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Abstract

�is thesis studies the dynamics of dust and planets in turbulent accretion disks. As
source for the turbulence in the disk the vertical shear instability (VSI) was investi-
gated, a hydrodynamic instability with a unique �ow pa�ern, that can generate weak
turbulence. We �rst performed numerical simulations to validate the applicability of
the VSI in the context of protoplanetary disks. �e results of the simulations including
radiation transport indicate that indeed parts of the so-called dead zone are unstable
to the VSI and produce weak angular momentum transport.

Encouraged by this result we studied the impact of the VSI on the dust in the disk.
We added dust particles into the disk and analyzed their evolution. We found that the
VSI has a strong bunching e�ect on the dust particles, leading to ringlike structures
with enhanced dust density. �ese clusters are regions with faster dust growth and
possibly supply the necessary conditions for the streaming instability.

Furthermore we explore the interaction between the VSI and embedded planets.
Here it becomes important that the turbulent viscosity of the VSI does not act the same
way as the kinematic viscosity employed by the traditional α-model. While the gap
depth and width created by the presence of massive planets is similar in models with
a kinematic viscosity, the lifetime of vortices formed by the Rossby wave instability at
the gap edge is not. �e outer vortex is stable and the inner vortex can even migrate
inwards without signs of decay. In the simulations with a smaller planet we observed
up to �ve time faster migration rates. �is is caused by a small vortex behind the planet,
which is not dispersed by the turbulence, in contrast to viscous α-models, where they
can not even be generated.
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Zusammenfassung

Diese Dissertation untersucht die Dynamik von Staub und Planeten in turbulenten
Akkretionsscheiben. Als �elle für die Turbulenz in der Scheibe wurde die vertikale
Scherinstabilität (VSI) untersucht, eine hydrodynamische Instabilität mit einem unge-
wöhnlichem Strömungsbild, welches schwache Turbulenz generiert. Zuerst überprüf-
ten wir mit Hilfe numerische Simulation ob diese Instabilität auf protoplanetaren Schei-
ben anwendbar ist. Diese Simulation ergaben, dass selbst unter Einbeziehung von
Strahlungstransport die sogenannte tote Zone anfällig für die VSI ist und einen schwa-
chen Transport von Drehimpuls erzeugt.

Ermutigt von diesen Ergebnissen haben wir den Ein�uss der VSI auf den Staub in
der Akkretionsscheibe untersucht. Dazu fügten wir Staubteilchen in die Akkretion-
sscheibe ein und untersuchten deren Entwicklung. Dadurch entdeckten wir, dass die
VSI einen starke Klumpung von Staubteilchen hervorru�, was zu ringförmigen Struk-
turen mit erhöhter Staubdichte führt. In diesen Staubansammlungen kann der Staub
schneller anwachsen und außerdem ist dieser Bereich möglicherweise anfällig für die
Strömungsinstabilität.

Außerdem untersuchten wir die Wechselwirkung zwischen der VSI und eingebet-
teten Planeten. Hier ist es nun wichtig, dass die turbulente Viskosität der VSI nicht wie
eine kinematische Viskosität wirkt, die üblicherweise in α-Modellen verwendet wird.
Zwar ist die Tiefe und Breite der Lücke, die durch massive Planeten erzeugt wird, sehr
ähnlich in Modellen mit kinematischer Viskosität, allerdings sind die Vortizes die von
der Rossby Welleninstabilität am Rand der Lücken erzeugt werden deutlich stabiler.
Der Vortex am inneren Rand kann sogar einwärts migrieren, ohne Anzeichen eines
Zerfalls zu zeigen. In den Simulationen mit kleineren Planeten beobachteten wir bis
zu fünf mal höhere Migrationsraten. Dies wird durch einen kleinen Vortex hinter dem
Planeten verursacht, der nicht durch die Turbulenz aufgelöst wird. Im Gegensatz dazu
können diese Vortizes in viskosen α-Modellen nicht einmal erzeugt werden.
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1 Introduction

Recently, it was discovered that even the closest star to our Sun, Proxima Centauri, is
a host for a rocky planet, close in mass to the Earth. But while observations can in-
form us about orbital parameters, for example we know that the planet orbits Proxima
Centauri in a distance of 0.05 au with a period of 11.2 days, not much is known about
its formation. Nowadays more and more Earth-like planets are found but it is still
impossible to observe the formation of planets directly. �is leaves only theoretical
consideration and simulations to study planet formation.

With simulations it is possible to explore the earlier phases of planet formation,
when the disk was still accreting onto the star and interacted with the planet. We can
study how the planet migrated through this disk due to gravitational interaction with
the disk, until we reach the birthplace of the planet. We can analyze how the dust
interacted with the gas of the disk, how it was pushed around by the turbulent motion
of the gas and in turn shaped the gas. We can go back even further and research how
the turbulence shaped the disk.

To provide context for the publications the next sections will give an overview of
planet formation. I will �rst give an introduction on the accretion disks and the turbu-
lence within. �en I will review the dust evolution and �nally I will discuss the planets
and their migration. I will present the aim of this thesis in Chapter 2. Chapter 3 will
provide the publications and �nally I will discuss the results and give an outlook to
future research on this �eld in Chapter 4.

1.1 Accretion disk dynamics

Historically, not much was known about accretion disks from observations. Instead
one had to reason about the internal dynamics of accretion disks, beginning with its
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1 Introduction

creation. A star forms from an extended molecular cloud which collapses under its own
gravity. Due to the small initial rotation in the molecular cloud not all of the initial gas
of the cloud will collapse onto the star. Instead angular momentum conservation will
prevent the in�ow of the gas and lead to an almost stable con�guration of gas orbiting
the star on circular orbits with Keplerian velocity. �ese �at disks usually extend up to
several hundred au. As the name accretion disk already implies, those disks will slowly
accrete their ma�er onto the star. �e lifetime of these accretion disks depends on the
timescale on which the angular momentum of the gas can be transported outwards, as
this allows the gas to accrete inwards.

Alpha disk model

A simple �rst guess for the source of angular momentum transport would be the kine-
matic viscosity. �e exchange of angular momentum would be directly due to collision
between particles with slightly di�erent velocities. �is does lead to in�ow of ma�er,
but it can be calculated that this process would lead to timescales several orders of
magnitude larger than the lifetime of the universe. Even without further observational
evidence it is clear that this is far too slow. Fortunately this model can be salvaged if
the kinetic viscosity is substituted with a turbulent viscosity.

Indeed one of the �rst models of accretion disks, which is still used today, is the
model of Shakura and Sunyaev (1973). �ey reasoned that the largest turbulent eddy
can be of the size of vertical height of the disk H . Additionally, a typical velocity in
a disk is the isothermal sound speed cs. Together this leads to a simple model for the
turbulent viscosity:

ν = αcsH , (1.1)

where α is a dimensionless constant, that quanti�es the strength of the turbulence. We
can then estimate an α from observations of the lifetime of protoplanetary disks.

Lifetime of disks

�e lifetime of accretion disks can be estimated from the observation of star clusters
(Williams and Cieza, 2011). For each cluster one estimates the age of the cluster and
the fraction of stars in the cluster with accretion disks. In very young cluster with an
age of less than one million years nearly every star will have a disk. �is fraction then
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1.1 Accretion disk dynamics

drops of to half of the stars at around 2.5 million years and �nally a�er 10 million years
almost none of the stars will have retained their disk. Hence, a typical disk lifetime
is around 2.5 million years, with a large error in the order of one million years due to
the di�culty in accurately estimating the age of very young stars. �e lifetime of a
speci�c disk will also depend on a few parameters, for example the mass of the star
and metallicity of the disk. From this lifetime we can now estimate the α-parameter to
lie between 10−3 and 10−2 for protoplanetary disks.

Magneto rotational instability

An instability that can reach this level of turbulence is the magneto rotational insta-
bility (MRI) �rst studied by Balbus and Hawley (1991). �e MRI generates magnetic
�elds which can transport angular momentum outwards, provided there is a small ini-
tial magnetic �eld. Another condition for the disk to be unstable to the instability is
an outwardly decreasing angular orbital frequency pro�le, which is easily satis�ed in
Keplerian disks. �e biggest obstacle for the MRI is the low ionization fraction in pro-
toplanetary disks. �e magnetic �eld can only properly connect to the gas if there
are enough free electrons and ions to couple the magnetic forces with the gas. But
the ionization fraction in protoplanetary disks is usually too low for the ideal MHD
equations to be applicable, instead the di�usive MHD equations need to be considered
in major parts of the disk. Nevertheless at the inner region of the disk (r < 0.5 au)
the temperatures are typically hot enough for su�cient ionization of the gas. At this
temperature the collisions between the hydrogen atoms themselves are already ioniz-
ing. �e force of the magnetic �eld threading the disk will then act on the gas parcels
on di�erent orbits similar to a spring between them and the magnetic �eld thus acts
against the gas being sheared apart due to the di�erential rotation. Since the inner gas
parcel has the higher angular momentum in a protoplanetary disk, this exchange of
angular momentum leads to the outward transport.

Farther out in the disk the ionization will be too small and the resistivity of the gas
will suppress the MRI. �is region with suppressed MRI is o�en called “dead zone”,
because it was thought that this region is not turbulent, but this needs not to be true
as other instabilities may be active. It was also predicted by Gammie (1996) that the
surface layers of this region may still be active and excite the dead zone. Also new
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1 Introduction

simulations including the Hall e�ect and ambipolar di�usion show a small activity in
this region.

In the outer regions the disk is thin enough that the ionizing x-rays from the star
can reach the midplane of the disk and provide a su�cient ionization. Nevertheless,
the di�erent di�usive terms may dominate in this region, preventing turbulence.

Fortunately, magnetic �elds are not the only way to generate turbulence in accre-
tion disks. While it was initially thought that purely hydrodynamic instabilities can
not play a signi�cant role because the level of turbulence they generate is relatively
small and not su�cient to explain the expected lifetime of disks, the dead zone and
layered accretion provide the possibility that they are nevertheless important for the
disk dynamics outside of being the main source of angular momentum transport. For
example even a low level of turbulence is extremely important for the dust se�ling and
transport and thus also plays a major role in planet formation.

Gravitational instability

A well studied purely hydrodynamic instability is the gravitational instability. In a
massive disk the self-gravity of an over-dense perturbation in the disk can act against
the stabilizing shear and pressure and lead to a collapse of this region. �e criterion
for stability was found by Toomre (1964) to be:

Q =
csκ

πGΣ
. 1 (1.2)

where κ is the epicyclic frequency, quantifying the shear and Σ is the surface density
of the disk. �e disk is unstable if Q . 1 is satis�ed. �is condition is usually only
ful�lled in the outer region of massive protoplanetary disks. Another important factor
for the level of activity is the radiative cooling (Gammie, 2001). Depending on the
local physics this leads to sustained turbulence or even fragmentation of the disk. �e
fragmentation of the disk due to the gravitational instability is one possible explanation
for the formation of gas giant planets.

Convective overstability and subcritical baroclinic instability

Another source for hydrodynamic activity is convection. �e convective overstability
(Lyra, 2014) makes use of the epicyclic oscillations naturally occurring in an accretion
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1.1 Accretion disk dynamics

disk. If the cooling times are in the order of the dynamical times, the oscillating gas
parcel will not be in thermal equilibrium with the surrounding gas, leading to a radial
buoyant force that slowly increases the amplitude of the oscillation. While it is unclear
if the very speci�c conditions needed, for example on the radial entropy gradient, are
met in a protoplanetary disk, it would be a convenient way to trigger the subcritical
baroclinic instability (SBI).

�e SBI can create long lived vortices with a weak angular momentum transport
(α ∼ 10−3) out of small initial perturbations (Lesur and Papaloizou, 2010). Vortices
play a major role in planet formation, since dust can be collected inside, leading to
enhanced growth of dust particles.

Rossby wave instability

�e Rossby wave instability (RWI, Lovelace et al., 1999, Li et al., 2000, 2001) is another
instability which is important in the context of planet formation due to the genera-
tion of vortices. �e region is unstable if there is a maximum in the inverse potential
vorticity:

ΣS2/γ

2(∇ × u)z , (1.3)

where Σ is the surface density, S is the speci�c entropy, γ is the speci�c heat ratio, and
u is the gas velocity.

While the condition for the RWI can not be reached in an undisturbed disk, they are
readily met at the edge of gaps created by massive planets (de Val-Borro et al., 2007).
�ere the bump in the radial pressure pro�le leads to a local extremum in the rotation
speed. �is axisymmetric peak in the vorticity is then unstable to the RWI and decays
to multiple small vortices. �ese can then merge to a single large vortex. Another
region where they are expected to form is the inner edge of the dead zone, there a
pressure bump is expected due to the sudden increase in turbulent viscosity (Lyra and
Mac Low, 2012).

Vertical shear instability

�e vertical shear instability (VSI) was �rst discovered by Goldreich and Schubert
(1967), Fricke (1968), in the context of di�erentially rotating stars. As the name im-
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1 Introduction

plies, the instability feeds on the vertical shear in the angular momentum pro�le of
the disk, which is generated by a radial gradient in temperature. �e condition for
instability can be shown by extending the Rayleigh criterion dj2

dR < 0 for inviscid disks
without vertical shear to disks with vertical shear. If the cooling is fast enough to over-
come the stabilizing buoyancy the stability criterion is then extended to (Urpin, 2003,
Arlt and Urpin, 2004):

∂j2

∂R
− kR
kZ

∂j2

∂Z
< 0 . (1.4)

Here j = R2Ω is the angular momentum and kR,kZ are the wavenumbers of the per-
turbation in radial and vertical direction. From this criterion we can see that any disk
with vertical shear is unstable, if the wavevector is su�ciently elongated in the vertical
direction. For numerical simulations this makes high radial resolution necessary.

�e growth rate of the instability is (Nelson et al., 2013):

σ ∼ q
H

R
Ω , (1.5)

where H is the scale height of the disk, which depends on the temperature, R is the
distance to the star and q is the exponent for the power law of temperature T ∼ Rq .
�us the VSI can quickly grow on the timescale of the inverse angular frequency, but
strongly depends on the details of the temperature pro�le. For protoplanetary disks
one expects q to be between −0.5 and −1 and H/R is usually assumed to be close to
0.05 (Armitage, 2011).

More interesting than the linear growth is the level of turbulence for the saturated
state. �ere the wavelength is limited due to the viscous and radiative di�usion lengths
(Barker and La�er, 2015). �e viscous di�usion length sets a lower limit on the length-
scale of the VSI, as the �uid element needs to retain its angular momentum during the
exchange. As the disk becomes more turbulent due to the VSI the viscous di�usion
length also increases and together with the scale height of the disk, this sets a natural
limit to the VSI activity.

�e thermal di�usion length can also be an upper limit to the lengthscale of the VSI,
since the VSI has to overcome the vertical buoyancy. �is dictates an upper limit on the
cooling time, which can be a limiting factor in outer parts of the disk (Lin and Youdin,
2015).
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1.2 Dust evolution

1.2 Dust evolution

�e growth of planetesimals from microscopic dust particles is the �rst step for planet
formation. Initially around 1% of the disk mass is in dust particles. �ey are initially
well mixed with the gas and consist mainly of silicates with a size in the micrometer
range. Due to Brownian motion they will move around in the gas and collide with
other dust particles. If the relative velocities are small enough they will stick together
and begin to form larger dust conglomerates. Experiments have shown that they are
typically fragile and can easily fragment if they collide with other dust conglomerates
that are faster than 1 m/s (Blum, 2010). �e fragmentation does not only inhibit dust
growth but is an important process as it prevents the depletion of small dust grains in
the disk for the later stages of the accretion disk. Small grains are important for the
opacity of the disk and have been con�rmed by observations to still be present in the
disk even in the late phases of planet formation.

Another possible outcome of the collision between two dust particles is a collision
where they bounce o� each other. It has been shown in experiments that this result is
most likely for particles in the mm-range. �is is the �rst barrier to further growth of
the dust grains (Windmark et al., 2012). �is barrier may be overcome by a few lucky
particles, for which the collision velocity was unlikely slow for a few consecutive col-
lisions. If these particles become large enough, they can sweep up the smaller particles
and grow further. Fragmentation of these seed particles may then increase the number
of particles that can overcome the barrier.

With the increasing size of the dust aggregates they are no longer strongly coupled
to the gas. In this regime the particles are still smaller than the mean free path of the
gas molecules. �e drag force is then in the Epstein regime, where the coupling is
directly due to the collision between gas and dust particles. An o�en used parameter
to characterize the strength of the drag force is the stopping time, which is de�ned as
the time scale on which the dust particle is accelerated to a velocity close to the sur-
rounding gas. �is is also the timescale on which the dust se�les to the midplane due
to the vertical gravity in the disk. �e se�ling is counteracted by turbulence. Another
e�ect of the decoupling is that the collision speed between dust particles is then set by
the turbulent gas motion, which is another reason why the strength of the turbulence
is important for the dust evolution.
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1 Introduction

�e drag force causes the next barrier on the way to planet formation. Dust moves
with Keplerian velocity, which is the velocity where gravity and the centrifugal force
balance each other. But gas feels also the pressure gradient, leading to slightly sub-
Keplerian velocities for the gas. Hence the azimuthal velocities between dust and gas
di�er. �is leads to a constant drag force between the dust and gas. Because the gas
dominates the mass of the disk and rotates slower due to the pressure support, the
gas slows down the particles, leading to an inward dri� of the particles. �e speed
of the inward dri� depends on the stopping time and is strongest for particles with a
stopping time close to the time for one orbit. For smaller stopping times the particles
are closely coupled to the gas and leading to a smaller di�erence in the azimuthal
velocities, reducing the inward dri� speed. Larger stopping times on the other hand
lead directly to a longer time scale for the deceleration, resulting in a slower inward
dri� speed.

�e fastest dri�ing bodies have a typical size in the order of meters and reach the
star in a few thousand years. �is is the “dri� problem” in planet formation. �us we
expect a mechanism to exist that stops or slows down the meter sized dust particles.

One possible way to stop the inward dri� is a pressure maximum in the gas. In
a pressure maximum the gradient in pressure is zero, removing the pressure support
from the gas. Hence the gas and the dust move with the same velocity on stable or-
bits. Even more important, on the side to star of the pressure maximum the pressure
gradient is positive, leading to gas which is faster than the dust. �us the dust in this
region will dri� outwards into the pressure maximum.

Massive planets are known to create a pressure maximum by pushing ma�er out
of their orbit. �is creates an inner and outer edge, where dust can be caught and
collected. But this can not solve the problem how planets are created in the �rst place.
Another way to create pressure maxima are vortices. If the vortex is strong enough
it also creates a maximum in the pressure that collects dust. �is opens the question
how the vortex is formed, which brings us back to the details of the accretion disk
dynamics. �e earlier mentioned Rossby wave instability and the subcritical baroclinic
instability are candidates for this, but also the vertical shear instability may create
vortices (Richard et al., 2016).

A di�erent way to save the dust from the rapid inward dri� may come from the dust
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1.2 Dust evolution

itself. If the dust is well mixed with the gas, it has only a small impact on the gas due to
its small mass fraction of only 1%. But this changes if the dust is able to collect in a small
region until there is more dust than gas. �en, instead of just being slowed done by
the gas, the dust can also accelerate the gas to Keplerian velocity. A small overdensity
in the dust may be created by larger dust grains se�ling to the midplane or, as we will
show in this work, due to the vertical shear instability. But these processes alone can
not create overdensities strong enough to stop inward dri�.

�is leads us to the streaming instability discovered by Youdin and Johansen (2007).
�e necessary conditions for this instability are a dust to gas ratio of one to ten, which
is an increase in the initial dust density of a factor of ten. Additionally, the dust should
have a stopping time in the order of the time for one orbit. If a small cluster of dust
moves together through the gas, its combined drag force will accelerate the gas around
it up to the velocity of the cluster. �is creates a small patch of gas that moves faster
than the surrounding gas. �is allows the dust cluster to travel through the gas faster
than smaller dust clusters, allowing the cluster to catch up to other clusters. �ese will
then be added to the larger cluster, strengthening the e�ect. �is way massive clusters
can form, which are no longer slowed done by the drag from the gas.

Independent of the process that leads to the large dust clump, a gravitational col-
lapse may occur, if enough dust is collected into a small region. In contrast to gas
clumps, the gravitational force on the dust only has to overcome the shear of the disk
and not a pressure gradient, which can only support gas against collapse. �is skips
the tedious growth of the grains by numerous collisions and can directly create plan-
etesimals, which are km sized bodies. �ese planetesimals then can sweep up smaller
dust particles and other planetesimals due to their no longer negligible gravitational
a�raction. �is leads to an oligarchic growth phase (Kokubo and Ida, 1998), where
a few planetesimals quickly grow to the size of planets, ending this phase of planet
formation.

Observations

A major source for information on dust in protoplanetary disks are meteorites found
on Earth, which can tell us about the history of our own Solar System. �is reveals
for example that the �rst CAIs were formed in the inner region of the disk 4567 Myr

17



1 Introduction

Figure 1.1: Image of HL Tau in the submillimeter wavelength taken by ALMA. Source:
ALMA Partnership et al. (2015).

ago (see e.g. Weidenschilling and Cuzzi, 2006, Krot et al., 2009), which is very close to
the formation of the Solar System. Surprisingly, they did not quickly migrate through
the disk into the Sun, but spread, most likely due to turbulent di�usion, throughout
the disk. A second class of inclusions that is o�en found in meteorites, the chondrules,
formed 1-3 Myrs later in sudden heating events. �is gives an interesting insight into
the dynamics of a protoplanetary disk. Not only happened dust growth for the �rst
time very early, it also not completely depleted the dust from the disk. Furthermore
there is at least another dust growth phase 1-3 Myrs later, which is important for as-
teroid and probably also planetesimal formation.

Another source are observations of extrasolar planetary systems. Observations of
dust are easier than in the visible light, since the wavelength is in the millimeter
range, making it possible to connect telescopes with interferometry to one large tele-
scope with higher resolution. Nowadays the resolution of these telescopes is �nally
high enough to resolve at least the coarse structure of an accretion disk. A famous
image of HL Tau is shown in Fig. 1.2. It was taken by the Atacama Large Millime-
ter/submillimeter Array (ALMA) and shows the disk of HL Tau with an unexpectedly
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1.3 Planet formation and migration

large number of ring structures. Since the system is most likely less than 1 Myr old, it
is not clear if these rings can be explained with already forming planets, or should be
explained by other e�ects like a gravitational instability or snow lines.

1.3 Planet formation and migration

�e clearest evidence of planet formation are the planets themselves. While a few
planets are visible with the naked eye, other planets in our Solar System can only be
seen with the help of a telescope and it is even today unclear if a ninth planet exists.
Despite our ignorance of our own system it is nowadays possible to detect planets
outside our own Solar System. �ese planets are called exoplanets.

�ere are several methods for the detection of exoplanets. Since planets are much
smaller than stars, most methods focus on analyzing the star and then deduce the
existence of planets indirectly. �e �rst e�ective method makes use of the motion of a
star which is induced by the gravitational interaction of the planet with the star. Just as
planets orbit the combined center of mass, the star also orbits around this center albeit
with a much smaller orbit, because the mass of the star usually dominates the mass in
the star system by several orders of magnitude. For example our own Sun moves with
approximately 13 m/s due to the motion of Jupiter, the heaviest planet in our system.
�is seemingly small velocity can be detected by analyzing the spectrum of the star.
�e relative velocity of the star with respect to the observer will add a Doppler shi� to
the spectrum, which can be measured to a very high accuracy by the position of known
absorption lines. From the periodic changes in the Doppler shi� even the presence of
multiple exoplanets can be deduced.

Another successful method depends more on chance, since a speci�c alignment of
the star system to the observer is needed. For this method the planet needs to cross
in front of the star, occulting a fraction of the star from the observer. �is leads to a
decrease in brightness of the star. �is methods has the advantage that the radius of
the planet can be calculated, which allows to estimate the density and gives thus an
insight into the planet formation scenario.

In rare cases even direct imaging is possible. �ose systems need to be close to the
observer, in order to be resolvable by the telescope and the planet should be massive

19



1 Introduction

10−2 10−1 100 101 102

semimajor axis in au

10−2

10−1

100

101

102

103

104

pl
an

et
m

as
si

n
M

E
ar

th

transit
radial velocity
other
solar system

Figure 1.2: Discovered exoplanets and the planets in the Solar System. Data is from
http://exoplanets.org (state Feb. 2017, see Han et al. (2014)).
Most exoplanets were found in the last few years due to the Kepler mission.

with a wide separation, since the light re�ected by the planet and its internal luminos-
ity will only be faint in comparison to the glare due to the intense emission of star.

Another method uses gravitational microlensing. Here the observed system moves
over an additional star in the background. �e gravity of the observed system then acts
as an optical lens, focusing the light of the background star onto the observer. While
the alignment happens only rarely and only for a short time, preventing repeated ob-
servation and con�rmation, this method has the advantage of working even for Earth
mass planets.

�e �rst con�rmed detection of an exoplanet occurred in 1992. �e detection method
made advantage of the fact that the host star is a millisecond pulsar. �e very precise
timing of the pulsar is disturbed by the planet orbiting around the star, similar to the
radial velocity method.

Since then, a high number of planets have been detected. In Fig. 1.2 the mass of
the discovered planets depending on their semimajor axis is shown and compared the
planets in our own Solar System. It is immediately clear that there are three clusters
in the �gure. �is clustering does not necessarily correspond to a clustering in the
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1.3 Planet formation and migration

occurrence rates of this type of planets. Instead they may be created by strong ob-
servation biases due to the detection technique. For example the detection by radial
velocity does not replicate the clustering in the detection with the transit method. It
is also clear that currently no method can detect planets in the lower right area, into
which the planets in the Solar System fall.

