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1 ABSTRACT 

Goal-directed actions are of vital importance for our everyday life. Yet, their 

underlying mechanisms and neuronal correlates are still under debate. Two 

anatomically informed models try to integrate a variety of neurophysiological and 

functional descriptions of frontal, parietal and temporal areas: the idea of distinct 

fronto-parietal channels of reach vs. grasp motor control and the two visual stream 

hypothesis associating occipito-parietal processing with visuomotor control and 

occipito-temporal processing with visual perception. We addressed three 

controversial topics in the context of these two models. 

We investigated the lateralization of online control of visually-guided reaching and 

grasping in humans using an fMRI paradigm. The two channel hypotheses would 

suggest that corrections in grasping should be anatomically distinguishable from 

corrections in reaching. Our main finding was an increased coupling between the 

hemispheres when fast movement corrections were required. A specific increase of 

functional connectivity within the ipsilateral hemisphere without corresponding 

contralateral activation increases during movement corrections, suggested that 

activations of the ipsilateral PPC are of functional importance for visually-guided 

actions. Furthermore, the connectivity analysis demonstrated changes in inter-

regional coupling between the reaching and grasping networks during grip 

perturbations but no difference between reaching and grasping when those actions 

were matched in difficulty, arguing against an effector specificity of different cortical 

channels during online control. 

Lesions in the posterior parietal cortex can cause optic ataxia, which is defined as a 

reaching deficit to visual targets in the periphery. While such modality-specificity is 

essential for the definition of optic ataxia, comparisons of reaching accuracy across 

modalities have rarely been conducted. We investigated the potential multimodality of 

optic ataxia in two patients who both showed the typical misreaching in the periphery 

for the visual modality. Reaching to auditory targets differed significantly from 

reaching to visual targets for both patients, arguing against an effect of optic ataxia 

on auditory-guided reaching. Reaching to proprioceptive targets was unimpaired in 

one patient, but impaired towards nonfoveated targets in line with optic ataxia. 

However, this misreaching for proprioceptive targets was observed for the whole 

hemifield but did not increase with eccentricity as observed for visually-guided 
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reaching. Thus, we propose that optic ataxia is unimodal but misreaching to targets 

in other modalities may co-occur resembling optic ataxia. 

Finally, we examined the role of occipito-temporal regions in memory-guided 

reaching in a stroke patient suffering from lateralized visual form agnosia. In 

agreement with the only previous examination of memory-guided reaching in a 

patient suffering from visual form agnosia (David Milner, Dijkerman, & Carey, 1999), 

reaching to visual targets was unimpaired. In contrast, the patient showed deficits 

when reaching to memorized targets in the contralesional hemifield. In contrast to 

existing studies, we excluded working memory or short-term memory deficits that 

may account for the observed misreaching. A second experiment using a delayed 

localization task suggested that the misreaching during memory-guided reaching is 

associated with visuomotor processing, but not with purely perceptual deficits.  
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2 SYNOPSIS 

2.1 SENSORIMOTOR CONTROL AND FUNCTIONAL ORGANIZATION 

Reaching and grasping movements are performed seemingly effortless every day. 

The perceived ease stands in contrast to the complex computations the central 

nervous system needs to undertake to successfully reach to a goal. One key process 

is the processing of visual information, which is essential to gain information about 

the environment including the perception of possible targets, their features and 

location as well as of potential obstacles. Next, during the planning phase, a motor 

program is chosen out of several alternatives. Based on the target’s features like 

spatial characteristics (e.g., size, shape, orientation), non-spatial characteristic (e.g., 

fragility), and the visual context (e.g., close vicinity to other objects), the overarching 

goals of an action (e.g. to cut with scissors or passing them to someone) and the 

appropriate movement parameters are calculated (Glover, 2004). During the 

following phase of online control, the movement execution is continuously monitored 

by the sensory system to allow for adjustments of the motor commands based on 

visual as well as non-visual feedback like proprioceptive information about the limb 

position (Desmurget et al., 2001; Sarlegna et al., 2003, 2004). Knowledge about the 

current position of the hand is provided by visual and proprioceptive feedback with 

the latter providing feedback by proprioceptive afferents and feedforward information 

through the efference copy of the motor command. Therefore, the availability of 

additional visual feedback during the execution phase increases precision (Hesse & 

Franz, 2010; Inoue et al., 1998). For reaches in the dark without vision of the hand, 

proprioceptive information is the sole source of the hand position. It is, however, 

sufficient to reach for a target and to correct the reaching trajectory to new target 

locations, even when a displacement was not consciously perceived (Goodale, 

Pelisson, & Prablanc, 1986; Pélisson, Prablanc, Goodale, & Jeannerod, 1986).  

As has been discussed above, information from different sensory modalities are used 

to guide limb movements. However, the reference frame in which information is 

encoded depends on the sensory modality and has to be translated into a motor 

command that depends on the effector (Cohen & Andersen, 2002). For example, 

limb movements towards a visual target require additional transformations between 

eye-centered and hand-centered coordinates. While some studies argue in favor of 

eye-centered coding (e.g., Batista, Buneo, Snyder, & Andersen, 1999), others argue 
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for body- (Lacquaniti, Guigon, Bianchi, Ferraina, & Caminiti, 1995) or hand-centered 

coding (Graziano, Yap, & Gross, 1994). Recent findings point towards a role of a 

combination of coordinate frames (Buneo, Jarvis, Batista, & Andersen, 2002). In the 

latter, the contribution of each reference frame depends on the sensory modality of 

the target: while visual targets are encoded in gaze and body centered coordinates, 

reaching to proprioceptive targets is encoded in similar areas, but mainly in body-

centered coordinates (Bernier & Grafton, 2010). The authors suggest that the brain is 

highly flexible since it does not recruit different networks for targets of different 

modalities but can change its reference frame in some brain regions. 

The major players involved in goal directed actions are the parietal cortex, the motor 

cortex, the premotor cortex and the cerebellum as well as the basal ganglia. These 

areas are complemented by primary and secondary sensory areas for visually- and 

auditory-guided actions. In the following, the role of the posterior parietal cortex 

(PPC) will be depicted. 

The functional anatomy of the PPC has been studied extensively in humans and 

monkeys. Animal models are of utmost importance for the understanding of the 

functional anatomy of the primate sensorimotor system and for the transfer of the 

respective findings to the human brain. Studies in monkeys (Buneo & Andersen, 

2006) and humans (Culham, Cavina-Pratesi, & Singhal, 2006) depict the PPC as 

an interface integrating multimodal sensory and motor signals for movements to 

visual targets. The PPC integrates visual, proprioceptive (Beurze, de Lange, Toni, 

& Medendorp, 2007; Filimon, Nelson, Huang, & Sereno, 2009; Reichenbach, 

Thielscher, Peer, Bülthoff, & Bresciani, 2014), auditory (Alain, Arnott, Hevenor, 

Graham, & Grady, 2001; Weeks et al., 1999; Zatorre, Bouffard, Ahad, & Belin, 

2002), and vestibular (Reichenbach, Bresciani, Bülthoff, & Thielscher, 2016) 

information in order to accomplish successful movements to visual, auditory or 

proprioceptive targets, respectively.  

Moreover, the PPC is involved in the planning (Gallivan, McLean, Valyear, 

Pettypiece, & Culham, 2011; Glover, 2004; Glover, Wall, & Smith, 2012) and 

execution phase of movements. Since fMRI suffers from a poor temporal 

resolution, numerous fMRI studies did not disentangle the planning and control 

phase (Cavina-Pratesi, Monaco, et al., 2010; Fabbri, Strnad, Caramazza, & 

Lingnau, 2014; Filimon et al., 2009; Grefkes, Ritzl, Zilles, & Fink, 2004). To 

investigate these phases of a movement separately, delays between stimulus 
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presentation and movement initiation are often introduced. This separation of 

movement phases is of vital importance for the investigation of effector selectivity 

since the degree of effector selectivity changes over time during the evolvement of 

a movement (Beurze, de Lange, Toni, & Medendorp, 2009). Yet, according to the 

two visual stream hypothesis (Goodale & Milner, 1992; Milner & Goodale, 2008), 

memory-guided movements additionally recruit ventral stream areas in 

comparison to visually-guided movements (for more details, see section 2.4). 

Therefore, paradigms using a delay to separate both phases might reveal different 

neuronal correlates than those actually employed in visually-guided movements. 

One way to isolate online control from pre-movement planning without an 

introduction of a delay is to employ of a perturbation paradigm that specifically 

increases online control but leaves the planning component unaffected (e.g., 

Glover et al., 2005). Perturbations can be introduced e.g. by a displacement of the 

target (Desmurget et al., 1999), a real or virtual displacement of the effector 

(Reichenbach et al., 2014; Sarlegna et al., 2003), or a change in target size 

(Glover et al., 2005). Using such perturbation paradigms, several studies 

(Desmurget et al., 1999; Glover et al., 2005; Reichenbach, Bresciani, Peer, 

Bülthoff, & Thielscher, 2011; Rice, Tunik, & Grafton, 2006; Tunik, Frey, & Grafton, 

2005) were able to demonstrate the involvement of the PPC in the execution 

phase separately. 

2.1.1 CORTICAL LATERALIZATION  

Regarding the functional organization across hemispheres, various motor-relevant 

regions are commonly assumed to be lateralized, even though most of them show 

only some degree of lateralization, for example the primary motor and sensory 

cortices. For instance, ipsilesional motor impairments as well as proprioceptive and 

somatosensory deficits have been reported after lesions of the primary motor and 

sensory cortices (Boll, 1974; Borchers, Hauser, & Himmelbach, 2011; Jones, 

Donaldson, & Parkin, 1989), indicating the functional importance of ipsilateral brain 

regions. 

Contradictory findings have also been reported for the PPC. Several studies have 

suggested a lateralization of the PPC because increases in brain activation are 

reported to be either restricted to the contralateral PPC (Desmurget et al., 2001; 

Frey, Vinton, Norlund, & Grafton, 2005) or to be stronger contralateral (Beurze et al., 
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2007). At the same time, however, bilateral activation is often observed during 

actions like grasping (Binkofski et al., 1998; Grefkes, Weiss, Zilles, & Fink, 2002) in 

the PPC. One possible explanation for bilateral activation might be cross-talk 

between corresponding areas of both hemispheres (Culham et al., 2006). Another 

explanation is that movements for both hands are prepared although the instructions 

clearly require the participant to use only the instructed (usually right) hand (Culham 

et al., 2006). Two findings, however, argue against these explanations. First, a recent 

study demonstrated that the effector is selected before the reach plan is formed in 

parietofrontal regions (Bernier, Cieslak, & Grafton, 2012) and thus argues against a 

parallel planning of movements for both arms. Second, TMS studies inducing virtual 

lesions demonstrated the causal role of the ipsilateral parieto-occipital cortex in the 

planning of reaching movements (Busan et al., 2009) as well as of the anterior 

intraparietal sulcus (aIPS) in grasping movements (Davare, Andres, Clerget, 

Thonnard, & Olivier, 2007). The latter study revealed that a unilateral TMS inhibition 

of the left aIPS affected grip force scaling in both hands while a bilateral lesion was 

necessary to affect hand shaping. The causal role of the ipsilateral cortex is further 

supported by a monkey study demonstrating that a bilateral inactivation of the PPC is 

required to impair online control of hand movements (Battaglia-Mayer et al., 2012). 

Interestingly, lesion studies have not only demonstrated the causal role of ipsilateral 

parietal areas in in reaching and grasping, but also indicate that the ipsilateral cortex 

might be able to compensate for contralateral damage. Grasping activity was 

observed primarily ipsilateral in a stroke patient with contralateral parietal damage 

(besides bilateral damage to the ventral lateral-occipital cortex) (James, Culham, 

Humphrey, Milner, & Goodale, 2003).  

How can the findings of the causal role of the ipsilateral PPC in some studies on the 

one hand and only contralateral activation in other studies on the other hand 

(Desmurget et al., 2001; Frey et al., 2005) be reconciled? One explanation is offered 

by a study in monkeys showing that the inactivation of PMv affected selectively the 

contralesional hand when the lesion was small, but a larger lesion affected both 

hands (Fogassi et al., 2001a) suggesting that the lesions size affects the 

lateralization of the deficit. Another explanation for the seemingly contradictory 

findings might be that hand specificity changes during different phases of the reach 

movement (Beurze et al., 2007). While the intraparietal sulcus (IPS) as well as dorsal 

and ventral premotor cortex (PMd and PMv, respectively) besides others were clearly 
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lateralized for the contralateral hand during the movement preparation, the 

lateralization for PMv disappeared during the execution of reaching. Additionally, the 

degree of lateralization increases between the ipsi- and contralesional effector 

(Beurze et al., 2007; Beurze, de Lange, Toni, & Medendorp, 2009; Blangero, Menz, 

McNamara, & Binkofski, 2009; Medendorp, Goltz, Crawford, & Vilis, 2005) along an 

anterior-posterior gradient with, for instance, little effector-related lateralization in 

POJ. Finally, task complexity has been shown to modulate ipsilateral activity in the 

motor cortex and the time course of the ipsilateral activation suggested its relevance 

during movement execution (Verstynen, Diedrichsen, Albert, Aparicio, & Ivry, 2005). 

Thus, to draw conclusions about the lateralization of the sensorimotor network, 

several issues have to be addressed including the separation of the planning and 

execution phase as well as task difficulty. Since it is not possible to control the size of 

a lesion in humans, functional magnetic resonance imaging (fMRI) and transcranial 

magnetic stimulation (TMS) studies offer good alternatives for the investigation of 

lateralization. 

2.1.2 EFFECTOR SPECIFICITY 

In monkeys, the PPC has been often described as a highly modular, effector-

specific brain area that is specialized for sensorimotor control (Andersen & Buneo, 

2002; Snyder, Batista, & Andersen, 1997). The observed putative functional 

homologies between humans and monkeys (see below) so far only allow for 

moderate to tentative inferences about the parietal cortex and further studies are 

required to establish equivalencies between both species (Culham et al., 2006; 

Culham & Kanwisher, 2001; Grefkes & Fink, 2005). One reason is that the 

comparison between humans and monkeys usually relies on different techniques 

that differ in various aspects. For example, neurophysiological measures and 

imaging studies like fMRI have different spatial resolution and reflect distinct 

underlying processes. In contrast to single-cell recordings that depict the output of 

a single neuron, the blood-oxygen-level-dependent (BOLD) signal reflects the 

input and intracortical processing of an area containing many neurons (Logothetis, 

Pauls, Augath, Trinath, & Oeltermann, 2001). One solution is comparative 

mapping in humans and monkeys. This approach is promising but has its own 

caveats, e.g. that the human intraparietal sulcus expanded markedly and might 

have led to the development of new areas or to a divergence in the functional 
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specialization (Orban, Van Essen, & Vanduffel, 2004). 

Nevertheless, studies in monkeys contribute substantially to the understanding of 

sensorimotor control since the investigation of visuomotor brain areas for hand and 

arm movements in humans is especially challenging due to several technical 

limitations (see section 2.1). In the following, candidate regions for effector-specific 

modules will be discussed for monkeys and humans. 

Neurophysiological research has shown that the lateral intraparietal area (LIP) is 

involved in the planning of eye movements to memorized visual (Gnadt & Andersen, 

1988) and auditory (Mazzoni, Bracewell, Barash, & Andersen, 1996; Stricanne, 

Andersen, & Mazzoni, 1996) targets. A fMRI study investigating monkeys and 

humans verified the role of LIP for saccades in monkeys and indicated the posterior 

SPL as a human homologue (Koyama et al., 2004). 

Neurons located in the anterior part of the intraparietal sulcus (AIP) showed a high 

selectivity for the manipulation of specific visual (Sakata, Taira, Murata, & Mine, 

1995) and memorized (Murata, Gallese, Kaseda, & Sakata, 1996) objects. The 

importance of this area for grasping movements was confirmed by deficits in hand 

shaping following its inactivation (Gallese, Murata, Kaseda, & Niki, 1994). A subset of 

AIP neurons responded either preferentially during object manipulation independent 

of lighting conditions (motor-dominant neurons), during object manipulation in the 

light and fixation in the light (visual- and motor- dominant neurons) or during fixation 

in the light but not in the dark (visual-dominant neurons) (Sakata et al., 1995). The 

ventral premotor area (PMv) that is connected to AIP (Luppino, Murata, Govoni, & 

Matelli, 1999; Tanné-Gariépy, Rouiller, & Boussaoud, 2002) seems to be similarly 

effector specific. Increased activation in neurons in the PMv is associated with 

grasping (Kurata & Tanji, 1986; Raos, Umiltá, Murata, Fogassi, & Gallese, 2006), 

and inactivation of PMv resulted in grasping deficits (Fogassi et al., 2001b).  

The anterior part of the intraparietal sulcus (aIPS) has been suggested as a human 

homologue of the AIP (Culham et al., 2006) since it is activated during grasping with 

(Culham et al., 2003; Frey et al., 2005) and without visual feedback (Binkofski et al., 

1999) as well as during vision without grasping (Singhal, Monaco, Kaufman, & 

Culham, 2013). This finding is supported by further functional similarities between 

monkeys and humans like crossmodal processing (Grefkes et al., 2002). To 

investigate the causal role of aIPS in goal directed actions, patients with parietal 

lesions including and excluding the aIPS were investigated in a reach-to-grasp task 
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(Binkofski et al., 1998). Kinematic analysis indicated a selective impairment in 

grasping in the patient group whose brain damage included aIPS.  

