From the amplitude equations of motion (4.2.12) we see
that, in the beginning of the evolution, when the amplitudes are small, linear terms dom-
inate: the amplitude of the parent grows and the amplitudes of the daughters decrease.
At some point, nonlinear terms catch up and eventually dominate, thus increasing the
daughters’ amplitudes. Such an interaction between the modes is an example of a para-
metric resonance instability, i.e., an instability which can occur when the parameters of
an oscillator vary in time (see, for example, Landau and Lifshitz 1969, § 27).%* The onset
of the parametric instability occurs when the parent exceeds a certain amplitude, called
the parametric instability threshold (PIT), given by

1 (’VBA-:}%Y] . (4.3.1)

The derivation of Eq. (4.3.1) can be found in Appendix F.1.
Ignoring nonlinear effects in the beginning of the evolution, parent growth is described
by Qo = Yala, which means that the parametric instability threshold is crossed at

2
’QPITF —_ VB8V~ Eunit
WpW~ 7‘[2

Qprr }

.00 (4.3.2)

1 |:
TPIT =— — In
Ve

where Q,(0) is the parent’s initial amplitude. This is of order the growth time scale of
the unstable mode, |7,| = 1/7, [see Eq. (3.6.8)].

The evolution of the parametrically resonant triplet, after the parametric instability
threshold is crossed, is characterised by a constant energy exchange between the three
modes (see Fig. 4.2a, but ignore the details for now). When the daughters’ amplitudes
become large enough, the nonlinear term dominates the parent’s evolution, causing a drop
in its amplitude. As a result, the daughters’ nonlinear terms shrink, with their linear
terms taking the lead again. Now, the daughters’ amplitudes decrease, which means
that so does the parent’s nonlinear term. Consequently, the linear term dominates the
parent’s evolution once more and its amplitude increases. This process repeats itself, until
some kind of equilibrium is established (as we will see in Sec. 4.4.2, this is not the only
possibility).

As shown in Appendix F.2, the amplitude equations of motion (4.2.12) admit such an
equilibrium solution, which is given by

2
1+ (22)
~

3Simple examples of parametric instability are pendula in which the length of the string is being varied
periodically or the point of support oscillates vertically.

*The word “instability”, used to describe the phenomenon of parametric resonance, may cause some con-
fusion, because, so far, we were only referring to stability or instability due to the presence of some damping
or growth mechanism, like viscosity and/or gravitational radiation (see Secs. 3.5 and 3.6). The parametric
resonance discussed here is a consequence of the resonant nonlinear coupling of an unstable mode to two
stable modes, resulting in the growth of the latter and, thus, inducing an instability. Hence, to avoid any con-
fusion, we will use phrases like “parametrically unstable”, when referring to modes undergoing the parametric
resonance instability.

8% B
|Qa’2: B Yy unit
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where
Y =Ya + 75 + - (4.3.4)

Notice that, for |yg 4+ vy| > 7a, the equilibrium amplitude of the unstable mode (4.3.3a)
coincides with the parametric instability threshold (4.3.1).

4.4 Saturation

4.4.1 Stability conditions

The existence of the equilibrium solution (4.3.3) implies that the two stable (daughter)
modes can potentially halt the growth of the unstable (parent) mode, making it saturate
at a finite amplitude, given by Eq. (4.3.3a). However, the equilibrium need not always be
stable, i.e., saturation may not always be successful.

Performing a linear stability analysis of Egs. (4.2.12), which is presented in Ap-
pendix F.3, we find that the equilibrium solution (4.3.3) is stable if

178 + 1] > a (4.4.1)
and
2 Aw\?
3{(G+6 -1 G- 6P +2G+6)+ 1] 006} (22)
2 2 Aw) ?
+{G+6 =D |G =6+ G+ ) +2] - 1266, } (7)
—(Cp+ G — 1)° = 2058, > 0, (4.4.2)
where
By = —By/ Ve (4.4.3)

which are the relative damping rates of the daughters, and ~ is defined in Eq. (4.3.4).
We can obtain a simpler expression for Eq. (4.4.2) in the following cases:

a) (g =¢C =¢
When the damping rates of the daughters 3, are the same, Eqs. (4.4.1) and (4.4.2) give
1 3
¢ > +2*[ ~1.37 (4.4.4)
and )
2¢° —2¢+1
2 2
(1 -2 4.4.5
> S0 (1.45)
where

A= Aw/vq. (4.4.6)
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The asymptotic behaviour of A, for large (, is
|A| > 2¢ — 1. (4.4.7)
It is interesting to note that Eq. (4.4.4) imposes a stronger constraint on ¢ than Eq. (4.4.1).

b) ( =0
If the damping rate of one of the daughters is negligible, Egs. (4.4.1) and (4.4.2) yield

g >1 (4.4.8)
and
1+¢3 2 |C5—C5+1
A? > —752 + - % (1-— Cﬁ)z. (4.4.9)
3(1+¢)° 3V (¢g+1)
The asymptotic behaviour of A, for large (s, is
—2

4] > (4.4.10)

7

Cases (a) and (b), along with the general conditions given by Eqgs. (4.4.1) and (4.4.2),
are plotted in Fig. 4.1. Since the same arguments apply to both positive and negative
values of the detuning Aw, we only consider the case Aw > 0. The two stability conditions
(4.4.1) and (4.4.2) [or, equivalently, (4.4.4) and (4.4.5) for case (a), and (4.4.8) and (4.4.9)
for case (b)] show that i) the damping rates of the daughters vz, should be larger (in
absolute value) than the growth rate of the parent 7,, and ii) the resonance detuning Aw
must have a lower limit, depending on the growth/damping rates of the triplet.

4.4.2 Possible evolutions

The impact of the stability conditions, given by Egs. (4.4.1) and (4.4.2), on the para-
metrically resonant system (4.2.12) has been studied by various authors (e.g., Wersinger
et al. 1980b,a, and Dimant 2000; see also Ott 1981), who discovered interesting behaviours
throughout the parameter space.

When both conditions are satisfied, the equilibrium solution for the triplet amplitudes
(4.3.3) is stable, i.e., the triplet amplitudes converge around their equilibrium solution and
saturation is successful, as seen in Fig. 4.2a.

The significance of Eq. (4.4.1) is fairly easy to see: the daughters have to dissipate the
incoming energy from the parent faster than the parent grows. Otherwise, the parent’s
amplitude keeps growing (at a rate lower than +, ), dragging the daughters along as it does
so. The three modes diverge from their equilibria, by constantly exchanging energy at an
increasing frequency, and saturation fails (Fig. 4.2b). The energy of the system (4.2.15)
grows at a rate

d
En D Q) Bunic = Y 27k| Qx| Bunit, (4.4.11)
k K

with k = «, 8, [for the derivation of Eq. (4.4.11), see Appendix F.2].

On the other hand, Eq. (4.4.2) poses a surprising constraint, by demanding that the
detuning have a lower limit. When this condition is not satisfied [but Eq. (4.4.1) is|, a
rich variety of evolutions can occur, depending on the values of the parameters. Growing
solutions may still appear for small values of the damping rates or the detuning (Fig. 4.2¢),
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but bounded evolutions dominate throughout the rest of the parameter space. Wersinger
et al. (1980b,a) report the appearance of limit cycles, with periods® ranging from 1 to
32, as well as chaotic orbits, where the amplitudes of the modes oscillate around their
equilibrium values. In these cases, saturation is considered “quasi-successful” (Fig. 4.2,
bottom panel).

The simplest case, of a limit cycle with period 1, was more thoroughly examined by
Moskalik (1985; see also Moskalik 1986) and is shown in Fig. 4.2d. The time scale of the
modulation is of order the growth time scale of the parent mode |7,| [see Eq. (3.6.8)] and
its peak-to-peak depth mainly depends on the ratio |A/(], for a triplet with two identical
daughters [case (a) in Sec. 4.4.1]. The modulation is larger when |A/(| is small, i.e.,
when 1) the three modes are close to resonance (Aw = 7,4 ~ 0), or ii) the daughters
are strongly damped. The latter may sound unexpected, but, as seen from Egs. (4.2.12),
large daughter damping rates “delay” the nonlinear terms from becoming significant, thus
allowing the parent to reach higher amplitude values. This characteristic probably explains
why triplets with small detunings need to also have small daughter damping rates in order
to successfully saturate (see Fig. 4.1).

4.4.3* Frequency synchronisation

From the discussion in Secs. 4.4.1 and 4.4.2 we see that the detuning Aw of the resonant
triplet affects the evolution of the system in a notable manner. Interestingly enough
though, this mismatch between the mode eigenfrequencies is compensated by nonlinear
effects. Applying a procedure presented in detail in Appendix F.2, we split the complex
amplitude @)} into its real amplitude and phase components, as

Qr = |Qxle*,

with & = «, 8,7. Incorporating the phase in the harmonic time dependence of the mode,
we get

£, ei(wkt+19k)’

suggesting that the eigenfrequency wj of the mode is shifted, due to nonlinear coupling,
to

W, = wy, + Dy, (4.4.12)
where the shift 9, is given by
: H |QaQsQ|
Y = w Cos , 4.4.13
g kEunit |Qk’2 4 ( )

with
o =10q — V5 — Uy + Awt.

As shown in Appendix F.2, equilibrium implies that ¢ = 0, or
Wy, = wpy + wl,. (4.4.14)

This has been referred to as frequency synchronisation (Aikawa 1984) or phase lock (Dziem-
bowski and Kovécs 1984), and is an anticipated effect of nonlinear resonance.
Replacing equilibrium values in Eq. (4.4.13), we find that the shifted eigenfrequency is

Aw
Wy, = Wi, — ] = (4.4.15)

’A cycle with period n intersects the Poincaré section n times (Wersinger et al. 1980b,a).
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(a) (b)

Figure 4.1: (a) A vs. ( = (3 = (,. The stability condition (4.4.5) is satisfied inside the shaded area. The two asymptotes at ¢ ~ 1.37 [Eq. (4.4.4)] and
A =2(—1 [Eq. (4.4.7)] are also shown (dashed lines). A global minimum occurs at (1.77,3.73). (b) A vs. (g, with (; — 0. The stability conditions
(4.4.8) and (4.4.9) are satisfied inside the shaded area. The asymptote at A = ({5 — 2) /v/3 [Eq. (4.4.10)] is also shown, along with the limit (5 = 1 posed
by Eq. (4.4.8) (dashed lines). (c) A vs. (g vs. (,. The stability conditions (4.4.1) and (4.4.2) are satisfied inside the region that lies above the plotted
surface. The thick lines correspond to cases (a) and (b).
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Figure 4.2: Evolution of a parametrically resonant triplet with two identical daughters [case (a) in Sec. 4.4.1]. Horizontal solid lines denote the equilibrium
amplitudes of the modes (4.3.3), whereas the horizontal and vertical dashed lines indicate the parametric instability threshold (4.3.1) and the time it is
crossed by the parent (4.3.2) respectively. Top panel: (a) Successful saturation, with both stability conditions (4.4.4) and (4.4.5) satisfied (¢ = 5, A = 20).
(b) Unsuccessful saturation, with condition (4.4.4) being false (¢ = 1/3, A = 10/3). (c) Unsuccessful saturation, with condition (4.4.5) being false
(¢ =4, A=0.1). Bottom panel: Quasi-successful saturation, with condition (4.4.5) being false. (d) Limit cycle of period 1 (( =5, A =5). (e) Limit cycle
of period 2 (¢ = 12, A = 2). (f) Chaotic motion (¢ =15, A =2).
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Figure 4.3: Evolution of the shifted (due to nonlinear coupling) mode eigenfrequencies towards
nonlinear resonance, for the triplet of Fig. 4.2a. Horizontal lines denote the eigenfrequencies of
the linear system and the vertical dashed line indicates the time when the parametric instability
threshold is crossed by the parent. Credit: Pnigouras and Kokkotas (2016).

where v is given by Eq. (4.3.4). It should be noted that Eqs. (4.4.14) and (4.4.15) are
valid only in the case of successful saturation, when the mode amplitudes are constants.’
The evolution of the shifted mode eigenfrequencies towards nonlinear resonance is shown
in Fig. 4.3, for the triplet of Fig. 4.2a.

%In principle, they could also apply to the quasi-stable equilibria discussed in Sec. 4.4.2, as average-value
relations (Moskalik 1985).






Chapter 5

Results

As opposed to the linear perturbation scheme, presented in Chapter 2, which gives rise to
the oscillation spectrum of the star, quadratic perturbations form networks of interacting,
resonantly coupled, mode triplets, which can potentially saturate unstable modes by means
of the parametric resonance instability mechanism, as shown in Chapter 4. Building on the
foundations laid in these chapters, we are going to investigate the saturation of f-modes,
driven unstable by the emission of gravitational waves via the CFS mechanism, as seen in
Chapter 3, in neutron stars modelled as Newtonian polytropes.

After setting up the problem at hand (Sec. 5.1), we derive some helpful approximate
relations for the parametric instability threshold (Sec. 5.2), used later during the discussion
of the results. We will present results both for typical (Sec. 5.3) and supramassive (Sec. 5.4)
neutron stars, for various polytropic and adiabatic exponents. In each section, we review
the evolution of the instability and discuss the results. We also present estimations about
the contribution of the f-mode instability to the stochastic gravitational-wave background,
both from typical and supramassive neutron stars (Sec. 5.5). Finally, we review the studies
on the saturation of the r-mode instability via mode coupling and compare them to our
results (Sec. 5.6).

5.1 Setup

We can obtain the saturation amplitude of an unstable f-mode, for a specific temperature
T and angular velocity ) of the star, by following these steps:

1. Calculate mode eigenfrequencies w and eigenfunctions &. We first obtain the modes
in the nonrotating limit (Sec. 2.3) and then find first- and second-order rotational cor-
rections to the eigenfrequencies, using the slow-rotation approximation (Sec. 2.6.2).
Due to their simple spherical harmonic dependence, eigenfunctions are only evalu-
ated in the nonrotating limit. Our study focuses on polar modes, with degrees [ < 11
and overtones n < 10.

2. Calculate mode growth/damping rates 7, due to the effects of gravitational waves,
shear viscosity, and bulk viscosity (Secs. 3.5 and 3.6).

3. Find all possible couplings among the unstable [ = m = 2,3,4 f-modes and the
rest of the polar modes considered (Sec. 4.2). Calculate their parametric instability
thresholds (Sec. 4.3).

4. Locate the triplet with the lowest parametric instability threshold and check whether
saturation is successful (Sec. 4.4).

73
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Repeating this for a grid of (T, Q2) pairs, we get the unstable mode’s saturation amplitude
throughout the instability window (Sec. 3.6). Below in this section we are going to review
every step in more detail.

5.1.1*% Eigenfrequencies and eigenfunctions

As described in Sec. 2.6.2, we use the slow-rotation approximation in order to determine
the mode eigenfrequencies. The main reason for this is that we want as many modes as
possible to be available for coupling, and solving Eq. (2.2.12) for the exact eigenfrequencies
and eigenfunctions of a rotating star can be very cumbersome, if one wants to obtain many
modes. Details about the validity of this approximation are discussed below.

All polar modes with degrees [ < 11 and overtones n < 10 are acquired in the non-
rotating limit, by solving the boundary value problem defined by Egs. (2.3.16)—(2.3.18)
and (2.3.24)—(2.3.27) [or Egs. (2.3.33)—(2.3.36) and (2.3.43)—(2.3.46)], using a shooting-to-
a-fitting-point method (Press et al. 1992, Sec. 17.2; 1996, Chapter B17). Higher overtones
and multipoles were harder to obtain, due to numerical issues. Whether these modes are
enough is going to be addressed in retrospect, in Sec. 5.3.3.

Subsequently, the eigenfrequencies are corrected due to rotation as

w=w® 4 mC1Q+ 53)92 +O(0%), (5.1.1)
w©) being the eigenfrequency in the nonrotating limit, whereas C; and Cy are parameters
that depend on the equation of state and mode properties. Although we do calculate the
rotationally corrected (to first order) eigenfunctions [¢ = £€© + ¢ + ©O(Q?)] in order
to obtain Cy (see Appendix B.2), we are using the nonrotating solutions & ©) to evaluate
the various mode quantities, like growth/damping rates and coupling coefficients (more
details about this are discussed later on in this section).

Higher than second-order corrections to the eigenfrequencies should become important
at large angular velocities of the star. In fact, O(Q2?) corrections for g-modes are divergent
as their overtone increases (i.e., as w® — 0). As we saw in Sec. 2.6.2, the parameter
Cy can be decomposed as X + m?Y and, for g-modes with increasing [ and n, X — 1
and Y — 0 (see Fig. 2.5). So, in this case, second-order corrections scale as 1/w(®). This
behaviour seems to be independent from the (polytropic) equation of state in use.

The validity of the slow-rotation approximation for g-modes can be seen in much detail
in Ballot et al. (2010; see also Ballot et al. 2012), where simulations were performed for
a I' = 4/3 polytrope and rotational corrections up to third order were calculated.! Then,
the corrected eigenfrequencies were compared to the “exact” ones, obtained from complete
simulations. What they found is that second-order corrections are satisfactory for the high-
frequency g-modes (low overtones), but even third-order corrections are insufficient for the
low-frequency ones. They attribute this result to the fact that, in the subinertial regime
(w < 29), the modes acquire a mixed gravito-inertial character (see Unno et al. 1989,
Chapter VI), which significantly changes their propagation zone (Dintrans and Rieutord
2000), a property which is not considered by perturbative methods.

Similar calculations for p-modes have also been performed by Ligniéres et al. (2006)
and Reese et al. (2006), where it was shown that the slow-rotation approximation, even at
third-order, fails at relatively low rotation rates. However, p-modes reside at a frequency
range which is too high for our resonance condition (4.2.1) to be satisfied. As thoroughly

'Based on the results given there, we cannot verify the behaviour of Fig. 2.5 for the I' = 4/3 polytrope,
because they only consider low-degree modes.
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explained in Sec. 4.2, nonlinear coupling is relevant for the amplitude evolution only if the
parent mode eigenfrequency w, nearly equals the daughter mode eigenfrequencies wg +
wy. As a result, only modes with eigenfrequencies lower than the f-mode eigenfrequency
can become suitable daughters, hence g-modes and CFS-stable f-modes (more than 1500
modes in our study).

Given the approximations we have applied, we immediately see that the couplings
among the modes can significantly change if we consider their “correct” eigenfrequencies
and eigenfunctions. A daughter pair that resonates with the parent in the slow-rotation
approximation might not do so in the complete solution. Furthermore, the strength of the
various couplings should be affected by the form of the eigenfunctions, which, at the large
rotation rates considered here, are expected to differ from their nonrotating counterparts
(e.g., see Kastaun et al. 2010). However, the nature of the problem is such that a precise
evaluation of the coupled triplet network is not the important point. What we are looking
for is a low-order estimation of the value of the lowest parametric instability threshold,
around which the parent saturates (Sec. 4.3). Since the daughter pair responsible for the
saturation of the parent is chosen from a “sea” of available modes, this a highly statistical
process, from which the triplet that minimizes Eq. (4.3.1) is always picked. Besides, even
if we could have used the exact eigenfrequency and eigenfunction solutions, we would, at
best, have calculated the correct couplings of a very simple neutron star model, rife with
other simplifications and approximations.

While the slow-rotation approximation is used for daughter modes, the same cannot
be done for parent modes. The f-mode instability becomes active at large angular velo-
cities, close to the Kepler limit Qk (Secs. 3.2 and 3.6) and, as a result, even second-order
rotational corrections do not suffice for the f-modes to become unstable. To fix this,
we manually introduced “higher-order” corrections to their eigenfrequencies, based on the
exact solutions provided in Ipser and Lindblom (1990)? —alternatively, one could use
the empirical eigenfrequency relations in Doneva et al. (2013) and Doneva and Kokkotas
(2015).

We should note that, in principle, coupling of the f-mode to inertial modes (Secs. 2.4.2
and 2.4.3) can be possible, as it is not forbidden by any coupling selection rule (Schenk et al.
2001). The main reason we only considered polar modes is that the coupling coefficient for
polar mode coupling has a relatively simple, known form, which was derived in Appendix E
[Eq. (E.3.16)]. By considering a stratified or finite-temperature star, where I' # T'; (see
Sec. 2.4), we get the low-frequency modes that will play the role of daughter modes, i.e.,
g-modes (we take the simplest case, where I'y ~ const.). We could have cases where
an r-mode is one of the daughter modes but, since r-modes are purely axial (to zeroth
order in 2) in stars with nonzero buoyancy, this would make the coupling less efficient. If
the coupling coefficient were evaluated to higher orders in €2, coupling to r-modes could
become significant. Had we considered a zero-buoyancy star, where I' = I'y, then no g-
modes would be present —more precisely, they would become trivial (see Sec. 2.4.3). In
this case, the daughters would have to be CFS-stable f-modes and generalised r-modes.
The latter have both polar and axial components in the nonrotating limit, which could
make them more suitable daughters than the purely axial r-modes, but would also require
modifications in the form of the coupling coefficient, accounting for the additional axial
components of the daughters.

As briefly mentioned before though, g-modes are also driven by rotation, together
with buoyancy, in rotating stars (Dintrans and Rieutord 2000; Yoshida and Lee 2000) and

In particular, we introduced third- and fourth-order terms in Eq. (5.1.1), so that parent mode eigenfre-
quencies fit the curves and values given in Figs. 2-4 and Table 1 of Ipser and Lindblom (1990).
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have been shown to approach the hybrid rotational modes of zero-buoyancy stars for large
angular velocities (Passamonti 2009; Passamonti et al. 2009; Gaertig and Kokkotas 2009).
Given that the f-mode instability operates at high rotation rates, this suggests that either
studying zero- or nonzero-buoyancy stars would not affect the coupling, since, for both
cases, all the daughter modes (except for the CFS-stable f-modes) would be of the inertial
type. In practice, however, the slow-rotation approximation that we use does not take
into account this inertial-led behaviour of g-modes, even though their eigenfrequencies are
dominated by the correction terms, for large €.

5.1.2*% Growth/damping rates

For the growth (v > 0) or damping (y < 0) rates of the modes, defined in Eq. (3.6.7),
we consider the basic mechanisms for the dissipation of fluid oscillations, of a neutron
star consisting of normal nuclear matter, namely, (nonsuperfluid) neutrons, (nonsuper-
conducting) protons, and electrons. These are gravitational waves (GW), shear viscosity
(SV), and bulk viscosity (BV; Secs. 3.5 and 3.6), the contributions of which are given by
Egs. (3.5.1), (3.6.1), and (3.6.4), respectively.

The growth/damping rates due to the mechanisms above are evaluated, for polar
modes in the nonrotating limit, in Appendix C. Since the CFS instability arises only
when rotation is present and, specifically, when the inertial-frame eigenfrequency of the
mode changes sign [Eq. (3.5.2)], the factor w(w — mQ) in Eq. (3.5.1) is calculated using
the rotationally corrected eigenfrequencies. On the other hand, use of the rotationally
corrected eigenfunctions would spoil the direct spherical harmonic dependence of the mode,
making the evaluation of the various integrals harder to follow.

Hence, only vqw changes with €2, whereas vy and gy depend solely on the temper-
ature, scaling as T2 and T° respectively. The instability window of the mode can then
be obtained by solving Eq. (3.6.9), which, based on the above, is simplified as

109K
T

6
109K> YBV (T = 109 K) = O,

2
yaw (2) + ( ) Yov (T = 10°K) + (
where the damping rates due to shear and bulk viscosity need only be evaluated once for
(say) T = 10° K. Then, for a chosen value of 2, the equation above can be easily solved

as a quartic equation for T72.

5.1.3* Couplings

Having calculated all the quantities associated with every mode, namely, eigenfrequen-
cies, eigenfunctions, and growth/damping rates, we proceed with finding all the possible
couplings among unstable f-modes and the rest of the polar modes considered (Sec. 4.2).
We choose the | = m = 2,3,4 f-modes to be the parent modes, because they have the
best “instability window size/growth time scale” ratio among all the unstable polar modes
(Secs. 3.5 and 3.6).

We subject all the possible parent-daughter-daughter triplets to a screening process,
using the coupling selection rules as criteria (Sec. 4.2.3). Although the selection rules for
the orders m and the degrees [ are either satisfied or not, there is an inherent freedom
in the resonance condition (4.2.1), stemming from the detuning parameter Aw. Thus,
we define a cut-off parameter Aw .y such that, if |[Aw| < Awpax, then the modes are
considered resonant. The actual value of this parameter is chosen after a few trial runs,
so that the triplets with the lowest parametric instability thresholds (see Sec. 5.1.4 below)
do not change by further increasing it.
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Then, we proceed with the calculation of the coupling coefficient H for every coupled
triplet. We are evaluating the coupling coefficient in the nonrotating limit, with rotational
corrections taken into account only through the eigenfrequencies, as derived in Appendix E
[Eq. (E.3.16)|. The angular dependence of the coupling coefficient is thus reduced to the
simple spherical harmonic integral (4.2.9), which does not happen if one considers the
rotationally corrected eigenfunctions instead.

We have now obtained all the parameters needed to calculate every coupled triplet’s
parametric instability threshold [Eq. (4.3.1)].

5.1.4 Saturation

As we saw in Sec. 4.2, a tacit consequence of quadratic nonlinearities is that modes couple
in triplets. This means that individual couplings consist of three modes only, with the
daughter modes impeding the growth of the parent mode, via the parametric resonance
instability mechanism (Sec. 4.3). Of course, the same parent can couple to more than
one pairs of daughters. However, not all couplings become important. Remember that,
until the parametric instability threshold is crossed [Egs. (4.3.1) and (4.3.2)], the parent
does not really “feel” the presence of the daughters. Since each coupled triplet has its own
threshold, only the couplings with the lowest thresholds will affect the parent’s evolution,
because they will be crossed first.

Thus, for the last step, all the coupled triplets are sorted in ascending order, according
to their parametric instability thresholds. Starting with the triplet that has the lowest
threshold, we can examine whether it leads to saturation or not (Sec. 4.4.1), by examining
the validity of the stability conditions (4.4.1) and (4.4.2), which may be roughly approx-
imated as

78 + 7] R (5.1.2)

and
AW 2 o+ 75+ 71l (5.1.3)

If these conditions are met for the daughter pair with the lowest parametric instability
threshold, the triplet’s amplitudes successfully converge towards their equilibrium solution
(4.3.3) and saturate (Fig. 4.2a). If not, the daughter pair with the second lowest threshold
is checked, and so on, until the first stable equilibrium is found. The lowest parametric
instability threshold that leads to successful saturation will be called stable and approx-
imately equals the parent’s saturation amplitude [compare Eq. (4.3.1) to Eq. (4.3.3a), in
conjunction with the stability condition (4.4.1)].

* The rigorous approach

In Sec. 4.4.1, where the stability conditions (4.4.1) and (4.4.2) were presented, we con-
sidered the special cases a) v = 7, and b) /74 — 0, for which the complicated form of
Eq. (4.4.2) is simplified. There, we saw that the stability condition (4.4.2) places a lower
limit on the detuning, and may also impose a stronger constraint on the growth/damping
rates than the stability condition (4.4.1). This is expressed by the approximate relations
(5.1.2) and (5.1.3) above, which, from now on, will be referenced, instead of the exact ones
(4.4.1) and (4.4.2), because it will thus be more clear whether we refer to the constraint
on the growth/damping rates or the one on the detuning.

Usually, in our study, the triplet with the lowest parametric instability threshold does
satisfy the stability conditions (5.1.2) and (5.1.3), i.e., the lowest threshold is usually
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stable. In the few cases when it is not, however, the iterating process described before,
used to locate the lowest stable threshold, can be defective.

In Sec. 4.4.2 we saw the impact of the stability conditions on the evolution of the para-
metrically resonant triplet. If Eq. (5.1.2) is violated, saturation cannot be achieved; the
daughters do not dissipate the incoming energy from the parent quickly enough and, con-
sequently, the three modes grow and diverge from their equilibrium solution (Fig. 4.2b).
However, the parent now grows at a rate lower than ,, due to the presence of the daugh-
ters. If another unstable threshold is crossed next, the growth rate will be reduced even
more by the newly excited daughter pair, and so on, until the parent’s growth rate ap-
proaches zero and the parent saturates. Additionally, since the daughters grow together
with the parent, they should excite more modes themselves (daughter-daughter couplings),
thus speeding up the saturation process, because the energy available to the parent is
distributed to even more modes. Hence, in this alternative scenario, saturation can be
achieved even by daughters that do not satisfy the stability condition (5.1.2).

The same behaviour may also occur if condition (5.1.3) is false (Fig. 4.2c), but the
most frequent outcome in this case is a state of quasi-successful saturation, where the
modes oscillate around their equilibrium solution (Fig. 4.2, bottom panel). Thus, since
this condition is not, in most cases, necessary for the system to saturate, one may ask why
did we always take it into account.

With the exception of certain cases [e.g., cases (a) and (b) above|, the approximate
relations (5.1.2) and (5.1.3) are hard to disentangle from the more general stability condi-
tion (4.4.2). Whenever the latter is violated, it is not easy to systematically check if this
happens because of small daughter damping rates or a low detuning. The only secure way
to determine whether saturation is achieved at the lowest parametric instability threshold
is to solve the equations of motion (4.2.12) and inspect the result, like we did in Fig. 4.2.
However, our goal is to calculate the saturation amplitude throughout the instability win-
dow, which means that we would have to integrate Eqs. (4.2.12) for the lowest threshold
of every single (7,) pair (up to ~ 2600 grid points for some models). This is beyond
the scope of our approach, but also quite unnecessary, because, in their vast majority,
the lowest thresholds are stable. As we shall see in Sec. 5.6, this does not happen for the
couplings of the unstable r-mode.