Nevertheless the clusters correspond roughly to di�erent types of planets. �e plan-
ets in the lower le� region with a mass smaller than ten Earth masses are the Earth-like
planets and the super-Earths. In this region we can �nd habitable planets. To be con-
sidered as habitable, they also need a distance to the star that allows water to be liquid
on the planet’s surface. It has been estimated from their numerous detection that at
least half of the sun-like stars will have a planet in this cluster.

In the upper right corner we �nd the gas giant planets, which are similar to Jupiter.
�ese are expected to be formed by either gravitational collapse or by runaway gas
accretion. �ere a small rocky core starts to accrete gas until the gas atmosphere is
heavier than the core. At this point the planet can accrete from the surrounding gas
disk very quickly, until it creates a gap.

�e exoplanets in the cluster in the upper le� corner are so-called Hot Jupiters. �ey
are similar to Jupiter, but are much closer to their host star. Hence, the star will heat
them to high temperatures. While it is possible that they formed this close to the star, it
is more likely that they migrated through the gas disk to this position. Migration will
typically occur for all planet, hence no planet will end up where they have initially
formed.

�e process for migration of planets has nothing to do with the migration of dust.
�e la�er is slowed down due to the drag force. Planets are far too massive in relation to
their radius, to be in�uenced by the gas drag. Even the much smaller planetesimals can
move through the disk without being slowed down by the drag. Instead the migration
is only due to the gravitational interaction between the planet and the disk.

Even small planets will perturb the disk with their gravitational potential. Due to the
Keplerian rotation these perturbations are sheared into spiral arms. �e inner spiral
will be in front of the planet and the outer spiral will be behind the planet. Since the
density inside the spiral arms is increased relative to the unperturbed disk, these arms
will pull the planet in their direction, exerting a torque onto the planet. �ese torques
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are called the Lindblad torques. Since they pull in opposite directions, they will mostly
cancel out each other. �e details of the torque balance will depend on properties like
the density and temperature gradient (D’Angelo and Lubow, 2010), but in general the
outer arm behind the planet will be stronger, leading to inward migration. �is kind
of migration is called type I migration.

If the planet is massive enough it can carve a gap in the disk. �is occurs when the
angular momentum the gas gained, or lost, due to the interaction with planet is not
carried away quick enough. �e gas then seems to be pushed out of the corrotation
region by the planet. In principle this process works also for low mass planets, but the
timescale will be too long for the e�ect to be noticeable, especially when the viscosity
is not extremely low. Since the gap reduces the density in the spiral arms, a planet that
migrates to the inner edge of the gap reduces the torques of the outer arm, thus halting
the inward migration. �e same would happen for outward migration. �us a planet
siting in a gap can now no longer escape it and migration depends on how fast it can
move the gap through the disk. �is is called type II migration.

Finally, for planets between type I and II migration in disks that are close to being
gravitational unstable (Masset and Papaloizou, 2003), the migration of the planet can
lead to an asymmetric surface density in the co-orbital region. �is asymmetry can
increase the inward migration rate. Since the asymmetry also increases with the mi-
gration rate, this can lead to runaway migration, where the planet migrates inwards
on a timescale of 300 orbits.
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2 Aims and Objectives

�e aim of this dissertation is to examine the e�ects of turbulence on the evolution
of dust and planets. While there are di�erent sources for turbulence in an accretion
disk, we focus in this work on turbulence generated by the vertical shear instability
(VSI). We chose the VSI because the VSI is a strong candidate for angular momentum
transport in the dead zone and it might have unique e�ects on the dust and planets
due to the global modes in the velocity �eld.

In general we use the PLUTO-Code developed by Mignone et al. (2007) to integrate
the Navier-Stokes equations. We begin with two-dimensional axisymmetric simula-
tions, to explore the strength and time scale of the VSI. To enable a more realistic disk
model we extended the Code with a radiation transport module witch uses the �ux
limited di�usion approximation and was developed by Kolb et al. (2013).

To explore the impact of the VSI on the dust particles, we develop a module for
Lagrangian particles. For each particle we solve the di�erential equation of motion,
which includes the gravity of the star and the feedback from the gas via the drag force.
We add those particles to our VSI model and extend the simulation to three dimen-
sions to include e�ects that can be created by vortices. For this model we analyze dust
se�ling, migration, clustering and the relative velocities.

Finally, we investigate the e�ect of the turbulent viscosity of the VSI on planets and
their migration. We add planets of di�erent sizes into a disk with VSI activity and
compare to a laminar model, which is the same model, but with kinematic viscosity
instead of VSI activity. �is allows us to measure the e�ect of turbulent viscosity on
vortices and the torques acting on the planet. We also study the perturbations of the
surface density due to the planets.
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ABSTRACT

Context. The origin of turbulence in accretion discs is still not fully understood. While the magneto-rotational instability is thought
to operate in sufficiently ionised discs, its role in the poorly ionised protoplanetary disc is questionable. Recently, the vertical shear
instability (VSI) has been suggested as a possible alternative.
Aims. Our goal is to study the characteristics of this instability and the efficiency of angular momentum transport, in extended discs,
under the influence of radiative transport and irradiation from the central star.
Methods. We use multi-dimensional hydrodynamic simulations to model a larger section of an accretion disc. First we study inviscid
and weakly viscous discs using a fixed radial temperature profile in two and three spatial dimensions. The simulations are then
extended to include radiative transport and irradiation from the central star.
Results. In agreement with previous studies, for the isothermal disc we find a sustained unstable state with a weak positive angular
momentum transport of the order of α ≈ 10−4. Under the inclusion of radiative transport the disc cools off and the turbulence
terminates. For discs irradiated from the central star we again find a persistent instability with a similar α value as for the isothermal
case.
Conclusions. We find that the VSI can indeed generate sustained turbulence in discs, albeit at a relatively low level with α about few
times 10−4.

Key words. hydrodynamics – instabilities – accretion, accretion disks – radiative transfer

1. Introduction

The origin of the angular momentum transport in accretion discs
is still not fully understood. Observationally it has been con-
firmed that the molecular viscosity is by many orders of mag-
nitude too small to explain the effective mass and angular mo-
mentum transport in discs (Pringle 1981). This can be inferred
for example from time variations in the disc luminosity in close
binary systems, or by correlating the infrared-excess caused by
discs around young stars with the age of the system. As a con-
sequence it is assumed that discs are driven by some kind of
turbulent transport whose cause is still not known. Despite its
unknown origin, the efficiency of the turbulence is usually pa-
rameterised in terms of the dimensionless parameter, α, as in-
troduced by Shakura & Sunyaev (1973). Observationally, val-
ues of a few times 10−3 as in protostellar discs to 10−1 for
discs in close binary stars are suggested. For sufficiently well
ionised discs the magnetorotational instability (MRI) is certainly
the most promising candidate to provide the transport (Balbus
2003). While this may be true for the hot discs in close binary
systems or in active galactic nuclei, there is the important class
of protostellar discs where at least the thermal ionisation levels
are too low to provide a sufficient number of charged particles
that can support the MRI (Armitage 2011). In such discs turbu-
lence plays an important role in several aspects. Not only does it
determine the lifetime of an accretion disc, but it also influences

where and how planets can form and evolve in the disc. A va-
riety of sources such as stellar X-rays, cosmic rays or collisions
with beta particles from radioactive nuclei have been invoked to
provide the required ionization levels, but recent studies indicate
the presence of an extended dead zone where, because of the
lack of ionization, no magnetically driven instability may oper-
ate. Additionally, recent studies on the origins of turbulence in
protostellar discs that include non-ideal magnetohydrodynami-
cal (MHD) effects such as ambipolar diffusion or the Hall ef-
fect, indicate that the MRI may even be suppressed strongly in
these discs, see the review by Turner et al. (2014) and references
therein.

As a consequence, alternative mechanisms that provide
turbulence are actively discussed. Typical examples for non-
magnetised discs are convective instability (Ruden et al. 1988),
gravitational instability (Lin & Pringle 1987), or baroclinic in-
stability (Klahr & Bodenheimer 2003), for further references
see Nelson et al. (2013). While any of these may operate un-
der special conditions in the disc, e.g. suitable radial entropy
gradients or a sufficiently high disc mass, none seems to have
general applicability. Searching for alternatives two linear in-
stabilities have been recently discussed in the literature, both
acting on the radial temperature structure of the disc. One is a
convective overstability that preferably acts for thermal relax-
ation times close to the orbital period (Klahr & Hubbard 2014;
Lyra 2014), and two is a vertical shear instability (VSI) that
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operates best for cooling times much shorter than the orbital
period or for discs that are adiabatically stratified in the verti-
cal direction. The present paper focuses on the latter instabil-
ity. Here, the instability is caused by a vertical gradient of the
angular velocity, Ω, in the disc. Through linear analysis it has
been shown that for a sufficiently strong vertical shear there are
always modes that can overcome the stabilizing angular momen-
tum gradient (Rayleigh-criterion) and generate instability (Urpin
& Brandenburg 1998; Urpin 2003). This instability is related
to the Goldreich-Schubert-Fricke instability that can occur in
differentially rotating stars (Goldreich & Schubert 1967; Fricke
1968).

Concerning vertical shears effectiveness with respect to an-
gular momentum transport numerical simulations were per-
formed by Arlt & Urpin (2004) and Nelson et al. (2013). The
first authors analysed the instability for globally isothermal discs
and found that the instability in this case could only be triggered
by applying finite initial perturbation because the equilibrium
state of the disc (being strictly isothermal) did not contain a shear
in Ω. The maximum values of α obtained by Arlt & Urpin (2004)
were around 6 × 10−6, but the turbulence was decaying in the
long run. Nelson et al. (2013) extended these simulations and
performed high resolution simulations of the VSI for so-called
locally isothermal discs that contain a radial temperature gra-
dient, but are vertically isothermal. Under these conditions the
equilibrium state has a vertical gradient in the shear and indeed
an instability sets in. As shown by Nelson et al. (2013) the insta-
bility has two distinct growth phases, it starts from the surface
layers of the disc where the shear is strongest and then protrudes
towards the midplane. In the final state the vertical motions in
the disc are antisymmetric with respect to the disc’s midplane,
such that the gas elements cross the midplane, a feature found
for the vertical convective motions in discs as well (Kley et al.
1993). For the efficiency of the VSI induced turbulence Nelson
et al. (2013) found a weak angular momentum transport with
α = 6 × 10−4. They also showed that in the presence of a small
viscosity or thermal relaxation the instability is weaker and can
easily be quenched.

It is not clear what influence radiation transport will have on
this instability. Without external heat sources one might expect
that, because of radiative cooling and the dependence of the in-
stability on temperature, the instability will die out. Here, we
evaluate the evolution of the instability for radiative discs and an
ideal equation of state. Additionally, we extend the radial domain
and include irradiation from the central star. We perform 2D and
3D hydrodynamical simulations including radiative transport.

This paper is organised as follows. In Sect. 2, we present
the physical setup of our disc models and in Sect. 3 the numer-
ical approach. The isothermal results are presented in Sect. 4,
followed by the radiative cases in Sect. 5. Stellar irradiation is
considered in Sect. 6 and in Sect. 7 we conclude.

2. Physical setup

In order to study the VSI of the disc in the presence of radiative
transport we construct numerical models solving the hydrody-
namical equations for a section of the accretion disc in two and
three spatial dimensions.

2.1. Equations

The basis our studies are the Euler Eqs. (1)–(3) describing
the motion of an ideal gas. These are coupled to radiation

transport (4) for which we use the two temperature approxima-
tion applying flux-limited diffusion. The equations then read

∂ρ

∂t
+ ∇(ρu) = 0 (1)

∂

∂t
ρu + ∇(ρuu) + ∇p = ρaext (2)

∂

∂t
e + ∇[(e + p)u] = ρuaext − κPρc(aRT 4 − E) (3)

∂

∂t
E + ∇F = κPρc

(
aRT 4 − E

)
. (4)

Here ρ is the density; u the velocity; e the total energy den-
sity (kinetic and thermal) of the gas; p denotes the gas pressure;
the acceleration due to external forces, such as the gravitational
force exerted by the central star is given by aext; and E and F are
the energy density and the flux of the radiation. The last terms on
the righ-hand side of Eqs. (3) and (4) refer to the coupling of gas
and radiation, i.e. the heating/cooling terms. Here, c stands for
the speed of light, aR is the radiation constant, and κP the Planck
mean opacity.

We close the equations with the ideal gas equation of state

p = (γ − 1)eth, (5)

where eth = e − 1/2ρu2 is the thermal energy density. The tem-
perature of the gas is then calculated from

p = ρ
kBT
µmH

, (6)

where µ is the mean molecular weight, kB the Boltzmann con-
stant, and mH the mass of the hydrogen atom. In our simula-
tions with radiation transport we use γ = 1.4 and µ = 2.35. To
compare to previous studies we performed additional isothermal
simulations where we use γ = 1.001 and additionally reset to the
original temperature profile in every step. This procedure corre-
sponds to an isothermal simulation, but allows for an arbitrary
temperature profile. It also allows to use the feature of slowly re-
laxing to a given original temperature such as used for example
in Nelson et al. (2013). Note that without resetting the tempera-
ture the gas remains adiabatic, and the perturbation will die out
for our setup.

The radiation flux in the flux-limited diffusion (FLD) ap-
proximation (Levermore & Pomraning 1981) is given by

F = −λ c
κRρ
∇E, (7)

where κR is the Rosseland mean opacity and λ is the flux-limiter,
for which we use the description of Minerbo (1978). For the
Rosseland mean opacity we apply the model of Bell & Lin
(1994). For simplicity, in this initial study we use the same value
for the Planck mean opacity, see also Bitsch et al. (2013).

In some of our studies we add viscosity and stellar irradiation
to the momentum and energy equations. This will be pointed out
below in the appropriate sections.

2.2. Disc model

To be able to study the onset of the instability we start with a ref-
erence model in equilibrium. For this purpose, we follow Nelson
et al. (2013) and use a locally isothermal disc in force equilib-
rium, where for the midplane density we assume a power law
behaviour

ρ(R,Z = 0) = ρ0

(
R
R0

)p

, (8)

A77, page 2 of 12

3 Publications

28



Moritz H. R. Stoll and Wilhelm Kley: Vertical shear instability in accretion disc models with radiation transport

and that the temperature is constant on cylinders

T (R,Z) = T0

(
R
R0

)q

· (9)

To specify the equilibrium state we have used a cylindrical co-
ordinate system (R,Z, φ). However, our simulations will be per-
formed in spherical polar coordinates (r, θ, φ) because they are
better adapted to the geometry of an accretion disc. In Eqs. (8)
and (9), ρ0 and T0 are suitably chosen constants that determine
the total mass content in the disc and its temperature. The ex-
ponents p and q give the radial steepness of the profiles, and
typically we choose p = −3/2 and q = −1. Assuming that in
the initial state there are no motions in the meridional plane and
the flow is purely toroidal, force balance in the radial and verti-
cal directions then leads to the equilibrium density and angular
velocity profiles that we use for the initial setup (Nelson et al.
2013)

ρ(R,Z) = ρ0

(
R
R0

)p

exp
[
GM
c2

s

(
1√

R2 + Z2
− 1

R

)]
, (10)

and

Ω(R,Z) = ΩK

[
(p + q)

(H
R

)2

+ (1 + q) − qR√
R2 + Z2

] 1
2

· (11)

Here, cs =
√

p/ρ denotes the isothermal sound speed, ΩK =√
GM�/R3 the Keplerian angular velocity, and H = cs/ΩK is

the local pressure scale height of the accretion disc. We note
that the Z dependence of Ω in the equilibrium state is the origin
of the VSI because the vertical shear provides the opportunity
for fluid perturbations with a wavenumber ratio kR/kZ above a
threshold to tap into a negative gradient in the angular momen-
tum as the perturbed fluid elements move away from the rotation
axis (Nelson et al. 2013). The angular velocity given by Eq. (11)
is also used to calculate the Reynolds stress tensor, for details
see below.

2.3. Stability

Nelson et al. (2013) repeated the original analysis in Goldreich
& Schubert (1967) for a locally isothermal and compressive gas
for an accretion disc using the local shearing sheet approxima-
tion at a reference radius r0. They derived the same stability cri-
terion as Urpin (2003) and obtained the following growth rate of
the instability

σ2 =
−κ2

0(c2
0k2

Z + N2
0 ) + 2Ω0c2

0kRkZ
∂V̄
∂z

c2
0(k2

Z + k2
R) + κ2

0 + N2
0

, (12)

where κ0 is the epicyclic frequency, c0 the sound speed, and N0
is the Brunt-Vaisaila frequency at the radius r0; V̄ denotes the
mean deviation from the Keplerian azimuthal velocity profile,
and kR and kZ are the radial and vertical wavenumbers of the
perturbations in the local coordinates.

For negligible N0, small H0/R0, and kZ/kR ∼ O(qH0/R0), as
seen in their numerical simulations, Nelson et al. (2013) find

σ ∼ qΩ
H
R
, (13)

which implies that the growth rate per local orbit to first order
depends on the temperature gradient as given by q and on the
absolute temperature, because of H/R. We will compare our nu-
merical results with these estimates.

3. Numerical model

To study the VSI in the presence of radiative transport we per-
form numerical simulations of a section of an accretion disc in
two and three spatial dimensions using spherical polar coordi-
nates (r, θ, φ), and a grid which is logarithmic in radial direction,
keeping the cells squared. We solve Eqs. (1) to (4) with a grid-
based method, where we use the PLUTO code from Mignone et al.
(2007) that utilises a second-order Godunov scheme, together
with our radiation transport (Kolb et al. 2013) in the FLD ap-
proximation, see Eq. (7).

The simulations span a region in radius from r = 2−10 AU,
this is the range where the dead zone can be expected (Armitage
2011; Flaig et al. 2012). Here, we use a larger radial domain as
Nelson et al. (2013) did because we intend to study the global
properties of the instability over a wider range of distances.
Additionally, this larger range is useful because we need some
additional space (typically ≈1 AU) to damp possible large scale
vortices in the meridional plane that show up at the inner radial
boundary of the domain (see below). The origin of these vortices
is possibly that the instability moves material along cylindrically
shaped shells, a motion that is not adapted to the used spherical
coordinates, such that the midplane is cut out at the inner bound-
ary. Vortices can also arise if the viscosity changes apruptly, a
situation mimicking a boundary. Additionally, in some cases the
wavelengths are large, such that the coupling between different
modes cannot be captured in a small domain. We also use a wide
range because with radiation transport the growth rates are ex-
pected to depend on the opacity, which is a function of ρ and T
and thus of the radius. In the meridional direction (θ) we go up
to ±5 scale heights above and below the equator in the isothermal
case, and we use the same extension for the radiative simulation,
where it corresponds to more scale heights. For the 3D simu-
lations we used in the azimuthal direction (φ) a quarter circle,
from 0 to π/2.

We use reflective boundaries in the radial direction. In the
meridional direction we use outflow conditions for the flow out
of the domain and reflective conditions otherwise. For the radi-
ation transport solver we set the temperature of the meridional
boundary to 10 K, which allows the radiation to escape freely.
We use damping of the velocity near the inner radial boundary
within 2–3 AU to prevent the creation of strong vortices arising
through the interaction with the reflecting boundary, which can
destroy the simulation. This is done by adding a small viscosity
of ν = 2×10−7 with a linear decrease to zero from 2 AU to 3 AU
(similar to the damping used in de Val-Borro et al. 2006).

We assume that the disc orbits a solar mass star and we ap-
ply a density of ρ0 = 10−10 g/cm3 at 1 AU. Because the surface
density decays with r−0.5, we get a surface density Σ = 80 g/cm2

at 5 AU. To study the mass dependence we vary ρ0 for the radia-
tive models. To seed the instability we add a small perturbation
of up to 1% of the sound speed to the equilibrium velocity, see
Eq. (11).

Because our radiation transport solver is only implemented
in full 3D (Kolb et al. 2013), we use two grid cells in the az-
imuthal direction for the 2D axisymmetric simulations using ra-
diation transport.

4. Isothermal discs

Before studying full radiative discs, we first perform isothermal
2D simulations to compare our results and growth rates to those
of Nelson et al. (2013). Then we will extend the simulation to
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Fig. 1. Kinetic energy of the motion in the meridional plane at different
radii in an inviscid disc. The kinetic energy at the different locations
is in each case averaged over a radial interval with length 0.5 AU. We
note that the unit of time is given in local periods at the centre of the
specified interval. Hence, it is different for each curve, but this allows
easy comparison.

full 3D using a quarter of a disc and discuss the dependence on
resolution and viscosity.

4.1. Growth rates

To analyse the possible growth and instability of the initial equi-
librium state, we analyse the time evolution of the kinetic energy
in the meridional plane

ekin =
1
2
ρ
(
u2

r + u2
θ

)
, (14)

at different radii. The obtained growth of ekin of a run with
q = −1 and p = −3/2 is shown at different radii in Fig. 1 for an
inviscid disc model with a grid resolution of 2048×512. We note
that the time is measured in local orbits (2π/Ω(ri)) at the corre-
sponding centres of the intervals, ri. We measure a mean growth
rate of 0.38 per orbit for the kinetic energy (light blue line in
Fig. 1), which is twice the growth rate (σ) of the velocity. We
calculate the growth rate by averaging the kinetic energy at the
different ri over an interval with length 0.5 AU. Our results com-
pare favourably with the growth rates from Nelson et al. (2013)
who obtained 0.25 per orbit averaged over 1−2 AU for q = −1.
Averaging over this larger range leads to a reduced growth be-
cause the rate at 2 AU, measured in orbits at 1 AU, is smaller by
a factor of 21.5 = 2.8, and so their result is a slight underestimate.

A closer look at Fig. 1 reveals two distinct growth phases.
An initial strong linear growth phase with a rate of 0.38 per
orbit lasting about 20 local orbits, and a slower second phase
with a rate of 0.10 per orbit (grey line in Fig. 1). To understand
these regimes, we present in Fig. 2 the velocity in the merid-
ional direction, uθ, in 2D contour plots at different times. The
top panel reveals that the first phase corresponds to symmet-
ric (mirror symmetry with respect to the equatorial plane) dis-
turbances that grow from the top and bottom surface layers of
the disc. Here, the gas does not cross the midplane of the disc.
When the disturbances meet in the disc’s midplane they develop
an anti-symmetric phase with lower growth rates where the gas
flow crosses the midplane of the disc as shown in the middle
panel. The converged phase shown in the lower panel then shows
the fully saturated global flow. Figure 2 indicates that in the top
panel the whole domain is still in the anti-symmetric growth
phase, in the middle panel only the smaller radii show symmetric

Fig. 2. Velocity in the meridional direction, uθ, in units of local Kepler
velocity for an isothermal run without viscosity. The panels refer to
snapshots taken at time 100, 210 and 750 (top to bottom), measured in
orbital periods at 1 AU. In units of local orbits at (2.5, 3.5, 4.5) AU
this refers to (25, 15, 10) (53, 32, 22) (190, 115, 79) orbits, from top to
bottom.

growth, while in the lower panel the whole domain has reached
the final equilibrium, in accordance with Fig. 1.

We point out that the growth rate per local orbit (∼σ/Ω) is
independent of radius in good agreement with the relation (13),
for constant H/R. We will show later that the growth rate is also
independent of resolution.

4.2. Comparison to 3D results and Reynolds stress

In addition to the 2D simulation we ran an equivalent 3D case
using a quarter of a disc with a resolution of 512×128×128 grid
cells. We will use this to discuss the validity of the 2D results,
in particular the estimates on the turbulent efficiency factor α.
In Fig. 3 we compare the growth of the meridional kinetic en-
ergy for the 3D and the 2D simulation. After a slower start, the
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6

Fig. 3. Growth of the kinetic energy for the quarter of a disc and the
2D equivalent. The kinetic energy is averaged from 4 AU to 5.5 AU.

3D simulation shows very similar growth and reaches the same
final saturation level.

To estimate any possible angular momentum transfer caused
by the turbulent motions induced by the instability we calculate
the corresponding Reynolds stress (Balbus 2003)

Trφ =

∫
ρδurδuφdV

∆V
=

〈
ρδurδuφ

〉
, (15)

where δur and δuφ are defined as the fluctuations of the velocity
field from the mean flow and ∆V is the volume of the integrated
domain. To calculate a coordinate dependent stress we integrate
only over thin slices with a thickness of one cell in the apropriate
direction. While δur is just the radial velocity, ur, at the point of
interest because the initial ur was zero, δuφ is difficult to calcu-
late, as one has to subtract the mean background rotational ve-
locity. Armitage (2011) defines it as the difference to the Kepler
rotation, while strictly speaking it is the deviation from the un-
perturbed equilibrium state that is not Keplerian in our case, see
Eq. (11). In 3D simulations it is mostly calculated by averag-
ing over the azimuthal direction (Flock et al. 2011; Fromang
& Nelson 2006), but this instability is nearly axisymmetric (see
Fig. 4), so this is not appropriate here and the correct way is to
average over time to obtain the steady-state velocity. However,
this is computationally inconvenient because this time average
is not known a priori. In Fig. 5 we show that the time averaging
method leads to the same results as the equilibrium method us-
ing the analytic Eq. (11), and we use the latter for our subsequent
simulations.