Besides areas that are suggested to be specialized for saccades or grasping, further 

effector-specific areas have been proposed. The parietal reach region (PRR) is 

commonly described as comprising the medial intraparietal area (MIP) and the dorsal 

part of the V6A (Snyder, Batista, & Andersen, 2000), which are strongly connected 

(Gamberini et al., 2009), and sometimes additionally includes 7A (Andersen & 

Buneo, 2002). Neurons in V6A respond to visual and somatosensory stimulation 

(Galletti, Fattori, Battaglini, Shipp, & Zeki, 1996; Galletti, Fattori, Kutz, & Battaglini, 

1997), but are also activated during the planning and execution phase of visually 

guided reaching movements without visual feedback of the hand (Fattori, Gamberini, 

Kutz, & Galletti, 2001). These features make area V6A a candidate region for goal-

directed actions (Galletti, Kutz, Gamberini, Breveglieri, & Fattori, 2003). Indeed, 

misreaching can be induced by a bilateral ablation of this area (Battaglini et al., 

2002). Interestingly, inactivation of other subdivision of the PRR (area MIP and/or 

area 5) led to selective misreaching to peripheral targets but did not impair saccades, 

a pattern that is typically observed in optic ataxia (OA) patients (Hwang, Hauschild, 

Wilke, & Andersen, 2012) suffering from a lesion in the PPC (Perenin & Vighetto, 

1988) (for more details, see section 2.2 Optic ataxia). The relevant anatomical 

structures for OA in humans were narrowed down to the occipito-parietal junction 

(POJ), the junction between occipital cortex and the SPL, and the precuneus using 

the lesion subtraction method that compared a group of OA patients to a control 

group with brain damage but without OA (Karnath & Perenin, 2005). In line with this, 

the medial intraparietal sulcus (mIPS) was reported to show increased activation in 

healthy participants for reaching to central and peripheral targets while POJ was 

additionally activated during reaching specifically to peripheral targets (Prado et al., 

2005). However, a direct comparison between reaching to visible targets in central 

view and peripheral view was not conducted. Recently, this direct comparison 

revealed a combined network of POJ, mIPS and posterior SPL spreading to POJ as 

key areas for reaching in the periphery (Martin, Karnath, & Himmelbach, 2015) and 

thus confirmed the network that was previously indicated by lesion analysis (Karnath 

& Perenin, 2005). A part of this network, area mIPS, has been suggested to be the 

human homologue of the monkey MIP. This proposal was made on the grounds of its 

involvement of visuomotor transformations for goal-directed actions (Grefkes & Fink, 
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2005; Grefkes et al., 2004). In contrast, mIPS has also been suggested to 

correspond to PRR (DeSouza et al., 2000). The parieto-occipital sulcus and its 

vicinity have been proposed as a human homologue of V6A based on retinotopic 

mappings and activation during memory-guided pointing movements (Pitzalis et al., 

2013; Pitzalis, Fattori, & Galletti, 2015). Based on the similar consequences of 

lesions in monkey and human V6A, Galletti et al. (2003) have argued for a strict 

homology between of both species. 

While these studies argue for a modular view of the parietal cortex in monkeys and 

humans, recent findings question the view of strong effector specificity. V6A is part of 

the parietal reach region, but single-cell recordings in monkeys revealed that its 

activity is additionally modulated by wrist orientations (Fattori et al., 2009) and 

different grip types (Fattori et al., 2010a), leading the authors to propose that V6A is 

involved in both reaching and grasping. In line with this, bilateral ablation of this area 

causes not only misreaching but also misgrasping and affects wrist orientation 

(Battaglini et al., 2002). An fMRI adaption study in humans confirmed the 

involvement of the parieto-occipital area in hand orientation for grasping (Monaco et 

al., 2011) while another fMRI study in humans using region of interest and voxel-wise 

analyses was not able to detect grasp-related activation in the parieto-occipital region 

(Cavina-Pratesi, Monaco, et al., 2010). Further evidence for an involvement of the 

parieto-occipital cortex also in grasping comes from a study showing that brain 

activation during the planning phase predicts the upcoming grasping movement 

(Gallivan et al., 2011). 

The view of a strong effector-specificity has not only been challenged for parieto-

occipital regions, but also for aIPS (Tunik et al., 2005), which was assumed to be 

highly specialized for grasping. It has been shown, however, that the application of 

TMS shortly after movement onset over aIPS, but not over V6A, led to impairments in 

the adjustment of forearm rotation besides the grip component, leading the authors to 

propose that the aIPS is responsible for goal-directed actions independent of the 

effector. The finding of a more general role of the aIPS in online control was 

strengthened by findings showing that TMS over aIPS affects reaching accuracies 

(Reichenbach et al., 2011). Moreover, pointing with the hand or the foot yielded 

similar fMRI activity during the planning phase but differed from eye movements 

(Heed, Beurze, Toni, Röder, & Medendorp, 2011), shifting the focus further away 

from an effector specific organization of the PPC.  
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Consequently, an alternative view of functional organization of the human PPC has 

emerged that argues against a strict effector specificity but rather suggest gradients 

of sensory and effector preference (Bernier & Grafton, 2010; Beurze et al., 2007, 

2009). Beurze et al. (2009) used a paradigm in which participants sequentially 

received information about the target (left or right) and the effector (hand or eye). 

After all relevant information was provided, a delay of 1-5 seconds was introduced 

before participants were instructed to move their effector to the remembered target 

location. When only the effector information was available, no areas besides the POS 

showed effector specificity. As soon as information about the target location became 

available, the parietofrontal network displayed strong effector specificity for hand 

movement planning including areas aIPS, M1 and PMd besides others. In contrast, 

during the movement execution phase, only M1 and POS showed a preference for 

reaches and saccades, respectively, but no other parietal region. The authors 

conclude that the effector specificity is not a fixed property of a brain region, but a 

time-varying characteristic (Beurze et al., 2009). Importantly, while this findings 

indicate gradients of effector preference during memory-guided movements, they do 

not provide insight into the effector specificity during visually-guided reaching that is 

supposed to rely on different neuronal correlates (Goodale & Milner, 1992; Milner & 

Goodale, 2008) (for more details, see section 2.3).  

To investigate specifically the effector specificity during visually-guided reaching, we 

separated the planning and the execution phase using a perturbation paradigm. 

Inside the fMRI, participants conducted reach-to-grasp movements to a target that 

either changed its location, size, or both (see manuscript Cornelsen, Himmelbach, 

Thielscher (section 3.4): ‘Material and Methods’) Further, reach perturbations and 

grasp perturbations were matched in the required online control to avoid a 

modulation of the brain activity by task difficulty and/or required amount of online 

control. This also allowed us to investigate the lateralization of online control in 

reaching and grasping. The substantial recruitment of ipsilateral structures argues for 

their important role during the execution phase of visually-guided movements and 

argues against a strict lateralization in this phase. Moreover, grip size corrections 

were associated with increased coupling not only across hemispheres, but also 

within the ipsilateral hemisphere without corresponding increases in activation in the 

contralateral hemisphere. This argues against a pure co-activation of the ipsilateral 

hemisphere but rather indicates a functional role of the ipsilateral hemisphere. 
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Regarding the effector specificity, connectivity analysis showed no changes in inter-

regional coupling between perturbed reaching and perturbed grasping. In contrast, 

grip perturbations were associated with changes of inter-regional coupling between 

the reaching and grasping network including the coupling between aIPS and SPOC, 

aIPS and mIPS, and aIPS and PMd. These findings argue against a strong effector 

specificity during the execution phase and are in agreement with studies in monkeys 

(Fattori et al., 2010b) and humans (Cavina-Pratesi, Monaco, et al., 2010; 

Reichenbach et al., 2011). 

2.2 OPTIC ATAXIA  

Considering the important role of the PPC in sensorimotor control, it is not surprising 

that damage to the PPC compromises goal directed actions. In 1909, bilateral 

damage to the occipital-parietal cortex was reported to result in Balint’s syndrome, 

consisting of simultanagnosia, ocular apraxia, and optic ataxia (OA) with the latter 

symptom referring to inaccuracies in visually-guided reaching (Bálint, 1909). Over 

time, isolated cases of OA were described after unilateral parietal damage mainly 

affecting the superior parietal lobule (SPL) and the intraparietal sulcus (IPS) (Perenin 

& Vighetto, 1988). With the advent of new imaging methods, the lesion location could 

be pinpointed to the occipito-parietal junction as well as the junction between 

occipital cortex and the SPL in both hemispheres as key regions (Karnath & Perenin, 

2005). In line with the involvement of the occipito-parietal junction in reaching, 

grasping, and wrist orientation, behavioral deficits in OA are not limited to reaching, 

but also include disturbances in prehension kinematics (Jakobson, Archibald, & 

Carey, 1991), grip formation (Jeannerod, 1986; Jeannerod, Decety, & Michel, 1994), 

hand orientation (Perenin & Vighetto, 1988), and stepping with the lower limb (Evans, 

Milner, Humphreys, & Cavina-Pratesi, 2013). It has been argued, however, that 

grasping is impaired as a secondary effect of the misreaching in order to compensate 

for the reaching inaccuracies (Cavina-Pratesi, Ietswaart, Humphreys, Lestou, & 

Milner, 2010). 

OA is often defined as misreaching to visual targets that cannot be attributed to 

primary motor or sensory deficits, but to a visuomotor deficit. This definition, 

however, neglects that the majority of OA patients are unimpaired when reaching to 

foveated targets (Jackson et al., 2009), but demonstrate a so called ‘magnetic 

misreaching’ to extrafoveal targets. This term refers to the observation that OA 
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patients are unable to decouple the reach direction from the gaze direction (Jackson, 

Newport, Mort, & Husain, 2005) as indicated by reach endpoints that seem to be 

‘magnetically’ attracted by the gaze position (Carey, Coleman, & Della Sala, 1997). 

Therefore, the resulting end point deviation increases with increasing target 

eccentricity (Blangero et al., 2010; Carey et al., 1997; Milner, Dijkerman, McIntosh, 

Rossetti, & Pisella, 2003; Milner, Paulignan, Dijkerman, Michel, & Jeannerod, 1999; 

Revol, Rossetti, Vighetto, & Rode, 2003). In addition to the effect of eccentricity, 

hand and field effects are characteristic for OA. Patients display stronger misreaching 

in their contralesional visual field (field effect) with their contralesional hand (hand 

effect). In their influential study, Perenin and Vighetto (1988) proposed that patients 

with a lesion of the right hemisphere predominantly show a field effect whereas 

patients with a lesion of the left hemisphere usually demonstrate a hand effect 

(Perenin & Vighetto, 1988). 

Besides the classic interpretation of optic ataxia as a visuomotor deficit, another 

theoretical approach explains the behavioral deficits with an impairment in online 

control (Pisella et al., 2000). This suggestion derived from observations in OA patient 

IG who suffered from bilateral widespread lesions in the parietato-occipital cortex. In 

contrast to healthy participants, IG was not able to conduct fast corrective 

movements in response to target jumps after movement onset while her ability for 

slow movement corrections remained intact, indicating that parietal damage affects 

the online control of movements, but not the planning phase. This idea was further 

supported by the observation of the same group that the same patient responded to 

targets jumps by first moving to the initial target position and only afterwards to the 

final target position instead of smoothly adapting her movement path (Gréa et al., 

2002). The authors propose that a general impaired online control mechanism 

causing OA is able to account for the specific deficit pattern for reaches to foveated 

and non-foveated targets, because higher online control is required for reaches 

based on imprecise extrafoveal visual information compared to reaches to targets in 

central vision (Pisella et al., 2000). The hypothesis of a general deficit in online 

control as underlying mechanism of optic ataxia has been challenged by 

observations of impaired online control during reaching (Pisella et al., 2000) but not 

during grasping (Himmelbach, Karnath, Perenin, Franz, & Stockmeier, 2006) in the 

same patient that rather indicate the existence of distinct neuronal correlates of 
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online control for reaching and grasping that can be affected in isolation (see section 

2.3.1).  

Both theoretical approaches of OA, i.e. the visuomotor deficit theory as well as the 

online control deficit theory, focus on impairments in visually guided actions. It has 

been shown, however, that reaching errors without visual feedback of the pointing 

hand increased in comparison with reaching under visual feedback for the 

contralesional hand, but not for the ipsilesional hand (Blangero et al., 2007). This 

observation of a hand effect that depends on the required level of proprioceptive 

integration suggests according to the authors that not only visuomotor integration, but 

also the integration of proprioceptive information is impaired in OA patients. They 

investigated this in two OA patients without any primary proprioceptive deficits, who 

pointed with their contralesional hand to their extrafoveal ipsilesional hand and vice 

versa. Both patients showed stronger misreaching in the contralesional than in the 

ipsilesional field, thus demonstrating the field effect that is characteristic of OA in 

visually-guided reaching. Another typical behavioral pattern of OA, namely the 

dissociation between reaches to foveated and nonfoveated targets, has been 

demonstrated in a OA patient reaching to visual and proprioceptive targets, but was 

unfortunately not compared to the reaching behavior of healthy controls (Jackson et 

al., 2009). While these findings may be interpreted as ‘proprioceptive’ ataxia, it has to 

be mentioned that similar findings have been observed in stroke patients without 

concurrent OA. For example, misreaching to proprioceptive targets has been 

reported in a patient with a small lesions in the primary somatosensory cortex 

(Borchers et al., 2011), and the modulation of misreaching to proprioceptive targets 

by the amount of visual input has been observed in a patient with thalamic stroke 

(Newport, Hindle, & Jackson, 2001). Therefore, damage to brain areas that are not 

related to OA can cause proprioceptive misreaching that bears some similarities to 

OA. The recent observation that field effects can be reliably observed whereas hand 

effects occur only in some OA patients (Blangero et al., 2010) suggests that hand 

effects may depend on additional damage to neighboring cortical damage or damage 

to thalamocortical connections. This hypothesis is in agreement with selective 

impairments in monkeys after the removal of parts of the PRR and neighboring areas 

(Rushworth, Nixon, & Passingham, 1997). Bilateral removal of area 7A, 7Ab and LIP 

caused misreaching to visual targets but left reaching in the dark unaffected. In 

contrast, the removal of MIP, area 5 and 7B caused misreaching in the dark that 
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relies on proprioceptive feedback. Thus, in monkeys, unilateral lesions in the above 

mentioned areas together might result in misreaching similar to OA with a hand 

effect. Although other candidate regions for optic ataxia in monkeys, like V6A 

(Battaglini et al., 2002), are under discussion, this does not object the hypothesis that 

additional damage to areas beside the ‘optic ataxia region’ might lead to misreaching 

resembling a hand effect. 

Even less is known about auditory guided reaching in OA. Two studies only report 

qualitative data (Perenin & Vighetto, 1988; Tzavaras & Masure, 1976). A third study 

investigated a patient suffering from Balint’s syndrome due to a bilateral glioma. The 

patient displayed strongest misreaching to auditory targets with the contralateral 

hand in the contralateral hemifield that seemingly supports an ‘auditory’ ataxia. 

Importantly, in contrast to visually-guided reaching in this patient, misreaching to 

auditory targets was reported when the patient was allowed to foveate the targets 

(Guard et al., 1984), thus arguing against an ‘auditory’ ataxia. Taken together, the 

existence of a ‘multimodal’ ataxia so far remains an open question. 

We addressed this issue by investigating reaching to visual, auditory and 

proprioceptive targets in two chronic OA patients (see section 3.3). In a first step, we 

compared the patients’ reaches to foveated targets with reaching to non-foveated 

targets to the corresponding difference in healthy participants. This comparison was 

calculated separately for each modality. Next, we directly compared reaching to 

visual targets with reaching to auditory and proprioceptive targets, respectively. For 

this, we analyzed the patients’ difference between foveated and non-foveated 

reaches to auditory and visual targets with each other. The same comparison was 

conducted between proprioceptive and visually guided reaching. Finally, we 

investigated the presence of a field effect. All comparisons focused on the most 

peripheral target since stronger effects of OA have been reported for higher 

eccentricities (Blangero et al., 2010; Carey et al., 1997; Milner et al., 2003, 1999; 

Revol et al., 2003). Thus, the most peripheral targets represent a critical test case. 

Averaging effects for these targets together with less eccentric targets would reduce 

the sensitivity of our experiments either because of smaller, averaged effect sizes or 

through necessary corrections for multiple comparisons between modalities. While 

other studies investigating OA with one or two patients and a rather small control 

sample but used either analysis of variance, chi-square tests or other nonparametric 

tests within single-subjects (Blangero et al., 2008; Blangero et al., 2007; Gréa et al., 
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2002; Jackson et al., 2009), we calculated all comparisons using a standardized 

difference test for single case dissociations (Crawford & Garthwaite, 2005b). This 

method offers several advantages. First, it requires a significant difference between 

both tasks to conclude a dissociation instead of claiming a dissociation by 

demonstrating that a patient is significantly impaired in one task but not in the other 

which is insufficient (Nieuwenhuis, Forstmann, & Wagenmakers, 2011). Second, this 

method leads to less misclassifications of patients with equivalent deficits as showing 

a dissociation. Simulations showed that depending on the sample size, such 

misclassification can occur in up to almost 50% for conventional methods whereas 

the Crawford statistics cause misclassification in only up to 7% (Crawford & 

Garthwaite, 2005a). The standardized difference test for single case dissociations 

confirmed for both patients, as expected, impaired reaching to extrafoveal targets in 

comparison to foveated targets as well as a field effect when reaching to visual 

targets. For auditory guided reaching, both patients’ performance clearly dissociated 

from reaching to visual targets. This strongly suggests that optic ataxia does not 

affect the auditory modality. For proprioceptive guided reaching, patient IT’s 

performance was unimpaired. In contrast, HM accuracy decreased for nonfoveated 

targets in comparison to foveated targets. Importantly, the dissociation between 

foveated and nonfoveated targets was not strongest for the most peripheral target as 

would be expected in analogy to optic ataxia. Instead, HM showed a dissociation 

between proprioceptive guided reaching and optic ataxia for the whole hemifield. 

Taken together, our findings argue against a multimodality of optic ataxia but show 

that spatial errors in other modalities resembling optic ataxia can co-occur. 

2.3 VISUAL FORM AGNOSIA 

At least two forms of agnosia can be distinguished: apperceptive and associative 

agnosia. In both cases, patients have difficulties with the recognition of objects but for 

different reasons. Patients with associative agnosia can perceive the object but have 

difficulties during the semantic phase of object recognition. In contrast, perception is 

impaired in apperceptive agnosia. The most severe form of apperceptive agnosia is 

called Visual Form Anosia (VFA) and refers to an isolated deficit in conscious 

perceptual judgments after occipito-temporal damage that leaves visuomotor 

guidance of actions unaffected (Milner et al., 1991). This definition mainly relies on 

the observation of ventral stream patient DF who suffered from VFA after a carbon-
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monoxide intoxication. She successfully oriented her hand according to a slot in a 

disc and was also able to post a card into the slot with the correct orientation while 

she demonstrated substantial deficits when asked to verbally indicate the position or 

to match the orientation of a slot in another disc accordingly (Milner et al., 1991). Her 

preserved visuo-motor abilities decreased, however, when the target was not visible 

anymore at the time of movement initiation (Goodale, Jakobson, & Keillor, 1994; 

Milner, Dijkerman, & Carey, 1999). 

Unfortunately, DF’s case did not allow a clear assignment between structure and 

function since the intoxication led to diffuse and widespread loss of neuronal tissue. 

The intoxication caused extensive lesions bilaterally that were predominantly located 

in ventrolateral areas with most substantial loss in the lateral occipital cortex (LOC), 

but also affected her dorsal stream (Bridge et al., 2013; James, Culham, Humphrey, 

Milner, & Goodale, 2003; Milner et al., 1991). Moreover, most reported cases of VFA 

were caused by intoxication and thus suffered from diffuse and widespread 

degeneration of grey and white matter (Karnath, Rüter, Mandler, & Himmelbach, 

2009). Recently, the observation of impaired perception but largely preserved visuo-

motor functions in a stroke patient with focal bilateral lesions in the fusiform and 

lingual gyri as well as the cingulate gyrus confirmed the pivotal role of the ventral 

stream in perception, but suggested that the ventromedial aspects of the ventral 

stream are crucial for perception (Karnath et al., 2009). Our recent group study of 

stroke patients with focal ventral stream lesions further specified the functional 

architecture of the ventral streams, revealing an isolated deficit in contralateral object 

processing after unilateral stroke (hemiagnosia) (Rennig, Himmelbach, Cornelsen, 

Wilhelm, Karnath, 2015).  

