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Abstract

Artificial intelligence research and high computational power have recently led to break-

throughs in solving high-dimensional reinforcement learning and sequential decision-making

problems. The foundations of these advances rely on the classical theory of choice under uncer-

tainty, the so-called Subjective Expected Utility (SEU) theory. However, SEU theory assumes

two important unrealistic scenarios. First, it disregards computational limitations when mak-

ing decisions by assuming perfectly rational agents i.e. agents with unlimited computational

resources. Importantly, humans and artificial agents are bounded rational, or equivalently,

they suffer from precision and computational limitations. Second, SEU theory assumes that

the internal models employed for computation can be fully trusted and that they do not suffer

from model uncertainty. However, any model of the environment is inherently incorrect and

thus it should not be fully trusted. Therefore, humans and artificial agents are indeed subject

to model uncertainty.

This thesis consists of an experimental and a theoretical part. On the experimental side, I

aimed to explain human sensorimotor behavior with information-theoretic models of bounded

rationality and model uncertainty. In particular, we designed three experiments where we

expose human subjects to decision-making scenarios involving model uncertainty. We dis-

cover that human decision-making behavior can be explained by information-theoretic models

that manifest as risk-sensitive and ambiguity-sensitive models. On the theoretical part, we

developed a novel planning algorithm for sequential decision-making that accounts for both,

information-processing constraints and model uncertainty. Finally, we examined and extended

bounded rational models of decision-making under precision and time limitations whose we

drew analogies with non-equilibrium thermodynamics. This non-equilibrium thermodynam-

ical point of view allowed to connect decision-making with concepts such as dissipation and

time-reversibility, and to discover novel relations connecting equilibrium with non-equilibrium

decision-making.

In conclusion, information-theoretic models of decision-making might be the missing cor-

nerstone towards unifying principles of decision-making able to explain complex behavior

beyond classic expected-utility models.
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Chapter 1

Introduction

“Certainty of some thing is considered either objectively and in itself and means

none other than its real existence at present or in the future; or subjectively, de-

pending on us, and consists in the measure of our knowledge of this existence.”

- Jakob Bernoulli, The Art of Conjecturing

Probability has taken two different meanings since its conception (Machina and Viscusi,

2013). First, it has an objective meaning in which it deals with relative frequencies of events

in repeated trials. Second, it takes a subjective meaning in which it deals with the decision-

maker’s degree of belief about the truth of a proposition. Regardless of its subjective or

objective meaning, decision-makers facing a choice problem must quantify the probability of

an event and, additionally, its expected utility. The concept of utility replaced monetary value

as a measure for quantifying the desirability of an event (Bernoulli, 1954). The development

of the modern theory of choice needed not only the concept of utility but also two additional

formal advancements. One corresponds to the operationalization of subjective probabilities

(De Finetti, 1937; Ramsey, 1926) and the other with formalization of maximum expected

utility theory (Von Neumann and Morgenstern, 1944). These developments culminated in

Subjective Expected Utility (SEU) theory described in The Foundations of Statistics (Savage,

1954) in which subjective probabilities and utilities are defined via preferences over observable

acts.

SEU theory is formalized as follows (Savage, 1954; Von Neumann and Morgenstern, 1944).

The decision-maker chooses an action x ∈ X which yields an observation y ∈ Y from the en-

vironment. Action-observation pairs can be mapped to a single desirability value through the

utility function U : X × Y 7→ R which expresses the preferences of the decision-maker. Addi-

tionally, the subjective probabilistic model of the environment p(y|x) expresses the decision-

maker’s belief of observing y given the choice of x. This probabilistic model allows to compute

the expected utility

U(x) =
∑

y

p(y|x)U(x, y) (1.1)

1



Chapter 1. Introduction

of choice x. The expected utility summarizes the choice’s worth with a single numerical

value, also known as the certainty equivalent. Accordingly, a perfectly rational decision-maker

chooses the optimal action x∗ that maximizes the expected utility

x∗ = argmax
x

∑

y∈Y
p(y|x)U(x, y). (1.2)

Assuming a stochastic strategy p(x) and optimizing in this new space of policies P 3 p, the

previous maximization problem is rewritten as

p∗(x) = argmax
p(x)

∑

x∈X
p(x)

∑

y∈Y
p(y|x)U(x, y) (1.3)

where p∗(x) is the optimal stochastic policy. The solution to this problem is given by

p∗(x) = δ(x − x∗) (assuming a unique maximum in U). So, in principle, maximizing SEU is

straightforward; we only need to compute the expected utility of every action x and put all

the probability mass on the action with highest expected utility x∗.

In the context of sensorimotor decisions where noise is inherent to the decision-making

process (Faisal et al., 2008), the theoretical framework to evaluate the optimality of motor be-

havior is optimal feedback control theory which follows the same principles as expected utility

theory (Diedrichsen et al., 2010). In fact, SEU has explained successfully human sensorimotor

behavior under reaching tasks with monetary payoffs (Trommershäuser et al., 2003b; Trom-

mershäuser et al., 2008) or energy expenditure (C. M. Harris and Daniel M Wolpert, 1998;

Todorov and Jordan, 2002). However, in the context of economic decision-making it has been

systematically demonstrated that SEU theory fails as a descriptive theory. It is unable to de-

scribe human behavior in diverse situations mainly due to framing effects (Daniel Kahneman

and Amos Tversky, 1984; Amos Tversky and Daniel Kahneman, 1981), biased estimation of

probabilities (Allais, 1953; Daniel Kahneman and Amos Tversky, 1979; Amos Tversky and

Daniel Kahneman, 1975) or limited computational resources (Camerer, 2003; Gigerenzer and

Selten, 2002; Marewski et al., 2010). As a normative theory, SEU lacks a built-in description

of computational resources which are important to consider in all decision-making scenarios

subject to time or precision limitations. Additionally when requiring performance guarantees,

it also needs accurate probabilistic models of the environment to compute expected utilities,

which virtually never happens.

In this thesis we consider the following fundamental problems regarding the normative

and descriptive drawbacks of the theory:

• Bounded Rationality: Decision-makers have limited computational resources and

cannot evaluate expected utilities for all possible actions.

• Model-Uncertainty: Decision-makers cannot fully trust their model of the environ-

ment p(y|x) because it might be incorrect or uncertain.

In some situations these problems are not big enough to be noticeable. For example, humans

dealing with simple decisions without uncertainty (no risk), enough time to make a decision,

2



1.1. Bounded Rationality and Limited Computational Resources

and small number of options may not be subject to bounded rationality or model uncertainty.

Similarly, artificial decision-making systems that have to make decisions with limited resources

might be optimal in simple scenarios where the model of the environment is known and

where the computational complexity is low. Importantly, in more realistic situations where

decision-problems might be very complex, decision-makers are subject to the previous two

impediments. First, the dynamics of the environment are not known and therefore decision-

makers must deal with inaccurate models, thus being subject to model uncertainty. Second,

their computational resources are scarce and they must balance the value of the decision with

its computational cost, thus being subject to bounded rationality. In the following sections,

bounded rationality and model uncertainty is described in more detail.

1.1 Bounded Rationality and Limited Computational Resources

SEU theory describes how perfect rational decision-makers ought to act regardless of their

computational limitations. However, maximizing expected utility is a costly operation that

requires decision-makers to search through the whole decision space. More precisely, expected

utility optimality can only be achieved by evaluating all elements of the sets X and Y—

compare Equation (1.3). Importantly, for too large sets this computation becomes intractable.

Decision-makers with limited computational resources are unable to perform these intractable

computations and are said to be bounded rational (Simon, 1955; Simon, 1979). The main

point of bounded rationality is that artificial systems and humans should not act according

to the best possible action (given by SEU) which requires expensive computations but act

in a satisficing way given their bounded computational resources. Following such a strategy

decision-makers can achieve close to perfect performance but with far fewer computational

resources.

Exemplary bounded rational decision-makers are without any doubt human decision-

makers. Even though the extraordinary complexity and information processing capabilities

of the human brain, we are subject to computational limitations. There are mainly three

bottlenecks that limit our capacity to perceive and act (Marois and Ivanoff, 2005). First, we

are limited at a perceptual level because of the time it takes to consolidate visual stimulus in

short-term memory. These limitations have been studied under the attentional blink paradigm

(AB). Second, the visual short-term memory can only hold a limited number of “objects”.

Finally, the third bottleneck arises when acting upon a perceived stimulus in the form of a

delayed response for a subsequent stimulus—the so-called “psychological refractory period”

(PRP) (Welford, 1952). Limited capacity in the visual short-term memory has been found to

be localized in the posterior parietal and occipital cortex, whereas AB and PRP are localized

in fronto-parietal networks. Both neural regions converge in a common area, the lateral frontal

cortex, which acts as an information-processing bottleneck (Buschman et al., 2011) that forces

competition between the selection of different actions (Cisek, 2007). In order to perform ac-

tion selection the brain needs to represent information and compute optimal choices. In fact,

such useful representations and computations map directly to decision-theoretic concepts. In

3



Chapter 1. Introduction

particular, the parietal cortex has been shown to perform state estimation, the basal gan-

glia computes learning costs and rewards, the premotor cortex implements optimal control

policies (Shadmehr and Krakauer, 2008), and the medial prefrontal cortex is in charge of the

number of depth levels in strategic reasoning (Coricelli and Nagel, 2009). At the behavioral

side, bounded rational behavior has been studied since the conception of decision theory.

Early experiments correlated increasing reaction times with increasing number of available

options (Hick, 1952; Hyman, 1953), and in more recent experiments it has been found that

humans perform approximate Bayesian inference (Moreno-Bote et al., 2011), use limited sam-

ples (Vul et al., 2014) and bias choice behavior due to limited computational resources (Lieder

et al., 2012). All this evidence not only states the conspicuous idea that we have limited com-

putational resources, but it also shades light where the limitations and bottlenecks of our

brains are. Knowing the complexities of how the human brain computes might be relevant

to design artificial agents that perform computations in a different way in order to diminish

such limitations.

There are widely different approaches to model bounded rationality (Horvitz, 1988; Zil-

berstein, 2008) such as, for example, heuristics, meta-reasoning or bounded optimality. In

particular, heuristic search uses domain knowledge to guide the search process in a decision

tree (Gigerenzer and Goldstein, 1996). Generally, these methods do not provide formal guar-

antees that are necessary to have a formal definition of bounded rationality. In that sense,

heuristic approaches might be useful to solve some decision-problems under limited resources

but do not provide a formal solution to the bounded rationality problem. A different approach

that is more formal is bounded optimality which consists in searching for the maximally suc-

cessful program that can be computed in a particular machine (S. J. Russell and Subramanian,

1995). Although formally correct, bounded optimality approaches have limited use in practical

problems due to their difficulty of finding such programs. Another approach is meta-reasoning

in which the agent reasons about its own computational resources (Costantini, 2002). Instead

of simply solving the hard problem of maximizing the expected utility, the agent finds a strat-

egy that maximizes utility and also penalizes strategies that incur high computational costs.

In principle, this should lead to finding strategies with low computational costs, however, this

new meta-level of optimization is also subject to information-processing costs. We can clearly

see that this leads to an infinite regression where every time the agent instantiates a new

meta-level it generates new costs (Ortega et al., 2015). Thus meta-reasoning, even though it

might be useful to solve some problems it is only a partial solution of the bounded rationality

problem when disregarding the computational costs at the highest level of the hierarchy.

In this thesis, an existing model of bounded rationality based on information-theoretic

quantification of computational costs is adopted (Ortega and Braun, 2013). The main point

is that the decision-maker is not allowed to reason about its own computational limitations

and instead interrupts computation according to some internal principle. In this way, compu-

tational limitations are only noticeable from an observer’s perspective. These kind of bounded

rational computations are also named anytime algorithms (Zilberstein, 1996). The theoretical

foundations of the adopted approach is described in Section 1.3.1.

4



1.2. Decision-Making under Model Uncertainty

1.2 Decision-Making under Model Uncertainty

Decision-makers are confronted with two sources of uncertainty (Knight, 1921). On one hand

they face irreducible uncertainty due to the stochastic nature of the environment, for example,

when throwing a dice. On the other hand, they face unknown uncertainty when the probabil-

ities of events are not known, for example, the winner in a one-time horse race. In economics,

irreducible environmental uncertainty is called risk, whereas the uncertainty regarding proba-

bilities is called ambiguity. Adopting this nomenclature, a risk-sensitive decision-maker takes

into account not only the expected utility value
∑

y p(y|x)U(x, y), but also higher order mo-

ments of U arising from p(y|x). For example, given two options with the same expected

utility, a risk-averse decision-maker would choose the one with less variance. In contrast to

a risk-sensitive decision-maker, an ambiguity-sensitive decision-maker might have a model

p(y|x) but it is an untrusted or misspecified model and it shall not be used completely to

compute expectations. In general, a decision-maker is risk-sensitive or ambiguity-sensitive

depending on the nature of the options of the decision problem. An example of a risky option

corresponds to the flip of a fair coin, and an example of an ambiguous option corresponds

to the flip of a coin with unknown bias. This highlights the fact ambiguity can vanish when

observing multiple tosses of the coin with unknown bias. In other words, the decision-maker

becomes more certain about the underlying bias and ultimately uncertainty is reduced to

zero. When this happens there is only risk and no ambiguity. In the following two sections

I explain further the origins of risk and ambiguity and their implications in decision-making

processes.

1.2.1 Decision-Making under Risk

Risk and utility have been born together with the scientific discipline of decision-making under

uncertainty around three hundreds years ago (Bernoulli, 1954). In fact, the concept of utility

came to life thanks to the St. Petersburg paradox closely related to risk-sensitivity. The

paradox goes as follows. We toss a coin repeatedly until the outcome is heads at the n-th

toss (where n ∈ N). The monetary payoff depends on the number of tosses V (n) = 2n. The

expected payoff V for such a game is infinite

V =

∞∑

n=1

p(n)V (n) =

∞∑

n=1

(
1

2

)n
2n =∞,

where p(n) is the probability of getting heads after n toss. Even though the expectation is

infinite, it is clear that nobody would bet an infinite amount of money to play this game.

The paradox was solved when Daniel Bernoulli (Bernoulli, 1954)1 in 1738 recognized that

the true value that a person would assign to this game is not simply a monetary expectation

but a “moral expectation”, nowadays named expected utility. In particular, (Bernoulli, 1954)

suggested a logarithmic function as a utility function to model diminishing utility gains for

1The citation is a translation from 1954 of the original paper published in 1738.
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Chapter 1. Introduction

equal monetary gains as a person gets richer. This induces concavity in the utility function

which makes the expectation in the St. Petersburg game finite and thus solves the paradox.

Modeling subjective utilities as marginally diminishing with increasing wealth in order to

obtain risk-sensitive behavior, seems to suggest that the curvature of the utility function mod-

els risk-sensitivity. In particular, Arrow and Pratt identify risk aversion with the curvature

of the utility function in what is called the absolute risk aversion measure (John W Pratt,

1964). This measure is convenient because it is invariant to affine transformations. However,

the drawback of defining risk-sensitivity by the curvature of the utility function is that it re-

quires a one-dimensional continuous differentiable function. Therefore, although SEU theory

allows to compare options or actions as dissimilar objects, this measure of risk does not. There

exist other measures of risk which do not suffer from this drawback. The primary alternative

is the mean-variance decision-model (Markowitz, 1952) where the decision-maker does not

only cares about the expected utility E[U ] of option x, but also about the variance VAR[U ]

in the following way E[U ]−αVAR[U ]. Thus in mean-variance models the risk associated to a

random outcome is measured by the variance which can be computed in both, real valued and

categorical random variables. The parameter α captures the risk-attitude of decision-makers.

For α = 0, α > 0 and α < 0 we obtain risk-neutral, risk-averse, and risk-seeking decision-

makers. Although mean-variance models are interesting as a way to model risk-sensitivity

they do not take into account all the other higher order moments of the random utility gains.

For that, other models have been proposed that use exponential functions that generate all

moments (Whittle, 1981).

In an experimental context, one of the most intriguing violations of expected utility which

cannot be explained by the aforementioned risk models is the Allais’ paradox (Allais, 1953).

The paradox essentially takes two lotteries, A and B, and adds a common consequence to

both (e.g. adding a 66% of obtaining a certain amount of money) in order to obtain the new

lotteries C and D, respectively. Under SEU, the decision-maker should prefer C if it first

preferred A, or D if it first preferred B. However, in many experiments, humans choose a

reversed pattern, that is they switch from preferring A in the first choice, to preferring D

in the second, or switch from B to C. This suggest a violation of the independence axiom,

central to SEU theory (Ray, 1973). Allais’ paradox spurred the development of one of the

most successful theories of choice, Prospect Theory (Daniel Kahneman and Amos Tversky,

1979).

In contrast to economic decision-making, sensorimotor decisions have been shown to be

consistent with risk-neutral SEU theory (Braun et al., 2011a; Diedrichsen et al., 2010; C. M.

Harris and Daniel M Wolpert, 1998; Todorov and Jordan, 2002; Trommershäuser et al., 2003b;

Trommershäuser et al., 2008). However, few studies have reported instances of risk-sensitivity

in sensorimotor control, for example, when testing the mean-variance risk model (Nagengast

et al., 2010; Nagengast et al., 2011b). Recently, Wu et. al (Wu et al., 2009) have compared

economic decision-making with sensorimotor decision-making in an Allais’ type scenario, and

they explained the observed behavior with decision-making models of risk (Prospect Theory).

Intriguingly, they have reported a switch of risk-attitude when framing from pen-and-paper to
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sensorimotor decision-making contexts. This is an interesting result because framing effects—

so important in shaping human behavior (Daniel Kahneman and Amos Tversky, 1984; Amos

Tversky and Daniel Kahneman, 1981)—might not only be detectable in pen-and-paper psy-

chological tasks, but also at a lower level in simple perception-action sensorimotor tasks.

1.2.2 Decision-Making under Ambiguity

Although Knight, 1921 did already distinguish between the terms “risk” and “uncertainty”

(also known as risk and ambiguity), he did so referring to the absence or existence of objective

probabilities not subjective probabilities (Machina and Viscusi, 2013). It was not until the

work of Ellsberg, 1961 and his paradox that human subjects where found to be inconsistent

with Savage’s axioms of SEU theory (Slovic and Amos Tversky, 1974). The paradox specif-

ically tackles the situation where one does not know the probability of a certain event, thus

in mathematical terms, the decision-maker might have a model p(y|x) but it is untrusted.

In particular, Ellsberg (Ellsberg, 1961) presents to human subjects a decision problem where

they have to choose one of two boxes. One of them is filled with a known 50% proportion

of black and white balls, and the other is filled with an unknown proportion of black and

white balls. From the chosen box, a ball is going to be randomly drawn with distinct reward

associated to its color e.g. a reward of $5 if it is white and $0 if it is black. Therefore, the

probabilities p(y|x) of observing y = “white” or y = “black” are known for the first box and

unknown for the second. When asking human participants to choose a box, they prefer, in

70% of the cases (Ellsberg, 1961), the box with known probabilities; paradoxically, they main-

tained this preference even when swapping the prize to the other color! Importantly, there no

single subjective belief about the proportion of the unknown box that can explain this choice

behavior and thus SEU theory seems to be violated. These results provide evidence of the

short-comings of SEU theory to explain human decision-making under ambiguity.

Two-player games. Ambiguity also plays a role in two-player game-theoretic scenarios

where one player chooses x and the other chooses y. In these scenarios, the strategy of the

second player p(y|x) (in sequential games) is hidden—from the first player’ point of view.

Due to the uncertainty about the hidden strategy, decision-makers might want to choose their

actions robustly, expecting that the opponent is going to choose the worst possible action y.

More formally, a robust decision-maker facing an adversarial player chooses according to a

“maxmin” strategy which can be expressed as

x∗ = argmax
x

min
p(y|x)

∑

y

p(y|x)U(x, y).

Additionally, in the case of a friendly opponent that is expected to choose the best possible

observation, a “maxmax” strategy can be employed, which is formally written as

x∗ = argmax
x

max
p(y|x)

∑

y

p(y|x)U(x, y).
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However, when facing a bounded rational adversarial opponent the choice strategy is doubt-

fully optimal from the perspective of the first player. Similarly, a teammate with few com-

putational resources might not be able to choose the best strategy. How can we model these

intermediate levels of pessimism and optimism? The following section 1.3.2.2 explains how to

model such kind of intermediate model trust and intermediate optimism with a free energy

formulation.

1.2.3 Neural Correlates of Decision-Making under Risk and Ambiguity

In the following I review the findings in the literature connecting the computational models

of decision-making with neural correlates in the brain. In particular, I focus on the neural

signatures relevant to the topics of this thesis, such as where and how the brain encodes value,

uncertainty, risk and ambiguity.

Representation of utility and uncertainty. Decision-theory relies on two fundamental

pillars: probability theory and utility theory. Therefore, in order to make decisions, the brain

must represent both, probabilities and utilities (or value). The most important brain region

that is known to encode value is the orbitofrontal cortex (OFC) (Bartra et al., 2013) which

not only encodes value in a variety of contexts but also consistently with behavioral theories of

decision-making under risk (Rangel and Hare, 2010). In particular, specific rewards have been

shown to be represented in a continuous scale in the OFC which specializes in stimulus value

coding, and also in the anterior cingulate cortex (ACC) which specializes in action cost and

value coding (Grabenhorst and Rolls, 2011; Rangel and Hare, 2010; Shenhav et al., 2013). Not

only that, blood oxygenation level dependent (BOLD) signals in the ventromedial prefrontal

cortex (VMPFC)—a bigger region that includes the OFC—scale with the subjective value of

the available options at time of choice and respond when rewards are received (Bartra et al.,

2013), thus suggesting a common system for reward prediction and acquisition.

A key aspect of the decision-making process is the evaluation of probabilities. For that,

the brain must have a way to represent uncertainties or probabilities associated with every

possible outcome when selecting an action or when doing inference. Previously thought a

unique human capability, representing uncertainty is a fundamental component of sensorimo-

tor processing also present in other animals including smaller rodents (Kepecs et al., 2008).

An abundant amount of research has been done in unveiling how uncertainty is represented

in the brain—see (Pouget et al., 2013) for an extensive review. In particular, in the last

two decades it has been proposed that neural activity encodes functions over latent variables.

These functions are either probability distributions or log probabilities. For example, the

response of a neuron calibrated to detect a certain stimulus is proportional to either the prob-

ability or the log of the probability of that stimulus being present (Anastasio et al., 2000;

Koechlin et al., 1999). Either representation is appropriate for different computations such

as adding or multiplying probabilities. Adding probabilities is easy when using a probabil-

ity code, whereas multiplying probabilities is easy when using a log probability code. Using
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either code, functions can be represented by a sum of basis functions. For example, the log

probability of a latent variable h given a vector of neural responses r can be represented as

log p(h|r) =
∑

i rifi(h) + k where fi are the basis functions and k is a normalization con-

stant. This way of representing functions is useful because multiplications of likelihoods can

be performed by just adding neural responses. Likelihood multiplications are the basis for

performing inference, for example, when combining different sources of information coming

from different sensory input in order to estimate a latent variable. These probabilistic ap-

proaches to decode neural computations assume that ultimately the brain mimics an optimal

inference machine, also known as the Bayesian brain hypothesis (Knill and Pouget, 2004).

In the end, the objective of these theoretical frameworks is to integrate them with theories

of decision-making at a neural level with the goal of explaining, not only how we represent

uncertainty but how do we use it for action (Bach and Dolan, 2012).

Representation and processing of risk and ambiguity. Importantly, the value asso-

ciated with actions also depends on their corresponding riskiness and ambiguity. There have

been breakthroughs in showing how and where the brain encodes and processes risk and

ambiguity(Hsu et al., 2005; Huettel et al., 2006). A bigger volume of investigations showed

neural correlates for decision-making under risk compared to decision-making under ambigu-

ity (Platt and Huettel, 2008). However, here we give an succinct overview of the research

regarding both kinds of decision-making scenarios and their corresponding neural substrates.

In essence, option valuation under risk is modulated by the magnitude of both, the ex-

pected value and the variance. Numerous neuroimaging studies examined neural activity

under conditions of risk. Options with higher expected values induced higher activation in

distinct regions of the stratium and options with higher uncertainty elicited increasing activa-

tions in the lateral orbitofrontal cortex (l-OFC)(Hsu et al., 2005; O’Neill and Schultz, 2010;

Tobler et al., 2007). Interestingly, these studies also found that higher activations in the

l-OFC correlated with risk-averse behavior, and that activations in medial areas correlated

with risk-seeking behavior. Additionally, they found that value coding in the prefrontal cor-

tex (PFC) correlates differentially with uncertainty. This suggest separate prefrontal regions

being involved in processing of risk-attitudes. Bold oxygen level-dependent (BOLD) corre-

lates of value and risk where found in regions of the ventral stratum and anterior cingulate,

respectively, and the inferior frontal gyros activity was associated to low risk and safe op-

tions. Interestingly, these correlations allowed to accurately decode the behavioral response

(Christopoulos et al., 2009). Risk prediction is another important aspect when dealing with

sequential decision-making tasks and it has been shown that the insula governs the mech-

anisms for risk prediction error (Preuschoff et al., 2008). In summary, all of these studies

reinforce the view that valuation of decisions under risk is processed in the stratium and the

OFC, and that risk-sensitivity is encoded in distinct regions in the PFC.

Ambiguity refers to the lack of knowledge about the probabilities of random outcomes.

Thus if one learns the probability distribution of the random process, then ambiguity vanishes

and the decision-problem only comprises risk-uncertainty. For this reason, the majority of the
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neuroimaging studies about ambiguity include also instances of risk. In particular, it has

been found that decision-making under ambiguity activates more the amygdala and the OFC

than under risk and that patients with lesions in the OFC show no risk or ambiguity aversion

(Hsu et al., 2005). Another area relevant to the processing of risk and ambiguity is the

PFC. In this area, activity representing subjective value has been shown to be higher for

ambiguity compared to risk (Huettel et al., 2006) whereas the posterior parietal cortex (PPC)

showed higher activation for risk compared to ambiguity. These findings suggest distinct

mechanisms in the processing of risk and ambiguity. Importantly, the subjective valuation

under risk and ambiguity is governed in both cases by a common system, the stratum and

the medial prefrontal cortex (mPFC)(I. Levy et al., 2010). In general, activation patterns in

decision-making under risk and all degrees of ambiguity have been shown to be correlated

in a “fronto-parietal-stratial” network. Interestingly, higher activation was found in the PFC

for partial ambiguity conditions, suggesting that this neural region does not simply track the

degree of ambiguity but possibly the difficulty of the decision-process (Bach et al., 2009; Lopez

Paniagua and Seger, 2013). In general, it seems that the same area, the OFC, is involved

in valuation of both risky and ambiguous options and that it produces higher activation for

higher uncertainty.

1.3 An Information-Theoretic Approach to Decision Theory

The methods presented in the previous sections for the modeling of bounded rationality and

model uncertainty, seem diverse and disconnected. However, when considering information-

theoretic approaches they can be unified by common theoretical principles. In the following,

I show how adding information-theoretic constraints to the SEU maximization problem leads

to a seamless integration of bounded rationality and model uncertainty.

1.3.1 Bounded Rationality as an Information Constraint

In the recent past there has been an increasing interest in modeling decision-making with

limited information processing capabilities from an information theoretic point of view (Braun

and Ortega, 2014; Braun et al., 2011b; Friston, 2010; Kappen et al., 2012; Ortega and Braun,

2011; Ortega and Braun, 2013; Ortega et al., 2015; Rubin et al., 2012; Still, 2009; Still et al.,

2012; Tishby and Polani, 2011; Todorov, 2009; Vijayakumar et al., 2012). In the following,

I present an information-theoretic bounded rationality framework based on (Ortega et al.,

2015).

A bounded rational decision-maker that cannot select the optimal action x∗ due to limited

information-processing capabilities can be characterized by the following constrained maxi-

mization problem

max
π

∑

x

π(x)U(x) s.t. DKL(π||ρ) ≤ K (1.4)

where DKL(π||ρ) =
∑

x π(x) log π(x)
ρ(x) is the relative entropy that measures the information
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‘distance’2 between the prior reference distribution ρ over actions and the posterior policy π.

This constrained maximization problem trades off maximization of utility with computational

cost measured by the relative entropy. Conversely, the same problem (1.4) can be rewritten

as an unconstrained optimization problem with the method of Lagrange multipliers, which

gives

max
π

∑

x

π(x)U(x)− 1

α
DKL(π||ρ). (1.5)

The solution can be found by tacking the functional derivative, equating to zero, and solving

for π. This solution is written as

π∗(x) =
ρ(x)eαU(x)

∑
x ρ(x)eαU(x)

(1.6)

where the parameter α controls the computational resources of the decision-maker. For α→ 0

it models a decision-maker with no resources that chooses according to its prior strategy

ρ and for α → ∞ we recover a SEU decision-maker that chooses the best action x∗ =

argmaxx U(x). For finite α, we have a bounded rational decision-maker that trades off utility

and computational resources. Note that when the prior is a uniform distribution the choice

strategy takes the form of a soft-max rule.

Although the information-theoretic description is appealing and theoretically convenient,

the bridge from information resources to algorithmic resources is not clear and has to be stud-

ied case by case. However, it can be shown that a decision-maker using a rejection-sampling

scheme (MacKay, 1998) needs less samples from ρ to obtain a sample form the posterior policy

π when the boundedness parameter α is reduced (Ortega and Braun, 2014). This highlights

an important connection between information-theoretic computational resources measured

by the relative entropy and algorithmic computational resources measured by the number of

samples. Even though the employed information-theoretic terms that quantify computations,

at first sight, seem disconnected from real computations, they are not.

1.3.2 Model Uncertainties as Information Constraints

In the following section I adopt an information-theoretic approach to model both risk-sensitivity

and ambiguity sensitivity in a similar way that we modeled bounded rationality.

1.3.2.1 Risk-Sensitivity as an Information Constraint

In SEU theory, the certainty equivalent F (x) assigned to option x is the expected utility value

F (x) =
∑

y

p(y|x)U(x, y), (1.7)

while in the mean-variance models the certainty equivalent is computed as

F (x) =
∑

y

p(y|x)U(x, y) + βVAR[U ] (1.8)

2In fact is not a distance because is not symmetric, but for our purposes it effectively acts as a distance.
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where VAR[U ] =
∑

y

(
U(x, y)− U

)2
p(y|x) and U =

∑
y p(y|x)U(x, y) is the mean. A risk-

averse (β < 0) or risk-seeking (β > 0) decision-maker facing, for example, two options x1, and

x2, chooses the one with the highest certainty equivalent.

The information-theoretic used here is a similar model to the mean-variance models of

risk-sensitivity, it falls within the class of entropic risk measures (Föllmer and Schied, 2011),

and it has been used before in the control literature (Whittle, 1981). Specifically, we model

risk-sensitivity as an optimization problem that trades off utility and information. In contrast

to information-theoretic bounded rationality, in order to express risk-sensitivity we limit the

informational distance between a biased model q(y|x) and a true model of the environment

p(y|x). Formally, to obtain the certainty equivalent for a risk-seeking decision-maker (β > 0),

the following optimization problem needs to be solved

F (x) = max
q(y|x)

∑

y

q(y|x)U(x, y)− 1

β
DKL(q||p). (1.9)

In contrast, for a risk-averse decision-maker (β < 0), the following problem needs to be solved

F (x) = max
q(y|x)

∑

y

q(y|x)U(x, y)− 1

β
DKL(q||p). (1.10)

Importantly, the solution for both problems is the same and it is written as

q∗(y|x) =
p(y|x)eαU(x,y)

∑
y p(y|x)eβU(x,y)

. (1.11)

Similarly, the certainty equivalent is the same for both problems and it is rewritten as

F (x) =
1

β
log
∑

y

p(y|x)eβU(x,y). (1.12)

Importantly, under this formulation β can be conveniently set to a positive or negative number

keeping the same mathematical form for the expression of the certainty equivalent. Note that

with this approach, risk-sensitivity is expressed not by the curvature of the utility function,

but directly by the free energy of choice x for a given temperature β. The connection of the

free energy model for risk-sensitivity and the mean-variance model can clearly be seen when

doing the second order Taylor approximation of the free energy. Specifically,

F (x) =
1

β
log
∑

y

p(y|x)eβU(x,y) ≈
∑

y

p(y|x)U(x, y) +
β

2
VAR[U ] (1.13)

when βVAR[U ] is small (Whittle, 1981). Therefore, in this view, the utility function only

focuses on expressing the desirability of the distinct options alone and does not adopt the role

of characterizing risk-sensitivity. Instead, the free energy is responsible for the risk-sensitive

valuation. We can recover different risk-sensitive decision-makers depending on the value of

β. In particular, for β → 0 we recover a risk-neutral agent where the certainty equivalent

takes the form of a plain expected utility F (x) =
∑

y q(y|x)U(x, y). For β > 0, we recover
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a risk-seeking agent that assigns a higher value to the certainty equivalent compared to the

risk-neutral agent. In the limit of β → ∞, we recover an infinitely risk-seeking agent with

certainty equivalent F (x) = maxy U(x, y). On the contrary, for β < 0, we recover a risk-

averse agent that assigns a lower value to the certainty equivalent compared to a risk-neutral

agent. In the limit of β → −∞, the certainty equivalent is equal to the lowest utility value

F (x) = miny U(x, y).

1.3.2.2 Ambiguity-Sensitivity as an Information Constraint

As outlined in Section 1.2.2, ambiguity refers to the lack of knowledge about the model of

the world p(y|x). The standard way to express this uncertainty is to assign, for example,

a Bayesian model µ over the possible environment models p in the form of µ(p). Using

a parametric model of the environment pθ(y|x) (parametrized by θ), we can express the

uncertainty about the parameters directly as µ(θ). In this way a decision-maker that receives

data D updates his probabilistic model by means of Bayes’ rule µ(θ|D) = 1
Zµ(θ)p(D|θ),

where p(D|θ) is the likelihood model. We express the dependency between option x and the

Bayesian model µ(θ|D,x) by conditioning on x. Under this view, being ambiguous about the

probabilities of the true model of the environment p(y|x) translates directly in the amount of

uncertainty about the parameters θ by means of the Bayesian model µ. A robust decision-

maker that requires utility guaranties against these uncertainties would consider a restricted

set of models within the neighborhood of µ. Here we employ a model of ambiguity that falls

within the class of methods that use a restricted set of permissible models (Iyengar, 2005;

Nilim and El Ghaoui, 2005). In economics, similar class of models have been proposed that

fall within the class of variational preference models (Maccheroni et al., 2006) in particular

the multiplier preference model (Hansen and Sargent, 2008). Specifically, to model ambiguity-

seeking behavior under model uncertainty we allow for optimistic deviations by framing the

problem as a free energy optimization problem

ψ∗(θ|x) = argmax
ψ

∑

θ

ψ(θ|x)
∑

y

pθ(y|x)U(x, y)− 1

γ
DKL(ψ(θ|x)||µ(θ|D,x)) (1.14)

with ψ as an argument, whereas to model for ambiguity-averse behavior we allow for pes-

simistic deviations,

ψ∗(θ|x) = argmin
ψ

∑

θ

ψ(θ|x)
∑

y

pθ(y|x)U(x, y)− 1

γ
DKL(ψ(θ|x)||µ(θ|D,x)). (1.15)

Importantly, the optimal biased model in both optimization problems is

ψ∗(θ|x) =
1

Z
µ(θ|D,x)eγ

∑
y pθ(y|x)U(x,y). (1.16)

and the certainty equivalent of option x is

F (x) =
1

γ
log

∫
µ(θ|D,x)eγ

∑
y pθ(y|x)U(x,y)dθ (1.17)
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assuming that the space of θ is continuous.

Similarly to the case of risk-sensitivity, we can recover a number of different decision-

makers when changing the parameter γ. For example, when γ →∞, we recover an infinitely

optimistic agent that disregards the current knowledge µ(θ|D) about the parameters and

assigns a certainty equivalent to option x as F (x) = maxθ
∑

y pθ(y|x)U(x, y). In contrast,

for γ → −∞ we recover an infinitely robust agent that assigns a certainty equivalent with

F (x) = minθ
∑

y pθ(y|x)U(x, y). For γ → 0, the decision-maker expresses full trust in its

probabilistic model µ(θ|D) and therefore assigns a certainty equivalent that is the expectation

F (x) =
∫
µ(θ|D)

∑
y pθ(y|x)U(x, y)dθ. Importantly, when learning about the environment,

the Bayesian model µ(θ|D,x) becomes more peaked around the true parameters θ∗. This

makes the biased model ψ∗ closer to µ because such deviations become more costly in terms

of relative entropy. This means that when the decision-maker learns about the environment,

ambiguity vanishes as expected.

1.4 Overview of the Thesis

In this thesis I am interested in experimentally testing the validity of the previously presented

models of information-theoretic decision-making in explaining human sensorimotor behavior.

Additionally, I also aimed to advance the theoretical part of this framework by designing novel

planning and decision-making models that take into account bounded rationality and model

uncertainty. In particular, I will try to answer the following experimental and theoretical

questions.

Experiments in Human Decision-Making This experimental part deals with the gen-

eral question: Are humans making choices according to the proposed information-theoretic

models of bounded rationality, risk and ambiguity in laboratory experiments? (Chapter 2, 3 and 4).

Additionally,

• Is the human sensorimotor system subject to risk-sensitivity in an estimation task?

(Chapter 2)

• Do the same humans have different ambiguity attitudes in different situations? What

are the important factors that determine these ambiguity attitudes?(Chapter 3)

• In two-player games, how are cooperative solutions affected by model uncertainty coming

from different players? (Chapter 4)

Theoretical Advancements of Information-Theoretic Approaches to Decision-Making

In this part we focused on the following questions.