5.2 Approximate relations for the parametric instability
threshold

For later use, we are going to examine the parametric instability threshold (4.3.1) for two
limiting cases:

1. One daughter mode is damped much more quickly than the other.

2. The daughter modes are equally damped.
For each case, we will further consider two additional limits:

a. The detuning approximately equals the daughters’ damping rates.

b. The detuning is much larger than the daughters’ damping rates.

The limit in which the detuning is much smaller than the daughters’ damping rates is
inconsistent with the stability condition (5.1.3).

’Based on the discussion in Sec. 5.1.4, one could also consider this limit, because it usually leads to quasi-
successful saturation, but the parametric instability threshold approximation for this case differs at most by
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L. [vs| > |7l
If one daughter’s damping rate is much larger than the other’s, Eq. (4.3.1) becomes

|Qprrl” ~ ZZZ:%; 1+ (%)2 (5.2.1)
We then take the two subcases:
la. |Aw| =~ |vg]
|Qprr|* ~ Qm%, (5.2.2)
1b. [Aw| > |7
|Qprr|? ~ f;;fﬂi b;%;“. (5.2.3)

The case |Aw| ~ |7, | is skipped, because this would mean |Aw| < |y3|, thus violating the
stability condition (5.1.3).*

2. =,

In cases when the daughter damping rates are the same, Eq. (4.3.1) becomes

|Qprr|? ~ o;iE;‘[;t + (;;)2 (5.2.4)
The two subcases additionally give:
2a. |Aw| ~ |y
Qprr|* ~ iﬁ%, (5.2.5)
2b. [Aw| > |ys)
Qpir]* ~ 4ﬁ:Z’YEE“21t (5.2.6)

5.3 Typical neutron stars

5.3.1 Instability evolution

The f-mode instability is expected to be important in newborn neutron stars (Sec. 1.4).
After a core-collapse supernova explosion, a very hot (T ~ 10! K) proto-neutron star is
formed (Burrows and Lattimer 1986; Burrows 1990), which subsequently cools down due
to neutrino emission, powered by Urca processes (Sec. 3.6; for a review on neutron star
evolution, the reader is referred to Prakash et al. 2001). Depending on its angular velocity,

a factor of 2 with case (a).
Cf. Footnote 3.
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the star might enter the f-mode instability window. For the Newtonian polytropes that
we use, this means that we require initial angular velocities Q@ > 0.9 Qg (see Fig. 3.7),
which, as we discussed in Sec. 1.4, are theoretically feasible.

As soon as the star enters the instability window, the unstable mode grows exponen-
tially until it saturates. Shear viscosity, triggered by the oscillation, heats up the star and
balances neutrino cooling, establishing thermal equilibrium.® Gravitational waves emitted
from the perturbed star carry off angular momentum and the star descends the instability
window along a thermal equilibrium curve (7" & const.), until it finally exits the window.
This process applies to both the f-mode (Passamonti et al. 2013) and the r-mode instabil-
ity (Owen et al. 1998; Bondarescu et al. 2009; for the r-mode instability in strange stars,
see also Andersson et al. 2002).

The saturation amplitude of the unstable f-mode determines the gravitational wave
strain associated with the perturbation. The detectability of the signal also depends on
the competition of the f-mode instability with other spin-down mechanisms, such as the -
mode instability and magnetic braking: should the r-mode saturation amplitude be larger
than (or even comparable to) the f-mode one, or the magnetic field be greater than some
critical value, then one or both of these mechanisms will dominate the spin evolution of
the neutron star (Passamonti et al. 2013).

5.3.2 Models

To study the f-mode saturation, we applied the quadratic perturbation scheme, presented
in Chapter 4, in polytropic stars. We used two polytropic configurations, with polytropic
exponents I' = 2 and 3, and varied the adiabatic exponent I';, leading to stronger or
weaker buoyancy effects (the smaller the difference between I'y and I', the closer to zero
g-mode eigenfrequencies are pushed in the nonrotating limit, see Sec. 2.4.1). Because of
the complications described in Sec. 5.1.1 regarding g-mode eigenfrequencies, models in
which I'y — I was very small exhibited divergent behaviour and were thus ignored.

The results for three models are presented in Figs. 5.1-5.3, where we plot the lowest
stable parametric instability threshold (& saturation amplitude, see Sec. 5.1.4) throughout
the instability window. In the first two models, I' = 2, and I'; = 2.2 and 2.1, whereas in
the third one I' = 3 and I'y = 3.1. The unstable f-modes we consider are the quadrupole
(I = m = 2), the octupole (I = m = 3), and the hexadecapole (I = m = 4). All three of
these modes become unstable in the I' = 3 polytrope, but only the last two in the I' = 2
polytrope (see Secs. 3.5 and 3.6).

In all three models we consider typical neutron stars, with M ~ 1.4 M, and R ~ 10 km,
where Mg is the solar mass. The exact parameters of the models are presented in Table 5.1.
The normalisation used is Fy = Mc? (c being the speed of light), which is the mode
energy at unit amplitude (E = |Q|?> Euit; Sec. 2.6.1).

In addition, a hypothetical (based on the results of Passamonti et al. 2013) evolution
of a star inside the instability window of the octupole f-mode, together with the variation
of the mode’s saturation amplitude, can be seen in Fig. 5.4.

5.3.3 Discussion

Two main features can be observed in Figs. 5.1-5.3: a) the decrease of the saturation
amplitude from the edge to the interior of the instability window, and b) horizontal bands

As opposed to shear viscosity, bulk viscosity cools down the star by neutrino emission. However, its
contribution to the star’s cooling is negligible (Passamonti et al. 2013).
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Table 5.1: Typical neutron star models, used for the calculation of the f-mode saturation amp-
litude. The following parameters are presented in the table, by column: mass M, radius R,
polytropic exponent I', adiabatic exponent I'y, polytropic constant K, and central density p..

M(My) R(km) T' T K (gr'Pem®1s72)  p. (grem™?)
1.378 101 2 22 4.34481 x 10* 2.08697 x 101°
1.378 101 2 21 4.34481 x 10* 2.08697 x 101®
1.354 100 3 3.1 6.26042 x 10~ 1.18038 x 10%°

where the amplitude behaves differently from the “background” —although the bands
themselves also follow the modulation of the first feature.

a) First feature

The first feature can be clearly seen in Fig. 5.1, where the second feature is absent. This
decline of the saturation amplitude can easily be explained if one looks at the coupling
spectrum, i.e., the daughter pairs responsible for the saturation of the parent throughout
the instability window (see Appendix G, where the coupling spectrum of the octupole
f-mode is presented, for the model with I' = 3 and I'; = 3.1).

As a rule, we have two types of daughter pairs: either a CFS-stable f-mode and a
g-mode (f-g coupling) or two g-modes (g-g coupling). Depending on the coupling type
and the daughters’ parameters, we can simplify the formula for the parametric instability
threshold (4.3.1), as shown in Sec. 5.2.

In the case of f-g couplings, which is the most common, the f-mode damping rate 3
is much larger (in absolute value) than the g-mode damping rate v,. Then, Eq. (4.3.1)
is approximated by Eq. (5.2.2) or (5.2.3). Since the f-mode damping is mainly due to
gravitational waves, it does not change much with temperature, which makes it roughly
constant for some angular velocity 2. On the other hand, for this type of coupling, the
g-mode daughter is predominantly damped by viscosity. From Egs. (5.2.2) and (5.2.3),
this means that

771, T<10°K
|Qprr| o< {/|7y| { T3 T ~ 100K for Q = const. (5.3.1)

In other words, along an ) = const. line, the saturation amplitude follows the behaviour
of the g-mode daughter damping rate.® The temperature dependence in Eq. (5.3.1) is a
result of shear and bulk viscosity, dominating the damping at low and high temperatures,
and scaling as T~2 and T, respectively (see Sec. 3.6).

When a g-g coupling prevails, the relation between the daughters’ damping rates can
vary. If gravitational waves dominate the damping for one of them, everything is reduced
to the f-g coupling case. This happens when one of them is a low g-mode multipole. If
viscosity dominates for both, it is better to start with the observation that the detuning
is usually much larger (in absolute value) than the damping rates. Then, the relevant
approximate formulae for the parametric instability threshold are Egs. (5.2.3) and (5.2.6).
Both equations show that the saturation amplitude should not change along constant-
angular-velocity lines. This is obvious in Eq. (5.2.6), but can also be seen in Eq. (5.2.3),
because |Qprr| < \/7y/75 and the damping rates follow the same temperature scaling.
Nevertheless, this situation is not observed much (see paragraph d below).

5The daughters’ damping rates yg and «, are the only quantities in Eq. (4.3.1) that can change along a
constant-angular-velocity line.
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Figure 5.1: Contour plot of the lowest stable parametric instability threshold (PIT) inside the
instability window of the | = m = 2 f-mode, for a typical neutron star with M ~ 1.4 My and
R ~ 10km. The angular velocity 2, normalised to the Kepler limit {2k, is drawn on the vertical
axis, and the (decimal) logarithm of the temperature T on the horizontal axis. The star is described
by a polytrope with a polytropic exponent I' = 3 and an adiabatic exponent I'y = 3.1. The mode
amplitude is given by the relation |Q| = \/E/Euit, with Egg = Mc2. Credit: Pnigouras and
Kokkotas (2016).

b) Second feature

For the second feature to be understood, we need to look at constant temperature lines
instead. The difficulty here is that all quantities that appear in Eq. (4.3.1) change as 2
is varied. This makes the modulation of the saturation amplitude along a T' = const. line
harder to follow.

Looking at the coupling spectrum, we see that the same daughter pair is usually
responsible for the saturation of the parent along an ) = const. line. After all, this is
the basis of the reasoning that led to Eq. (5.3.1). This is no longer true along constant
temperature lines: the daughter pair which gives the lowest stable parametric instability
threshold may change many times. Occasionally, this change might be abrupt, making the
saturation amplitude higher or lower, compared to neighbouring angular velocities. As
a result, these characteristic horizontal bands appear, which, however, individually still
follow the behaviour of the first feature.

Although the effect is highly statistical, given the number of variables and available
modes, we can single out two main reasons for it: The first is the occurrence of a very fine
resonance between the parent and some daughter pair, which only appears for a specific
angular velocity. Such a resonance has a very low detuning |Aw|, which can lead to the
drop of the saturation amplitude. The second, less frequent, reason is related to the
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Figure 5.2: Contour plots of the lowest stable parametric instability threshold (PIT) inside the instability window of the [ = m = 3 f-mode, for a typical
neutron star with M =~ 1.4 My and R = 10km. The angular velocity €2, normalised to the Kepler limit Q, is drawn on the vertical axis, and the (decimal)
logarithm of the temperature T' on the horizontal axis. The star is described by a polytrope with a polytropic exponent I' = 2, and an adiabatic exponent
I'; = 2.2 and 2.1, as well as a polytrope with I' = 3 and I'; = 3.1. The mode amplitude is given by the relation |Q| = \/E/Eunit, With Eyy = Mc?. Credit:
Pnigouras and Kokkotas (2016).
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Figure 5.3: Contour plots of the lowest stable parametric instability threshold (PIT) inside the instability window of the I = m = 4 f-mode, for a typical
neutron star with M =~ 1.4 My and R = 10km. The angular velocity €2, normalised to the Kepler limit Q, is drawn on the vertical axis, and the (decimal)
logarithm of the temperature T' on the horizontal axis. The star is described by a polytrope with a polytropic exponent I' = 2, and an adiabatic exponent
I'; = 2.2 and 2.1, as well as a polytrope with I' = 3 and I'; = 3.1. The mode amplitude is given by the relation |Q| = \/E/Eunit, With Eyy = Mc?. Credit:
Pnigouras and Kokkotas (2016).
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Figure 5.4: Hypothetical evolution of a typical neutron star with M ~ 1.4 My and R ~ 10km, through the instability window of the [ = m = 3 f-mode
(left), and the corresponding evolution of the lowest stable parametric instability threshold (PIT; right). In the left (right) graph, the angular velocity
Q, normalised to the Kepler limit Qx, is drawn on the vertical (top horizontal) axis, and the logarithm of the temperature T' on the horizontal (bottom
horizontal) axis. The star obeys a polytropic equation of state with a polytropic exponent I' = 3 and an adiabatic exponent I'y = 3.1. In this example,
the star enters the window during its cooling phase, rotating at its maximum angular velocity, until thermal equilibrium is established (indicated by the
vertical dashed line), at which point it descends the window at 7' = 10? K (Passamonti et al. 2013). Credit: Pnigouras and Kokkotas (2016).
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validity of the stability conditions (5.1.2) and (5.1.3). If the saturating triplet satisfies one
of these conditions marginally for some value of the angular velocity, it will not be long
before it cannot saturate the parent any more, and some other daughter pair will take its
place.

¢)* Varying the adiabatic exponent

As mentioned before, using different values for the difference between the adiabatic and
polytropic exponents, I'y — I', shifts the nonrotating-limit g-mode eigenfrequencies closer
to or further away from the f-mode eigenfrequency (the latter depends mainly on I'" and
is highly unaffected by any change in I'j, see Table 2.1 and Fig. 2.2). However, since we
are interested in fast-rotating stars, rotational corrections to g-mode eigenfrequencies will
prevail, causing g-modes to become rotationally-driven, rather than buoyancy-driven (see
Sec. 5.1.1).

Consequently, fast-rotating models with different adiabatic exponents (but the same
polytropic exponent) should be nearly indistinguishable —at least as far as f- and g-modes
are concerned. This means that the couplings and the saturation amplitudes should not
change much if a different value of I'; is chosen for some polytrope. This can indeed be
seen, to some extent, in Figs. 5.2 and 5.3. In practice, however, as discussed in Sec. 5.1.1,
g-modes do not exhibit inertial behaviour in the slow-rotation approximation. Hence, in
principle, there should be differences in the results if one considers coupling to inertial
modes; for instance, the inertial mode damping rates reported by Lockitch and Friedman
(1999) are larger (in absolute value) than our g-mode damping rates, which, according to
Eq. (5.3.1), should systematically increase the saturation amplitude.

d) Is the number of modes enough?

In our models, we searched for couplings of unstable f-modes to more than 1500 polar
modes and obtained many triplets with fine resonances, meaning that our frequency spec-
trum was dense enough for the parent to always resonate with daughter pairs. These fine
resonances could probably become even finer and/or more frequent, had we included more
modes in the calculation. However, a small detuning alone does not necessarily lead to
smaller amplitudes. This can be seen in many g-g couplings, where even though better
resonances were achieved compared to f-g couplings, the latter were much more abundant
in the coupling spectrum (see paragraph a above). This shows that triplets with larger
detunings might give the lowest parametric instability thresholds instead, depending on
how their parameters are tuned and which of the cases shown in Sec. 5.2 they fall under.

5.4 Supramassive neutron stars

5.4.1 Instability evolution

In Secs. 1.4 and 3.6 we discussed supramassive neutron stars as promising sources of the f-
mode instability. These are stars whose mass exceeds the maximum mass allowed by their
equation of state in the nonrotating limit (see Sec. 1.3) and are supported against gravit-
ational collapse by their rapid rotation (Cook et al. 1992, 1994).” According to Fig. 3.8,
the growth time scale of the mode |[Eq. (3.6.8)] due to the emission of gravitational waves,
|Taw/|, can be as short as 10 — 100s for M > 2.4 M, increasing by orders of magnitude as

"If the star is differentially rotating, it may be able to support even larger masses (Baumgarte et al. 2000).
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M<1.5Mmax M<Mmax A

Magnetar Stable magnetar

supported by

rotation

M>1.5Mmax M>Mmax
Unstable magnetar

Mmax = maximum allowed NS mass

Figure 5.5: Illustration of the “magnetar model” for SGRBs. A possible outcome of the binary
neutron star (NS) merger is a rapidly rotating neutron star, powering the afterglow emission. The
remnant spins down and, depending on its mass, either remains stable, with the emission decaying
slowly, or collapses to a black hole (BH), with the emission ending abruptly. Credit: Rowlinson
(2013).

the mass of the star is decreased, thus rendering such configurations prospective targets
for gravitational-wave-asteroseismology studies.

Supramassive neutron stars are often associated with short ~-ray bursts (SGRBs),
namely, ~y-ray bursts (GRBs) with short durations (~ 1s) and hard (i.e., high-energy)
spectra. It is generally believed that GRBs originate from the coalescence of compact
binaries (either neutron-star binaries or neutron-star—black-hole binaries; see Lee and
Ramirez-Ruiz 2007 for a review), leading to the formation of a neutron star or a black hole.
Observations show that many SGRBs are accompanied by a persistent X-ray afterglow
emission, thus indicating the presence of a long-lived central engine, with the X-ray light
curve featuring a plateau, which may be followed by a shallow or a steep decay (see Rowl-
inson et al. 2013, Fig. 8). According to a popular scenario, the former could be attributed
to the spin-down of a stable neutron star and the latter to the gravitational collapse of
a supramassive neutron star (Rowlinson et al. 2013; Rowlinson 2013; cf. also Ciolfi and
Siegel 2015 and Rezzolla and Kumar 2015). This is illustrated in Fig. 5.5.

The formation of a rapidly rotating neutron star has long been associated with GRBs
(Duncan and Thompson 1992; Usov 1992; Dai and Lu 1998; Zhang and Mészéaros 2001).
As suggested above, supramassive post-merger neutron star remnants could be formed
shortly after the binary coalescence (see also Fryer et al. 2015, as well as simulations
by Duez et al. 2006, Hotokezaka et al. 2013, and Kastaun and Galeazzi 2015). If the
massive remnant rotates rapidly enough, it will not promptly collapse to a black hole,
but will remain stable until some spin-down mechanism drains its angular momentum and
gravitational collapse can no longer be halted. Other possible formation channels include
an accretion-induced collapse of a white dwarf (Usov 1992), as well as the “collapsar”
model (MacFadyen et al. 2001; see also Woosley 1993 and Heger et al. 2003), where a
weak supernova explosion is followed by fallback of material on the newly formed proto-
neutron star, inducing gravitational collapse.

Recent studies suggest that these objects may remain stable for up to ~ 4 x 10*s (Ravi
and Lasky 2014), which is enough time for the f-mode instability to develop. After the
initial differentially rotating and cooling phase, the star might enter the instability window
and follow a path similar to the one described in Sec. 5.3.1 for typical neutron stars, but,



88

Results

aLIGO

S/N

S/N : aLIGO

10 T LRI | T LR | T TorTTTTTT
| WFF2 M,=2.9 ]
It a’ =10°, I=m=2
8_ ———A_._‘..-.\‘ sat _
T d =20 Mpc
——aLIGO 1
¢ LAPRM,=3.2 RN ——ET ]
poiidin : ,
----- .. \
Te 1

4 | WFF2 M,=3.0

2 b J
0 P | L1 11
1012 1013 1014 1015
B

10 HREARRLLY | LR | LELRALY | LA | MR LLLRRALL | LELAALLL

[ WEF2 M= 2.9 o, =10, I=m=2
Pl A N N d =20 Mpc 4

3 ——aLIGO
AN ——FET

¢ LAPRM =32 ]

4 LWFF2 M= 3.0

-
(04

sat

[Mc?]

100

80

60

40

20

100

80

60

S/N : Einstein Telescope

S/IN : Einstein Telescope

Figure 5.6: Signal-to-noise ratio (S/N) of a gravitational-wave signal emitted by the | = m = 2
f-mode, plotted both for second- and third-generation detectors, like Advanced LIGO (aLIGO; left
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models used have baryon masses M;, ~ 3 My and are described by the WFF2 and APR equations
of state. The distance to the sources is d = 20 Mpc and the assumed saturation energy (normalised
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since the window for a supramassive star is much larger, the star may collapse to a black
hole before it exits the window (Doneva et al. 2015; for an alternative scenario, where
gravitational waves originate from a magnetic-field-induced deformation of the star, see
Dall’Osso et al. 2015).

As in the case of typical neutron stars, the saturation amplitude of the unstable f-mode
determines whether the associated gravitational-wave signal can be detected, based on the
competition among the f-mode instability, the r-mode instability, and magnetic braking
(Doneva et al. 2015). This can be seen in Fig. 5.6, where we plot the signal-to-noise ratio
(e.g., see Owen et al. 1998) of a gravitational-wave signal emitted by the | = m = 2
f-mode, for second- and third-generation detectors, vs. the dipole component of the
magnetic field on the stellar surface and the saturation amplitude of the [ = m = 2 r-mode.
The graphs were made for relativistic supramassive neutron stars, under the Cowling
approximation (Sec. 2.3.4), with baryon masses M, ~ 3 M, (see Sec. 3.6), governed by
the WFF2 (Wiringa et al. 1988) and APR (Akmal et al. 1998) equations of state. The
assumed distance to the sources is d = 20 Mpc and the saturation amplitude of the f-mode
is taken equal to 1073, meaning a saturation energy E = 1079 Euit, where Byt = Mc2.

5.4.2 Models

The main complication regarding the application of our formalism in supramassive stars
is that they do not admit a Newtonian limit (Cook et al. 1992). Hence, we applied the
quadratic perturbation scheme, presented in Chapter 4, in configurations which emulate
supramassive stars, namely in Newtonian models with artificially large masses.

We considered a star with M = 2.5 M, and R = 12km, obeying a polytropic equation
of state with a polytropic exponent I' = 3, and an adiabatic exponent I'y = 3.2 and 3.1.
In order to achieve the instability growth time scales of Doneva et al. (2015), shown in
Fig. 3.8, we also had to manually enhance the Kepler limit of our models, thus allowing
for rotation rates beyond the Newtonian value of the mass-shedding limit [roughly given
by Eq. (3.2.1)]. This way, the factor w(w — mf2), appearing in the gravitational-wave
growth rate formula (3.5.1), can obtain smaller values,® leading to shorter growth time
scales. These time scales cannot be obtained legitimately by our Newtonian polytropes,
because the models used in Doneva et al. (2015) are relativistic (employing the Cowling
approximation) and governed by realistic equations of state. The exact parameters of our
models are shown in Table 5.2.

Given the assumptions above and the simplicity of our approach, our models should
be merely considered as toy models, used to demonstrate the impact of larger masses and
shorter instability growth times on the saturation amplitude of the unstable modes.

The results for the models described above are presented in Figs. 5.7 and 5.8, where
the lowest stable parametric instability threshold (= saturation amplitude, see Sec. 5.1.4)
is plotted inside the instability windows of the quadrupole (I = m = 2) and the octupole
(I = m = 3) f-modes. The normalisation used for the mode energy is Eu = Mc2.
Since the left part of the windows is not expected to be significant for the evolution of a
newborn neutron star (see Fig. 5.4), and given their considerably larger size, compared
to the corresponding windows from typical neutron stars, we restricted our calculations
to T > 10°K. Furthermore, the models of Doneva et al. (2015) become unstable to
gravitational collapse when the star radiates away up to 20% of its angular momentum,
so we considered rotation rates greater than 0.8 Qk. A model without an enhanced Kepler

SRemember that the instability implies that the factor w(w — mS) is negative [Eq. (3.5.2)], so, in this
sense, “smaller values” means “more negative”.
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Table 5.2: Supramassive neutron star models, used for the calculation of the f-mode saturation
amplitude. The following parameters are presented in the table, by column: mass M, radius
R, polytropic exponent I', adiabatic exponent I'y, polytropic constant K, central density p., and
(enhanced) Kepler limit Q.

M(Mg) R(km) I Ty K (gr'Pem®1s72)  p. (grem™3)  Qk/\/GM/R3
2.5 12 3 3.2 8.42051 x 10~ 1! 1.26372 x 1015 0.74
2.5 12 3 3.1 8.42051 x 10~ 11 1.26372 x 1015 0.74

limit is also shown, for comparison.

Finally, a hypothetical (based on the results of Doneva et al. 2015) evolution of a star
inside the instability window of the quadrupole f-mode is shown in Fig. 5.9, along with
the variation of the mode’s saturation amplitude.

5.4.3 Discussion
a) Features

The same features that were discussed in the previous section for typical neutron stars
can also be seen in Figs. 5.7 and 5.8. The same reasoning can be used to explain the
characteristic decrease of the saturation amplitude from the edge to the interior of the
instability window, as well as the horizontal bands that appear at certain angular velocities.

The fact that the windows of supramassive stars are larger, compared to their coun-
terparts from typical neutron stars, justifies the increase of the maximum value that the
saturation amplitude can attain: according to Eq. (5.3.1), the saturation amplitude scales
with the daughter g-mode’s damping rate, which can achieve greater (absolute) values at
higher or lower temperatures.

An additional feature, observed only in the case of supramassive stars (and mainly in
the results for the quadrupole f-mode in Fig. 5.7), is this vertical “brushstroke-like” struc-
ture at intermediate temperatures. The anomalous behaviour of the saturation amplitude
in this area occurs, in a similar manner to the horizontal band feature, due to daughter
pair changes: a daughter pair which can successfully saturate the parent fails to do so
once the star enters this area. The reason is that some daughter g-modes become CFS-
unstable inside this region and can no longer stop the parent’s growth (remember that
the daughter modes have to be stable). The unstable parent will then get saturated by a
different daughter pair, which may lead to a sudden change of the saturation amplitude.

b) Properties

As previously mentioned, we enhanced the Kepler limit of our Newtonian polytropic mod-
els, in order to reproduce the growth time scales of the models used in Doneva et al. (2015).
The factors leading to so short growth time scales in the latter are relativity” (Stergioulas
and Friedman 1998; see also Gaertig et al. 2011), realistic equations of state (Doneva et al.
2013), and, of course, the large masses and angular momenta of these supramassive stars.
The behaviour of the angular momentum is an important subtlety of such stars. As shown
by Cook et al. (1992), there are regions where the loss of angular momentum spins the star
up. This feature, which we discussed in Sec. 3.2, cannot be mimicked by our Newtonian

9If the Cowling approximation, used by Doneva et al. (2015), were dropped, the instability should be
amplified even more, because it sets in at smaller rotation rates (Zink et al. 2010).
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Figure 5.7: Contour plots of the lowest stable parametric instability threshold (PIT) inside (part of) the instability window of the [ = m = 2 f-mode, for
our toy model of a supramassive neutron star with M = 2.5 Mg and R = 12km. The angular velocity {2, normalised to the Kepler limit Q, is drawn on
the left vertical axis, the ratio of kinetic to gravitational potential energy S on the right vertical axis, and the (decimal) logarithm of the temperature T on
the horizontal axis. The star is described by a polytrope with a polytropic exponent I' = 3, and an adiabatic exponent I'y = 3.2 and 3.1. The Kepler limit
has been enhanced, to imitate the behaviour of the models used in Doneva et al. (2015). A model with its actual Kepler limit is also shown. The mode
amplitude is given by the relation |Q| = \/E/Eui, with Eyy = Mc?. Credit: Pnigouras and Kokkotas (2016).
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Figure 5.9: Hypothetical evolution of our toy model of a supramassive neutron star with M = 2.5 My and R = 12km, through the instability window of
the I = m = 2 f-mode (left), and the corresponding evolution of the lowest stable parametric instability threshold (PIT; right). In the left (right) graph,
the angular velocity 2, normalised to the Kepler limit Q, is drawn on the left vertical (top horizontal) axis, the ratio of kinetic to gravitational potential
energy [ on the right vertical axis, and the logarithm of the temperature 7" on the horizontal (bottom horizontal) axis. The star obeys a polytropic equation
of state with a polytropic exponent I' = 3 and an adiabatic exponent I'y = 3.1. In this example, the star enters the window during its cooling phase,
rotating at its maximum angular velocity, until thermal equilibrium is established (indicated by the vertical dashed line), at which point it descends the
window at 7'~ 3 x 10°K (Doneva et al. 2015). Credit: Pnigouras and Kokkotas (2016).
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polytropes. As a result, we get the same 7qw with Doneva et al. (2015) at the (enhanced)
Kepler limit, but not for lower angular momenta, for which our growth time scale becomes
significantly longer. This does not happen in the models of Doneva et al. (2015) which,
as described above, spin up instead when angular momentum is lost due to gravitational
wave emission, inducing only a slight increase in 7qw. This is why Doneva et al. (2015) use
the ratio of kinetic to gravitational potential energy £, introduced in Sec. 3.2, instead of
), to parametrise rotation. In Figs. 5.7 and 5.8 we use both parameters: €2, as a reminder
of the Newtonian origin of the calculation, and 3, to indicate the connection with the
realistic model.