While the role of the ventral stream in VFA gets more and more specified, the 

anatomy and exact role of the ventral stream in memory-guided actions remains to 

be elucidated. For instance, neither the deficits in memory-guided actions have been 

replicated so far with a focal ventral stream patient suffering from VFA nor with a 

ventral stream patient without VFA. Consequently, it is not known whether the deficits 

can be replicated or whether they are caused by a perceptual deficit associated with 

VFA (see section 2.4.2). 
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2.4 THE TWO VISUAL STREAM HYPOTHESES 

The two visual stream hypothesis (TVSH) postulates that visual information is 

processed in different cortical systems depending on its purpose (Goodale & Milner, 

1992; Milner & Goodale, 2008). As stated by the authors themselves, the TVSH “was 

inspired by, and to some extent depends on, a set of partial or complete double 

dissociations” between dorsal stream patients suffering from OA and ventral stream 

patients suffering from VFA (Milner & Goodale, 2008, p. 781). While OA affects 

visuomotor action but not perception after parietal damage, VFA results in the 

opposite pattern. Therefore, the TVSH supposes that the dorsal (occipito-parietal) 

stream processes visual information that is relevant for the interaction with objects 

while the ventral (occipito-temporal) stream processes visual information for 

perception.  

2.4.1 THE DOUBLE DISSOCIATION BETWEEN ACTION AND PERCEPTION 

According to the authors, visual information processing for action and perception 

needs to fulfill fundamentally different requirements. Typically, reach-to-grasp 

movements are not isolated events, but coincide with movements of either the target, 

the agent, or both, resulting in different egocentric coordinates at every instance. To 

successfully interact with the target, the dorsal stream computes its spatial location 

and shape in relation to the effector for every moment anew. These perceptual 

representations are not maintained for targets that are no longer visible. 

In contrast, the role of the ventral stream is to represent the constant features of a 

target independent of the agent’s position. Additionally, it processes the spatial 

relationships between the target and other objects in an allocentric or scene-based 

reference frame. The authors conclude that the representations of the ventral stream 

are available for an unlimited amount of time to enable their recognition based on 

previous experience.  

According to the TVSH, the ventral stream additionally contributes to action, but its 

role differs substantially from that of the dorsal stream. While the ventral stream 

represents targets and allows to abstractly plan the interaction with it, the dorsal 

stream programs the distinct movements that are necessary to interact with the 

objects and to control the movement in real-time. The required computations are not 

based on the object representation form the ventral stream, but are calculated 

independently. Thus, both streams contribute to action and process information 
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about the object features and its spatial location, but differ substantially in their 

processing and computations (Milner & Goodale, 2008). 

Initially, the TVSH’s assumption of a double dissociation between perception and 

action were mainly based on VFA patient DF who suffered from diffuse brain damage 

including bilateral lesions in the ventral and dorsal stream (Bridge et al., 2013; 

James, Culham, Humphrey, Milner, & Goodale, 2003; Milner et al., 1991). Although 

her case inspired the TVSH and is undoubtedly of high value for the understanding of 

visual information processing, it does not allow for a clear mapping between function 

and brain anatomy. By now, a dissociation between action and perception was 

replicated in a patient with circumscribed bilateral ventral stream lesions caused by a 

stroke that allowed for a clear association of function and the lesion site (Karnath, 

Rüter, Mandler, & Himmelbach, 2009). Further evidence for the importance of the 

ventral stream in perception comes from imaging studies in humans (Cavina-Pratesi, 

Goodale, & Culham, 2007; Grill-Spector et al., 1999; Malach et al., 1995; Valyear, 

Culham, Sharif, Westwood, & Goodale, 2006). Additionally, there is ample evidence 

for the well-established role of the dorsal stream in goal directed actions from 

behavioral investigations in healthy and brain damaged humans (Jeannerod, 1986), 

from imaging studies (Culham et al., 2003; Frey et al., 2005; Rice, Tunik, Cross, & 

Grafton, 2007), and from studies using transcranial magnetic stimulation (TMS) 

(Desmurget et al., 1999; Tunik et al., 2005). Support for distinct processing 

preferences of both streams for perception and visually-guided action, respectively, 

comes from an imaging study that investigated dorsal and ventral stream areas 

during passive viewing, visually-guided action, and perception, using identical stimuli 

but different instructions. While both streams were active during passive viewing of 

objects, dorsal and ventral stream activation was differently modulated by the task: 

AIP activation was modulated by different actions while LOC activation was 

modulated by perceptual tasks (Cavina-Pratesi et al., 2007).  

Further support for action-perception dissociation seemed to be coming from studies 

in healthy participants, which compared the effect of visual illusions on perception 

and action. A number of studies observed an influence of the illusion on perceptional 

estimates, but not on the associated action (Aglioti, DeSouza, & Goodale, 1995; 

Ganel, Tanzer, & Goodale, 2008; Ganel, Chajut, & Algom, 2008). However, it has 

been pointed out recently that some of the investigations suffered from crucial 

methodological shortcomings (Franz, 2001) and the implications for the TVSH are 
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still under discussion (Bruno, 2001; Carey, 2001; Franz, 2001; Schenk, Franz, & 

Bruno, 2011).  

While numerous studies support the different functional roles of both streams, some 

studies indicated a less strict separation. For instance, investigating healthy 

participants with fMRI, the representation of object information in the dorsal stream 

was observed that seem to be similar to the representation in the ventral stream 

(Konen & Kastner, 2008). In line with this, perceptual deficits have been reported in 

an optic ataxia patient after a dorsal stream lesion (McIntosh, Mulroue, Blangero, 

Pisella, & Rossetti, 2011; Pisella et al., 2009). Further evidence for a less strict 

functional separation comes from the observation of slight but significant visuomotor 

impairments of ventral stream patients JS (Karnath et al., 2009) as well as of DF as 

indicated by a reanalysis of her performance with a larger control group 

(Himmelbach, Boehme, & Karnath, 2012).  

Further doubt has been raised on the TSVH proposition that the implementation of 

specific kinematic parameters is largely independent of the recognition of the object 

(Milner & Goodale, 2008) since the familiarity of an object has been demonstrated to 

affect grip scaling (Borchers & Himmelbach, 2012). In this study, familiar objects that 

were associated with a particular size lead to a higher sensitivity to physical object 

size changes in comparison to meaningless cuboids with identical physical 

dimensions. 

Going one step further, Schenk (2006) suggested that the dissociation between 

action and perception is not only less strict than assumed, but has to be reformulated 

into a dissociation between allocentric and egocentric processing. He observed that 

patient DF’s performance in visuomotor and perceptual tasks was preserved when 

visual information was encoded in relationship to her own hand, but not when it was 

encoded in relation to an object. 

Finally, the double dissociation between action and perception in OA and VFA has 

been also questioned since optic ataxia was mainly observed in the peripheral visual 

field whereas ventral stream deficits were usually investigated in central view and 

thus do not allow a direct comparison (Pisella, Binkofski, Lasek, Toni, & Rossetti, 

2006; Rossetti, Pisella, & Vighetto, 2003).  

Taken together, the double dissociation between action and perception is still under 

debate as is the double dissociations between OA and VFA. 
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2.4.2 THE DOUBLE DISSOCIATION BETWEEN VISUALLY- AND MEMORY- GUIDED ACTIONS 

Besides the suggested double dissociation between action and perception, the TVSH 

also postulates a temporal double dissociation between both streams since it 

assumes that the visual information in the dorsal stream decays rapidly while the 

representations of the ventral stream are available for a considerable amount of time 

(Milner & Goodale, 2008). Therefore, the authors argue that whenever there is a 

delay between the visibility of the target and the initiation of the movement, the dorsal 

stream cannot use bottom-up visual information about the target to compute the 

required motor commands. In this case, information about the object will be derived 

from memory, thus relying on the object representation of the ventral stream. The 

assumption so far heavily relies on the observation of a single patient. DF’s motor 

performance was comparable to healthy participants when the target was visible 

during the action execution, but her grasping was significantly impaired when she 

was asked to pantomime a grasp to an object in central view that was no longer 

visible (Goodale, Jakobson, & Keillor, 1994). Additionally, her reaching to targets in 

the periphery was less accurate if a delay between target presentation and 

movement initiation was introduced but not if the target was visible during movement 

execution, leading the authors to conclude that the ventral stream is crucial for 

memory-guided actions (Milner, Dijkerman, & Carey, 1999). In the same year, an OA 

patient demonstrated the opposite pattern. In contrast to healthy controls who 

typically show a mild decrease in performance when reaching to memorized targets 

compared to visible targets, the OA patient showed a relative increase in 

performance for memory-guided reaches in the periphery (Milner et al., 1999). The 

authors suggest that OA patients who are compromised in visually guided action 

improve after a delay since their unimpaired ventral stream is under these conditions 

exploited for this task and contributes allocentric information (Milner et al., 1999).  

This assumption is supported by a psychophysical study in healthy participants that 

investigating the differential threshold (JND, just noticeable difference) in a 

perceptual, in an immediate, and in a delayed visuomotor task. As predicted by 

Weber’s law, the JND increased with the size of the object in the perceptual task but 

not in the immediate visuomotor task. The authors interpret this as a reflection of the 

different processing mechanisms underlying perception and action. Confirming the 

assumption that memory-guided actions rely on ventral stream representations, no 
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violation of Weber’s law were observed in the memory-guided visuomotor task 

(Ganel, Chajut, & Algom, 2008; but see Schenk, Franz, & Bruno, 2011). 

Further support for the role of the ventral stream during memory-guided actions 

comes from an fMRI study that revealed a re-activation of the ventral stream area 

LOC in the absence of visual input when contrasting memory-guided grasping with 

memory-guided reaching (Singhal et al., 2013). The authors suggested that LOC 

might become re-activated for the retrieval of detailed information about the target, 

especially since the grasping component was isolated. In contrast, another fMRI 

study investigating reach-to-grasp movements did not observe LOC re-activation, 

suggesting that LOC re-activation might be specific for grasping, but not reaching 

(Fiehler et al., 2011). Indeed, multivoxel pattern analyses revealed that activation in 

the occipitotemporal cortex differs between reaching and grasping, and predicts 

whether a contralateral grasping or a reaching movement will be initiated 

subsequently (Gallivan, Chapman, Mclean, Flanagan, & Culham, 2013).  

Interestingly, dorsal and ventral stream activation was observed during visually-

guided and memory-guided movements in healthy controls and an OA patient 

(Himmelbach et al., 2009). While dorsal stream activation was indistinguishable 

between both kinds of movements for the intact brain areas of the patient, healthy 

participants showed additional increases in brain activation for visually guided 

movements compared to memory guided movements in both streams. This led the 

authors to conclude a crucial role of the dorsal stream not only in visually guided, but 

also in memory-guided movements. To distinguish between a mere co-activation and 

a causal involvement of both streams, Cohen and colleagues (2009) used 

transcranial magnetic stimulation (TMS) to induce a virtual lesions in dorsal and 

ventral stream areas (Cohen, Cross, Tunik, Grafton, & Culham, 2009). They applied 

TMS over aIPS and LOC during visually guided and memory guided grasping. As 

expected, TMS over aIPS affected grasping kinematics for visual targets. Further, a 

disruption of LOC processing influenced grasping kinematics for memorized targets, 

demonstrating its causal involvement. In contrast to the predictions of the TVSH, 

TMS also affected grasping kinematics of memory-guided movements when pulses 

were delivered over aIPS, revealing a causal involvement in memory-guided actions 

not only of the ventral stream, but also of the dorsal stream. This observation fits well 

with sustained dorsal stream activation for memory-guided actions in healthy humans 

(Connolly, Andersen, & Goodale, 2003; Fiehler et al., 2011; Lacquaniti et al., 1997; 
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Singhal et al., 2013), a patient suffering from OA (Himmelbach et al., 2009), and with 

monkey studies (Fattori et al., 2010a; Murata et al., 1996). 

Considering the strong evidence for essential contributions of the dorsal stream in 

memory guided reaching, it is difficult to draw conclusions about the role of the 

ventral stream based on observations in DF who suffered from additional lesions in 

the dorsal streams. This point is especially important for the temporal double 

dissociation between both streams. While improved performance in memory-guided 

action was observed consistently in several OA patients for reaching (Himmelbach & 

Karnath, 2005; Himmelbach et al., 2009; Milner et al., 2003), grasping (Milner et al., 

2003; Milner, Dijkerman, & Pisella, 2001), and obstacle avoidance (Rice et al., 2008), 

the report of decreased reaching accuracy to memorized targets relies exclusively on 

patient DF. This is particularly problematic for two reasons. First, a recent attempt 

failed to demonstrate an isolated reaching deficit to memorized targets. Whereas 

Millner and colleagues (1999) observed that DF’s reaching was selectively impaired 

during memory-guided reaching, but not during visually guided reaching, Hesse and 

colleagues (2014) reported additional deficits during visually guided reaching. 

Whitwell and colleagues (Whitwell, Milner, & Goodale, 2014) speculated that DF’s 

dorsal stream damage and the surrounding atrophy increased over time. While a 

potential broadening of the existing brain damage could explain her recent 

performance resembling OA, it is not possible to reliably decide whether her brain 

damage increased indeed due to a lack of high-resolution images of the initial lesion. 

Consequently, it is unclear whether her dorsal stream lesions only gained functional 

relevance with increasing age or had been already affecting her performance since 

her intoxication. More than ten years before the recently reported atrophy (Whitwell 

et al., 2014), robust activation in DF’s dorsal stream was observed that was, 

however, predominantly ipsilesional (James et al., 2003). The observation of this 

functional abnormality indicates that her dorsal stream damage was already relevant 

at this time. Second, the only study so far investigating memory-guided reaching 

does not meet with current standards of single-cases analyses nowadays. Single 

cases statistics are essential for the comparison of a single patient to a group, 

especially if the control group is very small as was the case for DF with three control 

participants. Yet, they were not available at the time of the DF’s investigation in 1999. 

A re-analysis of some of the investigations of DF using single case statistics and a 
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bigger control sample already revealed that impairments had been overlooked so far 

(Himmelbach et al., 2012). 

To obtain unambiguous evidence about the role of the ventral stream in memory-

guided reaching, we investigated a patient with a lesion in the right ventromedial 

occipitotemporal cortex, who suffered from a unilateral VFA (see section 3.2: 

“Memory-guided reaching in a patient with visual hemiagnosia”). In a first step, we 

aimed to replicate the findings of Milner and colleagues (1999). Participants had to 

reach to a visual 3D target that was located at one of six possible different 

eccentricities while foveating a central fixation light. Reaches had to be initiated 

either immediately with the illumination of the target or postponed until a visual signal 

prompted the movement initiation after five seconds. We compared patient HWS’ 

memory-guided reaching with visual-guided reaching to the corresponding difference 

in healthy participants for each target individually using a standardized difference test 

for single case dissociations (Crawford & Garthwaite, 2005b). As predicted by the 

TVSH, HWS’ reaching to visual targets was comparable to controls. In contrast, his 

reaching accuracy to memorized targets dissociated from those to visible targets for 

the most peripheral goal in the contralesional hemifield in comparison to healthy 

participants. This finding confirms the crucial role of the contralateral ventral stream 

in memory-guided actions, and facilitates a comparison with optic ataxia since 

different eccentricities were investigated. 

Next, to investigate whether potential working memory deficits might account for 

isolated deficits during memory-guided reaching, we tested HWS in an established 

clinical memory test battery that includes several visual and spatial memory subtests 

as well as in the corsi block tapping test. The latter demonstrated impairments of 

working memory in patient DF (Milner et al., 1991) that are in agreement with her 

parietal and prefrontal damage since the parieto-prefrontal pathway supports spatial 

working memory (Kravitz, Saleem, Baker, & Mishkin, 2011) and short-term memory 

(Aben, Stapert, & Blokland, 2012). Although our patient had no dorsal or frontal 

damage, the lesion in his occipito-temporal cortex might affect reaching after a delay 

since this area is involved in the maintenance of spatial representations (Berman & 

Colby, 2002). The tests did not indicate any working memory or short-term memory 

deficit. 

Finally, we conducted a delayed localization experiment whose purpose was twofold: 

First, we aimed at examining HWS’ visual spatial memory in a task with close 
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resemblance to the reaching task as the clinical memory test was substantially 

different from the memory-guided reaching task. Second, the delayed localization 

task also aimed at the investigation of the nature of the contribution (i.e. perceptual or 

visuomotor) of the ventral stream to memory-guided reaching. DF’s lesion mainly 

focused on the ventrolateral occipitotemporal cortex including LOC whose 

involvement in object recognition and causal role in memory-guided grasping is well 

established (Cohen et al., 2009; Malach et al., 1995). In contrast, the lesion of HWS 

affected the ventromedial occipitotemporal cortex including the lingual, 

parahippocampal and fusiform gyrus. These regions have been associated with 

object and environment representation (Epstein & Kanwisher, 1998; Haxby et al., 

2001), and damage to the ventromedial aspect of the ventral stream has been shown 

to cause VFA in other patients (Barton, Cherkasova, Press, Intriligator, & O’Connor, 

2004; Karnath et al., 2009). Besides its involvement in perception, the ventromedial 

stream also plays a role for visually-guided actions. Gallivan and colleagues (2013) 

were able to decode upcoming actions from activity at the parahippocampal gyrus for 

the contra- and ipsilateral hand. In line with this, patient JS with ventromedial brain 

damage as well as patient DF showed mild visuomotor impairments (Himmelbach et 

al., 2012; Karnath et al., 2009). Taken together, these findings suggest an important 

role not only for ventromedial but also for the ventrolateral pathway in the preparation 

of actions, but cannot answer the question about their temporal characteristics.  

We addressed both issues in an experiment that showed a close resemblance with 

the memory-guided condition of the first experiment. Again, participants fixated 

centrally while a peripheral visual target was presented, and had to respond after a 

delay of five seconds. The crucial difference was the mode of response. Instead of 

reaching to the previous target locations, participants indicated the previous target 

location via button presses on a keyboard. While both tasks required the subject to 

memorize the target location and to reproduce it, the delayed localization task did not 

require any processes related to visuomotor transformations. We compared HWS’ 

performance to those of age-matched participants using a test for single case deficits 

(Crawford & Howell, 1998). HWS’ performance was comparable to those of age-

matched participants for all eccentricities. Therefore, misreaching to memorized 

targets in the periphery cannot be explained by memory deficits, but can be clearly 

attributed to the HWS’ lesion in the ventral stream. To our surprise, HWS’ ventral 

stream damage did not affect accuracy in the second experiment when no 
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visuomotor transformations were required. This suggests that the observed deficit in 

memory-guided reaching caused by ventral stream damage is a deficit that is 

associated with visuomotor, but not purely perceptual, processing. For visually 

guided movements, mild impairments have been reported before in ventral stream 

patients (Himmelbach et al., 2012; Karnath et al., 2009). For memory-guided 

reaching, the present study is the first to disentangle the contribution of perceptual 

and visuomotor processes. 

