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Summary 
One of the major forces steering differentiation and fate specification is transcription. A 

main regulator controlling transcript accumulation are small RNAs (sRNAs), acting via 

silencing of genes through homologous nucleic acids. Within sRNA populations, 

microRNAs (miRNAs) are amidst the most abundant components, and important factors 

in regulation of protein coding gene expression in higher eukaryotes. Both their 

biogenesis and processing are well characterized in animals, and a large number of 

protein complexes and cofactors involved have been identified and studied. In plants, 

considerably fewer details are known, and especially the labyrinthine regulation of 

miRNA biogenesis and function is far from understood. 

In recent years, numerous screens were employed to enlighten this labyrinth. Within the 

frame of this thesis, I characterized three novel cofactors involved in miRNA biogenesis 

and function that were identified by two such forward genetics screens established in 

our laboratory, and broadened our knowledge about additional regulatory layers.  

The first, luciferase based screen broadly targeted miRNA biogenesis and function and 

yielded two candidates characterized here, TRANSCRIPTIONAL DEFECTS OF HPR1 BY 

OVEREXPRESSION 2 (THO2) and the REGULATOR OF CBF GENE EXPRESSION 3 (RCF3). With 

new and known tho2 alleles ranging from hypomorphic to null mutants, we found that 

THO2 is associated with miRNA precursors and their processing, as well as with splicing. 

This substantiates the connection between miRNA pathways, transcription and splicing, 

and adds detail to the picture of co-transcriptional miRNA precursor processing. RCF3, on 

the other hand, proved to influence miRNA levels and action prevalently in young, 

dividing tissues in the vegetative and reproductive apical region, presumably via affecting 

the phosphorylation and thus activity of a major miRNA processing factor. These findings 

not only shift the focus to tissue-biased action as a novel regulatory layer, but also 

emphasize the importance of chemical modifications of known miRNA co-factors to 

modulate their function.  
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The third candidate studied in this thesis, HAWAIIAN SKIRT (HWS), stems from a screen 

utilizing miRNA target mimicry to look for modifiers of miR156 function. I genetically and 

molecularly connect HWS to the general miRNA framework. Function of HWS in this 

setting appears to be dependent on the activity of its F-box domain, presumably in the 

context of an Skp-Cullin-F-box (SCF) complex that normally targets substrates for 

ubiquitination. How exactly HWS functions however remains elusive. Potentially, full 

characterization of HWS could help explain the principles of target mimicry and uncover 

a new, additional connection between the ubiquitination machinery and miRNAs.  

In summary, the work presented here shows both the potential and the limitations of 

forward genetic screens to illuminate the rich picture of plant miRNA biogenesis and 

function. It opens up novel regulatory layers for further, more targeted analysis, and 

explains the requirements for combined biochemistry, molecular biology and genetics 

approaches. Finally, broadening the perspective, it suggests that the quest for a detailed 

picture of the miRNA framework could help us understand the contribution of miRNA 

regulation and its modulators to adaptation and evolution.  
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Zusammenfassung 
Zelluläre Differenzierung und Zellschicksale werden in großem Maße auf der Ebene der 

Transkription gesteuert. Die Ansammlung von Transkripten wird zu einem großen Teil 

durch kleine RNAs (small RNAs, sRNA) reguliert, die über homologe Nukleinsäuren 

Genprodukte stilllegen können. MikroRNAs (miRNAs) gehören innerhalb von sRNA-

Beständen zu den häufigsten Komponenten und sind wichtige Faktoren in der 

Regulierung der Expression Protein-kodierender Gene in höheren Eukaryoten. Sowohl 

ihre Biogenese als auch ihre Reifung sind in Tieren gut charakterisiert, und eine große 

Anzahl daran beteiligter Proteinkomplexe und Kofaktore wurden identifiziert und 

untersucht. In Pflanzen sind deutlich weniger Details bekannt, und besonders die 

labyrinthartige Regulierung von MiRNA Biogenese und Funktion sind bei Weitem noch 

nicht verstanden.  

In den letzten Jahren wurden zahlreiche Mutantensichtungen dazu genutzt, Licht in 

dieses Labyrinth zu bringen. Im Rahmen dieser Dissertation habe ich drei neue 

Kofaktoren charakterisiert, die an MiRNA Biogenese und Funktion beteiligt sind, und 

mittels zweier in unserem Labor etablierter Mutantensichtungen identifiziert wurden, 

was unser Wissen über zusätzliche regulatorische Stufen erweitert hat. 

Die erste, auf Luziferase basierte Mutantensichtung fokussierte sich allgemein auf 

MiRNA Biogenese und Funktion und brachte zwei Kandidaten hervor, die hier 

charakterisiert werden, TRANSCRIPTIONAL DEFECTS OF HPR1 BY OVEREXPRESSION 2 (THO2) 

und REGULATOR OF CBF GENE EXPRESSION 3 (RCF3). Mit neuen und bereits bekannten 

tho2 Allelen, die sowohl hypomorphe als auch Null-Mutanten umfassen, fanden wir 

heraus, dass THO2 mit MiRNA Vorläufern und deren Reifung sowie mit Spleißen in 

Zusammenhang steht. Dies untermauert die Verbindung zwischen MiRNA-

Stoffwechselwegen, Transkription und Spleißen, und fügt dem Bild der ko-

transkriptionalen MiRNA-Vorläuferverarbeitung neue Details hinzu. RCF3 auf der anderen 

Seite beeinflusst die Mengen und die Wirkung von MiRNAs, vorwiegend in jungen, sich 

teilenden Geweben am vegetativen und reproduktiven Apex, mutmaßlich durch 

Einflussnahme auf die Phosphorylierung und dadurch die Aktivität eines Haupt-MiRNA-

verarbeitenden Faktors. Diese Erkenntnisse verschieben nicht nur den Fokus hin zu 
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Gewebespezifität als neuer regulatorischer Stufe, sondern bekräftigen auch die 

Wichtigkeit chemischer Modifikationen bereits bekannter MiRNA Kofaktoren zur 

Modulierung ihrer Funktion. 

Der dritte Kandidat, der in dieser Dissertation untersucht wurde, HAWAIIAN SKIRT (HWS), 

stammt aus einer Mutantensichtung, der MiRNA Angriffsziel-Mimikry nutzt, um nach 

Modifikatoren der Funktion von MiR156 zu suchen. Meine Arbeit verbindet HWS 

genetisch und molekular mit dem allgemeinen MiRNA-Rahmenwerk. Die Funktion von 

HWS in diesem Rahmen scheint abhängig zu sein von seiner F-box Domäne, 

voraussichtlich in Zusammenhang mit einem Skp-Cullin-F-box (SCF) Komplex, der 

Substrate für Ubiquitinierung markiert. Wie genau HWS funktioniert, bleibt jedoch 

schwer definierbar. Eine komplettierende Charakterisierung des HWS Proteins könnte 

helfen, die Grundlagen von Ziel-Mimikry zu erklären und eine neue, zusätzliche 

Verbindung zwischen der Ubiquitinierungsmaschinerie und MiRNAs aufdecken. 

Zusammengefasst zeigt die hier vorliegende Arbeit sowohl das Potenzial als auch die 

Grenzen von Mutantensichtungen als Werkzeug zur Aufklärung der Komplexität der 

Biogenese und Funktion von MiRNAs. Die Arbeit deckt neue regulatorische Stufen auf für 

zukünftige, noch gezieltere Analysen, und erklärt die Notwendigkeit von Ansätzen, die 

Biochemie, Molekularbiologie und Genetik kombinieren. Schließlich, die Perspektive 

erweiternd, schlägt sie vor, dass das Streben nach einem detaillierten Bild des MiRNA-

Rahmenwerks helfen könnte, den Beitrag von MiRNA-Regulierung und ihrer 

Modulatoren zu Adaptierung und Evolution zu verstehen.   
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1. Introduction 
From short-lived fruit flies all the way to giant sequoias that are considered to be 

among the world’s largest and oldest living beings, life always starts with a single cell. 

For the differentiation and specification of cell types, tissues, organs and finally highly 

complex life forms, cells divide and grow in elaborate patterns. In order for this to finally 

yield living organisms, every developmental step is tightly regulated in both time and 

space. One of the major forces that steer these processes is the abundance of gene 

products, meticulously patterned throughout an organism. Additionally, its fine-tuning is 

thought to be an important factor in the evolution of complex organisms (for example 

reviewed in (López-Maury, Marguerat, and Bähler 2008)). Following this hypothesis, one 

can assume that it is mutation of regulators within a specific gene’s expression network 

rather than merely mutation of the gene itself that drives changes within evolution.  

The levels at which gene products are present, as well as their spatial distribution, 

greatly depends on the cellular, developmental and environmental context. Different 

endogenous and exogenous factors shape the transcriptional output of a cell’s genome. 

The abundance of a gene transcript is often controlled, both transcriptionally and post-

transcriptionally, by a specific group of RNAs, so-called small RNAs (sRNAs).  

A large portion of the plant transcriptome is made up of these 20 to 24 nucleotide 

long regulatory RNAs. While results of their action, namely the silencing of genes 

through sequence complementary nucleic acids, were already observed and molecularly 

studied from the late 1980 onwards in the context of transgene-mediated silencing 

(reviewed in (Prins et al. 2008)), the first endogenous small RNA, identified in the model 

organism Caenorhabditis elegans, was only found more than a decade later (R. C. Lee, 

Feinbaum, and Ambros 1993). At that time the exact functional principle was unclear, but 

Lee and colleagues proposed that the detected 22 nt lin-4 sRNA downregulates the levels 

of the LIN-14 transcript through a direct RNA-RNA interaction in a “novel kind of 

antisense translational control mechanism” (R. C. Lee, Feinbaum, and Ambros 1993). 

Mutants of lin-14 have pronounced developmental phenotypes, thus supporting the role 

of sRNAs in modeling evolution.  
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Over the years, the number of known types of sRNAs has kept increasing steadily. 

While regulation of gene expression through various modes of action like chromatin 

modification, mRNA degradation or inhibition of translation is common to all of them, 

their origin and molecular characteristics help sorting the different sRNAs into several 

classes (Nicolas G. Bologna and Voinnet 2014; Axtell 2013). 

 

1.1 Plant small RNAs  

The very first observations of sRNA action - although, at the time, not identified as 

such - were made in plants (A. R. van der Krol et al. 1990; Alexander R. van der Krol et al. 

1988; Napoli, Lemieux, and Jorgensen 1990). Napoli, van der Krol and colleagues found 

that expression of a transgene could inhibit the expression of an endogenous gene with 

a closely related sequence. Trying to overexpress a chalcone synthase (CHS) for a deeper 

purple color in petunia, they saw that their approach had the opposite effect, and 

instead produced completely white or purple-white patterned flowers. They termed the 

phenomenon ‘co-suppression’ (A. R. van der Krol et al. 1990; Napoli, Lemieux, and 

Jorgensen 1990). The corresponding small non-coding RNAs, small-interfering RNAs, that 

mediate this co-suppression, were described later, six years after the first sRNAs - in this 

case microRNAs - officially entered the stage in C. elegans (R. C. Lee, Feinbaum, and 

Ambros 1993; Hamilton and Baulcombe 1999). The first systematic isolation and 

description of plant sRNAs came about only in the beginning of the new century (Llave, 

Kasschau, et al. 2002; Reinhart et al. 2002). Today, we are aware of a plethora of plant 

(and animal) sRNA classes that keep growing continuously.  

The biogenesis pathways and modes of action of sRNAs are very diverse. Aiming 

to classify the sRNAs, they were thus subdivided based on different characteristics, for 

example their template, size or mode of action (Nicolas G. Bologna and Voinnet 2014; 

Axtell 2013). Owing to the focus of my work on biogenesis, I will here classify sRNAs, 

based on their origin, into two main types: those that are derived from a single strand of 

RNA that folds back onto itself into a usually imperfectly paired, ‘bulgy’ hairpin-like 

structure (hpRNAs), and the sRNAs that are synthesized from perfectly double-stranded 

RNA (dsRNA) precursors, called small interfering RNAs (siRNAs) (Axtell 2013). Partly due 

to different sets of proteins involved in their biogenesis and to very specific sRNA strand 
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size distributions, siRNAs can be subdivided further, as explained in the following 

paragraphs (Figure 1, based on (Axtell 2013)).  

Even though biogenesis of all siRNAs starts with the formation of a dsRNA 

precursor, further processing steps and later siRNA activity differ substantially across the 

different classes. For secondary siRNAs, overall biogenesis depends on the activity of an 

initial sRNA that binds to or causes cleavage of a targeted RNA. Depending on the length 

and structure of these sRNAs, the specialized RNA-DEPENDENT RNA POLYMERASE 6 

(RDR6) and a number of cofactors such as SUPPRESSOR OF GENE SILENCING (SGS3) are 

recruited to convert the cleaved mRNA transcripts into double-stranded RNA (Manavella, 

Koenig, and Weigel 2012; Peragine et al. 2004; Borges and Martienssen 2015). Further 

processing, i.e. ‘dicing’ of the entire length of the dsRNAs by DICER-LIKE 2 or 4 gives rise 

to secondary 22 and 21 nucleotide long siRNAs, respectively (Z. Xie et al. 2005). If their 

precursor has a uniformly defined terminus, successive dicing of the dsRNA results in so-

called phased siRNAs. While secondary siRNAs normally target mRNAs based on perfect 

complementarity - thus also their own mRNA origin - they can also act in trans, directing 

repression of distinct mRNA targets and are thus termed ‘trans-acting’ siRNAs, or ta-

siRNAs (Vazquez, Vaucheret, et al. 2004; Allen et al. 2005). Due to these characteristics, 

and if the encoding mRNAs are similar enough, a very limited number of mRNAs and 

corresponding ta-siRNAs can repress many members of a gene family, as it has been 

shown for the plant NUCLEOTIDE-BINDING SITE-LEUCINE-RICH REPEAT (NB-LRR) defense 

gene superfamily (Zhai et al. 2011). Action of these 21- to 22 nt siRNAs is mostly mediated 

by members of the ARGONAUTE 2/3/7 clade in A. thaliana. Through AGO2, they can 

mediate de novo DNA methylation and play a role in pathogen defense (Harvey et al. 

2011; X. Zhang et al. 2011). ZIPPY, also known as AGO7, is in this context involved in both 

phase transition and adaxial-abaxial patterning, solely through association with the ta-

siRNA biogenesis associated miR390 (Montgomery et al. 2008; Husbands et al. 2009).  

 Different from secondary siRNAs, the mostly 23-24 nt long heterochromatic 

siRNAs (het-siRNAs) typically correspond to intergenic and repetitive genomic regions. 

For their biogenesis, they largely depend on the alternative DNA-dependent RNA 

polymerase Pol IV (Mosher et al. 2008), as well as on dsRNA complementation by RDR2, 

and DICER-LIKE 3 (DCL3) directed dicing (Lu et al. 2006; Llave, Kasschau, et al. 2002). 

Instead of directly acting on specific mRNAs, het-siRNAs are associated with de novo 
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deposition of repressive chromatin modifications at their target DNA (M. Matzke et al. 

2009), executed with the help of proteins of the ARGONAUTE 4 (AGO4) clade that 

Figure 1. Classification of small RNAs, modified after Axtell 2013. 
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RDR
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trigger and subsequent RDR activity

cis-NAT-siRNAs: NAT-siRNAs whose 
precursors were transcribed from 

overlapping genes in opposite directions
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consists of AGO4, 6, 8 and AGO9 (Havecker et al. 2010). Even though het-siRNAs, or Pol 

IV-dependent siRNAs (p4-siRNAs), are among the most abundant sRNA types in 

angiosperms, their loci appear to be largely evolutionarily transient even between closely 

related species (Ma, Coruh, and Axtell 2010). In conjunction with AGO4, they guide 

methylation within the canonical RNA-directed DNA methylation (RdDM) pathway, 

causing transcriptional silencing typically at transposon and other repetitive sites (M. A. 

Matzke and Mosher 2014). AGO4 is, in this context, also involved in methylation-

mediated plant defense against DNA viruses, and is a major effector of co-transcriptional 

gene silencing (TGS). 

While both secondary siRNAs and het-siRNAs arise from single sRNAs that 

function as templates for dsRNA synthesis by an RDR protein, NAT-siRNA dsRNA 

precursors are formed by hybridization of two complementary RNAs that originate from 

independent transcription events at opposite strands of the same locus (cis-NAT-siRNAs). 

Stress- or developmentally controlled expression of the antisense transcript can post-

transcriptionally regulate the abundance of the corresponding, partially overlapping 

sense-transcript (Katiyar-Agarwal et al. 2006; Borsani et al. 2005). The possibility of trans-

NAT-siRNAs, e.g. NAT-siRNAs that are derived from transcripts originating from non-

overlapping genes, remains hypothetical for the moment. Even the general importance 

of NAT-siRNAs as a class itself is unclear, as presence of the cis-NAT gene configuration 

does not necessarily imply actual production of sRNAs, and the biogenesis pathways for 

known NAT-siRNAs are highly diverse and do not give a uniform general picture (Axtell 

2013).  

SiRNAs make up a large, if not the largest portion in the body of a plant’s sRNA 

complement and play important roles in, for example, the response to biotic and abiotic 

stresses. In addition to plant endogenous siRNAs that are produced from a plant’s own 

dsRNAs, they can even arise as a reaction to pathogen ‘attacks’, being produced from 

exogenous viral RNAs as part of the plant defense response (for example (Csorba, 

Kontra, and Burgyán 2015)). 
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1.2 miRNAs and their biogenesis 

MicroRNAs are among the most abundant components of both plant and animal 

sRNA populations, and important factors in post-transcriptional regulation of protein-

coding gene expression in higher eukaryotes (Ma, Coruh, and Axtell 2010). Since their 

discovery in 1993 (R. C. Lee, Feinbaum, and Ambros 1993), an immense body of research 

has built up, showing that miRNAs play essential roles in development and life in a 

profusion of contexts, from heart development or diseases like cancer, to leaf formation 

or the transition from vegetative to reproductive phase in plants. As regulatory 

components of gene expression, miRNAs are crucial for responses to environmental 

changes and adaptive development (reviewed in (B. Zhang 2015; Sunkar, Li, and 

Jagadeeswaran 2012)). 

 A number of plant miRNAs are highly conserved over a long evolutionary 

distance, all the way from Embryophyta to the core rosids. The majority however is either 

restricted to closely related species, as it is the case between the Arabidopsis thaliana and 

Arabidopsis lyrata or Capsella species within the Brassicaceae, or even solely specific for 

one single species. Additionally, new miRNA precursors can arise in a rather 

straightforward way from self-complementary DNA-sections, inverted repeats or random 

transcript foldbacks (Felippes et al. 2008; Fahlgren et al. 2007). This suggests an over-

representation of young, recently ‘born’ miRNA genes within plant genomes, with 

relatively rapid evolutionary turnover compared to a rather low number of older, 

conserved miRNA families, and thus substantiates a role of miRNAs in tuning expression 

networks in the context of evolution ((Smith et al. 2015), reviewed in (Cuperus, Fahlgren, 

and Carrington 2011)).  

By definition, plant sRNAs are classified as miRNAs essentially based on the single 

criterion that they are the ~21 nt long product of precise excision from the stem of a 

single-stranded hpRNA precursor (Meyers et al. 2008). In plants, their biogenesis mostly 

starts with the RNA polymerase 2 (RNAPII) mediated transcription of the primary miRNA 

(pri-miR) from discrete transcriptional units within intergenic regions. Like any other 

transcript, pri-miRs are subject to subsequent capping, polyadenylation and, in some 

cases, alternative splicing (M. Xie, Zhang, and Yu 2015; Voinnet 2009).  
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Cofactors activating miRNA transcription are for example the MEDIATOR complex 

and the transcription factor NEGATIVE ON TATA LESS 2 (NOT2), the latter being a direct 

interactor of RNAPII for regulation of MIRNA genes (Figure 2, (Y. J. Kim et al. 2011; L. 

Wang et al. 2013)). Additionally, a number of transcription factors play an important role 

in miRNA expression and biogenesis. They bind either to MIRNA genes or directly 

regulate the expression of core biogenesis components, such as CELL DIVISION CYCLE 5 

(CDC5), which promotes MIRNA transcription via promoter association, or the DCL1-

transcription affecting XAP5 CIRCADIAN TIMEKEEPER (XCT) (Sun et al. 2015; Fang, Shi, et 

al. 2015). Additionally, the generic pri-mRNA splicing factors and cap-binding complex 

proteins CAP-BINDING PROTEIN 20 (CBP20), CBP80/ABH1 and the C2H2-zinc-finger 

protein SERRATE (SE) are associated with pri-miRNAs and involved in their processing (S. 

Kim et al. 2008; Laubinger et al. 2008). At least one of the CBPs, CBP20, interacts with SE 

and NOT2b, further linking the CBC with the processing machinery (L. Wang et al. 2013). 

Due to specific base-pairing, the resulting single-stranded pri-miRNA molecule 

imperfectly folds back on itself, forming the miRNA characteristic structure of loop and 

imperfectly double-stranded stem, the so-called hairpin. This secondary structure is less 

distinctive in plants than in animals, specifically as their precursor length is more variable 

(Reinhart et al. 2002; Llave, Kasschau, et al. 2002), but at least distinctive enough that it, 

in concert with additional criteria, is used to predict new miRNAs and their potential 

targets - so far, over 400 miRNAs and around 2000 targets for Arabidopsis thaliana, in 

comparison to over 2500 mature miRNAs and almost one million targets for Homo 

sapiens (miRbase release 21, (Jones-Rhoades and Bartel 2004; Adai et al. 2005; Bonnet et 

al. 2004; X.-J. Wang et al. 2004; J. Meng, Shi, and Luan 2014; Wong and Wang 2015)).  

Structural features in the hairpin determine the two precise sites of cleavage 

which in plants is exclusively executed by the nuclear RNAse-type III DICER-LIKE1 (DCL1) 

enzyme, a canonical core component of the processing machinery (Bernstein et al. 2001; 

Kurihara and Watanabe 2004). In animals, the first cut, that is the pri- to precursor-miRNA 

conversion, is executed by the nuclear RNAse-type II protein DROSHA, while the second 

cleavage, now in the cytoplasm, is mediated by DICER (Narry Kim, Han, and Siomi 2009). 

Both in plants and animals, the location of the first cut within the primary hairpin 

depends on the highly conserved junction between its single- and double-stranded RNA 

part. It takes place roughly 11 bp away from this site (Werner et al. 2010; L. Song, Axtell, 
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and Fedoroff 2010; Mateos et al. 2010; Narry Kim, Han, and Siomi 2009). The ‘ruler’ length 

within the DICER enzymes, which is defined by their protein structure, then determines 

the position of the subsequent second cut, and the final miRNA/miRNA* duplex is 

generated (Nicolás G. Bologna, Schapire, and Palatnik 2013; Nicolás G. Bologna et al. 2013; 

Macrae et al. 2006).  

DCL1-mediated cutting is carried out in nuclear dicing bodies (D-bodies) known as 

the processing complex (Figure 2, (L. Song et al. 2007)): Firstly, the nuclear RNA-binding 

protein MODIFIER OF SNC1 2 (MOS2) helps with recruitment of the pri-miR to the 

processing complex (X. Wu et al. 2013). DAWDLE (DDL), a forkhead-associated-domain 

protein and direct DCL1-interactor, is also thought to facilitate the access or recognition 

of pri-miRNAs by DCL1 through binding to pri-miRNAs, and to stabilize them (B. Yu et al. 

2008). In addition to DCL1, main components of the processing complex are the double-

stranded RNA-binding protein HYPONASTIC LEAVES 1 (HYL1) (Vazquez, Gasciolli, et al. 

Figure 2. Simplified schematics of miRNA biogenesis and action. 
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2004; Kurihara, Takashi, and Watanabe 2006) that binds to the dsRNA-part of the pri-

miRNA, and SE, which connects with the pri-miRNA’s ssRNA/dsRNA junction (Lobbes et 

al. 2006; L. Yang et al. 2006). Both improve the efficiency and precision of DCL1 action 

through protein-protein interaction. Furthermore, the RNA-binding protein TOUGH 

(TGH) associates with all main complex-components within the D-body, that is DCL1, HYL1 

and SE, contributing to the pri-miRNA-HYL1 interaction and potentially promoting pri-

miRNA recruitment to the complex, or alternatively DCL1 cleavage efficiency (Ren et al. 

2012). TGH stays associated through both dicing steps, as it binds pri-miRNAs as well as 

their processing products, the precursor-miRNAs (pre-miRNA). Finally, two direct 

interactors of SE, namely the RECEPTOR FOR ACTIVATED C KINASE 1 (RACK1) and HYL1-

phosphatase C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1), are part of the complex 

during the first cutting steps and play a role in pri-miRNA processing and mediating HYL1 

activity, respectively (Speth et al. 2013; Manavella et al. 2012). CPL1 additionally is 

involved in several aspects of RNA metabolism, as it dephosphorylates RNAPII, 

contributes to pre-mRNA splicing, appears to be necessary for nonsense-mediated mRNA 

decay and is suggested to inhibit transcription (Koiwa et al. 2004; T. Chen et al. 2013; 

Jiang et al. 2013; Cui et al. 2016). 

After DCL1-mediated processing, the multidomain AdoMet-dependent small RNA 

2’-O-methyltransferase HUA ENHANCER 1 (HEN1) associates with the DCL1-HYL1-miRNA 

complex and methylates the 3’-termini of the mature miRNA/miRNA* duplexes 

(Baranauskė et al. 2015; J. Li et al. 2005; B. Yu et al. 2005). This 2’-O-methylation protects 

the mature miRNA strands from 3’ nucleases or HEN1 SUPPRESSOR- (HESO1) mediated 

3’-end uridylation and subsequent degradation (Ren, Chen, and Yu 2012; Zhao et al. 2012). 

Because mature miRNAs mostly, if not exclusively, function in the cytoplasm, they have 

to be transported out of the nucleus. Detailed mechanisms and the factors in this 

process have remained unclear, but genetic evidence suggests involvement of the 

putative miRNA export HASTY (HST), a plant exportin-5 receptor homolog (Park et al. 

2005). Once in the cytoplasm, the duplex associates with an ARGONAUTE (AGO) protein, 

of which A. thaliana has 10, typically the ubiquitously expressed AGO1, to form an active 

RNA induced silencing complex (RISC). Additionally, the more restricted AGO10 is known 

to associate with miRNAs, specifically miR165/166 (Zhu et al. 2011). Both AGOs are in their 
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roles distinctly separated due to different expression patterns and developmental 

functions.  

Usually, asymmetric thermostability defines the fate of the two miRNA duplex 

strands: The strand with the lower 5’ stability is preferentially retained by the RISC to 

mediate target cleaving in its function as the guide strand - formerly also termed the miR 

strand. Meanwhile, the more stable remaining passenger - mainly the miR*-strand - is 

degraded (N. Baumberger and Baulcombe 2005; Eamens et al. 2009).  

 

1.3 RISCy business - function of AGOs and their targets 

 The ARGONAUTE (AGO) family was first discovered in Arabidopsis thaliana and 

named after the tubular leaves of the characteristic ago1 mutant phenotype, which 

reminded the authors of little squids (scientific name Argonauta, (Bohmert et al. 1998)). 

The AGOs are conserved across the eukaryotic lineage, but their number greatly varies in 

different species and even increased during evolution in the plant kingdom. While there 

is only one AGO copy in fission yeast (Schizosaccharomyces pombe), moss (Physcomitrella 

patens) already encodes six, and rice (Oryza sativa) even 19. The ten Arabidopsis AGOs 

define three major phylogenetic clades: AGO1/5/10, AGO2/3/7 and AGO4/6/8/9 (reviewed 

in (Fang and Qi 2016; Nicolas G. Bologna and Voinnet 2014)). Via association with sRNAs 

and formation of a RISC, AGOs and AGO-like proteins are the main RNA silencing 

effectors in eukaryotes, for example via targeting of mRNAs through the sequence 

complementarity of their guiding sRNA. It is thus the AGOs' specific biochemical activity 

that enables the sRNAs to exert their regulatory functions.  

All eukaryotic AGOs consist of four canonical domains: the highly conserved PAZ 

(PIWI-ARGONAUTE-ZWILLE), the MID (middle) and the PIWI domain as well as a more 

variable N-terminus (N). While the N-terminal domain’s function is yet to be solved, 

function of the conserved domains in RNAi is rather well understood. Together, the MID 

and PAZ domain are responsible for binding the single-stranded sRNAs. They specifically 

recognize and associate with the sRNAs’ 5’- and 3’-nucleotides, respectively. Meanwhile, 

the PIWI domain adopts an RNase H-like fold which conveys endonuclease - i.e. slicing - 

activity to many AGOs (reviewed in (J.-J. Song and Joshua-Tor 2006; Fang and Qi 2016)).  
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The bias in the sorting of each sRNA to a specific AGO protein seems to be 

conferred by the sRNAs length and by its 5’ terminal nucleotide. AGO1 and AGO4 

predominantly associate with 21 and 24 nucleotide long sRNAs respectively, AGO2 is 

specialized solely in 21 nt molecules and AGO5 broadly binds the 21, 22 and 24 nt sRNA 

classes (Mi et al. 2008; Qi et al. 2006). In addition, the AGO proteins have preferences for 

the 5’ terminal nucleotide of the sRNA that they associate with.  

Recognition of the sRNAs’ 5’ terminal nucleotide is mediated by the MID-domain: 

AGO1 prefers 5’ uracil (U), AGO5 cytosine (C) and both AGO2 and AGO4, the latter slightly 

less pronounced, favor adenosine (A). Considering specific sRNA-subsets, this translates 

into AGO1 preferring miRNAs, as especially the evolutionarily conserved ones but also 

most others start with uracil. AGO4 is attracted to hc-siRNA repetitive sequences. Both 

AGO2 and AGO5 can associate with virus-derived sRNAs, and AGO5 alone finally connects 

mainly with intergenic sequence-derived sRNAs (Mi et al. 2008; Takeda et al. 2008; 

Rajagopalan et al. 2006). Further criteria such as duplex-structures, mismatches and 

different sRNA lengths play an important role in AGO-sorting, as for example both AGO2 

and AGO4 have the same 5’-preference, but still manage to largely bind dissimilar sRNAs. 

Considering that AGO5 is very specifically expressed in parts of the female gametophyte, 

even the expression patterns of both the sRNAs and the effector proteins have an 

influence on the partnering of AGOs and their sRNAs (Tucker et al. 2012). 

Although plant AGO proteins are, as a result of their potential endonuclease 

activity, mostly seen as slicer proteins, the modes of action exhibited by AGO/sRNA 

complexes differ substantially. As mentioned earlier, common to most AGOs is that their 

action in one way or another results in the repression of specific targets, through 

repressive chromatin modifications, decline of RNA stability or a diminished efficiency of 

protein translation. These repeatedly overlapping functions of AGO proteins from 

different clades demonstrate that their phylogenetic organization not necessarily 

corresponds to functional separation.  

Key ARGONAUTE within the miRNA context as well as for the production and 

activity of ta-siRNAs is AGO1. This peripheral membrane protein is crucial for the action of 

endogenous miRNAs on their mRNA targets, inducing both slicing and translational 

repression (Brodersen et al. 2012). At the same time, it also associates with exogenous, 
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virus-derived siRNAs and thus plays an important role in resistance and plant defense via 

antiviral silencing (reviewed in (Fang and Qi 2016; Nicolas G. Bologna and Voinnet 2014)). 