The fact that the gravitational wave growth time scale of the parent mode should stay
approximately the same throughout the window is not expected to change the results about
the saturation amplitude. Although in our models 7qw changes by orders of magnitude
for different angular momenta, it is not included in the evaluation of Eq. (4.3.1). The
parent’s growth rate -y, affects the couplings indirectly, through the stability conditions
(5.1.2) and (5.1.3). This means that even if 7qw had its Keplerian value everywhere, then,
since the parent is successfully saturated at the Kepler limit by some daughter pairs, there
will always be daughters with similar properties which will saturate it at lower angular
momenta as well.

c)* Nonlinear eigenfrequency shift

In Sec. 4.4.3, we saw that nonlinear coupling induces a shift to the mode eigenfrequencies
which, when saturation is achieved, are then given by Eq. (4.4.15). For the models used in
this chapter we find that, in general, the eigenfrequency shift is negligible for the parent
mode. Among triplets which give the lowest parametric instability thresholds throughout
the instability windows, we found a maximum shift of ~ 0.1 Hz for typical neutron stars.
For supramassive stars, some couplings induce an eigenfrequency shift as high as ~ 0.1 kHz.
Given that the | = m f-modes have eigenfrequencies of a few kHz, the latter could be
significant. However, these couplings are very few, since one needs the parameters in
Eq. (4.4.15) finely tuned (large v, and |Aw|; |yg~| as small as possible) to produce a
considerable eigenfrequency shift. For the daughter modes, the shift is larger, since they
also have to cover the mismatch Aw (at most ~ 0.1kHz) to catch up with the parent (see
Fig. 4.3).1°

5.5 Stochastic background

In addition to gravitational-wave signals from individual sources, the superposition of un-
resolved and uncorrelated gravitational-wave signals from many sources throughout the
Universe is expected to give a stochastic background of gravitational waves. Oscillation
modes which are prone to the CFS instability in neutron stars should, in principle, con-
tribute to this stochastic background (see Ferrari et al. 1999 and Zhu et al. 2011 for studies
on unstable r-modes; for a review on the astrophysical stochastic gravitational-wave back-
ground, the reader is referred to Regimbau 2011).

Mainly based on the work of Ferrari et al. (1999), Surace et al. (2016) provided an
estimation of the contribution of CFS-unstable f-modes to the stochastic gravitational-
wave background, both for the case of typical, supernova-derived, neutron stars (Sec. 5.3),

YFrom Egs. (4.4.1) and (4.4.15) we see that the eigenfrequency shift always has the same sign with the
detuning Aw, meaning that the parent eigenfrequency is always shifted away from the daughter eigenfrequen-
cies.
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Figure 5.10: Energy density of the stochastic gravitational-wave background (normalised to the
critical density of the Universe) (g, due to CFS-unstable f-modes, vs. the observed gravitational-
wave frequency, for four different cosmic star formation rate models (denoted as HB06, FO7, W08,
RE12). The individual contributions of the I = m = 2, 3 and 4 f-modes is presented for typical,
supernova-derived, neutron stars (top), and of the I = m = 2 and 3 f-modes for supramassive,
merger-derived, neutron stars (bottom). Also shown are the stochastic background due to binary
neutron-star mergers (BNS) and the sensitivity curves of second- and third-generation detectors,
like Advanced LIGO/Advanced Virgo (aLIGO/aVirgo) and the Einstein Telescope (ET) respect-
ively. Credit: Surace et al. (2016), reproduced with permission, (C) European Southern Observatory
(ESO).
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as well as for supramassive, merger-derived, neutron stars (Sec. 5.4). The result is shown
in Fig. 5.10, where the energy density of the stochastic gravitational-wave background
(normalised to the critical density of the Universe!!) Q,y is plotted against the observed
gravitational-wave frequency. The f-modes considered are the same as in Secs. 5.3 and 5.4,
namely, the [ = m = 2, 3 and 4 for typical neutron stars, and the [ = m = 2 and 3 for
supramassive neutron stars. The instability windows of the modes were obtained from
Doneva et al. (2013) and Doneva et al. (2015) for typical and supramassive neutron stars
respectively, where the WFF2 equation of state (Wiringa et al. 1988) was used. For the
evolution of a typical neutron star through the windows, the work of Passamonti et al.
(2013) was also consulted, where a relativistic polytrope with I' &~ 2.61, resembling the
WEFF2 equation of state, is considered. The results presented in Fig. 5.10 assume that
10% (100%) of the population of newborn typical (supramassive) neutron stars rotate with
initial angular velocities close to the Kepler limit and, hence, may have unstable f-modes.
Furthermore, the effects of other spin-down mechanisms, like the r-mode instability and
magnetic braking, are ignored, which implies that gravitational radiation from the unstable
f-modes is solely responsible for the energy and angular momentum loss of the star. The
energy density is calculated for four different cosmic star formation rate models, which can
be found in Surace et al. (2016). Also shown in the graphs are the stochastic background
due to binary neutron-star mergers, as well as the sensitivity curves of second- and third-
generation detectors.

From Fig. 5.10 we see that, for typical neutron stars, the [ = m = 2 background
might be detectable with the current, second-generation, detectors, because it peaks at
low frequencies (=~ 50 — 200 Hz), where the sensitivity of the detectors is better, and at
an amplitude which is higher than the one from coalescing binary neutron stars. The
Il = m = 3 background is too close to the sensitivity limit and thus unlikely to be de-
tected with second-generation detectors, but lies well inside the sensitivity curve of third-
generation detectors. Finally, although it obtains the highest amplitudes, the [ = m = 4
background occupies the high-frequency regime of third-generation detectors and will be
hard to detect. We should additionally note that the [ = m = 3 and 4 f-mode back-
grounds peak at frequencies (~ 1kHz) and amplitudes (g, ~ 107®) where many other
astrophysical backgrounds also reside (see Fig. 6 in Regimbau 2011), which will thus make
it more difficult to discriminate between them.

On the other hand, stochastic backgrounds from unstable f-modes in supramassive
neutron stars should be undetectable, even with third-generation detectors. This can be
mainly attributed to the supramassive neutron star formation rate from binary mergers,
which is lower than the typical neutron star formation rate from supernovae, as well as
the fact that the backgrounds peak at high frequencies (~ 1kHz), where the detectors are
not sensitive enough.

5.6* Comparison with r-modes

Instantly after its discovery (Andersson 1998; Friedman and Morsink 1998), the r-mode
instability drew much attention, due to its short growth time scale and large instability
window (see Sec. 3.5). Unstable r-modes are not only considered a promising gravitational-
wave source, with important implications for gravitational-wave asteroseismology, but have
also been proposed as an explanation for the observed neutron star spin periods, as dis-
cussed in Sec. 1.4.

"Namely, the density for which the geometry of the Universe is flat.
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Apart from determining the strength (and hence the detectability) of the generated
gravitational-wave signal, the saturation amplitude of unstable r-modes is also important
for the evolution of the neutron star inside the instability window (a process which pre-
sumably sets its final spin rate), because it affects the spin-down time scale. During initial
studies (e.g., Owen et al. 1998), the saturation energy of the r-mode was taken to be of
order the rotational energy of the star, i.e., By = M R2Q2?/2. Later studies, which will
be reviewed below, showed that nonlinear coupling saturates the r-mode at much lower
amplitudes.

After Schenk et al. (2001) laid the groundwork, by deriving a consistent mode coupling
formalism, Morsink (2002) calculated nonlinear couplings among r-modes in a stratified
polytrope. Then, Arras et al. (2003) provided the first analytic estimate of the satur-
ation amplitude, by coupling the | = m = 2 r-mode to other inertial modes, in a star
with negligible buoyancy. After calculating the modes in the Wentzel-Kramers-Brillouin
(WKB) limit, they considered two cases: i) the discrete (or “weak-driving”) limit and ii)
the continuum (or “strong-driving”) limit.

The first case is identical to the one we study here: the unstable mode grows and, after
crossing the lowest parametric instability threshold, excites the corresponding daughter
pair and saturates. Thus, the number of modes involved is small and the mode spectrum
can be regarded as discrete. For saturation to occur, the stability conditions (5.1.2) and
(5.1.3) have to be satisfied for the coupled triplet.'? In this sense, according to Eq. (5.1.2),
the parent is weakly driven, compared to the daughters’ damping rates. Although their
estimations about the saturation amplitude are really low (see Sec. 6 of their paper), Arras
et al. conclude that the discrete limit is not a good approximation, neither for nascent
nor for accreting neutron stars, because a large number of daughter modes is expected to
be excited. This brings us to the continuum limit.

In the second case, the modes are treated as a continuum, since a large number of
daughter modes is excited. This happens when the coupled triplets fail to satisfy the sta-
bility condition (5.1.2), so the driving rate of the parent is larger than the damping rates of
the daughters. As the parent grows, it crosses many parametric instability thresholds but
cannot reach a stable equilibrium. However, as it couples with more and more daughters,
a turbulent energy cascade is formed and its growth rate decreases, until it finally settles
and saturates (see discussion in Sec. 5.1.4). Arras et al. find that the saturation energy
is given by E/Euit = 107%(a,/0.1)10y,, where Euyie = MR*Q?/2, v is the spin rate of
the star (measured in kHz) and o, parametrizes some “uncertainties” of their approach.
Although taken to be ~ 0.1, . could be as low as ~ 10~ (see Sec. 2 of their paper), which
would make the saturation energy even lower. With the help of Eq. (2.6.7) we find that,
for Byt = Mc?, the saturation energy above is approximately two orders of magnitude
lower.

Our study shows that the f-mode falls into the discrete limit case: the lowest paramet-
ric instability threshold is usually stable and successfully saturates the mode. Comparing
our Eq. (5.3.1) to Arras et al.’s Egs. (78) and (80) we see that the temperature scalings
do not change: if bulk viscosity dominates the damping, their saturation amplitude scales
as T, whereas, if shear viscosity dominates, it scales as T2 (their A is equivalent to our
|Q|). Although our scalings are different by a factor of 1/2 in power, this should not be a
surprise. As explained in Sec. 5.3.3, the temperature dependence in Eq. (5.3.1) is due to
the g-mode daughter damping rate changing with temperature (as opposed to the f-mode
daughter damping rate). On the other hand, Arras et al. extract their Egs. (78) and (80)

2 Arras et al. are relaxing the saturation conditions by allowing the second one [Eq. (5.1.3)] not to be true.
The reason behind this was explained in Sec. 5.1.4.



98 Results

assuming two identical daughters, in which case the parametric instability threshold is
approximated by Eq. (5.2.4), where the daughter damping rate is squared.'®

The analytical work of Arras et al. was followed by the simulations of Brink et al.
(2004b,a, 2005), where the saturation amplitude of the unstable r-mode was found “exper-
imentally”. Brink et al. used an incompressible, homogeneous star (Maclaurin spheroid;
see Sec. 3.1), which permits the analytical calculation of eigenfrequencies, eigenfunctions,
and all the quantities that involve them (growth/damping rates, coupling coefficients). As
opposed to Arras et al., they dropped the Cowling approximation (Sec. 2.3.4), which, as
they concluded, would otherwise neglect important terms in the couplings coefficients.

Their simulations included inertial modes with I < 29 (=~ 5000 modes), which resulted
in ~ 1.5 x 10° direct couplings to the I = m = 2 r-mode, plus a large number of coup-
lings among daughters themselves (daughter-daughter couplings; see Sec. 5.1.4). Starting
with the integration of the triplet with the lowest parametric instability threshold, via
Egs. (4.2.12), they gradually added more couplings, as the m-mode kept growing and more
modes were rising above the noise level. With this technique, i.e., following the evolution
of the mode amplitudes, one can achieve much longer integration times than ordinary hy-
drodynamic simulations, where the integration time step is set by the oscillation periods
of the modes.

In their work, they studied three types of large (i.e., involving all modes) systems: the
conservative (Hamiltonian) system, as well as the strongly- and weakly-damped noncon-
servative system.

In the conservative system, the growth/damping rates are zero and, hence, the modes
simply interact nonlinearly. This is known as the Fermi-Pasta-Ulam (FPU) problem (Fermi
et al. 1955; Fermi 1965; see also Dauxois 2008) and its extensive study has shown that, after
the initial excitation of a large-scale mode, a state of energy equipartitioning is reached,
should the initial amplitude be larger than some threshold. This was indeed observed by
Brink et al., with the equipartition time scale decreasing as the initial r-mode amplitude
was increased.

The strongly-damped system corresponds to Arras et al.’s weak-driving limit. Brink
et al. showed that, in this case, the mode amplitude evolution resembles that of a single
triplet: the daughters’ damping rates are large enough to halt the parent’s growth, after
the lowest parametric instability threshold is crossed.™

In the weakly-damped system, which in turn corresponds to the strong-driving limit
of Arras et al., the situation is significantly more complex. The daughters are now not
damped enough to stop the growth of the m-mode. However, daughter-daughter couplings
distribute the incoming energy to many modes, thus preventing the r-mode from growing
far beyond the second lowest parametric instability threshold (see Figs. 12 and 13 in
Brink et al. 2005). In fact, at this amplitude the rate to equipartition is similar to the
r-mode’s growth rate, making the contribution of the FPU mechanism to the damping of
the instability quite important.

The simulations above were performed for a star rotating at ~ 0.6 Q. The strongly-
damped system resides at low temperatures (T ~ 10°—107 K), whereas the weakly-damped
system at intermediate temperatures (7' ~ 108 — 10°K). At these temperatures, shear
viscosity is the dominant damping mechanism (bulk viscosity is zero for an incompressible
star).

B They also ignore the term Aw/(ys + 7-), see Footnote 12.

“Like Arras et al., Brink et al. also ignore the stability condition (5.1.3) (see Footnote 12). This condition
is not satisfied by the triplets with the lowest parametric instability thresholds in their simulations and, as a
result, saturation occurs in the form of limit cycles or aperiodic motions (see Sec. 4.4.2).
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Although Arras et al.’s cascade picture was mostly confirmed in the weakly-damped
regime, the saturation amplitudes reported by Brink et al. are lower. The r-mode satur-
ation energy was found to be E/Ey; ~ 1071% — 1078, where Ey,i = M R*Q?/2, with the
higher values occurring at the weakly-damped system and the low-temperature end of the
strongly-damped system. Since our system is strongly-damped at all temperatures, this
is in agreement with our results, where the saturation amplitude obtains larger values at
low and high temperatures.

Based on the work of Brink et al., a series of simulations were performed by Bondarescu
et al. (2007, 2009), where the evolution of the neutron star through the | = m = 2 r-mode
instability window was studied. Since the r-mode instability is relevant both for accreting
and nascent neutron stars, both cases were examined.

Bondarescu et al. used a I' = 2 polytrope, assuming the couplings of Brink et al.’s
incompressible model. In particular, they incorporated the coupling with the lowest para-
metric instability threshold (as obtained from Brink et al.’s simulations) into the neutron
star’s spin and temperature evolution equations. This makes the neutron star evolution
more “dynamical”, as opposed to previous work, where the r-mode saturation amplitude
was treated as an arbitrary constant. In most cases, the coupling occurring at the lowest
threshold was enough to stop the r-mode from growing, which places the star in Brink
et al.’s strongly-damped regime. It should be noted that, in addition to shear viscosity,
Bondarescu et al. also considered viscosity at the crust-core boundary layer (see Sec. 3.6)
and hyperon bulk viscosity, thus “enhancing” the dissipation effects.

By varying certain properties of the star, like the hyperon superfluid transition tem-
perature, the fraction of the star above the threshold for direct Urca reactions (see
Sec. 3.6), and the crust-core slippage factor, a number of interesting scenarios occur.
Essentially, these quantities parametrise the strength of viscous and cooling effects. Ex-
cept for their runaway evolutions, where the r-mode grows beyond the lowest parametric
instability threshold and the three-mode system fails, saturation always occurs at the low-
est threshold. The latter slowly changes during the evolution, due to the temperature
dependence of the daughters’ damping rates. For the rest of the quantities comprising the
parametric instability threshold [Eq. (4.3.1)], Bondarescu et al. assume the values of the
triplet giving the lowest threshold as “statistically relevant” constants.

Taking a step further, we calculated the saturation amplitude of the unstable f-modes,
due to the three-mode coupling mechanism, throughout their instability windows. By doing
this, we extract the whole coupling spectrum of the f-modes, which enables us to follow
the different kinds of couplings and their strengths. Doing this for the r-mode will, most
probably, not change the main results dramatically, because inertial modes are confined in
a relatively small frequency range [—2€2, 2Q)] and fine resonances are fairly easy to obtain.
On the other hand, in the case of the f-mode there are different kinds of daughter pairs
(f-g or g-g, see Sec. 5.3.3), which makes it more subtle to be described by use of “effective”
values for parameters like the detuning or the coupling coefficient.






Chapter 6
Final remarks

Gravitational wave detection is about seeing

the biggest things that ever happen—the collisions, explosions,
and quakings of stars and black holes—by measuring

the smallest changes that have ever been measured.

Harry Collins, Gravity’s shadow (2004)!

6.1 Summary and conclusions

Even though their existence has been known for a few decades now, there is still much
uncertainty about neutron stars. Squeezing a star with the mass of the Sun down to the
size of a large asteroid, the resulting object is bound to be fascinating! Nature’s particle
accelerators offer a unique opportunity to study matter and gravity at their very extremes,
but the available observational data only gives us a glimpse of the physics involved, with
crucial aspects of their structure eluding our current understanding.

The recent advent of gravitational-wave astronomy will hopefully shed some light on
the —inaccessible by any other means— neutron star interior. Should gravitational ra-
diation from individual sources be observable, much information about the equation of
state of dense nuclear matter could be obtained. However, gravitational-wave asteroseis-
mology will have to deal with very weak signals, generated by stellar oscillations. The fact
that some of these oscillations are unstable to the emission of gravitational waves, due
to the Chandrasekhar-Friedman-Schutz (CFS) mechanism, works to our advantage: the
amplitude of the mode will grow, until such a point when nonlinear effects saturate the
instability.

The saturation amplitude of an unstable mode determines the gravitational-wave strain
of the generated signal and, thus, its detectability, but also affects the evolution of the
neutron star through the instability region. If a fast-rotating newborn star enters the
instability window during its cooling phase, it will traverse it at approximately constant
angular velocity, until thermal equilibrium is reached; then, at approximately constant
temperature, the star will spin down, due to emission of gravitational radiation from the
unstable mode, as well as magnetic braking, until it exits the window. The contribution
of gravitational waves to the spin down phase and the time spent by the star inside the
instability window are determined by the saturation amplitude.

In this work, we have studied the saturation of CFS-unstable (fundamental) f-modes,
via low-order nonlinear mode coupling. We consider the quadratic-perturbation approx-

"Harry Collins, Gravity’s shadow: The search for gravitational waves, Introduction. Chicago: The Univer-
sity of Chicago Press (2004).

101



102 Final remarks

imation, where resonantly coupled three-mode networks are formed throughout the star.
The efficiency of the coupling among the three modes is determined by their coupling coef-
ficient, mainly depending on their eigenfunctions, and by their detuning, which measures
how close to resonance they are. The coupled triplet is prone to a parametric resonance
instability, when the unstable (parent) mode crosses the so-called parametric instability
threshold, at which point the two stable (daughter) modes start growing. The mode amp-
litudes approach a stable equilibrium and the parent mode saturates if certain conditions
are satisfied, involving the modes’ growth/damping rates and their detuning.

We have presented the first results about the saturation of the f-mode instability, due
to nonlinear mode coupling, in neutron stars. Using Newtonian polytropes to describe
both typical and supramassive neutron stars, we calculated all the couplings of the most
unstable f-mode multipoles to other polar modes and obtained their saturation amp-
litude throughout their instability windows, by locating the triplet with the lowest stable
parametric instability threshold.

Although it is usually treated as a constant (e.g., Passamonti et al. 2013), the sat-
uration amplitude changes throughout the window, due to its temperature dependence
and because different daughter pairs may set the lowest parametric instability threshold
at different points. We found that the saturation amplitude is larger near the low- and
high-temperature edges of the instability window (as high as ~ 3 x 107%), and gradually
decreases at intermediate temperatures (with values as low as ~ 10~?; the definition used
for the amplitude is |Q| = /E/Mc?, where E is the mode energy, normalised to the
rest mass energy of the star). These values are lower compared to previous work, where
the saturation of unstable f-modes was studied either by nonlinear hydrodynamic simu-
lations (Kastaun et al. 2010) or via large-amplitude viscous dissipation (Passamonti and
Glampedakis 2012). Considering the highest value of the saturation amplitude obtained
here, signals generated by the f-mode instability might be detectable even with Advanced
LIGO, from sources in the Virgo cluster (= 20 Mpc; Passamonti et al. 2013; Doneva et al.
2015).

The perturbative nonlinear approach that we use is, in its core, simple and has many
advantages. As long as the eigenfrequencies and eigenfunctions of the modes are provided,
it allows us to easily identify the important couplings in the system and precisely track their
effects on the modes’ amplitude evolution. Furthermore, it helps us reveal and understand
the richness of possible outcomes and offers a strong insight into the problem, letting us
follow every parameter’s contribution.

The calculation of the eigenfrequencies and eigenfunctions of the modes, however, can
be a quite laborious task, with analytic solutions existing only in simple models (e.g.,
homogeneous star) and with no natural limit on the number of modes that should be
considered —for instance, solar observations have shown very high p-mode multipole os-
cillations. In order to obtain as many modes as possible, the slow-rotation approximation
was utilised, which is the origin of the major uncertainties in our results (correctness of
models aside).

The Newtonian formalism provides an accurate qualitative description of the problem,
at least for typical neutron stars. In principle, general relativity should change some key
components of the setup (e.g., larger instability windows, shorter growth time scales for
the parent), thus affecting the final results. Moreover, it is the only appropriate frame-
work for modelling supramassive post-merger neutron star remnants, since our Newtonian
calculation reflects only their rudimentary properties. Therefore, a relativistic nonlinear
perturbation scheme needs to be developed in order to obtain conclusive results, especially
considering that relativistic hydrodynamic simulations are still far from remaining stable



6.2 Epilogue: Notes on the cosmic staff 103

during the secular time scales needed for the instability to grow.

Once the sensitivity of gravitational-wave detectors improves, gravitational radiation
from neutron star oscillations will divulge information of key significance for astrophys-
ics, nuclear physics, and gravitational physics. In the meantime, much work still has to
be done, regarding the elimination of the major uncertainties and the refinement of the
models, in order to reach confident conclusions. Thanks to the rapid development of tech-
nology, which enables us to measure “the smallest changes that have ever been measured”,
and the advancement of theoretical and computational expertise, the future can only hold
good omens for our deeper understanding of the Universe.

6.2 Epilogue: Notes on the cosmic staff

Two-and-a-half-thousand years after Pythagoras, we can positively identify the “Music of
the spheres” as gravitational waves! Indeed, the ripples of spacetime represent, in a crude
analogy, cosmic sounds, travelling via space before they reach our “ears”, i.e., our detectors,
which are now sensitive enough to listen to the whispers of the Universe. We can only
imagine Albert Einstein performing the following passage on his violin:

©=10min ﬁ=1hr con gllSS

b
e
T

This is the actual gravitational-wave “sound” of a supramassive neutron star, evolving
through the instability window of the quadrupole f-mode.? The music of the Cosmos is
deceptively simple, and yet there is so much to learn, from every single note, about “the
biggest things that ever happen”.

Thus far, light has been our primary messenger from outer space. The dawn of
gravitational-wave astronomy is upon us and finally allows the “dark side” of the Universe
to take the floor; and after a lifetime of deafness, we probably have a lot of interesting
things to hear!

2Specifically, of a neutron star with baryon mass My ~ 3 Mg, described by the WFF2 equation of state,
used in Doneva et al. (2015). The star enters the instability window of the quadrupole (I = m = 2) f-mode,
rotating at the Kepler limit and emitting gravitational waves with a frequency of 810Hz. After ~ 10min,
thermal equilibrium is reached and the star starts descending the window. During this phase, which lasts
~ 10 hrs, the gravitational-wave frequency continuously decreases to 360 Hz, until the star collapses to a black
hole. The f-mode saturation amplitude is set, throughout the evolution, to |Q| = 1073,






Appendix A

Polytropic stars

Following the definition of a polytropic process in thermodynamics, a star is said to be
polytropic when its equation of state has the form

p=Kp', (A1)

where K is the polytropic constant and T' is the polytropic exponent, usually also written

as

1
=1+ —, (A.2)
n

where n is the polytropic index. To avoid confusion with the mode overtone n, defined in
Sec. 2.4, the polytropic exponent I' is mostly used in the main chapters, but the polytropic
index n will be preferred throughout this appendix.

A.1 Nonrotating polytropes

We write the equation of hydrostatic equilibrium for a nonrotating star [Eq. (2.1.5) with
Q=0 as

1d /r2dp
—— | —— ) = ~4rG
r2dr (p dr> TP
where we used the fact that
GM,
g=-Vo= _Trerv
r

g being the local gravitational acceleration, and replaced M, from Eq. (2.3.42). Substi-
tuting Egs. (A.1) and (A.2), we get

1d (,d0\
e (€)= Ay

where the dimensionless variables 6 and & are defined from the relations
p = pb" (A.1.2)

and

_ [(”“)K il] mg (A.1.3)

4G pe
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respectively, p. being the central density of the star. Equation (A.1.1) is the well-known
Lane-Emden equation, for a polytrope with index n.!
At the centre of the star (£ — 0), the boundary conditions are (Shapiro and Teukolsky
1983, Sec. 3.3)
0(0)=1 (A.1.4)

and
6'(0) =0, (A.1.5)

where the prime denotes differentiation with respect to £. Using these, we can integrate
Eq. (A.1.1) and show that 6(¢), known as Emden’s function, always has a finite root &;
for n < 5. Hence, & corresponds to the surface of the star, namely

[+ 1)K 1 1/2
R_ |: 47TG pC 517

whereas, using Eq. (2.3.42), the mass is found as

e plm &0 (&) (A.1.6)

3/2 3—n
‘M:4WFH+DK}

The Lane-Emden equation admits an analytic solution for the two extremes, namely,
n = 0, which describes a homogeneous star with p = p. everywhere (see Sec. 2.5), and
n = 5, known as the Roche model, for which the mass is concentrated towards the centre
of a star with an infinite radius. Thus, density and pressure decrease faster towards the
surface as the polytropic index increases, i.e., as the equation of state gets softer (see
Sec. 1.3). An additional case with an analytic solution is the n = 1 polytrope, where

Emden’s function is given by
sin &

0(¢) = ¢

and its first root is & = m, for which 6'(§) = —1/7.

(A.L7)

A.2 Rotating polytropes

The Lane-Emden formalism was extended for rotationally and tidally distorted polytropes
by Chandrasekhar (1933a,b,c,d). We will be concerned with the first case, for which the
equation of hydrostatic equilibrium (2.1.5) takes the form

10 (r?op 10 (1—220p 9
A (i A (el 20
r28r<p8r>+r2ax< ) 83:) mGp + A,

where z = cos . Like in the case of nonrotating polytropes, we write it in the dimensionless

form 10 00 10 00
= 9 [ 297 — 1= = —en 02 A2.1
o (956) T (- 52 =o'+ 2
where £ is given by Eq. (A.1.3), © is defined as
p=pO", (A.2.2)

'The variable & used here should not be confused with the displacement vector € or its components, used
throughout the main chapters. We did not choose a different variable, because of the popularity of the
Lane-Emden formalism in this particular notation.
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and the angular velocity €2 is normalised as

oo
- 21Gpe’

Expanding © in terms of  we get
@:e+wﬁl+0@¥) (A.2.3)

where 6 is the nonrotating solution, obtained from Eq. (A.1.1). We can replace Eq. (A.2.3)
in Eq. (A.2.1) to get an equation for the correction function ¥, namely

10 [,00\ 190 )
o (€56) *op [0 G| = wen 2

Then, we expand ¥ in terms of the Legendre polynomials P; (e.g., see Abramowitz and
Stegun 1972, Chapter 8) and, after a series of arguments and calculations (which can be
found in Chandrasekhar 1933a), we obtain

U = (&) + A21a (&) Pa(x), (A.2.5)

where the functions vy and 1o satisfy the equations

and
L (52 d;fg) _ <_nen—1 ; f) ¥, (A2.7)
and - )
4= 5 anE) i&wa(&)’ (A:25)

with & still denoting the first root of Emden’s function 6(§).
Near the centre of the star (§ — 0), ¥y and 12 behave like

2
vl =5 +0(e (A.2.9)
and
() =& +0(¢Y). (A.2.10)

Thus, we can integrate Eqs. (A.2.6) and (A.2.7) to obtain the solution © for a rotationally
distorted (to second order) polytrope. Then, the surface of the star is found from © (§y) =
0, or
2

16"(&1)]
This shows that, to second order in rotation, the star expands (first correction term)
and changes its shape to an oblate spheroid (second correction term). At the equator
P»(0) = —1/2 and at the poles P5(1) = 1, so, using Eq. (A.2.8), the oblateness of the star

f is found as

fo=6+ [P0(€1) + A2 (E1) Po(w)] -

_ R.—R,
>

Q2 E1¢2(&1)
167(€1)] 32 (&1) + E194(€1)

5
f = (A.2.11)
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where R, is the equatorial and R, the polar radius. The mass of the star can also be
obtained as

[+ )R], ~2€1/3 = ¥h(&)
M = 4n [MG} pl &6 (&)] |1+ Q e | (A.2.12)

Comparing Egs. (A.1.6) and (A.2.12) we see that, if the rotating polytrope has the
same central density p. with its nonrotating counterpart, then its mass is larger by a factor

f
° ME) L qe&1/3 = ¥o(&) (A.2.13)

M(0) 16(&1)]
where M (0) and M (€2) are the masses of the nonrotating and the rotating star respectively.
If instead we demand that the rotating polytrope have the same mass with the nonrotating
one, then its central density changes by a factor of

2n &1/3 —¢p(&)
—n|0"(&)]

where p.(0) and p.(€2) are the central densities of the nonrotating and the rotating poly-
trope respectively. Hence, if n < 3 (n > 3) the central density of the rotating polytrope
is lower (greater) than the central density of its nonrotating counterpart with the same
mass (for the subtleties related to the n = 3 polytrope and the details of the calculations
above, see Chandrasekhar 1933a).

