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Summary 
 

The exosome complex belongs to an evolutionarily conserved group of barrel–shaped 

molecular machines that have significant roles in RNA degradation and processing. This group 

comprises the major enzymes responsible for the 3’–5’ RNA degradation pathway, which are 

present in bacterial, archaeal and eukaryotic organisms.  

The archaeal exosome complex (260 kDa) consists of a hexameric core and a trimeric 

cap. The active sites with phosphorolytic exoribonuclease activity are located within the 

internal chamber of the hexameric core. To enter the catalytic chamber, the substrate RNA 

molecule needs to pass through the opening on top of the assembly, which is encircled by the 

trimeric cap structure. The cap structure interacts with RNA, which provides substrate 

specificity and improves the RNA degradation efficiency. The underlying molecular 

mechanism, however, remains elusive. Here, we resorted to the novel approaches in NMR 

spectroscopy to address how the exosome cap structure is able to modulate the exosomal 

function. To that end, we use the archaeal exosome complex from the thermophile organism 

Sulfolobus solfataricus that is particularly amenable to the NMR studies as it has full three-fold 

symmetry and is stable at higher temperature. 

During the PhD project, a long RNA binding surface was identified on the Rrp4–cap 

structure. It was shown that the RNA interacts with the exosome complex through four contact 

points that function independently from one another. Based on precise affinity measurements, 

we managed to deconstruct this multivalent exosome–RNA interaction and quantified the 

contributions of the individual contact points. This showed that the interaction contribution 

(“strength”) increases from the periphery of the cap structure towards the active sites, which 

provides a mechanism that favours base-by-base substrate ratcheting towards the active sites. 

In addition to this actively degraded RNA, two more “waiting” RNA molecules can be bound on 

the Rrp4–cap structure. Interestingly, the interaction energy between the RNA and the 

exosome cap is significantly reduced after the 3’ end of the “waiting” RNA is translocated into 

the exosome chamber, thereby preventing friction between the substrate and the exosome cap 

during processive degradation. Furthermore, this project also emphasises the capabilities and 

advantages of methyl TROSY NMR spectroscopy for the studies of large macromolecular 

assemblies. 
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Zusammenfassung 
 

Der Exosomenkomplex gehört zu einer evolutionär konservierten Gruppe von 

fassförmigen molekularen Maschinen, die bei RNA-Abbau und RNA-Verarbeitung 

signifikante Rollen aufweisen. Diese Gruppe umfasst die wichtigsten Enzyme, die für den 3'–

5'-RNA-Abbaupfad verantwortlich sind, die in bakteriellen, archaealen und eukaryotischen 

Organismen vorhanden sind. 

Der archaeale Exosomenkomplex (260 kDa) besteht aus einem hexameren Kern und 

einer trimären Kappe. Die aktiven Stellen mit phosphorolytischer Exoribonuklease-Aktivität 

befinden sich innerhalb der inneren Kammer des hexameren Kerns. Um in die katalytische 

Kammer einzutreten, muss das Substrat-RNA-Molekül durch die Öffnung auf der Oberseite 

der Anordnung hindurchgehen, die von der trimeren Kappenstruktur umschlossen ist. Die 

Kappenstruktur wechselwirkt mit RNA, die die Substratspezifität liefert und die RNA-

Degradationseffizienz verbessert. Der zugrundeliegende molekulare Mechanismus ist jedoch 

noch unklar. Hier haben wir auf neue Ansätze in der NMR-Spektroskopie zurückgegriffen, um 

herauszufinden, wie die Exosomkappen-Struktur in der Lage ist, die exosomale Funktion zu 

modulieren. Zu diesem Zweck verwenden wir den archäischen Exosomenkomplex aus dem 

thermophilen Organismus Sulfolobus solfataricus, der besonders für NMR-Studien geeignet 

ist, da er eine volle Dreifachsymmetrie aufweist und bei höherer Temperatur stabil ist. 

Während des PhD-Projektes wurde eine lange RNA-Bindeoberfläche auf der Rrp4-

Kappen-Struktur identifiziert. Es wurde gezeigt, dass die RNA mit dem Exosomenkomplex 

über vier Kontaktpunkte, die unabhängig voneinander funktionieren, interagiert. Basierend auf 

präzisen Affinitätsmessungen haben wir diese multivalente Exosomen-RNA-Interaktion 

analysiert und die Beiträge der einzelnen Kontaktpunkte quantifiziert. Dies zeigte, dass der 

Wechselwirkungsbeitrag ("Stärke") von der Peripherie der Kappenstruktur zu den aktiven 

Stellen hin zunimmt, was einen Mechanismus zur Verfügung stellt, der ein Basen-für-Basen 

Fortschreiten des Substrats in Richtung der aktiven Stellen begünstigt. Zusätzlich zu dieser 

aktiv abgebauten RNA können an der Rrp4-Kappen-Struktur zwei weitere "Warte"-RNA-

Moleküle gebunden werden. Interessanterweise wird die Wechselwirkungsenergie zwischen 

der RNA und der Exosomkappe signifikant reduziert, nachdem das 3'-Ende der "Warte"-RNA 

in die Exosomenkammer transloziert ist, wodurch Reibung zwischen dem Substrat und der 

Exosomenkappe während des Abbauvorgangs verhindert wird. Darüber hinaus unterstreicht 

dieses Projekt auch die Eignung und Vorteile der Methyl-TROSY-NMR-Spektroskopie für die 

Untersuchung großer makromolekularer Komplexe. 
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1. Introduction 
 

 

1.1. Biomolecular Complexes 

 

Biochemical processes in the cell used to be viewed as simple enzymatic 
reactions between individual molecules. With the developments in biochemistry, cell 
and structural biology over the past decades, our picture of the cell grew more and 
more intricate. We are now aware that the majority of pivotal cellular processes is 
performed by macromolecular assemblies (Alberts 1998) that consist of several 
polypeptide chains and, in certain cases, polynucleotides. Some of these processes are 
transcription, translation, RNA splicing, rRNA modifications, DNA replication, protein 
degradation and photosynthesis. 

 
 Components of a biomolecular complex can have different functions and they 

all act in a highly coordinated manner in order to carry out specific biological 
processes. Because of the coordinated action of their different parts, biomolecular 
complexes are often called molecular machines. Association of proteins is a form of 
their quaternary structure and illustrates a fundamental principle of modularity in 
nature. Modularity refers to a concept that a system can be viewed as a collection of 
smaller units, modules, each with a discrete function (Hartwell, Hopfield et al. 1999). 
Modularity is present in the cell on several levels: domains are functional modules of a 
respective multidomain protein, protein subunits are functional modules of a 
biomolecular complex and biomolecular complexes are functional modules of certain 
cellular networks or biochemical pathways (Pereira-Leal, Levy et al. 2006). Assemblies 
of identical (homo-oligomers) or different subunits (hetero-oligomers) provide many 
advantages over single proteins (Marsh and Teichmann 2015; Pieters, van Eldijk et al. 
2016). Subunits can build large structural elements, inside or outside of the cell, that 
could not be feasible by simply increasing the size of a single polypeptide chain; 
assembling of several subunits into a complex can substantially improve their stability; 
having distinct elements in a complex increases possibilities for regulation, including 
allostery; physical gathering of subunits enables linking their different functions; 
biomolecular complexes can adopt highly specific and elaborate shapes that enable 
their proper functions, like in the case of compartmentalization when certain reactions 
are physically secluded from the surroundings; interfaces between subunits can form 



PhD Thesis - Miloš Cvetković 

7 

active or binding sites necessary for the function of the complex. Furthermore, from the 
evolutionary perspective, modularity provides means for acquiring new functional or 
structural features through different combinations of available elements (Pereira-Leal, 
Levy et al. 2006; Marsh and Teichmann 2015). 
 

 
1.2. RNA Degradation 

 

RNA is a highly diverse group of essential molecules in the cell. It can be 
divided into mRNA that code for proteins and a long list of noncoding RNA (ncRNA) 
species with various, but equally important functions (Cech and Steitz 2014). Some 
ncRNAs are crucial parts of the protein synthesis machinery, like rRNA and tRNA; 
others, like snRNA and snoRNA, are involved in processing and modification of other 
RNA species (Matera, Terns et al. 2007); some ncRNAs are used as scaffolds for 
different protein binding partners, like 7SK RNA (Nguyen, Kiss et al. 2001; Diribarne 
and Bensaude 2009); some ncRNAs have role in maintaining chromosome stability as 
part of telomerases or in protecting the genome against retrotransposons (piRNA) and 
foreign nucleic acids (crRNA); many ncRNAs are significantly involved in regulation of 
gene expression on different levels, for example miRNA, siRNA (Carthew and 
Sontheimer 2009) and various RNA elements like riboswitches (Tucker and Breaker 
2005). Moreover, outside of the cell, RNA can function as storage of genetic 
information as in the case of many viruses. All RNA molecules are normally bound to 
their protein partners, forming ribonucleoprotein (RNP) complexes. 

 
RNA degradation is a carefully controlled process involved in general RNA 

turnover, RNA quality control and RNA processing (Houseley and Tollervey 2009). 
Alteration of decay rates of certain mRNAs, as a result of external (environmental) or 
internal (intracellular) signals, represents one of the principal mechanisms of gene 
expression regulation. In that way the cell can adequately react to environmental 
changes or enter new stage of development at the right moment. mRNA quality 
control is a surveillance mechanism that ensures degradation of aberrant transcripts 
that could otherwise lead to production of malfunctional or even dangerous proteins. 
RNA degradation also takes part in processing of different RNA species through 
trimming or cleaving its longer precursor transcripts. 
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RNA molecules feature directionality, with a distinct 5’ end with a phosphate 
group and a 3’ end with a hydroxyl group. Degradation can start from either end of the 
polynucleotide chain or with a cut inside the chain. These three reactions are 
performed by three different sets of specialized enzymes (Houseley and Tollervey 2009; 
Labno, Tomecki et al. 2016): 5’-3’ exoribonucleases (from the 5’ end), 3’-5’ 
exoribonucleases (from the 3’ end) and endonucleases (incision inside the chain). The 
best-known 5’-3’ exoribonucleases are cytoplasmic Xrn1 and nuclear Rat1 (Fig. 1, right 
panel). Major cellular components responsible for the 3’-5’ RNA degradation are 
barrel-shaped protein assemblies RNase PH, PNPase and the exosome complex. Since 
most RNA molecules are accompanied, in vivo, by proteins that protect both of their 
ends from degradation, exoribonucleolytic degradation usually consists of several steps 
and involves auxiliary proteins. Many different endoribonucleases are known, like 
members of the RNase III family that play an important role in the processing of 
different RNA precursors and that are essential for the RNA interference (Nicholson 
2014), or endoribonucleases RNase E and RNase Y that participate in RNA processing 
and degradation in bacteria (Mohanty and Kushner 2016). 
 
              1.2.1. mRNA degradation in Eukarya 

 
mRNA turnover is the most studied and the best understood process of RNA 

degradation, especially in eukaryotic organisms (Parker 2012; Labno, Tomecki et al. 
2016). Special protective features of the eukaryotic mRNA are the 7-methylguanosine 
cap structure linked via triphosphate to the 5’ end of the molecule (m7Gppp), and the 
poly(A) tale at the 3’ end. Poly(A)-binding proteins (PABP) are attached to the long 
poly(A) tail, while another protein, eIF4e, is bound to the cap (Fig.1, right panel). They 
both contribute to the stability of the mRNA by preventing degradation and they also 
promote translation. The critical step for the subsequent mRNA degradation is, 
normally, shortening of the poly(A) tail. This process is highly regulated and can be 
performed by several deadenylation complexes, predominantly by the Ccr4-Not 
complex and by the Pan2-Pan3 complex. After initial trimming of the poly(A) tail, the 
protective PABP detaches and mRNA degradation can proceed down two different 
pathways: 5’-3’ or 3’-5’ decay (Fig. 1, right panel). In the 5’-3’ degradation pathway, 
Lsm1-7/Pat1 binds the short poly(A) tail and afterwards recruits decapping complex 
Dcp1/Dcp2 through a so-far unknown mechanism. After decapping, degradation from 
the 5’ end of the mRNA is performed by the exoribonuclease Xrn1. In the 3’-5’ 
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degradation pathway, trimming of the poly(A) tail and release of PABPs are followed 
by the recruitment of the mRNA to the exosome complex that carries out degradation 
from the 3’ end. A short RNA segment with the cap remains after this process and it is 
then decapped by the DcpS, scavenger decapping enzyme (Neu, Neu et al. 2015). 
 

 
Fig. 1. Simplified overview of mRNA processing pathways in the three domains of life. 
Enzymes with endoribonucleolytic activities are coloured in red, those with 5’-3’ exoribo-
nucleolytic activities in blue and purple, and those with 3’-5’ exoribonucleolytic activities in green. 
RNAse J is represented in both purple and red because it harbours both activities. Adapted from 
Clouet-d'Orval, Phung et al. 2015. 

 
 

              1.2.2. mRNA degradation in Bacteria 

 

Bacterial mRNA has a triphosphorylated 5’ end and, often, a 3’-end stem-loop, 
which both function as protective structural features. For several mRNA molecules, it 
has been shown that highly structured 5’ UTRs serve as elements that increase stability 
(Mohanty and Kushner 2016). 3’-end A-rich polynucleotide tails can be found in 
bacterial mRNAs, but they do not have protective role. On the contrary, they are 
usually signals for degradation or elements that facilitate degradation (Mohanty and 
Kushner 2011). mRNA degradation in bacteria starts either with the removal of the 
pyrophosphate from the 5’ end by the enzyme RppH, or with the endonucleolytic 
cleavage by the enzymes RNase E, RNase Y or RNase J (Fig. 1, left panel) (Hui, Foley et 



PhD Thesis - Miloš Cvetković 

10 

al. 2014). After the removal of the pyrophosphate from the 5’ end, in gram-positive 
bacteria like Bacillus subtilis, the enzyme RNase J that has both endo- and 
exoribonucleolytic activity, carries out degradation in the 5’-3’ direction. In gram-
negative bacteria like Escherichia coli, the 5’-monophosphorylated mRNA is more 
prone to cleavage by the endoribonuclease RNase E. In the second degradation 
pathway, the initial endonucleolytic cleavage forms two RNA fragments. One fragment 
has its 3’ end devoid of the protective stem-loop and it is, therefore, susceptible to the 
3’-5’ exoribonucleolytic activities of the RNase R, RNase II and PNPase. Second RNA 
fragment is released with a monophosphorylated 5’ end, and can thus be further 
degraded either exoribonucleolytically by the RNase J (in Bacillus subtilis) or endoribo-
nucleolytically by the RNase E (in Escherichia coli) (Fig. 1, left panel). 

 
              1.2.3. mRNA degradation in Archaea 

 
Degradation of mRNA in archaeal organisms is the least understood (Fig. 1, 

central panel). β-CASP family of ribonucleases, where the bacterial RNase J also 
belongs to, plays a pivotal role in this process (Clouet-d'Orval, Phung et al. 2015). 
Similarly to bacteria, archaeal mRNA molecules have a triphosphorylated 5’ end, but 
lack any known 3’-end protective structure (Evguenieva-Hackenberg and Klug 2009). 3’-
end A-rich polynucleotide tails are present in mRNA molecules of several archaeal 
subgroups and they stimulate exoribonucleolytic degradation (Portnoy and Schuster 
2006; Mohanty and Kushner 2011). On the other hand, the translation initiation factor 
a/eIF2(γ) that is attached to the 5’ triphosphate, acts as a protection against 
degradation from that side, which resembles arrangement at the 5’ end of the 
eukaryotic mRNA (Hasenohrl, Lombo et al. 2008). Archaeal RNase J (aRNase J) 
harbours only 5’-3’ exoribonucleolytic activity, the same as two other members of the 
β-CASP family found in Archaea, aCPSF1b and aCPSF2 (Clouet-d'Orval, Phung et al. 
2015). For the fourth member of the family, aCPSF1, endonucleolytic activity has been 
demonstrated as well (Phung, Rinaldi et al. 2013). No enzyme capable to remove the 
5’-terminal pyrophosphate has yet been discovered in archaeal organisms, which 
prevents us to draw clear parallels with the 5’-3’ mRNA degradation pathway in 
bacteria (Clouet-d'Orval, Phung et al. 2015). Endonucleolytic cleavage is probably one 
of the initial steps that allows efficient exoribonucleolytic mRNA degradation from the 
released unprotected 5’ monophosphate end (Fig. 1, central panel). There might be also 
an unknown mechanism that directly transforms primary transcripts with protected 5’ 
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triphosphorylated ends into secondary transcripts with 5’ monophosphorylated ends 
that are susceptible to archaeal 5’-3’ exoribonucleases (Clouet-d'Orval, Phung et al. 
2015). mRNA degradation from the 3’ end is carried out straightforwardly by a highly 
efficient molecular machine called the exosome complex. 
             
 
1.3. Barrel-shaped RNA Degrading Complexes  

 

Bacterial, archaeal and eukaryotic organisms all contain specialized barrel-
shaped complexes that are responsible for the 3’-5’ RNA degradation (Januszyk and 
Lima 2011): RNase PH, PNPase and the exosome complex. Evolutionary conservation 
of the general architecture clearly indicates its significance for the function that these 
ubiquitous molecular machines have (Fig. 2). Their respective subunits are evo-
lutionarily related and they oligomerize in a ring arrangement. All these barrel-shaped 
assemblies feature three-fold symmetry, with the exception of eukaryotic exosome 
where the symmetry is disrupted. The top part of the complex is in all cases, except for 
the RNase PH, characterized by the exposure of RNA recognition sites which facilitate 
entrance of the RNA substrate through the top opening and thus provide functional 
distinction between the opening at the top of the complex and the one at the bottom. 
Entrance of the RNA into the central chamber is necessary for degradation to take 
place, as the active sites are confined there (Januszyk and Lima 2011). The reaction is 
processive, which means that it is carried out in successive rounds without release of 
the substrate. RNA degradation in these complexes is phosphorolytic, i.e. inorganic 
phosphate is the attacking group in the reaction. An exception is the eukaryotic 
exosome complex where the major, barrel-shaped part of the assembly, does not 
contain ribonucleolytic activity. An additional subunit, Rrp44 (Fig. 2, in red), is hence 
attached to the assembly and it conducts RNA degradation hydrolytically. 

 
1.3.1. RNase PH 

 
The RNase PH domain, characterized by a layered βαβα fold, represents the 

basic building block for all RNA degrading barrel-shaped complexes (Harlow, Kadziola 
et al. 2004; Januszyk and Lima 2011) (Fig. 3). A homohexameric RNase PH complex 
can be found in bacteria and some archaea and it is involved in tRNA processing. In 
this barrel-shaped complex, RNase PH protomers are arranged as three identical 
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homodimers, where two individual subunits are in an inverted, head-to-tail, 
orientation (Ishii, Nureki et al. 2003; Harlow, Kadziola et al. 2004). In Fig. 2 protomers 
are marked with two different colours for clarity. Each RNase PH protomer has one 
phosphorolytic active site and they face the interior of the barrel. Due to orientation of 
the protomers within the complex, three active sites are situated in the lower part of 
the barrel and the other three in the upper part (Januszyk and Lima 2011). The 
molecular weight of the bacterial RNase PH is around 170 kDa (Ishii, Nureki et al. 
2003; Harlow, Kadziola et al. 2004). 

 

 
Fig. 2. Barrel-shaped RNA degrading complexes in bacterial, archaeal and eukaryotic orga-
nisms. Structures used for the comparison: Aquifex aeolicus RNase PH (PDB: 1UDN), Streptomyces 
antibioticus PNPase (1E3P), Sulfolobus solfataricus archaeal exosome complex (2JEA) and 
Saccharomyces cerevisiae eukaryotic exosome complex (4IFD). 

 
 

1.3.2. PNPase 

 
Polynucleotide phosphorylase (PNPase) is a complex that can be found in 

bacteria as well as in mitochondria and chloroplasts of some eukaryotic organisms. It 
consists of three PNPase polypeptides and each of them contains an RNase PH 1 
domain, an alpha domain, an RNase PH 2 domain, a KH domain and an S1 domain 
(Januszyk and Lima 2011) (Fig. 3). In Fig. 2, each polypeptide is marked with different 
colour for clarity. RNA-binding domains are marked with a darker colour. The 
molecular weight of the assembled complex is around 250 kDa (Stickney, Hankins et al. 
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2005; Lin, Wang et al. 2012). The domains RNase PH 1 and RNase PH 2 are oriented 
head-to-tail, thus resembling the homodimer element of the RNase PH complex 
discussed previously. The active site is functional only in the RNase PH 2 domain, 
while the RNase PH 1 domain lost activity during evolution (Symmons, Jones et al. 
2000). The KH and S1 RNA binding domains are located at the top of the barrel, 
surrounding the opening where RNA substrate enters the chamber of the complex. 
Besides phosphorolytic RNA degradation, three functional active sites of the PNPase 
can also perform the reverse reaction and the enzyme can add an A-rich polynucleotide 
tail to the 3’-end of RNA, thereby targeting it for degradation (Mohanty and Kushner 
2000). PNPase is part of the bacterial RNA degradosome, a large assembly that 
connects all major enzymes involved in RNA degradation like RNase E, enolase and 
helicase RhIB (Carpousis, Van Houwe et al. 1994; Bandyra, Bouvier et al. 2013). 

 

1.3.3. Archaeal exosome complex 

 
The archaeal exosome complex is structurally similar to the PNPase, as it 

contains all domains present in the PNPase polypeptide (Fig. 3). It consists of a 
hexameric barrel-shaped core and a trimeric cap tightly bound to the top of the core, 
with total molecular weight of around 260 kDa (Lorentzen, Dziembowski et al. 2007). 
The hexameric core is a trimer of the Rrp41-Rrp42 heterodimers (Lorentzen, Walter et 
al. 2005). These two proteins belong to the RNase PH family and can be considered 
orthologs of the two domains in PNPase: Rrp41 is an ortholog of the RNase PH 2 
domain, while Rrp42 is an ortholog of the RNase PH 1 domain (Januszyk and Lima 
2011) (Fig. 3). Accordingly, the active site is functional only in the Rrp41 subunit. The 
trimeric cap structure of the archaeal exosome consists of the Rrp4 and/or Csl4 
subunit. They feature conserved RNA-binding domains: S1 and KH domains in the 
Rrp4; S1 and Zn ribbon domains in the Csl4 (Evguenieva-Hackenberg, Walter et al. 
2003). The presence of the RNA-binding domains around the upper opening of the 
complex, where RNA substrate enters into the catalytic chamber, is another parallel 
with the PNPase. The cap subunits contribute to more efficient RNA degradation 
(Walter, Klein et al. 2006) and they modulate substrate specificity of the enzyme 
(Roppelt, Klug et al. 2010). The exosome complex with the Rrp4 cap displays 
substantial preference for the RNA substrates with poly(A) tail, whereas the complex 
with the Csl4 cap does not show any noticeable substrate preference (Roppelt, Klug et 
al. 2010). Another protein, DnaG, can be part of the archaeal exosome complex in vivo, 
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but only when the complex contains Csl4 cap subunit (Walter, Klein et al. 2006; Hou, 
Klug et al. 2013). As a poly(A)-binding protein, DnaG is able to provide the Csl4–
exosome complex with a preference for poly(A) tail (Hou, Klug et al. 2013). 

 

 
Fig. 3. Domain organisation of the proteins that constitute barrel-shaped RNA degrading 
complexes. Functional active sites are indicated with appropriate colour. Adapted from Januszyk 
and Lima 2011 and Makino, Baumgartner et al. 2013. 

 
Transient 3’-end polyadenylation or A-rich polynucleotidylation of RNA, is an 

important mechanism of targeting RNA molecules for degradation, observed in 
bacterial, archaeal and eukaryotic organisms (Slomovic and Schuster 2011). Notably, 
for all phosphorolytic RNA degrading enzymes, including the archaeal exosome 
complex, the catalysed reaction is reversible, such that the enzyme uses inorganic 
phosphate to carry out degradation from the 3’ end of an RNA substrate, or it uses 
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NDPs to add polynucleotide tail to the substrate’s 3’ end (Mohanty and Kushner 2000; 
Lorentzen, Walter et al. 2005). The archaeal exosome complex is, thus, instrumental 
both for targeting RNA molecules for degradation and for performing degradation. 
According to in vitro studies, the direction of this reversible reaction depends on the 
concentrations of inorganic phosphate, NDPs and Mg2+ (Evguenieva-Hackenberg, 
Roppelt et al. 2008). 

 
The three active sites of the archaeal exosome are located in the lower part of 

the complex, facing the interior chamber. Within the active sites, three conserved 
residues have been identified as being crucial for proper positioning of the two terminal 
nucleotides of the substrate and the Pi: two arginines and one aspartate (Lorentzen and 
Conti 2005). Positively charged arginine residues enable that the two phosphate 
groups, Pi and the one of the 3’-terminal nucleotide, are placed close to each other. The 
degradation reaction begins with the Pi’s nucleophilic attack on the terminal 
phosphodiester bond, while the two previously mentioned arginine residues stabilize 
the transition state. The hydroxyl group of the conserved aspartate’s side chain is then 
used as a proton donor, the phosphodiester bond between the last two nucleotides is 
cleaved and a ribonucleoside diphosphate is released (Lorentzen and Conti 2005). This 
reaction, common to all phosphorolytic RNA degrading enzymes, requires presence of 
a divalent cation (Mg2+ or Mn2+), that has been confirmed in the active site and that 
might function as an activator of the Pi (Nurmohamed, Vaidialingam et al. 2009). 

 
1.3.4. Eukaryotic exosome complex 

 
The eukaryotic exosome shares a similar structural organisation to the 

archaeal complex and consists of a hexameric core and a trimeric cap structure. 
However, these nine subunits of the eukaryotic exosome complex are all distinct 
proteins (Januszyk and Lima 2011; Makino, Baumgartner et al. 2013). The six core 
proteins belong to the RNase PH family and they can be divided into two groups (Fig. 
3). In the first group are orthologs of the archaeal Rrp41 (i.e. of the RNase PH 2 
domain in the PNPase): the eukaryotic Rrp41, Rrp46 and Mtr3; in the second group 
are orthologs of the archaeal Rrp42 (i.e. of the RNase PH 1 domain in the PNPase): the 
eukaryotic Rrp42, Rrp43 and Rrp45. Notably, these core subunits are arranged in three 
individual heterodimers that comprise one subunit of each group: Rrp41-Rrp45, 
Rrp46-Rrp43 and Mtr3-Rrp42 (Januszyk and Lima 2011). Hence the core acquires 
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pseudo–three-fold symmetry. The eukaryotic cap structure always contains one copy 
of the three subunits: Rrp4, Rrp40 and Csl4. As in their archaeal counterparts, they 
feature conserved RNA binding domains: S1, KH and Zn ribbon domain (Fig. 3). This 
eukaryotic assembly of nine subunits is referred to as the Exo-9 complex and has a 
molecular weight of around 300 kDa in yeast. 

 
All RNase PH-like subunits of the eukaryotic exosome complex are 

catalytically inactive, according to the studies of the yeast (Dziembowski, Lorentzen et 
al. 2007) and the human complex (Liu, Greimann et al. 2006). Therefore, the Exo-9 
requires an additional subunit, Rrp44 (Dis3), that carries out hydrolytic RNA 
degradation (Fig. 2, in red) and together they form the 400-kDa Exo-10 complex 
(Dziembowski, Lorentzen et al. 2007). Rrp44 displays homology with bacterial 
exoribonucleases RNase II and RNase R (Frazao, McVey et al. 2006) and comprises 
several domains: CR3, PIN, CSD1, CSD2, RNB and S1 (Fig. 3) (Chlebowski, Lubas et 
al. 2013). Besides hydrolytic exoribonuclease activity, conferred by the RNB domain, 
this subunit also has endoribonuclease active site located in the PIN domain (Schaeffer, 
Tsanova et al. 2009). In the nucleus, another exoribonuclease is part of the exosome 
complex and that is Rrp6, an ortholog of the bacterial RNase D that carries out 
distributive RNA degradation. Therefore, the nuclear exosome complex consists of 
eleven subunits with a gross molecular weight of around 500 kDa and it is referred to 
as Exo-11. The different composition of the exosome complex in different cellular 
compartments is particularly noticeable in human cells (Tomecki, Kristiansen et al. 
2010). Furthermore, the eukaryotic exosome complex interacts with different cofactors 
in different cellular compartments, which is pivotal for the elaborate regulation of the 
RNA substrate recruitment and decay (Zinder and Lima 2017). One of the principal 
partners of the exosome complex in the nucleus is the TRAMP complex. This complex 
consists of a poly(A) polymerase Trf3 or Trf4, a Zn knuckle protein Air1 or Air2, and 
an RNA helicase Mtr4. The TRAMP complex is bound to the Exo-11 through the 
nuclear cofactor Rrp47. In the cytoplasm, the major partner of the exosome is an 
assembly with the Ski complex, which contains an RNA helicase Ski2, tetratricopeptide 
repeat scaffold protein Ski3 and two β-propeller proteins Ski8p. For the interaction 
between the exosome and the Ski complex, a bridging cofactor Ski7 is necessary. 
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2. Aims and Significance of the Project 
 

 

The exosome complex is a ubiquitous molecular machine with conserved 
structural organization in all three domains of life. It has a crucial role in the 3’-5’ 
degradation of a multiplicity of RNA molecules and participates in indispensable 
processes like RNA turnover, quality control and processing. If its function is 
disrupted, serious, often fatal, consequences arise for the cell. 

 
The archaeal exosome is an efficient enzymatic complex that processively 

degrades RNA molecules through a phosphorolytic reaction. Its trimeric cap structure 
is always part of the complex in vivo and, although it is not necessary for degradation in 
vitro, its presence improves the efficiency of the process. Furthermore, the cap structure 
influences the substrate specificity of the enzyme and its subunits have conserved RNA 
binding domains as their defining structural features. Since it had been shown that 
there is no allosteric effect at the active sites after the cap binding (Audin, Dorn et al. 
2013), it is reasonable to infer that the direct interaction between the cap and the RNA 
substrate is of central importance. 