 Primary step of AGO1-mediated target repression is its association with an sRNA 

guide strand to form the active RNA induced silencing complex (RISC, Figure 2). In an 

intermediate step, AGO1 binds the sRNA duplex and, with the help of the chaperone 

HSP90, associates with CYCLOPHILIN 40 (also known as SQUINT) - a transient interaction 

that is necessary for successful assembly of a functional RISC (Iki et al. 2012; K. Earley et 

al. 2010; K. W. Earley and Poethig 2011). Correct orientation of the sRNA duplex in its 

AGO1 binding is crucial, as this structurally determines which strand is kept (as guide 

strand) and which one is dismissed from the RISC. Binding of HYL1 to the more 

thermodynamically stable end of the duplex helps aligning the latter in the correct 

position for subsequent AGO1-mediated removal of the passenger strand (Eamens et al. 

2009). 

Through sequence complementarity of the miRNA to its mRNA target, silencing is 

achieved. Unlike animal miRNA-target-pairs, all so far verified plant miRNAs and their 

respective targets are extensively complementary to each other (Rhoades et al. 2002). 

For the canonical plant miRNA-mRNA pairing, this extensive complementarity is crucial in 

the critical region between the 5’ 2nd and 13th nucleotide of the miRNA. Only single 

mismatches are allowed here, but occur rather rarely. Prediction of target mRNAs is thus 

straight-forward in plants, as the number of mRNAs that can be bound is limited by the 

complementarity-requirement. Contrarily, in animals, complementarity to the ‘seed’ 

region, i.e. 5’ nucleotides 2 to 7, is generally sufficient to predict targets. This minimal 

requirement results in high numbers of mRNA targets for every miRNA (Bartel 2009). The 

final RISC action on an associated mRNA however is neither in plants nor in animals 

regulated by the degree of complementarity, but by additional factors like the cell- or 

tissue-type, and which proteins are associated with these factors.  

Cleavage of the target mRNA, the main effect of miRNA-mediated target 

regulation, is executed between positions 10 and 11 of the aligned miRNA through AGO 

endonucleolytic activity (Llave, Xie, et al. 2002). RISC activity can not only affect 

transcription of targets, but also inhibit translation of mRNA targets via its binding 

(Brodersen et al. 2008; Gandikota et al. 2007). These silencing effects, whose main 

effector is AGO1, can be genetically uncoupled, and repression of translation is even 
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proposed to be the default mechanism of miRNA action (Brodersen et al. 2008; Iwakawa 

and Tomari 2013). Repression of miRNA target translation happens at the endoplasmatic 

reticulum (ER), where AGO1 and miRNAs are found in association with polysomes. It 

requires the integral, ER- and AGO1 associated membrane protein ALTERED MERISTEM 

PROGRAM 1 (AMP1), which together with miRNAs specifically inhibits target mRNA 

translation, while it does not have an effect on general protein synthesis (S. Li et al. 2013; 

Lanet et al. 2009). Depending on the location of the miRNA target sites within the mRNA, 

the AGO1-RISC can either sterically block the recruitment or movement of ribosomes, or 

directly confer repression of translation initiation (Iwakawa and Tomari 2013).  

Still, AGO1-slicing of transcripts is likely the indispensable, major characteristic of 

AGO-interacting miRNAs, as a slicer-defective AGO1 is unable to complement mutant 

phenotypes of ago1 and slicer-activity appears to be required for effects of most miRNAs 

on their targets (Carbonell et al. 2012; Arribas-Hernández, Kielpinski, and Brodersen 

2016).  

1.4 The miRNA Matryoshka - biogenesis regulation within the regulation 

Already this very general framework of miRNA biogenesis is sufficient to give an 

idea of the high complexity of the pathway. As there is such a variety of different factors 

and cofactors involved in the biogenesis steps and the function of miRNAs, there are 

naturally at least as many sites that could be targeted for differential regulation. This is 

likely also necessary to ensure precise patterning of miRNA abundance, or tissue 

specificity of miRNAs and miRNA machinery, for example in the case of AGO7. Only when 

the latter is expressed in the cytoplasm and in membranous siRNA bodies, it can, in 

complex with miR390, trigger the formation of ta-siRNAs from the TAS3 precursor 

(Jouannet et al. 2012). Multilayered regulation targeting different parts of the pathway 

also permits fast, flexible responses to developmental or environmental cues. 

Modulation of miRNA abundance through the general processing pathway, of a whole 

miRNA family or in a specific cell, is less complex and more efficient than targeting the 

transcription of a single miRNA precursor at a time. In addition, a number of essential 

mechanisms need to be particularly robust and therefore are under the control of both 

miRNA and stabilizing feedback regulation, as is for example described in more detail 

below for AGO1 and miR168. Finally, this regulatory Matryoshka harmonizes well with the 
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idea of regulators rather than genes themselves being the targets and driving forces of 

evolution. 

All these additional layers that ultimately enable a dynamic fine-tuning of miRNA 

target levels in a responsive way are likely crucial for fitness and survival, to allow plants 

to rapidly adapt to the environmental context. The ‘regulation of the regulators’ is thus 

not merely there to render a complex situation more confusing - on the contrary, it 

confers stability and versatility to the miRNA pathway so the latter can accomplish its full 

regulatory potential. Three of the most obvious general regulatory targets in the miRNA 

hierarchy are the transcription and processing of MIR genes, the modulation of proteins 

involved in the pathway, and finally modification of mature miRNAs themselves, and will 

be described in more detail in the following.  

Like for any coding gene, the regulation of miRNA availability can be modulated 

directly at the transcriptional level of MIR genes. A prominent example for this is the 

promotion of MIR156A and MIR156C transcription under low sugar conditions in 

dependence of HEXOKINASE1 signaling activity, and the gradual repression of their 

transcription with increasing age and the correlated larger plant size, higher 

photosynthetic activity and thus increased sugar levels (L. Yang et al. 2013; S. Yu et al. 

2013). Already between tissues or different developmental stages, expression and 

processing efficiency can differ measurably, as is seen for the age-dependent decrease of 

miR156 expression, which is seen in very different plant species (J.-W. Wang et al. 2011). 

Furthermore, they can be affected by various types of stress: Exposure to salt, osmotic, 

cold or heat stress can for example cause up- or downregulation of a specific set of pri-

miRNAs, heat stress being the most efficient regulatory cue (Laubinger et al. 2010; 

Iglesias et al. 2014). For the majority of pri-miRNAs though, these environmental effects 

on their steady-state levels are small.  

However, even if a specific pri-miRNA stays unaffected, the levels of the 

associated mature miRNA can, due to changes in processing, often strongly respond to 

an external signal. Accumulation of mature miR159a for example, but not of its 

precursors, indirectly responds to abiotic stress, as it changes depending on the levels of 

the phytohormone abscisic acid (ABA) (Reyes and Chua 2007). Other miRNAs are 

influenced by environmental conditions in a more direct fashion. MiR395 and MiR399 for 

instance display increased expression upon sulfate and phosphate (Pi) starvation, 
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respectively (Jones-Rhoades and Bartel 2004; Franco-Zorrilla et al. 2007). Additionally, 

environmental cues do not only provoke completely unrelated miRNAs to distinct 

reactions - even miRNAs with multiple encoding loci, i.e. miRNA families, can display 

different tissue-specificity or differential stress responses, as do the members of the 

miR395 family (Kawashima et al. 2009; X. Yang, Zhang, and Li 2011). In the animal field, 

some miRNA families (as well as single miRNAs) were found to rely on highly specialized 

proteins that specifically regulate the processing of only their precursors, for example 

the let-7 specific LIN-28 in C. elegans, a regulatory level that yet has to be uncovered in 

plants (Vadla et al. 2012).  

 

One step up in the hierarchy, besides the specific regulation of a single miRNA or 

miRNA family, the entire pathway can be regulated in a more general way, but still tissue-

specifically, through targeting of components of the miRNA machinery. As a key protein 

of the processing chain, HYL1 normally ensures precise and efficient DCL1 action and 

correct strand sorting. This function is so elementary that multiple pathways target HYL1, 

either to regulate its protein levels or its activity. For one, CONSTITUTIVE 

PHOTOMORPHOGENIC 1 (COP1), a RING-finger E3 ligase, protects HYL1 from degradation 

by an unknown protease. COP1 acts in a dark/light dependent way and through its action 

directly manipulates overall HYL1 protein levels (Cho et al. 2014). Additionally, the activity 

of HYL1 can be posttranslationally regulated. Normally, HYL1 is present in plants in 

different phosphorylation states, either as the hyperphosphorylated, less active version 

or as an active, hypophosphorylated HYL1. Switching to the active HYL1 form via 

dephosphorylation is mediated by CPL1 phosphatase activity, while inactivation results 

from MPK3-dependent phosphorylation (Raghuram et al. 2015). cpl1 mutants that mainly 

contain the hyperphosphorylated HYL1 display sRNA profiles similar to hyl1 plants. 

Presence of adequate levels of the active HYL1-state thus appears essential for accurate 

miRNA processing and strand selection (Manavella et al. 2012).  

 A second factor that is indispensable for the pathway and that is subject to 

multiple regulatory mechanisms is AGO1. Similar to HYL1, the AGO1 slicer is also 

differentially expressed across tissue types and developmental stages, reaching its 

expression peak in the actively dividing shoot and root tissues (Winter et al. 2007). 

Maintenance of stable AGO1 protein levels is critical for plant development, since ago1 
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mutants have a wide range of defects, which is a likely explanation for a multifaceted, 

complex regulation that involves both coarse- and fine-tuning components. One of the 

more subtle balancing switches is F-BOX WITH WD-40 2 (FBW2), a negative regulator of 

AGO1 that destabilizes the protein through an unknown mechanism (K. Earley et al. 

2010). Though mutations in FBW2 suppress many developmental phenotypes of weak 

ago1 mutants by increasing AGO1 protein levels, the same mutations in a wild-type 

background do not have a strong effect (K. Earley et al. 2010).  

This lack of phenotypic defects in fbw2 mutants can be traced back to the broader 

regulatory context of AGO1 homeostasis. One of its main features is the negative 

regulation by miR168 that implies an AGO1-miR168 feedback loop. Disruption of this 

balance, for example in the absence of miR168 regulation, strongly impairs plant 

development, highlighting the overall importance of the AGO1-miR168 regulatory loop 

(Vaucheret et al. 2004; Vaucheret, Mallory, and Bartel 2006). Due to its central role in 

miRNA action, AGO1 is also an obvious target for manipulation by plant pathogens, for 

example through the viral suppressor of RNA silencing (VSR) P0. This F-box protein 

hijacks a host E3 ubiquitin-protein ligase to mediate AGO1 ubiquitylation, which ultimately 

leads to AGO1 degradation via the autophagy pathway and thus disrupts the plant 

antiviral defense mechanism of posttranscriptional gene silencing (PTGS) ((Csorba et al. 

2010; Derrien et al. 2012), reviewed in (Carbonell and Carrington 2015; Csorba, Kontra, and 

Burgyán 2015)). 

 

Finally, apart from this multitude of mechanisms interfering directly with either 

the early steps of miRNA biogenesis or proteins involved in miRNA processing and 

function, also mature miRNAs are subject to further regulation. One example is the 

principle for which the term ‘target mimicry’ was coined: The earlier mentioned 

phosphate-starvation induced miR399 normally targets the mRNA of PHOSPHATE 2 

(PHO2), an E2 ubiquitin conjugase-related protein also involved in phosphate 

metabolism. There is however an additional family of transcripts, among them the non-

coding INDUCED BY PHOSPHATE STARVATION 1 (IPS1), which contains a sequence region 

complementary to miR399. Different from the canonical miRNA-mRNA complementarity, 

mismatches between miR399 and the IPS1-transcript cause unusual bulge formation - 

particularly at positions 10-11 of the miRNA that are critical for the miRNA-induced 
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cleavage of a paired mRNA. These bulges appear to inhibit slicing activity, resulting in 

effective competition of IPS1 with canonical miR399 mRNA targets. In this manner, IPS1 

sequesters the miR399 molecules away from their actual targets and marks them for 

degradation. The end result is that the starvation-responsive miR399 and IPS1 fine-tune Pi 

homeostasis and the response to Pi starvation (Franco-Zorrilla et al. 2007).  

So far, the IPS1-miR399 pair is the only well-documented example for regulation of 

mature miRNA levels via endogenous target mimicry. Computational analyses have 

suggested that there might be other miRNA target mimics, but the biological 

consequence has barely been established for any of these (Y. Meng et al. 2012; H.-J. Wu 

et al. 2013). Still, since this is such a powerful way to suppress the effects of miRNAs, the 

IPS-transcript has been used as a template to engineer target-mimic (MIM) constructs 

that aim to reduce the activity of entire miRNA families (Todesco et al. 2010; Franco-

Zorrilla et al. 2007). Interference with the miRNA pathway at this level often has - 

depending on the targeted miRNA - global effects on plant development. Many of the 

MIM-plants thus display severe phenotypes that correlate with those seen in 

corresponding miRNA knock-out or knock-down lines, or with what is seen when miRNA-

resistant mutations are engineered into miRNA-controlled mRNAs. Together with 

variants of this technology, such as the short tandem target mimics (STTMs) (Reichel et 

al. 2015; Yan et al. 2012), they are extensively used to study the biological role of miRNAs. 

  

1.5 The hunt for new cofactors and pathway members 

 Knowledge of the various regulatory elements and levels of the miRNA pathway 

is not only beneficial for better understanding of its basic framework, but discovery of 

additional regulators provides us potentially with means to better explore the intricacies 

of the complex miRNA machinery. For example, while the overall principle of miRNA 

action follows similar rules across the plant and animal kingdom, the pathway to mature 

miRNAs differs between the two in a number of aspects. How many exactly is yet to be 

determined, as there either have not been extensive, systematic quests for proteins 

related in sequence and/or function, or known homologs of animal miRNA regulators 

have often not been studied in plants. By now, a large number of animal protein 

complexes and cofactors involved in the biogenesis and processing of miRNAs have been 
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identified and thoroughly examined. Thus, both aspects of miRNA function are rather 

well characterized. In plants on the contrary, there are still many blank spaces to fill. 

Especially the multifaceted regulation of miRNA biogenesis is not yet understood much 

beyond its basic principles. Plants containing mutations in genes encoding proteins of 

the miRNA pathway display a considerable range of different phenotypes: null mutants 

of the core biogenesis factors DCL1 and SE die as embryos, whereas null mutants of the 

similarly crucial HYL1 and HEN1 are impaired in their development, but still viable and able 

to reproduce. The implications of this phenotypic variation are to date unclear. Does it 

merely reflect redundancy between closely related proteins or proteins with similar 

function, and diverse requirements in RNA silencing pathways? Or is it indicating 

differential activity of miRNA-related proteins in distinct tissues and during various 

developmental stages?  

 To help solving more of the unknowns in the plant miRNA biogenesis equation, a 

number of different screening assays have been designed (for example (Jauvion, 

Elmayan, and Vaucheret 2010; W. Wang et al. 2011; Manavella et al. 2012; Brodersen et al. 

2008)). Commonly, forward genetic screens use transgenic plants that provide visually 

obvious readouts of miRNA activity as reporter background, to simplify finding potential 

candidates: Brodersen and colleagues for instance employed plants expressing a green 

fluorescent protein (GFP) containing a target site for an endogenous miRNA (Brodersen 

et al. 2008). Similarly, the screen recently designed in our laboratory is based on the 

overexpression of a single cassette holding both a firefly luciferase gene (LUC) as well as 

an artificial miRNA (amiRNA) targeting that very same luciferase reporter (Figure 3A, 

(Manavella et al. 2012)). Luciferase luminescence is thus elevated in mutagenized plants 

that cannot produce the amiRNA-Luc or properly execute its silencing function. Due to 

the clear readout, seedlings can be screened for changes in luminescence at a very early 

age and in a fast, high-throughput fashion. 

This luciferase screen, and an additional screen using an artificial mimicry (MIM) 

construct as reporter line (Figure 3B), are the sources of candidate genes characterized 

within the frame of this thesis. The screens were established by Pablo A. Manavella and 

Michael D. Christie, respectively, and I joined their efforts in characterization of the 

mutants when candidate genes had already been reliably identified. Both screens 

considerably minimize the costs and drawbacks of the inevitable re-discovery of already 
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known miRNA factor genes. They use whole genome Illumina sequencing and SHORE-

mapping (Schneeberger et al. 2009) for highly efficient and, most importantly, rapid 

identification of candidate genes, superseding the additional step of complementation 

crossing (Figure 3C). In each case, a stable transgenic reporter line, originating from the 

 
 
Figure 3. Schematic depiction of screen principles. A Wild-type Col-0 plants are 
transformed with a construct encoding luciferase and an artificial miRNA (amiRLuc) 
against the Luciferase transcript. Resulting reporter plants are subjected to EMS-
mutagenesis, and M2 plants are screened for regain of luciferase activity. B In the mimicry 
screen, miR156 is sequestered by MIM156, leading to an increase in SPL-transcript levels. 
The MIM156-reporter is subjected to EMS- mutagenesis and M2 plants are screened for 
suppression of the MIM156-reporter phenotype. C Candidate plants from a screen are 
crossed to with Landsberg erecta, mapping pools are created in F2 from plants that are 
luminescent (Luc-screen) or still suppress the MIM156 phenotype (MIM156 screen), 
sequenced and results analyzed for an allele frequency bias towards Col-0. 
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Columbia-0 (Col-0) genetic background, was subjected to EMS mutagenesis for 

identification of new cofactors. Once found within the framework of the screen, mutants 

from the M2 generation were crossed with Landsberg erecta (Ler), another fully 

sequenced Arabidopsis thaliana accession. In the F2 generation, only plants displaying the 

specific reporter readout were used to create mapping pools for sequencing, as those 

plants both contain an active reporter construct as well as the homozygous candidate 

mutation. While the distribution of allele frequencies from the two backgrounds 

normally is expected to be roughly equal in the F2 generation, selection for the mutation 

leads to an allele frequency bias directly at and in the proximity of the causal gene. This 

bias translates into an above-average presence of genetic information stemming from 

the - mutated - Col-0 background and a peak in the SHORE allele frequency plot, right at 

and around the site of the target mutation, enabling identification of the causal 

candidate gene (Figure S1, (Karlsson et al. 2015)). 

As a proof of principle, our luciferase-screen was successfully employed for the 

identification of new mutant alleles of the main miRNA biogenesis factors DCL1 and HYL1. 

In addition, a number of intervals were identified that contained genes so far not known 

to be miRNA-related. Amongst those potential new miRNA biogenesis players was the 

HYL1 phosphatase gene CPL1, as well as the RNA-processing related TRANSCRIPTIONAL 

DEFECTS OF HPR1 BY OVEREXPRESSION 2 (THO2) and the tissue-biased REGULATOR OF CBF 

GENE EXPRESSION 3 (RCF3) (Manavella et al. 2012; Karlsson et al. 2015; Francisco-Mangilet 

et al. 2015).  

Rather than generally influencing the miRNA biogenesis pathway as a whole, the 

candidates that were found in the Luc-screen are quite specialized for a particular, small 

functional niche - even though the screen framework they come from very broadly 

targets miRNA biogenesis as a whole. The second screening approach that is part of this 

thesis is much more specialized and does not primarily look for miRNA biogenesis, but 

rather for modifiers of miR156-function in plant development. MiR156 is a highly 

conserved miRNA family of eight genes that regulate the abundance of SQUAMOSA 

PROMOTER-BINDING (SPB) PROTEIN-LIKE (SPL) transcription factors. Among other 

functions, the SPLs are major contributors to phase change between juvenile and adult 

stage and the control of flowering (Schwab et al. 2005; Gandikota et al. 2007; J.-W. Wang 

et al. 2008; J.-W. Wang et al. 2011; G. Wu et al. 2009; M. Xu et al. 2016). Sequestration of 
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miR156 in MIM156 plants causes a characteristic phenotype of shortened juvenile phase, 

early flowering and spoon-shaped cotyledons (Franco-Zorrilla et al. 2007). In order to find 

suppressors of this phenotype, the MIM156 transgenic line was subjected to EMS-

induced mutagenesis. 

In the M2 population, plants that had lost the MIM156 phenotype were selected as 

potential candidates (Figure 3B). Identification of the causal genetic lesions again used 

whole-genome sequencing of a pool of F2 plants that, after a backcross to Ler, still 

showed suppression of the MIM156 phenotype. One of the most promising candidates, 

HAWAIIAN SKIRT (HWS), was characterized within the frame of this thesis (manuscript in 

preparation). 

 The work presented here adds three new cofactors to different steps of miRNA 

biogenesis and function. Description of THO2 in this context further substantiates the 

connection between miRNA pathways and the general transcription and splicing 

machinery, and adds detail to our picture of miRNA precursor processing. RCF3 on the 

other hand provides a first glimpse of the world of tissue-biased or -specific factors, a 

regulatory level of miRNA biogenesis and action that is very much understudied in plants. 

Finally, identification of the F-box protein HWS has the potential to shed light on the 

principles of target mimicry and could uncover a new connection between the 

ubiquitination machinery and miRNAs. The candidates characterized here are only a 

minimal portion of all mutants identified in the frame of the two screening assays 

conducted in our lab. Many more candidates are still awaiting characterization. In 

conjunction with newly designed, refined screens targeted at specific parts of the miRNA 

complexity, they have the capacity to unearth many factors that work together in 

allowing plants to make full use of the miRNA pathway. 
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2. Objectives of this work 
Since the beginning of small RNA research, plants have been the stage for 

discoveries of broad impact. The pioneering investigation of virus- and transgene-

induced gene silencing paved the way towards our current understanding of gene 

regulation by small RNAs, and several conserved and central players of this machinery, 

like the Argonautes, were initially described and studied in plants. A major contributor to 

this success was the ease and speed of forward genetics in plant model species, 

particularly Arabidopsis thaliana, which is still an excellent system to advance our 

knowledge of, and discover new players in the miRNA pathway.  

In this context, the main aim of my thesis was to shed light on several unknowns 

within the plant miRNA biogenesis pathway and to fill some blanks with the in-depth 

characterization of newly found Arabidopsis cofactors. Around the start of my work, two 

large-scale forward genetic screens, broadly aimed at identifying factors involved in 

miRNA biogenesis, had been developed by my colleagues. Both screens yielded a 

considerable number of mutants, and after mapping also promising candidate genes. I 

set out to characterize three of those, all stemming from the two screens described in 

more detail in part 1.5 of the introduction: THO2 and RCF3 from the luciferase-based 

screen, and the mimicry suppressor HWS from the second, mimicry-centered approach. 

As a core component of the THO/TREX complex that links transcription and mRNA 

export, THO2 was already known to be involved in transcription elongation and splicing 

(Strässer et al. 2002; Rondón, Jimeno, and Aguilera 2010). Additionally, the complex had 

been suggested to function in RNA silencing and trafficking of siRNA precursors. THO2 

thus was the most promising candidate gene found in the mapping interval (Jauvion, 

Elmayan, and Vaucheret 2010; Yelina et al. 2010). Due to its involvement in these key 

regulatory mechanisms, further characterization of THO2 has improved our 

understanding of the interconnectedness between transcription, splicing and sRNA 

pathways. 

RCF3, on the other hand, is one of 26 predicted KH domain containing proteins in 

Arabidopsis thaliana (Lorković and Barta 2002). Owing to its five predicted K homology 
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(KH) domains - evolutionarily conserved RNA or ssDNA binding motifs - RCF3 is 

presumably RNA-binding (Siomi et al. 1993). Similar to THO2, a potential connection to 

miRNAs is already established, as the human KH-type splicing regulatory protein KSRP 

works in both mRNA decay and in miRNA biogenesis (Gherzi et al. 2010; Ruggiero et al. 

2009; Trabucchi et al. 2009). In Arabidopsis, RCF3 has been reported to be a negative 

regulator of heat-stress responsive gene expression and thermotolerance (Guan et al. 

2013).  

Mutation of HWS, found later on to be a MIM-suppressor, causes delayed 

abscission and partial sepal fusion, which results in the eponymous ‘skirt’ phenotype 

(Gonzalez-Carranza et al. 2007). Through its F-box domain and as part of an Skp-Cullin-F-

box (SCF) complex, HWS likely participates in ubiquitination and protein degradation, 

potentially via the 26S proteasome (Ogura et al. 2008; Kuroda et al. 2002). Plants that 

overexpress HWS are small and display elongated, serrated and highly hyponastic leaves, 

thereby resembling both hyl1-2 and hypomorphic ago1 mutants, which hints at a role in 

miRNA biogenesis also for this gene (Gonzalez-Carranza et al. 2007).  

Further characterization of HWS, THO2, and RCF3 within the framework of miRNA 

biogenesis is part of this thesis (Francisco-Mangilet et al. 2015; Karlsson et al. 2015).  



 

3. “THO2, a core member of the THO/TREX complex, 

is required for microRNA production in Arabidopsis” 

Francisco-Mangilet AG*, Karlsson P*, Kim MH, Eo HJ, Oh SA, Kim JH, Kulcheski FR, Park 

SK, Manavella PA (2015). 

* These authors contributed equally to this work 

Plant J 10.1111/tpj.12874. 

 

Abstract 

The multimeric THO/TREX complex plays a conserved role in connecting 

transcription and nuclear export of mRNAs in both yeast and animals (Strässer et al. 

2002). In plants, several members of a complex similar to the metazoan THO2/TREX 

version have been described so far, including THO1/HPR1/EMU, THO2 and THO3/TEX1 

(Furumizu, Tsukaya, and Komeda 2010; Jauvion, Elmayan, and Vaucheret 2010; Yelina et 

al. 2010). While it is known that mutation of some complex components has effects on 

siRNA biogenesis (Yelina et al. 2010; Jauvion, Elmayan, and Vaucheret 2010) or alternative 

splicing of mRNAs encoding serine/arginine-rich proteins (Furumizu, Tsukaya, and 

Komeda 2010), many other THO/TREX proteins have not yet been functionally 

characterized. Among these is THO2, essential for both assembly and function of the 

complex, as null-mutants so far were - unlike those of other THO/TREX components with 

weaker phenotypes - considered embryo-lethal (Furumizu, Tsukaya, and Komeda 2010; 

Yelina et al. 2010).  

In a forward-genetics screen for cofactors of miRNA biogenesis (Manavella et al. 

2012) we identified a new THO2 hypomorphic mutant allele, tho2-5 and could additionally 

pinpoint two further alleles, tho2-6 (knockdown) and tho2-7 (hypomorphic), from an 

activation tagging screen and the SALK T-DNA collection, respectively. All three show 

strong developmental defects in flower architecture, leaves and seeds, resembling plants 

compromised in miRNA activity and thus reinforcing a potential connection to miRNA 

biogenesis. Furthermore, our collaborators, led by Anchilie G. Francisco-Mangilet and 

Soon Ki Park, both then at the Kyungpook National University in Korea, found that the T-
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DNA alleles tho2-1 and tho2-2 occasionally overcome embryo abortion and, though never 

surviving to form true leaves, can be used to analyze the THO2 null-mutant phenotype.  

As it was known that THO1 and TEX1 are involved in sRNA pathways, we 

speculated that also THO2 plays a role in this context. Indeed, in the tho2 background, 

transgene-induced silencing of a homologous gene is abolished, and levels of secondary 

siRNAs derived from TAS1 as well as other endogenous siRNAs are decreased. 

Additionally, we observed a reduction in the steady-state levels of mature miRNAs and 

concomitant increase in miRNA precursor molecules and miRNA target mRNAs, a 

phenotype prompted already by the discovery of tho2-5 in our miRNA biogenesis screen. 

However, THO2 appears to locate in different nuclear speckles than HYL1, a core protein 

of the miR biogenesis machinery, and could not be shown to interact in yeast with any of 

the 18 tested miR biogenesis-related proteins. We thus hypothesized that THO2 acts in 

earlier steps common to the different sRNA pathways. Testing various miRNA 

precursors, we found that all were associated with THO2, and that their interaction with 

the processing protein HYL1 was reduced in the tho2-5 background, thus implying a role 

of THO2 in stabilization of precursor molecules or their transport to the processing 

machinery. 

Motivated by the established connection of THO1 in alternative splicing of genes 

encoding serine/arginine-rich (SR) proteins, we also sought to demonstrate an 

association of THO2 with splicing. Of multiple SR genes analyzed, only SRp34b displayed 

differential splicing in tho2 mutant plants, but we did find a partial overlap in the 

localization of THO2 and the canonical spliceosome component SRp34. Trying to further 

pinpoint a potential connection between the observed splicing and sRNA phenotypes, 

we did not find an effect on splicing of miRNA genes or the transcripts of miRNA 

biogenesis factors in tho2. Also neither transcript nor protein levels of the analyzed 

miRNA factors were significantly affected. The observed mutant phenotypes appear 

hence not to be the result of destabilization or differential splicing of miRNA-factor 

mRNA or problems in translation.  

In summary, THO2 appears to be involved in both mRNA splicing and miRNA 

precursor actions, similar to miRNA-biogenesis cofactors like CBP20 or CBP80, and might 

interact or act in concert with one of the latter, a hypothesis that needs to be further 

tested experimentally.  
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Contributions 

Isolation and phenotypic characterization of mutants: AGFM*, PAM (both Fig. 1, 2, 3, 4) 

THO2 expression analysis: AGFM* (Fig. 5) 

Effects of THO2 mutation on sRNA accumulation: AGFM* (Fig. 6a-b), PAM (Fig. 6c-d), PK 

(Fig. 6e-f) 

Colocalization of THO2 with miRNA factors: PL (Fig. 7a) 

THO2 association with pri-miRNAs: PAM (Fig. 7b-e) 

THO2 effect on splicing: AGFM* (Fig. 7f-g) 

miRNA accumulation in tho2-5 complemented plants: PAM (Fig. S1a), FRK (Fig. S1b) 

Y2H assay for testing THO2 interaction with a collection of miRNA-related factors: PK 

(Fig. S2) 

Splicing patterns in tho2 mutants: AGFM* (Fig. S3a), PK (Fig. S3b) 

Splicing patterns and mRNA accumulation of miRNA biogenesis factors in tho2 mutants: 

PK (Fig. S4a-b) 

Protein accumulation of miRNA biogenesis factors in tho2 mutants: PAM (Fig. S4c) 

Y2H assay for testing THO2 interaction with DDL, ABH1 and CBP20: PAM (Fig. S5) 

 

* indicates joint work of AGFM with local collaborators MHK, HJE, SAO, JHK and SKP 

 

See Appendix I 
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4. “KH domain protein RCF3 is a tissue-biased 

regulator of the plant miRNA biogenesis cofactor 

HYL1” 

Karlsson P, Christie MD, Seymour DK, Wang H, Wang X, Hagmann J, Kulcheski F, 

Manavella PA (2015).  