• How can we extend the theory in a sequential decision-making scenario to take into

account bounded rationality and model uncertainty simultaneously when planning into

the future? (Chapter 5)
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• Given that the free energy is a concept from statistical physics, how does bounded

rational decision-making relate to non-equilibrium statistical physics? Can we make

novel predictions when importing concepts from physics to decision-making? (Chapter 6)

In the following we summarize the remaining chapters of the thesis.

Chapter 2: Risk-Sensitivity in Bayesian Sensorimotor Integration. Previously, it

has been shown that the nervous system employs probabilistic models during sensorimotor

learning (K. P. Körding and Daniel M Wolpert, 2004; Daniel M Wolpert et al., 1995). In

particular, in (K. P. Körding and Daniel M Wolpert, 2004) the authors show in a senso-

rimotor task that human subjects internally represent sources of information about latent

variables stemming from prior knowledge and visual feedback, and that they combine this in-

formation consistent to risk-neutral Bayesian inference. However, the way they designed their

experimental setup did not allow subjects to exhibit risk-sensitive deviations. In our first

experiment we develop a modified estimation task with added sensorimotor costs in order to

test for risk-sensitive behavior. We show that the nervous system is not only consistent with

Bayesian inference but it is risk-sensitive to the underlying utility function. In particular, the

behavioral data recorded in this new experiment is consistent with our predictions from the

information-theoretic model of risk-sensitivity (see Section 1.3.2.1) where the decision-making

process depends on an interplay between both uncertainty and utility. This chapter is based

entirely on the publication:

• Grau-Moya, J., Ortega, P. A., & Braun, D. A. (2012). Risk-sensitivity in bayesian

sensorimotor integration. PLoS Computatinal Biology, 8(9), e1002698.

Chapter 3: Framing Effects in Decision-Making under Ambiguity. While many

studies have shown how human decision-making under ambiguity deviates from expected

utility theory in pen-and-paper tasks (mainly from researchers following the work of Ells-

berg (Ellsberg, 1961)) less research has been devoted towards the understanding of human

sensorimotor behavior under ambiguity. Similarly, while there is a study that shows how

humans have different risk-attitudes between tasks under different framing such as pen-and-

paper and sensorimotor framing (Wu et al., 2009), there has been no report in the literature

about these differences under ambiguity. Here we are interested in understanding human be-

havior under ambiguity and under different framing conditions including sensorimotor framing

and visual framing. To do so we designed an experiment with two tasks. One is a modified

version of the original Ellsberg’s task involving choices between urns filled with balls. The

other is a translated version of Ellsberg’s task in a sensorimotor domain where uncertainty

arises due to the intrinsic stochasticity of the sensorimotor system. Not only do we find that

humans exhibit different ambiguity-attitudes depending on the visual framing and not due

to a sensorimotor framing, but we also suggest that the reported results in (Wu et al., 2009)

might stem from visual framing and not from a sensorimotor framing. This chapter is based

entirely on the publication:
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• Grau-Moya, J., Ortega, P. A., & Braun, D. A. (2016). Decision-Making under Am-

biguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor

Context. Experiments and an Information-Theoretic Ambiguity Model. PloS

one, 11(4), e0153179.

Chapter 4: The Effect of Model Uncertainty on Cooperation. In the previous two

chapters we have tested human behavior under model uncertainty and found it to be consis-

tent with our information-theoretic models. However, to the best of our knowledge, studies

regarding model uncertainty in two-player games have not been reported in the literature. In

such games it is common that players have model uncertainty given that they are unaware of

the probabilities of the opponent’s strategy. When simulating choice behavior of two players

using our information-theoretic models we obtain interesting predictions—such as a coupling

between choice behavior and the opponent’s ambiguity-sensitivity parameter—that can be

tested in an experiment with human subjects. In particular, we designed an experiment

where humans played a simple cooperation game, the “stag hunt game”, where the opponent

was a computer player. This way we were able to manipulate the computer’s ambiguity-

parameter γ (see Section 1.3.2.2 ) and test human choice behavior under different values of

the opponent’s ambiguity-parameter γ. We show that human choice behavior strongly depen-

dent on γ and that is consistent with the information-theoretic model under ambiguity that

differs from standard models in the literature such as fictitious play. In particular, we show

that the opponent’s ambiguity-sensitivity plays a crucial role in driving the interaction into

cooperative or non-cooperative behavior. These findings could be important in the designing

of robots that need to interact with humans as has already been shown in (Medina et al.,

2015). This chapter is based entirely on the publication:

• Grau-Moya, J., Hez, E., Pezzulo, G., & Braun, D. A. (2013). The effect of model

uncertainty on cooperation in sensorimotor interactions. Journal of The Royal

Society Interface, 10(87), 20130554.

Chapter 5: Planning with Model Uncertainty and Bounded Rationality. All our

experimental findings so far were based on single-step decision-making processes and did not

have a sequential nature. In fact, the theoretical developments of sequential decision-making

under both, bounded rationality and model uncertainty, have not been reported in the litera-

ture so far. Here we are interested in designing a model that considers model uncertainty and

bounded rationality in a sequential fashion. For that we ground our theoretical formulation

in Markov Decision Processes (MDP). An MDP is a tuple (S,A, T,R, γ) where S is a finite

set of states, A is a finite set of actions, T : S × A → ∏
(S) is a state transition function

T (s′, a, s) of ending in state s′ when taking action a from state s, R : S × A × S → R is a

reward function and γ ∈ (0, 1) is a discount factor. In this setting, the goal of the agent is to
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maximize the discounted expected return

Vπ(s0) = lim
N→∞

E
N−1∑

t=0

γtR(st, at, st+1) (1.18)

where the expectation E is over trajectories of action-state pairs s0, a0, s1, a1 . . . with proba-

bility π(a0|s0)T (s1|s0, a0)π(a1|s1) . . . given a starting initial state s0.

There are two ways to solve an MDP, by planning—known as dynamic programming—or

by learning, through interaction with the environment—for example by temporal-difference

methods (Sutton and Barto, 1998). In this chapter we will construct a new optimization

problem which takes into account the information-theoretic cost in the policy (bounded ra-

tionality) and in the model of the environment (model uncertainty). We solve this problem

in a similar fashion to dynamic programming with a generalized version of value iteration

algorithm and we prove its convergence to a unique solution. This chapter is based entirely

on the publication:

• Grau-Moya, J., Leibfried, F., Genewein, T. & Braun, D.A. (2016). Planning with

Information-Processing Constraints and Model Uncertainty in Markov De-

cision Processes. ECML/PKDD Joint European Conference on Machine Learning

and Knowledge Discovery in Databases. Springer International Publishing, 2016.

Chapter 6: Nonequilibrium Bounded Rational Decision-Making. The model of

bounded rationality exposed in Section 1.3.1 has a clear analogy with equilibrium thermody-

namics. In particular, the trade-off between utility and information (entropy) that character-

izes the model is also a cornerstone of classic thermodynamics that specifically deals with a

similar trade-off between energy and entropy. Entropy3 is closely related to the evolutionary

description of systems. In thermodynamics, entropy relates and specifies statistically the di-

rection of time of physical processes, or in other words, specifies what process is irreversible

and what process is reversible. Reversible processes are idealizations of the laws of nature

that are invariant to the time inversion. In this case the entropy increase in the universe is

zero. However, by the second law of thermodynamics, irreversible processes are characterized

by an increase of entropy (or disorder) in the universe. Irreversibility is ubiquitous in nature,

fried eggs do not spontaneously return inside their shells and solutions do not spontaneously

separate from the solvent.

When considering that the bounded rational posterior distributions can only be achieved

after a certain amount of time we can clearly establish relationships with non-equilibrium

thermodynamics. These relationships are interesting because they connect suboptimal utility

gains due to limited time with the thermodynamic concept of dissipation (or, equivalently, en-

tropy increase in the universe). We also provide several decision-making examples to illustrate

our formalism. Statistical thermodynamics has been a very promising source of inspiration to

solve a variety of problems in different fields such as artificial intelligence, machine learning

3Defined by Julius Clausius in 1885, entropy in greek means evolution or transformation
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and neuroscience. Here we show that it can also be useful for decision-making research. This

chapter is based entirely on the publication under review at the moment of writing:

• Grau-Moya, J., Krüeger, M., & Braun, D.A. (2016). Non-equilibrium relations for

bounded rational decision-making in changing environments. under review.

1.4.1 List of Publications and Contributions

In the following I expose an exhaustive list of publications while undergoing the research

in this thesis. I only state the contributions of the author and co-authors in the relevant

publications presented here.

First author peer-reviewed publications exposed in this thesis.

• Grau-Moya, J., Ortega, P. A., & Braun, D. A. (2012). Risk-sensitivity in bayesian

sensorimotor integration. PLoS Computational Biology, 8(9), e1002698. (Grau-

Moya et al., 2012).

Conceived and designed the experiments: JGM DAB. Performed the experiments: JGM.

Analyzed the data: JGM. Contributed reagents/materials/analysis tools: PAO. Wrote

the paper: JGM DAB.

• Grau-Moya, J., Hez, E., Pezzulo, G., & Braun, D. A. (2013). The effect of model

uncertainty on cooperation in sensorimotor interactions. Journal of The Royal

Society Interface, 10(87), 20130554. (Grau-Moya et al., 2013).

JGM and DAB conceived the idea, JGM and EH performed the experiments and ana-

lyzed the data, JGM, GP and DAB wrote the paper.

• Grau-Moya, J., Ortega, P. A., & Braun, D. A. (2016). Decision-Making under Am-

biguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor

Context. Experiments and an Information-Theoretic Ambiguity Model. PloS

one, 11(4), e0153179. (Grau-Moya et al., 2016b).

Conceived and designed the experiments: JGM DAB. Performed the experiments: JGM

DAB. Analyzed the data: JGM. Contributed reagents/materials/analysis tools: PAO.

Wrote the paper: JGM DAB.

• Grau-Moya, J., Leibfried, F., Genewein, T. & Braun, D.A. (2016). Planning with

Information-Processing Constraints and Model Uncertainty in Markov Deci-

sion Processes. ECML/PKDD Joint European Conference on Machine Learning and

Knowledge Discovery in Databases. Springer International Publishing, 2016. (Grau-

Moya et al., 2016a).

JGM conceived the idea, JGM derived main equations and algorithm, FL analyzed

convergence, JGM and TG performed experiments, JGM DAB and FL wrote the paper.
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• Grau-Moya, J., Krüeger, M., & Braun, D.A. (2016). Non-equilibrium relations for

bounded rational decision-making in changing environments. under review.

JGM and DAB conceived the ideas, JGM derived main equations and performed simu-

lations, MK contributed to critical thinking and discussions, JGM MK and DAB wrote

the paper.
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Chapter 2

Risk-sensitivity in Bayesian

Sensorimotor Integration

This chapter is a reproduction of the already published work in (Grau-Moya et al., 2012).

Abstract

Information processing in the nervous system during sensorimotor tasks with inherent uncer-

tainty has been shown to be consistent with Bayesian integration. Bayesian estimators are,

however, risk-neutral in the sense that they are unbiased and weigh all possibilities purely

based on their prior expectations and sensory evidence.In contrast, risk-sensitive estimators

are sensitive to model uncertainty and bias their beliefs by taking into account the costs and

benefits that their predictions might entail. Here we test for risk-sensitivity in a sensorimotor

integration task where subjects exhibit Bayesian information integration. When introducing

a cost associated with the estimation process, we found that subjects biased their estimates

such that costly events were deemed less probable when uncertainty was high. This result

is in accordance with a process of risk-sensitive estimation that allows for deviations from

Bayesian probabilities in the face of high uncertainty. Our results suggest that both Bayesian

integration and risk-sensitivity are important factors to understand sensorimotor integration

in a quantitative fashion.
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Introduction

Biological organisms have evolved to succeed in environments with considerable uncertainty

(Faisal et al., 2008). One important way of dealing with uncertainty is to develop models of

the environment and to form beliefs for prediction. Bayesian statistics provides a powerful

and unifying framework to deal with uncertainty not only in the cognitive domain, but also

in sensorimotor tasks (Doya et al., 2007). Previous studies have shown that sensorimotor

integration in uncertain environments is consistent with Bayesian integration by weighing

prior expectations and sensory evidence according to their reliability (Knill and Pouget, 2004;

K. P. Körding and Daniel M Wolpert, 2004; K. P. Körding and Daniel M Wolpert, 2006). In

particular, it has been shown that the nervous system is able to extract the statistics of variable

environments and to incorporate this information by modifying prior beliefs during the process

of learning (Turnham et al., 2011). The same formalism can also be used to describe the

weighing of information stemming from different sensory modalities with different reliability,

for example, when integrating visual and haptic information. A number of previous studies

have shown that such multi-modal integration in sensorimotor tasks is also in quantitative

agreement with Bayesian statistics (Beers et al., 1999; Ernst and Banks, 2002; Girshick and

Banks, 2009).

More generally, internal models are thought to play an important role during sensorimotor

processing, for example, to predict sensory consequences of one’s actions and to estimate the

state of body parts from noisy sensory feedback (Kawato, 1999; Tin and Poon, 2005; Daniel

M Wolpert et al., 1995). For example, it has been shown that such estimation is consistent

with Kalman filtering, a particular form of Bayesian updating, when subjects had to point to

where they believed their hand was after making reaching movements in the dark (Daniel M

Wolpert et al., 1995). As a generalization of this, Bayesian updating is also used as a module

for estimation in optimal feedback control models (Diedrichsen et al., 2010; Todorov, 2004;

Todorov, 2005; Todorov and Jordan, 2002) that have successfully explained a wide range of

motor behaviors such as variability pattern (Todorov and Jordan, 2002), the response to of

bimanual movements to perturbations (Diedrichsen, 2007; Diedrichsen and Dowling, 2009),

adaptation to novel tasks (Braun et al., 2009a; Chen-Harris et al., 2008; Izawa et al., 2008)

and complex object manipulation (Nagengast et al., 2009).

While Bayesian beliefs are often thought to reflect actual frequencies of repeatable events,

distortions of beliefs are also a widely observed phenomenon—for example, in the case of

“wishful thinking” when people overestimate their own abilities (Gregersen, 1996; A. J. L.

Harris and Hahn, 2011; Kruger, 1999; Kruger and Dunning, 1999; Start, 1963). Here we are

interested in whether similar distortions also occur in non-cognitive domains such as basic

sensorimotor behavior. In particular, we are interested in risk-sensitive models of information

processing, since they capture model uncertainty and allow for deviations from risk-neutral

Bayesian statistics (Hansen and Sargent, 2008). Intuitively, model uncertainty implies that

the probabilistic Bayesian model is only trusted to some extent and that probabilities can

either be biased towards the worst case outcome or towards the best case outcome, which
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corresponds to the risk-attitudes of being risk-averse or risk-seeking.

Bayesian estimators are in general risk-neutral in the sense that they are unbiased and

weigh all possibilities purely based on their prior expectations and sensory evidence. In

contrast, a risk-sensitive estimator also considers costs or benefits of the beliefs (Ramezani

and Marcus, 2005; Whittle, 1981; Whittle, 1990). Consider, for example, a goal keeper that

tries to catch a ball flying towards the edge of the goal. Not only will he combine his prior

beliefs about velocity, direction, etc. with his sensory evidence, but he will also consider the

fact that there are quite different costs depending on which side of the goalpost the ball will

most likely end up. In other real-life situations the implications of risk-sensitive estimation

could even be more serious, for example when considering evidence for low-probability events

like the possibility of a rare disease given some symptoms or the possibility of an aeroplane or

a space rocket crashing given a malfunction signal from a noisy detector (Thrun et al., 2002).

Recently, risk-sensitivity has been shown to be an important determinant of motor be-

havior (Braun et al., 2011a; Nagengast et al., 2010; Nagengast et al., 2011a; Nagengast et

al., 2011b). The main finding of these studies was that subjects choose their motor com-

mands not only to optimize the expectation value of some performance criterion, but that

they are also sensitive to the variability of the achieved performance measure, which can lead

to increased control gains (Nagengast et al., 2010), increased (or decreased) hitting velocities

(Nagengast et al., 2011a) and acceptance of decreased mean effort (Nagengast et al., 2011b)

in environments where performance is highly variable. However, there is an important aspect

of risk-sensitivity that these previous studies have not considered: risk-sensitivity does not

only affect the control process, but also the estimation process in uncertain environments

with latent task variables that are not directly observable (Whittle, 1981). In uncertain envi-

ronments with latent variables risk-sensitivity leads to effects of model uncertainty, whereby

Bayesian probabilities are biased by the costs that are involved in the control process (Hansen

and Sargent, 2008). Crucially, none of the previous studies on risk-sensitivity contained any

latent variables. To investigate the effects of risk-sensitivity on the estimation process, we

therefore designed a sensorimotor experiment that not only contained a latent variable that

needed to be estimated, but we also introduced a cost that was associated with the latent

variable. This way we could test whether subjects would bias their beliefs about the latent

variable in dependence of the imposed cost function.

2.1 Results

Subjects had to hit a target halfway in a reaching movement to a goal bar by controlling a

cursor representing their hand position in a virtual reality set-up (Fig. 2.1). In each trial the

lateral position of the target was randomly drawn from a Gaussian distribution. However, the

reliability of the visual feedback of the target position was manipulated, such that each trial

belonged to one of three feedback conditions: σ0, σ1 or σ∞. In the σ0-condition the target

position was displayed clearly and throughout the trial, corresponding to full information

and (practically) zero uncertainty. In the σ1-condition only blurry feedback was provided
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Figure 2.1. Experimental Setup. Subjects move from a start bar to a goal bar and have to

hit a target halfway in the reaching movement. In each trial the lateral position of the target was

randomly drawn from a Gaussian distribution. The reliability of the visual feedback of the target

position was manipulated, such that each trial belonged to one of three feedback conditions: σ0, σ1 or

σ∞. Furthermore, we imposed three different force functions (F0, FL and FR) in the force area, where

the force depended on subjects’ belief about the target position as they indicated it by their forward

movement.

by displaying a short flash of a Gaussian cloud centered around the target. In the σ∞-

condition no feedback was provided. Naturally, the probability of hitting the target decreased

with increasing feedback uncertainty—compare Supplementary Figure 2.4. In this setup, the

lateral target position constitutes a latent variable that needs to be estimated in every trial

from noisy feedback. The aim is to study subjects’ beliefs about this latent variable and to

study the susceptibility of their beliefs to risk-sensitive distortions.

Previous studies have shown that human sensorimotor integration of feedback information

with varying degrees of reliability can be understood by Bayesian models (K. P. Körding and

Daniel M Wolpert, 2004). In particular, it has been shown that subjects rely more on their

prior information when the quality of their sensory feedback gets worse. This can be seen in

Figure 2.2 which shows a typical subject’s lateral deviation from the target as a function of the

target position (red lines). In the full feedback condition (σ0) the lateral deviation was close

to zero, as subjects could see the target clearly. In contrast, in the no-feedback condition (σ∞)

subjects had to rely on their prior about the target position and should ideally move through

the point of maximum prior probability—which is zero in our case, such that the lateral

deviation as a function of the target position is described by the identity line. The subject’s

behavior in the third panel of Figure 2.2 conforms to this prediction. Furthermore, the model

predicts that in the σ1-condition subjects should mix prior beliefs with sensory feedback,

leading to an intermediate slope for the lateral deviation. We also found this effect in our
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Figure 2.2. Lateral deviation from target as a function of target position in a risk-sensitive

model (top row) and in a typical subject (bottom row). The three columns correspond to the

three levels of uncertainty of the target feedback (σ0, σ1 and σ∞). Each panel compares the three

different force conditions F0 (red), FL (green) and FR (blue). The model predicts that higher levels of

uncertainty are associated with higher slopes and that higher forces are associated with shifts in the

intercept that are proportional to the uncertainty.

subjects as displayed in the second panel of Figure 2.2. In summary, when comparing the red

lines of the three panels of Figure 2.2, it can be seen that the slope of the lateral deviation

increases with the uncertainty, which is exactly what previous studies have reported (K. P.

Körding and Daniel M Wolpert, 2004).

To investigate effects of risk-sensitivity we introduced a force landscape that assigned

different costs to different beliefs about the target position. The force landscape was given

by a viscous force in the forward-backward direction during the second half of the movement

between target and goal bar—this is indicated as the red force area in Figure 2.1. We imposed

three different force functions (F0, FL and FR) that were presented consecutively to subjects in

three blocks of 750 trials each. The F0-function was applied in the first block and corresponded

to a zero force condition. The force FL (“easy left”) was presented in the second block and

corresponded to a linear function that increased from left to right. Therefore, pointing to a

target position on the left required less effort than pointing to a target position on the right

of the center of the target distribution. Finally, the force FR (“easy right”) was presented

in the last block and corresponded to a linear function that decreased from left to right—see

Methods for details.

Assigning different costs to different beliefs, predicts an interesting interaction between
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uncertainty and cost for a risk-sensitive estimator. In the absence of uncertainty (σ0-condition)

there is no risk and a risk-sensitive estimator will produce the same predictions as a risk-

neutral estimator that is independent of the imposed cost. However, in the presence of

uncertainty, there is risk involved and a risk-sensitive estimator will bias its predictions based

on cost. Having uncertainty about the target position implies that a risk-sensitive estimator

has to consider a range of possible target positions and essentially “hopes” that the target is in

one of the possible positions that requires less effort. In the case of linear force functions this

“bias” in the belief translates into a parallel shift of the line that describes subjects’ lateral

deviation. The magnitude of the shift depends on the uncertainty of the target position, the

cost of the presumed target position and subjects’ risk-sensitivity. This prediction can be seen

in Figure 2.2.

When reaching for the target, subjects had to combine prior information about the dis-

tribution of target positions, visual feedback and the cost of the pointing movement. We

examined how they combined these three factors in the following way. For each force block

(F0, FL and FR) we conducted three linear regressions corresponding to the three feedback

conditions (σ0, σ1 or σ∞). In each case we regressed the lateral deviation of subjects’ point-

ing movement against the true target position and determined slope and intercept of this

line. According to the model predictions in Figure 2.2, the slope should only depend on

the uncertainty of the feedback independently of the force condition, whereas the intercept

should depend on both the cost given by the force and the uncertainty given by the feedback

condition.

The slopes and intercepts fitted to every subject are shown in Figure 2.3. In the upper

panels of Figure 2.3, one can see that the slopes describing subjects’ lateral deviation increased

with higher levels of uncertainty within each force block. This is in line with the prediction and

reproduces previous findings. Moreover, in accordance with the prediction from Figure 2.2,

this slope increase was not affected by the force condition. To assess the statistical significance

of this result we conducted a repeated-measures two-way ANOVA with force and uncertainty

as factors. We found that the uncertainty had a significant effect on the slope (p < 0.01),

whereas the effect of force was not significant (p > 0.4).

In the lower panels of Figure 2.3, one can see subjects’ intercepts that describe their

mean lateral deviations from a reference target located in the center of the workspace (zero

position). In accordance with the prediction from Figure 2.2, our ANOVA revealed that

intercepts were affected by both uncertainty (p < 0.01) and force condition (p < 0.01). In the

no-force condition the intercepts are close to zero for all uncertainty levels, as subjects have no

incentive to deviate from an unbiased Bayesian estimator. In the force conditions FL, we found

that the intercepts become increasingly negative with growing uncertainty. This means that

subjects beliefs were biased towards the left, as those beliefs were associated with lower costs.

Compared to the no-force condition, subjects deviated on average 8.1±0.5mm more to the left

in the no-feedback condition and 2.2±0.4mm more to the left in the σ1-condition. Similarly, in

the FR force condition, we found that intercepts increased with growing uncertainty reflecting

a low-cost bias towards the right side of the workspace. Compared to the no-force condition,
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Figure 2.3. Slopes (top row) and intercepts (bottom row) of linear regression for all

subjects. Linear regression was performed as in Figure 2.2. The three columns correspond to the

three different force conditions F0, FL and FR. The three different feedback conditions σ0, σ1 and σ∞
are displayed within each panel. It can be seen that the slope increases with increasing uncertainty.

The intercepts are modulated by both uncertainty and force condition.
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subjects on average deviated 8.0± 0.5mm more to the right in the no-feedback condition and

3.2 ± 0.4mm more to the right in the σ1-condition. All subjects but one exhibited this bias

pattern—compare Figure 2.3.

Importantly, the model of risk-sensitive estimation not only predicts a fixed bias, but a

modulation of bias and uncertainty, such that the bias increases with the amount of uncer-

tainty and vanishes in the limit when uncertainty is absent. In accordance with this prediction,

we found that the mean lateral deviations from the center of the target in the σ0-condition

are negligible in all force conditions. The exact values of the mean lateral deviations were

−0.4± 0.1mm in the F0-condition, −0.6± 0.1mm in the FL-condition, and +0.4± 0.1mm in

the FR-condition—all well within the target halfwidth of 2.0mm. Similarly, the lateral devia-

tions from the center of the starting position at the beginning of the trial was not significantly

different between the groups (p > 0.05, repeated measures one-way ANOVA). The exact val-

ues of the mean lateral deviations were −1.1± 1.2mm in the F0-condition, −1.9± 1.0mm in

the FL-condition, and +0.7±1.7mm in the FR-condition—all well within the target halfwidth

of 2.0mm. In summary, these results suggests that subjects did not simply avoid high costs,

but that their behavior was determined by an interplay of uncertainty and cost as predicted

by a risk-sensitive estimation process.

2.2 Discussion

In our study we examined the effects of risk-sensitivity on sensorimotor integration. In line

with previous studies, we found that information integration was consistent with Bayesian

statistics as long as beliefs are cost-neutral (K. P. Körding and Daniel M Wolpert, 2004).

However, once we introduced a cost that was associated to the beliefs, subjects started to

bias their beliefs when faced with uncertain feedback. Importantly, subjects did not simply

minimize their effort, but they modulated their beliefs based on an interplay between cost

and uncertainty. In particular, we found that the higher the uncertainty, the higher the bias.

When sensory feedback was unambiguous—i.e. in the (near) absence of uncertainty—this bias

vanished. This is in accordance with the predictions of a risk-sensitive estimation process,

but violates risk-neutral Bayesian estimation.

Previous studies have found that risk-sensitivity is an important determinant of motor

behavior (Braun et al., 2011a). The main finding of these studies was that subjects not only

optimize their expectation of success, but also take the performance variability into account.

For example, a basket ball player choosing between throwing a three with a 50% success rate

and throwing a two with a 75% success rate would prefer the first option if risk-seeking, the

second option if risk-averse, and he would be indifferent if risk-neutral. These previous studies

have found that risk-sensitive motor behavior can be accounted for by a mean-variance trade-

off (Nagengast et al., 2011b) that affects control gains and the speed-accuracy trade-off when

performance success becomes more variable (Nagengast et al., 2010; Nagengast et al., 2011a).

Importantly, the effects of risk-sensitivity on the estimation process could not be investigated

in these previous studies, because they did not contain any latent variables that would have
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required estimation.

The differential effects of risk-sensitivity on control and estimation can be readily inspected

in the case of risk-sensitive control of linear systems with quadratic costs and Gaussian noise—

sometimes abbreviated to risk-sensitive LQG control (Whittle, 1981). The standard LQG con-

trol that has often been used in optimal feedback control models of motor behavior (Todorov

and Jordan, 2002) can be derived as a special case of the risk-sensitive LQG control in the

limit of vanishing risk-sensitivity. Importantly, in risk-neutral LQG controllers the estimation

and control processes can be separated such that the solution to the estimation problem is

given by the Kalman filter and the solution to the LQ control problem is given by the solution

of the Riccati equation in the absence of observation noise. The overall solution to the LQG

system is then simply given by the LQ optimal controller where all directly observed variables

are replaced by their estimates from the Kalman filter. In the context of our experiment it

is important to point out that the risk-neutral estimation process of the Kalman filter does

not depend on the cost function of the control process. The beliefs expressed by the Kalman

filter are unbiased.

In risk-sensitive LQG systems a separation between control and estimation is still possible

(Whittle, 1981), however, with an interesting interplay between estimation and control that

is absent in risk-neutral systems. For example, in contrast to risk-neutral estimation, the

estimation process of risk-sensitive LQG control can be expressed by a modified Kalman

filter that is modulated by the cost function of the control process. This way the beliefs

expressed by this modified Kalman filter become biased. The risk-sensitive estimator that

we propose in the Methods section corresponds exactly to such a modified Kalman filter—

compare Supplementary Material Part I 2.4. Similarly, in the absence of observation noise

the solution to the risk-sensitive LQ control problem is given by the solution of a modified

Riccati equation. Effects of this modification of the control process have been studied in

(Nagengast et al., 2010), for example, where an increase in control gains was found in response

to increased process noise that determined the Brownian motion of a virtual ball. However,

the observation noise was entirely negligible compared to the process noise in this task, so

effects of risk-sensitive estimation did not play any role in this experiment.

An important problem when studying “beliefs” about latent variables is that beliefs are

not directly observable, but can only be inferred from observing actions—see for example the

notes in (Daniel M Wolpert et al., 1995) for a discussion of a similar problem. In our task the

action simply consisted in reporting the belief about the latent variable—as was for example

the case in previous studies (K. P. Körding and Daniel M Wolpert, 2004). This can also be

seen within the framework of risk-sensitive LQG control, where the control is simply given

by the estimate of the modified Kalman filter if we impose a cost on the latent variable—

compare Supplementary Material Part I 2.4. In this case control and belief do not need to

be further disentangled, because they are essentially the same by design of the experiment.

Interestingly, if one wanted to model the experiment by introducing a control cost instead of

a cost that is associated to the latent variable, LQG control predicts a constant shift of the

control in the presence of force fields that is not modulated by the feedback uncertainty—

29



Chapter 2. Risk-sensitivity in Bayesian Sensorimotor Integration

compare Supplementary Material Part II 2.4. We can therefore rule out a risk-neutral account

of our experiment that is based on the expectation value of control costs.

What makes risk-sensitivity especially interesting in the context of Bayesian inference

is that it has also been related to model uncertainty (Hansen and Sargent, 2008). Model

uncertainty allows a decision-maker who has a probabilistic model of the environment to

deviate from this model if he trusts this model only to a limited extent. In particular, an

infinitely pessimistic decision-maker would disregard the probabilistic model entirely and only

focus on worst-case outcomes. Since all models are typically prone to error at some precision,

taking into account model uncertainty is a crucial aspect of inference.

The distortion of subjective probabilities has also been investigated within the context of

prospect theory (D Kahneman and A Tversky, 1979). Subjects are typically found to over-

weigh low-probability events like plane crashes or natural disasters, whereas they underweigh

high-probability events. Interestingly, the opposite pattern has been observed when fitting

prospect theory to choice behavior in motor control (Nagengast et al., 2011b; Wu et al., 2009).

However, it was also found (Nagengast et al., 2011b) that some choice behavior explicable in

terms of prospect theory can also be explained by the mean-variance trade-off as suggested

by risk-sensitive control models (Braun et al., 2011a). Our current study provides evidence

that risk-sensitivity could also serve as an alternative explanation of the distortion of proba-

bilities and might underlie biasing effects in sensorimotor behavior that is analogous to some

cognitive biases.

2.3 Materials and Methods

Subjects. Two female and four male subjects from the Tübingen University student pop-

ulation participated in this experiment after giving informed consent. All experimental pro-

cedures were approved by the ethics committee of the medical faculty at the university of

Tübingen. Participants were paid the local standard rate of 8 Euros per hour for their par-

ticipation.

Materials. The experiment was conducted using a vBOT robotic manipulandum (Ian S

Howard et al., 2009). Participants controlled the vBOT handle in the horizontal plane.

Movement position and velocity were recorded at a rate of 1kHz. A planar virtual reality

projection system was used to overlay images into the plane of movement of the vBOT handle.

Experimental Procedure. Subjects performed reaching movements from a start bar (gray

rectangle, width 4cm, height 1.5cm) to a goal bar (green rectangle, width 14cm, height 0.5cm)

25cm away by moving a cursor (red circle, 3mm radius) representing their hand position—

compare Figure 2.1. The hand position was represented veridically at all times. Subjects

could start anywhere from within the start bar and they were told to hit a yellow target

that would appear midway during the forward movement to the green bar. When placing the

cursor on the start bar, participants heard a beep that informed them to move. At the same

30



2.3. Materials and Methods

time the target appeared midway at a distance of 12.5cm from the start bar with a lateral

displacement drawn from a Gaussian distribution with zero mean and standard deviation

σp = 1.0cm. Movements had to be completed within 0.6s.

In each trial the target position was displayed under one out of three possible feedback

conditions (σ0, σ1, σ∞) selected randomly with relative frequencies of (2,1,1) respectively. In

the σ0-condition, the target was displayed during the whole trial as a small rectangle of 4mm

width. The displayed height of the target was 10mm, but only relevant for visualization

purposes without consequence for the hitting probability. In the σ1-condition, five small

circles (radius 2mm) were drawn each trial from a two-dimensional Gaussian distribution

(mean 0cm, standard deviation 1.5cm) and shown for 80ms at the beginning of the trial.

No feedback was provided in the σ∞-condition. In all three conditions subjects had to make

a choice in the lateral position h when they were halfway in the movement (12.5cm from

the start bar) in order to indicate their belief about the target position. Halfway into the

movement they also received auditory feedback, which was a high frequency beep if they hit

the target or a low frequency beep if they failed to do so. Another beep of the same frequency

informed them when they reached the goal bar.

Between the target and the goal bar subjects entered a “force zone” in which they expe-

rienced a viscous force F = −k(h) · v that made movements more strenuous. The viscous

force was applied in the forward-backward direction and was proportional to the forward or

backward velocity v. The force was also applied in the force zone while subjects returned

to the start position to initiate the next trial. The strength k(h) of the force depended only

on subjects’ movement position h halfway into the movement (12.5cm from the start bar).

To allow for a smooth transition from the no-force zone to the force zone the viscous force

was ramped up linearly over the first quarter of the force zone and similarly ramped down

during the backward movement. There were three force conditions: F0, FL and FR. In the F0

condition there was no force, that is k(h) ≡ 0. In the FL condition the strength k(h) = ah+ b

was a linear function with a = 60 kg
cm·s and b = 90kgs , such that it increased linearly from

left kmin = 0kgs to right kmax = 180kgs over a 3cm range centered around the mean of the

target distribution. In the FR condition the slope was simply inverted to obtain a linear

function with a = −60 kg
cm·s and b = 90kgs that increased linearly from right kmin = 0kgs to left

kmax = 180kgs over the same 3cm range.

The experiment consisted of 2250 trials in total and was subdivided in three blocks of 750

trials each corresponding to the three force conditions F0, FL and FR. In every block of 750

trials only the last 500 were used for analysis, as movement variability in σ0-trials had then

stabilized—compare Supplementary Figure 2.5.

Risk-neutral estimator. Each trial a target with lateral position h is drawn from a Gaus-

sian distribution with mean zero and standard deviation σp. Subjects receive noisy sensory

feedback about the target position given by the observation x. We model this noisy feedback

by another Gaussian distribution with mean h and standard deviation given by σi where

i = {0, 1,∞}. The Bayesian estimator of the target position given the observation is then

31



Chapter 2. Risk-sensitivity in Bayesian Sensorimotor Integration

given by

p(h|x) =
1√

2πσi
e
− 1

2
(x−h)2

σ2
i

︸ ︷︷ ︸
likelihood

1√
2πσp

e
− 1

2
h2

σ2p

︸ ︷︷ ︸
prior

In the case of the Gaussian posterior p(h|x) the optimal point estimate h∗ that maximizes

the a posteriori probability also corresponds to the mean of the Gaussian which is

h∗ =
σ2
p

σ2
p + σ2

i

x.

Risk-sensitive estimator. A risk-sensitive estimator does not only depend on the proba-

bilities p(h|x), but also on the costs that are assigned to the hidden variable h (Thrun et al.,

2002; Whittle, 1981; Whittle, 1990). In our experiments each target position was assigned a

cost c(h) of the form c(h) = aj h+bj with j = {0, R, L}. The cost c(h) models the experimen-

tal viscosity function k(h) described in the Experimental Procedures. The parameters aj and

bj depend on the force condition, where a0 = b0 = 0 in the F0-condition and aR = −aL and

bR = bL in the other force conditions. The cost c(h) is taken into account by a risk-sensitive

estimator with risk-parameter α to obtain the biased estimator

qα(h|x) =
p(h|x)eα c(h)

∫
dh′ p(h′|x)eα c(h′)

,

where p(h|x) is the risk-neutral Bayesian posterior.

Again the optimal point estimate h∗α that maximizes the a posteriori probability of qα
corresponds to the expectation value which is

h∗α =
σ2
p

σ2
i + σ2

p

x−
σ2
i σ

2
p

σ2
i + σ2

p

αaj .

For α → 0 the risk-sensitive point estimator becomes the risk-neutral Bayesian maximum

a posteriori estimator, which is given by the first term. The second term incorporates an

interaction between marginal cost aj and the uncertainty given by σi and σp.
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2.4 Supplementary Material

Linear Quadratic Gaussian risk-sensitive control

Part I: Modeling the force as a cost of a latent state

In order to fit with the formalism proposed in (Whittle, 1981), we can translate our experiment

into a 3-step system with the following scalar variables

x1 = x0 + ε

y1 = x0 + η∞

c1 = kx1

x2 = x1

y2 = x1 + η

c2 = 0

x3 = x2 + u2

y3 = x2 + η∞

c3 = x3Qx3.

The integral cost is given by J =
∑3

t=1 ct = x3Qx3 + kx1, where the first term enforces

that the difference between the control signal and the target position is minimized, and the

second term is a linear state-dependent cost that models the force cost that we imposed in

our experiment. The risk-sensitive stress function γ(θ) that is to be minimized is given by

γ(θ) = −2

θ
logE

[
e−

θ
2
J
]
.