To calculate the dimensionless α-parameter, Trφ has to be
divided by the pressure. To show the radial and vertical depen-
dence of α it is useful to use different normalisations. We divide
the Reynolds stress in Eq. (15) by the midplane pressure to il-
lustrate the dependence on the meridional (vertical) coordinate,
thus making it independent of the number of scale heights of the
domain. The stress as a function of the radius, Trφ(R), is divided
by the vertical averaged pressure, making it again independent
of the numbers of scale heights. This procedure corresponds to
a density weighted height integration (Balbus 2003).

In Fig. 5 we present the different methods for calculating
the Reynolds stress, Trφ, for the simulation of a quarter of a
disc with a resolution of 512 × 128 × 128 and the same initial
conditions as in the 2D case. We can see that indeed the ax-
isymmetric property of the instability leads to incorrect results
if one only averages over the azimuthal direction. All further
results for the isothermal discs are calculated with the equilib-
rium method. This allows us to approximate the Reynolds stress

Fig. 4. Vertical velocity in the midplane of the disc for the 3D model
after 4000 orbits. The nearly axisymmetric property of the instability is
clearly visible.
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Fig. 5. Reynolds stress (code units) from 3−10 AU averaged
over 41 time steps, each step 100 orbits apart beginning with or-
bit 1000, calculated with different averaging methods. For “mean time”
the steady-state ūφ = uφ − δuφ, needed to calculate the Reynolds stress
at each step, was calculated through averaging over the 41 time steps.
For “mean phi” the steady-state velocity was calculated by averaging
over the azimuthal direction at each time step. For “equilibrium” ūφ is
calculated analytically by using the equilibrium Eq. (11) at each step.
For the 2D model we used the equilibrium method as well.

even in a transient disc and calculate the stress continuously dur-
ing the whole runtime of the simulation, strongly reducing the
amount of data needed to be written to the hard drive because the
Reynolds stress can now be calculated independent of the other
time steps. In addition, the computations show that the stresses
of the reduced 2D simulations yield stresses comparable to the
full 3D case and can be used as a proxy for the full 3D case. In
Fig. 4 we show the vertical velocity in the midplane of the disc
for the 3D model. As shown, the motions are only very weakly
non-axisymmetric.

4.3. Resolution

In this section we look at the effect of resolution. We start with a
resolution of 256× 64, where the instability exists, but clearly is
not resolved, and go by doubling the resolution in several steps
up to a resolution of 2048×512, where the computations start to
be expensive. In Fig. 6 we show on the left the Reynolds stress
divided by the midplane pressure as a function of vertical dis-
tance. This is then averaged over the radius from 3−8 AU. On the
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Fig. 6. Radial and vertical distribution of the Reynolds stress. Left: the
Reynolds stress divided by the midplane pressure over the vertical di-
rection. Right: reynolds stress divided by the mean pressure over the
radius for different resolutions. Both are averaged over 4001 time steps
from orbit 1000 to 5000. The model res2048 corresponds to the results
shown in Fig. 1.
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Fig. 7. Mean wavenumber of the instability over the radius for different
numerical resolutions in the saturated phase. Upper panel: inviscid case
with ν = 0, lower panel: viscous case with ν = 5×10−7 (dimensionless).

right we plot the Reynolds stress divided by the pressure, where
both pressure and stress have been averaged over the meridional
direction.

From this plot it is not clear if the values for α converge to a
specific level for higher resolution. Nevertheless, it gives a first
impression on the strength of turbulent viscosity caused by this
instability being relatively weak with α-values a few times 10−4,
which is slightly smaller than the value of 6 × 10−4 found by
Nelson et al. (2013).

In Fig. 7 we show the wavelength of the perturbation as
a function of radius for different numerical resolutions, where
the wavelength has been estimated by measuring the distance
between two sucsessive changes of the sign of the vertically
averaged vertical momentum after the instability is saturated

Fig. 8. Histogram: colour coded is the logarithm of the probability for
the occurrence of a wavelength at a radius normalised at each radius by
the sum of all wavelengths for the specific radius. The black lines are
proportional to the radius to the power of 2.5 and the lines are a factor
of 2 apart from each other. The dashed line has linear slope. One can see
that the instability jumps successively between different modes for the
wavelength with corresponding jumps in frequency at the same radius.

(see Fig. 2, third panel, or Fig. 10 along the radius axis, begin-
ning with orbit 1000). This does not, of course, reveal the full
spectrum, but at this point we are more interested in the char-
acteristic mean wavelength. We note that the wavelength in the
growth phase can be smaller. In all shown resolutions one wave-
length is resolved with 15–50 grid cells, while larger radii are
better resolved. Despite the variation with radius one notices in
Fig. 7 that the wavelength clearly depends on the numerical res-
olution. One possible cause for this is the lack of physical vis-
cosity. Because the (intrinsic) numerical viscosity of the code
decreases with increasing resolution, this may explain the miss-
ing convergence, in particular since the growth rates depend of
the wavenumbers of the disturbances, see Eq. (12). We repeated
the run with an intermediate resolution of 1440 × 360 with re-
duced precision by using a first order instead of a second order
spatial interpolation. This clearly increased the wavelength (by
about 40%) indicating that the problem is caused by the numer-
ical viscosity.

Figure 7 indicates a strong reduction of the wavenumber with
radius. To further explore this dependence of the wavelength
on the radius, we performed an additional simulation with an
extended radial domain from 2 AU to 50 AU. Again, we es-
timate the wavelength by measuring the distance between two
sign changes in the vertical averaged vertical momentum. This
time we show all the wavelengths that were detected by this
method in Fig. 8, where we show how often a certain wave-
length was captured, normalised to the specific radius where it
was measured. An interesting behaviour can be observed. While
the global radial wavelength does indeed depend linearly on the
radius, locally it clearly deviates from this dependence and in-
stead depends on the radius to the power of 2.5. This can also be
seen in the simulation with smaller domain, but there it cannot
be clearly distinguished from the interaction with the boundary.

This supplies us with an explanation for the resolution de-
pendence of the instability. Since the modes cannot become ar-
bitrarily small (because of the finite grid) or large (because of the
limited vertical scale hight) there will be jumps between differ-
ent modes. The viscosity and the Kelvin-Helmholtz instability,
which can be observed in the simulations with high resolution,
are the candidates for a physical cause for this cut off at small
wavelengths.
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Fig. 9. Fourier power spectrum of the temporal evolution of the instabil-
ity after saturation (see Fig. 10). Analysed is the averaged meridional
momentum of the simulation without viscosity and resolution 1024 ×
256. Colour coded is the logarithm of amplitude of the frequency.

Because of the radius dependence of the wavenumber a spa-
tial Fourier transform is not applicable. Additionally, as we show
below, the wavelength in radial direction is not constant in time
and phase jumps also can occur. However, to obtain more insight
into the dynamics of the system, we show in Fig. 9 the results of
a Fourier analysis in time of the vertical momentum of the simu-
lation with resolution of 1024×256 (Fig. 10, along the time axis).
To reduce the problems that phase jumps pose for the analysis
(see below), we step through the data with a Hanning window
over 1000 orbits and then average over those 5% of the result-
ing spectra that give the highest amplitude. We can see a domi-
nant frequency at 0.022ΩK at the inner region; this frequency is
halved at the outer region beginning at about 5 AU. These jumps
in the frequency domain coincide with the jumps in wavenum-
ber. When the wavenumber jumps up, the frequency falls down,
indicating an inverse relationship. On each branch the frequency
is constant, while the wavenumber varies as ∝r−2.5. We can un-
derstand this relationship starting from Eq. (12) from which one
obtains for stable inertial oscillations (see Eq. (36) in Nelson
et al. 2013)

σ2 ∼ −Ω2 k2
Z

k2
R

· (16)

The vertical scale is given by the local disc’s scale height H ∼ r
and hence kZ ∼ r−1. In the quasistationary phase, we observed
kR ∼ r−2.5 (see Fig. 8), leading to an oscillation frequency inde-
pendent of the radius, which we also observed (see Fig. 9).

To obtain further insight into the spatio-temporal behaviour
of the flow dynamics in Fig. 10 we show the vertically aver-
aged momentum in the vertical direction as a function of space
and time. In this global overview we observe waves that ap-
pear to travel slowly from larger to smaller radii. As noticed
already in the Fourier analysis in Fig. 9, there is a transition be-
tween 4–5 AU with a change in wavelength of the perturbations
and occasional phase jumps. Coupled to this is a change in the
typical inward speed of the waves. They move more slowly when
farther away from the star. As inferred roughly from Fig. 10, the
wave speed at r = 6 AU is about 0.5 AU per 250 orbits, while
at 4 AU it is about 1 AU. However, there is some dependence of
this speed on time and space.

Near the outer boundary we sometimes see a region with
standing waves, indicating that the radial domain should not be
too small. This region is mostly only a few wavelengths in size
(less then 1 AU), but can sometimes also reach a few AU into the

domain. Reflections with the outer boundary play a role here as
well, as can be seen in Fig. 10 for example at t ≈ 500 or 3600. We
note that in contrast to our treatment at the inner radial boundary,
we did not apply a damping region at the outer boundary.

To check if the viscosity is important for the wavelength, we
add a small viscosity of ν = 5 × 10−7. As expected, this leads
to a wavenumber that is independent of the resolution, as shown
in the bottom panel of Fig. 7. The wavelength is of the order of
0.2 AU at a radius of 4 AU after the instability is saturated.

With the wavelength fixed, the Reynolds stress also shows
no strong dependence on the resolution as can be seen in Fig. 11
top panel. The inner region is strongly suppressed because we
also increased the damping from 2 AU to 3 AU. With that we
conclude that a small viscosity is necessary in order to intro-
duce a physical lengthscale for the smallest unstable wavelength.
To further explore the role of viscosity we repeat the simu-
lation for different viscosities. This is done with a resolution
of 1440 × 360. The growth rate is then calculated by fitting a
linear function to the logarithm of the kinetic energy, which was
at each point averaged over 100 grid cells. The results in the
lower panel of Fig. 11 indicate that for the two lowest viscosities
(10−8 and 10−7) the stresses are given by the numerical viscos-
ity. For the intermediate case (10−7) the stresses are larger while
for very large values the effect of the increased damping near the
inner boundary influences the results.

5. Discs with radiation transport

The isothermal discs discussed above do not capture the full
physics, and most importantly the transport of energy is miss-
ing. In this section we include radiative transport and the heat-
ing/cooling interaction of the gas with the radiation. In the first
set of models we start from the isothermal models as described
above and switch on the radiation according to Eqs. (3) and (4);
in a second series of models (in Sect. 6) we include irradiation
from the central star.

For the simulations with radiative transport we use a resolu-
tion of 1024 × 256 and the same spatial extent and initial condi-
tions as in the isothermal case. In Fig. 12 we show the midplane
temperature averaged from 4–5 AU and the meridional kinetic
energy when radiation is included, for two different values of
the disc density ρ0. In both cases the kinetic energy initially has
larger amplitudes than in the previous isothermal simulations be-
cause now the disc is no longer in hydrostatic equilibrium ini-
tially, and small motions in the meridional plane set in (lower
panel in Fig. 12). For the same disc density as before, ρ0 = 10−10,
the disc cools off quickly as soon as the instability begins to be
active, at around t = 10. The reason lies in the efficient radiative
cooling in this case, in particular near the surface layers where
the optical depth is small and the instability most active. Hence,
any turbulent heating will be radiated away quickly.

We repeated the simulation with a higher density, ρ0 = 10−9

at 1 AU, to increase the optical thickness. Now the disc does
not cool efficiently enough, and the instability begins to set in
between t = 10 and t = 20 orbits, very similar to the isother-
mal models, but then radiative cooling eventually leads again to
a cooling of the disc and the instability dies out. From these re-
sults it is clear that the instability does not produce enough heat
and cannot survive without an external source of heat, for the
typical opacities and densities expected in protoplanetary discs.
This potential problem was pointed out already by Nelson et al.
(2013).
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Fig. 10. Large scale time development of the instability. Shown is the vertically averaged momentum in the meridional direction for the inviscid
isothermal simulation with a resolution of 1024 × 256 (red curve in top panel of Fig. 7).
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orbits 1000 to 3000.

6. Irradiated disc

Here, we extend our models and include irradiation from the cen-
tral star as an external heat source. Of course there are also other
sources possible, for example, the inner region of the disc where
the MRI is still active could be important.

6.1. Method of irradiation

We use a simple model for the external heating and consider
vertical irradiation from above and below the disc, where the
energy flux, Firr, depends on radius. This procedure avoids the
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Fig. 12. Discs with radiation transport for two different densities, ρ0.
Upper panel: the midplane temperature at 4−5 AU as a function of time.
Lower panel: kinetic energy in the meridional flow in the discs.

problem of finding a self-consistent solution for the flaring of
the disc, as done for an irradiated and internally heated disc by
Bitsch et al. (2013).

To obtain a first approximation for the flux in the meridional
direction we assume that the angle of incidence of the flux is
approximately R�/r, where R� is the star’s radius. This applies
to an infinitely flat disc as well as to the upper and lower surfaces
our computational grid in spherical polar coordinates because all
three represent planes that cross the centre of the central star. We
obtain for the meridional component of the flux

F irr
θ = Fr

R�
R
, (17)

where Fr = F�(R�/r)2 is the radial flux from the star at a
distance r. Applying this impinging vertical irradiation to the
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Fig. 13. Growth rates for models with radiation transport and irradiation
(irr) and isothermal models (iso) that have the same mean temperature,
for comparison. For each radius the kinetic energy was smoothed over
a range of 10% of its radius before fitting it to an exponential growth.

disc leads to a radial temperature profile exponent in the disc
of q = −0.55, in good agreement with the models of Chiang
& Goldreich (1997). Our procedure does not allow for self-
shadowing effects (Bitsch et al. 2013) but should give a phys-
ically realistic estimate of the expected temperatures in the disc.

To simplify the calculations and obtain a first order estimate
of the effect, we use for the irradiation opacity the Rosseland
opacity of Bell & Lin (1994). Hence, in the simulations we use
the same opacity for the irradiation, Rosseland and Planck opac-
ity (Bitsch et al. 2013). Numerically, we perform a ray-tracing
method to calculate the energy deposited in each cell of the com-
putational grid (Kolb et al. 2013).

6.2. Growth rate

To measure the growth rates of the instability for discs with ra-
diation transport and irradiation we ran models with zero vis-
cosity and a higher resolution case with ν = 10−7. To be able to
compare the growth rates with the previous isothermal cases, we
performed additional isothermal simulations using the temper-
ature profile from the simulations with radiation transport and
irradiation.

The growth rates for the instability in combination with ra-
diation transport are difficult to capture because the simulation
cannot be started in hydrostatic equilibrium because the equilib-
rium vertical profile is unknown. We use strong damping for the
first ten orbits to remove the disturbance caused by the transition
to the new density and temperature profile.

The results are shown in Fig. 13. We note that this time the
growth rates should depend on radius because the growth de-
pends on H/R which is not constant in the radiative cases. From
Fig. 13 it is clear that the growth rates for the isothermal models
are now lower than in the cases presented above, first because
the temperature is lower and second because the radial profile is
flatter as before, and both are important for growth. For the irra-
diated models the growth is again lower, with 0.1−0.2 per local
orbit around half the value for the isothermal case. In Fig. 14 we
show the evolution of the kinetic energy for the irradiated and
corresponding isothermal model. For the inviscid case the final
saturation levels agree very well with each other, while for the
viscous disc with ν = 10−7 the instability is weaker in the inner
regions of the disc (see below).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time in orbits at 1AU ×103

10−13

10−12

10−11

10−10

10−9

10−8

10−7

m
ea

n
ki

ne
tic

en
er

gy
in

co
de

un
its

growth rates at 3.0-4.0AU

iso2048 ν = 10−7

iso1024 ν = 0
irr2048 ν = 10−7

irr1024 ν = 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time in orbits at 1AU ×103

10−13

10−12

10−11

10−10

10−9

10−8

10−7

m
ea

n
ki

ne
tic

en
er

gy
in

co
de

un
its

growth rates at 5.0-8.0AU

iso2048 ν = 10−7

iso1024 ν = 0
irr2048 ν = 10−7

irr1024 ν = 0

Fig. 14. Growth of the kinetic energy in the 2D plane with radiation
transport and isothermal for comparison.
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Fig. 15. Upper panel: temperature profile for an irradiated disc in the
saturated phase without viscosity and a resolution of 1024 × 256. The
dotted line is a run without hydrodynamics, only solving for the radia-
tion energy. Lower panel: vertically integrated optical depth.

6.3. Quasistationary phase

In the top panel of Fig. 15 we show the vertical temperature dis-
tribution for the saturated state at different radii in the disc for
the model without viscosity at a resolution of 1024 × 256. The
other models look very similar. In the bulk part of the disc the
profile is quite flat with a slight drop towards the midplane. A
lower central temperature is to be expected for irradiated dics,
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Fig. 16. Irradiated run. The Reynolds stress was averaged over 41 time
steps, from orbit 1000 to 5000 each step 100 orbits apart, calculated
with different averaging methods. For “mean time” the mean uφ was cal-
culated through averaging over 40 time steps. For “Kepler” the velocity
was calculated by subtracting the Kepler velocity and for the last one uφ
is calculated analytically by using the equilibrium Eq. (11). Spatial av-
erages are taken from 4 AU to 10 AU.

detailed radiative transfer models indicate an even larger tem-
perature drop towards the midplane (Dullemond et al. 2002). In
the upper layers the temperature falls off because the disc is op-
tically thin and the energy can freely leave the system. This drop
of the temperatures towards the surface despite the irradiation
is a result of the identical irradiation and Rosseland opacity. If
more radiation is allowed to be absorbed in the disc by increasing
the irradiation opacity then one can obtain hotter surface layers.
For a ten times larger value we find a hot corona similar to Flock
et al. (2013) and a cooler midplane. First results seem to indicate
a reduction in the Reynolds stress in this case, probably caused
by the lower temperature in the bulk of the disc. At this point we
leave the details to subsequent studies. The dotted line in Fig. 15
shows the profile for a simulation where we only solve for the
radiation energy and disable the hydrodynamic solver. We can
infer from this that the flat profile is a result of the combination
of turbulent heating and vertical motion. A test simulation with a
passive tracer added in the midplane of the disc in the saturated
state showed rapid spreading over the whole vertical extent of
the disc.

The vertically integrated optical depth is shown in the lower
panel, starting from very small values at the disc surfaces it
reaches 30–100 at the different radii. The nearly constant ver-
tical temperature within the disc motivates us to use the equilib-
rium azimuthal velocity for the corresponding isothermal model
of the steady state to calculate the Reynolds stress. In Fig. 16 we
can see that it is still a good approximation. We note that this
time the comparison is done with a 2D-simulation. Additionally
shown is the Reynolds stress calculated with the Kepler velocity
instead of the equilibrium velocity.

While the growth rates are weaker than in the isothermal
case, the kinetic energy in the meridional plane for stable satu-
rated phase in Fig. 17 reaches the same level with radiation trans-
port. The values for α are again between 0.5×10−4 and 2×10−4,
depending on the wavelength and thus viscosity, but independent
of radiation transport.

The strength of the instability measured in terms of the value
of the viscosity under which it still survives is, of course, dif-
ferent. Here, in the irradiated case, even a low viscosity of 10−7

suppresses the instability in the inner regions of the disc. This
is not only a result of the radiation transport, but also of the
flat temperature profile. The details will depend on the source
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Fig. 17. Comparison of the Reynolds stress divided by the mean pres-
sure, averaged over 2000 orbits, beginning with orbit 2000; “irr” stands
for the irradiated disc, “iso” for the isothermal disc with analogous ini-
tial conditions.

Fig. 18. Radiative diffusion time per Orbit at 4 AU for a lengthscale
of 0.1 AU.

of the heating and the opacity, but nevertheless the stability will
be weaker than in the purely isothermal case.

6.4. Discussion

As we have shown in the previous sections for an irradiated
disc there is the possiblity of generating an effective turbulence
through the VSI. As pointed out in Nelson et al. (2013) the
instability can only be sustained if the diffusion (local relax-
ation) time is a fraction of the local orbital period. To investigate
how this condition is fulfilled in our simulations we analyse the
timescale for radiative diffusion for the equilibrium irradiated
disc models. In units of the local orbital period this is given by

tdiff = ∆x2 cPρ
2κR

4λacT 3 ·
Ω

2π
, (18)

where ∆x is the characteristic wavelength of the perturbation. In
our case the radial diffusion is relevant (Nelson et al. 2013) and
we choose here ∆x = 0.05r, which is a typical radial wavelength
at r = 3 AU. Using Eq. (18) and the results from the simula-
tion we calculate for the optical thin region a very small cooling
time per orbit of tdiff = 10−10 as expected. For the optically thick
region we obtain tdiff = 0.11 for our standard density, which is
indeed a small fraction of the orbital period as required for the
instability to operate, see Fig. 18. The cooling time in the verti-
cal direction is longer, about a few orbital periods as implied by
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Fig. 19. Velocity in the meridional direction, uθ, in units of local Kepler
velocity for an irradiated run without viscosity at resolution 1024× 256
(top) and with resolution 2048 × 512 (bottom). Compare with Fig. 2
which has a spatial resolution of 2048 × 512.

the vertical optical depth (see Fig. 15), but this will keep the disc
nearly isothermal, again as required for instability.

In Fig. 19 we illustrate that the instability still resembles
closely the locally isothermal case except that the small scale
perturbations are missing, even in the optically thin region,
where we have very short cooling times. For comparison, Nelson
et al. (2013) found that the instability was completely suppressed
with relaxation times of trelax = 0.1, which is the timescale for
the flow to relax to the initial isothermal profile. We take this as
an indication that physically, radiative diffusion plus irradiation
behaves in a different way from a simple model of temperature
relaxation as used in Nelson et al. (2013).

As seen in Fig. 15 an increase in the density leads to higher
optical depths and longer diffusion times, and consequently to a
weaker instability. While doubling the density in a simulation
with resolution 2048 × 512 has no clear influence on the ki-
netic energy and the cooling times in the optical thin regions,
the Reynolds stress was clearly weaker by a factor of around 1.5
in the simulation with doubled density (the model in the middle
of Fig. 18). In addition the wavelength of the perturbations is
decreased.

A further increase in the density leads also to a strong de-
crease in the kinetic energy, with again a smaller wavelength.
This raises the question whether the simulation with resolution
of 2048× 512 is sufficiently resolved. These results indicate that
in very massive discs with long diffusion times (vertical and ra-
dial) the disc will behave more adiabatically, and the instability
will be quenched. The minimum solar mass nebula at 5 AU cor-
responds approximately to our model with 2 ρ0 and the instabil-
ity might just be operative.

7. Summary and conclusions

We have studied the vertical shear instability as a source of tur-
bulence in protoplanetary discs. For that purpose we have per-
formed numerical simulations solving the equations of hydrody-
namics for a grid section in spherical polar coordinates. To study
the global behaviour of the instability we have used a large radial
extension of the grid ranging from 2 AU to 10 AU.

In a first set of simulations we show that the instability oc-
curs for locally isothermal discs where the radial temperature
gradient is a given function of radius. Our results on the growth
rates for the instability are in good agreement with the theoreti-
cal estimates by Urpin & Brandenburg (1998) and Urpin (2003),
and we find two basic growth regimes for the asymmetric and
antisymmetric modes as seen by Nelson et al. (2013). After 20
to 30 local orbits the instability saturates and is dominated by
the vertical motions, which cover the whole vertical extent of
the disc.

Interestingly, we find that the local radial wavelength of the
perturbations scales approximately with λ ∝ r2.5 in the saturated
state with a constant frequency. However, on a global scale sev-
eral jumps occur where the wavelengths are halved, such that the
global scaling follows λ̄ ∝ r with λ̄/r = 0.03. We suspect that
the instability has the tendency to generate global modes that
show the observed wavelength behaviour according to Eq. (16).
Because of the radial stratification of the disc, jumps have to oc-
cur at some locations.

The waves approximately keep their shape and travel slowly
inwards. The two- and three- dimensional simulations yield es-
sentially the same results concerning the growth rates and satura-
tion levels of the instability because of its axisymmetric property.
The motions give rise to a finite level of turbulence and we cal-
culate the associated efficiency, measured in terms of α. We first
show that, caused by the two-dimensionality, α can be measured
directly from the two-dimensional simulations using the proper
equilibrium state of the disc. We find that the angular momentum
associated with the turbulence is positive and reaches α-values of
a few 10−4. For the isothermal simulations we find that at higher
numerical resolution α becomes smaller, but viscous simulations
indicate a saturation at a level of about α = 10−4 even for very
small underlying viscosities that are equivalent to α < 10−6.

Adding radiative transport leads to a cooling from the disc
surfaces and the instability dies out subsequently. We then con-
structed models where the disc is irradiated from above and be-
low which leads to a nearly constant vertical temperature profile
within the disc. This again leads to a turbulent saturated state
with a similar transport efficiency to the purely isothermal simu-
lations, or possibly slightly higher (see Fig. 17).