Our findings are in agreement with recent recordings of extracellular activity in the 

parahippocampal gyrus during a visuomotor task (Tankus & Fried, 2012). Using a 

joystick, patients had to reach towards a visual target with visual feedback of the 

hand on a screen (visuomotor task), observe the similar action on the screen without 

moving their hand (vision-only task), or to move their hand without vision of the hand 

(motor task). The observed parahippocampal gyrus activation was correlated to 

kinematic measurements (speed and/or direction of hand movement) mainly during 

the visuomotor task. One third of the parahippocampal cells whose activity was 

correlated with speed encoded kinematic measurements associated with hand 

movements while another third seemed to encode kinematic variables associated 

with either eye movements or the tracked object. 

 

2.5 SUMMARY 

The presented work investigated goal-directed actions. In a first fMRI study, we 

investigated the effector specificity and lateralization of visuo-motor control. To 

investigate the execution phase in isolation, a perturbation paradigm was employed 

that specifically increased the amount of online control but did not affect the planning 

phase. Moreover, special care was taken to match the difficulty of perturbed reaching 

and grasping movements to avoid differences in activation between these two 

actions based on different required levels of online control. The role of the ipsilateral 

frontoparietal network during the execution phase of visually-guided movements was 

stressed by the recruitment of several of its key regions and argues against a strict 

lateralization. The observed increased coupling, especially within the ipsilateral 

hemisphere without corresponding contralateral activation increases, indicates that 

the ipsilateral activation is not just a co-activation elicited by the contralateral 

hemisphere. Rather, it suggests that the ipsilateral PPC has a functional role visually-
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guided actions. Further, we observed no effector specificity for perturbed reaching 

and grasping during the execution phase, but changes in inter-regional coupling 

between the reaching and grasping network during grip perturbations. To clarify 

whether the ipsilateral aIPS plays a causal role in visually-guided grasping, lesion 

studies with stroke patients are not well suited since the lesions size cannot be 

controlled but can modulate the lateralization (Fogassi et al., 2001a). One way to 

investigate this question is to induce a virtual lesion with TMS using a similar 

paradigm. 

Next, we investigated reaching to visual, auditory and proprioceptive targets in two 

chronic OA patients. Both showed the expected deficits for reaching to extrafoveal 

targets in comparison to foveated targets as well as a field effect when reaching to 

visual targets. Importantly, reaching to auditory targets was markedly different from 

reaching to visual targets, suggesting that optic ataxia does not affect the auditory 

modality. For reaching to proprioceptive targets, the findings seem contradictory at 

first glance: while patient IT’s performance was unimpaired, HM accuracy decreased 

for nonfoveated targets in comparison to foveated targets. Crucially, this dissociation 

was not strongest in the periphery like for the visual targets but present for the whole 

hemifield. This lead us to the conclusion that optic ataxia is not multimodal in nature, 

but can co-occur with spatial errors in other modalities resembling optic ataxia. This 

finding of a modality-specific effect together with previous findings showing that 

misreaching to visual targets in OA patients depends on gaze-centered coordinates 

(Khan et al., 2005) suggests that reaches to auditory and proprioceptive targets are 

not predominantly encoded in a gaze-centered coordinate frames. 

In contrast to the essential role of the PPC in visually-guided reaching, little is known 

about the role of the ventral stream in memory-guided reaches. We investigated a 

VFA patient with a lesion in the right ventromedial occipitotemporal cortex in a 

reaching paradigm. In agreement with Milner and colleagues (1999), HWS’ reaching 

to visual targets was comparable to controls, but his reaching accuracy to memorized 

targets dissociated from those to visible targets for the most peripheral goal in the 

contralesional hemifield. A clinical memory test battery examining visual and spatial 

memory excluded any working memory or short-term memory deficits that might 

have contributed to the observed memory-guided misreaching. This was further 

confirmed by a delayed localization. More importantly, this task contributed to the 

understanding of the role of the ventral stream in memory-guided reaching. It 
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revealed that the observed deficit in memory-guided reaching is associated with 

visuomotor, but not purely perceptual, processing. However, it is still unclear whether 

the observed reaching deficit is a consequence of the VFA, or simply coincides with 

VFA but is caused by damage to different brain areas. 
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The two-visual-systems hypothesis (TVSH) postulates that memory-guided movements

rely on intact functions of the ventral stream. Its particular importance for memory-guided

actions was initially inferred from behavioral dissociations in the well-known patient DF.

Despite of rather accurate reaching and grasping movements to visible targets, she

demonstrated grossly impaired memory-guided grasping as much as impaired memory-

guided reaching. These dissociations were later complemented by apparently reversed

dissociations in patients with dorsal damage and optic ataxia. However, grasping studies in

DF and optic ataxia patients differed with respect to the retinotopic position of target ob-

jects, questioning the interpretation of the respective findings as a double dissociation. In

contrast, the findings for reaching errors in both types of patients came from similar pe-

ripheral target presentations. However, new data on brain structural changes and visuo-

motor deficits in DF also questioned the validity of a double dissociation in reaching. A

severe visuospatial short-term memory deficit in DF further questioned the specificity of

her memory-guided reaching deficit. Therefore, we compared movement accuracy in

visually-guided and memory-guided reaching in a new patient who suffered a confined

unilateral damage to the ventral visual system due to stroke. Our results indeed support

previous descriptions of memory-guided movements' inaccuracies in DF. Furthermore, our

data suggest that recently discovered optic-ataxia like misreaching in DF is most likely

caused by her parieto-occipital and not by her ventral stream damage. Finally, multiple

visuospatial memory measurements in HWS suggest that inaccuracies in memory-guided

reaching tasks in patients with ventral damage cannot be explained by visuospatial short-

term memory or perceptual deficits, but by a specific deficit in visuomotor processing.
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1. Introduction

The two-visual-systems hypothesis (TVSH) of Goodale and

Milner (Goodale & Milner, 1992; Milner & Goodale, 2008) for-

mulates two key postulations regarding the control of actions.

First, planning and control of visually-guided reaching to

visible targets essentially rely on the dorsal stream. Second,

for memory-guided movements towards the remembered

position of a target that is no longer visible, the dorsal stream

alone is not sufficient and requires contributions from the

ventral stream.

The TVSH assumes a crucial involvement of the ventral

stream in memory-guided actions based on the famous and

extensively investigated case of patient DF. DF suffered from a

carbon monoxide intoxication in 1988 that caused a dramatic

bilateral damage to her brain, especially to her ventral

streams, and left her with a severe visual agnosia. Experi-

mental studies showed that her reaching and grasping per-

formance was mostly similar to that of healthy controls when

she acted on visible target. However, acting on memorized

targets she revealed significant movement impairments in

comparison to healthy controls (Goodale, Jakobson, & Keillor,

1994; Milner, Dijkerman, & Carey, 1999). Important evidence

on this behavioral dissociation in DF came from an analysis of

maximum grip aperture with target objects presented in

central vision (Goodale et al., 1994). Grip aperture scaling was

pretty normal in DF when she immediately grasped actually

visible objects in front of her. Her performance deteriorated

considerably when she was asked to withhold her grasping

movement for delays of respectively 2 and 30 sec after the

target object had been removed. Later, Milner, Dijkerman,

et al. (1999) reported that also in a reaching task with

memorized point-like targets in her visual periphery, DF's
spatial errors (i.e., misreaching) substantially exceeded those

of age-matched healthy controls (Milner, Dijkerman, et al.,

1999).

In contrast to the behavioral dissociation in DF, with rather

normal visually-guided movement execution and poor

memory-guided execution in the abovementioned reports,

some optic ataxia patients with dorsal lesions paradoxically

improved their terminal accuracy when they reached for

remembered targets relative to their typical significant mis-

reaching errors whenmovements were executed immediately

upon target presentation (Himmelbach & Karnath, 2005;

Himmelbach et al., 2009; Milner, Dijkerman, McIntosh,

Rossetti, & Pisella, 2003; Milner, Paulignan, Dijkerman,

Michel, & Jeannerod, 1999). A similar effect was observed for

maximum grip aperture in grasping (Milner & Dijkerman,

2001; Milner, Dijkerman, & Pisella, 2001).

These results on visually-guided and memory-guided

reaching and grasping in few optic ataxia and one visual

agnosia patient have been summarized as evidence for a

double dissociation of visually-guided and memory-guided

movement control in these patients (Milner & Goodale, 2008).

However, looking closely at the available experiments and

data, their interpretation in support of a double dissociation in

optic ataxia and visual agnosia needs to be further qualified. A

straightforward double dissociation was found only for

reaching. Here, optic ataxia patients as well as DF aimed their
movements at targets in the visual periphery with reversed

results in comparison to healthy controls (Himmelbach &

Karnath, 2005; Himmelbach et al., 2009; Milner et al., 2003;

Milner, Paulignan, et al., 1999). For grasping, however, target

objects were presented in the central visual field for DF but in

the visual periphery for optic ataxia patients (Milner &

Dijkerman, 2001; Milner et al., 2001).

Recently, Bridge et al. (2013) reported a bilateral atrophy in

DF's posterior parietal regions beyond the ventral stream

system. In agreement with this anatomical finding, Hesse,

Ball, and Schenk (2012, 2014) reported a misreaching for

visible peripheral targets in DF that resembled the typical

pattern in optic ataxia patients for both hands in both visual

hemifields. This recent report is inconsistent with rather

normal absolute errors in visually-guided reaching for pe-

ripheral targets reported almost two decades earlier (Milner,

Dijkerman et al., 1999; Milner, Paulignan et al., 1999; Milner

& Goodale, 2008). In a recent comprehensive review

Whitwell, Milner, and Goodale (2014) implied that parieto-

occipital atrophy in DF increased since the first anatomical

descriptions in the early 90's. Such an anatomical change

could explain the apparent change in behavioral measure-

ments. Summarizing the available data on visually-guided

and memory-guided reaching in optic ataxia patients and

DF, we conclude that the new reports of a bilateral parieto-

occipital damage in DF and significant impairments also in

visually-guided reaching for peripheral targets call for addi-

tional evidence to support the assumption that a damage of

the ventral visual system alone can indeed cause a specific

impairment of memory-guided reaching with essentially

spared visually-guided reaching to targets in the peripheral

visual field.

The first detailed report of patient DF included detailed

neuropsychological test results (Milner et al., 1991). Among

these was a short report of a very substantial visuospatial

short term memory deficit as measured with a corsi block-

tapping task (Corsi, 1972). The observation of this visuospa-

tial short term memory deficit in a test with a behavioral

response modality that is substantially different from visuo-

motor reaching poses the question whether her impairment

inmemory-guided visuomotor reaching represented a specific

visuomotor memory deficit or whether it could be interpreted

as one behavioral consequence among others of a more gen-

eral visuospatial memory deficit.

In this study, we investigated whether a confined ventral

stream lesion due to stroke causes specific impairments in

memory-guided actions in the presence of intact visually-

guided reaching. We measured and analyzed the patient's
reaching accuracy at different eccentricities. Further, we

examined the performance of this patient in an established

clinical memory test battery that includes several visual and

spatial memory subtests. Finally, we conducted an experi-

mental measurement of visual spatial memory with a task

that resembled the reaching experiment as closely as possible.

Based on the existing data from DF and optic ataxia patients,

we expected a dissociation between visually-guided and

memory-guided reaching compared to age-matched healthy

controls for targets in the contralesional visual hemifield with

better performance of the patient in visually-guided and

worse performance inmemory-guided reaching. With respect

http://dx.doi.org/10.1016/j.cortex.2016.03.010
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to the presence of a visual spatial short-term memory deficit

we had no specific expectation.
2. Methods

2.1. Participants

The 56 years old, right-handed patient HWS suffered a pos-

terior cerebral artery stroke 6 days before the experimental

measurements reported here. Magnetic resonance FLAIR im-

ages acquired six days post-stroke on a 3T Siemens TIM Trio

Scanner (12-channel receive head coil, 40 axial slices,

TE ¼ 75 msec, TR ¼ 9000 msec, 2 mm slice thickness, gap of

2 mm, flip angle 150�, FoV 176 � 256 mm2, matrix size

176 � 256) revealed an acute unilateral lesion in the right

ventromedial occipito-temporal cortex and white matter

(Fig. 1). The scan also showed a small acute lesion in the right

hemisphere at the boundary of the posterior part of the cap-

sula interna and the lateral part of the thalamus with an in-

plane diameter of ~11 mm, detectable in 12 slices. According

to the John Hopkins University (JHU) white-matter tractog-

raphy atlas and the ICBM-DTI-81 white matter labels atlas

(Mori, Wakana, Nagae-Poetscher, & van Zijl, 2005), cortico-

spinal tract and the posterior limb of the internal capsula are

likely to be affected by the lesion. A comparison with the

human thalamus connectivity atlas (Behrens et al., 2003)

suggests that the lesion predominantly affects the lateral

sensorimotor nuclear group andmight stretch into the ventral

anterior nucleus, the lateral posterior and the mediodorsal

(MD) nuclei. The lesion can account for the reported distur-

bances of sensory function in HWS' left fingertips.
The occipito-temporal lesion mainly affected the inferior

cuneus, the lingual, fusiform, and parahippocampal gyri.

After normalization of the patient's brain (SPM8, unified seg-

mentation and normalization), a direct comparison between

his lesion and a probabilistic histological atlas (Eickhoff et al.,

2005) suggested that his lesion affected parts of V1, the lingual

gyrus, occipital sections of the fusiform gyrus, and the pos-

terior hippocampus. In agreement with the lesion location, a

perimetry demonstrated a visual field defect in the upper left

quadrant beyond an eccentricity of �30�. At the horizontal

meridian, where the targets were presented, HWS' vision was

completely intact in both hemifields up to an eccentricity of
Fig. 1 e Individual FLAIR scan of patient HWS six days post-str

normalized and thus no z-scores are indicated.
±70�. HWS demonstrated a unilateral visual agnosia

(Mazzucchi, Posteraro, Nuzzi, & Parma, 1985) with impair-

ments of object recognition and discrimination upon tachis-

toscopic presentations in his intact contralesional visual

hemifield. HWS demonstrated no signs of visual neglect, vi-

sual, auditory, or tactile extinction. His memory performance

was examined with the German revised version of the

Wechsler Memory Scale (WMS-R, H€arting et al., 2000)

including the Corsi Block Tapping Test (Corsi, 1972), which

investigates spatial short term memory. For an evaluation of

the patient's performance in our experimental visuomotor

tasks we also examined 19 healthy, age-matched adults (12

female, age range ¼ 52e62 y; mean age ¼ 57.6 y) without any

history of neurological disorders. We tested HWS and 8 con-

trols from the same group (5 female, age range ¼ 56e60 y;

mean age ¼ 57.8 y) in a control experiment investigating vi-

suospatial short term memory. All participants were right-

handed, had normal or corrected to normal vision and gave

their informed consent to participate in the study, which was

performed in accordance with the Declaration of Helsinki and

approved by the local Ethic Committee of the Medical Faculty

Tuebingen.
2.2. Procedure and apparatus

2.2.1. Visually-guided and memory-guided reaching
Participants sat at a table with a black vertical panel fixed on

the tabletop. Their head rested on a chinrest and their left

index finger rested on a start button at the midsagittal body

plane. The vertical panel was at a distance of 36 cm from the

chin rest and of 30 cm from the start button. LEDs (light

emitting diodes) were mounted at the panel at a height of

47 cm from the tabletop. A permanent red-whitemarker at the

midsagittal body plane located 1 cm above the height of the

target LEDs served as fixation point and all participants fixated

this position throughout all trials. The room light was dimmed

so participants could easily perceive the illuminated LEDs, but

it was bright enough to allow for visual feedback of the hand

and the perception of the surrounding. The experimenter

started each trial manually. After a variable interval (ranging

from 1 sec to 1.5 sec) one of the red target LEDs lighted up and

became visible for 2 sec at three different eccentricities (±9�,
±17� or ± 28� degree of visual angle). In the visually-guided

reaching condition, participants reached instantly to the red
oke. To avoid distortions of the lesion, the image is not

http://dx.doi.org/10.1016/j.cortex.2016.03.010
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LED. In the memory-guided reaching condition, participants

postponed their response for 5 sec until a green LED occurred

underneath the fixation that instructed the start of the

movement. Participants were instructed to reach the target

with an uninterrupted and fluent movement and as accu-

rately as possible. The order of target positions was random-

ized. The visually-guided and memory-guided reaching

conditions were presented in blocks of 18 trials (3 trials per

target) in a counterbalanced sequence (Immediate-Delayed-

Delayed-Immediate). Following the practice trials, the per-

formance of patient HWS was measured in 8 experimental

blocks, i.e., two repetitions of the balanced sequence. For each

control, 16 experimental blocks were recorded per participant

in two sessions with practice trials at the beginning of both

sessions. Reaching trajectories were recordedwith amagnetic

sensor attached to the participants' left index finger (miniBird

Motion Tracking system, .5 mm resolution, Ascension Tech-

nology Cooperation, Vermont, USA) at a rate of 100 Hz. Correct

fixation throughout the measurements was verified using a

digital video camera for the patient and a SMI iView™ X HED

system (SensoMotoric Instruments GmbH, Teltow, Germany)

for all controls.

2.2.2. Visuospatial short-term memory
To investigate HWS' short-term memory in a task with com-

parable spatial and temporal characteristics as the reaching

task, we conducted a control experiment. Participants were

seated 36 cm away from a computer screen on which a green

fixation point was presented centrally. After a variable time

interval, a red target dot appeared for 2 sec in the same posi-

tions that were used in the reaching task (i.e., at eccentricities

of ±9�, ±17� or ±28� degree of visual angle). After a delay of 5

sec, a new red dot appeared in a position either 100 pixels to

the left or to the right of the previous target dot. Participants

indicated the previously presented target position by an

adjustment of the red dot to the left or right via keys on a

keyboard in front of them (W for leftward movement of the

response dot, P for rightward adjustment). There was no time

limit for the adjustment of the response stimulus, the par-

ticipants gave a verbal feedback to the experimenter when

they finished their response. Correct fixation throughout the

measurements was verified using a digital video camera.

2.3. Analysis

2.3.1. Visually-guided and memory-guided reaching
All data were analyzed using custom software based on

MATLAB (MathWorks Inc., Sherborn, MA, USA) and R

(r-project.org). First, raw data was filtered using a forth-order

zero-phase shift Butterworth filter. Movement onset was

defined as the time at which the velocity exceeded a

threshold of 5 cm/sec in four consecutive frames. If no onset

could be detected at this rate, the threshold was changed to

10 cm/sec. Reaction time (RT) was defined as the time be-

tween the onset of the target presentation in the visually-

guided reaching condition (or the Go-Signal in the memory-

guided reaching condition) and movement onset. The end

of the movement towards the target was defined (i) as lying

within the interval between the highest velocity of the

movement towards the target and the highest velocity of the
movement back to the start button; (ii) by the point at which

the absolute deceleration was 0 mm/sec2; and (iii) velocity

was below 10 cm/sec at the same time. Movement time (MT)

was defined as the time between the movement onset and

the end of the movement.