The system evolves as follows:

• In the first time step, the target position x1 is drawn from a Gaussian distribution with

mean x0 and variance σ2
n, that is ε ∼ N (0, σ2

n). The mean is assumed to be known

precisely, that is x̂0 = x0 with variance V0 = 0. No observation is made, or formally

η∞ ∼ N (0,∞). No control is applied, that is u0 = 0.

• In the second time step, a noisy observation y2 of the target position x1 is made. The

observation noise is additive and drawn from a Gaussian distribution with η ∼ N (0, σ2
m).

The target position does not change during the observation, that is x2 = x1. No control

is applied, that is u1 = 0.

• In the third time step, a control command u2 can be applied to minimize the quadratic

cost (x2+u2)Q(x2+u2), which implies that the control should match the target position.

No further observations are made.
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Minimizing the stress function γ(θ) can be achieved by computing the past stress Pt(xt)

for estimation and the future stress F (xt) for control. Whittle (Whittle, 1981) derived the

following recursions for past and future stress:

Pt+1(xt+1) = extx+t

[
Pt(xt) + ct +

1

θ
(nt +mt)

]

Ft(xt) = min
ut

extxt+1

[
ct +

1

θ
nt + Ft+1(xt+1)

]
,

where “ext” indicates min or max depending on the sign of θ and the shorthands nt and mt

are given by

nt = (xt+1 − xt − ut)2 σ−2
n

mt = (yt+1 − xt)2 σ−2
m .

Whittle (Whittle, 1981) could show that the optimal control uopt
t that minimizes γ(θ) can

be computed by finding the u∗t that minimizes the future stress Ft(xt) and finding the x̄t that

extremizes the combined stress Pt(xt) + Ft(xt), such that uopt
t = u∗t (x̄t, t). This establishes

a risk-sensitive version of certainty-equivalence, where minimizing the past stress leads to a

risk-sensitive version of the Kalman filter with recursively updated estimates x̂t (mean) and

Vt (variance) representing a Gaussian belief. For our system equations this results in the

following:

Initialization:

P (x0) = 0

x̂0 = x0

V0 = 0

First time step:

P (x1) =
1

θ
(x1 − x̂0)2σ−2

n

x̂1 = x̂0

V1 = σ2
n
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Second time step:

P (x2) = kx2 +
1

θ
(x2 − x̂0)2σ−2

n +
1

θ
(y2 − x2)2σ−2

m

x̂2 =
σ−2
n x̂0 + σ−2

m y2 − θ
2k

σ−2
n + σ−2

m

V2 =
(
σ−2
n + σ−2

n

)−1

F (x2) = min
u2

{
Q(x2 + u2)2

}
= 0

u∗2 = −x2

x̄2 = x̂2

uopt
2 = −x̂2

Consequently, in this system the control signal u2 directly reveals the risk-sensitive estimate

x̂2. The estimate x̂2 gives the same value as the risk-sensitive estimator provided in the

Methods section.

Part II: Modeling the force as a control cost

If we assume the same system as in the previous section, but now with costs

c1 = 0

c2 = ku2

c3 = x3Qx3,

where we have exchanged the state-dependent cost c1 = kx1 with a control-dependent cost

c2 = ku2, then we obtain

Initialization:

P (x0) = 0

x̂0 = x0

V0 = 0

First time step:

P (x1) =
1

θ
(x1 − x̂0)2σ−2

n

x̂1 = x̂0

V1 = σ2
n
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Second time step:

P (x2) =
1

θ
(x2 − x̂0)2σ−2

n +
1

θ
(y2 − x2)2σ−2

m

x̂2 =
σ−2
n x̂0 + σ−2

m y2

σ−2
n + σ−2

m

V2 =
(
σ−2
n + σ−2

n

)−1

F (x2) = min
u2

{
Q(x2 + u2)2 + ku2

}
= 0

u∗2 = −x2 −
k

2Q

x̄2 =
σ−2
n x̂0 + σ−2

m y2 + 1
2θk

σ−2
m + σ−2

n

uopt
2 = −x̄2 −

k

2Q
= −x̂2 −

kθ

2σ−2
n σ−2

m
− k

2Q

In this system the first two terms correspond to the control of the previous section and the

last term represents a shift of − k
2Q in presence of the force field—independent of the risk-

sensitivity or the uncertainty associated with the latent variable. In particular, a risk-neutral

controller (θ = 0) that simply minimizes the expected cost would only show the last deviation,

that is a constant shift for all uncertainty conditions. This is in contrast to our experiment

where we found that subjects’ modulated their response depending on their uncertainty.

Figure 2.4. Hitting probabilities. Success probability of hitting the target for the three different

feedback conditions (σ0, σ1 and σ∞) and the three different force conditions F0 (red), FL (green) and

FR (blue). The hitting probability decreases with increasing feedback uncertainty.
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Figure 2.5. Movement variability. Standard deviation of hitting movements in trials of the σ0-

condition over blocks of 125 trials. Since variability was increased for some subjects in the first block,

we only analyzed the last 500 trials of each force condition in the experiment.
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Chapter 3

Framing Effects in Decision-Making

under Ambiguity

This chapter is a reproduction of the already published work in (Grau-Moya et al., 2016b).

Abstract

A number of recent studies have investigated differences in human choice behavior depending

on task framing, especially comparing economic decision-making to choice behavior in equiv-

alent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits

effects of task framing in motor vs. non-motor context. In a first experiment, we designed an

experience-based urn task with varying degrees of ambiguity and an equivalent motor task

where subjects chose between hitting partially occluded targets. In a second experiment, we

controlled for the different stimulus design in the two tasks by introducing an urn task with

bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly

influenced by stimulus design. In particular, we found that the same subjects tended to be

ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding

when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pat-

tern was not affected by changing from a target hitting task to a non-motor context when

keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continu-

ously modulated by the degree of ambiguity. We show that this modulation of behavior can

be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal

decision-making by combining Bayesian inference with robust decision-making under model

uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-

making under varying degrees of ambiguity for a given context, but also demonstrate the

sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.
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Introduction

Should you continue reading this paper? The uncertainty involved in this decision is difficult

to quantify. This is in contrast to uncertainties arising for example in dice or roulette games,

where the decision-maker has a pretty good idea of the probabilities that are involved, even

though individual outcomes cannot be predicted. In the economic literature there is a long-

standing debate about known vs. unknown uncertainty (Knight, 1921), sometimes also called

risk vs. ambiguity. The question is, whether these two kinds of uncertainty are the same

or whether they are processed in a different way by human decision-makers. This question

has been famously addressed by Ellsberg in what is now an eponymous experiment (Ellsberg,

1961). In a simplified version, it requires subjects to choose between a risky urn with a known

composition of differently colored balls, for example 50 blue balls and 50 red balls, and an

ambiguous urn with an unknown color composition, for example 100 balls with unknown pro-

portion of blue and red. When setting a prize on drawing a blue ball, most subjects (typically

around 70% (Pulford and Coleman, 2008)) prefer drawing from the risky urn, implying the

belief that there are more blue balls in the risky urn than in the ambiguous one. The paradox

arises when leaving the urns untouched and swapping the prize money. When setting a prize

on drawing red, most subjects still prefer drawing from the risky urn, implying the belief

that there are more red balls in the risky urn than in the ambiguous one. Crucially, there

is no single probability that can represent the two beliefs that there are simultaneously more

blue balls and more red balls in the risky urn than in the ambiguous urn. Ever since the

experiments of Ellsberg there has been growing evidence, both behaviorally (Camerer and

Weber, 1992; Keren and Gerritsen, 1999) and neurally (Chumbley et al., 2012; Hsu et al.,

2005; Huettel et al., 2006; Krain et al., 2006; I. Levy et al., 2010; Smith et al., 2002), that

there are indeed two different kinds of uncertainty considered by humans engaged in economic

decision-making. However, it is unclear how ambiguity is modulated by the task context and

by framing.

Previous studies have investigated, for example, how decision-making in sensorimotor tasks

compares to economic pen-and-paper decision-making. A number of these studies have re-

ported that the human sensorimotor system operates in line with expected utility theory, that

is Bayes-optimal decision-making with known probabilities (Braun et al., 2009a; Diedrich-

sen et al., 2010; K. Körding, 2007; K. P. Körding and Daniel M Wolpert, 2004; Todorov,

2004; Trommershäuser et al., 2003b; Trommershäuser et al., 2008; Daniel M. Wolpert and

Landy, 2012). Other studies have shown discrepencies of sensorimotor decision-making with

Bayes-optimal decision-making. In particular, Wu et al. (Wu et al., 2009) have previously

compared economic decision-making with an equivalent motor task where participants had to

choose between different targets they had to hit. In particular, they investigated a well-known

decision-making paradox under risk—the so-called Allais paradox —and its occurrence in the

two types of tasks. They found that subjects had different attitudes towards risk in the two

tasks but did not investigate the origin of this behavioral difference. Additionally, in their

motor task the targets were always fully visible and, therefore, were not subject to ambiguity.
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In this study we ask the same question as Wu et al. (Wu et al., 2009) did for risk in

the Allais paradox now for ambiguity in the Ellsberg paradox. We investigate a generalized

version of Ellsberg’s paradox in decision-making under ambiguity and test how ambiguity is

modulated by task context and framing. Similar to Wu et al. (Wu et al., 2009), we compare

motor and non-motor context. As a motor context we use a target hitting task, as a non-

motor context we use an urn task. Additionally, we investigate the effects of visual framing

by manipulating the stimulus presentation, in particular the way how uncertainty is visually

displayed. Finally, we compare Bayes-optimal expected utility predictions to predictions

of an information-theoretic free energy model of decision-making under varying degrees of

ambiguity.

3.1 Results

3.1.1 An Information-Theoretic Model of Decision-Making under Ambigu-

ity

In Ellsberg’s urn experiment subjects have to choose between two options, a risky urn and a

fully ambiguous urn. We generalize this paradigm by also including partially ambiguous urns,

which can be experimentally achieved for example by revealing samples from the ambiguous

urn with unknown ratio. We assume that subjects’ choice between the risky option xrisk

and the ambiguous option xamb can be described by a probability distribution p(x) with

x ∈ {xamb, xrisk}, and that subjects have no prior preference between the options, that is

p0(x) = 1/2. Each option x is characterized by a latent variable h corresponding to the ratio

of blue and red balls. Each h implies a utility U(h) indicating the expected payoff under h.

For the risky option h is known, for the ambiguous option it is unknown. The decision-maker

holds a Bayesian belief q(h|x,D) about h for option x after observing data D corresponding

for example to the observed samples in the urn experiment. Accordingly, we have the belief

q(h|xamb, D) for the ambiguous option and the belief q(h|xrisk, D) = δ(h − h∗) for the risky

option with a ratio h∗ of red and blue balls.

The crucial point of Ellsberg’s original experiment was to show that standard models of

economic decision-making that only care about maximizing expected utility cannot explain

subjects’ choice behavior under ambiguity. In our experiment an expected utility maximizer

would assign the value V0 to option x according to

V0(x) = Eq(h|x,D)[U(h)]. (3.1)

A perfect expected utility maximizer chooses the option x∗ = argmaxx V0(x) that maximizes

the overall expected utility. A more general imperfect expected utility maximizer can be mod-

eled for example by a soft-max decision rule, such that the decision-maker chooses according

to hypothesis H1

H1 : p1(x) =
eαV0(x)

∑
x′ e

αV0(x′)
(3.2)
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with the soft-max parameter α.

Our alternative hypothesis H2 is that the decision-maker optimizes a free energy function

that trades off utilities against information-theoretic constraints that can be derived from

axiomatic principles (Braun et al., 2011b; Ortega and Braun, 2011; Ortega and Braun, 2013).

Such information-theoretic constraints can reflect for example a lack of available information

which makes them interesting for modeling ambiguity. Intuitively, such a decision-maker

is sensitive to ambiguity by biasing their belief q towards best-case or worst-case utilities

depending on whether the decision-maker is ambiguity-seeking or ambiguity-averse. Such

ambiguity-sensitive decision-makers would assign the value Vβ(x) to option x, where

Vβ(x) = ext
q̃(h|x,D)

{
Eq̃(h|x,D)

[
U(h)

]
− 1

β
DKL

(
q̃(h|x,D)

∣∣∣∣q(h|x,D)
)}

=
1

β
logEq(h|x,D)

[
eβU(h)

]
(3.3)

This valuation allows for pessimistic deviations from the Bayesian posterior q towards worst-

case (ext = min) outcomes if the decision-maker is ambiguity-averse (β < 0); or for optimistic

deviations towards best-case (ext = max) outcomes if the decision-maker is ambiguity-seeking

(β > 0). The deviation from the Bayesian posterior q is measured by the “information dis-

tance” DKL(q̃||q) and scaled by 1/β. The larger the magnitude of β, the higher the ambiguity

regarding q. In Fig 3.1A it can be seen that Vβ(x) ≶ V0(x) for β ≶ 0. In the economic

literature the free energy valuation of Equation (3.3) is known as multiplier preference models

(Hansen and Sargent, 2008) that are part of the more general family of variational preference

models (Maccheroni et al., 2006). According to (Braun et al., 2011b; Ortega and Braun, 2011;

Ortega and Braun, 2013), the decision-maker also optimizes a free energy to determine its

action by following the strategy

H2 : p2(x) = argmax
p̃(x)

{
Ep̃ [Vβ(x)]− 1

α
DKL

(
p̃(x)

∣∣∣∣p0(x)
)}

=
p0(x)eαVβ(x)

∑
x′ p0(x′)eαVβ(x′)

(3.4)

which is equivalent to a soft-max choice rule when assuming an indifferent prior choice prob-

ability of p0(x) = 1
2 . Such a free energy optimizing decision-maker can be interpreted as a

bounded rational decision-maker that can only afford to deviate from the prior choice strategy

p0(x) by a limited number of information bits quantified by the relative entropy DKL(p||p0)

(Ortega and Braun, 2013). Equation (3.4) describes the choice of option x with value Vβ(x) un-

der both sensitivity to ambiguity and limited information-processing resources—see Fig 3.1B.

Note that the two hypotheses are nested, as H2 includes H1 in the limit of β → 0 (no sen-

sitivity to ambiguity) and also includes the perfect Bayes-optimal decision-maker for α→∞
and β → 0.

To distinguish between the two hypotheses in our experiment we investigate subjects’

choice probabilities in probe trials in which a decision-maker that only cares about expected
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Figure 3.1. Illustration of model predictions. Predictions for probe trials where the risky urn

(with equal composition of blue and red balls) has the same expected utility as the ambiguous urn—

the number of observed red balls is equal to the number of observed blue balls. In panel A we show

the value of Equation (3.3) assigned to an ambiguous option depending on the ambiguity attitude β

and on the available information. In the case of the urn, information is quantified with the number of

observations. The more information becomes available the more concentrated is the Bayesian posterior

q(h|D,x), so a high number of observed balls reflect a peaked posterior. We show in yellow line the

value of the ambiguous option Vβ(xamb) according to Equation (3.3) for positive β (optimistic) being

higher or equal than the expected utility value Eq|xrisk
= 0.5 (indicated by the dashed line). In blue we

show that for negative β (pessimistic) the value Vβ is always lower or equal than the expected utility

value. The value Vβ converges to the expected-utility value if the decision-maker is ambiguity-neutral

(red line for β → 0) or in the absence of ambiguity when the posterior becomes a delta function

q(h|D,x) = δ(h− h∗). In panel B we show the predicted choice probability in probe trials according

to Equation (3.4) for different β. Translating the value into a choice probability requires an additional

parameter α that regulates the level of stochasticity like in a soft-max choice rule. For example, we

show in yellow for a particular α > 0 how the probability of choosing the risky option is modulated by

the information available. The dashed line indicates the perfectly rational expected utility maximizer

that is indifferent between the risky and the ambiguous option in the probe trials.
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success would be indifferent between the risky and the ambiguous option. The expected utility

hypothesis H1 predicts that subjects should be indifferent between the risky and ambiguous

option in probe trials, that is p1(x) = 1/2 . In contrast, the free energy hypothesis H2

predicts that subjects should modulate their choice behavior in probe trials depending on the

degree of ambiguity according to Equations (3.4) and (3.3). In particular, ambiguity-averse

individuals (β < 0) should prefer the risky option in the face of ambiguity, but do so less and

less the more information about the ambiguous option becomes available (that is the more

concentrated their belief q(h|D,x) becomes). Similarly, ambiguity-seeking individuals (β > 0)

should prefer the ambiguous option, but less and less so with increasing information. These

predictions are illustrated in Fig 3.1. Note that while the model explains choice behavior

depending on a given ambiguity attitude β, it does not explain how β changes across task

contexts. Details of the model can be found in the Materials and Methods section.

3.1.2 Experiments

We designed an experiment to test for differences in choice behavior in motor versus non-

motor contexts. Furthermore, we designed a second experiment to control for framing effects

that could be induced by the different stimulus designs used in the two tasks. In both

experiments subjects had to choose between a risky and an ambiguous option in every trial.

The risky option provided full information about the probabilities of the possible outcomes.

The ambiguous option was always characterized by a lack of information with respect to

the probabilities. We could manipulate the degree of ambiguity by varying the amount of

information revealed about the ambiguous option. After the decision was made subjects

received a payoff depending on the chosen option.

In Experiment 1 we compare two tasks, an urn task and a sensorimotor task under

ambiguity—see Fig 3.2 top and middle row. In the case of the urn task the stimuli are sam-

pled balls from both urns and the uncertainty about the outcomes after making the choice

is computer generated. In case of the motor task, the stimuli are bars that subjects had to

hit and therefore the uncertainty about the outcome is internally generated by subjects due

to their skill and motor variability. Any difference in behavior between the two tasks might

be attributable to either motor vs. non-motor context or to the stimulus design. The goal of

Experiment 2 is to distinguish between the two possibilities.

3.1.3 Experiment 1: Urn Task vs Motor Task

3.1.3.1 Urn task

In the urn task—see Fig 3.2 top row—the risky option was always fully visible and displayed

by a sample of 100 balls drawn from an urn with 50 : 50 composition of red and blue whereas

the ambiguous option had a possibly different composition with varying degree of ambiguity

depending on the number of samples that were shown, ranging from zero (full ambiguity)

to one hundred samples (no ambiguity). Ellsberg’s original task corresponds to the fully
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Figure 3.2. Experimental design. Top row. In the urn experiment, the trial was initiated by

moving on a gray start bar. Two point clouds appeared showing samples from two urns with different

underlying ratios of blue and red balls. The risky urn was always displayed by 100 samples drawn from

a 50 : 50 ratio. The ambiguous urn had a variable number of samples drawn from an unknown ratio.

Subjects made their decision about the urn they believed to have a higher red ratio by crossing into

the area highlighted in orange. In case of choosing the ambiguous urn, the composition of the urn was

revealed. The payoff was given by a viscous force field, which was switched on with the probability

determined by the chosen urn’s ratio for blue. Middle row. In the motor task, subjects had to

decide to hit one of two targets by moving into the corresponding decision circle. In case they chose

a (partially) occluded target, the target became fully visible after crossing into the highlighted area.

When failing to hit the target, subjects had to move against a viscous force field. In both experiments

subjects had to move towards the goal bar and back. The orange color is only for illustration and was

not displayed during the experiment. Bottom row. Experiment 2. Subjects are presented with the

same stimulus as in the motor task but perform an urn task where the random outcome is computer

generated, in contrast to the motor task where the outcome is determined by the subjects behavior.

After choosing between an ambiguous and a risky option a cloud of points appeared revealing the

composition of the hidden urn that determined the payoff in the same way as in the urn task.
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ambiguous limit case in which the ambiguous urn shows zero samples.

Subjects decided between the risky and the ambiguous urn displayed in the two halves

of the workspace respectively by moving a manipulandum to the respective half—compare

Fig 3.2 top row. To complete the trial they had to move to a goal bar and back to the

start position. Instead of a monetary payoff as used in Ellsberg’s original experiment, we

used viscous force fields that subjects tried to avoid. The force payoff was stochastic and

constituted a risk probability. The probability to experience a force in any individual trial

was determined by the probability of drawing a blue ball from the urn chosen by the decision-

maker. We recorded subjects’ choice in each trial and determined their choice probabilities

as choice frequencies over many trials with the same stimulus. Importantly, we designed

symmetric probe trials in which half of the shown samples from the ambiguous urn were red

and the other half blue, such that the most likely hypothesis to explain this observation is a

50 : 50 composition of red and blue balls. Crucially, subjects should be indifferent between the

ambiguous and the risky urn in these trials, if they base their decision solely on their expected

success, as posited by expected utility theory given that in our experiment all possible ratios

for the ambiguous urn are equiprobable. Additionally, we ascertained subjects’ preference for

no-force outcomes in trials without ambiguity (i.e. the ambiguous option was fully revealed),

where subjects preferred in more than 93% of cases the urn with the higher ratio of red. In

fact, we found the payoff given as a force not to be critical, as subjects in a control experiment

that received point scores as payoffs showed the same behavior—compare Figure 3.5 in the

Supplementary Information. This is in line with previous studies (Inukai and Takahashi,

2009; Smith et al., 2002) that have found ambiguity attitude to be robust in gains vs. losses

scenarios.

In accordance with Ellsberg’s results, we found in our urn experiment that the majority of

subjects were averse to the fully ambiguous urn in the probe trials—see Fig 3.3A. For 13 out of

16 subjects the choice probability for the risky urn was significantly elevated from 50 : 50 in the

fully ambiguous condition (p < 0.05, binomial test)—compare Figure 3.6 in the Supplementary

Information for single subject choice data. This deviation from expected utility theory in the

zero information limit (full ambiguity) was also significant at the population level (p < 0.05,

Wilcoxon signed-rank test). In the case of full information (zero ambiguity), the ambiguous

urn showed as many samples as the risky urn. Naturally, subjects were indifferent between

these two indistinguishable options (p > 0.6, Wilcoxon signed-rank test). In between the two

information limits, the ambiguous urn was partially revealed by showing a smaller number of

samples. We found that subjects’ preference for the risky urn decreased with an increasing

amount of information about the ambiguous urn (p < 0.05 for 11 out of 16 subjects, Cochran-

Armitage trend test with linear weights). Moreover, we found that the time to take the

decision increased with an increasing amount of information about the ambiguous urn—

compare Figure 3.7 in the Supplementary Information. Since in the analyzed probe trials we

ensured that half of the observed samples were red and the other half blue, a decision-maker

that only cares about the expected success would be indifferent between the two options

regardless of the amount of information. Such a decision-maker is represented by the dashed
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flat line in Fig 3.3A. We found that all but one subject significantly differ from this choice

pattern and thereby exhibit ambiguity aversion (13 subjects) or ambiguity-seeking behavior

(2 subjects) depending on the degree of available information.

3.1.3.2 Motor task

In the sensorimotor task—see Fig 3.2 middle row—we translated Ellsberg’s urn task into an

equivalent a motor task where subjects had to hit a risky target or an ambiguous target. The

risky target was always fully visible, whereas the ambiguous target was occluded in varying

degrees, such that subjects could not precisely assess the hitting probability associated with

the hidden target size. We manipulated the degree of ambiguity by varying the size of the

occluder from no occlusion to full occlusion.

In the motor task subjects chose in every trial between a risky target and an ambiguous

target. Once selected, they had to try and hit the target. If they failed to do so, they

experienced a viscous force on their way to the goal bar and back. To test the impact of

varying ambiguity on choice behavior, we again introduced symmetric probe trials in which

a decision-maker that only cares about expected success would be indifferent between the

risky and the ambiguous option. In the case of the ambiguous target, the size of the occluder

and the hidden target size were adjusted in a way such that the expected hitting probability

for the subjects in probe trials was also 50%, given that in our experiment all hidden sizes

compatible with the occlusion were equiprobable—see Materials and Methods for details. To

assess subjects’ hitting probabilities and to adjust the displayed target sizes accordingly, we

measured subjects’ endpoint variability and ensured that their performance was stable over

at least 500 trials—see Materials and Methods for details. Finally, we ascertained subjects’

preference for no-force outcomes in trials without ambiguity, where subjects preferred the

larger target in more than 87% of cases. Again we found the fact that the payoff was given

as a force not to be critical, as subjects in a control experiment that received point scores as

payoffs showed the same behavior—compare Figure 3.5 in the Supplementary Information.

In contrast to the expected utility prediction in probe trials that is represented by the

dashed lines in Fig 3.3B, we found that most subjects’ choice probability differed significantly

from this prediction, and that consequently their behavior cannot be simply explained by

expected utility maximization. However, unlike in the urn probe trials, most subjects had a

preference for the ambiguous option in the motor probe trials. When choosing between the

risky and the fully ambiguous target—corresponding to Ellsberg’s choice scenario—, 13 out

of 16 subjects’ choice probability for the risky target was significantly reduced from 50 : 50

(p < 0.01, binomial test)—compare Figure 3.6 in the Supplementary Information for single

subject choice data. This deviation from expected utility theory in the zero information limit

was also significant at the population level (p < 0.01, Wilcoxon signed-rank test)—compare

Fig 3.3B. In the case of full information (zero ambiguity), both targets were fully visible

and indistinguishable (p > 0.6, Wilcoxon signed-rank test). In between the two extremes of

zero and full information, the ambiguous target was only partially occluded. We found that
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Figure 3.3. Experiment 1: Experimental data and model fits. Aggregate choice probabilities

over all subjects in probe trials of A the urn task , B the motor task. The boxes are centered around

the median across subjects and the edges of the box are the 25th and 75th percentiles. Panels C

and D show the corresponding model fits. The thin green lines represent individual subjects’ choice

probabilities according to Equation (3.4), the thick green line indicates the group mean. The dashed

lines show the indifference choice probabilities predicted by expected utility. Probabilities above the

dashed line imply that subjects prefer the risky choice (ambiguity aversion), probability values below

the dashed line imply that subjects prefer the ambiguous choice (ambiguity preference). Asterisks

denote significant deviation from the expected utility prediction: one asterisk signifies p < 0.05, two

asterisks signify p < 0.01. In the urn task information (%) corresponds to the ratio of the number of

revealed balls to the total number of balls, in the motor task and in the urn task with motor stimulus

to the ratio of visible size to total size of the ambiguous target.
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for 14 out of 16 subjects, preference for the ambiguous target decreased with an increasing

amount of information (p < 0.05, Cochran-Armitage trend test with linear weights). Unlike

in the urn task, we found the decision time in the motor task not to vary with the degree of

ambiguity—compare Figure 3.7 in the Supplementary Information.

3.1.3.3 Model fits

In the information-theoretic free energy model of decision-making there are two free param-

eters per subject to fit , that are the soft-max parameter α and the ambiguity parameter

β. In contrast, the expected utility model has only one free parameter per subject given by

the softmax-parameter α. The two decision-making models are nested in the sense that the

expected utility model is a special case of the free energy model in the limit β → 0. To

compare the two hypotheses we maximized the log-likelihood of the experimental data over

all trials by varying the free parameters of the two models. We performed a likelihood ratio

test to investigate which model fits the data better. Importantly, the likelihood ratio test with

nested models trades off the extra complexity of the more general model against its better

fitting performance. We found that we can reject the expected utility model with a p-value of

p < 0.01. The model fits are shown in green in Figures 3.3C,D and in Figure 3.6 in the Sup-

plementary Information for individual choice data. In Fig 3.3 it can be seen that unlike the

expected utility model, the free energy model can explain how subjects’ choice probabilities

change depending on the amount of available information.

While there are a number of alternative ambiguity models, the difficulty in our task

is that these models have to be dynamically consistent—that is they have to be updated

with new data in a consistent way—and they have to allow for both ambiguity-seeking and

ambiguity-averse behavior. For the urn task we adapt one of the most popular ambiguity

models from Gilboa and Schmeidler (Gilboa and Schmeidler, 1989), because in this case

the prior can be easily parameterized as a beta distribution. The Gilboa-Schmeidler model

assumes that decision-makers have multiple beliefs arising from multiple priors. We assume

that within that set of priors decision-makers can update their beliefs according to Bayesian

inference procedures and select the worst-case possible belief for every option. This will lead

to ambiguity averse behavior. To allow for ambiguity-seeking behavior we will also allow for

best-case selection of beliefs. We model directly the best- or worst-case belief selection with

a single Beta prior for the ratio of the urn. In this case the Gilboa-Schmeidler model has

three parameters, the soft-max parameter and two more parameters of the Beta prior. In

contrast the information theoretic model has two parameters, the ambiguity parameter β and

the rationality parameter α. We compare these two models using the Bayesian Information

Criterion (BIC) and find that the model comparison clearly favors the information-theoretic

model (BIC = 8139) over the dynamic Gilboa-Schmeidler model (BIC = 8165), with ∆BIC =

26.
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3.1.3.4 Comparison: motor task and urn task

Importantly, both experiments were performed by the same subjects. In total, 11 subjects

that were ambiguity averse in the urn task under full ambiguity, preferred the fully ambiguous

option in the motor task. Moreover, 2 subjects that were ambiguity averse in the urn task

under full ambiguity, were indifferent to full ambiguity in the motor task. Three subjects

did not change their preferences across tasks, two of them consistently preferred the fully

ambiguous option, one of them remained indifferent. This difference in behavior of subjects

between the two tasks might be attributable to either motor vs. non-motor context or to the

stimulus design. This is the subject of the second experiment.

3.1.4 Experiment 2: Stimulus versus Motor Framing

In the first experiment we found a clear difference in choice behavior between the motor task

and the urn task—compare Fig 3.3. This difference in subjects’ behaviour between the two

tasks might be attributable to either motor vs. non-motor context or to the stimulus design.

In Experiment 2, we distinguish between the two possibilities. In this experiment, a group of

subjects performed the urn task but at the moment of choice they were presented with the

motor task stimulus instead of the urn task stimulus. If the preference reversal was mainly

induced by the stimulus, we would expect most subjects to prefer the ambiguous option in

the probe trials of Experiment 2, as the stimulus is identical to the motor task. However, if

the preference reversal was mainly a function of the underlying source of uncertainty (Beers

et al., 2004) (external source for the urn task or internal source for the motor task), we

would expect them to be mostly ambiguity averse as in the urn task. We found that most

subjects in Experiment 2 still preferred the ambiguous option as in the motor task—compare

Fig 3.4A. This deviation from expected utility theory was significant both at the population

level (p < 0.05, Wilcoxon signed-rank test on the full ambiguity condition) and at the level

of individual choice: for 14 out of 16 subjects in Experiment 2, preference for the ambiguous

target decreased with an increasing amount of information as in the motor task (p < 0.05,

Cochran-Armitage trend test with linear weights). This suggests that subjects’ ambiguity

preference critically depends on the stimulus display, whereas the context of motor and non-

motor task and the framing of gains and losses do not seem to be critical.

We conducted a control experiment to discern if the stimulus affects directly ambiguity

attitude or whether it induces a perceptual distortion in such a way that after all subjects’

behavior can be explained according to expected utility with perceptual bias. Importantly,

both the control experiment and Experiment 2 were performed by the same subjects. The

control experiment was identical to Experiment 2 except that the force payoff was now asso-

ciated with the opposite color (inverse utility condition). Effectively, this implied that now

smaller bar stimuli were preferable to larger bar stimuli. We can then compare subjects’

choices when presented with the same target bar stimulus under the two utility conditions. If

they prefer the same option—either ambiguous or risky—under both conditions, their choice

cannot be explained by a single belief probability, as they would effectively believe the same
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Figure 3.4. Experiment 2. Panel A shows Experiment 3 choice data where subjects are ambiguity-

seeking as in the motor task and not ambiguity-averse as in the urn task—compare Fig 3.3. Panel

C shows experimental choice data of the control experiment where subjects are ambiguity-seeking in

most trials independent of the utility function—normal utility condition as in Experiment 3 or inverse

utility condition. Probability values above the dashed line predicted by expected utility imply that

subjects prefer the risky choice (ambiguity aversion), probability values below the dashed line imply

that subjects prefer the ambiguous choice (ambiguity preference). The normal utility condition is

colored in light orange, the inverse utility condition is colored in light blue. The boxes are centered

around the median across subjects and the edges of the box are the 25th and 75th percentiles. Asterisks

denote significant deviation from the expected utility prediction: one asterisk signifies p < 0.05, two

asterisks signify p < 0.01. Panels B, D and E show the corresponding model fits. The thin lines

represent individual subjects’ choice probabilities according to Equation (3.4), the thick lines indicate

the group mean. Note in panel E, how the our information-theoretic model (and the expected utility

model) is unable to produce simultaneously ambiguity aversion in the zero information limit and

ambiguity seeking behavior in the other information cases.
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stimulus to be larger and smaller at the same time. Crucially, this could be explained in terms

of ambiguity attitude. If, however, they believed the ambiguous target to be smaller in one

utility condition, but larger in the other, then their behavior might also be explicable as a

perceptual bias or a biased belief that discards experienced statistics.

Fig 3.4C shows subjects’ choice behavior under the two utility conditions. For the normal

utility condition (light orange boxes), we see the gradual increase in ambiguity preference as

in the previous subject groups. However, for the inverse utility condition (blue boxes) the

results are mixed. For partially occluded stimuli subjects still mostly prefer the ambiguous

option, but in the case of fully occluded stimuli they mostly prefer the risky option—compare

Fig 3.4C. The corresponding significance values (Wilcoxon signed-rank test) are indicated by

asterisks in the figure. This mixed behavior is also visible in single subject choice data—

compare Figure 3.8 in the Supplementary Information. For both, the Experiment 2 with

normal utility condition and the inverse utility condition we found the decision time not to

vary with the degree of ambiguity—compare Figure 3.7 in the Supplementary Information.

In Figs 3.4B,D,E we show the model fits according to equation (3.4). In particular, we

observe the limitations of the information-theoretic model and the expected utility model

when modeling the inverse utility condition experiment (Fig 3.4E). None of them is able to

show both ambiguity averse behavior in the zero-information limit and ambiguity seeking

behavior in the remaining ambiguity levels.

A possible reason for the deviation observed in the full ambiguity condition might be the

nonlinear relationship between bar size and hitting probability, which only plays a minor role

in the partial ambiguity condition. Thus, these mixed results suggest that both perceptual

distortion and stimulus-dependent ambiguity attitude play a role in sensorimotor choices.

Crucially, it is impossible to exclusively explain the observed preference reversal within ex-

pected utility theory with biased beliefs or by perceptual distortion, as it is impossible to

probabilistically represent the belief or the perception that the same stimulus is at the same

time smaller and bigger than a gauge stimulus, as observed in the partial ambiguity conditions.

3.2 Discussion

In our study we found that human subjects continuously modulate their choice behavior in

an experience-based urn task and in a motor task depending on the level of ambiguity in

line with the prediction of a information-theoretic free energy choice model and contrary to

the prediction of expected utility. We found that the ambiguity preference changed in the

two tasks for the same subjects, where subjects were mostly ambiguity-averse in the urn task

and ambiguity-seeking in the motor task. Additionally, we found that subjects’ ambiguity

sensitivity is not affected by the framing of motor and non-motor context. However, in a

second experiment we show that this reversal was mainly a consequence of a framing effect

induced by the different stimuli in the two tasks.

Framing effects induced by presenting decision-problems in terms of gains and losses were

first studied by Tversky and Kahneman (Amos Tversky and Daniel Kahneman, 1981), showing
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how framing could greatly affect choice behavior. In our study we found that the framing

effect induced by stimulus display significantly affected behavior. In fact, the visualization

of uncertainty has recently become an active research topic (Brodlie et al., 2012; Johnson,

2004; Marx, 2013; Pang et al., 1996). One of the reasons for this surge in interest is the

realization that the way uncertainty is communicated can affect policy making, for example

in the context of the climate change debate. Similarly, our results suggest that the way that

ambiguity is presented to users can make striking differences in the way they respond to this

uncertainty, both in economic decision-making tasks and in motor tasks. A previous study

by Wu et al (Wu et al., 2009) have also reported striking differences between economic and

sensorimotor decision-making under risk. Our results suggest that these differences could

be explained by the way uncertainty is displayed and not by the fact of how uncertainty is

generated—externally in case of economic task or internally in case of a sensorimotor task.

In principle, the representation of uncertainty can induce both perceptual biases or elicit

particular ambiguity attitudes. In our tasks, we found that perceptual biases alone cannot

explain subjects’ choice behavior and that ambiguity attitude is affected in stimuli with partial

ambiguity.

Previous studies in behavioral economics have shown that risk-attitudes can be distin-

guished experimentally from ambiguity attitudes (Camerer and Weber, 1992). Risk attitudes

are usually modeled by the curvature of the utility function (Kenneth J. Arrow, 1965; John W.

Pratt, 1964). This model of risk is also included in Equation (3.3). The ambiguity attitude

in the free energy model is expressed by an additional temperature parameter that quantifies

deviations from a Bayesian model (Ortega and Braun, 2013). The same variational principle

can also be applied to acting of bounded rational decision-makers. In this case, the tem-

perature parameter β can be interpreted in terms of the degree of control a decision-maker

has as a result of the available computational resources. Accordingly, one could interpret

Equation (3.3) equivalently as anticipating the choice of a bounded rational opponent with

boundedness parameter β. Therefore, our results encourage a more general investigation of

free energy variational principles for perception and action. One such avenue might be the

study of decision-makers’ perceived degree of control, for example in the context of illusions

of control (Gino et al., 2011; Langer, 1975). In the case where utilities are restricted to infor-

mational surprise or absorbed into prior distributions, such free energy variational principles

have for example been recently investigated by Friston and colleagues (Friston, 2009; Friston,

2010).