In summary, our simulations indicate that the VSI can indeed
generate turbulence in discs albeit at a relatively low level of
about a few times 10−4. This implies that even in (magnetically)
dead zones the effective viscosity in discs will never fall below
this level. Our results indicate that in fully 3D simulations the
transport may be marginally larger, but further simulations will
have to be performed to clarify this point.
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ABSTRACT

Context. Among the candidates for generating turbulence in accretion discs in situations with low intrinsic ionization, the vertical
shear instability (VSI) has become an interesting candidate, since it relies purely on a vertical gradient in the angular velocity. Existing
numerical simulations have shown that α-values a few times 10−4 can be generated.
Aims. The particle growth in the early planet formation phase is determined by the dynamics of embedded dust particles. Here, we
address, in particular, the efficiency of VSI-turbulence in concentrating particles to generate overdensities and low collision velocities.
Methods. We perform three-dimensional (3D) numerical hydrodynamical simulations of accretion discs around young stars that
include radiative transport and irradiation from the central star. The motion of embedded particles within a size range of a fraction of
mm up to several m is followed using standard drag formula.
Results. We confirm that, under realistic conditions, the VSI is able to generate turbulence in full 3D protoplanetary discs. The
irradiated disc shows turbulence within 10 to 60 au. The mean radial motion of the gas is such that it is directed inward near the
midplane and outward in the surface layers. We find that large particles drift inward with the expected speed, while small particles
can experience phases of outward drift. Additionally, the particles show bunching behaviour with overdensities reaching five times
the average value, which is strongest for dimensionless stopping times around unity.
Conclusions. Particles in a VSI-turbulent discs are concentrated in large-scale turbulent eddies and show low relative speeds that
allow for growing collisions. The reached overdensities will also enable the onset of streaming instabilities, further enhancing particle
growth. The outward drift for small particles at higher disk elevations enable the transport of processed high temperature material in
the solar system to greater distances.

Key words. instabilities – hydrodynamics – accretion, accretion disks – radiative transfer

1. Introduction

To drive mass flow in accretion discs, an anomalous source of an-
gular momentum is required (Frank et al. 2002). A strong candi-
date is the magneto-rotational instability (MRI), which gives rise
to turbulent magnetohydrodynamical (MHD) flows that create
an outward angular momentum transport disc (Balbus & Hawley
1998). Driven by magnetic fields, the MRI requires a sufficient
level of ionization to sustain a turbulent state within the disc.
However, protoplanetary discs only have a very low tempera-
ture regime and insufficient thermal ionization. Even consider-
ing external sources of ionization, there appears to be a region
of insufficient ionization level such that the MRI cannot oper-
ate, as shown by resistive MHD simulations, including radiative
transport (Flaig et al. 2012). Hence, there may exist a dead zone
somewhere between 2−20 au (Armitage 2011), where the MRI
can only produce very weak turbulence. Recent simulations that
also included, in addition to Ohmic resistivity, ambipolar diffu-
sion have even shown no signs of turbulence at all in this re-
gion (Gressel et al. 2015). The Hall effect creates strong winds
on the surface of the disc and may even reintroduce angular mo-
mentum transport in the dead zone, but this depends on the sign
of the magnetic field (Bai 2014, 2015). Thus another origin of

instability inside the dead zones is warranted to drive accretion
in protoplanetary discs.

As an alternative to the MRI, different examples of
purely hydrodynamic instabilities in discs have been suggested,
such as gravitational instability (Lin & Pringle 1987), convec-
tive instability (Ruden et al. 1988), or baroclinic instability
(Klahr & Bodenheimer 2003), but they do not operate un-
der general conditions. One possibility, that has recently at-
tracted more attention is the vertical shear instability (VSI)
suggested for accretion discs by Urpin (2003). The mecha-
nism was first examined in relation to differential rotating stars
(Goldreich & Schubert 1967; Fricke 1968), and it is also known
as Goldreich-Schubert-Fricke instability. In the context of discs,
first simulations have been carried out by Arlt & Urpin (2004).
While there is a much stronger radial gradient in the angular
velocity, Ω, to feed instabilities, most instabilities cannot over-
come the stabilising effect of rotation. In the context of the VSI,
it is the vertical shear in Ω, created by a radial temperature
gradient, that allows the disc to become unstable. The numer-
ical work of Nelson et al. (2013) shows that a small turbulent
α-value in the range of a few 10−4 was possible for isother-
mal discs. For non-isothermal discs, Nelson et al. (2013) point
out that radiative cooling (diffusion) and viscosity reduce the
instability, and they developed a theoretical model describing
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the initial vertical elongated modes that destabilise the disc. In
simulations that included full radiative transport, Stoll & Kley
(2014) showed that, for situations typical in protoplanetary discs,
a sustained VSI was possible providing an α ∼ 10−4. They found
the development of a global wave pattern within the disc whose
wavelength was determined partly by viscous effects. Later,
Barker & Latter (2015) analysed the VSI through linear analy-
ses of locally isothermal discs and support the modal behaviour
seen in the non-linear simulations by Nelson et al. (2013) and
Stoll & Kley (2014). They also stress the importance of viscos-
ity to set the smallest length scale.

Recently, Lin & Youdin (2015) shed light on the cooling re-
quirements of the VSI that arise because the VSI has to compete
with the stabilising vertical buoyancy. Their theoretical mod-
els predict activity in regions with long cooling time only for
very large wavenumbers. Thus the VSI is limited by the cooling
time on large scales and by viscosity on small scales. With this
in mind they predict VSI activity for typical disc models only
between 5 and 100 au.

We test this idea by expanding our previous work
(Stoll & Kley 2014), where we used a self-consistent radiation
transport module and a vertically irradiated disc in the simula-
tions. Here, we treat the irradiation in a more realistic way as
originating from the central star, and show that, even under this
condition, the VSI can be sustained.

The turbulence in protoplanetary discs is also critical for
the initial dust evolution that leads eventually to planet for-
mation. Numerical simulations performed by Johansen & Klahr
(2005) and Fromang & Nelson (2005) showed that particles can
be caught in the local pressure maxima generated by the MRI
turbulence. This clustering of dust particles can then trigger a
streaming instability (Youdin & Goodman 2005) that will lead
to further clustering and subsequently to the formation of km-
planetesimals. In the context of the VSI the large-scale velocity
patterns of the corrugation mode promises interesting behaviour
for embedded dust grains and larger particles. To investigate the
impact of the VSI modes on the dust particles we add particles
into our disc model and follow their dynamical evolution.

The paper is organized as follows. In Sect. 2 we present our
numerical and physical setup. We present a detailed analysis of
an isothermal disc model in Sect. 3, and we discuss in Sect. 4
the results for the particle evolution is this model. In Sect. 5 we
describe the results of a viscous model. The simulations with
radiation transport and stellar irradiation are presented in Sect. 6
and in Sect. 7 we conclude.

2. The model setup

We use the same equations and physical disc setup, as described
in detail in our first paper (Stoll & Kley 2014) and give here only
a very brief outline. In summary, for the integration of the hydro-
dynamical equations we use PLUTO, a publicly available code,
based on a Godunov scheme for viscous hydrodynamical flow
(Mignone et al. 2007), extended by flux-limited diffusion mod-
ule for radiation transport and a ray-tracing method for stellar
irradiation (Kolb et al. 2013). Having used a two-dimensional,
axisymmetric disc setup in our previous work, we now extend
the computational domain in the azimuthal direction to three di-
mensions (3D) and add particles to the flow. For this purpose
we added a particle solver based on the method by Bai & Stone
(2010), that we describe in the next section.

2.1. Particle Solver

We use Lagrangian particles with drag and gravitation:

dup
dt

= a = f +
up − u

ts
, (1)

where f is an acceleration due to an external force, here the grav-
itation of the star. up and u are the particle and gas velocity and
ts is the stopping time.

We treat all particles as if they were in the Epstein regime,
where the mean free path of the gas molecules is typically greater
than the particle cross section (Epstein 1924). The stopping time
is then

ts =
rpρp

ρg
√

8/πcs
, (2)

where rp is particle radius, ρp the particle bulk density, ρg the gas
density, and cs is the sound speed. In addition we use τs = tsΩK
for the dimensionless stopping time.

To solve the equation of motion of the particles (1) we follow
Bai & Stone (2010). If the stopping time is longer than the time
step, ∆t, of the simulation, we solve the semi-implicit equations

x′ = x(n) +
∆t
2
u(n)

p ,

u(n+1)
p = u(n)

p + ∆ta
[
(u(n)

p + u(n+1)
p )/2, x′

]
,

x(n+1) = x′ +
∆t
2
u(n+1)

p ,

where n denotes the timestep level, and x′ an intermediate posi-
tion of the particle. The particle acceleration, a, is a function of
the particle velocities, up, see Eq. (1).

For stopping times smaller than the time step we solve the
following implicit equation, where the velocity update does not
depend on the old velocity.

x′ = x(n) + ∆tu(n)
p

u(n+1)
p = u(n)

p +
∆t
2

(
a
[
u(n+1)

p , x′
)

+ a
[
u(n+1)

p − ∆ta
(
u(n+1)

p , x′
)
, x(n)

))

x(n+1) = x(n) +
∆t
2

(
u(n)

p + u(n+1)
p

)
.

This enables the drag force to damp the particle velocity without
unphysical oscillations. The test simulations to verify the cor-
rect implementation of the particle solver are described in the
appendix in Sect. A.

2.2. Physical setup

In order to study the importance of radiative effects we decided
to perform first a sequence of isothermal simulations. We de-
scribe briefly the setup of our fiducial disc model, which consists
of a 3D isothermal model that simulates one eighth (covering
45◦ in azimuth) of the disc at a resolution of 1024× 256× 64 (in
r, θ, φ) without viscosity. The full radiative model is described in
Sect. 6.

We use the same general disc setup as in Stoll & Kley (2014),
where we started with a disc in force equilibrium,

ρ(R,Z) = ρ0

(
R
R0

)p

exp
[
GM
c2

s

(
1√

R2 + Z2
− 1

R

)]
, (3)

with a temperature that is constant on cylinders

T (R,Z) = T0

(
R
R0

)q

· (4)
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Fig. 1. Velocity in the meridional direction, uθ, in units of the Kepler ve-
locity for the fiducial isothermal run without viscosity and a resolution
of 1024×256×64. Displayed is the quasi-stationary state after 1200 yr.

Here, cs =
√

p/ρ denotes the isothermal sound speed, and H =
Rh = cs/ΩK is the local pressure scale height of the accretion
disc. We use (R,Z,φ) for cylindrical coordinates and (r,θ,φ) for
the spherical coordinates that we use in our simulations. Typical
values for the density and temperature exponents are p = −1.5
and q = −1.

The computational domain of the fiducial model is limited to
r = 2−10 au in the radial and ±5 scale heights in the meridional
direction. In contrast to Stoll & Kley (2014), where we only sim-
ulated 2D, axisymmetric discs, we use here in the azimuthal di-
rection one eighth of the full disc (φmax = π/4) to capture the
complete 3D physics of the turbulent disc.

3. The turbulent isothermal disc

Before embedding the particles we first describe the turbulent
properties of the VSI for several disc models. We start with the
fiducial isothermal and inviscid model for one eighth of the disc
and compare this below to models with viscosity and a larger
azimuthal domain. In the subsequent section we use the fidu-
cial model for the simulations with particles. Finally, in the last
section we also show the results of a radiative, irradiated disc
model.

As shown in previous numerical simulations of the VSI
the turbulent state is characterized by vertically elongated flow
structures as shown in Fig. 1 for the meridional velocity, for more
details see Nelson et al. (2013) and Stoll & Kley (2014). To
characterize the turbulence of the disc we measure the Reynolds
stress that we define here as

Tr,φ =
〈
ρurδuφ

〉
φ,t
, (5)

where δuφ(r, θ, φ) = uφ(r, θ, φ) −
〈
uφ(r, θ, φ)

〉
t

is the deviation of
the angular velocity from the (time averaged) mean azimuthal
velocity. We denote averages taken over certain variables by 〈 〉
with the appropriate indices. In this definition, Tr,φ is a 2D ar-
ray in r, θ. The time average,

〈
uφ

〉
t
, needed in Eq. (5) is in gen-

eral not known in advance but one can rewrite the Reynolds
stress as

Tr,φ =
〈
ρuruφ

〉
φ,t
− 〈ρur〉φ,t

〈
uφ

〉
φ,t
, (6)

where the right hand side can in principle be calculated “on the
fly” during the simulation. For convenience, we chose to store
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Fig. 2. Averaged azimuthal velocity compared to the analytical velocity
(upper panel) and α(z) (lower panel). For the green (analytical) curve
Eq. (9) has been used for the mean value of uφ. The blue curve shows
the average from 1000 to 1800 yr over 800 time levels and radially from
4.5 au to 5.5 au.

φ-averaged 2D data sets at regular time intervals, and then aver-
age these over time to obtain Tr,φ(r, θ).

From these we calculate the dimensionless α-parameter as a
function of radius

α(r) =

〈
Tr,φ

〉
θ

〈P〉θ
, (7)

where P = 〈p〉φ,t is the azimuthal and time averaged pres-
sure. For the vertically dependent α(z)-parameter at a certain
radius rc,

αrc (z) =

〈
Tr,φ

〉
r

〈P〉r
, (8)

we only integrate over a small radial domain around the desired
radius, rc. This averaging procedure to calculate α has to be used
for general discs, for example the radiative discs below.

However, for the isothermal simulations, one can approxi-
mate the time averaged

〈
uφ

〉
t

in the calculation of the Reynolds
stress, by the analytically calculated solution for the equilibrium
angular velocity (Nelson et al. 2013), that can be obtained from
the initial equilibrium disc setup

Ω(R,Z) = ΩK

[
(p + q)

(H
R

)2

+ (1 + q) − qR√
R2 + Z2

] 1
2

, (9)

where ΩK =
√

GM�/R3 is the Keplerian angular velocity. In
Fig. 2 (upper panel) we can see that this is indeed a valid ap-
proximation. Aside from reducing noise in α, since it no longer
depends on the time averaged velocity, this has the further ad-
vantage of allowing us to directly calculate the α-parameter at
each timestep and we thus only need to store 1D arrays, which
we then can later average over arbitrary timespans.

In Fig. 3 we compare the radial α-parameter for different
isothermal simulations. The averaging was done from 1000 yr
to 1800 yr with 800 snapshots taken at regular intervals. Shown
are cases with different resolutions, where the labels indicate the
radial number of grid cells, and also viscous models. The dimen-
sionless viscosity is given in units of (uK,1 au ·1 au), where uK,1 au
is the Kepler velocity at 1 au. We can see that in contrast to the
2D simulations in Stoll & Kley (2014), where the α-parameter
differed by more than 50% when we doubled the resolution,
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Fig. 3. Comparison of the radial α(r) obtained for different isother-
mal simulations used in this paper. Values are averaged from 1000 to
1800 yr. All simulations except “full” are for one eighth of a complete
disc. The specified resolution refers to the number of radial grid cells
in the simulations, where “res1024” denotes the resolution of our fidu-
cial model and “res512” has half the resolution in all spatial directions.
In addition to the inviscid fiducial model we ran also simulation with
non-zero viscosity, and the labels refer to the dimensionless value of
the constant kinematic viscosity coefficient ν.
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Fig. 4. Radial velocity ur (in units of the Kepler velocity at 1 au) for the
different isothermal simulations evaluated at 5 au. Shown are the same
models as in the previous Fig. 3, averaged again from 1000 to 1800 yr.
Negative velocities correspond to inflow towards the star.

these 3D simulations show no clear dependence on resolution,
with all curves being within 10% of each other at 6 au. We ran a
further, shorter simulation without viscosity and double resolu-
tion of 2048× 512× 128 and could not see a difference in wave-
length or Reynolds stress in the early equilibrium phase from 500
to 800 yr. Additionally, we see only a weak dependence on vis-
cosity with noticeable differences beginning with the strongest
kinematic viscosity, which starts to suppress the VSI in the in-
ner region. A further increase in viscosity would suppress the
instability completely, as shown already in Nelson et al. (2013).

Since we are interested in the particle drift, we also show
in Fig. 4 the radial velocity in the disc at 5 au as a function of
height. We averaged from 1000 yr to 1800 yr, which is roughly
the quasi-stationary phase. The radial velocity is inwards in the
midplane and outwards in the corona. There are only minor dif-
ferences in height were the direction of the flow changes. In-
terestingly, this profile is opposite to that of a laminar viscous
flow, where it is outwards in the midplane, and inward near the
disc surfaces (Urpin 1984; Kley & Lin 1992). Our findings are in
agreement with results of isothermal MHD simulations of global

turbulent accretion discs without a net magnetic vertical flux that
also show gas inflow near the disc midplane and outflow in the
disc’s surface layers (Flock et al. 2011). Within the framework of
viscous discs the vertical variation of α (shown in the lower panel
of Fig. 2) will play a role in determining the ur(z)-profile, see
also Kley & Lin (1992) and Takeuchi & Lin (2002), who stud-
ied the ur(z)-profile for constant α.

3.1. 3D-simulation: full disc

In this subsection we present a full disc, meaning an azimuthal
domain from 0 to 2π in contrast to the 0 to π/4 of our fidu-
cial model, in order to check the validity of our results obtained
from calculations with the reduce domain. Since this full simu-
lation is computationally expensive, we used a lower resolution
of 512 × 128 × 512. The full simulation is compared to the one
eighth simulation of the disc with a resolution of 512×128×64,
which has the same azimuthal extent as the fiducial model, but
not the resolution. We added a small dimensionless physical vis-
cosity, ν = 10−7, to be independent of the unknown numeri-
cal viscosity, allowing better comparison with other simulations.
To give an impression of possible differences in the flow struc-
tures, between the full and fiducial model, we display in Fig. 5,
from top to bottom, the fluctuations of the density, and the radial
and vertical velocity components in the midplane of the disc,
where the top inset in each panel refers to the fiducial model
with φmax = π/4 and the bottom part to the full disc. The two
top panels for the density and radial velocity clearly show non-
axisymmetric, wave-like features in the disc. The bottom panel
seems to indicate a more axisymmetric structure which is a re-
sult of the VSI eigenmode dominating the vertical motion in the
disc, as seen above in Fig. 1.

To analyse the turbulent structure in more detail we cal-
culated azimuthal power spectra of the radial and vertical ki-
netic energy fluctuations in the disc midplane for two different
times, spatially averaged from 3 to 7 au. We can see in Fig. 6
that during the initial growth phase (top panel) the instability
is driven at two length scales. The smaller one, at azimuthal
wave numbers m ≈ 200, is most likely due to the initial noise
as given by the finite discretization which is enhanced by the
growth phase of the instability. The larger one (at m ≈ 10) is
on the scale of the wavelength of the strongest growing VSI
mode. This feature is also visible in the azimuthal direction even
though the VSI should be axisymmetric. We speculate that this is
due to a disturbance created in the radial direction by a Kelvin-
Helmholtz instability that is sheared into the azimuthal direc-
tion. We can also see that in the quasi stationary phase (bottom
panel) the turbulence decays faster than Kolmogorov turbulence
for wavenumbers around m ≈ 20, which is the scale at which
the VSI is driven. There the energy is concentrated in the VSI
modes and not in the turbulent kinetic energy and thus the model
of Kolmogorov decay is not applicable (Dubrulle 1992). Only at
small scales the vertical kinetic energy fluctuations decay with
a Kolmogorov spectrum. This can be seen in both simulations.
From this we infer that the local properties of the turbulence gen-
erated by the VSI are very similar for the restricted and full az-
imuthal domain and is already fully captured by the smaller disc.

To analyse the locality of the VSI further, we also compare
the two point correlation functions for the two disc models. This
is defined as

ξ f (∆r,∆φ) = 〈 f (r, φ) f (r + ∆r(r), φ + ∆φ)〉 , (10)

where f is the quantity to be correlated, which has a zero mean,
〈 f 〉 = 0. We evaluate the correlation in the disc midplane and
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Fig. 5. Fluctuations of density, the radial and vertical velocity (from top
to bottom) in the midplane of the disc with 3 to 7 au after 1700 yr. The
top part in each panel refers to the fiducial model with one eighth of the
full azimuthal domain while the full model is shown in the lower part
of each panel.

take the radial domain from 3 to 7 au, which we treat for this
calculation as periodic. The correlations are evaluated on a loga-
rithmic grid, to better capture the properties under investigation.

In Fig. 7 we present the results of the two point correlations
for the density fluctuations and the radial and meridional velocity
after 1700 yr. The fluctuations are clearly non-isotropic and cor-
related not only on a local scale but also weakly over the whole
domain. We can see again that the smaller domain is a reasonable
approximation to the larger domain, even though the correlations
are enhanced in the smaller domain, but for the vertical velocity
we have a global correlation for both cases. This again strength-
ens the impression that the fluctuations in azimuthal direction
are driven by a Kelvin-Helmholtz instability that feeds off the
strongest VSI mode. From this we conclude that our reduced

100 101 102 103

m

10−12

10−11

10−10

10−9

10−8

10−7

10−6

〈 |F
F

T
(u

2 )
|〉 r

u2
r 2π-disc

u2
r π/4-disc

u2
θ 2π-disc

u2
θ π/4-disc

m−5/3

100 101 102 103

m

10−8

10−7

10−6

10−5

10−4

10−3

〈 |F
F

T
(u

2 )
|〉 r

u2
r 2π-disc

u2
r π/4-disc

u2
θ 2π-disc

u2
θ π/4-disc

m−5/3

Fig. 6. Power spectrum for the different kinetic energy components
along the azimuthal direction in the disc midplane averaged over the
radial direction. The black line shows the Kolmogorov spectrum decay-
ing with |u(m)|2 ∝ m−5/3, where m denotes the azimuthal wave number.
The top panel refers to the growth phase after 200 yr and the lower
panel to the quasi-stationary phase after 1700 yr.

domain captures all of the important physics even though it en-
forces stronger correlations1.

The models for different levels of background viscosity were
shown already in Fig. 3. The full model has a slightly smaller
α, but is apart from this very similar. We also compared the re-
sults from the particle motions (not shown), but also only found
minor differences. Hence, we conclude that we can use the re-
duced model with φmax = π/4 to analyse the motion of embed-
ded particles.

4. Isothermal discs with dust

The particles are added into the fiducial model after 200 yr when
the VSI is reaching the quasi-stationary phase at the inner part
of the disc. After further 800 yr both VSI and particles are then
in quasi-equilibrium. The particles are inserted in the midplane,
randomly distributed over the radius and azimuthal angle, with
the velocity of the gas at their current position. If a particle leaves
the domain in the inner edge we insert it again randomly posi-
tioned over 1 au at the outer edge. This ensures that a clump
of particles that leaves the domain is sufficiently smoothed out
when added again. We add 10 000 particles per size with 20 dif-
ferent sizes, beginning with 1 µm up to 3000 m. The Epstein
regime is strictly valid only up to sizes of 10 m, and particles
greater than that are added as a numerical experiment. Note, that

1 A simulation with a quarter disc still shows the same enhanced
correlations.
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Fig. 7. Two point correlation of the density, the radial and vertical veloc-
ity (from top to bottom) in the midplane of the disc with 3 to 7 au after
1700 yr. The top part in each panel refers to the fiducial model with one
eighth of the full azimuthal domain while the full model is shown in the
lower part of each panel.

for the isothermal discs the scale for the density is not fixed
and thus the particle size regime may be different for different
choices of the disc density. This is not the case for the disc with
radiation transport as shown in the next section, where the cho-
sen disc mass (the density) fixes the disc temperature, and hence
the disc scale height, through specific values of the opacity.

We begin with the results for the radial drift and diffusion
of the dust particles, then we discuss the vertical diffusion and
finally the relative velocity distribution for colliding particles.
We discuss our results either in terms of the physical size of the
particles or the stopping time. For the models in this section the
correspondence between these can be read off from Table 1.
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Fig. 8. Mean radial drift velocity of the dust particles depending on the
radius of the particles at r = 5 au. This is compared to expected drift
velocity for pressure supported discs as given by Eq. (11). Shown are
isothermal disc simulation with resolution 1024×256×64 from 1000 to
2000 yr. Different colours and symbols are used for inward and outward
drift. We estimate the error from the radial diffusion coefficient.

4.1. Radial particle drift

The radial drift velocity for the dust in the midplane in the
Epstein regime is given by (Nakagawa et al. 1986)

udrift =
∂ln p
∂ln R

(H/R)2uK

τs + τ−1
s
· (11)

This is due to the drag force resulting from the difference be-
tween the Kepler velocity of the particles and the gas velocity,
which is modified by the pressure support p. We use the mid-
plane pressure for our theoretical curves, since most particles
are in the midplane, at least the larger ones. Here τs is the di-
mensionless stopping time (see Eq. (2)) and uK is the Kepler
velocity.

We start by comparing the radial drift of the dust particles
in our simulation with this theoretical prediction for the drift ve-
locity in Fig. 8. The results from the simulation are extracted by
fitting a linear function to the mean radial position of the par-
ticles starting with a distance to the star of 5 ± 0.5 au. We fit
over the span of 1000 yr beginning with 800 yr after inserting
the particles or over the time the particles need to travel 0.5 au,
whichever is smaller. The inwardly directed drift is plotted in
green (dots), and outward drift in blue (squares). Since the er-
ror in the measurement of the velocity stems from the random
walk of the particles due to the turbulence, we estimate the error
from the radial diffusion coefficient (see Fig. 12). The error is
then given by the half-width of the distribution divided by the
square-root of the number of involved particles.

We can see that the speed of large particles is similar to the
predictions. A difference in speed of approximately 20% can be
seen for the smaller particles in a size range between 0.1 cm to
10 cm. This deviation can be partly attributed to the spread of
the particles in the vertical direction, because particles not in the
midplane have a longer stopping time (lower gas density), and
the prediction is calculated using the stopping time of particles
in the midplane. An additional factor is that they can be caught
temporarily in small scale vortices (Johansen & Klahr 2005).