PNAS 10.1073/pnas.1512865112 

 

Abstract 

MiRNA biogenesis is crucial for posttranscriptional gene regulation in many 

multicellular organisms. For fine-tuning of the production and levels of miRNAs, a 

plethora of cofactors is involved in the biogenesis machinery. While null mutants of some 

plant miRNA factors, like DICER-LIKE 1 (DCL1) and SERRATE (SE), are lethal, others, among 

them HYPONASTIC LEAVES 1 (HYL1), HUA ENHANCER 1 (HEN1) or C-TERMINAL PHOSPHATASE-

LIKE 1 (CPL1), only produce diverse developmental and physiological phenotypes. The 

causes of this phenotypic diversity, be they genetic redundancy, divergent requirements 

for processing of different precursors, or potentially tissue- and stage-specific activity, 

are still unclear. To fill these gaps in our understanding of the plant miRNA machinery, a 

number of genetic screens have been developed, looking for further actors in the 

pathway. 

 In two independent forward-genetics screens for cofactors of miRNA biogenesis 

that were performed in our lab, we identified two new mutant alleles of REGULATOR OF 

CBF GENE EXPRESSION 3 (RCF3), known to be a negative upstream regulator of heat 

stress-responsive genes and thus thermotolerance (Guan et al. 2013). RCF3 is one of 26 

Arabidopsis thaliana K-homology (KH) proteins and is predicted to contain five KH 

domains. These domains contain evolutionarily conserved RNA or ssDNA binding motifs 

(Siomi et al. 1993). Since the human KH-type splicing regulatory protein KSRP plays a role 

in both mRNA decay and as key component in Drosha and Dicer microprocessor 

complexes (Gherzi et al. 2006; Ruggiero et al. 2007; Trabucchi et al. 2009), RCF3 seemed 

to be a promising candidate for action within the miRNA context.  
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Several articles on RCF3 function, published during the course of this project, 

confirmed this notion: This stress regulatory protein, also termed SHINY 1 or HIGH 

OSMOTIC STRESS GENE EXPRESSION 5, interacts with miRNA-factor CPL1 in the context 

of transcriptional and co-transcriptional processes, for example modulating mRNA 

capping and polyadenylation (Jeong et al. 2013; T. Chen et al. 2013; Jiang et al. 2013). 

Interaction with and dephosphorylation mediated by CPL1 is required for RCF3 

subcellular localization, and both RCF3 and CPL1 also interact with the two splicing 

factors RS40 and RS41 (T. Chen et al. 2013; T. Chen, Cui, and Xiong 2015). All three, RCF3, 

RS40 and RS41, bind pri-miRNAs, affect the biogenesis of a subset of miRNAs and are 

required for correct strand selection as well as miRNA level maintenance (T. Chen, Cui, 

and Xiong 2015).  

 Using leaf tissue of our mutant alleles, rcf3-3 and rcf3-4, we could only find weak 

effects on the steady state levels of miRNAs, miRNA targets and miRNA precursors, and 

no obvious changes in the abundance of miRNAs and miRNA*s. RCF3 expression analysis, 

looking both at the luciferase activity in reporter lines as well as at in situ hybridization 

and RT-qPCR indicated a strong expression bias towards the vegetative apical region, 

including young leaves and leaf primordia (from here on referred to as ‘vegetative 

apex’). Consequently, analysis of samples containing mainly vegetative apex showed a 

clear reduction of miRNA levels in the rcf3 background, paralleled by an increase in target 

mRNAs. Similar changes were observed in reproductive apices, indicating that RCF3 

affects miRNA accumulation and activity in a tissue-biased way. As was established 

earlier, RCF3 accumulates in nuclear speckles and thus colocalizes with DCL1, SE and 

CPL1, factors of the miRNA machinery, further confirming the miRNA biogenesis 

connection.  

 Genome-wide analysis of sRNAs in vegetative apices verified a specific reduction 

of miRNA levels and overaccumulation of miRNA*s, whereas other sRNAs were 

unaffected by RCF3 mutations. This phenotype is similar to defects seen in hyl1 and cpl1 

mutants, and together with the protein-interactions between CPL1, the partly redundant 

CPL2, HYL1 and RCF3 this could hint at RCF3 acting in miRNA biogenesis through CPL1,2 

and possibly HYL1. The latter’s phosphorylation depends on CPL1,2 and MITOGEN-

ACTIVATED PROTEIN KINASE 3 (MPK3), and is indeed also affected by RCF3: HYL1 levels 

in the rcf3 mutant in young tissue shift from the hypo- towards the less active, 
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hyperphosphorylated form, a change even stronger than what is observed in cpl1 

background. Furthermore, overexpression of the hypo-, but not the 

hyperphosphorylated HYL1 suppressed morphological defects of rcf3-4 leaves and overall 

morphology, which fits with the RCF3 expression peak in the vegetative apex where leaf 

shape is determined.  

 With our findings, we substantiated RCF3 as a miRNA biogenesis factor, having 

discovered that it acts preferentially in vegetative and reproductive apices and there 

promotes HYL1 dephosphorylation, likely through interaction with CPL1,2. Our working 

model is that DCL1, and possibly SE and CPL1 are among the first components associating 

with pri-miRNAs. Subsequently, HYL1 and RCF3 - in their active, hypophosphorylated 

status - are recruited to this complex, promoting strand selection and miRNA processing. 

How RCF3 acts at the physico-chemical level remains to be elucidated. 

 

Contributions 

Identification and phenotypic characterization of rcf3 mutants: PAM (identification of 

mutant allele, Fig. S1a), MDC (identification of mutant allele, Fig. 1b, S1a), FK (initial 

characterization), JH (WGS data analysis), PK (Fig. 1a,c-d, S1b-d) 

RCF3 expression and activity via Luc imaging and in situ hybridization: PK (Fig. 2) 

miRNA levels and activity in rcf3 mutants: PAM (Fig. 3a-f), HW (Fig. 3g) 

Analysis of sRNA sequencing: PK (sample and library preparation), XW (adult leaf data, 

Fig. S3e), DKS (apex data, Fig.4) 

Subcellular localization of RCF3 via confocal imaging and interaction with CPL1 and CPL2 

via Y2H: PK (Fig. 5) 

Effect of rcf3 on HYL1 phosphorylation: PK (Fig. 6) 

Phylogenetic analysis of RCF3 homologs: PK (Fig. S2) 

Effects of rcf3 on miRNA accumulation and action in leaves: PK (Fig. S3a-d), XW (Fig. S3e) 

RCF3 expression and activity: PK (Fig. S4a,c-f), PAM (Fig. S4b), HW 

Effects of rcf3 on pri-miRNAs and miRNA processing factors: PK (Fig. S5) 

RCF3 genomic location and promoter activity: PAM (Fig. S6), PK (Fig. S6b) 

Screen for testing THO2 interaction with a collection of miRNA-related factors: PK (Fig. 

S7a), FK 

BiFC interaction assay of RCF3 with CPL1 and CPL2: PAM (Fig. S7), PK 
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In silico expression profiles of RCF3, CPL2, and MPK3: PAM (Fig. S8) 

 

See Appendix II 



 

5 . “A role for the F-box protein HAWAIIAN SKIRT in 

plant miRNA function”  

Lang P*, Christie MD*, Dogan ES, Hagmann J, Weigel D. 

(manuscript in preparation)  

 

Abstract 

MiRNAs are major contributors to the finely tuned spatio-temporal regulation of 

gene expression. In order to control accumulation of miRNAs themselves, miRNA genes 

can be subject to post-transcriptional regulation. One such mechanism is endogenous 

miRNA target mimicry. It reduces the levels of active miRNAs by sequestering them from 

their actual target mRNAs, which subsequently leads to an increase of the latters’ levels 

(Franco-Zorrilla et al. 2007). Based on this principle, transgenic miRNA target mimicry 

lines (MIMs) have been engineered to knock down Arabidopsis thaliana miRNA families 

for research purposes (Todesco et al. 2010).  

 One line, MIM156, is a target decoy for members of the highly conserved plant 

miR156 family, which regulates many members of the SQUAMOSA PROMOTER-BINDING 

(SPB) PROTEIN-LIKE (SPL) transcription factor family. Repression of miR156 activity 

causes characteristic spoon-shaped cotyledons and speeds up the transition between the 

vegetative juvenile and the vegetative adult phase (J.-W. Wang et al. 2008; Schwab et al. 

2005). We EMS-mutagenized a MIM156 line, looking for mutations that caused 

suppression of this very phenotype to find new cofactors within the fields of miRNA 

biogenesis, function or the regulation of SPLs. Due to the already reduced miRNA levels 

in the MIM156 background, this screen enables the identification of negative regulators 

of the miRNA biogenesis or action pathway.  

 Mutations in the HAWAIIAN SKIRT (HWS) F-box encoding gene (At3G61590) 

suppressed the MIM156 defects. Trying to assess if this suppression was specific to 

miR156, we also tested other MIM lines and found that hws can suppress the phenotypes 

of MIM159, MIM164 and MIM319, indicating that its effect is not limited to the miR156 

pathway. Levels of IPS, the first identified endogenous MIM, which targets miR399, and 
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of the miR399 target PHO2 however are barely changed in the hws background, 

suggesting that HWS is not simply a general miRNA target mimic regulator.  

Like the previously published alleles, hws-1 and hws-2, hws-3 is impaired in the 

shedding of floral organs, which leads to the eponymous ‘skirt’ phenotype. Additional 

hws phenotypes include cauline leaf fusions and reduced leaf serrations. Similar organ 

fusions and changes in leaf serrations are often observed in the context of miRNA 

related mutants like those of the CUC miRNA targets, or of se and abh1 alleles. In 

agreement with this, overexpression of HWS causes severe developmental 

abnormalities, reminiscent of mutants like hyl1-2 and ago1-27. Analysis of steady state 

levels of miRNAs and of miRNA targeted mRNAs in a HWS-overexpressing line revealed a 

decrease of several miRNAs and corresponding target-mRNA increase, which was 

mirrored by the inverse observation in hws. Together with the broad effect on 

developmental abnormalities induced by different MIM transgenes, this suggests that 

HWS could play a more general role in the miRNA pathway, probably upstream of miRNA 

target stability.  

Epistatic genetic interactions of hws with miRNA biogenesis factor mutants 

further supported the idea that both share a common pathway. However, we did not 

find any direct physical interactions between HWS and known miRNA biogenesis 

components. HWS does though appear to be associated with ASK1, ASK2 and CUL1 to 

form an Skp-Cullin-F-box (SCF) complex, which is involved in targeting substrates for 

ubiquitination. Both suppression of the skirt phenotype in 35S::HWS as well as the typical 

overexpressor phenotype are abolished when the transgene lacks the F-box 

(35S::mHWS), indicating that this domain is important also for HWS action within the 

miRNA biogenesis pathway. Yet, we could not show that HWS E3 ligase activity affects 

miRNA factors directly, as AGO1, a factor already known to interact with several F-box 

proteins (K. Earley et al. 2010; Bortolamiol et al. 2007; Nicolas Baumberger et al. 2007), 

could not be shown to be perturbed in context with 35S::HWS or 35S::mHWS, neither in 

its protein or mRNA abundance, nor in its ubiquitination status.  

Even though our results strongly suggest a connection between HWS action and 

miRNA biogenesis, it remains unclear how HWS - possibly in its role as an F-box protein - 

influences the pathway. Finding potential targets of HWS-SCF-complex action and 

interaction as well as in-depth biochemical analysis of HWS-function, and especially 
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indirect investigation of its effects via RNA-seq will be crucial for further characterization 

of HWS within the known miRNA framework.  

 

Contributions 

Screen development and hws identification and characterization: MDC (Fig. 1) JH (WGS 

data analysis) 

Mimicry suppression phenotype: MDC (Fig. 2a,d), ED (Fig. 2b), PK (Fig. 2c, S2) 

Effects of hws on miRNA accumulation and action: MDC (Fig. 3a), PK (Fig. 3b-d, S3e-f) 

Genetic crosses of hws with miRNA related mutants: MDC (Fig. 4a), PK (Fig. 4) 

Overexpression of HWS with and without the F-box domain: MDC (Fig. 5a), PK (Fig. 5c) 

Extensive phenotyping of hws and HWS-overexpressors: PK (Fig. S1a-e, S3C), MDC (S3A) 

HWS expression: MDC (Fig. S3D), PK (Fig. S1f) 

Screen for testing HWS interaction with a collection of miRNA-related factors: PK (Fig. 

S4) 

Connection of HWS with AGO1: ED (Fig. S5a), PK (Fig. S5b-c) 

 

See Appendix III 
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6. Discussion 
Since the discovery of miRNAs more than 20 years ago, a wealth of cofactors 

involved in miRNA biogenesis, in the assembly of active RISC complexes, as well as in the 

faithful repression of target RNAs has been identified and characterized in various model 

systems. The description of those cofactors has immensely broadened our knowledge of 

the roles of miRNAs beyond the level of understanding that came from the initial 

knowledge of core miRNA factors such as HYL1 or SE. We have learned how they can 

quickly change levels of entire miRNA families, as does the C. elegans cell-fate succession 

and pluripotency-regulating protein LIN-28 (Vadla et al. 2012), or promote the maturation 

of specific subsets of miRNA precursors, as does the human KH-type splicing regulator 

KSRP (Trabucchi et al. 2009). Other ancillary miRNA factors act on multiple levels in 

response to environmental stresses to increase the organism’s chance of survival. 

Prominent example here is p53, a human tumor suppressor that is activated upon DNA 

damage. In cancer cells, it both induces transcription of a specific miRNA family and 

enhances processing of additional pri-miRNAs, all of which ultimately decreases the rate 

of cell proliferation (reviewed in (Hermeking 2007; Leung and Sharp 2010)). 

Still, for plants, even though they were the pioneer system for siRNA discovery, 

many fewer cofactors are known and the details of processing and action are less well 

understood than in their animal counterparts (Axtell, Westholm, and Lai 2011; Cuperus, 

Fahlgren, and Carrington 2011). This is partly due to fewer scientists working on basic 

plant-related research compared to those working on animals and humans, even though 

plants are powerful study systems for genetic analyses of many essential processes. 

Different from animals, plants are much more robust to mutations to both inactivation 

and overexpression of key factors, most likely because their development is so plastic, 

and even greatly compromised plants can still survive and set (a few) seeds. 

In my doctoral research, exploiting the many advantages of plants for the 

research questions I am interested in, I thus set out to find novel regulatory players on 

the stage of plant miRNA function. My ultimate goal was to better understand the 

conserved fine mechanics of miRNA biogenesis and action, and how a plant gets their 
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spacing, timing and dosage ‘just right’ to be healthy and happy. Here, I would like to 

discuss implications of screen design on the type of factors that can be discovered, the 

functional directions in which the new cofactors that I characterized appear to take us, 

and how to integrate all these facets into the big picture of plant miRNA biology. 

 

6.1 MiRNA processing - not home alone, and how to screen for its company 

Among the first miRNA-related factors to be discovered and characterized in 

detail were the most essential players of miRNA biogenesis including DCL1, SE and HYL1. 

Their lack or mis-function causes severe problems in plant growth and development, 

making them easily detectable in most broadly aimed miRNA screening assays. The role 

of more recent additions to the miRNA ‘team’ tends to be more limited, for example to 

fine-tune other factors’ action in the context of developmental age or to catalyze a 

differential response to environmental conditions (Huo, Wei, and Bradford 2016; S. 

Zhang, Liu, and Yu 2014). To pinpoint the exact function of a new cog in the wheels of 

miRNA machinery thus often proves more difficult than it was for the conserved, 

ubiquitously active factors, as is for example the case for the here presented HWS 

(manuscript in preparation). It is important to emphasize that it is not necessarily the 

more limited role of the new factors that complicates their characterization.  

Perhaps the most important issue is that factors surfacing now are rarely 

specialized for the miRNA pathway, but usually have important roles in other biological 

contexts as well (for example (Francisco-Mangilet et al. 2015)). To decipher their miRNA-

related activities, one needs to zoom out and consider these other processes. Especially 

in the animal field, there is more and more evidence that several pri-miRNA processing 

steps, including splicing or capping, take place co-transcriptionally (Figure 4, (Bentley 

2014)). A number of proteins have been shown to be associated with pri-miRNAs, 

DROSHA and chromatin at the same time. Multiple miRNA-containing transcripts appear 

to be cleaved co-transcriptionally by DROSHA, and processing is impaired when nascent 

pri-miRNAs are prematurely released from chromatin (H. Liu et al. 2016; Morlando et al. 

2012; Morlando et al. 2008). Furthermore, both the kinetics and the efficiency of pri-

miRNA processing are highly increased in in vitro assays when processing is not spatially 

separated from pri-miRNA transcription by RNAPII (Yin, Yu, and Reed 2015). In plants, the 
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first direct evidence of co-transcriptional miRNA processing was published just last year, 

revealing that pri-miRNA transcripts and DCL1 associate with the chromatin of miRNA 

loci, and that disruption of the transcription elongation factor Elongator complex 

reduces presence of RNAPII at MIR genes, pri-miRNA transcription, and also the 

association of DCL1 with chromatin (Fang, Cui, et al. 2015).  

It thus seems to be merely a question of time until the co-transcriptionality of 

miRNA processing becomes better understood in plants as well. With this, miRNA 

processing and the involved factors join the immense crowd of proteins associated with 

transcription - not only spatially, but also functionally (Figure 4). In this context, it is no 

longer unexpected that already many factors found through genetics and biochemistry 

as being important for specific steps of miRNA biology play dual roles, such as CBP20, 

CBP80 and the Arabidopsis pre-mRNA processing factor 6 homolog STABILIZED1 (STA1), 

working both in miRNA processing and splicing (Laubinger et al. 2008; Ben Chaabane et 

al. 2013). Furthermore, this increasing ‘merging’ of molecular pathways can explain how 

it is many times difficult to disentangle the role of new factors found, as their effects on 

the miRNA-side, if they do play multiple roles in transcription-related processes, can be 

both direct and indirect when proteins are simply ‘standing in each other’s way’.  

When designing new genetic screens for the quest of further cofactors to 

complete the miRNA puzzle, this increasing ambiguity has to be kept in mind. The 

Gene A Gene BMIR

pri/pre-miR
processing

splicing
machinery

splicing
machinery

other co-transcriptional 
processes

RNAPII

general
transcription

complex?

?
?

 
Figure 4. Co-transcriptional processes. All depicted co-transcriptional processes are carried 
out by a complex of numerous proteins and transcription factors. Dashed lines indicate 
overlapping functions of proteins involved in the different processes.  
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development of screens thus faces both the challenge to not only detect what is already 

known, and to identify players that still have, beyond functions in other co-

transcriptional processes, a direct role for miRNA biology. Our broadly aimed luciferase-

based screen, origin of the first two miRNA biogenesis cofactors described in this thesis, 

is highly efficient due to easy, high throughput screening that is possible already at a very 

early seedling stage, and neither requires lots of space nor special experimental 

conditions (Manavella et al. 2012; Karlsson et al. 2015; Francisco-Mangilet et al. 2015). 

Also, the LUC readout is quantitative and thus facilitates the discovery of mutants with 

very subtle changes in LUC activity and categorize them with respect to the strength of 

their phenotype. Additionally, in spite of its ‘broad’ nature, it enables us to even see 

differential upregulation of the reporter. Identification of two alleles of the tissue-biased 

RCF3 in two different, very general LUC-based miRNA biogenesis screens in this lab 

underlines the capacity of our screens to sensitively find also factors with comparatively 

modest effects on miRNA function. Yet, had the same alleles been identified in a more 

targeted, organ- or tissue specific screen, the characterization of the mutant genes could 

probably have advanced at a faster pace.  

Some regulatory events are very specific to a given cellular context or 

developmental timeframe, as is for example the action of RNA-binding LIN28 in animals, 

which maintains pluripotency in undifferentiated tissues at early developmental stages 

((reviewed in (Tsialikas and Romer-Seibert 2015)). Normally, identification of such 

specialized proteins based on uniformly expressed reporter systems is not trivial and 

requires laborious and time-consuming analyses of the reporter readout. Organ-specific 

designs are therefore more adequate approaches. Due to their spatial restrictiveness, 

they offer the advantage of achieving higher sensitivity than broadly targeted screens, 

and they facilitate initial characterization, as they already place the candidates into a 

specific context of action and function. This can help approaching an inconnu when 

finding genes of ‘unknown function’, an always present possibility when conducting 

genetic screens, and be almost as useful as finding a gene or protein that has already 

been characterized in a different context. 

No matter whether organ specific or broadly targeted, genetic screens such as 

our luciferase-based approach merely report malfunction of miRNA biogenesis and/or 

downstream processes that have an impact on target regulation, in this case indicated by 
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a continued lack or regain of luc-mediated luminescence (Manavella et al. 2012). 

Moreover, novel cofactors that are identified, such as THO2 and RCF3, might play 

specialized roles, with effects in specific niches of the pathway that are barely detectable 

outside of the reporter-system context (Karlsson et al. 2015; Francisco-Mangilet et al. 

2015). A sensitized reporter background can help unveil factors whose function is masked 

by prominent essential factors of the pathway. Under normal circumstances, these 

factors cannot be discovered, as loss of their ‘masks’ usually is lethal. In our MIM156-

based screen, we combine these two aspects: Transgenic MIM156 plants already have 

reduced activity of miR156 (Todesco et al. 2010), allowing identification also of negative 

regulators of miR biogenesis. Moreover, screening is fast and efficient, as changes such 

as suppression of the MIM156-typical phenotype are very easily seen already in young 

seedlings (Figure 1B). 

 

The power of further screens for the discovery of further cofactors is vast, and 

only limited by creativity. Which screen design is most promising, apart from the crucial, 

common sense properties of cost- and time-efficiency to minimize the drawbacks of 

discovering the usual crowd of miRNA biogenesis factors, or dispensable extras, depends 

on the aim of a screen. In this work, I characterized candidates stemming from two 

different types of screens, one broad, the other with a much narrower scope. In either 

context, characterization of a candidate gene can be complicated and far from 

straightforward, especially when molecular pathways converge, as it is the case with 

miRNA processing and general transcription. Or when a reporter background is so 

sensitive that the mutant alleles discovered, once they are in a ‘natural’ background, lack 

a clear phenotype.  

Based on the work presented here, I propose two additional points worthwhile of 

consideration in the context of future genetic screens, both related to the reporter and 

the phenotype of identified candidates. Independent of the strength of the reporter 

output, at least one easily distinguishable mutant trait should be the first criterion when 

evaluating new candidates - visible also outside of the reporter background. It 

tremendously facilitates follow-up of the mutation in different backgrounds or when 

doing genetic crosses, and serves as sanity check ensuring the genetic identity of plants 

when sampling for experiments. Pivotal is also the choice of the reporter itself, as it 



 

 50 

might display an unexpected bias. Different screens aimed at various biological contexts, 

but all employing Luciferase activity as a reporter readout, tend to unearth the same 

genes (for example, RCF3), genes that are often not found in assays targeting the same 

contexts but using different reporters. What kind of molecular basis this could have, and 

what this means for the accuracy of a screen, is unclear. It certainly indicates that just by 

choice of reporter, we are probably unintentionally excluding a number of factors from 

our setup. And it puts further emphasis on the importance of carefully targeted design 

that bears in mind the risks and shortcomings of genetic screens. 

 

6.2 THO2, splicing and inspiration from the animal field 

 One of the first genes identified in our luciferase screen that we followed up on 

was THO2, encoding a core component of the multimeric THO/TREX complex, as we had 

indications from other systems and from homologs in other species pointing towards a 

bona fide role in miRNA function. Also, the THO/TREX complex and its function in linking 

transcription and mRNA export had already been described thoroughly in yeast and 

animals, where it is involved in RNA polymerase II-dependent transcription elongation, 

mRNA splicing and nuclear export of mRNAs (Strässer et al. 2002; Reed and Cheng 2005; 

Piruat and Aguilera 1998). THO2 presented thus one of the easier scenarios one can 

encounter when facing new candidate factors for a biological pathway (Strässer et al. 

2002; Peña et al. 2012). Even in plants, a number of complex components were already 

known and partly characterized, among them THO1/HPR1/EMU and THO3/TEX1 

(Furumizu, Tsukaya, and Komeda 2010; Yelina et al. 2010; Jauvion, Elmayan, and 

Vaucheret 2010). Their involvement in differential splicing and siRNA biogenesis was a 

good indicator for a potential role of the functionally yet uncharacterized THO2 in an 

sRNA, and possibly the miRNA, pathway (Furumizu, Tsukaya, and Komeda 2010; Jauvion, 

Elmayan, and Vaucheret 2010; Yelina et al. 2010). A biological scene of its action was thus 

set, greatly facilitating further exploration of the specific role of THO2. 

The study of Arabidopsis THO2 function has been challenging, as the only 

identified available T-DNA lines, tho2-1 and tho2-2, aborted at the embryonic stage 

(Furumizu, Tsukaya, and Komeda 2010; Jauvion, Elmayan, and Vaucheret 2010; Yelina et 

al. 2010). This stalled the characterization of THO2, but at the same time made it a 
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particularly interesting study target, as the strong phenotype indicates that THO2 likely 

plays a more important or broader role in development than other components of the 

THO/TREX complex, a notion that was already advanced earlier (Furumizu, Tsukaya, and 

Komeda 2010; Jauvion, Elmayan, and Vaucheret 2010; Yelina et al. 2010). Finding that a 

small portion of homozygous tho2-1 and tho2-2 T-DNA mutant plants do survive the 

embryonal stage, together with the identification of the novel tho2-5, tho2-6 and tho2-7 

alleles, gave us a unique set of tools to finally study THO2 function in plants (Figure 1-5, 

(Francisco-Mangilet et al. 2015)). Our assortment of mutants is specifically valuable as it 

combines a broad severity range. It includes both T-DNA mutants that, by their nature, 

usually are null mutants, and new alleles recovered from an EMS screen where one 

generally also finds weak and partial loss-of-function alleles.  

In concert with results from previous studies of the THO/TREX complex 

components HPR1 and TEX1 (Furumizu, Tsukaya, and Komeda 2010; Jauvion, Elmayan, 

and Vaucheret 2010), we found that THO2 affects various sRNA pathways. The tho2 

mutant displays decreased levels of both siRNAs and mature miRNAs, and consequently 

increased target mRNAs and miRNA precursor molecules (Figure 6, (Francisco-Mangilet 

et al. 2015)). Trying to narrow down the place of THO2 action, we did not detect direct 

interactions with miRNA factors in yeast-two-hybrid assays (Figure S2, S5, (Francisco-

Mangilet et al. 2015)). Mutation of HYPER RECOMBINATION 1 (HPR1), also known as 

ERECTA MRNA UNDER-EXPRESSED (EMU) or THO1 (At5G09860), another main 

component of the THO/TREX complex and homolog of yeast HPR1, also causes a 

reduction of miRNA levels (Furumizu, Tsukaya, and Komeda 2010). At the same time 

HPR1 genetically interacts with several major miRNA biogenesis factors: Double mutants 

of hpr1 and hen1, hst, se-1 or ago1-27 show enhancement of the original miRNA-typical 

single mutant phenotypes (Furumizu, Tsukaya, and Komeda 2010). Analysis of genetic 

interactions of tho2 with miRNA biogenesis mutants might thus reveal similar results. 

Together, the THO/TREX members could potentially influence many different sRNA 

roads, as their function appears to be rather complementary: While HPR1 affects 

miRNAs, and THO2 alters si- and miRNAs, TEX1 is required for the production of siRNAs 

and ta-siRNAs, but seems to be excluded from the miRNA pathway (Yelina et al. 2010). 

Using a broader selection of mutant alleles for genetic crosses including players of other 

sRNA pathways could hence help establish a clearer picture of where exactly THO/TREX 
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components are acting, and where their functions are overlapping in the different 

pathways. Additional routes of investigation should focus both on the roles of the 

complex members outside of the sRNA scope, and on the basis of their differential 

effects on sRNAs. Are these functions exerted as part of the THO/TREX complex, or are 

complex association and sRNA function uncoupled, and how does the lack of different 

factors influence interaction with sRNA pathways?  

Similar to RCF3 and TGH (Ren et al. 2012; T. Chen, Cui, and Xiong 2015), THO2 

interacts with miRNA precursors, indicating that it could be specifically involved in miRNA 

processing. Consequently, the mutant allele tho2-5 abolishes recruitment of precursors 

into the processing complex and reduces association of HYL1 with miRNA precursors 

(Figure 7b-d, (Francisco-Mangilet et al. 2015)). As mentioned earlier, miRNA processing is 

suggested to be one of several processes that occur co-transcriptionally. Actors working 

on miRNA processing thus share ‘their’ nascent transcript that is produced by RNAPII 

with a multitude of other proteins that work on capping, or on splicing (reviewed in 

(Bentley 2014)). Splicing is mediated by the spliceosome, a large complex that contains 

non-coding RNAs and a profusion of protein factors, and by additional RNA-binding 

proteins that promote or inhibit splicing, like the Serine Arginine rich (SR) proteins 

(reviewed in (Meyer, Koester, and Staiger 2015)). Alone due to their proximity, it hence 

makes sense that there would be crosstalk between proteins of simultaneously active 

pathways. Some factors simply affect each other or related processes, as does for 

example the speed of RNAPII the degree of co-transcriptional splicing - the faster RNAPII 

travels, the smaller the window for splicing (Bentley 2014) -, but others are shared 

between several processes (Laubinger et al. 2008; Ben Chaabane et al. 2013). 

THO2 appears to be a new component in plants shared between the pathways of 

pri-miRNA processing and splicing. We have connected it with nascent pri-miRNA 

transcripts, and it is already known from animals and yeast that the THO/TREX complex 

functions in linking transcription, mRNA splicing and nuclear export (Strässer et al. 2002; 

Reed and Cheng 2005; Piruat and Aguilera 1998). Our data suggests that also Arabidopsis 

THO2 affects the splicing machinery. While it colocalizes with the canonical spliceosome 

component SRp34, we did not detect any differences in miRNA factor mRNA or protein 

accumulation, nor differential splicing patterns of miRNA genes in tho2 (Figure 7e, S4a-b, 

(Francisco-Mangilet et al. 2015)). SR34b and other serine/arginine-rich proteins do have 
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changed splicing patterns in tho2 and emu/hpr1 (Figure 7f-g, (Furumizu, Tsukaya, and 

Komeda 2010; Francisco-Mangilet et al. 2015) - and EMU/HPR1 also colocalizes with the SR 

protein SR33 (C. Xu, Zhou, and Wen 2015) - indicating that THO2 is, similar to EMU/HPR1, 

involved in alternative splicing. Interaction with splicing-mediating SR proteins appears 

to be a common feature of THO/TREX members, and it has even been suggested that it is 

a conserved part of the mRNA export machinery (Reed and Cheng 2005). Moreover, two 

serine/arginine-rich splicing factors that associate with the miRNA factor RCF3, namely 

RS40 and RS41, were recently shown to play roles in the biogenesis of a subset of 

miRNAs (T. Chen, Cui, and Xiong 2015; Karlsson et al. 2015; T. Chen et al. 2013). Indications 

for a tight connection between splicing and miRNA biogenesis are thus accumulating, 

and THO2 could be joining the group of SE, CBC, RCF3 and TGH, all factors with dual roles 

in miRNA biogenesis and splicing, with SE even displaying similarly lethal null-mutants 

and tho2-like weak mutant phenotypes (Laubinger et al. 2008; Ren et al. 2012; T. Chen et 

al. 2013). Systematic testing of the effects of all THO/TREX components on differential 

splicing and sRNA accumulation using RNA and sRNA sequencing approaches, possibly 

both in mutant and overexpressing lines, would help shed light on the connection 

between THO/TREX, sRNA and splicing machinery. Due to the sheer complexity of these 

pathways, genetics alone will however not be able to disentangle the proteins’ 

intertwined functions, and needs to be combined with sophisticated biochemistry 

approaches. 