In the economic literature there have been an extensive effort in developing models that

formalize decision-making under ambiguity. From the first models where decisions are evalu-

ated by looking exclusively at its worst possible outcome (Wald, 1945), to models that take

into account both the worst and the best possible outcome (Kenneth J Arrow and Hurwicz,

1972). There are also more mathematically elaborate models such as Choquet Expected Util-

ity (CEU) model (Schmeidler, 1989) where beliefs are not considered subjective probabilities

but by capacities that can possibly be non-additive. Extensions of CEU include the Cumula-

tive Prospect Theory (Amos Tversky and Daniel Kahneman, 1992) that uses two capacities,
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one for gains an another one for losses. There are other popular models such as the Maxmin

expected utility model from Gilboa and Schmeidler that use multiple priors to define the

beliefs of decision-makers with built-in ambiguity aversion (Gilboa and Schmeidler, 1989) and

also a variation of it that drops the axiom of ambiguity aversion (Ghirardato et al., 2004).

The smooth ambiguity aversion model (Klibanoff et al., 2005) can be viewed as an extension

of the maxmin model. It regards the maxmin criterion as too extreme and opts for modeling

second order beliefs and introducing a convex function to model ambiguity aversion—in the

same way that the curvature of the utility function models risk aversion.

The information-theoretic model relates to the above-mentioned models in several ways.

First, Equation (3.3) that assigns value to an option under ambiguity presented here is known

in the economic literature as a multiplier preference model (Hansen and Sargent, 2008), that

is a type of variational preference model for decision-making under ambiguity (Etner et al.,

2012; Maccheroni et al., 2006). In our formalism, the temperature parameter can assume

positive and negative values corresponding to ambiguity-seeking or ambiguity-averse behavior

without changing the general form of the solution equations. Second, just like the multiplier

preference model the information-theoretic model has dynamic consistency, because it can

incorporate new information in line with Bayesian updating (Hanany and Klibanoff, n.d.).

Accordingly, it provides a neat way to include ambiguity into the Bayesian formalism, unlike

many other models that abandon the concept of Bayesian probability. Third, the majority of

the decision-making models under ambiguity include an ad hoc soft-max function to determine

the probabilities of decisions. In contrast to these previous models, we use a single free energy

principle for both action (Equation (3.4)) and perception (Equation (3.3)) which can also

be reconciled with Bayesian updating (that also obeys a free energy principle) and dynamic

choice under new incoming data (Gilboa and Marinacci, 2011). Therefore, the information-

theoretic model provides a powerful generalization to Bayes optimal decision-making allowing

for ambiguity and limited resources.

Variational ambiguity models build on earlier work on robust control where decision-

makers consider the possibility that their current model q may not be the appropriate model

for the observed phenomenon and therefore bias their predictions towards worst-case outcomes

to ensure robustness (Hansen and Sargent, 2008). The concept of robustness is also closely

related to the concept of risk-sensitivity as the relative entropy contains the information of

all the higher-order statistical moments. Previously, risk-sensitivity was shown to play an

important role in motor tasks, showing that subjects care about higher order moments of

the cost function. This is often modeled as a mean-variance trade-off, that can be used to

express risk attitudes towards observable random variables (Braun et al., 2011a; Nagengast

et al., 2010; Nagengast et al., 2011b). Previously, it was also shown that risk-sensitivity affects

sensorimotor integration when different beliefs are associated with different sensorimotor costs

(Grau-Moya et al., 2012) and it also affects the amount of cooperation in two-player games

when different beliefs represent the strategy of the other player (Grau-Moya et al., 2013). In

this study we show that the same framework that is used to model risk-sensitivity can also

be applied to model ambiguity.
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Bayes optimal decision-making has been applied as a very general optimality principle to

explain behavior from the scale of single neurons (Wei J. Ma et al., 2006; Wei Ji Ma et al.,

2008) to whole-body motor control (Stevenson et al., 2009). When probability models are

accurate, optimal decision-making is indeed optimal and accomplished by computing expected

utilities. However, if probability models are inaccurate or even plain wrong, then maximizing

expected utility can be far from optimal. In such scenarios, one might be interested in robust

control and decision-making strategies with guaranteed performance bounds within defined

neighborhoods of a proposed model (Hansen and Sargent, 2008). Robustness is also a core

feature of biological organisms coping with model uncertainty (Kitano, 2004), which has so

far been neglected in many optimality models. Our results suggests a way of how to combine

model uncertainty, optimality and inference in the study of adaptive behavior.

3.3 Materials and Methods

3.3.1 Ethics Statement

The study was approved by the ethics committee of the Max Planck Society (reference number:

0269/2010BO2). All participants gave written informed consent.

3.3.2 Subjects

68 subjects (30 male, 38 female) from the Tübingen University student population participated

in this experiment after giving informed consent. We excluded one subject in the motor task

with force payoffs and two subjects in the motor task with point payoffs, because the standard

deviation did not stabilize over the course of the experiment. The remaining 65 subjects were

assigned as follows to the three experiments: 16 subjects participated in Experiment 1, 16

subjects participated in Experiment 2, and in Experiment 2 there were 16 subjects in the

main experiment (8 of which overlapped with 8 subjects from Experiment 1), and 25 subjects

in the control. Participants were paid the local standard rate of 8 Euros per hour for their

participation.

3.3.3 Materials

The experiments were conducted using a vBOT robotic manipulandum (Ian S. Howard et al.,

2009). Participants controlled the vBOT handle in the horizontal plane. Movement position

and velocity were recorded at a rate of 1kHz. A planar virtual reality projection system

was used to overlay images into the plane of movement of the vBOT handle. Subjects hand

position was displayed by a cursor that could move across the planar screen. Subjects were

using their preferred hand throughout the entire experiment.
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3.3.4 Information-Theoretic Model Details

In our experiment decision-makers have ambiguity about a latent variable h, which is the

unknown ratio of blue and red balls in case of the urn, or the size of the hidden target in case

of the motor task. The expected utility for a known h is determined by U(h) =
∑

o p(o|h)r(o),

where r(o) = −1 is the reward for the outcome o = blue in the urn task or o = fail in the

motor task, and r(o) = 0 for the outcomes o = red or o = hit. p(o|h) indicates the probability

of drawing color o from an urn with known ratio h or the probability of hitting a fully visible

target of known size h depending, of course, on subjects’ skill level. Note that we took into

account changes in subjects’ performance during the whole experiment—see Experimental

design: motor task in the Materials and Methods section

The decision-maker’s model q is given by a Bayesian posterior q(h|D,x) over the latent

variable h when observing data D of option x. In the urn task, the data corresponds to the

number of observed red and blue balls and the distribution q(h|D,xamb) can be represented

by a Beta distribution over the ratio of the ambiguous urn. In the motor task, the data

corresponds to observing the occluded target, where q(h|D,xamb) is a uniform distribution

over the possible target sizes covered by the occluder as we sampled the target sizes from this

uniform distribution.

The critical trials for model comparison are the probe trials, in which the expected utility

of the ambiguous option is exactly the same as the expected utility of the risky option.

Importantly, a pure expected utility decision-maker with β = 0 values the ambiguous option

xamb according to its expected utility V0(xamb) =
∫
dh qamb(h|D,xamb)U(h), which in the

illustration in Fig 3.1 simply corresponds to the mean of the distribution q(h|D,xamb). In

probe trials the mean is given by Eq(h|D,x)[U(h)] = 1/2 by design. Crucially, in probe trials the

expected utility value is independent of the number of observed data points. In contrast, the

valuation given by Equation (3.3) is sensitive to the number of data points that determine the

spread of the distribution q(h|D,x). The more data becomes available the more concentrated

the posterior becomes around the true value h∗ (that is the true ratio of the ambiguous urn

or the true target size of the ambiguous target). In the limit of exact knowledge only the

true value h∗ has non-zero probability mass, that is q(h|x,D) → δ(h − h∗). In the limit

of infinite data, all ambiguity vanishes and the value of the ambiguous option according to

Equation (3.3) converges to Vβ(xamb)→ U(h∗) independent of the value of β. The limit value

U(h∗) exactly corresponds to the value V0(xrisk) of the risky option in probe trials—compare

Fig 3.1.

The solution to Equation (3.4) that describes the choice probability of subjects choosing

the risky option is given by

p2(xrisk) =
p0(xrisk)eαVβ(xrisk)

p0(xrisk)eαVβ(xrisk) + p0(xamb)eαVβ(xamb)
(3.5)

where p0(xrisk) = p0(xamb) = 1/2. Naturally, the probability of choosing the ambiguous

option is modeled by p(xamb) = 1 − p(xrisk). Note that the case of uniform prior the choice

probabilities follow the common soft-max rule but for non-uniform prior it is a weighted
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version of this rule.

The value Vβ(x) is the solution to Equation (3.3) and is given by

Vβ(x) =
1

β
logZβ(x) =

1

β
log

∫
q(h|D,x)eβU(h)dh.

As the utility function U(h) and the Bayesian posterior q(h|D,x) are given by our modeling

assumptions, there are only two free parameters per subject to fit in the information-theoretic

free energy model of decision-making, that are the soft-max parameter α and the ambiguity

parameter β.

3.3.5 Experimental Design: Experiment 1 (Urn Task)

Experiment. Subjects performed 600 trials of reaching movements from a start bar (gray

rectangle with size 4× 1.5cm) to a goal bar (green rectangle with size 20 × 0.5cm) that was

24cm away by moving a cursor (red circle, radius 0.3cm) representing their hand position—

compare Fig 3.2. After holding still for 0.2s at the start bar, subjects heard a beep indicating

trial start and stimulus appearance. By moving to the left or right side of the workspace when

entering the force zone at 12cm in the forward direction (orange zone in Fig 3.2 ), they made

a choice between the “risky” urn and the “ambiguous” urn. The display location of the risky

and the ambiguous urn was randomly selected between left and right. The choice had to be

made within a maximum time window of 1s after stimulus appearance, otherwise a new trial

was generated.

Subjects were informed that both urns contained 100 balls. Subjects were also told that

the risky urn always had 50 blue balls and 50 red balls and that the ambiguous urn had an

unknown proportion of red and blue balls. Before they had to make their decision they were

shown a sample of 100 balls drawn with replacement from the risky urn and a sample of

varying size from the ambiguous urn. The number of samples shown from the ambiguous urn

was determined randomly from the set {0, 2, 4, 10, 50, 100}. Thus, showing 0 balls corresponds

to a completely ambiguous urn and showing 100 balls corresponds to a non-ambiguous urn.

We devised two methods to indicate the missing information to ensure robustness of our

results. The first eight subjects were explicitly told that the ambiguous urn had 100 balls

with only a small subset shown as a sample. The second eight subjects were shown gray

balls in ambiguous trials to visualize the missing information directly. Samples from the

ambiguous urn were generated as follows. In 50% of trials the composition of the ambiguous

urn was determined randomly from the set {(0, 100), (10, 90), ...(50, 50), ...(90, 10), (100, 0)} of

red balls and blue balls respectively. The specified amount of samples was then drawn from

the ambiguous urn. In the other 50% of trials, we designed probe trials where a perfectly

symmetric stimulus was presented where half of the samples was red and the other half was

blue. These probe trials are important for the model comparison.

To show subjects the samples stemming from either urn, circles of red and blue colors

(radius 2mm) were drawn from a two-dimensional Gaussian distribution with mean µleft =

−5.0cm µright = 5.0cm and standard deviation σleft = σright = 1.0cm. The circles were
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displayed in the horizontal plane as illustrated in Fig 3.2. In case subjects opted for the

ambiguous urn, the content of the urn was revealed after their choice in order to provide

them with feedback. In probe trials, the feedback was given by a sample of 100 balls drawn

from a 50 : 50 urn. In other trials, the 100 balls sample was drawn from the ambiguous urn

with the specified composition.

Subjects were told to imagine that a ball would be randomly drawn from the urn that

they chose, and if the ball was blue they would experience a viscous force F in the forward-

backward direction when trying to reach the goal bar. The force was set to F = −kvy with

k = 1.25Kgs and vy the velocity of the robot handle in the forward-backward direction. In

contrast, if the ball was red subjects would experience no force. The constant k of the viscous

force was ramped up from k = 0 to k = 1.25 in the first third of the force area (12cm−16cm)

in the forward movement and similarly was ramped down in the backward movement to have

a smooth transition between the non-force area and the force area.

Sampling procedure. In the urn task, the manipulation of the degree of ambiguity was

controlled by the number of samples shown from the ambiguous urn. For finite size urns,

the problem of inferring the true ratio of red and blue balls of the ambiguous urn depends in

general on whether assuming a sampling scheme with replacement or without replacement.

While subjects could in principle use either inference strategy, importantly this does not affect

our conclusions. In the critical trials with symmetric evidence (probe trials), the expected

utility of the ambiguous option is exactly the same under both sampling schemes and equal to

the expected utility of the risky option, because in this case the mean of the beta distribution

(inference with replacement) is equal to the mean of a beta-binomial distribution (inference

without replacement). Our results are consequently independent of the sampling scheme that

subjects were using for inference.

3.3.6 Experimental Design: Experiment 1 (Motor Task)

Experiment. Subjects had to move a cursor to a red start rectangle that was placed in the

bottom middle of the workspace—compare Fig 3.2. When subjects entered the red rectangle,

two decision circles (radius 0.6cm) appeared to the left (−4cm) and to the right (4cm) of

the center of the start rectangle together with their respective targets, and the red bar dis-

appeared. One decision circle was associated with the risky target, while the other one was

associated with the ambiguous target. The targets were displayed 18cm in the forward direc-

tion from the decision circles. The location of the risky target and the ambiguous target was

randomized between left and right with 50 : 50 probability. Subjects could compare the two

targets and move towards the decision circle associated with the target that they intended to

hit. When holding still in the decision circle, the other decision circle and target disappeared

and they heard a beep that urged them to move towards the target they selected. In order

to increase the difficulty of the target hitting task, we imposed a lateral gain g = 3 between

hand and cursor movement, thereby artificially increasing the variance of subjects’ reaching
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endpoints. When hitting the target, they heard a high frequency beep. When missing the

target, they heard a low frequency beep. In the latter case, they also experienced a viscous

force F impeding their movement in the forward-backward direction between the target and

a goal bar (between 18cm and 27cm from the decision circle) they had to reach to complete

the trial. The viscous force F = −kvy was proportional to subjects’ movement velocity. To

provide a smooth transition between the non-force area and the force area, k was ramped up

in the forward direction from k = 0 to k∗ = 0.6Kgs within the first quarter between the target

and the goal bar, and similarly, ramped down in the backward direction. When subjects

reached the goal bar, they heard another beep with the same frequency as before to inform

them that the trial was completed. At this point they had to move back to the red rectangle

to initiate the next trial. Each trial had to be completed within 0.6s.

In case of a fully visible target with half-width s, the probability of hitting the target Phit
can be computed as

Phit(s) = 2
(
F (s;σ2

0)− F (0;σ2
0)
)
, (3.6)

assuming that subjects’ reaching endpoints can be described by a zero-mean Gaussian dis-

tribution with variance σ2
0 such that F (x;σ2

0) =
∫ x
−∞N (x; 0, σ2

0)dx. In case of an ambiguous

target with visible size 2s and gray occluders of size d on each side, the average hitting

probability is

Phit(s, d) =
2

d

∫ s+d

s
(F (x;σ2

0)− F (0;σ2
0))dx, (3.7)

assuming that all possible target sizes are equally probable.

Training and tracking performance. At the beginning of the experiment subjects were

exposed to a training session where they had to hit a single fully visible target (width 2cm)

displayed randomly at the left or right target position. After 200 trials, the training session

ended allowing us to estimate subjects’ hitting accuracy. In particular, we could compute the

target half-width s∗, such that subjects’ hitting probability was Phit(s
∗) = 0.5. To determine

s∗ we computed the median of subjects’ unsigned endpoints. In order to keep track with

potential changes in performance after the training session, we continuously adapted s∗ and

all other target sizes based on the penultimate 200 trials ensuring that subjects keep a constant

performance over the entire course of the experiment. In total, subjects performed at least

750 choice trials under the condition that the relative standard deviation of s∗ lies within a

band of 10% over the last 500 trials.

Trial generation. Ambiguous trials were generated in the following way. Analogous to our

urn experiment, in 50% of the choice trials the hitting probability of the ambiguous target

was set to Phit = 0.5. In the other 50% of trials the ambiguous target was set to have a hitting

probability drawn randomly from Phit ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. Larger hitting probabilities

were not considered because of the disproportionate target sizes required. Once Phit was

determined, the maximum ambiguous size df was computed according to Equation (3.7) for

s = 0. Then an ambiguity index a was drawn randomly from the set {0, 0.1...0.5...0.9, 1}
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and the actual size of the occluders was computed as d = adf . This way it could be ensured

that all degrees of ambiguity were equally probable. Finally, given the expected hitting

probability Phit and the occluder size d, the displayed target half-width s was chosen to

satisfy Equation (3.7).

3.3.7 Experimental Design: Experiment 2

In the second experiment subjects were shown the same stimulus as in the motor task, but

then experienced the an externally imposed uncertainty as in the urn task. Instead of red and

blue, the urn stimulus consisted of green and blue balls to match the color of the target and

to establish an association between target size and ratio. The ratio of blue and green balls

in the urn was determined by the hitting probability of the true target size under a variance

of 1.44cm2. Subjects initiated each trial by moving their cursor to a red start rectangle as in

the sensorimotor experiment. Then two decision circles (radius 0.6cm) appeared to the left

(−4cm) and to the right (4cm) of the center of the start rectangle and the two respective target

stimuli—one risky, one ambiguous—were displayed 2cm below the decision circles. Once the

target was selected, a cloud of points was shown 4cm above the decision circle to represent

the urn. Once the goal bar was crossed the red start bar reappeared so that subjects could

trigger the next trial.

Main experiment. In each trial of the Experiment 2, subjects chose between a risky target

and an ambiguous target with the same statistics as in the motor task, including the occurrence

of probe trials with equal expected utility for both options. Once subjects made their choice

based on the target stimulus by moving the cursor into one of the decision circles, a cloud of

points appeared as in the urn task representing a sample of blue and green balls (instead of

red), as subjects were told that the size of the green target bar indicated the ratio of green

balls in the urn. As in the urn task, this ratio also determined the probability of the force

payoff.

We recorded eight subjects in this control experiment after they performed in the motor

task, and another eight control subjects after they performed in the urn task to account for

order effects. Unlike the first group, the second group of eight subjects were not yet acquainted

with the bar stimulus once they started the control experiment. We therefore adapted the

control experiment for them in such a way that they could learn the relationship between

ambiguous target stimuli and true target size. Once they selected the target, the true target

size was revealed at the same time as showing the true composition of the urn. In contrast,

the first eight subjects already knew the bar stimulus from the preceding motor task. Once

they selected the target in the control task, they were shown a point cloud that consisted of

100×a gray balls determined by the ambiguity index a associated with the ambiguous target

and a sample of 100 × (1 − a) green and blue balls drawn from the corresponding urn with

composition equal to Phit. The true composition of the urn was revealed when entering the

force zone as in the urn task. This way they could learn a direct mapping from ambiguous bar
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stimulus to ambiguous urn stimulus. The remainder of the trial proceeded for both control

groups as in the urn task. There was no qualitative difference between both groups, as both

predominantly preferred the ambiguous option. Accordingly, we found that the preference of

subjects first performing in the motor task remained stable across tasks, but the preference of

subjects first performing in the urn task changed—compare Figure 3.9 in the Supplementary

Information.

Control experiment. In this control experiment we tested a group of subjects performing

both in the normal and in an inverted utility condition using the same design as in Experiment

2. In the normal utility condition, a force payoff was associated with drawing a blue ball

from the associated urn as in the previous experiment (Experiment 2). In the inverse utility

condition, a force payoff was associated with drawing a green ball (instead of red) from the

urn. Using the sensorimotor stimulus, effectively, subjects had to decide in the first condition

which of the two target bars—risky or ambiguous—they believed to be larger, whereas in the

second condition they had to decide which one they believed to be smaller.

In the inverse utility control experiment, sixteen subjects performed the inverse utility

condition before performing in the normal utility condition, and nine subjects performed the

inverse utility condition after performing in the normal condition. Subjects were told that in

both conditions the size of the green bar indicated the proportion of green balls in the urn

and that green balls would either be associated with no force (normal condition) or with a

force (inverse condition) according to the probability of drawing a green ball from the urn.

Since these subjects did not previously perform in the motor task, they underwent the same

procedure as the second group of eight subjects in Experiment 2.

Order effects. In all experiments, the order in which subjects performed the experiments

was permuted. From the sixteen subjects performing the urn and motor task, the first eight

subjects started with the urn task, while the second eight subjects started with the motor

task. Before performing Experiment 2, the first eight subjects of Experiment 2 performed the

motor task and the second eight subjects performed the urn task. In the control experiment,

the first sixteen subjects performed the inverse utility condition before the normal condition,

and nine subjects performed the normal condition before the inverse condition. To test for

order effects we devised both a logistic generalized linear mixed model that depended on an

order variable and another logistic generalized linear mixed model that did not depend on it.

In both models the other fixed effects were given by the ambiguity condition and the expected

hitting probability. The random effect in both models was given by the subject index. We

found that in none of the above cases the order played a significant role (p > 0.05 in all cases,

χ2 difference test).
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3.4 Supporting Information

Data

The data can be found in doi:10.1371/journal.pone.0153179.s002.
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Supplementary Figures

Experiment: Gain vs losses

In order to test if there exists a framing effect depending if the payoffs in the experiments are

changed from losses to gains we conducted a second experiment. In this second experiment

(reward vs. force payoff), sixteen subjects performed the urn and motor task experiment as

described above. The only difference was the payoff mode. Subjects did not experience any

viscous forces, but instead received point rewards. In urn task trials, a point was awarded

whenever a red ball was drawn from the urn selected by the subject. In motor task trials, a

point was awarded whenever the subject managed to hit the target. In all other cases no points

were awarded. The total point score was displayed on the screen at all times. Even though

we found stronger significance in the urn task and weaker significance in the motor task for

specific ambiguity levels, overall we found that our results were not significantly affected when

comparing the subject population receiving force payoff to the subject population receiving

point payoffs (p > 0.15, Wilcoxon ranksum test for each ambiguity condition in the urn task

and p > 0.5, Wilcoxon ranksum test for each ambiguity condition in the motor task). The

aggregate choice probabilities and model fits are shown in Fig. S3.5. This suggests, in line

with a previous study (Inukai and Takahashi, 2009), that ambiguity attitude is not sensitive

to positive or negative payoff.
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Figure 3.5. Experiment: Reward versus force payoff. Aggregate choice probabilities over all

subjects in symmetric probe trials of the urn task A and the motor task B, when subjects received

point rewards instead of experiencing viscous forces. In the urn task, subjects received one point

whenever a red ball was drawn from the urn the subjects selected. No points were awarded if a blue

ball was drawn. In the motor task, subjects received one point for hitting the target, otherwise no point

was awarded. In both tasks the total point score was shown at all times on the screen. The boxes are

centered around the median across subjects and the edges of the box are the 25th and 75th percentiles.

Panels C and D show the corresponding model fits. The thin green lines represent individual subjects’

choice probabilities according to Equation 3.4 in the main text, the thick green line indicates the

group mean. The dashed lines show the indifference choice probabilities predicted by expected utility.

Probabilities above the dashed line imply that subjects prefer the risky choice (ambiguity aversion),

probability values below the dashed line imply that subjects prefer the ambiguous choice (ambiguity

preference). Asterisks denote significant deviation from the expected utility prediction: one asterisk

signifies p < 0.05, two asterisks signify p < 0.01. In the urn task information (%) corresponds to the

ratio of the number of revealed balls to the total number of balls, in the motor task to the ratio of

visible size to total size of the ambiguous target.
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Motor Task

T** T**

T** T** T* T**

T** T**T* T**

T**T**T**T**

**

** ** ** **

**

**

**

****

****

**

0 100

Information (%)

0

0.2

0.4
0.6

0.8
1

P
(r

is
k)

Urn Task

T T****

T** T** T** T**

T* T** T**

T* T** T** T**

** ** *

** ** ** **

* ** ** *

** **
** **

0 100

Information (%)

A B

20-402-4 10-50 4-15 50-80

Figure 3.6. Experiment 1: Individual choice probabilities in probe trials. in the urn task

(A) and in the motor task (B). The red data points show subjects’ probability of choosing the risky

option in dependence of the amount of information revealed from the ambiguous option. The error bars

indicate 80% confidence intervals. In probe trials, an expected utility decision-maker should always be

indifferent between the two options, independent of the information (dashed lines). The shaded green

line shows maximum likelihood model fits for subjects’ choice probability according to Equation 3.4 in

the main manuscript. Asterisks on the first data point in each panel denote a significant difference from

the dashed expected utility line. Asterisks in the top right corner of each panel indicate significance

of trend. One asterisk signifies p < 0.05, two asterisks signify p < 0.01. In the urn task information

(%) corresponds to the ratio of the number of revealed balls to the total number of balls, in the motor

task to the ratio of visible size to total size of the ambiguous target. In total there were 16 subjects

performing the two tasks. Each subject can be identified by their panel position.
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Figure 3.7. Average decision time across subjects in dependence of the amount of infor-

mation revealed: in the urn task (top-left panel), the motor task (top-right panel) and the control

tasks of Experiment 2 (bottom-left and bottom-right panel). Error bars indicate standard errors. In

the urn task, the decision time was defined as the time from entering the grey start bar to crossing

into the orange zone displayed in Fig. 3.1 of the main text. In the motor task and Experiment 2,

the decision time was defined as the time from entering the red square to entering one of the decision

circles. Note that the decision time in the urn task was recorded for all 16 subjects, but in the motor

task only for the last 8 subjects, and in Experiment 2 for all 25 subjects.
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Figure 3.8. Choice probabilities of control experiment. Individual choice probabilities in probe

trials of the same subjects performing in the inverse utility (A) and the normal utility condition (B)

under full, partial and no ambiguity. The data points show subjects’ probability of choosing the risky

option in dependence of the amount of information revealed from the ambiguous option. In probe

trials, an expected utility decision-maker should always be indifferent between the two options (dashed

lines). In 25 subjects, 11 subjects changed from general ambiguity preference in the normal utility

condition to a mixed behavior in the inverse utility condition as reflected in the population average

shown in the main manuscript. These subjects maintain ambiguity preference for partially ambiguous

target bars, but become ambiguity averse in the full ambiguity condition. Six subjects maintained their

ambiguity preference across utility conditions in line with the hypothesis that the stimulus induces

a stable ambiguity attitude across all ambiguity conditions. Four subjects switched their ambiguity

preference across utility conditions in line with a biased belief or perceptual distortion hypothesis.

Asterisks on the data points denote a significant deviation from the dashed expected utility line. One

asterisk signifies p < 0.05, two asterisks signify p < 0.01.
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Figure 3.9. Comparison between choice probabilities. Comparison between choice probabilities

in Experiment 3 against choice probabilities in the motor task ((A), 8 subjects, first group) and in the

urn task ((B), 8 subjects, second group)—see Methods. Each open circle corresponds to a subject’s

choice probability in one of the ambiguity conditions. The different colors indicate the ambiguity

condition ranging from cyan, red, green and blue to denote the range from zero ambiguity to full

ambiguity. Data points close to the diagonal line imply that the ambiguity preference of subjects

remains stable across tasks (as in (A)), data points far from the diagonal line indicate that ambiguity

attitudes of subjects changed (as in (B)), thus meaning that Experiment 3 and the motor task induced

similar ambiguity attitudes. Filled circles denote the average across individual data points for each

ambiguity condition.
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Chapter 4

The Effect of Model Uncertainty on

Cooperation in Sensorimotor

Interactions

This chapter is a reproduction of the already published work in (Grau-Moya et al., 2013).

Abstract

Decision-makers have been shown to rely on probabilistic models for perception and action.

However, these models can be incorrect or partially wrong, in which case the decision-maker

has to cope with model uncertainty. Model uncertainty has recently also been shown to be

an important determinant of sensorimotor behavior in humans that can lead to risk-sensitive

deviations from Bayes optimal behavior towards worst-case or best-case outcomes. Here we

investigate the effect of model uncertainty on cooperation in sensorimotor interactions similar

to the stag hunt game, where players develop models about the other player and decide be-

tween a payoff-dominant cooperative solution and a risk-dominant non-cooperative solution.

In simulations we show that players who allow for optimistic deviations from their opponent

model are much more likely to converge to cooperative outcomes. We also implemented this

agent model in a virtual reality environment and let human subjects play against a virtual

player. In this game subjects’ payoffs were experienced as forces opposing their movements.

During the experiment we manipulated the risk-sensitivity of the computer player and ob-

served human responses. We found not only that humans adaptively changed their level of

cooperation depending on the risk-sensitivity of the computer player, but also that their initial

play exhibited characteristic risk-sensitive biases. Our results suggest that model uncertainty

is an important determinant of cooperation in two-player sensorimotor interactions.
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Introduction

When interacting with its environment, the human sensorimotor system has been shown

to employ predictive models for control and estimation (Blakemore et al., 1998; Flanagan

and Wing, 1997; Kawato, 1999; Mehta and Schaal, 2002; Shadmehr and Mussa-Ivaldi, 1994;

Daniel M Wolpert et al., 1995). These models are thought to be probabilistic in nature and

considerable evidence suggests that learning of such models is consistent with the process of

Bayesian inference (Doya et al., 2007; Ernst and Banks, 2002; Knill and Pouget, 2004; K. P.

Körding and Daniel M Wolpert, 2004). Such probabilistic models are not only important for

perception, but they can also be used for decision-making and motor control (Todorov, 2004;

Todorov and Jordan, 2002; Trommershäuser et al., 2003a; Trommershäuser et al., 2003b;

Trommershäuser et al., 2008; Wu et al., 2009). Importantly, decision-makers that maximize

expected gain (or minimize expected costs) require probabilistic models of their environment

so that they can determine an expectation value. However, such optimal decision-makers have

no performance guarantees if their model happens to be partially incorrect or plain wrong

(Hansen and Sargent, 2008). This raises the issue of decision-making strategies that do not

rely on accurate probabilities. An extreme example strategy that completely dispenses with

probabilities altogether are maximin-strategies where the decision-maker picks an action that

is optimal under the assumption of a worst-case scenario (or minimax-strategies in the case

of costs). Such a decision-maker, for example, would take out insurance not for the calamity

with highest expected costs, but the most disastreous (possibly low-probability) calamity,

because of not knowing the probability. Similarly, an extremely optimistic decision-maker

would assume a best-case scenario following a maxmax-strategy (or a minmin-strategy in the

case of costs), for example, by buying lottery tickets with the highest prize, independent of the

presumed winning probabilities. Risk-sensitive decision-makers strike a compromise between

the two extremes: they have a probabilistic model that they distrust to some extent, but they

do not completely dismiss it—though the extreme cases of robust or optimistic and expected

gain decision-making can also be considered as risk-sensitive limit cases (Whittle, 1981).

More formally, we can think of a decision-maker that considers model uncertainty, in the

following way (Hansen and Sargent, 2008; Maccheroni et al., 2006). Initially, the decision-

maker has a probabilistic model p0, but knowing that this model may not be entirely accurate,

the decision-maker allows deviations from it, which leads to a new effective probabilistic model

p. The transformation between p0 and p has to be constrained when the decision-maker is

very confident about the model. Conversely, when the decision-maker is very insecure about

the correctness of the model, there should be leeway for larger deviations. The effective value

of a choice set with outcomes x under the effective probability p can then be stated as

V = ext
p(x)

[∫
dx p(x)U(x)− 1

β

∫
dx p(x) log

p(x)

p0(x)

]
(4.1)

where the utility U(x) quantifies the desirability of x. The first term is the expected util-

ity under p, and the second term—formed by the cost factor 1
β times the Kullback-Leibler

divergence—captures the cost of the transformation from p0 to p. When 1
β > 0 we have to
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replace the extremum operator with a max operator (concave maximization), when 1
β < 0 we

have to replace it with a min operator (convex minimization). Sensitivity to model uncertainty

is modulated by β. When β → 0 we recover a decision-maker without model uncertainty. For

β → −∞ we get a maximin decision-maker who picks the choice set with maximum V , where

each V considers the worst-case scenario of the choice set. In fact, the quantity V is a free

energy difference, and equation (4.1) can be motivated by statistical physics—see section

4.1.1.

Recently, it was found that model uncertainty also affects decision-making in sensorimotor

integration tasks where subjects have to form beliefs about latent variables, for example the

position of a hidden target (Grau-Moya et al., 2012). However, latent variables do not only

play an important role in single-player environments, but also in multi-player sensorimotor

interactions (Braun et al., 2009b; Braun et al., 2011c), where the policy of the other player can

be considered as a particular latent variable. Sensorimotor interactions in humans range from

hand shaking and avoiding collisions with another passerby to tandem riding, tango dancing

and arm wrestling. An important latent variable in such two-player interactions is for example

the strategy of the other player. As in the case of single-player environments, the presence of

a latent variable suggests the formation of a belief model that can be exploited for prediction

and planning (Doya et al., 2007; Ernst and Banks, 2002; Knill and Pouget, 2004; K. P. Körding

and Daniel M Wolpert, 2004). And as in the case of the single-player environment, decision-

makers might exhibit model uncertainty (Grau-Moya et al., 2012). Especially, when meeting

a player for the first time, only a little information about this player’s strategies is available.

The initial trust or distrust with respect to this player can be thought of as an optimistic or

pessimistic bias. However, as more information about the unknown player becomes available

such deviations should vanish and be replaced by accurate statistical estimates.

Sensorimotor interactions can be of cooperative nature, as in the case of dancing, or

of competitive nature as in the case of arm wrestling. To investigate the effect of model

uncertainty on cooperation, we study sensorimotor interactions similar to the stag hunt game.

In the stag hunt game each player decides whether to hunt a highly valued stag or a lower-

valued hare. However, the stag is caught only if both players have decided to hunt stag.

In contrast, a hare can be caught by each player independently. The stag hunt game is a

coordination game with two pure Nash equilibria, given by the payoff-dominant stag solution,

where both players hunt stag and achieve the highest possible payoff, and the risk-dominant

hare solution, where both players hunt hare and obtain a lower payoff. The latter solution is

called risk-dominant, because a player hunting hare knows exactly the payoff he will receive,

which is higher than he would get if he hunted stag by himself. The stag hunt game is therefore

often used to study the emergence of cooperation.

In our study we investigate a decision-making model that forms Bayesian beliefs about the

other player’s strategy based on empirically observed choice frequencies. In simulations we

study how model uncertainty with respect to these beliefs affects cooperation in a stag-hunt-

like setting. To test human behavior in stag-hunt-like sensorimotor interactions, we employ

a previously developed paradigm that allows translating 2x2 matrix games into sensorimotor
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interactions (Braun et al., 2009b; Braun et al., 2011c). In the experiment one of the players

is simulated by a virtual computer player that is based on our risk-sensitive decision-making

model. This way, we can directly manipulate the risk-sensitivity of the artificial player and

observe the response of the human player.

4.1 A Risk-sensitive Model of Interaction

Classic models in game theory are usually equilibrium models that predict the occurrence of

Nash equilibria, that is joint settings of strategies where no individual player has any incentive

to deviate unilaterally from their strategy (Osborne and Rubinstein, 1999). In evolutionary

game theory this problem is addressed by developing dynamic learning models that converge

to the equilibria (Jörgen W Weibull, 1997). One of the simplest classes of such learning

models is fictitious play (Berger, 2007; Koopmans et al., 1951; Krishna and Sjostrom, 1998).

In fictitious play it is assumed that the other player plays with a stationary strategy, which is

estimated by the hitherto observed empirical choice frequencies. In our model we also adopt

the assumption of modeling the other player with a stationary strategy, but form a Bayesian

belief about this strategy. In the case of the stag hunt game this strategy is a distribution

over a binary random variable that indicates the two possible actions, namely whether to

hunt stag or hare. This distribution can be expressed as a beta distribution. After observing

s choices of stag and h choices of hare from the opponent, the decision-maker’s belief about

the strategy x of the other player is then given by

P (x|s, h) =
xs(1− x)h∫ 1

0 dx x
s(1− x)h

, (4.2)

where the opponent’s stationary strategy is represented by the probability x of choosing stag.

For a known strategy x∗ of the opponent where p(x) = δ(x − x∗), the decision-maker faces

the following expected payoff

EU1(a1|x∗) = x∗U(a1, a2 = S) + (1− x∗)U(a1, a2 = H), (4.3)

with U(a1, a2) denoting the player’s payoff if he chooses action a1 and the opponent chooses

a2. Under strategy x∗ the opponent chooses a2 = S with probability x∗ and a2 = H with

probability 1 − x∗. In fictitious play the decision-maker simply gives a best response to this

expected payoff, where x∗ is given by the empirical frequencies and corresponds to the mean

of the beta distribution. In contrast, we construct a decision-maker that takes the uncertainty

over the x-estimate into account and exhibits risk-sensitivity with respect to this belief over

x. This can be achieved by inserting (4.2) as p0 and (4.3) as U(x) into equation (4.1), which

results in

V (a1) =
1

β
log

∫ 1

0
dxP (x|s, h)eβ(xU(a1,a2=S)+(1−x)U(a1,a2=H))

72



4.1. A Risk-sensitive Model of Interaction

The value V (a1) assigned to each action depends on the parameter β, that in our case repre-

sents the risk-sensitivity. For action selection, we assume a soft-max decision rule

P (a1) =
eαV (a1)

∑
a′1
eαV (a′1)

, (4.4)

where α is a rationality parameter that regulates how deterministic the response is. Soft-

max decision rules are prevalent in Quantal Response Equilibrium models to formalize the

bounded rationality of decision-makers in games (McKelvey and Palfrey, 1995). This includes

the theoretically best response in the limit α→∞ that corresponds to a perfect rational agent

that is able to distinguish between tiny differences in the values V . At the other end of the

spectrum is a decision-maker with α → 0, which leads to P (a1) → 0.5 corresponding to an

irrational agent that only produces random actions. In the remainder of the paper we will

refer to P (a1) also as λ1 if chosen by player 1 and λ2 if chosen by player 2.