 
The principle aim of my PhD thesis is to shed light on the interactions 

between the full archaeal exosome complex and the RNA substrate. I am particularly 
interested in the role of the cap structure in substrate recruitment and degradation. 
Insights into the recruitment and processing mechanisms are the only way to fully 
understand how this highly efficient molecular machine works. Results from this work 
can also help us to grasp how other related barrel-shaped assemblies function. 

 
Another important aim of this PhD project is to establish that newly 

developed approaches in NMR spectroscopy can be exploited for the studies of large 
biomolecular assemblies. With around 300 kDa, the archaeal exosome (Sulfolobus 
solfataricus) in complex with RNA is around 10 times the size of the complexes that are 
normally studied using high-resolution NMR methods. This work, thus, also provides 
a highly important example that shows that NMR spectroscopy is applicable to obtain 
detailed insights into molecular machines with molecular weights far over 100 kDa. 
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3. Results 
 

 

3.1. Selective labelling of the Rrp4–exosome complex yields high quality 

NMR spectra 

 

The exosome complex from the thermophile Archaea Sulfolobus solfataricus is 
particularly amenable to NMR studies due to its full three-fold symmetry and its 
stability at high temperatures. The trimeric cap structure of the archaeal exosome can 
contain Rrp4 and/or Csl4 subunits in different ratios. We turned to the Rrp4–exosome 
complex in this study, as Rrp4 expresses better and produces higher quality NMR 
spectra than the Csl4.  

 
High quality methyl TROSY NMR spectra of the 260-kDa Rrp4–exosome 

complex were obtained by selectively labelling isoleucine and methionine residues in 
the Rrp4 cap structure with NMR active methyl groups (Ile-δ1 [13CH3] and Met-ε 
[13CH3] respectively; Fig. 4, left) Several resonances were initially assigned by “divide 
and conquer” approach (work performed by Stefan Schütz), while all other resonances 
were assigned through mutagenesis (paper 1, supplementary figure 1). In summary, 
we were able to assign 69% (18 in total) of all NMR active isoleucine and 100% (2 in 
total) of all NMR active methionine methyl group resonances. Based on these data, we 
were able to approximately localise the observed chemical shift perturbations that 
occurred as the result of RNA binding on the Rrp4 cap (Fig. 4). Importantly, the 
isoleucine residues that are naturally present in the Rrp4 protein are sufficiently well 
dispersed over its three domains that they can be used to report on the overall 
structural integrity of the Rrp4 cap and on the RNA binding. 
 

 

3.2. Mapping the interaction interface between the Rrp4–exosome and its 

RNA substrate 

 
It had been previously demonstrated that the presence of the cap structure in 

the exosome complex is required for the increased efficiency of RNA degradation and 
for modulation of specificity towards RNA molecules with different nucleotide 
composition. However, x-ray crystallography was unable to unravel structural details 
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of the interaction between the cap structure and the substrate RNA due to the lack of 
electron density detected for the RNA in the cap region. To address this question and 
map the interaction interface, we resorted to the methyl TROSY NMR spectra. 

 

 
Fig. 4. Methyl TROSY NMR spectra of the Rrp4–exosome complex with a table of assigned 
resonances. In the presence of RNA substrate, a number of resonances in the spectrum that 
correspond to the residues in the Rrp4 cap display chemical shift perturbations. The spectrum in 
black was recorded in the absence of RNA, the spectrum in green after the addition of the RNA. 

 
Based on the RNA titration experiments with the Rrp4–exosome complex and 

observed CSPs of the assigned resonances, we established that the large area of the 
Rrp4 surface is involved in the interaction with RNA substrate, in particular those parts 
of the cap surface that belong to the S1 and KH domains. However, the number and 
distribution of the isoleucine and methionine residues that are naturally present on the 
surface of the Rrp4 cap were not sufficient for detailed mapping of its interaction with 
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the RNA. In order to increase the coverage of the methyl group reporters on the Rrp4–
cap surface and map it with high resolution, we deployed methionine scanning (paper 
1, supplementary figure 2). This NMR-based approach enables to test whether a 
particular residue on the protein surface, which is replaced with the reporter 
methionine, participates in ligand binding or not. In total, 30 residues on the Rrp4–cap 
surface were successively substituted with reporter methionine residues and the 
respective mutant Rrp4–exosome complexes were analysed by comparing their methyl 
TROSY NMR spectra before and after the addition of the RNA substrate (paper 1, 
figure 2). Methionine scanning also enables identification of hot-spot residues that are 
pivotal for the interaction to take place, i.e. their substitution with reporter methionine 
residue abolishes ligand binding. One hot-spot residue was identified through 
methionine scanning (KRrp4170M) and it is located in the GKNK loop of the KH 
domain, on the periphery of the Rrp4 cap structure (Fig. 5). This hot spot, however, 
obstructs RNA binding only at the periphery of the cap, without influencing 
interactions in the pore region. A set of RNA degradation experiments led to the 
identification of three more local hot spots and we confirmed their functional 
significance in RNA degradation process (paper 1, figure 3). Two of them are located at 
the periphery of the Rrp4 cap structure (RRrp414E and KRrp4221D), while the third one is 
located in the neck region of the Rrp41 core subunit (RRrp4167E).  

 
Fig. 5. Location of the identified hot–spot residues. The hexameric core is represented in 
surface mode, with Rrp41 in grey and Rrp42 in white; the Rrp4 cap is represented in cartoon 
mode and coloured blue. Residues R14, K170 and K221 outline the KH–NTD groove on the 
periphery of the Rrp4–cap structure, positioned between the KH domain and the N–terminal 
domain. Residue R67 is located in the neck region of the hexameric core.  
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Taken together, NMR data and RNA degradation experiments demonstrated 
that the substrate RNA is bound to the Rrp4–exosome complex over a 50-Å long RNA 
binding path (paper 1, figure 3). At the periphery of the Rrp4 cap, this binding path 
starts with a well-defined KH–NTD groove that includes all three peripheral hot spots 
(Fig. 5). Notably, our data show that one side of the NTD participates considerably in 
RNA binding, as part of the KH-NTD groove, although the NTD lacks any known 
RNA binding motif. From the periphery, the RNA binding path extends towards the S1 
domain, through the pore and the neck, into the catalytic chamber of the complex. 
 

 
3.3. Deconstruction and quantification of the exosome–RNA interaction 

 
Based on known crystal structures and a plethora of NMR data that we 

collected, we inferred that there are four distinct regions in the Rrp4–exosome complex 
that interact with the substrate RNA: the peripheral cap region (KH–NTD groove) and 
the pore region are parts of the Rrp4–cap structure, while the neck region and the 
active sites belong to the hexameric core (paper 1, figure 3 and 4). 

 
Despite considerable efforts we did not succeed to obtain information about 

the affinity of the exosome for the substrate RNA through the ITC (isothermal titration 
calorimetry) or SPR (surface plasmon resonance). Consequently, we resorted to 
fluorescence anisotropy measurements with fluorescently labelled RNA molecules. As 
NMR data from RNA titration experiments with hot-spot mutants indicated that RNA 
binding regions function independently from one another, we aimed to deconstruct 
this convoluted multivalent interaction in order to reveal the individual contributions 
of four contact points to the overall affinity of the exosome complex for the substrate 
RNA. To that end, a series of fluorescence anisotropy measurements were performed 
employing different versions of the exosome complex and RNA substrate, designed in 
such way that particular RNA–enzyme contact points were absent or hampered. For 
easier calculation, all affinity values (KD) extracted from the fluorescence anisotropy 
measurements were converted into binding Gibbs free energies (ΔG0), using the simple 
thermodynamic equation ΔG = – RT ln(KD). Afterwards, the local intrinsic binding 
energies for all four contact points (ΔGi) were calculated by simply adding and/or 
subtracting ΔG0 values for different versions of the exosome complex (e.g. ΔGi

A
 = 

ΔG0
ABCD

 – ΔG0
BCD , where A, B, C and D stands for functional contact points) (paper 1, 
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supplementary table 2). The local intrinsic binding energy can be regarded as an 
approximate measure of the individual contribution of a respective contact point to the 
overall exosome’s affinity for the RNA substrate. 

 
It is noticeable that the local intrinsic binding energy increases from the 

contact points on the periphery towards the active sites (paper 1, figure 4). Indeed, the 
overall intrinsic binding energy of the Rrp4 cap is indeed very small. This can denote 
the fact that interaction of the highly flexible RNA molecule with a long binding path 
on the cap surface involves a high entropic cost. In addition, the kink that RNA 
molecule needs to make in order to simultaneously occupy all four contact points, 
likely further increases the entropic cost. Consequently, the distal part (5’ end) of the 
RNA can temporarily detach from the two weak contact points on the cap surface and 
sample RNA binding path on any of the three Rrp4 protomers. In that process, the 
proximal part of the RNA (3’ end), which is inside the catalytic chamber, interacts with 
the neck region and the active site, and remains tightly attached to the exosome core. 
This finding can explain why RNA electron density was not observed anywhere on the 
cap surface in the crystal structure of the archaeal exosome, but only in the neck region 
and around the active sites (Makino, Baumgartner et al. 2013). Importantly, the 
strongest interaction point with the RNA substrate, calculated for the active sites, 
ensures that the substrate efficiently ratchets forward base-by-base after every 
cleavage cycle.  

 
 

3.4. RNA degradation is processive due to the multivalent RNA–exosome 

interaction 

 
As previously mentioned, our RNA degradation assays identified an arginine 

residue (RRrp4167) at the protruding loop of the neck region as an important hot spot 
(paper 1, figure 3). These three positive charges (one Arg residue for each Rrp4 
protomer) at the narrowest point of the RNA entrance funnel are, thus, crucial for the 
strong RNA–exosome interaction at the neck region. Substitution of the arginine with 
a residue that does not bear positively charged side chain hampered interaction with 
the RNA at this point and, in the case of the exosome core alone, it led to the loss of 
processivity (paper 2, figure 3). The effect on degradation was much stronger when the 
arginine was replaced with a residue that bears negatively charged side chain, which 
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slowed down the reaction so much that within a usual RNA degradation time setup it 
seemed that the reaction was completely abolished (paper 1, figure 3). However, when 
the Rrp4 cap was added to the exosome core with the neck mutation, processivity was 
recovered (paper 1, figure 3). This clearly showed that for the processivity of the RNA 
degradation reaction it is necessary that the exosome complex interact with the RNA at 
least at one more independent contact point in addition to the active site. In that way 
the substrate molecule would not be released from the complex between successive 
cleavage cycles. 

 
 

3.5. Stoichiometry of the RNA–exosome interaction 

 
The Rrp4 cap structure consists of three Rrp4 protomers, each with identical 

RNA interaction surface, therefore allowing simultaneous binding of three substrate 
RNA molecules. This was, indeed, indicated by NMR data from our RNA titration 
experiments (Fig. 4, left) where symmetry of the RNA–cap binding is preserved on the 
periphery of the cap structure. On the other hand, the neck opening is wide enough to 
allow passage of only one RNA molecule at a time, meaning that only one RNA 
molecule can simultaneously interact with all four RNA contact points of the complex 
and be actively degraded. This stoichiometry model was further validated by an 
experiment with the size-exclusion chromatography where it was possible to remove a 
large fraction of the RNA substrate (weakly bound only to the cap structure) from the 
saturated exosome complex, while a smaller fraction (tightly bound via all four contact 
points) remained attached (paper 1, supplementary figure 9). 

 
As the experimental setup for the fluorescence anisotropy experiments 

requires considerable excess of the exosome complex over the RNA concentration, all 
RNA molecules were strongly bound to the enzyme via four contact points in one-to-
one ratio and there was no available RNA for two additional weaker binding events to 
occur. To include two weaker RNA bindings to the Rrp4–cap into the 
affinity/energetics calculation, we resorted to the NMR data from the RNA titration 
experiments. In these titration experiments a substantial excess of RNA over the 
exosome complex was reached, rendering them applicable for the study of the weak 
binding events. By fitting the NMR line shapes for eight different resonances to the 
binding model, during the 16 titration steps, we concluded that two additional RNA 
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molecules can be recruited to the cap of the Rrp4–exosome complex with micromolar 
affinity (paper 1, figure 4c and supplementary table 2). This indicates much stronger 
binding compared to the contribution of the cap structure to the tight binding of the 
first recruited RNA molecule, which in turn provides the basis for the efficient 
mechanism of RNA recruitment and processing. 

 
 

4. Discussion 
 
The principal aim of this project was to unravel the mechanistic basis that 

underlies and enables highly efficient degradation of RNA by the complete archaeal 
exosome complex. We precisely determined RNA interaction path that spans over a 
long surface of the Rrp4 cap and that extends into the interior of the exosome core. Our 
results identified four independent RNA binding sites in the Rrp4–exosome complex, 
two on the Rrp4 surface and two in the interior of the hexameric core. The identical 
RNA binding path is present on each of the three cap subunits and the complex can 
thus recruit three RNA molecules simultaneously with micromolar affinity (ΔG0 = –
6.50 kcal/mol). Initial recruitment involves only two contact points on the cap surface: 
the KH–NTD groove on the periphery and the pore region. KH–NTD groove was 
shown to be very important for the rate of the RNA degradation (paper 1, figure 3a), 
even though its contribution to the overall Rrp4–RNA interaction is small. This can be 
explained by a model suggesting that peripheral region of the cap structure is involved 
in the first contact between the enzyme and the substrate RNA. Any disruption of this 
interaction would, thus, seriously reflect on the degradation process. 

 
If the entrance to the interior of the complex is free, 3’ end of a recruited RNA 

molecule moves inside and binds two more contact points: the neck region and the 
active site. This step is driven by the considerable increase in binding free energy from 
–6.50 kcal/mol to –9.97 kcal/mol, which corresponds to binding with nanomolar 
affinity. During each cleavage cycle, the RNA molecule ratchets one base forward, 
owing to the binding of the newly formed 3’ end of the RNA to the active site, the 
highest-contributing contact point in the exosome complex (ΔGi = –3.1 kcal/mol) 
(paper 1, figure 4b). It is important to note that while initial RNA recruitment to the 
Rrp4 cap corresponds to the binding free energy of –6.50 kcal/mol (micromolar 
affinity), after the 3’ end of the RNA goes inside the complex and engages with the 
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neck and the active site, the Rrp4–RNA binding free energy changes to only –1.0 
kcal/mol. This is the consequence of energetically unfavourable conformation that 
RNA backbone needs to adopt by making a kink in order to enter the interior of the 
complex while still retaining interaction with the cap surface. This mechanism provides 
means for efficient RNA recruitment to the Rrp4 cap with micromolar affinity, without 
subsequently compromising translocation of the RNA molecule with too strong Rrp4–
RNA interaction. While “active” RNA molecule is being degraded, two additional RNA 
molecules can be recruited to the remaining two RNA binding surfaces on the Rrp4–
cap structure. After degradation of the first RNA molecule is finished and the entrance 
to the catalytic chamber is free, one of the two “waiting” RNA molecules that are 
positioned on the Rrp4–cap surface can instantly initiate next degradation cycle (Fig. 
6). 

 
Fig. 6. Illustration summarising the interactions between the Rrp4–exosome complex and the 
substrate RNA. Only two active sites and two cap subunits are presented in the figure. Motions 
of the RNA molecule inside the catalytic chamber and on the Rrp4–cap surface are denoted by 
arrows. Detailed explanation in the text. 

 
Due to the week interaction between the RNA molecule that is being actively 

degraded and the Rrp4–cap surface, 5’-terminal part of the RNA can temporarily 
detach from the Rrp4 and sample any of the three RNA binding surfaces on the Rrp4 
protomers, provided that they are vacant (Fig. 6). Similarly, it was shown that the 3’-
terminal part of the RNA is highly mobile inside the barrel of the exosome complex 
and that it jumps between three active sites (Fig. 6; paper 2, figure 4 and 5).  

 
In this PhD project a unique mechanism was discovered that provides highly 

efficient functioning of a complex molecular machine. With more molecular machines 
to be described and investigated, a similar mechanism for facilitated substrate 
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recruitment and processing might be revealed, as it offers a relatively simple, yet 
comprehensive, framework for improving enzyme efficiency. 

 
Our study also further extends applicability and convincingly emphasises 

advantages of NMR spectroscopy in the studies of large biomolecular complexes. 
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The exosome is a large molecular machine that has an essential 
role in RNA processing and degradation1–4. The archaeal and 
eukaryotic exosome share a common architecture and consist 

of a hexameric core and a trimeric cap structure. In eukaryotes, all 
subunits that constitute the core and the cap are unique proteins1. 
Despite this complexity, the 9-subunit eukaryotic exosome has 
lost the ability to degrade RNA on its own and requires an aux-
iliary subunit to perform this function5. In archaea, the exosome 
structure is simpler and has a threefold symmetry6–8 (Fig. 1a). Its 
hexameric core is composed of three Rrp41–Rrp42 dimers, and 
the cap structure comprises a trimer of Csl4 or Rrp4. In addition, 
the archaeal exosome is catalytically active, with the active sites 
located in the Rrp41 subunits within the interior of the hexameric  
core. Multiple structures of eukaryotic9–11 and archaeal12–16 exosome 
complexes have been determined in recent years, and these provide 
fundamental insights into the functioning of the enzyme.

The archaeal exosome structure displays an RNA entrance funnel.  
During catalytic degradation, the RNA is progressively threaded 
from the outside into the hexameric barrel, where successive 
diphosphate nucleotides are removed from the 3′ end of the RNA 
substrate in a phosphorolytic manner13,17,18. The cap proteins feature 
conserved S1, KH and Zn ribbon RNA-binding domains6. The S1 
domains of the three cap proteins constitute the pore region, which 
represents the wider opening of the RNA entrance funnel. The nar-
rowest point of this funnel marks the neck region that is formed at 
the top of the Rrp41–Rrp42 hexameric barrel13–15 (Fig. 1a).

The Rrp4 protein, encoded side by side with the core proteins 
Rrp41 and Rrp42 in a highly conserved archaeal superoperon19, is 
composed of an N-terminal, an S1 and a KH domain (Fig. 1a). The 
trimeric Rrp4 cap structure increases the catalytic efficiency of the 
enzyme complex7,16 and provides substrate specificity for polyade-
nine (poly(A)) or adenine-rich stretches of RNA8,16. Notably, the 
rate at which the Rrp4–exosome complex degrades its substrate 
depends on the remaining length of the RNA substrate. For long 
RNA substrates, the degradation rate is constant from the 3′ end 
to nucleotide 24, then it increases between nucleotides 24 and 14, 
after which it rapidly drops17,20. These variations were observed for 
poly(A) RNA and are thus caused by the degradation mechanism of 
the enzyme and not by the RNA sequence or its structural features. 
The mechanism that underlies this variation in degradation rate and 
the way RNA interacts with the Rrp4 cap structure remain elusive.

NMR spectroscopy is a powerful tool to study biomolecular inter-
actions21, as it can provide quantitative information about which 
residues participate in the interaction. In combination with methyl 
group labeling22,23 and TROSY techniques24, the method can extract 
interaction information for complexes >100 kDa25–27 and in some 
cases as large as 1 MDa28. One drawback of methyl-TROSY NMR 
spectroscopy is that parts of interaction interfaces can be devoid of 
methyl groups and would thus be ‘invisible’ in the experiment, limit-
ing the binding-site mapping precision. Recently, this limitation was 
overcome with methionine scanning, a method in which reporter 
methionine residues are introduced into the protein at a location of 
interest29,30. In addition to identifying the binding interface at per-
residue resolution, methionine scanning enables determination of 
hot-spot positions that are essential for the interaction30.

Here we study the Sulfolobus solfataricus archaeal Rrp4–exosome 
in complex with substrate RNA (~300 kDa) using methyl-TROSY 
NMR spectroscopy. We identified three 50-Å long binding channels 
in Rrp4 that span all domains of the cap complex and we localized 
hot-spot positions in Rrp4 and in the exosome core. Using affinity 
measurements, we show that the local interaction strength between 
the substrate and the enzyme increases in a stepwise manner from 
the periphery of the cap structure toward the pore region, the neck 
region and the region at the active sites inside the core complex. 
Our data show that while one substrate molecule enters the enzyme 
through the neck, two additional substrate molecules can be posi-
tioned on the cap structure awaiting degradation. Notably, we also 
found that the binding energy between Rrp4 cap and the substrate 
is substantially reduced after the 3′ end of the RNA enters the 
catalytic barrel, thereby reducing friction during the degradation  
of the substrate.

RESULTS
NMR spectra of the 270-kDa complex are of high quality
The 270-kDa Rrp4–exosome complex is among the largest com-
plexes studied using high-resolution NMR spectroscopy31. To sim-
plify the NMR spectra, we labeled only the Rrp4 subunits with NMR 
active methyl groups (Online Methods). Using methyl-TROSY 
NMR techniques24, we were able to record high-quality spectra 
to study the interaction between the Rrp4 cap and RNA substrate 
(Fig. 1b). The isoleucine and methionine resonances were assigned 
by a combination of the “divide-and-conquer”28 and mutagenesis 
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The exosome is a large molecular machine involved in RNA degradation and processing. Here we address how the trimeric 
Rrp4 cap enhances the activity of the archaeal enzyme complex. Using methyl-TROSY NMR methods we identified a 50-Å long 
RNA binding path on each Rrp4 protomer. We show that the Rrp4 cap can thus simultaneously recruit three substrates, one of 
which is degraded in the core while the others are positioned for subsequent degradation rounds. The local interaction energy 
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approaches32,33 (Supplementary Results, Supplementary Fig. 1). 
With these methods we assigned 69% of all NMR active methyl 
group resonances in our spectra.

To address which residues in Rrp4 have a role in the substrate– 
enzyme interactions, we added three equivalents of an RNA substrate  
(Online Methods) to the Rrp4–exosome complex, which resulted 
in a large number of chemical shift perturbations (CSPs) (Fig. 1b). 
Based on the assigned methyl groups, we conclude that the Rrp4 S1 
(pore region) and KH (periphery) domains are most prominently 
involved in RNA interactions. The number and location of residues 
that undergo CSPs show that the large area of the Rrp4 surface is 
used for the interaction with RNA substrate (Fig. 1).

Increasing the coverage of methyl groups on the surface
The naturally occurring methyl groups are sparsely distributed 
over the surface of the Rrp4 complex (Supplementary Fig. 2). 
Methyl-TROSY spectroscopy is thus ‘blind’ to most of the surface 
of the cap structure, and as a result these regions cannot provide 
information about intermolecular interactions. We made those 
areas on the surface visible using methionine scanning30, in which 
we replaced residues at the surface, one at a time, with reporter 
methionine residues. These methionine residues then directly 
reported on binding events at the specific location on the surface 
(Fig. 2). One substantial advantage of methionine scanning is that 
the introduced methyl group appears as a novel resonance in the 
spectrum and can thus be assigned instantaneously. To improve 
the spectral quality and to prevent signal overlap in the methion-
ine region, we mutated three natural methionine residues in the 
flexible and unstructured N-terminal region of Rrp4 to serine resi-
dues, which did not interfere with the structure and activity of the 
enzyme (Supplementary Fig. 3a).

In total, we selected 30 residues on the Rrp4 surface and sub-
stituted them with reporter methionine residues (Supplementary 
Table 1). Of these, 28 residues gave rise to a readily identifiable 
single resonance in the corresponding methyl-TROSY NMR spec-
trum, without interfering with the integrity of the enzyme complex 
(Supplementary Fig. 3b,c). To each of these samples we added a 
threefold molar excess of RNA to probe for binding at the site of 
the reporter methionine. In brief, we observed three different out-
comes. First, the introduced reporter methionine was unaffected 
by the addition of the RNA (Supplementary Fig. 4), whereas the 
naturally occurring isoleucine residues showed the same CSPs as 
we observed for the wild-type (WT) complex. These positions are 
therefore considered to be outside the RNA binding site. Second, the 
reporter methionine showed a CSP upon addition of the substrate, 
proving that this residue is inside the RNA binding site. We found 
these residues in the KH domain of Rrp4 and close to the RNA 
entrance pore. Depending on the chemical shift differences between 
the free and RNA-bound state of the Rrp4–exosome, the CSPs were 
visible as shifting (Fig. 2a and Supplementary Fig. 5) or splitting 
(Fig. 2b and Supplementary Fig. 6a,b) methyl group resonance 
frequencies. It is important to note that signals that split titrate to 
the RNA bound state upon addition of an excess of RNA. This indi-
cates that the exosome cap structure is symmetric in the fully RNA 
bound state (see below). Third, we observed a situation in which 
the reporter methionine resonance was unaffected by the substrate 
RNA, whereas the naturally occurring isoleucine residues displayed 
substantially reduced CSPs (Fig. 2c). In this case, we identified a 
hot-spot residue that, when mutated, interfered with substrate bind-
ing (Fig. 2c and Supplementary Fig. 7a). The identified hot spot is 
in the GKNK loop of the KH domain, which is at the periphery of 
the cap structure. This confirms previous reports that mutations in 
this loop of a KH domain abolish RNA binding, without influenc-
ing the structure34. Notably, this hot spot in Rrp4 abolished RNA 
interactions only at the periphery of the complex, as interactions 
between the residues in the pore region and RNA were unaffected 

(Supplementary Fig. 7b). The hot spot we identified thus interferes 
with the RNA interaction only locally and does not affect cap–RNA 
interactions in other areas. This shows that the S1 and KH domains 
in Rrp4 interact with RNA independently, which is in agreement 
with findings for the Arabidopsis thaliana Rrp4 protein35.

Hot spots have a functional role in RNA degradation
To address the functional role of the local hot spot that we identified 
in the Rrp4 cap structure and to identify additional critical residues in 
this region, we performed RNA degradation experiments18 (Online 
Methods and Fig. 3a). In agreement with previous reports7,16, the 
presence of the Rrp4 cap proteins increased the catalytic efficiency 
of the exosome (Fig. 3a). However, when the exosome core was in 
complex with Rrp4 protein containing mutations in hot-spot loca-
tions (K170M, KNK170ENQ, K221D and R14E), this increase in 
catalytic efficiency was no longer observed (Fig. 3a). This indicates 
that the hot spot that we identified has an important role in the 
RNA degradation process. Using RNA degradation experiments 
combined with NMR binding experiments, we identified additional 
hot-spot residues that clustered around the interface between the 
KH domain and the N-terminal domain (NTD) (Fig. 3). Notably, all 
of these mutants were properly folded and interacted normally with 
the exosome core (Supplementary Fig. 7b). It is unlikely that the 
hot-spot mutations in Rrp4 influence the active sites in the exosome 
core through an allosteric mechanism, as addition of the Rrp4 cap to 
the exosome core does not perturb the resonances close to the active 
sites25. Rather, we postulate that the periphery of the Rrp4–exosome 
complex has a role in the first contacts between the enzyme and the 
RNA substrate. Mutations in this region are thus likely to interfere 
with the RNA recognition and recruitment process.

The narrowest point of the RNA funnel, the neck, is formed by the 
Rrp41 and Rrp42 and is located just below the Rrp4 pore (Fig. 1a).  
Mutations that invert the positive charge in this region have been 
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Figure 1 | Structure and NMR spectra of the Rrp4–exosome complex. 
(a) Side view (top) and top view (bottom) of the S. solfataricus exosome 
complex15 (2JEA). Rrp4 subunits are shown in blue; Rrp41 and Rrp42  
are shown in gray and white, respectively. (b) Isoleucine region of the 
methyl-TROSY NMR spectrum of the Rrp4 subunits in the full exosome 
complex in the absence (black) and presence (green) of RNA substrate.  
A number of residues showed chemical shift pertubations that report 
on the RNA–enzyme interaction. Assignments for some resonances are 
indicated (Supplementary Fig. 1). 
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reported to block RNA degradation for the Archaeoglobus fulgidus 
exosome16. Here we show that the equivalent mutation (R67E in 
Rrp41) in the neck region abolishes the activity of the S. solfataricus 
core exosome (Fig. 3a). Notably, the activity of this mutated exo-
some core was rescued by addition of the Rrp4 cap to the complex 
(Fig. 3a). This indicates that the inactivity of the neck mutant is due 
to impairments in the interaction with RNA (see below) and not to 
blocking of its entrance into the catalytic chamber of the core. In 
the neck mutant background (Rrp41 R67E), the Rrp4 cap provides 
RNA binding sites that can then funnel the RNA to the active sites. 
These findings underscore the importance of the Rrp4 cap in the 
substrate RNA recognition process.

RNA interacts over a long stretch of the cap surface
Our NMR data (Figs. 1 and 2), together with the RNA degradation 
assays (Fig. 3a), reveal that the substrate RNA interacts with the 
Rrp4 surface over a long binding path (Fig. 3b). This path starts on 
the periphery of the complex around the identified hot spots and 
extends 50 Å through the KH–NTD groove and into the S1 pore to 
the neck of the core exosome. The Rrp4 cap thus funnels the sub-
strate through the neck region toward the active sites.

To structurally validate the binding path we identified here, we 
compared the RNA binding sites in the NTD, S1 and KH domains 
with known protein–RNA structures (Supplementary Fig. 8). To 
that end, we performed DALI searches36 with the Rrp4 domains 
and selected structures that contain RNA. We observed that the 
binding sites of the Rrp4 KH and S1 domains are compatible with 
known complex structures. Notably, the affected residues we identi-
fied in the Rrp4 NTD do not correspond to residues reported to  
be involved in RNA recognition in this domain (Supplementary 
Fig. 8) and thus represent a novel RNA binding site.