 

6.3 Tissue-biased RCF3 and protein modifications as a novel regulatory layer 

RCF3 is one of the 26 K-homology (KH) domain encoding genes in Arabidopsis 

thaliana. Since KH domains contain evolutionarily conserved RNA or ssDNA binding 

motifs (Siomi et al. 1993), and the human KH-type splicing regulatory protein KSRP is 

associated both with mRNA decay and DROSHA and DICER complexes (Gherzi et al. 

2006; Ruggiero et al. 2007; Trabucchi et al. 2009), RCF3 was a promising miRNA cofactor 

candidate. Confirming this notion, several recent publications established a role for RCF3 

in the context of transcriptional modification processes and splicing as well as in miRNA 

processing (Jeong et al. 2013; T. Chen et al. 2013; Jiang et al. 2013; T. Chen, Cui, and Xiong 

2015).  
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 Although the spectrum of RCF3 activity thus is rather broad, expression of the 

gene distinctively peaks in young dividing tissues, i.e. the vegetative and reproductive 

apex (Figure 2, (Karlsson et al. 2015)). There, we see the clearest effects of RCF3 

mutation, which causes a strong decrease of mature miRNA levels and a subsequent 

increase of mRNA target accumulation (Figure 3-4, (Karlsson et al. 2015)). We thus 

propose that actual RCF3 function is strongly biased to these tissues (Karlsson et al. 

2015). This also illustrates one of the great advantages of having a model system like 

Arabidopsis as opposed to working with cell cultures, since this type of factor can only be 

discovered in the context of a complex organism. 

 Similar bias of a miRNA biogenesis pathway component has been described 

previously, and also expression or activity of miRNAs themselves for instance oftentimes 

is specific to a certain tissue type or a developmental stage. One plant example for this is 

the phase-change involved miR172. It accumulates in flower primordia upon floral 

induction, while at the same time levels of the counteracting miR156 are decreasing 

(Wollmann et al. 2010; G. Wu and Poethig 2006; J.-W. Wang, Czech, and Weigel 2009). 

Other miRNAs, but also miRNA biogenesis factors, can be influenced by environmental 

contexts, like biotic or abiotic stress conditions (for example (Khraiwesh, Zhu, and Zhu 

2012; Fujii et al. 2005)). A feature often observed is hyper- or hyposensitivity of miRNA 

biogenesis mutants to the stress-related plant hormone abscisic acid (K. Earley et al. 

2010; Hugouvieux, Kwak, and Schroeder 2001). Development- and tissue-biased activity 

of miRNA factors has also been widely recognized in animals. One thoroughly studied 

protein in this context is the highly conserved RNA-binding LIN28. It is specifically 

expressed during early developmental stages, in undifferentiated tissues and poorly 

differentiated tumors, and decreases with developmental progression and age. Via 

binding to precursor transcripts of the differentiation-promoting let-7 RNA, LIN28 inhibits 

let-7 processing, thus helping to maintain pluripotency (reviewed in (Tsialikas and Romer-

Seibert 2015)). In plants, there has been little published evidence for biased activity of a 

miRNA factor. Identification of RCF3 thus establishes tissue-biased expression (and 

activity) as a novel layer of fine-tuning and regulation also within the plant miRNA 

biogenesis pathway.  

For now, most factors and many miRNAs are thought to be expressed 

ubiquitously. In-detail analysis, as described here for RCF3, can however reveal distinct 
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variations of expression patterns. Exemplary for this are miR172 and its target mRNA AP2. 

Both had previously been reported to be broadly expressed. A critical advance in our 

understanding of their modes of action in the context of flower development came from 

the observation that they have quite exquisite differential expression patterns, 

depending on phase transition and specific tissues (Wollmann et al. 2010). One way to 

find additional biogenesis factors that are similarly differentially regulated (and 

regulating) would be to use tissue-specific RNA-pull down, extracting miRNAs and 

miRNA associated RNAs with distinct expression or action patterns and analyzing 

associated proteins (Slobodin and Gerst 2011; Iioka et al. 2011). Moreover, cofactor 

screens such as our luciferase-based approach can be employed to look for organ-

specific luciferase reactivation caused by this kind of specialized biogenesis cofactors. 

Combining these types of methods to scout the research avenue of tissue-biased factors 

is going to further advance our knowledge on how general pathways can have tissue-

specificity, as it is for example seen in alternative splicing (Schindler et al. 2008). 

Known candidates for tissue-biased regulation in plants are the shoot apical 

meristem biased DRB2, a close relative of DRB1/HYL1 (Eamens et al. 2012; Reis et al. 2015), 

and the protein kinase MPK3. The latter is a potential antagonist of the phosphatases 

CPL1/2 in regulating phosphorylation-status (and thus activity) of RCF3 and HYL1 

(Raghuram et al. 2015; Karlsson et al. 2015). Both RCF3 and HYL1 are thought to be 

recruited to the pri-miRNA processing complex in their active, hypophosphorylated 

isoforms (Manavella et al. 2012; Raghuram et al. 2015; T. Chen, Cui, and Xiong 2015). 

Though the specific RCF3 mode of action is still unclear, we speculate that it might be a 

stimulator of CPL1/2 phosphatase activity. Inversely correlated expression of the 

phosphatase-antagonist MPK3 in comparison with RCF3 - its transcript levels are low in 

apices - could then explain the notably higher HYL1 activity and consequently elevated 

miRNA biogenesis observed in this tissue niche (Figure S8, (Karlsson et al. 2015; Schmid 

et al. 2005)).  

With the identification of a shoot apex-biased role in changing the 

phosphorylation status of HYL1 (Figure 6, (Karlsson et al. 2015)), our analysis of RCF3 

combines hence two themes that are very likely among the predominating features of 

cofactors yet to be discovered in the plant miRNA context: tissue-biased or -specific 

action, and modification of already known factors within miRNA biogenesis. Under 
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certain circumstances, such as active cell division, a general regulation of conserved 

factors such as HYL1 can be expected, since a large number of different miRNAs are 

involved in cell cycle coordination and can thus be steered collectively. More specific 

situations, for example cell type specific regulation, would on the other hand profit more 

from the precise regulation of single miRNAs and their targets, leaving other miRNAs and 

targets unaffected.  

Different types of protein modifications have already been described to be 

important in various steps of animal miRNA biogenesis. Acetylation, for example, 

stabilizes DROSHA, a microprocessor complex protein without homologs in plants, 

through inhibition of ubiquitin-mediated degradation (X. Tang et al. 2013). 

Phosphorylation of DROSHA on the other hand is required for its nuclear localization (X. 

Tang et al. 2010). Similarly, the localization of human AGO2 in P-bodies depends on its 

phosphorylation, as does downregulation of AGO2-mediated mRNA target cleavage 

activity and subsequent increase of translational repression. Adding a further layer of 

specificity to these processes, both AGO2-phosphorylations are mediated by two distinct 

kinases (Horman et al. 2013; Zeng et al. 2008). Similar mechanisms have been indicated in 

plants, since for example dephosphorylation of RCF3 appears to be required for RCF3 

subcellular localization (T. Chen et al. 2013; T. Chen, Cui, and Xiong 2015). Biochemical 

analysis of main miRNA biogenesis players like AGO1 or SE, and further exploration of the 

changes, circumstances and consequences of HYL1 and DCL1 phosphorylation status will 

thus reveal more details of this still largely unexplored regulatory layer of miRNA 

biogenesis (Engelsberger and Schulze 2012). In addition, subcellular localization is 

another feature that to date has not been explored much in plants and might hence be a 

worthwhile area of investigation.  

 

6.4 HWS and sensitized backgrounds for specialized factor-fishing 

 Mutation of the candidate gene HWS causes a clear suppression of the MIM156 

phenotype (Figure 1a, manuscript in preparation). The effect of hws - besides rescuing 

phenotypic abnormalities of MIM156 plants it also suppresses the phenotypes of 

MIM164, MIM159 and MIM319 - is conspicuous in the transgenic MIM system, and the 

characteristic ‘skirt’ phenotype based on the defect in sepal separation is easy to spot 
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(Figure 2a, d, manuscript in preparation). Yet, determination of HWS’ molecular role and 

mode of action within miRNA biogenesis in the undisturbed natural system is not 

straightforward.  

Analysis of steady-state levels of miRNAs and their targets in the hws and 

35S:HWS lines reveals weak effects fitting the profile of a negative biogenesis regulator 

(Figure 3b-d, manuscript in preparation). Additional arguments support a connection of 

HWS with miRNA biogenesis: Overexpression of HWS causes phenotypes that strongly 

resemble mutants like hyl1-2 or ago1-27, and double mutants of hws with a set of major 

miRNA biogenesis factors display clear epistatic interactions (Figure 3a, manuscript in 

preparation).  

In this context, the HWS F-box domain provides a first hint at a potential HWS-

mode of action. The domain is strongly connected with HWS functionality, as shown by 

failed skirt complementation and lack of overexpressor phenotype upon transformation 

of hws-1 with 35S::mHWS that lacks the F-box (Figure 4b, 5a, S1a-c, manuscript in 

preparation). F-box proteins impart specificity to SCF-complexes, to control which 

substrates are targeted by these E3 ligases for ubiquitination and subsequent 

degradation (Risseeuw et al. 2003). Our mass spectrometry analysis indicates that HWS 

as well is part of such a complex, as full-length HWS, but neither mHWS nor a GFP control 

associated with the SCF-complex compounds SKP1, SKP2 and CUL1 (manuscript in 

preparation).  

Involvement of F-box mediated processes in miRNA function is not without 

precedent. AGO1 is targeted and destabilized by both the Arabidopsis FBW2 and the 

virus-derived silencing suppressor P0 (K. Earley et al. 2010; Bortolamiol et al. 2007; 

Nicolas Baumberger et al. 2007). Even for animal AGO-proteins like AGO2, ubiquitination 

and coupled proteasomal degradation is a typical way of activity modification (reviewed 

in (Jee and Lai 2014)). Ubiquitination is hence another aspect of the protein-modification 

guided regulatory layer of miRNA biogenesis. Attachment of different numbers of 

ubiquitin molecules to a protein further provides means of influencing miRNA factors not 

only via degradation, but also affecting for example associated cellular signaling or 

intracellular trafficking (Mukhopadhyay and Riezman 2007; W. Li and Ye 2008).  

However, interaction between HWS and its targets could be transient, and thus 

hard to observe experimentally. In the MS assay, AGO1 was the sole most relevant 
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miRNA-related protein that was at least close to significantly enriched. Transient co-

expression of HWS with and without its F-box with AGO1 nonetheless did not result in 

clear changes of AGO1 accumulation, or of its ubiquitination status (Figure S5b, 

manuscript in preparation). Thus, how exactly HWS exerts its effects, and which factors 

are affected by HWS-mediated regulation remains unclear. Large-scale analysis of miRNA 

factor ubiquitination using existing datasets (Walton et al. 2016), coupled with 

experimental verification of specific proteins’ ubiquitination levels in wild-type and 

mutant plants (L. Liu et al. 2010) could be one way to investigate not only the role of 

HWS within ubiquitination and miRNA biogenesis, but also the role of ubiquitination itself 

in miRNA biogenesis in general. 

Furthermore, as a direct effect of HWS on the protein level, on the abundance of 

a potential target, or on ubiquitination, could not be detected, an obvious follow-up 

experiment is the exploration of indirect HWS effects, looking at transcript levels using 

RNA-seq. With samples both with and without the MIM156-context, it will be possible to 

dissect the contributions of HWS within the MIM-pathway as well as its broader role in 

general miRNA function.   

Clearly, the use of sensitized backgrounds to screen for more specialized 

cofactors of miRNA biogenesis serves its purpose, as it enabled us to identify HWS and 

several other, to date uncharacterized factors. As expected, the effect of hws is most 

obvious within the artificial MIM background, and much less pronounced under more 

natural circumstances. This poses the question of how much the choice of a sensitized 

background is indeed beneficial in the end. It certainly helps to find more factors - but 

deciphering their biological role in a natural context can be challenging. 

 

6.5 How to find missing pieces and integrate everything into the big picture? 

We know that gene expression is an important regulator of cell differentiation, 

specification and patterning. A major factor contributing to differential expression are 

sRNAs, and, more specifically, also miRNAs. Since the broad framework of miRNA 

biogenesis and action is now set, it is time to connect the pathway factors and cofactors 

that we know, with the surrounding landscape of biological processes. In this thesis, I 

characterized RCF3, THO2 and HWS in the broad miRNA context, adding information 
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both to different layers of the miRNA regulatory framework and to its extended 

background.  

MiRNA factors and cofactors known so far mostly act in a rather general fashion. 

Discovery of the strongly tissue-biased cofactor RCF3 draws attention to a new level of 

complexity in miRNA biogenesis and function. It serves as reminder that, instead of 

looking at a whole organism, we also need to zoom in on specific organs, tissues, and 

even single cells, or explicitly defined developmental windows, both for the detection of 

additional factors and to see which factors contribute how to expression variation. 

Substantiation of the co-transcriptionality of pri-miRNA processing in the context of 

THO2 on the other hand puts the idea forward that, besides zooming in, we also have to 

broaden the scope and not look at the miRNA pathway as an island within the organism, 

but rather one of many simultaneous processes like splicing, that are connected on 

several levels. Taking this into account when trying to fit in new ‘miRNA cofactors’ will 

help to explain their actual roles - in the miRNA context as well as elsewhere. Finally, the 

potential connection of HWS with ubiquitination as well as miRNA factor 

phosphorylation in the RCF3 context confirms protein modifications as an additional 

regulatory layer in the miRNA pathway. With this novel layer in mind, we should revisit 

already established factors and cofactors to for example see nuances in activity related 

to suchlike modifications that we missed before. Potentially, this can not only reveal 

further details of known, complex regulatory steps, but also connect miRNAs to other 

existing mechanisms such as phosphorylation, and thereby add novel factors to the 

picture. 

With this, new challenges for miRNA biology research have been established: 

zooming in on specific sections, while at the same time widening the scope to related 

pathways, as well as incorporating the protein-modification regulatory layer. For 

integration of those challenges, together with further newly found factors, into the large 

miRNA puzzle, the work here shows that genetics is a powerful approach, but can rapidly 

reach its limits when contexts are too intertwined, or based on subtle biochemical 

changes. Then, it is necessary to become more interdisciplinary, and combine traditional 

genetics research with biochemistry approaches. In this way, already known, but not yet 

satisfactorily characterized cofactors as well as newly found candidates can be placed in 

the right position.  
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Apart from actual, physical experiments, the ever progressing high-throughput 

methods of the sequencing era present innumerable opportunities for the in silico 

supported quest for cofactors and their roles. To this end, sequencing-based datasets 

from RNA-seq, GWA or methylation studies can be combined with interactome networks, 

deduced either from experimental data or predicted, based on analyses in other systems 

(for example (Arabidopsis Interactome Mapping Consortium 2011; Y. Wang et al. 2014)), 

to unravel some of the remaining mysteries, as has for example been done in a recent 

network-based analysis of schizophrenia GWAs (I. Lee et al. 2010; Chang et al. 2015). A 

large-scale project like the Encyclopedia of DNA Elements (ENCODE) could in this context 

be an additional source of valuable information (Lane et al. 2014). Coupling obtained in 

silico data with molecular wet lab methods, computationally identified candidates can be 

validated and characterized the traditional way. Future projects should thus both exploit 

existing datasets, but also take advantage of state-of-the-art methods to generate 

tailored information, for example using single cell RNA- or methylome sequencing (F. 

Tang et al. 2009).  

Lastly, while it is definitely worthwhile to spend more efforts on clarifying and 

extending the so-far known miRNA picture, it would be beneficial to not only focus on 

the components and mechanics of the pathway, but to rather look at it in the context of 

a broader evolutionary perspective (Ma, Coruh, and Axtell 2010; Vazquez et al. 2008; 

Smith et al. 2015). The hypothesis that it is regulators within a gene’s expression network 

and not major genes themselves that get mutated for adaptation in the course of 

evolution (deduced from (López-Maury, Marguerat, and Bähler 2008)) places miRNAs in 

the spotlight as important modulators of gene expression. Extracting how miRNAs and 

their regulators evolve over time, both within and between species, would advance our 

understanding of their contribution to adaptation and evolution, and could tell us where 

regulatory steps originated in the first place. A valuable source of information in this 

context is the natural variation of the miRNA machinery and its fine-tuning. Studies in 

different species can reveal striking similarities, such as for miR156 and its evolutionarily 

conserved role in vegetative phase change in annual herbaceous plants and perennial 

trees (J.-W. Wang et al. 2011), but also differences, as seen for the maize dcl1 mutant 

fuzzy tazzle (Thompson et al. 2014). Both similarities, and differences, that we observe in 

miRNAs and cofactors of various accessions or species, and their genetic as well as 
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environmental backgrounds can enable us to infer these proteins’ roles in and impact on 

miRNA biogenesis in particular and plant regulatory systems within an evolutionary 

context in general. 
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SUMMARY

The THO/TREX complex mediates transport of nascent mRNAs from the nucleus towards the cytoplasm in

animals, and has a role in small interfering RNA-dependent processes in plants. Here we describe five

mutant alleles of Arabidopsis thaliana THO2, which encodes a core subunit of the plant THO/TREX complex.

tho2 mutants present strong developmental defects resembling those in plants compromised in microRNA

(miRNA) activity. In agreement, not only were the levels of siRNAs reduced in tho2 mutants, but also those

of mature miRNAs. As a consequence, a feedback mechanism is triggered, increasing the amount of miRNA

precursors, and finally causing accumulation of miRNA-targeted mRNAs. Yeast two-hybrid experiments and

confocal microscopy showed that THO2 does not appear to interact with any of the known miRNA biogene-

sis components, but rather with the splicing machinery, implying an indirect role of THO2 in small RNA bio-

genesis. Using an RNA immunoprecipitation approach, we found that THO2 interacts with miRNA

precursors, and that tho2 mutants fail to recruit such precursors into the miRNA-processing complex,

explaining the reduction in miRNA production in this mutant background. We also detected alterations in

the splicing pattern of genes encoding serine/arginine-rich proteins in tho2 mutants, supporting a previ-

ously unappreciated role of the THO/TREX complex in alternative splicing.

Keywords: Arabidopsis thaliana, gene silencing, micro RNA, small RNAs, THO2, THO/TREX complex.

INTRODUCTION

Among the mechanisms for post-transcriptional gene

silencing in plants, small RNA-dependent gene regulation

plays a central role (Baulcombe, 2004). MicroRNAs (miR-

NAs) are a specific class of small RNAs (mostly 21–22
nucleotides long) that mediate endogenous gene silenc-

ing (Jones-Rhoades et al., 2006). In plants, DICER-LIKE1

(DCL1) processes mature miRNAs from long primary

miRNA transcripts (pri-miRNAs) that form a stem–loop
secondary structure. During processing in nuclear dicing

bodies, DCL1 requires the assistance of the zinc finger

protein SERRATE (SE) and the double-stranded RNA-

binding protein HYPONASTIC LEAVES1 (HYL1) for accu-

rate excision of the miRNAs (Fang and Spector, 2007; Fu-

jioka et al., 2007; Voinnet, 2009). The mature miRNAs

associate with an ARGONAUTE (AGO) protein and guide

the RNA-Induced Silencing Complex (RISC) Complex,

through sequence complementarity, to their target

mRNAs, ultimately silencing them. In contrast, production

of small interfering RNAs (siRNAs), a different class of

small RNAs, is based on processing of a highly comple-

mentary double-stranded RNA by a DCL1-independent

pathway. In a very specialized pathway, trans-acting siR-

NAs (tasiRNAs) and secondary siRNAs are produced from

Trans-acting siRNA (TAS) or even mRNA transcripts after

initial cleavage by a miRNA (Chapman and Carrington,

2007). The production of tasiRNAs follows a particular

process that shares components with both the miRNA

and siRNA biogenesis pathways.
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In yeast and animals, the THO/TREX complex has been

characterized as a multimeric protein complex that medi-

ates transcription elongation (yeast), splicing of mRNAs

(animals), and export of mRNAs from the nucleus (both

yeast and animals) (Reed and Cheng, 2005). In all studied

organisms, the complex comprises TEX1 and several THO

subunits as well as accessory proteins (Dufu et al., 2010;

Moon et al., 2011; Gewartowski et al., 2012). A plant THO

core complex, similar to the metazoan THO/TREX complex,

has been identified in Arabidopsis. It consists of at least

eight proteins: THO1/HPR1/EMU, THO2, THO3/TEX1, THO4,

THO5, THO6, THO7 and UAP56 (Furumizu et al., 2010; Ja-

uvion et al., 2010; Yelina et al., 2010). Mutations in the Ara-

bidopsis TEX1, THO6 and THO1 genes cause a reduction in

the siRNA levels from TAS genes, inverted repeat (IR)

genes and transgenes (Jauvion et al., 2010). The tho1

mutant alleles were also found to affect the alternative

splicing patterns of transcripts encoding serine/arginine-

rich proteins (Furumizu et al., 2010).

To date, the functional specialization of other plant THO

components in plants has not been fully dissected. Among

them is the core component THO2, which we investigated

here. The yeast gene encoding THO2 was first identified as

a gene affecting transcription elongation of HYPERRECPM-

BINATION PROTEIN 1 (HPR1) (Piruat and Aguilera, 1998). In

Arabidopsis, null mutations in THO2 cause embryo lethal-

ity, whereas null mutations in THO1 and TEX1 (hpr1 and

tex1, respectively) cause developmental defects including

dwarf stature, leaf serration, curly leaves and embryonic

defects (Furumizu et al., 2010; Jauvion et al., 2010; Yelina

et al., 2010). The embryo lethality of tho2 mutants suggests

that THO2 has essential roles that go beyond those of other

members of the complex. However, that lethality is a major

problem with respect to the study of THO2 functions, and

has hampered our understanding of the functional special-

ization of THO2.

Here we elucidated the function of Arabidopsis THO2 by

exploring a set of five mutant alleles ranging from null to

hypomorphic. The identification of viable tho2 mutant

alleles allowed us to study the functions of THO2. We

showed that plants containing mutations in the THO2 gene

present serious developmental defects, with failures in all

the small RNA pathways that we examined, including miR-

NAs, tasiRNAs and siRNAs. As a consequence of the

reduced production of miRNA, a feedback mechanism is

triggered, increasing the amount of miRNA precursors and

causing a concomitant over-accumulation of miRNA-tar-

geted mRNAs. We found that THO2 does not appear to

interact with any of the known miRNA biogenesis compo-

nents, but rather with the splicing machinery, implying an

indirect role of THO2 in small RNA biogenesis. Our studies

showed that THO2 interacts with miRNA precursors, assist-

ing their transport into the miRNA-processing complex. In

tho2 mutant plants, the miRNA precursors fail to associate

with the processing complex, specifically with HYL1,

explaining the reduction in miRNA production observed in

this mutant background. We also found that alternative

splicing was compromised in tho2 mutants, possibly

reflecting a second conserved role for THO2. The severity

and multiplicity of the molecular pathways affected in tho2

mutants may explain why mutations in this gene cause

more severe developmental problems than the lack of any

other component of the THO/TREX complex.

RESULTS

Identification and characterization of several Arabidopsis

THO2 mutants

The study of the biological functions of THO2 was particu-

larly challenging until now because no homozygous

tho2 alleles had yet been isolated. Previously studied

T-DNA mutant lines for THO2, specifically the tho2-1

(SALK_072011c) and tho2-2 (SALK_130342) mutants,

aborted at embryonic stages (Furumizu et al., 2010; Jauvion

et al., 2010; Yelina et al., 2010). These mutants feature T-

DNA insertions in exons 16 and 18, respectively (Figure 1a).

Consistent with these previous reports, we failed to identify

mature plants homozygous for these alleles. However, we

observed a population of tiny seedlings, which accounted

for approximately 6% of the tho2-1 and tho2-2 segregation

populations, after seeds were sown on MS plates. These

seedlings never developed true leaves, had very short roots,

failed to develop and died (Figure 1b,c). PCR analysis con-

firmed that all these tiny seedlings were homozygous for T-

DNA insertions at the THO2 locus (Figure 1d). These results

showed that even though most tho2-1 and tho2-2 homozy-

gous embryos abort, some reached very early developmen-

tal stages and may be used for further experimentation.

Recently a genetic screen using an artificial microRNA

(amiRNA) targeting the luciferase reporter gene was per-

formed to identify proteins acting in the miRNA pathway

(Manavella et al., 2012a). Whole-genome sequencing fol-

lowed by SHORE mapping allowed mapping of the locus

responsible for the miRNA dysfunction in one of the iso-

lated mutant plants to chromosome 1, where a new poly-

morphism in the THO2 (At1g24706) gene was identified.

This mutant, tho2-5, contains a C?T mutation that results

in a non-synonymous substitution of serine by phenylala-

nine (Figure 1a). The tho2-5 plants showed a dwarf stature

and narrow curly leaves, and produced few seeds (Fig-

ure 2a–c). Transformation of the mutants with the wild-

type THO2 cDNA, driven by its own promoter and fused to

mCitrine, restored silencing of the luciferase reporter and

reversed the tho2-5 morphological defects, confirming that

the mutation in THO2 is the cause of the observed pheno-

type (Figure 2a–c). A second mutant, tho2-6, was isolated

from an activation tagging screening performed in our lab-

oratory. The position of the T-DNA insertion was estab-
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lished by TAIL-PCR, and mapped to the 50 UTR of THO2

(Figure 1a). Segregation analysis and PCR-assisted geno-

typing allowed us to isolate homozygous tho2-6 plants that

contain a single copy of the T-DNA insertion. These mutant

plants developed curly leaves and had a bushy reduced

stature (Figure 3a–c). The plants present an abnormal dis-

tribution of petals (Figure 3d), atrophic anthers that fail to

produce mature pollen grains leading to complete sterility

(Figure 3e), fusion of the carpels that form twisted pistils

exposing the ovules (Figure 3f), and a large number of tric-

homes in the floral buds (Figure 3g). Inspection of dis-

sected siliques from heterozygous plants revealed that

15% of the ovules (n = 553), which are probably homozy-

gous for the T-DNA insertion, aborted (Figure 3h,i).

Additionally, we analyzed an uncharacterized tho2 allele

(SALK_144229) that contains a T-DNA insertion in intron 30

towards the end of the gene (Figure 1a). Plants homozy-

gous for this allele, named tho2-7, were able to reach matu-

rity, showing small stature, serrated leaves, an increased

number of trichomes on their sepals, and short anther fila-

ments and pistils (Figure 4a–f). Approximately 5% of the

flowers of mutant plants had five petals (Figure 4d). Their

fertility was reduced to less than 20% compared to hetero-

zygous plants due to embryonic abortion (Figure 4h,i).

Expression of THO2 in wild-type and mutant Arabidopsis

plants

RT-PCR expression analysis of THO2, using primers sets

designed to flank the mutation sites (Figure 1a), revealed

that tho2-1, tho2-2 and tho2-7 produced truncated versions

of the THO2 mRNA (Figure 5a). tho2-6 showed intact but

strongly reduced levels of THO2 mRNA, while tho2-5, as

expected from plants with a non- synonymous point muta-

tion, showed no change in the abundance or size of the

mRNA (Figure 5a). Considering the mutant phenotypes, it

is conceivable that tho2-1 and tho2-2 are null alleles, tho2-

6 is a knockdown allele, and tho2-5 and tho2-7 are hypo-

morphic. Thus the new mutant alleles tho2-5, tho2-6 and

tho2-7 may become very useful tools to study the biologi-

cal function of THO2, the core protein of the THO/TREX

complex. RT-PCR experiments showed that, in wild-type

plants, THO2 is expressed at very similar levels in the

flower buds, mature flowers, stems, leaves, roots and

whole seedlings, as well as in pollen at all developmental

stages, including isolated spores, unicellular, bicellular and

tricellular phases, and mature pollen (Figure 5b).

THO2 is required for accumulation of miRNAs, tasiRNAs

and siRNAs

Components of the Arabidopsis THO/TREX complex, such

as TEX1 and THO1, have been described as important part-

(a)

(b) (c)

(d)

Figure 1. Identification of tho2-1a and tho2-2 homozygous plants.

(a) Gene structure of THO2 showing single nucleotide substitution and T-

DNA insertion sites in tho2-1, tho2-2, tho2-5, tho2-6 and tho2-7. Black boxes

and lines represent exons and introns, respectively; white boxes represent

50 and 30 UTRs. Arrows indicate the position of primer sets used for RT-PCR

analysis in Figure 5(a).

(b) Fourteen-day-old seedlings of tho2-1 grown on an MS plate, showing

arrested growth. Arrows indicate tho2 homozygous seedlings. Scale

bar = 1 mm.

(c) Magnified view of homozygous seedling shown in (b). Scale

bar = 1 mm.

(d) PCR genotyping of homozygous tho2-1 and tho2-2 seedlings.

(a) (b)

(c)

Figure 2. Isolation and characterization of tho2-5.

(a) Phenotype of 20-day-old Col-0, tho2-5 mutant

and complemented plants.

(b) Bioluminescence phenotype of tho2-5 mutants,

complemented mutants, reporter lines (35S:

Luc;35S:amiRLuc) and Pro35S:LUC controls. The

upper panels show bioluminescence activity; the

colored scale indicates low luminescence (blue) to

high luminescence (white). The lower panels show

bright-field images of the same plants.

(c) Dissected siliques of Col-0, tho2-5 and the com-

plemented mutant.
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ners in several small RNA pathways (Furumizu et al., 2010;

Jauvion et al., 2010; Yelina et al., 2010). To test whether

THO2 is involved in siRNA biosynthesis, we crossed tho2

mutants (tho2-6 and tho2-7) with JAP3 transgenic lines.

These transgenic plants express an inverted repeat version

of the PHYTOENE DESATURASE (PDS) gene under the

control of the phloem-specific SUC2 promoter (SUC2p:

PDS-IR; Smith et al., 2007). JAP3 plants exhibit a unique

phenotype of photo-bleaching around the leaf veins, con-

sequence of the silencing of the PDS gene by the SUC2p:

PDS-IR construct. Segregation analysis and PCR-assisted

genotyping revealed that wild-type plants or plants hetero-

zygous for the tho2-6 and tho2-7 alleles retain the typical

JAP3 photobleaching phenotype (Figure 6a). In contrast,

all plants homozygous for the mutations completely lost

the photobleaching phenotype and showed the typical

tho2-6 or tho2-7 leaf shape (Figure 6a). Quantitative RT-

PCR analyses demonstrated that the level of PDS tran-

scripts was higher in the JAP3/tho2-6 and JAP3/tho2-7

plants than in the original JAP3 line (Figure 6b). This over-

accumulation of the PDS transcript correlated with a reduc-

tion in PDS-derived siRNAs observed in both the tho2-6

and tho2-7 mutant backgrounds (Figure 6c).