The expression for the value V also models the learning process of the parameter x. In the

limit when x is determined completely, then the distribution p(x|H,S) is going to approach a

delta-function in x. In that case the integral collapses and the free energy becomes equal to

the expected payoff. Fictitious play is therefore obtained in the limit of p(x|H,S)→ δ(x−x∗)
and α →∞. Before this limit is reached the distribution p(x|H,S) captures the uncertainty

over the opponent and the temperature parameter beta determines the risk-sensitivity with

respect to this distribution. In the infinitely risk-seeking limit β → ∞ the decision-maker is

so optimistic about the stag outcome that he will ignore any information to the contrary, and

such a player will always cooperate independent of the history of the game. This is because

lim
β→∞

V (a1) = max
a1

(xU(a1, a2 = S) + (1− x)U(a1, a2 = H))

= U(a1, a2 = S)

Similarly, an infinitely risk-averse decision-maker (β → −∞) is so pessimistic that he will only

expect the worst case scenario. This decision-maker will never cooperate independent of any

experienced play. For any finite settings of α and β both cooperative and non-cooperative

solutions can occur.

4.1.1 Model Uncertainty and Statistical Physics

The central idea of having model uncertainty is that we do not fully trust our probabilistic

model p0(x) of a latent variable x that we are trying to model. We therefore bias our estimates

of x taking into account our utility function U(x). If we are extremely pessimistic and cautious,

for example, we will completely dismiss our probability model and simply assume a worst-

case scenario. We then pick the action with the best worst-case scenario. If we fully trust our

probability model, we will pick the action with the highest expected utility. But if we are a

risk-averse decision-maker with a finite amount of model uncertainty, we compromise between

the two extremes and bias our probability model towards the worst-case to some extent.
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This decision-making scenario can be translated in terms of state changes in physical sys-

tems, where we start with a probability distribution p0(x) and end up with a new distribution

p(x), because we have added an energy potential ∆φ(x) to the system. In this analogy energy

plays the role of a negative utility. In physics, a statistical system in equilibrium can be

described by a Boltzmann distribution p0(x) = 1
Z0
e−βφ0(x) with inverse temperature β = 1

kT ,

energy potential φ0(x) and partition sum Z0. The distribution p0 is called an equilibrium

distribution, because it minimizes the free energy

F0[q] =
∑

x

q(x)φ0(x) +
1

β

∑

x

q(x) log q(x)

such that p0 = argminq F [q] with F [p0] = − 1
β logZ0. If an energy potential ∆φ(x) is now

added to the system, the new equilibrium distribution that will arise is given by p(x) =
1
Z1
e−β(φ0+∆φ(x)) = 1

Z q(x)e−β∆φ(x). This equilibrium distribution minimizes a free energy

F1[q]

F1[q] =
∑

x

q(x)
(
φ0(x) + ∆φ(x)

)
+

1

β

∑

x

q(x) log q(x).

The distribution p = argminq F1[q] can be interpreted as the biased model. If the inverse

temperature β is low, p is going to be very similar to p0, if the inverse temperature β is

high then p is going to be biased towards low-energy outcomes of the added potential ∆φ.

In the KL-control setting (Kappen, 2005a; Kappen et al., 2012; Todorov, 2009), p0 is the

equilibrium distribution resulting from the uncontrolled dynamics, whereas p corresponds to

the controlled dynamics.

Both free energies can be combined into a free energy difference as a single variational

principle such that

∆F [q] = F1[q]− F0[p0]

and p = argminq ∆F [q] such that ∆F [p] = − 1
β log

∑
x q(x)e−β∆φ(x). When replacing ∆φ(x) =

−U(x), we recognize in −∆F [q] the same variational principle as suggested in equation (4.1)

to describe model uncertainty. This variational principle has recently been suggested as a

principle for decision-making with information-processing costs (Braun et al., 2011b; Ortega

and Braun, 2011; Ortega and Braun, 2013). Moreover, in non-equilibrium thermodynamics

the same expression for the free energy difference ∆F [p] can be obtained from the Jarzynski

equation for infinitely fast switching between the two states. Crucially, the Jaryznski equation

holds for any switching process between the two states, and generalizes classical results for

infinitely slow and fast switching (C. Jarzynski, 1997). When the utilities are negative log-

likelihoods of outcomes under a generative model, this becomes the free energy principle

that has recently been proposed to model action and perception in living systems trying to

minimize surprise (Friston, 2010).
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Figure 4.1. Belief and action probabilities. (Left) Belief probability of player 1 (top) and player 2

(bottom) after observing three actions of the other player. Player 1 observed three cooperative actions

and player 2 observed one cooperative and two non-cooperative actions. Accordingly, player 1 has

more probability mass on the right half, whereas player 2 has more probability mass on the left half.

(Right) Action probability of player 1 (top) and player 2 (bottom) resulting from the beliefs and the

player’s risk-sensitivity. Player 1 has a higher probability to cooperate even though he is risk-averse,

due to the strong evidence of cooperation. Player 2 also places high probability on cooperation because

he is strongly risk-seeking, even though the evidence points more towards a non-cooperative opponent.

4.2 Simulation Results

To illustrate the behavior that arises when two decision-makers interact following Equation

(4.4), we simulated two model players with rationality parameter α1 = α2 = 10 and risk-

sensitivity parameters β1 = −10 and β2 = 20 for player 1 and 2 respectively. In Figure 4.1

we depict beliefs and action probabilities of the two players after the pessimistic player 1

played stag once and hare twice, and the very optimistic player 2 played stag three times in

a row. Accordingly, player 1’s belief about player 2 is biased towards cooperative strategies

(top left panel), whereas player 2’s belief about player 1 is biased towards non-cooperative

strategies (bottom left panel). Despite being risk-averse player 1 has a higher probability

for cooperation, given the strong evidence of cooperative behavior of player 2. In contrast,

player 2 has evidence of non-cooperativeness of player 1, but because he is optimistic, he most

probably chooses to cooperate anyway. In Figure 4.2 it can be seen how both players converge

to a cooperative equilibrium after 25 interactions. In the left panel the mean and standard

deviations of the beta distribution beliefs of the two players are shown over the course of the

25 trials. It can be seen that both beliefs converge towards cooperative strategies, implying
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Figure 4.2. Evolution of belief and action probabilities over 25 trials. (Left) Mean and standard

deviation of the beta distribution reflecting each player’s beliefs. (Right) Action probabilities of the

players according to Equation (4.4). The third trial corresponds to the beliefs and actions displayed

in Figure 4.1.

that both players believe in the cooperativeness of the other player. In the right panel the

action probabilities of choosing stag for both players are shown. Both action probabilities

converge to cooperative strategies.

In the bottom row of Figure 4.3 we show the probability of a cooperative equilibrium

after 25 interactions depending on all possible combinations of risk-sensitivities of the two

players ranging from risk-averse (β = −20) to risk-seeking (β = +20). In this simulation

the rationality of player 1 was always set to α1 = 10, whereas the rationality of player 2 was

set to α2 = 2 (right panels) or α2 = 10 (left panels). The prior probability of cooperation

before any interaction has taken place is shown in the upper panels. For uninformative priors

the probability of cooperation in the first trial is greater than one half for all risk-seeking

decision-makers and lower than one half for all risk-averse decision-makers independent of

the opponent’s risk-sensitivity. Naturally, in later interactions the opponent’s risk-sensitivity

comes to bear. If both players have positive risk-sensitivities there is a higher probability they

will end up cooperating, and similarly if both players have negative risk-sensitivities there is

an increased probability they will end up with a non-cooperative equilibrium. If one of the

players is risk-seeking and the other one risk-averse, then the player whose risk-sensitivity

has higher absolute value will more probably drive the behavior of the interaction towards

cooperation if risk-seeking or non-cooperation if risk-averse. If player 2 has a low rationality

α2 = 2 the overall pattern is similar, but more noisy.
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4.2. Simulation Results

Figure 4.3. Probability of choosing the cooperative action for both players with different risk-

sensitivities and rationality parameters. (Top) Prior probability of cooperating. In the first trial the

probability of cooperation only depends on the risk-sensitivity of the player and does not depend on

the risk-sensitivity of the opponent. (Bottom) Probability of cooperating after 25 trials. In later trials

the probability of cooperation depends on the risk-sensitivity of both the player and the opponent.

(First two columns) Probability of cooperation when both players have equal rationality α. (Last

two columns) Probability of cooperation when players have different rationality α. The probability of

cooperating was computed according to Equation (4.4).
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Figure 4.4. The sensorimotor stag hunt game. A. Payoff matrix of the game. B. Experimental

Methods. Subjects had to move a cursor from the start bar to the target bar. The left half of the

workspace corresponded to selecting “Stag”, and the right half of the workspace corresponded to

selecting “Hare”. Once they crossed the decision line a circle on the target line indicated the choice of

the virtual player and subjects experienced a force opposing their forward movement that depended

on their selection and the virtual opponent’s action selection which followed equation (4.4).

4.3 Experimental Methods

To investigate the effect of risk-sensitivity in sensorimotor interactions in human subjects,

we employed a previously developed virtual reality paradigm to translate 2x2 matrix games

into sensorimotor games (Braun et al., 2009b; Braun et al., 2011c). One of the players was

always simulated by a virtual agent modeled by equation (4.4). This way, we could directly

manipulate the risk-sensitivity of the virtual player and record subjects’ responses to these

changes.

4.3.1 Experimental Design

As illustrated in Figure 4.4B, participants held the handle of a robotic interface with which

they could control the position of a cursor on a display. On each trial, participants had to move

the cursor from a start bar to a target bar and back. Importantly, they could do so choosing

any lateral position within the width of the target bar. Therefore, participants could achieve

the task with their final hand position anywhere between the left and right target bounds.

During the forth-and-back movement to the target, subjects had to cross a yellow decision

line at 3cm into the movement. Once the line was crossed, both the subject’s and the virtual

player’s decision were made. The left half of the subject’s lateral workspace represented the

cooperative stag solution, while the right half represented the non-cooperative hare solution.

An implicit payoff was placed on the movements beyond the decision line by using the

robot to generate a resistive force opposing the forward motion of the handle. The forces

were generated by simulating springs that acted between the handle and the yellow decision

bar. The stiffness of the spring during the movement depended on the lateral position of the

handle at the time of crossing the decision line and the computer player’s choice. The spring

constant was determined by the payoff indicated in Fig. 4.4A and multiplied by a constant
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factor of 1.9N/cm. For successful trial completion, the target bar had to be reached within

1200ms. The distance of the target bar from the start bar was sampled randomly each trial

from a uniform distribution between 15cm and 25cm. Subjects performed two sessions where

they faced virtual players with two different rationality parameters. In the first session the

rationality of the virtual player was α2 = 10 and subjects performed 40 sets of 25 trials, where

the virtual player could assume one of five different β2-values from the set [±20,±10, 0]. At

the beginning of each set the β2-parameter of the virtual player was determined and remained

constant throughout the set. Each β2-parameter was chosen eight times, but in randomized

order. In the second session the rationality of the virtual player was set to α2 = 2 and

subjects performed again 40 sets of 25 trials each with different β-parameters. At the start

of every session they had between 100 and 125 training trials where they could see the degree

of risk-sensitivity of the virtual player displayed on a bar.

4.3.2 Experimental Apparatus

The experiments were conducted using two planar robotic interfaces (vBOTs) (Ian S Howard

et al., 2009). Participants held a handle of the vBOT, which constrained hand movements

to the horizontal plane. A virtual reality system was used to overlay visual feedback onto

the plane of movement and players were prevented from seeing their own hand. The vBOT

allowed us to record the position of the handle and to generate forces on the hand with a 1

kHz update rate.

4.3.3 Participants

Six näıve participants from the student pool of the Eberhard-Karls-Universität Tübingen took

part in the study. All experimental procedures were approved by the ethics committee of the

medical faculty at the university of Tübingen.

The precise instructions given to subjects are described below. Subjects were told that

they were playing a game against a virtual player and that they could choose between two

actions in every trial: either to cooperate or not to cooperate. They were instructed to

make their choice by moving the handle across the decision line either in the right or left

half of the workspace and that the left half corresponded to cooperation, whereas the right

half corresponded to non-cooperation. They were also informed that there would be a force

opposing their movement between the decision line and the target line. They were told that

in case of non-cooperation they would always experience the same medium force, but that

in case of cooperation the force would depend on the choice of the virtual player, who could

choose to cooperate or not to cooperate. In case both players cooperate their would be no

force, but if the virtual player chooses not to cooperate there would be a very high force.

Subjects were also told that the virtual player can learn and adapt to the subject’s play.

At the beginning of each block of training trials, subjects could see a bar displaying the

degree of the virtual player’s risk-sensitivity and they were told that the bar indicates the

virtual player’s attitude towards cooperation. They were also told that there was a different
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Figure 4.5. Prior cooperation probabilities in human subjects playing virtual opponents with high

(α2 = 10, white color) and low (α2 = 2, black color) rationality. In the first trial, when facing a new

opponent, subjects knew the rationality of the opponent, but not their risk-sensitivity.

player with a different attitude every 25 trials. After the training trials, they were told that

the bar would be no longer displayed and that they can learn the player’s attitude towards

cooperation only from actual play, and that there would be a different player every 25 trials.

Between blocks of 25 trials there was a short break to mark this transition clearly.

4.4 Results

In Figure 4.5 we display subjects’ prior cooperation probabilities in the first trial of every set

of 25, when they face a novel virtual player. In white color this is shown for virtual players

with rationality α2 = 10 and in black color this is shown for virtual players with rationality

α2 = 2. In the α2 = 10 condition, we found that four out of six subjects chose to cooperate

most of the time in the first trial. In the α2 = 2 condition, only three out of six subjects chose

to cooperate. This implies that about half of our subjects were risk-seeking and optimistic

about cooperation, whereas the others were risk-averse and pessimistic.

After the first trial, subjects received feedback about the choice of the virtual player and

could make a first inference about the virtual player’s willingness to cooperate. Accordingly,

subjects’ probability of cooperation in subsequent trials in a set of 25 needs to be investigated

separately for the different risk-sensitivities of the virtual players. For the extreme risk-

sensitivities of β2 = 20 and β2 = −20 this is depicted in Figure 4.6. When playing a risk-

averse opponent (β2 = −20), subjects mostly converged to non-cooperative behavior (right

panels), whereas when playing a risk-seeking opponent (β2 = 20), subjects mostly converged

to cooperative behavior (left panels). This pattern is clearly demonstrated when facing virtual

players with high rationality α2 = 10 (bottom panels), but much more diffuse in the case of

virtual players with low rationality α2 = 2 (top panels).
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Figure 4.6. Evolution of cooperation over the course of 25 trials of human subjects facing virtual

opponents with low (α2 = 2, top) or high (α2 = 10, bottom) rationality and positive (β2 = 20, left)

and negative (β2 = −20, right) risk-sensitivity. Different lines indicate different subjects.

To directly assess the effect of risk-sensitivity on the cooperative behavior of human sub-

jects over all trials, we computed the mean probability of cooperation averaged over all trials

where the opponent had the same risk-sensitivity β2 and rationality α2. In Figure 4.7 this

is shown for all six subjects playing an opponent with rationality α2 = 10 (left panel) and

rationality α2 = 2 (right panel) respectively. For both rationalities, the risk-sensitivity β2

of the opponent has a significant effect on the probability of cooperation (non-parametric

Jonckheere-Terpstrsa trend test p < 0.05 for α2 = 2 and p < 0.001 for α2 = 10 ). However,

in the case of high rationality α2 of the virtual player this effect is stronger and clearer than

in the case of inconsistent play resulting from an opponent with low α2. The general trend

is that subjects’ tendency to cooperate increases for higher β2 and decreases for lower β2.

Importantly, most subjects deviated on average from a 50 : 50 cooperation probability when

playing a risk-neutral opponent of high rationality (α2 = 10), which is another signature of

subjects’ risk-sensitivity.

To compare the predictive power of our model with the traditional fictitious play model,
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Figure 4.7. (Top row) Average probability of cooperation depending on risk-sensitivity of the oppo-

nent with either high (α2 = 10, left) or low (α2 = 2, right) rationality for the six different subjects.

Different lines indicate different subjects.

we investigated the ratio of cooperation after subjects had experienced an (approximately)

50 : 50 sequence of actions of the virtual player—i.e. the opponent had (roughly) cooperated

half the time and refused cooperation the other half of the time. Importantly, we did this at

two different stages of the game such that the 50 : 50-ratio was the result of either a small

number of trials (after 2 trials) or a large number of trials (after 10 trials). In the 2-trial

case only trials with one Stag- and one Hare-choice were included, however, for the 10-trial

case there were not enough instances with an exact 50 : 50 ratio. Therefore, we also included

trials between 40% and 60% of cooperation, but still this analysis was only possible in the

case of a virtual player with low rationality (α2 = 2). The crucial observation is that in the

case of 2 trials the estimate of the other player’s cooperation is highly uncertain, whereas

in the case of 10 trials this estimate is much more consolidated. In both cases, fictitious

play makes the same prediction, which is the best response to the ratio—compare dashed

line in Figure 4.8. In contrast, a risk-sensitive model predicts that the best response should

depend on the uncertainty of the estimate of the ratio. For our model predictions we fitted to

each subject an α1- and a β1-parameter by maximizing the log-likelihood of subjects choices

given the predicted choice probabilities of Equation (4.4). In particular this predicts that

a risk-seeking player will deviate towards cooperation in early trials, whereas a risk-averse

player will deviate towards non-cooperation in early trials—compare left plot in Figure 4.8.

In late trials, when a large part of the uncertainty has been removed, both players converge

to fictitious play.

In the right plot of Figure 4.8 it can be seen that most subjects’ behavior was inconsistent

with fictitious play. Subjects 1, 4 and 6 were risk-seeking and deviated significantly towards

cooperation in the third trial (one-sided t-test p < 0.01). Subject 5 was risk-averse and refused

cooperation in early trials (p < 0.01). Subjects 2 and 3 were risk-neutral and consistent with
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Figure 4.8. Comparison of risk-sensitive predictions to fictitious play and human subjects’ behavior.

(Left) Predictions of probability of cooperation when observing a sequence with 50% cooperation after

2 trials (black) or 10 trials (white). The dashed line is the prediction of fictitious play. (Right)

Subjects’ cooperation probabilities when observing a sequence with roughly 50% cooperation after 2

trials (black) or 10 trials (white).

fictitious play and therefore the deviation from 0.5 choice probability was not significant

(p > 0.1). Importantly, after 10 trials all subjects were consistent with fictitious play and

were best-responding to the observed sequence of the opponent’s play, hence the deviation

from 0.5 choice probability was not significant for all of them (p > 0.1).

4.5 Discussion

Most current theoretical frameworks of motor control rely on probabilistic models that are

used for prediction, estimation and control. However, when such models are partially in-

correct or wrong, there are usually no performance guarantees (Hansen and Sargent, 2008).

Model uncertainty is therefore an important factor in real world control problems, because in

practice one can never be absolutely sure about one’s model. In this paper we investigated

risk-sensitive deviations arising from having model uncertainty in sensorimotor interactions.

We found that human subjects adapted their cooperation depending on the risk-sensitivity

of a virtual computer player. Furthermore, we found that subjects did not only best-respond

to the frequency of observed play, but that they were sensitive to the certainty of this esti-

mate. In particular, they allowed for risk-sensitive deviations in initial interaction trials when

uncertainty was high. This behavior is consistent with a risk-sensitive decision-maker with

model uncertainty.

Recently, it was found that risk-sensitivity is an important determinant in human sensori-

motor behavior (Braun et al., 2011a). Risk-sensitive decision-makers do not base their choices

exclusively on the expectation value of a particular cost function, but they also consider higher

order moments of this cost function. This can be seen when approximating the risk-sensitive
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cost function with a Taylor series

J =
1

β
log

∫
dx p(x)eβU(x)

≈ E[U ] +
β

2
VAR[U ],

assuming that β VAR[U ] is small (Whittle, 1981). Sensitivity to the second-order moment

of the cost function was found, for example, in motor tasks with speed-accuracy trade-off

(Nagengast et al., 2011a). Such risk-sensitive decision-makers can be thought of as trading

off the mean cost versus the variability of the cost. A mean-variance trade-off in effort was

found, for example, in a motor task where subjects had to decide between hitting differently

sized targets that were associated with different levels of effort (Nagengast et al., 2011b).

Sensitivity to the variance of the control cost was also found in continuous motor tasks, where

subjects had to control a cursor undergoing a random walk (Nagengast et al., 2010). The

sensitivity to the variance can also be exploited by assistive technologies that consider the

human as a (useful) noise source (Medina et al., 2012; Saida et al., 2012).

When x is a latent variable that needs to be inferred, risk-sensitivity also allows decision-

makers to take model uncertainty into account. This can be seen when rewriting the risk-

sensitive cost function as in equation (4.1) yielding

J =
1

β
log

∫
dx p(x)eβU(x)

= ext
p(x)

[∫
dx p(x)U(x)− 1

β

∫
dx p(x) log

p(x)

p0(x)

]
,

where J can be re-expressed as a variational principle that trades off the maximization of a

utility term and the deviation from p0 to p (Hansen and Sargent, 2008). Such model uncer-

tainty was recently found to play a role in a sensorimotor integration task, where subjects

had to infer the position of a hidden target (the latent variable) (Grau-Moya et al., 2012).

When given feedback information about the target position with varying degree of reliabil-

ity, subjects’ estimates of the target position was consistent with a Bayesian estimator that

optimally combines prior knowledge of the distribution of target positions with the actual

feedback information. Subjects’ behavior was therefore also consistent with previous reports

on information integration in sensorimotor tasks (K. P. Körding and Daniel M Wolpert, 2004).

However, when subjects’ beliefs were associated with control costs, study (Grau-Moya et al.,

2012) found that subjects exhibited characteristic deviations from the Bayes optimal response

that could be described by a risk-sensitive decision-making model that depended on the level

of model uncertainty, the reliability of the feedback and the control cost. These risk-sensitive

deviations were particularly prominent in trials with high uncertainty and vanished in the

absence of uncertainty as more and more information about the latent variable becomes avail-

able.

In the context of model uncertainty, risk-sensitivity can be distinguished from risk-attitudes

modeled by the curvature of the utility function, both theoretically and experimentally (Chakravarty
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and Roy, 2009; Gilboa and Marinacci, 2011). Utility functions generally express the subjective

desirability of an outcome and not necessarily its nominal value. For example, the subjective

value of money does typically not increase linearly with the nominal amount. Accordingly,

receiving a monetary increase of $1, 000 has more utility for a beggar than for a milionaire.

The utility function is said to be marginally decreasing. Intriguingly, this property can also

be used to model risk-attitudes. For example, people with a marginally decreasing utility

function of money will prefer $50 for sure over a gamble between a 50 : 50 lottery, where one

outcome is $0 and the other is $100, because U($50) > 1
2U($100), assuming that U($0) = 0.

Importantly, these risk-attitudes are independent of the level of information about the prob-

abilities. In fact, the probabilities are assumed to be perfectly known. Thus, risk-attitudes

are conceptually very different from model uncertainty that vanishes in the limit of perfect

information about the probabilities. Model uncertainty captures the lack of information about

a lottery.

The effect of risk-attitudes on cooperation in the stag hunt game is investigated in behav-

ioral economics tasks (Büyükboyacı, 2014; Neumann and Vogt, 2009; Al-Ubaydli et al., 2011)

in which the risk-attitude of subjects is determined by subjects’ choice behavior when deciding

between risky and safe lotteries. In these studies it was found that subjects’ risk-attitude does

not predict their cooperation in the stage hunt game, although players consider information

about the other player’s risk-attitude. In particular, subjects are less likely to cooperate if

they know that their opponent is risk-averse. However, the fact that subjects’ risk-attitude is

a poor predictor of their cooperation in the game suggests that not risk-attitude, but model

uncertainty might be a stronger factor affecting cooperation in the game.

In the traditional stag hunt game payoffs are usually framed as gains, whereas in our

experiment the payoffs are framed as losses in shape of forces subjects have to exert. In

the economics literature it is well known that the framing of losses versus gains can have a

strong influence on human choice behavior (Daniel Kahneman and Amos Tversky, 1979). It

is therefore not surprising that different payoff levels have also been found to influence choice

behavior in the stag hunt game (Feltovich et al., 2012), in particular, it was found that having

losses increases players’ probability of choosing the more risky stag. Crucially, our results

showing sensitivity to model uncertainty do not depend on the exact shape of the utility

function. Expected utility players that have experienced 50 : 50 play of their opponent after

N amount of trials will choose between a1 = S and a1 = H according to equation (4.3) where

x∗ = 0.5. The decision-maker’s preference depends of course on the utilities U(a1, a2), but

crucially these utilities and the resulting expected utility does not change with varying the

amount of trials N as long as the empirical frequency is 50 : 50. The fact that we have used

a loss scenario does therefore not invalidate our results on model uncertainty, although the

exact choice probabilities might look different in a gain scenario.

Fictitious play is one of the earliest models that were developed to explain learning in

games (Fudenberg and Levine, 1998; Koopmans et al., 1951). Crucially, it assumes stationary

strategies for both players. It can be shown to converge for a wide class of problems, including

all two-player interactions (Berger, 2005). However, it can also be shown that fictitious play
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can lead to non-converging limit-cycles for very simple games (Shapley, 1964). In our study

we found that subjects were not simply best-responding to the observed frequency of the

opponent’s play, as presumed by fictitious play. Rather, subjects were sensitive to the amount

of information they had gathered about the other player when deciding whether to cooperate

or not—compare Figure 4.8. Our risk-sensitive model of cooperation can account for this

dependency. However, it still makes the simplistic assumption of stationary strategy beliefs.

This limitation may be overcome in the future by considering more complex belief models.

An important objection to risk-sensitive models is often that they could be replaced by a

standard risk-neutral Bayesian model under a different (post-hoc) prior (Hansen and Sargent,

2008). This is also true in our case: subjects could develop biased prior beliefs about the

population of virtual players. Importantly, the population of virtual players was statistically

balanced and there is therefore no statistical reason why subjects should develop biased priors.

However, if the prior is thought to reflect not only the (prior) statistics of the environment,

but also traits of the decision-maker, then a risk-neutral Bayesian model with a biased prior

could, in principle, also explain our data. This is sometimes also discussed in the context

of so-called complete class theorems, in which the existence of priors is investigated when

modeling Bayesian decision-makers with different loss functions (Brown, 1981; Friston et al.,

2012).

The results of our study also speak to cognitive theories of (dyadic) social interactions

and joint actions. Several recent studies have investigated how humans mutually adjust and

synchronize their behavior during on-line joint actions, revealing the role of several mech-

anisms that range from automatic entrainment to action prediction (Braun et al., 2011c;

Pezzulo and Dindo, 2011; Sebanz et al., 2006; Vesper et al., 2013). An open research question

is if and how sensorimotor interactions are influenced by the co-actors’ goals and attitudes.

Given that socially- and culturally-relevant information (e.g., facial expression, racial or social

group membership) is automatically processed in the brain (Cosmides et al., 2003) and can

automatically modulate imitation (Losin et al., 2012) and empathy (Avenanti et al., 2010),

most studies have focused on the impact of socially-relevant variables in joint actions, with

the hypothesis that it could favor pro-social or anti-social behavior. It has been shown that

interpersonal perception and (positive and negative) attitude towards the co-actor modulate

cooperation and joint actions (Iani et al., 2011; Sacheli et al., 2012). In turn, sensorimotor

interactions can modulate a co-actors’ attitude; for example, it has been reported that dyads

engaged in synchronous interactions improve their altruistic behavior (Valdesolo et al., 2010).

The aforementioned studies focus on social attitudes and leave unanswered the issue of how

personal traits and non-social attitudes influence sensorimotor interactions. Here we studied

the influence of model uncertainty on the evolution of sensorimotor interactions. We designed

a sensorimotor task that is equivalent to the stag hunt game. Our results show that model

uncertainty modulates sensorimotor interactions and their success. In particular, optimistic

(risk-seeking) adaptive agents are much more likely to converge to cooperative outcomes.

Furthermore, humans adaptively change their level of cooperation depending on the risk-

sensitivity of their co-actor (in our study, a computer player). Effects of model uncertainty
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are particularly strong in early interactions with a novel player. In summary, our results

indicate that interacting agents can build sophisticated models of their co-actors (Yoshida

et al., 2008) and use them to modulate their level of cooperation taking model uncertainty

into account.
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Chapter 5

Planning with

Information-Processing Constraints

and Model Uncertainty in Markov

Decision Processes

This chapter is a reproduction of the already published work in (Grau-Moya et al., 2016a).

Abstract

Information-theoretic principles for learning and acting have been proposed to solve particu-

lar classes of Markov Decision Problems. Mathematically, such approaches are governed by a

variational free energy principle and allow solving MDP planning problems with information-

processing constraints expressed in terms of a Kullback-Leibler divergence with respect to

a reference distribution. Here we consider a generalization of such MDP planners by tak-

ing model uncertainty into account. As model uncertainty can also be formalized as an

information-processing constraint, we can derive a unified solution from a single generalized

variational principle. We provide a generalized value iteration scheme together with a con-

vergence proof. As limit cases, this generalized scheme includes standard value iteration with

a known model, Bayes Adaptive MDP planning, and robust planning. We demonstrate the

benefits of this approach in a grid world simulation.
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Introduction

The problem of planning in Markov Decision Processes was famously addressed by Bellman

who developed the eponymous principle in 1957 (Bellman, 1957). Since then numerous vari-

ants of this principle have flourished in the literature. Here we are particularly interested in

a generalization of the Bellman principle that takes information-theoretic constraints into ac-

count. In the recent past there has been a special interest in the Kullback-Leibler divergence

as a constraint to limit deviations of the action policy from a prior. This can be interesting in

a number of ways. Todorov (Todorov, 2006; Todorov, 2009), for example, has transformed the

general MDP problem into a restricted problem class without explicit action variables, where

control directly changes the dynamics of the environment and control costs are measured by

the Kullback-Leibler divergence between controlled and uncontrolled dynamics. This simplifi-

cation allows mapping the Bellman recursion to a linear algebra problem. This approach can

also be be generalized to continuous state spaces leading to path integral control (Braun et al.,

2011b; Broek et al., 2010). The same equations can also be interpreted in terms of bounded

rational decision-making where the decision-maker has limited computational resources that

allow only limited deviations from a prior decision strategy (measured by the Kullback-Leiber

divergence in bits) (Ortega and Braun, 2013). Such a decision-maker can also be instantiated

by a sampling process that has restrictions in the number of samples it can afford (Ortega and

Braun, 2014). Disregarding the possibility of a sampling-based interpretation, the Kullback-

Leibler divergence introduces a control information cost that is interesting in its own right

when formalizing the perception action cycle (Tishby and Polani, 2011).

While the above frameworks have led to interesting computational advances, so far they

have neglected the possibility of model misspecification in the MDP setting. Model misspec-

ification or model uncertainty does not refer to the uncertainty arising due to the stochastic

nature of the environment (usually called risk-uncertainty in the economic literature), but

refers to the uncertainty with respect to the latent variables that specify the MDP. In Bayes-

Adaptive MDPs (Duff, 2002), for example, the uncertainty over the latent parameters of the

MDP is explicitly represented, such that new information can be incorporated with Bayesian

inference. However, Bayes-Adaptive MDPs are not robust with respect to model misspecifica-

tion and have no performance guarantees when planning with wrong models (Mannor et al.,

2007). Accordingly, there has been substantial interest in developing robust MDP planners

(Iyengar, 2005; Nilim and El Ghaoui, 2005; Wiesemann et al., 2013). One way to take model

uncertainty into account is to bias an agent’s belief model from a reference Bayesian model

towards worst-case scenarios; thus avoiding disastrous outcomes by not visiting states where

the transition probabilities are not known. Conversely, the belief model can also be biased

towards best-case scenarios as a measure to drive exploration—also referred in the literature

as optimism in face of uncertainty (Szita and Lőrincz, 2008; Szita and Szepesvári, 2010).

When comparing the literature on information-theoretic control and model uncertainty, it

is interesting to see that some notions of model uncertainty follow exactly the same mathe-

matical principles as the principles of relative entropy control (Todorov, 2009). In this paper
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we therefore formulate a unified and combined optimization problem for MDP planning that

takes both, model uncertainty and bounded rationality into account. This new optimization

problem can be solved by a generalized value iteration algorithm. We provide a theoretical

analysis of its convergence properties and simulations in a grid world.

5.1 Background and Notation

In the MDP setting the agent at time t interacts with the environment by taking action

at ∈ A while in state st ∈ S. Then the environment updates the state of the agent to

st+1 ∈ S according to the transition probabilities T (st+1|at, st). After each transition the

agent receives a reward R
st+1
st,at ∈ R that is bounded. For our purposes we will consider A and

S to be finite. The aim of the agent is to choose its policy π(a|s) in order to maximize the

total discounted expected reward or value function for any s ∈ S

V ∗(s) = max
π

lim
T→∞

E

[
T−1∑

t=0

γtRst+1
st,at

]

with discount factor 0 ≤ γ < 1. The expectation is over all possible trajectories ξ =

s0, a0, s1 . . . of state and action pairs distributed according to p(ξ) =
∏T−1
t=0 π(at|st) T (st+1|at, st).

It can be shown that the optimal value function satisfies the following recursion

V ∗(s) = max
π

∑

a,s′

π(a|s)T (s′|a, s)
[
Rs
′
s,a + γV ∗(s′)

]
. (5.1)

At this point there are two important implicit assumptions. The first is that the policy

π can be chosen arbitrarily without any constraints which, for example, might not be true

for a bounded rational agent with limited information-processing capabilities. The second is

that the agent needs to know the transition-model T (s′|a, s), but this model is in practice

unknown or even misspecified with respect to the environment’s true transition-probabilities,

specially at initial stages of learning. In the following, we explain how to incorporate both

bounded rationality and model uncertainty into agents.

5.1.1 Information-Theoretic Constraints for Acting

Consider a one-step decision-making problem where the agent is in state s and has to choose

a single action a from the set A to maximize the reward Rs
′
s,a, where s′ is the next the

state. A perfectly rational agent selects the optimal action a∗(s) = argmaxa
∑

s′ T (s′|a, s)Rs′s,a.
However, a bounded rational agent has only limited resources to find the maximum of the

function
∑

s′ T (s′|a, s)Rs′s,a. One way to model such an agent is to assume that the agent has

a prior choice strategy ρ(a|s) in state s before a deliberation process sets in that refines the

choice strategy to a posterior distribution π(a|s) that reflects the strategy after deliberation.

Intuitively, because the deliberation resources are limited, the agent can only afford to deviate

from the prior strategy by a certain amount of information bits. This can be quantified by
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the relative entropy DKL(π||ρ) =
∑

a π(a|s) log π(a|s)
ρ(a|s) that measures the average information

cost of the policy π(a|s) using the source distribution ρ(a|s). For a bounded rational agent

this relative entropy is bounded by some upper limit K. Thus, a bounded rational agent has

to solve a constrained optimization problem that can be written as

max
π

∑

a

π(a|s)
∑

s′

T (s′|a, s)Rs′s,a s.t. DKL(π||ρ) ≤ K

This problem can be rewritten as an unconstrained optimization problem

F ∗(s) = max
π

∑

a

π(a|s)
∑

s′

T (s′|a, s)Rs′s,a −
1

α
DKL(π||ρ) (5.2)

=
1

α
log
∑

a

ρ(a|s)eα
∑
s′ T (s′|a,s)Rs′s,a . (5.3)

where F ∗ is a free energy that quantifies the value of the policy π by trading off the average

reward against the information cost. The optimal strategy can be expressed analytically in

closed-form as

π∗(a|s) =
ρ(a|s)eα

∑
s′ T (s′|a,s)Rs′s,a

Zα(s)

with partition sum Zα(s) =
∑

a ρ(a|s) exp
(
α
∑

s′ T (s′|a, s)Rs′s,a
)

. Therefore, the maximum

operator in (5.2) can be eliminated and the free energy can be rewritten as in (5.3). The

Lagrange multiplier α quantifies the boundedness of the agent. By setting α→∞ we recover

a perfectly rational agent with optimal policy π∗(a|s) = δ(a − a∗(s)). For α = 0 the agent

has no computational resources and the agent’s optimal policy is to act according to the prior

π∗(a|s) = ρ(a|s). Intermediate values of α lead to a spectrum of bounded rational agents.