The energetics of the exosome–RNA interaction
To address the overall affinity of the exosome for the RNA substrate, 
we used fluorescence anisotropy measurements. For the interac-
tion between the Rrp4–exosome complex and RNA, we extracted 
an affinity of 67.5 ± 22.7 nM (Fig. 4a and Supplementary Table 2,  
complex B), which corresponds to a binding Gibbs free energy (ΔG0) 
of −9.97 ± 0.20 kcal/mol (ΔG = −RTln(KD); T = 30 °C).

Known crystal structures15, our previous NMR experiments18 and 
our methionine scanning data (Figs. 2 and 3) indicate that there are 
four regions in the Rrp4–exosome complex that can interact with 

the RNA: the active sites and the neck region in the hexameric exo-
some core15,18, in addition to the pore and periphery regions in the 
Rrp4 cap structure (Fig. 3b). To dissect the energetic contribution 
of each of these regions to the overall affinity between the Rrp4–
exosome and substrate RNA, we used Rrp4–exosome versions in 
which individual RNA–enzyme contact points were abolished. The 
periphery interaction in Rrp4 was disrupted using a KNK170ENQ 
mutation (Fig. 3a); the cap interaction was removed through use of 
the isolated exosome core; and the neck interaction was disrupted 
using R67G18 or R67E (Fig. 3a) mutation in the core protein Rrp41. 
In addition, we prevented interactions between the active sites in 
the exosome core and the substrate by using a shorter RNA that 
cannot reach from the neck region to the active sites. For all com-
plexes we quantified the affinity for the RNA substrate using fluo-
rescence anisotropy titrations (Fig. 4a and Supplementary Table 2).  
Differences in RNA affinity between these complexes provided 
insights into local intrinsic binding energies for each contact point 
(ΔGi

A = ΔG0
ABCD – ΔG0

BCD; where A, B, C and D are the four con-
tact points)37. As an example, we can extract the Rrp4 contribution 
(ΔGi

Rrp4) to the overall affinity between the Rrp4–exosome complex 

Rrp4 (N171M)
exosome

Rrp4 (N171M)
exosome + RNA

a b
13

C
 (p

.p
.m

.)

Met region

0.20.71.2

7

9

11

I168

I214

I85 I159

2.12.32.52.7

15

16

c

Rrp4–exosome

RNA

Reporter Met

Inside the RNA binding groove

Rrp4 (S103M)
exosome

Rrp4 (S103M)
exosome + RNA

2.12.32.52.7

15

16
I168

I214

I85 I159

0.20.71.2

 7

 9

11

Inside the RNA binding groove
Rrp4 (K170M)

exosome
Rrp4 (K170M)

exosome + RNA

2.02.22.42.6

14

15

16

0.71.2

7

9

11

Rrp4–exosome

RNA

Reporter Met

Local hot spot

Ile region Ile regionIle region

Met region Met region
1H (p.p.m.)

M171 M103 M170

Rrp4–exosome

RNA

Reporter Met

Figure 2 | Methionine scanning identifies residues in Rrp4 that interact with substrate RNA. (a) Spectra of the Rrp4–exosome complex that contain  
a single introduced reporter methionine (M171) in the absence (pink) and presence (green) of RNA substrate. The assignment of the reporter methionine 
is based on the appearance of a novel resonance in the methionine region of the NMR spectra (Supplementary Fig. 4). N171M is inside the RNA binding 
groove. (b) As in a, where the signal of the reporter methionine (S103M) experiences resonance splitting upon addition of one RNA molecule per Rrp4 
monomer (Supplementary Fig. 5). (c) As in a, where the introduced reporter methionine abolishes RNA binding, on the periphery of the Rrp4 cap. I110,  
in the pore region, displays the same CSP as observed in the WT Rrp4 protein (Supplementary Fig. 7).

b

RNA interaction
surface 

5′

3′

Periphery

Pore

Neck
Active sites
(inside the 

exosome core)
0

20

40

60

80

100

Core

Core-R
rp4

Core-R
rp4 K170M

Core-R
rp4 KNK170ENQ

Core-R
rp4 K221D

Core-R
rp4 R14

E

Core R67E

Core R67E-R
rp4

%
 a

ct
iv

ity

Neck
mutants

Rrp4
mutants WT

a

Figure 3 | Activity and RNA interaction surface of the Rrp4–exosome.  
(a) The activity of different versions of the exosome core (gray) and  
the Rrp4–exosome complex (blue) extracted using degradation series with 
16 time points. (b) Visualization of the NMR binding studies and activity 
data. The black dashed line indicates the identified surface that is used 
by Rrp4 to interact with the RNA substrate. Hot-spot regions are shown 
in red; sites in contact with RNA are shown in orange; sites outside RNA 
interaction surface are shown in cyan. 

©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

http://dx.doi.org/10.1038/nchembio.2328


nature CHEMICAL BIOLOGY | VOL 13 | MAY 2017 | www.nature.com/naturechemicalbiology	 525

articleNature chemical biology doi: 10.1038/nchembio.2328

and the RNA by comparing the RNA affinity of the Rrp4–exosome 
complex (ΔG0

Rrp4–exosome) (Supplementary Table 2, complex B) with 
that of the isolated exosome core (ΔG0

Core) (Supplementary Table 2, 
complex A). This contribution of the Rrp4 cap to the RNA binding 
energy can be extracted independently using different versions of 
the exosome core (for example, with the mutation R67G in Rrp41), 
with and without the cap proteins (Supplementary Table 2, com-
plexes E and F). Using this approach, we were able to extract the 
intrinsic binding energies for all four RNA contact points in a num-
ber of independent ways (Fig. 4b and Supplementary Table 3).

In summary, our data show that the local intrinsic binding ener-
gies between the substrate and the exosome complex increase from 
the periphery of the complex toward the active sites (Fig. 4b). The 
fact that the highest energy contribution resides at the active sites 
ensures that the substrate efficiently ratchets one base farther after 
catalysis. Notably, the intrinsic binding energy of the cap is very 
small, indicating that Rrp4 provides only a limited energetic contri-
bution to the enzyme–substrate interaction. This probably reflects 
the high entropic cost involved in the interaction between the highly 
flexible RNA substrate and the cap surface38, which prevents a large 
additive effect of the cap–RNA interaction to the overall binding 
energy. As a result, the 5′ end of the RNA can temporarily dissoci-
ate from the Rrp4 cap structure, whereas the 3′ end remains tightly 
associated with the core of the exosome complex. It is important to 
note that the RNA–Rrp4 interactions are nevertheless functionally 
relevant, as mutations in the periphery of the complex influence the 
catalytic turnover rates (Fig. 3a).

The exosome recruits three RNA substrates simultaneously
Owing to the trimeric nature of the Rrp4 cap structure, three RNA 
species can interact simultaneously with the exosome complex.  
The exosome neck is, however, only large enough to accommo-
date a single RNA substrate that can then interact tightly with the 
enzyme through all four contact points. The two successive RNA 
molecules that can be recruited by the cap surface interact with 

only two Rrp4 contact points: the pore and periphery regions  
(Figs. 3b and 4b). To experimentally validate the stoichiometry of 
the RNA–exosome complex, we added a large excess of substrate 
to the Rrp4–exosome and recorded NMR spectra of the saturated 
enzyme. We then removed weakly bound RNA substrates from 
the Rrp4 surface by size-exclusion chromatography. NMR spectra 
of this sample showed that a large fraction of the RNA dissoci-
ated from the complex (Supplementary Fig. 9). This supports the  
idea that one RNA molecule is bound much more strongly to the 
Rrp4–exosome complex than the two other substrate molecules. 
Our data thus reveal that the Rrp4 cap can recruit three substrates 
simultaneously to the enzyme complex. This is in agreement with 
previous findings that show that Rrp4 can enhance the substrate 
recruitment to the exosome17.

In our fluorescence anisotropy measurements, the two weaker 
binding events remained invisible, as the exosome concentration 
was in excess of the RNA concentration, and all RNA molecules 
are recruited to the strongest exosome interaction site. To obtain 
insights into the interaction of the two additional RNA substrates 
with the Rrp4 cap, we used NMR titration experiments, where 
excess RNA will occupy weaker binding sites. We exploited the Rrp4 
I85M methionine reporter mutant, as it is located deep inside the 
Rrp4 pore (Supplementary Table 1). During 16 titration steps, we 
added RNA substrate to the Rrp4–exosome complex and monitored 
the induced CSPs (Figs. 1 and 4c and Supplementary Figs. 10–12).  
To determine the RNA–Rrp4 cap affinity, we then analyzed the  
NMR line shapes during the titration experiments for eight dif-
ferent resonances. The fitting of NMR line shapes to specific 
binding models has proven to be an accurate method to extract 
kinetic parameters39–41. Here, we used a model for the interaction 
between three RNA substrates and the Rrp4–exosome that takes 
into account that the NMR line shapes are a superposition of the 
first RNA binding event (with an overall affinity in the high-nM 
range) (Supplementary Table 2) and the two subsequent weaker 
binding events. In addition, we included the fact that the 5′ end of 
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the RNA that contacts the exosome core can temporarily dissoci-
ate from Rrp4 owing to the small intrinsic binding energy with the 
cap (Supplementary Table 3 and Supplementary Figs. 10 and 11).  
Taking all this into consideration, we optimized the kinetic param-
eters to minimize the square of the difference between the experi-
mental NMR spectra and the NMR spectra that were simulated 
according to the binding model (Fig. 4c and Supplementary  
Figs. 12 and 13).

From the global fit, we extracted that the RNA interacts with the 
Rrp4 cap with a KD of 20.4 ± 2.1 μM (Fig. 4c and Supplementary 
Table 2, complex K), which corresponds to a free energy of bind-
ing of –6.50 ± 0.06 kcal/mol (Fig. 4b). From that we conclude that 
two additional RNAs are recruited to the cap in the Rrp4–exosome 
complex with micromolar affinity.

We then repeated the NMR titration experiments using the 
Rrp4–exosome complex, in which mutations at the periphery of 
the cap structure prevent RNA binding in this region. In that case,  
the affinity between the exosome and the second and third RNA 
was reduced to 60.5 ± 5.1 μM, corresponding to a free energy of 
–5.85 ± 0.04 kcal/mol (Supplementary Fig. 14 and Supplementary 
Table 2, complex L). This confirms that the intrinsic binding energy 
of the periphery region is small (Supplementary Table 3) despite its 
functional significance (Fig. 3a).

DISCUSSION
Static high-resolution structures are indispensible for understanding 
the mechanism of molecular machines. These structures, however, 
hide dynamic features that are important for biological function. 
Here, we address how the Rrp4–exosome complex recruits substrate 
RNA molecules and how the enzyme is able to channel these toward 
the active sites.

Using methyl-TROSY NMR spectroscopy and degradation 
assays, we identified a 50-Å long RNA interaction channel that  
covers a large portion of the Rrp4 surface between the periphery and 
the RNA entrance pore (Figs. 3 and 5). This path is in agreement 
with a very low-resolution SAXS reconstruction of the A. fulgidus 
Rrp4–exosome in complex with RNA17, where the RNA appears to 
make contacts with the top of the Rrp4 cap. At the same time, the 
interactions that we observed on the archaeal cap structure differ 
from the RNA interactions that have been reported for the eukary-
otic exosome cap proteins (Supplementary Fig. 15). Whether these 

differences are due to variations in the substrate recruitment mecha-
nism, the RNA used in the experiment or the complex composition 
(for example, the presence of Rrp6 in the eukaryotic exosome)10,11,42 
remains to be determined.

Although the large RNA interaction surface on the Rrp4 protein 
in the archaeal exosome is advantageous for substrate recruitment 
(Fig. 5), it can potentially compromise catalysis, as excessive fric-
tion would hamper motions of the RNA toward the active sites17. 
Optimal catalytic efficiency is thus a trade-off between efficient 
substrate recruitment and rapid substrate translocation. Our bind-
ing experiments show that Rrp4 can recruit RNA substrates with 
micromolar affinity. This RNA is initially in contact with both the 
periphery and the pore of the Rrp4 cap structure. When the entrance 
pore is free, the 3′ end of the substrate can move into the core such 
that it contacts all four interaction sites (periphery, pore, neck and 
active sites) (Figs. 4b and 5). This step will be driven by a significant 
change in binding free energy from –6.50 kcal/mol (micromolar 
affinity) to –9.97 kcal/mol (nanomolar affinity) (Supplementary 
Table 2 and Fig. 4b).

After the substrate is fully bound to the enzyme, the 3′ terminal 
nucleotide can be phosphorolyzed at the active sites. This will result 
in a release of a nucleotide diphosphate product and a loss of the 
interactions between the substrate and the active sites. The RNA 
then ratchets one base farther such that the new 3′ end can engage 
in interactions with the active sites. This movement results in a 
favorable change of the binding free energy between the enzyme and  
the substrate of up to –3.15 kcal/mol (Fig. 4 and Supplementary 
Table 2). This change in free energy is much smaller than was previ-
ously calculated for the eukaryotic complex43, where RNA degrada-
tion takes place in the additional exosome component Rrp44. This 
difference correlates well with the fact that the eukaryotic exosome, 
unlike the archaeal exosome, is able to process RNA substrates with 
secondary structure elements that need to unfold before entering 
the exosome barrel.

The combination of the four independent interaction points  
can explain the molecular basis for the dependence of the  
degradation velocity on substrate length17,20. Substrates longer 
than 24 nucleotides will interact with the enzyme through all sites 
(periphery, pore, neck and active sites). For substrates shorter  
than 24 nucleotides, the RNA is too short to reach from the active 
site to the periphery and the friction between the RNA, and the 

b
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Figure 5 | Illustration of the Rrp4–modulated RNA degradation mechanism. (a) At low RNA concentration, a single RNA is bound to four contact  
points (active sites, neck, pore and periphery) in the Rrp4–exosome complex. The 5′ end is weakly bound to the Rrp4 cap structure, and this part of the 
substrate can thus temporarily dissociate from the cap and sample all three RNA interaction grooves. The affinity between the RNA and the exosome 
is indicated by a color gradient (lower interaction strength corresponds to lighter blue). (b) At higher RNA concentration, the Rrp4 cap can recruit two 
additional substrates with micromolar affinity. These RNA molecules interact with the complex through contacts with the pore and periphery regions  
only and are not actively degraded, as only a single RNA substrate is able to pass the neck region. The interaction energy between the cap protein and  
the substrate is substantially reduced when the 3′ end of the RNA moves into the catalytic core, thereby reducing molecular friction, which could 
compromise substrate translocation to the active sites.
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Rrp4 cap is reduced, which results in an increase in degradation 
velocity17. For substrates shorter than 13 nucleotides, the RNA is too 
short to interact simultaneously with the active sites and the neck 
region. This releases the RNA from the pivotal point in the neck of 
the exosome complex18 and results in a decrease of the degradation 
rate, as the substrate is no longer tightly restrained to the barrel of 
the complex17.

It is important to note that the ΔGi values appear more negative 
when the two binding sites influence each other in a constructive 
manner and appear less negative when the two binding events influ-
ence each other negatively (Supplementary Fig. 16). Notably, our 
data indicate a situation where the sum of the four individual intrin-
sic binding energies (ΔGi) is smaller than the overall binding energy 
(ΔG0

Rrp4–exosome). Assuming that there are no additional interaction 
sites between the substrate and the enzyme, this highlights two 
important features of the RNA–enzyme interaction. First, there is no 
additivity in the multivalent RNA–exosome binding processes37,44. 
The lack of additive binding effects has also been observed,  
for example, for the interaction between the tau protein and micro-
tubules45 and for the interaction between the trigger factor chap-
erone and the unfolded alkaline phosphatase substrate46. In those 
examples, and in the case of the flexible RNA we study here, the 
interaction with one binding site is unable to position other motifs 
in the proper binding position and at each interaction site a large 
entropic cost has to be paid. Second, the small sum of the intrinsic 
binding energies suggests that the RNA backbone adopts an energet-
ically unfavorable conformation upon interaction with the enzyme, 
which is plausible, as the RNA must make a tight turn upon enter-
ing the barrel of the Rrp4–exosome complex. Mechanistically this 
has important advantages for the degradation process. In particular, 
the initial recruitment of the substrate by the Rrp4 cap involves a 
binding energy of ΔG = –6.50 kcal/mol (Supplementary Table 2). 
This energy would invoke substantial friction between the substrate 
and the enzyme such that degradation rates would be substantially 
reduced. However, upon translocation of the 3′ end of the RNA  
substrate into the exosome core (which is driven by an increase in 
the binding free energy of –3.47 kcal/mol; Supplementary Table 2) 
the Rrp4–RNA binding energy is substantially reduced to an intrin-
sic binding energy of around –1 kcal/mol (Supplementary Table 3). 
The binding groove that recruits substrates does therefore not add 
substantially to the enzyme–RNA interaction during degradation. 
The Rrp4–exosome complex can thus combine efficient substrate 
recruitment without compromising the movement of the substrate 
toward the active sites (Fig. 5).

In summary, we reveal here a unique mechanism by which the 
exosome ensures efficient recruitment and motion of the RNA 
substrate. Our data thus enhance understanding of the exosome 
complex and reveal functionally important molecular details that 
are hidden in static crystal structures. It will be interesting to see 
whether the mechanisms we identified here are general principles 
that are also exploited by other complex molecular machines. 
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Methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.
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ONLINE METHODS
Protein production. The S. solfataricus Rrp41–Rrp42 exosome core was 
obtained by co-expression of the two proteins in LB medium using BL21 (DE3) 
RIL E. coli cells (Stratagene). The core complex was purified using Ni-affinity 
chromatography and gel filtration as previously described25. The S. solfataricus  
Rrp4–exosome cap protein was obtained by overexpression in D2O-based 
minimal medium in the presence of 2H12C glucose. Methionine (1H-13C;  
100 mg/l) and α-ketobuteric acid (4-1H3-13C, 3-12C2H2; 60 mg/l) were added to 
the growth medium 1 h before the induction of protein expression to ensure 
that the methyl groups in methionine and isoleucine (δ1) residues were NMR 
active. Cells were lysed in buffer A (50 mM NaPO4 (pH 7.5), 150 mM NaCl,  
10 mM Imidazol, 1 mM DTT), and Rrp4 was bound to Ni-NTA resin. The 
resin was washed extensively using buffer A. Subsequently, the exosome  
core complex was added to the Ni-resin to allow for the formation of the 
Rrp4–exosome complex during 2 h at 4 °C with constant tilting. In this way 
we ensure an equimolar composition of the complex (Supplementary Fig. 17). 
The reconstituted complex was eluted using buffer A plus 330 mM imidazole. 
The complex was dialyzed into buffer A without imidazole, and the affinity tag 
was simultaneously removed using TEV protease. Subsequently the complex 
was incubated at 50 °C for 2 h and purified to homogeneity using gel filtration 
in GF buffer (30 mM KPO4 (pH 7), 100 mM NaCl) (Supplementary Fig. 17).  
It is worth mentioning that the Rrp4 protein could be purified in isolation  
at low concentration but that it was not possible to record high-quality NMR 
spectra on the isolated protein.

RNA production. The RNA substrate for NMR experiments was prepared 
using in vitro transcription. The RNA substrate contained a 5′ GC-based hair-
pin structure followed by 32 adenines (5′-GCCCCCCCCGAAAGGGGGGG
GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-2′-3′ cyclic phos-
phate). We used a poly(A) sequence, as this has been shown to be the pre-
ferred substrate for the Rrp4–exosome. According to crystal structures of the  
Rrp4–exosome complex, the adenine tail is substantially longer than the dis-
tance from the Rrp4 periphery to the active sites of the exosome. A homogenous 
3′ end of the transcript was ensured by HDV ribozyme cleavage. This resulted 
in a 2′-3′ cyclic phosphate that also prevented the degradation of the RNA 
substrate by the exosome complex. The 5′ hairpin structure prevents potential 
binding of the single stranded substrate RNA in the reverse direction. For deg-
radation experiments, the same RNA was prepared using run-off transcription 
that results in an RNA that contains a 3′ hydroxyl group, which is an ideal sub-
strate for the exosome complex. This RNA contained three extra bases at the 
3′ end that resulted from the linearization of the DNA template (5′-GCCCCC
CCCGAAAGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAGCU-3′). The RNAs that were used for binding experiments contained 
a single 4-thiouridine (4-S-U) (long RNA, 5′-GCCCCCCCCGAAAGGGGG
GGGAAAAAAAAAAAAAAAAAAAAA-4-S-U-AAAAAAAAAAAGCU-3′, 
short RNA, 5′-4-S-U-GCCCCCCCCGAAAGGGGGGGGAAAA) and were 
obtained from Dharmacon.

NMR spectroscopy. NMR spectra were recorded at 50 °C on an AVIII-800 
spectrometer with room temperature probe-heads. HMQC methyl-TROSY 
spectra were recorded with a carbon acquisition time of 45 ms. Spectra were 
processed using the NMRPipe/NMRDraw software suite47, using zero-filling to 
2k (1k) points in the direct (indirect) dimension to increase digital resolution. 
For NMR titration experiments, the substrate RNA was added to a 15.75-fold 
molar excess (RNA concentration over the concentration of the full exosome 
complex) in 15 steps. For methionine scanning experiments, RNA was added 
to an approximately 3:1 ratio. Small differences in the RNA/protein ratio in 
the methionine scanning spectra result in differences in the saturation of 
the Rrp4–exosome with RNA. This does not influence the interpretation of 
the methionine scanning data, that determine only whether a residue is out-
side or inside the RNA interaction groove or whether the residue interferes  
with RNA binding.

NMR methyl groups of isoleucine residues were assigned using the ‘divide-
and-conquer’ approach, in which parts of the large complex are assigned  

in isolation, then the assignments are transferred to the intact complex.  
The 28-kDa full-length Rrp4 protein is not stable without the exosome core 
complex, but we found that a truncated form of Rrp4 that contains only the 
S1 and KH domains can be purified. Methyl group assignments of this mono-
meric 21-kDa Rrp4 fragment were obtained using traditional TROSY-based 
methods48 and could be partially transferred to the 270-kDa Rrp4–exosome 
complex (Supplementary Fig. 1a). The methyl group assignments obtained 
in this step were complemented with a number of assignment mutants32,33 
(Supplementary Table 1). In that case, single isoleucine or methionine methyl 
groups were replaced with an alternative amino acid, which ideally results 
in the disappearance of a single resonance from the methyl-TROSY NMR 
spectrum (Supplementary Fig. 1b).

To extract the binding constant for the interaction between the RNA and 
the exosome cap, one-dimensional (1D) traces were extracted from the 2D 
spectra using the nmrPipe/nmrDraw software suite47. These 1D spectra were 
fitted using numerical equations for NMR resonance lines taking into account 
the model that is described in detail in Supplementary Figures 10–13. Errors 
in the determined parameters were obtained through a Jackknife approach, 
where single residues were omitted from the fitting procedure. Details of the 
fitting procedure and of the used model are described in Supplementary 
Figures 10 and 11.

Fluorescence anisotropy. For fluorescence anisotropy measurements, the  
substrate RNA containing a 4-thiouridine was coupled to 6-(iodoacetamido)-
fluorescein49. RNA (10 nM) was mixed with increasing amounts of several 
variants of the exosome (0 to 2,000 nM or 0 to 80 μM full exosome complex, 
depending on the affinity) in 96-well plates. After 2h incubation changes in 
fluorescence anisotropy were detected using a plate reader (Tecan, Infinite 
F200; filter linear polarization XP38; excitation at 485 nm and emission at 
535 nm). Binding curves were fitted to the standard equation for a one-site 
binding model50 using in-house scripts. Errors in the measurements were 
extracted from fully independent measurements as indicated in the legend of 
Supplementary Table 2.

Degradation assay, HPLC. RNA degradation experiments were performed 
by mixing RNA substrate (25 μM) with different versions of the exosome 
complex (60 nM exosome) in 180 μl reaction buffer (20 mM HEPES, pH 6.5,  
60 mM KCl, 0.1 mM EDTA, 2 mM DTT, 8 mM MgCl2, 10 mM Na2HPO4)  
at 50 °C. 10 μl aliquots of the reaction mix were taken at 16 different defined 
time points, and the reaction was quenched by mixing the aliquots 1:1 with 8 M 
Urea, 20 mM EDTA, 2 mM Tris, pH 8. The amounts of substrate and product 
(a 5′ GC-based hairpin structure followed by 10 adenines) were quantified on 
a DNAPac PA100 column (Dionex) using a linear gradient from buffer A (5 M 
Urea, 20 mM Tris, pH 8, 100 mM NaCl) to buffer B (5 M Urea, 20 mM Tris, pH 8,  
2 M NaCl). Peak intensities were translated into concentrations from which the 
turnover numbers were extracted by linear fitting of the 16 time points18.

Data availability. All data generated or analyzed during this study are included 
in the published article (and its supplementary information files) or are  
available from the corresponding author upon reasonable request.

47.	Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system 
based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

48.	Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Attenuated  
T2 relaxation by mutual cancellation of dipole-dipole coupling and  
chemical shift anisotropy indicates an avenue to NMR structures  
of very large biological macromolecules in solution. Proc. Natl. Acad.  
Sci. USA 94, 12366–12371 (1997).

49.	Ramos, A. & Varani, G. A new method to detect long-range protein-RNA 
contacts: NMR detection of electron-proton relaxation induced by nitroxide 
spin-labeled RNA. J. Am. Chem. Soc. 120, 10992–10993 (1998).

50.	 Johnson, P.E., Tomme, P., Joshi, M.D. & McIntosh, L.P. Interaction of soluble 
cellooligosaccharides with the N-terminal cellulose-binding domain of 
Cellulomonas fimi CenC 2. NMR and ultraviolet absorption spectroscopy. 
Biochemistry 35, 13895–13906 (1996).
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   S2	
  

Supplementary	
  Results	
  
	
  
	
  
Supplementary	
  Table	
  1	
  |	
  List	
  of	
  used	
  proteins.	
  