As the tho2-5 allele was isolated from a miRNA-activity

based screening, we wished to determine whether THO2

also has a role in the miRNA pathway. To determine

whether THO2 is required for miRNA biogenesis or action,

we evaluated the steady-state levels of mature miRNAs

and miRNA-targeted mRNAs in tho2 mutants by Northern

blotting and quantitative RT-PCR, respectively. We found

that miRNA levels were strongly reduced in all tested tho2

mutants, with the exception of tho2-7, which showed nor-

mal miRNA levels (Figure 6d). Interestingly, no changes

were detected for miR171, which suggests that THO2 is not

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 3. Phenotypic characterization of tho2-6

mutant plants.

(a) tho2-6 and Col-0 plants at the early rosette-leaf

stage.

(b) Leaf proliferation and delayed bolting in tho2-6

plants.

(c) tho2-6 and wild-type plants at 42 days old.

(d–g) Flowers, anthers, pistils and inflorescences of

wild-type and tho2-6 plants.

(h, i) Dissected siliques of wild-type and tho2-6

plants. Red arrows indicate aborted ovules.
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involved in generation of this miRNA. The reduction in

miRNA levels was paralleled by higher accumulation of

several miRNA-target mRNAs (TCP3 targeted by miR319;

MYB33 targeted by miR159; ARF8 targeted by miR167; AP2

and TOE2 targeted by miR172) (Figure 6e). All tested tho2

mutant alleles showed higher levels of miRNA precursors

than wild-type plants (Figure 6f). Such accumulation of

miRNA precursors is a common transcriptional feedback

response to low mature miRNA levels, as observed in

plants mutated in other miRNA biogenesis factors (Song

et al., 2007; Laubinger et al., 2008; Ben Chaabane et al.,

2013; Wu et al., 2013). The primers used to detect miRNA

precursors in this work cannot distinguish between pri-

miRNA and pre-miRNA sequences. We have used the term

miRNA precursors as a general term to refer to both RNA

intermediate molecules. As shown for mutants of other

THO/TREX complex components (Jauvion et al., 2010; Yeli-

na et al., 2010), all tested tho2 mutants showed a marked

reduction in secondary siRNA derived from TAS1 and

endogenous siRNA (Figure 6d). We observed that inclusion

of a THO2 genomic fragment in the tho2-5 mutant back-

ground reverses the reduction in small RNAs, thus con-

firming that THO2 is responsible for this phenotype

(Figure S1a). For both the RNA blots (Figure 6d) and the

quantitative RT-PCR experiments (Figure 6e,f) we used

hyl1-2 mutants as control plants. Mutants in hyl1 show

reduced production of miRNAs, over-accumulation of miR-

NA precursors, and a concomitant increase in miRNA-tar-

geted transcripts (Han et al., 2004; Song et al., 2007).

THO2 is associated with miRNA precursors and is required

for their recruitment into the miRNA-processing complex

With the aim of understanding how THO2 acts in the miR-

NA pathway, we co-transformed plants with THO2:eGFP

and HYL1:mCherry constructs, and observed the localiza-

tion of the proteins using a confocal microscope. Our

observations revealed that THO2 accumulated in the

nucleus, specifically in nuclear speckles different to those

in which the miRNA biogenesis machinery is located (Fig-

ure 7a). The same nuclear expression pattern was

observed for tho2-5 mutants rescued using the gTHO2:

mCitrine construct (Figure S1b). In accordance with this

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 4. Phenotypic characterization of tho2-7

mutant plants.

(a) tho2-7 and Col-0 plants at the early rosette-leaf

stage.

(b) tho2-7 and Col-0 wild-type plants at 42 days old.

(c) Leaf series of tho2-7 showing serration of leaf

edges compared with wild-type leaves.

(d–g) Flowers, inflorescences, anthers and pistils of

wild-type and tho2-7 plants.

(h, i) Dissected siliques of wild-type and tho2-6

plants. Red arrows indicate aborted ovules.
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observation, we were not able to detect any interaction in

a yeast two-hybrid interaction screen using THO2 fused to

GAL4-BD and a collection of 18 known small RNA-related

proteins fused to GAL4-AD (Figure S2).

The facts that THO2 does not interact with any miRNA

biogenesis factor and that it is also involved in other small

RNA pathways suggests that it may act in early steps that

are common to all these pathways, such as transport or

stabilization of the primary double-stranded RNA precur-

sors. In order to test whether THO2 associates with miRNA

precursors, we used THO2:eGFP transgenic plants to

immunoprecipitate the fusion protein and search for asso-

ciated RNA molecules. After selecting plants by fluorescent

microscopy, we pulled down the THO2:eGFP fusion using

an anti-GFP antibody. Total or THO2-associated RNA was

extracted from the input and immunoprecipitate fractions,

and used to synthesize cDNA. RT-PCR experiments

revealed that all tested miRNA precursors associate with

THO2 (Figure 7b). We then evaluated whether the

observed association is important for recruitment of miR-

NA precursors into the processing complex. In order to test

this scenario, we evaluated the HYL1-associated miRNA

precursors by using an anti-HYL1 antibody to co-immuno-

precipitate the protein in the tho2-5 mutant background.

Interestingly, we found a reduction in the HYL1-associated

miRNA precursors in tho2-5 plants (Figure 7c,d) despite

these mutants containing more pri/pre-miRNAs than wild-

type plants (Figure 6f). The association of THO2 with miR-

NA precursors and the reduced association with HYL1

observed in the tho2-5 background suggest a role for

THO2 in transport of these RNA molecules to the

processing complex or in their stabilization. Interestingly,

the precursors of miR171a, which were not drastically

reduced in tho2 mutant plants (Figure 6d), appeared to be

poorly associated with THO2 (Figure 7b). In tho2-5

mutants, the level of HYL1-associated miR171a precursors

appeared unchanged compared to wild-type plants (Fig-

ure 7c,d), suggesting an alternative pathway for this miR-

NA.

THO2 is required for splicing in Arabidopsis plants

In humans, the THO/TREX complex is involved in splicing

through interaction with the spliceosomes (Rappsilber

et al., 2002). In Arabidopsis, it has been shown that muta-

tions in the emu/tho1 locus affect the alternative splicing

of genes encoding serine/arginine-rich (SR) proteins (Furu-

mizu et al., 2010). Supporting this reported role of the

THO/TREX complex during mRNA splicing, we detected a

partial overlap between the nuclear localization of THO2

and SRp34, a canonical spliceosome component (Fig-

ure 7e). Despite sharing localization in the same nuclear

speckles, THO2 also localized in the cell nucleolus, a fea-

ture that is not shared with SRp34, suggesting additional

roles of THO2. We also performed RT-PCR using mRNAs

extracted from tho2 seedlings to determine the splicing

patterns of several SR genes encoding proteins involved in

RNA splicing. Our analysis indicated that, of all tested SR

genes, only SR34b showed a differential splicing pattern in

all tho2 alleles compared to wild-type plants (Figures 7f

and S3a). To further examine the alternative splicing pat-

terns of SR34b, we used capillary electrophoresis to ana-

lyze the splicing isoforms in samples from the tho2-6

mutant. Double-stranded DNA derived from the splicing

fragments was generated by RT-PCR and separated in a

(a)

(b)

Figure 5. Expression of THO2.

(a) Expression of THO2 measured by RT-PCR in

tho2-1, tho2-2, tho2-5, tho2-6 and tho2-7 plants. For

tho2-6, tissues from leaf (LF), stem (ST) and floral

buds (BD) were analyzed. Histone was used as a

loading control. The positions of primer sets used

for the analysis are shown in Figure 1(a).

(b) RT-PCR analysis of THO2 expression in Col-0

floral bud (BD), open flower (FL), stem (ST), leaf

(LF), root (RT), and whole seedling (SD), and at dif-

ferent developmental stages of Col-0 pollen: mature

pollen (MP), pollen in tricellular (TC), bicellular (BC),

unicellular (UC) phases and isolated spores (IS).

Histone was used as control.
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capillary electrophoresis device. The resulting pattern for

each sample reflects the sizes of the observed splicing

forms. The analysis confirmed the differential splicing pat-

tern of SR34b in tho2-6 mutants, clearly showing a shift to

smaller transcript fragments in the mutant (Figure 7g). We

did not find any difference in the splicing pattern of intron-

containing or intron-contained miRNA genes between

mutant and wild-type plants (Figure S3b). Given these find-

ings, it is possible that aberrant splicing or mRNA destabi-

lization of general small RNA factors may generate a

reduction in miRNA biogenesis, contributing to the

observed miRNA reduction. Alternatively, given the THO/

TREX function in mRNA transport, it may be possible that

the mRNAs of miRNA-related factors fail to reach the ribo-

somes, and thus are not translated. Quantitative RT-PCR

analysis showed no significant difference in the mRNA

accumulation of several miRNA factors (Figure S4a). We

only detected a slight increase in AGO1 mRNA in the

mutant plants, probably a consequence of the reduction in

miR168, thus discounting a mRNA destabilization scenario.

RT-PCR analysis of the mRNAs of miRNA-related factors

showed no differential splicing patterns between wild-type

and mutant plants, at least for tested regions of the tran-

scripts (Figure S4b). Such observations discount the possi-

(a) (b)

(c)

(d)

(e) (f)

Figure 6. Effects of mutation in THO2 on accumula-

tion of small RNAs.

(a) Phenotypes of the JAP3/tho2-6 and JAP3/tho2-7

mutants.

(b) Quantitative RT-PCR analyses of PDS expression

in JAP3, JAP3/tho2-6 and JAP3/tho2-7 plants. Error

bars indicate 2 9 standard error of the mean

(SEM).

(c) RNA blots for PDS-derived siRNAs. The U6 small

nuclear RNA (U6) was used as a loading control.

(d) RNA blots for detecting miRNAs, TAS1-derived

tasiRNAs (siRNA 255) and siR1003. U6 was used as

a loading control. The relative abundance of small

RNAs was calculated by measuring the band inten-

sity using ImageJ (http://imagej.nih.gov/ij/), and is

indicated above each band.

(e, f) Quantitative RT-PCR analysis of miRNA targets

and miRNA precursors. Error bars indicate

2 9 standard error of the mean (SEM).
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 7. THO2 binds miRNA precursors, delivers them to the processing complex, and regulates mRNA splicing in Arabidopsis.

(a) Confocal microscopy images showing the nuclear localization of THO2:eGFP and HYL1:mCherry.

(b) RT-PCR to detect THO2-associated miRNA precursors in RNA immunoprecipitation samples. C, 3xGFP:NLS transgenic plants were used as a negative control

for un-specific binding. T, THO2:eGFP transgenic plants. Lanes 5 and 6 (‘No AB’) show RT-PCR performed on samples to which no antibody was added during

the RNA immunoprecipitation protocol. RT-PCR measurement of HYL1 mRNA was performed to exclude un-specific binding of THO2. b-TUBULIN2 mRNA was

used as a control mRNA. The ‘No RT’ control was performed using a mixture of primers amplifying the miR159a, 167a, 171a and 172a precursors. Band intensity

was quantified using ImageJ, and is indicated below each band.

(c) RNA immunoprecipitation assay performed using an anti-HYL1 antibody.

(d) Quantitative RT-PCR analysis of the RNA immunoprecipitation miRNA precursors. Data are expressed as a ratio between the immunoprecipitate and input

fractions for Col-0 plants (blue bars) and tho2-5 mutants (red bars). Expression levels were normalized against the levels of b-TUBULIN2 (At5g62690) in the input

fraction. Error bars indicate 2 9 standard error of the mean (SEM).

(e) Confocal microscopy images showing partial co-localization of THO2:eGFP and SR34p:RFP.

(f) RT-PCR analysis of splicing patterns of SR34b in wild-type, tho2 mutants and tho2-5 complemented mutants (tho2-5+ gTHO2). Histone was used as a loading

control.

(g) Splicing isoforms of SR34b generated in tho2-6 and Col-0 were analyzed via capillary electrophoresis. Various sizes of isoforms (in bp) are indicated.
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bility that aberrant splicing of miRNA biogenesis factors

contributes to the reduction in their production. Finally,

Western blotting using antibodies against HYL1, AGO1 and

DCL1 revealed no significant change in the accumulation

of these proteins in the mutant plants (Figure S4c). These

results indicate that, at least for these miRNA-related

genes, mRNA translation is not affected in the mutants.

The observed over-accumulation of AGO1 in the tho2-5

mutant may potentially reflect loss of the miR168–AGO1

regulation node.

ABA HYPERSENSITIVE 1 (ABH1), CAP-BINDING PRO-

TEIN 20 (CBP20) and DAWDLE (DDL) are miRNA biogene-

sis co-factors involved in mRNA splicing and miRNA

precursor stabilization (Kim et al., 2008; Laubinger et al.,

2008; Yu et al., 2008). The overlap between these proteins

and THO2 functions led us to speculate whether THO2

interacts with them. However, our yeast two-hybrid results

indicated that THO2 does not interact, at least directly, with

ABH1, CBP20 or DDL (Figure S5). In any case, these results

do not exclude the possibility that the THO/TREX complex,

once fully assembly, interacts with these proteins to fulfill

its miRNA-related functions.

DISCUSSION

The THO/TREX complex is highly conserved in multiple

organisms, acting in various contexts. In humans, it is a

key component of the mRNA export machinery, and

appears to be primarily associated with spliced mRNA (Ma-

suda et al., 2005; Chi et al., 2013). THO2 is the largest pro-

tein of the complex, and is considered to be its core (Pena

et al., 2012). Based on the fact that THO2 null mutants in

Arabidopsis die at the embryonic stage, it has been pro-

posed that the protein is essential for assembly of the com-

plex and its function, and therefore for the survival of the

plant (Furumizu et al., 2010; Jauvion et al., 2010; Yelina

et al., 2010). The isolation of viable tho2 alleles, described

in the present work, is a major breakthrough for study of

the THO/TREX complex. Despite developmental defects,

ranging from abnormal floral organs and leaf serrations to

partial embryo lethality, observed in the newly character-

ized tho2-5, tho2-6 and tho2-7, these mutants represent a

unique genetic tool for studying THO2, the core protein of

the THO/TREX complex (Pena et al., 2012).

As observed in mutant plants for other components of

the THO/TREX complex, tho2 mutants show reduced siR-

NA-mediated silencing, with a concomitant reduction in

the steady-state levels of siRNAs and tasiRNAs. We also

observed reduced levels of mature miRNAs and over-accu-

mulation of miRNA-targeted mRNAs in the tho2 mutant

plants (Figure 6). Previous reports have shown that other

components of the complex, such as THO1, regulate miR-

NA accumulation (Furumizu et al., 2010). However, TEX1,

which is required for siRNA and tasiRNA production, does

not appear to be involved in the miRNA pathway (Yelina

et al., 2010). Our data show that the tho2 mutants present

morphological and molecular phenotypes more severe

than those observed in mutants for other THO/TREX com-

ponents (Furumizu et al., 2010; Jauvion et al., 2010; Yelina

et al., 2010). This observation suggests that THO2 is central

for the functionality of the complex, while each accessory

protein may have a more specific function. This is sup-

ported by the extreme phenotype of the tho2 mutants and

the embryonic lethality of the THO2 null alleles. It is proba-

ble that, in the absence of THO2, but not of the other com-

ponents, the whole complex fails to assemble. However,

more experimentation is required to confirm this. Interest-

ingly, the tho2-7 mutation, which generates a truncated

messenger lacking the very last portion of the gene, does

not lead to any alteration in miRNA accumulation, but still

induces reduction of tasiRNAs, siRNA silencing and alter-

native splicing similar to what is observed for the other

alleles (Figures 6 and 7). This may indicate that the missing

portion of THO2 is, either by itself or through an interact-

ing partner, dispensable for the miRNA regulation but

essential for the other small RNA molecules. A potential

candidate in this last scenario is TEX1, as it has been

described as not being required for miRNA accumulation,

but its mutation drastically affects both the accumulation

of tasiRNAs and SUC2p:PDS transgene siRNAs (Smith

et al., 2007; Yelina et al., 2010). However, it has been

reported in yeast that the C-terminal region of the THO2

protein, a poorly conserved region of the protein, interacts

with nucleic acids but has little effect on the integrity of the

complex (Pena et al., 2012).

Despite many studies examining the function of the

plant THO/TREX complex, it remains unclear how the com-

plex acts in small RNA pathways. Using a yeast two-hybrid

approach, we observed that THO2 did not interact with any

of the tested miRNA processing components (Figures S1

and S5). This observation, together with the fact that THO2

is found in a different subcellular localization to the miRNA

processing factors, suggests that the effect on this pathway

is not at the miRNA processing level. This idea is in agree-

ment with the possibility that THO2 acts in multiple small

RNA pathways. It has been proposed that the THO/TREX

complex is required for transporting siRNA/tasiRNA pre-

cursors to an unknown subcellular location for their pro-

cessing (Yelina et al., 2010). This is consistent with the

known function of the complex in mRNA trafficking in

fungi and metazoans (Reed and Cheng, 2005). In the pres-

ent work, we show experimental evidence supporting such

a scenario. We show that THO2 is able to interact with

miRNA precursors, an interaction that appears to be impor-

tant for recruitment of these molecules to the processing

complex. The fact that tho2 mutants fail to accumulate sev-

eral classes of small RNAs may suggest that the complex

has a broad affinity for a common component of all these

pathways. Thus it is possible that the THO/TREX complex
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recognizes and transports double-stranded RNA, which,

despite the difference in their origin and nature, is a com-

mon feature of all small RNA precursors. Results obtained

in previous reports (Furumizu et al., 2010; Jauvion et al.,

2010; Yelina et al., 2010) suggest that each individual com-

ponent of the THO/TREX complex in plants, other than

THO2, specifically affects a small RNA pathway, probably

by differential preference for precursors.

In recent years, it has become evident that the miRNA

pathway is linked or at least affected by the splicing

machinery. Proteins such as SE, the cap-binding complex

and TOUGH have been found to play roles in miRNA bio-

genesis and alternative splicing in Arabidopsis (Kim et al.,

2008; Laubinger et al., 2008; Ren et al., 2012). Our results

revealed similar dual roles for THO2. Not surprisingly, the

weak loss-of-function alleles of tho2 display morphological

defects similar to se, cbp80, and cbp20 mutants, while both

se and tho2 null mutants die at embryonic stages (Hug-

ouvieux et al., 2001; Bezerra et al., 2004; Papp et al., 2004).

We found that THO2 shared nuclear localization with the

canonical splicing factor SR34p, and identified a case of

abnormal alternative splicing in the tho2 mutants. A gen-

ome-wide analysis of alternative splicing in plants mutated

in each of the genes encoding components of the complex

is required in order to understand how this process is

affected by dysfunction of the complex.

EXPERIMENTAL PROCEDURES

Plant materials and growth conditions

The tho2-5 mutant was isolated in a previously described for-
ward-genetics screen (Manavella et al., 2012a). tho2-1
(SALK_072011), tho2-2 (SALK_130342) and tho2-7 (SALK_144229)
were obtained from the Arabidopsis Biological Research Center
(https://abrc.osu.edu/). The tho2-6 mutant was isolated from an
Arabidopsis thaliana Landsberg erecta (Ler) activation tagging
screen performed using the pSKI015 vector as previously
described (Weigel et al., 2000). All seeds were sown on soil or
MS plates, and were cold-treated in the dark for 3 days before
transfer to growth chambers under long-day conditions (16 h
light/8 h of dark) at 22°C/20°C (day/night). PCR primers used to
genotype tho2 alleles are listed in Table S1.

Transgenes

The miRNA–reporter transgenic lines (35S:Luc;35S:amiRLuc) and
control lines (35S:Luc) have been described previously (Manavella
et al., 2012b). A triple GFP construct with nuclear localization sig-
nal (3xGFP:NLS) has been described previously (Mathieu et al.,
2007). THO2:eGFP and HYL1:mCHERRY constructs were obtained
by RT-PCR-mediated cDNA amplification, cloning into pCR8GW-
TOPO (Life Technologies, www.lifetechnologies.com), and recom-
bined into modified pGREEN vectors under the control of the
CaMV 35S promoter to generate C-terminal fusions with the fluo-
rescent proteins. The SRp34:RFP construct has been described
previously (Lorkovic et al., 2004). The THO2 genomic construct
(gTHO2), used to rescue tho2-5 mutants, was generated by fusing
the PCR-amplified THO2 cDNA and a 2000 bp fragment upstream

of the THO2 transcription start site. The obtained product was
cloned into pCR8GW-TOPO, and recombined into a modified
pGREEN vector to generate a mCitrine C-terminal fusion. Yeast
two-hybrid constructs were obtained by cloning the specific
cDNAs into pCR8GW-TOPO, followed by recombination into the
pDEST32 or pDEST22 vectors (Life Technologies). Arabidopsis
thaliana JAP3 and tho2-5 mutant plants were transformed using
the flower-dip method (Clough and Bent, 1998). Transgenic seed-
lings were selected using 50 mg ml�1 kanamycin on plates or
0.1% ammonium glufosinate on soil. At least 15 T1 seedlings were
analyzed for each construct. Transient infiltration of Nicotiana
benthamiana leaves was performed as described previously (de
Felippes and Weigel, 2010).

TAIL-PCR analysis

Genomic DNA samples were prepared from young leaves using a
modified cetyl trimethyl ammonium bromide method (Murray and
Thompson, 1980). To determine the sequences flanking the T-
DNA insertion, we used nested pSKI015-specific primers (TR1,
TR2, and TR3) and an arbitrary degenerate primer (P7) as
described by Liu et al. (1995). The resulting PCR products were
sequenced. The right border region was located using RB1, RB2
and RB3 primers. All primer sequences used are listed in Table
S1.

Expression analysis

Total RNA was extracted using an RNeasy plant mini kit (Qiagen,
www.qiagen.com) according to the manufacturer’s instructions.
Primers for RT-PCR and quantitative RT-PCR were designed in the
intron flanking regions. cDNA synthesis from 1 lg total RNA was
performed using an ImpromII reverse transcription system kit
(Promega, www.promega.com/), with an oligo(dT) primer, accord-
ing to the manufacturer’s instructions. Quantitative RT-PCR, small
RNA gel blots, confocal microscopy and luciferase measurements
were performed as previously described (Manavella et al., 2012b).
RNA blots to detect PDS-derived siRNAs were performed using a
radioactively labeled PCR-amplified fragment of the PDS gene as
probe. Primers used for quantitative PCR and as RNA probes are
listed in Table S1. Western blot analysis was performed using
anti-HYL1, anti-DCL1 and anti-AGO antibodies (Agrisera, www.
agrisera.com/) as previously described (Manavella et al., 2013).

Yeast two-hybrid assays and confocal microscopy

Yeast two-hybrid assays were performed using the ProQuestTM two-
hybrid system (Life Technologies), according to the manufacturer’s
instructions. To reduce auto-activation of THO2, we added 40–
120 mM 3-amino-1,2,4-triazole to the selection medium. For the
microscopy experiments, N. benthamiana leaves were transiently
co-transformed with a THO2:eGFP fusion and a HYL1:mCherry or
SR34p:RFP fusion (de Felippes andWeigel, 2010), and imaged using
a TCS SP2 confocal microscope (Leica, http://www.leicamicrosys-
tems.com/) on day 3 after infiltration.

RNA immunoprecipitation assay

RNA immunoprecipitation experiments were performed as previ-
ously described (Terzi and Simpson, 2009). Fifteen-day-old THO2:
eGFP, 3xGFP:NLS, Col-0, hyl1-2 and tho2-5 plants were grown on
MS agar plates. An anti-GFP antibody (Abcam, www.abcam.com),
an anti-HYL1 antibody (Agrisera) and Protein G–agarose beads
(Life Technologies) were used to immunoprecipitate protein–RNA
complexes. After elution of protein–RNA complexes, RNA and
proteins were extracted using TriPure reagent (Roche, http://
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www.roche.com). First-strand cDNA and RT-PCR of the associated
RNAs were performed as described above.

Splicing fragment analysis

RT-PCR fragments were analyzed using a Fragment AnalyzerTM

automated CE system (Advanced Analytical Technologies, http://
www.aati-us.com/). Diluted samples (1/10) were prepared using a
DNF-910/15L80M dsDNA reagent kit (Advanced Analytical Tech-
nologies), according to the manufacturer’s instructions. Separa-
tion results were analyzed using PROSize� 2.0 software
(Advanced Analytical Technologies).
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Small RNA accumulation in tho2-5 complemented mutants 

and gTHO2:mCitrine sub-cellular location. 

(a) RNA blots for detecting miRNAs, TAS1-derived tasiRNAs (siRNA 255), and siR1003. U6 was 

used as loading control. Relative small RNA abundance was calculated by measuring the band 

intensity with ImageJ and noted over each band. A combination of the THO2 promoter with the 

THO2 coding sequence fused to the fluorescent protein mCitrine (gTHO2) was used to confirm the 

role of THO2 in the small RNA production.  

(b) Confocal microscopy images showing the nuclear localization of gTHO2:mCitrine. The 

chlorophyll auto-fluorescence appears in red.  

 

Supplementary Figure 2. THO2 Y2H interaction screen.  

Yeast transformants were plated on selective medium without leucine and tryptophan (-LT), 

or without leucine, tryptophan and histidine (-LTH). All miRNA-related factors were cloned 

fused to the GAL4 activation domain (AD) while THO2 to the GAL4 binding domain (BD). 

Serial dilutions of the yeast were plated to ensure even initial yeast density. The known 

interaction between SERRATE (SE) and HYL1 was used as a positive control. 

 

Supplementary Figure 3. mRNA splicing in tho2 mutants. 

(a) RT-PCR analysis of splicing patterns of SR1, SR40, SR45 and SR34a in wild type and 

tho2 mutants. Histone was used as loading control. 

(b) Splicing pattern of MIRNA genes analyzed by RT-PCR. PCRs, using wild type genomic DNA 

(gDNA), were performed as amplification controls.  

 

Supplementary Figure 4. Expression and splicing of miRNA-related factors in tho2-5 

mutants. 

(a) qRT-PCR analysis of miRNA-biogenesis factors in wild type and tho2-5 plants. Error bars 

indicate 2 x standard error of the mean (SEM). 

(b) mRNA splicing pattern of MiRNA-related genes analyzed by RT-PCR. Primers used for the 

analysis expand the full-length coding region (HYL1), exons 7-12 (SERRATE), exons 14-20 (DCL1), 

exons 2-10 (AGO1a) and exons 13-22 (AGO1b). PCRs, using wild type Col-0 genomic DNA 

(gDNA), were performed as amplification controls.  

(c) AGO1, HYL1 and DCL1 protein accumulation in wild-type Col-0, tho2-5 mutant and tho2-5 

compensated mutant plants as detected by western blot. Proteins extracted from ago1-36, hyl1-2 and 



dcl1-100 mutants were used as antibody specificity controls. Coomassie staining is shown in the 

bottom of each blot as loading control.  

 

Supplementary Figure 5. THO2-DAWDLE, -ABH1 and –CBP20 Y2H interaction.  

Yeast transformants were plated on selective medium without leucine and tryptophan (-LT), 

or without leucine, tryptophan and histidine (-LTH). THO2, DAWDLE (DDL), CAP-

BINDING PROTEIN 20 (CBP20) and ABA HYPERSENSITIVE 1 (ABH1) were fused to 

the GAL4 activation domain (AD) and GAL4 binding domain (BD). Serial dilutions of the 

yeast were plated to ensure even initial yeast density. The known interaction between 

SERRATE (SE) and HYL1 was used as a positive control. 