Trials were excluded from further analysis if nomovement

end point could be identified or if saccades were detected. We

analyzed the absolute horizontal deviation of the movement

end point from the respective target position. We chose this

measure because a number of previous reports on visually-

guided and memory-guided reaching accuracy used absolute

errors to quantify the respective patients' performance, with

significant findings (e.g. Milner, Dijkerman et al., 1999). We

compared patient HWS' pointing errors between visually-

guided and memory-guided trials for each of the six targets

to the respective differences in healthy subjects using a test

for single case dissociations (Crawford & Garthwaite, 2005).

For these comparisons we adopted a global type-1 error

probability threshold of .05, which corresponds to a threshold

of .0083 for each individual target after Bonferroni correction.

We also conducted a complementary analysis of the vari-

able terminal error, i.e., standard deviations of horizontal er-

rors. As this analysis was conducted only after the successful

analysis of the absolute errors, again a correction for multiple

comparisons took into account the six target positions and

provided a critical threshold of .0083.

For an illustration of the movement paths (cf. Fig. 2), we

normalized the trajectories from HWS and one healthy con-

trol to 100 equally timed intervals between movement onset

and movement offset to facilitate the comparisons of indi-

vidual reaching trajectories independent of the movement

duration.

2.3.2. Visuospatial short-term memory
In correspondence to the visuomotor tasks, we analyzed the

absolute horizontal deviation of the adjusted response posi-

tions from the respective target position. We compared pa-

tient HWS' averaged absolute horizontal deviations in this

experiment to those of healthy subjects using a test for single

deficits (Crawford & Garthwaite, 2005; Crawford & Howell,

1998).
3. Results

3.1. Visually-guided and memory-guided reaching

HWS conducted fluent and smooth reaching movements. His

RT and MT were comparable to healthy controls in visually-

guided and memory-guided reaches (Table 1). As expected,

movement accuracy decreased from visually-guided to

memory-guided trials for all participants including HWS.

Importantly, even though HWSwas as accurate as the healthy

control group, even better than some of them, in visually-

guided reaching, his reaches were much less precise in the

memory-guided condition (see Figs. 2 and 3).

Single case dissociation tests (Crawford & Garthwaite,

2005) for each target indicated a significant dissociation be-

tween HWS' and the healthy subjects' performance for the

contralesional target at �28� [t(18) ¼ 3.09, p¼ .003, correlation

http://r-project.org
http://dx.doi.org/10.1016/j.cortex.2016.03.010
http://dx.doi.org/10.1016/j.cortex.2016.03.010


Fig. 2 e Trajectories for patient HWS and a representative control subject. The six targets are each depicted as an asterisk;

dotted lines depict single trajectories, bold lines averaged trajectories. Negative values represent the left site, positive the

right site.

Table 1 e Reaction times (RT) and movement times (MT) for patient HWS and age-matched controls separately for the
peripheral target on the contralesional side (¡28�) and averaged across all other targets.

Mean RT (SD) in ms Mean MT (SD) in ms

Contralesional
peripheral target

Across remaining
targets

Contralesional
peripheral target

Across remaining
targets

HWS visually-guided 885 738 661 746

Controls visually-guided 807 (152) 788 (162) 878 (131) 899 (131)

HWS memory-guided 518 524 724 787

Controls memory-guided 627 (265) 661 (278) 911 (129) 914 (103)
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coefficient for controls rcon ¼ .752] between visually-guided

and memory-guided reaching. The outcome was neither sig-

nificant for the target at�17� [t(18)¼ .68, p¼ .25, rcon¼ .002] nor

for the target at �9�[t(18) ¼ 1.07, p ¼ .14, rcon ¼ .758]. Move-

ments towards ipsilesional targets showed no detectable

dissociation for any target position [þ28�: t(18) ¼ .61, p ¼ .54,

rcon ¼ .326; þ17�: t(18) ¼ .08, p ¼ .46, rcon ¼ .656; þ9�: t(18) ¼ .96,

p ¼ .17, rcon ¼ .391].

Analyzing the variable error, we found no evidence for a

significant behavioral dissociation in HWS relative to the

healthy subjects' performance for the contralesional target at

any target [target at �28�: t(18) ¼ .98, p ¼ .16, rcon ¼ .359; �17�:
t(18) ¼ .164, p ¼ .43, rcon ¼ .453; �9�: t(18) ¼ 1.14, p ¼ .13,

rcon ¼ .603; þ28�: t(18) ¼ .79, p ¼ .21, rcon ¼ �.016; þ17�:
t(18) ¼ 1.14, p ¼ .13, rcon ¼ .585; þ9�: t(18) ¼ .61, p ¼ .27,

rcon ¼ .365]. For descriptive data on this measure, please see

Table 2.
3.2. Clinical memory tests

The patient's WMS-R sum scores for general attention, verbal

memory, and visual memory were in the normal range (Table

3). Also, the outcome for general memory, a combination of

sub-tests already summarized under verbal and visual mem-

ory, was just below the 25th percentile (Table 3). In contrast to

these observations, HWS' outcome for delayed memory was

clearly worse, with only 8% of the normal population showing

an equivalent or worse performance. Note that those sub-

tests that contributed to the delayed memory score tested

the performance of the patient after a delay of about 30 min.

Among those sub-tests that are individually standardized

with communicated percentile ranks only his results in the

digit span forward and visual reproduction II were clearly

below the average. His result for the digit span forward was

puzzling as he performed normally for the digit span

http://dx.doi.org/10.1016/j.cortex.2016.03.010
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Fig. 3 e Mean absolute horizontal error in cm for a) patient

HWS and b) age-matched control subjects for all six target

positions. c) depicts the difference between visually-

guided and memory-guided reaches for HWS (blue) and

controls (green). Black lines indicate the standard deviation

for the controls.

c o r t e x 7 9 ( 2 0 1 6 ) 3 2e4 1 37
backwards. Visual reproduction II requires the patient to draw

four figures that were presented about 30 min ago. For this

task, HWS performed particularly poorly. We cannot attribute

this impairment to an inability to recognize these drawings
(i.e., a possible consequence of his unilateral agnosia) because

his short-term memory for the same items (i.e., a reproduc-

tion immediately after the presentation of the figures) was

within the normal range. In the Corsi Block Tapping Test,

requiring the patient to remember a sequence of spatial tar-

gets for a few seconds and commonly interpreted as a test of

visuospatial short term memory, HWS performed within the

normal range in contrast to patient DF who showed a severe

impairment at the time of her first experimental measure-

ments with a span of only two blocks (Milner et al., 1991).

3.3. Visuospatial short-term memory experiment

HWS accuracy in a non-visuomotor memory task that used

the same spatial configuration and presentation and delay

timing as the reaching experiment, quantified by the mean

absolute error of his responses, was comparable to healthy

controls at all eccentricities [�28�: t(7) ¼ .24, p ¼ .40; �17�:
t(7) ¼ .29, p ¼ .39; �9�: t(7) ¼ �.20, p ¼ .42; þ9�: t(7) ¼ �.29,

p ¼ .38; þ17�: t(7) ¼ �.36, p ¼ .36; þ28�: t(7) ¼ .28, p ¼ .39]. For

descriptive data on this measure, please see Table 4.
4. Discussion

So far only one study investigated memory-guided reaching

for peripheral targets in a ventral stream patient and reported

an impairment for memory-guided reaching with normal

performance in visually-guided reaching (Milner, Dijkerman,

et al., 1999). These data represent an important part of an

apparently straightforward double dissociation of memory-

guided and visually-guided actions in a comparison of pa-

tients with damage to the dorsal visual system and a patient

with damage to the ventral visual system.However, the recent

observation of a considerable impairment of visually-guided

peripheral reaching in DF questions the validity of the orig-

inal report. Therefore, the present study aimed at a validation

of the previously reported dissociation between misreaching

to memorized peripheral targets and normal accuracy in

reaching to visible targets after a damage to the ventral visual

system.

Patient HWS, who suffered from a unilateral stroke with a

selective damage to his right ventromedial occipito-temporal

cortex and white matter, as well as a small thalamus lesion,

showed a terminal accuracy of his visually-guided reaching

towards visible peripheral targets that was comparable with

the accuracy of age-matched healthy controls across all target

positions. In contrast, HWS' performance for the most pe-

ripheral contralesional target was considerably worse in

comparison to controls when the target was no longer visible

and movements were memory-guided.

Albeit a significant dissociation was observed for only one

target position, the topography of the dissociation seemed

intuitively reasonable. We detected it for the contralesional

hand in the most peripheral contralesional target position.

The dissociation in HWS at this target position was significant

after stringent control of inflated false positive probabilities

caused by the independent analysis of multiple target posi-

tions. Nevertheless, without a strong retinotopy being re-

ported for the ventromedial structures affected in HWS, the

http://dx.doi.org/10.1016/j.cortex.2016.03.010
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Table 2 e Mean variable error and standard deviation for patient HWS and age-matched controls.

Target
position

HWS
memory-guided

Controls
memory-guided

HWS
visually-guided

Controls
visually-guided

�28� 1.48 1.49 (.44) .83 .44 (.15)

�17� 1.00 1.04 (.27) .52 .52 (.45)

�9� .64 .76 (.23) .49 .42 (.11)

þ9� .86 .75 (.17) .44 .51 (.21)

þ17� 1.01 1.06 (.20) .44 .74 (.21)

þ28� .96 1.42 (.34) .86 .91 (.31)

Table 3 e Scores of patient HWS in subtests of the
Wechsler Memory Scale (H€arting et al., 2000). Please note
that memory domains printed in bold are composite
scores that partially include the following scores for
individual subtests. The WMS domain scores are usually
standardized as IQ-equivalent indices, which we have
converted to percentiles.

Subtest (Weighted) Raw value Percentile

Verbal memory 64 27

Visual memory 48 42

General memory 105 21

Attention 60 37

Delayed memory 52 8

Digit span forwards 5 2

Digit span backwards 6 38

Block span forwards 8 58

Block span backwards 8 70

Logical memory I 22 27

Logical memory II 19 30

Visual reproduction I 34 62

Visual reproduction II 15 2
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strong impact of the targets eccentricity on the behavioral

dissociation could not easily be explained based on HWS'
performance alone. Unfortunately, movement errors of DF in

the memory-guided reaching experiment published in 1999

(Milner, Dijkerman, et al., 1999) were only reported as an

average across eight peripheral target locations in her left and

right visual hemifield. No presentation of the respective

datapoints for individual target eccentricities was available

for a comparison to HWS0 data. The substantial change of DF's
visually-guided reaching accuracy from Milner, Dijkerman,

and Carey (1999) to the recent measurements reported by

Hesse et al. (2012, 2014) even prevents conclusive new mea-

surements in DF on this particular issue.

Keeping in mind the limitations of our study, we interpret

our observation as one piece of evidence for the suggested

dissociation. Beyond the widely known original study on
Table 4 e Mean horizontal absolute error in the memory task an
Standard deviations for controls in brackets.

Target position �28 �17

HWS 51.36 43.75

Controls 41.22 (38.66) 34.53 (29.86)

Estimated % of normal population

falling below HWS0 score
59.41 61.02

95% Lower CI 32.54 33.99

95% Upper CI 83.13 84.35
memory-guided grasping and grip aperture scaling in DF

(Goodale et al., 1994), the supposed dissociation between

visually-guided and memory-guided movement execution

has been addressed with quite a number of different experi-

mental paradigms. A psychophysical experiment demon-

strated that the differential threshold (JND, just noticeable

difference) in a perceptual task increased with the size of the

object as predicted byWeber's law. In contrast, the results of a

visuomotor task violated this law since the JND did not in-

crease with object size. The authors concluded a fundamental

difference in the visual coding between action and perception.

Interestingly, Weber's law was not violated in a memory-

based visuomotor task, indicating that memory-guided

reaching relies on stored perceptual information (Ganel,

Chajut, & Algom, 2008; but see Schenk, Franz, & Bruno,

2011). This interpretation is in line with the observation that

DF's anticipatory hand shaping is comparable to controls

when the target is visible, but the introduction of a delay be-

tween vision and pantomimed grasping led to inappropriate

scaling of her hand that was suggested to be caused by her

perceptual deficits (Goodale et al., 1994). The suggested

dissociation between perception and action was also investi-

gated using visual illusions. Participants had to either grasp an

object placed within a Poncho illusion or give a manual esti-

mation of its size by opening their index finger and thumb a

matching amount. Whereas grasping was unaffected by the

illusion, participants erroneously perceived the larger object

as the shorter one as indicated by the finger opening (Ganel,

Tanzer, & Goodale, 2008; but see again Schenk et al., 2011).

While DF and HWS both suffered from damage to the

ventral visual system, the nature, the extent, and the location

of their respective damage is substantially different. Whereas

the damage in DF is a combination of rather confined severe

structural damage with more diffuse subtle degenerative

changes, HWS showed a clearly confined damage due to a

first-ever stroke. Despite the nature of the respective damage,

also its location apparently differs. The main damage to the

ventral stream in DF has been localized in the bilateral LOC, or
d confidence intervals on the patient's abnormality score.

�9 þ9 þ17 þ28

15.63 20.83 21.08 46.50

18.63 (14.00) 27.11 (19.98) 34.02 (33.03) 37.88 (28.99)

42.29 38.78 36.14 60.63

18.18 15.50 13.55 33.64

68.96 65.83 63.40 84.06
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ventrolateral occipito-temporal cortex in contrast to the

ventromedial damage in HWS. In their detailed anatomical

measurement and analysis of DF's brain, Bridge et al. (2013)

further emphasized the ventrolateral localization of DF's
main structural damage by two independent single case sta-

tistical analyses of cortical thickness measures in the

ventromedial and ventrolateral cortex respectively. These

analyses revealed a significantly lower thickness value in

comparison to five controls for the ventrolateral cortex in DF

and no significant difference for the ventromedial cortex.

However, a direct comparison, i.e. a dissociation test of

thickness estimations between the two corticalmasks relative

to the controls has not been calculated. As the combination of

a significant finding on the one hand and a non-significant

finding on the other hand cannot easily be interpreted as a

significant difference between the two findings (Nieuwenhuis,

Forstmann, & Wagenmakers, 2011) we cannot preclude that a

descriptively smaller thickness value also in DF's ventrome-

dial cortex relative to controlsmight have a functional impact.

Most available data on the ventrolateral cortex that is

significantly compromised in DF, more specifically the lateral

occipital cortex, would not let us expect a particular deficit in

memory-guided reaching. LOC is an important area for visual

recognition of objects (Cavina-Pratesi, Goodale, & Culham,

2007; Malach et al., 1995) that indeed has been shown to be

reactivated during memory-guided actions (Singhal, Monaco,

Kaufman, & Culham, 2013), likely providing information

about spatial object properties for memory-guided grasping.

Further support came from a TMS study demonstrating LOC's
causal involvement in memory-guided actions (Cohen, Cross,

Tunik, Grafton, & Culham, 2009). However, LOC might be less

important for memory-guided reaching. An fMRI study

investigating memory-guided reaching and grasping did not

observe an LOC reactivation aftermemory delay (Fiehler et al.,

2011). The authors argued that LOC reactivation can only be

detected if grasping signals are isolated from the reach

component (Singhal et al., 2013), because object features like

shape or size are of high importance to adjust hand aperture,

whereas such features are less important for reaching

movements.

Rejecting the idea that a non-significant thinning of the

ventromedial cortex in DF has a functional, network effects of

anatomical damage in different locations of the ventral stream

might better explain the consistent findings in HWS and DF. A

possible roleof theventral stream inmemory-guidedactions is

that its structures represent spatial object information in

allocentric coordinates. Whereas targets of visually-guided

movements are supposed to be encoded egocentrically

(Milner & Goodale, 2008), allocentric coded information (i.e.,

with respect to external objects or visual landmarks) gains

more importance in memory-guided movements, grasping as

much as reaching, as uncertainty about the position of a target

increases with increasing delays. This assumption was sup-

ported by the observation that DF's allocentric coding was

impaired (Dijkerman,Milner,&Carey, 1998; Schenk, 2006). The

present study as well as Milner, Dijkerman, et al. (1999) were

conducted in the presence of landmarks in the visual envi-

ronment beyond the experimental setup that allowed for an

allocentric coding of target positions. If it is not the temporal

delay between target presentation and movement execution
by itself but the allocentric coding of target positions in the

memory-guided condition, this more general feature of the

ventral visual system might explain common deficits in both

patients with only small, if any, anatomical overlap.

With respect to our patient HWS, possible candidate re-

gions for impaired allocentric coding of visual targets are the

retrosplenial cortex (RSC) and the lingual gyrus, the latter

being clearly affected in HWS. The RSC receives indirect pro-

jections from the parieto-medial temporal pathway connect-

ing dorsal regions with the medial temporal lobe (for a

comprehensive review, see Kravitz, Saleem, Baker,&Mishkin,

2011). It is associated with the allocentric representations of

the surroundings andwith the processing of visual landmarks

(Committeri et al., 2004). It is even speculated that the RSC

codes objects in relation to landmarks (Galati, Pelle, Berthoz,&

Committeri, 2010). The cuneus and the lingual gyrus are spe-

cifically involved in allocentric coding during memory-guided

reaching (Chen et al., 2014). Both were damaged in HWS, but

not in DF. However, even if there would be no dysfunction in

DF's ventromedial cortex, impaired functional connectivity

between structurally impaired ventrolateral area and usually

densely connected components of the abovementioned allo-

centric coding systemmight have been sufficient to cause her

memory-guided reaching deficits back in 1999 (Milner,

Dijkerman, et al., 1999).

Acknowledging the apparent anatomical and behavioral

changes in DF since the early 90's, our data from HWS also

provides conclusive information on the recently described

optic-ataxia like misreaching in DF. In two studies Hesse et al.

(2012, 2014) reported deficits in visually-guided reaching for

peripheral targets relative to foveated targets in DF. The au-

thors discussed whether this unexpected behavioral obser-

vation could be associated with the well-known bilateral

ventral stream damage in DF (Hesse et al., 2012, 2014). How-

ever, Bridge et al. (2013) reported considerable bilateral

parieto-occipital atrophy, which was presumably more

extensive than the structural changes already reported in DF's
parietal cortex in the first report by Milner et al. (1991). In the

light of our knowledge about optic ataxia patients, this bilat-

eral parieto-occipital degeneration would suffice to explain

DF's peripheral misreaching. Nevertheless, with damage to

the ventral and the dorsal stream in DF and only dorsal

damage in some optic ataxia patients we can only conclude

that ventral stream damage is not necessary for peripheral

misreaching, but it might be sufficient to cause such an

impairment. Two empirical observations argue against such

an assumption. Although we did not directly compare move-

ments to foveated targets with movements to extra-foveal

targets in HWS, his accuracy in the visually-guided condi-

tion for all peripheral targets up to the maximum eccentricity

of 30� is in the normal range. Thus, a potential dissociation

between peripheral and central reaching in HWS could only

rely on a considerably better performance of HWS for foveated

targets in comparison to healthy controls. Although such a

pattern is possible and would be informative, it would not

easily qualify as a classical or strong behavioral dissociation.