	
   	
   Methionine	
  scanning	
  and	
  NMR	
  
Rrp4_3MS_I130M	
  a	
   Assignment	
   1306b	
  
Rrp4_3MS_I186M	
   Assignment	
   1307	
  
Rrp4_3MS_I194M	
   Assignment	
   1308	
  
Rrp4_3MS_M160I	
   Assignment	
   1310	
  
Rrp4_3MS_I220M	
   Assignment	
   1311	
  
Rrp4_3MS_I220L	
   Assignment	
   1312	
  
Rrp4_3MS_I16M	
   Assignment	
   1315	
  
	
  
Rrp4_3MS_I85M	
   NMR	
  titration	
  (Fig.	
  4c,	
  d)	
   998	
  
Rrp4_3MS_I85M_KNK170EMQ	
   NMR	
  titration	
  (Supplementary	
  Fig.	
  9)	
   1309	
  
	
  
Rrp4_3MS_K38M	
   outside	
   997	
  
Rrp4_3MS_K54M	
   outside	
   1015	
  
Rrp4_3MS_I72M	
   outside	
   1114	
  
Rrp4_3MS_N73M	
   outside	
   1294	
  
Rrp4_V83M	
   outside	
   966	
  
Rrp4_S109M	
   outside	
   963	
  
Rrp4_3MS_S109M	
   outside	
   1104	
  
Rrp4_3MS_N111M	
   outside	
   1116	
  
Rrp4_3MS_R118M	
   outside	
   1003	
  
Rrp4_3MS_K144M	
   outside	
   1117	
  
Rrp4_3MS_K146M	
   outside	
   1110	
  
Rrp4_3MS_N153M	
   outside	
   1106	
  
	
  
Rrp4_3MS_I61M	
   inside	
   1303	
  
Rrp4_3MS_D74M	
   inside	
   1298	
  
Rrp4_3MS_L106M	
   Inside	
   1524	
  
Rrp4_3MS_G107M	
   inside	
   1115	
  
Rrp4_3MS_R108M	
   inside	
   1000	
  
Rrp4_3MS_I137M	
   inside	
   1005	
  
Rrp4_3MS_N171M	
   inside	
   1119	
  
Rrp4_3MS_N190M	
   inside	
   1107	
  
Rrp4_3MS_I206M	
   inside	
   1007	
  
	
  
Rrp4_3MS_I85M	
   splitting	
   998	
  
Rrp4_3MS_K97M	
   splitting	
   1105	
  
Rrp4_3MS_S103M	
   splitting	
   999	
  
Rrp4_3MS_I110M	
   splitting	
   1001	
  
Rrp4_3MS_V112M	
   splitting	
   1002	
  
Rrp4_3MS_V140M	
   splitting	
   1109	
  
	
  
Rrp4_3MS_K170M	
   local	
  hot-­‐spot	
   1118	
  
	
  
Rrp4_3MS_KNK170ENQ	
   local	
  hot-­‐spot,	
  tested	
  protein	
  integrity	
   1297	
  
Rrp4_3MS_K221D	
   local	
  hot-­‐spot,	
  tested	
  protein	
  integrity	
   1313	
  
Rrp4_3MS_R14E	
   local	
  hot-­‐spot,	
  tested	
  protein	
  integrity	
   1314	
  
	
  
Rrp4_3MS	
   Supplementary	
  Fig.	
  3a	
   986	
  
Rrp4_3MS_K71M	
   Supplementary	
   Fig.	
   3b;	
   excluded	
   from	
   Met	
  

scanning;	
  structure	
  disrupted;	
  
1108	
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   S3	
  

Rrp4_3MS_S203M	
   Supplementary	
   Fig.	
   3c;	
   excluded	
   from	
   Met	
  
scanning;	
  partial	
  disulfide	
  bond	
  

1006	
  

	
  
Rrp41	
  Rrp42	
   Exosome	
  core	
   545	
  
	
   	
   	
  
	
   	
   Degradation	
  experiments	
  
Rrp41	
  Rrp42	
   Exosome	
  core	
   545	
  
Rrp4_3MS_K170M	
   local	
  hot-­‐spot;	
  degradation	
  rate	
  decreased	
   1118	
  
Rrp4_3MS_KNK170ENQ	
   local	
  hot-­‐spot;	
  degradation	
  rate	
  decreased	
   1297	
  
Rrp4_3MS_K221D	
   local	
  hot-­‐spot;	
  degradation	
  rate	
  decreased	
   1313	
  
Rrp4_3MS_R14E	
   local	
  hot-­‐spot;	
  degradation	
  rate	
  decreased	
   1314	
  
Rrp41	
  (R67E)	
  Rrp42	
   Exosome	
  core	
  hot-­‐spot;	
  degradation	
  abolished	
   1316	
  
	
   	
   	
  
	
   	
   Binding	
  experiments	
  
Rrp41	
  (D182A)	
  Rrp42	
   Inactive	
  exosome	
  core	
   1113	
  
Rrp41	
  (R67G,	
  D182A)	
  Rrp42	
   Inactive	
  exosome	
  core	
  hotspot	
  mutant	
   1414	
  
Rrp41	
  (R67E,	
  D182A)	
  Rrp42	
   Inactive	
  exosome	
  core	
  hotspot	
  mutant	
   1525	
  
Rrp4_3MS	
   WT	
  Rrp4	
   986	
  
Rrp4_3MS_KNK170ENQ	
   Rrp4	
  periphery	
  mutant	
   1297	
  

	
  
a)	
  3MS	
  refers	
  to	
  the	
  Rrp4	
  proteins	
  where	
  the	
  3	
  N-­‐terminal	
  methionine	
  residues	
  
are	
  replaced	
  with	
  serine	
  residues	
  (see	
  Supplementary	
  Fig.	
  3).	
  
b)	
  Internal	
  reference.	
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   S4	
  

Supplementary	
  Table	
  2:	
  Energetics	
  of	
  RNA	
  binding	
  	
  

Complex	
  a	
   KD	
   ΔG	
  (kcal/mol)	
  b	
  

Ac
tiv
e	
  

Si
te
s	
  c

	
  

N
ec
k	
  
c	
  

	
  

Po
re
	
  c	
  

Pe
ri
ph
er
y	
  
c	
  

First	
  RNA	
  binding	
  event	
  
A	
   Core	
  WT	
  

	
  
340	
  ±	
  34.0	
  nM	
  d	
   -­‐8.97	
  ±	
  0.06	
   ✓	
   ✓	
   -­‐	
   -­‐	
  

B	
   Core	
  WT	
  	
  
Rrp4	
  WT	
  

67.5	
  ±	
  22.7	
  nM	
   -­‐9.97	
  ±	
  0.20	
   ✓	
   ✓	
   ✓	
   ✓	
  

C	
   Core	
  WT	
  	
  
Rrp4	
  KNK170ENQ	
  

147	
  ±	
  42.5	
  nM	
   -­‐9.49	
  ±	
  0.17	
   ✓	
   ✓	
   ✓	
   -­‐	
  

D	
   Core	
  WT	
  +	
  Short	
  RNA	
  
	
  

66.34	
  ±	
  25.5	
  μM	
   -­‐5.82	
  ±	
  0.20	
   -­‐ ✓ -­‐ -­‐	
  

E	
   Core	
  R67G	
  (Rrp41)	
  
	
  

26.3	
  ±	
  0.42	
  μM	
   -­‐6.35	
  ±	
  0.01	
   ✓	
   -­‐	
   -­‐	
   -­‐	
  

F	
   Core	
  R67G	
  (Rrp41)	
  
Rrp4	
  WT	
  

4.67	
  ±	
  1.24	
  μM	
   -­‐7.40	
  ±	
  0.15	
   ✓	
   -­‐	
   ✓	
   ✓	
  

G	
   Core	
  R67G	
  (Rrp41)	
  
Rrp4	
  KNK170ENQ	
  

7.14	
  ±	
  3.35	
  μM	
   -­‐7.18	
  ±	
  0.26	
   ✓	
   -­‐	
   ✓	
   -­‐	
  

H	
   Core	
  R67E	
  (Rrp41)	
  
	
  

2.4	
  ±	
  0.08	
  μM	
   -­‐7.79	
  ±	
  0.02	
   ✓ -­‐	
   -­‐ -­‐	
  

I	
   Core	
  R67E	
  (Rrp41)	
  
Rrp4	
  WT	
  

0.56	
  ±	
  0.03	
  μM	
   -­‐8.67	
  ±	
  0.03	
   ✓ -­‐	
   ✓ ✓	
  

J	
   Core	
  R67E	
  (Rrp41)	
  
Rrp4	
  KNK170ENQ	
  

2.34	
  ±	
  0.53	
  μM	
   -­‐6.66	
  ±	
  0.28	
   ✓ -­‐	
   ✓ -­‐	
  

Second	
  and	
  third	
  RNA	
  binding	
  events 
K	
   Core	
  WT	
  	
  

Rrp4	
  WT	
  
20.4	
  ±	
  2.1	
  μM	
   -­‐6.50	
  ±	
  0.06	
   -­‐ -­‐	
   ✓ ✓	
  

L	
   Core	
  WT	
  	
  
Rrp4	
  KNK170ENQ	
  

60.5	
  ±	
  4.6	
  μM	
   -­‐5.85	
  ±	
  0.04	
   -­‐ -­‐	
   ✓ -­‐	
  

	
  
a)	
  Core	
  refers	
  to	
  the	
  Rrp41:Rrp42	
  exosome	
  core	
  complex.	
  

b)	
  The	
  ΔG	
  values	
  were	
  calculated	
  for	
  303K.	
  

c)	
   The	
   contact	
   points	
   that	
   are	
   present	
   in	
   the	
   RNA:enzyme	
   interaction	
   are	
  

indicated	
  

d)	
  The	
  error	
  is	
  extracted	
  based	
  on	
  2	
  (complex	
  E,	
  H),	
  3	
  (F,	
  G,	
  I,	
  J)	
  or	
  5	
  (A,	
  B,	
  C,	
  D)	
  
independent	
  measurements.	
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   S5	
  

	
  
Supplementary	
  Table	
  3:	
  RNA	
  binding	
  summary	
  

RNA	
  contact	
  point	
  
Intrinsic	
  binding	
  

energy	
  
ΔGi	
  (kcal/mol)	
  

Based	
  on	
  complexes	
  

First	
  RNA	
  binding	
  event	
  
Rrp4,	
  Periphery	
   -­‐0.52	
  ±	
  0.35	
   (B,	
  C),	
  (F,	
  G)	
  and	
  (I,	
  J)	
  
Rrp4,	
  Pore	
   -­‐0.46	
  ±	
  0.39	
   (A,	
  C),	
  (E,	
  G)	
  and	
  (H,	
  J)	
  
Rrp4,	
  Cap	
  (Periphery	
  +	
  Pore)	
   -­‐0.98	
  ±	
  0.17	
   (A,	
  B),	
  (E,	
  F)	
  and	
  (H,	
  I)	
  
Core,	
  Neck	
   -­‐2.30	
  ±	
  0.43	
   (A,	
  E),	
  (B,	
  F),	
  (C,	
  G)	
  and	
  (A,	
  H)	
  
Core,	
  Active	
  sites	
   -­‐3.15	
  ±	
  0.21	
   (A,	
  D)	
  

Second	
  and	
  third	
  RNA	
  binding	
  events	
  
Rrp4,	
  Periphery	
   -­‐0.65	
  ±	
  0.08	
   (B,	
  C)	
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Supplementary	
  Figure	
  1	
  |	
  Assignment	
  strategy	
  
(a)	
  Methyl	
  TROSY	
  spectra	
  of	
  Ile-­‐δ1	
  labeled	
  full-­‐length	
  Rrp4	
  in	
  complex	
  with	
  the	
  
NMR	
  inactive	
  Rrp41-­‐Rrp42	
  exosome	
  core	
  (270	
  kDa;	
  black)	
  and	
  the	
  monomeric	
  
Rrp4	
   S1-­‐KH	
   domain	
   (21kDa;	
   red).	
   Multiple	
   resonances	
   of	
   the	
   small	
   building	
  
block	
  overlap	
  with	
  the	
  resonances	
  in	
  the	
  full	
  complex	
  and	
  could	
  be	
  transferred.	
  
The	
   methyl	
   group	
   assignments	
   of	
   the	
   small	
   building	
   block	
   were	
   obtained	
   by	
  
traditional	
  TROSY-­‐based	
  NMR	
  methods.	
  
	
  
(b)	
   Assignments	
   of	
   methyl	
   group	
   resonances	
   were	
   completed	
   using	
   a	
  
mutagenesis	
   approach	
   where	
   individual	
   isoleucine	
   residues	
   were	
   mutated	
   to	
  
alternative	
  amino	
  acids	
  such	
  that	
  the	
  corresponding	
  resonance	
  disappears	
  from	
  
the	
   methyl	
   TROSY	
   spectrum.	
   Here,	
   I110	
   was	
   mutated	
   to	
   a	
   methionine,	
   which	
  
resulted	
  in	
  the	
  straightforward	
  assignment	
  of	
  the	
  methyl	
  group	
  of	
  residue	
  110.	
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Supplementary	
  Figure	
  2	
  |	
  Coverage	
  of	
  methyl	
  groups	
  on	
  the	
  surface	
  of	
  the	
  
Rrp4	
  cap.	
  
(a)	
  Naturally	
  occurring	
  isoleucine	
  residues	
  (shown	
  in	
  yellow)	
  only	
  cover	
  a	
  small	
  
portion	
  of	
  the	
  surface	
  of	
  the	
  Rrp4	
  cap	
  (shown	
  in	
  blue).	
  The	
  NMR	
  invisible	
  Rrp41-­‐
Rrp42	
  exosome	
  core	
  is	
  shown	
  in	
  gray.	
  	
  
(b)	
  As	
  in	
  (a),	
  but	
  in	
  this	
  case	
  all	
  methionine	
  reporter	
  residues	
  that	
  we	
  introduced	
  
(one	
   at	
   a	
   time)	
   are	
   also	
   displayed	
   in	
   yellow.	
   Methionine	
   scanning	
   thus	
  
significantly	
   increases	
   the	
   surface	
   coverage	
   on	
   the	
   Rrp4	
   cap	
   allowing	
   for	
   an	
  
accurate	
  mapping	
  of	
  the	
  RNA	
  interaction	
  surface.	
  
(c)	
   Location	
   of	
   all	
   natural	
   isoleucine	
   and	
   methionine	
   residues	
   as	
   well	
   as	
   the	
  
residues	
   that	
   are	
   used	
   for	
  methionine	
   scanning.	
   Note	
   that	
   all	
   residues	
   appear	
  
three	
  times	
  on	
  the	
  surface,	
  but	
  have	
  only	
  been	
  labeled	
  once	
  for	
  clarity.	
  Residues	
  
labeled	
   in	
   grey	
   are	
   unassigned,	
   residues	
   labeled	
   in	
   cyan	
   are	
   outside	
   the	
   RNA	
  
binding	
   groove	
   and	
   residues	
   labeled	
   in	
   orange	
   are	
   inside	
   the	
   RNA	
   binding	
  
groove.	
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Supplementary	
  Figure	
  3	
  |	
  Methionine	
  spectra	
  
(a)	
  The	
  unstructured	
  N-­‐terminus	
  of	
  Rrp4	
  contains	
  three	
  methionine	
  residues	
  (M-­‐
1,	
   M1	
   and	
   M3).	
   These	
   flexible	
   methyl	
   groups	
   result	
   in	
   a	
   strong	
   signal	
   in	
   the	
  
methyl	
   TROSY	
   spectrum	
   (black).	
   Mutation	
   of	
   these	
   methionines	
   into	
   serines	
  
results	
  in	
  a	
  significant	
  simplification	
  of	
  the	
  methionine	
  part	
  of	
  the	
  methyl	
  TROSY	
  
spectrum	
  (pink;	
   left),	
  without	
   changing	
   the	
   structure	
  of	
   the	
   complex	
  as	
   judged	
  
from	
   the	
   minimal	
   changes	
   in	
   the	
   isoleucine	
   part	
   of	
   the	
   spectrum	
   (right	
  
spectrum).	
   In	
   addition,	
   these	
   mutations	
   had	
   no	
   effect	
   on	
   the	
   activity	
   of	
   the	
  
complex	
   (right).	
   In	
   our	
   study,	
   we	
   refer	
   to	
   this	
   Rrp4	
   protein	
   (Rrp4_3MS)	
   that	
  
lacks	
   these	
   strong	
   signals	
   in	
   the	
   methionine	
   part	
   of	
   the	
   spectrum	
   as	
   the	
   WT	
  
protein.	
   Resonances	
   indicated	
  with	
   an	
   asterisk	
   result	
   from	
   truncation	
   artifacts	
  
that	
  arise	
  during	
  the	
  processing	
  of	
  the	
  NMR	
  data.	
  Position	
  M-­‐1	
  was	
  introduced	
  in	
  
the	
  Rrp4	
  protein	
  due	
  to	
  the	
  cloning	
  of	
  the	
  DNA	
  construct	
  into	
  the	
  overexpression	
  
vector.	
  	
  
	
  
(b)	
  Example	
  of	
  a	
  reporter	
  methionine	
  that	
  resulted	
  in	
  a	
  partial	
  destabilization	
  of	
  
the	
  Rrp4	
  protein	
  in	
  the	
  Rrp4-­‐exosome	
  complex	
  (K71M).	
  It	
  should	
  be	
  noted	
  that	
  
such	
  a	
  destabilizing	
  effect	
  was	
  only	
  observed	
   in	
  one	
  case	
  and	
   that	
   this	
   is	
  not	
  a	
  
general	
   bottleneck	
   of	
   the	
   applied	
   methodology.	
   Nevertheless,	
   the	
   close	
  
inspection	
   of	
   the	
   spectra	
   is	
   required	
   to	
   assess	
   the	
   effects	
   of	
   the	
   introduced	
  
mutations.	
   Here,	
   the	
   K171M	
   mutation	
   shows	
   multiple	
   new	
   resonances	
   in	
   the	
  
methionine	
  part	
  of	
  the	
  spectrum	
  (left).	
  At	
  the	
  same	
  time,	
  a	
  significant	
  number	
  of	
  
additional	
  resonances	
  arise	
  in	
  the	
  isoleucine	
  part	
  of	
  the	
  spectrum.	
  Both	
  are	
  clear	
  
indications	
  that	
  the	
  K171M	
  mutation	
  is	
  not	
  folded	
  in	
  the	
  same	
  stable	
  manner	
  as	
  
the	
  WT	
  Rrp4	
  protein	
  in	
  complex	
  with	
  the	
  exosome.	
  The	
  K171M	
  Rrp4	
  methionine	
  
reporter	
  mutant	
  was	
  not	
  used	
  for	
  further	
  binding	
  studies.	
  
	
  	
  
(c)	
   For	
   the	
   S203M	
   mutant	
   we	
   observed	
   two	
   additional	
   resonances	
   in	
   the	
  
methionine	
   part	
   of	
   the	
   spectrum	
   that	
   are	
   due	
   to	
   the	
   partial	
   formation	
   of	
   the	
  
C184-­‐C198	
  disulfide	
  bond	
  within	
  the	
  Rrp4	
  monomer.	
  Since	
  we	
  observed	
  that	
  the	
  
exosome’s	
  interaction	
  with	
  the	
  RNA	
  substrate	
  remains	
  unaltered	
  under	
  oxidizing	
  
conditions	
  and	
   that	
   the	
  presence	
  of	
   reducing	
  agents	
  causes	
  doubling	
  of	
   certain	
  
resonances	
   from	
   isoleucine	
   residues	
   around	
   the	
   mentioned	
   cysteines,	
   we	
  
performed	
   our	
  NMR	
  measurements	
   in	
   the	
   absence	
   of	
   any	
   reducing	
   agent.	
  The	
  
formation	
   of	
   this	
   disulfide	
   bond	
   is	
   also	
   visible	
   in	
   one	
   of	
   the	
   published	
   crystal	
  
structures	
  of	
  the	
  Rrp4-­‐exosome	
  complex	
  (Right,	
  PDB:	
  3L7Z)	
  1.	
  In	
  that	
  study	
  the	
  
disulfide	
  bond	
  leads	
  to	
  a	
  break	
  in	
  the	
  symmetry	
  of	
  the	
  trimetric	
  Rrp4	
  cap	
  in	
  the	
  
crystal	
  structure.	
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Supplementary	
   Figure	
   4	
   |	
   Reporter	
   methionine	
   outside	
   the	
   RNA	
   binding	
  
groove.	
  
Example	
  of	
   a	
   reporter	
  methionine	
   that	
   is	
  outside	
   the	
  RNA	
  binding	
  groove.	
  The	
  
introduced	
  methionine	
  reporter	
  (K38M)	
  is	
  located	
  in	
  the	
  NTD	
  and	
  results	
  in	
  the	
  
appearance	
   of	
   a	
   single	
   new	
   resonance	
   in	
   the	
   methionine	
   part	
   of	
   the	
   NMR	
  
spectrum	
   (top	
   left,	
   black	
   spectrum:	
   WT;	
   pink	
   spectrum:	
   K38M).	
   The	
   reporter	
  
methionine	
  resonance	
  can	
  be	
  assigned	
   instantaneously	
   (top	
   left	
   spectrum)	
  and	
  
only	
   causes	
   minor	
   CSPs	
   in	
   the	
   naturally	
   occurring	
   isoleucine	
   and	
   methionine	
  
resonances	
  (top	
  left	
  and	
  top	
  right	
  spectra).	
  Addition	
  of	
  RNA	
  to	
  the	
  K38M	
  Rrp4-­‐
exosome	
  complex	
  results	
   in	
  CSPs	
  of	
   the	
  naturally	
  occurring	
   isoleucine	
  residues	
  
(bottom	
  right	
   spectrum)	
   that	
  are	
  comparable	
   to	
   the	
  CSPs	
  observed	
   for	
   the	
  WT	
  
protein	
   (compare:	
   Fig.	
   1b),	
   showing	
   that	
   the	
   RNA	
   interacts	
   normally	
  with	
   the	
  
complex.	
  The	
  K38M	
  reporter	
  methionine	
  resonance	
  fails	
   to	
  show	
  CSPs	
  (bottom	
  
left	
   spectrum)	
   indicating	
   that	
   residue	
   K38	
   is	
   not	
   part	
   of	
   the	
   RNA	
   interaction	
  
interface.	
   A	
   cartoon	
   displaying	
   this	
   scenario	
   is	
   shown	
   on	
   the	
   top	
   right.	
   All	
  
reporter	
  methionine	
   and	
  natural	
   isoleucine	
   residues	
   that	
  we	
  determined	
   to	
  be	
  
outside	
   the	
   RNA	
   interaction	
   site	
   are	
   shown	
   in	
   cyan	
   on	
   the	
   structure	
   of	
   the	
  
complex	
  (bottom	
  right).	
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Supplementary	
   Figure	
   5	
   |	
   Reporter	
   methionine	
   inside	
   the	
   RNA	
   binding	
  
groove.	
  
As	
   in	
   Supplementary	
   Fig.	
   4,	
   but	
   for	
   the	
   case	
   where	
   the	
   reporter	
   methionine	
  
(N171M)	
  is	
  inside	
  the	
  RNA	
  interaction	
  groove.	
  The	
  reporter	
  methionine	
  appears	
  
as	
   a	
   single	
   novel	
   resonance	
   in	
   the	
   methionine	
   part	
   of	
   the	
   spectrum	
   (top	
   left	
  
spectrum)	
  and	
  causes	
  minor	
  CSPs	
  of	
  resonances	
  close	
  to	
  the	
  site	
  of	
  mutation	
  (top	
  
right	
   spectrum).	
   Addition	
   of	
   RNA	
   results	
   in	
   CSPs	
   of	
   the	
   introduced	
   reporter	
  
methionine	
   (bottom	
   left	
   spectrum)	
   and	
   of	
   the	
   naturally	
   occurring	
   isoleucine	
  
residues	
   (bottom	
   right	
   spectrum).	
   A	
   summary	
   of	
   this	
   scenario	
   is	
   shown	
   as	
   a	
  
cartoon	
   on	
   the	
   top	
   right	
   and	
   occurred	
   for	
   all	
   residues	
   that	
   are	
   indicated	
   in	
  
orange	
  on	
  the	
  surface	
  of	
  the	
  complex	
  (bottom	
  right)	
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Supplementary	
   Figure	
   6	
   |	
   Reported	
   methionine	
   residues	
   in	
   the	
   pore	
   of	
  
Rrp4.	
  	
  
(a)	
   As	
   in	
   S4	
   and	
   S5,	
   where	
   the	
   reporter	
   methionine	
   is	
   located	
   in	
   the	
   RNA	
  
entrance	
  pore	
  of	
  Rrp4.	
  The	
   reporter	
  methionine	
   (S103M)	
   can	
  be	
   assigned	
   in	
   a	
  
straightforward	
   manner	
   (top	
   left	
   spectrum)	
   and	
   causes	
   only	
   minor	
   CSPs	
   in	
  
residues	
  that	
  are	
  close	
  to	
  the	
  site	
  of	
  mutation	
  (top	
  right	
  spectrum).	
  Addition	
  of	
  
RNA	
  results	
   in	
  a	
   splitting	
  of	
   the	
   resonance	
  of	
   the	
   reporter	
  methionine	
   (bottom	
  
left	
   spectrum)	
  and	
  CSPs	
   in	
   the	
  naturally	
  occurring	
   isoleucine	
   residues	
   that	
   are	
  
comparable	
   to	
   the	
   ones	
   observed	
   in	
   the	
   titration	
   experiments	
   with	
  WT	
   Rrp4-­‐
exosome	
  (compare:	
  Fig.	
  1b).	
  A	
  cartoon	
  for	
  this	
  situation	
  is	
  shown	
  on	
  the	
  top	
  right	
  
and	
  all	
  sites	
  that	
  show	
  this	
  behavior	
  are	
  indicated	
  with	
  orange	
  on	
  the	
  surface	
  of	
  
the	
  protein	
   (bottom	
   right).	
   The	
   splitting	
   of	
   resonances	
   indicates	
   that	
   for	
   those	
  
residues	
   the	
   RNA	
   is	
   in	
   slow	
   exchange	
   on	
   the	
   NMR	
   chemical	
   shift	
   timescale	
  
between	
  the	
  free	
  and	
  the	
  bound	
  form.	
  This	
  suggests	
  that	
  the	
  RNA	
  has	
  a	
  different	
  
affinity	
  for	
  the	
  complex	
  as	
  was	
  observed	
  in	
  S5.	
  
	
  
(b)	
   The	
   boxed	
   region	
   of	
   the	
   bottom	
   right	
   spectrum	
   in	
   (A)	
   is	
   enlarged	
   (left	
  
spectrum)	
  and	
  shows	
  that	
  I110,	
  that	
  is	
  located	
  in	
  the	
  Rrp4	
  pore,	
  also	
  undergoes	
  a	
  
signal	
  splitting	
  upon	
  addition	
  of	
  RNA.	
  The	
  observed	
  signal	
  splitting	
  is	
  not	
  due	
  to	
  
the	
  reporter	
  methionine	
  (S103M)	
  as	
  we	
  also	
  observe	
  the	
  same	
  splitting	
  of	
  I110	
  
in	
  the	
  WT	
  protein	
  upon	
  addition	
  of	
  RNA	
  (right	
  spectrum).	
  The	
  signal	
  splitting	
  we	
  
observe	
  for	
  a	
  number	
  of	
  residues	
  is	
  thus	
  a	
  general	
  phenomenon	
  and	
  not	
  due	
  to	
  
the	
  introduced	
  methionine	
  residues.	
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  Supplementary	
  Figure	
  7	
  |	
  Identification	
  of	
  local	
  hot	
  spot	
  residues.	
  	
  
(a)	
   The	
   resonance	
   of	
   the	
   reporter	
   methionine	
   K170M	
   is	
   identified	
   in	
   a	
  
straightforward	
  manner	
   (top	
   left	
   spectrum)	
  and	
  only	
  causes	
  minor	
  CSPs	
   in	
   the	
  
isoleucine	
  residues	
  (top	
  right	
  spectrum).	
  Addition	
  of	
  RNA	
  to	
  the	
  K170M	
  mutant	
  
does	
  not	
   result	
   in	
  CSPs	
  of	
   the	
   reporter	
  methionine	
   (bottom	
   left	
   spectrum),	
  but	
  
also	
   fails	
   to	
   induce	
   the	
   CSPs	
   that	
   we	
   observed	
   for	
   the	
   WT	
   protein	
   in	
   the	
  
isoleucine	
   residues	
   (bottom	
   right	
   spectrum,	
   compare:	
   Fig.	
   1b).	
   This	
   indicates	
  
that	
  the	
  K170M	
  mutation	
  interferes	
  with	
  the	
  RNA	
  interaction	
  as	
  indicated	
  by	
  the	
  
cartoon	
  (top	
  tight).	
  A	
  summary	
  of	
  the	
  hot-­‐spots	
  is	
  shown	
  in	
  red	
  on	
  the	
  surface	
  of	
  
the	
  complex	
  (bottom	
  right).	
  
	
  
(b)	
  Right:	
  Enlarged	
  view	
  of	
  the	
  boxed	
  region	
  of	
  the	
  bottom	
  right	
  spectrum	
  in	
  (a).	
  
Despite	
  the	
  loss	
  of	
  many	
  CSPs	
  in	
  the	
  RNA	
  titration	
  of	
  the	
  K170M	
  mutant,	
  residue	
  
I110,	
  that	
  is	
  located	
  in	
  the	
  pore,	
  displays	
  CSPs	
  that	
  are	
  the	
  same	
  as	
  for	
  the	
  RNA	
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titration	
   with	
   the	
  WT	
   protein	
   (middle).	
   This	
   shows	
   that	
   the	
   K170M	
  mutation	
  
resulted	
   in	
   a	
   local	
   loss	
   of	
   the	
   RNA:Rrp4	
   interaction	
   at	
   the	
   periphery	
   of	
   the	
  
complex,	
  but	
   that	
   the	
  RNA	
  was	
  still	
  able	
   to	
   interact	
  with	
   the	
  Rrp4	
  pore	
  region.	
  
K170	
  is	
  thus	
  a	
  local	
  hot-­‐spot	
  in	
  the	
  complex.	
  Not	
  only	
  K170	
  is	
  part	
  of	
  the	
  hot-­‐spot	
  
region	
  and	
  also	
  other	
  mutations	
  in	
  the	
  KH	
  loop	
  region	
  (e.g.	
  R166E)	
  resulted	
  in	
  a	
  
local	
  loss	
  of	
  the	
  RNA	
  affinity	
  without	
  perturbing	
  the	
  interactions	
  at	
  the	
  RNA	
  pore	
  
(right	
  spectrum).	
  	
  
	
  
	
  
	
  
	
   	
  

Nature Chemical Biology: doi:10.1038/nchembio.2328



	
   S16	
  

	
  
	
  
Supplementary	
   Figure	
   8	
   |	
   Known	
   RNA	
   interactions	
   of	
   NTDs,	
   S1	
   and	
   KH	
  
domains.	
  
A	
  DALI	
  search	
  2	
  using	
  the	
  NTD,	
  S1	
  or	
  KH	
  domain	
  of	
  the	
  Rrp4	
  protein	
  (2JEA,	
  REF	
  
3)	
  was	
  performed	
  and	
  structures	
   containing	
  nucleic	
   acids	
  were	
   selected.	
  These	
  
protein-­‐RNA	
  complexes	
  were	
   then	
  superimposed	
  on	
   the	
  NTD	
  (a),	
  S1	
   (b)	
  or	
  KH	
  
(c)	
  domains	
  of	
   the	
  Rrp4	
  protein	
   to	
  assess	
   if	
   the	
  RNA	
  binding	
   site	
   that	
  we	
  map	
  
here	
  compares	
   to	
   the	
  RNA	
   interaction	
  sites	
   that	
  have	
  previously	
  been	
   found	
   in	
  
these	
  protein	
  domains.	
  The	
  Rrp4	
  domains	
  are	
  shown	
  in	
  blue,	
  where	
  the	
  residues	
  
that	
   we	
   mapped	
   to	
   the	
   interaction	
   interface	
   are	
   shown	
   in	
   red.	
   The	
   domains	
  
found	
  using	
   the	
  DALI	
  search	
  are	
  shown	
   in	
   light	
  green,	
  where	
   the	
  RNA	
   in	
   those	
  
complexes	
  is	
  shown	
  in	
  orange.	
  For	
  the	
  NTD	
  (a),	
  residues	
  that	
  we	
  identified	
  have	
  
not	
  been	
  identified	
  to	
  be	
  involved	
  in	
  RNA	
  interactions	
  in	
  structural	
  homologues.	
  
For	
  the	
  S1	
  and	
  KH	
  domains	
  (b,	
  c),	
  the	
  surface	
  that	
  we	
  identified	
  corresponds	
  to	
  
surfaces	
   of	
   these	
   domains	
   that	
   have	
   previously	
   been	
   shown	
   to	
   be	
   involved	
   in	
  
RNA	
  interactions.	
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The	
  following	
  structures	
  are	
  shown	
  (PDB	
  code	
  and	
  reference):	
  
	
  
For	
  the	
  NTD:	
  4V19	
  (REF	
  4),	
  4BY1	
  (REF	
  5)	
  
	
  
For	
   the	
   S1	
   domain:	
   4OO1	
   (REF	
   6),	
   4IFD	
   (REF	
   7),	
   2C4R	
   (REF	
   8),	
   4QQB	
   (REF	
   9),	
  
2BH2	
  (REF	
  10),	
  4A2I	
  (REF	
  11),	
  4UER	
  (REF	
  12),	
  3TRZ	
  (REF	
  13).	
  