5.1.2 Information-Theoretic Constraints for Model Uncertainty

In the following we assume that the agent has a model of the environment Tθ(s
′|a, s) that

depends on some latent variables θ ∈ Θ. In the MDP setting, the agent holds a belief µ(θ|a, s)
regarding the environmental dynamics where θ is a unit vector of transition probabilities into

all possible states s′. While interacting with the environment the agent can incorporate new

data by forming the Bayesian posterior µ(θ|a, s,D), where D is the observed data. When

the agent has observed an infinite amount of data (and assuming θ∗(a, s) ∈ Θ) the belief will

converge to the delta distribution µ(θ|s, a,D) = δ(θ−θ∗(a, s)) and the agent will act optimally

according to the true transition probabilities, exactly as in ordinary optimal choice strategies

with known models. When acting under a limited amount of data the agent cannot determine

the value of an action a with the true transition model according to
∑

s′ T (s′|a, s)Rs′s,a, but it

can only determine an expected value according to its beliefs
∫
θ µ(θ|a, s)∑s′ Tθ(s

′|a, s)Rs′s,a.
The Bayesian model µ can be subject to model misspecification (e.g. by having a wrong

likelihood or a bad prior) and thus the agent might want to allow deviations from its model to-

wards best-case (optimistic agent) or worst-case (pessimistic agent) scenarios up to a certain
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extent, in order to act more robustly or to enhance its performance in a friendly environ-

ment (Hansen and Sargent, 2008). Such deviations can be measured by the relative entropy

DKL(ψ|µ) between the Bayesian posterior µ and a new biased model ψ. Effectively, this allows

for mathematically formalizing model uncertainty, by not only considering the specified model

but all models within a neighborhood of the specified model that deviate no more than a re-

stricted number of bits. Then, the effective expected value of an action a while having limited

trust in the Bayesian posterior µ can be determined for the case of optimistic deviations as

F ∗(a, s) = max
ψ

∫

θ
ψ(θ|a, s)

∑

s′

Tθ(s
′|a, s)Rs′s,a −

1

β
DKL(ψ||µ) (5.4)

for β > 0, and for the case of pessimistic deviations as

F ∗(a, s) = min
ψ

∫

θ
ψ(θ|a, s)

∑

s′

Tθ(s
′|a, s)Rs′s,a −

1

β
DKL(ψ||µ) (5.5)

for β < 0. Conveniently, both equations can be expressed as a single equation

F ∗(a, s) =
1

β
logZβ(a, s)

with β ∈ R and Zβ(s, a) =
∫
θ µ(θ|a, s) exp

(
β
∑

s′ Tθ(s
′|a, s)Rs′s,a

)
when inserting the optimal

biased belief

ψ∗(θ|a, s) =
1

Zβ(a, s)
µ(θ|a, s) exp

(
β
∑

s′

Tθ(s
′|a, s)Rs′s,a

)

into either equation (5.4) or (5.5). By adopting this formulation we can model any degree of

trust in the belief µ allowing deviation towards worst-case or best-case with −∞ ≤ β ≤ ∞.

For the case of β → −∞ we recover an infinitely pessimistic agent that considers only worst-

case scenarios, for β → ∞ an agent that is infinitely optimistic and for β → 0 the Bayesian

agent that fully trusts its model.

5.2 Model Uncertainty and Bounded Rationality in MDPs

In this section, we consider a bounded rational agent with model uncertainty in the infinite

horizon setting of an MDP. In this case the agent must take into account all future rewards

and information costs, thereby optimizing the following free energy objective

F ∗(s) = max
π

ext
ψ

lim
T→∞

E
T−1∑

t=0

γt

(
Rst+1
st,at −

1

β
log

ψ(θt|at, st)
µ(θt|at, st)

− 1

α
log

π(at|st)
ρ(at|st)

)
(5.6)

where the extremum operator ext can be either max for β > 0 or min for β < 0, 0 < γ < 1 is

the discount factor and the expectation E is over all trajectories ξ = s0, a0, θ0, s1, a1, . . . aT−1, θT−1, sT
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with distribution p(ξ) =
∏T−1
t=0 π(at|st) ψ(θt|at, st) Tθt(st+1|at, st). Importantly, this free en-

ergy objective satisfies a recursive relation and thereby generalizes Bellman’s optimality prin-

ciple to the case of model uncertainty and bounded rationality. In particular, equation (5.6)

fulfills the recursion

F ∗(s) = max
π

ext
ψ

Eπ(a|s)

[
− 1

α
log

π(a|s)
ρ(a|s) +

Eψ(θ|a,s)

[
− 1

β
log

ψ(θ|a, s)
µ(θ|a, s) +

ETθ(s′|a,s)
[
Rs
′
s,a + γF ∗(s′)

]]]
. (5.7)

Applying variational calculus and following the same rationale as in the previous sections

(Ortega and Braun, 2013), the extremum operators can be eliminated and equation (5.7) can

be re-expressed as

F ∗(s) =
1

α
logEρ(a|s)

[
Eµ(θ|a,s)

[
exp

(
βETθ(s′|a,s)

[
Rs
′
s,a + γF ∗(s′)

])]α
β

]
(5.8)

because

F ∗(s) = max
π

Eπ(a|s)

[
1

β
logZβ(a, s)− 1

α
log

π(a|s)
ρ(a|s)

]
(5.9)

=
1

α
logEρ(a|s)

[
exp

(
α

β
logZβ(a, s)

)]
, (5.10)

where

Zβ(a, s) = ext
ψ

Eψ(θ|a,s)

[
ETθ(s′|a,s)

[
Rs
′
s,a + γF ∗(s′)

]
− 1

β
log

ψ(θ|a, s)
µ(θ|a, s)

]
(5.11)

= Eµ(θ|a,s) exp
(
βETθ(s′|a,s)

[
Rs
′
s,a + γF ∗(s′)

])

with the optimizing arguments

ψ∗(θ|a, s) =
1

Zβ(a, s)
µ(θ|a, s) exp

(
βETθ(s′|a,s)

[
Rs
′
s,a + γF (s′)

])

π∗(a|s) =
1

Zα(s)
ρ(a|s) exp

(
α

β
logZβ(a, s)

)
(5.12)

and partition sum

Zα(s) = Eρ(a|s)

[
exp

(
α

β
logZβ(a, s)

)]
.

With this free energy we can model a range of different agents for different α and β. For

example, by setting α → ∞ and β → 0 we can recover a Bayesian MDP planner and by

setting α→∞ and β → −∞ we recover a robust planner. Additionally, for α→∞ and when

µ(θ|a, s) = δ(θ− θ∗(a, s)) we recover an agent with standard value function with known state

transition model from equation (5.1).
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5.2.1 Free Energy Iteration Algorithm

Solving the self-consistency equation (5.8) can be achieved by a generalized version of value

iteration. Accordingly, the optimal solution can be obtained by initializing the free energy

at some arbitrary value F and applying a value iteration scheme Bi+1F = BBiF where we

define the operator

BF (s) = max
π

ext
ψ

Eπ(a|s)

[
− 1

α
log

π(a|s)
ρ(a|s) +

Eψ(θ|a,s)

[
− 1

β
log

ψ(θ|a, s)
µ(θ|a, s) +

ETθ(s′|a,s)
[
Rs
′
s,a + γF (s′)

]]]
(5.13)

with B1F = BF , which can be simplified to

BF (s) =
1

α
logEρ(a|s)

[
Eµ(θ|a,s)

[
exp

(
βETθ(s′|a,s)

[
Rs
′
s,a + γF (s′)

])]α
β

]

In Algorithm (1) we show the pseudo-code of this generalized value iteration scheme. Given

state-dependent prior policies ρ(a|s) and the Bayesian posterior beliefs µ(θ|a, s) and the values

of α and β, the algorithm outputs the equilibrium distributions for the action probabilities

π(a|s), the biased beliefs ψ(θ|a, s) and estimates of the free energy value function F ∗(s). The

iteration is run until a convergence criterion is met. The convergence proof is shown in the

next section.

Algorithm 1: Iterative algorithm solving the self-consistency equation (5.8)

Input: ρ(a|s), µ(θ|a, s), α, β
Initialize: F ← 0, Fold ← 0

while not converged do

forall s ∈ S do

F (s)← 1
α logEρ(a|s)

[
Eµ(θ|a,s)

[
exp

(
βETθ(s′|a,s)

[
Rs
′
s,a + γFold(s′)

])]α
β

]

end

Fold ← F
end

π(a|s)← 1
Zα(s)ρ(a|s) exp

(
α
β logZβ(a, s)

)

ψ(θ|a, s)← 1
Zβ(a,s)µ(θ|a, s) exp

(
βETθ(s′|a,s)

[
Rs
′
s,a + γF (s′)

])

return π(a|s), ψ(θ|a, s), F (s)
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5.3 Convergence

Here, we show that the value iteration scheme described through Algorithm 1 converges to

a unique fixed point satisfying Equation (5.8). To this end, we first prove the existence of

a unique fixed point (Theorem 5.3.1) following (Bertsekas and Tsitsiklis, 1996; Rubin et al.,

2012), and subsequently prove the convergence of the value iteration scheme presupposing

that a unique fixed point exists (Theorem 5.3.2) following (Strehl et al., 2009).

Theorem 5.3.1. Assuming a bounded reward function Rs
′
s,a, the optimal free-energy vector

F ∗(s) is a unique fixed point of Bellman’s equation F ∗ = BF ∗, where the mapping B :

R|S| → R|S| is defined as in equation (5.13)

Proof. Theorem 5.3.1 is proven through Proposition 5.3.1 and 5.3.2 in the following.

Proposition 5.3.1. The mapping Tπ,ψ : R|S| → R|S|

Tπ,ψF (s) = Eπ(a|s)

[
− 1

α
log

π(a|s)
ρ(a|s) +

Eψ(θ|a,s)

[
− 1

β
log

ψ(θ|a, s)
µ(θ|a, s) +

ETθ(s′|a,s)
[
Rs
′
s,a + γF (s′)

]]]
. (5.14)

converges to a unique solution for every policy-belief-pair (π, ψ) independent of the initial

free-energy vector F (s).

Proof. By introducing the matrix Pπ,ψ(s, s′) and the vector gπ,ψ(s) as

Pπ,ψ(s, s′) := Eπ(a|s)

[
Eψ(θ|a,s)

[
Tθ(s

′|a, s)
] ]
,

gπ,ψ(s) := Eπ(a|s)

[
Eψ(θ|a,s)

[
ETθ(s′|a,s)

[
Rs
′
s,a

]
− 1

β
log

ψ(θ|a, s)
µ(θ|a, s)

]
− 1

α
log

π(a|s)
ρ(a|s)

]
,

Equation (5.14) may be expressed in compact form: Tπ,ψF = gπ,ψ +γPπ,ψF . By applying the

mapping Tπ,ψ an infinite number of times on an initial free-energy vector F , the free-energy

vector Fπ,ψ of the policy-belief-pair (π, ψ) is obtained:

Fπ,ψ := lim
i→∞

T iπ,ψF = lim
i→∞

i−1∑

t=0

γtP tπ,ψgπ,ψ + lim
i→∞

γiP iπ,ψF
︸ ︷︷ ︸

→0

,

which does no longer depend on the initial F . It is straightforward to show that the quantity
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Fπ,ψ is a fixed point of the operator Tπ,ψ:

Tπ,ψFπ,ψ = gπ,ψ + γPπ,ψ lim
i→∞

i−1∑

t=0

γtP tπ,ψgπ,ψ

= γ0P 0
π,ψgπ,ψ + lim

i→∞

i∑

t=1

γtP tπ,ψgπ,ψ

= lim
i→∞

i−1∑

t=0

γtP tπ,ψgπ,ψ + lim
i→∞

γiP iπ,ψgπ,ψ
︸ ︷︷ ︸

→0

= Fπ,ψ.

Furthermore, Fπ,ψ is unique. Assume for this purpose an arbitrary fixed point F ′ such that

Tπ,ψF
′ = F ′, then F ′ = limi→∞ T iπ,ψF

′ = Fπ,ψ.

Proposition 5.3.2. The optimal free-energy vector F ∗ = maxπ extψ Fπ,ψ is a unique fixed point

of Bellman’s equation F ∗ = BF ∗.

Proof. The proof consists of two parts where we assume ext = max in the first part and

ext = min in the second part respectively. Let ext = max and F ∗ = Fπ∗,ψ∗ , where (π∗, ψ∗)
denotes the optimal policy-belief-pair. Then

F ∗ = Tπ∗,ψ∗F
∗ ≤ max

π
max
ψ

Tπ,ψF
∗

︸ ︷︷ ︸
=BF ∗

=: Tπ′,ψ′F
∗ Induction
≤ Fπ′,ψ′ ,

where the last inequality can be straightforwardly proven by induction and exploiting the fact

that Pπ,ψ(s, s′) ∈ [0; 1]. But by definition F ∗ = maxπ maxψ Fπ,ψ ≥ Fπ′,ψ′ , hence F ∗ = Fπ′,ψ′

and therefore F ∗ = BF ∗. Furthermore, F ∗ is unique. Assume for this purpose an arbitrary

fixed point F ′ = Fπ′,ψ′ such that F ′ = BF ′ with the corresponding policy-belief-pair (π′, ψ′).
Then

F ∗ = Tπ∗,ψ∗F
∗ ≥ Tπ′,ψ′F ∗

Induction
≥ Fπ′,ψ′ = F ′,

and similarly F ′ ≥ F ∗, hence F ′ = F ∗.

Let ext = min and F ∗ = Fπ∗,ψ∗ . By taking a closer look at Equation (5.13), it can be seen

that the optimization over ψ does not depend on π. Then

F ∗ = Tπ∗,ψ∗F
∗ ≥ min

ψ
Tπ∗,ψF

∗ =: Tπ∗,ψ′F
∗ Induction
≥ Fπ∗,ψ′ .

But by definition F ∗ = minψ Fπ∗,ψ ≤ Fπ∗,ψ′ , hence F ∗ = Fπ∗,ψ′ . Therefore it holds that

BF ∗ = maxπ minψ Tπ,ψF
∗ = maxπ Tπ,ψ∗F

∗ and similar to the first part of the proof we

obtain

F ∗ = Tπ∗,ψ∗F
∗ ≤ max

π
Tπ,ψ∗F

∗

︸ ︷︷ ︸
=BF ∗

=: Tπ′,ψ∗F
∗ Induction
≤ Fπ′,ψ∗.
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But by definition F ∗ = maxπ Fπ,ψ∗ ≥ Fπ′,ψ∗, hence F ∗ = Fπ′,ψ∗ and therefore F ∗ = BF ∗.
Furthermore, Fπ∗,ψ∗ is unique. Assume for this purpose an arbitrary fixed point F ′ = Fπ′,ψ′

such that F ′ = BF ′. Then

F ′ = Tπ′,ψ′F
′ ≤ Tπ′,ψ∗F ′

Induction
≤ Fπ′,ψ∗

Induction
≤ Tπ′,ψ∗F

∗ ≤ Tπ∗,ψ∗F ∗ = F ∗,

and similarly F ∗ ≤ F ′, hence F ∗ = F ′.

Theorem 5.3.2. Let ε be a positive number satisfying ε < η
1−γ where γ ∈ (0; 1) is the discount

factor and where u and l are the bounds of the reward function Rs
′
s,a such that l ≤ Rs

′
s,a ≤ u

and η = max{|u|, |l|}. Suppose that the value iteration scheme from Algorithm 1 is run for

i = dlogγ
ε(1−γ)
η e iterations with an initial free-energy vector F (s) = 0 for all s. Then, it holds

that maxs |F ∗(s)−BiF (s)| ≤ ε, where F ∗ refers to the unique fixed point from Theorem 5.3.1.

Proof. We start the proof by showing that the L∞-norm of the difference vector between the

optimal free-energy F ∗ and BiF exponentially decreases with the number of iterations i:

max
s

∣∣F ∗(s)−BiF (s)
∣∣ =:

∣∣F ∗(s∗)−BiF (s∗)
∣∣

Eq. (5.9)
=

∣∣∣∣max
π

Eπ(a|s∗)

[
1

β
logZβ(a, s∗)− 1

α
log

π(a|s∗)
ρ(a|s∗)

]

−max
π

Eπ(a|s∗)

[
1

β
logZiβ(a, s∗)− 1

α
log

π(a|s∗)
ρ(a|s∗)

]∣∣∣∣

≤ max
π

∣∣∣∣Eπ(a|s∗)

[
1

β
logZβ(a, s∗)− 1

β
logZiβ(a, s∗)

]∣∣∣∣

≤ max
a

∣∣∣∣
1

β
logZβ(a, s∗)− 1

β
logZiβ(a, s∗)

∣∣∣∣

=:

∣∣∣∣
1

β
logZβ(a∗, s∗)− 1

β
logZiβ(a∗, s∗)

∣∣∣∣
Eq. (5.11)

=

∣∣∣∣ext
ψ

Eψ(θ|a∗,s∗)

[
ETθ(s′|a∗,s∗)

[
Rs
′
s,a + γF ∗(s′)

]
− 1

β
log

ψ(θ|a∗, s∗)
µ(θ|a∗, s∗)

]

− ext
ψ

Eψ(θ|a∗,s∗)

[
ETθ(s′|a∗,s∗)

[
Rs
′
s,a + γBi−1F (s′)

]
− 1

β
log

ψ(θ|a∗, s∗)
µ(θ|a∗, s∗)

]∣∣∣∣

≤ max
ψ

∣∣∣∣Eψ(θ|a∗,s∗)

[
ETθ(s′|a∗,s∗)

[
γF ∗(s′)− γBi−1F (s′)

]]∣∣∣∣

≤ γmax
s

∣∣F ∗(s)−Bi−1F (s)
∣∣ Recur.
≤ γi max

s
|F ∗(s)− F (s)| ≤ γi η

1− γ ,

where we exploit the fact that |extx f(x)− extx g(x)| ≤ maxx |f(x)− g(x)| and that the free-

energy is bounded through the reward bounds l and u with η = max{|u|, |l|}. For a conver-

gence criterion ε > 0 such that ε ≥ γi η
1−γ , it then holds that i ≥ logγ

ε(1−γ)
η presupposing that

ε < η
1−γ .
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5.4 Experiments: Grid World

This section illustrates the proposed value iteration scheme with an intuitive example where

an agent has to navigate through a grid-world. The agent starts at position S ∈ S with the

objective to reach the goal state G ∈ S and can choose one out of maximally four possible

actions a ∈ {↑,→, ↓,←} in each time-step. Along the way, the agent can encounter regular

tiles (actions move the agent deterministically one step in the desired direction), walls that are

represented as gray tiles (actions that move the agent towards the wall are not possible), holes

that are represented as black tiles (moving into the hole causes a negative reward) and chance

tiles that are illustrated as white tiles with a question mark (the transition probabilities of

the chance tiles are unknown to the agent). Reaching the goal G yields a reward R = +1

whereas stepping into a hole results in a negative reward R = −1. In both cases the agent

is subsequently teleported back to the starting position S. Transitions to regular tiles have a

small negative reward of R = −0.01. When stepping onto a chance tile, the agent is pushed

stochastically to an adjacent tile giving a reward as mentioned above. The true state-transition

probabilities of the chance tiles are not known by the agent, but the agent holds the Bayesian

belief

µ(θs,a|a, s) = Dirichlet
(
Φ
s′1
s,a, . . . ,Φ

s′
N(s)
s,a

)
=

N(s)∏

i=1

(θ
s′i
s,a)

Φ
s′i
s,a−1

where transition model is denoted as Tθs,a(s′|s, a) = θs
′
s,a and θs,a =

(
θ
s′1
s,a . . . θ

s′
N(s)
s,a

)
and N(s)

is the number of possible actions in state s. The data is incorporated into the model as a

count vector
(
Φ
s′1
s,a, . . . ,Φ

s′
N(s)
s,a

)
where Φs′

s,a represents the number of times that the transition

(s, a, s′) has occurred. The prior ρ(a|s) for the actions at every state is set to be uniform. An

important aspect of the model is that in the case of unlimited observational data, the agent

will plan with the correct transition probabilities.

We conducted two experiments with discount factor γ = 0.9 and uniform priors ρ(a|s) for

the action variables. In the first experiment, we explore and illustrate the agent’s planning

behavior under different degrees of computational limitations (by varying α) and under dif-

ferent model uncertainty attitudes (by varying β) with fixed uniform beliefs µ(θ|a, s). In the

second experiment, the agent is allowed to update its beliefs µ(θ|a, s) and use the updated

model to re-plan its strategy.

5.4.1 The Role of the Parameters α and β on Planning

Figure 5.1 shows the solution to the variational free energy problem that is obtained by it-

eration until convergence according to Algorithm 1 under different values of α and β. In

particular, the first row shows the free energy function F ∗(s) (Eq. (5.8)). The second, third

and fourth row show heat maps of the position of an agent that follows the optimal policy

(Eq. (5.12)) according to the agent’s biased beliefs (plan) and to the actual transition proba-

bilities in a friendly and unfriendly environment, respectively. In chance tiles, the most likely

transitions in these two environments are indicated by arrows where the agent is teleported
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with a probability of 0.999 into the tile indicated by the arrow and with a probability of 0.001

to a random other adjacent tile.

In the first column of Fig. 5.1 it can be seen that a stochastic agent (α = 3.0) with high

model uncertainty and optimistic attitude (β = 400) has a strong preference for the broad

corridor in the bottom by assuming favorable transitions for the unknown chance tiles. This

way the agent also avoids the narrow corridors that are unsafe due to the stochasticity of the

low-α policy. In the second column of Fig. 5.1 with low α = 3 and high model uncertainty with

pessimistic attitude β = −400, the agent strongly prefers the upper broad corridor because

unfavorable transitions are assumed for the chance tiles. The third column of Fig. 5.1 shows

a very pessimistic agent (β = −400) with high precision (α = 11) that allow the agent to

safely choose the shortest distance by selecting the upper narrow corridor without risking any

tiles with unknown transitions. The fourth column of Fig. 5.1 shows a very optimistic agent

(β = 400) with high precision. In this case the agent chooses the shortest distance by selecting

the bottom narrow corridor that includes two chance tiles with unknown transition.

5.4.2 Updating the Bayesian Posterior µ with Observations from the En-

vironment

Similar to model identification adaptive controllers that perform system identification while

the system is running (Åström and Wittenmark, 2013), we can use the proposed planning

algorithm also in a reinforcement learning setup by updating the Bayesian beliefs about the

MDP while executing always the first action and replanning in the next time step. During

the learning phase, the exploration is governed by both factors α and β, but each factor has

a different influence. In particular, lower α-values will cause more exploration due to the

inherent stochasticity in the agent’s action selection, similar to an ε-greedy policy. If α is kept

fixed through time, this will of course also imply a “suboptimal” (i.e. bounded optimal) policy

in the long run. In contrast, the parameter β governs exploration of states with unknown

transition-probabilities more directly and will not have an impact on the agent’s performance

in the limit, where sufficient data has eliminated model uncertainty. We illustrate this with

simulations in a grid-world environment where the agent is allowed to update its beliefs

µ(θ|a, s) over the state-transitions every time it enters a chance tile and receives observation

data acquired through interaction with the environment—compare left panels in Figure 5.2.

In each step, the agent can then use the updated belief-models for planning the next action.

Figure 5.2 (right panels) shows the number of data points acquired (each time a chance

tile is visited) and the average reward depending on the number of steps that the agent

has interacted with the environment. The panels show several different cases: while keeping

α = 12.0 fixed we test β = (0.2, 5.0, 20.0) and while keeping β = 0.2 fixed we test α =

(5.0, 8.0, 12.0). It can be seen that lower α leads to better exploration, but it can also lead

to lower performance in the long run—see for example rightmost bottom panel. In contrast,

optimistic β values can also induce high levels of exploration with the added advantage that

in the limit no performance detriment is introduced. However, high β values can in general
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Figure 5.1. The four different rows show free energy values and heat-maps of planned trajectories according

to the agent’s beliefs over state-transitions in chance tiles, heat-maps of real trajectories in a friendly environ-

ment and in an unfriendly environment respectively. The Start-position is indicated by S and the goal state

is indicated by G. Black tiles represent holes with negative reward, gray tiles represent walls and chance tiles

with a question mark have transition probabilities unknown to the agent. The white tiles with an arrow rep-

resent the most probable state-transition in chance tiles (as specified by the environment). Very small arrows

in each cell encode the policy π(a|s) (the length of each arrow encodes the probability of the corresponding

action under the policy, highest probability action is indicated as a red arrow). The heat map is constructed

by normalizing the number of visits for each state over 20000 steps, where actions are sampled from the agent’s

policy and state-transitions are sampled according to one of three ways: the second row according to the

agent’s belief over state-transitions ψ(θ|a, s), in the third and fourth row according to the actual transition

probabilities of a friendly and an unfriendly environment respectively. Different columns show different α and

β cases.

101



Chapter 5. Planning with Information-Processing Constraints and Model Uncertainty in
Markov Decision Processes

0 1 2 3 4

0

1

2

3

4

S GS GS G

Environment

0 1 2 3 4

0

1

2

3

4

S G?

?

?

?

Pessimistic

Optimal

0 1 2 3 4

0

1

2

3

4

S G?

?

?

?

Optimistic

0 1 2 3 4

0

1

2

3

4

S GS GS G

0 50 100 150 200 250 300
Step

0

5

10

15

20

25

30

35

40

D
a
ta

 p
o
in

ts
 a

cq
u
ir

e
d

α fixed

0 50 100 150 200 250 300
Step

0.15

0.10

0.05

0.00

0.05

0.10

A
v
e
ra

g
e
 r

e
w

a
rd

α= 12. 0 β= 0. 2

α= 12. 0 β= 5. 0

α= 12. 0 β= 20. 0

0 50 100 150 200 250 300
Step

0

5

10

15

20

25

30

35

D
a
ta

 p
o
in

ts
 a

cq
u
ir

e
d

β fixed

0 50 100 150 200 250 300
Step

0.15

0.10

0.05

0.00

0.05

0.10

A
v
e
ra

g
e
 r

e
w

a
rd

α= 5. 0 β= 0. 2

α= 8. 0 β= 0. 2

α= 12. 0 β= 0. 2

Figure 5.2. The effect of α and β when updating beliefs over 300 interaction steps with the environ-

ment. The four panels on the left show the grid-world environment and the pertaining optimal policy

if the environment is known. The lower left panels show paths that the agent could take depending

on its attitude towards model uncertainty. The panels on the right show the number of acquired data

points, that is the number of times a chance tile is entered, and the average reward (bottom panels)

for fixed α (varying β) or fixed β (varying α). The average reward at each step is computed as follows.

Each time the agent observes a state-transition in a chance tile and updates its belief model, 10 runs

of length 2000 steps are sampled (using the agent’s current belief model). The average reward (bold

lines) and standard-deviation (shaded areas) across these 10 runs are shown in the figure.
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also lead to a detrimental persistence with bad policies, as can be seen for example in the

superiority of the low-β agent at the very beginning of the learning process.

5.5 Discussion and Conclusions

In this paper we are bringing two strands of research together, namely research on information-

theoretic principles of control and decision-making and robustness principles for planning

under model uncertainty. We have devised a unified recursion principle that extends previous

generalizations of Bellman’s optimality equation and we have shown how to solve this recursion

with an iterative scheme that is guaranteed to converge to a unique optimum. In simulations

we could demonstrate how such a combination of information-theoretic policy and belief

constraints that reflect model uncertainty can be beneficial for agents that act in partially

unknown environments.

Most of the research on robust MDPs does not consider information-processing constraints

on the policy, but only considers the uncertainty in the transition probabilities by specifying

a set of permissible models such that worst-case scenarios can be computed in order to obtain

a robust policy (Iyengar, 2005; Nilim and El Ghaoui, 2005). Recent extensions of these

approaches include more general assumptions regarding the set properties of the permissible

models and assumptions regarding the data generation process (Wiesemann et al., 2013). Our

approach falls inside this class of robustness methods that use a restricted set of permissible

models, because we extremize the biased belief ψ(θ|a, s) under the constraint that it has

to be within some information bounds measured by the Kullback-Leibler divergence from a

reference Bayesian posterior. Contrary to these previous methods, our approach additionally

considers robustness arising from the stochasticity in the policy.

Information-processing constraints on the policy in MDPs have been previously considered

in a number of studies (Kappen, 2005a; Peters et al., 2010; Rubin et al., 2012; Todorov, 2009),

however not in the context of model uncertainty. In these studies a free energy value recursion

is derived when restricting the class of policies through the Kullback-Leibler divergence and

when disregarding separate information-processing constraints on observations. However, a

small number of studies has considered information-processing constraints both for actions

and observations. For example, Polani and Tishby (Tishby and Polani, 2011) and Ortega

and Braun (Ortega and Braun, 2013) combine both kinds of information costs. The first

cost formalizes an information-processing cost in the policy and the second cost constrains

uncertainty arising from the state transitions directly (but crucially not the uncertainty in

the latent variables). In both information-processing constraints the cost is determined as a

Kullback-Leibler divergence with respect to a reference distribution. Specifically, the reference

distribution in (Tishby and Polani, 2011) is given by the marginal distributions (which is

equivalent to a rate distortion problem) and in (Ortega and Braun, 2013) is given by fixed

priors. The Kullback-Leibler divergence costs for the observations in these cases essentially

correspond to a risk-sensitive objective. While there is a relation between risk-sensitive and

robust MDPs (Chow et al., 2015; Osogami, 2012; Shen et al., 2014), the innovation in our
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approach is at least twofold. First, it allows combining information-processing constraints on

the policy with model uncertainty (as formalized by a latent variable). Second, it provides a

natural setup to study learning.

The algorithm presented here and Bayesian models in general (Duff, 2002) are computa-

tionally expensive as they have to compute possibly high-dimensional integrals depending on

the number of allowed transitions for action-state pairs. However, there have been tremen-

dous efforts in solving unknown MDPs efficiently, especially by sampling methods (Guez et

al., 2012; Guez et al., 2013; Ross et al., 2011). An interesting future direction to extend our

methodology would therefore be to develop a sampling-based version of Algorithm 1 to in-

crease the range of applicability and scalability (Ortega et al., 2014). Moreover, such sampling

methods might allow for reinforcement learning applications, for example by estimating free

energies through TD-learning (Fox et al., 2015), or by Thompson sampling approaches (Or-

tega and Braun, 2010a; Ortega and Braun, 2010b) or other stochastic methods for adaptive

control (Åström and Wittenmark, 2013).
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Chapter 6

Non-equilibrium Relations for

Bounded Rational Decision-making

in Changing Environments

This chapter is based on work under review.

Abstract

Living organisms from single cells to humans need to adapt and plan continuously to respond

to changes in their environment. The process of behavioral adaptation and planning can

be thought of as improving decision-making performance according to some utility function.

Here we consider an abstract model of organisms as decision-makers with limited information-

processing resources that trade off between maximization of utility and computational costs

measured by a relative entropy, in a similar fashion to thermodynamic systems undergoing

isothermal transformations. Such systems minimize the free energy to reach equilibrium states

that balance internal energy and entropic cost. When there is a fast change in the environment

these systems evolve in a non-equilibrium fashion because they are unable to follow the path

of equilibrium distributions. Here we apply concepts from non-equilibrium thermodynamics

to characterize decision-makers that adapt and plan in changing environments. This allows

to quantify performance loss due to imperfect adaptation and planning in a general manner

and, additionally, to find relations for decision-making similar to Crooks’ fluctuation theorem

and Jarzynski’s equality. We provide simulations of several exemplary decision and inference

problems in the discrete and continuous domains to illustrate the new relations.
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Introduction

A number of recent studies have pointed out mathematical equivalences between thermody-

namical systems described by statistical mechanics and information processing systems (Or-

tega and Braun, 2013; Tishby and Polani, 2011; D. H. Wolpert, 2006). In particular, it has

been suggested that decision-makers with constrained information-processing resources can

be described in analogy to closed physical systems in contact with a heat bath that seek to

minimize energy (Ortega and Braun, 2013). In this analogy, decision-makers can be thought

to act in a way that minimizes a cost function or, equivalently, maximizes a utility function

in lieu of an energy function. Classic decision theory states that, given a set of actions X and

a set of observations O, the perfectly rational decision maker should choose the best possible

action x∗ ∈ X that maximizes the expected utility U(x) (Savage, 1954; Von Neumann and

Morgenstern, 1944)

x∗ = argmax
x

U(x) = argmax
x

∑

o∈O
p(o|x)V (o), (6.1)

where p(o|x) is the probability of the outcome o given action x and V (o) indicates the utility of

this outcome. However, maximizing the expected utility is in general a costly computational

operation that real decision-makers might not be able to perform.

Deviations from rational decision-making due to limited computational resources have

been studied in the field of bounded rationality, originally propagated by Herbert Simon (Si-

mon, 1955; Simon, 1979). A bounded-rational decision-maker is unable to choose the best

possible action x∗ due to a lack of computational resources. There are a number of different

approaches to model bounded rational decision-making. Russell and colleagues have for exam-

ple suggested a definition of bounded optimality that implies searching for the program that

achieves the best utility performance on a particular machine (S. Russell, 1995; S. J. Russell

and Subramanian, 1995). This definition has also spurred further work in cognitive science—

see (Howes et al., 2009) for a review. Other approaches explicitly append computational

costs to the utility function and optimize the total utility that includes the cost of reason-

ing (Horvitz, 1988). Decision-makers that explicitly reason about the cost of reasoning are

said to perform meta-reasoning, for example by using anytime algorithms (Dean and Boddy,

1988; Zilberstein, 1996) that can be interrupted at any time deemed fit by the meta-reasoning

level. In psychology, bounded rationality models have focused on describing deviations from

expected utility theory in actual choice behavior by humans by relying both on optimality

models such as prospect theory and heuristic approaches (Camerer, 2003; Gigerenzer and

Goldstein, 1996; Daniel Kahneman, 2003).

Recently, new impulses for the development of bounded rationality theory have come

from information-theoretic and thermodynamic perspectives on the general organization of

perception-action-systems (Braun and Ortega, 2014; Braun et al., 2011b; Friston, 2010; Kap-

pen et al., 2012; Ortega and Braun, 2011; Ortega and Braun, 2013; Rubin et al., 2012;

Still, 2009; Still et al., 2012; Tishby and Polani, 2011; Todorov, 2009; Vijayakumar et al.,

2012). In the economic and game-theoretic literature, these models have precursors that have

106



6.1. Equilibrium Thermodynamics and Decision-Making

studied bounded rationality inspired by stochastic choice rules originally proposed by Luce,

McFadden and others (Fudenberg and Levine, 1998; Luce, 1959; Mattsson and Jörgen W.

Weibull, 2002; McFadden, 1980; McKelvey and Palfrey, 1995; Meginnis, 1976; Sims, 2003;

D. H. Wolpert, 2006). In most of these models decision-makers face a trade-off between the

attainment of maximum utility and the required information-processing cost measured as an

entropy or relative entropy. The optimal solution to this trade-off usually takes the form

of a Boltzmann-like distribution analogous to equilibrium distributions in statistical physics.

The decision-making process can then be conceptualized as a change from a prior strategy

distribution to a posterior strategy distribution, where the change is triggered by a change

in the utility landscape. However, studying changes in equilibrium distributions neglects not

only the time required for this change, but also the adaptation process itself.

The main contribution of this paper is to show that the analogy between equilibrium

thermodynamics and bounded-rational decision-making (Ortega and Braun, 2013) can be ex-

tended to the non-equilibrium domain to provide new predictions that can be tested in exper-

imental setups. The connection between the non-equilibrium and equilibrium domains is tied

with the concept of dissipation and the derivation of a fluctuation theorem and a Jarzynski-like

equality for decision-making, which are important recent results in non-equilibrium thermody-

namics. The paper is organized as follows. In Section 6.1 we recapitulate the relation between

bounded rational decision-making and equilibrium thermodynamics. In Section 6.2 we extend

the relation to non-equilibrium processes and we include a derivation of the Jarzynski equality

and Crooks’ fluctuation theorem for decision-making. In Section 6.3 we provide simulations

to illustrate the new relations in different decision-making scenarios. In Section 6.4 we discuss

our results.

6.1 Equilibrium Thermodynamics and Decision-Making

In thermodynamics, closed physical systems in thermal equilibrium with their environment

are described by equilibrium distributions that do not change over time. For example, a gas

in a box distributes its particles evenly over the entire space and will stay this way and not

spontaneously concentrate in a corner of the box. When changing constraints of the physical

system, equilibrium thermodynamics allows predicting the final state after the change has

taken place. For example, when opening a divider between two boxes the gas will expand

further until it fills the entire space evenly. This way, equilibrium thermodynamics allows

describing system behavior as a change from a prior equilibrium distribution to a posterior

equilibrium distribution triggered by a change in external constraints.

On an abstract level, one can think about changes in the distribution of a random variable

from a prior to a posterior distribution as the basis of information-processing. In Bayesian

inference, for example, we update current prior beliefs p0(x) by means of a likelihood to

obtain a posterior belief p1(x). Similarly, decision-making can be regarded as a process of

changing a prior strategy p0(x) to a posterior strategy p1(x) by means of computation. With

infinite computational resources the decision-maker retrieves the best action x∗ with certainty.
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Conversely, without any computational resources the best strategy is to simply stick to the

prior strategy p1(x) = p0(x). According to (Ortega and Braun, 2013) such decision-making

behavior with limited resources can be formalized by optimizing the variational problem

peq
1 (x) = argmax

p
∆F [p] (6.2)

where

∆F [p] :=
∑

x

p(x)∆U(x)− 1

β
DKL(p||p0), (6.3)

is a free energy functional, ∆U(x) is a change in utility function, the Kullback-Leibler diver-

gence or relative entropy DKL(p||p0) =
∑

x p(x) log p(x)
p0(x) quantifies the “information distance”

between prior and posterior, and β can be interpreted as a resource or boundedness parame-

ter. In contrast to the expected utility objective from Equation (6.1) this variational problem

is different in three ways. First, the maximizing argument is not over an action x but over

the distribution over actions p(x) emphasizing the stochastic nature of the final strategy

(Rieskamp, 2008). Second, instead of absolute utilities it considers changes in utility based

on the current state similar to the notion of gains and losses in prospect theory (Daniel Kah-

neman, 2003). Third, it optimizes a trade-off between utility gains and computation costs,

where the costs are quantified by a relative entropy term. In a physical system, Equation (6.3)

evaluated at the optimum peq
1 quantifies the (negative) free energy difference ∆F [peq

1 ] between

the final state 1 and the initial state 0 assuming an isothermal process and a (negative) energy

difference of ∆U = U1 − U0.

The bounded rational decision-maker can be determined according to Equation (6.2) fol-

lowing the strategy

peq
1 (x) =

1

Zβ
p0(x)eβ∆U(x) (6.4)

with partition function Zβ =
∑

x p0(x)eβ∆U(x). When inserting the optimal strategy peq
1 (x)

into Equation (6.3), the certainty-equivalent value of strategy peq
1 is determined by

∆F eq := ∆F [peq
1 ] =

1

β
logZβ. (6.5)

For infinite resources (β → ∞) the optimal strategy peq
1 (x) places all the probability mass

on the maximum of ∆U(x) and the value of the strategy is limβ→∞∆F [peq
1 ] = maxx ∆U(x).