Furthermore, a clinical screening for optic ataxia in the visual

agnosia patient JS with bilateral damage of the ventromedial

systemdue to stroke reported by Karnath, Rüter, Mandler, and

Himmelbach (2009) revealed no peripheral misreaching. Thus,

http://dx.doi.org/10.1016/j.cortex.2016.03.010
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we support the speculation by Hesse et al. (2012, 2014) (see

also Whitwell et al., 2014) that the atrophy in DF's dorsal

stream may be responsible for the dramatic misreaching

described in Hesse et al. (2012, 2014).

Our data further characterizes the impairments in

memory-guided reaching in DF and HWS as a rather specific

visuomotor deficit. Beyond her severe perceptual deficits and

her impairment in memory-guided movement tasks, DF also

demonstrated a severe impairment in a visuospatial short

termmemory task, namely the corsi block tapping test (Milner

et al. (1991). To exclude the possibility that impairments in

memory-guided reaching might be only one consequence of a

more general visuospatialmemory deficit, we also tested HWS

with the corsi block tapping test, but found no deficit. As this

clinical testwas substantially different fromamemory-guided

reaching task, we further explored HWS0 visuospatial memory

performance with a memory task designed to be as similar to

our reaching task as possible. Both taskswere almost identical

except for the mode of response by the participant: The target

stimulus first had to be perceived and to bemaintained during

the delay period until the participant indicated the previous

target location. In thememory task, participants indicated the

previous target position via button presses on a keyboard. In

contrast, the reaching task required participants not only to

indicate the target position, but additionally required a visuo-

motor transformation and action. In other words, both tasks

had identical requirement on perception, but only the

memory-guided reaching required additional processes

related to visuomotor transformations. Importantly, HWS

showed a specific deficit only in the memory-guided reaching

task but not in the memory task. Therefore, we conclude that

an impairment of memory-guided reaching as observed in

HWS and DF represents a rather specific deficit of the visuo-

motor system based on necessary contribution from ventral

areas for memory-guided actions.

Finally, beyond the interpretation of our current data and

the original finding in DF (Milner, Dijkerman, et al., 1999), an

alternative interpretation of behavioral differences between

visually-guided and memory-guided reaching is based on the

availability of concurrent visual feedback about the move-

ments accuracy relative to the presented target. Our study

implemented closed-loop movement conditions. The scarce

reports about the original experiment in DF (Milner,

Dijkerman, et al., 1999; Milner & Goodale, 2008) provide no in-

formation on this point. However, without explicitly

mentioning total darkness or other means to efficiently pre-

vent any visual feedback, we assumed that also the data from

DF was based on closed-loop movement execution. Thus, it

might be that whenever DF or HWS are forced to execute their

movements without direct visual feedback their respective

movements accuracy would be reduced. This interpretation

could also easily explainwhy HWS reveals specific deficits in a

memory-guided movement task but not in an extremely

similar perceptual visuospatial short-term memory tasks.

However, although this alternative interpretation would

clearly change the structure-function associations of the

ventral stream in the context of visuomotor control, it doesnot

invalidate themere observation and successful replication of a

behavioral dissociation in the first place. With an extremely

small number of patients available for these studies we first
strived for a successful replication of a known, important, but

scarcely described finding and look forward to further in-

vestigations on the open questions mentioned above.
5. Conclusion

We demonstrated that a unilateral damage of the ventral

stream resulted in a dissociation between visually-guided and

memory-guided reaching compared to age-matched healthy

controls for a peripheral target in the contralesional visual

hemifield. Deficits inmemory-guided reaching in HWS cannot

be explained by perceptual or a general visuospatial short-

term memory deficit but seem to be represent a specific

deficit in visuomotor processing. Since patient HWS does not

display any dorsal stream lesions, the behavioral deficit can be

clearly attributed to the unilateral ventral stream lesion. The

absence of a significant misreaching in the visually-guided

movement condition provides a straightforward interpreta-

tion for a recently described optic-ataxia like misreaching in

the well known patient DF based on a recently described

extensive, bilateral damage of her parieto-occipital cortex.
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Abstract 

Patients with optic ataxia show deficits in reaching movements to visual targets in the 

peripheral visual field. Even though the very name optic ataxia suggests an isolated 

deficit in visuomotor coordination, there is some evidence that the disorder is not 

restricted to visual targets, but might also affect other modalities. We examined two 

chronic optic ataxia patients in reaching tasks with visual, auditory and proprioceptive 

targets, directly comparing all three modalities. Both patients showed the 

characteristic pattern of visual misreaching in optic ataxia patients. This disorder 

clearly dissociated from reaching towards auditory or proprioceptive targets. Both 

patients were unimpaired in auditory reaching and the errors in proprioceptive 

reaching − observed in one of the two patients − were substantially different from 

errors in reaching to visual targets. We conclude that optic ataxia is not multimodal in 

nature. This argues against a common neuronal correlate for visual, proprioceptive 

and auditory reference frames, but does not exclude an independent co-occurrence 

of spatial errors in other modalities with optic ataxia. 
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Introduction 

Lesions to the posterior parietal cortex (PPC) may cause a visuomotor deficit towards 

visual targets in the periphery termed ‘optic ataxia’. Under central fixation, reaching 

errors increase with increasing eccentricity of target location (Blangero et al., 2010; 

Carey, Coleman, & Della Sala, 1997; Milner, Dijkerman, McIntosh, Rossetti, & 

Pisella, 2003; Milner, Paulignan, Dijkerman, Michel, & Jeannerod, 1999; Revol, 

Rossetti, Vighetto, & Rode, 2003). In their seminal group study, Perenin and Vighetto 

(1988) reported that while right brain-damaged patients showed pronounced 

misreaching with both hands in the contralesional visual field (field effect), left brain-

damaged patients displayed additional misreaching with the contralesional hand 

even in the ipsilesional visual field (hand effect). This apparent lateralization of field- 

and hand-effect was not supported by a more recent group study. Blangero et al. 

(2010) found a field effect in each of their 4 left brain damaged and 3 right brain 

damaged patients. However, they found a hand effect only in 2 left and 2 right brain 

damaged patients. The authors proposed that hand and field effects are not specific 

for either hemisphere and are independent deficits that can occur in combination. 

The purpose of the present study was to investigate whether or not ‘optic ataxia’ is 

visual (or visuomotor) in nature, i.e. whether or not the misreaching particularly 

affects reaches towards visual targets, but not targets of other modalities. Perenin 

and Vighetto (1988) described optic ataxia as a purely visuomotor deficit that is 

independent of primary visual, motoric or proprioceptive deficits. The exclusion of a 

proprioceptive disturbance was based on the observation of unimpaired seizing of 

either thumb with opened or closed eyes in their patients. Blangero and colleagues 

(2007) directly investigated proprioceptive guided reaching in two optic ataxia 

patients without primary proprioceptive deficits. Both patients showed gross 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 5 

misreaching when reaching in the dark with their contralesional (ataxic) hand to their 

ipsilesional hand and vice versa (Blangero et al., 2007). The latter argued for 

disturbed proprioceptive reaching and the authors therefore suggested that optic 

ataxia is multimodal in nature. Unfortunately, this study did not investigate whether or 

not a difference in performance existed between reaches to foveated proprioceptive 

targets and non-foveated proprioceptive targets, as it typically is observed for optic 

ataxia patients’ reaches toward visual targets. Importantly, it is possible that the 

observed misreaching is independent of a concomitant optic ataxia and caused by 

anatomically different substrates. In fact, misreaching to proprioceptive targets as a 

function of visual input has been demonstrated before in the absence of optic ataxia 

in a patient with thalamic stroke (Newport, Hindle, & Jackson, 2001). 

What about reaching to auditory targets in optic ataxia patients? Considering the 

involvement of the PPC in the localization of sound sources (Alain, Arnott, Hevenor, 

Graham, & Grady, 2001; Zündorf, Lewald, & Karnath, 2013) and reaching 

movements towards sounds with a joystick (Weeks et al., 1999; Zatorre, Bouffard, 

Ahad, & Belin, 2002), one can speculate whether reaches to auditory targets are 

affected by optic ataxia. Cell recordings in monkeys demonstrated the encoding of 

auditory targets in an eye centered reference frame (Cohen & Andersen, 2000; 

Mazzoni, Bracewell, Barash, & Andersen, 1996; Stricanne, Andersen, & Mazzoni, 

1996) and supported the hypothesis of multimodal retinotopic target encoding as well 

as behavioral studies in humans (Pouget, Ducom, Torri, & Bavelier, 2002). In 

contrast to this line of research, research on optic ataxia in neurological patients 

assumed a clear-cut dissociation between misreaching to visual targets and intact 

reaching to auditory targets. But there are surprisingly few studies substantiating this 

widely accepted dissociation with empirical data. Perenin and Vighetto (1988) 

reported that they observed misreaching to auditory targets in only one out of 10 
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patients who showed optic ataxia. Nine of their patients “behaved as normals or 

nearly so when required to reach for or to point towards an auditory target (a small 

loudspeaker) located at various places in front of them, while keeping their eyes 

closed” (Perenin & Vighetto, 1988; p. 661). Only one of their patients showed 

reaching errors for auditory targets. However, beyond this anecdotal report the 

authors presented no data. It was also unknown how many of the patients who 

behaved “nearly” normal were in fact impaired. Moreover, it is interesting to note that 

Perenin and Vighetto (1988) instructed the patients to close their eyes for the 

auditory reaching task. Thence, by definition there were no extrafoveal targets as 

there was no determined fixation position. Tzavaras and Masure (1976) examined an 

optic ataxia patient who was hearing impaired. They reported auditory misreaching 

that was, however, not consistent with an ‘auditory ataxia’. A third study examined 

reaching to visual and auditory targets in a patient suffering from Balint’s syndrome 

due to a bilateral glioma (Guard et al., 1984). The authors reported misreaching for 

peripheral visual targets under free gaze condition and misreaching to auditory 

targets when the patient was allowed to foveate the targets. Taken together, 

misreaching to auditory targets was so far not systematically investigated and 

compared to reaching to visual targets in optic ataxia patients. 

Summarizing the existing body of evidence, we conclude that the available data on 

behavioral dissociations between target modalities in optic ataxia patients is still 

equivocal. We thus examined two patients with optic ataxia after stroke and 

compared visual, proprioceptive, and auditory reaching tasks. We focused on three 

typical characteristics of optic ataxia to decide whether reaching accuracy in the non-

visual modalities was similar to the individual pattern of misreaching in the visual 

modality. First, we compared reaching to non-foveated targets with reaching to 

foveated targets since optic ataxia patients are impaired when reaching to an extra 
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 7 

foveal target, but unimpaired when the target is fixated (Jackson et al., 2009). 

Second, we analyzed field effects, which have been reliably observed for reaching to 

visual targets in optic ataxia patients (Perenin & Vighetto, 1988; Blangero et al., 

2010) and have already been demonstrated for proprioceptive reaching in one optic 

ataxia patient (Blangero et al. 2007), in all modalities. Finally, because of the typical 

eccentricity dependence of misreaching in optic ataxia we focused on the most 

eccentric target positions. If visual, proprioceptive, and/or auditory misreaching 

represent common components of a ‘multimodal ataxia’, differences between 

foveated and non-foveated reaching should be maximal at the most peripheral 

contralesional target location across modalities.  
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Methods 

Patients 

The 42-year-old, left-handed patient IT had an occlusion of the middle cerebral artery 

leading to a left hemispheric stroke 8 years before the experimental measurements 

reported here. Magnetic resonance FLAIR images acquired at the time of testing on 

a 3T Siemens TIM Trio Scanner (12-channel receive head coil, 40 axial slices, TE 75 

ms, TR=9000 ms, 2 mm slice thickness, gap of 2 mm, flip angle 150°, FoV 176 x 256 

mm^2, matrix size 176 x 256) revealed a widespread chronic temporo-parietal lesion 

that also spread into frontal as well as occipital regions (Figure 1a). Subcortically, 

parts of the thalamus and basal ganglia were affected. In agreement with the 

damage to the left postcentral sulcus, clinical examination showed a hypoesthesia in 

her right hand and arm. After an initial hemiplegia after her stroke, she displayed a 

dystonia of fingers III-IV on the right hand, but no latent or manifested paresis. This 

deficit is in accord with damage to the inferior aspects of her precentral gyrus. A 

clinical perimetry using the confrontation technique indicated no primary visual field 

defect. A detailed test in the experimental setup confirmed this finding: IT was asked 

to give a verbal response as soon as a target was illuminated and performed this 

detection task correctly under fixation. A computerized threshold-based perimetry 

examination (Octopus 101, Haag-Streit International, Köniz, Switzerland) indicated 

visual deficits beyond 30° of visual angle. IT demonstrated a unilateral visual agnosia 

(Mazzucchi, Posteraro, Nuzzi, & Parma, 1985) with impairments of object recognition 

and discrimination upon tachistoscopic presentations in her contralesional visual 

hemifield. She demonstrated no signs of visual, auditory, or tactile extinction in a 

clinical screening with 10 left, 10 right and 10 bilateral stimuli (visual: simultaneous 

confrontation testing, detection of the examiner's left and/or right index finger 
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movement in the left and right visual field; auditory: clicking ballpoint pens near the 

patient’s left and/or right ear; tactile: twitching the left and/or right shoulder). An 

audiometry indicated comparable hearing thresholds for both ears (interaural 

difference did not exceed 10 dB).  

The 63-year-old right-handed patient HM had an internal carotid artery stenosis that 

caused a right hemispheric media stroke about 4 years before the experimental 

measurements reported here. A CT was acquired about 4 weeks post-stroke. It 

revealed a right hemispheric temporo-parietal lesion that spread to the rostral part of 

the postcentral sulcus (Figure 1b). Anterior, the temporal operculum as well as the 

dorsal part of the insula were affected. He initially showed a latent paresis of his left 

arm (pronation) that was recovered at the time of testing. Patient HM demonstrated 

no signs of visual neglect, visual, auditory, or tactile extinction. An audiometry 

indicated comparable hearing thresholds for both ears (interaural difference did not 

exceed 10 dB) except for a frequency of 8 kHz. Repeated visual field testing with the 

confrontation technique at the time of his first hospital admission and before each 

experimental measurement reported here did not reveal any visual field defects. 

For the recruitment for this study, both patients were clinically examined for the 

presence of optic ataxia (Borchers, Müller, Synofzik, & Himmelbach, 2013). In both 

patients the results of the initial examinations demonstrated the presence of optic 

ataxia. For detailed results, please see table 1 (initial screening). 

 

 

- Figure 1 about here - 

 

- Table 1 about here – 
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General procedure 

Both patients participated in multiple measurements that took place on multiple days. 

In the following, we will first give an overview of the series of experiments for each 

patient. 

Patient IT first participated in a measurement of her visually and auditory guided 

reaching accuracy with her right, contralesional hand in Experiment 1. Two months 

later, we re-examined visually and auditory guided reaching in IT with her right, 

contralesional hand, followed by an examination of her left, ipsilesional hand 

(Experiment 2). On the same day, we also examined her proprioceptive reaching 

accuracy (Experiment 3). 

Patient HM conducted one session of Experiment 1 (visual and auditory targets) and 

Experiment 3 (proprioceptive targets) on the same day. Later, he was invited again to 

conduct a second session of experiment 1. In both experiments we examined his 

performance with his left, contralesional hand. 

Healthy controls first conducted visually and auditory guided reaching, with each 

hand tested at a different day. The proprioceptive measurements in healthy controls 

were always conducted after the visual-auditory measurements on a separate day. 

All participants gave their informed consent to participate in the study, which was 

performed in accordance with the Declaration of Helsinki and approved by the local 

Ethic Committee. 
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Clinical screening for optic ataxia 

On each respective testing day, the patients were re-examined for the presence of 

optic ataxia with the procedure and scoring system reported in Borchers et al. (2013). 

Thus, patient IT was tested four times; during initial recruitment, on the day of 

experiment 1, on the day of experiments 2 and 3, and finally again when she was 

recruited for another experiment (please see table 1). Patient HM was tested three 

times; during initial recruitment, on the day of the acquisition of the first session of 

experiment 1 and full experiment 3, and finally on the day of the acquisition of 

session 2 of experiment 1. 

All examinations confirmed the presence of optic ataxia in both patients. Their error 

scores for the contralesional hand in the contralesional field always exceeded the 

healthy controls’ threshold (Crawford and Garthwaite (2005), threshold of p< 0.05). 
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Experiment 1: Reaching to visual and auditory targets with the contralesional 

hand. 

Participants 

We examined IT, HM and 13 healthy, age-matched adults (11 females, age range = 

37- 64 y; mean age = 56 y) without any history of neurological or psychiatric disorder. 

All controls were right-handed and had normal or corrected to normal vision. 

Monaural auditory thresholds showed no differences between the ears exceeding 

10dB across a frequency range between 0.125 and 3kHz.  

Procedure and apparatus 

The participants sat in a darkened room at a table with a black vertical panel fixed on 

the tabletop. Their head rested on a chinrest and the index finger of their reaching 

hand rested on a start button at the midsagittal body plane. The vertical panel was at 

a distance of 36 cm from the chin rest and of 30 cm from the start button. Light 

emitting diodes (LEDs, diameter 3mm, light intensity 20 mcd) were mounted at the 

panel at a height of 47 cm from the tabletop. Behind each LED, a tube (length 14 cm) 

was fixated with a speaker (3.3 x 2.3 cm) at its end. The tube served to avoid 

distortions of the magnetic field of the motion tracking system and additionally 

channeled the sound so it appeared at the same location as the visual targets. A 

green LED at the midsagittal body plane and at the same height as the targets 

served as fixation target. The experimenter started each trial manually. After a 

variable interval (ranging from 1 s to 1.5 s in steps of 100 ms) one of the targets - red 

LEDs in the visual-guided reaching or white noise stimuli with an average sound 

pressure level of 78 dB(A) in the auditory-guided reaching - was presented for 2 

seconds at one of three possible eccentricities (± 9°, ± 17° or ± 28° degree of visual 

angle, Figure 2 a, b). 
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Participants were tested in two conditions: They were either instructed to keep their 

gaze on the fixation LED and only reach with their hand for the respective target (H, 

hand) or to look at the respective target in their peripheral visual field and reach for it 

with their hand (EH, eye-hand). The participants were instructed to execute 

movements as quick and precise as possible. The order of target positions was 

randomized. The visual and auditory targets were presented in blocks of 18 trials for 

each condition (3 trials per target) within an ABBA design (visual H, visual EH, 

acoustic H, acoustic EH, acoustic EH, acoustic H, visual EH, visual H). In total, 16 

experimental blocks, 8 visual and 8 auditory blocks, were recorded per participant in 

two sessions with a minimum of 10 practice trials at the beginning of either session. 