	
  
For	
  the	
  KH	
  domain:	
  4AM3	
  (REF	
  14),	
  3VKE	
  (REF	
  15),	
  3AEV	
  (REF	
  16),	
  2ANN	
  (REF	
  17),	
  
4B8T	
  (REF	
  18),	
  2MJH	
  (REF	
  19),	
  4JVH	
  (REF	
  20),	
  1K1G	
  (REF	
  21)	
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Supplementary	
  Figure	
  9	
  |	
  Removal	
  of	
  weakly	
  bound	
  RNA	
  	
  
(a)	
   NMR	
   spectra	
   of	
   the	
   Rrp4-­‐exosome	
   complex	
   in	
   the	
   absence	
   (black)	
   and	
  
presence	
   of	
   an	
   excess	
   of	
   RNA	
   substrate	
   (green).	
   The	
   excess	
   substrate	
   was	
  
removed	
   using	
   size	
   exclusion	
   chromatography,	
   which	
   results	
   in	
   the	
   red	
  
spectrum.	
  Regions	
  that	
  were	
  used	
  to	
  extract	
  one-­‐dimensional	
  projections	
  (b)	
  are	
  
indicated	
  with	
  dashed	
  boxes.	
  	
  
	
  
(b)	
  Projections	
  of	
  the	
  boxed	
  regions	
  in	
  (a).	
  The	
  projection	
  of	
  M85	
  was	
  done	
  in	
  the	
  
carbon	
   dimension,	
   whereas	
   the	
   projection	
   of	
   I16	
   was	
   done	
   in	
   the	
   proton	
  
dimension.	
   The	
   fully	
   RNA	
   loaded	
   complex	
   (green)	
   lost	
   a	
   significant	
   amount	
   of	
  
RNA	
   during	
   size	
   exclusion	
   chromatography	
   (red)	
   and	
   is	
   in-­‐between	
   the	
   free	
  
(black)	
  and	
  fully	
   loaded	
  (green)	
  complex,	
  both	
   for	
  residue	
  M85	
  (that	
   is	
   in	
  slow	
  
exchange	
   on	
   the	
   NMR	
   chemical	
   shift	
   timescale)	
   and	
   for	
   I16	
   (that	
   is	
   in	
   fast	
  
exchange	
  on	
  the	
  NMR	
  chemical	
  shift	
  timescale).	
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Supplementary	
  Figure	
  10	
  |	
  Model	
  for	
  the	
  interaction	
  between	
  the	
  exosome	
  
and	
  RNA	
  substrate.	
  
The	
  free	
  exosome	
  (complex	
  1,	
  where	
  P	
  refers	
  to	
  the	
  exosome	
  protein	
  complex)	
  
can	
  recruit	
  a	
  first	
  RNA	
  with	
  nM	
  affinity	
  (Table	
  1	
  of	
  the	
  main	
  text).	
  This	
  RNA	
  can	
  
be	
  recruited	
  to	
  site	
  A,	
  B	
  or	
  C	
  on	
  the	
  Rrp4-­‐cap	
  to	
  form	
  a	
  complex	
  with	
  1	
  strongly	
  
bound	
  RNA	
  (complex	
  2,	
  3	
  or	
  4,	
  where	
  the	
  RNA	
  that	
  interacts	
  strongly	
  with	
  the	
  4	
  
Rrp4-­‐exosome	
   contact	
   points	
   is	
   indicated	
   in	
   green;	
   L	
   refers	
   to	
   the	
   RNA	
   ligand	
  
and	
   PL	
   to	
   the	
   protein	
   complex	
  with	
   one	
   ligand.	
   PLa,	
   PLb	
   and	
   PLc	
   refer	
   to	
   the	
  
situations	
  where	
  the	
  ligand	
  is	
  bound	
  to	
  site	
  A,	
  B	
  or	
  C,	
  respectively).	
  The	
  on-­‐rate	
  
(kon)	
   and	
   the	
   off-­‐rate	
   (koff1)	
   that	
   are	
   associated	
   with	
   this	
   binding	
   event	
   are	
  
indicated.	
  In	
  the	
  fitting	
  procedure,	
  we	
  fix	
  the	
  affinity	
  of	
  the	
  first	
  interaction	
  to	
  the	
  
affinity	
   that	
   we	
   determined	
   based	
   on	
   fluorescence	
   anisotropy	
   experiments	
  
(Talbe	
  1	
  of	
  the	
  main	
  text).	
  	
  	
  
	
  
Subsequently	
   a	
   second	
   RNA	
   can	
   be	
   recruited	
   to	
   the	
   Rrp4-­‐exosome	
   to	
   form	
   a	
  
complex	
   with	
   two	
   bound	
   RNAs	
   (complexes	
   5	
   to	
   10,	
   where	
   the	
   RNA	
   that	
   only	
  
interacts	
  with	
  the	
  Rrp4	
  cap	
  is	
  indicated	
  in	
  pink.	
  PLxy	
  refers	
  to	
  a	
  protein	
  complex	
  
that	
  has	
   ligand	
  bound	
  to	
  sites	
  X	
  and	
  Y).	
  The	
  second	
  RNA	
  is	
  bound	
  weaker	
  than	
  
the	
   first	
   RNA.	
   The	
   on-­‐rate	
   for	
   this	
   complex	
   formation	
   (kon)	
   and	
   the	
   off-­‐rate	
  
(koff23)	
  are	
   indicated.	
  To	
  reduce	
   the	
  number	
  of	
   fitting	
  parameters,	
  we	
  assume	
  
that	
  the	
  on-­‐rate	
  for	
  the	
  binding	
  of	
  the	
  first	
  RNA	
  and	
  the	
  second	
  RNA	
  are	
  identical.	
  
	
  
The	
   Rrp4-­‐exosome	
   complex	
   that	
   contains	
   two	
  RNA	
   species	
   can	
   recruit	
   a	
   third	
  
RNA	
  (complex	
  11,	
  12	
  or	
  13,	
  where	
  the	
  third	
  RNA	
  only	
  interacts	
  with	
  Rrp4	
  cap	
  is	
  
also	
   indicated	
   in	
   pink).	
   The	
   associated	
   on-­‐	
   and	
   off-­‐rates	
   for	
   the	
   third	
   binding	
  
event	
  are	
  assumed	
  to	
  be	
  identical	
  to	
  those	
  for	
  the	
  second	
  RNA	
  binding	
  event	
  as	
  
the	
  same	
  interaction	
  points	
  are	
  involved.	
  
	
  
The	
  5’	
  end	
  of	
  the	
  RNA	
  that	
  is	
  bound	
  to	
  the	
  exosome	
  core	
  (first	
  RNA	
  interaction;	
  
indicated	
   in	
   green)	
   can	
   dissociate	
   from	
   the	
   Rrp4	
   cap	
   due	
   to	
   the	
   very	
   small	
  
intrinsic	
  binding	
  energy	
  for	
  the	
  interaction	
  between	
  the	
  Rrp4	
  cap	
  and	
  the	
  5’	
  end	
  
of	
  the	
  RNA	
  (see	
  Table	
  1).	
   In	
  case	
  this	
  occurs	
  for	
  e.g.	
  complex	
  2	
  (or	
  3	
  or	
  4),	
   this	
  
leads	
   to	
   the	
   formation	
   of	
   complex	
   14	
   (where	
   PLf,	
   refers	
   to	
   a	
   protein	
   complex	
  
with	
  one	
  ligand	
  that	
  has	
  a	
  5’	
  end	
  that	
  is	
  released	
  or	
  freed	
  from	
  the	
  cap).	
  The	
  RNA	
  
that	
  is	
  bound	
  only	
  to	
  the	
  core	
  (and	
  not	
  to	
  the	
  Rrp4	
  cap)	
  is	
  indicated	
  in	
  orange	
  in	
  
the	
  cartoon.	
  Likewise,	
  the	
  dissociation	
  of	
  the	
  5’	
  end	
  of	
  the	
  substrate	
  for	
  the	
  first	
  
bound	
   RNA	
   can	
   convert	
   complexes	
   5	
   to	
   10	
   into	
   complexes	
   15	
   to	
   17	
   and	
  
complexes	
  11	
  to	
  13	
  into	
  complexes	
  18	
  to	
  20.	
  We	
  describe	
  this	
  exchange	
  process	
  
with	
  the	
  on-­‐	
  and	
  off-­‐rates	
  konC	
  and	
  koffC	
  (where	
  “C”	
  refers	
  to	
  the	
  Cap”).	
  	
  
	
  
The	
  interaction	
  between	
  three	
  RNA	
  species	
  and	
  the	
  Rrp4-­‐exosome	
  complex	
  can	
  
thus	
  be	
  accurately	
  described	
  using	
  20	
  different	
  microscopic	
  states	
  and	
  a	
  set	
  of	
  5	
  
exchange	
   parameters	
   (kon,	
   koff1,	
   koff23,	
   konC	
   and	
   koffC).	
   The	
   exchange	
  
parameters	
  kon	
  and	
  koff1	
  determine	
  the	
  affinity	
  for	
  the	
  first	
  RNA	
  binding	
  event,	
  
the	
   exchange	
  parameters	
  kon	
  and	
  koff23	
  determine	
   the	
   affinity	
   for	
   the	
   second	
  
and	
   third	
   RNA	
   binding	
   event	
   and	
   the	
   exchange	
   parameters	
   konC	
   and	
   koffC	
  
determine	
  the	
  fraction	
  where	
  the	
  RNA	
  that	
  binds	
  to	
  the	
  core	
  has	
  a	
  5’	
  end	
  that	
  is	
  
released	
  from	
  the	
  cap.	
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 -3*kon*L koff1 koff1 koff1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 kon*L
-koff1-

2*kon*L-
koffC

0 0 koff23 koff23 0 0 0 0 0 0 0 koffC 0 0 0 0 0 0

3 kon*L 0
-koff1-

2*kon*L-
koffC

0 0 0 koff23 koff23 0 0 0 0 0 koffC 0 0 0 0 0 0

4 kon*L 0 0
-koff1-

2*kon*L-
koffC

0 0 0 0 koff23 koff23 0 0 0 koffC 0 0 0 0 0 0

5 0 kon*L 0 0 -koff23-
kon*L-koffC 0 0 0 0 0 koff23 0 0 0 konC 0 0 0 0 0

6 0 kon*L 0 0 0 -koff23-
kon*L-koffC 0 0 0 0 koff23 0 0 0 0 konC 0 0 0 0

7 0 0 kon*L 0 0 0 -koff23-
kon*L-koffC 0 0 0 0 koff23 0 0 0 konC 0 0 0 0

8 0 0 kon*L 0 0 0 0 -koff23-
kon*L-koffC 0 0 0 koff23 0 0 0 0 konC 0 0 0

9 0 0 0 kon*L 0 0 0 0 -koff23-
kon*L-koffC 0 0 0 koff23 0 0 0 konC 0 0 0

10 0 0 0 kon*L 0 0 0 0 0 -koff23-
kon*L-koffC 0 0 koff23 0 konC 0 0 0 0 0

11 0 0 0 0 kon*L kon*L 0 0 0 0 -2*koff23-
koffC 0 0 0 0 0 0 konC 0 0

12 0 0 0 0 0 0 kon*L kon*L 0 0 0 -2*koff23-
koffC 0 0 0 0 0 0 0 konC

13 0 0 0 0 0 0 0 0 kon*L kon*L 0 0 -2*koff23-
koffC 0 0 0 0 0 konC 0

14 0 koffC koffC koffC 0 0 0 0 0 0 0 0 0 -3*konC-
3*kon*L koff23 koff23 koff23 0 0 0

15 0 0 0 0 koffC 0 0 0 0 koffC 0 0 0 kon*L
-2*konC-
koff23-
2*kon*L

0 0 koff23 koff23 0

16 0 0 0 0 0 koffC koffC 0 0 0 0 0 0 kon*L 0
-2*konC-
koff23-
2*kon*L

0 koff23 0 koff23

17 0 0 0 0 0 0 0 koffC koffC 0 0 0 0 kon*L 0 0
-2*konC-
koff23-
2*kon*L

0 koff23 koff23

18 0 0 0 0 0 0 0 0 0 0 koffC 0 0 0 kon*L kon*L 0 -2*koff23-
konC 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 koffC 0 kon*L 0 kon*L 0 -2*koff23-
konC 0

20 0 0 0 0 0 0 0 0 0 0 0 koffC 0 0 0 kon*L kon*L 0 0 -2*koff23-
konC

	
  
Supplementary	
  Figure	
  11	
  |	
  Exchange	
  matrix	
  for	
  the	
  binding	
  between	
  three	
  
RNA	
  substrates	
  and	
  the	
  Rrp4-­‐exosome	
  
To	
  simulate	
  the	
  NMR	
  spectra	
  during	
  the	
  NMR	
  titration	
  experiment	
  the	
  exchange	
  
matrix	
   (above)	
   is	
   multiplied	
   with	
   the	
   diagonal	
   relaxation	
   and	
   chemical	
   shift	
  
matrixes	
  and	
  with	
  the	
  population	
  vector.	
  The	
  populations	
  of	
  the	
  different	
  states	
  
(1	
   to	
   20)	
  were	
   determined	
   based	
   on	
   the	
   extracted	
   exchange	
   parameters	
   in	
   an	
  
iterative	
   manner.	
   The	
   relaxation	
   rates	
   and	
   resonance	
   frequencies	
   of	
   the	
   free	
  
resonance	
  were	
   directly	
   extracted	
   from	
   the	
  NMR	
   spectra.	
   The	
   relaxation	
   rates	
  
and	
  resonance	
   frequencies	
  of	
   the	
  bound	
  state	
  were	
  estimated	
   from	
  the	
  spectra	
  
and	
  subsequently	
  optimized	
  in	
  the	
  global	
  fitting	
  procedure,	
  as	
  these	
  parameters	
  
cannot	
  be	
   accurately	
  determined	
  based	
  on	
   the	
   spectra	
   (due	
   to	
   less	
   than	
  100%	
  
saturation	
  of	
  all	
  binding	
  sites	
  at	
  the	
  last	
  step	
  of	
  the	
  titration	
  experiment).	
  
	
  
To	
   extract	
   the	
   exchange	
   parameters	
   (kon,	
   koff23,	
   konC	
   and	
   koffC)	
   these	
  were	
  
optimized	
   to	
  minimize	
   the	
   square	
   of	
   the	
   difference	
   between	
   the	
   experimental	
  
and	
  simulated	
  NMR	
  spectra.	
  Koff1	
  is	
  determined	
  based	
  on	
  the	
  measured	
  affinity	
  
for	
   the	
   first	
   binding	
   event	
   (67.5	
   nM;	
   Table	
   1)	
   and	
   kon.	
   In	
   addition,	
   for	
   each	
  
residue	
   a	
   single	
   scaling	
   factor	
   is	
   optimized	
   to	
   correct	
   for	
   differences	
   in	
   signal	
  
intensity	
   between	
   residues	
   and	
   for	
   each	
   spectrum	
   a	
   single	
   scaling	
   factor	
   is	
  
optimized	
   to	
   correct	
   for	
   slight	
   changes	
   in	
   the	
   intensity	
   in	
   different	
   titration	
  
points	
  (e.g.	
  due	
  to	
  loss	
  in	
  protein	
  during	
  the	
  titration	
  experiment	
  due	
  to	
  extended	
  
measurement	
   times	
   and	
   due	
   to	
   small	
   differences	
   that	
   result	
   from	
   potential	
  
imperfections	
  shimming	
  and	
  pulse	
  calibrations).	
  
	
  
In	
  total	
  8	
  different	
  residues	
  (M85,	
  I130,	
  I159,	
  I168,	
  I208,	
  I72,	
  I16	
  and	
  I110)	
  were	
  
fitted	
  to	
  the	
  global	
  exchange	
  parameters	
  simultaneously.	
  Errors	
  in	
  the	
  exchange	
  
parameters	
  were	
  based	
  on	
  a	
   Jackknife	
  approach,	
  where	
   the	
   fitting	
   routine	
  was	
  
repeated	
  eight	
  times	
  with	
  a	
  dataset	
  where	
  a	
  single	
  residue	
  was	
  excluded.	
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Supplementary	
  Figure	
  12	
  |	
  Experimental	
  and	
  back-­‐calculated	
  NMR	
  spectra	
  
during	
  the	
  addition	
  of	
  RNA	
  to	
  the	
  Rrp4-­‐exosome.	
  
1D	
   traces	
   extracted	
   from	
   the	
   2D	
   NMR	
   spectra	
   (red	
   dots;	
   experimental	
   data)	
  
superimposed	
  on	
  the	
  spectra	
  that	
  are	
  back-­‐calculated	
  based	
  on	
  the	
  determined	
  
exchange	
   parameters	
   (blue	
   lines).	
   All	
   residues	
   and	
   all	
   spectra	
   have	
   been	
  
simultaneously	
  fitted	
  to	
  determine	
  the	
  associated	
  exchange	
  parameters.	
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Supplementary	
  Figure	
  13	
  |	
  Populations	
  of	
  the	
  different	
  states	
  	
  
Left:	
  Populations	
  of	
  the	
  Rrp4	
  exosome	
  complex	
  with	
  no,	
  one,	
  two	
  or	
  three	
  RNA	
  
molecules	
  bound	
  during	
  the	
  NMR	
  titration	
  experiment.	
  The	
  curves	
  are	
  based	
  on	
  
the	
  affinities	
  of	
  the	
  first	
  and	
  subsequent	
  (second	
  and	
  third)	
  RNA	
  binding	
  events.	
  
Right,	
  as	
  the	
  plot	
  on	
  the	
  left,	
  but	
  where	
  is	
  distinguished	
  between	
  states	
  where	
  the	
  
5’	
  end	
  that	
  is	
  bound	
  (*)	
  or	
  released	
  (**)	
  from	
  the	
  cap	
  structure.	
  The	
  states	
  refer	
  
to	
  the	
  states	
  in	
  Supplementary	
  Fig.	
  10a.	
  	
  
	
  
The	
  KonC	
  and	
  KoffC	
  values	
  that	
  we	
  obtain	
  from	
  the	
  fitting	
  are	
  165	
  ±	
  	
  26	
  Hz	
  and	
  
145	
  ±	
  26	
  Hz	
  respectively.	
  Based	
  on	
  these	
  exchange	
  parameters,	
  the	
  apparent	
  kD	
  
for	
  the	
  interaction	
  between	
  the	
  5’	
  end	
  of	
  the	
  RNA	
  and	
  the	
  cap	
  structure	
  is	
  very	
  
low	
   and	
   the	
   energy	
   involved	
   (∆𝐺 =   −𝑅𝑇𝑙𝑛( !!",!

!!"",!
)	
  )	
   is	
   	
   0.081	
   ±	
   0.15	
   kcal/mol.	
  

The	
  error	
   in	
  ΔG	
   is	
   large	
  (twice	
   the	
  measured	
  value),	
  which	
   is	
  due	
   to	
   the	
   large	
  
uncertainties	
   in	
   the	
   determined	
   KonC	
   and	
   KoffC	
   rates.	
   	
   Importantly,	
   the	
   small	
  	
  	
  	
  
ΔG	
   value	
   is	
   in	
   good	
   qualitative	
   agreement	
   with	
   the	
   small	
   intrinsic	
   binding	
  
energy	
  (ΔGi	
  =	
  	
  	
  	
  	
  	
  -­‐0.98	
  ±	
  0.17kcal/mol)	
  that	
  we	
  determined	
  for	
  the	
  Rrp4	
  cap.	
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Supplementary	
  Figure	
  14	
  |	
  Experimental	
  and	
  back-­‐calculated	
  NMR	
  spectra	
  
during	
  the	
  addition	
  of	
  RNA	
  to	
  the	
  periphery	
  mutant	
  Rrp4-­‐exosome.	
  
1D	
   traces	
   extracted	
   from	
   the	
   2D	
   NMR	
   spectra	
   (red	
   dots;	
   experimental	
   data)	
  
superimposed	
  on	
  the	
  spectra	
  that	
  are	
  back-­‐calculated	
  based	
  on	
  the	
  determined	
  
exchange	
   parameters	
   (blue	
   lines).	
   All	
   residues	
   and	
   all	
   spectra	
   have	
   been	
  
simultaneously	
   fitted	
   to	
   determine	
   the	
   associated	
   exchange	
   parameters.	
   Note	
  
that	
   less	
   residues	
   are	
   used	
  here,	
   compared	
   to	
   the	
   fitting	
   of	
   the	
  WT	
  enzyme	
   as	
  
residues	
  that	
  are	
  close	
  to	
  the	
  periphery	
  of	
  the	
  enzyme	
  don’t	
  display	
  CSPs	
  and	
  are	
  
thus	
  omitted	
  from	
  the	
  fitting	
  routine.	
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Supplementary	
   Figure	
   15	
   |	
   Comparison	
   between	
   the	
   archaeal	
   and	
  
eukaryotic	
  exosome-­‐RNA	
  complexes	
  
Structure	
   of	
   the	
   archaeal	
   exosome	
   complex	
   3	
   (left,	
   2JEA),	
   the	
   structure	
   of	
   the	
  
eukaryotic	
  exo-­‐9	
  (core	
  +	
  cap	
  proteins)	
  in	
  complex	
  with	
  RNA,	
  Rrp44	
  and	
  a	
  part	
  of	
  
Rrp6	
   7	
   (4IFD),	
   the	
   eukaryotic	
   exo-­‐9	
   in	
   complex	
  with	
   RNA	
   and	
   Rrp6	
   6	
   and	
   the	
  
eukaryotic	
  exo-­‐9	
   in	
  complex	
  with	
  RNA	
  and	
  Rrp44,	
  Rrp6	
  and	
  a	
  part	
  of	
  Rrp47	
  22	
  
(5C0W).	
  The	
  path	
  of	
  the	
  RNA	
  we	
  identify	
  here	
  in	
  the	
  archaeal	
  complex	
  covers	
  a	
  
large	
   part	
   of	
   the	
   Rrp4	
   cap	
   protein	
   (indicated	
   by	
   the	
   orange	
   line).	
   The	
  
corresponding	
  surface	
  of	
  Rrp4	
  is	
  not	
  used	
  in	
  the	
  known	
  structures	
  of	
  eukaryotic	
  
exosome-­‐RNA	
   complexes.	
   In	
   those	
   structures,	
   the	
  RNA	
   is	
   either	
   not	
   contacting	
  
the	
  Rrp4	
  surface	
  (potentially	
  due	
  to	
  the	
  fact	
  that	
  the	
  5’	
  end	
  of	
  the	
  RNA	
  that	
  was	
  
used	
  forms	
  a	
  hairpin	
  structure)	
  or	
  the	
  RNA	
  contacts	
  adaptor	
  proteins	
  that	
  dock	
  
onto	
   the	
   eukaryotic	
   Rrp4-­‐Rrp40-­‐Csl4	
   exosome	
   cap.	
   This	
   indicates	
   that	
   RNA	
  
recognition	
   by	
   the	
   eukaryotic	
   exosome	
   complex	
   evolved	
   further	
   and	
   is	
  
modulated	
  by	
  additional	
  exosome	
  components.	
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Supplementary	
  Figure	
  16	
  |	
  Relation	
  between	
  ΔGi	
  and	
  ΔG0	
  
Consider	
  the	
  situation	
  above,	
  where	
  a	
  protein	
  (grey)	
  contains	
  two	
  binding	
  sites	
  
for	
  a	
  ligand	
  (red).	
  
	
  
For	
   the	
   system	
   described	
   above	
   ∆𝐺!"! ,	
   ∆𝐺!! 	
  and	
   ∆𝐺!! 	
  can	
   be	
   determined	
  
experimentally.	
  These	
  are	
  the	
  free	
  energies	
  of	
  binding	
  of	
  the	
  ligand	
  to	
  sites	
  A	
  and	
  
B	
   simultaneously,	
   to	
   site	
  A	
   only	
   and	
   to	
   site	
  B	
   only,	
   respectively.	
   From	
   that	
  we	
  
calculate	
   the	
   intrinsic	
   binding	
   energies	
   for	
   site	
   A:	
  ∆𝐺!! =   ∆𝐺!"! −   ∆𝐺!!	
  and	
   for	
  
site	
  B:	
  ∆𝐺!! =   ∆𝐺!"! −   ∆𝐺!!.	
  The	
  ∆𝐺! 	
  values	
  are	
  larger	
  (more	
  negative)	
  when	
  the	
  
two	
   binding	
   sites	
   influence	
   each	
   other	
   in	
   a	
   constructive	
  manner	
   and	
   they	
   are	
  
lower	
   (less	
   negative)	
   when	
   the	
   two	
   binding	
   events	
   influence	
   each	
   other	
  
unfavorably	
  23,24,	
  as	
  illustrated	
  below.	
  
	
  
First,	
  in	
  the	
  case	
  the	
  ligand	
  is	
  rigid,	
  one	
  binding	
  event	
  can	
  position	
  the	
  other	
  
interface	
  optimally	
  for	
  the	
  second	
  interaction.	
  In	
  that	
  scenario,	
  only	
  the	
  first	
  
binding	
  step	
  includes	
  an	
  entropic	
  penalty	
  (the	
  ligand	
  will	
  loose	
  degrees	
  of	
  
freedom	
  upon	
  complex	
  formation	
  in	
  the	
  first	
  binding	
  step).	
  We	
  here	
  refer	
  to	
  this	
  
energetic	
  penalty	
  as	
  ∆𝐺! .	
  When	
  calculating	
  ∆𝐺!! 	
  and	
  ∆𝐺!! 	
  (as	
  defined	
  above)	
  the	
  
term	
  ∆𝐺! 	
  is	
  cancelled	
  out	
  (∆𝐺!"! ,	
  ∆𝐺!!	
  and	
  ∆𝐺!!	
  contain	
  the	
  same	
  amount	
  of	
  ∆𝐺! ).	
  
As	
  a	
  result	
  ∆𝐺!! +   ∆𝐺!! <   ∆𝐺!"! 	
  (the	
  sum	
  of	
  the	
  intrinsic	
  binding	
  energies	
  is	
  more	
  
negative	
  than	
  the	
  free	
  energy	
  of	
  binding).	
  
	
  
Second,	
  in	
  case	
  when	
  the	
  ligand	
  is	
  highly	
  flexible,	
  both	
  the	
  first	
  and	
  second	
  
binding	
  event	
  needs	
  to	
  overcome	
  an	
  entropic	
  barrier	
  (∆𝐺! ).	
  The	
  loss	
  of	
  entropy	
  
for	
  the	
  interaction	
  of	
  the	
  ligand	
  when	
  bound	
  to	
  both	
  site	
  (A	
  and	
  B;	
  twice	
  a	
  ∆𝐺! 	
  
term)	
  is	
  thus	
  larger	
  than	
  it	
  is	
  for	
  the	
  interaction	
  with	
  site	
  A	
  only	
  or	
  with	
  site	
  B	
  
only	
  (only	
  one	
  ∆𝐺! 	
  term).	
  The	
  extracted	
  ∆𝐺!! 	
  and	
  ∆𝐺!! 	
  values	
  are,	
  in	
  that	
  
scenario,	
  thus	
  less	
  negative	
  by	
  ∆𝐺! .	
  When	
  ∆𝐺! 	
  is	
  the	
  same	
  in	
  all	
  steps,	
  ∆𝐺!! +
  ∆𝐺!! =   ∆𝐺!"! 	
  
	
  
Third,	
  in	
  it	
  is	
  possible	
  that	
  a	
  flexible	
  ligand	
  is	
  forced	
  to	
  adopt	
  a	
  high-­‐energy	
  
structure	
  to	
  interact	
  with	
  both	
  sites.	
  In	
  that	
  case,	
  the	
  interaction	
  of	
  a	
  flexible	
  
ligand	
  with	
  the	
  second	
  site	
  is	
  energetically	
  less	
  favorable	
  when	
  the	
  first	
  site	
  is	
  
already	
  bound	
  (due	
  to	
  strain	
  in	
  the	
  fully	
  bound	
  ligand).	
  	
  In	
  that	
  case,	
  the	
  first	
  
binding	
  event	
  will	
  need	
  to	
  overcome	
  an	
  entropic	
  barrier	
  ∆𝐺! ,	
  however,	
  the	
  
second	
  binding	
  event	
  will	
  need	
  to	
  overcome	
  both	
  a	
  ∆𝐺! 	
  barrier	
  and	
  an	
  
additional	
  energy	
  barrier	
  (that	
  is	
  required	
  to	
  induce	
  the	
  higher	
  energetic	
  
conformation	
  in	
  the	
  ligand).	
  The	
  extracted	
  ∆𝐺!! 	
  and	
  ∆𝐺!! 	
  values	
  are	
  then	
  less	
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A B

A B

A B

Binding to site A

Binding to site B

Binding to site B
(when site A is bound)

Binding to site A
(when site B is bound)

Nature Chemical Biology: doi:10.1038/nchembio.2328



	
   S29	
  

negative	
  by	
  one	
  ∆𝐺! 	
  term	
  and	
  by	
  the	
  energy	
  cost	
  related	
  with	
  the	
  unfavorable	
  
structure	
  of	
  the	
  ligand.	
  	
  ∆𝐺!"! ,	
  on	
  the	
  other	
  hand,	
  contains	
  two	
  ∆𝐺! 	
  terms	
  and	
  the	
  
energy	
  term	
  that	
  relates	
  to	
  the	
  unfavorable	
  conformation	
  of	
  the	
  fully	
  bound	
  
ligand.	
  In	
  this	
  case	
  ∆𝐺!"! <   ∆𝐺!! +   ∆𝐺!! 	
  (the	
  sum	
  of	
  the	
  intrinsic	
  binding	
  energies	
  
is	
  less	
  negative	
  than	
  the	
  free	
  energy	
  of	
  binding).	
  