The drift velocity for the smallest particles can even be pos-
itive for some time intervals. This is shown for particles at 5 au
in Fig. 8. At distances closer to the star they clearly drift inwards
even though the gas momentum is the same (not shown). We re-
turn to the analysis for those particles later in Sect. 5.1, where
the sign of the migration direction is better constraint.
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Fig. 9. Histogram of particles with size of 31 cm, after 1500 yr (green
line) and at the start (blue line, Poisson distributed). We divide the dis-
tance from the star from 2 to 10 au into 800 bins and count the number
of particles in each bin. The average number of particles per bin is 12.5.

An interesting behaviour of the particles is shown in the his-
togram in Fig. 9. For this plot we divide the distance from the star
from 2 to 10 au into 800 equal sized bins and count the number
of particles per bin. We can clearly see that 1500 yr after we
inserted the particles, the distribution clearly deviates from the
initial Poisson distribution and instead they clump together. This
happens only for particles with a dimensionless stopping time of
the order of unity.

To further illustrate this feature, we show the number of par-
ticles per radial bin over time for different particles sizes in
Fig. 10. We note that the colour scale is logarithmic. For this
image and the following analysis we correct the particle density
per 1 au to remain constant, as it was at the beginning of the
simulations, by weighting the number of particles per bin by the
number of particles per 1 au. Since the particles move faster in
the inner region and the particles that leave the inner region are
added in the outer region, we would produce overdensities oth-
erwise. This does not change the bunching statistics, however.

After we insert the particles, the VSI is only active in the in-
ner region, but is quickly spreading out to the whole disc, until
after 1000 yr the whole domain is active. One can see that the on-
set of the VSI leads to bunching of the particles. Due to the
bunching we can clearly see the different drift velocities of the
particles. But we can also see that at certain radii the particles
are sometimes caught in the pressure fluctuations for a short time
before moving on, which leads to the visible lines in the image.

To make the dynamics involved clearer, we calculate another
statistic property. This time we count how often a certain number
of particles in a radial bin occurs. We average over 50 snapshots,
each 10 yr apart, beginning 1300 yr after we inserted the parti-
cles. We then normalise by the total number of particles to find
the probability for certain number of particles in a radial bin with
width ∆r = 0.01. This is shown in Fig. 11.

We can see that for the limit of small stopping time we
still follow the initial Poisson distribution, which has its peak
at 12.5 particles per bin (the average number) and decays with
∝exp(−n2). These particles are tightly coupled to the gas and can
not be caught in pressure fluctuations. In contrast, particles with
(dimensionless) stopping time near unity decay with ∝exp(−n).
This increases the likelihood to find bins with a high number of
particles which can easily lead to overdensities in dust by a factor
of around 10. This is caused by short lived pressure fluctuations
originating from the VSI, which briefly slow down the crossing

particles. The largest particles again revert to the Poisson statis-
tics, since they are not coupled to the gas.

4.2. Radial diffusion of particles

Next we compare the radial diffusion of the embedded parti-
cles with theoretical predictions. Since the power spectra of
ur, δuφ, uθ are similar, the radial diffusion coefficient for parti-
cles (Youdin & Lithwick 2007) is given by

Dd,r = teddy

〈
u2

r

〉
+ 4τ2

s

〈
δu2

φ

〉
+ 4τs

〈
urδuφ

〉

(
1 + τ2

s

)2 · (12)

For the simulation used for Fig. 12 we measure
〈
u2

r

〉
r,φ,t

=
〈
δu2

φ

〉
r,φ,t

= 2 × 10−6 · u2
K,1 au and

〈
urδuφ

〉
r,φ,t
6 10−8 · u2

K,1 au

near the midplane, indicating isotropic turbulence. With these
values and Eq. (11) for the radial drift we can use the radial dif-
fusion to measure teddy. Surprisingly, from this we calculate a
small dimensionless, τeddy = teddyΩK of 0.1, compared with the
large-scale oscillations of the VSI on a timescale of 5 orbits per
oscillation.

In Fig. 12 we show the radial distribution of particles with
different sizes from which we extracted the radial drift and dif-
fusion during a timespan of 100 yr for different particle sizes,
again for particles starting at 5 ± 0.5 au. While the smallest par-
ticles (blue and green curves) follow directly the prediction, the
particles with τs = 0.19 (red curve) seem to lag behind the the-
oretical curve. As described below this difference is caused by
the fact that the particles are more spread out vertically. Even
larger particles (yellow) again show bunching behaviour and are
collected in two distinct peaks, due to being caught in different
VSI waves.

From this we can also calculate the radial Schmidt number,
which Youdin & Lithwick (2007) determine for homogeneous
isotropic turbulence in the xy-plane with

〈
u2

r

〉
=

〈
δu2

φ

〉
, to be

Scr =
Dg,r

Dp,r
=

(
1 + τ2

s

)2

1 + 4τ2
s
, (13)

where for the gas diffusion coefficient, Dg,r, we use in our case
the dust diffusion of the smallest particles.

For smaller particles we find good agreement with Eq. (13)
but for τs of unity and larger, we measure Schmidt numbers
smaller as predicted by Eq. (13) by a factor up to three at a stop-
ping time of τs = 200. This is just noticeable in Fig. 12 for the
stopping time of τs = 1.9. There we can see that the predicted
diffusion fits a single peak well, but not the whole curve, which
is 50% wider. This can be explained by particles crossing large-
scale VSI modes which are not expected by the theoretical model
of homogeneous isotropic turbulence used to calculate the pre-
dictions for the Schmidt number.

4.3. Vertical diffusion of particles

After the radial diffusion shows a small eddy lifetime, we are
now interested in the vertical diffusion. In Fig. 13 we selected
particles between 4.5 and 5.5 au and calculated a histogram of
the vertical position to show the vertical distribution of different
sized dust particles. For better statistics we added up the 50 last
snapshots, spanning from 1200 yr to 1700 yr. While the small
particles with stopping time smaller than unity show the ex-
pected Gaussian distribution with a scale height equal to the
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Fig. 10. Visualisation of the radial drift of the particles. We show the logarithm with base 10 of the number of particles per bin. One can see the
clumping behaviour as the VSI growths, but also the velocity of the particles.
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Fig. 11. Probability to find a certain number of particles in a radial bin
with ∆r = 0.01 au in the region from 3 to 9 au, for different stopping
times (refer to Fig. 9). The average number of particles per bin is 12.5.
We averaged over 50 snapshots, each 10 yr apart, beginning with year
1500.

gas scale height, the particles with stopping time around unity
clearly deviate from this. This can be explained by the large-
scale velocity pattern of the gas with active vertical shear as dis-
played in Fig. 1. The corrugation mode of the gas will move the
particles upward away from the disc’s midplane, up to the point
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Fig. 12. Radial particle diffusion over 100 yr, after 1000 yr. The black
dashed lines are calculated from theory for the different stopping times
and with τeddy = 0.1 and 〈u2

g,r〉 = 2 × 10−6 · u2
K,1 au, see Eq. (12).

where the density of the gas is so small that the drag force can
no longer overpower gravity. The particle then can swiftly “surf”
on the updraft of the large-scale VSI-mode. Since these corruga-
tion modes oscillate, the particles will also oscillate around the
midplane.
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Table 1. Measured dust scale heights and inferred eddy lifetimes, from
Eq. (14), for the inviscid isothermal model.

Radius Stopping time τs hp,z τeddy,z
cm at 5 au hgas at 5 au

1.0 × 10−4 1.9 × 10−6 1.0 × 100 −
3.2 × 10−4 6.1 × 10−6 9.9 × 10−1 −
1.0 × 10−3 1.9 × 10−5 9.3 × 10−1 −
3.2 × 10−3 6.1 × 10−5 8.5 × 10−1 −
1.0 × 10−2 1.9 × 10−4 8.3 × 10−1 −
3.2 × 10−2 6.1 × 10−4 7.6 × 10−1 8.1 × 10−2

1.0 × 10−1 1.9 × 10−3 6.6 × 10−1 1.4 × 10−1

3.2 × 10−1 6.1 × 10−3 5.1 × 10−1 2.1 × 10−1

1.0 × 100 1.9 × 10−2 4.3 × 10−1 4.3 × 10−1

3.2 × 100 6.1 × 10−2 3.0 × 10−1 6.1 × 10−1

1.0 × 101 1.9 × 10−1 1.9 × 10−1 7.0 × 10−1

3.2 × 101 6.1 × 10−1 9.4 × 10−2 5.4 × 10−1

1.0 × 102 1.9 × 100 3.5 × 10−2 2.3 × 10−1

3.2 × 102 6.1 × 100 1.8 × 10−2 1.9 × 10−1

1.0 × 103 1.9 × 101 6.7 × 10−3 8.6 × 10−2

Notes. A Gaussian f (z) = N0 exp (−(z ± µ)2/(2r2h2
p) was fitted to the

data of the vertical distribution to find hp and calculated τeddy. The first
five values for τeddy were not calculated, since the gas scale height is
nearly equal to the dust scale height.

For isotropic turbulence Dubrulle et al. (1995) and Zhu et al.
(2015) calculate a dust scale height of

hp =
h√

H2Ω2ts/
(〈

u2
z

〉
teddy

)
+ 1

, (14)

where h = H/R is the relative gas scale height. Together with
the measured velocity dispersion 〈u2

z 〉 = 5 × 10−6 · u2
K,1 au we

can use this equation to calculate again the eddy timescale by
fitting a Gaussian to the data for different stopping times, thus
extracting the dust scale height. We note that for a very small
stopping time this does not work, since the dust scale height
is equal to the gas scale height, independent of the eddy time
scale. Also we superimpose two Gaussian with the same scale
height for the distributions with two peaks, which then fits well.
These peaks are then usually two scale heights apart for parti-
cles with dimensionless stopping time around one. Without this
scheme, we would get a larger scale height and thus a longer
eddy lifetime, which makes sense, since they are caused by the
large-scale structures that have a long life time. We present the
results in Table 1. Again we find τeddy ≈ 0.2, which is similar
for other types of turbulence, for example MRI has τeddy ≈ 1
(Youdin & Lithwick 2007; Carballido et al. 2011). We note that
the longer eddy lifetimes for the larger particles indicate that the
eddy lifetime is longer in the midplane, since the smaller parti-
cles also see the eddy lifetime of the corona.

4.4. Collision statistics

In this section we evaluate the relative velocity distribution for
colliding particles. Since we do not have enough particles to di-
rectly measure this distribution, we take each particle between 4
and 7 au and check for other particles in a sphere with radius
smaller than 0.05 au. To make them independent of translation
we remove the Kepler velocity (for independence of radius) and
rotate all particles into the same r-θ plane, after we calculate the
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Fig. 13. Vertical distribution of the particles depending on size, summed
over 50 snapshots in the interval from 1200 to 1700 yr. Bin size is ∆z =
0.02 au.
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Fig. 14. Relative velocity between particles for different stopping times
after 2200 yr. The dashed line represents particles of different sizes and
the solid lines denote collisions between same sized particles. Only par-
ticles with separation smaller than 0.05 au are considered for potential
collisions. Lines to guide the eye.

distance (for independence of the azimuthal angle, since they
are all in circular orbits). We then calculate histograms of the
relative velocity between two particles depending on the size of
the particles. We normalise by the number of particles to get a
probability.

This can be seen in Fig. 14. Lost by the normalization pro-
cedure is the fact that there are around 300 same sized parti-
cles in the sphere for small particles, while there are around
11 000 same sized particles with stopping time around unity in
the sphere. Since the median relative velocity for larger particles
is reduced by an order of magnitude relative to the smaller par-
ticles, the number of collisions will also be reduced. The blue
dashed line represents the relative velocity between small and
large particles, since those are dominated by the velocity dif-
ference that is created by the strongly coupled small particles,
moving with the gas, and weakly coupled particles moving with
Keplerian velocity.

Using an alternative way of estimating the bunching be-
haviour of particles, we also calculate the pair correlation func-
tion g(r).

g(r) =
V

πr∆rN2

N∑

i

N∑

j,i

δ(r − di j) , (15)
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Fig. 15. Pair correlation function: enhancement of surface density in a
shell with radius r for different stopping times. Averaged over 5 snap-
shots in the interval from 1800 to 2200 yr.

where V is the area of integration, di j is the distance between par-
ticle i and j and δ(r) is one if |r| < ∆r/2 and we use ∆r = 0.01 au.
This function returns one for Poisson distributed particles and
greater than one if there is an increased surface density in the
ring around the particles at this radius and thus picks up 2D
clustering instead of the 1D clustering in the earlier analysis.
We calculate this property for particles between 4 and 7 au pro-
jected in the r−φ plane, and show it for different particle sizes in
Fig. 15. We can see that small particle positions are uncorrelated,
but the particle positions with stopping time near unity display a
clear correlation, as we could already infer from Fig. 11. Parti-
cles with a stopping time closer to unity have a larger correlation
length. This makes the VSI a possible candidate to trigger the
streaming instability.

5. 3D-simulations: viscosity

In this section we present the same simulation but using now a
dimensionless kinematic viscosity coefficient of ν = 5 × 10−7,
in order to check the influence of viscosity, which in turn influ-
ences the α-parameter and the velocity dispersion. We also add
the same amount of viscosity to the model with radiation trans-
port, as shown below. This viscosity corresponds to an α-value
of 9×10−5 at 5 au or 4×10−5 at 25 au. There it limits the smallest
length scale of the VSI, which can not be resolved otherwise. We
only show the results if there is a clear difference to the previous
simulation. From the hydro-dynamic perspective they are very
similar, but the α-parameter is smaller by a factor of 2 and the
wavelength of the instability slightly smaller.

5.1. Radial drift

If we include viscosity and repeat the analysis for radial drift,
here from 2700 yr to 3700 yr, due to the slower diffusion, we can
see in Fig. 16 that particles larger than about 0.1 cm drift inward
with approximately the theoretical speed (see Eq. (11)) with
slightly higher deviations than in the inviscid case. The small-
est particles now clearly drift away from the star at r = 5 au.
This is true for different radii of the disc.

In Fig. 17 we see that the particles are moving inwards at the
midplane and outwards otherwise. The smallest particles follow
the gas velocity and larger particles are moving outwards away
from the midplane faster than the gas, similar to Takeuchi & Lin
(2002), where they move outwards even though the gas is mov-
ing inwards, due to the gas being super-Keplerian in the disc’s
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Fig. 16. Drift velocity of the dust particles depending on the radius of
the particles at r = 5 au for a viscous disc. This is compared to ex-
pected transport for pressure supported discs. Simulation with resolu-
tion 1024 × 256 × 64 and viscosity ν = 5 × 10−7. Different colours are
used for inward and outward drift. We estimate the error from the radial
diffusion coefficient.

corona. This leads to a massflow (shown in Fig. 18) that is inward
in the midplane and outward farther away from the midplane.
As seen in Figs. 17 and 18 small particles (blue and green line)
show the same radial velocity profile and mass flux behaviour as
the disk’s gas flow (black dashed lines). To estimate the overall
mean flow of the particles it is necessary to consider the verti-
cal dependence of the mass flow (Fig. 18) rather than the radial
velocity z-profile (Fig. 17). For example, from Fig. 17 we notice
that the particles with stopping time τ = 6.1 × 10−5 (green line,
3.2×10−3 cm radius) move inward slower than the particles with
stopping time τ = 6.1×10−4 (red line, 3.2×10−2 cm radius) even
though the mean radial dust velocities in Fig. 16 are smaller for
the larger particles. This is due to the different vertical distribu-
tion of the particles (see Fig. 18 and Table 2). In addition, the
velocity and mass flow profiles of the smallest displayed parti-
cles (blue lines in Figs. 17 and 18, 3.2 × 10−4 cm radius) look
very similar to the particles with stopping time τ = 6.1 × 10−5

(green line), while having drift rates in the opposite direction in
Fig. 16.

Thus the net particle flow is very sensitive to the gas flow
profile and the ratio of particles near the midplane, which is de-
cided by the stopping time. This also means that, independent of
the mean flow, there will always be a small fraction of particles
drifting away from the star, faster than one would expect from
diffusion alone.

5.2. Radial diffusion

The increase in viscosity leads to an decrease of the velocity dis-
persion to 〈u2

r 〉 = 1×10−6 ·u2
Kepler,1 au which is smaller by a factor

of two. In Fig. 19 we compare our results to theoretical predic-
tions with τeddy = 0.1. The diffusion is clearly smaller than in the
inviscid case, as predicted by the decreased velocity dispersion.
This is in contrast to the vertical eddy lifetime were we measure
an increase in eddy lifetime due to vertical diffusion.

We can also see (right wing of green and blue curves) that a
small fraction of the small particles diffuse faster outwards than
the rest of the particles. These are particles far away from the
midplane, where the stopping time is magnitudes longer, typi-
cally longer than 10−2, and the gas flow is in average outwards.
These weaker coupled particles can quickly travel a short dis-
tance away from the star, before drifting back inwards nearer to
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Fig. 19. Radial diffusion over 1000 yr after 2700 yr for the simulation
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Kepler,1 au. Compare with Fig. 12, but note that

here the particles had 10 times as much time to diffuse.

the midplane. The difference in radial drift between theory and
simulation noticed in Fig. 16 causes the offset for the results of
the longer stopping time (red curve).

Table 2. Measured dust scale heights and inferred eddy lifetimes, from
Eq. (14), for the viscous isothermal model.

Radius Stopping time τs hp,z τeddy,z
cm at 5 au hgas at 5 au

1.0 × 10−4 1.9 × 10−6 9.5 × 10−1 −
3.2 × 10−4 6.1 × 10−6 9.4 × 10−1 −
1.0 × 10−3 1.9 × 10−5 1.0 × 100 −
3.2 × 10−3 6.1 × 10−5 9.5 × 10−1 −
1.0 × 10−2 1.9 × 10−4 8.9 × 10−1 −
3.2 × 10−2 6.1 × 10−4 8.0 × 10−1 1.0 × 10−1

1.0 × 10−1 1.9 × 10−3 5.5 × 10−1 8.1 × 10−2

3.2 × 10−1 6.1 × 10−3 3.9 × 10−1 1.1 × 10−1

1.0 × 100 1.9 × 10−2 3.3 × 10−1 2.2 × 10−1

3.2 × 100 6.1 × 10−2 2.8 × 10−1 4.8 × 10−1

1.0 × 101 1.9 × 10−1 2.1 × 10−1 8.3 × 10−1

3.2 × 101 6.1 × 10−1 9.4 × 10−2 5.2 × 10−1

Notes. We fitted a Gaussian f (z) = N0 exp (−(z ± µ)2/(2r2h2
p)) to the

data of the vertical distribution to find hp and calculated τeddy for the
simulation with viscosity of 5 × 10−7.

5.3. Vertical Diffusion

For vertical diffusion we obtain slightly longer eddy lifetimes
as can be seen in Table 2 where we measured from 2700 yr
to 3700 yr. In these simulations it took four times as long for
the dust scale height to converge to the gas scale height for the
smallest particles, even though the vertical velocity dispersion is
identical to the inviscid case.

5.4. Clustering

Finally we present the particle distribution in the r − φ plane
in Fig. 20. We show the particles with dimensionless stopping
time of τs = 0.6 and τs = 1.9 at 5 au. One can see for both dis-
played particles sizes that the VSI modes have produced nearly
axisymmetric clusters. The bunching leading to the ring structure
is strongest for the simulation with high viscosity. We also show
in Fig. 21 the same effect for the full disc with small viscosity
of 10−7 and resolution of 512 × 128 × 512. For this simulation
we also increased the number of particles to 500 000. We can
see that the ring structure already seen in the histogram of Fig. 9
does indeed persist even in a full disc. Particles with more than
a magnitude longer or smaller stopping time do not show this
features.

6. 3D-simulations: radiative model

In this section we present the results for a radiative disc with ra-
diation transport and irradiation from the central star. In contrast
to our first paper (Stoll & Kley 2014), we model the stellar ir-
radiation in a more realistic fashion as coming from the central
star, similar to the treatment in Bitsch et al. (2013). This star has
a temperature of 4000 K and a radius of 4 R�.

6.1. Setup

For this simulation we have to take into account that the cool-
ing time has to be sufficiently small for the VSI to be active
(Nelson et al. 2013; Lin & Youdin 2015), which made changes
in the domain necessary. We moved the radial extent of the disc
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Fig. 20. Dust distribution for the disc with viscosity of 5× 10−7. Shown
are the particles with dimensionless stopping time τs = 0.6 (left panel)
and τs = 1.9 (right panel) at 5 au.

Fig. 21. Dust distribution for the full disc with viscosity of 10−7. Shown
are the particles with dimensionless stopping time τs = 0.6. For this
simulation we added 500 000 particles of the same size after 3400 yr
and let them evolve for 400 yr.

for the inner boundary from 2 to 8 au and for the outer boundary
from 10 to 80 au. This radial range is expected to be the active
region of the VSI (Lin & Youdin 2015). We simulate again one
eighth of the disc in the azimuthal direction and this domain is
resolved by 1200 × 260 × 60 grid cells. We also changed the
density profile exponent from p = −1.5 to a value that is more
in line with the observations p = −1.8 (Williams & Cieza 2011).
Initially the temperature drops with T = T0 ·r−1/r0, thus we have
ρ = 10−9 g/cm3 · r−1.8/r0. This translates to Σ = 1700 g/cm2 at 1 au,
which corresponds to is the MMSN-model with a shallower de-
cay of the density. The radiation transport then quickly leads to
a new equilibrium with T = 900 K · r−0.6/r0 in the corona and
T = 700 K · rq/r0 in the midplane, where the temperature gradi-
ent exponent q varies slightly around the mean of q = −0.9, from
q = −1.1 in the inner region to q = −0.6 in the outer region.

During the evolution to the new equilibrium we damp the
velocities in the whole disc.
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Fig. 22. Vertical temperature profile for the irradiated disc in the quasi-
equilibrium state at different distances from the central star.

We add a small viscosity of ν = 5×10−7. This suppresses the
VSI in the inner region, where it would otherwise be weakly ac-
tive, but due to a wavelength on grid scale clearly not resolved,
which in turn would lead to unphysical numerical artifacts. As
shown above, we observe only a small change of the VSI activ-
ity in the active domain with viscosity enabled compared to the
inviscid case. Thus we see no harm in adding it.

In our first paper on the behaviour of the VSI in radiative
discs we only considered vertical irradiation onto the disc sur-
faces (Stoll & Kley 2014). Here, we make the simulations more
realistic and irradiate the disc from a central stellar source from
the origin along the radial direction, see Bitsch et al. (2013). In
this procedure the inner rim of the disc in our simulation is di-
rectly exposed to the stellar irradiation. To prevent unphysical
heating of the midplane at the inner boundary, we absorb the
irradiation flux coming from the star in a fictitious ghost cells
with a width 0.25 au using the gas properties of the adjacent in-
nermost active cells of the domain.

For the irradiation opacity we choose a value 10 times higher
than the gas opacity, to compensate for the fact, that this radia-
tion is emitted by a hot star and not the surrounding gas. This
leads to a heated corona with a cooler midplane as can be seen
in Fig. 22, instead of the cooler corona in Stoll & Kley (2014).
At the boundary of the corona we can also see a change in the
VSI mode. They have a larger wavelength in the hotter corona re-
gion and split where the temperature changes to a smaller wave-
length in the midplane, see lower panel Fig. 24.

To make a direct comparison between the isothermal and ra-
diative case, we ran an additional isothermal model with p =
−1.8 and q = −0.9 and ν = 5 × 10−5 and damping in the vertical
and radial velocity in the region between 8 and 10 au to avoid
boundary effects. In principle one could also compare the radia-
tive case directly to the isothermal models from Sect. 4, because
in isothermal simulations the unit of length is not fixed and can
be scaled to a different regime. However, the gradients in den-
sity and temperature are not the same. We thus included a new
isothermal model that can be directly compared to.

6.2. Hydrodynamic properties

We begin by presenting the α-parameter in Fig. 23, here calcu-
lated by time averaging the azimuthal velocity, since the equi-
librium velocity cannot be computed analytically for radiative
discs with a vertically varying temperature. In the inner region
the VSI is suppressed by the viscosity of ν = 5 × 10−7 on small
wavelengths and by the high cooling time on large wavelengths.
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Fig. 23. α-parameter for the irradiated disc, calculated with time aver-
aging. We average from 7500 yr to 37 500 yr using 60 snapshots.

Fig. 24. Dimensionless cooling time (upper panel) and vertical velocity
(lower panel) for the irradiated disc after 13 500 yr. The top panel shows
the upper half of the disc while the lower panel the lower one at the same
time slice. The black line indicates the location of the critical cooling
time τcrit (see text), which separates the active from the inactive region.

Compare this to the isothermal simulation, where the same vis-
cosity is not able to suppress even at 4 au (see Fig. 3). This is
followed by an active region beginning at 15 au, where we reach
α = (1−4)× 10−4, which is still smaller than the isothermal sim-
ulations. The drop off in the outer region may be linked to the
reduced activity in this region, see also Fig. 24, but is also visi-
ble in the isothermal model.

As the VSI is critically dependent on small cooling times,
we analyse the cooling times due to radiative diffusion in the
irradiated disc models. The radiative diffusion coefficient is
given by:

ηrad =
4λacT 3

κRρ2cv
, (16)

where λ is the flux limiter, a the radiation constant, c the speed of
light and κR the Rosseland mean opacity. To calculate the cooling
time we also need the appropriate length scale. For the optically
thick region we simply take the length scale of the perturbation,
which we approximate as a fourth of the scale height lthick =
H/4. In the optically thin region we use the optical mean free

path lthin = 1/κRρ for the length scale. This leads to a combined
dimensionless cooling time of

τcool =
l2thick + l2thin

ηrad
ΩK. (17)

In Fig. 24 we compare the cooling time, τcool, as calculated from
our numerical irradiated disc models with the critical cooling
time, τcrit, as estimated by Lin & Youdin (2015), who compared
the destabilising vertical shear rates with the stabilising vertical
buoyancy frequency. They obtained

τcrit =
h|q|

1 − γ · (18)

We see a good agreement in the inner region between the active
regions as predicted by the critical cooling time and the active
regions in our simulation. The inner midplane region up to 10 au
is completely inactive and the following region which is also
predicted to be inactive is only active with a higher order mode.
We note that without viscosity one expects modes with higher
wavenumber in this region.