Like with the Lane-Emden equation, there are analytic solutions for vy and s, for
the n = 0, 1 and 5 polytropes (although the n = 0 and 5 cases need to be handled with
caution; see Chandrasekhar 1933d). For n = 1, the solutions are given by

=1- Q23 , (A.2.14)

sin &

Po(§) =1-0(§) =1 ¢ (A.2.15)
and \ S
¢ma=w¢;%ma=—w§mﬁ+§“”m§ (A.2.16)

where J; are the Bessel functions of the first kind (see, for example, Abramowitz and
Stegun 1972, Chapters 9 and 10). For & = 7 the solutions above give 9p(&1) = 1,
Vo(&1) = 1/, ba(&1) = 45/72, and h(€1) = 15(1—9/7%) /7. Tables with numerical results
on other polytropic indices can be found in Chandrasekhar (1933a) and Chandrasekhar
and Lebovitz (1962).



Appendix B

Polar mode rotational corrections

B.1 First-order corrections

The first-order rotational corrections to the eigenfrequencies w and eigenfunctions & of
polar modes can be found from Eq. (2.6.9), namely

w02 | e (5(1 ) W@y g 4 i, B1) (5&(’)) =0. (B.1.1)

Following Unno et al. (1989, § 19), we will expand Eéo) and 5&1) in terms of the eigenfunc-
tions &, of the nonrotating star, as

l

¢V =Y e, (B.1.2)
m=-—I
and
e =" clles (B.1.3)
B
B

The zeroth-order eigenfunction E&O) cannot be simply taken equal to £, because of the
degeneracy of the eigenfrequencies with respect to m in the nonrotating limit (see Sec. 2.4).
As a result, the 2] + 1 eigenfunctions with the same degree | and overtone n correspond
to the same eigenfrequency w,. So, we have to consider the zeroth-order eigenfunction
as a linear combination of all the degenerate eigenfunctions with the same [ and n, but
different m (see, for instance, Mathews and Walker 1970, Chapter 10). In Eq. (B.1.2),
mode &, is associated with the triplet (n,l,m), with the summation changing only m.

The first-order correction to the eigenfunction 5((11) is taken to be the linear combination
of all modes (including axial modes) of the nonrotating star (except for &, itself), where
the correction coefficients csﬁ) are O (). In Eq. (B.1.3), the “quantum numbers” of the
mode &4 are (n',l',m’).

Replacing Egs. (B.1.2) and (B.1.3) in Eq. (B.1.1) and taking the inner product, defined
by Eq. (2.3.55), with & [corresponding to (n”, 1", m")], we get

(4 02) 0L, = 2l T+ l® Y e, B (€0) = 0,

(B.1.4)
with I, defined in Eq. (2.3.55). For (n”,1") = (n,l) we obtain
ZBm,,m 0 = w0 (B.1.5)
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where

)
Bq(ﬂ;l)/m - ﬁ<£m”v B(l) (Em)>’ (B16)

with &,, and &,/ corresponding to mode &, with (n,l,m) and (n,l, m”) respectively.
Equation (B.1.5) represents the m”-component of the matrix equation

B = wiDell), (B.1.7)

B being the (21 + 1) x (21 + 1) matrix with components Bfnl,),m. The eigenvalues of this
matrix give the first-order eigenfrequency corrections (one for each value of m) of the mode
&,, whereas its eigenvectors give the components of the zeroth-order eigenfunction 5&0).

If we now set (n”,l") = (n/,l') # (n,l) in Eq. (B.1.4), we get for the first-order
correction coefficients

= ) (&5,BY (&) (B.1.8)

Cap Is (w((lo)Q _ wg)z) ~

We will proceed with the evaluation of the matrix B(). Taking the angular velocity
along the z axis (# = 0), namely

Q= (Qcosf,—Qsinb,0),

then, replacing the polar mode eigenfunction (2.3.19) in Eq. (B.1.6) and using the spherical
harmonic orthogonality relation (2.3.14), it becomes

9] R
B —y . T / (2¢,:&, + &) pridr.
m'm Ia [)

The equation above shows that the matrix BY) is diagonal, so its components are its
eigenvalues and they are given by

wM =mC9Q, (B.1.9)

where, using Eq. (2.3.56),

R
(26,6 + &) pridr

C) = (B.1.10)

[53 + I+ l)fﬁ] pr2dr

C\?Jo\

Then, for a certain eigenvalue (i.e., for a specific m), Eq. (B.1.7) can be written as

B, 0o 0 0 o il
1 0 0
0 B(_l)+1,—l+1 e 00 Cg")_l“ Cgé’)_lﬂ
: : : : : _ :
= W
0 0 B%?m 0 C(()gzn “ cg?n
0 0 0 B o o
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So, the eigenvector c((lo) corresponding to the eigenvalue w&l) is

0 < Position — 1
0 < Position —1+1

a 1 < Position m

0 < Position {

Consequently, the zeroth-order eigenfunction (B.1.2) is given by a single spherical har-
monic, namely

¢V =¢,, (B.1.11)
and Eq. (B.1.8) becomes

(0)

(1) Wy

of 0)2 0)2 5B &
I (w&) *wé) )

(B.1.12)

Using these results, we can also derive the first-order inner product of two rotationally
corrected eigenfunctions, £,(Q) = Dyeyo (92?), as (Schenk et al. 2001)

7

(285 = o

@ (€a: BY (€5)) +0(27) (B.1.13)

for a # B, where we used the fact that operator B is anti-Hermitian' (Lynden-Bell and
Ostriker 1967). From this relation one can see that the rotationally corrected eigenfunc-
tions do not necessarily satisfy the orthogonality condition (2.3.55); Eq. (2.6.3) should be
used instead as an orthogonality relation.

An alternative approach

From Egs. (B.1.3) and (B.1.12) we see that the actual computation of the first-order
corrections to the eigenfunctions can be cumbersome, since it is an expansion over all the
modes of the nonrotating star. In practice, due to the form of e g, only neighbouring
modes with similar eigenfrequencies are considered, with the contribution from the rest of
the modes being negligible.

However, there is an alternative way to obtain the first-order corrections to the ei-
genfunctions, first presented by Hansen et al. (1978) in the Cowling approximation (see
Sec. 2.3.4) and then extended for the general case by Saio (1981). First, from Egs. (B.1.3)
and (2.3.53) we notice that axial modes do not contribute to the radial component 5((1171 of

5&1). From the radial component of Eq. (B.1.1) one can further show that
[ < ptr =

for a # . Therefore, f,(,l) is proportional to a single spherical harmonic Y;™, namely

eN(r,0,¢) = M (r)Y;™(0, ) (B.1.14)

'Namely, it satisfies the relation (£&,B - &’ ) ( ¢ ¢, for any &, ¢ on the space of complex vector
functions, with respect to the inner product (€ = f ¢ pd?
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(we will omit the subscript « from now on, for simplicity). Then, using Eqgs. (B.1.14)
and (2.3.19), we take the 6 and ¢ components of Eq. (B.1.1) to get

§ (1,0,0) = o002, { [X( )(7') - WX( )(7') 20 + BO) X( )(T)COte (0, 9)

(B.1.15)

(1
1) B 1 (1) _QW ©) 1 E
3 <T797¢)‘{w<o>zr [X R e

2iQ) ©(r) o)
82O () si X <
"0 lﬁr (r)sin + 02, 005089

}ylm(e,gz)), (B.1.16)

where the variable x is defined as
0
X(r, 0, 6) = f + 60, (B.1.17)

It was shown in Sec. 2.3 that dp(® and 6®© are proportional to Y;". By replacing
Eq. (B.1.3) in the perturbed continuity equation (2.2.4), the perturbed Poisson equation
(2.2.6), and the perturbed equation of state (2.2.7), we see that the same applies to op(!)
and 6@, which means that y can be expanded as

x(r.6,9) = [XO () +xV()] ¥7(0.9) + 0 (7).

It is obvious from Eq. (2.3.20) that x(V(r) = w(0>2r§,§0)(r). Comparing Eqgs. (B.1.15)
and (B.1.16) with Eq. (2.3.19) we see that the rotationally corrected eigenfunctions of
polar modes do not follow the angular dependence of polar modes any more.

Given that w(©, 550), and x(©) have been found from the integration of Eqs. (2.3.16)—
(2.3.18) and their boundary conditions (2.3.24)(2.3.27), whereas w(}) can be obtained
from Eq. (B.1.9), it only remains to calculate 5,(}) and x(1). Applying a procedure similar
to that followed for zeroth-order quantities in Sec. 2.3, we find a system of differential
equations and boundary conditions for 5}(«1), opM, and 6. Using the dimensionless
formulation presented in Sec. 2.3.3, they are written as

xdx :(Vg—3) 1 + W_‘/g Y2 +%y3
2m&) | (o) wth y§0)
+ 25 {yl 4 [1 - —Sl+1) o2 [ (B.1.18)
d (1)
x% _ (cldj(O)Q B A*> ygl) YA U+ 1) yél) _ A*yél)

omQ [ w®
mS

) c1w<°)2y§°)—y§°’), (B.1.19)
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(1)

d
! ig = (=) i, (B.1.20)
&)
d
wote = VAT + UV + 10 +1) UVl — U, (B.1.21)

whereas the boundary conditions at the centre (x — 0) and the surface (z — 1) are

s — i =0, (B.1.22)
O 1
~2, (1) o 2mQ [t 1) g 0)
10Oyt — 1y + 0\ a2y = o, (B.1.23)
and
Uy + 1+ Dyl + ¢V =0, (B.1.24)

4+ ;0002 (1) I(l+1) (1) I+1Y\ @
(1_V Yy + W—l Yo ' t+ 1_T Y3

2mS) w®
kel _ W ~02]) (0
+ SOV {(1 chlw > Yyt

respectively. Now, Egs. (B.1.18)-(B.1.25) can be solved as a boundary value problem for
ygl), yél), ygl), and yil), from which ﬁ,(nl) and y() are obtained. It should be noted that
the solutions are proportional to mf2, so they may be found for one value of m and then

rescaled for the rest.

01&)(0)2

o) y(O)
L —li+1)+ 2| 2 =0, (B.1.25)

B.2 Second-order corrections

In order to obtain the second-order rotational corrections to the eigenfrequencies w and
eigenfunctions &€ of polar modes we need to use Eq. (2.6.10), namely

— w2 4 cO (59) — 2w OuWe) 4,0 M) (E&”)
— 2 0w@e - N20 1 iwNBY (60) + @ (¢0) = 0. (B.2.1)

The situation in this case gets much more complicated than with the calculation of O(2)
corrections, because, at second order in 2, the equilibrium configuration is distorted by the
centrifugal force [see Eq. (2.1.5)]. Hence, the various equilibrium quantities (i.e., density,
pressure, and gravitational potential) do not depend only on the radial coordinate r, but
also on the colatitude coordinate 6.

For the rigorous derivation of second-order corrections, the reader is referred to Saio
(1981), whose basic steps we are going to reproduce in this section.? A similar formula-
tion was also developed by Smeyers and Denis (1971), who applied it in a homogeneous,
compressible star (see Sec. 2.5).

In addition to second-order rotational effects on the polar modes of a star, Saio (1981) also considered
the influence of tidal deformations from a companion star, whose orbital motion is parallel and synchronous
to the rotation of the first star. These will be ignored in the current analysis.
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B.2.1 Generic formulation

In the presence of centrifugal acceleration, which is a second-order rotational effect, the
star is deformed into an oblate spheroid. We define a new coordinate system (a, @, ¢),
rotating with the star, where the radial coordinate r of spherical polar coordinates is
replaced with a. Then, a distorted equipotential surface can be described as

r=all+¢e(a,0)], (B.2.2)

with ¢ remaining constant on each equipotential surface. If the central density of the
nonrotating, spherical star, p. ¢, changes due to rotation by Ap. = p. — p¢,p (nOt to be
confused with the Lagrangian perturbation A, which will not be used in this section), then
the density on the rotating star can be expressed as

_ P Ape
pla(1-+9)] = pofa) L = pofa) (14 2. (B.2.3)

where pgp(a) is the density on a sphere, with radius a, on the nonrotating star. Since
density and pressure depend only on a, they can simply be written as

pla) = psp(a) + Ap(a) (B.2.4)

and likewise for the pressure.
In this notation, Eq. (B.2.1) becomes (omitting the mode index a from now on, for
simplicity)

_ (zw(2)w(0) 4 w(1)2> £0) _ (02 [5(2) +2:60 4 a0V + ega (E(O) _ V) E]
2 WOe) 4 71 @ g, <7’£1A> {v PO (£<o) . v) <3€ n ag;)]
sp

i [ @B (W) +wWBW (¢)] - A (Iﬂ;lA) (V-€9)es=0. (B25)

The displacement vector in the nonrotating limit, E(O) = (56(10), §é0), §éo)>, admits the form

1o
sin @ 0¢

£"(a.0.6) = [55‘” (@), €7 (a) 55, €7 (@) ] Y0.0),  (B26)

which is the same as in Eq. (2.3.19), with r replaced by a (we are not going to separate
the spherical harmonics yet though). Accordingly, e, is the unit vector in the direction of
increasing a. The nabla operator is defined as in spherical polar coordinates, but with a
substituting r. Finally, the Schwarzschild discriminant A and the variable x are given by
Egs. (2.3.8) and (B.1.17) respectively, with a replacing r.

Like for the case of first-order rotational corrections, we expand the second-order cor-
rections as

€2 =3 el (B.2.7)
5

(we temporarily reintroduce mode indices here). With the help of the (expressed in the
notation above) perturbed continuity equation (2.2.4), perturbed Poisson equation (2.2.6),

and perturbed equation of state (2.2.7), we can also obtain an expansion for X((f). Then,
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replacing E((f) and X&Q) in Eq. (B.2.5) and taking the inner product, defined by Eq. (2.3.55),

with 5&0), it becomes (omitting again the index «)

(2w(2)w(0) _w(1)2> 70) _ _ / [Qwa)gm +iBW (50)” €O p dBr

)2/{65( - €0" 4 Re (af ¢ Ve)}pspd?’r
(), e (252) ] 0 5) o
_/ [6&0)* ((%I;OLPJFV'{(O)

Here, 1) is defined by Eq. (2.3.55) as the inner product between zeroth-order eigenfunc-
tions and Re denotes the real part of a complex quantity. U@ is part of the solution of
the (corrected to second order in 2) perturbed Poisson equation (2.2.6) and is given by

@ d3r — / ¢+ . p® (§<0>) ppdir.  (B.2.8)

Oe !
[t (2 52)] )
=@ / / / { ’ 9a)1) ()2 sin ' ad' a0 d!

|r — 7|

! a //8 ]‘ N2 . / / / /
+G/// pbps } Kaaaﬂt aa'> M] (a/)2sin 0'da’de'ds’,

where 7 is the position vector and the primed variables (a’,6’,¢') are the integration
variables, with the rest of the primed quantities being functions of these variables. Finally,

1 (pr r Ape
) (e0) = v L}A <ppl> V- (pst®) - A (1’/)1A> €0 _ pf’Xm)]
sp C,Sp
+A (pI;IA) (v : 5<O>) €a, (B.2.9)

which contains all the terms associated with the difference operator A, defined above.

We can now calculate the second-order rotational corrections to the eigenfrequencies,
w®, for a given form of the deformation function . All the terms on the right-hand side of
Eq. (B.2.8) are related to the distortion of the star, induced by the centrifugal force, except
the first term, which is due to the Coriolis force and requires the knowledge of the first-order
rotational corrections to the eigenfunctions. For these we will use Egs. (B.1.14)—(B.1.16)
(with r replaced by a), which we substitute, together with Eq. (B.2.6), in the Coriolis
term, to get

— 0 )/ [QW Je® 4B (5(1))} O P —

R
1 0 1 0 0 1 2
- 2("‘( )("‘( )A |:£((1) C(L)+ (0)4 2X( )X( ):| pSpa da

o [T L | oo, X9 O
+ 2mQw /0 o002, | X &a +w(0)2a +X pspa’da
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LNANOR.
— 4me(1)/ o002, PprLQdCL — 4w / E(O)QPspCL a
0

R (9 X( )
2 0)2
+ 40 /O {3 (1 - -,Z:l,m) g(g ) 2I mga 0)2

2
(0) I(1+1
X (+1) )
+ <w(0)2a> [ 3 (2T + 1) — QIz,m] }pspa da, (B.2.10)

where

/ Y0 (8, ¢) Py(cos 0) sin 0dOd o

(1+1)? —m? 12—m2] 1
2’

- = B.2.11
(%+)[ 20+3 + 20— 1 ( )

with P, denoting the Legendre polynomials (see, for example, Abramowitz and Stegun
1972, Chapter 8). Here, £a , al), Y@, and ) depend only on a; as discussed earlier,
zeroth-order quantities are found from Egs. (2.3.16)—(2.3.18) and (2.3.24)—(2.3.27) and
first-order ones from Eqs. (B.1.18)—(B.1.25). Finally, w) is given by Eq. (B.1.9).

B.2.2 Application to polytropes

We are going to apply the generic formalism presented above in polytropes (see Ap-
pendix A). In order to simplify the process, we will assume that central density and pressure
changes, induced by rotation, have a negligible effect on the calculation of second-order
eigenfrequency corrections, i.e.,

Ape = Ap. = 0.

This choice makes the rotating star have a larger mass than its nonrotating counterpart [see
Appendix A.2 and specifically Eq. (A.2.13); cf. also Christensen-Dalsgaard and Thompson
1999]. Based on Egs. (B.2.3) and (B.2.4), this implies

pla) = pyp(a),

which means that the density on an equipotential surface, corresponding to a, on the
rotating star coincides with the density on a sphere, with radius a, on the nonrotating
star. Then, from Eq. (B.2.9) we see that

D2 (g(tn) —o0.

In order to obtain an expression for the deformation function ¢, we need to use the
results obtained in Appendix A.2. To avoid conflict between the Lane-Emden variable &
and the displacement vector €, we will replace the former with {. In our current notation,
we may represent ( as

(=C(1+e), (B.2.12)
where ( is the Lane-Emden analogue of a, namely, from Eqs. (A.1.3), (B.2.2), and (B.2.12),

1/2
. (n+1)KpC%—1 ;
4rG
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Then, according to Eq. (B.2.3), the solution #(¢) of the Lane-Emden equation (A.1.1) is
related to the solution ©(() of the equation for rotating polytropes (A.2.1) by

0(0) =0 [C(1+e)],

from which we get

2 an :
c(a,0) = :1),@\(42/33 <E>3 ]]\‘j (a(a) — B(a)Pa(cos )], (B.2.13)
where
a(a) = 61/122(4)
and )
Ba) = - 22,

with Chandrasekhar’s functions, 19 and 12, obtained from Eqs. (A.2.6) and (A.2.7), and
Ay given by Eq. (A.2.8). Also, M, is defined in Eq. (2.3.42), with r replaced by a, whereas
M and R denote the mass and radius of the (nonrotating) star respectively.

We can now substitute Eq. (B.2.13) in Eq. (B.2.8), to get (omitting the subscript sp)

2
w® 1 [ w® 1
A T N R O R W o 50 (¢0)] . 0% 3
Lol T3l ! 2w<o>/[2w €0 4B (61)] €07 pd'r

s/j{

R (0)
+ DT, / {[(4U)B+ dp ]££°)2+3/3’§§°) X
0

dlna w024

2
e 3 2 8 Ywd
S R w
5 ©0) _ 550 ¢© £ ¥
oo ) (7= 00) €05 () 2

D.'Zl7m R (0) (0) (0) dp X(O) w
Jr20‘;(0)2/0 <X —0® ) & f(B)+3 (6—U)5+m o Lda

4rG R
S S 04— P (10 _ 550
2w(0)2(2] + 1) /0 [5“ T1p (X )

2
(0) d
_U) 02 X (0)2_ o
4-U)&7"+1(1+1) <w(0)2a>]a+§a dlna}wda

+d /R ! — [3(a)S — D(B) DIy ) da’}pagda, (B.2.14)
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where?
w = clpa2,
1 Q2
S=D=—-———-——
3GM/R3’
and

f<g>_[ﬂ3—Uf+@¥+W@U#{9—HDdia+d&iy](g),
q (0)
$(a) = |[C1p { [ O FLip (X<0> - 5c1><0>)} {(6 —U)a+ dh‘j‘a} + Zf(a)}ﬂ >

c (0)
D(5)=$(5)+{31p X [(mmmﬁj} .

a w©0?2q

The variables ¢1, U, A*, and V, are defined in Sec. 2.3.3 (with a replacing ), Z; ,, is given
by Eq. (B.2.11), and the second term on the right-hand side of Eq. (B.2.14) was evaluated
in Eq. (B.2.10).

We may now write the second-order eigenfrequency correction in the form

Q 2
ﬁngﬁmeJ. (B.2.15)

The parameter Cs can be decomposed as
Cy = X1 +m?Yy 4+ Xo +m?*Ya + Z, (B.2.16)

where the term X; +m?Y; corresponds to the effects of the Coriolis force, included in the
first two terms on the right-hand side of Eq. (B.2.14), whereas X5 +m?Ys and Z are due
to the deformation of the star and comprise terms proportional to D and S respectively.

*In the original work of Saio (1981), the parameter D also includes the effects of tidal deformations from
a companion star and is not the same as parameter S.



Appendix C

Polar mode growth/damping
rates

We will evaluate the polar mode growth/damping rate 7, including contributions from
gravitational waves, shear viscosity, and bulk viscosity, namely

Y = Yaw + Ysv + 1BV,

_L(dEY (dE) | (dE
TToE |\dt )y \dt )\t ) gy

where the mode energy E is given by Eq. (2.6.4) (evaluated at unit amplitude) and its
rate of change due to gravitational waves, shear viscosity, and bulk viscosity is defined
in Egs. (3.5.1), (3.6.1), and (3.6.4), respectively. We will consider mode eigenfunctions
as obtained in the nonrotating limit, due to their simple spherical harmonic dependence,
which makes the various integrals analytically tractable.

or, using Eq. (3.6.7),

C.1 Gravitational waves

From Eq. (3.5.1) we have

E o0
<d> =Y Nw(w—m)>* (6D + 157 ?) (C.1.1)
dt GW

lmin

with the constant IV} given by Eq. (3.5.3), and the mass and current multipoles, §D;" and
dJ", defined in Eqgs. (3.5.4) and (3.5.5) respectively. In the nonrotating limit, polar mode
eigenfunctions are given by Eq. (2.3.19), which means that their current multipoles are
zero, namely
m 2iw m m *M 133

5Jl = m / (gryvl e, +£h7"v)/2 ) . (7"67» X Vlfl )p'l“ d°r = 0, (012)
where we used the fact that dv = iw€ and v = 0. Mass multipoles are accordingly written
as

R
5Dlm:/ Sp(r)rtT2dr, (C.1.3)
0
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where the orthogonality of spherical harmonics (2.3.14) was used. The (Eulerian) density
perturbation can be written as a function of £ by using the perturbed continuity equation
(2.2.4) as

d
5p(r.0,6) = —pV - € — &(r)Y;"(0,9)
with the divergence of the displacement vector given by
d,
Ve % 2o i v, (©14)

where Eq. (2.3.13) was used. Alternatively, using Eq. (2.3.7), dp is expressed in terms of
the dimensionless variables defined in Sec. 2.3.3 as

dp(r) = p[Vy(y2 — y3) + A1)

Note that, since in the nonrotating star there can be no instability, the eigenfrequency w
in Eq. (C.1.1) cannot be evaluated in the nonrotating limit.

C.2 Shear viscosity

According to Eq. (3.6.1),
E
dE = —/27750“b502bd37‘, (C.2.1)
dt /gy

with the shear tensor 0% defined in Eq. (3.6.2) and the shear viscosity coefficient 7 given
by Eq. (3.6.3). An expression for Eq. (C.2.1) in terms of the components of the polar
mode eigenfunction (2.3.19) can be found in Cutler et al. (1990), namely'

d£ _ 2 2 1 o 2 9/4
(dt>sv 2% /{ 2 911 + )a2+l(l+l)[21(l—i—1) 1}@},) dr,

(C.2.2)
2
v

!Cutler et al. (1990) give this expression in terms of the covariant components of the displacement vector,
which, in their notation, are

where

o = [@Y{"var - V(T)VQYEW:| rlett,

Since we are working with spherical coordinates, these components do not coincide with the physical com-
ponents ), i.e., the components expressed in the (e,,eq,ey) basis. To get the latter, we have to use the
transformation £* = £(4)/v/Gaa, OF &a = gapl® = 9av€(v)/+/gob, where the metric tensor of flat space is

expressed in spherical coordinates as
1 0 0
Gab = 0 r? 0 .
0 0 r’sin®6

€:<Krl7 Vo V1 8)1@%’“.

Then, in our notation,

r r 96’ _?T sin@c’)i(b
Comparing to Eq. (2.3.19), this means that & = Wr'™! and &, = —Vr'™!, from which Eq. (C.2.2) can be
obtained. Furthermore, our parameters 1 and as differ from the ones defined in Cutler et al. (1990) by a
factor i1,
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and
I:dgh gh §T:|
g = — - =4 >=].

dr T T

Moreover, the eigenfrequency w is evaluated in the nonrotating limit and the viscosity
coefficient 7 is rescaled, for convenience, as

n

F T gp7 o5/ 23/4 g1 K2,
n T2 g cm“/* s

Using the dimensionless variables of Sec. 2.3.3, Eq. (C.2.2) becomes

dEN g2 / 02+ 201+ D)ad + 10+ 1) |21 +1) — 1 2 VoL oy,
dt SV_ 2 2 c1? p ’

with

dyl TY2
_ = 2 -
a=3r dr l(l * 1)01w2
and
o 1 dys
ag=—5 {01&2 [7“ O — 23— U)] +y1}.

C.3 Bulk viscosity

The energy rate due to bulk viscosity is given by Eq. (3.6.4), i.e

(dE> = —/gaaaa*d%, (C.3.1)
dt /gy

with the expansion scalar do defined in Eq. (3.6.5) and the bulk viscosity coefficient ¢
given by Eq. (3.6.6). Using dv = iw€, we get

5o = iwV - €,

where the divergence of the displacement vector is given by Eq. (C.1.4). We further rescale
the bulk viscosity coefficient ¢ as

fz p2w<2T6 =6x107 g tem® s P KO,
to get
dE ~ d¢,
<dt> — _gT6/O [di + 5 11+ 1)5h] 2r2dr, (C.3.2)
BV

where the orthogonality of spherical harmonics (2.3.14) was used. Alternatively, we can
use the perturbed continuity equation (2.2.4) to get

v.gz_; [5;)( VY™ + & ()Y jf]a

which, with the help of Egs. (2.3.7) and (2.3.8), can be expressed in terms of the dimen-
sionless variables of Sec. 2.3.3 as

V-€=Vy(y1 —y2 +y3)Y)".
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C.4 Mode energy

The mode energy E is given by Eq. (2.6.4) (evaluated at unit amplitude), namely

E=wl2w(§,§) — (£ iB(£))]. (C.4.1)

Since we consider the eigenfunctions in the nonrotating limit, (£,€) is the moment of
inertia I of the perturbation, given by Eq. (2.3.56). Also, in Appendix B.1 we proved that
W) = (€ iB(E)),
21
where w) is the first-order rotational correction to the mode eigenfrequency. Thus,
Eq. (C.4.1) is written as

E=2lw <w — w(l)) . (C.4.2)

In Eq. (C.4.2) the eigenfrequency w has to include rotational corrections. If the eigen-
frequency is also evaluated in the nonrotating limit, the mode energy is simply given by
Eq. (2.3.58) (evaluated at unit amplitude).



Appendix D

Equations of motion

D.1 Equation of motion for quadratic perturbations

The equation of motion for quadratic perturbations, in terms of the velocity v = dwv, is
easily derived by differentiating the perturbed Euler equation (4.1.4) with respect to time.
Then,

v+ B(d) +C(v) + N =0, (D.1.1)
where
B(v) =2Q X v, (D.1.2)
o 1 051]0 B @851[) 851(19
C(v) = v <8t > 2o TV ) (D.1.3)
and
N=2 [(v V)o + Viﬁp s (;) Vorp + b (;) Vp + vm} . (D.1.4)

We will attempt to derive expressions for the perturbations in terms of the velocity
and first-order terms. From the perturbed continuity equation (4.1.3), distinguishing first-
and second-order terms, we get

00
Foup =—pV-v—v-Vp (D.1.5)
ot
and
3}
%ip =—01pV-v—v-Vip. (D.1.6)

Accordingly, the perturbed Poisson equation (4.1.5) gives

V25,8 = 47 Go1p
and
V252(I> = 47['G(52p,

whose solutions are

(51p(’!‘/)

=7

5Hd = -G d3r'
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_ —G/ dap(r
=0

or, differentiating with respect to time and using Eqgs. (D.1.5) and (D.1.6),

and

06,9 V' (pv) 15,
pu— D-l.
ot ¢ lr — /| & (D-1.7)
and
852(13 . V/ . (51,0’0) 3

where V' denotes differentiation with respect to r’.
In order to derive the perturbed equation of state (4.1.6), we applied a Lagrangian
perturbation to the equation of state (2.1.4), which, to quadratic order, gives

. dp 1 82p 2
sp=(5) sov5(5r) ot

considering frozen or adiabatic perturbations (A & 0; see Sec. 2.2). After some manipu-
lation, we get Eq. (4.1.6), which, making use of Eq. (4.1.2), can be decomposed into first-
and second-order Eulerian perturbations, namely

0d1p

= =—v-Vp—pIhV-v (D.1.9)
and
P _ G yle vr) +or T+ (220 19 el v vap.  (d110)
ot Olnp /),

Finally, an expression for the Eulerian perturbation of 1/p can be obtained as

1 1 1
= : [1—5’)+<51p) +0 (€%
p+dp p<1+?ﬂ) P P P

which implies

1 01p
hl-)=——+ D.1.11
' <p) p? ( )
and
1 2p | (01p)°
ool = | =—FF + . D.1.12
’ <p) p? P ( )

Using the equations above, Eq. (D.1.4) can be reduced to Eq. (4.1.10), i.e

o 0 v-v 51[) (51/))2
N_E?t[v(2> v x (V xv) p2V51p+ 20 Vp

U (L B RV QMR v
dlnp i

Y (v-V) (‘2") lelv, U Wd?’r'] , (D.1.13)

p r— 7|
where the quadratic velocity term was rewritten using the vectorial identity

V(A-B)=(A-V)B+(B-V)A+Ax (VxB)+Bx(VxA).