	
  
The	
  magnitude	
  of	
  the	
  sum	
  of	
  the	
  intrinsic	
  binding	
  energies	
  with	
  respect	
  to	
  the	
  
total	
  free	
  energy	
  of	
  binding	
  can	
  thus	
  provide	
  insights	
  into	
  the	
  mode	
  of	
  
interaction	
  between	
  the	
  ligand	
  and	
  the	
  protein.	
  In	
  our	
  current	
  case,	
  where	
  a	
  
highly	
  flexible	
  RNA	
  ligand	
  interacts	
  with	
  the	
  exosome,	
  we	
  have	
  a	
  situation	
  where	
  
∆𝐺!"#$! <   ∆𝐺!! +   ∆𝐺!! +   ∆𝐺!! +   ∆𝐺!! .	
  From	
  that	
  we	
  conclude	
  that	
  there	
  is	
  
tension	
  in	
  the	
  RNA	
  molecule	
  when	
  it	
  interacts	
  with	
  all	
  4	
  interactions	
  sites	
  in	
  the	
  
exosome.	
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Supplementary	
  Figure	
  17	
  |	
  Preparation	
  of	
  the	
  NMR	
  samples	
  	
  
IM-­‐labeled	
  Rrp4	
  is	
  overexpressed	
  in	
  E.	
  coli.	
  Cells	
  are	
   lysed	
  and	
  the	
  supernatant	
  
(lane	
  1)	
   is	
  applied	
  to	
  Ni-­‐NTA	
  resin.	
  The	
  unbound	
  proteins	
  (lane	
  2)	
  and	
  the	
  un-­‐
specifically	
  bound	
  proteins	
  (lane	
  3)	
  are	
  removed.	
  The	
  Rrp4	
  protein	
  that	
  is	
  bound	
  
to	
  the	
  resin	
  is	
  supplemented	
  with	
  an	
  excess	
  of	
  the	
  exosome	
  core.	
  The	
  excess	
  core	
  
is	
  removed	
  (lane	
  4	
  and	
  5).	
  The	
  complex	
  between	
  Rrp4	
  and	
  the	
  exosome	
  core	
  that	
  
is	
   formed	
   on	
   the	
   column	
   is	
   eluted	
   (lane	
   6)	
   and	
   subjected	
   to	
   TEV	
   cleavage	
   to	
  
remove	
   the	
  His-­‐tag	
   from	
  Rrp4	
   (lane	
  7).	
   The	
   final	
   sample	
   is	
   obtained	
   after	
   size	
  
exclusion	
  chromatography	
  of	
   the	
  complex	
  (lane	
  8).	
  Note	
  that	
   the	
  stoichiometry	
  
of	
  the	
  final	
  complex	
  is	
  1:1:1.	
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ABSTRACT

The exosome plays an important role in RNA
degradation and processing. In archaea, three
Rrp41:Rrp42 heterodimers assemble into a barrel like
structure that contains a narrow RNA entrance pore
and a lumen that contains three active sites. Here, we
demonstrate that this quaternary structure of the ex-
osome is important for efficient RNA degradation. We
find that the entrance pore of the barrel is required
for nM substrate affinity. This strong interaction is
crucial for processive substrate degradation and pre-
vents premature release of the RNA from the enzyme.
Using methyl TROSY NMR techniques, we establish
that the 3′ end of the substrate remains highly flex-
ible inside the lumen. As a result, the RNA jumps
between the three active sites that all equally par-
ticipate in substrate degradation. The RNA jumping
rate is, however, much faster than the cleavage rate,
indicating that not all active site:substrate encoun-
ters result in catalysis. Enzymatic turnover therefore
benefits from the confinement of the active sites and
substrate in the lumen, which ensures that the RNA
is at all times bound to one of the active sites. The
evolution of the exosome into a hexameric complex
and the optimization of its catalytic efficiency were
thus likely co-occurring events.

INTRODUCTION

The exosome is a large molecular machine that plays a role
in the processing and degradation of the 3′ end of a large
variety of RNA molecules (1). Complexes that belong to
the exosome and exosome-like family share the same three-
dimensional architecture and are found in all three domains
of life. The simplest form of the complex is the bacterial
RNase PH that has a 3′ to 5′ exoribonuclease activity (2)
(Supplementary Figure S1A). The biological unit of this
complex is a homo-hexamer that comprises three RNase
PH dimers that assemble into a ring with six active sites

(3). During the degradation reaction, the enzyme uses inor-
ganic phosphate to release nucleotide di-phosphates from
the 3′ end of the RNA. The second exosome-like complex
is the polynucleotide phosphorylase (PNPase) (Supplemen-
tary Figure S1B) that is found in bacteria, chloroplasts and
mitochondria. The building block of this enzyme contains
two consecutive RNase PH domains, a KH and an S1 do-
main that are linked in one protein chain (4). Six RNase
PH domains from three PNPase monomers assemble into
a hexameric ring structure that contains three active sites.
The exosome complex itself is found in archaea (5) and eu-
karyotes (6). In archaea, the core of the complex contains
the two RNase PH domain proteins Rrp41 and Rrp42 (7).
Three Rrp41:Rrp42 dimers assemble into a hexameric ring
structure with three active sites (8,9)(Figure 1, Supplemen-
tary Figure S1C). The active sites are located in Rrp41,
whereas the Rrp42 protein has lost its catalytic activity. The
archaeal exosome core recruits three copies of the cap pro-
teins Rrp4 or Csl4 that contain the RNA binding domains
(9,10). The interaction of the archaeal exosome core with
these cap proteins enhances the RNA degradation rates and
provides substrate specificity (11,12). Besides the similar
structures of the PNPase, RNase PH and archaeal exosome,
these complexes share a similar phosphorolytic mechanism.
The eukaryotic exosome (6) has evolved further into a fully
asymmetric complex where all protein chains that form the
core and all protein chains that form the cap are different
(Supplementary Figure S1D and E). In plants (13), only a
single subunit in the core (Exo-9) appears to be catalytically
active. In other eukaryotes, all exosome subunits are inac-
tive and form a scaffolding complex (14–16). Catalytic ac-
tivity is added to the Exo-9 complex by the Rrp44 protein
that harbors both exoribonucleolytic and endoribonucle-
olytic activity (16). Interestingly, the catalytic mechanism of
the eukaryotic complex moved from phosphorolytic to hy-
drolytic. The removal of the phosphorolytic catalytic activi-
ties in the eukaryotic exosome barrel might have occurred to
prevent polymerase activity that could result in non-specific
3′ elongation of RNA (17).

RNase PH (3), PNPase (4), the archaeal and eukaryotic
exosome complexes (8,9,15,18) all assemble into barrel-like
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structures with a (pseudo) 3-fold symmetry (Supplemen-
tary Figure S1). The active sites are located inside the lu-
men of these barrels and these are thus secluded from the
cellular environment. As a result access to the active sites
can be regulated and erroneous RNA degradation can be
prevented. For the exosome and exosome-like complexes,
RNA-binding domains that are not part of the catalytic
RNase PH ring can be used to provide substrate selectivity
(19). Based on previous biochemical data and on published
crystal structures, it can be concluded that the RNA sub-
strate is threaded to the catalytic chamber through a central
pore (the neck region), which is only large enough to accom-
modate one single-stranded RNA (10) (Figure 1). The func-
tional advantage of substrate selectivity that results from
the formation of the quaternary structure is, however, coun-
terbalanced by catalytic disadvantages, as oligomerization
of an enzyme into a multimeric complex reduces the num-
ber of substrates that can be degraded at the same time. As
an example, three isolated Rrp41:Rrp42 dimers will be able
to degrade three substrate RNAs simultaneously, whereas
a trimer of Rrp41:Rrp42 dimers, as found in the archaeal
exosome, is only able to degrade a single substrate at a time.
The oligomerization of enzyme complexes, as is seen in the
exosome family of exonucleases, is thus a trade-off between
a decrease in the number of available active sites per sub-
strate and an increase in substrate selectivity.

Here, we address whether the quaternary structure of the
archaeal exosome complex from Sulfolobus solfataricus pro-
vides catalytic advantages. We focus on two aspects in the
exosome complex that arise due to the oligomerization of
the enzyme: the creation of the neck region and the estab-
lishment of a high local concentration of active sites in the
lumen of the barrel. In brief, we combine methyl TROSY
NMR, RNA degradation and binding experiments and find
that the neck region is essential for the processivity of the
enzyme. In addition, we conclude that the sequestering of
active sites inside a small lumen of the complex favors RNA
degradation as it ensures that the substrate is always in con-
tact with one of the active sites. The formation of a hex-
americ complex thus provides significant functional advan-
tages for the exosome and exosome-like complexes.

MATERIALS AND METHODS

Protein expression and purification

The genes for the Rrp41 and Rrp42 proteins from Sul-
folobus solfataricus were cloned into modified pET vectors
that carried an N-terminal TEV cleavable His6-tag. In ad-
dition, a construct for the coexpression of both proteins
was constructed in a modified pET vector, where only the
Rrp41 protein carried an N-terminal TEV cleavable His6-
tag. Point mutations were introduced using standard site-
directed mutagenesis methods.

Escherichia coli BL21 codon plus cells were transformed
with the appropriate plasmids (Supplementary Table S1).
Cells were grown at 37◦C and proteins were over-expressed
at 25◦C by addition of 1 mM IPTG (Isopropyl �-D-
1-thiogalactopyranoside) when an OD 600 of 0.8 was
reached. Twelve hours later, the cells were pelleted by cen-
trifugation and lysed in buffer A (50 mM NaPO4 pH 7.5,
150 mM NaCl, 1 mM DTT) complemented with 10 mM

Figure 1. Structure of the Sulfolobus solfataricus exosome in complex with
a short RNA. (PDB: 2C38) (27). Rrp41 subunits are colored gray, Rrp42
subunits are colored in light brown and the 4 bases of the RNA substrate
that are visible in the crystal structure are colored in red. Left: topview of
the complex, where the substrate entrance pore is indicated with a circle.
Right: sideview of the complex, where the substrate entrance path is in-
dicated with an arrow. One Rrp41:Rrp42 dimer is shown transparent to
allow visualization of the inside of the barrel.

imidazole, lyzozyme and 0.1% Triton X100. The cell lysate
was cleared from insoluble debris by centrifugation and the
supernatant was loaded on Ni-NTA resin. The resin was
washed with buffer A that was complemented with 10 mM
imidazole. The protein bound to the resin was eluted with
buffer A complemented with 300 mM imidazole. TEV pro-
tease was added to the eluted protein and dialyzed overnight
into buffer A. To remove the His6-tagged TEV protease
and the cleaved His6-tag, the dialysate was applied to Ni-
NTA resin. The final purification step was performed using
size exclusion chromatography on a Superdex 200 column
in buffer B (30 mM Hepes pH 6.9, 100 mM NaCl, 1 mM
DTT).

The exosome complex was reconstituted from separately
purified Rrp42 (after size exclusion chromatography) and
Rrp41 (after dialysis and TEV cleavage). Equal amounts of
both proteins were mixed and incubated for several hours
at room temperature. Uncomplexed Rrp41 or Rrp42 was
removed by incubation at 50◦C for 2 h. After removal of the
precipitated proteins, the sample was further purified using
size exclusion chromatography as described above.

Exosome complexes with a different number of active
sites (on average) were obtained by mixing catalytically ac-
tive and catalytically inactive Rrp41 before the addition of
Rrp42. The percentage of active Rrp41 was varied between
10 and 100%. After reconstitution, the complexes were pu-
rified as described above.

Exosome complexes with exactly one, two or three ac-
tive sites were obtained with plasmids containing the gene
coding for Rrp42 together with three copies of the Rrp41
gene (Supplementary Table S1). These coexpression plas-
mids were designed as previously described (20). The first
copy of Rrp41 contains a His6-tag, the second one contains
a MBP-tag and the third one contains a Strep-tag. For ex-
osomes with a single active site, the His6- and Strep-tagged
versions of Rrp41 were catalytically inactive; for exosomes
with two active sites, the His6-tagged version of Rrp41 was
catalytically active; for the exosome with three active sites,
all Rrp41 versions were catalytically active (Supplementary
Table S1). Cells that coexpressed Rrp42 and the three ver-
sions of Rrp41 were grown and induced as described above.
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After lysis, the proteins were purified using Ni-affinity chro-
matography as described above. The protein that eluted
from the Ni column contained at least one His6-tagged ver-
sion of Rrp41. These complexes were then applied to amy-
lose resin to select for complexes that contained a MBP-
tagged version of Rrp41 in addition to a His6-tagged ver-
sion of Rrp41. The complexes that were eluted from the
amylose resin were subsequently applied to Strep-Tactin
resin to select for exosome complexes that contained all
three tagged versions of Rrp41. The eluted complex was
subsequently treated with TEV protease to remove all affin-
ity tags and dialyzed, prior to performing a size exclusion
chromatography as described above. It is worth mentioning
that the yield of the exosome complexes purified this way is
significantly reduced as only 22% of the exosome complexes
that are formed during over-expression contain all three dif-
ferent tags.

Labeling with NMR active nuclei was achieved by over-
expression in minimal medium that was based on 100%
D2O. 12C2H glucose was used as the carbon source and
methyl labeling was achieved by addition of 100 mg/l U-
[1H,13C] methionine, 60 mg/l 4-methyl 13CH3 �-ketobutyric
acid (labeled isoleucine precursors) or 100 mg/l methyl
13CH3 �-ketoisovaleric acids (labeled valine/leucine precur-
sors) 1 h before induction with 1 mM IPTG.

Coexpression of Rrp41 and Rrp42 was used for the
preparation of the complex that contained NMR active
methyl groups in both Rrp41 and Rrp42. To that end, both
proteins were coexpressed in NMR active growth medium
(Supplementary Table S1). Purification was performed as
for the single proteins.

RNA in vitro transcription and purification

RNA was prepared using in vitro transcription with T7
polymerase. The DNA template was obtained from a lin-
earized vector. RNAs used in NMR experiments were tran-
scribed with an HDV-ribozyme that cleaves at the end
of the target RNA sequence, resulting in the presence of
a 3′ cyclic phosphate. The 3′ cyclic phosphate prevents
degradation of the RNA by the exosome and thus al-
lows for long-term NMR measurements. RNAs used in
binding and degradation experiments were produced us-
ing run-off transcription, where the final RNA contained
a 3′ GCT that resulted from the linearization of the tem-
plate vector with the HindIII restriction enzyme. All RNA
constructs contained a hairpin structure (GGCCCCCC-
CCGAAAGGGGGGGG) followed by 32, 63, 92 or 118
adenines (Supplementary Table S1). The DNA vector con-
taining 63, 92 or 118 adenines were obtained from gene-
synthesis (GenScript USA Inc.). In vitro transcribed RNA
was purified natively with weak ion exchange chromatogra-
phy using a DEAE-sepharose column as described (21). The
pooled fractions were concentrated and buffer exchanged
into H2O with a PD10 column, followed by SpeedVac con-
centration.

Degradation assays

RNA degradation assays were performed in 180 �l reaction
buffer (20 mM Hepes pH 6.5, 60 mM KCl, 0.1 mM EDTA, 2

mM DTT, 8 mM MgCl2, 10 mM Na2HPO4) that contained
60 nM exosome (hexameric complex) and 25 �M RNA. The
10 �l samples were taken at different time-points and the
reaction was quenched by addition of 10 �l 8M Urea, 20
mM EDTA, 2mM Tris pH 8.

HPLC analysis

Ten microliters of the quenched reaction were automati-
cally injected onto an analytical DNAPac PA100 column
(Dionex) that was heated to 80◦C. Substrate and product
were separated using a linear gradient from buffer A (5 M
Urea, 20 mM Tris pH 8, 100 mM NaCl) to buffer B (5 M
Urea, 20 mM Tris pH 8, 2 M NaCl) and detected using the
absorption at 260 nm. To convert peak intensities to abso-
lute concentrations, the detector response was calibrated by
injecting known amounts of RNA (Supplementary Figure
S6).

Analysis of degradation data

For each time-point the product concentration was divided
by the total concentration [product + substrate] to normal-
ize the signal. The progression of the reaction was then fitted
from data at several time-points (Supplementary Figures
S4 and S5). Based on the known amounts of enzyme and
substrate together with the length of the substrate, the pro-
gression curves were translated into number of nucleotides
cleaved per second per exosome. To estimate the error in
the extracted catalytic rates, we used a jackknife approach,
where we fitted the data multiple times after randomly re-
moving a subset of the data.

Fluorescence anisotropy

RNA (GCCCCCCCCGAAAGGGGGGGG-A(21)-4-S-
U-A(11)-GCU) for Fluorescence anisotropy measurements
was obtained from Dharmacon. The attachment of the
6-(Iodoacetamido)-fluorescein (Sigma-Aldrich) to the
thio-uridine (4-S-U) was performed according to the
Ramos et al. (22). Dilution series of the inactive exosome
(2000, 1000, 500, 250, 125, 60, 30, 15, 10 and 0 nM) or of
the neck mutant exosome (80, 60, 40, 20, 10, 5, 2, 1, 0.5
and 0 �M) were mixed with 10 nM of RNA labeled with
6-(Iodoacetamido)-fluorescein. For the competition assays,
20 nM of either 32, 63, 98, or 118As RNA was added to the
exosome:fluorescent RNA mixture. In all measurements,
buffer (30 mM KPO4 pH 6.9, 100 mM NaCl, 0.005% Triton
X-100) was used as a reference. Fluorescence anisotropy
was recorded every 5 min using a plate reader (Tecan,
Infinite F200; filter linear polarization XP38: excitation at
485 nm and emission at 535 nm). Affinity constants were
obtained from the data using in-house written scripts using
standard equations (23).

NMR

All NMR samples were in buffer B, based on 100% D2O.
NMR spectra were recorded on AVIII-600 and AVIII-800
spectrometers with room temperature probe-heads. Methyl
TROSY spectra were recorded at 50◦C using a carbon
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chemical shift evolution time of 40 ms. SQ (single quan-
tum) dispersion experiments were recorded at 600 and 800
MHz using a relaxation delay of 50 ms and Car-Purcell-
Meiboom-Gill (CPGM) frequencies ranging from 40 to
1000 Hz. Relaxation dispersion data were fitted numeri-
cally using in-house written scripts using published equa-
tions (24). For the final analysis, two residues (I71 and
I85), two magnetic fields (600 and 800 MHz) and three
temperatures (308, 315 and 323 K) were fitted together
to one intrinsic R2 rate per curve, one exchange rate per
temperature and one chemical shift difference per residue.
Errors in the extracted parameters were obtained using a
Monte Carlo analysis, where the measured data-points were
randomly varied around the experimental error. Chemi-
cal exchange saturation transfer (CEST) experiments were
recorded on an 800 MHz spectrometer at 20◦C and using a
400 ms, 5 Hz B1 field, at 42 different carbon offsets that were
spaced by 10 Hz. All NMR spectra were processed using the
NMRPipe/NMRDraw software suite (25). Figures display-
ing NMR spectra and molecular structures were produced
using NMRview (onemoonscientific.com) and Pymol (py-
mol.org), respectively.

RESULTS

The exosome interacts tightly with RNA substrate

The first step in an enzymatic cycle is the formation of
an enzyme:substrate complex. Here, we used fluorescence
anisotropy measurements to determine the affinity be-
tween the exosome and an RNA substrate that contains
32 adenines downstream of a stable GC hairpin structure.
To visualize the RNA, we introduced a single 4-thiouridine
15 bases downstream of the 3′ end and coupled this base
to 6-(Iodoacetamido)-fluorescein. We then added increas-
ing amounts of a catalytically inactive version of the exo-
some (D182A in Rrp41). Upon substrate:enzyme complex
formation, the rotational lifetime of the RNA is changed,
from which we extracted an affinity of 11.7 (0.9) nM (Fig-
ure 2A) for the interaction between the exosome and the
RNA. This indicates that the exosome interacts tightly with
substrates and that substrates can thus be recruited to the
complex very efficiently.

We then asked if the interaction between the exosome
and RNA depends on the length of the RNA substrate.
To that end we performed fluorescence anisotropy com-
petition experiments where we added increasing amounts
of non-fluorescently labeled RNA to preformed exo-
some:fluorescently labeled RNA complex (Figure 2B). As
competitors, we used RNA species that contain 32, 63, 92
or 118 adenines downstream of the stable GC hairpin. In
these experiments, the fluorescently labeled RNA is com-
peted away from the exosome, which results in a decrease in
the fluorescence anisotropy. We then used the program Dy-
naFit (26) to extract the kD for the competitor and found
that all RNA species we tested interact with an affinities
around 2.7 (0.9) nM (Figure 2B). Note that the competi-
tion experiments yield somewhat lower affinities, which is
potentially due to minor interference of the fluorescence la-
bel with the binding. These data show that the affinity of
the enzyme for the substrate is independent of the length of
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Figure 2. (A) Fluorescence anisotropy measurements to determine the
affinity between an RNA substrate and the exosome. 32A refers to an RNA
that contains a 5′ GC hairpin structure, followed by 32 adenine bases. The
extracted error is based on three independent measurements. (B) The in-
teraction strength between RNA substrates and the exosome is indepen-
dent of the length of the RNA. Shown are fluorescence anisotropy mea-
surements, where 20 nM exosome and 20 nM fluorescently labeled 32A
RNA (see above), were complemented with increasing amounts of non-
fluorescently labeled RNA. The extracted affinities are very similar for
RNA species that contain 32, 63, 92 or 118 adenine bases 3′ to a GC hairpin
structure. The errors in the extracted parameters result from independent
measurements.

the substrate and implies that the 3′ end of the RNA is the
prime recognition site for the exosome.

The tight exosome substrate interaction provides processivity

The RNA degradation of the exosome is highly processive,
where RNA substrates are not released from the enzyme
prior to complete degradation (27). Here, we confirm this
processivity and show that an RNA substrate that contains
a stable GC hairpin followed by 32 adenines is degraded
into an RNA species that contains 10 adenines in addition
to the hairpin (Figure 3A). This product results from the
fact that the stable hairpin prevents entrance of the sub-
strate into the exosome barrel and from the distance be-
tween the entrance pore and the active sites that spans 10
bases (27). During the degradation reaction no intermedi-
ate products are observed, indicating that the substrate is
not released from the enzyme until degradation has been
completed.

To shed light on the interactions that are responsible for
this processive degradation we introduced a point muta-
tion in the neck region of the exosome complex (R67G in
Rrp41). Interestingly, this mutation that, due to the symme-
try of the complex removes three positive charges, caused
a reduction in the affinity between the RNA and the ex-
osome from 11.7 nM (Figure 2A) to 27 �M (Figure 3B).
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Figure 3. (A) Left: Substrate RNA (32A) is processively degraded into product (10A; a GC hairpin with 10 adenine bases) by WT exosome as no inter-
mediate degradation products are detected. Right: a single point mutation in the neck region (Rrp41 R67G) abolishes the processivity as intermediate
degradation products appear during the reaction. (B) Fluorescence anisotropy binding curve of the neck mutant exosome (Rrp41 R67G) with the fluores-
cently labeled 32A RNA. The single point mutation results in a 1000-fold reduction of the affinity between the RNA and the enzyme (compare: Figure
2A).

The removal of the positive charge at the entrance pore thus
reduces the affinity between the exosome complex and the
substrate RNA by three orders of magnitude. At the same
time, the processivity of the degradation reaction has been
lost as intermediate degradation products appear during the
reaction (Figure 3A, right). Over time, these intermediates
decrease in length and disappear as they act as substrates in
subsequent rounds of degradation by the exosome complex.
These results indicate that the neck region of the exosome
is responsible for the tight interaction between the enzyme
and the substrate and that this tight interaction results in
processive RNA degradation.

The RNA is mobile inside the exosome barrel

Based on RNA degradation experiments that use a sub-
strate that contains a stable 5′ hairpin structure, the distance
between the neck region of the exosome and the active sites
is 10 nucleotides (Figure 3) (27). The exact path of the RNA
between the neck region and the active sites has, however,
not been revealed. In crystal structures of the Sulfolobus
solfataricus exosome, the substrate RNA is only visible for
the 4 bases (bases N1 to N4; where base N1 is the 3′ termi-
nal base; Figure 1) encompassed in the active site as well as
the base N10 in the entrance pore (10,27). Except for these
bases, no electron density is observed for the RNA inside
the chamber. This suggests that parts of the RNA are not
well ordered in the barrel of the exosome.

To obtain additional insights into the path of the sub-
strate RNA within the exosome core, we turned to methyl
TROSY NMR spectroscopy (28). This NMR method re-
sults in high quality proton-carbon NMR spectra (29) that
can be used to identify intermolecular interactions (30). To
that end, we recorded methyl TROSY NMR spectra of the
exosome in the absence and presence of RNA substrate.
Methyl groups that come close to the RNA undergo chem-
ical shift perturbations (CSPs) that can report on the path
of the substrate.

First, we prepared an exosome complex that contained
NMR invisible Rrp41 and a version of Rrp42 that was
NMR active in methyl groups of isoleucine, valine and
leucine residues (ILV labeling). We recently obtained res-
onance assignments for these methyl groups and reported
that the RNA interacts with residues around the pore re-
gion and with the isoleucine 85 of Rrp42 (31) that is close

to the active sites of the enzyme. In case the RNA adopts a
static structure with one of the three active sites in the exo-
some barrel, one would expect that resonances of residues
close to the RNA split into two, where 2/3 of the original
resonance remains and a novel resonance with intensity 1/3
arises. For residue 85, however, we observe that the reso-
nance intensity is reduced by a factor of ∼8, whereas we
failed to identify a novel resonance. This indicates that the
RNA substrate is not stably bound to a single active site
when it is inside the exosome barrel. To determine if other
resonances from Rrp42 also undergo line broadening upon
RNA interaction, we divided resonance intensities observed
in the free exosome by the resonance intensities of the com-
plex with RNA (Figure 4A). Although most resonance in-
tensities are unaffected by the RNA interaction, we noticed
that isoleucine 71 and valine 137 are also significantly weak-
ened in the presence of the RNA. Like isoleucine 85, these
residues cluster close to the four nucleotides of the 3′ end
of the RNA substrate. The peak broadening of isoleucine
85 is more pronounced because it interacts directly with
the RNA, whereas isoleucine 71 and valine 137 are sens-
ing the presence of RNA through conformational changes
of the loop underneath the active site (32). Interestingly, the
line broadening effect is more prominent at higher temper-
ature (50◦C) than at lower temperature (20◦C) (Figure 4A).
Most likely, this temperature dependence is due to tran-
sient interactions between the RNA and the enzyme, where
the RNA binding-unbinding causes exchange broadening
of the methyl groups in the vicinity. The reduction of the
line broadening at lower temperatures can be explained by
slower motions of the RNA at 20◦C than at 50◦C. In sum-
mary, our NMR titration data suggest that the RNA is mo-
bile inside the barrel of the exosome.

To identify residues in Rrp41 that are important for the
RNA interaction, we prepared an exosome complex that
contained NMR active methyl groups for the isoleucine
residues of Rrp41 and Rrp42 (Figure 4B). Resonances from
Rrp41 can be identified in a straightforward manner based
on spectra that were recorded on an exosome that was
only labeled in Rrp42 (Supplementary Figure S2). Addi-
tion of RNA to the Rrp41:Rrp42 isoleucine labeled sam-
ple resulted in a number of CSPs (Figure 4B) where CSPs
in Rrp42 confirmed the data that we obtained from the
Rrp42 ILV labeled sample. To identify amino acids in Rrp41
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Figure 4. (A) The methyl group resonance intensities of Rrp42 resonances in the RNA free exosome divided by the corresponding resonance intensity in
the presence of RNA. High bars indicate significant line broadening upon RNA binding, notably observed for residues Ile 71, Ile 85 and Val 137 of Rrp42.
The line broadening is shown for three different temperatures, 50, 30 and 20◦C. Note that a large number of resonances are not affected by the interaction
with RNA (below the dashed bar). (B) Methyl TROSY NMR spectrum of the isoleucine region of the exosome that contains NMR active groups in
Rrp41 and Rrp42. NMR spectra in the absence (black) and presence (red) of RNA are shown and a number of assignments are indicated. Regions that
are highlighted with a dashed box correspond to resonances in Rrp41 that experience large CSPs upon interaction with the RNA substrate. Spectra were
recorded at 323 K. (C) Structure of the Sulfolobus solfataricus exosome (PDB: 2C38) (27) superimposed onto the RNA substrate (in red) visible in the
structure of the Pyrococcus abyssi exosome (35) (PDB: 2PO1). Assigned residues that show CSPs in the presence of RNA are indicated in blue. Only a single
RNA is present per hexameric exosome complex, as the narrow entrance pore does not allow for the recruitment of multiple substrates simultaneously.

that are affected by the RNA, the NMR resonances need
to be assigned to the residues in the complex. A full reso-
nance assignment of the Rrp41 methyl groups was, in our
hands, not feasible, as Rrp41 in isolation had a high ten-
dency to aggregate. Nevertheless, we assigned a number
of Rrp41 methyl group resonances using a mutational ap-
proach, where we mutated Rrp41 isoleucine residues into
closely related amino acids (33,34). This ideally results in
the disappearance of a single isoleucine resonance from the
methyl TROSY spectrum. In that way we identified that
isoleucines 101 and 131 in Rrp41 interact with the substrate
RNA (Figure 4B). Interestingly, these residues shift rather
than broaden upon RNA binding. In addition, we noticed
that an additional set of unassigned residues in Rrp41 expe-
riences resonance shifts (boxed regions in Figure 4B). Shift-
ing of resonances in NMR titration experiments takes place
when the binding–unbinding process is fast on the NMR
chemical shift timescale. This suggests that a number of
residues in Rrp41, including isoleucine 101 and 131, interact
weaker with the RNA than the residues close to the active
sites in Rrp42. This observation is in agreement with the
lack of electron density for the nucleotides that come close
to the Rrp41 protomer.