This models a perfectly rational decision-maker that can handpick the best action. For β → 0

the cost of computation dominates and the optimal strategy is given by the prior strategy

peq
1 (x) = p0(x) with the value limβ→0 ∆F [peq

1 ] = 〈∆U(x)〉p0(x). This models a decision-maker

bare of computational resources. In the following we discuss a simple algorithm that acts

according to the posterior distribution using a given prior.

An exemplary bounded rational decision-maker

The optimal distribution from Equation (6.4) can be implemented, for example, by a decision-

maker that follows a probabilistic satisficing strategy with aspiration level T ≥ maxx ∆U(x).
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Such a decision-maker optimizes the utility ∆U(x) by drawing samples from the prior distri-

bution xs ∼ p0(x) and accepts with certainty the first sample xs with utility ∆U(xs) ≥ T

above the aspiration level T or any sample with utility below the aspiration level with accep-

tance probability paccept = exp(β(∆U(xs)− T )). This particular version of the more general

rejection sampling algorithm is shown in pseudo-code in Algorithm 2.

We can see the direct connection between β and computational resources when computing

the average number of samples required until acceptance. It can be shown that the expected

number of required samples from p0 to obtain one accepted sample from peq
1 is given by

n̄β = exp(βT )/Zβ ≥ expDKL(p||p0) (Ortega and Braun, 2014). In the no-resource limit

β → 0, the equilibrium posterior distribution is equal to the prior and the sampling complexity

tends to n̄β→0 → 1. In the full-resource limit β → ∞ the sampling complexity increases

according to n̄β→∞ → exp(βT − β∆U(xmax))/p0(xmax) where xmax = argmaxx ∆U(x). Thus

the higher the β, the higher the precision but also the higher the amount of resources spent,

i.e. the amount of samples that will be required until acceptance. If the decision-maker’s

aspiration level is lower than the maximum utility, the same framework can be applied under

a redefined utility function ∆V (x) = min{∆U(x), T}.

Algorithm 2: Rejection Sampling Algorithm

repeat
x ∼ p0

u ∼ Uniform[0, 1]

if u ≤ exp (α(∆U(x)− T )) then accepted ;

until accepted ;

return x

Characterization of the decision-maker’s boundedness

In the previous example, the boundedness of the decision-maker consists in the fact that

the average number of samples the decision-maker can afford during deliberation is limited.

Implicitly, the available average number of samples determines the value of β in the acceptance

step. The problem here is that it is not trivial to compute β from n̄β. Alternatively, we could

imagine that we characterize the decision-maker by a fixed precision β that will then result

in a particular average number of samples. While this is easy to implement, the problem here

is that we do not know in advance the time that will be needed until acceptance. On a more

abstract level the two characterizations of boundedness can be seen as follows.

Bounded rational decision-makers with fixed bit rate. In the first interpretation,

the parameter β acts as a constraint on the maximum amount of information that can be

processed in a certain time window ∆t. In other words, β adopts the meaning of a Lagrange
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multiplier for the constraint in the following optimization problem

argmax
p

∑

x

p(x)∆U(x)

subject to DKL(p||p0) ≤M.

This corresponds to processing information at a fixed bit rate of r = M/∆t. In this case, the

value of β is a function of M , p0(x) and ∆U(x). In such a scenario with fixed bit rate r the

resource parameter β is different for different utility functions. In an economic interpretation

β reflects the shadow price.

Example: Decision-maker XY Z with prior p0(x) has a bit rate r bits/s and time ∆t

seconds to optimize the utility ∆Ut(x). What is the bounded rational choice?

Answer: The precision β(M) can be determined from the maximum KL-distance M =

r∆t as a Lagrange multiplier in Equation (6.4), such that the optimal strategy is given

by

poptt (x) =
1

Z
p0(x)eβ(M)∆U(x).

This decision-maker achieves a higher utility than any other decision-maker that chooses

a different permissible precision β ≤ β(M). However, selecting the optimal β requires

knowing the utility function in advance because in order to compute the KL-divergence

we need to compute the posterior that depends on the utility function. While the bit

rate might be a useful characterization of some systems (e.g. a von Neumann computer

with fixed clock), it might be less useful for others (e.g. a particle undergoing a diffusion

process).

Bounded rational decision-makers with fixed precision. In the second interpreta-

tion, β acts as a fixed precision parameter that quantifies by how much two different levels

of utilities can be told apart. The precision β translates utiles into units of information

(nats or bits), such that with increasing β the magnitude of the informational difference

∆I := − log peq
1 (x2) + log peq

1 (x1) = β (∆U(x1)−∆U(x2)) + log p0(x1)/p0(x2) between two

different utility levels increases, that is they become more distinguishable. In such scenario

when the precision β is fixed the bit rate r = DKL(p||p0)/∆t is different for different utility

functions. In an economic interpretation β reflects a fixed market price.

Example: Decision-maker XY Z with prior p0(x) has to pay a price of β bits/utile

when optimizing the utility ∆Ut(x). What is the bounded rational choice?

Answer: The optimal choice is

poptt (x) =
1

Z
p0(x)eβ

∗∆U(x).

However, while in the fixed bit rate case we know how much time it is needed, here this

different problem formulation with fixed precision does not directly relate to time, that

is, it is unknown how long it takes to go from p0(x) to p(x).
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For a single fixed utility function ∆U(x) both characterizations of a bounded rational

decision-maker (with fixed precision and with fixed bit-rate) are equivalent and can be mapped

into each other. However, when considering changing utility functions, the question arises

which of the two features (β or M) stays invariant across time and therefore best characterizes

the decision-maker. In the remainder of the paper we study the second characterization of

bounded rational decision-making with invariant precision β in relation to temporal processes.

6.2 Non-equilibrium Thermodynamics and Decision-Making

The problem of relating bounded rational decision-making with fixed precision to the time

domain can be illustrated with the aforementioned rejection sampling scheme. Even though

the precision β implies an expected number of samples n̄β and we can assume that generating

each sample requires time δt, it is unknown whether after a particular time ∆t∗ a sample has

been accepted or not. We only know the average time for acceptance. In order to make sure

that a sample is accepted we would have to allow for more time. In particular, to know with

certainty, we would have to allow for an infinite amount of time. A finite time answer would

require a computational process that can be interrupted at any time to deliver an answer, i.e.

an anytime process model. We begin our study of non-equilibrium decision-making with an

anytime process example.

Example. In an anytime version of rejection sampling, the decision-maker is allowed a

particular time ∆t∗ to produce a sample xs. This limits the number of samples that can be

drawn to a maximum k—see pseudocode in Algorithm 3. The probability of not accepting a

sample after k tries is given by

qk =

(
1− Z(β)

exp(βT )

)k
.

In this case the sample xs will be distributed according the prior distribution p0(x). The

probability of accepting a sample that is distributed according to peq
1 (x) after k tries is given

by 1− qk. Accordingly, the action at time k is a mixture distribution of the form

pneq
k (x) = (1− qk)peq

1 (x) + qkp0(x). (6.6)

The distribution pneq
k (x) is a non-equilibrium distribution that reaches equilibrium pneq

k (x)→
peq

1 (x) for k →∞. In the following we ask in how far the tools of non-equilibrium thermody-

namics are applicable to decision-making processes.

6.2.1 Non-equilibrium Thermodynamics

In thermodynamics, non-equilibrium processes are often modeled in the presence of an external

parameter λ(t) ∈ [0; 1] that determines how the energy function Eλ(x) changes over time—for

example, when switching on a potential in a linear fashion, the energy would be Eλ(x) =
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Algorithm 3: Rejection Sampling Algorithm with fixed number of samples

for i = 1 . . . k do
x ∼ p0

u ∼ Uniform[0, 1]

if u ≤ exp (α(∆U(x)− T )) then accepted, return x;

end

return x

E0(x) + λ(E1(x) − E0(x)). When the change in the parameter λ is done infinitely slowly

(quasi-statically), the system’s probability distribution follows exactly the path of equilibrium

distributions (for any λ) pλ(x) = 1
Zλ
e−βEλ(x). Importantly, when the switching of the external

parameter λ is done in finite time, the trajectory in phase space of the evolving thermodynamic

system can potentially be very different from the quasi-static case. In particular, the non-

equilibrium path of probability distributions is going to be, in general, different from the

equilibrium path. We define the trajectory of an evolving system as a finite sequence of

states x := (x0, x1, . . . xN ) at times t0, t1, . . . , tN , and the probability of the trajectory as

p(x) := p(x0|t0)
∏N
n=1 p(xn|xn−1, tn) that follows Markovian dynamics. Since λ is then a

function of time λ(tn), we can effectively consider the energy as a function of state and time

E(xn, tn) := Eλ(tn)(xn). Accordingly, the internal energy of the system can change in two

ways depending on changes in the two variables tn and xn. Assuming discrete time steps, an

energy change due to a change in the external parameter is defined as the work

w(xn−1, tn−1 → tn) = E(xn−1, tn)− E(xn−1, tn−1)

and an energy change due to an internal state change is defined as the heat

q(xn−1 → xn, tn) = E(xn, tn)− E(xn−1, tn).

In an entire process x0, x1, . . . , xN measured at times t0, t1, . . . , tN the extracted work is

W (x) = −∑N
n=1w(xn−1, tn−1 → tn) and the heat transfered to the environment by relaxation

steps is Q(x) = −∑N
n=1 q(xn−1 → xn, tn). The sum of work and heat is the total energy

difference ∆E(x) := −(E(xN , tN ) − E(x0, t0)) = W (x) + Q(x). In expectation with respect

to p(x) we define the average work W := 〈W (x)〉p(x), the average heat Q := 〈Q(x)〉p(x) and

the average energy change ∆E := 〈∆E(x)〉p(x). With these averaged quantities we obtain the

first law of thermodynamics in its usual form

∆E = W +Q (6.7)

= W + T∆S +W diss

with the temperature T , the entropy difference ∆S = −(S(tN ) − S(t0)) and the average

dissipation W diss. The entropy flow ∆S captures the reversible entropy exchange with the

environment, whereas the dissipation captures the irreversible entropy change. By identifying
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the equilibrium free energy difference with ∆F := −(F (tN ) − F (t0)) = ∆E − T∆S, we can

then write the first law as

W = ∆F −W diss. (6.8)

In case of a quasi-static process the extracted work W exactly coincides with the equilibrium

free energy difference (thus W diss = 0) that is trajectory independent. In case of a finite time

process we can express the average dissipated work as (Gomez-Marin et al., 2008; Christopher

Jarzynski, 2011; Roldán, 2014)

W diss :=
〈
W diss(x)

〉
p(x)

= ∆F −W =
1

β
DKL(p(x)||p†(x)) (6.9)

where DKL is the relative entropy that measures in bits the distinguishability between the

probability of the forward in time trajectory p(x) and the probability of the backward in

time trajectory p†(x) := p(xN |tN )
∏N
n=1 p(xn−1|xn, tn−1). From the positivity of the relative

entropy, we can immediately see the non-negativity of entropy production W diss ≥ 0, which

allows stating the second law of thermodynamics in the form

W ≤ ∆F. (6.10)

Crooks’ Fluctuation Theorem. Equation (6.9) can be given in a more general form

without averages. It is possible to relate the reversibility of a process with its dissipation at the

trajectory level. Given a protocol Λ = (λ0, λ1, . . . λN ) i.e. a sequence of external parameters,

the probability p(x) of observing a trajectory of the system in phase space compared with its

time-reversal conjugate p†(x) (when using the time-reversal protocol Λ† = (λN , λN−1, . . . λ0))

depends on the dissipation of the trajectory in the forward direction according to the following

expression
p(x)

p†(x)
= eβW

diss(x) ,

where W diss(x) = ∆F − W (x) is the dissipated work of the trajectory. For this relation

to be true, both backward and forward processes must start with the system in equilibrium.

Intuitively, this means that the more entropy production—measured by the dissipated work—

the more distinguishable are the trajectories of the forward protocol compared to the backward

protocol.

Jarzynski equality. Additionally, another relation of interest in non-equilibrium thermody-

namics has recently been found transforming the inequality of Equation 6.10 into an equality,

the so-called Jarzynski equality (C. Jarzynski, 1997)

〈
eβW (x)

〉
p(x)

= eβ∆F (6.11)

where the angle brackets denote an average over all possible trajectories x of a process that

drives the system from an equilibrium state at λ = 0 to another state at λ = 1. Specifically,
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the above equality says that, no matter how the driving process is implemented, we can de-

termine equilibrium quantities from work fluctuations in the non-equilibrium process. Or in

other words, this equality connects non-equilibrium thermodynamics with equilibrium ther-

modynamics. In the following, we are interested in the question whether there exist similar

relations such as the Jarzynski equality or Crooks’ fluctuation theorem and similar underlying

concepts such as dissipation and time reversibility for the case of decision-making.

6.2.2 Non-equilibrium Decision-Making

In contrast to physical processes where the system is forced to react to its environment by

a slow adaptation process, intelligent decision-makers might be able to anticipate changes in

the environment due to prediction or very fast planning processes that happen on a much

shorter time scale than the occurrence of changes in the environment. However, such planning

or prediction processes are expensive and we assume in the following that the Kullback-

Leibler divergence is an appropriate measure of this computational expense, as outlined in

the introduction.

In the following we consider decision-makers facing a sequence of decision problems ex-

pressed by the utility functions ∆U1(x), . . . ,∆Un(x), . . .∆UN (x) with ∆Un(x) := ∆U(x, tn−1 →
tn). In particular, we distinguish decision-makers that plan and decision-makers that do not

plan. Decision-makers that do not plan have to act before realizing the change in utility

∆U(xn−1, tn−1 → tn) = U(xn−1, tn)− U(xn−1, tn−1)

and choose action xn−1 when faced with ∆Un. In contrast, decision-makers that plan can

consider the change in utility

∆U(xn, tn−1 → tn) = U(xn, tn)− U(xn, tn−1)

in their action xn when faced with ∆Un. We describe the decision-maker’s behavior by a vector

x := (x0, . . . , xN ) and the probability of the trajectory as p(x) := p(x0|t0)
∏N
n=1 p(xn|xn−1, tn)

with p(x0|t0) = p0(x0|t0), assuming that the initial strategy is a bounded rational equilibrium

strategy. Note that in the no-planning scenario the last decision xN can be ignored, as it does

not contribute to the utility, and similarly in the planning scenario, x0 does not constitute a

decision.

In Figure 6.1 we illustrate the difference between the two scenarios in an exemplary one-

step decision problem ∆U(x, t0 → t1) (with behavior vector x = (x0, x1)). An instantaneous

change in the environment occurs at time t0 represented by a vertical jump from λ0 to λ1

in the upper panels that translates directly in a change in free energy difference represented

by ∆F in the lower panels. The system’s previous state at t0 is given by p0(x) i.e. the

equilibrium distribution for U0. The new equilibrium is given by p1(x) i.e. the equilibrium

distribution for U1. In the no-planning scenario the utility Unet =
∑

x p0(x0)∆U(x0, t0 → t1)

extracted from the system is exactly given at t0 and the dissipation is Udiss = ∆F − Unet. In

the planning scenario, the utility is given just after the deliberation time at t1 = t0 + ∆t∗.
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During deliberation the decision-maker has changed the strategy distribution from p0(x0) to

a non-equilibrium distribution p̃(x1) (that corresponds to Equation (6.6) for the rejection

sampling scheme) spending in the process a certain amount of resources and achieving an

average net utility of Unet = ∆F [p̃(x)] (compare Equation (6.3)). In such a scenario with

a single decision-problem we define, in analogy with non-equilibrium thermodynamics, the

average dissipated utility as (Gaveau and Schulman, 1997; Still et al., 2012)

Udiss := ∆F − Unet

=
1

β
DKL(p̃(x)||peq

1 (x)). (6.12)

where it easily follows from the positivity of the relative entropy DKL(p||q) ≥ 0 that

Unet ≤ ∆F (6.13)

with equality when p̃(x) = peq
1 (x) corresponding to an infinite amount of available samples

with k →∞. This inequality shows that we cannot obtain more utility than the equilibrium

free energy difference.

6.2.2.1 Non-equilibrium decision-making without planning

With no planning capabilities the decision-maker faces an instant utility switch ∆Un at each

time point and chooses the action xn−1 according to the strategy p(xn−1|xn−2, tn−1) that is

lagging behind the utility changes. However, once the action is chosen the decision-maker can

adapt its behavior to the experienced utility ∆Un(xn−1) before the utility changes again in

the next time point. This adaptation corresponds to a physical relaxation process and implies

a strategy change between xn−1 and xn. The utility ∆Un(xn−1) gained by the decision-maker

at time point tn−1

∆U(xn−1, tn−1 → tn) = U(xn−1, tn)− U(xn−1, tn−1)

parallels the concept of work in physics. For a whole trajectory we define the total utility

gain due to changes in the environment as U(x) =
∑N

n=1 ∆U(xn−1, tn−1 → tn). Similarly to

Equation (6.8), the first law for decision-making

U = ∆F − Udiss

then states that the total average utility U := 〈U(x)〉p(x) is the difference between the bounded

optimal utility (following the equilibrium strategy with precision β) expressed by the equi-

librium free energy difference ∆F and the dissipated utility Udiss. The dissipation for a

trajectory Udiss(x) := ∆F − U(x) measures the amount of utility loss due to the inability of

the decision-maker to act according to the equilibrium distribution for each decision problem.

This is because the decision-maker is forced to act without planning and cannot anticipate

the changes in the environment. At most, the decision-maker could act according to the
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Environment
System

No-planning (Physics) Planning

Behavior Behavior

Utilities (negative energies) Utilities

Figure 6.1. Difference between no-planning and planning scenarios in one-step decision problem. An

instantaneous change in the environment occurs at time t0 represented by a vertical jump from λ0 to λ1
in the upper panels that translates directly in a change in free energy difference represented by ∆F in

the lower panels. The system’s previous state at t0 is given by peq0 (x) i.e. the equilibrium distribution

for Uλ0 , and the posterior equilibrium is given by peq1 (x) i.e. the equilibrium distribution for Uλ1 .

Left: No-planning. In the no-planning scenario the decision-maker is unable to plan and therefore

acts according to the previous strategy behavior peq0 (x) at time t0. On average with such strategy the

utility gained is Unet =
∑
x p0(x0)∆U(x) at t0 and the dissipation is Udiss = ∆F − Unet. Right: In

the planning scenario, the decision-maker is able to compute a better strategy p̃(x) after deliberation

at time t1 = t0 + ∆t∗. In this case the net utility is Unet =
∑
x p̃(x)∆U − 1

βDKL(p̃(x)||p0(x)).
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equilibrium distributions of the previous environment. Thus even with full adaptation the

decision-maker will always lag behind one time-step and will therefore always dissipate.

Due to an equivalent version of Equation (6.9), we can also state the second law for

decision-making Udiss ≥ 0, which implies that a purely adaptive decision-maker can gain a

maximum utility that cannot be larger than the free energy difference

U ≤ ∆F.

Similarly we can obtain equivalent relationships to the Crooks-Fluctuation Theorem

p(x)

p†(x)
= eβU

diss(x) , (6.14)

and the Jarzynski Equality 〈
eβU(x)

〉
p(x)

= eβ∆F (6.15)

which both have the same implications as in the physical scenario and can be derived in the

same way as in the physical counterpart (Crooks, 1998). In summary, we can say that an

adaptive decision-maker without planning follows the same laws as a thermodynamic physical

system that is lagging behind the equilibrium.

6.2.2.2 Non-equilibrium decision-making with planning

In contrast to an agent without planning capabilities, an agent that plans will be able to act

according to a different distribution than the prior strategy. This means that when facing the

decision problem ∆Un at time tn the agent chooses the action xn sampled from the posterior

strategy, contrary to an agent without planning that chooses xn−1 sampled from the prior

strategy. The planning process incurs a computational cost that is measured—in a similar

fashion to stochastic thermodynamics (Seifert, 2005) and previous formulations of bounded

rationality given in the introduction—with the difference between the conditional stochastic

entropies from prior to posterior

s(xn|xn−1, tn)− s(xn|xn−1, tn−1) := − log
p(xn|xn−1, tn)

p(xn|xn−1, tn−1)
.

Note that the prior distribution p(xn|xn−1, tn−1) is the previous posterior distribution eval-

uated at xn instead of xn−1. Basically, this measures the change in probability from prior

behavior to posterior behavior of the newly chosen action xn.

Taking into account the computational cost of planning, we define the net utility of action

xn due to a change in the environment as the change of free energy

u(xn, tn−1 → tn) = ∆U(xn, tn−1 → tn)− 1

β
log

p(xn|xn−1, tn)

p(xn|xn−1, tn−1)
,

which again parallels the concept of work. The total net utility Unet(x) =
∑N

n=1 u(xn, tn−1 →
tn) takes the form of a non-equilibrium free energy at trajectory level

Unet(x) =

N∑

n=1

∆U(xn, tn−1 → tn)− 1

β

N∑

n=1

log
p(xn|xn−1, tn)

p(xn|xn−1, tn−1)
. (6.16)
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Similarly to Equation (6.8), the first law for decision-making with planning costs is

Unet = ∆F − Udiss

and states that the total net utility Unet =
〈
Unet(x)

〉
p(x)

is the difference between the bounded

optimal utility (following the equilibrium strategy with precision β) expressed by the equilib-

rium free energy difference ∆F and the dissipated utility Udiss. The dissipation

Udiss(x) := ∆F − Unet(x) (6.17)

measures the amount of utility loss if the decision-maker’s plan does not manage to produce

an action from the equilibrium distribution, for example due to the lack of time for planning.

However, a decision-maker with infinite planning time will not have this problem and therefore

will not dissipate by wasting utility.

To investigate the counterpart of the second law, we need to determine whether Udiss ≥
0 holds. This can be achieved, for example, by first deriving the counterpart of Crooks

fluctuation theorem or the counterpart of the Jarzynski equation with subsequent application

of Jensen’s inequality.

Theorem 6.2.1. Crook’s Fluctuation Theorem for decision-making with planning costs states

that
p(x)

p†(x)
= eβU

diss[x] (6.18)

where the dissipated utility of a particular trajectory is Udiss[x] = ∆F−Unet(x) and the proba-

bility of the trajectory using the backward protocol is p†(x) = p†(x0|x1, t0) p†(x1|x2, t1) · · · p†(xN |tN )

for N decision-problems starting at time tN and going backwards up to t0. For the relation

to be valid we must assume that the starting distribution in the backward process is also in

equilibrium, p(xN |tN ) ∝ eβU(xN ,tN ).

Proof. Here we derive the relationship between reversibility and dissipation.

p(x)

p†(x)
=
p(x0|t0)p(x1|x0, t1) · · · p(xN |xN−1, tN )

p†(x0|x1, t0)p†(x1|x2, t1) · · · p†(xN |tN )

=
eβU(x0,t0)

Z0

1

eβU(x0,t0)

p(x1|x0, t1)

p(x1|x0, t0)

eβU(x1,t0)

eβU(x1,t1)
· · · p(xN |xN−1, tN )

p(xN |xN−1, tN−1)

eβU(xN ,tN−1)

eβU(xN ,tN )
ZN

=
ZN
Z0

e
β 1
β

log
p(x1|x0,t1)
p(x1|x0,t0) e−β∆U(x1,t0→t1) · · · eβ

1
β

log
p(xN |xN−1,tN )

p(xN |xN−1,tN−1) e−β∆U(xN ,tN−1→tN )

= eβ∆F−βUnet(x) = eβU
diss(x)

where in the second line we have used the identity

p†(xn−1|xn, tn−1) =
eβU(xn−1,tn−1)

eβU(xn,tn−1)
p(xn|xn−1, tn−1)

from local detailed balance, and we assumed that in the backward process the decision-maker

starts also using the equilibrium strategy p†(xN |tN ) = 1
ZN
eβU(xN ,tN ).
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Although at first sight Equation (6.18) looks the same as the previous Crooks’ relation for

the no-planning case (6.14), it is not the same. Here the net utility is defined by Equation

(6.16) which takes into account both, the gain in utility and the computational costs of

planning.

Theorem 6.2.2. The Jarzynski equality for decision-making with planning costs states that
〈
eβU

net(x)
〉
p(x)

= eβ∆F (6.19)

Proof.
〈

exp

(
β

N∑

n=1

[
∆U(xn, tn−1 → tn)− 1

β
log

p̃(xn|tn, xn−1)

p̃(xn|tn−1, xn−1)

])〉

p(x)

=

(1.)
=

∑

x0, xn,···xN
p(x0|t0)

N∏

n=1

p̃(xn|tn, xn−1)

N∏

n=1

exp(βU(xn, tn))

exp(βU(xn, tn−1))

N∏

n=1

p̃(xn|tn−1, xn−1)

p̃(xn|tn, xn−1)

(2.)
=

∑

x0,···xn,···xN
p(x0|t0)

exp(βU(x1, t1))

exp(βU(x1, t0))

N∏

n=2

exp(βU(xn, tn))

exp(βU(xn, tn−1))
p̃(x1|t0, x0)

N∏

n=2

p̃(xn|tn−1, xn−1)

(3.)
=

1

Z0

∑

x1···xn,···xN
exp(βU(x1, t1))

N∏

n=2

exp(βU(xn, tn))

exp(βU(xn, tn−1))

N∏

n=2

p̃(xn|tn−1, xn−1)

(4.)
= =

1

Z0

∑

x2···xn,···xN

N∏

n=2

exp(βU(xn, tn))

exp(βU(xn, tn−1))

N∏

n=3

p̃(xn|tn−1, xn−1)
∑

x1

exp(βU(x1, t1))p̃(x2|t1, x1)

︸ ︷︷ ︸
=exp(βU(x2,t1))(Detailed Balance)

(5.)
=

1

Z0

∑

xN

exp(βU(xN , tN )) =
ZN
Z0

= eβ∆F

In (1.) we unfold the expression. In (2.), we cancel the trajectory probabilities
∏N
n=1 p̃(xn|tn, xn−1)

and then take one term out of the two remaining products. In (3.) first we use the equivalence

exp(βU(x1, t0)) = Z0peq(x1|t0) (because at time t0 the decision-maker acting according to the

equilibrium distribution ) that allows to cancel with p̃(x1|t0, x0) = peq(x1|t0), and second, we

sum over x0 with the only term that depends on it being p(x0|t0). In (4.) we take one term of

the second product and perform the sum over x1 to obtain by detailed balance exp(βU(x2, t1))

that will allow to cancel with the term in the denominator of the first product. We perform

steps (3.) and (4.) repeatedly until obtaining the last equivalence that proves the theorem.

Again we note that previously proved Jarzynski relation from Equation (6.19) is not the

same equation as in the no-planning case (6.15). In the planning case the definition of the net

utility is different and takes into account both, the utility gain and the computational cost of

planning.

We can now state the second law of decision-making with planning costs as
〈
Udiss(x)

〉
p(x)

=
1

β
DKL(p(x)||p†(x)) ≥ 0 (6.20)
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from Equation (6.18) by rearranging and taking expectations. The same inequality can be

obtained from Equation (6.19) by applying Jensen’s inequality 〈expx〉 ≥ exp 〈x〉 to recover〈
Unet(x)

〉
p(x)

≤ ∆F . Equation (6.19) connects finite with infinite time decision-making.

That is, there is a relation between the equilibrium free-energy differences that is the maxi-

mum attainable net utility with unlimited computation time and the net utility obtained by

decision-makers with limited computation time. In section 6.3 we will provide examples of

how to use these relations to extract useful information from decision-making processes.

6.3 Application to Exemplary Learning and Planning Systems

In this section we illustrate the applicability of our results in a series of simulations for different

decision-making scenarios.

• No-planning. For the no-planning scenario we study two model classes: the first one

contains simple one-step lag models of adaptation where equilibrium is always reached

with one time step delay, and the second one contains more complex models of adapta-

tion that do not necessarily equilibrate after one time step. In the first model class we

can easily study the relation between dissipation and the rate of information-processing,

whereas in the second class of models we can study more complex non-equilibrium phe-

nomena such as learning hysteresis.

• Planning. For the planning scenario we illustrate the novel Jarzynski equality and

Crooks Theorem for decision-making in two cases: the first case is a discrete decision-

making scenario with clearly defined independent episodes, the second case is a contin-

uous planning problem.

The four example sections therefore are (a) No-Planning: dissipation and information-

processing rate, (b) No-Planning: dissipation and learning hysteresis, (c) Planning: Jarzynski

and Crooks for episodic decision-making, (d) Planning: Jarzynski and Crooks for continuous

decision-making.

6.3.1 No-Planning: Dissipation and Information-Processing Rate

Human decision-makers have to make decisions typically under delayed information. For

example, when trying to avoid an obstacle while driving, optimal actions are delayed due to a

minimum reaction time to notice the obstacle. Here we show how both, idealized information-

processing systems with delay and Bayesian inference schemes that can also be seen as delayed

systems, are subject to thermodynamic interpretation.

6.3.1.1 One-step lag models of adaptation

Consider a learner that is adapted to their environment such that their behavior can be

described by the equilibrium distribution p0(x). For this idealized scenario we assume that
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the learner can adapt their behavior to any environment perfectly after a time lapse of ∆t.

This also means that before the lapse of ∆t the learner continues to follow their old strategy

and is inefficient during this time span. We now consider two scenarios: first, where the

environment changes suddenly by ∆U(x), and second, where the environment changes slowly

in N small steps of ∆U(x)/N . In the first case, the learner is going to dissipate the utility

Udiss =
1

β
DKL(p0(x)||peq

1 (x)),

in the first time step which results directly from Equation (6.12) when replacing the non-

equilibrium distribution p̃(x) by p0(x). In all subsequent time steps no more utility is wasted,

assuming the environment does not change anymore. In the second case, the utility function

can be written as Ut(x) = U0(x) + t
N∆U(x) for t ∈ N : 0 ≤ t ≤ N . To compute the dissipated

utility we need to compare the learner’s behavior in time step t to the bounded optimal

behavior which is

peq(x, t) =
1

Z
peq(x, t− 1)e

β
N

∆U(x)

for t > 0. The overall average dissipated utility for the whole process is then

Udiss
N =

1

β

N∑

t=1

DKL(peq(x, t− 1)||peq(x, t))

The net utility gain for the N-step scenario is Unet
N = ∆F − Udiss

N . Note that

Udiss
N ≥ Udiss

N+1

and consequently, in direct analogy to a quasi-static change in a thermodynamic system, we

get vanishing dissipation (Udiss
N → 0) if the utility changes infinitely slowly (N → ∞ and

∆U(x)/N → 0), such that the net utility equals the free energy difference Unet
N = ∆F .

6.3.1.2 Bayesian inference as a one-step lag process

Bayesian inference mechanisms naturally have step by step dynamics that update beliefs with

new incoming observations. Again we can consider two scenarios: first where the learner

updates their belief abruptly by processing a huge chunk of data in one go, and second, where

belief updates are incremental with small chunks of data at each time step. Here we show

how the size of the chunks of data affect the overall surprise of the decision-maker and how

this relates to dissipation applying the free energy principle to Bayesian inference.

Traditionally, Bayes’ rule is obtained directly from the product rule of probabilities p(θ,D) =

p(θ)p(D|θ) = p(D)p(θ|D) where θ correspond to the different available hypothesis and D cor-

responds to the dataset. However, Bayes’ rule can also be considered to be consequence of

the maximization of the free energy difference with the log-likelihood as a utility function,

where the posterior belief p(θ|D) is a trade-off between maximizing the likelihood p(D|θ) and

minimizing the distance from the prior p(θ) such that
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p(θ|D) = argmax
p̃

∆F [p̃] = argmax
p̃

∫
p̃(θ|D) log p(D|θ)dθ − 1

β

∫
p̃(θ|D) log

p̃(θ|D)

p0(θ)
dθ (6.21)

=
1

Z
p0(θ)eβ log p(D|θ) =

1

Z
p0(θ)p(D|θ)β (6.22)

that for β = 1 it is identical to Bayes’ rule. For β → ∞ we recover the maximum like-

lihood estimation method as the density update is p(θ|D) = δ(θ − θMLE) with θMLE =

argmaxθ log p(D|θ).
Such a Bayesian learner with prior p0(θ) that incorporates all the data X at once is going

to experience the expected surprise S = −
∫
p0(θ) log p(D|θ)dθ. In contrast, a Bayesian learner

that incorporates the data slowly in N steps (thus the dataset D = (X1, . . . , XN ) is divided in

N parts) experiences an expected surprise of S = −∑N
n=1

∫
p(θ|X1, . . . , Xn−1) log p(Xn|θ)dθ

which corresponds to the thermodynamic concept of work. The first law in this case can be

written as

∆F + S = Udiss

where the equivalence of dissipation corresponds to

Udiss =
1

β
DKL(p0(θ)||peq(θ|D)).

when processing all the data at once and to

Udiss =
1

β

N∑

n=1

DKL(p(θ|X<n)||peq(θ|X≤n)).

when processing the data in N steps where X<n = (X1, . . . , Xn−1) and X≤n = (X1, . . . , Xn).

Thus given that the equilibrium free-energy difference ∆F is a state function independent

of the path—that means independent of whether data is processed all in one go or in small

chunks—a system acquiring data slowly will have a reduced surprise S and therefore have less

dissipation Udiss.

In Figure 6.2 we show how number of data chunks have an effect on the overall surprise

and dissipation. In particular, we have a dataset D = (x1, . . . , xT ) consisting of T = 100

data points Gaussian distributed x ∼ N (x;µd, σ
2
d) that we divide in batches of different size

b ∈ {100, 50, 25, 20, 10, 5, 2, 1}. The decision maker has prior belief p0(θ) about the mean

θ = µd and incorporates the data of every batch of data according to bayes’ rule until all

the data is incorporated. For b = 100 the Bayesian learner processes all data at once, having

thus high surprise and for b = 1 it incorporates the data in T/b updates with an overall

lesser surprise. In Figure 6.2 we show for different batch sizes the free energy optimum

∆F = log
∫
p0(θ)p(D|θ), the surprise S and the dissipation Udiss = ∆F − S. It can be seen

that when acquiring the data in small chunks the surprise of the decision-maker and the

dissipation is lower.
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Figure 6.2. Surprise, dissipation and free energy optimum as a function of the number of data

points per batch in a Bayesian inference task. We see that when the decision-maker processes all the

data at the same time has maximum surprise and dissipation. However, when incorporating the data

slowly the surprise and dissipation is minimal. The free energy optimum is only a function of the data

independent of how it is incorporated.

6.3.2 No-Planning: Dissipation and Learning Hysteresis

A common paradigm to study how humans learn is through adaptation tasks where subjects

are exposed to changes in an environmental variable that they can counteract by changing

an internal variable. Sensorimotor adaptation in humans has been extensively studied in

these error-based paradigms for example, where subjects have to adapt their hand position

(internal variable) to change virtual hand movements (external variable) represented by a

dot on a screen. When trying to reach a target, decision-makers must reduce this mismatch

by adapting their movements trial by trial in order to reduce errors. After many trials they

completely adapted to the mismatch and produce no errors (other than motor noise).

Consider a utility function Ue(x) = −(x−µe)2. For e = 0 we determine the prior behaviour

of a decision-maker with p0(x) = eβU0(x)

Z . Initially the decision-maker obtains an average utility

of 〈U0〉p0 which corresponds to zero mismatch between decision-maker and environmental

variable. A change of the environmental variable to e = 1 effectively changes the utility

function to U1(x) = −(x − µ1)2 making p0 non optimal. This forces the decision-maker to

reduce error adapting to the environmental variable by changing its probability distribution

over his actions. When fully adapted to the new environment the decision-maker again makes

no errors (other than the errors due to motor noise). We illustrate this adaptation paradigm

with a decision-maker that adapts according to the Metropolis-Hastings algorithm (MHA)

which follows Markovian dynamics.

Metropolis-Hastings Algorithm. In a decision-theoretic context, the Metropolis-Hastings

algorithm (Chib and Greenberg, 1995), can be considered an anytime decision-making process

that converges over time to the equilibrium distribution. The Metropolis-Hastings decision-

maker uses a Markov chain of states that starts at some initial location x0 ∼ p0(x) reflecting
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the prior of the decision-maker and then adapts its behavior according to the transition prob-

abilities p(x′|x) = g(x′|x)α(x′|x) where g(x′|x) is the proposal probability distribution and

α(x′|x) = min

(
eβU(x′)g(x|x′)
eβU(x)g(x′|x)

, 1

)

is the acceptance probability for each decision. In this way the decision-maker proposes a

new choice x′ ∼ g(x′|x) and decides at each time point whether to accept it with probability

α(x′|x). After a long time the chain of states converges to the optimal equilibrium distribution.

Crooks Theorem and Hysteresis Effects in Adaptation Tasks

Limited adaptation capabilities not only have an effect in the amount of obtained utility

through the second law for decision-making Unet ≤ ∆F but also induce a time asymmetry in

sequential decision-making processes. Hysteresis loops are a typical example of this asymme-

try. Hysteresis is the phenomenon in which the path followed by a system due to an external

perturbation, e.g. from state A to B, is not the same that the path followed in the reversed

perturbation, e.g. from state B to A. When the system follows the same path for the forward

perturbation and for the reversed perturbation we say the the process is time symmetric (and

therefore it is not subject to hysteresis effects).