—i—/l)V |[V-U{E~V(pf1)+pf‘1
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D.2 Amplitude equation of motion

In order to derive the equation of motion for the amplitude (4.1.13) we have to replace the
velocity expansion (4.1.11) in the equation of motion for quadratic perturbations (4.1.7)
[or (D.1.1)].

Starting from the linear terms and using the eigenvalue equation for the perturbations
(2.2.12), we get

5+ B(6) +C(v) =3 [(0Ga — w20 ) Eaet + (~itwallt, — w203 ) Ere "]

- Z (QuCla)e™ " + Qre(gr)e™ ] (D.2.1)
Now, from Eq. (2.6.2) it is implied that

Z (Qaéa iwal 4 QreEn —Mt) =0. (D.2.2)

Hence, since C is a linear operator, the second sum in Eq. (D.2.1) vanishes. In order to
isolate a single Q),, we need to use the mode orthogonality condition (2.6.3). We add and
subtract terms containing the eigenfrequency wg # wq, to obtain

¥+ B(9) =1 Z { wp + wa) €4 — iB(E,)] (Qa + z‘waQa) giwat

+ [(wp — wa) &4 — iB(E7)] (Q — iwg@;) efiwat}
i Z { (ws€s — iB(E,)] (Qa + iwaQa) piwat

«

+ [t — iB(ED)] (O —iwaQs) e} (D23)
Differentiating Eq. (D.2.2) with respect to time, we get
Z <Qa€ elwat +ZwaQa£ elwat + Q 5* —iwal iwaQZEZe_iwat> =0, (D.2.4)
e

which implies that the second sum in Eq. (D.2.3) vanishes.
Taking the inner product of the remaining terms with &4, then, based on the ortho-
gonality relation (2.6.3), all terms for which a # 8 vanish. Hence,

ibo, (Qa + iwaQa) et = _<€ouN>’
or

Gat i1aQa = (€ N (D2:5)

We shall further assume that the amplitude @), changes on a time scale much larger than
the mode oscillation period (Dziembowski 1982; see Sec. 4.2.1), i.e

|Qal < walQal, (D.2.6)

so second-order derivatives of @ can be ignored. Then, Eq. (D.2.5) takes the form of
Eq. (4.1.12), namely

Qo = —— (€&, N)ewal, (D.2.7)

wWaba
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We will now proceed with replacing the velocity expansion (4.1.11) into the quadratic
terms N/, for which an expression was derived in Appendix D.1. For instance, the first
term of Eq. (4.1.10) [or (D.1.13)] becomes

6815 [V ( )} Z Zwﬂw'y |:QB + iw, Q) V .57) pi(wstwa)t

(@192, ¥ (
—Qs <Q§ iw, Q) ) V(&s-€2) eilws—wy)t
—Q5 (QW + zva,y) V(&5-€,) pi(—wpFwn)t

(00,07 V65

Due to Eq. (D.2.6), the terms involving derivatives of @ will be ignored. The rest of the
quadratic terms can be expanded accordingly, using the equations of Appendix D.1. Then,
taking the inner product of A" with £, we obtain Eq. (4.1.13), i.e

= o S [P Qe B Q1 e

T FapsQeQse ot 4 B Qe et (D.2.8)

where F' is the coupling coefficient, generally given by

1
Fopgy = m@a,/\/(ég,&,»- (D.2.9)

A bar over an index means that the corresponding mode eigenfunction in N has to be
complex conjugated and its eigenfrequency sign reversed. The explicit form of the coupling
coeflicient is

1
Faﬁ,y = wf (w55a57 + wVSaq,g) N (D210)
«

where

50‘57 :/ HPWBWV[_V(SB'SW) +€5 X (V ng) +£'y X (V Xéﬁ)]
L[V (p€s) V(€ - Vp+pIIV-E,) + V- (06,) V (€~ Vp+pD1V - €5)]

P
V-0V () - e v | T

oo { [T e

V{Eﬁ'v(ﬁy'vp‘i‘}?rlv'ﬁy) (V-&5) ¢, -V (')

F1+ 8lnI‘1
Olnp i

+ pl'y

(V-¢&) (V-€,) H] ghdPr. (D.2.11)



Appendix E

Polar mode coupling coefficient

Following Dziembowski (1982), we are going to derive an expression for the coupling
coefficient (D.2.10) in the nonrotating limit, assuming that the resonant coupled triplet
(see Sec. 4.2.1) consists of polar modes, i.e., modes whose eigenfunctions are given by
Eq. (2.3.19). This will simplify the calculation greatly, due to the simple spherical harmonic
dependence of the eigenfunctions. In this sense, we will find an expression for the zeroth-
order component (with respect to rotation) of the coupling coefficient.

For the sake of generality though, we will keep assuming that the eigenfrequencies
which appear in the formula for the coupling coefficient (D.2.10) have been obtained for
the case of a rotating star. This way, we take into account rotational corrections in
the zeroth-order component of the coupling coefficient only through the eigenfrequencies.
Following the notation of Sec. 2.6.2, we will denote the eigenfrequency in the nonrotating
limit, whenever needed, as w(®.

E.1 Parametrised form

For notational convenience, we define the following variables:

fa = =84 VP —pInV - &, (E.1.1)
1
Ao = ;V - (p€a) (E.1.2)
W —G/ Pha a3/, (E.1.3)
=/
and
y=Ty 4 (2D (E.1.4)
Olnp ),

Then, the eigenvalue equation for the perturbations in the nonrotating limit, given by
Eq. (2.3.54) [or (2.6.8)], can be expressed as

_ Vg“ + foa + Vi, (E.15)

where we used Eq. (2.2.11) and various first-order relations from Appendix D.1. The
coupling coefficient F,g-, defined by Eq. (D.2.10), is written as

(,uoéFoéﬁ7 = Wﬁsocﬁv + wWSOWB, (E.l.ﬁ)
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where

Sapy = / { —pwpwyV (€5 - €,) +pwpwy€s x (V X E,) + pwawy€, x (V X &)
Tl T2

+A3V 1y + A Vg + AgA Vp— (€5 - V) Vp—GpV

T3 Ty

/V," (PEsA) d3r’]

r—1r/|

Ts

~V (&5 Viy) +V [(V - €5) &, - V (pI'1)] +V [pLix (V- &5) (V- €,)] } €5 d3r.
Ts T7 T

(E.1.7)
We are going to study each term of w,Fy3, separately (including the corresponding terms

from S,+p5). Also, in the following calculation, we will neglect the eigenfrequency detuning
Aw, i.e., we shall consider wq, ~ wg + ws.

Term 1
T = —(wg + wy) /pwﬁw,yv (&5-€,)  Ehd%r = —w, /pw5w,yv (&5-€,) - €.d%r.
Using Gauss’s theorem, we get
Tl = —WqWaWsy (%5,8 . EPYPEZ -dS — /E,B . gv)\zpdg’f') s

where dS is the differential normal area vector at the stellar surface. Since the density p
vanishes at the surface, the first term is neglected (for similar reasons, all surface integrals
will be neglected from now on). So, finally,

T1 = wawpwyKapgy, (E.1.8)
where
Kopy = /gﬂ-gyxg,od?’r. (E.1.9)
Term 2
_ * 13
Ty = (wg 4—@}7)/pw5w7 [EB x (V x Ev) + &, ¥ (V x 55)} € d0r,
or
Ty = wawpwy (Nagy + Navg) (E.1.10)
where

Nopy = /p (€5 x (V x¢&))] &%, (E.1.11)
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Term 3
T3 = (wg + wy) / (AgViy + A Vg + AgA,Vp) - Eng’r‘,
or
T3 = waapy, (B.1.12)
where
Japy = / MgV + A Vg + )\g)\,pr) . Eng’I‘. (E.1.13)
Term 4
Ty = —w,g/ (EB : V)W) Vp - £Zd3r — wﬂ,/ (Ev . V)\g) Vp - £Zd3r. (E.1.14)
Term 5

T5 = —wB/GpV

T5q Tsp

Using Gauss’s theorem, we get

MG]{ / V' (p52) g5, ’] e - dS — G// V' (p€sh) A= BB

fr— 7] r—r]
Neglecting the first term and taking into account the symmetry of 1/|r — 7’|, we obtain

—/v. (p€ ), [/ |G’Ma d3r ’] Br = — /v- (p€ 52y ) widPr.

Using Gauss’s theorem one more time, T5, gives

T5a = —jépx\vw;{@» -dS + /p/\7£5 - Vwd3r.

Neglecting the surface integral and using Eq. (E.1.5) to eliminate Vw}, from the remaining
term, the equation above becomes

Tso = / wO2px &5 €1 dPr — / &g - Vurddr — / A€ - Vpdir.

The corresponding expression for Tk, is the same, with the indices 8 and v interchanged.
So, finally, T5 can be written as

Ts = _W&O)Q (wﬁK'yoaB + W’yKﬂa’y)

T5.1

+wg / MEs - Viid®r + w, / As€, - Vi d®r

T5.2

—l—w/g/)\;;)wﬁﬁ-Vpdgr—l—wv/)\:;)\gﬁv-Vpd?’r, (E.1.15)

T5.3

with K, defined in Eq. (E.1.9).
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Term 6
Ts = _Wﬁ/v €5 Vi) 6L — w, / V&, - Vg e dir.
Applying Gauss’s theorem, the first integral becomes
/ V€ Vi) - €adir = f €s- Vs - dS - / €5 Vi,V - Eod’r.

Neglecting the surface integral, the remaining terms give
Ts = Wﬂ/&/j Vi,V - Eng’!’ + wy/gv -VugV - de3T. (E.1.16)

Term 7

Tz ZWB/V [(V-€5) &, -V (pI1)] 'SZd3T+wv/V (V- &) &V (pI')] - &%

Using Gauss’s theorem, the first term becomes

/V [(V.gﬁ) fv.V(pFI)] e dPr —f(V-ég) &, -V (prh) ¢, -dS

- / (V ’ 56) £'y -V (pI'1) V- 52d37‘.

With the surface integral neglected, we get
Ty = —wﬁ/ (V-&5) &,V (pI'y) V-52d3r—w7/ (V&) &V (pI') V-£dr. (E.1.17)
Term 8

Ty = (ws +ws) / V [pTix (V- €5) (V-£,)] - €nd%r.
Applying Gauss’s theorem and neglecting the surface term, we obtain
T3 = waMap-, (E.1.18)
where
Mugy = —/prlx(v &) (V&) (V-&,) dPr. (E.1.19)
Terms 4, 5.2, 5.3, 6 and 7 are combined to give
T = wgLgay + wyLyag, (E.1.20)

where
Lgory = / [ =& - VDEs- VA +E€5- Vs + A€ - Vp

+(V-€5) &5V, — (V&) (V- &) &, - V(pI'1) ] dr. (E.1.21)
Combining terms 1, 2, 3, 5.1, 8, and T” above, we finally get the more compact expres-
sion

0)2

waFapy = wawpws Kopy — w2ws K ap — w w0y Kpan + wawpwy (Nagy + Nayg)

+ waMaﬁ/y + wa,]ag,y + wBLﬂa/y + wfyL,ya/g. (E.1.22)
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E.2 Angular part

Henceforth, we are going to use the dimensionless formulation presented in Sec. 2.3.3. The
polar mode eigenfunction (2.3.19) is written as

Ea = ""yl,aYaer Y2, rV 1Y, (E.Q.l)
~(0)2

C1We

where

Yo =Y (E.2.2)

and V| is the horizontal component of the gradient operator, defined by Eq. (2.3.3).
Furthermore, in this notation,

o = gry3.aYa (E.2.3)

and
Owy,

or

Equations (E.2.1), (E.2.3), and (E.2.4) will be used throughout the following calculations
without reference.
The horizontal component of Eq. (E.1.5) gives

= 9¥Y4,aYa- (E.2.4)

fo = gprzaYa, (E.2.5)
with
Za = Y2, — Y3,a- (E26)

Using Eq. (E.2.5) in Eq. (E.1.1), we also get

V&=V (W0 — 2a) Ya- (E.2.7)
Substituting Eq. (E.2.7) in Eq. (E.1.2), we obtain

Ao = — (A"Y1,0 + Vy2za) Ya. (E.2.8)

Now, we will examine the terms of Eq. (E.1.22) individually and prove that their
angular part is reduced to the integral

Zopy = / Y Y3Y, sin 0d0d¢. (E.2.9)

This is a known integral (e.g., see Sakurai and Napolitano 2011, Sec. 3.8) and is equal to

(215 + 1) (2L, + 1)
Zopy = \/ im i, +V1) (L51,00[151,10) (Lglymamey |Lsly lama), (E.2.10)

where

S mgim, V2o + 1
Uatmama lglytama) = 7= — T H¢ (=l + b+ L)/ (U + mi) '/ (T — mi)!
B

J+ (_I)J
Z]( —J = la+ g+ 1) (=i +1g = mp) (=) + Iy + m )G +la — Ly +mp)!(j +la — 13 —m,)!

J=J-
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are the Clebsch-Gordan coefficients, with
Jj— =max(—lq + 1y —mg, —lo +1g+m,,0) and ji =min(lg —mg,l, +m,).

The index k in the product successively takes one of the values «, 8, v, whereas the indices
k" and k" take the values that come next and after next respectively, namely

(a; 8,7)
(k> k/’k”) = (ﬁa77 Oé) (E.2.11)

(’Ya «, B) .
Kopy
Using Eq. (E.2.8), Eq. (E.1.9) becomes

onﬁv

Kaﬁ'y = - / (A*yl,oc + ngoc) yl,ﬁyl,’yzaﬁfy + Y2pY2y———— 35 PT4dT7
(c ~(0) ~(0))
where
Xagy = / YV .1Ys- VY, sin0d0de.
Integrating by parts and making use of Eq. (2.3.13), we get
Xapy + Xpay = My Zagpy,
where
A=1(I+1). (E.2.12)
In a similar manner, we find
Xapgy + Xoap = MpZapy
and
Xgay + Xyap = AaZapy-
Thus,
Ao +As+ A
Xopy = —"—3 Y gy (E.2.13)

So, Knp is written as

Ag+A —Ao |

SO T Sa iy, (B.2.14)
2 (q@g))a)@)

Kapy = —Zapy / (A"Y1.0 + Voza) | Y1891 + Y2,8929
Napy
Taking the curl of Eq. (E.1.5), we get

1
WV x ¢, =V (p) X Vg + Vg X <Vf> ,

or, using Egs. (E.2.5) and (E.2.8),

w&O)QV X &€y =09A" (2o —y10)€r X V1 Y,.
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So, making use of the vectorial identity

Ax(BxC)=(A-C)B-(A-B)C,

we obtain
WO, % (V x &) = rgA* (29— y1,) | (ViY5) - (V1Y) —22 e, — ) 5Y3V V.
ol B ol Y v T Yy 14 uE w(o) r —Y1,pYpV LIy
GwWg

Finally, with the help of Eq. (E.2.13), Eq. (E.1.11) is written as

Z Ag+ A, —A Ay+ Ay — A .
Nagy = =53 / (7 = Y1) [Yra¥es =G5 = V16U ——— gz | 9ATpridr.
Wy 201(«}5 2c10q
(E.2.15)
Moy
Substituting Eq. (E.2.7) in Eq. (E.1.19), we get
a,B’y aﬂ'y/H Y,k — %k XV gper d (E216)
with k successively taking the values «, 3, .
Japy
Equations (E.2.5) and (E.2.8) may be combined to give
Ao = —A*yp oYy — L2 (E.2.17)
pI'y

Using Eq. (E.2.17), Eq. (E.1.13) becomes

V (psp
Jagy = /5a [ (1,8Y8V iy +y1,YyVig) — AgAVp + (pF"l”)] Br

Applying Gauss’s theorem to the last term, we get

_/WW.g;di”r:—?{’;ﬁﬁ”g;-d&r/lf”” [V &5 — & Vin(ply)] d3r

pl'y
dlnF1
— a,@’y/zﬁ’zW [—zan + Y10 <V + V- dlnrﬂ Vggpr?’dr,

where we used Egs. (E.2.5) and (E.2.7), and the surface integral was neglected. Next, we
calculate the radial component of Vpu, via Eq. (E.1.5), as

Opta

= P [wg))?ryhaya +9 Mo — y47aYa)} = gpYy, [ylva (clw( )2 A*) — Vyzo — y4,o¢:| ,

(E.2.18)
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where Eq. (E.2.8) was used. With the help of the relations above, and using Egs. (E.2.8)
and (E.2.13), we obtain the final expression for J,s,, which is

. Ag— A, — A, Ay, —Ag— A,
Japy = Zapy / A"y - j(o)z Y182y + —?( 02 Y1aEs
2c1Wa 2c1w

(67

+ A* {yl,ayl,ﬁyl,'y (A* - w C1w(0)2) + Yt,a (Y1,8Y4~y + Y1,4Y4,8)
dlnl
+ ‘/g |:yl,OéZﬁZ’Y <V - dln T‘1> - ngazﬁzv }gpr (E219)

Lﬂa'y

Applying Gauss’s theorem to the first and fourth terms of Eq. (E.1.21), while neglecting
the surface integrals, we get

Loar = / {€- MV (=9I V - £0) =iy V (V- €0)] = 1 (V- £0) (V- §5)
+ Vp . (S;)"YV . 55 + )‘Z)\’YSB) — V(prl) ’ 57 (v ' Ej;) (v ’ Eﬁ) }dST’

where we used Eq. (E.2.5). Furthermore, with the help of Eq. (E.2.17), we obtain

Lpay = /{pFlA*mewE,a VA(V-&L) 4+ Vp- (EMV - €5+ AoME5)
— 1y (V-€5) (V- €5) = V(I1) - [\ (V- €) €+ (V- €5 (V- €5) €] }d3r

Next, we calculate the radial component of V (V -§&,). First, we take the derivative of
Eq. (E.1.1) with respect to r and solve for 9 (V - &,) /Or, i.e.,

0 _ L [0 4 gy AT G
E (v : £a) - prl or dr (ga VP) dr \4 Sa:| :

We evaluate the first and third terms of the relation above by making use of Egs. (E.2.18)
and (E.2.7) respectively. From the second term we get

d d d(pg)
-7 . = Yai « aYa - -

3 &a V) = pg¥a (ryLa) +yraYar—
Taking the divergence of £, via Eq. (E.2.1), we obtain an expression for d (ry1,q) /dr. So,

finally,

9 7
E(v'ga)_7ya

dInIy
dlnr

Y1, (U —4 - 01@&0)2> + (Y1,0 — 2a) (V -

Ao
+ Y2 + Ys,a-
C1Wey
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Using the relation above, together with Egs. (E.2.7) and (E.2.8), and appropriately re-
arranging the terms, the final expression we get for Lg,~ is

Loy = Zapy / — Y1,aY1,8Y1,5 [(A* + V) 4+ A (4 +aa?-U )] + A"Ys.0Y1,8Y1 4
+Vy Z YLk [(A" 4+ Vo) vy (Wi — 210) — Vg (yiw — 2w) (Y — 21|
k

dinT
+Vy (V -~ 7}) (Y10 — 2a) [Y1,8 W14y — 29) Y14 (Y18 — 28) — Y1,8Y14]

« A+ Ay — A3 A
+ A"y 2 V28 (V1,0 — 2a) + ﬁyzayl,g
201(,05 1@y
+ VI (i — 2) ¢ gpridr, (E.2.20)

k

with the indices k, &/, and k" behaving as in Eq. (E.2.11).

E.3 Radial part

We will now proceed with the evaluation of F,3, from Eq. (E.1.22), based on the formulae
derived in the previous section for the various parameters. Once again, we will study each
term separately. For reasons explained later, we will divide F,3, by GM/ R3.

Kopy
Using Eq. (E.2.14), the combination of the K terms in Eq. (E.1.22) gives

(0)2

R Wa ™ Wp W&Opw ] :7:[1,

GM

Kapywpwy — Kyap — Kpay

« e

where

7‘21 = Za,@’y/ { — Z (A*yl,k + Vng) \I/k

k

QCk
X (wk/wk//ylvk/ylku + 7¢kl¢k”y27k’y2’k” p’l"4dT, (E31)
1

with
. (:)k k=a«
wy = { o for k= By (E.3.2)
and A a A A
QO = —h T2k T e (E.3.3)

200 T
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[A has been defined in Eq. (E.2.12)], whereas

2
w
Yr = (@,(:5)> (E.3.4)
d
h v,= gy kT E.3.5
IRV S (E:3.5)

The behaviour of the indices k, &/, and k" is explained in Eq. (E.2.11).

Naﬁ‘v
From Egs. (E.1.22) and (E.2.15) we obtain

R3 A*
OM Nogywpwy = Zaﬂv = 7/17/ (zy — Y1,9)

Cl

Ag+ A, — A, A+ Au—Ag\
X e e oy tie P dr.
(yl,ayzWﬁ %2 Y1,8Y2,0%a 22 rtdr

The corresponding expression for N, swpw-/(GM/R3) is the same, with the indices
and ~ interchanged. For later convenience, we will write the correction factor v, (but not

Yo and 1g3) as

w’y = 1 + E’Y)
where 0
@2 — o’
Wy

Doing the same for the equivalent factor 15 in Nyswsw-/(GM/R?), we get for the N
terms

RS ~ A*
Gt Nen + Navg)waior = Zagy 22 (1+2,) / & G o)
Ag+ Ay, — A A +Ay— A
X (yl,ayz,wﬁw - y1,ay2,a¢a72;25> pridr
B a
3 ) "
+ Zaﬂw — (L+2p) | — (28 —y1,8)
wg 1
A, +Ag—A Ag+ A, — A
X <y17a3/277w772a;82a - yl,'yy2,awaﬁ2(;;’y> pT4dT‘
Y @

Moy
Equations (E.1.22) and (E.2.16) give

R3 1
— Mgy = —Z, - - 2 orddr.
g Mosy Bv/ql;[(yl,k 2k) XVg pridr
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Jaﬁ'Y
From Egs. (E.1.22) and (E.2.19) we get

R3 A* Ag— A, — A, A, —Asg— A,
“pdasy = Zapy /{ Y2, aa <Uy1752’7 + My1,72’5>

GM 202 202
A
% ~2 @2

+ | yravigyiy | A* =12 — 12 ) 4y1a (V1,804 + Y14Ya8)

C1 ¢B 1/)7

Ja
J1

Vy dInTy 4

+ a [yl,azﬁzﬁ, (V — dlnr) —‘/gzazgz,y] }pr dr.

Ja
J3

Lﬂa'y
With the help of Eq. (E.2.20), the L terms in Eq. (E.1.22) yield

R? [wg
GM |: Lﬁaw"‘ ’YL'yaﬁ:| aﬁy/ {V H ylk_zk

Ly

+Vy Zyl,k [(A* + Vg) Y1 k! (yuw - Zk") -V (y1,k' - Zk') (yl,k” - Zk”)]
k

Lo

dIn Fl
+Vy <V T dlnr > (Yo — 2a) [Y1,8 W1y — 2y) + Y15 (V1,8 — 28) — Y1,8Y14]

Ls

~2
w
—yLOCngqu/ |:(A* + ‘/;7)2 + A* <4 + C1 71/111 — U):| +A*y4,ay1’gy1ﬁ
~———

«

~~ L5
Ly
Ao +As— A Ao
A* e - it — e
+ Y1,y |: 201@0@6 W?Jw (yl,oc Za) + 01(:)3 wayQ,ayl,ﬁ
Ly
. A +A,— A
+A Y1, 2610 W'y /87!)73/2,7 (yl a — Za) }nggdr-

Adding the N terms to Jj and Ly, we get

: A*
Ha = Zapy / = Z U2k (GCwy1 k1 k7 + QCwryt g 2k + QCknyr kv 2k ) pridr + Neor,
L g

(E.3.7)
where
Ak’wk’ =+ (Ak’ — Ak//) (Wk/ —_ wk//)

GCy =
k 2w W

(E.3.8)
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and

_ A* w
Neor =ZapyZp / — (26 = y1,6) (QCayl,aym% - ;chymyza%) pridr
1 o

_ A* w
+Zaﬁv*:'y / 072 (Z'y - yl,’y) <Qcayl,ay2,6¢ﬁ - ,W/BQCBZULBZJQ,ad}a) pT4dT. (E39)
1 «
Furthermore, Js + L5 gives

. A*
H3.3 = Zapy / o Zy4,ky1,k/y1,knpr4dr. (E.3.10)
k

Also, from J; + L4, we obtain

- 92 A 3V, A"
HB.I _Zaﬂ'y - H Y1,kpr dr _Zoaﬁv H Y1,kp7 d’l“
k

-~

Rl R2

where
A*
Hzi = aﬁ’y/ o (V +U — 4—012 )Hyl ppridr. (E.3.11)

Adding the terms Js, M, L1, and L3, we get

dlnT
Vg H (yLk — Zk) + <V — i r1> sz] pq«4r,
k k

~ V,
Ha2 +Zaﬁ'y/clg

R3
where v
7:[2_2 = Zag,y / —gAg H (ylyk — Zk) p7”4d7", (E.3.12)
C1 i
with ~dInl OInl
niiq niq
A — _ Zz—-1 E.3.13
g dlnr < Olnp > ( )
Moreover, from J4 + R1 + R3, we obtain
- V2
Ho1 +Zapy / ﬁ Z (y1 52 21 — Y1 kYL 21 ) privdr,
k
Ry
where v AT
7 — g niy 4
Hot = Zapy / o <V — 2V, - dlm) ];[zkpr dr. (E.3.14)
Adding up the terms Lo, Ro, and Ry also gives
- A* 4
Hao = ~Zogy [ Vi > sy gy pridr. (E.3.15)
k

Finally (1), collecting all the # terms, as defined by Egs. (E.3.1), (E.3.7), (E.3.10)~
(E.3.12), (E.3.14), and (E.3.15), we obtain the desired expression for the zeroth-order
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component of the coupling coefficient (corrected due to rotation only through the eigen-
frequencies), for polar mode coupling, as

7 * QC]{:
H = Zaﬁ’y/ { - Z (A*y1 g + Vyzi) Y (wkz’wk”yl,k’yl,k” + 7¢k'¢kﬂyz,kfy2,k~
1

dlnF1
< Q—W>sz+AgH(y1,k—Zk)
k k

(V +U — 4_Clz¢ )Hylk_vszylkz’ylk”+Zy4kylk’ylk”]

7 Z Uryak (GCry1 Y1 + QCky1 g 2 + QCinyy o 27 }P7“4d7" + Neor-
T %

(E.3.16)

For the reader who skipped the derivation of Eq. (E.3.16), we have used the dimensionless
formulation of Sec. 2.3.3. The auxiliary parameters 2y, wy, QCk, GC, and A, are given
by Egs. (E.2.6), (E.3.2), (E.3.3), (E.3.8), and (E.3.13), respectively, and the indices k,
k', and k" behave according to Eq. (E.2.11). The angular part of the coupling coefficient
has been denoted by Z,g-, which is given by Eq. (E.2.9). Equation (E.3.16) is identical
with Eq. (3.12) in Dziembowski (1982), with the exception of some variables which para-
metrise rotational corrections to the eigenfrequencies, namely, 1, ¥, and Ncor, given
by Egs. (E.3.4), (E.3.5), and (E.3.9), respectively. If eigenfrequency corrections are not
considered (in which case we obtain the actual zeroth-order component of the coupling
coefficient), then ¢y — 1, ¥}, — 1, and N, — 0.

Since, as mentioned in the beginning of the section, we have divided the coupling
coefficient Fog, by GM / R3 for this derivation, H is related to Fop, as

GM -~
Faﬁfy = F?‘l =H.

Also, it can be easily seen that Eq. (E.3.16) is invariant to the transformations
Yo 2Ys, Yia S vip YooY, Oy > —0,
and
Ya = Y’Y’ Yia = Yiys Y@ — Yﬁ*’ (I),g — —(I)lg,
which proves that
FaﬁW:Fﬁﬁa_FaB—/H
H has units of energy; the normalisation in Eq. (E.3.16) is useful when all quantities

in the coupled triplet equations of motion (4.2.3) are normalised accordingly. Defining a
dimensionless time 7 = t1/GM /R3, the equations of motion are written as

by 7’7-[ —1AOT
Q:x = YaQa + ?Qﬁ@ye A ) (E.3.17a)
iy Zﬁ * 1AQOT
Qb =75Qs + 3-@3Qae Ao, (E.3.17b)
5
Q) %Qw T QQQ* 2T, (E.3.17¢)

Y
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where 4 = ~v/\/GM/R3, b = b//GM/R3, the dimensionless eigenfrequency @ is defined
in Eq. (2.3.41), and the prime denotes differentiation with respect to 7. Now, Eqs. (E.3.17)
coincide with Egs. (2.25) and (2.26) in Dziembowski (1982), except they have been gen-
eralised for the case of a rotating star.!