In the outer region beyond 60 au the VSI is inactive despite
a small enough cooling time. This may be due the dynamics of
the VSI that shows larger wavelengths in the outer region, thus
requiring a smaller cooling time, or to boundary effects.

One can also see that the jump in temperature and cooling
time, that also defines the boundary between disc and corona,
creates a boundary for the VSI, where the surface modes can
attach to (Barker & Latter 2015).

6.3. Dust properties

For this simulation we add 20 000 particles per size after 1000 yr.
In Fig. 25 we present a histogram of the distribution of particles
with a size of 31 cm, after 13 500 yr. We see that in the outer
region with the inactive VSI the particles are still Poisson dis-
tributed, but in the active region they are caught in the eddies.
The particles in the outer region are only collected weakly, since
the VSI is reduced, due to the long cooling time. The isothermal
case we compare to has clustering throughout the whole disc and
the overdensities are stronger by a factor of around two, even
though the velocity dispersion is higher by a factor of 5 to 10.

These results show that, even with realistic cooling times, the
VSI can create small axisymmetric regions with overdensities in
the dust by a factor of three. This is the right range of metallicity
and size of particles which is needed for the streaming instability
to set in (Youdin & Goodman 2005). This instability can further
enhance the clumping until gravity is strong enough to directly
form planetesimals out of the cluster of particles.

In Fig. 26 we repeat the statistical analysis for the distribu-
tion of particles. We take into account all particles in the region
from 15 to 40 au, in the timespan between 11 000 and 13 500 yr
over 50 snapshots. We note that the average number of particles
per bin is the same as in the isothermal case in the earlier sec-
tion, since we increased the size of the bins to compensate for
the lower density of particles. Again we see a clear deviation
from the initial Poisson distribution for the particles with stop-
ping time around unity, even though it is weaker. Interestingly
the effect is now most powerful for τs = 6.3 × 10−2 (particles
with 10 cm radius), where the inward drift velocity for the parti-
cles and the inward drift of the vertical motion of the VSI mode
is the same, thus the particles move with the bunching gas mode
instead of through the mode. Those are only bunched at around
30 au, and are diffused again after they have passed this region.
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Fig. 25. Histogram of particles with size of 31 cm and stopping time
τs = 0.2, after 13 500 yr. We divide the radial domain from 8 to 80 au
into 1000 bins and count the number of particles in each bin. The aver-
age number of particles per bin is 20.0.
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Fig. 26. Probability to find a certain number of particles in a radial bin
with ∆r = 0.05 au. The dashed-dotted lines correspond to the isother-
mal model.

This resonance does not exist in the isothermal case, because the
wavelength is greater than in the radiative case. The isothermal
case in general behaves very similar to the isothermal case in the
earlier section. Both show the strongest bunching for particles
with stopping time close to unity.

The radial drift shown in Fig. 27 measured at 20± 2 au from
13 500 yr to 18 500 yr is similar to the isothermal case with the
same viscosity. While the outward migration is no longer as clear
as in the isothermal case with viscosity, there is still a trend to
outward migration. That the effect is weaker can be explained by
the weaker effect the viscosity has at 20 au.

More important for the radial motion of a single particle
is the diffusion. For the radial and vertical velocity dispersion
in the region at 20 ± 5 au we measure for the radiative case
〈u2

r 〉 = 5×10−8 ·u2
Kepler,1 au and 〈u2

z 〉 = 5×10−7 ·u2
Kepler,1 au and for

the isothermal case we measure 〈u2
r 〉 = 5 × 10−7 · u2

Kepler,1 au and
〈u2

z 〉 = 2 × 10−6 · u2
Kepler,1 au. Both values lead to a dimensionless

eddy time of τeddy = 1.0 even though the velocity dispersion dif-
fers by a factor of ten. The larger difference between prediction
and simulation in Fig. 28 results from the error in the measure-
ment of q, the exponent in the radial temperature distribution.
Here, T (r) is determined through the radiation transport and q
varies now with radius. For the plot we use an average value
of q = −1.1.
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Fig. 27. Drift velocity of the dust particles depending on the radius of
the particles. This is compared to expected transport for pressure sup-
ported discs. Results are shown for the radiative simulation with irradia-
tion, resolution 1024 × 256 ×64 and viscosity ν = 5×10−7 at r = 20 au.
Different colours are used for inward and outward drift. We estimate the
error from the radial diffusion coefficient.
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Fig. 28. Radial diffusion after 11 000 yr for 500 yr for the radiative
simulation with irradiation and viscosity ν = 5×10−7. The black dashed
lines are calculated from theory for the different stopping times and with
the same τeddy = 1.0 and 〈u2

gas,radial〉 = 5×10−8 ·u2
Kepler,1 au. The isothermal

simulation (dashed lines) has a velocity dispersion of 〈u2
gas,radial〉 = 5 ×

10−7 · u2
Kepler,1 au.

In Table 3 we can see that in this simulation the dust scale
height is smaller than the gas scale height even for the smallest
particles. We averaged from 13 500 yr to 18 500 yr. In this simu-
lation the radial and vertical calculated eddy lifetimes are again
very similar, despite the turbulence not being isotropic.

For the collision statistics we increased the cutoff distance
within which we compare particle velocities to 0.2 au to com-
pensate the decreased density of particles. As the distribution of
particles already indicated the clustering is indeed weaker. This
is reflected additionally in Fig. 30, where we can see that the cor-
relation is slightly weaker. For this radiative case the effect ap-
pears to be strongest for a dimensionless stopping time τs ≈ 0.1
instead of 1 for the isothermal case. The correlation length is
larger for the particles with stopping time around one, reflecting
the larger wavelength of the VSI in the isothermal case.

The histogram of the relative velocities between particles as
displayed in Fig. 29 illustrates this situation. For τs ≈ 0.1 the
particles have about an order of magnitude smaller relative ve-
locities than for large and small values. We can also see that
the wider velocity dispersion in the isothermal model leads to
greater relative velocities.
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Table 3. Measured dust scale heights and inferred eddy lifetimes, from
Eq. (14), for the radiative model.

Radius Stopping time τs hp,z teddy,z
cm at 20 au hgas at 20 au

1.0 × 10−4 6.3 × 10−7 9.4 × 10−1 −
3.2 × 10−4 2.0 × 10−6 9.4 × 10−1 −
1.0 × 10−3 6.3 × 10−6 9.5 × 10−1 −
3.2 × 10−3 2.0 × 10−5 8.0 × 10−1 1.3 × 10−2

1.0 × 10−2 6.3 × 10−5 8.7 × 10−1 7.3 × 10−2

3.2 × 10−2 2.0 × 10−4 8.7 × 10−1 2.4 × 10−1

1.0 × 10−1 6.3 × 10−4 6.6 × 10−1 1.8 × 10−1

3.2 × 10−1 2.0 × 10−3 5.4 × 10−1 3.1 × 10−1

1.0 × 100 6.3 × 10−3 4.2 × 10−1 5.0 × 10−1

3.2 × 100 2.0 × 10−2 3.4 × 10−1 9.9 × 10−1

1.0 × 101 6.3 × 10−2 2.3 × 10−1 1.3 × 100

3.2 × 101 2.0 × 10−1 8.9 × 10−2 5.9 × 10−1

1.0 × 102 6.3 × 10−1 3.1 × 10−2 2.3 × 10−1

3.2 × 102 2.0 × 100 1.5 × 10−2 1.6 × 10−1

1.0 × 103 6.3 × 100 4.1 × 10−3 3.9 × 10−2

Notes. We fitted a Gaussian f (z) = N0 exp (−(z ± µ)2/(2r2h2
p) to the

data of the vertical distribution to find hp and calculated τeddy for the
irradiated simulation with viscosity of 5 × 10−7.
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Fig. 29. Relative velocity between particles of the same size for different
stopping times after 11 000 yr for the irradiated simulation. The dotted
lines correspond to two different particle sizes as indicated in the legend.
The dashed lines correspond to the isothermal model. Lines to guide the
eye.

7. Summary and conclusions

In the paper we analysed the dynamics of particles embedded
in hydrodynamic discs that show fully developed turbulence as
induced by the VSI.

In a first step we calculated isothermal disc models in full
three dimensions and analysed the properties of the turbulence
generated by the VSI. Our standard model consisted of an eighth
of a full circle (φmax = π/4) and showed in the fully developed
turbulent state α-values around 6 × 10−4, which is of the same
order of magnitude or even slightly larger than the correspond-
ing 2D models (Stoll & Kley 2014). The 3D models shows vari-
ations in the azimuthal direction and these fluctuations follow
a Kolmogorov-type spectrum. The mean radial velocity of the
gas in a VSI turbulent disc turned out to be directed inward in
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Fig. 30. Pair correlation function for the irradiated simulation: enhance-
ment of surface density in a shell with radius r for different stop-
ping times. Averaged over 5 snapshots in the interval from 11 000 to
13 500 yr. The dashed lines correspond to the isothermal model.

the disc midplane and outward in the upper layers, in agreement
with global MHD simulations using zero net vertical magnetic
flux (Flock et al. 2011). This flow is opposite to viscous laminar
discs (Urpin 1984; Kley & Lin 1992) or MHD discs with non-
zero vertical magnetic field (Suzuki & Inutsuka 2014). For 3D
discs covering the full circle (φmax = 2π) we found very sim-
ilar results, which allowed us to treat particle evolution in the
reduced domain.

In addition to the isothermal case we studied fully radia-
tive models including heating from the central star. To allow for
regimes where the VSI instability can operate we extended to ra-
dial domain from 8−80 au. The temperature structure in the disc
displayed a central disc region with a nearly constant tempera-
ture in the vertical direction and hotter surface layers produced
by the stellar irradiation. The vertically varying opacity in the
disc resulted in different cooling times and the turbulence turned
out to be slightly weaker in comparison to the purely isothermal
situation. For the effective α-parameter values of around 10−4

were reached in the active state that extended from about 10 to
60 au.

After having reached the equilibrium state we inserted par-
ticles of different sizes to study their motion in the disc, where
the drag force between gaseous disc and particles was treated
in the Epstein regime. Overall we found for both, isothermal
and radiative discs, comparable results. On average the particles
drift inwards with the expected speed. For all disc models we
found that the smallest particles show an outwardly directed ra-
dial drift. This comes about because the small particles are cou-
pled more to the gas flow and are lifted upward by the vertical
motions of the VSI induced large-scale flows. Since the average
flow direction in the upper layers is positive small dust particles
that are elevated above the disk’s midplane are dragged along
and move outwards. Particles below about 1 mm in size expe-
rience this fate. This outward drift might be beneficial in trans-
porting strongly heated solid material to larger radii as required
to explain for example the presence of chondrules at larger radii
in the Solar System (Bockelée-Morvan et al. 2002). The upward
drift of small particles in the disc by the VSI modes will also
help to explain the observed presence of a population small par-
ticles in the later stages of the disc evolution that were produced
by a fragmentation process (Dullemond & Dominik 2005).
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Using the information of histograms, probability func-
tions and pair correlation functions we analysed the spatial
re-distribution of particles in the disc that were initially homo-
geneously distributed. We found that the particles are strongly
“bunched” together by the large-scale motions of the VSI tur-
bulence. The bunching effect is strongest for particles with
a stopping time of the order unity and the maximum over-
densities reached were about 5 times the average initial den-
sity of the particles. The relative velocity between particles
of the same size is smallest (about a few m/s) for those par-
ticles that show the strongest bunching. This combination of
high density and low relative speed is highly beneficial for
the early formation process of planetary precursors. First, at
these relative speeds collisions between two particles can lead
to sticking collisions (Blum & Wurm 2008; Meru et al. 2013).
The higher relative velocities between particles of different sizes
does not necessarily lead to fragmentation. The experiments of
Teiser & Wurm (2009) have shown that particles with different
size can stick to each other even for collisions up to 50 m/s
and possibly more. Secondly, through the concentration of par-
ticles it is possible to trigger streaming instabilities in the disc
which can further increase the particle concentration and growth
(Youdin & Goodman 2005).

The two dimensional distribution of particles in the disc
shows axisymmetric ring-like concentration zones of the parti-
cles resembling very roughly the features observed recently in
the disc around HL Tau (Brogan et al. 2015). Even though the
strongest effect is seen here in our simulations for particles about
one meter in size, it is possible that through collisions of nearly
equal sized bodies much smaller particles that could generate
the observed emission can be produced and which follow a sim-
ilar spatial distribution. Obviously the observed spacing of the
“bright” rings in our simulations is smaller than those observed
in HL Tau but the inclusion of variations in opacity or chemical
abundances may create larger coherent structures.
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Fig. A.1. Orbital evolution of a test particle on an eccentric orbit.
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Fig. A.2. Settling of test particles with different stopping times.

Appendix A: Particle solver

To verify the correct implementation of our particle solver we
repeat some of the tests of Zhu et al. (2014).
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Fig. A.3. Drift velocity for particles with different stopping times.

A.1. Orbit test

We release the particle at r = 1, at the midplane with a velocity
of uφ = 0.7 and integrate for 20 orbits. The presented timesteps
are ∆t = 0.1 and ∆t = 0.01 for an orbital time of 2π. Even
though the orbit precesses for the longer timestep, the geometric
property is conserved. There is no visible precession in Fig. A.1
for the timestep of ∆t = 0.01, which we use in our simulations.

A.2. Settling test

We release particles with different stopping times at one scale
height from the midplane. For particles with τs < 1 we can see
in Fig. A.2 the exponential decay of the vertical position. Parti-
cles with τs > 1 oscillate around the midplane and instead the
amplitude decays exponentially.

A.3. Drift test

For the drift test we use the disc in hydrostatic equilibrium and
release particles with different stopping times at r = 5 au on Ke-
plerian orbits in Fig. A.3. We compare to the theoretical expected
drift velocity of Eq. (11) (black line).
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ABSTRACT

Recently, the vertical shear instability (VSI) has become an attractive purely hydrodynamic candidate for the anomalous angular
momentum transport required for weakly ionized accretion disks. In direct three-dimensional numerical simulations of VSI turbulence
in disks, a meridional circulation pattern was observed that is opposite to the usual viscous flow behavior. Here, we investigate whether
this feature can possibly be explained by an anisotropy of the VSI turbulence. Using three-dimensional hydrodynamical simulations,
we calculate the turbulent Reynolds stresses relevant for angular momentum transport for a representative section of a disk. We find
that the vertical stress is significantly stronger than the radial stress. Using our results in viscous disk simulations with different
viscosity coefficients for the radial and vertical direction, we find good agreement with the VSI turbulence for the stresses and
meridional flow; this provides additional evidence for the anisotropy. The results are important with respect to the transport of small
embedded particles in disks.

Key words. accretion, accretion disks – turbulence

1. Introduction

The exact origin of the driving mechanism of accretion disks is
still not fully understood. To accrete matter onto the central ob-
ject, the matter needs to lose its angular momentum, and because
molecular viscosity is by many orders of magnitudes too small
to facilitate the required angular transport, it has been suggested
that disks are driven by turbulence. The discovery of a linear
magneto-rotational instability (MRI) for rotating flows with a
negative angular velocity gradient has led to the suggestion that
accretion disks are driven by magnetohydrodynamical (MHD)
turbulence (Balbus & Hawley 1998). However, the MRI only
works efficiently for well-ionized media, for example, in disks
around compact objects, but for lower ionization levels the non-
ideal MHD effects become stronger and the operability of the
MRI questionable. In particular for the cool and low-ionized re-
gions, so-called dead zones with very low turbulent activity have
been predicted (Gammie 1996).

Hence, other alternatives are sought for. In the past years the
purely hydrodynamical vertical shear instability (VSI) has at-
tracted some attention because the only requirement is a vertical
shear in the angular velocity profile, which is in fact a natural
consequence of a radial temperature gradient in the disk, for ex-
ample, induced by irradiation from the central object. Through
numerical simulations and linear analysis it has been shown
that the VSI operates efficiently for vertically isothermal disks
(Nelson et al. 2013) as well as for fully radiative disks that in-
clude stellar irradiation (Stoll & Kley 2014). This makes the VSI
a promising candidate to bring at least some life back into the
dead zones. For many astrophysical applications it is useful to
parameterize the turbulence and describe the angular momen-
tum transport by an effective viscous prescription, for example,
the well-known ansatz by Shakura & Sunyaev (1973) where the
uncertainties of the turbulence are summarized in one constant

Table 1. Model parameter: domain size and grid resolution.

Parameter α-model VSI

Radial range [5.2 au] 0.4−2.5 0.4−2.5
Vertical range [H] ±4 ±5
Phi range [rad] 2D 0−2 π
Radial grid size 600 600
Theta grid size 121 128
Phi grid size 2D 1024

parameter α (Balbus & Papaloizou 1999). Such an approach us-
ing one parameter is applicable for an isotropic turbulence, and
useful when the interest is in the overall radial evolution of the
disk. To analyze the internal flow field of the disk, which is im-
portant for the motion of embedded small particles, it is neces-
sary to take possible non-isotropy effects into account.

Here, we demonstrate that the flow reversal found in recent
VSI-turbulent disks (Stoll & Kley 2016) can in fact be traced
back to the intrinsic anisotropy of the VSI-turbulence. Using
multidimensional hydrodynamical simulations, we calculate the
effective radial and vertical transport coefficients and use them
in viscous disk simulations.

2. Model setup

We use the pluto code (Mignone et al. 2007) for our simula-
tions, where we model a section of a locally isothermal accretion
disk. For the direct turbulent simulations we use a full 3D setup
and spherical coordinates (R, θ, φ), while for comparison lam-
inar viscous simulations (α-disk), we use a 2D axisymmetric
setup and cylindrical coordinates (r, z). The model parameters
are given in Table 1. Even though some of the simulations are
performed in spherical coordinates, the results are analyzed in
cylindrical coordinates. The initial disk is axisymmetric and
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extends from 0.4 r0 to 2.5 r0, where r0 = 5.2 au. The initial den-
sity profile is given by vertical hydrostatic equilibrium

ρ(r, z) = ρ0

(
r
r0

)p

exp
[
GM
c2

s

(
1
R
− 1

r

)]
, (1)

where ρ0 is the gas mid-plane density at r = r0, and p = −1.5. In
our locally isothermal approximation the temperature of the disk
is a function of the cylindrical radius only,

T (r) = T0

(
r
r0

)q

, (2)

where we choose q = −1, which causes the disk aspect ratio to
be constant and T0 such that H/r = h = 0.05. The pressure is
given by P = c2

sρ, where cs is the isothermal sound speed with
cs ∝ r−1/2. The gas moves initially with the angular velocity
given by the Keplerian value, corrected by the pressure support
(Nelson et al. 2013)

Ω(r, z) = ΩK

[
(p + q)

(H
r

)2

+ (1 + q) − qr√
r2 + z2

] 1
2

, (3)

with Ω2
K(r) = GM∗/r3, and the meridional flow (ur, uz) is set to

zero. At the inner and outer boundary we use reflecting bound-
aries. To increase numerical stability for the turbulent runs, we
damp the variables ρ, ur, uz to the initial values on a timescale
of half a local orbit following the recipe by de Val-Borro et al.
(2006), with a damping applied at the inner boundary from
0.4−0.5 r0 and at the outer boundary from 2.3−2.5 r0. At the
vertical boundaries we use reflective boundaries when the flow
is directed inward and zero gradient otherwise. The VSI model
is inviscid, and for the α-disk model the kinematic viscosity is
given by ν = 2/3αcsH, with a constant α = 5 × 10−4, which
matches the outcome of VSI model.

3. Disk structure

We compare the structure of the VSI unstable disk to viscous
disks described by an α-parameter, and study the main differ-
ences. The VSI disk is evolved to a quasi-equilibrium state be-
fore the analysis is performed. We focus in particular on the
flow field and stress tensor, and refer to Nelson et al. (2013) and
Stoll & Kley (2014, 2016) for an analysis of the turbulent flow
structure.

While the density distributions of the viscous and turbulent
disks in equilibrium are very similar due to the necessary pres-
sure equilibrium, there is an important difference in the merid-
ional flow within the disk in particular for the radial velocity. We
show the azimuthally averaged radial velocity ur at r = r0 as a
function of the vertical distance for the turbulent and the stan-
dard viscous disk in Fig. 1. For the turbulent disk we averaged
the velocity in time over 50 orbits and in space around r0 in the
region (0.8−1.25)r0. For better visibility we rescaled the viscous
case by a factor of 200. Obviously, the two radial velocity pro-
files have an opposite behavior. The standard viscous disk using
a single (isotropic) value of α shows the typical outflow in the
midplane that has been predicted analytically by Urpin (1984)
and was later shown in fully time-dependent numerical simula-
tions (Kley & Lin 1992). This behavior of ur(z) can be derived
from the equilibrium angular momentum equation that contains
the vertical disk structure (Urpin 1984). In spite of the outwardly
directed flow in the midplane, the total vertically integrated mass
flow is nevertheless directed inward in case of accreting disks
(Kley & Lin 1992).
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Fig. 1. Radial velocity averaged over 50 orbits. We compare the disk
with alpha-viscosity (α = 5×10−4, blue curve) to a disk with active VSI
(red curve), a disk with active VSI and doubled resolution (red dotted
curve) and a viscous disk with anisotropic stress similar to the VSI disk
(green curve, details see Sect. 4). For the turbulent disk the velocity has
been azimuthally averaged. The profile shown is in units of sound speed
cs0 and at r = r0. The viscous case has been rescaled to better visualize
the difference.

In contrast, the mean flow field for the turbulent flow (la-
beled 3D VSI and shown also with a dotted line for a model
with double resolution in all directions) is fully reversed; it is
not only negative in the midplane and positive in the corona,
but also much stronger, as indicated by the different scaling of
the curves in Fig. 1. This special feature of the meridional flow
field in the VSI case has been found for isothermal as well as ra-
diative disks in Stoll & Kley (2016), but was not analyzed with
respect to anisotropic turbulence. From the direct comparison to
the viscous case, it is clear that with a standard shear viscos-
ity prescription using a constant α-value or a constant kinematic
viscosity, no agreement can be obtained because this will always
lead to an inverted parabolic type of profile (Jacquet 2013). This
raises the general question whether the VSI turbulence in disks
can be described by a standard Navier-Stokes approach to model
the angular momentum diffusion. In Sect. 4 we show that we ob-
tain a good match of a fully turbulent and viscous flow for a non-
anisotropic turbulent viscosity where the radial and vertical parts
enter with a different strength (see curve 2D anisotropic stress),
which might be expected for the clearly non-isotropic character
of the flow structure in VSI turbulence (Stoll & Kley 2014).

To analyze the effect of the turbulence with respect to angu-
lar momentum transport in the disk, it is necessary to calculate
the turbulent stresses of the VSI disk. For the overall mass flow
in accretion disks, which is driven by outward angular momen-
tum transport, the rφ-component of the Reynolds stress tensor,
R, is the most important component because it is generated by
the strong shear in the azimuthal velocity. In the case of VSI
turbulent disks, it is clear that the vertical dependence of the tur-
bulent stresses (zφ-component) may be of importance as well.
Hence, from our simulations we calculate the following turbu-
lent Reynolds stresses

Ri,φ(z) = 〈ρuiδuφ〉t,φ,r, (4)

where ui with i in (r, z) denote the radial and vertical flow ve-
locity (ur, uz) and δuφ is the deviation of the azimuthal velocity,
uφ = rΩ, from unperturbed equilibrium, as given by Eq. (3). For
the later analysis it is beneficial that the stresses are calculated in
cylindrical coordinates (r, z), see Sect. 4. Since we are interested
in particular in the vertical dependence of the stresses, Ri,φ is
calculated by averaging over the full azimuth (2π), over a small
radial range around a reference radius, and over time. Here, we
time-average from orbit 80 to orbit 200 using a series of over
60 snap shots and space-average in radius from 0.75−1.35 r0.
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Fig. 2. Specific stress tensor (stress per density) in units of c2
s0. The

solid lines represent the Reynolds stress (R) of the VSI simulation and
the dotted lines refer to the viscous stress tensor (S ) using α = 5 × 10−4.
The S zφ line was rescaled by a factor of 650 to match to the VSI model.
The dotted line in the upper panel has a constant value of 5 × 10−4.

The results of this averaging procedure are shown in Fig. 2.
The solid curves refer to the specific stresses Ri,φ(z)/ρ(r0, z)
(i = r, z) in units of c2

s0, where ρ(r0, z) is the equilibrium den-
sity distribution, given by Eq. (1), and cs0 is the sound speed,
both at the reference radius r0.

We compare it to the viscous shear stress prescription (see
Eq. (6) with ν = νr = νz) using α = 5 × 10−4 (dotted lines),
which is close to the average of the rφ-component of the spe-
cific VSI stress, 4 × 10−4. We rescaled the zφ-component of the
viscous shear stress by a factor of 650 to match the value from
the VSI stress. From this large rescaling factor it is immediately
clear that Rzφ is far larger than expected from an isotropic vis-
cous shear prescription. We note that the deviation of the vertical
Rrφ/ρ-profile from the constant S rφ/ρ-profile is not important for
our argument, which is why for simplicity we chose a constant
α. For the angular momentum transport only the vertical average
of this stress component plays a role. In our case, the very large
zφ-component of the stress dominates the meridional flow and
the influence of Rrφ is small.