In comparison with the structure of the Sulfolobus solfa-
taricus exosome (27), the structure of the Pyrococcus abyssi
exosome (35) in complex with RNA shows additional elec-
tron density for RNA bases N5 and N7, albeit with low
quality. To validate our NMR titration experiments, we
superimposed the RNA of the Pyrococcus abyssi complex
onto the structure of the Sulfolobus solfataricus exosome
(Figure 4C). This reveals that CSPs that we observe in our
NMR titration experiments are in some cases further than
5 Å away from the substrate. This is especially true for
isoleucine 101 in Rrp41 that is more than 9 Å away from
base N7. We can, however, explain the CSPs of isoleucine
101 in Rrp41 with the mobility of the RNA in the exo-

some barrel, where structural changes in the RNA result in
shorter distances between the substrate and isoleucine 101.

Taken together, our NMR data and the lack of electron
density of the RNA substrate (10,27,35) point to a high mo-
bility of the substrate RNA inside the barrel of the exosome.

Quantification of the RNA motions inside the exosome barrel

To directly measure motions of the substrate RNA in the
barrel of the exosome, we made use of methyl group relax-
ation dispersion experiments (36,37). In those experiments,
the line broadening that is induced by an exchange process
can be quantified and exchange rates can be extracted. We
focused our analysis on isoleucine residues of Rrp42 be-
cause concentrated samples that are only labeled in Rrp42
can be produced (31). In agreement with the line broaden-
ing that we observed in isoleucine 85 and isoleucine 71 (Fig-
ure 4A), we detected significant dispersion profiles for these
residues in the presence of substrate RNA (Figure 5A). Im-
portantly, these dispersion profiles are solely due to the in-
teraction of the enzyme with the substrate, as they were not
observed in the absence of RNA (Supplementary Figure
S3). In total, we measured dispersion data at three differ-
ent temperatures (35, 42 and 50◦C) and two magnetic field
strengths (600 and 800 MHz; Supplementary Figure S3).
To extract the underlying exchange parameters, we fitted all
data together and assumed that the chemical shift difference
was temperature independent. In addition, we assumed that
the excited (RNA bound) state had a population of 1/3, as
the substrate RNA can only interact with one of the three
active sites at a time. Based on that, we extracted exchange
rates of 1021 (163), 1615 (230) and 1744 (249) per second
at 35, 42 and 50◦C, respectively. The extracted chemical
shift differences between the free state and the RNA bound
state are 0.25 (0.01) and 0.17 (0.02) p.p.m. for isoleucine 85
and 71, respectively. Isoleucine 71 and isoleucine 85 are lo-
cated close to the active site of the enzyme and the motions
that we detect through those methyl groups thus report on
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the binding–unbinding of the substrate RNA with the ac-
tive site region of the exosome. We conclude that the RNA
moves from one active site to the next one with a frequency
between 1000 and 1700 Hz, depending on the temperature.
These data reinforce the notion that the RNA is highly mo-
bile in the lumen of the exosome.

To validate the analysis of the relaxation dispersion ex-
periments, we used CEST experiments (38) to identify the
resonance frequency of the invisible RNA-bound state of
isoleucine 85. The exchange rates that we determined be-
tween 35 and 50◦C are too fast for efficient CEST to oc-
cur. Therefore, we lowered the experimental temperature to
20◦C. Unfortunately, at temperatures lower than 20◦C, the
signal to noise ratio of the NMR spectra drops significantly,
which prevented us from measuring at even lower tempera-
tures. In the CEST experiment, we clearly observe the pres-
ence of a second and invisible state for isoleucine 85 (Figure
5B). Interestingly, this invisible state is located 0.25 p.p.m.
downfield from the resonance frequency of residue 85. This
is in excellent agreement with the chemical shift difference
extracted from the relaxation dispersion experiments and
confirms that the parameters that we extracted from the re-
laxation dispersion experiments are accurate and reliable.

The exosome exploits all three active sites during catalysis

Our NMR data show that the 3′ end of the RNA substrate
is highly mobile inside the lumen of the exosome. Based on
the relaxation dispersion experiments, the substrate inter-
acts with the active sites around 1700 times per second at
50◦C. This raises the question whether all three active sites
are used or potentially even required during the degrada-

tion process. To address this, we used two complementary
biochemical experiments where we measured the activity of
exosome complexes that contained different numbers of ac-
tive sites.

First, we reconstituted exosome complexes from sepa-
rately expressed Rrp42 and Rrp41. To vary the number of
active sites in the reconstituted complex, we used differ-
ent mixtures of catalytically active and catalytically inac-
tive (D182A, that does not interfere with the RNA binding)
Rrp41. For example, when a mixture of 40% active and 60%
inactive Rrp41 is used in the reconstitution process, statisti-
cally the following complexes will form: exosome complexes
without any active sites (22%), with one active site (43%),
with two active sites (29%) and with three active sites (6%).
The relation between the average number of active sites and
the activity of the complex depends on the mechanism that
is used during the degradation process. In case all active sites
equally and independently contribute to the reaction, the
activity will linearly increase with the average number of ac-
tive sites (Figure 6A, red curve). Alternatively, in case only
one active site is used in the degradation process (e.g. when
the substrate stays on a single active site during the degrada-
tion process), the activity will level off with increasing aver-
age number of active sites (Figure 6A, blue curve). In case all
three active sites are essential for efficient catalysis, the ac-
tivity of the exosome will only reach high levels when there
are on average a high number of active sites (Figure 6A,
green curve). Experimentally we can distinguish between
these three scenarios by measuring the catalytic activity of
exosomes that (on average) contain a different number of
active sites. Here, we increased the average number of active
sites in a stepwise manner from 10% to 100% in steps of 10%
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(see Methods). Each of these exosome complexes was incu-
bated with substrate RNA and the reaction was quenched
at different time-points. In those assays, we choose to use
the RNA substrate that contains a 5′ hairpin structure fol-
lowed by 32 adenine nucleotides. The product of the degra-
dation reaction will then be the hairpin structure with 10
nucleotides, which can be readily detected (see above). Ini-
tially, we quantified the levels of substrate and product dur-
ing the reaction using an Urea PAGE analysis (Supplemen-
tary Figure S4), however, we found that quantification us-
ing an HPLC approach was more accurate (Supplementary
Figure S5) and thus we used this method for all degrada-
tion experiments. To obtain degradation rates, we fitted the
substrate and product concentrations to a progression curve
(Supplementary Figures S4, S5, S6 and methods). In sum-
mary, we observe that the number of cleaved nucleotides
increases linearly with increasing amounts of active Rrp41
(Figure 6B). These data thus show that all three active sites
in the exosome are used during the degradation process.
Based on these data, we conclude that one substrate RNA
is degraded by three active sites in one exosome. At 50◦C,
this results in 14.7 (0.6) nucleotide cleavages per second per
exosome (Figure 6B).

In a second and independent approach to determine how
many active sites in the exosome play a role in the RNA
degradation process, we prepared three different samples
with exosome complexes that contained exactly one, two or
three active sites. These complexes were obtained by over-
expression of untagged Rrp42 with three copies of Rrp41,

each of them fused to a different affinity tag (His-tag, MBP-
tag or Strep-tag). Importantly, we were not able to detect
any subunit exchange between different exosome complexes
(Supplementary Figure S7), establishing that the exosome
complexes with a discrete number of active sites are ex-
tremely stable. Subsequently, three consecutive purification
steps were used to obtain complexes that contained exactly
one of each Rrp41 affinity tags. During expression of the
exosome complex, we used one, two or three catalytically
active versions of the differently tagged Rrp41 proteins and
were thus able to prepare exosome complexes with a dis-
crete number of active sites. As described before, the ac-
tivity of these complexes can provide information on the
mechanism that is used during RNA degradation (Figure
6C, see above). We then experimentally determined the ac-
tivity of the exosome complexes that harbored a discrete
number of active sites and found that all three active sites
are equally involved during the degradation process (Figure
6D). This confirms the experiments that we performed us-
ing exosomes with mixed number of active sites. The overall
activity of the exosome complexes with a discrete number
of active sites appears somewhat lower (9.6 cleavages per
second per exosome at 50◦C) than the activity of the exo-
some complexes that contain mixture of active and inactive
sites. This is most likely due to a loss in activity of the exo-
some complex during the long purification protocol that is
required for the preparation of the exosome complexes with
a discrete number of active sites.
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The RNA motions are much faster than the enzymatic
turnover rates

Our degradation assays show that the RNA substrate uses
all three active sites in the exosome barrel. This is in agree-
ment with the NMR data that show that the substrate
rapidly exchanges between the active sites. Interestingly, at
50◦C the rate of exchange (1700 s−1) is two orders of magni-
tude faster than the number of cleavages per second per exo-
some (∼10 s−1). It is worth noting that these differences are
not a peculiarity of this temperature. Indeed, we compared
degradation experiments at 20, 35, 50 and 65◦C (Figure 7A)
and found that the temperature dependence of the degrada-
tion rate follows the Eyring relationship (Figure 7B). The
temperature dependence of the RNA hopping frequency in
the exosome barrel, as we determined using relaxation dis-
persion experiments, follows a very similar trend, albeit at
much higher frequencies. This indicates that the RNA hop-
ping frequency is significantly larger than the degradation
rates for biologically relevant temperatures.

From the temperature dependence of the activity of
the exosome core (Figure 7B) the RNA degradation
rate at 75◦C (the optimal growth temperature of Sul-
folobus solfataricus) can be predicted to be around 65
nucleotides/second. This degradation rate is comparable to
the RNA degradation rate that was previously determined
for the PNPase enzyme (120 nucleotides/second) (39). In
addition, the rate of RNA degradation by the exosome core
is in the same order of magnitude as the elongation rate of
the archaeal RNA polymerases that was determined to be
around 20 nucleotides per second in Methanothermobacter
thermautotrophicus (40).

The degradation rate is independent on the RNA length

The catalytic cycle of the exosome includes multiple steps.
If substrate binding or product release is very slow, the exo-
some would require a significant time between finishing the
degradation of one substrate and initiating the degradation
of the next one. Such a time would reduce the average cleav-
age frequency that we measured in our biochemical exper-
iments. To probe whether substrate binding or product re-
lease are rate limiting in the catalytic cycle of the exosome
we performed degradation assays with RNA substrates of
increasing length (32, 63, 92 and 118 adenine repeats, that
all interact with the exosome with similar affinities, Figure
2B). For short RNA substrates, the exosome would need to
reload the substrate significantly more often than for long
substrates, which would reduce the overall turnover rate. In
our experiments, we designed the substrates such that short
(less than ∼10 nucleotides) single stranded RNA stretches
are not formed (Supplementary Figure S4A), as these have
been shown to be degraded at very low rates (41). Inter-
estingly, in our degradation experiments, we find that the
activity of the exosome (number of nucleotides cleaved per
second) is very similar for the four RNAs used, showing
that the activity of the exosome is largely independent of
the length of the substrate (Figure 7C). This shows that
substrate binding and product release are not significantly
limiting catalytic turnover. The nucleotide cleavage frequen-
cies that we measured thus directly report on the activity
of the active sites. This validates our conclusion that the

RNA jumping frequencies are much faster than the catalytic
cleavage rates.

DISCUSSION

Self-compartmentalization is a principle that is exploited
not only by the exosome, but also by other enzymes, includ-
ing the proteasome (42). The sequestering of active sites in-
side a small space prevents degradation of substrates that
are not actively targeted to the enzyme. For the archaeal
exosome, substrate selection takes place through RNA in-
teracting proteins that dock around the entrance pore of
the barrel (9,10,19). In the eukaryotic exosome, these RNA-
binding proteins have evolved further and include helicases
that are able to unfold RNA species that contain secondary
structure (43).

Despite the functional advantages that are related to
substrate selection, self-compartmentalization comes at a
cost: multiple protomers in a larger complex can only
act on a single substrate whereas the same number of
monomeric proteins could act on multiple substrates simul-
taneously. For the Archaeoglobus fulgidus exosome, the ac-
tivity of the native (Rrp41:Rrp42)3 exosome complex was
previously compared to the activity of a version of the
complex that only assembles into (Rrp41:Rrp42)1 dimers
(41). Interestingly, for long RNA substrates, it was found
that the catalytic activity of one (Rrp41:Rrp42)3 hexam-
eric complex is higher than that of three (Rrp41:Rrp42)1
dimers. One (Rrp41:Rrp42)3 exosome that acts on one
substrate is thus more efficient than three (Rrp41:Rrp42)1
dimers that act on three substrates simultaneously. For the
Archaeoglobus fulgidus exosome complex, the advantages
of self-compartmentalization thus outweigh the disadvan-
tages. The molecular basis that underlies this gain in activ-
ity upon assembly of the Rrp41 and Rrp42 protomers into
a barrel like quaternary structure remained undetermined.

Here, we addressed the catalytic advantages of oligomer-
ization of the Sulfolobus solfataricus exosome. Two features
that appear in the enzyme upon oligomerization of the
Rrp41 and Rrp42 proteins into a hexameric barrel are the
entrance pore (the neck region) and a lumen that contains
a very high concentration of active sites. We find that these
two aspects are fundamental to the efficiency of the exo-
some complex (Figure 8).

Using binding measurements, we show that the neck re-
gion, where the RNA enters the exosome lumen, strongly in-
teracts with unstructured RNA. Interestingly, this interac-
tion involves substrate nucleotides that are located 10 bases
upstream of the degradation site. This very strong interac-
tion ensures that substrates can be recruited efficiently, and
at the same time prevents that substrates are released from
the enzyme complex before complete degradation (Figures
2 and 3). Experimentally we have shown this using an exo-
some complex that contains a single point mutation in the
neck region. This mutation results in a 1000-fold decrease
of the enzyme substrate interaction strength (Figure 3B).
Importantly, also the processivity that is observed in the
WT complex is lost upon weakening the neck-substrate in-
teractions (Figure 3A) as substrates can no longer be re-
tained to the enzyme complex during turnover. The impor-
tance of the neck region for RNA degradation appears to be
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Figure 8. Cartoon that summarizes our findings. The RNA (red, dashed
red) enters the exosome barrel (gray, sand) through the neck and can
interact with one of three active sites (green circles). The substrate
jumps between these three active sites with frequencies of ∼1700 s−1

(rounded dashed arrows). The catalytic cleavage rates are in the order of 10
s−1 (scissor symbol), two orders of magnitude slower than the RNA jump-
ing rate. Only 1 in 100 RNA:exosome encounters results in a catalytic reac-
tion. The exosome:RNA nM affinity interactions through the neck region
keep the 3′ end of the RNA in the exosome barrel. The high concentration
of active sites and substrate in the barrel of the exosome ensures that the
3′ end of the RNA is always in contact with one of the active sites.

conserved in exosome and exosome-like complexes (Supple-
mentary Figure S1). First, it has been shown that the hex-
americ structure of the RNAse PH complex is essential for
activity as a dimeric form of the enzyme that does not form a
neck region is unable to interact with RNA (44). Secondly,
mutations of basic residues in the entrance channel of the
PNPase complex result in a loss of activity and processiv-
ity (45). Finally, mutations within the Rrp41 neck region of
the yeast exosome have been shown to be important for the
channeling of substrates through the catalytically inactive
Exo-9 complex toward the catalytically active Rrp44 sub-
unit (18).

To address the importance of the high concentration of
active sites in the lumen of the exosome, we determined the
kinetics of the substrate in the proximity of the active sites.
Using methyl TROSY NMR methods we show that the 3′
end of the RNA is highly mobile and that it jumps between
the active sites with a frequency of around 1700 Hz at 50◦C
(Figure 5). This high mobility will allow for a rapid dissoci-
ation of the reaction products, thereby facilitating turnover.

Based on fluorescence anisotropy experiments that use a
mutant where the neck interactions are impaired, the affin-
ity between the active sites and the 3′ end of the RNA is in
the �M regime (Figure 3B). This affinity is in line with pre-
vious ITC measurements that used a very small RNA sub-
strate (46). Based on this �M affinity and the determined
exchange rate of the RNA in the barrel it can be concluded
that the on-rate of the binding process is fast (in the order
of 109 M−1s−1). This fast on-rate is probably a direct con-
sequence of the small volume of the lumen of the exosome
and the resulting high substrate concentration. Using a se-
ries of RNA degradation experiments (Figures 6 and 7) we
show that the motions of the RNA allow that all active sites
in the exosome lumen equally participate in RNA degrada-
tion. Interestingly, the number of nucleotide cleavage events
(∼10 s−1) is two orders of magnitude lower than the number
of active-site: substrate encounters (∼1700 s−1). This shows
that around 100 encounter complex formation events are
required for one cleavage event.

When one assumes that the exosome has a spherical lu-
men with a diameter of 32 Å, the concentration of active
sites in the enclosed volume can be estimated to be around
300 mM whereas the local substrate concentration is one-
third of that (one RNA can enter the lumen). Based on
the �M affinity of the 3′ end of the RNA for the active
sites, the active-site occupancy can be predicted to be es-
sentially 100%. As soon as RNA enters the lumen of the
exosome it will thus be bound to one of the three active
sites. In that light, the oligomerization of the exosome en-
hances catalytic efficiency by ensuring that the enzyme in-
teracts with the substrate in a highly efficient manner at all
times. In the theoretical case, where the archaeal exosome
would only contain a single active site, the RNA would still
be in contact with this site for more than 98% of the time.
The reduction of the number of active sites in exosome(-
like) complexes (6 active sites in RNase PH, 3 active sites
in the PNPase and archaeal exosome, one in the plant ex-
osome; Supplementary Figure S1) does not result in a re-
duction of the catalytic activity; the RNA will always be in
full contact with an active site. After oligomerization of the
exosome-like complexes into a barrel-like quaternary struc-
ture, the diversification of the subunits and the removal of
active sites thus posed no catalytic disadvantages. It should
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be noted that in our degradation experiments (Figure 6) we
intentionally removed activity through a single-point mu-
tation that did not alter the interaction with RNA. In that
situation, the 3′ end of the RNA partitions between active
and inactive sites, which leads to the observed reduction in
activity. When the removal of active sites is accompanied by
the removal of the substrate interaction, the activity should
stay at its maximum, independent of the number of active
sites. In that light, it should be noted that the eukaryotic ex-
osome indeed makes no contacts with the substrate RNA
as all contact points have been removed (47).

In summary, we show that the oligomerizaiton of the ex-
osome complex into a barrel like structure provides novel
catalytic advantages. The basis for this lies in the fact that
the enzyme interacts very strongly with the substrate close
to base N10, whereas the 3′ end of the RNA close to base N1
remains highly flexible (Figure 8). The evolution of the hex-
americ exosome complex from single protein chains might
have benefited from the increase in catalytic efficiency that
is associated with the formation of the quaternary structure.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure S1. Structures of the exosome and exosome-like complexes. 

(A) The homo-hexameric RNase PH (PDB: 1UDN) (1) that harbors six active sites (red 

spheres). The six identical protein chains are colored in different shades of green. 

(B) The home-trimeric PNPase (PDB: 1E3H) (2) that harbors three active sites (red spheres). 

The three identical protein chains are colored in different shades of cyan. 

(C) The archaeal exosome complex (PDB: 2BR2) (3) that contains three Rrp41 (grey) Rrp42 

(sand) dimers. Only Rrp41 contains a catalytically active site.  

(D) The core of the eukaryotic exosome structure (PDB: 2NN6) (4) that contains six different 

protein chains. The plant exosome appears to have a single catalytic active site in Rrp41. The 

three different proteins that form the cap of the complex are colored grey. 

(E) As in (D), eukaryotic exosomes from other species have lost all catalytically active sites 

and act as a scaffolding complex.  
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Figure S2.  

Overlay of methyl TROSY NMR spectra of the exosome complex that contains NMR active 

isoleucine residues in both Rrp41 and Rrp42 (black) or only in Rrp42 (green). Resonances 

that result from residues in Rrp41 can be readlily identified.  
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Figure S3.  

Top part: methyl TROSY NMR spectra of Rrp42 in the exosome complex in the absence (left) 

and presence (right) of RNA substrate. Bottom part: Isoleucine 71 and 85 show flat dispersion 

profiles in the absence of RNA (left column). In the presence of substrate RNA, these 

residues show motion on the ms timescale. The motions that we observe in the 

exosome:RNA complex are thus a direct result of the RNA. The shown profiles have been 

recorded at 800 MHz. 
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Figure S4.  
(A) In our experiments the RNA substrate (a GC hairpin followed by 32 adenines, where the 

3’ GCU nucleotides result from the linearization of the DNA template used for in vitro 

transcription) is processively degraded into the product RNA (a GC hairpin followed by 10 

adenines) and nucleotides.  

(B) 30 µM substrate (see A) was incubated with 70 nM exosome (that contained an average 

number of active sites between 10 and 100%) at 50°C. Aliquots of the reaction were taken at 

different time points and mixed with 8M urea to quench the reaction. The samples of the 

different time-points were analyzed using Urea PAGE, after which the RNA was visualized 
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with methylene blue. The amount of substrate and product was quantified using ImageJ 

(Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov/ij/, 1997-2015). The Urea PAGE band intensities were scaled by the 

length of the RNA to correct for differences in staining efficiency of the substrate and product. 

Two exemplary gels of the reaction in the presence of the exosome that contains on average 

20% (left) or 90% (right) active sites are shown. The time-points at which the reaction was 

quenched are indicated on top.  

(C) The progression of the reaction was determined at each time point by dividing the band 

corrected band intensity of the product by the sum of the corrected band intensities of the 

product and the substrate. The rate of the reaction was subsequently determined by fitting the 

progression of the reaction to the exponential function B*(1-exp(-A*t)), where A is the rate of 

the degradation reaction and B is a scaling factor.  

(D) The relative speeds of the reaction were plotted versus the average number of active 

sites to determine if the reaction linearly depends on the number of active sites (See Fig 6). 

The determined catalytic rates show larger spreads, indicative for inaccuracies in the 

extracted parameters. These inaccuracies can have multiple causes, including inaccuracies 

in the determination of Urea PAGE band intensities, different efficiencies in the methylene 

blue staining of the substrate and product, pipetting errors during the loading of the gel and 

variations in the quality of different urea-page gels.  
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Figure S5.  

(A) Exosome and substrate were mixed as described in Figure S4A and S4B, but using 25 

µM substrate RNA and 60 nM exosome. The reaction time-points were analyzed on a Dionex 

PA-100 column that was heated to 80 °C and coupled to an HPLC system that was equipped 
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with an auto sampler for the precise and reproducible injection of the sample onto the column. 

This allowed for the accurate quantification of the levels of substrate and product in the 

reaction mixture, where the peak areas were converted into absolute concentrations based 

on determined calibration curves (Figure S6). Note that we did not use the concentration of 

the nucleotides in the analysis as the peak that contained the nucleotides overlapped with 

small peaks that resulted from the buffer in the reaction mixture (see e.g. top chromatogram 

taken at time=0 and where no product and nucleotides are present. The progression of the 

reaction was assessed by dividing the product concentration by the total RNA concentration.  

(B) As in Fig S4C, the rate of the reaction was determined at each time point by fitting the 

progression of the reaction to the exponential function B*(1-exp(-A*t)), see Fig S4. Note that 

each data point in panel B is extracted from a single HPLC run. 

(C) Plot that correlates the activity of the exosome complex versus the average number of 

active sites in the complex. The spread in the data is significantly reduced compared to the 

Urea PAGE analysis (See Fig S4). Based on that we decided to analyze all degradation 

experiments using the HPLC method.   
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Figure S6.  

(A) Calibration of the detector response using known amounts of product (a GC hairpin 

followed by 10 adenines) and substrates (a GC hairpin followed by 32, 63, 92 or 118 

adenines).  

(B) Global calibration of the product and substrate amounts that was used to convert all 

HPLC peak areas into absolute concentrations.  
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Figure S7.  

(A) Exosome complexes that contain only a His-tagged version of Rrp41 (left, green) and 

exosome complexes that only contain an MBP-tagged version of Rrp41 (right, dark grey) 

were separately prepared.  

(B) The His- and MBP-tagged version of the exosome complex were mixed in a 1:1 ratio and 

incubated at 50°C for 3 days. In case of subunit exchange between the His and MPB tagged 

exosome complexes a MBP-Rrp41:His-Rrp41:Rr42 complex would form.  

(C) The sample was split into two parts. One part was applied to Ni-NTA resin. Exosome 

complexes that don’t contain any His-Rrp41 subunits (only MBP-Rrp41:Rrp42) will not bind to 



	
   S12 

the resin. The elution of the Ni-NTA column contains all complexes that contain one or more 

histidine tags and this fraction thus contains His-Rrp41:Rrp42 complexes. In addition 

complexes that result from subunit exchange and that thus contain His-Rrp41:MBP-

Rrp41:Rrp42 will be found in this fraction. The second half of the incubated sample was 

applied to amylose resin that specifically interact with the MPB tag. The fraction that does not 

bind to amylose resin thus only contains His-Rrp41:Rrp42 exosome complexes. The fraction 

that binds to the amylose resin contains the MBP-Rrp41:Rrp42 complex and potentially the 

His-Rrp41:MBP-Rrp41:Rrp42 complex that can have formed as a result of subunit exchange 

during the incubation time. 

(D) SDS page analysis. (1): the exosome complexes after incubation at 50°C for 3 days that 

contains His-Rrp41, MBP-Rrp41 and Rrp42. (2): The FT of the Ni-column, which contains, as 

expected, only MBP-Rrp41 and Rrp42. (3): The elution of the Ni-column, which only contains 

His-tagged Rrp41 and Rrp42. MBP-tagged Rrp41 is absent, showing subunit exchange did 

not take place. (4): The FT of the amylose column, which contains, as expected, only His-

Rrp41 and Rrp42. (5): The elution of the amylose column, which contains only MBP-tagged 

Rrp41 and Rrp42. The His-tagged version of Rrp41 is absent from this fraction, proving that 

subunit exchange between different exosome complexes does not take place at rates that are 

significant for the experiments that we performed here.   
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RNA 1 Sequence Note ID 
20A 3 
 

GCCCCCCCCGAAAGGGGGGGGAAAAAAAAAAAAAA
AAAAAA 

3’ end after 
ribozyme  
cleavage 

12 

32A  GCCCCCCCCGAAAGGGGGGGGAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAGCU 

Run-off 
transcription from 
linearized plasmid 

17 

63A GCCCCCCCCGAAAGGGGGGGGAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAGCU 

Run-off 
transcription from 
linearized plasmid 

30 

92A GCCCCCCCCGAAAGGGGGGGGAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAGCU 

Run-off 
transcription from 
linearized plasmid 

31 

118A GCCCCCCCCGAAAGGGGGGGGAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCU 

Run-off 
transcription from 
linearized plasmid 

32 

32A 
FA2 

GCCCCCCCCGAAAGGGGGGGGAAAAAAAAAAAAAA
AAAAAAA-4-S-U-AAAAAAAAAAAGCU 

Synthesized 
(Dharmacon) 

- 

	
  
Protein 4 Sequence  Note ID 
His-Rrp415 MKHHHHHHPMSDYDIPTTENLYFQGAMGREMLQVER

PKLILDDGKRTDGRKPDELRSIKIELGVLKNADGSAIFE
MGNTKAIAAVYGPKEMHPRHLSLPDRAVLRVRYHMTP
FSTDERKNPAPSRREIELSKVIREALESAVLVELFPRTA
IDVFTEILQADAGSRLVSLMAASLALADAGIPMRDLIAG
VAVGKADGVIILDLNETEDMWGEADMPIAMMPSLNQV
TLFQLNGSMTPDEFRQAFDLAVKGINIIYNLEREALKSK
YVEFKEEGV 

pET based vector 82 
422 

MBP-Rrp415 MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTV
EHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSG
LLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEAL
SLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNL
QEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGA
KAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTI
NGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLS
AGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGA
VALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAF
WYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNN
NNNNNPMSENLYFQGAMGREMLQVERPKLILDDGKR
TDGRKPDELRSIKIELGVLKNADGSAIFEMGNTKAIAAV
YGPKEMHPRHLSLPDRAVLRVRYHMTPFSTDERKNP
APSRREIELSKVIREALESAVLVELFPRTAIDVFTEILQA
DAGSRLVSLMAASLALADAGIPMRDLIAGVAVGKADG
VIILDLNETEDMWGEADMPIAMMPSLNQVTLFQLNGS
MTPDEFRQAFDLAVKGINIIYNLEREALKSKYVEFKEEG
V 

pET based vector 938 
993 

TwinStrep-
Rrp415 

MKWSHPQFEKGGGSGGGSGGSSAWSHPQFEKPMS
DYDIPTTENLYFQGAMGREMLQVERPKLILDDGKRTD
GRKPDELRSIKIELGVLKNADGSAIFEMGNTKAIAAVYG
PKEMHPRHLSLPDRAVLRVRYHMTPFSTDERKNPAPS
RREIELSKVIREALESAVLVELFPRTAIDVFTEILQADAG
SRLVSLMAASLALADAGIPMRDLIAGVAVGKADGVIILD
LNETEDMWGEADMPIAMMPSLNQVTLFQLNGSMTPD
EFRQAFDLAVKGINIIYNLEREALKSKYVEFKEEGV 

pET based vector 989 

Rrp42 MGMSSTPSNQNIIPIIKKESIVSLFEKGIRQDGRKLTDY
RPLSITLDYAKKADGSALVKLGTTMVLAGTKLEIDKPYE
DTPNQGNLIVNVELLPLAYETFEPGPPDENAIELARVV

pET based vector 
No affinity tags 

373 
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DRSLRDSKALDLTKLVIEPGKSVWTVWLDVYVLDYGG
NVLDACTLASVAALYNTKVYKVEQHSNGISVNKNEVV
GKLPLNYPVVTISVAKVDKYLVVDPDLDEESIMDAKISF
SYTPDLKIVGIQKSGKGSMSLQDIDQAENTARSTAVKL
LEELKKHLGI 

His-Rrp42 MKHHHHHHPMSDYDIPTTENLYFQGAMSSTPSNQNII
PIIKKESIVSLFEKGIRQDGRKLTDYRPLSITLDYAKKAD
GSALVKLGTTMVLAGTKLEIDKPYEDTPNQGNLIVNVE
LLPLAYETFEPGPPDENAIELARVVDRSLRDSKALDLT
KLVIEPGKSVWTVWLDVYVLDYGGNVLDACTLASVAA
LYNTKVYKVEQHSNGISVNKNEVVGKLPLNYPVVTISV
AKVDKYLVVDPDLDEESIMDAKISFSYTPDLKIVGIQKS
GKGSMSLQDIDQAENTARSTAVKLLEELKKHLGI 

pET based vector 487 

His-Rrp41  
Rrp426 

MKHHHHHHPMSDYDIPTTENLYFQGAMGREMLQVER
PKLILDDGKRTDGRKPDELRSIKIELGVLKNADGSAIFE
MGNTKAIAAVYGPKEMHPRHLSLPDRAVLRVRYHMTP
FSTDERKNPAPSRREIELSKVIREALESAVLVELFPRTA
IDVFTEILQADAGSRLVSLMAASLALADAGIPMRDLIAG
VAVGKADGVIILDLNETEAMWGEADMPIAMMPSLNQV
TLFQLNGSMTPDEFRQAFDLAVKGINIIYNLEREALKSK
YVEFKEEGV 
 
MGMSSTPSNQNIIPIIKKESIVSLFEKGIRQDGRKLTDY
RPLSITLDYAKKADGSALVKLGTTMVLAGTKLEIDKPYE
DTPNQGNLIVNVELLPLAYETFEPGPPDENAIELARVV
DRSLRDSKALDLTKLVIEPGKSVWTVWLDVYVLDYGG
NVLDACTLASVAALYNTKVYKVEQHSNGISVNKNEVV
GKLPLNYPVVTISVAKVDKYLVVDPDLDEESIMDAKISF
SYTPDLKIVGIQKSGKGSMSLQDIDQAENTARSTAVKL
LEELKKHLGI 

pET based vector 
 
Coexpression of 
Rrp41 and Rrp42 
 
Catalytically 
inactive Rrp41 (as 
indicated with the 
underlined D182A 
mutation in the 
sequence) 

1113 

	
  
Exosome complexes with a discrete number of active sites 

# active sites Co-expression construct design6 Note ID 
3  His-Rrp41 WT 

TwinStrep-Rrp41 WT 
MBP-Rrp41 WT 
Rrp42 

pET based vector. 
See above for the 
protein sequences 

1020 

2 His-Rrp41 D182A 
TwinStrep-Rrp41 WT 
MBP-Rrp41 WT 
Rrp42 

pET based vector. 
See above for the 
protein sequences 

1021 

1 His-Rrp41 D182A 
TwinStrep-Rrp41 WT 
MBP-Rrp41 D182A 
Rrp42 

pET based vector. 
See above for the 
protein sequences 

1038 

 

Table S1: Used constructs for protein expression and RNA in vitro transcription 
1 The RNA stem-loop is highlighted in green. 
2 RNA used for Fluorescence anisotropy measurements. 4-S-U refers to a thio-uridine 

that is used to couple the RNA to 6-(Iodoacetamido)-fluorescein. 
3 Used for NMR studies as this RNA is not degraded by the exosome due to the 

presence of a 3’ cyclic phosphate that results from ribosomal cleavage. 
4 Protein affinity tags are colored red (His-Tag), pink (MBP-Tag) or yellow (STREP-

Tag). TEV cleavage sites are highlighted in blue, where the TEV protease cleaves 
between the Q and G. 