 

 

 

SUPPLEMENTARY TABLES 

Supplementary Table 1. DNA oligonucleotide primers and probes. 
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Supplementary Table 1.	
Oligonucleotides Oligonucleotide Sequence (5' to 3') Purpose 

TR1 TTGCTTTCGCCTATAAATACGAC TAIL-PCR 
TR2 ATAATAACGCTGCGGACATCTAC TAIL-PCR 
TR3 CTTTCTTTTCCTCCATATTGACC TAIL-PCR 
P7 GWWGGTSCWASWCTG TAIL-PCR 
RB1 ACTCACTATAGGGCGAATTGGAGC TAIL-PCR 
RB2 CTATCGTTCAAGATGCCTCTACCG TAIL-PCR 
RB3 GACGTTCCAACCACGTCTTCAAAG TAIL-PCR 
THO2 F: CCGCTACTGGAGTGTAAGTACGTG 

R: GGACTGTCTGTGATTCCACAAGCC 
RT-PCR, Genotyping 

T-DNA-F GCGTGGACCGCTTGCTGCAACT Genotyping 
Primers-1 F: CCGCTACTGGAGTGTAAGTACGTG 

R: GGACTGTCTGTGATTCCACAAGCC 
RT-PCR 

Primers-2 F: TTAATGGTTTCCTCTCTGTGG 
R: CTGTGTCAAGTACTTGAAGGC 

RT-PCR 

Primers-3 F: CAACATCATTTGGCATGATGCG 
R: TACATATCAGGACATCAATGTGG 

RT-PCR 

Primers-4 F: AAGGATACATGGTTGAGCTCC 
R: ATAATAAGGGCATTACGAATCTCC 

RT-PCR 

Primers-5 F: TGACGAGAATCCTGTCAAACC 
R: CTATCATAACTCCTAGTTGTTCC 

RT-PCR 

SR1/SR34 F: TCGACGACCAACAGAATGAG 
R: GCTAGGGCTCTTGCTTCCTT 

RT-PCR 

SR34b F: GGCGATATCCGTGAAAGAGA 
R: TCTTCCAACAGACCCAGCTT 

RT-PCR 

RS31 F: GGAACGGTTGTTCGACAAGT 
R: GGACTTGGACGCCTACGATA 

RT-PCR 

SR30 F: CGCAAGTGTGAGGTTGAAGA 
R: ATGCAGCCGAGACAGAGTTT 

RT-PCR 

SR34a F: TTGGCTTCAGACCAAATCTTC 
R: TTCTTTTGGCCATTTTCACC 

RT-PCR 

SR30 F: CGCAAGTGTGAGGTTGAAGA 
R: ATGCAGCCGAGACAGAGTTT 

RT-PCR 

RS40 F: ACTACGCCTGCCAAAATCAT 
R: CACCATCATACCCACCATCA 

RT-PCR 

SR45 F: TGACGCTGAGAAAGATGGTG 
R: CCTTCTTCGAACAGGACTGC 

RT-PCR 

Histone H3 F: TTGGAAGAAACAATGGCTCGTACC 
R: AAGCTTAAGCACGTTCTCCACG 

RT-PCR 

JAP RAGE LB3 CCGGCATGCAAGCTGATATC T-DNA genotyping 
PDSa F: TCAGCGGCCGCTTTGTATGCCAGTAGTGGATCATA 

R: CTAGTCGACGAGTTTCTCAAGTTCTTTCATTGTTG 
RT-PCR 

PDSb F: GAACAACGAGATGCTGACATG 
R: TTCCAGGGATCTGGTAAAAGGAG 

qRT-PCR 

Actin F: GCCATCCAAGCTGTTCTCTC 
R: GAACCACCGATCCAGACACT 

qRT-PCR 

miR396 CAGTTCAAGAAAGCTGTGGAA RNA blot Probe 
miR168 TTCCCGACCTGCACCAAGCGA RNA blot Probe 
miR171 GATATTGGCGCGGCTCAATCA RNA blot Probe 
miR319/159 AGGGAGCTCCCTTCAGTCCAA RNA blot Probe 
miR164 TGCACGTGCCCTGCTTCTCCA RNA blot Probe 
miR172 ATGCAGCATCATCAAGATTCT RNA blot Probe 
siRNA255 TACGCTATGTTGGACTTAGAA RNA blot Probe 
siR1003 ATGCCAAGTTTGGCCTCACGGTCT RNA blot Probe 
U6 GCTAATCTTCTCTGTATCGTTCC RNA blot Probe 
PDS siRNAs F: TCAGCGGCCGCTTTGTATGCCAGTAGTGGATCATA  

R: CTAGTCGACGAGTTTCTCAAGTTCTTTCATTGTTG 
RNA blot Probe 

Pre-miR159a F: GGTCTTTACAGTTTGCTTATG 
R: AGAAGGTGAAAGAAGATGTAG 

qRT-PCR 

Pre-miR319b F: GGTCCACTCATGGAGTAATATGTG 
R: AGGGAGCTCCCTTCAGTCCAAGC 

qRT-PCR 

Pre-miR172c F: CTGTTGGAGCATCATCAAGATTC 
R: AGCCACTGATTGCAGCTGCA 

qRT-PCR 

Pre-miR167a F: TGAAGCTGCCAGCATGATCT qRT-PCR 



R: AACGGGTGAAACTGCGAACA 
Pre-miR168a F: CACCATCGGGCTCGGATTCGC 

R: AGTTGATGCAAGGCGGGATCC 
qRT-PCR 

TCP3 F: AGGGATGATGATGGTGGAGA 
R: CGGAGGATTTGTGTTTGCTT 

qRT-PCR 

MYB33 F: GAGTTTCATCTGCATTTTGTGTG 
R: TCCCTTCATTCCAATATTCAG 

qRT-PCR 

ARF8 F: CCACCACTGCCTTCTCCA 
R: TTCAGCAGCTACCACGAGCTG 

qRT-PCR 

AP2 F: TACACGTACTTCGCCGACAA 
R: GGTGTCGAACAAACCCAAAT 

qRT-PCR 

TOE2 F: ACTGGACTGATCATGCCCTT 
R: ATGGAGAACCACATGGCTG 

qRT-PCR 

HYL1 F: GTGCCAGAAGGTCGAAACTC 
R: CAGTTCTCCCAGCGCTAATC 

qRT-PCR 

DCL1 F: TCAAGTAGAAGAACCGCAGCTG 
R: AAGAGATTTACGTTTGGGGTAAGAG 

qRT-PCR 

SERRATE F: CACAGAAGGTGGCAAAGGAT 
R: CGACAAGCTCCTGTAATCAATAAC 

qRT-PCR 

AGO1 F: TCAGCAGTAGAACATGACACG 
R: TCGGTGGACAGAAGTGGGAATA 

qRT-PCR 

BETA-TUBULIN2 F: GAGCCTTACAACGCTACTCTGTCTGTC 
R: ACACCAGACATAGTAGCAGAAATCAAG 

qRT-PCR 

MIR162A F: GAGAGAGGAGGGATGTAGTAGGC 
R:		GCAGCTCAAGGCATGGCAGA 

RT-PCR 

MIR163 F:	GGTTGTGCCTGAAAATATGGGTTTC 
R:	CACAACCATTTGCATTCCTTCGGAGG 

RT-PCR 

MIR400 F: CCGAATCAGCTTGAAGCAAAAATCG 
R: TAGTGAATCATAGGGTTCCACC 

RT-PCR 

AGO1a F:	CTTTGCTGAACTGCCTGATAAGG 
R: AGCATAATCATTGAGTTGCACCG 

RT-PCR 

AGO1b F:	GATCTGCTTATTGTCATTCTGCCCG 
R:	TCAGCAGTAGAACATGACACG 

RT-PCR 

DCL1 F:	GATGTTGAACCCTCCACGAC 
R:	TCAAGAAAAAGTTTTATTTAAAAGCTC 

RT-PCR 

HYL1 F:	ATGACCTCCACTGATGTTTC 
R:	CAAGCTCCTGTAATCAATAAC 

RT-PCR 

SERRATE F:	CACAGAAGGTGGCAAAGGAT 
R:	CAAGCTCCTGTAATCAATAAC 

RT-PCR 
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The biogenesis of microRNAs (miRNAs), which regulate mRNA
abundance through posttranscriptional silencing, comprises multi-
ple well-orchestrated processing steps. We have identified the Ara-
bidopsis thaliana K homology (KH) domain protein REGULATOR OF
CBF GENE EXPRESSION 3 (RCF3) as a cofactor affecting miRNA bio-
genesis in specific plant tissues. MiRNA and miRNA-target levels
were reduced in apex-enriched samples of rcf3 mutants, but not
in other tissues. Mechanistically, RCF3 affects miRNA biogenesis
through nuclear interactions with the phosphatases C-TERMINAL
DOMAIN PHOSPHATASE-LIKE1 and 2 (CPL1 and CPL2). These inter-
actions are essential to regulate the phosphorylation status, and
thus the activity, of the double-stranded RNA binding protein and
DICER-LIKE1 (DCL1) cofactor HYPONASTIC LEAVES1 (HYL1).

micro RNA biogenesis | Arabidopsis thaliana | HYL1 | phosphorylation |
gene silencing

Micro RNAs (miRNAs) are short 21- to 24-nucleotide (nt)-
long single-stranded RNAs that play an important role in

posttranscriptional gene regulation in many multicellular organ-
isms. In plants, after transcription of an MIRNA gene by RNA
polymerase II, the primary miRNA (pri-miRNA) is incorporated
into nuclear bodies known as D-bodies (1). There, it undergoes a
two-step maturation process orchestrated by the ribonuclease
DICER-LIKE1 (DCL1) (2). In a first step, DCL1, aided by co-
factors including the C2H2-zinc finger protein SERRATE (SE),
the nuclear cap-binding complex (CBC), the double-stranded
RNA-binding protein HYPONASTIC LEAVES1 (HYL1), and the
HYL1 phosphatase C-TERMINAL DOMAIN PHOSPHATASE-
LIKE1 (CPL1), removes the two single-stranded RNA tails of
the pri-miRNAs to form a largely double-stranded miRNA
precursor (premiRNA) (2–5). For accurate excision of the final
miRNA:miRNA* duplex and subsequent sorting of the active strand
into specific effector complexes, the interaction between HYL1, SE,
and DCL1 is crucial. In this context, it has been shown that de-
phosphorylation of HYL1 by CPL1 is important for correct pro-
cessing and strand selection of the mature miRNAs (3). In the
cytoplasm, the miRNAs associate with an ARGONAUTE (AGO)
protein to form the active RNA-induced silencing complex (RISC).
Guided by the sequence complementarity of the miRNA to its
target, the RISC either induces cleavage or inhibits the translation
of target mRNAs (6).
Mutations in genes encoding plant miRNA-related proteins

cause a broad range of phenotypes, from embryo lethality of dcl1
and se null mutants to various developmental and physiological
defects in hyl1, ago1, and hen1 mutants (4, 7–9). It is unclear how
much of this variation in phenotypes reflects genetic redundancy,
different processing requirements for different miRNA precur-
sors, or tissue- and stage-specific activity of miRNA-related
proteins. In animal systems, several protein complexes and cofac-
tors that regulate different steps of miRNA biogenesis and function
have been isolated and characterized (10). Only recently, an in-
creasing number of miRNA biogenesis cofactors have been iden-
tified in plants. Most of the specific regulatory events controlled by
these cofactors are not yet fully understood (3, 5, 11–16).

A number of genetic screens have been carried out to fill
in the remaining blanks in the plant miRNA biogenesis pathway
(3, 17–19). We have used an assay that exploits silencing of lu-
ciferase by an artificial miRNA as a reporter for miRNA activity
to identify candidates for factors affecting miRNA biogenesis or
function (3). Among the isolated mutants were two new alleles of
REGULATOR OF CBF GENE EXPRESSION 3 (RCF3), also
known as SHINY1 and HIGH OSMOTIC STRESS GENE
EXPRESSION 5 (HOS5). RCF3 encodes one of the 26 K-homology
(KH) domain proteins in Arabidopsis thaliana. KH domains
are also found in heterogeneous nuclear ribonucleoprotein
K (hnRNP K) and poly-r(C)-binding proteins (PCBPs) and are
predicted to bind RNA (20–22). RCF3 contributes to tolerance
against various stresses, including low temperature and osmotic
stress and response to the stress hormone abscisic acid (21–23).
RCF3 and CPL1 both interact with the splicing factors RS40
and RS41, and rcf3 mutants show aberrant intron retention
(21). In association with CPL1, RCF3 also seems to inhibit
transcription of a number of genes by preventing mRNA cap-
ping and thereby disabling the transition from transcription
initiation to elongation (22).

Significance

Micro RNAs (miRNAs) are small RNA molecules that regulate
gene expression posttranscriptionally in a process known as
gene silencing. Fine-tuning the production of miRNAs is es-
sential for correct silencing of their targets, which in turn is
important for homeostasis and development. To fine-tune the
production of miRNAs, plants deploy a combination of proteins
that act as cofactors of the miRNA-processing machinery. Here,
we describe REGULATOR OF CBF GENE EXPRESSION 3 (RCF3)
as a tissue-specific regulator of miRNA biogenesis in plants.
RCF3 interacts with the phosphatases C-TERMINAL DOMAIN
PHOSPHATASE-LIKE1 and 2 (CPL1 and CPL2), ultimately affecting
the phosphorylation of one of the main DICER-LIKE1 (DCL1)
accessory proteins, HYPONASTIC LEAVES1 (HYL1), with a con-
comitant effect on miRNA production.
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Here, we identify RCF3 as a regulator of CPL1-mediated HYL1
phosphorylation. We report that RCF3 localizes to similar nu-
clear speckles as other miRNA factors, including CPL1, DCL1,
and SE. RCF3 interacts with CPL1 and its close homolog CPL2.
Inactivation of RCF3 causes a shift of HYL1 phosphoisoforms
toward the less active, hyperphosphorylated version. Accordingly,
rcf3 mutant defects can be corrected by overexpression of a
hypophosphorylation mimic of HYL1. Unlike other known plant
miRNA cofactors, RCF3 regulation of HYL1 phosphorylation
and miRNA biogenesis takes place in specific niches in the re-
gions spanning the vegetative and reproductive apices. Tissue-
biased regulation of miRNA biogenesis is thus a phenomenon
shared by plants and animals.

Results
Identification of Two RCF3 Mutant Alleles as miRNA-Deficient Mutants.
We identified several candidate genes required for miRNA bio-
genesis or function in a mutant screen using an artificial miRNA
(amiRNA) that silences luciferase (3). Using whole genome se-
quencing and SHORE mapping (24), we mapped the locus re-
sponsible for apparent reduction of amiRNA activity, evident
through reactivation of luciferase activity, in one of the isolated
mutants to a region on chromosome 5 where we identified a
mutation in the RCF3 (At5g53060) gene (Fig. 1A and Fig. S1A).
This allele, rcf3-3, contains a polymorphism that disrupts the first
splice acceptor site in the middle of the sequence encoding the
second of five KH domains (Fig. 1A). The mutation causes the
splicing machinery to use an alternative cryptic acceptor site 7 nt
downstream, as revealed by cloning and sequencing of mutant RCF3
cDNA. This aberrant splicing leads to a frame shift and premature
termination of translation (Fig. 1B). An additional allele isolated in
our laboratory from an unrelated miRNA genetic screen, rcf3-4,

contained a nonsynonymous substitution that affected the third KH
domain (Fig. 1A and Fig. S1A). The exact same mutation has pre-
viously been identified in another screen (22). Transformation of the
mutants with a genomic fragment of the WT RCF3 locus restored
silencing of the luciferase reporter and reverted the morphological
phenotype in both rcf3-3 and rcf3-4, confirming that the mutations in
RCF3 were the cause of the observed phenotypes (Fig. 1C and Fig.
S1B). Although rcf3-3 mutants have only subtle morphological
defects, rcf3-4 mutants were visibly impaired in growth and de-
velopment, with elongated, rolled leaves and overall bushy growth
(Fig. 1D and Fig. S1 C and D). The fact that rcf3-4, a missense
allele, presents stronger defects than rcf3-3, a potential null mu-
tant, suggests that redundantly acting factors might substitute for
RCF3 when it is completely absent, as observed in other cases of
unusual genetic redundancy (3). A database search for potential
RCF3 homologs revealed that 12 of the 26 KH domain proteins
encoded in the A. thaliana genome are closely related to RCF3
and are candidates for such redundant action (20) (Fig. S2).

RCF3 Regulates miRNA Biogenesis Predominantly in Specific Plant
Tissues. To determine whether RCF3 is required for miRNA
biogenesis or for miRNA function, we evaluated the steady-state
levels of mature miRNAs, miRNA precursors, and miRNA-tar-
geted mRNAs in rcf3 mutants. MiRNAs and their precursors, as
well as miRNA-targeted mRNAs, seemed largely unaffected in
whole 14-d-old seedlings, as determined by quantitative RT-PCR
(RT-qPCR) (Fig. S3 A–C). MiRNA levels were also only mildly
affected in rosette leaves of 25-d-old plants, as determined by RNA
blots (Fig. S3D). Similarly, deep sequencing analysis of small
RNAs extracted from 25-d-old leaves did not show significant dif-
ferences in the abundance of miRNAs or miRNA*s between mu-
tants and WT plants. Hierarchical clustering of genome-wide
small RNA coverage profiles within 20 bases of either side of

Fig. 1. Characterization of rcf3mutants. (A) Location and effects of mutations on
the RCF3 protein. Red arrows note the forward and reverse primers used in B to
detect the effect of rcf3-3 mutation on splicing. The five KH domains are marked
in blue. (B) RT-PCR analysis of rcf3-3, with genomic DNA (gDNA) for comparison.
Sequencing revealed use of a cryptic splice acceptor site in themutant, leading to a
frame shift containing an early stop codon. (C) Bioluminescence phenotype of rcf3
mutants, complemented mutants, amiRNA-activity reporter line (reporter), and
Pro35S:rLUC controls. Colored scale indicates low (blue) to high (white) lumines-
cence. (D) Morphological defects in rcf3 mutants. (Scale bar: 2 cm.)

Fig. 2. RCF3 expression and activity. (A) Bioluminescence activity in 10-d-old
mutant plants, indicating preferential restoration of reporter activity in
young tissue around the shoot apex. (Top) Luminescence. (Bottom) Lumi-
nescence merged with bright field image. Colored scale indicates low (blue)
to high (white) luminescence. (B) Expression of RCF3 visualized by in situ
hybridization. (Left) Antisense probe. (Right) Sense probe.
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mature miRNAs revealed only very subtle misprocessing of
miRNA precursors in rcf3, albeit sufficient to allow mutant sam-
ples to cluster together (Fig. S3E). These observations were at first
glance surprising, considering that the new rcf3 mutant alleles
were isolated from miRNA activity-reporting screens. A closer
inspection of the mutant plants with a CCD camera revealed that
the activity of luciferase was largely confined to the vegetative
apical region (Fig. 2A and Fig. S4 A and B). This observation
suggested that RCF3 might act, at least in the miRNA pathway,
predominantly in this region of the plant. In agreement with this
hypothesis, in situ hybridization showed that RCF3 mRNA is
abundant in the vegetative shoot apical meristem, young leaf
primordia, and newly emerging leaves, a group of tissues herein-
after referred to as “vegetative apex” (Fig. 2B). Also in agreement
with a spatially limited role of RCF3 in miRNA biogenesis, a clear
reduction in the levels of several miRNAs was seen in very young
(5- to 10-days-old) seedlings, which are enriched in vegetative
apex tissue, whereas these differences largely disappeared in older
plants (Fig. 3 A and B). The reduction in miRNA levels was
paralleled by higher accumulation of several target mRNAs (Fig.
3C). The tissue-preferential effect of RCF3 on miRNA accumu-
lation and activity was confirmed with RNA isolated from 14-days-
old vegetative apices, in which reduction in mature miRNAs and
corresponding overaccumulation of miRNA-targeted mRNAs was
much more evident (Fig. 3 D–F) than in age-matched whole-plant
samples (Fig. S3 A, B, and D). Supporting the role of RCF3 in the
miRNA pathway, a genome-wide analysis of small RNA levels in
14-days-old vegetative apices showed a clear reduction in miRNA
accumulation without a detectable change in the abundance of
other small RNAs (Fig. 4 A and B). This effect was particularly
pronounced for highly expressed miRNAs, such as miR158a,
miR166, miR159/319, and miR165 (Fig. 4C and Dataset S1).
We also observed, in the genome-wide small RNA analysis, an

overaccumulation of miRNA* in rcf3 mutants compared with
WT vegetative apices, indicating a shift in miRNA precursor pro-
cessing activity or altered AGO1 strand retention in rcf3 mutants

(Fig. 4B). A similar shift toward miRNA* accumulation has been
described in cpl1 and hyl1 mutants, where misprocessing leads to
altered miRNA/miRNA* ratios for a large portion of miRNAs. Our
finding of a similar defect in rcf3 mutants (Fig. 4D) suggests that
RCF3 might act through CPL1 and HYL1, which would be in line
with the reported protein–protein interactions between RCF3 and
CPL1 and between CPL1 and HYL1 (3, 21, 22).
Available expression data for RCF3 (25) report a peak of ex-

pression not only in the vegetative apex, but also in the re-
productive apex, which we confirmed by RT-qPCR (Fig. S4C). We
therefore monitored miRNA accumulation also in young rcf3 in-
florescences (samples, from here on referred to as “reproductive
apex,” included only young closed flower buds). Northern blot and
RT-qPCR measurement of mature miRNAs revealed that rcf3
mutant reproductive tissues accumulate lower levels of miRNAs,
similarly to what we observed in vegetative apices (Fig. 3G and
Fig. S4D). We also detected an overaccumulation of miRNA-
targeted mRNAs and a particularly high reactivation of the
amiRNA-activity reporter in the inflorescences (Fig. S4 E and F).
Together, these findings suggest that RCF3, due to its pre-
dominant expression in the reproductive and vegetative apical
regions, affects miRNA accumulation and activity unevenly across
plant tissues. RT-qPCR revealed no significant change of pri-
miRNAs and known miRNA-related factors in rcf3 mutants, ex-
cluding that a potential transcription or splicing alteration was the
cause of the observed phenotype (Fig. S5 A and B). However, we
saw a slight overaccumulation of CPL1 mRNAs in the mutant
plants (Fig. S5B). Because this protein is a functional partner of
RCF3 (this work and ref. 26), we speculate that the increase in
transcript levels is probably a feedback response compensating for
the reduction in RCF3 activity.
It has been previously shown that RCF3 is also expressed in

other tissues besides the vegetative and reproductive apices (21,
22). An analysis of the RCF3 genomic location showed that the
gene is located in a dense region of chromosome 5, with 11 genes
in a 20-kb window. There are two natural antisense genes

Fig. 3. miRNA levels and activity. (A) RNA blots for detection of mature endogenous miRNAs and amiRNA against luciferase (amiR:Luc) in a time course of
5- to 17-days-old whole seedlings. U6 was used as loading control. Samples were loaded on the same gel at 12-min intervals. Signal intensity was calculated with
ImageJ and normalized to U6. Above each gel, the ratio of signal intensities of mutants to reporter control is noted. (B and C) Expression of mature miRNAs and
miRNA targets as measured by RT-qPCR. Error bars indicate 2× SEM. The y axis shows the log2 of the relative expression. (D) RNA blots for detection of mature miRNAs
and amiR:Luc in samples collected from 14-d-old whole plants or dissected vegetative apices. Expression relative to the reporter line is given on top. (E and F) Ex-
pression of mature miRNAs and miRNA targets as measured by RT-qPCR in the same samples as in D. Error bars indicate 2x SEM. The y axis shows the log2 values of
relative expression. (G) RNA blots for detection of mature miRNAs in samples collected from inflorescences. Band intensity relative to the reporter line is given on top.
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(At5G53050 and At5G53048) located 3,175 bp upstream of the
RCF3 transcription start site (TSS) (Fig. S6A). Antisense genes
can trigger transcriptional gene silencing (TGS) through small
RNA-mediated DNA methylation. A bioinformatics search
revealed the presence of DNA methylation marks and a peak of
small RNAs mapping at ∼2,500 bp upstream of the RCF3 TSS
(Fig. S6A). Notably, in previous reports where a promoter:GUS
fusion was generated to determine the RCF3 expression pattern,
the promoter fragments used did not extend into this particular
region. To check whether the region influences the expression of
RCF3, we cloned a larger fragment of the promoter. To our sur-
prise, the new construct showed a far less promiscuous expression
compared with the reported activity of the shorter constructs (Fig.
S6B). Supporting the idea of RCF3 being subject to transcriptional
gene silencing (TGS), T1 plants carrying the reporter construct
presented stronger GUS signal compared with their T2 counter-
parts. These data suggested a new layer of regulation on RCF3
expression that will require furthers studies to dissect.

RCF3 Interacts with CPL1 and CPL2 to Regulate HYL1 Activity. Using
transient expression of fluorescent-tagged fusion proteins, we
found that RCF3 accumulated in nuclear speckles, where it

colocalized with DCL1, SE, and CPL1, supporting a role for
RCF3 as a miRNA biogenesis cofactor (Fig. 5A). To identify
direct partners of RCF3 in the miRNA pathway, we performed a
yeast two-hybrid (Y2H) interaction screen with RCF3 fused to
GAL4-BD against a collection of 18 small RNA-related proteins.
Among these proteins, RCF3 interacted only with CPL1 (Fig. 5B
and Fig. S7A); this interaction has been previously reported (21,
22, 27) and confirmed in planta by bimolecular fluorescence
complementation (Fig. S7B). RCF3 also interacted with CPL2 in
yeast and plants (Fig. 5C and Fig. S7B), consistent with a partly
redundant function of CPL1 and CPL2 (3). This interaction was
not seen in another study (27), which, different from our experi-
ments, did not use the full-length CPL2 protein. The interaction of
RCF3 with CPL1/CPL2, together with the overaccumulation of
miRNA* molecules in rcf3 and cpl1mutants, suggested that RCF3
acts in the miRNA pathway through CPL1/2.
The miRNA biogenesis cofactor HYL1 is subject to phos-

phorylation, which regulates its activity (3, 28). HYL1 phosphor-
ylation depends on CPL1, CPL2, and MITOGEN-ACTIVATED
PROTEIN KINASE 3 (MPK3). In cpl1 mutant plants, HYL1 is
hyperphosphorylated, and miRNA processing and strand selection
are impaired (3). Because RCF3 interacted with CPL1 and CPL2,
but not with HYL1, we tested whether lack of functional RCF3
had an indirect effect on HYL1 phosphorylation. The different

Fig. 4. sRNA, miRNA, and miRNA* levels in rcf3 vegetative apices. (A) Fraction
of reads mapping to the A. thaliana genome (TAIR 10), miRNA hairpins, and
mature miRNAs. (B) Normalized counts per million mapped reads of all small
RNAs, mature miRNAs, and miRNA*s. (C) Normalized counts per million
mapped reads of highly and lowly expressed miRNAs. (D) Ratio of miRNA/
miRNA* between mutants and control plants. For unique miRNAs (i.e., 156a-f),
the ratio was calculated using the sum of all associatedmiRNA*s. The ratio was
calculated only for those miRNAs that had greater than 2 counts per million in
at least two samples. To compare the mutant to WT ratios, we first averaged
the ratios of theWT replicates and then divided themutant ratios by themean
WT ratio. The data were plotted as the log2 of the ratio mutant/WT showing
misprocessed miRNAs as values below 0. Two biological replicates for each ge-
notype: control miRNA-activity reporter line (reporter), hyl1-2, rcf3-3, rcf3-4.

Fig. 5. Subcellular localization of RCF3. (A) Nuclear localization of RCF3:
eGFP and colocalization with DCL1, SE, and CPL1 tagged with mCherry in
transiently transformed N. benthamiana leaves. (Scale bar: 5 μm.) (B and C)
Interaction of RCF3 with CPL1 and CPL2 in yeast two-hybrid assays. AD, GAL4
activation domain fusions; BD, GAL4 DNA binding domain fusions; EV, AD,
or BD empty vectors; −LT, medium without leucine and tryptophan; −LTH,
without leucine, tryptophan, and histidine. Shown are 1:10 serial dilutions.
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phosphoisoforms of HYL1 were detected with the help of Phos-
tag, a chemical compound that reduces the mobility of phos-
phorylated proteins in polyacrylamide gels. A strong shift toward
hyperphosphorylated HYL1 was detected in 7-days-old rcf3 mutant
seedlings, even more so than in cpl1mutants (Fig. 6A). Identity of the
HYL1 bands was verified with total protein samples extracted from
hyl1-2 mutants (Fig. 6A, lane 2). In agreement with RCF3 being
primarily active in very young tissues, we did not detect any change
in HYL1 phosphorylation in old plants or fully expanded leaves.
If excessive HYL1 phosphorylation contributes to the mor-

phological defects in rcf3 mutants, it should be possible to ame-
liorate these phenotypes by expressing a version of HYL1 that
cannot be phosphorylated, mimicking the hypophosphorylated
form of the protein. To test this hypothesis, rcf3 mutants were
transformed with two HYL1 phospho-mimics in which all poten-
tially phosphorylated serines were mutated to aspartic acid (S >
D) or alanine (S > A), to mimic either a hyper- or hypo-
phosphorylated HYL1, respectively (3). Supporting a role of
RCF3 in HYL1 phosphorylation, the morphological rcf3 mu-
tant defects were suppressed only in plants transformed with the
hypophosphomimic (S > A) (Fig. 6 B and C). This rescue of the
rosette leaf phenotype accords with our observation that RCF3 is
highly expressed in the vegetative apex, where leaf shape is de-
termined in leaf primordia.

Discussion
In animals, a series of proteins with specialized roles in miRNA
biogenesis have been identified (10). In contrast, the differential
contributions of individual proteins to miRNA biogenesis in
plants are less well-understood even though mutations in these
cofactors often cause distinct developmental and physiological de-
fects. We have identified the KH domain protein RCF3 as a
miRNA biogenesis cofactor that acts preferentially at the vegetative
and reproductive apices. RCF3 promotes dephosphorylation of
HYL1 (Fig. 6), likely through interaction with CPL1 and its ho-
molog CPL2. In the vegetative apex, rcf3 mutations seem to have a

stronger effect on HYL1 phosphorylation than cpl1 single mutations.
This phenomenon might be explained by both CPL1 and CPL2 being
subject to RCF3 action in this tissue, thus with rcf3mimicking cpl1/
cpl2 double mutants. A comparison of the HYL1 phosphorylation
status detected in Fig. 6A, using young tissues, and in a previous
report (3), where fully expanded leaves were used, suggests tissue-
specific and possibly developmental stage-specific regulation of
HYL1 activity by changes in its phosphorylation profile. An ex-
pression analysis using transcriptome datasets (25) revealed that,
whereas CPL2 is accumulated rather evenly across tissues (CPL1
is not included in the analyzed datasets), RCF3 is expressed most
strongly in apices (Fig. S8). In a recent study, the protein kinase
MPK3 was reported to trigger HYL1 phosphorylation, potentially
antagonizing CPL1/2 function (28). Because MPK3 transcripts are
low in vegetative apices compared with other tissues, opposite to
RCF3 (Fig. S8), the shoot apex might be a niche where HYL1
activity, and therefore miRNA biogenesis, is particularly high
because of high RCF3, but low MPK3 activity.
CPL1 and RCF3 negatively regulate the mRNA capping of

several genes and play a role in splicing (22). Links between
miRNA biogenesis, mRNA splicing, and capping activity have
been established earlier for SE and the cap-binding complex (5, 29).
These observations possibly position the CPL1–RCF3 complex
close to SE and the cap-binding complex, suggesting that CPL1 and
RCF3 might be recruited to pri-miRNA molecules early during
their transcription. Even though RCF3 can interact with CPL1 and
CPL2 (this work and refs. 30–34), its overall effects are more limited,
at least partially because of the more restricted expression of RCF3.
Simultaneous loss of CPL1 and CPL2 causes embryonic lethality
whereas rcf3-null mutants have only minor developmental defects.
Integrating our data into the larger picture of miRNA bio-

genesis, we propose a hypothetical mode of action for RCF3 in
the context of CPL1/2 and HYL1. Recently, it has been shown
that DCL1 is recruited to pri-miRNAs during transcription (35).
Due to their role in splicing, it is possible that additionally also
SE and CPL1 are, like DCL1, among the first components to be
recruited to the pri-miRNA during transcription. In the absence of
CPL1, likely CPL2 will be incorporated instead (3). After this initial
complex is formed, HYL1 and RCF3 might join the complex, a step
dependent on both proteins’ phosphorylation status, and anchor the
precursors by specific RNA and protein interactions (3, 26). Both
HYL1 and RCF3 are recruited to the complex in their hypo-
phosphorylated isoforms: states that are reached due to the CPL1/2
phosphatase activity and antagonized by MPK3 (3, 26, 28). Locali-
zation experiments revealed that CPL1 activity is required for the
correct localization of RCF3 and HYL1 (3, 21). The RCF3 mech-
anism of action, once the protein is recruited to the complex, re-
mains unclear. We found that RCF3 affects the CPL1/2-mediated
desphosphorylation of HYL1, but the specifics of this action are still
unresolved. In this sense, rcf3mutants present normal CPL1 nuclear
speckle localization (21), excluding the positivity of RCF3 being
necessary for the CPL1 recruitment to the complex. One possibility
is that RCF3 directly stimulates the enzymatic activity of CPL1/2
or that it serves as a bridge between CPL1 and HYL1. In any
case, an extensive biochemical analysis will be required to dissect
these possibilities.

Materials and Methods
Plant Material. A. thaliana accession Columbia (Col-0) or Nicotiana ben-
thamiana seeds were surface sterilized with 10% (vol/vol) bleach and 0.5%
SDS and stratified for 2–3 d at 4 °C. Plants were grown at 23 °C either on soil
or on Murashige–Skoog (MS) plates (1/2 MS, 0.8% agar, pH 5.7) in long days
(16 h light: 8 h dark). hyl1-2 (N564863, SALK_064863), cpl1-7, and rcf3-4
mutants have been described (3, 4, 22).

Transgenes. RCF3 and CPL2 coding regions were amplified by RT-PCR from
RNA isolated from 10-days-old seedlings and cloned into pCR8GWTOPO. These
constructs were used for Gateway-mediated recombination with ProQuest
(Life Technologies) compatible vectors and pGREEN vectors. A detailed list of
all constructs can be found in Table S1. The miRNA activity reporter (throughout
the manuscript named “reporter”), the CPL1-fusion proteins, and the phos-
phomimic constructs have been described (3). As a positive luciferase control,

Fig. 6. Effect of RCF3 onHYL1 phosphorylation. (A) Phosphoproteinmobility shift
assay, using PhosTag and anti-HYL1 antibodies. Hypo- and hyperphosphorylated
HYL1 forms are indicated as P− and P+, respectively. Coomassie staining
below as loading control. The intensity of the bands was measured with ImageJ
and is expressed as the ratio of the hyper-/hypophosphorylated forms. (B and C)
14-days-old plants and leaf series, showing phenotypic rescue after trans-
formation with HYL1 hyper- (S > D) and hypo- (S > A) phosphomimics. In
B, plants were imaged individually and mounted in a single black background
square to facilitate the comparison and observation.