In the two left panels of Figure 6.3 we show a simulated trajectory of actions composed

of 80 trials for an adaptation task using the Metropolis-Hastings algorithm with β = 22.5

and a Gaussian proposal g(x′|x) = N (x′;µ = x, σp = 0.1) when changing the environmental

variable from µ0 = 0.0 to µ1 = 1.0. In blue we show the trajectory for the forward-in-

time perturbation which converges after a few dozen trials to the new equilibrium. In brown

we show the trajectory for the reversed perturbation where the process starts with the last

trial (80) and ends with the initial trial (0). In the left panel the perturbation is made

instantaneously in one step at trial 40 and in the right panel in multiple steps (N = 23). The

hysteresis effect is clearly seen in the instantaneous perturbation where the path of actions

followed by the decision-maker in the forward perturbation is clearly different from a typical

trajectory of actions taken when applying the reversed perturbation. When the perturbation

is made in multiple steps both typical backward and typical forward trajectories become more

similar denoting a smaller hysteresis effect. In this way hysteresis effects are tightly connected

to the concept of dissipation.

Dissipation and the ratio between forward and backward probabilities of trajectories of

actions correspond exactly with Crooks theorem for decision making

p(x)

p(x†)
= eβU

diss
.

The probability of observing a trajectory of accepted actions x = (x0, x1, . . . xT ) for the

Metropolis-Hastings algorithm is easily computed with p(x) = p(x0)
∏T
t=1 g(xt|xt−1)α(xt|xt−1).

Similarly, the probability of observing the same trajectory in the backward protocol is p(x†) =
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Figure 6.3. We show the trajectories of actions from the Metropolis-Hastings algorithm with β = 22.5

and proposal standard deviation σp = 0.1 in a forward (blue) or backward (brown) protocol for an

instant change in the environment (first panel) and for a slow change in the environment (second

panel). In both cases the total change in the environment is µe = 0 to µe = 1 . The last panels

shows the dissipation for the forward protocol (blue) in both, the instant or the slow change in the

environment. The difference in probability densities of forward and backward trajectories relates

directly to dissipation and to hysteresis effects.

peq(xT )
∏T
t=1 g(xT−t|xT−t+1)α(xT−t|xT−t+1). The dissipated utility is Udiss = ∆F − Utot

where the free energy difference is computed between the final p1(x) = 1
Z e

βU1(x) and initial

equilibrium distributions p0(x) = 1
Z e

βU0(x), and the total utility gained Utot is the sum of the

utilities ∆U(x, tn → tn+1) at each environmental change at time tn. In the third panel of Fig-

ure 6.3 we show that the protocol with the instantaneous perturbation has higher dissipation

(related to higher hysteresis) compared to the protocol with multiple small perturbations.

6.3.3 Planning: Jarzynski and Crooks Relations for Episodic Decision-

Making

Choice-reaction-time experiments aimed to study information-processing in humans typically

consider episodic tasks. Here, we take a variation of Hicks episodic task with discrete action

space, commonly used in the decision-making literature. In our variation of Hicks task, the

decision-maker is shown a set of eight light bulbs |X = 8| that are turned off. Then all light

bulbs are turned on with different light intensities for a limited amount of time in which

the decision-maker must choose the brightest light associated with high utility. When given

enough time a decision-maker with arbitrary prior p0(x) chooses its actions according to the

equilibrium distribution from Equation (6.4). In such equation, the precision β specifies the

how well the light intensities can be told apart e.g. a human would be constrained by the

precision or the density of its photoreceptors. The choice task is repeated N times, each

time with different light intensities. For simplicity we set N = 2 enough to analyze the

non-equilibrium behavior of such decision-maker.

In Figure 6.4A we show the utility values and the corresponding equilibrium distributions

for a certain precision β = 4, reached only when having unlimited time. However, when having
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Figure 6.4. Episodic decision-making with planning. A: Utility functions and equilibrium distribu-

tions for the two decision problems. B: We show for different β and k (left) the average net utility,

(middle) the free energy difference and (right) the average dissipated utility. C Top panels: Conver-

gence of the empirical Jarzynski estimate depending on the number of trajectories T using different β

and different number of available samples k. Bottom panels: the associated expected net utility gain

which in the limit T →∞ is lower than the free energy difference (horizontal light red line).

limited time the equilibrium distribution is not reached and instead the decision-maker acts

according to a non-equilibrium distribution. We model this non-equilibrium choice strategy
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with the rejection sampling algorithm with limited samples from the introduction, where

the non-equilibrium probability distribution are described by Equation (6.6). In this kind of

episodic task the decision-maker always starts with the same prior p0(x) over the possible

choices x. The probability of a trajectory of decisions x is defined as p(x) :=
∏N
n=1 p(xn|tn)

for each episode n, and the net utility for a trajectory is

Unet
0 (x) :=

N∑

n=1

[
∆U(xn, tn−1 → tn)− 1

β
log

p(xn|tn)

p0(xn)

]
.

Consequently, the equilibrium free energy is defined as ∆F := maxp̃(x)

〈
Unet

0 (x)
〉
p̃(x)

which

can also be decomposed in the sum of N independent equilibrium free energies ∆F =∑N
n=1

〈
∆U(xn, tn−1 → tn)− 1

β log peq(xn|tn)
p0(xn)

〉
peq(xn|tn)

where

peq(xn|tn) =
p0(xn) exp(β∆U(xn, tn−1 → tn))

Zn

and the dissipated utility for a trajectory is Udiss(x) := ∆F − Unet
0 (x).

In the first panel of Figure 6.4B we show that, as expected, the more samples k the higher

the average net utility
〈
Unet

0

〉
p(x)

. In the second panel, we show the equilibrium free energy

difference invariant with respect to k and increasing for higher precision denoted by β. Lastly,

in the third panel we plot the average dissipated utility
〈
Udiss

〉
p(x)

that measures how much

utility is lost due to the limited number of available samples. The highest dissipation occurs

for high β and few samples k because such a high-precision decision-maker can potentially

obtain high utility but the limited amount of samples restrain it. In the following we derive

both a Jarzisnki-like relation and a fluctuation theorem valid for fixed prior.

Jarzynski equality for decision-making with fixed prior p0. For fixed prior it is trivial

to show that the following relation is valid

〈
eβU

net
0 (x)

〉
p(x)

= eβ∆F . (6.23)

To empirically test the validity of Equation (6.23) we simulated a decision-maker that faces

T times the same two decision-problems from Figure 6.4A . We can estimate the left hand

side of Equation (6.23) with the empirical average 1
T

∑
i exp(βUnet

0 (xi)) with the T trajectories

of decisions, where xi ∼ p(x). In the top row of Figure 6.4 we show the empirical average

converging to exp(β∆F ) depending on the number of simulated trajectories T and precision

β, empirically validating Equation (6.23). In the bottom row we show how the second law for

decision-making is fulfilled as the average net utility is less than the equilibrium free energy

thus satisfying inequality (6.13).

Equation (6.23) could be tested straightforwardly in an experiment with human subjects.

We would make sure that the statistics of the light bulbs induce a uniform prior to the decision-

maker, and we would test them in an infinite time condition (where the choice probabilities
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should correspond to stable equilibrium distributions allowing to compute in the first place β

and in the second the equilibrium free energies ∆F ) and in a finite time condition (allowing

to compute Unet
0 from the observed non-equilibrium behavior p(x)).

Crooks’ fluctuation Theorem for decision-making with fixed prior p0. For fixed

priors it easy to show that the following fluctuation relation holds

p̃(x)

peq(x)
= eβ(∆F−Unet

0 (x)) = eβU
diss(x) (6.24)

where peq(x) :=
∏N
n=1 p

eq(xn|tn) is the optimal equilibrium distribution over trajectories

x. Note in this case the probability distribution of the backward process p†(x) coincides

with the optimal equilibrium distribution p†(x) = peq(x) because of the independence of the

decision-problems. More specifically, the original Crooks theorem for decision-making from

Equation (6.18) is valid only when the backward process start in equilibrium. In our episodic

task all decision problems are independent which makes the starting equilibrium distributions

for all the backward processes coincide with the posterior equilibrium distributions.

The fluctuation relation (6.24) for episodic tasks adopts a different meaning than the con-

ventional relation. Specifically, the ratio between probabilities is now between the probability

of observing a trajectory of actions when having finite time to make a decision (a sequence

of non-equilibrium probabilities) and the probability of observing the same trajectory when

having infinite time (a sequence of equilibrium probabilities). This ratio is governed by the

exponential of the dissipated utility Udiss(x) similarly to the original Crooks equation.

Equation (6.24) can be rewritten by re-arranging the terms and averaging over p(x) as

1

β
DKL(p(x)||peq(x)) =

〈
Udiss(x)

〉
p(x)

Interestingly, we see that purely form trajectories of actions we can obtain the average dissi-

pated utility. We can test this relation in human experiments by comparing the trajectories

of actions in two different conditions, first when having finite time and second when having

as much time as needed. Then from the probabilities of action trajectories we can extract the

average dissipated utility.

6.3.4 Planning: Jarzynski and Crooks Relations for Continuous Decision-

Making

Since many decision-tasks are in continuous setups (such as sensorimotor tasks) here we con-

sider such continuous state space problems. In particular, we validate our Jarzynski equation

in the continuous domain with a non-episodic task.

In many optimization problems extracting gradient information from the cost function is

crucial for the optimization process. Here we use a diffusion process, modeled by Langevin

dynamics, that uses gradient information to reach equilibrium. In particular, we will employ
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quadratic utility functions that will allow for a close form solution of the non-equilibrium

probability density that changes over time.

Let x(t) ∈ R be the dynamics of computation that a decision-maker carries out when

planning. The differential equation that describes the dynamics is

∂x

∂t
= α

∂U(x)

∂x
+ αξ(t) (6.25)

where ξ(t) is white Gaussian noise with mean 〈ξ(t)〉 = 0 and correlation 〈ξ(t)ξ(t′)〉 = 2Dδ(t−
t′), D = σ2

2 and σ2 is the variance in (t−t′) time. In physics, when U(x) is an energy function,

this equation would correspond to the general equation of motion for Langevin dynamics

m∂2x
∂t2

= −m
α
∂x
∂t −

∂U(x)
∂x + mξ(t) in the limit of strong friction

∣∣γ ∂x∂t
∣∣ �

∣∣∣m∂2x
∂t2

∣∣∣ and mass

m = 1. Note that Equation (6.25) is closely related to learning algorithms that use gradient

information such as for example Stochastic Gradient Descend (SGD). These algorithms find

the minimum of a cost function by taking steps in the state space in the opposite direction of

the gradient. In here we see that the learning rate corresponds to the parameter α that, in

contrast with plain GD, not only multiplies the gradient but also the noise term.

Equation (6.25) gives the micro-dynamics of the decision-making process, however, the

evolution of the macro-dynamics p(x, t) are described by the following (well-known) Fokker-

Planck equation (Garcia-Palacios, 2007)

∂p(x, t)

∂t
= −αp(x, t)∂

2U(x)

∂x2
+ α

∂U(x)

∂x

∂p(x, t)

∂x
+Dα2∂

2p(x, t)

∂x2
. (6.26)

In order to compute the net utility we need the probability of the non-equilibrium distri-

bution up to a desired time t, thus we need to solve the Fokker-Planck equation. For quadratic

utility functions Uy(x) = −(ayx
2 + byx) for environment y, and initial Gaussian distribution

with mean µ0 and variance σ2
0 the solution is (see Appendix):

p(x, t) =
1√

2πσ2(t)
e
−(x−µ(t))2

2σ2(t) (6.27)

with

σ2(t) =
α2D

2c

(
1− e−2ct

)
+ σ2

0e
−2ct

µ(t) = e−ctµ0 −
b1

2a1
(1− e−ct)

where c = 2αa1, and we assumed that the prior strategy is Gaussian distributed with mean

µ0 and variance σ2
0. The precision parameter relates to the other parameters with the relation

β = 2α
D , which means that the higher the α the more we take into account the gradient leading

to a higher β, and the lower the noise D also the higher β.

Following a similar approach from the previous section we expose a decision-maker to two

utility function ∆U1 and ∆U2 which are shown in Figure 6.5A. In Figure 6.5B we show the net

utility, equilibrium free-energy differences and dissipated utility (according to Equations (6.16)
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Figure 6.5. Langevin Dynamics simulations. A In blue the different utility changes ∆U1 and ∆U2,

in red the prior p0, and in purple the posterior for β = 0.5 B: We show for different β and time

t = k∆t directly depending on k, (left) the average net utility, (middle) the free energy difference and

(right) the average dissipated utility. C Top panels: Convergence of the empirical Jarzynski estimate

depending on the number of trajectories T using different β and different number of update steps k in

the discrete Langevin equation. Bottom panels: the associated expected net utility gain which in the

limit T →∞ is lower than the free energy difference (horizontal light red line). With this simulations

we validate Equation (6.19).
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and (6.17)) for different values of β and number of steps k—corresponding to time t = k∆t

in Equation (6.27) for a given reference ∆t. In Figure 6.5C we show the convergence of

the Jarzysnki term towards the true equilibrium free energy difference term depending on the

number of trajectories to make the estimation. We can see on the bottom row that the second

law for decision making represented by the inequality (6.13) is fulfilled.

6.4 Discussion

In this paper we have used both precision and time to describe the behavior of decision-makers

with computational limitations in changing environments. We highlighted the similarities

with non-equilibrium thermodynamics in the case of agents that plan and agents that do not

plan. Additionally, we derived a novel Jarzynski equality and a Crooks fluctuation theorem

for decision-making scenarios with planning. We have shown how to use Jarzynski’s and

Crooks’ equations in different scenarios to extract relevant variables of the decision-making

process such as the equilibrium free energy difference, the average dissipated utility and

the action-path probabilities for both, equilibrium posterior distributions and distributions

of the backward-in-time protocol. We have provided a few examples for the no-planning

and planning scenario, such as one-step lag dynamics, discrete choice tasks and continuous

decision-making tasks.

The trade-off between expected utility and computational cost is a fundamental aspect

of decision-making that matters not only to the field of artificial intelligence, but also to

neuroscience, biology, psychology and cognitive science. Recently, there has been an increasing

interest in modeling decision-making with computational constraints (Gershman et al., 2015;

Parkes and Wellman, 2015). As pointed out in (Gershman et al., 2015) the computational

costs can be various, for example, expenditures arising from delays in time-critical settings or

the number of available samples when using Monte Carlo methods. Our modeling assumptions

take the relative entropy between a prior and a posterior distribution after deliberation as

an average computation cost. As a result of having limited time, decision-makers have an

additional sub-optimality which takes the form of a dissipated utility in analogy with non-

equilibrium thermodynamics.

The idea of using the relative entropy as a computational cost is not new (Mattsson and

Jörgen W. Weibull, 2002; Ortega and Braun, 2010b; D. H. Wolpert, 2006). In (Mattsson and

Jörgen W. Weibull, 2002) and similarly in (Ortega and Braun, 2011) the authors derive the

relative entropy as a control cost from an information-theoretic point of view, under axioms

of monotonicity and invariance under relabeling and decomposition. In other fields such as

robotics the relative entropy has also been used as a control cost (Braun et al., 2011b; Kappen

et al., 2012; Peters et al., 2010; Todorov, 2009) to regularize the behavior of the controller

by penalizing controls that are far from the uncontrolled dynamics of the system. Generally,

the relative entropy as a regularizer for utility maximization is convenient and general as it

is independent of the parametrization of the probability distributions.

The mutual information has also been considered as a candidate to quantify the compu-
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tation costs. We note, however, that the mutual information can be recovered from a free

energy when assuming a multi-task scenario. In particular, when assuming a probability dis-

tribution p(w) for an environment w, it is possible to show that the mutual information is an

average relative entropy (Genewein et al., 2015). This approach to quantify computational

resources has been employed in (Rubin et al., 2012; Still and Precup, 2012; Tishby and Polani,

2011) to characterize decision-makers with information constraints. Additionally, theoretical

results (Bernardo, 1997; Lindley, 1997) directly relate the connection between the number of

samples needed in an experiment to perform inference with the mutual information, by real-

izing that both have logarithmic form and thus indicating its correspondence to the sample

size.

Stochastic optimal control theory is closely related to the sequential decision-problems

shown here when considering trajectories as elementary states (Braun et al., 2011b). Its ob-

jective is to compute an optimal set of actions that minimize future cost. Classical approaches

to solve this problem is through the Bellman equation using a dynamic programming argu-

ment where the reward in the present time step also depends on the value function of the next

time step. A possible approach to solve such class of problems is through a value iteration

scheme as for example in (Rubin et al., 2012). This type of value iteration scheme has been

recently extended to the case where the model of the environment is unknown (Grau-Moya

et al., 2016a). Another possible approach to solve the Bellman recursion is through path

integral control that to consider a specific class of stochastic optimal control problems where

the cost of control is also a relative entropy. In path integral control one can simply sample

from uncontrolled dynamics to estimate the cost to go and act optimally (Kappen, 2005b;

Kappen et al., 2012; Theodorou et al., 2010). This directly connect to our planning scenario

when considering trajectories as single actions. In such case the utility function for a tra-

jectory is the sum of utility functions for every step, the prior distribution corresponding to

the uncontrolled dynamics is fixed and can be sampled from (e.g. brownian motion), and the

trajectories form posterior distribution correspond to the controlled dynamics.

The algorithms presented here exploit randomness to compute optimal solutions by sam-

pling. These algorithms belong to the class of Monte Carlo methods. There is growing

evidence that the human brain might exploit also randomness to perform computations. In-

stantiations of sampling procedures in humans have been shown experimentally in visual

perception (Moreno-Bote et al., 2011), sentence processing (R. P. Levy et al., 2009) and in-

ference (Griffiths and Tenenbaum, 2006; Sanborn et al., 2010). Approximate inference with

sampling methods have been able to explain some behavioral biases in decision-making (Lieder

et al., 2012), and have been shown to be efficient when using few samples (Vul et al., 2014).

Evidence that learning and perception are probabilistic and tied together has been found in

behavioral and neural experiments (Fiser et al., 2010). From the theoretical point of view

sampling procedures have been shown to be compatible with neural architectures that per-

form such statistical computations (Buesing et al., 2011). In some neuroscientific studies, the

brain is seen as a statistical machine that minimizes surprise (Friston, 2010) also by means

of a free energy principle. These theoretical insights together with the experimental evidence
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of stochastic computations in the brain reinforces the view of the brain as statistical machine

that can be subjected to thermodynamic analysis.

The results presented here are novel since only some connections between non-equilibrium

thermodynamics and decision-making have been reported in a handful of papers in the lit-

erature. For example, regarding the connection between predictive power and dissipation,

(Still et al., 2012) has found that non-predictive systems have been shown theoretically to

be highly dissipative. This directly connects to our approach in the following way. If the

decision-maker cannot plan because it does not know the future utility function it will em-

ploy a non-equilibrium strategy that leads to high inefficiency in terms of dissipated utility.

However, having full predictive power will allow it to produce actions from the equilibrium

distribution which means no dissipation. Jarzynski-like and Crooks-like relations have been

found in the economics literature in gambling scenarios (Hirono and Hidaka, 2015) and when

studying the arrow of time for decision-making (Mlodinow and Brun, 2014; Roldán et al.,

2015) respectively. We reported preliminary results for the one-step delayed decision-making

in (Grau-Moya and Braun, 2013; Grau-Moya et al., 2013). At the machine learning level

generalized fluctuation theorems have been used in (Hayakawa and Aoyagi, 2015) to train

artificial neural networks with efficient exploration. In general, fluctuation theorems and

Jarzynski equalities allow to estimate free energy differences which are very important in

decision-making because the free energy directly relates to the value function which is a cen-

tral concept in control and reinforcement learning.

In conclusion, the results presented here bring the fields of stochastic thermodynamics

and decision-making closer together. It can be useful to study decision-making systems as

statistical systems just like in thermodynamics. The energy functions in physics correspond

utility functions in decision-making with a certain caveats. The first is that decision-maker

have limitations in computational power expressed by slow adaptation or limited time for

planning, whereas in thermodynamic system have relaxation rates that can be potentially

slow. Importantly, the statistical ensembles of both, decisions and physical states, can be

conceptualized as non-equilibrium ensembles that reach equilibrium after a certain time.
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Appendix: Fokker-Planck solution for unknown initial state

Although we have found solutions in the literature of the Fokker-Planck equation for known

initial state x0 (Risken, 1984) we have not for the case of unknown initial state. Here we

derive the solution when the initial state is Gaussian distributed.

Consider the following dynamics:

dx

dt
= A(x, t) +B(x, t)ξ(t)
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where A(x, t) = α∂U1
∂x , B(x, t) = α and U1(x) = U0(x)+∆U(x), U0(x) = 1

β log p0(x)+ 1
β logZ0

and thus
∂U1

∂x
=
∂∆U(x)

∂x
− 1

β

1

p0

∂p0(x)

∂x
.

When imposing Gaussian distributions in the potential Uy(x) = −(ayx
2 + byx) for any y,

∂U1

∂x
=
∂∆U(x)

∂x
− 1

β

(x− µ0)

σ2
0

Then the associated Fokker Planck Equation is

∂P

∂t
= 2αa1

∂

∂x
xP + αb1

∂

∂x
P +

α2D

2

∂2

∂x2
P

We will solve this equation by doing first the Fourier transform and then solve for the method

of characteristics. The Fourier transform is

∂P̂

∂t
=− csdP̂

ds
− α2D

2
s2P̂ + αb1isP̂

=− csdP̂
ds

+ P̂

(
c2is−

α2D

2
s2

)

where c = 2αa1 and c2 = αb1. Now applying the method of characteristics

dP̂

dx
=
∂P̂

∂s

ds

dx
+
∂P̂

∂t

dt

dx

we obtain that dt = dx, s = s0e
ct and applying these relations we get

dP̂

dx
=
dP̂

dt
= P̂

(
c2is0e

ct − α2D

2
s2

0e
2ct

)

Integrating over t between t = 0 and t = t′ we have that

dP̂

P̂
= dt

(
c2is0e

ct − α2D

2
s2

0e
2ct

)

log P̂
∣∣∣
P̂ (s,t′)

P̂ (s0,t=0)
=
c2is0

c
ect − α2D

4c
s2

0e
2ct
∣∣∣
t=t′

t=0

Assuming a Gaussian distribution as a boundary condition with mean µ0 and variance σ2
0 the

fourier transform for the boundary is

P̂ (s, t = 0) = exp

{
−σ

2
0

2
s2

0 − is0µ0

}
.

Then the solution in frequency space is

P̂ (s, t) = exp

{
−α

2D

4c
s2(1− e−2ct)− σ2

0s
2e−2ct + is

b1
2a1

(1− e−ct)− ise−ct
}

= exp
{
s2f1(t)− isf2(t)

}
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with f1(t) = −α2D
4c

(
1− e−2ct

)
− σ2

0
2 e
−2ct and f2(t) = e−ctµ0 − b1

2a1
(1 − e−ct). Transforming

back to the signal domain we obtain

σ2(t) = −2f1(t) =
α2D

2c

(
1− e−2ct

)
+ σ2

0e
−2ct

µ(t) = f2(t) = e−ctµ0 −
b1

2a1
(1− e−ct).
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Chapter 7

Discussion

7.1 Summary

In the introduction of this thesis I presented an existing information-theoretic framework to

model decision-making under both, bounded rationality and model uncertainty. Bounded

rational behavior was described by a posterior distribution over actions that depended on

the decision-maker’s prior distribution and on its available computational resources tuned

by the resource parameter α. Decision-making under model uncertainty was obtained by

computing certainty equivalents from free energy optimizations. In this way we obtained

risk-sensitive behavior given a prior model of the environment p(y|x) with a particular risk-

sensitive parameter β. Additionally, we also obtained ambiguity-sensitive behavior given

a prior probability µ(θ) on the possible world models represented by parameters θ and an

ambiguity-sensitive parameter γ.

In the following three chapters we studied experimentally if human decision-makers were

acting according to the previous information-theoretic models of decision-making. In partic-

ular, in Chapter 2 we studied human risk-sensitivity in a Bayesian sensorimotor integration

task; in Chapter 3 we studied human ambiguity-sensitivity in two tasks, one involving uncer-

tain choices between urns and another involving uncertain sensorimotor choices; in Chapter 4

we studied in a two-player game how model-uncertainty coming from both players affected

cooperation. In the remaining two chapters, we focused on extending some theoretical aspects

of the theory. In particular, in Chapter 5 we developed a generalized value iteration algorithm

that can describe sequential decision-making behavior under both, bounded rationality and

model uncertainty; in Chapter 6 we studied the inefficiencies of decision-makers when imple-

menting sub-optimal bounded rational policies due to limited time and drew clear analogies

with non-equilibrium thermodynamics.

In the introduction we introduced several question that I tried to answer with the results

presented in this thesis. In the following I briefly answer these questions and then proceed to

a more extended general discussion.
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Experiments in Human Decision-Making Are humans making choices according to the

proposed information-theoretic models of bounded rationality, risk and ambiguity in laboratory

experiments (Chapter 2, 3 and 4)? Yes, however with some caveats that will be discussed in

the following section.

• Is the human sensorimotor system subject to risk-sensitivity in an estimation task (Chap-

ter 2)? Yes, we showed that at for linear utility functions the sensorimotor system acts

in a risk-sensitive fashion for Bayesian estimation tasks.

• Do the same humans have different ambiguity attitudes in different situations? What are

the important factors that determine these ambiguity attitudes (Chapter 3)? Yes, our

experiments conclude that humans have different ambiguity attitudes in different tasks

and that the important factor regarding this ambiguity attitude is how the uncertainty

is visualized and not if the task is within a sensorimotor context.

• In two-player games, how are cooperative solutions affected by model uncertainty coming

from different players (Chapter 4)? We performed simulations and tested human sub-

jects in two-player games with model uncertainty and conclude that the risk-sensitive

parameter of the opponent plays a crucial role in driving behavior towards cooperative

plays.

Theoretical Advancements of Information-Theoretic Approaches to Decision-Making

• How can we extend the theory in a sequential decision-making scenario to take into

account bounded rationality and model uncertainty simultaneously when planning into

the future (Chapter 5)? We proposed an objective function to take into account not

only future rewards but also future information costs coming from bounded rationality

and model uncertainty. This new objective function has an analytic solution which

could be exploited to derive a novel generalized value iteration algorithm. We tested

the algorithm in a grid world environment.

• Given that the free energy is a concept from statistical physics, how does bounded ra-

tional decision-making relate to non-equilibrium statistical physics? Can we make novel

predictions when importing concepts from physics to decision-making (Chapter 6)? We

conclude that we can stablish clear relationships with non-equilibrium thermodynamics

by realizing that bounded rational decision-makers must spend time to compute solu-

tions form the posterior equilibrium distribution. In this way, suboptimal behavior due

to employing a non-equilibrium distribution can be quantified by the amount of dissipa-

tion in analogy with thermodynamics. Thanks to the concept of dissipation we derived

novel relations that could be the basis for novel interesting predictions in the context of

decision-making with limited resources.

In the following we discuss the results presented in this thesis and provide future interesting

research directions.
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7.2 Discussion and Outlook

A general question regarding the experimental part of this thesis was if human subjects make

decisions according to the information-theoretic models of bounded rationality, risk-sensitivity

and ambiguity in laboratory experiments. We conclude that the answer is yes, however, with

some caveats that we discuss in the following sections. Additionally, regarding the theoretical

part, we discuss how our algorithms can be improved for better scalability and how the

theoretical models could be tested in human experiments.

Statistical complexity and utility functions.

In our first experiment, human subjects had to estimate a latent variable by producing a

motor response. By adding sensorimotor costs we were able to induce risk-sensitive behavior.

We modeled this behavior with an information-theoretic model that predicted a modulation

of behavior depending on both, the uncertainty and the cost of the motor command. Im-

portantly, the cost function employed in our experiments was simply a linear function in the

space of motor commands. We observed that under this simple cost function subjects’ behav-

ior is consistent with the risk-sensitive predictions. However, we doubt that this will be the

case in more complex scenarios with highly non-linear utility functions or complex statisti-

cal data. In fact, recently, complex internal representations in sensorimotor decision-making

have been studied in the context of Bayesian Decision Theory (Acerbi, 2015). In particular,

deviations from optimal Bayesian inference are investigated in complex scenarios with non-

Gaussian statistical data. They find that the origins of suboptimal Bayesian behavior is due

to the difficulty to learn such complex statistics (or priors) and not because of suboptimal

computations of posterior distributions (Acerbi et al., 2014). We hypothesize that in the

context of risk-sensitive Bayesian integration similar suboptimal behavior could in principle

be found due to similar reasons, that is, by inaccurate learning of complex priors. How-

ever, in analogy with their results the computations involved to express risk-sensitivity might

be optimal. In the context of our remaining experiments (Chapters 3 and 4), we also used

simple utility functions and small decision-spaces. This allowed to verify that the information-

theoretic model was consistent with the behavioral data, but it is not clear if these models

will hold valid for complex decision-making processes. It would be interesting to test whether

our predictions remain valid in more complex decision-making processes. For example, the

information-theoretic model of risk-sensitive behavior could be tested using more complex

non-linear cost functions or more complex statistical distributions involving latent variables.

Intricacies of bounded rational behavior.

In all our experiments subjects where showing instances of bounded rational behavior. How-

ever, due to our experimental design subjects learned flat priors over the distributions of

actions. When assuming flat a priors, the posterior becomes simply a soft-max distribution

in the bounded rational model. For example, in Chapter 3 and 4, subjects had a flat prior
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over possible actions which induced a soft-max posterior as can be seen in Equations (4.4)

and (4.4). In this sense we only partially validated the consistency of human behavior with

the information-theoretic model of bounded rationality. In the case of our experiment in

risk-sensitivity (Chapter 2), the prior was a Gaussian distribution over the latent variable.

Importantly, we were focusing in explaining risk-sensitivity and in our predictions we dis-

regarded the bounded rational part of the model by assuming perfectly rational agents i.e.

assuming an infinite value for the rationality parameter. Due to this our predictions were

delta distributions and not probability distributions over the possible actions. For this reason

we could not test whether our subjects were acting according to the information-theoretic

bounded rational model at a probabilistic level. However, when inspecting the data it seems

this is likely to be the case as the sensorimotor actions provided by subjects where not dis-

tributed according to a delta distribution—see typical subject data in Figure 2.2.

Although in this thesis we focused on how human behavior is affected by model uncertainty,

it could be an interesting to focus more on the bounded rationality part. For example, experi-

ments could be done in Bayesian sensorimotor integration by limiting the allowed decision time

in order to implicitly change the bounded rationality parameter of human decision-makers.

Regarding the experiments’ statistical properties, variations could be made in order to induce

non-flat priors that make interesting predictions ready to be tested in similar experimental

paradigms proposed in this thesis.

Partial ambiguity reversal.

In our second experiment subjects had to make choices under ambiguity in two tasks—an

urn task and a sensorimotor task—under different framing such as sensorimotor framing

and visual framing. Although in both tasks of Experiment 1 all subjects were acting in

accordance with the information-theoretic ambiguity model, they did not do so in the control

experiment—compare blue bars in Figure 3.4C. In this experiment the utility function was

reversed to test whether subjects’ choice behavior can be explained by genuinely ambiguity

sensitivity or it is a consequence of idiosyncratic biases. The experimental data reveals a

trend in choice behavior where subjects prefer the risky option when the ambiguous option

has high ambiguity. Strangely, subjects show a reversal in choice behavior by adopting an

increased preference for the ambiguous option only for intermediate levels of ambiguity. At

the time of publication we were not aware of fMRI research on ambiguity that has similar

results for partial ambiguity conditions. In particular, in (Lopez Paniagua and Seger, 2013)

found that certain brain regions associated with the processing of ambiguity, the so-called

‘fronto–parietal–striatal system’, showed an increased activity for partial ambiguity conditions

compared to no uncertainty or full uncertainty conditions. They hypothesize that this high

activation in partial ambiguity conditions could be an indicator for the brain to search for

useful information that is greater for trials with intermediate levels of ambiguity. They argue

that in the case of risk (no-ambiguity) there is no need to search for additional information

whereas in the case of full ambiguity it might be too difficult to search for useful information.

In the context of our experiment, the behavioral data suggests that there is a perceptual bias
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for partial ambiguity conditions, however, after reviewing the results from (Lopez Paniagua

and Seger, 2013) the underlying reason of different behavior in partial ambiguity is still

unclear. In principle it could be attributed not to a perceptual bias but to a more profound

reason only valid to partial ambiguity decision-making.

Scalability in high dimensional decision-spaces.

In Chapter 5 we developed a generalized value iteration scheme for planning under both,

bounded rationality and model uncertainty. The results provided are interesting and high-

light the fact that we can design agents that can be robust in at least two different ways,

due to the stochasticity in their actions and due to pessimism about the possible models of

the environment. Additionally, we argued that exploration can also be achieved in two-ways,

by being stochastic in the policy or by optimism about the world models. These ways to

achieve robustness or exploration have been studied in the literature before but in separate

ways. For example, exploration due to stochasticity has been induced by Boltzmann distribu-

tions or e-greedy approaches, whereas exploration through optimism has been done by Upper

Confidence Bounds (UCB) algorithms where actions are valued optimistically depending on

the underlying uncertainty. The algorithm presented in Chapter 5 that solves the planning

problem in partially unknown MDP is computationally expensive and does not scale well with

respect to the state and latent spaces. For this reason it would be interesting to implement

sampling approaches that scale well. For example, the authors in (Guez et al., 2012; Guez

et al., 2013) have explored Monte Carlo sampling techniques which seem a promising direction

to follow in problems with high-dimensional state spaces. An alternative approach could be

to design deep neural architectures for the approximation of the free energy function (that

acts as a value or Q-function). For example, recently in (Mnih et al., 2015) it is shown that

it is possible to learn such complex Q-functions by means of a deep neural network, achieving

state-of the art performance in Atari games comparable to human professional players. It

would be interesting to test our ideas to design agents that take into account model uncer-

tainty and bounded rationality in more complex environments such as the Atari games. These

agents would show interesting and diverse behavior such as aggressive or cautious behavior.

Validating the novel theoretical contributions by testing human behavior.

In Chapter 6 we explored the analogies between non-equilibrium thermodynamics and bounded

rational decision-making under limited time. We derived new interesting relations that con-

nect bounded optimal behavior with sub-optimal behavior due to limited time (the newly

proposed counterparts of Jarzynski and Crooks relations for the decision-making case). There

are only a few research articles drawing clear analogies between these two fields, some of them

were discussed in the conclusions of Chapter 6. Possible future research in this direction would

come from experiments in human decision-making that test whether the proposed relations

hold and explain human behavioral data. For example, a possible paradigm to test these ideas

would be in visuomotor adaptation tasks where one can clearly interpret non-equilibrium be-
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havior as the adaptation dynamics. Additionally, in Chapter 5 we also proposed an interesting

model of sequential decision-making behavior. It would be interesting to test whether human

behavior can be explained with our model. In particular, it would be interesting to design

a Markov Decision Problem in where humans solve sequential decision making tasks under

model uncertainty and learn about the world. This could be easily modeled as our model

provides a way to study learning in unknown environments and stochastic policies.

Setting the parameters.

In our experimental and theoretical work the parameters of the models that we used to explain

or model behavior were set arbitrarily for the theoretical part or fitted in the experimental

part. How to set and adapt these parameters depending on the nature of the decision-

problems or the incoming data of the tasks at hand is still an open problem. However,

interesting work has been done in scheduling the bounded rationality parameter. In (Fox

et al., 2015), a temporal difference method is used to learn the free energy function in a

way that the bounded rationality parameter is increased over time from zero to a very high

value. This method allows for fast learning at early stages when the estimate of the free

energy function is inaccurate and accurate estimates at later stages when the value of the

rationality parameters is high. Thus with this scheduling, the algorithm transitions from

learning a free energy value function with small rationality parameter to learning a classic

Q-function when the rationality parameter is high. Another possible approach would be, for

example, when employing a rejection sampling scheme (such as in Chapter 6) to track the

number of rejections. One could design an scheduling of the rationality parameter in such

a way that when there are many rejections the parameter decreases—thus simplifying the

sampling problem—and when there are too many acceptances the parameter increases—to

improve performance in the decision-making problem. Regarding the parameters for model

uncertainty, the tuning of, for example, the risk-sensitive parameter is still an open problem.

Extending the information theoretical models

Our planning algorithm takes into account bounded rationality and model uncertainty. An

extension of this algorithm could be a version of it that also includes risk-sensitivity. In this

way, when the model of the environment is learned and there is no uncertainty about the

parameters the decision-maker could still show risk-sensitive behavior. I believe that adding

risk-sensitivity to the algorithm would be straightforward and interesting in its own right, but

it could also amplify the computational demands. Another type of extension could be done by

taking into account more intermediate variables. For example in (Genewein et al., 2015) the

authors model a decision-maker with an internal stochastic representation (or abstraction)

in order to maximize utility subject to information-theoretical constraints. Our model could

be combined with their model by unified principle for temporal abstraction in the sequential

decision-making case. This extension might not be trivial though.
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7.3 Conclusions

In conclusion the goals of this thesis are met by providing behavioral evidence support-

ing information-theoretic models of decision-making under risk-sensitivity and ambiguity-

sensitivity. Additionally, we extended the theoretical model for sequential decision-making

under bounded rationality and model uncertainty that could be used for robust or explo-

rative behavior in artificial agents. Moreover, the thermodynamic analogies drawn in this

thesis open a novel approach to study the evolution of the decision-making process under

limited time and precision. Finally, in our discussion we provide hints on how to continue

investigations in this interesting line of research about information-theoretic decision-making.

Overall, the combination of information theory and decision-making seems a promising the-

oretical framework to describe and model, in a unified way, several important characteristics

of the decision-making process such as computational resources, robustness and exploration.

Although, the ideas presented in this thesis are certainly not common in the decision-making

community, I have no doubt the elegance of the theory and the experimental evidence will

make them appealing for researchers in the field.
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Foundation.

Arrow, Kenneth J and Leonid Hurwicz (1972). “An optimality criterion for decision-making

under ignorance”. In: Uncertainty and expectations in economics, pp. 1–11.
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