'Note that Dziembowski (1982) normalises with respect to 4wG{p), where {(p) is the mean density, instead
of GM/ R3. He also uses a different convention for the spherical harmonics, which he normalises to 4, instead
of unity like us [see Eq. (2.3.14)]. Finally, he uses c; (in our notation) = 3(r/R)*M /M., which is a factor of
3 larger than our ¢; [Eq. (2.3.39)].



Appendix F

Parametrically unstable mode
triplet

F.1 Parametric instability threshold

The amplitude equations of motion of the coupled triplet are given by Eqs. (4.2.12), namely

: A 7.

Qo = YaQao + ZwaEi.tQﬁQ'ye ZAWt, (F.l.la)
unit

Qp = wQﬁﬂwBE ~Q’Qac et (F.1.1b)
uni

Qy =1 Qy + szE ~QaQje et (F.1.1c)
unr

In order to derive the formula for the parametric instability threshold (4.3.1), we take
the amplitude equations of motion for the daughter modes (F.1.1b) and (F.1.1c) and ask
what the value of the parent mode’s amplitude @), should be, in order for the daughters’
amplitudes Qg start growing. Setting

Qﬂ,’y — @B,WeiAwt/Qp
Egs. (F.1.1b) and (F.1.1c¢) become

~ Aw\ ~ iwgH N
Qs = <’Y/3 —z> Qp + Eﬁ tQaQ

and

A Aw\ ~ w
* — + 1/7 'Y o ’
Q’Y <’Y’Y 2 ) Q’Y Eumt Q Q

or, in matrix form,

@B 0/ ZA(’L)/Q Z.Qa("]ﬁ;"[/E1unit @B
Q: —iQ )/ Bt Yy + iDw/2 Q:

with ), treated as an unknown constant. If T is the trace and d is the determinant of the
system matrix, then its eigenvalues A1 o can be found as

A2 = % (Ti VT2 —4d) ,

141
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or
1 . dwgwyH?
A2 = 3 or +77:|:\/(77—’y/3+zAw)2 22 |Qa|2] (F.1.2)
unit

For the system to admit a growing exponential solution, i.e., for the daughter modes
to grow, the condition Re(\) > 0 has to be satisfied, where Re denotes the real part, for at
least one of the eigenvalues. Hence, at the onset of the parametric instability, Re(\) = 0,

or
2
Re <\/(%—fm+mw)2 4‘*’2‘“;” yQaP)] (F.1.3)

(76 + '77)2 =

unit

We set the radicand in the expression above equal to the complex number u+iv. Then, let
Vu +iv =z + iy, or u+ iv = 22 — y? + i2zy. Distinguishing the real from the imaginary
part and omitting y, we get

42t — duz® —0v® = 0.

From Eq. (F.1.3), we have

4wpwyH?
E2

unit

U = ('7“/_'7/3)2_Aw2+ |Qa’2

v =2(7y —8) Aw,
and

2® = (75 +1)°

Thus, replacing u, v, and x in the quartic equation for z above, we obtain

+< Aw )2] = |Qpir|*. (F.1.4)

Y8+ Yy

2 757’7 Eumt
Qal” = 3
wpwy H

Note the importance of the mode eigenfrequency signs here: if wgw, < 0, then no
parametric instability can occur. This is a result of the assumed resonance (4.2.1) between
the parent and the daughters. If we perform the same analysis, for example, for mode 3
being the parent, then wg ~ w, — w,, in which case wow, < 0 is a necessary condition for
parametric instability.

F.2 Equilibrium solution

The amplitude equations of motion (4.2.12) [or (F.1.1)] admit an easy-to-obtain equilib-
rium solution. Expressing the complex amplitudes () in terms of real amplitude and phase
variables, we can introduce the variable transformation

1 Eunit )
= o F.2.1
Qa Tﬁwﬂ, H Ea 7, ( a)

unit 1195’ (F21] )

1 Eunit 10
= e F.2.1
@ Wawg H Eve ( °)

Qp =
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Then, Egs. (F.1.1) are written as
Ea = Ya€a T €€y SIN P,
€3 = YBEB — EEa SINQ,
€y = VyEy — Ea€BSIN @,

and

£gE €l
@:cosgo( ey Enfa aﬁ)—i—Aw,

Ea €3 Eny
or, equivalently,

. : .
cp:cotgo(ga—i-ﬁ—i-gw—’y)—i—Aw,
€a EB &y
where
@ =14 —Ug— 0y + Awt
and

Y=YaF 8+ Yy
Setting the time derivatives in Egs. (F.2.2) to zero, we get
—Ya€a = EgE~ SIN @,
VBEB = ExEq SIN P,
VEvy = €€ Sin ¢,

and
cot p = K,

where

_Aw
=

K

(F.2.2a)
(F.2.2b)
(F.2.2¢)

(F.2.2d)

(F.2.2d")

(F.2.3)

(F.2.4)

(F.2.5a)
(F.2.5b)
(F.2.5¢)

(F.2.5d)

(F.2.6)

Then, combining Eqs. (F.2.5a)—(F.2.5¢) in pairs and using the trigonometric identity

1

sin? ¢

=1+cot?p =1+ K%

we obtain the equilibrium solution
€o =187 (L +5%),
€5 = e (L++%),
e =

= —YaVB (1 + /{2) )

which, in terms of the original variables @, admits the form (4.3.3).

(F.2.7a)
(F.2.7b)

(F.2.7¢)

Combining Egs. (F.2.2b) and (F.2.2c) with Eq. (F.2.2a), we can further show that

d
" (5§ + 5%) = el + 755%

N | =

and

d
& (83 + 53,) = P)/aggé + ’YWE,QY,

N | —
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or, restoring the original variables @ with the help of Egs. (F.2.1),

1d

2dt (wﬁlQaF + Wa|QB|2) = ’Yozwﬁ|ro|2 + VBwa|QB‘2

and

1d

2dt (W’Y‘Qa|2 + Wa|Q’Y‘2) = 7aW7|Qa|2 + V'ywa|Q'y|2'

Adding the equations above and using wg + w, =~ wq, we obtain

1d
S (|Qal* +1Q51* + 1Q41?) = 7alQal?* +751Q5 1% + 171Q4 %, (F.2.8)

which, multiplied by Fyuit, gives the rate of change of the triplet energy (4.4.11).
Finally, we can incorporate the phases ¢, as defined in Eqs. (F.2.1), in the harmonic
time dependence of the modes, as

where k = «, 8,7. This implies that the eigenfrequency of the mode is shifted to
wfﬁ = Wk + 19k (F.2.9)

From Eq. (F.2.2d) we already know that

- €8€
Vo = 2577 cos ®,
(6
. E~NE
vg = T2 cos o,
€
. Eaf
Uy = 2278 cos ®,
&y
or, in compact form,
. EaEBE
Iy = — g T cos . (F.2.10)
€
k

In terms of the original variables @, Eq. (F.2.10) is written as Eq. (4.4.13). Replacing the
equilibrium values (F.2.7) and (F.2.5d) in Eq. (F.2.10), we get

ﬁk = |vk|V' 1+ K2 cos g,

where
cot g = K.
We use the trigonometric identity
cos? p = 700t2 Ld
1+ cot? ¢
to obtain
_ ||
cospg = *

V14 k2

We notice from Eq. (F.2.5a) that, in equilibrium, sin ¢y < 0, which means that, if Kk =
cot o > 0, then cos pg < 0, and vice versa. In other words, sgn(cos ¢g) = —sgn(k), where
sgn is the sign function. So, finally, we obtain for the eigenfrequency shift in equilibrium

O = —| . (F.2.11)
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F.3 Linear stability analysis

We will linearise Egs. (F.2.2) by imposing small perturbations about their equilibrium
solutions (F.2.5). Denoting these perturbations by 0 (not to be confused with a Eulerian
perturbation), we get

ddey
dt

— Yal€a = 0€ge, sin @ + £gde,, sin @ + €€, cos .

Dividing by ¢, and using Eq. (F.2.5a), we obtain

4]
dt €a Ea €s Ey

Note that e, above corresponds to the equilibrium solution and, hence, is a constant. In
a similar manner, we get

d 585 (5Ea (555 567

—|— ) =- e F.3.1
dt(ag) ’m(aa 554_57 + Ko |, (F.3.1b)
d [dey deq  Ogg  Ogy

—|— ) == — 4+ — ——+ Ky ). F.3.1
dt<57> %(aa—i_sg €y T KoP (F:3.1¢)

The linearisation of Eq. (F.2.2d") about its equilibrium (F.2.5d) yields

ddy d [beq  beg  Ogy 9
—h— 2+ L4 ) =41 J
dt ﬁdt(!’:‘a—i_ﬁﬂ_‘_&y 7(1+47) 09,

where we used the fact that
cot (¢ + dp) = K — (1 + K2) dp + O (5¢?) .
With the help of Egs. (F.3.1a)-(F.3.1c), the equation above becomes

ddp 0ck
— = I— F.3.1d
" f-czk: b, o, (F.3.1d)

where
Ty =2y — 7, (F.3.2)

with the index k successively taking the values «, 3, .
The matrix of the linear system (F.3.1) is

Yo —VYa Vo TRV«
A — —B Y8 —U8 —KIB
Yy TV Ty TRV~

klo wlg kI y

with the help of which we can find the system’s characteristic polynomial, via the rela-
tion |A — M| = 0, where A are the eigenvalues of A and I is the identity matrix. The
polynomial has the form

)\4 + al)\?’ + CL2)\2 + agA +aq =0,
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where
a1 = _2’)/7
ag =7 (14 #%) — 47 Z’Yk’Yk’7
k
az3 =4 (1 + 3%2) H’Yk,
k
and

ar = —4 (1 12) v [T
k

with the index k' taking the value that comes after k’s value, as explained in Eq. (E.2.11).

Now, we can use the Routh-Hurwitz stability criteria (see, for instance, Horn and
Johnson 1991, Sec. 2.3), in order to determine the behaviour of the system. First, we
construct the Routh-Hurwitz matrix, using the polynomial coefficients, as

al 1 0 0
az ag ai 1
0 a4 az a9
0 0 0 ag

M =

Then, the stability criteria are given by

Wi=a >0, (F.3.3)
al 1

Wy = =ajags —az > 0, (F34)
a3 ag
air 1 O

W3 =|la3 ay a1 | = a3W2 — a%a4 > 0, (F.3.5)
0 a4 as

and
Wy = |M| =ayWs3 > 0. (F36)

Since v, < 0, it can be easily shown that the second and fourth criteria are redundant
and follow from the other ones. Indeed, if W7 > 0 then ay4 is also positive, which, combined
with W3 > 0, makes the fourth criterion true. Also, W3 > 0 yields Wy > a%a4 /as, but
since ag > 0, the second criterion is also true. So, finally, from Egs. (F.3.3) and (F.3.5),
we obtain the stability conditions (4.4.1) and (4.4.2).



Appendix G

Coupling spectrum

In the following table we present the coupling spectrum of the octupole (I = m = 3)
f-mode, in a typical neutron star with M ~ 1.4 My and R =~ 10km, described by a
polytropic equation of state with a polytropic exponent I' = 3 and an adiabatic exponent
I’y = 3.1 (see Table 5.1). This is the coupling spectrum used to generate Figs. 5.2 (right)
and 5.4. The following data is presented in the table, by column:

1. Angular velocity €2, normalised to the Kepler limit k.
2. Temperature (decimal) logarithm log(7"/1K).

3-4. Daughter pair; the notation "} f and " g,, is used for f- and g-modes respectively.

5. Triplet detuning Ao = Aw/+/GM /R3.

6. Coupling coefficient H, normalised to Eypni = Mc?.

7-9. Parent («) and daughter (8,~) growth/damping rates 7, = v;//GM /R3.

10. Lowest stable parametric instability threshold |Qpr]|.

For this model, the normalisation factor \/GM /R3 evaluates to 13416 rads~! ~ 2kHz.

For all models used in Chapter 5, the instability window in the (log T, Q2/Qx) plane was
divided into blocks with dimensions (0.1,0.002), forming a grid. For typical neutron star
models, the maximum allowed detuning (see Sec. 5.1.3) was set to Adpax = 0.1, whereas
for supramassive neutron star models we chose Aly.x = 0.2.

Table G.1
Q/Qx (%) log T (K) Daughters Ao H/ Enit Yo 8 Ty |QprT|
93.4 9.4 3 8910 —2.1x1072 3.3 6.1x 10" 1% _3.4x10% —2.5%x 10713 23x1077
93.4 9.5 3 S910 —2.1x1072 3.3 7.5x 107 _3.4x107% —8.9x 10718 44x1077
93.6 9.3 w3 8910 —2.4x1072 3.3 8.1x 107" _34x10% —9.6x10"" 16x10"7
93.6 9.4 3 8910 —2.4x1072 3.3 1.7x 10718  _—34x10°% —24x10"1 26x1077
93.6 9.5 3 8910 —2.4x1072 3.3 1.8x 10~  —34x 104 —-8.9x 10713 50x 1077
93.6 9.6 3 8910 —24x1072 3.3 33x 1071 —34x107*  —35x107'2 98x1077
93.8 9.2 3 8910 —2.8x 1072 3.4 7.5x 1071 _3.4x107% —7.8x 107" 1.7x10°7
93.8 9.3 3 8910 —2.8x 1072 3.4 23x1078  _34x10% —95x10" 1.8x10°7
93.8 9.4 ’gf 8910 —2.8x1072 3.4 3.1x 10713  _—34x104 —2.4%x 10713 29x 1077
93.8 9.5 3 8910 —2.8x 1072 3.4 3.3x 10713  _—34x104 —-8.8x 10713 55x 1077
93.8 9.6 3 8910 —2.8x 1072 3.4 1.8 x 10713  _—34x107% —3.5x 107 1.1x10°6
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Q/Qk (%) logT (K) Daughters A® H/ Euit Yo s Ty |Qprr!
94.0 9.1 3 8910 —3.1x1072 3.4 3.1x 107"  _34x10% —1.0x107% 21x1077
94.0 9.2 3 8910 —3.1x 1072 3.4 2.8 x 10713  _—3.4x104 —7.7x 10714 1.8x 1077
94.0 9.3 Sf 8910 —3.1x1072 3.4 43x1071  —34x107* —94x107' 20x1077
94.0 9.4 3 8910 —3.1x107? 3.4 5.2x 10718 _3.4x107% —2.4x10718  32x1077
94.0 9.5 T3 %910 —3.1x1072 3.4 53x 10718  _34x 104 —87x1071  6.1x1077
94.0 9.6 3 8910 —3.1x1072 3.4 3.8x 1078 _34x10% —3.4x107" 12x10°6
94.2 9.1 4 To7 4.8 x 1073 —2.9 3.1x 1078  _49x10°° —3.9x10"1 20x1077
94.2 9.2 i Tar 4.8x107%  -2.9 56x1071%  —49x107% -3.4x1071% 1.9x1077
94.2 9.3 3 8910 —3.5x1072 3.4 7.1%x 10718 _3.4x107% —9.3x 107 22x1077
94.2 9.4 w3 %910 —3.5x 1072 3.4 8.0x 1071 _34x10"% —24x10"1 35x10°7
94.2 9.5 3 8910 —3.5x 1072 3.4 8.1x10" 1 _34x10"% —8.7x1071  67x1077
94.2 9.6 3 8910 —3.5x 1072 3.4 6.6 x 10713 _—34x104 —3.4%x10712 1.3x10°6
94.4 9.0 i T97 2.7 x 1073 —2.9 2.9x 107  _—50x107° —5.8x 1071  1.4x1077
94.4 9.1 i Tar 2.7 x 1073 —2.9 6.9x 10713 _50x107° —3.9%x10718 11x1077
94.4 9.2 —ir 2910 9.7 x 102 —6.7 9.4x10" 1 _26x1073 —36x10" 1.0x10°7
94.4 9.3 “if 2910 9.7 x 1072 —6.7 1.1 x 10712 —26x 1073 —46x107% 12x10°7
94.4 9.4 2 2910 9.7 x 102 —6.7 1.2x 10712  —26x103 —1.2x1071 1.9x10°7
94.4 9.5 2 S910 9.7x1072  —6.7 1.2x10712  —26x1073 —45x1071 36x 1077
94.4 9.6 2 2910 9.7 x 102 —6.7 1.0x 10712 —26x103 —1.8x 10712 71x10"7
94.4 9.7 ~ir 2910 9.7 x 1072 —6.7 3.1x10" ' _26x1073 —7.0x107' 14x10°6
94.6 8.9 A Tg7 4.9 x 1074 —3.0 1.7x 10718  _—50x10"° —9.1x10"% 3.1x10"8
94.6 9.0 i Tar 4.9x107*%  -3.0 8.0x 1071  —50x107% —58x1071% 25x1078
94.6 9.1 i Tar 49x107%  —30 1.2x107'2  —50x107° -3.9x107 20x1078
94.6 9.2 A Tar 4.9 x 107% —3.0 1.5 x 10712 _—5.0x 107° —3.3x1071% 19x108
94.6 9.3 4 Tgr 4.9 x 1074 —3.0 1.6 x 10712  _—50x10"° —5.6x 1071  24x10°8
94.6 9.4 A Tgr 4.9 x 1074 —3.0 1.7x 1072  _—50x10"° —1.8x 107" 43x10°8
94.6 9.5 i T97 4.9 x 1074 —3.0 1.7x 1012  _—50x10°° —6.7x 10712 84 x 108
94.6 9.6 i Tar 49x107%  —30 1.6x 10712 —50x107° —27x107' 1.7x 1077
94.6 9.7 —ar Tar 4.9 x 10~% —3.0 82x 1071 _50x107° —1.1x10719 33x10°7
94.8 8.9 4 Tgr —1.9x 103 —3.0 8.6 x 10" _50x107° —9.0x 1071 12x10°7
94.8 9.0 4 T97 —1.9x 103 —3.0 1.5%x 10712  —50x10"° —5.7x10"1 9.4x10°8
94.8 9.1 i Tgr —19x1073%  —3.0 1.9x1071%2  —50x107°% -38x1071 7.7x1078
94.8 9.2 i Tgr  —19x1073% 3.0 22x107!2  —50x107% -33x107'% 7.1x1078
94.8 9.3 —ar Tar —1.9x 1073 —3.0 23x10712  _5.0x107° —5.6x 1013 9.3x 108
94.8 9.4 ~ir 2910 8.7 x 102 —6.9 24x1072 _26x10°3 —12x107 16x1077
94.8 9.5 2 2910 8.7 x 102 —6.9 24x1072 _—26x10°3 —44x10"1  31x1077
94.8 9.6 2 2910 8.7 x 102 —6.9 2.3x 10712 —26x 102 —1.7x 10712 6.2x 1077
94.8 9.7 2 2910 8.7x107%2  —6.9 1.5x10712  —2.6x1073%  —68x107' 1.2x107¢
95.0 8.8 i 8aa 2.4 x 1074 —4.9 7.9%x 10718 _75x10°° —4.2x107'2 57x10°8
95.0 8.9 i 893 2.4 x 1074 —4.9 1.8x 10712 _—75x10°6 —27x107' 46x10"8
95.0 9.0 i 893 2.4 x 1074 —4.9 24x1072 _—75x%x10°6 —1.7x107% 37x10°8
95.0 9.1 3 893 2.4 x 1074 —4.9 29x 10712 —75x10°6 —1.3x10712 32x 108
95.0 9.2 2 893 2.4x107%  —4.9 31x10712  —75x107% —1.7x107'2 3.6x1078
95.0 9.3 i 893 2.4 x 1074 —4.9 3.3x10" 12 —75x10°6 —4.4x10'2 58x10°8
95.0 9.4 i 893 2.4 x 1074 —4.9 34x10° 2 _75x%x10°6 —1.6x10"" 1.1x1077
95.0 9.5 i 893 2.4 x 1074 —4.9 3.4x 1072 _75x%x10°6 —6.3x 10" 22x1077
95.0 9.6 3 893 2.4 x 1074 —4.9 3.2x 10712 _—75x10°6 —25%x 10710 44 x 1077
95.0 9.7 2 803 2.4x107%  —4.9 25x 10712 —75x107%  —9.9x 10710 88x 1077
95.2 8.7 2 2910 7.5 x 1072 —7.0 42x10° 18  _—26x1073 —2.8x 10718  21x1077
95.2 8.8 “if 2910 7.5 x 1072 —7.0 20x 1072 _26x 103 —1.8x10718 1.7x10°7
95.2 8.9 2y 2910 7.5 x 1072 —7.0 3.1x 1072 _—26x 1073 —1.1x107% 1.3x10°7
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Q/Qk (%) logT (K) Daughters AD H/ Eunie Yo Y Ay |Qprr
95.2 9.0 “if 2910 7.5 x 1072 —7.0 3.7x 1072  _26x 103 —71x107" 1.1x10°7
95.2 9.1 2 2910 7.5 x 1072 —7.0 4.1x 10712 _—26x 1073 —46x 10" 1% 86x 1078
95.2 9.2 2 2910 7.5x107%  —7.0 44x10712 —26x107% -35x107' 75x1078
95.2 9.3 2 2910 7.5 x 1072 —7.0 45x%x 10712  _—2.6x 1073 —4.4x10"'% 85x10°8
95.2 9.4 ~ir 2910 7.5 x 1072 —7.0 46 x 10712 _—26x 1073 —12x1071 14x10°7
95.2 9.5 Tif 2910 7.5 x 1072 —7.0 4.7x107'2 _—26x 1073 —43x1071 26x1077
95.2 9.6 2 2910 7.5 x 1072 —7.0 4.5%x 10712 _—26x 1073 —1.7x 10712 s52x 1077
95.2 9.7 2 2910 7.5x107%  —7.0 3.7x10712  —26x107% -6.7x107'? 1.0x 1076
95.2 9.8 2 8910 7.5 x 1072 —7.0 6.3x 10713 _—2.6x1073 —2.7x 107 2.1 x1076
95.4 8.7 ~ir 2910 6.9 x 102 —7.1 21x1072 _—26x10°3 —28x1071 19x1077
95.4 8.8 “if 2910 6.9 x 1072 —7.1 3.7x 10712  _—2.6x 1073 —1.8x 10718 15x10°7
95.4 8.9 2 2910 6.9 x 102 —7.1 48 x 10712 _—2.6x 1073 —1.1x1071 12x10°7
95.4 9.0 2 2910 6.9x 1072  -71 54x10712  —26x107% -7.0x107'* 9.7x 1078
95.4 9.1 2 8910 6.9 x 102 —7.1 58 x 1072 2.6 x 1073 —4.6x 10" 78x108
95.4 9.2 —ir 2910 6.9 x 102 —7.1 6.1 x10° 12 _—26x1073 —34x10"" 68x10°8
95.4 9.3 “if 2910 6.9 x 102 —7.1 6.3x 1012 _—2.6x 1073 —44x10"" 77x10°8
95.4 9.4 2 2910 6.9 x 102 —7.1 6.4x 1012 _—2.6x1073 —1.2x1071 1.2x10°7
95.4 9.5 2 2910 6.9x107%2  -71 6.4x10712  —26x107% —43x1071% 24x1077
95.4 9.6 2 2910 6.9 x 102 —7.1 6.2x 10712 _—26x1073 —1.7x 10712 47x10°7
95.4 9.7 ~ir 2910 6.9 x 102 —7.1 5.4x 1072 _—26x 103 —6.7x107'2 94x10°7
95.4 9.8 “if 2910 6.9 x 102 —7.1 2.3x 1072 _26x 1073 —27x10""  19x10°6
95.6 8.6 497 T9a 1.0 x 10~6 4.0 1.8 x 10712  —1.3x 1012 6.0x 10712 1.5x 107
95.6 8.7 2 2910 6.3x1072 -T2 44x10712  —26x107% —28x1071% 1.7x1077
95.6 8.8 3 2910 6.3 x 102 —7.2 6.0x 10" 12 —2.6x1073 —1.7x10718  14x1077
95.6 8.9 —ir 2910 6.3 x 102 —7.2 71x1072  _26x 1073 —1.1x107 1.1x10°7
95.6 9.0 “if 2910 6.3 x 102 —7.2 7.7x 1072  _26x 1073 —7.0x10""% 87x10°8
95.6 9.1 2 2910 6.3 x 102 —7.2 8.1x 10712 _—26x 1073 —45%x107 1% 70x 108
95.6 9.2 2 2910 6.3x1072 -T2 84x1071 —26x10"% —34x107' 61x1078
95.6 9.3 3 2910 6.3 x 1072 —7.2 8.6x 10712 _26x 1073 —4.4x107'% 69x108
95.6 9.4 ~ir 2910 6.3 x 1072 —7.2 8.7x 10712 _26x 1073 —12x107 1.1x10°7
95.6 9.5 497 T9a 1.0 x 106 4.0 8.7x10712 _—19x107"2 _—27x10"'" 93x10"8
95.6 9.6 497 T9a 1.0 x 10~6 4.0 8.5x 10712 _—45x107'2 —1.1x10"19 75x 108
95.6 9.7 497 Taa 1.0 x 1076 4.0 77x10712  —15x1071 —42x1071% 6.9x 1078
95.6 9.8 497 794 1.0 x 10~6 4.0 46 x10712 —57x10""  —1.7x107° 6.7 x 1078
95.8 8.5 —ir 2910 5.6 x 1072 -7.3 59x 1078 _26x 1073 —6.9x 10" 24x1077
95.8 8.6 2 2910 5.6 x 1072 -7.3 48x 10712 _—26x 1073 —43x107 19x10°7
95.8 8.7 2 2910 5.6 x 102 —7.3 74x 10712 —26x 102 —2.7x 10713  15x 1077
95.8 8.8 3 2910 5.6x107%  —7.3 9.1x10712  —26x107% —1.7x107'® 1.2x1077
95.8 8.9 3 2910 5.6 x 102 -7.3 1.0x 1071 —2.6x 1073 —1.1x 10713 96x10°8
95.8 9.0 “ir 2910 5.6 x 1072 -7.3 1.1x 107 —26x103 —6.9x 10" 77x10°8
95.8 9.1 2 2910 5.6 x 1072 -7.3 1.1x 10~ —26x103 —45x10"" 62x10"8
95.8 9.2 2 2910 5.6 x 102 —7.3 1.1x 10" —26x 103 —3.4x10"1% s54x10°8
95.8 9.3 3 2910 5.6x107%  —7.3 1.2x1071 —2:6x1073% —43x107™ 61x1078
95.8 9.4 2 8910 5.6 x 102 —7.3 1.2x 107 —26x 1073 —1.2x 10713 99x108
95.8 9.5 “ir 2910 5.6 x 1072 -7.3 1.2x 107 _—26x103 —42x107 19x10°7
95.8 9.6 2 2910 5.6 x 1072 -7.3 1.2x 107 —26x103 —1.7x107%2 37x10°7
95.8 9.7 2 2910 5.6 x 102 —7.3 1.1x 10" —26x103 —-6.6x 10712  75x 107
95.8 9.8 2 2910 5.6x107%  —7.3 76x10712  —26x107% —26x1071 1.5x1076
96.0 8.5 2 2910 4.9 x 1072 —7.4 46 x 10712 _—2.6x 1073 —6.8x 10713  21x1077
96.0 8.6 “if 2910 4.9 x 102 —7.4 8.8x 10712 _26x 1073 —43x10718  1.7x1077
96.0 8.7 2y 2910 4.9 x 102 —7.4 1.2x 10~ —26x103 —27x107  1.3x1077
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2f g1 ) — — —34x1 4.6 X 10
1.6 x 10 2.6 X1
0 4.9 x 10 7.4 . 03 ) 0 ) 8
96.0 9.2 5 ) )
96.0 9 2f g1o0 4.9 x 102 —7.4 .6 11 —2 03 —4.3 014 5.3 ) 8
96.0 943 2f 55g] 4.9 10 —7.4 1.6 x 10 —2.6 X 10 —1.1x 10 8.5 10
rg]o ) 2 — - —4.2 x 10 1.6 x 10
2 1.6 x 10 2.6 x 10 .
96 9.5 f 5 4.9 x 10 7.4 . 11 3 13 )
: 00 - —2.6 X 10 —1.6 x
f 4 1.6 x 10 . 3 6 )y~ 12 3.2
96.0 9.6 5 4.9 x 10 7. 11 ) )
2 591 )
96.0 9.7 2f 591 4.9 10 —7.4 1.5 x 10 -2 1073 —6.5 10 6.5 10
96 2f g]oo 4.9 ) 10 —7.4 1 10 — 1073 —2.6 x 10~ 1.3 X 10
2 X 2.6 X
) 2 -7 — —1.1x 10 2.2 x 10
0 9.8 5 ) )
96.2 8.4 5 4.2 x 10 .5 3.2 12 2 3 12 )
2f 5910 ) )
96.2 8.5 21 591 4.2 10 —7.5 1.0 x 10 -2 10 —6.8 10 1.8 10
2 59]00 ) - - 3 — x 10713 X 10
96.2 8.6 f : 4.2 10 7.5 1.4 x 10 2.6 x 10 4.3 4
2f g1 ) — — —2.7x1 1.1 x 10
1.7 x 10 26 x1
7 0 4.2 x 10 7.5 .7 03 7 ) 0 3 )
96.2 8 5 ) )
96.2 8.9 2f 5910 42><1() —7.5 2.0 10 -2 1073 —1.1x 10713 7.0 x 10
2 5 )
X .
2 591 ) - - — X X
2 2.0 x 10 2.6 x 10 .
96.2 9.0 f Ego 4.2 x 10 7.5 . 11 3 68>< )y~ 14 56><
: 0 — 2.1 x 10 —2.6 X 10 —4.
96.2 9 f 5 4.2 x 10 7.5 . . 44>< 0 45>< 08
2 591 )
96.2 9.2 2f 591 4.2 10 —7.5 2.1 x 10 —2 1073 —3.3 10 3.9 108
96 2f g]o 4 ) 10 —7 1 10 — 10 —4.3 X 10 4.4 x 10
2.1 x 2.6 X
0 2 X 5 ) )
2 9.3 5 ) )
96.2 9.5 Zf Erg]o 42>< )~ 2 —7.5 2 )y~ 11 -2 0—3 —4.2 10713 1.4 x 10
f 5910 ) ) )
96.2 9.6 f 5910 42><1) —7.5 - —1.6 x 10 2.7 x 10
2 : 2.1 x 10 2.6 x 10 3 . 7
2f ;gl ) — — —6.5 X1 5.5 X 10
26 x1 6
96.2 9.7 4.2 10 7.5 2.0 X 10 03 0
96.2 9.8 2f 5g]00 42><1(l —7.5 1.7 10 — 10 —2.6 X 10 1.1 X 10
X 2.6 X 2
2 5910 ) — — 3 —1.0 x 10710 x 10
2 7 4.2 x 10 2.6 X 10 .
96.2 9.9 f 4 4.2 x 10 .5 . 12 22>< 6
Zf Erg] 3.5 )~ 2 —7.7 1.0 x 10 —2.6 x 1073 —1.1 x 10712 8 (
96.4 8.5 21 rgloo 35><10 —7.7 1.7 10 —2 10 —6.7 X 10 1.4 x 10
96.4 8.4 5 ) )
96.4 8.6 2f ;g]() 35><1(l —7.7 — 03 —4.2x 10713 1.1 x 10
2.2 x 10 26 x1
2f g1 ) — — — X X
96.4 7 5 2 7.7 2.4 x 10”11 2.6 X 10 2.7 10 9.1 10
0 3.5 X ) )
96.4 88 8 2f :Q]o 3.5 10 —7.7 2.6 X 10 —2.6 X 10 —1.7 10 7.2 10
96.4 8.9 21 5910 35><10 —7.7 2.7 1 -2 1 3 —1.1 x 10713 5.7 X 10
2 x 10~ 11 X 10
f 5 ) — — —6.8 10 4.5 x 10
: 0 2.6 x 10 6.8 X
2.8 x 10 . 3 14 8
2 3.5 x 10 7.7 11 ) :
2 591 )
96.4 9.0 )
96.4 9.2 2f 5910 35><1(l —T7.7 2 1 -2 1 3 —3.3x 10”14 3.2 x 10
2 8 x 10~ 11 X 10
2 591 ) — — — X 3.6 X
f 5 3.5 )~2 7.7 2.9 x 10711 2.6 x 1073 4.2 o~ 14 6 0—8
X )
96.4 9.3 g1o0 ) )
96.4 9.4 21 591 3.5 10 —7.7 2.9 x 10 -2 10 —1.1 10 5.9 10
2 rg]oo ) - - — X X
96.4 9.5 f : 3.5 10~2 7.7 2.9 x 10711 2 ><OE 4.1 0 3 1 0
2f ;g] ) — — —1.6x1 2.2 x 10
2.9 x 10 26 x1
96.4 9.6 0 3.5 x 10 7.7 . 03 ) 0 )
96.4 9.7 2f g1o0 3.5 10 —T7.7 2.8 X 10 —2.6 x 1073 —6.4 0~ 12 4.4
96.4 9.8 2f 591 5><1() —7.7 2.4 10 -2 10 —2.6 X 10 8.9 X 10
. X X
0 3.5 X )
Zf Er 10 3.5 )~ 2 —7.7 1.1 x 10 —2.6 x 1073 —1.0 x 10 1.8 10
2 5910 7>< - - — 10 1.7 x 10
96.4 9.9 59 ) ) )
6 8.3 f e 2.7 x 10 7.8 9.1 10 2 10~3 1.7 ) 7 )
96.6 8.4 2f g1 2.7 10 —7.8 2.0 10 —2.6 x 1073 —1.1 10 1.4 10
96. )
96.6 8.5 2f 5910 2.7 ) 10 —7.8 2.7 10 -2 1073 —6.7 10~ 13 1.1 X 10
- X X X
X )
—7 3.1 x 10 —2.6 X 10 —4.2 X
96.6 8.6 B 2.7 x 10 .8 . 11 3 2 )y~ 13 88>< 8
2f 5910 ) )
2 5910 - X - —
96.6 8.7 f 5 2.7 x 10 7.8 3.4 11 2 03 2.7 )y~ 13 7.( : 8
2 jg]o - 6 1 —2.6 X 10 3 —1.7x
96.6 8.8 f 2.7 10— 7.8 3.6 x 10 7 10 3 5.5 08
6 9 f og] 7 ) — — —1.1x1 4.4 x 10
3.7 x 10 2.6 x1 1
5 0 2.7 x 10 7.8 7 0 ) 0 )
) f . 1 — — X —
96.6 )
96.6 9 5g 0 2.7 x 1072 7.8 3.8 1 2 0~3 6.7 o~ 14 3.5 8
2 5
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Q/Qk (%) logT (K) Daughters A® H/ Euit Yo s Ty |Qprr!
96.6 9.1 “if 2910 2.7 x 1072 —7.8 3.8x 107"  _26x 1073 —44x10"™" 28x10°8
96.6 9.2 2 2910 2.7 x 1072 —7.8 3.8x 10711 _—26x102 —33x10"1% 25x 108
96.6 9.3 2 2910 2.7x107% —7.8 3.8x1071  —26x107% —42x107'% 2.8x1078
96.6 9.4 2 2910 2.7 x 1072 —7.8 39x1071  _—26x1073 —1.1x10"% 45x10"8
96.6 9.5 ~ir 2910 2.7 x 1072 —7.8 39x10" 1  _26x1073 —41x10"1 86x10"8
96.6 9.6 Tif 2910 2.7 x 1072 —7.8 3.8x 107"  _26x 1073 —1.6x10""2 1.7x10°7
96.6 9.7 2 2910 2.7 x 1072 —7.8 3.8x 10711 _—26x103 —6.4x 10712 34x 107
96.6 9.8 2 2910 2.7x107% 7.8 34x107 —26x107% —25x1071 6.8x 1077
96.6 9.9 2 8910 2.7 x 1072 —7.8 2.1x 107 —2.6x 1073 —1.0x 1070  1.4x10°6
96.8 8.2 ~ir 2910 1.9 x 1072 -7.9 43x10712 _—26x1073 —26x1072 15x10°7
96.8 8.3 “if 2910 1.9 x 1072 -7.9 22x 107" _—26x 1073 —1.7x1072 12x10°7
96.8 8.4 2 2910 1.9 x 1072 —7.9 3.3x 10711 _—26x103 —1.0x 10712 97x 108
96.8 8.5 2 2910 1.9x1072  —7.9 4.0x 107 —26x107%  —6.6x1071% 7.7x1078
96.8 8.6 2 8910 1.9 x 1072 —7.9 44 %1071 _—26x1073 —42x10"%  6.1x10"8
96.8 8.7 —ir 2910 1.9 x 1072 -7.9 4.7x10° " _26x 1073 —26x10"1 49x10"8
96.8 8.8 “if 2910 1.9 x 1072 -7.9 49x 10" _26x 1073 —1.7x10"% 39x10°8
96.8 8.9 2 2910 1.9 x 1072 —7.9 5.0x 10711 —2.6x 1072 —1.0x 10713 3.1x10°8
96.8 9.0 2 2910 1.9x1072 7.9 51x1071  —26x107% -6.7x1071* 24x1078
96.8 9.1 2 2910 1.9 x 1072 —7.9 51x 107 —2.6 x 1073 —43x 10" 20x10"8
96.8 9.2 ~ir 2910 1.9 x 1072 -7.9 5.1x 10"  _—2.6x 1073 —33x107"% 1.7x10°8
96.8 9.3 “if 2910 1.9 x 1072 -7.9 52x 10" _—2.6x 1073 —42x10"" 19x10°8
96.8 9.4 2 2910 1.9 x 1072 —7.9 5.2x 10711 —2.6x 102 —1.1x 10713 32x10°8
96.8 9.5 2 2910 1.9x1072 7.9 52x1071 —26x107% —41x107'% 6.0x 1078
96.8 9.6 3 2910 1.9 x 10~2 —7.9 5.1x 1071 _—2.6x 1073 —1.6x 10712 12x10°7
96.8 9.7 —ir 2910 1.9 x 1072 -7.9 5.1x 10"  _—2.6x 1073 —6.3x10712 24x10°7
96.8 9.8 “if 2910 1.9 x 1072 -7.9 4.7x 10" _2.6x 1073 —25x10""  48x 1077
96.8 9.9 2 2910 1.9 x 1072 —7.9 34x 10711 _—26x102 —1.0x 10719 95 x 1077
97.0 8.2 of 899 —1.2x1073 4.3 21x1071 —36x107* -7.8x107'? 6.1x1078
97.0 8.3 3 S99 —1.2x 1073 4.3 3.9x10" "  _—36x10"% —4.9%x107'2 49x10°8
97.0 8.4 T3 S99 —1.2x10°3 4.3 5.0x 10" _—3.6x 1074 —3.1x107% 39x10°8
97.0 8.5 3 899 —1.2x10°3 4.3 5.7x 10" _3.6x 1074 —2.0x10"* 3.1x10"8
97.0 8.6 3 89 —1.2x 1073 4.3 6.2x 1011 _36x 104 —1.2x10712 24x 108
97.0 8.7 Sf 899 —1.2x1073 4.3 6.4x107 M —36x107* —78x107'% 19x1078
97.0 8.8 3 S99 —1.2x 1073 4.3 6.6 x 10~ _—3.6x10"% —4.9%x1071% 15x10°8
97.0 8.9 T3 S99 —1.2x10°3 4.3 6.7x 10"  _36x107% —3.1x107 12x10°8
97.0 9.0 3 899 —1.2x10°3 4.3 6.8x 10" _3.6x10"% —2.0x10"1  9.7x107?
97.0 9.1 3 89 —1.2x 1073 4.3 6.9x 1011 _—36x 104 —1.3x 10713  7.9x107?
97.0 9.2 3 899 —1.2x1073 4.3 6.9x107 ' —36x107* —1.0x107'® 6.9x107°
97.0 9.3 3 S99 —1.2x 1073 4.3 6.9x 10" _—3.6x10"% —1.4x 1018 82x107?
97.0 9.4 T3 S99 —1.2x10°3 4.3 6.9x 10"  _36x107% —39x10"1 14x10°8
97.0 9.5 3 899 —1.2x10°3 4.3 6.9x 10" _36x10"% —1.4x107% 26x10"8
97.0 9.6 3 89 —1.2x 1073 4.3 6.9x 1011 _36x 104 —5.7x 10712 52x 108
97.0 9.7 3 899 —1.2x 1073 4.3 6.8x1071  —36x107% —23x107' 1.0x1077
97.0 9.8 3 S99 —1.2x 1073 4.3 6.5x 10" _—3.6x10"% —9.0x 10~ 21x10°7
97.0 9.9 T3 S99 —1.2x10°3 4.3 5.1x 10"  _—3.6x 104 —3.6x10710 41x10°7
97.2 8.1 2 2910 2.3 x 1073 —8.2 1.5x 10~ —26x103 —4.1x10"* 33x10°8
97.2 8.2 —gf 2910 2.3 x 1073 —8.2 4.4x 10711 —26x 1073 —2.6x 10712 27x 108
97.2 8.3 *gf 2910 2.3 x 1073 —8.2 6.2x 1011 —26x 1073 —1.6x 10712 21x10°8
97.2 8.4 2 2910 2.3 x 1073 —8.2 7.3x 1071 _2.6x 1073 —1.0x 10712 1.7x10°8
97.2 8.5 “if 2910 2.3 x 1073 —8.2 8.0x 10" _26x 1073 —6.5x 10"  1.3x10°8
97.2 8.6 2y 2910 2.3 x 1073 —8.2 8.5x 10"  _2.6x 1073 —41x10"% 1.1x10"8