Please note that patient IT conducted the full experiment 1 on one day, whereas 

patient HM conducted one session with all conditions on one day and later conducted 

a full second session. 

Healthy controls conducted the measurements twice, once with their right and once 

with their left hand. Patients HM used only his contralesional hand, patient IT also 

used her ipsilesional hand in experiment 2. Reaching trajectories were recorded with 

a magnetic sensor attached to the participants’ index finger (miniBird Motion Tracking 

system, 0.5 mm resolution, Ascension Technology Cooperation, Vermont, USA) at a 

rate of 100 Hz. Correct fixation during fixation trials was verified online and recorded 

for later offline control with a digital IR video system. 

 

- Figure 2 about here - 

 

Analysis 

All data were analyzed using custom software based on MATLAB (MathWorks Inc., 

Sherborn, MA, USA) and R (r-project.org, version 3.0.1). First, raw data was filtered 
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using a fourth-order zero-phase shift lowpass Butterworth filter with a cutoff 

frequency of 20 Hz. Movement onset was defined as the time at which the velocity of 

the marker at the index finger exceeded a threshold of 5 cm/s in four consecutive 

frames. If no onset could be detected with this threshold, we analyzed the same trial 

with a threshold of 10 cm/s. Reaction time (RT) was defined as the time between 

target presentation and detected movement onset. The end of the movement 

towards the target was defined (i) as lying within the interval between the highest 

velocity of the movement towards the target, and the highest velocity of the 

movement back to the start button and (ii) by the point at which the absolute 

deceleration was 0 mm/s2 and (iii) velocity was below 10 cm/s at the same time. 

Movement time (MT) was defined as the time between the movement onset and the 

end of the movement. 

Trials were excluded from further analysis if no movement end point could be 

identified. We analyzed the absolute horizontal deviation of the movement end point 

from the respective target position. Because of a strong effect of target eccentricity 

with largest errors always for the most eccentric targets in optic ataxia (Blangero et 

al., 2010; Carey et al., 1997; Milner et al., 2003, 1999; Revol et al., 2003) and to 

avoid multiple independent single case analyses for multiple target locations, we 

focused our analysis on the most eccentric contralesional target (i.e. +28° for IT, -28° 

for HM) if not stated otherwise. 

We compared the difference of the patients’ reaching errors between both viewing 

conditions (H vs. EH) with the corresponding difference in reaching errors of healthy 

subjects using single case dissociation tests (Crawford & Garthwaite, 2005) for both 

modalities individually, i.e. for visual and auditory targets (Vis[H-EH], Audit[H-EH]). 

Then, we compared the patients’ difference values (H - EH) between modalities 

(Vis[H-EH] – Audit[H-EH]), again using a standardized difference test for single case 
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dissociations (Crawford & Garthwaite, 2005). Finally, we compared the differences 

between both viewing conditions (H – EH) for the contralesional and the ipsilesional 

target in the visual and the auditory conditions respectively (Vis: contra[H-EH]-ipsi[H-

EH]; Audit: contra[H-EH]-ipsi[H-EH]) to verify visual field effects of movement errors 

that would be typical for optic ataxia. 

The reported p-values correspond to one-tailed tests, because of directional 

hypotheses for all comparisons (always H worse than EH; visual worse than auditory; 

contralesional field worse than ipsilesional field). 

Results 

The experimental measurement confirmed the screening results: both patients 

revealed a dissociation between movement conditions (H vs. EH) in visually-guided 

reaching. They showed larger misreaching errors under central fixation relative to 

coordinated Eye-Hand movements in comparison to controls as evidenced by the 

results of the dissociation tests for the respective most peripheral contralesional 

target (vis[H – EH]; IT at +28°: t(12)= 7.97; p<0.001; HM at -28°: t(12)= 3.37; p= 

0.003; see table 2 and 3). Furthermore, we found a significant field effect for visually 

guided reaching in both patients (contra[H-EH]-ipsi[H-EH]; IT: t(12)= 8.90; p<0.001; 

HM: t(12)= 2.21; p=0.02). 

No significant dissociation between viewing conditions (H vs. EH) was observed for 

auditory guided reaching (aud[H-EH]; IT: t(12)= 0.68; p= 0.25; HM: t(12)= 1.10; p= 

0.15; see table 2 and 3). Neither patient showed a field effect when reaching to 

auditory targets (contra[H-EH]-ipsi[H-EH]; IT: t(12)= 0.03; p= 0.49; HM: t(12)= 0.75; 

p= 0.23). Finally, we directly compared the differences between both viewing 

conditions in auditory and visually guided reaching (vis[H-EH] – aud[H-EH]) for the 

most eccentric contralesional target at +28° for IT, respectively -28° for HM. Visually-
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guided reaching dissociated from auditory-guided reaching in comparison to controls 

in IT (t(12)= 6.18, p<0.001) and HM (t(12)= 3.16, p= 0.004). 

 

- Figure 3 about here - 

Discussion Experiment 1 

As expected based on the clinical screening, IT and HM demonstrated the 

characteristic signs of optic ataxia in the experimental setup including stronger 

misreaching to peripheral visual targets in comparison to foveated visual targets. 

Both patients showed typical field effects for visual targets. 

As can be seen in figure 3, the interpretation of the statistical test outcomes in IT 

suggest a straightforward interpretation. Optic ataxia deficits in visually guided 

reaching were contrasted with reaching errors in the normal range for auditory guided 

reaching. 

The outcome was apparently less clear for patient HM. He also showed the typical 

error pattern for visually guided reaching. However, the difference between 

movement conditions (H-EH) was larger in the auditory than in the visual condition. 

This descriptive result pattern was completely reversed once the normal performance 

of healthy controls was taken into account. Reaching for auditory targets with their 

left hand, healthy controls showed larger errors than for visual targets and a much 

larger inter-individual variability. As a result, the standardization of HM’s movement 

errors in both target modalities (visually-guided reaching z = 6.21, auditory-guided 

reaching z = 1.51) revealed behavioral dissociations in the same direction as in 

patient IT. While the outcome for the comparison between hand and eye-hand 

conditions for auditory targets was rather inconclusive with p = 0.15 (aud[H-EH]), the 

outcome of the dissociation test between target modalities (vis[H-EH] – aud[H-EH]) 

was clear also for patient HM, with p = 0.004 in the expected direction, i.e. a 
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significantly larger standardized difference in visual reaching than in auditory 

reaching relative to controls. 

The apparently contradictory outcome in patient HM is a consequence of the 

standardization of a patient’s performance relative to a control sample. If two tasks 

are considerably different from each other in healthy controls, this must be taken into 

account for between task comparisons in patients. If two tasks are sufficiently 

different from each other in a control sample, standardization can indeed result in a 

substantially different results pattern relative to unstandardized performance scores 

of the respective patient. 

Because patient IT revealed visual field defects close to, although not overlapping 

with the eccentricity of the most peripheral contralesional target, we additionally 

examined her performance with her ipsilesional hand to exclude that the dissociation 

between the auditory and visual modality were evoked by impaired visual processing. 

The presence of a hand-effect would argue against the objection that the results of IT 

in experiment 1 were primarily caused by visual field defects. 
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Experiment 2: Hand effect of reaching to visual and auditory targets in patient 

IT. 

Participants 

Only patient IT participated in this experiment together with the same controls who 

participated in experiment 1. We tested both hands in IT, thereby a replication of the 

measurements with the contralesional hand already conducted in experiment 1 was 

included in experiment 2.  

Procedure and apparatus 

Procedure and apparatus were identical to experiment 1 with the following 

exceptions. For IT, only 12 trials per block were recorded respectively for reaches 

with the ipsilesional left hand and for the re-test of the contralesional right hand. As in 

experiment 1, all participants conducted 16 experimental blocks (8 visual blocks and 

8 auditory blocks) in two sessions and controls conducted 18 trials per block. 

Analysis 

We compared IT’s difference between eye-hand conditions (E-EH) between both 

hands for the most eccentric target at +28° in the contralateral hemifield 

(contraHand[H-EH] – ipsiHand[H-EH]) to the respective difference in controls using a 

standardized single case dissociation test (Crawford & Garthwaite, 2005). Again, p-

values are reported for directional hypotheses. 

Results 

In the experimental measurements, twelve weeks after experiment 1, IT again 

demonstrated a significant dissociation between the hand only and eye-hand 

conditions in visually guided reaching with her contralesional, right hand (t(12)= 5.67; 

p<0.001). As before, no dissociation was observed in auditory-guided reaching 

(t(12)= 0.09, p=0.46; see table 2). The performance difference between both viewing 
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conditions in the visually-guided reaching compared to the difference in auditory-

guided reaching was again significant (vis[H-EH] – aud[H-EH]: t(12)= 3.82, p=0.001). 

Reaching to visual targets, the difference between eye-hand conditions was 

significantly larger with her contralesional than with her ipsilesional hand in 

comparison to controls (t(12)= 2.02, p=0.03). No significant dissociation between 

hands was observed when reaching to the auditory target (t(12)=0.62, p=0.27). 

Discussion Experiment 2 

A significant dissociation between IT’s hands supported the interpretation that her 

reaching deficits to a peripheral target in the contralesional hemifield were not 

primarily caused by visual deficits that would have affected both hands. This 

experimental finding was supported by the clinical optic ataxia screening, which in 

the contralesional visual field always showed worse outcomes for the contralesional 

hand than for the ipsilesional hand (table 1). In the following third experiment we 

examined both patients’ accuracy in proprioceptive guided reaching. 
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Experiment 3: Reaching to proprioceptive targets 

Participants 

Patient IT and patient HM participated in this experiment together with 12 controls 

who already participated in experiments 1 and 2. 

Procedure and apparatus 

Experiment 3 was conducted right after experiment 2 in patient IT and right after the 

first session of experiment 1 in patient HM. The data from this proprioceptive 

experiment were compared to the data from the visual conditions of experiment 1. 

The participants were seated at a table with a miniature table on top of it (70 cm x 

39.5 cm). Three rows with six horizontal targets each were arranged vertically on the 

miniature table, resulting in 18 targets in total with horizontal eccentricities of ±8°, 

±22°, and ±33° from fixation (Figure 2 c). Target positions were marked underneath 

the table and were invisible on the top of the miniature table (Figure 4 b). 

One hand of the participant was placed below the miniature table with the palm of the 

hand oriented upwards and only the index finger extended (Figure 4 a). The 

experimenter instructed the participant to close her/his eyes and positioned the tip of 

the index finger of the participant’s passive hand at one of the target positions 

underneath the table. Subsequently, the participant was instructed to open her/his 

eyes again. In the EH condition, participants were instructed to saccade to the felt 

target position and to reach with the index finger of the active hand to the felt position 

of the opposite index finger of the passive hand (Figure 4 b). In the H condition, 

participants fixated a marker at the midsagittal body plane at a distance of 8 cm to 

the closest horizontal line of targets (Figure 2 c and Figure 4 b). In both conditions, 

participants were encouraged to execute an uninterrupted smooth movement at 

comfortable speed. Participants were not permitted to correct presumably inaccurate 
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reaches after they made contact with the table surface. Every condition comprised 36 

trials, 2 trials per target position. 7 control participants conducted the H condition 

before the EH condition whereas 5 controls first conducted the EH condition. Arm 

reaches were recorded with a video camera. The experimenter was situated opposite 

to the participant and monitored correct fixation during the H condition. Trials with 

incorrect fixation were repeated at the end of the experiment. 

 

- Figure 4 about here - 

 

 

Analysis 

All data were analyzed using custom software based on MATLAB (MathWorks Inc., 

Sherborn, MA, USA) and R (r-project.org). We first removed spatial distortions in the 

video recordings, which were due to the viewing angle of the camera using custom 

written Matlab-scripts. The end positions of the index finger of the active (reaching) 

hand were marked manually and compared to the actual target position. Results 

were averaged across the three vertically distributed targets at the same horizontal 

eccentricity in each participant (cp. Figure 2 c). 

As in the previous experiments, we compared the patients’ absolute horizontal 

reaching errors between both viewing conditions (H vs. EH) with the contralesional 

hand towards peripheral targets in the contralesional hemifield to those of healthy 

controls (proprio[H-EH]). Afterwards, we directly compared the differences between 

H and EH for visually-guided reaching, taken from experiment 1, and for 

proprioceptive-guided reaching (vis[H-EH] – proprio[E-EH]). Since data from one 

control participant was missing in the proprioceptive task, we also excluded her data 
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from the visually-guided reaching dataset. All comparisons were calculated using a 

standardized test for single case dissociations (Crawford & Garthwaite, 2005).  

Results 

IT’s proprioceptive-guided reaching with her contralesional hand showed no 

dissociation between viewing conditions for the most peripheral contralesional targets 

at +28° (proprio[H – EH]; t(11)= 0.37, p=0.36, see table 4 and figure 5). She 

demonstrated a significant dissociation between the visual movement condition 

difference and the proprioceptive difference (vis[H-EH] – proprio[H-EH]; t(11)= 4.26, 

p< 0.001) with a larger difference for visual targets and virtually no difference 

between movement conditions for proprioceptive targets. 

The outcome was different in patient HM. When reaching with the contralesional 

hand to the unseen ipsilesional hand, he showed a significant dissociation for the 

most peripheral target of the contralesional hemifield between both movement 

conditions (proprio[H - EH]) (t(11)= 3.33, p= 0.003, see table 4 and figure 5) with 

larger errors in the central fixation condition. Moreover, HM showed no dissociation 

between his performance in the visually-guided reaching and proprioceptive-guided 

reaching for the most peripheral target alone (vis[H – EH] – proprio[H – EH]; t(11)= 

0.31, p= 0.38). However, in clear contrast to HM’s performance in visually guided 

reaching and the typical pattern in optic ataxia (increasing errors with increasing 

eccentricities), the differences between proprioceptive movement conditions 

increased with decreasing target eccentricities (Figure 5). 

In a complementary dissociation analysis, we included HM’s movement errors across 

all target positions in the whole contralesional (left) hemifield – three targets in the 

visual conditions of experiment 1, nine targets in the proprioceptive experiment 3. 

Here we report the p-value for a two-tailed test, as we did not expect worse 

performance in the proprioceptive condition before the measurement. Based on the 
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data from the whole contralesional field, we now found a dissociation between the 

visual and proprioceptive modality (vis[H – EH] – proprio[H – EH]; t(11)= 2.88, p= 

0.015). However, the difference was larger for the proprioceptive measurements 

(Figure 5 b). 

 

- Figure 5 about here - 

 

 

Discussion Experiment 3 

Even though both patients showed the typical behavioral patterns associated with 

optic ataxia, their performance in proprioceptive guided reaching differed 

considerably. IT’s difference between movement conditions for proprioceptive targets 

was comparable to controls. In line with this, her reaching errors for the most 

peripheral contralesional target clearly dissociated between visual and proprioceptive 

conditions, arguing against a proprioceptive ataxia that would resemble the pattern of 

optic ataxia. 

In contrast, HM’s proprioceptive guided reaching dissociated between hand only and 

eye-hand movements to peripheral targets with larger errors for movements under 

central fixation, indeed comparable to optic ataxia. This finding was further supported 

by the lack of evidence for a dissociation between reaching to visual and 

proprioceptive targets. In summary, these findings indicate the presence of a 

proprioceptive ‘optic’ ataxia. However, a closer look at the data from the whole 

contralesional field revealed a misreaching pattern that was inconsistent with the 

typical pattern of optic ataxia, i.e. stronger misreaching with decreasing eccentricity 

of the target position. This topography of HM’s reaching errors argues against a 

proprioceptive ‘optic’ ataxia. 
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General Discussion 

Both patients demonstrated the characteristic misreaching to visual targets in the 

contralesional peripheral visual field under central fixation, i.e. the typical pattern of 

optic ataxia, not only in repeated clinical screenings but also in our experimental 

measurements. In both patient, we found a significant dissociation between these 

errors in visually guided reaching and auditory guided reaching. Since general 

deficits in auditory guided reaching and sound localization have been observed after 

right hemispheric lesions (Bisiach, Cornacchia, Sterzi, & Vallar, 1984). We thus 

suggest that optic ataxia can coincide with reaching deficits to auditory targets as 

indicated by a verbal report that suggested that some optic ataxia patients may show 

signs of an auditory ataxia (Perenin & Vighetto, 1988). This suggests that 

misreaching to auditory targets and misreaching to visual targets occur 

independently and thus may be caused by different neuronal modules. 

Also our results from the proprioceptive reaching task support the idea of optic ataxia 

as a purely visuomotor deficit. In IT, visually guided reaching clearly dissociated from 

proprioceptive guided reaching with impaired performance only for reaching to visual 

targets. This finding clearly argued against a ‘proprioceptive’ ataxia. Patient HM 

indeed showed optic ataxia-like misreaching for proprioceptive targets in the 

contralateral visual hemifield. Additionally, visual and proprioceptive guided reaching 

did not dissociate for the most peripheral targets. These findings in HM were in line 

with previous observations in another two patients (Blangero et al., 2007). On closer 

examination, however, the proprioceptive misreaching pattern in HM across all 

contralesional target positions was not in agreement with a ‘proprioceptive ataxia’. 

HM’s misreaching increased with decreasing eccentricity, thus showing a pattern that 

is opposite to the one typically observed for optic ataxia (Carey et al., 1997; Milner et 
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al., 2003, 1999; Revol et al., 2003). This latter observation indicated that HM’s 

misreaching to proprioceptive targets is unrelated to optic ataxia and reflects a more 

general deficit. Indeed, a hand effect as well as an increased misreaching with 

decreasing visual input has been reported before after a hematoma in the lateral 

pulvinar and the internal capsule (Newport et al., 2001). Moreover, proprioceptive 

guided misreaching for both hands has been observed after a lesion (mainly) to the 

primary somatosensory cortex (Borchers, Hauser, & Himmelbach, 2011). Taken 

together, these observations indicate that damage to several regions can result in 

proprioceptive misreaching. Consequently, as for the auditory modality, we conclude 

that misreaching to proprioceptive targets and misreaching to visual targets occur 

independently and thus may be caused by different neuronal modules.  

Interestingly, not only general difficulties in proprioceptive-guided reaching can be 

observed after a stroke in the absence of optic ataxia, but also specific misreaching 

patterns like the hand effect. For example, mildly affected mirror ataxia patients may 

demonstrate an isolated hand effect (Pisella, Binkofski, Lasek, Toni, & Rossetti, 

2006). Taking into consideration that hand effects were not observed consistently in 

all optic ataxia patients (Blangero et al., 2010), but can be observed independent of 

optic ataxia, it can be argued that the hand effect itself is actually not caused by optic 

ataxia and depends on different anatomical modules, but co-occurs frequently. This 

idea is supported by the observation that field and hand effects are additive (see also 

Blangero et al., 2010).  