14100 | www.pnas.org/cgi/doi/10.1073/pnas.1512865112 Karlsson et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512865112/-/DCSupplemental/pnas.201512865SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512865112/-/DCSupplemental/pnas.201512865SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512865112/-/DCSupplemental/pnas.201512865SI.pdf?targetid=nameddest=ST1
www.pnas.org/cgi/doi/10.1073/pnas.1512865112


we mutated the amiRNA:luc target site in the luciferase cDNA to make it in-
sensitive to the amiRNA-mediated silencing (PRO35S:rLUC).

Mutant Screen and Luciferase Visualization. rcf3 mutants were isolated and
genetically mapped as described (3). For luminescence analysis, plants were
sprayed with 1 mM D-Luciferin-K-Salt (PJK GmbH) twice within 24 h, and
imaged with an Orca 2-BT cooled CCD camera (Hamamatsu Photonics). To
quantify the bioluminescence intensity (Fig. S4B) of apices versus leaves in
mutant plants, 10 plants for each genotype were imaged as described. To
avoid saturated spots, unified settings of exposure, gain, and contrast were
determined and applied to all images. Luminescence intensity was measured
in unprocessed gray-scale pictures using ImageJ. Values were normalized by
the measured area size.

RNA Analysis. Total RNA was extracted using TRIZOL reagent (Life Technol-
ogies). Reverse transcription was performed on 1–10 μg of total RNA using
the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). Quanti-
tative RT-PCR on mature miRNAs, miRNA precursors, and miRNA targets was
executed with biological duplicates and technical triplicates, using BETA-
TUBULIN2 (At5g62690) or ACTIN2/8 (At3g18780/ At1g49240) as reference.
RNA blots were performed as previously described (3). In situ hybridization
was performed as described (36). The probe spans nucleotides 713 and 1959
of the RCF3 cDNA. Sequences of oligonucleotides used for RT-qPCR experi-
ments and RNA blots can be found in Table S2.

Small RNA Sequencing and Analysis. RNA for two biological replicates was
extracted using TRIZOL reagent for each genotype. Sequencing libraries
were prepared with the NEBNext (Set 1) and the TruSeq Small RNA Library
Prep Set for Illumina (V2) kit. Raw 50-bp reads were sorted by barcode and
adapter and quality trimmed using SHORE v0.9.0 (37). Only reads with a
3′ adapter sequence and trimmed size of 17–25 nt were aligned with
bwa v0.7.12 and zero mismatches to the TAIR10 genome (Athaliana_167;

phytozome.jgi.doe.gov/pz/portal.html), or the A. thaliana miRBase hairpin
and mature miRNA sequences (miRBase.org, release 21).

Perfectly matched reads for each miRNA and miRNA* were counted and
normalized to the total number of mapped reads per library. Small RNA
hierarchical clustering, at each miRNA locus, was performed by normalized
coverage of 18- to 24-nt-long small RNA reads in windows extending 20 bp
on both sides of the mature miRNA sequence. The sRNA-seq datasets
were deposited in the European Nucleotide Archive (ENA) under accession
number PRJEB10589.

Protein Analyses. For subcellular localization and bimolecular fluorescence
complementation (BiFC) assays, N. benthamiana leaves were harvested 3 d
after transient transformation and imaged with a TCS SP2 (Leica) or an
FV1000 (Olympus) confocal microscope. For BiFC, a nonrelated nuclear
protein coding sequence (AT2G29210) was cloned into the corresponding
vectors and used as an empty vector (EV) counterpart. Detection of phos-
phoisoforms was done as previously described (3). Yeast two-hybrid assays
were performed using the ProQuest Two-Hybrid System (Life Technologies).
For reduction of CPL1 autoactivation, the selection medium was supple-
mented with 25–150 mM 3-amino-1,2,4-triazole (3-AT).

Note. During the revision of this article, a second report independently
confirmed our observation of RCF3 acting in the miRNA biogenesis, reporting
aberrant overaccumulation of miRNA*s in 12-d-old rcf3 seedlings (26).
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Fig. S1. Phenotype of rcf3 mutant and rescued plants. (A) Chromosome 5 SHOREmap results for rcf3-3 and rcf3-4 mutants. (B) The 14-days-old rcf3 mutants
with and without a genomic RCF3 rescue construct. (C and D) The 32- and 14-days-old rcf3 mutant plants. In both panels, plants were imaged individually and
mounted in a single black background square to facilitate the comparison and observation. (Scale bars: 1 cm.)
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Fig. S2. Phylogenetic analysis of RCF3 homologs. RCF3-like KH domain proteins from A. thaliana. Approximate likelihood fraction (aLRT) and bootstrap values
(BT) larger than 50% are shown at nodes. Black, gray, and white boxes indicate types of KH domains. The full-length RCF3 protein sequence was compared by
BLASTP against the A. thaliana RefSeq protein database. All hits were analyzed for the identity of their annotated functional domains using both the National
Center for Biotechnology Information (NCBI) conserved domain search engine (www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and Pfam version 27.0 (pfam.
xfam.org/search/sequence). With MEGA version 5, complete protein sequences were aligned using Muscle, and a phylogenetic tree was estimated with the
Maximum Likelihood method. FASTA-formatted alignments were loaded into SeaView Version 4.5.3 for computation of trees, using the best fitted model
(WAG) including the approximate likelihood fraction (aLRT) and bootstrapping (100×).
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Fig. S3. Effects of rcf3mutation on miRNA accumulation and action in fully expanded leaves. (A–C) Expression of mature miRNAs, miRNA targets, and miRNA
precursors as measured by RT-qPCR. Error bars indicate 2× SEM. (D) RNA blots for detection of mature miR160 and miR171, with U6 as loading control. Signal
intensity was calculated with ImageJ and normalized to U6. Above each gel, the ratio of signal intensities of mutants to reporter control is noted. (E) Hier-
archical clustering of normalized genome-wide small RNA coverage profiles within miRNA regions extending 20 bases either side of all mature miRNAs.
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Fig. S4. RCF3 expression and activity. (A) Bioluminescence activity in 17-d-old mutant plants, indicating preferential restoration of reporter activity in younger
tissue around the shoot apex. (Top) Luminescence. (Bottom) Luminescence merged with bright field image. Colored scale indicates low (blue) to high (white)
luminescence. (B) Ratio of luminescence intensity between shoot apex and leaves. Error bars indicate 2× SEM. (C) Expression of RCF3 mRNA as measured by RT-
qPCR. Error bars indicate 2× SEM. (D and E) Expression of mature miRNAs and miRNA targets as measured by RT-qPCR in inflorescences. Error bars indicate 2×
SEM. (F) Bioluminescence activity in inflorescences, indicating restoration of reporter activity in reproductive tissues. (Top) Luminescence. (Middle) Bright field
image. (Bottom) Merge. Colored scale indicates low (blue) to high (white) luminescence.
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Fig. S5. Expression levels of pri-miRNAs (A) and miRNA processing factors (B) as measured by qRT-PCR in leaves and vegetative and reproductive apices. Error
bars indicate 2× SEM.

Fig. S6. RCF3 genomic location. (A) Schematic representation of the RCF3 genomic neighborhood. Red lines represent the promoter fragments used in this
work and in refs. 21 and 22. In yellow, red, and blue, CG, CHH, and CHG methylcytosine marks are noted as detected by ref. 38. Light blue indicates the region
where small RNAs mapped. (B) Histochemical detection of the ProRCF3:GUS reporter activity. (i and ii) Specific GUS activity detected in T1 transgenic plants. (iii–
v) Reduced and localized activity in transgenic T2 apices. (vi–viii) No detectable GUS activity in in T2 cotyledons, root tip, and leaves.
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Fig. S7. RCF3 Y2H interaction screen with miRNA factors. (A) Yeast transformants were plated on selective medium without leucine, tryptophan (−LT), and
histidine (−LTH). All miRNA-related factors were cloned fused to the GAL4 activation domain (AD) whereas RCF3 to the GAL4 binding domain (BD). Serial
dilutions of the yeast were plated to ensure even initial yeast density. (B) BiFC assay in N. benthamiana cells. Empty vector (EV) cotransformation was used as
negative control. (Scale bars: 0.2 mm.)
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Fig. S8. RCF3, CPL2, and MPK3 expression profiles. mRNA abundance, quantified by Affymetrix microarrays, was extracted from the AtGenExpress database
(25) and expressed as the mean of the normalized reads. Points 1 and 2, 8-d-old seedling; 3 and 4, 21-d-old seedling; 5, 7-d-old apex + young leaves; 6, 7-d-old
apices; 7, 14-d-old apices before bolting; 8, 21-d-old apices after bolting.
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Table S1. Plasmids

Name ID Description

35S:rLuc pPM118 Pro35S driving artificial miRNA targeting luciferase expressed from the same vector. The
luciferase cDNA was mutated to escape the amiRNA silencing.

miRNA-activity reporter pPM085 Pro35S driving artificial miRNA targeting luciferase expressed from the same vector
gRCF3 pFRK007 Genomic RCF3
cRCF3 pPM347 RCF3 cDNA
cRCF3 w/o stop pPM348 RCF3 cDNA without stop codon
RCF3:eGFP pPM350 Genomic RCF3 without stop fusion to C-terminal citrine
DCL1:mCherry pPM115 Pro35S driving mutated Cherry (mCherry) N-terminal-fusion to DCL1
SE:mCherry pPM050 Pro35S driving mutated Cherry (mCherry) N-terminal-fusion to SE
CPL1:mCherry pPL015 Pro35S driving mutated Cherry (mCherry) N-terminal-fusion to CPL1
GAL4AD:RCF3 pPM384 GAL4 activation domain fusion to RCF3
GAL4BD:RCF3 pPM385 GAL4 binding domain fusion to RCF3
GAL4AD:CPL1 pPM358 GAL4 activation domain fusion to CPL1
GAL4BD:CPL1 pPM359 GAL4 binding domain fusion to CPL1
GAL4AD:DCL1 pPM258 GAL4 activation domain fusion to DCL1
GAL4AD:DCL4 pPM261 GAL4 activation domain fusion to DCL4
GAL4AD:SE3 pPM275 GAL4 activation domain fusion to SE3
GAL4AD:HYL1 pPM273 GAL4 activation domain fusion to HYL1
GAL4AD:HEN1 pPM271 GAL4 activation domain fusion to HEN1
GAL4AD:HASTY pPM272 GAL4 activation domain fusion to HASTY
GAL4AD:ABH1 pPM274 GAL4 activation domain fusion to ABH1
GAL4AD:CPL2 pPL004 GAL4 activation domain fusion to CPL2
GAL4AD:AGO1 pPM262 GAL4 activation domain fusion to AGO1
GAL4AD:AGO7 pPM268 GAL4 activation domain fusion to AGO7
GAL4AD:AGO9 pPM269 GAL4 activation domain fusion to AGO9
GAL4AD:AGO10 pPM270 GAL4 activation domain fusion to AGO10
GAL4BD:CPL2 pPL003 GAL4 binding domain fusion to CPL2
Pro35S:mHYL1 pPM444 Pro35S driving mutated HYL1 phosphomimic Ser > Asp (last Ser > Glu)
Pro35S:mHYL1 pPM445 Pro35S driving mutated HYL1 phosphomimic Ser > Ala
cRCF3 pPL036 RCF3 (713–1959) fragment in pGEM
Pro35S:CPL2:N Citridine pPL022 BiFC CPL2 construct
Pro35S:CPL2:C Citridine pPL023 BiFC CPL2 construct
Pro35S:CPL1:N Citridine pPM362 BiFC CPL1 construct
Pro35S:RCF3:C Citridine pPM388 BiFC RCF3 construct
Pro35S:RCF3:N Citridine pPM389 BiFC RCF3 construct
Pro35S: AT2G29210:C Citridine pPM375 BiFC “Empty Vector” construct
Pro35S: AT2G29210:N Citridine pPM376 BiFC “Empty Vector” construct
ProRCF3:GUS pPM378 RCF3 promoter:GUS fusion

Constructs for plant transformation are based on pGREEN and confer either Basta or kanamycin resistance in plants.
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Table S2. DNA oligonucleotide primers and probes

Gene Sequence Purpose

RCF3 genomics F:GGAGGTTAGGACTGCCACGTA Cloning
R:GTACAAGAGGATGGACCGTGA

RCF3 cDNA F:ATGGAGAGATCTAGATCCAAGAG Cloning
R:GAGCATACAAGAGGATGGACCGTGA

RCF3 cDNA F:TCGGATTCTTCCAAGAGAAAG Splicing detection
R:GACGAGATGATACAATGGCTAAA

RCF3 cDNA w/o stop R:GAGCATACAAGAGGATGGACCG Cloning
CPL2 cDNA F:ATGAATCGTTTGGGTCATAAAT Cloning

R:TATGAAACCTTGCACCCAAGGCT

miR160 TGGCATACAGGGAGCCAGGCA RNA blot
miR171 GATATTGGCGCGGCTCAATC RNA blot
U6 GCTAATCTTCTCTGTATCGTTCC RNA blot
miR156c F:GCGGCGGTGACAGAAGAGAGT qRT-PCR
miR159 F:GCGGCGTTTGGATTGAAGGGA qRT-PCR
miR319 F:CGTCGTTGGACTGAAGGGAG qRT-PCR
miR394 F:CGCCATGTTGGCATTCTGTCC qRT-PCR
miRNA RT R:GTGCAGGGTCCGAGGT qRT-PCR
pri-miR156c F:ACTCCAACACCTTCAAAGTCTGC qRT-PCR

R:GAGAGAGAAAGTGAGAGATGGGAAC

pri-miR164a F:CCCTCATGTGCTTGGAAATG qRT-PCR
R:GCAAATGAGACGGATTTCGTG

SPL3 F:ACGCTTAGCTGGACACAACGAGAGAAG qRT-PCR
R:TGGAGAAACAGACAGAGACACAGAGGA

CUC1 F:GAAGAGTTGTTGGGTCATGC qRT-PCR
R:CGAAATCAATCTGTCCCGATG

TCP4 F:CAACCGATACAGGAAACGGAG qRT-PCR
R:CTGGTATGCGAAAACCCGAAG

LCR F:CTATCCACAGCACACTTTAC qRT-PCR
R:CACAGCATTGTAGGTTATCAG

BETA-TUBULIN2 F:GAGCCTTACAACGCTACTCTGTCTGTC qRT-PCR
R:ACACCAGACATAGTAGCAGAAATCAAG

RCF3 F:CCTAAGCTCGTTACGAAATCAAGA qRT-PCR
R:TCACGGTCCATCCTCTTGTATGCTC

RCF3 F:TGAAAAACGCTTTAGCCATTG In situ probe

Dataset S1. Small RNA sequencing results

Dataset S1

Normalized counts of the miRNA and miRNA* in control, hyl1-2, rcf3-3, and rcf3-4 vegetative apices.
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INTRODUCTION 

MicroRNAs (miRNAs) are 21 to 24 nucleotide (nt) long single-stranded RNA 

molecules that are crucial for regulation and fine-tuning of gene expression in 

multicellular organisms (Bartel 2009). In plants, transcription of MIR genes generates 

longer precursor RNAs with characteristic stem-loop folding, and is followed by two 

major nuclear processing steps mediated mainly by the endoribonuclease DICER-

LIKE1 (DCL1), and aided by cofactors including SERRATE (SE), HYPONASTIC 

LEAVES1 (HYL1) (Kurihara and Watanabe 2004; Laubinger et al. 2008; Vazquez et 

al. 2004; Bernstein et al. 2001). The first dicing step, usually near the base of the 

precursor miRNA stem, excises the primary miRNA (pri-miRNA) stem-loop, which is 

cut once more to remove the loop and form the miRNA/miRNA* duplex. After 3’-O 

methylation and translocation to the cytoplasm (Yu et al. 2005), the mature miRNA 

(guide) strand forms, through association with an ARGONAUTE protein, an active 

miRNA INDUCED SILENCING COMPLEX (miRISC). By sequence complementarity 

of the miRNA to its mRNA targets, miRISC selectively imposes inhibition of 

translation or transcript cleavage (Rogers and Chen 2013; Brodersen et al. 2012).  

Transcriptional regulation assures the correct spatio-temporal expression of 

MIR genes, and post-transcriptional steps can further fine-tune miRNA accumulation. 

Additionally, mature miRISC activity can be attenuated by miRNA target mimicry 

(Franco-Zorrilla et al. 2007), where an RNA containing a sequence motif that is 

complementary to a miRNA or miRNA family sequesters the respective miRISC, 

which is then no longer available for inhibition of regular mRNA targets (Franco-

Zorrilla et al. 2007). Only a single case of natural miRNA target mimicry, of IPS1, 

which interferes with the activity of miR399, has been studied in detail in plants 

(Franco-Zorrilla et al. 2007). In animals, this principle is known as competing 

endogenous RNAs (ceRNAs) and is thought to be rather widespread (P. Wang et al. 

2015; Bak and Mikkelsen 2014). 

Many conserved plant miRNAs are encoded by medium-size gene families (A. 

Li and Mao 2007). This has created challenges for the study of their biological 

function through genetic approaches, a limitation overcome by the generation of a 

collection of artificial miRNA target mimicry lines (MIMs) to knock down the majority 

of Arabidopsis thaliana miRNA families one by one (Todesco et al. 2010). Artificial 

mMiRNA target mimicry can be based on the endogenous IPS1 transcript, or on 
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entirely artificial sequences (Franco-Zorrilla et al. 2007; Todesco et al. 2010; Yan et 

al. 2012; Reichel et al. 2015). 

The deeply conserved miR156 miRNA family is encoded by eight MIR genes 

in A. thaliana, miR156a to miR156h (Griffiths- Jones 2004; Kozomara and Griffiths-

Jones 2011; Griffiths-Jones et al. 2008; Griffiths-Jones 2006; Griffiths-Jones et al. 

2006; Kozomara and Griffiths-Jones 2014). Mature miR156 strongly accumulates in 

shoots early in the life of the plant and gradually decreases in abundance as the 

plant ages (J.-W. Wang 2014; J.-W. Wang, Czech, and Weigel 2009; Wu et al. 2009; 

Wu and Poethig 2006). It negatively regulates the abundance of at least 10 out of 16 

members of the SQUAMOSA PROMOTER-BINDING (SPB) PROTEIN-LIKE (SPL) 

transcription factor family, which control a range of biological processes, most of 

them relating to developmental progression during the vegetative phase of plant 

growth (Xu et al. 2016). 

Repression or loss of miR156 function as it can be observed in plants 

expressing the MIM156 construct, or plants expressing miR156-insensitive versions 

of the SPL targets, induces adult growth traits, such as serrated leaf margins, 

prematurely (J.-W. Wang et al. 2008; Wu and Poethig 2006; Franco-Zorrilla et al. 

2007). Also the rate at which rosette leaves are initiated during vegetative growth is 

greatly reduced, and MIM156 cotyledons are bent and spoon-shaped (Todesco et al. 

2010). Contrastingly, ectopic overexpression of miR156, which reduces SPL levels, 

prolongs the juvenile phase with non-serrated rosette leaves, and plants initiate 

rosette leaves faster than wild-type (Wu and Poethig 2006).  

Here, we identify mutations in the HAWAIIAN SKIRT (HWS) F-box gene 

(At3G61590) as suppressors of MIM156 and other miRNA target mimicry 

phenotypes. As part of an Skp-Cullin-F-box (SCF) complex, F-box proteins give E3 

ubiquitin ligases target specificity via recognition of substrates for degradation by the 

26S proteasome (Risseeuw et al. 2003). HWS was previously shown to interact with 

the classical components of an SCF complex, ASK20A and ASK20B, the two 

translational products of ARABIDOPSIS SKP1-like 20 (ASK20), and with 

ARABIDOPSIS SKP-LIKE1 (ASK1), in a Y2H screen, and ASK1 functioned as 

bridge between CULLIN1 (CUL1) and HWS (Ogura et al. 2008; Kuroda et al. 2002). 

Due to delayed abscission and sepal fusion, hws mutants fail to shed sepals, petals 

and anthers (Gonzalez-Carranza et al. 2007). Loss of HWS furthermore results in 

increased organ growth, whereas overexpression yields smaller plants with 
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elongated, serrated and hyponastic leaves, thus reminding of phenotypes previously 

described for the miRNA biogenesis factor mutants hyl1-2 as well as hypomorphic 

ago1 (Gonzalez-Carranza et al. 2007).  

We found that HWS also plays a role in plant miRNA function. Mutations in 

HWS suppress the characteristic developmental defects not only of MIM156 

expressing plants, but also of several additional MIM lines and increase the steady-

state levels of miRNAs, a phenotype mirrored by decreased miRNA target 

abundance. Overexpression of full-length HWS has an inverse effect on the levels of 

miRNAs and their targets, and this function requires its F-box domain. The 

characteristic delayed floral organ abscission (‘skirt’) phenotype of hws mutants is 

lost when combined with mutants of several miRNA biogenesis players, indicating 

that HWS and miRNA factors like SE, HYL1 and AGO1 are epistatic to each other 

and active in a common pathway. We propose that HWS is a new factor involved in 

the biogenesis of miRNAs, and exerts its function through an F-box mediated 

molecular process. 

 
 

RESULTS 

hawaiian skirt mutations suppress miRNA target mimicry induced 

phenotypes 

To identify genetic modifiers counteracting the activity of a MIM156 transgene, 

we focused on three easily monitored developmental abnormalities characteristic for 

lines ectopically expressing the artificial transgene: spoon-shaped cotyledons, 

premature rosette leaf serration, and a reduced leaf initiation rate during vegetative 

growth. In one line that we identified from an M2 pool of EMS-mutagenized MIM156 

seeds, all investigated phenotypic alterations were suppressed. We localized the 

causal mutation to a region on the right arm of chromosome 3 using mapping by 

sequencing (Figure 1A and B; see Materials and Methods for details). 

Within this region, a G to A single nucleotide substitution (G537A, 

chr3:22793585, TAIR10) was identified that caused a premature termination codon 

(W179STOP) in HAWAIIAN SKIRT (HWS; At3g61590). HWS is a 412 amino acid 
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(aa) protein with an N-terminal F-box domain, a putative trans-membrane domain, 

and a C-terminal Kelch-2 domain (Figure 1C). To confirm that this mutation was 

responsible for the phenotypic suppression of the characteristic MIM phenotypes, we 

tested for complementation by transforming the isolated mutant with a genomic 

construct of HWS. The MIM156 phenotype was restored, confirming that HWS was 

indeed the causal locus (Figure 1A). We henceforth refer to the mutant allele as hws-

3. RT-qPCR detecting the HWS transcript shows similarly decreased levels in hws-3 

as in hws-1 plants (see below), suggesting that hws-3 is a hypomorphic allele 

(Figure S1F).  

Two other hws mutant alleles have previously been isolated and shown to be 

impaired in the abscission of floral organs, hws-1 and hws-2 (Gonzalez-Carranza et 

al. 2007). Incomplete separation of sepals imposes a structural barrier that prevents 

the shedding of sepals, petals and stamens (Gonzalez-Carranza et al. 2007). Both 

with and without the MIM156 transgene, we observed similarly impaired abscission 

in hws-3 plants (Figure 1D, Supp. Figure S1A, B and C). Partial fusion of cauline 

leaves to the inflorescence stem was evident in both hws-1 and hws-3 mutants, and 

like sepal abscission persisted in the presence of the MIM156 transgene (Figure 

S1E).  
 To identify a molecular role of HWS that could explain the suppression of 

MIM156 induced defects, we first tested if other mimicry lines were equally affected. 

We combined hws-1 with three additional mimicry transgenes - MIM159, MIM164 

and MIM319 - each of which shows distinct developmental alterations, including 

hyponastic leaves in MIM159, increased leaf serrations in MIM164, and reduced 

fertility in MIM319 lines (Todesco et al. 2010). We found that the hws-1 mutation 

could suppress the characteristic phenotypes of all three mimicry lines (Figure 2A), 

pointing to a role of HWS upstream of MIM156-specific factors like the miR156-

targeted SPL transcripts. As expected, presence of the MIM319 and MIM159 

transgenes did not affect the hws abscission phenotype (Figure S2A and see below). 

 

Further support for a more general role of HWS came from introducing a 

miR156 resistant SPL9 (rSPL9) transgene into hws mutants. This transgene 

expresses a version of SPL9 that avoids regulation by miR156 due to the presence 

of five base substitutions in its miR156 target site (J.-W. Wang et al. 2008). Like 

MIM156, rSPL9 plants accumulate higher levels of SPL9 and thus display MIM156-
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like phenotypes including spoon-shaped cotyledons and a slower leaf initiation rate 

(Figure 2D,). We found that the rSPL9 phenotype was similar in wild-type and hws-3 

backgrounds (Figure 2D), pointing to a role for HWS upstream of miRNA target 

stability and/or activity, consistent with its generic ability to suppress MIM 

phenotypes.  

A more general role of HWS could impede MIM action directly at the level of 

the (endogenous or modified) IPS1-based MIM transcript, or further upstream, 

affecting miRNA accumulation. Endogenous IPS1 expression is naturally low but 

greatly induced upon Pi starvation (Martín et al. 2000). To monitor potential 

alterations of endogenous IPS1 accumulation when HWS function is impaired, we 

measured its steady-state levels both under normal and Pi starvation conditions (see 

Materials and Methods). Using RT-qPCR, we saw that IPS1 accumulation is still 

strongly increased in hws-3 mutants grown in Pi-starvation medium; levels are even 

higher than in the wild type, both at high and low Pi supply (Figure 2B). One would 

expect a more efficient sequestration of miRNAs when more mimicry transcripts (i.e. 

IPS1) are available, and consequently a release of miRNA-mediated target 

suppression, from this observation. We observed the opposite, as PHO2, the 

endogenous target of IPS1-bound miR399, was less rather than more up-regulated 

in Pi-limiting conditions compared to the control. Similarly, genetic suppression of 

MIM phenotypes by HWS mutations predicts reduction rather than over-

accumulation of miRNA targets in hws mutants, although feedback loops in the 

IPS1-miR399-PHO2 module (Franco-Zorrilla et al. 2007; Fujii et al. 2005; Bari et al. 

2006; Chiou et al. 2006) might complicate our interpretations.  

 

The suspicion of feedback regulation confounding our observations was 

reinforced when we turned to plants harboring a MIM transgene: IPS1-based 

engineered transcripts, now uncoupled from promoter-based feedback loops, were 

reduced in hws-3 mutants (Figure 2C). In concordance, the corresponding miRNAs 

over-, and their targets under-accumulate, an effect that was seen for both of the 

examined lines, MIM156 and MIM164 (Figure 2C), and was also consistent with 

reduced PHO2 levels in hws-3 plants grown in Pi limiting media (Figure 2B). This 

observation suggests that HWS might somehow stabilize mimicry transcripts, yet this 

effect could also be an indirect consequence of altered miRNA levels further 

upstream in the pathway.  
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HWS suppresses miRNA accumulation 

The previous observations indicated that HWS could be involved more 

broadly in miRNA regulation. This was further supported by a general resemblance 

of phenotypic defects in hws mutants and those observed in mutants with defects in 

the miRNA biogenesis pathway, or those with altered levels of miR164, a miRNA 

unrelated to our genetic screen: hws mutants show reduced serrations (Figure S3A) 

- a trait that is often affected in miRNA biogenesis mutants (Laubinger et al. 2008; 

Morel et al. 2002). Moreover, both the ‘skirt’, and cauline leaf fusions to the stem 

have been described as results of miR164 overexpression (Schwab et al. 2005; 

Mallory, Reinhart, et al. 2004). Further, when we overexpressed the HWS coding 

sequence from the constitutive 35S::CaMV promoter, similar to what was described 

earlier, plants developed severe abnormalities, including upwards-pointing, highly 

serrated and hyponastic leaves (Figure 3A) (Gonzalez-Carranza et al. 2007). This 

was also reminiscent of mutants with impaired miRNA activity, for example hyl1-2, 

ago1-25 and ago1-27 or hst-3 (Figure S3C) (Morel et al. 2002; Vazquez et al. 2004; 

Bollman et al. 2003). We therefore decided to test whether miRNA activity was 

directly affected in HWS overexpressors as well as hws mutants. We observed that 

while miRNA levels tended to be slightly up-regulated in hws mutants, they were 

generally downregulated in 35S::HWS compared to the wild-type control (Figure 3B). 

Only miR173 abundance appeared to be largely unaffected, while the effect on 

miR164 was particularly pronounced. Mirroring this, we also saw a decrease in the 

levels of miRNA-targeted transcripts of AGO1 (miR168), SPL3 (miR156) and TCP4 

(miR319) in hws mutants, and a matching increase in 35S::HWS (Figure 3C). In 

addition, IPS1 accumulation in 35S::HWS was similar to what was seen in wild type, 

whereas PHO2, the miR399 target, was upregulated, independent of Pi supply 

(Figure 2B). We thus hypothesized that HWS plays a more general role in the 

miRNA pathway.  

The particularly pronounced effects on miR164 and miR156 might be 

attributed to HWS expression being specifically elevated in regions of miR164 and 

miR156 expression. Both miR156 and miR164 accumulate to high levels in emerging 

leaves (Nikovics et al. 2006a; Bazzini et al. 2009; J.-W. Wang, Czech, and Weigel 

2009; J.-W. Wang et al. 2008; Wu and Poethig 2006), with miR164 also showing a 

more restricted expression pattern around the veins and the points of leaf serration 
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(Figure S3D, (Nikovics et al. 2006a)). A similar expression pattern was seen in 

ProHWS::GUS plants (Figure S3D). This is in agreement with the reduction of 

serration found in hws plants, as in the emerging leaves of wild-type plants, miR164 

acts as a suppressor of leaf serration by targeting members of the CUC family of 

transcription factors (Figure S3A, (Nikovics et al. 2006b).  

 

Interaction of HWS with general miRNA factors 

To further substantiate a connection between HWS and miRNA biogenesis 

factors, we tested for genetic interactions. For this purpose, we prepared crosses of 

hws-1 with mutant alleles of AGO1 (ago1-25, ago1-27; (Morel et al. 2002)), ABH1 

(abh1-753; (Laubinger et al. 2008)), HST (hst-3; (Bollman et al. 2003)), HYL1 (hyl1-

2; (Vazquez et al. 2004)), and SE (se-3; (Laubinger et al. 2008)) (Figure 4). In all 

cases, double-homozygous F2 plants resembled the single mutants in the miRNA 

biogenesis pathway (Figure 4A) - and the hws ‘skirt’ phenotype was reduced (Figure 

4B). This indicates that the miRNA factors are epistatic to and share a common 

pathway with HWS. 