K & a |Qprt|
/ Bunit B ¥ -
Q/Q % g T (K Daughters A& H/E 8% ¥, X’y Q
/972(() - 8(7 : 2f 5910 2 10 —8.2 8.8 x 10 —2.6 X 10 —2.6 10 8.4 10
3 X ) )
97.2 8.8 f 5g] 2.3 )3 —8.2 8.9 1 —2.6 x 1073 —1.6 o~ 13 6.7 9
2 5 X
2 591 ) - - — X X
97.2 8.9 f 5 i 2 )3 8.2 9.1 x 10~ 11 2.6 x 1073 .0 0—13 5.3 0 °
97.2 9.0 f Eg]oo 233>< 10 —8.2 —2 107" —6.6 X 10 4.2 x 107°
2 05 9.1 x 10 .6 X .
2f 591 ) 3 — — 1073 —4.3 X 10 3.4 x 10~°
97.2 9.1 3 .2 x 10 2.6 X
2.3 x 10 8.2 9 ) o
97.2 9.2 2f 59100 2 10 -8 9 10 —2.6 X 10 —3.2 10 0 10
2 2 X
2 591 N — — — X 3.3 X
97.2 9.3 f 5 2.3 )3 9 1 2.6 x 1073 4. o~ 14 9
8.2 .2 x 10
97.2 9.4 f Erg] 2 ) )3 —8.2 9 11 - 3 —1.1 x 10 5.4 x 10
2 i 2 x 10 2.6 x 10 . 13 9
97.2 9.5 f Eg]o 233><1) —8.2 - —4.0 x 10 1.0 x 10
2 05 i 9.2 x 10 2.6 x 1077 . 2 8
97.2 9.6 2f 591 23X1() j —8.2 — 03 —1.6 X 10 2.1 x 1078
9.2 x 10 26 x1
97.2 9.7 2f 5910 2 Xl(l —8.2 9.1 10 — 10 —6.2 X 10 4.1 x 10
i X 2.6 X
97.2 9.8 2f 5910 233><1() —8.2 8.8 10 -2 10 —2.5x 10 8.2 x 10
X X
2 591 ) — - — X X
97.2 9.9 f 5 2 )3 8.2 7.4 x 10711 2.6 x 1073 9.9 o~ 1t 6 (
97.2 0.0 f Eg]oo 233>< 10 —8.2 1 —2 107" —3.9x 10710 3.3 x 10
2 05 .9 x 10 .6 X .
97.4 8.1 2f 591 768>< 10 j — — 03 —4.1 x 10 6.8 x 1078
26 x1
8.3 4.5 x 10
97.4 8.2 2f 5910 768X1(l —8 7.4 10 — 10 —2.6 X 10 5.4 X 10
i X 2.6 X
2 5910 — ) — ) — — X 3 X
97.4 8.3 f 5 6.8 )3 8 9.2 y— 11 2.6 x 1073 .6 0—12 4 8
3 X
97.4 8.4 f Erg] —6.8 ) )3 —8.3 10 -2 1073 —1.0 x 10 3.4 x 10
2 1.0 x 10 .6 X
2 59]00 - ) — - — X X
97.4 8.5 f : 6.8 10~3 8.3 1.1 x 10710 2.6 x 1077 6.5 0 2 2.7 08
97.4 8.6 f 1 768>< 103 —8.3 0 — 03 —4.1 x 10 3 2.1 x 1078
2 59 1.2 x 10 2.6 x1
97.4 8.7 f 1 —6 ) 10 -8 1 10 — 10 —2.6 X 10 1.7 X 10
i 2 X 0 2.6 X
> 5910 8 X 3 ) )
97.4 8.8 2f 55g]0 —6.8 )3 —8.3 1.2 x 10710 —2.6 x 1073 —1.6 013 1.4 10
5910 - ) - - —1.0 x 10 1.1 x 1078
97.4 8.9 f 5 6.8 )—3 2.6 x 10 .
2 8.3 1.2 x 10710 3 13
97.4 9.0 f 5910 768><1) 3 —8.3 - 3 —6.5 x 10 8.6 X 10 9
2 : 1.2 x 10 0 2.6 x 10 .
97.4 9.1 f dl 768><1(l 3 —8.3 0 — 03 —4.2 X 10 6.9 x 10~°
2 59 1.2 x 10 26x1
97.4 9.2 f ]0 —6.8 ) 10 —8 1 10 — 10 —3.2 x 10 6.0 X 10
2 X 0 2.6 X
> 5910 X 3 ) )
97.4 9.3 f 5g] —6.8 )3 — —2.6 X 10 —4.
2 5910 8.3 1.2 x 10710 3 4 o~ 14 6.8 9
97.4 9.4 f Erg]o —68>< )—3 —8.3 10 - 3 —1.1 x 10713 1.1 x 1078
2 1.2 x 10 2.6 x 10 .
97.4 9.5 f 5 768X1)E —8.3 0 - 103 —4.0 x 10 3 2.1 x 107°
2 oglo 1.2 x 10 2.6 x .
97.4 9.6 f d] 768X1(li —8.3 0 — 03 —1.6 X 10 4.2 x 1078
2 5910 1.2 x 10 26 x1
f 1 — ) — — — X 8.4 X
97.4 9.7 5 6.8 3 8 1.2 x 10~10 2.6 x 1073 6.2 o~ ! 4 10
> 5910 X 3 ) )
97.4 9.8 2f 55g]0 —6.8 )3 —8.3 1.2 x 10710 —2.6 x 1073 —2.5 o~ 1t 1.7 10
2 5910 - ) - - — X X
97.4 9.9 f 5 6.8 )3 2.6 x 10 .
8.3 1.1 x 10710 3 9.8 o~ 1t 3.3 (
97.4 0.0 f 5910 768><1) 3 —8.3 - 3 —3.9x 10 0 6.6 X 10
2 : 4.9 x 10 2.6 x 10 .
97.6 8.0 f d] 716><1(l —8.5 — 03 —6.4 X 10 1.9 x 10
2 5910 3.9 x 10 26 x1
97.6 8.1 f 1 —1.6 ) 10 —8.5 8.6 10 -2 10 —4.0 X 10 1.5 X 10
> 5910 X X
2 591 — ) — — —2.6 x 10712 1.2 x 10
97.6 8.2 f 5 6 )~2 8.5 1.1 x 10710 2.6 x 1073 .
2 5910 - ) - - - X 5 X
97.6 8.3 f i 1.6 10 8.5 1.3 x 10 2.6 x 1073 .6 0—12 9.6 08
97.6 8.4 f 5910 716><1) —8.5 0 - 1073 —1.0 x 10 7.6 X 107°
2 : 1.5 x 10 2.6 X .
97.6 8.5 f d] 716><1(l —8.5 0 — 03 —6.4 X 10 3 6.0 x 10~8
2 59 1.5 x 10 26 x1
2f 5910 — ) — — — X X
97.6 8.6 i 1.6 10 8.5 1.6 x 10~10 2.6 x 1073 4. o~ 13 4.8 8
2 591 — ) — — — X 3.8 X
97.6 8.7 f 1.6 10 8.5 1.6 x 10 2.6 x 1073 2.6 o—13 8 0—8
2 5910 - ) - - — X X
97.6 8.8 f i 1.6 10 8.5 1.6 x 10 2.6 x 1073 .6 013 3.0 08
97.6 8.9 f 5910 716><1() —8.5 0 - 3 —1.0 x 10 3 2.4 x 10 8
2 : 1.6 x 10 2.6 x 10
97.6 9.0 f o] 716><1(l —8.5 6 0 — 03 —6.5 X 10 1.9 x 1078
2 59 1.6 x 10 26 x1
97.6 9 f 5 1 — GX 2 -8 6 1 — 3 —4.2x 101t 1.5 X 10
i 0 2.6 X 10 . 4 8
> 5910 5 X
97.6 9.2 f 5g] — 6>< )~2 —8.5 10 — 3 —3.2x 1071t 1.3 x 10
2 5 1.6 x 10 2.6 X 10 3.
97.6 9.3 f Erg]o - GX )~2 —8.5 6 )~ 10 - 3 —4.1x 1071 1.5 x 10
i 2.6 X 10 . 4 £ 8
2 X
97.6 9.4 f 5910 716><1() —8.5 0 — 3 —1.1x 10 3 2.5 x 10 8
2 : 1.6 x 10 2.6 x 10
9.5 f o] 716><1(l — 6 — 0 —3.9 x 10 4.7 x 10
26 x1
2 59 8.5 1.6 x 10
f 1 — ) — — —1.5 X 3 X
97.6 9.6 5 : 2 8 6 10 2.6 X 10 .
5 X
g1o0 1.6 x 10 . 3 0~ 12 9 8
2 5
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Q/9k (%) logT (K) Daughters AG H/ Bunit Ao g Ay |Qprr!
97.6 9.7 “if 2910 1.6 x 102 —8.5 1.6 x 10710  _2.6x 103 —6.1x10"" 1.9x10°7
97.6 9.8 2 %910 —1.6x 1072 —8.5 1.6 x 10710  _26x 103 —2.4x 101 37x 1077
97.6 9.9 2 2910 -1.6x1072 -85 1.5x10710  —2.6x1073%  —9.7x107' 74x1077
97.6 10.0 2 8910 —1.6x1072 —8.5 9.0x 10711 —2.6x 1073 —3.9x10710 15x10°6
97.8 7.9 T3 Sgs 2.9 x 1073 4.7 1.8x 1071 _—37x10°% —34x10""  28x1077
97.8 8.0 3 Sgs 2.9 x 1073 4.7 9.2x 10"  _37x107% —22x10"" 22x1077
97.8 8.1 _gf 898 2.9 x 1073 4.7 1.4x 10710  _37x10°% —1.4x 101 1.8x 107
97.8 8.2 Sf Sgs 2.9 x 1073 4.7 1.7x10710  —37x107*  -86x107' 14x1077
97.8 8.3 3 Sgs 2.9 x 1073 4.7 1.9 x 10710  _37x10°* —5.5%x 10712 1.1x10°7
97.8 8.4 T3 Sgs 2.9 x 1073 4.7 20x 10710  _37x10"% —3.4x107' 88x10°8
97.8 8.5 3 Sgs 2.9 x 1073 4.7 2.1x10710  _37x10°% —22x10"'2 70x10"8
97.8 8.6 3 898 2.9 x 1073 4.7 2.1x 10710  _—37x104 —1.4%x 10712 55x 108
97.8 8.7 Sf Sgs 2.9 x 1073 4.7 22x10710  —37x107* -86x1071% 44x1078
97.8 8.8 3 Sgs 2.9 x 1073 4.7 2.2x 10710 _37x107% —5.5x 10"  35x 1078
97.8 8.9 T3 Sgs 2.9 x 1073 4.7 22x10710  _37x10°% —34x10"1 28x10°8
97.8 9.0 3 Sgs 2.9 x 1073 4.7 22x10710  _37x10"% —22x10"1 22x10°8
97.8 9.1 3 898 2.9 x 1073 4.7 2.2x 10710  _—37x104 —1.5x 10713 18x 108
97.8 9.2 5f 88 2.9 x 1073 4.7 22x 10710 _37x10"% —1.2x10"13 1.6x 108
97.8 9.3 3 Sgs 2.9 x 1073 4.7 2.2x 10710 _37x10"% —1.9x10"% 20x10"8
97.8 9.4 T3 Sgs 2.9 x 1073 4.7 22x10710  _37x10°% —5.6x 10"  35x10"8
97.8 9.5 3 Sgs 2.9 x 1073 4.7 22x 10710  _37x10% —2.1x107* 69x10"8
97.8 9.6 3 898 2.9 x 1073 4.7 2.2x 10710  _37x104 —8.4x10712 14x10°7
97.8 9.7 Sf Sgs 2.9 x 1073 4.7 22x 10710 —37x107* —33x1071 27x1077
97.8 9.8 3 Sgs 2.9 x 1073 4.7 2.2x 10710 _37x107% —1.3x 10719 55x%x 1077
97.8 9.9 T3 Sgs 2.9 x 1073 4.7 2.0x 10710  _37x10°% —5.3x10710  1.1x10°6
97.8 10.0 3 Sgs 2.9 x 1073 4.7 1.4%x 10710  _37x10°% —2.1x 1079 2.2 x 1076
98.0 7.9 3 898 —5.4x 1073 4.8 8.8x 10~ 11  _37x10°% —3.4x10"11 s50x 1077
98.0 8.0 Sf 895 —5.4x1073 4.8 1.6x 10710 —37x107* -22x107' 39x1077
98.0 8.1 3 Sgs —5.4x 1073 4.8 2.1x10710  _37x107% —1.4x107' 31x1077
98.0 8.2 T3 Sgs —5.4x 103 4.8 24 %1070  _37x10% —86x1071 25x1077
98.0 8.3 3 Sgs —5.4x 103 4.8 2.6 x 10710  _37x10% —5.4x10"% 20x10°7
98.0 8.4 3 898 —5.4x 103 4.8 2.7x 10710 _37x104 —3.4%x10712 16x 1077
98.0 8.5 Sf 895 —5.4x1073 4.8 28x 10710 —37x107* —22x107'2 12x1077
98.0 8.6 3 Sgs —5.4x 1073 4.8 2.9%x 10710 _37x10"% —1.4x10'2 99x108
98.0 8.7 T3 Sgs —5.4x 103 4.8 29x10710  _37x10% —86x10"1 79x10°8
98.0 8.8 3 Sgs —5.4x 103 4.8 2.9x 10710  _37x10% —5.4x10"1 62x10"8
98.0 8.9 3 898 —5.4x 1073 4.8 29x 10710  _—37x104 —3.4%x10"13 50x 108
98.0 9.0 3 895 —5.4x1073 4.8 29x10710  —37x107* -—22x107'% 40x1078
98.0 9.1 3 Sgs —5.4x 1073 4.8 2.9x 10710 _37x10"% —1.4x 1013 32x108
98.0 9.2 “ir 2910 —3.6x 1072 —8.8 29x10710 _26x10°3 —3.1x10"" 29x10°8
98.0 9.3 2 2910 —3.6x 1072 —8.8 29x 10710 _26x103 —4.0x10"™ 32x10°8
98.0 9.4 2 5910 —3.6x 1072 —8.8 29x 10710  _—26x 102 —1.1x 10713 53x 108
98.0 9.5 3 2910 —-3.6x1072  -88 29x 10710 —26x107%  —3.9x1071% 1.0x1077
98.0 9.6 2 2910 —3.6x 1072 —8.8 2.9x 10710 _26x 1073 —1.5x 10712 20x 1077
98.0 9.7 “ir 2910 —3.6x 1072 —8.8 29x10710 _26x10°3 —6.0x 10" 4.0x 1077
98.0 9.8 2 2910 —3.6x 1072 —8.8 29x 10710 _26x 103 —24x107"  79x1077
98.0 9.9 2 2910 —3.6x1072  -8.8 2.7x10710  —26x107% -—9.6x1071 1.6x1076
98.0 10.0 2 2910 —-3.6x1072  —88 22x10710  —26x107% -3.8x1071% 3.2x1076
98.2 7.8 2 2910 —4.7x 1072 —9.0 6.1x 10" —2.6x1073 —1.6x 10" 82x1077
98.2 7.9 “if 2910 —4.7x1072 —9.0 1.8x 10710  _26x103 —9.9x1072 65x1077
98.2 8.0 2y 2910 —4.7x1072 —9.0 2.6 x 10710  _26x 1073 —6.3x 107 51x10°7
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8.2 5f 5910 10710 _26x 10 7
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98.2 : . 47 % 10-2 —9.0 3.9 x 3 9x 10714 6.5 x 10"
8.8 T2 90 -t 10719 2.6 x 107 B 8
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gio —10 —2.6 X 10
08.2 9.4 2f z 47 % 10-2 ~9.0 3.9 x 10 2 5 x 1012 25x%x10°7
9.5 3 5910 =% 10710 _2.6x 10~ —-1.5 7
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Q/Qk (%) logT (K) Daughters A® H/ Euit Yo s Ty |Qprr!
98.6 8.3 “if 299 3.5 x 1072 —9.7 6.7x 1010 _26x 1073 —2.0x107" 21x10°7
98.6 8.4 2 299 3.5x1072  —9.7 6.8x 10710 —26x107% -1.3x107'2 1.7x1077
98.6 8.5 2 299 3.5x 1072 -9.7 6.9x10710 —26x107% —79x107'% 13x1077
98.6 8.6 2 890 3.5 x 1072 —9.7 6.9x 10710 _26x1073 —5.0x 10713 1.1 x10°7
98.6 8.7 ~ir 2990 3.5 x 1072 —9.7 7.0x 10710  _26x 1073 —32x10"1 84x10°8
98.6 8.8 Tif 299 3.5 x 102 —9.7 7.0x 10710  _26x 1073 —2.0x10"1  67x10"8
98.6 8.9 2 299 3.5x1072  —9.7 70x10710  —26x107% -1.3x107'% 53x1078
98.6 9.0 2 299 3.5x 1072  -9.7 70x10710  —26x107% -8.0x107'* 42x1078
98.6 9.1 2 890 3.5 x 1072 —9.7 7.0x 1070 2.6 x 1073 —5.3x 10" 34x108
98.6 9.2 ~ir 299 3.5 x 1072 —9.7 7.0x 10710  _26x 1073 —42x10"" 31x10°8
98.6 9.3 “if 299 3.5 x 1072 —9.7 7.0x 10710  _26x 1073 —6.1x10" 37x10°8
98.6 9.4 2 299 3.5x1072 —9.7 70x10710  —26x107% -1.7x1071% 6.3x 1078
98.6 9.5 2 299 3.5x 1072  -9.7 70x10710  —26x107%  —6.5x1071%  1.2x1077
98.6 9.6 2 290 3.5 x 1072 —9.7 7.0x 1070 2.6 x 1073 —2.6x 10712 24x10°7
98.6 9.7 —ir 299 3.5 x 1072 —9.7 7.0x 10710  _26x 1073 —1.0x10"" 48x10°7
98.6 9.8 “if 299 3.5 x 102 —9.7 7.0x 10710  _26x 1073 —41x10"" 96x1077
98.6 9.9 2 299 3.5x107%  —9.7 6.8x 10710 —26x107% -1.6x10710 1.9x107°
98.6 10.0 8910 9910 —23x107% —424 62x10710 —86x1071" -35x107% 32x107°
98.6 10.1 8910 9910 —23x107% 424 38x10710  _34x107? —1.4x10"8 3.2 x 1076
98.8 7.6 ~ir 299 2.4 x 1072 —9.9 54x 10" _—26x 1073 —5.0x 10" 6.9x 1077
98.8 7.7 “if 299 2.4 x 1072 —9.9 3.8x 10710 _26x 1073 —3.1x10"" 55x1077
98.8 7.8 2 299 2.4 x 1072 —9.9 5.9x 10710  _—26x 102 —2.0x 10711 44x 1077
98.8 7.9 2 299 24x107%  —9.9 72x 10710 —26x1073  —1.2x107' 35x1077
98.8 8.0 3 ERT 2.4 x 1072 —9.9 8.0x 10710 _26x 1073 —7.9%x10712 28x10°7
98.8 8.1 ~ir 299 2.4 x 1072 —9.9 85x 1010 _26x 1073 —5.0x 107 22x10°7
98.8 8.2 “if 299 2.4 x 1072 —9.9 8.8x 10710 _26x 1073 —3.1x107"2 1.7x10°7
98.8 8.3 2 299 2.4 x 1072 —9.9 9.1x 10710  _—26x 103 —2.0x 10712 14x 1077
98.8 8.4 2 299 2.4 x 1072 —9.9 9.2x 10710  _—26x 1073 —1.2x10712 11x1077
98.8 8.5 2 ERT 2.4 x 1072 —9.9 9.3x107 10 _26x 1073 —7.9%x 10718 87x108
98.8 8.6 —ir 299 2.4 x 1072 —9.9 9.3x10° 10 _26x1073 —5.0x 10"  6.9x 108
98.8 8.7 2y 299 2.4 x 1072 —9.9 9.4x10° 10 _26x1073 —3.1x10" 55x10°8
98.8 8.8 2 299 2.4 x 1072 —9.9 9.4x 10710  _—26x 103 —2.0x 10713  44x 108
98.8 8.9 2 299 24x107%  —99 9.4x10710 —26x107% -12x107'% 35x1078
98.8 9.0 3 ERT 2.4 x 1072 —9.9 9.4x10710 _26x1073 —7.9%x107% 28x10°8
98.8 9.1 —ir 299 2.4 x 1072 —9.9 9.4x10° 10 _26x1073 —52x10" 22x10°8
98.8 9.2 2 299 2.4 x 1072 —9.9 9.4x10° 10 _26x1073 —41x10"" 20x10"8
98.8 9.3 2 299 2.4 x 1072 —9.9 9.4x 10710  _—26x 103 —6.0x 107 1% 24x 1078
98.8 9.4 *gf 290 2.4 x 1072 —9.9 9.4x 10710  _—26x 1073 —1.7x 10713  4.1x 108
98.8 9.5 —3f ERT 2.4 x 1072 —9.9 9.4x10°10 _26x1073 —6.5x 1013  79x108
98.8 9.6 ~ir 299 2.4 x 1072 —9.9 9.4x10° 10 _26x1073 —25x1072 16x10°7
98.8 9.7 2 299 2.4 x 1072 —9.9 9.4x10° 10 _26x1073 —1.0x10"" 31x1077
98.8 9.8 2 299 2.4 x 1072 —9.9 9.4x 10710  _—26x 103 —4.0x 10711 6.2x 1077
98.8 9.9 2 T 24x107%  —9.9 92x10710 —26x107% -1.6x10710 12x107¢
98.8 10.0 3 890 2.4 x 1072 —9.9 8.6 x 10710 _26x 1073 —6.4x 10710 25x 106
98.8 10.1 “ir 299 2.4 x 1072 —9.9 6.1 x10° 10 _26x1073 —2.5x 1079 5.0 x 1076
99.0 7.6 2 299 1.1 x 1072  —10.2 3.5x 10710  _27x 1073 —49x10"" 33x1077
99.0 7.7 2 299 1.1x 1072 —10.2 6.9x 1010  _—27x10°3 —3.1x 1071 26x 1077
99.0 7.8 3 T 1.1x1072  -10.2 9.0x 10710  —27x107% —20x107' 21x1077
99.0 7.9 2 ERT 1.1 x 1072  —10.2 1.0 x 1079 —2.7x 1073 —1.2x10"'  1.6x10°7
99.0 8.0 “if 299 1.1x 1072  —10.2 1.1 x 1079 —2.7x 1073 —78x1072 13x10°7
99.0 8.1 2y 299 1.1x 1072  —10.2 1.2 x 1077 —2.7x 1073 —49x107"2 1.0x1077