5 The inactive version of the Rrp41 construct contains the D182A mutation. 
6 Co-expression vectors were constructed as described (5). All four proteins are in one 

vector and simultaneously induced. 
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Methyl TROSY Spectroscopy to Study Large
Biomolecular Complexes

Milos A. Cvetkovic and Remco Sprangers

Abstract
Solution state NMR spectroscopy is a powerful technique in structural biology
that can provide unique information regarding the structure, dynamics, and
interactions of biomolecular complexes. For a long time, its experimental range
was limited to proteins of modest size. However, in the recent decades, the
applicability of the method has been extended such that assemblies with molec-
ular weights far over 100 kDa became amenable to detailed analyses. The
breakthroughs that enabled these advances include the development of TROSY-
based NMR techniques and procedures to produce samples that are labeled in
specific methyl groups.

Here, we discuss these novel approaches to the study of high molecular weight
systems, explaining briefly the theoretical background behind the advancements
and giving several recent practical examples. The major applications of methyl
TROSY NMR spectroscopy are mentioned: studies of intermolecular interac-
tions, protein dynamics, and complex biomolecular structures. With all this, we
substantiate our notion that NMR spectroscopy will continue to be a highly
valuable and relevant method for investigating large biomolecular complexes
that is complementary to other structural techniques.
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Introduction

Over the years, NMR spectroscopy has demonstrated its strength in studying
structure, dynamics, and interactions of various biomolecules at atomic resolution
and under near-physiological solution conditions. The size and complexity of bio-
molecules that can be studied has, however, been posing a limitation to its applica-
bility. Two major difficulties associated with NMR studies of larger proteins and
biomolecular complexes are signal overlap and line broadening. Signal overlap is the
consequence of the vast number of NMR active nuclei present in large systems and
results in overcrowded spectra that are impossible to analyze. Line broadening arises
from the relaxation of transverse magnetization, which is faster in large systems due
to longer rotational correlation times and more abundant spin-spin interactions. As a
result, both sensitivity and resolution of the measurement decrease significantly for
proteins larger than 20 kDa [1]

Large biomolecular complexes perform some of the most important processes in
the cell and it is, therefore, important to extend the size limitations of the NMR
spectroscopy. Initially, NMR studies of unlabeled proteins were conducted by 1H
homonuclear experiments that were limited to systems of less than 10 kDa [2,
3]. Heteronuclear experiments on proteins uniformly labeled with 15N and 13C
isotopes pushed the size limitation to around 25 kDa [4–6]. Protein deuteration
had long been known to enhance resolution and sensitivity of the NMR experiments
by reducing the number of possible spin relaxation pathways [7, 8]. Combined with
15N and 13C isotope labeling, deuteration extended the applicability of NMR spec-
troscopy to proteins of up to 50 kDa [9, 10]. Today, 15N, 13C, and 2H labeling
remains a standard procedure in studies of large protein systems. A revolutionary
development in protein NMR spectroscopy was the introduction of transverse
relaxation optimized spectroscopy (TROSY) [11], which enabled structure determi-
nation of proteins as large as 80 kDa [12] and analysis of proteins up to 900 kDa
[13]. However, the adverse effects associated with size and complexity are often too
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pronounced to allow recording of useful 1H-15N-based spectra for very large mac-
romolecular assemblies. Utilization of isotopically labeled methyl groups [13CH3] in
a fully deuterated background, in concert with the corresponding methyl TROSY
spectra, has proven to be a successful approach for studying high molecular weight
complexes. This strategy benefits from excellent relaxation properties of methyl
groups where its three symmetrically arranged protons and fast rotation around its
threefold symmetry axis produce highly sensitive and well-resolved NMR signal
[14]. Methyl groups are usually located in the hydrophobic interior of proteins and
along binding surfaces [15], which makes them valuable reporters of structural
integrity, conformational changes, dynamics, and interactions. In summary, methyl
TROSY NMR spectroscopy now enables recording high-quality spectra of assem-
blies with a molecular weight over 1 MDa [16].

Methyl Group Labeling Schemes

Development of sophisticated isotope labeling schemes and improvements in the
pulse sequence design have played pivotal roles for extending the applicability of
NMR spectroscopy to large biomolecular systems. Optimal isotope labeling
involves, essentially, finding the right balance between having an adequate amount,
distribution, and/or localization of the NMR-active nuclei (15N, 13C, 1H) to provide
enough information about the system and, at the same time, not compromising
quality and manageability of the recorded spectra with too many NMR-active nuclei,
which would otherwise lead to signal overlap and broadening.

Isotope labeling can be uniform, affecting the whole protein, and selective,
affecting particular residues or groups of residues. In methyl TROSY NMR spec-
troscopy, both approaches are applied: protein is uniformly deuterated, while labeled
methyl (13CH3) groups are selectively introduced in particular amino acids. Hydro-
gens (1H), naturally abundant in proteins, cause extensive relaxation of transverse
magnetization through interactions with each other and with other NMR-active
nuclei (15N, 13C), thereby diminishing sensitivity and resolution. Hence, full deu-
teration (perdeuteration) is essential for studying large proteins as it minimizes this
effect, due to 6.7-fold lower gyromagnetic ratio of 2H compared to 1H. Routinely,
deuteration is achieved by growing the bacterial culture and overexpressing the
protein in D2O-based minimal medium in the presence of deuterated glucose [17].

Methyl (13CH3) isotopes can be introduced into individual amino acids or in a
combination of several amino acids. Strategies for production of such proteins
depend on the metabolic pathways of the respective amino acids [18]. The simplest
way to achieve methyl group labeling is to add a methyl-labeled biosynthetic
precursor to the bacterial culture before inducing protein overexpression. This
approach is possible if there is no subsequent crossing between the precursor and
the metabolic pathways of other amino acids. The precursor 2-ketobutyrate can,
hence, be used for production of Ile-δ1 [13CH3] [19, 20] and 2-hydroxy-2-ethyl-3-
ketobutyrate for production of Ile-γ2 [13CH3] [21]. The biosynthesis of valine and
leucine, on the other hand, is connected and their mutual precursor, 2-keto-3-
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isovalerate, is used for combined labeling of these amino acids [19]. Coproduction of
stereospecifically labeled valine and leucine can be achieved using 2-acetolactate
[22], while for separate labeling of valine and leucine residues one needs to prevent
the scrambling of the precursor into both amino acids. As an example, stereospecif-
ically labeled valine can be obtained either with labeled precursor 2-acetolactate and
deuterated leucine [23] or with presynthesized stereospecifically labeled valine and
deuterated leucine [24]. In both cases, the deuterated leucine prevents that the
precursor is used in the leucine metabolic pathway. Metabolic pathways of the
methyl groups of methionine, alanine, and threonine are intermingled with other
metabolites and they need to be added before induction of protein expression, in their
final, methyl-labeled forms: Met-ε [13CH3] [25], Ala-β [13CH3] [26], Thr-γ2
[13CH3] [27].

Some of the strategies for the production of methyl-labeled proteins can be
combined, which enables incorporation of different methyl reporters within a single
protein simultaneously. The metabolic pathways used to produce labeled amino
acids need to be compatible and the respective methyl TROSY resonances should
not overlap in the spectrum. Combined labeling schemes that have been efficiently
used are, for example, ILV [16, 28], MILV [29], AILV [30], and AMILVT [31].

Studies of large multidomain proteins could benefit from combining methyl
TROSY NMR spectroscopy with the segmental isotope labeling. With the use of
segmental isotope labeling, a specific isotope labeling strategy can be applied to a
particular protein domain, while the remaining part of the protein remains NMR
invisible. This simplifies the spectrum and allows for investigation of full-length
proteins that would otherwise be out of reach for NMR spectroscopy [32]. Labeled
and unlabeled parts of the protein are first produced separately by expressions under
different labeling conditions and are subsequently ligated so that a peptide bond is
formed between them. Ligation of the two parts of the protein is a critical step and
can be performed either by using inteins, internally placed protein domains that are
able to self-excise from a protein [33, 34] or by using transpeptidase Sortase A [35].

Work with large asymmetric protein complexes further stresses the need to reduce
the number of signals in the spectrum to prevent signal overlap. This can be achieved
by applying isotope labeling to only one or to a subset of subunits within the
complex. In most protein systems, individual subunits may be insufficiently stable
to sustain separate expression and purification, while in others in vitro reconstitution
of the complex may be problematic. These issues can be overcome with the LEGO-
NMR approach where subunits are sequentially coexpressed using different pro-
moters, such that complex reconstitution takes place in vivo while only a subset of
proteins is isotopically labeled [36].

Methyl Group Resonance Assignments

A detailed analysis of NMR spectra requires that the resonances are assigned to the
corresponding residues in the protein. The assignment of the methyl resonances in
high molecular weight proteins and complexes poses a serious challenge. For
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proteins up to ~25 kDa, methyl resonances can be assigned conventionally, using the
general strategy for assigning aliphatic side chains, which relies on the direct
correlation between methyl spin systems and the already assigned protein backbone
[37]. For larger proteins, an advanced assignment method has been developed where
unassigned methyl group resonances and assigned amide group resonances are
independently correlated with Cα and Cβ, thus providing a link between the
corresponding methyl and amide group [28, 38, 39]. However, both methods depend
on the feasibility of backbone assignments, which are usually difficult or impossible
to obtain for proteins larger than 50 kDa. Several strategies can be used to overcome
this obstacle.

Divide and Conquer

The “divide and conquer” strategy is based on dissecting the high molecular weight
system into smaller building blocks [16, 29]. Since smaller building blocks usually
show better spectral quality than the whole system, their methyl group resonances
can be assigned using previously described standard approaches and afterwards
linked to the corresponding methyl group signals of the whole system. This strategy
has been successfully applied for protein complexes, where smaller building blocks
represent individual subunits [16], as well as for large proteins, where smaller
building blocks represent specific protein domains [29, 40].

Mutations to Assign Methyl Groups

If backbone-based assignment methods and the divide and conquer approach fail,
methyl group resonances can be assigned by mutagenesis. Individual amino acid
residues containing a labeled methyl group are substituted with alternative residues.
By comparing the respective spectra before and after mutagenesis, the signal(s)
belonging to a particular methyl group can be readily identified [41, 42]. It should
be noted, however, that this strategy can be complicated by secondary chemical shift
perturbations, where the mutation of a single amino acid results in significant
changes in the methyl TROSY spectrum.

Structure-Based Assignment Methods

Structure-based procedures for methyl group assignments require detailed knowl-
edge regarding the structure of the complex. Methyl-methyl distance information
obtained from NOE data can, in those cases, be mapped with distances that are
known from the structure, thereby assigning the methyl group resonances
[43]. Another structure-based approach involves introduction of a spin-label at
specific sites of the protein. Residues in the vicinity of such a label will consequently
experience pseudocontact shifts (PCSs) [44] or paramagnetic relaxation enhance-
ment (PRE) [45], enabling assignment of affected methyl groups.
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The Methyl TROSY Experiment

The intensity of an NMR signal directly depends on the amount of the initial
magnetization and for that reason methyl groups that contain three protons are
sensitive NMR probes. Furthermore, the NMR signal intensity depends on the
decay rate of the magnetization during the experiment and significant improvements
in spectral quality can be achieved with TROSY-based experiments.

During an NMR experiment, a large number of magnetization terms are created
that all lose their magnetization with distinct relaxation rates. Due to destructive
interference of relaxation mechanisms, a number of coherences can relax signifi-
cantly slower than others. In TROSY-based experiments, these slow relaxing com-
ponents are selected and special care is taken to prevent that they are mixed with fast
relaxing ones. Such a mixing would result in an overall faster relaxation of the NMR
signal and thus in NMR spectra of reduced quality.

The TROSY-based experiment was initially introduced for proton-nitrogen spec-
tra that only detect the slow relaxing quarter of the NMR signal [11]. For large
proteins, this results in NMR spectra of significantly improved quality compared to
more traditional HSQC based experiments, where fast and slow relaxing coherence
are mixed and added. The slow relaxation of specific coherences of H-N groups is
caused by the destructive interference between the proton-nitrogen dipole-dipole and
the nitrogen CSA (chemical shift anisotropy) relaxation interactions. The CSA
depends on the magnetic field strength and an optimal cancellation of both relaxation
mechanisms takes place at a magnetic field strength of around 1.1 GHz [11].

The carbon CSA in methyl groups is too small to induce destructive interference
with the proton-carbon dipole. However, in the macromolecular limit, destructive
interference occurs between the proton-carbon dipole-dipole and the multiple
proton-proton dipolar relaxation interactions [14, 46]. To analyze the relaxation
properties of a methyl group one needs to consider 16 different energy levels that
are connected by 4 fast and 6 slowly relaxing proton transitions, 2 fast and 6 slowly
relaxing carbon transitions, and 4 fast and 6 slowly relaxing 1H-13C double-/zero-
quantum transitions. As was shown by Kay and coworkers, the rapidly and the
slowly relaxing transitions are never mixed in the HMQC pulse sequence [14]. This
renders the HMQC a highly efficient methyl TROSY experiment, where the final
NMR signal of an isolated methyl group only results from slowly relaxing coher-
ences. This is in strong contrast to the more popular HSQC-based experiment in
which 90� proton pulses result in the mixing of fast and slow relaxing coherences
and thus in NMR spectra with broader signals, especially for large proteins. To fully
exploit the methyl TROSY effect, the methyl group of interest should be embedded
in an otherwise fully deuterated protein (see above) as dipolar interactions with
external protons cause interconversion of fast and slow relaxing coherences. Finally,
it is worth noting that the methyl TROSY effect does not depend on the magnetic
field strength as it results from the destructive interference between dipolar relaxa-
tion interactions [14].
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Applications

As previously explained, methyl TROSY NMR spectroscopy benefits significantly
from excellent spectral features of the methyl groups and offers a wide range of
possibilities to study large biomolecular systems. It is able to yield the same
quantitative information about a complex system as was only available for small
proteins until recently [47]. The applications include studies of intermolecular
interactions and protein dynamics, revealing novel mechanisms of biomolecular
processes, as well as providing new insights into the structure of very large biomo-
lecular systems.

Intermolecular Interactions

NMR spectroscopy is applicable to binding events with affinities that range from the
nM to mM regime. Methyl bearing side-chains are generally well-suited probes for
investigating binding surfaces as they often play an important role in biomolecular
interactions. Changes in the local chemical environment, due to ligand binding, will
affect methyl groups positioned within the binding interface. This causes chemical
shift perturbations (CSPs) [48] that provide both qualitative and quantitative infor-
mation about the interaction. Here, we describe a number of recent examples, where
methyl TROSY NMR-based binding experiments have provided pivotal insights
into biological function.

The molecular chaperone Hsp90, which forms a homodimer of 170 kDa, has an
important role in protein folding. ATP and various cochaperones, including its
binding partner p23, control its function. Hsp90 consists of three domains: an
N-terminal domain, a middle domain, and a C-terminal domain. Stability of the
isolated domains enabled successful assignments of Ile-δ1 methyl groups through
divide and conquer strategy [49]. By observing CSPs in the methyl TROSY spec-
trum upon the addition of ligands, it was shown that ATP binds only to the
N-terminal domain, while p23 cochaperone binds both the N-terminal and the
middle domains of Hsp90 [49]. In addition, a 106 Å long interface was identified
on Hsp90 that mediates the interaction with the intrinsically disordered Tau protein
through many low-affinity contacts [50].

Binding studies in even larger complexes, like the 20S proteasome (670 kDa),
show that methyl TROSY-based experiments are also feasible for systems of that
size. The proteasome is responsible for degradation of damaged and dispensable
proteins and its barrel-shaped core particle consists of four homo-heptameric stacked
rings. The two outer rings, which form the entrance for substrates, can each bind the
150 kDa 11S activator, resulting in a complex with a molecular weight of 1.1 MDa.
Methyl labeling of the outer subunits at Ile-δ1, Leu-δ, and Val-γ positions, assign-
ment of their resonances through the divide and conquer strategy, and successful
reconstitution of the 20S complex enabled mapping of the 11S binding surface on
the 20S and determination of the associated affinity [16].
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Ile- δ1, Leu-δ, and Val-γ methyl labeling was also used for the study of the
interaction between the molecular chaperons ClpB (580 kDa) and DnaK (70 kDa)
that is crucial for protein disaggregation. Methyl labeling of only one component of
the complex at a time, while keeping the other parts NMR invisible, provided high
quality methyl TROSY spectra that were exploited to map interaction surfaces in a
quantitative manner [51].

Methionine Scanning

Methyl-containing amino acids that can be used in methyl TROSY experiments
might not be present on the protein surface with the quantity and distribution to allow
for a detailed mapping of interaction sites. To overcome this drawback, the methi-
onine scanning approach has recently been introduced, which provides an increased
coverage of the protein surface with methyl probes [52, 53]. It involves the strategic
substitution, one-at-a-time, of solvent exposed residues with methyl-labeled methi-
onine (Met-ε). The signal of the introduced reporter methionine appears as a novel
resonance in the methyl TROSY spectrum and can, thus, be instantly assigned. After
the addition of the ligand, a new methyl TROSY spectrum is recorded. If the reporter
Met is located inside the binding interface, it will experience new local chemical
environment, which will be manifested as CSP. If the reporter is located outside of
the binding interface, there will be no CSP of the corresponding signal. If a residue
that is pivotal for the interaction (a hot-spot) is substituted with a reporter methio-
nine, the interaction will be abolished, which is noticeable in the absence of CSPs of
the naturally occurring methyl groups.

Methionine scanning was recently successfully employed for the study of RNA:
protein interactions within the archaeal exosome. The exosome complex is an
important molecular machine responsible for RNA 30 to 50 processing and degrada-
tion. The archaeal complex has a molecular weight of 270 kDa and is composed of a
hexameric core and a trimeric cap. The hexameric core is a trimer of Rrp41-Rrp42
heterodimers, while the cap is made of three copies of the Rrp4 protein. The Rrp4
cap forms the opening through which RNA substrate enters the catalytic interior of
the assembly. Based on the methionine scanning approach, a 50 Å long RNA
binding path on each Rrp4 protomer was identified. The interaction between the
Rrp4 cap and the RNA substrate, which was unattainable by the crystallographic
data, proved to be crucial for the efficient recruitment and channeling of the RNA
substrate towards the active sites [54].

Protein Dynamics

Experiments for Millisecond Methyl Dynamics
Proteins are highly dynamic biomolecules that can adopt multiple conformations.
Enzymes, in particular, sample structurally different states to perform biological
functions. As enzyme turnover rates in biology are often in the range between 0.1
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and 5000 per second, there is a special interest in detecting motions on these
timescales. Here, we briefly discuss longitudinal exchange and CPMG
(Carr–Purcell–Meiboom–Gill) relaxation dispersion experiments that are both able
to detect and quantify such motions. We focus on the applicability of these methods
to (13CH3) methyl groups in large protein complexes, as these samples are ideally
suited for methyl TROSY spectroscopy [55].

Longitudinal exchange experiments are applicable to systems where the spin of
interest exchanges between two states (A and B) with a rate that is slow compared to
the chemical shift difference between the two states (kex < < Δω; where kex is the
exchange rate kAB + kBA and Δω is the chemical shift difference between states A
and B). As a result, one single methyl group gives rise to two different signals in the
NMR spectrum, one where the protein adopts conformation A and one where it
adopts conformation B. Central to the HMQC-based longitudinal exchange exper-
iment is a delay that is sandwiched between the carbon and proton chemical shift
evolution times. In this delay the protein can change its conformation such that state
A becomes state B and vice versa. In the NMR spectrum, this results in the
appearance of resonances at the carbon chemical shift of state A (or B) and at the
proton chemical shift of state B (or A). The dependence of the intensities of these
“cross peaks” on the length of the delay directly reports on the kinetics behind the
exchange process. Despite the fact that the methyl TROSY principle cannot be
exploited during the complete NMR pulse sequence, longitudinal exchange exper-
iments have been successfully applied to very large protein complexes [41, 56–58].

CPMG relaxation dispersion experiments [59] are applicable to systems where
exchange of a protein from state A to state B results in the broadening of the NMR
resonances. Such broadening is induced when the exchange takes place on a
timescale that is comparable to the chemical shift difference between the two states
(kex ~ Δω), which, in turn, results in a dephasing of the magnetization. The extent of
this dephasing depends on the difference in the chemical shift between states A and
B (Δω), on the exchange rate (kex), and on the populations of the two states.
Interestingly, significant exchange broadening of the resonance of state A can also
occur when state B is only sparsely populated (e.g., less than 5%) and therefore not
directly observable in the NMR spectrum. In such a situation, line broadening of the
resonance of state A can report on the presence of an “invisible” state B. The
dephasing of the magnetization (and thus the line-broadening that is induced by
the exchange process) can be suppresses by a train of refocusing pulses. The
dependence of the line broadening on the frequency with which the refocusing
pulses are applied is then used to extract the kinetic parameters that underlie the
exchange process. CPMG relaxation dispersion experiments can be recorded in a
variety of different manners, depending on the magnetization state during the time
when the refocusing pulses are applied. First, 1H-13C multiple quantum (MQ)-based
experiments, which can be recorded in a manner that is fully compatible with the
methyl TROSYprinciple, report on the proton and carbon chemical shift differences
of states A and B [60]. The information content of MQ dispersion experiments is,
thus, very high, which can make the analysis of the data complicated. Second, single
quantum (SQ)-based experiments can be recorded on 13CH3 labeled methyl groups.
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These experiments can be designed such that only the 13C [61, 62] or only the 1H
[63] chemical shift difference is sensed in the relaxation dispersion profiles. Com-
pared to the MQ experiments, the analysis of the SQ relaxation dispersion data is less
complicated. These SQ experiments are, however, not as sensitive as the MQ
experiment since only a part of the magnetization is selected and the methyl
TROSYeffect cannot be fully exploited. Nevertheless, 13C SQ relaxation dispersion
experiments have been successfully applied to protein complexes over 100 kDa to
quantify exchange processes [64]. Finally, a 1H triple quantum (TQ) relaxation
dispersion experiment has been introduced recently, where the dispersion profiles
depend on three times the proton chemical shift difference between states A and B
[65]. Importantly, the dispersions in these experiments are by a factor of 10 larger
than in the 1H (SQ) relaxation dispersion experiments and thus applicable to larger
protein complexes and to a wider range of exchange processes.

In general, extracting accurate exchange parameters (exchange rates, populations,
and chemical shift differences) from a single measurement at a single magnetic field
strength is very challenging. To improve the accuracy of the extracted parameters,
the relaxation dispersion experiment can be repeated on multiple field strengths, as
the chemical shift difference depends on the spectrometer field. Alternatively,
different relaxation dispersion experiments (SQ/MQ/TQ) can be analyzed simulta-
neously to improve the robustness of the fitting of the data.

Example of Dynamics
As mentioned above, dynamic processes are often related with enzymatic function
and NMR relaxation experiments are ideally suited to reveal potential correlations
between dynamic processes and catalytic activity. DspS is an 80 kDa homodimeric
enzyme that catalyzes the hydrolysis the 50 cap structure from short eukaryotic
mRNAs, as the final step of their degradation pathway. The enzyme consists of a
smaller N-terminal domain, which is flexibly connected to a larger C-terminal
domain. Substrate can be positioned between the N and C-terminal domains, on
both sides of the homodimer. The two binding sites strongly influence each other and
the two substrates interact with the enzyme with significantly different affinities
[58]. To quantify the motions of the N-terminal domain, longitudinal exchange
experiments were performed on the enzyme that was produced with methyl-labeled
Ile-δ1 and Met-ε. The study of intramolecular dynamics of this flexible system and
its association with the substrate binding and activity revealed that the excess of
flipping motion, induced by the binding of a second ligand, hampers the catalytic
activity [58]. This finding highlights the relationship between intramolecular dynam-
ics and activity and, hence, also the importance of understanding and quantifying
intramolecular motions in enzymes.

Elucidating Complex Structures

Complex assemblies that contain several different subunits and/or co-factors
perform many important biological processes. In order to understand the structural
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and functional relationships between the components involved in these processes,
it is necessary to combine different structural, biophysical, and biochemical
methods.

The archaeal box C/D ribonucleoprotein enzyme is a highly complex system
that contains the proteins L7Ae, Nop5 and fibrillarin, plus a guide sRNA. This
390 kDa complex methylates ribosomal RNA at the 20-O-ribose, which is an
important part of the pre-rRNA maturation and a necessary step for subsequent
ribosome assembly. The structure of certain isolated segments of this ribonucleo-
protein system was known, and these structures were assembled into the complete
C/D RNP complex with the help of methyl CSPs, PRE experiments, SAXS
(small angle X-ray scattering), and SANS (small angle neutron scattering) data.
Furthermore, methyl CSPs observed upon addition of the RNA substrate were
instrumental for understanding the elaborate mechanism of sequential site-specific
methylation [66].

SecB is a molecular chaperone with a strong antifolding activity. This 70 kDa
tetramer displays methyl TROSY spectra of high quality when expressed with
methyl-labeled Ala-β Val-γ, Leu-δ, Met-«, Thr-γ2, and Ile-δ1. These methyl groups
were used for determining the structure of the complex that SecB forms with its
client proteins MBP and PhoA in their unfolded state. This clearly revealed the
mechanism by which the molecular chaperons are able to keep client proteins in an
unfolded state. In brief, it was shown that SecB forms long, continuous hydrophobic
grooves that bind multiple hydrophobic segments exposed across the unfolded client
protein [31]. Multivalent binding mode of this interaction leads to a structure where
the client protein is wrapped around SecB, which affects the folding kinetics of the
substrate and keeps it in an unfolding state.

Conclusion

Here, we discussed the methodology that can extend the applicability of solution
state NMR spectroscopy to systems that are orders of magnitude larger than those
that are traditionally studied by this technique. Indeed, the combination of methyl-
labeled samples and methyl TROSYexperiments can provide quantitative insights in
assemblies up to 1 MDa in molecular weight. Importantly, NMR spectroscopy is
able to localize and quantify interactions and dynamic processes on a per residue
basis. This information is highly relevant to biomolecular processes and often hidden
in static structures. In that light, NMR spectroscopy is able to provide unique
insights that are fully complementary to X-ray crystallography and cryo-EM
methods. Indeed, recently the complementarity of methyl TROSY NMR spectros-
copy and cryo-EMwas impressively illustrated for a large AAA+ unfoldase [67]. We
anticipate that approaches like that will be increasingly important in the future and
we look forward to studies that will unravel a wide range of yet unexplored
molecular mechanisms.
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