Owing to its F-box domain, HWS could be acting in an SCF-complex, 

conferring specificity for an unknown substrate. Previously shown HWS interaction 

with the common SCF component Arabidopsis-Skp protein ASK1 (Ogura et al. 2008; 

Kuroda et al. 2002) and involvement of F-box proteins like the viral suppressor P0 

(Pazhouhandeh et al. 2006; Bortolamiol et al. 2007; Baumberger et al. 2007) and F-

BOX WITH WD-40 2 (FBW2, (Earley et al. 2010)) with the miRNA context 

substantiates the idea that HWS might impact miRNA function through destabilizing 

a protein directly involved in miRNA biogenesis or processing. Only full-length 

35S::HWS complemented the hws-1 phenotype, whereas transformants expressing 

a version that lacks the F-box domain (35S:mHWS transgene) retained the hws-

characteristic fused sepals and cauline leaves (Figure S1 A, B, E). Furthermore, 

35S::mHWS did not induce the hyl1-2 or ago1-like phenotypes observed in 

35S::HWS plants (Fig 3A, 5A). Consistently, steady-state levels of miRNAs and their 

targets in 35S::mHWS were closer to wild type (Figure S3E, F ).  

To unbiasedly detect HWS-interactors in planta, we harvested rosette leaves 

to immunoprecipitate the GFP-fused 35S::HWS with a GFP-antibody and performed 
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mass spectrometry (MS). As controls, we processed both 35S::mHWS as well as 

35S::GFP-expressing tissue to test for F-box specificity of the interactions. 

Enrichment of ASK1 and two other SCF-complex proteins, ARABIDOPSIS SKP-

LIKE 2 (At5g42190) as well as of CULLIN1 (At4g02570), in the 35S::HWS fraction, 

but in neither of the two controls, supported HWS function as a classical F-box 

protein. Beyond this, we could however not observe significant associations of HWS 

with known miRNA-related proteins. It is thus possible that HWS contributes to the 

miRNA pathway through a protein not yet described in this context, that an 

interaction with an already known factor is rather weak and transient as described for 

other F-box proteins (Earley et al. 2010; Coyaud et al. 2015), or that the 

concentration of the interactor is very low and therefore not detectable by our 

approach. Using a Yeast-Two-Hybrid assay (Y2H; (Manavella et al. 2012; Fields and 

Song 1989)), we thus looked for interaction partners in a more direct way, 

specifically targeting proteins of the miRNA pathway. We could, however, not detect 

a physical interaction between the HWS protein and any of the miRNA biogenesis 

factors tested (Figure S4).  

The only miRNA-related protein detected with higher confidence via MS - 

although present even in the control - was AGO1. It is known to associate with 

several F-box proteins, among them FBW2, which destabilizes it, and the viral 

suppressor P0 (Earley et al. 2010; Bortolamiol et al. 2007; Baumberger et al. 2007; 

Pazhouhandeh et al. 2006; Csorba, Kontra, and Burgyán 2015). Similarities between 

the HWS overexpression phenotype and ago1 supported a hypothetical functional 

connection of the two, and AGO1’s role in miRISC assembly fits with a presumed 

HWS role upstream of miRNA targets. As we did not observe direct interaction of 

HWS with full-length AGO1 in Y2H assays (Figure S4), we tested a construct 

comprising only the AGO1 N-domain that was previously successfully used to detect 

interaction with an F-box protein (P. Brodersen, personal communication). 

Unfortunately, we did not observe any interaction either (Figure S5A), which was not 

entirely unexpected, as F-box proteins often recognize their targets only when these 

are post-translationally modified, and neither P0 and AGO1 interact with each other 

in yeast (Bortolamiol et al. 2007; Petroski and Deshaies 2005). Co-

immunoprecipitation assays in planta did however also not detect association of 

HWS and AGO1 (data not shown).  
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If the interaction is too transient to be detected, or indirect, mediated by a 

third, unknown factor, we might still be able to see effects on AGO1 stability, as long 

as they are not masked by the complex feedback loops balancing AGO1 abundance 

(Vaucheret et al. 2004; Vaucheret, Mallory, and Bartel 2006). While we observed a 

positive influence of the presence of its F-box on HWS stability, both in transient 

expression assays in N. benthamiana and stably transformed Arabidopsis plants, 

AGO1 levels were largely unaltered (Figure 5B, S5B). Ubiquitination by a HWS-

associated SCF-complex could, apart from targeting for proteasome-mediated 

degradation, affect AGO1 function in other ways, such as altering cellular targeting 

that was previously implicated in miRISC function (Mukhopadhyay and Riezman 

2007; W. Li and Ye 2008; Brodersen et al. 2012; Gibbings et al. 2009). However, 

overall as well as AGO1-specific ubiquitination levels appeared unchanged, both in 

N. benthamiana and Arabidopsis (Figure S5C).  

 

 

DISCUSSION 

MiRNAs are formed and function through a complex network comprising a 

multitude of general and highly specialized proteins (Voinnet 2009; Bologna and 

Voinnet 2014). Using a MIM156-based genetic screen designed to retrieve both 

mutations with specific effects on the miR156/SPL-pathway, as well as more general 

effects on miRNA target mimics, or miRNAs in general, we have identified the F-box 

protein HWS as a new factor involved in miRNA biogenesis, which highlights the 

usefulness of MIM lines for the identification of negative factors in the miRNA 

pathway. Overexpression of HWS leads to a decrease in miRNA levels and 

consequently higher target levels - deprivation of HWS instead, as in hws-1, has the 

inverse effect (Figure 3). The phenotypes of miRNA factor mutants like ago1-25, 

hyl1-2 and se-3 are epistatic to the one in hws-1. Introduction of hws-1 into these 

plants does not change their respective phenotypes, but suppresses the hws-typical 

‘skirt’ (Figure 4), pointing towards involvement of all factors in a common pathway 

and thus further substantiating the connection between miRNAs and HWS.  

HWS is an F-box protein, and we have shown that the F-box is necessary to 

execute its function in miRNA biogenesis, yet despite the beautiful genetic 
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suppression of MIM-induced phenotypes by hws, we were not able to unequivocally 

pinpoint its molecular target(s). Nevertheless, we can conclude several important 

aspects of HWS’s role in the miRNA pathway and in context with MIM transcripts in 

general:  

Expression of MIM transcripts has different effects on the respective miRNAs: 

some are greatly reduced, whereas others are only mildly affected (Todesco et al. 

2010). While this previous observation could be a consequence of the analyzed 

tissue and cell types, our observation that MIM156 levels are reduced in hws 

mutants (Figure 2C) suggests that additional feedback might take place, affecting the 

equilibrium between MIM and miRNA accumulation. MIMs largely function like 

miRNA sponges that have later also been described in the animal field (Ebert, 

Neilson, and Sharp 2007), specifically sequestering the miRNAs they can bind to. 

Since these sponges can sequester only a limited amount of miRNAs, 

overexpression of miRNAs can remedy their effects, a scenario potentially reflected 

in the miRNA-overexpressing and MIM-suppressing hws mutant. Even a small 

reduction of MIM transcript levels as in MIM164; hws-1 (Figure 2C) could already be 

sufficient to tip the equilibrium between MIM and miRNA necessary for MIM function, 

and cause suppression of the characteristic phenotype.  

We can further conclude that the ‘skirt’ phenotype observed in hws mutants is 

likely caused by overaccumulation of miR164 in floral organs, as skirts are lost in the 

presence of MIM164 (Figure S2A, S3B). This is consistent with earlier observations 

showing that continuous overexpression of miR164b, as well as cuc1 cuc2 double 

mutants induce fused sepals and stamens and hence floral ‘skirts’ (Mallory, Dugas, 

et al. 2004; Nikovics et al. 2006a; Hibara et al. 2006).  

As we only observed miRNA-like phenotypes and mutant rescue when 

overexpressing HWS in full length including its F-box domain (Figure S1A,B,C and 

5A), we conclude that we identified another F-box protein involved in the miRNA 

pathway. HWS was previously shown to possess F-box ‘activity’ (Takahashi et al. 

2004; Kuroda et al. 2002) and confirmed to interact with SCF-complex proteins 

(Gonzalez-Carranza unpublished, this manuscript, (Arabidopsis Interactome 

Mapping Consortium 2011)). Other F-box proteins have been implicated in miRNA 

function before: AGO1, the core protein of miRISC, is targeted for degradation by the 

viral suppressor and F-box protein P0, and its levels also decrease upon 

overexpression of the F-box protein FBW2 (Baumberger et al. 2007; Bortolamiol et 
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al. 2007; Earley et al. 2010; Pazhouhandeh et al. 2006; Csorba et al. 2010). As the 

only hint from our mass spectrometry and Y2H assays was the enrichment of AGO1 

in 35S::HWS-GFP IPs, we performed several biochemical experiments aimed at 

identifying changes in AGO1 when more or less HWS was present. While this 

proved unsuccessful, we cannot exclude AGO1 as a true HWS target yet, as 

previous related experiments by others were also only partially successful: increase 

of AGO1 levels was only detected in fbw2 mutants in genetic backgrounds 

compromised in miRNA biogenesis, not in fbw2 single mutants (Earley et al. 2010). 

F-box proteins often interact with their targets only transiently, such that detection of 

these interactions is not trivial, sometimes impossible, especially with heterologous 

approaches like Y2H (Earley et al. 2010; Bortolamiol et al. 2007). HWS interaction 

with miRNA biogenesis factors, if present, is likely much weaker and more transient 

than the HWS F-box connection with SCF complexes, as we could detect clear 

enrichment of both SKPs and CUL in the MS analysis.  

Since the F-box domain usually provides the interaction interface towards the 

other SCF complex components, HWS would interact with AGO1 or other targets via 

the Kelch-domain. Elimination of the F-box should stabilize this interaction (Skaar, 

Pagan, and Pagano 2013). However, co-infiltrations of AGO1 and HWS, with and 

without the F-box, did not change AGO1 protein or ubiquitination levels (Figure S5B). 

Either HWS does not mediate AGO1 degradation, or HWS action requires additional, 

Arabidopsis-specific factors, precluding its function in transient assays. Possibly, a 

bridging factor is necessary for HWS to indirectly affect miRNA biogenesis, or HWS-

mediated targeting depends upon prior target modifications, as for example known 

for the within F-boxes common phosphorylation-dependent recruitment (Skaar, 

Pagan, and Pagano 2013).  

To identify a specific role for HWS within miRNA biogenesis and function, it 

will be crucial to find targets of HWS-SCF-complex action, for example through 

large-scale interaction screen assays or monitoring of protein 

modification/abundance changes upon HWS overexpression. Since HWS over-

accumulated to higher levels without the F-box (Figure 5B), and as 35S::HWS, but 

not 35S::mHWS plants, display a strong miRNA-related phenotype, it is also possible 

that HWS is part of a feedback-loop involving miRNAs. Interaction with, recognition 

of or activity on its target might destabilize HWS, explaining the observed stabilized 

protein levels in plants lacking the F-box. Which miRNA factors and miRNAs are 
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potentially involved in such a HWS-associated loop remains to be discovered in 

further studies. 

Apart from proteomics assays, another obvious experiment to pinpoint where 

HWS enters the miRNA picture is to indirectly capture HWS action by monitoring 

genome-wide transcript levels via RNA-seq. Differential expression analyses 

combined with GO term analysis will provide information to narrow down the 

whereabouts and dimensions of HWS action, and co-expression networks relating to 

known miRNA factors can further help to narrow down its biochemical point of action.  

 
 

MATERIAL AND METHODS 

 
Plant Material 

Arabidopsis thaliana seeds of the Col-0 accession were surface sterilized with 

10% bleach, 0.5% SDS and stratified for 2 to 3 days at 4°C. Plants were grown at 

23°C either on Murashige Skoog (MS) plates (1/2 MS, 0.8% agar, pH 5.7) or in soil 

in either short day (8 h light / 16 h dark) or long day conditions (16 h light / 8 h dark) 

in growth chambers with 65% humidity. A mixture of Cool White and Gro-Lux Wide 

Spectrum fluorescent lights with a fluence rate of 125–175 μmol m−2 sec−1 was used. 

For Pi starvation, plants were germinated on MS plates for 7 days, then 

shifted to plates with full media lacking Pi ((Conn et al. 2013), 0.8% agar, pH 5.7) 

and grown for 4 more days. Nicotiana benthamiana seeds were surface sterilized 

and vernalized as described above and grown on soil in long day conditions. Mutant 

alleles hyl1-2 (N564863, SALK_064863,), abh1-753 (N516753, SALK_016753,), se-

3 (N583196, SALK_083196), ago1-25, ago1-27, hst-3 (N24278), miR164a-4 and 

hws-1 as well as miRNA mimicry lines MIM156 (N783223), MIM159 (N783226), 

MIM319 (N783243), MIM164 (N783232), the ProMIR156c::GUS, ProMIR164a::GUS and 

the miR156 overexpressor-line 35S::miR156b have been described earlier and were 

obtained either from the Nottingham Arabidopsis Stock Center (NASC) or from the 

corresponding authors of the respective publications (Rubio-Somoza et al. 2014; 

Vazquez et al. 2004; Laubinger et al. 2008; Morel et al. 2002; Todesco et al. 2010; 
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Schwab et al. 2005; Nikovics et al. 2006a; Gonzalez-Carranza et al. 2007; Franco-

Zorrilla et al. 2007; Bollman et al. 2003). 

For phenotypic analysis of double mutants between hws-1 and mutant alleles 

of AGO1, HYL1, ABH1, HST and SE, F2 or F3 plants were selected phenotypically, 

then genotyped for homozygosity of the two respective alleles. The oligonucleotides 

used for genotyping can be found in Table S1.  

 

Transgenes 
 The HWS promoter (2460 bp) and the HWS genomic- (4190 bp) and coding 

regions (1236 bp) were PCR-amplified from genomic DNA and cDNA, respectively. 

They were cloned into pCR8GWTOPO and recombined with ProQuest Two-Hybrid 

System (Life Technologies) and pGREEN vectors (Hellens et al. 2000). A detailed 

list of constructs used in this work can be found in the Supplemental Table S2, all 

oligonucleotides used to amplify the HWS fragments are listed in Table S1.  

 Transient expression in Nicotiana benthamiana after Agrobacterium-mediated 

plant transformations has been described (de Felippes and Weigel 2010). 

 

Mutant Screen and segregation of MIM156 transgene 

Plants from a stable miR156 mimicry (MIM156) line in Col-0 background were 

subjected to ethyl methanesulfonate (EMS) treatment as described (Weigel and 

Glazebrook 2002). M2 plants grown in SD conditions were visually inspected for 

suppression of MIM156 developmental alterations. Candidate plants were crossed to 

the Ws-0 accession and genomic DNA of 200-300 pooled F2 plants was extracted 

using a CTAB protocol. Sequencing libraries (Illumina TruSeq DNA Sample 

Preparation Kit) were 10-plexed (Illumina adapters Set A) per flow-cell lane and 

sequenced on a Illumina HiSeq 2000 instrument to obtain at least 10-fold genome 

coverage. SHOREmap was used to identify SNPs and mapping intervals 

(Schneeberger et al. 2009).  

The MIM156 transgene was removed through outcrossing to the Col-0 

accession. Presence or absence of the transgene was deduced from BASTA 

resistance/sensitivity.  
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RNA Analysis 
Total RNA was isolated from pooled plate-grown whole seedlings 9 days after 

sowing using TRIZOL reagent (Life Technologies) and DNAseA (Life Technologies) 

treatment according to manufacturer’s instructions. With RevertAid First Strand 

cDNA Synthesis Kit (Thermo Scientific), reverse transcription was performed on 1-2 

μg of total RNA. Quantitative RT-PCR on HWS, mature miRNAs, miRNA-precursors 

and miRNA targets was executed with Maxima SYBR Green 2X Master Mix (Thermo 

Fisher Scientific) on a CFX384 Real-Time PCR system (Bio-Rad), performing 

technical triplicates on each sample of biological triplicates using BETA-TUBULIN2 

(At5g62690) or ACTIN2 (At3G18780) as reference genes. Biological replicates are 

averaged from technical triplicates, horizontal bars show the mean of the biological 

triplicates. Evaluation and visualization were done with Microsoft Excel for Mac 

(Version 14.6.6). All oligonucleotides used for RT-PCR experiments are listed in 

Supplementary Table 1. 

 

Histochemical Analysis 
Seedlings from at least five independent GUS reporter T2 lines were 

inspected 10 days after sowing (DAS). Activity of the GUS reporter was assessed as 

described (Weigel and Glazebrook 2002), using 20mM potassium-ferro- and 20mM 

potassium-ferricyanide.  

 

Protein Analyses 
T1 seedlings expressing 35S::GFP-HWS and 35S::GFP-mHWS were BASTA-

selected on soil and harvested at 21 days for total protein extraction from three to six 

whole rosettes as tissue pools. Protein was extracted from ~300 to 1000 mg of 

ground tissue using equal amounts [w/v] of extraction buffer (50 mM Tris pH 7.5; 150 

mM NaCl; 1 mM EDTA; 10% [v/v] glycerol; 1 mM DTT; one tablet of Complete 

Protease Inhibitor Cocktail per 10 ml buffer). Protein concentration was measured 

using Bradford solution (Bio-Rad). Expression of the fusion protein was tested by 

Western blot using GFP-trap (ChromoTek), and appropriate pools were chosen for 

CoIP with GFP-trap or anti-AGO1 (Agrisera) antibodies.  

For protein expression analyses, leaves of Nicotiana benthamiana transiently 

co-transformed with 35S::GFP-HWS or 35S::GFP-mHWS and 35S::AGO1-HA were 

harvested three days after infiltration. Protein abundance was measured by Western 
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blot using anti-AGO1 (Agrisera), anti-GFP (Santa Cruz Biotech) or anti-UBQ (Santa 

Cruz Biotech), equal loading was confirmed using protein staining with either 

Ponceau red or Coomassie blue.  

Interaction experiments in yeast were performed using the ProQuest Two-

Hybrid System (Life Technologies) and yeast strain AH109. To reduce autoactivation 

of some constructs, 5 mM of 3-AT (3-amino-1,2,4-triazole) were added to the 

selection medium.  

 

Mass spectrometry 
 Pools of BASTA-selected T1 seedlings expressing 35S::GFP-HWS and 

35S::GFP-mHWS and GFP-overexpressing control plants were frozen in liquid 

nitrogen and total protein was extracted from up to 1 g finely ground tissue with 

equal amounts [w/v] of extraction buffer (140 mM NaCl; 8 mM Na2HPO4*7H2O; 2 mM 

KH2PO4, pH7.4; 1 mM EDTA; 0.1% [v/v] Triton X-100; 1 tablet of Complete Protease 

Inhibitor Cocktail (Roche) per 10 ml buffer). Protein concentration was measured 

using Bradford solution (Bio-Rad) and GFP-expression was verified by Western. 

Total protein extracts were purified using GFP-trap metal beads (ChromoTek). 

A small fraction was resolved on a PAGE gel for staining with the SilverQuest™ 

Silver Stain Kit (Life Technologies). LC-MS/MS analysis (120 min, Top15HCD) was 

performed after tryptic in gel digestion, using a Proxeon Easy-nLC (Proxeon 

Biosystems) coupled to an LTQ Orbitrap Elite mass spectrometer (Thermo Fisher 

Scientific) (Borchert et al. 2010). Resulting data was analyzed with MaxQuant 

v.1.2.2.9 (Cox and Mann 2008; Cox et al. 2011). Spectra were searched against an 

Arabidopsis thaliana database including the protein sequences of the HWS::GFP 

fusion proteins. Raw data was processed with a setting of 1% for the false discovery 

rate (FDR).   
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FIGURES 
 

 
 
 
Figure 1. Characterization of the hws-3 mutant. (A) Phenotype of Col-0, MIM156, 
hws-3 and hws-3; gHWS, the latter two also in the MIM156 background. (B) 
Chromosome 3 SHOREmap results for hws-3. (C) Location and effects of the 
mutations on the HWS protein. Annotated or predicted domains are marked in 
orange. (D) Sepal-fusion “skirt” phenotype and phyllotactic distortion in hws-3 
compared to Col-0.  
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Figure 2. hws mutation affects MIM transgene and endogenous phenotypes. (A) 
Phenotypic rescue of MIM159, MIM319 and MIM164 in hws-3 background. (B) 
Relative expression of IPS and PHO2 in Col-0, hws-3 and hws-1 plants harboring 
35S::HWS. (C) Relative expression of MIM156, miR156, SPL9 in Col-0, MIM156 and 
MIM156; hws-3 and of MIM164, miR164 and CUC2 in Col-0, MIM164 and MIM164; 
hws-1. (D) miR156 resistant rSPL9 wild type and in hws-3 mutant background. 
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Figure 3. Effects of hws and HWS overexpression on miRNA and miRNA target 
steady state levels. (A) Hyponastic, serrated leaf phenotype of T1 35S::HWS plant in 
the hws-1 background. (B and C) Levels of mature miRNAs and miRNA targets in 
Col-0, “hws-1 and 35S::HWS as measured by RT-qPCR. Dots represent biological 
replicates, bars indicate mean of biological replicates. (D) Mature miRNA levels in 
Col-0, hws-1, hws-3, MIM156, hws-3; MIM156 and 35S::HWS as determined by 
RNA blotting. 
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Figure 4. In double mutants of hws-1 and major miRNA biogenesis factors, 
abscission is restored, but miRNA-related defects are retained. (A) Rosette 
phenotype of single and double homozygous F3 plants between hws-1, hyl1-2, se-3, 
ago1-25, ago1-27, hst-3 and abh1-753 at ~21 DAS. (B) Abscission phenotype of 
double mutants of hws-1, hws-3, hyl1-2, hst-3, se-3, ago1-25, ago1-27 as well as T1 
of 35S::HWS and 35S::mHWS in hws-1 background.  
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Figure 5. HWS overexpression with and without the F-box domain. (A) Rosette 
phenotype comparison of hws-1 and hws-1 with 35S::HWS or 35S::mHWS at ~21 
DAS. (B) Protein levels of HWS-transgenes in transgenic background from 
Arabidopsis T1 and a stable 35S::GFP line. Coomassie stainings show equal 
loading. 
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Supporting Information 

Additional supporting information may be found in the online version of this article. 

 
Supplementary Figure 1. Phenotypic characterization of hws, 35S::HWS and hws; 
MIM156.  
 
Supplementary Figure 2. Skirt phenotype suppression in MIM159 and MIM319. 
 
Supplementary Figure 3. Phenotypic connection between HWS and miRNA 
biogenesis. 
 
Supplementary Figure 4. Yeast-2-Hybrid interaction screen of HWS with miRNA 
biogenesis factors.  
 
Supplementary Figure 5. Functional connection between HWS, AGO1 and 
ubiquitination.  
 
 
Supplementary Table 1. DNA oligonucleotide primers and probes. 
 
Supplementary Table 2. Plasmids. Constructs for plant transformation are based on 
pGREEN and confer either Basta or kanamycin resistance in plants.  
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Supplementary Figures 

 

 
 
 
Supplementary Figure 1. Phenotypic characterization of hws, 35S::HWS and hws; 
MIM156. (A) Flower and (B) silique phenotypes of Col-0, hws-1, hws-3, hws-1; 
35S::HWS and hws-1;35S::mHWS. (C) Skirt, (D) rosette (E) and cauline leaf fusion 
phenotype and suppression in MIM156, hws-1, hws-3, hws-1; MIM156 and hws-3; 
MIM156. (F) HWS expression level as measured by RT-qPCR in Col-0, hws-1 and 
hws-3. 
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Supplementary Figure 2. Skirt phenotype in MIM159, MIM319, MIM164b and 
miR164a ko plants with wild-type and hws-1 background. 
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Supplementary Figure 3. Phenotypic connection between HWS and miRNA 
biogenesis. (A) Leaf series with serration patterns of Col-0 and hws-3. (B) Skirt 
suppression of hws-1 in MIM164b. (C) Rosette phenotype comparison of hws-1, 
hws-1; 35S::HWS, hws-1; 35S::mHWS, ago1-27, hyl1-2 and hst-3. (D) Histochemical 
detection of ProMIR156c::GUS, ProMIR164a::GUS and ProHWS::GUS in rosettes. (E) 
Levels of mature miRNAs in Col-0, hws-1 and hws-1; 35S::mHWS as measured by 
RT-qPCR. (F) Levels of miRNA targets in Col-0, hws-1 and hws-1; 35S::mHWS as 
measured by RT-qPCR.  
 
  



Lang,	Christie	et	al.	 HAWAIIAN SKIRT in plant miRNA function
 

 29 

 

 
 
 
Supplementary Figure 4. Yeast-2-Hybrid interaction screen of mHWS with miRNA 
biogenesis factors.  
 
 
 



Lang,	Christie	et	al.	 HAWAIIAN SKIRT in plant miRNA function
 

 30 

 
 
 
Supplementary Figure 5. Functional connection between HWS, AGO1 and 
ubiquitination. (A) Yeast-2-Hybrid interaction screen of mHWS with and without the 
F-box with the AGO1 N-domain. (B) AGO1 and GFP-control protein levels in 
35S::HWS-GFP, 35S::mHWS-GFP, 35S::GFP and hws-1. Ponceau staining 
indicates equal loading. (C) AGO1-IP of 35S::HWS-GFP, 35S::mHWS-GFP, 
35S::GFP and hws-1. Protein levels of AGO1, GFP and UBQ in input, IP and 
supernatant fraction. Coomassie staining indicates equal loading.  
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Supplementary Tables 

Supplementary Table 1. Oligonucleotides. 
 
Gene/Allele Sequence Purpose 

miR159a TAGAGCTCCCTTCAATCCAAA RNA blot 

miR167 TAGATCATGCTGGCAGCTTCA RNA blot 

miR168 TGGCATACAGGGAGCCAGGCA RNA blot 

U6 GCTAATCTTCTCTGTATCGTTCC RNA blot 

generic miR GTGCAGGGTCCGAGGT qPCR 

miR156a-f GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC
GACGTGCTC 

RT 

 GCGGCGGTGACAGAAGAGAGT qPCR 

miR159a GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC
GACTAGAGC 

RT 

 GCGGCGTTTGGATTGAAGGGA qPCR 

miR164a GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC
GACTGCACG 

RT 

 AGGACATGGAGAAGCAGGGCA qPCR 

miR168 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC
GACTTCCC 

RT 

 GGTCGTCGCTTGGTGCAGGTC qPCR 

miR173 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC
GACGTGATT 

RT 

 AGGACATTCGCTTGCAGAGAGA qPCR 

ACTIN F:GCCATCCAAGCTGTTCTCTC qPCR 

 R:GCTCGTAGTCAACAGCAACAA  

AGO1 F:TCGGTGGACAGAAGTGGGAATA qPCR 

 R:TCAGCAGTAGAACATGACACG  

CUC2 F:CTCTTACCATTTCATCTCAAG qPCR 

 R:TACCGCTGCTTACGCTCACAG  

HWS F:CGCGAGTAGTGGCACGGATG qPCR 
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 R:GTAGTAACAGGACATTTCTGAG  

IPS1 F: AGCAATGAAGACTGCAGAAGGC qPCR 

 R: ACCGAAGCTTGCCAAAGGATAG  

LCR F:CTATCCACAGCACACTTTAC qPCR 

 R:CACAGCATTGTAGGTTATCAG  

PHO2 F: CTGATTGGGATAGCTCCAGCGACA qPCR 

 R: AGAAAATGTTCTGTGCCCGTCCA  

SPL3 F:ACGCTTAGCTGGACACAACGAGAGAAG qPCR 

 R:TGGAGAAACAGACAGAGACACAGAGGA  

SPL9 F:CAAGGTTCAGTTGGTGGAGGA qPCR 

 R:TGAAGAAGCTCGCCATGTATTG  

TCP4 F:CAACCGATACAGGAAACGGAG qPCR 

 R:CTGGTATGCGAAAACCCGAAG  

TOE2 F:ATGGAGAACCACATGGCTG qPCR 

 R:ACTGGACTGATCATGCCCTT  

MIM156 F:CTCTAGAAAGCCGAGCAGTGCTATCGAATGGGAAGCTTCG
GTTCCCCTCGGAAT 

qPCR 

 R:GGTACAACCCAAACATAATGAAG  

MIM164 F:TGCTTCTCCAAGCTTCGGTTC qPCR 

 R:GGTACAACCCAAACATAATGAAG  

abh1-753 F:TCAACCTACGAATTCTCTGGG Genotyping 

 R:TCATCTGCTGCCACTACTGTG  

 T-DNA F:ATTTTGCCGATTTCGGAAC  

ago1-25 F:CCATTGCAGGTGATTTGAAAC (+sequencing) Genotyping 

 R:TCCTGAGATGCCACAACCTGA  

ago1-27 F:TCGGTGGACAGAAGTGGGAATA Genotyping 

 R:CAGTAGAACATGACACGCTTCACATTC (+sequencing)  

hws-1 F:TCAAGCGGAATCTTGATGAGGAG  Genotyping 

 R:ATCATCCGTGCCACTACTCGC   

hws-3 F:GAGTTACTCAGTCTCGATAGTG  Genotyping 
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 R:ATCAAGCCGTGGCGATGATC   

hst-3 F:ATGGAAGATAGCAACTCCACGGC Genotyping 

 R:CAAACACCATCATAACAGTGCACCAACT  

hyl1-2 F:TTGCAGGAGTATGCTCAGAAG Genotyping 

 R:AACCATGAGCTTCCCTTTAAACCTTC  

se-3 F:ATGGCCGATGTTAATCTTCC Genotyping 

 R:TTTGAGGATTTCCACTGTTGG  

 T-DNA F: GCGTGGACCGCTTGCTGCAACT  
  



Lang,	Christie	et	al.	 HAWAIIAN SKIRT in plant miRNA function
 

 34 

Supplementary Table 2. Plasmids. 
 

Name ID Description   

rSPL9 MC004 SPL9 promoter driving N-terminal citrine fused to mutated 
SPL9 resistant to miR156, fused to the SPL9 3‘ UTR 

ProHWS:GUS MC007 HWS promoter:GUS fusion 

GAL4AD:HWs MC009 GAL4 activation domain fusion to HWS 

Pro35S:Citrine-HWS MC021 Pro35S driving N-terminal Citrine fused to HWS  

Pro35S:Citrine-mHWS MC040 Pro35S driving N-terminal citrine fused to mutated HWS 
lacking the F-box domain 

GAL4AD:mHWS MC042 GAL4 activation domain fusion to mutated HWS lacking 
the F-box domain 

GAL4BD:mHWS MC043 GAL4 binding domain fusion to mutated HWS lacking 
the F-box domain 

GAL4AD:RCF3 pPM384 GAL4 activation domain fusion to RCF3 

GAL4BD:RCF3 pPM385 GAL4 binding domain fusion to RCF3 

GAL4AD:CPL1 pPM358 GAL4 activation domain fusion to CPL1 

GAL4BD:CPL1 pPM359 GAL4 binding domain fusion to CPL1 

GAL4BD:HYL1 pPM398 GAL4 binding domain fusion to HYL1 

GAL4BD:HASTY pPL031 GAL4 binding domain fusion to HASTY 

GAL4BD:ABH1 pPM397 GAL4 binding domain fusion to ABH1 

GAL4BD:RDR6 pPM330 GAL4 binding domain fusion to RDR6 

GAL4BD:AGO1 pPL026 GAL4 binding domain fusion to AGO1 

GAL4AD:AGO1-N pPL028 GAL4 activation domain fusion to AGO1 N-domain 

Pro35S:MIM156 pMT049 Pro35S driving Mimicry156 
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