156 Coupling spectrum
Q/Qk (%) logT (K) Daughters A® H/ Euit Yo s Ty |Qprr!
99.0 8.2 “if 299 1.1x 1072  —10.2 1.2 x 1079 —2.7x 1073 —3.1x10"' 82x10"8
99.0 8.3 _gf 299 1.1x 1072 —10.2 1.2 x 1079 —2.7x 1073 —2.0x 10712 65x 1078
99.0 8.4 ’gf 299 1.1x 1072 —10.2 1.2 x 1079 —2.7x 1073 —1.2x10712 52x 108
99.0 8.5 2 890 1.1 x 1072 —10.2 1.2 x 1077 —2.7x 1073 —7.8x 107 4.1 x1078
99.0 8.6 ~ir 2990 1.1x 1072  —10.2 1.3x 1079 —2.7x 1073 —49x10"1 33x10°8
99.0 8.7 Tif 299 1.1x 1072  —10.2 1.3 x 1079 —2.7x 1073 —3.1x10"% 26x10"8
99.0 8.8 _gf 299 1.1x 1072 —10.2 1.3 x 1079 —2.7x 1073 —2.0x 10713 21x10°8
99.0 8.9 *gf 299 1.1x 1072 —10.2 1.3 x 1079 —2.7x 1073 —1.2x10"13 16x 108
99.0 9.0 2 890 1.1 x 1072 —10.2 1.3 x 1077 —2.7x 1073 —7.9%x107% 13x10°8
99.0 9.1 ~ir 299 1.1x 1072  —10.2 1.3x 1079 —2.7x 1073 —52x10"" 1.1x10"8
99.0 9.2 “if 299 1.1x 1072  —10.2 1.3 x 1079 —2.7x 1073 —41x10"" 95x107?
99.0 9.3 2 299 1.1x 1072 —10.2 1.3 x 1079 —2.7x 1073 —6.0x 1071 1.1x10°8
99.0 9.4 ’gf 299 1.1x 1072 —10.2 1.3 x 1079 —2.7x 1073 —1.7x10"13 1.9x 108
99.0 9.5 2 290 1.1 x 1072 —10.2 1.3 x 1077 —2.7x 1073 —6.4x 10"  37x1078
99.0 9.6 —ir 299 1.1x 1072  —10.2 1.3 x 1079 —2.7x 1073 —25x107%2 74x10°8
99.0 9.7 “if 299 1.1x 1072  —10.2 1.3 x 1079 —2.7x 1073 —1.0x107" 15x10°7
99.0 9.8 2 299 1.1x 1072 —10.2 1.3 x 1079 —2.7x 1073 —4.0x 10711 30x 1077
99.0 9.9 ’gf 290 1.1x 1072 —10.2 1.2 x 1079 —2.7x 1073 —1.6x10710 59x1077
99.0 10.0 2 890 1.1 x 1072 —10.2 1.2 x 1077 —2.7x 1073 —6.3x 10710  1.2x1076
99.0 10.1 —ir 299 1.1x 1072  —10.2 9.2x10710 _27x1073 —2.5x 1079 2.3 x 1076
99.2 7.5 “if 299 —1.7x107% —10.4 22x 10710  _27x10°3 —78x 107"  1.1x1077
99.2 7.6 2 299 —1.7x 1073 —10.4 7.6x 10710 _—27x103 —4.9x 10~ 11 88x 108
99.2 7.7 2 299 —17x107% -10.4 1.1x107? -—27x1073%  -31x10"' 7.0x1078
99.2 7.8 3f ERT —1.7x 1073 —10.4 1.3 x 1079 —2.7x 1073 —1.9x107*  56x1078
99.2 7.9 ~ir 299 —1.7x1073 —10.4 1.5 x 1079 —2.7x 1073 —12x10""  44x10°8
99.2 8.0 “if 299 —1.7x107% —10.4 1.5 x 1079 —2.7x 103 —78x 107 35x10°8
99.2 8.1 2 99 —1.7x1073 —10.4 1.6 x 1077 —2.7x 1073 —49x10712 28x1078
99.2 8.2 2 290 —1.7x1073 —10.4 1.6 x 1077 —2.7x 1073 —3.1x107% 22x10°8
99.2 8.3 3 890 —1.7x 1073 —10.4 1.7 x 1079 —2.7x 1073 —1.9x 10712 18x10°8
99.2 8.4 —ir 299 —1.7x107% —10.4 1.7 x 1079 —2.7x 1073 —1.2x107' 14x10°8
99.2 8.5 2 299 —1.7x 1073 —10.4 1.7 x 1077 —2.7x 1073 —7.8x1071% 1.1x10°8
99.2 8.6 2 99 —1.7x 1073 —10.4 1.7 x 1079 —2.7x 1073 —4.9%x10"13 88x107?
99.2 8.7 2 299 —17x1073% -10.4 1.7x107% —27x1073%  -31x10" 7.0x107°
99.2 8.8 3f 890 —1.7x 1073 —10.4 1.7 x 1079 —2.7x 1073 —1.9x 10713  56x107?
99.2 8.9 ~ir 299 —1.7x107% —10.4 1.7 x 1079 —2.7x 103 —1.2x10"%  44x107?
99.2 9.0 2 299 —1.7x107% —10.4 1.7 x 1079 —2.7x 1073 —78x 10" 35x107?
99.2 9.1 2 299 —1.7x1073 —10.4 1.7 x 1077 —2.7x 1073 —5.1x 10"  29x107°
99.2 9.2 3 290 —1.7x1073 —10.4 1.7 x 1077 —2.7x 1073 —4.1x107*  26x107°
99.2 9.3 2 ERT —1.7x 1073 —10.4 1.7 x 1079 —2.7x 1073 —5.9%x 10" 3.1x10"?
99.2 9.4 ~ir 299 —1.7x107% —10.4 1.7 x 1079 —2.7x 1073 —1.7x1071  52x107?
99.2 9.5 2 299 —1.7x 1073 —10.4 1.7 x 1077 —2.7x 1073 —6.4x 10713 1.0x10"8
99.2 9.6 —gf 299 —1.7x 1073 —10.4 1.7 x 1079 —2.7x 1073 —2.5%x 10712 20x10°8
99.2 9.7 3 299 —1.7x107% -10.4 1.7x107% —27x107%  -1.0x10"' 4.0x1078
99.2 9.8 2 ERT —1.7x 1073 —10.4 1.7 x 1079 —2.7x 1073 —4.0x 10~ 8o0x10"8
99.2 9.9 —ir 299 —1.7x107% —10.4 1.7 x 1079 —2.7x 1073 —1.6x10710 16x107
99.2 10.0 2 299 —17x107% -104 1.6 x 1077 —2.7x 1073 —-6.3x 10710 32x 1077
99.2 10.1 2 299 —1.7x 1073 —10.4 1.3 x 1079 —2.7x 1073 —2.5x 1079 6.3 x 107
99.2 10.2 2 90 —1.7x 1073  —10.4 3.0 x 10710 2.7 x 1073 —1.0x10~8 1.3x 1076
99.4 7.5 —Zr ERT —1.5x 1072 —10.7 7.6 x 1010 2.7 x 1073 —7.7x 10" 53x10°7
99.4 7.6 “if 299 —15x1072 —10.7 1.3 x 1079 —2.7x 1073 —49x10"" 42x1077
99.4 7.7 2 299 —1.5x 1072 —10.7 1.7 x 1079 —2.7x 1073 —3.1x10"" 33x10°7
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Q/Qk (Y log T (K Daughter: AL H / Eni v s Yy Q
/99 4(() - 7 - zfll g —1 10 —10.7 1.9 x 10 —2.7x 10 —1.9 x 10 2.6 X 10
99.4 7.9 2f 599 -1 55><1() —10.7 2.0 10 —2.7 10 —1.2 x 10 2.1 x 10
. . X
X
99.4 8.0 21 599 —15><10 —10.7 2.1 10 —2.7 10 —7.7 x 10 1.7 x 10
X X
2 599 - ) — 1 9 —2.7 0~3 —4.9 x 10712 3 x 10
99.4 8 f : 1.5 10~ 0.7 2.2 x 107 X
2f g — ) —10.7 9 —2.7 1073 —3.1 x 10 1.1 x 10
2 x 10 2.7 X
1.5 x 10 10. 2. ) )
8.2 599 )
99.4 )
2 599 - o — — — X X
) 9 2.7 x 1073 2 0~ 12 6.6 8
99.4 8.4 f 5 5 )~2 10.7 2.2 x 10
2 go — ) — - — X X
99.4 8.5 f 5 5 )~2 0.7 2.2 )9 2.7 x 1073 7.7 0—13 5.3 08
X
99.4 8.6 f Egg 715><1) —10.7 2.3 109 —2.7 0~3 —4.9 x 10713 4.2 x 1078
2 z X
X
99.4 8.7 2f 599 — ) —10.7 9 —2.7 03 —3.1 x 10 3 3.3 x 1078
2.7x1
1 2.3 x 10
1.5 x 10 . ) :
99.4 8.8 2f g -1 10 —10.7 2.3 x 10 —2.7x 10 —1.9 10 2.6 10
99.4 8.9 2f 599 -1 55><1() —10.7 2.3 10 —2.7 10 —1.2 x 10 2.1 x 10
599 )
X .
9 9.0 21 599 —15><10 —10.7 2 1 2.7 1 3 7.8 x 10714 1.7 x 10
3 x 10 - X 10 —
- ) — —2 10 —5.1 x 10 1.4 x 10
99.4 . 5 ) )
9.1 2 599 1.5 x 10 10. ) )
99.4 . f 5 7 2 3>< 109 7 : . 8
99.4 2f 599 —1.5 ) 10 —10.7 2 10 —2.7 10 —5.9 x 10 1.5 X 10
; 3 X X
2 5 — ) 2 —10.7 2.3 )9 —2.7 1073 —1.7 x 10 2.5 x 10
9 9.3 ) )
99.4 9.4 f 5g9 1.5 x 10 . ) )
99.4 9.5 f Ergg - 2 — 7 2.3 x 10 —2.7 X —
2 1.5 x 10 10. 9 2.7 0~3 63)(0 13 48)(1 8
99.4 9.6 2f : —1.5 10 —10.7 2.3 x 107° —2.7 x 107" —2.5 0 9.5 08
99.4 9.7 2f 599 —1.5 ) 10 —10.7 2.3 109 —2.7 1073 —9.9 X 10~ 1.9 x 10—
. X X
99.4 9.8 2f 599 715><1(l —10.7 10 —2.7 10 —3.9x 10 3.8 X 10
2.7 X 3
2.3 X
2 5 — ) — — 3 — x 10~10 x 10
2.7 x 10 .
99.4 9.9 f 5 2 10.7 2.2 x 10
go 1.5 x 10 . 9 7 6 ) 7.5 )
99.4 0.0 f Ergg - 2 — 7 2.2 x 10 —2.7 x 10 —6.
2 1.5 x 10 10. . 9 7 3 62)( 010 SX 06
99.4 10.1 21 j —1.5 10 —10.7 1.9 x 10 —2.7x 10 —2.5 10 3.0 10
99.4 10.2 2f ;gg —1.5 ) 10 — 4 0 2.7 1073 —9.9 x 10 6.0 X 10
599 )
- 10.7 8.4 x 10
99.6 7.4 2f 599 729><1(l —11.0 5 1 1 —1.2x 10710 1.2 X 10
2 8 x 10~ 10 2.7 X 10
2 — ) — — — X X
1.5 x 10 2.7 x 10 .
99.6 7 f 5g9 2.9 x 1072 11.0 . 9 7 3 7 6>< o~ 1t 98><
99.6 7 56 21 5rgg —2.9 10 —11.0 2.1 x 10 —2.7 x 10 —4.8 10 7.8 10
99.6 7.7 f 599 729><1) —11.0 4 1 9 —2.7 03 —3.0 x 10711 6.2 x 10
2 : - 2.4 x 107 2.7 x
99.6 7.8 2f ;gg 729><1(l —11.0 6 —2.7 03 —1.9x 10" 4.9 x 10
2.6 X 10 2.7x1
2f go — ) — — — X 3.9 X
2.8 X 10 2.7 X 10 .
99.6 7.9 5 2.9 x 1072 11.0 . 9 7 3 2 ) o~ 1t 9 )
99.6 8.0 2f 599 —2.9 10 —11.0 2.9 10 —2.7x 10 —7.6 10 3.1 10
; X
99.6 8.1 21 599 —29>< 10 —11.0 2.9 10 —2.7 1073 —4.8 x 10712 2.5 x 10
; X X
2 599 - ) — - 3 —3.0 x 10 12 9 x 10
99.6 8.2 f : 2.9 10 1.0 30)(10E 2.7 x 10 3.
2f dg — ) — —2.7 03 —1.9 x 10 1.5 x 10
3.0 x 10 2.7x1
2.9 x 10 11.0 . ) )
99.6 8.3 599 ) )
99.6 8.4 2f 5g9 —2.9 x 102 —11.0 3. 9 —2.7 03 —1.2 ) 0~ 12 2 )
99.6 8.5 2f 5599 —2.9 10 —11.0 3.0 X 10 —2.7x 10 —7.6 10 9.8 10
99.6 8.6 21 599 729>< 10 —11.0 3.0 10 —2.7 1073 —4.8 x 10713 7.8 X 10
X X
5 - . — - 10 —3.0 x 10 6.2 x 10
2 : .0 x 10 2.7 x .
2 2.9 x 10 11.0 3 E 7 3 ) 3 ) °
99.6 8.7 f 599 ) :
99.6 8.8 2f 599 —2.9x 10 —11.0 3.0 10 —2.7 1073 —-1.9 ) 10 3 43 9 ) 108
99.6 8.9 f 5 —2.9 2 — 3 9 —2.7x 1073 —1.2 o~ 13 9 8
2 go X .
99.6 9.0 2f 599 —29><1() —11.0 3.0 10 —2.7 1073 —7.7x 10714 3.1 x 10
. X X
2 5 - ) — 9 - 0~3 —5.1 x 104 5 x 10
f 5 2 .0 x 10 2.7 x 5. 2.6 8
2.9 x 10 11.0 3 ) )
99.6 9.1 599 ) 7 )
9.2 2f 299 —2.9 x 10 —11.0 3.( 109 —2.7 10~3 —4.0 ) 10 2.2 ) 08
99.6 9.3 2f go —2.9 10 —11.0 3.0 10 —2.7x 1073 —5.8 10 2.7 108
99.6 )
99.6 9.4 2f go —29><1(l —11.0 3.0 10 —2.7 1073 —1.7x 10713 4.6 x 10
. X
X .
99.6 9.5 2f 599 —29>< 10 —11.0 0 10 —2.7 1073 —6.3 x 10713 8.8 X 10
. X
3.0 X
2 599 - ) — - - X X
X X
99.6 9.6 f 2.9 x 1072 11.0 3.( )~ 9 2.7 0~3 2.5 ) 0—12 8 ) (
99.6 9.7 f jgg - — 3.0 x 10 —2.7x 10 —
2 g 2.9 x 10 11.0 . 9 7 3 98>< 10 35X 0
99.6 9.8 2f go —2.9 10 —11.0 3.0 x 10 —2.7x 10 —-3.9 10 7.0 10
f — ) — — —1.6 X 10 1.4 x 10~6
. X
2 0 0 x 10
99.6 9.9 599 2.9 x 10 . 3 9 2.7 0—3 1
2 5
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99.6 10.0 “if 299 —29x10"2 —11.0 2.9 x 1079 —2.7x 1073 —6.2x 10710 28x 1076
99.6 10.1 2 299 —2.9x 1072 —11.0 2.7 x 1079 —2.7x 1073 —2.5x 1077 5.5 x 1076
99.6 10.2 ’gf 299 —2.9x 1072 —11.0 1.6 x 10~2 —2.7x 1073 —9.8 x 1079 1.1 x 1072
99.8 7.3 2 R —44x1072 —11.4 7.9 x 10711 2.7 x 1073 —1.9x1071% 23x10°6
99.8 7.4 ~ir 2990 —44x1072 —11.4 1.6 x 1079 —2.7x 1073 —1.2x10710 18x10°6
99.8 7.5 T f 299 —44x1072 —11.4 2.5 x 1079 —2.7x 1073 —76x10""  1.4x10°6
99.8 7.6 _gf 299 —4.4%x1072 —11.4 3.1 x 1079 —2.7x 1073 —48x 10711 1.1x10°6
99.8 7.7 2 299 —4.4x1072 -11.4 34x107% —27x107%  —3.0x107' 9.0x 1077
99.8 7.8 2 R —44x1072 —11.4 3.7x 1079 —2.7x 1073 —1.9x 107 71x1077
99.8 7.9 ~ir 299 —44x1072 —11.4 3.8 x 109 —2.7x 1073 —12x107"  57x10°7
99.8 8.0 “if 299 —44x1072 —11.4 3.9 x 1079 —2.7x 103 —76x10" 45x10°7
99.8 8.1 2 99 —4.4x1072 —11.4 4.0 x 1079 —2.7x 1073 —4.8x 10712 36x 1077
99.8 8.2 2 299 —4.4x1072 —11.4 4.0 x 1079 —2.7x 1073 —-3.0x 10712 28x 107
99.8 8.3 2 890 —44x1072 —11.4 4.0 x 1079 —2.7x 1073 —1.9x 10712 23x10°7
99.8 8.4 ~ir 299 —44x1072 —11.4 4.1 x 1079 —2.7x 1073 —12x107%2 18x10°7
99.8 8.5 “if 299 —44x1072 —11.4 4.1 x 1079 —2.7x 103 —76x10"1  14x10°7
99.8 8.6 _gf 299 —4.4x1072 —11.4 4.1 x 1079 —2.7x 1073 —48x 10713 1.1x10°7
99.8 8.7 2 299 —4.4x1072 -11.4 41x107%  —27x107% -30x107'® 9.0x1078
99.8 8.8 2 890 —4.4x1072 —11.4 4.1 x 1079 —2.7x 1073 —1.9x107% 71x10"8
99.8 8.9 —ir 299 —44x1072 —11.4 4.1 x 1079 —2.7x 1073 —12x1071 57x10°8
99.8 9.0 “if 299 —44x1072 —11.4 4.1 x 109 —2.7x 1073 —76x10" 45x10°8
99.8 9.1 2 299 —4.4x1072 —11.4 4.1 x 1079 —2.7x 1073 —5.0x 1071 37x 108
99.8 9.2 ’gf 290 —4.4x1072 —11.4 4.1 x 1079 —2.7x 1073 —4.0x 10" 1'% 33x 108
99.8 9.3 3 890 —4.4%x 1072 —11.4 4.1 x 109 —2.7x 1073 —5.8x 10" 39x108
99.8 9.4 ~ir 299 —44x1072 —11.4 4.1 x 109 —2.7x 1073 —1.7x1071  67x10"8
99.8 9.5 “if 299 —44x1072 —11.4 4.1 x 109 —2.7x 1073 —6.2x 10" 1.3x10°7
99.8 9.6 _gf 99 —4.4x1072 —11.4 4.1 x 1079 —2.7x 1073 —25%x 10712 26x 1077
99.8 9.7 ’gf 290 —4.4x1072 —11.4 4.1 x 1079 —2.7x 1073 —9.8x10712 51x1077
99.8 9.8 3f ERT —4.4%x 1072 —11.4 4.1 x 109 —2.7x 1073 —3.9%x 10" 1.0x10°6
99.8 9.9 —ir 299 —44x1072 —11.4 4.1 x 109 —2.7x 1073 —1.5x10710 20x 1076
99.8 10.0 2y 299 —44x1072 —11.4 4.0 x 1079 —2.7x 1073 —6.2x 10710 4.0x 106
99.8 10.1 _gf 99 —4.4x1072 —11.4 3.7 x 1079 —2.7x 1073 —2.5x 1079 8.1 x 10~6
99.8 10.2 2 290 —4.4x1072 —11.4 2.6 x 1079 —2.7x 1073 —9.8 x 1079 1.6 x 1072
100.0 7.3 —ar 794 —1.1x 1073 6.9 1.4 x 1079 —5.9x107° —2.1x 1079 1.5 x 10~6
100.0 7.4 4 Tg9a —1.1x10°3 6.9 2.9 x 1079 —5.9x10°° —1.3x 1079 1.2x 1076
100.0 7.5 A T9a —1.1x103 6.9 3.8 x 1079 —5.9x10°° —8.4x10710 92x1077
100.0 7.6 i T9a —1.1x 1073 6.9 4.5 x 1079 —5.9x 1075 —5.3%x 10710 7.3 x 1077
100.0 7.7 i Tga —11x1073 6.9 48x107%  —59x107° —33x10710 s58x1077
100.0 7.8 —ar 794 —1.1x 1073 6.9 5.1 x 109 —5.9x107° —2.1x10719  46x 1077
100.0 7.9 4 Tg9a —1.1x10°3 6.9 5.2 x 1079 —5.9x10°° —1.3x10710 37x10°7
100.0 8.0 A T9a —1.1x10°3 6.9 5.3 x 1079 —5.9x10°° —8.4x10" 29x1077
100.0 8.1 i T9a —1.1x 1073 6.9 5.4 x 1079 —5.9x 1075 —5.3x 10~ 23x 1077
100.0 8.2 i Tga —1l1x1073 6.9 54x107%  —59x107° —33x107' 18x1077
100.0 8.3 —ar 794 —1.1x 1073 6.9 5.4 x 109 —5.9x 107° —2.1x 107 15x%x10°7
100.0 8.4 4 Tg9a —1.1x10°3 6.9 5.5 x 1079 —5.9x10°° —1.3x107" 12x10°7
100.0 8.5 A T9a —1.1x10°3 6.9 5.5 x 1079 —5.9x10°° —8.4x10"' 92x10°8
100.0 8.6 i T9a —1.1x 1073 6.9 5.5 x 109 —5.9x 105 —5.3%x 10712 7.3x 108
100.0 8.7 i Tga —11x1073 6.9 55x107%  —59x107° -3.3x1071'? 58x1078
100.0 8.8 ar 794 —1.1x 1073 6.9 5.5 x 109 —5.9x107° —2.1x10712 46x10°8
100.0 8.9 4 Tg9a —1.1x10°3 6.9 5.5 x 1079 —5.9x10°° —1.3x107% 37x10°8
100.0 9.0 4 T9a —1.1x 103 6.9 5.5 x 109 —5.9x10°° —8.6x 1071 29x10"8
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100.0 9.1 A Tg9a —1.1x10°3 6.9 5.5 x 1079 —5.9x10°° —6.2x10"1  25x10°8
100.0 9.2 4 T9a —1.1x 1073 6.9 5.5 x 1079 —5.9x 1075 —7.0x 10713 27x 108
100.0 9.3 2 29s 3.3x 1072 -—12.2 55x107% —27x107%  -86x107'* 3.5x1078
100.0 9.4 2 Sgs 3.3x1072 —12.2 5.5 x 1079 —2.7x 1073 —2.6x 107  6.1x1078
100.0 9.5 ~ir 298 3.3x1072 —12.2 5.5 x 1072 —2.7x 1073 —1.0x107*2 12x10°7
100.0 9.6 Tif 298 3.3x1072 —12.2 5.5 x 1079 —2.7x 1073 —4.0x10"" 24x10°7
100.0 9.7 2 298 3.3x 1072 —12.2 5.5 x 1079 —2.7x 1073 —1.6x 1071 47x 1077
100.0 9.8 2 29s 3.3x 1072 -—12.2 55x107% —27x107%  —6.3x107'  9.4x 1077
100.0 9.9 2 Sgs 3.3x1072 —12.2 5.5 x 1079 —2.7x 1073 —25x10710  1.9x1076
100.0 10.0 ~ir 298 3.3x1072 —12.2 5.4 x 1079 —2.7x 1073 —9.9x 10710 37x10°6
100.0 10.1 “if 298 3.3x1072 —12.2 5.1 x 109 —2.7x 1073 —-3.9%x107°% 74x10°6
100.0 10.2 2 298 3.3x 1072  —12.2 3.9 x 1079 —2.7x 1073 —1.6 x 10~8 1.5 x 1072
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