4. Anisotropic viscosity of the VSI turbulence

From our numerical studies of the VSI turbulence, in particu-
lar the vertical component of the Reynolds stress tensor, we can
infer that the turbulence is non-isotropic. Even though we have
integrated the hydrodynamical equations using spherical coor-
dinates, we calculated and display Riφ in cylindrical coordinates
because this is simpler to analyze, as we explain in the following.
In our approach we investigate whether the turbulent Reynolds
stresses, R, can be modeled by a viscous ansatz where R is re-
placed by the standard viscous stress tensor, S, with an effective
turbulent eddy viscosity as introduced by Boussinesq. In cylin-
drical coordinates the change in angular momentum is given by
the following evolution equation:

∂ρr2Ω

∂t
+ ∇ · (uρr2Ω) = −∂P

∂φ
+ ∇ · (rSφ). (5)

For an axisymmetric flow, that is, when ∂/∂φ vanishes, the vector
Sφ (the φ-row of the viscous stress tensor) is given by (Tassoul
1978)

Sφ = (S rφ, S zφ) =

(
ρνrr

∂Ω

∂r
, ρνzr

∂Ω

∂z

)
· (6)

Axisymmetry is expected for accretion disk flows, and we found
this in our simulations. In Eq. (6) we allowed for the option
of an anisotropic viscosity by splitting the kinematic viscosity
into two components νr and νz, where νr refers to the radial
part, which typically is the main contribution in accretion disks
in driving the angular momentum transport and mass accretion.
The νz part connects to the vertical variation of the angular veloc-
ity Ω and has commonly been assumed to be on the same order
as νr. Indeed, using νz = νr and performing viscous axisym-
metric, two-dimensional simulations, we find the typical merid-
ional flow field in disks with outflow in the midplane and inflow
in upper layers of the disk, as shown in Fig. 1 by the curve la-
beled “isotropic stress”, as found in classic studies (Urpin 1984;
Kley & Lin 1992). The outflow in the midplane can easily be de-
rived by an analysis of the radial flow that can be obtained from
the angular momentum equation (see also Fromang et al. 2011;
Jacquet 2013). From Eq. (5) we find for the equilibrium state
that

ur ∝ 1
ρr2Ω

(
1
r
∂(r2S rφ)
∂r

+
∂rS zφ

∂z

)
· (7)

Expanding Eq. (3) around the midplane (small z), we find

Ω(r, z) = ΩK(r)
(
1 +

q
4

z2

r2 +
q + p

2
h2

)
, (8)

where q and p are the exponents in the radial power laws of the
density and temperature, respectively, and h = H/r denotes the
relative scale height of the disk. Using this relation for Ω(r, z),
we find

∂Ω

∂z
= ΩK

q
2

z
r2 (9)

and then, neglecting terms of order z2/r2

S zφ = q ρνz
ΩK

2
z
r

and S rφ = −ρνr
3
2

ΩK . (10)

Combining this with the S zφ relation, we find

S zφ = −q
3

S rφ
νz

νr

z
r
· (11)

This is plotted in the lower panel in Fig. 2 using νz = 650νr,
which demonstrates that the linear dependence of the specific
S zφ-stress is a direct consequence of Eq. (11). From Eq. (7) we
find for the relation determining the sign of ur in the midplane
the following relation:

ur(z = 0) ∝
(
2S rφ + r

∂S rφ

∂r
+ r

∂S zφ

∂z

)

∝ ρ

[
νr

(
−3 − 3

2

(
q + p +

3
2

)
+

9
4

)
+

q
2
νz

]
, (12)

where for the last step we assumed that the viscosity has an
α-type behavior with ν ∼ αc2

s/ΩK and ρ ∝ rp and c2
s ∝

rq. We note that the direction of flow in the disk midplane
can be influenced by the slopes (p, q) in the disk stratifica-
tion (Fromang et al. 2011; Philippov & Rafikov 2017). From the
above relation we find directly that for our disk with slopes
q = −1 and p = −3/2 that

ur(z = 0) ∝
[
3
2
αr − αz

]
. (13)
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For isotropic turbulence with αr = αz we therefore have outflow
in the disk midplane. For the turning point we find that αz must
be larger than 1.5αr. Upon increasing αz over αr, the midplane
radial velocity becomes more and more negative, and the entire
vertical flow profile eventually reverses. In our numerical sim-
ulations of viscous disks using different values for νz we could
indeed find the observed flow reversal for moderate values of
νz/νr. By increasing νz further, we found that the VSI turbulence
can be modeled by an anisotropic eddy viscosity with νz over
two magnitudes larger than νr (650 for our chosen parameter, as
shown in Fig. 2).

In performing the comparison simulations, we initially tried
to use the same spherical coordinate system that we used for
the turbulent VSI simulations by just increasing νθ over νR in
the corresponding components of the stress tensor in spherical
coordinates. However, this did not lead to the expected results,
in particular, the inversion of the parabola of ur(z). The results
displayed in Fig. 1 were therefore obtained using a cylindrical
coordinate system. Because the usage of a spherical coordinate
system is beneficial in disk simulations, the equations need to be
transformed from r, z to R, θ.

This means we need to transform the viscous part, ∇ · (rSφ),
to spherical coordinates. The transformation equations are

r = R sin θ and z = R cos θ, (14)

and the components of the stress tensor transform according to

S Rφ = S rφ sin θ + S zφ cos θ. (15)
S θφ = S rφ cos θ − S zφ sin θ· (16)

The derivatives of Ω transform then as

∂Ω

∂r
= sin θ

∂Ω

∂R
+

cos θ
R

∂Ω

∂θ
(17)

∂Ω

∂z
= cos θ

∂Ω

∂R
− sin θ

R
∂Ω

∂θ
. (18)

Using Eq. (6) in Eqs. (15) and (16) and substituting this into
Eqs. (17) and (18), we obtain for the stress tensor components in
spherical coordinates

S Rφ = ρR sin θ
[(
νr sin2 θ + νz cos2 θ

) ∂Ω

∂R
+ (νr − νz)

cos θ sin θ
R

∂Ω

∂θ

]
(19)

S θφ = ρR sin θ
[
sin θ cos θ (νr − νz)

∂Ω

∂R
+

(
νr cos2 θ + νz sin2 θ

) 1
R
∂Ω

∂θ

]
·
(20)

As can be inferred from these equations, the relatively simple
anisotropic relation in cylindrical coordinates leads to complex
coupled equations in spherical coordinates with cross terms
in the derivatives for Ω. For the isotropic case we can set
νr = νz = ν and obtain the standard relations for the stress tensor
components in Rθ-coordinates (Tassoul 1978). Now it becomes
clear why merely increasing the θ part of the viscosity in
Rθ-coordinates did not yield the correct answer when compared
to the VSI case. Using the full viscosity terms as described
in Eqs. (19) and (20) in the numerical simulations yields the
correct behavior. However, this comes with a serious drawback
because in this case the numerical integration required much
smaller time steps for numerical stability than the cylindrical
simulation with the same viscosity coefficients. Performing
multidimensional simulations of viscous disks mimicking the
non-isotropic behavior of the VSI turbulence in Rθ-coordinates
therefore requires a considerable numerical effort. One solution

to this problem may be the usage of an implicit solver for the
viscous terms.

5. Conclusions
From direct three-dimensional simulations of locally isothermal
accretion disks we observed that the eddies introduced by the
VSI generate stresses that are strongly anisotropic. Specifically,
we found that the vertical zφ-component of the Reynolds stress
is enhanced by a factor of 650 over the standard rφ-part. By per-
forming viscous disk simulations using a non-isotropic viscos-
ity with αz highly enlarged over αr, we could obtain the same
flow reversal as seen in the VSI disk, which verifies the non-
isotropy of the viscosity. Hence, the reversal of the radial flow
profile compared to the usual α-model is a clear consequence
of the anisotropy. This will have an effect on the dust migration
processes (Stoll & Kley 2016) that need to be contrasted to the
outward drift in the midplane viscous models (Takeuchi & Lin
2002). From this we can conclude that we need to be careful
with turbulence models imposed on accretions disks when we
adopt viscous models to describe them.

The meridional circulation of MRI-turbulent disks has been
analyzed by Fromang et al. (2011), who found a similar mean
flow dynamics in the disk but did not attribute it to a non-
isotropic turbulence (with large S zφ) but rather to a radial varia-
tion in the magnitude of the viscosity. However, their turbulent
Rzφ profile (in Fig. 5) indicates that it may be enhanced over the
standard viscous value as well, which could also be a reason for
the flow reversal.

Even though the analysis is performed for simplicity for a
locally isothermal disk, our results are quite general as sim-
ulations for fully radiative disks show the same behavior al-
though they have different radial and vertical temperature pro-
files. For this purpose, we reanalyzed our radiative simulations in
Stoll & Kley (2016) and found a similar anisotropy. Concerning
numerical resolution, simulations with double resolution show
the same results as shown in Fig. 1. Nevertheless, further ex-
ploration needs to be done in order to check how the anisotropy
factor varies for different disk parameters and to explore the pos-
sibility of anisotropic stresses in MRI models.
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ABSTRACT

In weakly ionized discs turbulence can be generated through the vertical shear instability (VSI). Embedded planets feel a stochastic
component in the torques acting on them which can impact their migration. In this work we study the interplay between a growing
planet embedded in a protoplanetary disc and the VSI. We performed a series of three-dimensional hydrodynamical simulations
for inviscid locally isothermal discs that are VSI unstable and corresponding viscous discs having the same effective viscosity with
embedded planets in the mass range from 5 to 100 Earth masses.
The inviscid discs become turbulent and generate angular momentum transport with an effective α = 5 · 10−4. For all planet masses
we find that the planets have only a weak impact on the disc turbulence. For the largest planet (100M⊕) the turbulent activity becomes
even enhanced inside of the planet. The depth and width of a gap created by the more massive planets (30, 100 M⊕) in turbulent discs
equal exactly that in the viscous disc, leading to very similar torque strengths acting on the planet, with small stochastic fluctuations
for the VSI disc. At the gap edges vortices are generated that are stronger and longer lived in the VSI disc. Low mass planets (with
Mp ≤ 10M⊕) do not open gaps in the disc but create an over-density behind the planet that exerts a significant negative torque. This
can boost the inward migration well above the Type I rate. Due to the finite turbulence level in realistic three-dimensional discs the
gap depth will always be limited and migration will not stall in inviscid discs.

Key words. accretion discs, turbulence, planets

1. Introduction

The longstanding problem of identifying the mechanism respon-
sible for transporting angular momentum in accretion discs and
explain their observed lifetimes has been tackled since the early
works of Shakura & Sunyaev (1973) and Lynden-Bell & Pringle
(1974). The physical process that has been identified having the
major contribution is the magnetorotational instability (MRI)
(Balbus & Hawley 1991; Hawley & Balbus 1991). However, es-
pecially within the context of planet formation, the basic con-
dition of an ionised media to trigger the MRI is generally not
fulfilled (Gammie 1996).

Several purely hydrodynamical mechanisms have been pro-
posed to drive the angular momentum, even in the non-ionised
regions of the disc (also referred to as "dead zones"), that under
special conditions can develop (see e.g. Nelson et al. 2013, and
references therein). One of the more general applicable of those
mechanisms is the vertical shear instability (VSI) which was first
discovered in the context of differentially rotating stars (Goldre-
ich & Schubert 1967; Fricke 1968) and then later applied also to
accretion discs (Urpin & Brandenburg 1998). More recently, the
VSI has been modelled and proven effective both in globally and
locally isothermal discs (Arlt & Urpin 2004; Nelson et al. 2013),
and in fully radiative discs (Stoll & Kley 2014).

Within the context of the planet formation process, these in-
stabilities can strongly shape the dust dynamics, by increasing its
concentration inside vortices (Barge & Sommeria 1995; Klahr &
Bodenheimer 2006; Baruteau & Zhu 2016), and regulating their
settling and growth (Dullemond & Dominik 2005). In particu-
lar, Stoll & Kley (2016) studied the effect of the VSI on the dust

dynamics, finding a strong clustering of dust by the large-scale
vertical motion induced by the instability and a reduced rela-
tive speed which can be highly beneficial for the planet forma-
tion process. Furthermore, a strong outward migration of sub-
mm size dust is observed in the upper layers of the disc that can
replenish the outer disc regions of solid material.

A planet can strongly affect the disc structure in its vicinity
by creating density waves departing from its location and deplet-
ing the co-orbital region. These asymmetries in the disc are then
generating a torque acting onto the planet and force it to migrate
within the disc (see e.g. Kley & Nelson 2012, and references
therein). The direction and magnitude of this migration depends
strongly on the local properties of the disc. The VSI generates
strong vertical motions that can perturb the disc equilibrium, po-
tentially affecting the resulting torque acting onto the planet.

In this work we focus on the signatures induced by a planet
onto a protoplanetary disc where the VSI is operating in an in-
viscid disc and the resulting torque acting on it, and compare it
to the classical viscous α model in order to study the main differ-
ences that this simpler prescription can or cannot reproduce. The
paper is organised as follows. In Sec. 2 we describe the numeri-
cal method used to model the disc and planet and the parameter
space studied. In Sec. 3 we outline the results of our analysis, and
in Sec. 4 we discuss the major points and draw the conclusions.

2. Setup

We used the pluto code (Mignone et al. 2007) to model an
isothermal accretion disc in spherical coordinates (r, θ, φ) and
compared the interaction of an embedded planet with its parent
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Table 1. Model parameter

Parameter model
Radial range [5.2 au] 0.4 - 2.5

Vertical range [H] ±5
Phi range [rad] 0 - 2 π
Radial grid size 600
Theta grid size 128
Phi grid size 1024

Planet mass [M⊕] 5, 10, 30, 100

disc for a VSI model, which is inviscid and relies on the tur-
bulence generated by the instability for the angular momentum
transport, and an alpha disc model. The main parameters of the
reference simulations are summarised in Tab. 1.

2.1. Gas component

The initial disc is axisymmetric and extends from 0.4 rp to 2.5 rp,
where rp = 5.2 au is the planet position. We state the initial con-
ditions in cylindrical coordinates (R,Z,φ). The initial density pro-
file created by force equilibrium is given by

ρ(R,Z) = ρ0

(
R
Rp

)p

exp
[
GMs

c2
s

(
1
r
− 1

R

)]
, (1)

where ρ0 is the gas mid-plane density at R = Rp = rp, p = −1.5
the density exponent, and cs the isothermal sound speed. The
disc is modelled with a locally isothermal equation of state,
which keeps the initial temperature stratification fixed through-
out the whole simulation. We assume a constant aspect ratio
H/r = 0.05, which corresponds to a temperature profile

T (R) = T0

(
R
Rp

)q

, (2)

with q = −1 and T0 = 121 K.
The gas moves with an azimuthal velocity given by the Ke-

plerian speed around a 1 M� star, corrected by the pressure sup-
port (Nelson et al. 2013):

Ω(R,Z) = ΩK

[
(p + q)

(H
R

)2

+ (1 + q) − qR√
R2 + Z2

] 1
2

. (3)

At the inner and outer boundary we damp the density, ra-
dial and vertical velocity to the initial values at the timescale
of half a local orbit (see e.g. de Val-Borro et al. 2006), to re-
duce numerical issues due to the interaction of the VSI with the
boundary and to prevent reflection of the spiral wave onto the
boundary. The damping is applied in the intervals [0.4,0.5 ]rp
and [2.3,2.5 ]rp. For the kinematic viscosity in the alpha disc
model we use ν = 2/3αcsH, and adopt a constant α parame-
ter of α = 5 · 10−4, which is close to the value obtained from the
VSI model (see Fig. 1). To bring the VSI model into equilibrium,
we evolve it for 200 orbits before embedding the planet.

2.2. The planet

We embed a planet that orbits its parent star on a circular orbit
with a radius rp = 1 and a mass in the range [5, 10, 30, 100 ]M⊕.
Gas accretion is not allowed, and the planet does not feel the
disc, so its orbital parameters remain fixed during the whole sim-
ulation. The gravitational potential exerted by the planet onto the

surrounding gas is implemented with a cubic expansion in the
vicinity of the planet location (Klahr & Kley 2006):

Φp =



−GMp

d


(

d
drsm

)4

− 2
(

d
drsm

)3

+ 2
(

d
drsm

) , for d < drsm

−GMp

d
, for d ≥ drsm,

(4)

where d is the distance of a gas element from the planet location,
and the smoothing length drsm = 0.5 rHill is adopted in order to
avoid singularities. To prevent strong shock waves in the initial
phase of the simulations, the planetary mass is increased slowly
over the first 20 orbits of the simulation. We run the simulations
for 200 orbital periods of the planet.

3. Results

3.1. The effective viscosity of the disc with embedded planets

For the VSI models the alpha-parameter is not set by the viscos-
ity prescription. Instead, the VSI generates eddies that transport
the angular momentum self-consistently. We can then calculate
the efficiency of this process by evaluating an alpha-parameter
through the Reynolds stress resulting from the turbulence.

We calculate the Reynolds stress in cylindrical coordinates
(R, Z, φ):

RR,φ = ρuRδuφ , (5)

where δuφ is the local difference from the equilibrium azimuthal
velocity, which we calculate by time averaging uφ for each grid
cell from orbit 60 to orbit 200 over 70 snap shots.

We then can calculate the dimensionless alpha-parameter as
function of the radius

α(r) =

〈
RR,φ

〉
t,θ,φ

〈P〉t,θ,φ
, (6)

where P is the pressure and 〈〉t,θ,φ denotes the average over time
(140 orbits) and the whole vertical and azimuthal domain.

In Fig. 1 we compare the alpha-parameter for the different
VSI-active discs with embedded planets of different mass. The
inner damping region from 0.4 rp to 0.5 rp is very effective in
suppressing the VSI, which is intended to reduce the interaction
with the boundary. The wave killing zone is slightly less effec-
tive in suppressing the VSI for an increased grid resolution close
to the inner boundary (for the 10 M⊕ model), while there is no
difference in the outer disc. Interestingly, the VSI is more re-
silient to the wave killing zone for the 100 M⊕ case. There the
VSI is stronger and can access a region much closer to the inner
boundary. This behaviour is also highlighted in Fig. 2, where the
vertical velocity in the midplane of the disc (induced by the VSI)
reaches 0.5cs0 for the more massive case.

In the top panels of Fig. 2 we see that small planetary masses
are not able to influence the strength of the VSI, even close to
their location. The strong deviation in the alpha profile seen in
Fig. 1 for the large mass planets can be directly linked in the
bottom panels of Fig. 2 with the formation of strong vortices at
the gap edges carved by the planets. The vortex at the outer edge
is strong enough to suppress the VSI in the region [1.2, 2.0 ]rp.
For the 30 M⊕ case, the variation of the surface density profile is
enough to reduce the effectiveness of the VSI in close proximity
to the planet.
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Fig. 2. Vertical velocity in the midplane of the VSI-disc after 198 orbits with embedded planets of different mass. Red colour denotes an upward
motion and blue downwards. Larger planets clearly disrupt the usual VSI-modes close to the planet. In the last panel (100 M⊕ planet) vortices are
visible at both sides of the planet. Also visible in the last panel is the more extended VSI activity near to the inner boundary than in the other
panels.

0.5 1 2
radius in rp

10−5

10−4

10−3

al
ph

a 5M⊕
10M⊕
10M⊕ Res2
30M⊕
100M⊕

Fig. 1. Comparison of the alpha-parameter for the different VSI-active
simulations with embedded planets of different mass. The planet is lo-
cated at r = rp. ’Res2’ indicates a model with double resolution. The
dotted line is at α = 5 · 10−4.

Finally in the outer region, beginning at 2 rp, the VSI can
form unaffected by the planet and leads to an alpha-parameter
close to 10−3, which is approximately the value inferred from
observations (see e.g. Andrews et al. 2009). Only for the largest
planet the VSI is slightly suppressed due to the formation of a
large vortex outside of the planetary orbit.

Altogether we can see that in this simulations α rises with
radius, contrary to our previous results (Stoll & Kley 2014; Stoll
& Kley 2016) where this trend was not observed, but there we
also had a steeper radial density profile with p = −2.5.

3.2. Vortices and vorticity

Vortex creation by embedded planets is a phenomenon occurring
in nearly inviscid discs (Koller et al. 2003; de Val-Borro et al.
2007), while they are usually suppressed by viscosity over time
(de Val-Borro et al. 2006). It is thus unclear what happens in

VSI simulations that are able to generate a viscosity on the order
of α = 5 · 10−4. In fact, in the simulations with VSI and Mp =
100 M⊕ we see multiple vortices developing at the outer edge of
the gap after the slow introduction of the planet (over 20 orbits).
They merge to a single vortex over the next 100 orbits, which
then remains stable, and even increases slightly in strength up
to the end of the simulation. This vortex, at nearly the end of
the simulation,1 is shown in Fig. 3 on the right side of the lower
panels. There we can see not only a vortex at the outer edge, but
also a smaller vortex which has formed at the inner edge of the
gap. Both vortices exists over the whole simulated timescale of
200 orbits. This is in contrast with the alpha disc on the left side
of the lower panel, where we can still see two weak vortices that
are dissipating in the long run due to the effect of viscosity.

Now we compare directly the inviscid VSI-active simula-
tions with the results of a viscous disc using α = 5 · 10−4. The
upper panel of Fig. 3 shows the simulations with Mp = 30 M⊕.
As expected, the alpha viscosity disc does not show large scale
vortices, but the VSI simulations again introduces a smaller vor-
tex, which is also stable over the runtime of the simulation. The
runs with smaller planets do not have a gap and thus do not show
large scale vortices in this region, but instead smaller vortices are
visible.

To further analyse the vortices we calculate a normalised vor-
ticity:

ωθ =

(
r
rp

)3/2

(∇ × u)θ . (7)

For undisturbed Kepler rotation this leads to ωθ = ωθK indepen-
dent of radius, where ωθK is the vorticity at r = rp.

The normalised vorticity in the disc’s miplane is displayed in
Fig. 4 for various models. The first row shows the vorticity of the
two low mass planets averaged in time over 50 snapshots, begin-
ning with orbit 100 and ending with orbit 200. We can see that

1 At 200 orbits the vortex sits at the periodic boundary, thus we show
one earlier time slice, where it is in the middle of the domain.
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Fig. 3. Density in the midplane relative to the initial density after 198 orbits for the inviscid VSI-active simulations and viscous disc models using
α = 5 · 10−4. Upper Panels: after 198 orbits for Mp = 30 M⊕. Lower Panels: same for Mp = 100 M⊕.

the VSI does transport the vorticity created close to the planet
along the horseshoe orbits, which leads to an increase in the sur-
face density along the inner horseshoe orbit. This also creates a
small vortex in close proximity behind the planet (for the 5 M⊕
model in top left panel), which affects the torques as we will see
in Sec. 3.4.

The second to third row show the normalised vorticity for
the different planets in the VSI discs after 200 orbits. The de-
velopment of small vortices in the region with VSI was already
seen and explained by Richard et al. (2016). The vortices in the
100 M⊕ model, which were already visible in Fig. 3, are clearly
identifiable as an increase in the vorticity. The vortex at the in-
ner edge forms after 100 orbits at 0.8 rp and starts to migrate
inwards. The migration is initially slow, but it increases after
leaving the gap edge. After further 100 orbits it migrates with
approximately 0.001rp per orbit to 0.73 rp where it can be seen
in the figure, which is on the same order of magnitude as found
by (Richard et al. 2013). Vortex migration has already been stud-
ied by Paardekooper et al. (2010) and is due to the angular mo-
mentum transport by the excited density waves. The waves are
asymmetric due to the density and vorticity gradient, leading to
a net transport and migration. The vortex at the outer edge does
not migrate notably, because the presence of the planet prevents
inward migration.

The 30 M⊕ model has also increased vorticity at the edges
of the gap. While no large vortices have formed yet, at the outer
edge of the gap two vortices are forming (see also Fig. 3). This
is in contrast to the alpha disc simulations, where for the 30 M⊕
case no vortices are seen and only weak signatures can be no-
ticed for the 100 M⊕ case. The last row shows the vorticity for
the alpha disc, where small vortices are present in the horseshoe
region for the 30 M⊕ model, since the relatively small viscosity
cannot dissipate them on a short timescale. The variation in vor-
ticity in the outer region is due to VSI activity, which is not sup-
pressed completely by the viscosity leaving mainly the modes
with small wavenumber. Similar to the VSI disc, we see stronger

VSI activity in the alpha disc in the 100 M⊕ model both in the
inner and outer disc.

3.3. Surface density profile

An important observable that can be studied is the surface den-
sity profile which, modified by the presence of the planet and
local instabilities, can show specific recognisable patterns. We
present in Fig. 5 the disc surface density distribution, with re-
spect to the initial model, for the different models and planetary
masses, averaged over the azimuthal direction.

In the VSI-discs the planet is able to carve slightly deeper
gaps with respect to the alpha disc models. Moreover, the profile
is increased at the inner gap edge. These effects are caused by an
increased vorticity at the gap edges, due to the interplay of the
VSI with the Rossby wave instability (see Richard et al. 2016).
Surprisingly even the smaller planets create a perturbation in the
surface density profile close to the planet (especially in the VSI
models). This is not a typical gap, but instead an increase in the
surface density profile close the planet at the inner side of the
disc and a decrease at the outer side. This comes from an in-
creased vorticity in this region as we discussed in more detail
in the Sec. 3.2. Finally, an overall slight decrease in the surface
density in the outer region is visible for all VSI models, caused in
part because they have been evolved for 200 orbits before adding
the planet, and also due to higher alpha-parameter in the outer re-
gion (see Fig. 1). For the larger planets the surface density pro-
files show very good agreement between the VSI models and the
corresponding viscous α-disc models. The gaps have the same
widths and depths, confirming the estimate for the effective vis-
cosity, α = 5 · 10−4.
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Fig. 4. First Row: Normalised vorticity in the midplane averaged over the last 100 orbits in the VSI disc. The increased vorticity close to the planet
is clearly visible. Second to Third Row: Normalised vorticity in the midplane for the VSI disc after 198 orbits. Last Row: Normalised vorticity
in the midplane for the viscous alpha disc after 198 orbits.

3.4. Torques acting on the planet

We calculate the torques using a smoothed force of the planet
onto the disc:

Fp =
GMp∆m

d3 + (εRH)3 d , (8)

where d is the distance of a grid cell with mass ∆m from the
planet and ε = 0.5 the smoothing length. The smoothing reduces
the potential inside the Hill radius, where we get too large con-
tributions otherwise from the high gas density due to the missing
accretion of the gas onto the planet. Moreover the density distri-
bution close to the planet should be symmetrical with respect to
the planet and thus it should not contribute to the total torque,
but the finite resolution can make this numerically challenging.

We compare our results to the simulations of D’Angelo &
Lubow (2010), thus we use the same normalization for the total
torques

Γ0 = Σ(rp)Ω2(rp)r4
p

(
Mp

Ms

)2 ( rp

H

)2
, (9)

and for the torque distribution per unit disc mass as a func-
tion of radius
(

dΓ

dm

)

0
= Ω2(rp)r2

p

(
Mp

Ms

)2 ( rp

H

)4
. (10)

We display the torques over time in Fig. 6, where we express
the total torque averaged over the last 50 orbits in the legend. We
smoothed the torques over 4 orbits with a Gaussian window, to
reduce the strong fluctuations. The source of the perturbations
are different depending on the size of the planet. For the smaller
planets they are introduced through the turbulence injected by
the VSI. In the case of the massive planet the oscillations are
introduced by a vortex at the outer edge of the planet.

We compare the torques to the simulations of D’Angelo &
Lubow (2010), who obtained for locally isothermal 3D discs the
following empirical function:

Γ = −(1.36 + 0.62β + 0.43ζ)Γ0 , (11)

where β = −d ln Σ/d ln r and ζ = −d ln T/d ln r, which corre-
spond for our simulations to β = 0.5, ζ = 1, and leads to an
expected torque of Γ = −2.15Γ0.
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Fig. 5. Surface density for the different simulations after 200 orbits. The vertical dotted black lines indicate the position of the planet and the initial
surface density profile is marked by the solid black line. For each planet mass the VSI models are compared to the α-disc cases.
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Fig. 6. Torque over time normalised by Γ0. We smooth over 4 orbits with a Gaussian window and compare to the simulation of D’Angelo & Lubow
(2010) (red dashed line). In the legend we give the total torque averaged over the last 50 orbits. Due to the turbulence in the VSI disc the torque
strongly fluctuates. The oscillations in the last panel are due to the presence of a vortex.

Our discs with alpha-viscosity have a close agreement with
the empirical function, with small differences caused by the dif-
ferent smoothing methods of the planetary potential adopted.
Only the 100 M⊕ planet has a reduced torque due to gap for-
mation.

In contrast, the simulations with VSI strongly disagree with
the predictions. While it is not very surprising that the torques
can be positive for a few orbits in context of turbulent discs, it is
clearly visible that the average of torque is far from the predicted
value. In case of the smallest planet with five earth masses the

average of the torques is even five times larger than the torques
in the alpha disc. This effect becomes smaller with increasing
planet mass just as the VSI gets weaker due to the large planet
disturbing the preferred VSI modes.

To shed light on this increase in torque we also show the
torque distribution per unit disc mass as a function of radius in
Fig. 7. Here we average again over the last 50 orbits and we com-
pare to D’Angelo & Lubow (2008). In the lower panel of Fig. 7
we can again see a good agreement with their results, except for
the heaviest planet. In the simulation with Mp = 5 M⊕ the torque
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Fig. 7. Torques on the planets normalised by (dΓ/dM)0, see eq. 10.
Upper Panel: The planet is embedded into a disc with VSI. The inner
torques are smaller then expected and the outer torques are stronger.
Lower Panel: The planet is embedded into a disc with generic alpha
viscosity. The torques are very similar to D’Angelo & Lubow (2010).
In both simulations the torques for the heaviest planet are reduced due
to the lower surface density in the gap.

is five times stronger with active VSI compared to the simulation
with alpha viscosity. This is due to a combination of reduced in-
ner torque and stronger outer torque. This can not be explained
with a variation in the radial surface density, because we could
see in Fig. 5 that the density in the outer region is reduced and
the density in the inner region is greater, leading to the opposite
effect. Instead the surface density is dependent on the azimuthal
direction. We see an increase in density at the inner side behind
the planet and a decrease in density at the outer side in front of
the planet. This can be seen in Fig. 8 where we average the den-
sity over 100 orbits. This is due to the increased vorticity behind
the planet, from the interplay between the planet and the VSI as
can be seen in the upper panels of Fig. 4.

3.5. A model with double resolution

To check the convergence with resolution, we repeat the sim-
ulation with Mp = 10 M⊕ and VSI with doubled resolution in
every direction. The resolution is then 1200 × 256 × 2048 in (r,
θ, ϕ) or (20,15,10) cells per rH . The overall results show now
no important difference to the results of the simulations with
smaller resolution. A notable difference is in the alpha-profile,
which we present in Fig. 1. We can see that in the inner region
the alpha parameter is larger for the better resolved simulation.
This indicates that the simulations are not properly resolved in
the innermost region between 0.5-0.64 rp. This also indicates that
the rest of the domain is sufficiently resolved and not dependent

Fig. 8. Upper Panel: Density averaged over the last 100 orbits for the
VSI simulation with Mp = 5 M⊕ in units of initial density. Lower Panel:
The density averaged over the last 100 orbits for the VSI simulation
with Mp = 10 M⊕ in units of initial density. In both cases an increase
in density before the planet is visible, if only barely for the 10 M⊕ case.
The bump in density does not move over time.

on resolution, in contrast to the 2D simulations in Stoll & Kley
(2014). This does not pose a problem for the calculations of the
torques, which are only important close to the planet. This can
be seen in Fig. 7, were the dotted black line represents the sim-
ulation with doubled resolution which can be compared to the
green line. Both lines are as close together as one can expect
from simulations with turbulence. No other notable differences
have been observed.

4. Discussion and Conclusions

We performed a series of hydrodynamical simulations to study
the interplay between a growing planet embedded in a protoplan-
etary disc and the VSI, which is a strong candidate for the main
angular momentum transport mechanism in the region of active
planet formation. The main results that can be drawn from our
study are:

1. Vortices and VSI
Larger planetary cores (Mp > 10 M⊕) are able to open eas-
ily a gap in the disc, which lead to the generation of vortices
at the gap edges. These vortices are observed both in VSI
and α-disc models, however, due to the interaction between
the vortices and the VSI, their lifetime is much longer in the
VSI models. In our simulations we can see the presence of
several weak spiral arms, for example in Fig. 3 (upper row),
that can be associated with vortices generated by the Rossby-
Wave Instability (RWI) near the edges of the gap created by
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the planet. They are related to a maximum in the normalised
vorticity profile, shown in Fig. 4. Furthermore the vorticity
perturbations generated by the VSI, as suggested by Richard
et al. (2016), are effectively increasing the lifetime of the
RWI vortices, as one can see comparing the viscous and tur-
bulent runs in the bottom panel of Fig. 4.

2. The VSI active region
The VSI active region is not affected sensibly by the embed-
ded planets for planetary masses less than 30 M⊕. For higher
masses the presence of vortices is able to suppress the VSI
near their position. On the other hand the active region is
extended inwards, at least for the most massive planet sud-
ied (see Fig. 4). A possible explanation for this effect is the
change in surface density profile due to the creation of a gap.
This will in turn change the angular momentum profile and
thus influence the VSI.

3. Planet migration
Concerning the migration of planets we find that the torques
acting onto small planets for the α-disc models are in good
agreement with the prediction of D’Angelo & Lubow (2010).
This picture changes drastically for the inviscid models with
the VSI operating. For small planets with masses smaller
than about 10 M⊕ the time averaged torques are negative
throughout. For the lowest planet mass we studied, 5 M⊕, the
inward migration is about 5 times faster than for the α-disc
model which is due to a density enhancement directly be-
hind the planet. For increasing planet masses the migration
rates approach those of the viscous disc. Due to this spe-
cial disturbance in the density we do not see any prolonged
phases of outward migration as seen for example for plan-
ets embedded in MHD-turbulent discs (Nelson 2005; Uribe
et al. 2011). In general, because the density fluctuations in
VSI turbulent discs are smaller than in MHD turbulence, the
stochastic component in the migration process is lower in
VSI discs. As three-dimensional inviscid simulations of disc
will always generate turbulence through the VSI, embedded
planets will experience substantial inward migration. This
feature cannot be captured by modelling planet migration in
two-dimensional inviscid discs that show typically a stalling
of migration after a sufficiently wide gap has been formed (Li
et al. 2009; Fung & Chiang 2017). In contrast, realistic three-
dimensional discs will always show a finite turbulence level
that will limit the gap depth. In fact, from our simulations we
see that the width and depths of gaps opened by the planets
are very similar in the VSI models and the corresponding α-
disc models. In addition, small planets (Mp ≤ 10 M⊕) that
do not open significant gaps are able to modify the surface
density profile close to their location which leads to the en-
hanced migration for the VSI turbulent discs.

4. Vortex migration and its implications
Vortex migration was first observed by Paardekooper et al.
(2010) in isothermal discs, and then further studied by Faure
et al. (2015) for radiative discs. Vortices are able to generate
spiral arms by compressing the flow around them, and the
migration occurs because of an asymmetry in the position of
the sonic lines that generates the density waves. According
to Richard et al. (2013) the migration speed is directly linked
with the vortex aspect ratio (χ), it slows down upon increas-
ing χ. In particular, Faure & Nelson (2016) studied the in-
teraction of a planet with a vortex generated through RWI.
Interestingly, they found that a massive vortex can drag with
it the planet during the migration process, and it can also
cross the planetary gap periodically crossing its location.

In our simulations for the 100 M⊕ planet, the inner vortex
has a migration rate after an initial adjustment on the order
of 0.001 rp/orbit, in accordance with (Richard et al. 2013),
while the outer one is kept in its orbit by the steep surface
density profile carved by the planet. The aspect ration of the
inner vortex is around 3 which, according to Richard et al.
(2013) should be destroyed after a few orbital periods due
to elliptical instability (for χ < 4). However, its lifetime is
much more extended in our runs, meaning that the presence
of the VSI is beneficial extending its life. On the other hand
the outer vortex is much broader and with an higher aspect
ratio. Both vortices have also a considerable vertical extent,
and only in the outer corona they are effectively dissipated.

5. VSI as an angular momentum driving process
In agreement with previous simulations of VSI unstable discs
Nelson et al. (2013), we find that an angular momentum
transport driven by the VSI that corresponds to an α = 5·10−4

which is not strongly affected by embedded planets. Hence,
the VSI constitutes a viable candidate for the generation of
turbulence in discs where the MRI may be inactive. Recently,
we have shown (Stoll et al. 2017) that the turbulence gen-
erated by the VSI is anisotropic and can be described by a
viscous ansatz for the stress tensor using two different coef-
ficients for the radial and vertical angular momentum trans-
port. It remains to be seen how an embedded planet behaves
in such discs with anisotropic viscosities.

Thus, the VSI can on the one hand increase the strength of
the vortices forming close to the gap edges for high planetary
masses, and on the other hand boost the Type I migration for
small planetary cores. This study can be further improved by
relaxing the locally isothermal equation of state, and allowing
the planet to accrete and migrate within the disc.
Acknowledgements. G. Picogna acknowledges the support through the German
Research Foundation (DFG) grant KL 650/21 within the collaborative research
program “The first 10 Million Years of the Solar System”. M.H.R. Stoll acknowl-
edges the support through the (DFG) grant KL 650/16. Some simulations were
performed on the bwGRiD cluster in Tübingen, which is funded by the Ministry
for Education and Research of Germany and the Ministry for Science, Research
and Arts of the state Baden-Württemberg.

References
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2009,

ApJ, 700, 1502
Arlt, R. & Urpin, V. 2004, A&A, 426, 755
Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214
Barge, P. & Sommeria, J. 1995, A&A, 295, L1
Baruteau, C. & Zhu, Z. 2016, MNRAS, 458, 3927
D’Angelo, G. & Lubow, S. H. 2008, ApJ, 685, 560
D’Angelo, G. & Lubow, S. H. 2010, ApJ, 724, 730
de Val-Borro, M., Artymowicz, P., D’Angelo, G., & Peplinski, A. 2007, A&A,

471, 1043
de Val-Borro, M., Edgar, R. G., Artymowicz, P., et al. 2006, MNRAS, 370, 529
Dullemond, C. P. & Dominik, C. 2005, A&A, 434, 971
Faure, J., Fromang, S., Latter, H., & Meheut, H. 2015, A&A, 573, A132
Faure, J. & Nelson, R. P. 2016, A&A, 586, A105
Fricke, K. 1968, ZAp, 68, 317
Fung, J. & Chiang, E. 2017, ArXiv e-prints [arXiv:1701.08161]
Gammie, C. F. 1996, ApJ, 457, 355
Goldreich, P. & Schubert, G. 1967, ApJ, 150, 571
Hawley, J. F. & Balbus, S. A. 1991, ApJ, 376, 223
Klahr, H. & Bodenheimer, P. 2006, ApJ, 639, 432
Klahr, H. & Kley, W. 2006, A&A, 445, 747
Kley, W. & Nelson, R. P. 2012, ARA&A, 50, 211
Koller, J., Li, H., & Lin, D. N. C. 2003, ApJ, 596, L91
Li, H., Lubow, S. H., Li, S., & Lin, D. N. C. 2009, ApJ, 690, L52
Lynden-Bell, D. & Pringle, J. E. 1974, MNRAS, 168, 603
Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228

Article number, page 8 of 9

67



Moritz H. R. Stoll et al.: Planet-disc interaction in laminar and turbulent discs

Nelson, R. P. 2005, A&A, 443, 1067
Nelson, R. P., Gressel, O., & Umurhan, O. M. 2013, MNRAS, 435, 2610
Paardekooper, S.-J., Lesur, G., & Papaloizou, J. C. B. 2010, ApJ, 725, 146
Richard, S., Barge, P., & Le Dizès, S. 2013, A&A, 559, A30
Richard, S., Nelson, R. P., & Umurhan, O. M. 2016, MNRAS, 456, 3571
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337
Stoll, M. H. R. & Kley, W. 2014, A&A, 572, A77
Stoll, M. H. R. & Kley, W. 2016, A&A, 594, A57
Stoll, M. H. R., Picogna, G., & Kley, W. 2017, ArXiv e-prints

[arXiv:1702.00334]
Uribe, A. L., Klahr, H., Flock, M., & Henning, T. 2011, ApJ, 736, 85
Urpin, V. & Brandenburg, A. 1998, MNRAS, 294, 399

Article number, page 9 of 9

3 Publications

68



4 Results

4.1 Summary

�is dissertation studies the impact of the vertical shear instability (VSI) on the di�er-
ent phases of planet formation. In the �rst work “Vertical shear instability in accretion
disk models with radiation transport”, published in 2014, we focus on the VSI itself
and applicability in the dead zone. We begin with analyzing the initial grow rates of
the instability. �e VSI quickly grows on the timescale of 30 local orbits from the ini-
tial small velocity perturbations to large modes threading through the whole vertical
extend of the disk. �e growth rates are in good agreement with earlier theoretical
estimates (Urpin and Brandenburg, 1998, Urpin, 2003) and with similar simulations of
Nelson et al. (2013).

We estimate the angular momentum transport, measured in α , to be on the level
of a few times 10−4. Since these simulations are only two dimensional axisymmetric
simulations, which can me misleading, we also con�rm this value in with a small 3D
simulation of a quarter of the disk. We discover that the strength of the VSI seems to be
dependent on the resolution, indicating missing numerical convergence. On the other
hand we show that this issue can be resolved by adding a small kinematic viscosity,
indicating that this is not a problem in physical disks. In fact, we could not see this
problem in 3D simulations, indicating that this is a problem speci�c to inviscid 2D
simulations.

Surprisingly, we �nd that the radial wavelength of the instability does locally not
scale with the scale height of the disk, but instead with ∼ r 2.5, a scaling that keeps
the frequency of the vertical motion constant. Instead, we repeatedly see jumps in the
wavelength, where it is halved, leading to expected scaling relative to the scale height
on the global scale.
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Based on these simulations we added radiative transport to the model, leading to
self-consistent temperature pro�les, since the heating and cooling of the disk is then
correctly modeled, in contrast to the locally isothermal models before. �is leads to
an overall cooling of the disk, as the internal viscous heating due to the instability
is too weak to match the radiative cooling of the disk surface and the instability dies
out. Hence, we �nd that an external heat source in necessary to sustain the VSI. �is
is readily available through the central star. A�er we add the heating through the
irradiation from star, we see again sustained VSI activity with an α-parameter of a few
times 10−4, similar to the locally isothermal models before.

In our next work “Particle dynamics in disks with turbulence generated by the ver-
tical shear instability”, published in 2016, we studied the impact of the VSI on dust par-
ticles embedded into the protoplanetary disk. We modeled the dust as particles with
di�erent sizes, from a radius of 0.1 mm up to km, that are in�uenced by the gas through
the drag force in the Epstein regime. Since the dust fraction relative to the gas is small,
we neglect the feedback of dust onto the gas. We also extended our simulations to three
dimensions, allowing us to take into account perturbation in the azimuthal direction,
which would for example allow the particles to be caught in vortices.

In order to reduce the computation time needed, we limited the azimuthal domain to
an eighth of the full disk. We veri�ed the validity of this approach by comparing a low
resolution, locally isothermal model, with limited azimuthal extent, to a model with
the full azimuthal extend. We did neither �nd a signi�cant di�erence in the strength
of the α-parameter nor in the azimuthal power spectrum.

We also improved our radiative model. In our earlier model in the �rst work we
estimated the irradiation �ux onto a �at disk model and irradiated this �ux along the
vertical direction. In this model we directly irradiate with the star along the radial
direction. �is ansatz allows for self-shadowing e�ects. With a density pro�le that
is close to the Minimum Mass Solar Nebula (MMSN) but with a shallower decay, as
determined from observations (Williams and Cieza, 2011), we obtain an VSI active
region from 10 au to 60 au. Since this model is on the upper end in density, this results
show again that it is very likely that parts of the dead zone are unstable to the VSI.

A very interesting result in this work is the formation of ringlike structures in the
dust density due to the characteristic �ow pa�ern of the VSI. �is creates strong over-
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densities in the dust density, where the dust density is increased by a factor of up to ten.
�is e�ect is strongest for particles with a stopping time on the timescale of one orbit
and shorter, which translates to particles with a size between a few cm and several me-
ters. �is will most likely lead to enhanced rates of sticking collisions between these
particles, especially since we observed relative velocities below the fragmentation limit
of 50 m/s. It is also important for the onset of the streaming instability (see Sect. 1.2),
which requires a dust to gas ratio of around one to ten. If this ratio is reached the
streaming instability can increase the overdensities to even greater values, leading to
the formation of planetesimals. �is makes the VSI active region a suitable birthplace
for planets.

�e results for the dust distribution and migration are also interesting. A disk with
active VSI has an unusual radial �ow pa�ern, where the gas �ows inwards at the mid-
plane and outwards in the corona. �is is opposite to the meridional �ow observed in
α-disk models (Kley and Lin, 1992). Hence, particles that are kicked towards the corona
are no longer tightly coupled to the gas and can quickly migrate outwards. While this
process is very rare, these particles will migrate outwards faster as expected from the
turbulent di�usion alone. We could also see that the VSI is e�ective in preventing dust
se�ling, far more than the α-parameter would imply.

We further analyze this radial �ow pa�ern in our le�er “Anisotropic hydrodynamic
turbulence in accretion disks”, published in 2017. We show that the inverted radial
�ow is a result of the anisotropic turbulence. �is anisotropy is caused by the much
larger vertical wavenumber compared to the radial wavenumber, that is necessary for
VSI activity. �e α-model can be savaged by spli�ing the isotropic α-parameter into
two parameter thus allowing for di�erent radial and vertical stresses. �is ansatz then
recovers the inverse radial �ow pa�ern.

Finally, in our last publication for this dissertation, we studied the interaction be-
tween the VSI and planets of di�erent masses by embedding the planets in VSI active
disks. We compared these simulations to disks with the traditional viscous α-model.
�is allowed us to compare disks with turbulent viscosity, due to the VSI, to disks with
kinematic viscosity, enabling us the check the validity of the α-model for the case of
planet-disk interaction.

Since the impact of the planet’s potential on the disk changes the angular momen-
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tum structure, there is reason to suspect that the presence of a planet can impede the
VSI activity and thus the level of turbulence generated by it. We could not detect this,
even the most massive planet we included, with a mass of 100M⊕, did not change
the gap pro�le, compared to a viscous α-disk, in a signi�cant way. �e gap size is a
good indicator for the α-parameter, since the gap size depends on how fast the angu-
lar momentum the gas gained or lost through the interaction with the planet can be
transported away. Also the direct calculation of α did not show weakening close to the
planet. In fact the presence of the 100M⊕ planet seems to strengthen the VSI activity
in the inner region, while the smaller planets do not impact the VSI at all.

Nevertheless the VSI has a large impact on the disk, by favoring the creation of vor-
tices. �is was already seen be Richard et al. (2016) in disks without planets. �ese
vortices are what sets the VSI disks apart from their viscous counterparts. Most no-
tably are the vortices in the 100M⊕ model. �ere the gap edge creates the necessary
condition for the Rossby wave instability in both models. While the condition is met
in both models, the turbulent and the viscous disk, in case of the turbulent disk the
vortices at the inner and outer edge are stronger and show no sign of decay during the
runtime of the simulation over the 200 orbits. �e vortex at the inner edge even starts
to migrate inwards, away from the edge, without decaying.

But the models with smaller planets are also impacted by this tendency to sustain
vortices. In these models very small vortices are created at the edge of the spiral arm,
close to planet. �ese vortices then travel along the inner horse shoe orbit, until they
are behind the planet, where they collect to form a larger vortex. Because these vortices
also collect gas, they also impact the torque of the disk onto the planet and lead to a
faster inward migration of the planet. In case of the 5M⊕ model, the torque was �ve
times stronger than in the viscous α-model. �is clearly indicates that it is impossible
to model type I migration with the viscous α-model in VSI active regions and poses a
new problem for planet formation.
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4.2 Outlook

We could show that the VSI can play a major role in the di�erent stages of planet
formation. Nevertheless there are several questions that need to be answered before
the role of the VSI is clear. Further investigation is needed to discern the region where
the VSI can be active. While we could show that it is in principle possible for the
VSI to be present in some part of the dead zone, the level of turbulence and extend
of this region have not been thoroughly explored. �ey depend for example on the
initial density in the disk, which can only be constrained by be�er observations, and
on the opacity of the gas. �e opacity will not only depend on density and temperature
but also on the dust fraction in the outer layers of the protoplanetary disk, which is
in�uenced by the turbulence, in this case the VSI and possibly also the MRI, making a
self-consistent solution di�cult.

�e temperature gradient in the disk will also depend on the MRI in the inner region
of the disk. �e MRI can not only provide additional heating of the disk, but also locally
increase the disk scale height, due to heating the disk more, and thus create a self-
shadowed region behind the MRI active region, with a steeper temperature gradient.

As already mentioned the dust clustering is an important e�ect. But in our current
implementation only the gas has an impact on the dust and the backreaction of the
dust on the gas is missing. While this is a good approximation for the initial dust to gas
fraction found in accretion disks, the dust fraction can reach a critical level where the
approximation is no longer valid, due to the dust clumping introduced by the VSI, and
the streaming instability could become important. Hence, future simulations should
include the backreaction, allowing to check if even greater clustering can be reached
a�er the onset of the streaming instability.

�e fast migration rate in the VSI model aggravates the problem of planets falling
into the star, before the accretion disk disappears. But this can also be turned around
as further indication that there is a region that can halt planet migration, for example
the inner edge of the dead zone. �en the fast migration rate can even be seen as
an advantage, as it forces the planet out of the region that enables planet formation
and makes room for more planets, explaining the large number of crowded planetary
systems discovered.

We can also look forward to more observations from the Atacama Large Millime-
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ter/submillimeter Array (ALMA). ALMA observes in the millimeter and submillimeter
wavelengths, thus allowing us to resolve the structure of the dust in protoplanetary
disks. �is already produced the beautiful image of HL Tau, where several rings are
visible (shown in Fig. 1.2). To date it is unclear how these rings can be explained. While
the VSI produces ringlike structures, they can not easily connect to rings of HL Tau,
as they are most visible for larger dust grains than observed and also have di�erent
spacing between the rings. �is could possibly be explained with fragmentation of
the clustered particles. Only simulations including the dust collision and fragmenta-
tion will be able to tell us if the VSI is connected with these observations. �is is an
important next step, as only observations can be the �nal arbiter of any theory.
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