The existence of ‘proprioceptive ataxia’ was proposed based on misreaching to 

proprioceptive targets in two optic ataxia patients (Blangero et al., 2007). However, 

we believe that these results require a different interpretation for several reasons. 

First, patients only reached for extrafoveal targets. Thus, the typical dissociation 

between reaching to foveated and non-foveated could not be investigated. Second, a 
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hand effect was reported for one patient. It referred to the observation that 

misreaching to visual targets decreased when visual feedback of the hand was 

available, but only for the contralesional hand. Importantly, no direct comparison 

between the ipsi- and contralateral hand was calculated. The combination of a 

significant finding for the contralesional hand but a non-significant finding for the 

ipsilesional hand, however, cannot easily be interpreted as a significant difference 

between both hands (Nieuwenhuis, Forstmann, & Wagenmakers, 2011) Third, the 

field effect was postulated based on the observation that the both patients perform 

worse in their contralesional field than in their ipsilesional field, but their performance 

was not compared to control participants. Finally, reaching to visual and 

proprioceptive targets was not directly compared. Taken together, also these results 

cannot unequivocally be interpreted as evidence for ‘proprioceptive ataxia’. 

 

Comparison to studies in macaques 

Inactivation of the parietal reach region (PRR) in monkeys caused misreaching to 

extrafoveal visual targets similar to optic ataxia (OA) in neurological patients (Hwang, 

Hauschild, Wilke, & Andersen, 2012). Indeed, anatomical studies showed that 

regions that are putative homologues of the monkey PRR are typically damaged in 

OA patients (Karnath & Perenin, 2005; Martin, Karnath, & Himmelbach, 2015). 

Besides encoding of visual target location, the macaque PRR also encodes reaches 

to auditory targets (Cohen, Batista, & Andersen, 2002) in eye-centered coordinates 

(Cohen & Andersen, 2000). Moreover, a lesion of the PRR caused deficits in 

proprioceptive reaching (Rushworth, Nixon, & Passingham, 1997). If the homologue 

of the monkey PRR has a comparable functional architecture in humans and optic 

ataxia is due to damage of the PRR, optic ataxia patients should demonstrate 

misreaching also to auditory and proprioceptive targets.  
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At first glance, impaired proprioceptive guided reaching in only one of our two 

patients seems contradictory to the findings of the monkey studies, and argues 

against a comparable coding mechanism between humans and monkeys for 

proprioceptive reaching. These apparently conflicting observations can be reconciled 

taking into account a subdivision of the monkey PRR into two areas (area 7a and 

MIP). Area 7a is crucial for spatial coordination of visual motor transformations and 

its removal causes misreaching to visual targets but does not impair reaching in the 

dark that relies strongly on proprioceptive input (Rushworth et al., 1997). Area MIP is 

involved in the spatial coordination of reaches based on its role in proprioceptive and 

efference copy information processing. Its removal mainly affects misreaching in the 

dark but has little effect on reaching to visual targets (Rushworth et al., 1997). This 

suggests that for monkeys, damage to area 7a can cause misreaching resembling 

optic ataxia, and additional damage to the neighboring area MIP might impair 

proprioceptive guided reaching and cause hand effects. Consequently, we propose 

that whether or not misreaching to proprioceptive targets can be observed in human 

optic ataxia patients depends on the precise lesion location and extent. The 

existence of other candidate regions for optic ataxia in monkeys, like V6A (Battaglini 

et al., 2002) does not object our conclusion. The assumption of an additional lesion 

site causing misreaching to proprioceptive targets is in line with our observations. 

Whereas IT’s reaching to proprioceptive targets was unimpaired, HM’s reaching was 

impaired, but not in line with the typical misreaching observed towards visual targets, 

indicating different underlying mechanisms. 

The lack of a deficit in the auditory modality in both patients was surprising given that 

auditory targets are encoded in eye centered reference frame in the PRR in monkeys 

(Cohen & Andersen, 2000) and behavioral studies in humans suggested that the 

location of visual, auditory and proprioceptive targets are coded in eye-centered 
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coordinates across modalities (Pouget et al., 2002). Yet, other parietal areas like LIP 

(Mazzoni et al., 1996; Stricanne et al., 1996) and VIP (Schlack, Sterbing-D’Angelo, 

Hartung, Hoffmann, & Bremmer, 2005) are additionally involved in the encoding of 

auditory targets and might be sufficient for auditory guided reaching. 
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Conclusion 

The demonstration that reaching to auditory targets was unimpaired in two optic 

ataxia patients and dissociated from reaching to visual targets strongly argues 

against an ‘auditory ataxia’. The present results further demonstrated that even 

though misreaching to proprioceptive targets can co-occur with optic ataxia, this does 

not necessarily imply a ‘proprioceptive ataxia’; the spatial topography of reaching 

errors differed from those to visual targets. Our results thus suggest that optic ataxia 

is not a multimodal deficit. It is restricted to the visual modality but can coincide with 

deficits in proprioceptive guided reaching (or in reaching to auditory targets) caused 

by impaired mechanisms that are unrelated to optic ataxia. 
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Tables 

Table 1: Percentage error scores of the optic ataxia screenings (Borchers et al. 
2013) based on the difference between foveated and non-foveated reaching at 
different time points for a) patient IT and for b) patient HM. Cut-off scores for healthy 
controls are given for comparison. Please note that in IT contra = right and ipsi = left, 
in HM contra = left and ipsi = right. 
 

IT 
Con Hand 
Ipsi Field 

Con Hand 
Con Field 

Ipsi Hand 
Con Field 

Ipsi Hand 
Ipsi Field 

Initial screening 
(t=0) 

-3.3 43.0 6.6 10.0 

Experiment 1 
(t=1) 

13.8 52.5 23.3 12.1 

Experiment 2 
Experiment 3 

(t=3) 
13.3 26.7 20.7 3.3 

Final Screening 
(t=5) 

0.0 36.6 3.3 0.0 

Cut-off scores 9.1 11.8 5.1 15.0 

 

HM 
Con Hand 
Ipsi Field 

Con Hand 
Con Field 

Ipsi Hand 
Con Field 

Ipsi Hand 
Ipsi Field 

Initial screening 
(t=0) 

0.5 33.3 18.9 -1.2 

Experiment 1/Sess 1 
Experiment 3 

(t=40) 
6.6 26.6 16.6 9.2 

Experiment 1/Sess 2 
(t=42) 

10.0 40.0 16.6 8.7 

Cut-off scores 5.1 15.0 9.1 11.8 
t: time after initial screening in months; Con: contralesional; Ipsi: ipsilesional. Cut-off scores are taken 
from Borchers et al. (2013) and are based on single-case statistics by Crawford and Garthwaite (2005) 
for a threshold of p< 0.05. 

 

Table 2: Mean absolute horizontal error for visual and auditory reaching to the 
contralesional target at +28° in patient IT and controls in experiments 1 and 2. 
Standard deviations for the control group are presented in brackets. Correlation 
coefficients between H and EH errors are reported for controls. 
 

 

Visually-guided reaching Auditory-guided reaching 

IT Controls IT Controls 

H EH H EH r H EH H EH r 

Con Hand 
Exp 1 

5.82 1.18 
1.06 

(0.34) 
0.79 

(0.28) 
0.081 2.00 2.32 

3.12 
(1.23) 

2.50 
(1.33) 

0.484 

Con Hand 
Exp 2 

3.66 0.49 - -  4.03 3.33 - - 
 

Ipsi Hand 
Exp 2 

3.01 1.32 
1.68 

(0.58) 
1.56 

(0.57) 
0.752 3.32 3.91 

2.61 
(1.22) 

2.11 
(0.81) 

0.191 
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H: Hand; EH: Eye-Hand; Con: contralesional (right); Ipsi: ipsilesional (left); r: Pearson correlation 

coefficient. 

 
Table 3: Mean absolute horizontal error for visual and auditory reaching to the 
contralesional target at -28° in patient HM and controls in experiment 1. Standard 
deviations for the control group are presented in brackets. Correlation coefficients 
between H and EH errors are reported for controls. 
 

H: Hand; EH: Eye-Hand; Con: contralesional (left); Ipsi: ipsilesional (right); r: Pearson correlation 
coefficient. 

 
Table 4: Mean absolute horizontal error for proprioceptive-guided reaching with the 
contralesional hand (IT: right hand; HM: left hand) to contralesional target positions 
defined by the index fingertip of the respective ipsilesional hand at a horizontal 
eccentricity of + 28° for IT and – 28° for HM. Standard deviations for the control 
group are presented in brackets. Correlation coefficients between H and EH errors 
are reported for controls. 
 

 
IT HM Controls  

H EH H EH H EH r 

LH - - 4.07 1.64 
1.29 

(0.43) 
1.09 

(0.47) 
0.030 

RH 1.27 1.12 - - 
2.34 

(1.34) 
1.86 

(1.77) 
0.597 

H: Hand; EH: Eye-Hand; LH: left hand; RH: right hand; r: Pearson correlation coefficient. 

 

Visually-guided reaching Auditory-guided reaching 

HM Controls HM Controls 

H EH H EH r H EH H EH r 

Con Hand 3.30 0.78 
0.92 

(0.33) 
0.40 

(0.14) 
0.270 7.24 4.30 

3.40 
(1.55) 

2.38 
(1.38) 

0.609 
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Figure Legends 

 

Figure 1: a) FLAIR scan of patient IT. b) CT of patient HM. The red line indicates the 

central sulcus. 

 

Figure 2: Schematic drawing of the setup for a) visual, b) auditory and c) 

proprioceptive guided reaching. The green circle depicts the fixation point. The red 

circles, loudspeaker symbols and hand symbols indicate the location of the visual, 

auditory or proprioceptive targets. Please note that visual and auditory targets were 

presented in a vertical plane whereas proprioceptive targets were presented on a 

horizontal table. For the analysis of proprioceptive data, targets of the same 

eccentricity were combined as indicated by the blue rectangle for the most peripheral 

left eccentricity. 

 

Figure 3: Mean absolute horizontal deviation differences for reaches to visual and 

auditory targets of both patients and controls. a) differences between hand only and 

eye-hand movement conditions (vis[H-EH]; aud[H-EH]) for patient IT and the 

according controls’ data. b) differences for patient HM and the according controls’ 

data. 

 

Figure 4: Depiction of the setup for proprioceptive guided reaching. a) depicts a 

participant pointing with her left hand to her right hand underneath the miniature 

table, b) depicts the miniature table with the fixation point (red). 

 

Figure 5: Mean absolute horizontal deviation differences for reaches to visual and 

proprioceptive targets of both patients and controls. a) differences between hand only 

and eye-hand movement conditions (vis[H-EH]; proprio[H-EH]) for patient IT and the 

according controls’ data. b) differences for patient HM and the according controls’ 

data. Please note that targets for the proprioceptive guided reaching were presented 

at slightly different eccentricities. For the sake of readability, we labelled the target 

positions in the figure according to the visual target presentation. 
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Abstract 

The dorsomedial circuit is traditionally associated with reaching, whereas the 

dorsolateral circuit is associated with grasping. Previous fMRI studies investigated 

this segregation without separating planning and execution phases of movements or 

by isolating the phases using delayed movements. We focused on the functional 

organization of the two anatomical circuits using a perturbation paradigm to 

specifically investigate online control. Participants reached-to-grasp objects that 

could change their location (reach perturbation) or size (grasp perturbation). None of 

the core regions of either circuit exhibited signal differences when directly contrasting 

perturbed reaching and perturbed grasping. Specific contrasts and connectivity 

analyses for grip size corrections confirmed previously observed signal differences in 

the medial intraparietal sulcus and changes of the inter-regional coupling between 

both circuits. In contrast, no change in inter-regional coupling occurred when 

comparing perturbed reaching versus perturbed grasping across different grip size 

corrections. Our findings argue against a strict functional separation of both circuits 

during the execution phase and instead suggest two congruent systems with varying 

functional overlap depending on the required degree of online control. A considerable 

recruitment of ipsilateral structures in our data suggests an important role of the 

ipsilateral reach-to-grasp networks in online control of visually-guided reach-to-grasp 

movements. 

Introduction 

Previous neuroimaging and neurostimulation studies showed that different regions in 

the human posterior parietal and premotor cortices contribute differently to reaching 

and grasping movements (Andersen and Buneo, 2002; Castiello, 2005; Culham et 
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al., 2006; Grefkes & Fink, 2005). Based on structural connectivity, the parieto-frontal 

motor network is divided into a dorsolateral and a dorsomedial circuit (Geyer et al., 

2000; Tanné-Gariépy et al., 2002; Tomassini et al., 2007). The dorsolateral circuit 

includes the anterior intraparietal sulcus (aIPS), which is interconnected with the 

ventral premotor cortex (PMv). Consistent with their putative homologues in 

macaques, these areas have been suggested to be functionally specific for 

controlling grasping (Cavina-Pratesi, et al., 2010b; Culham et al., 2003; Murata et al., 

2000). The dorsomedial circuit includes the parieto-occipital regions and the medial 

intraparietal sulcus (mIPS) and connects them with the dorsal premotor cortex (PMd). 

This circuit has been associated with the control of arm movements (Andersen and 

Buneo, 2002; Buneo et al., 2002; Cavina-Pratesi et al., 2010a). 

Several studies already challenged the idea of strict effector specificity. Tunik et al. 

(2005) showed in an elegant TMS study that the aIPS contributed to the control of 

finger configuration and wrist orientation during reach-to-grasp movements. 

Reichenbach et al. (2011) extended this finding to this region’s involvement in the 

control of arm movements. Furthermore, planning of hand and foot movements 

yielded similar fMRI activity (Heed et al., 2011). Similarly, fMRI studies in humans 

(Cavina-Pratesi et al., 2010b) and electrophysiological recordings in macaques 

(Fattori et al., 2010; Galletti et al., 2003) demonstrated an involvement of the 

dorsomedial pathway in reaching and grasping.  

These inconsistencies regarding the functional specificity of fronto-parietal motor 

areas might be partly explained by the finding that the functional specificity is not 

stable throughout movement planning and execution but varies across these phases 

(Beurze et al., 2009). Introducing a delay between the object presentation and 

movement execution in an fMRI study reliably isolates the activation of the planning 

phase (Heed et al., 2011). Applying this approach for the isolated investigation of the 
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execution is, however, problematic. Depending on the duration of the delay, 

functional circuits beyond the fronto-parietal motor systems might be recruited 

instead or additionally (Goodale et al., 2003; Singhal et al. 2013). 

Grol et al. (2007) investigated the hypothesis that the functional difference between 

the dorsomedial and dorsolateral stream consists of a different involvement in the 

online control of movements. They examined cortical signal changes and connectivity 

patterns during grasping small objects, with a presumed high demand on online 

control, and grasping large objects, with a presumed lower demand on online control. 

They found increased inter-regional couplings within the dorsomedial circuit for large 

objects and increased inter-regional couplings within the dorsolateral circuit for small 

objects (Grol et al. 2007). They concluded that the dorsolateral circuit is particularly 

involved in situations that demand high precision and online control of movements. 

Both aspects, the distinction between movement planning and movement execution 

and the required amount of online control might partly account for the inconsistency 

of previous studies regarding the functional anatomy of reaching and grasping. 

In our current study we focused on the functional anatomy of online movement 

control. We examined whether a functional separation between the dorsolateral and 

the dorsomedial circuits with regard to the effector, i.e. reaching versus grasping, can 

be found for inflight movement corrections. We employed a perturbation paradigm 

(see Prablanc and Martin, 1992; Tunik et al. (2005), Reichenbach et al. 2011; Glover 

et al., 2005) to manipulate the online-control independently of the planning phase of 

reach-to-grasp movements. By changing either the location or the size of the targets 

after movement onset, we selectively perturbed the reaching or grasping component. 

In a behavioural pilot experiment we matched kinematic parameters between all 

grasp and reach perturbations like response times and movement times to equalize 

the demand of online movement control as good as possible. Different activation and 



 5 

functional coupling patterns along the two circuits for perturbed grasping movements 

versus perturbed reaching movements would clearly argue in favor of two separate, 

functionally specific networks during movement execution. In contrast, a failure to find 

different patterns across both movement conditions would argue against a strict 

functional dissociation between the circuits. 

Beyond this analysis of general differences between reach and grasp perturbations 

we further inspected a specific effect predicted by the results and interpretation of 

Grol et al. (2007). These authors assumed that a higher degree of online control 

particularly recruits the dorsolateral pathway irrespective of the movement effector. 

We assumed that the unexpected change from small to large objects places higher 

demands on a grasp online control than changes from large to small. The latter can 

be solved by simply proceeding to close the finger aperture whereas the former 

requires a complete new movement component. Thus, during small-to-large object 

changes, signal levels in dorsolateral areas should increase and the coupling 

between the dorsolateral and dorsomedial system should change. Please note that 

across both possible grasp perturbations difficulty levels were roughly matched 

between grasp and reach perturbations as mentioned above. 

Materials and Methods 

Participants 

Eighteen neurologically healthy participants (mean 26.2 ± 3.8 years, 11 females) with 

normal or corrected-to-normal vision were tested. Data of two subjects were excluded 

from further analyses due to excessive motion during scanning. All participants were 

right-handed (laterality quotient mean = 89.96, +68 to +100) according to the 

Edinburgh Inventory (Oldfield, 1971). Thirteen additional participants (mean 26.1 ± 

3.6 years, 7 females) were tested in a behavioral control experiment in order to 
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match movement times between trials with perturbed grasping and perturbed 

reaching. All participants received payment and gave their informed consent before 

taking part in the experiment. The study was conducted in accordance with the 

Declaration of Helsinki and approved by the Ethics Committee of the Medical Faculty 

of Tuebingen.  

 

Experimental Setup and Stimuli 

The participant lay supine in the scanner. The head was tilted by about 30° to allow 

for a direct line of sight of the targets (see Fig. 1). Foam wedges and memory foam 

pillows were placed around and underneath the participant’s head for stabilization. 

The upper right arm was fixated tightly in an elevated position in order to minimize 

movements of the upper arm and related shoulder and head movements. A start 

button was fixed on the participant’s chest and two target objects were mounted on 

an arc-shaped target-holder above the participant’s right hip and left groin. The 

starting position of the hand and the orientation and distance of the target-holder 

were adjusted individually to allow natural reaching to both target objects. Each 

target object consisted of five acrylic glass panels that could be illuminated 

individually with red LEDs. For the small target, only the horizontal panel in the 

middle was illuminated (height 0.5 cm). For the large target, two additional horizontal 

panels above and below (distance 2.7 cm) were illuminated as well as an 

interconnecting vertical panel between each of them (height 6.9 cm; see inset of Fig. 

1). The distance between the horizontal panels of each target (2.7cm) allowed for an 

unrestricted grasping of the middle panel. Furthermore, we manipulated the direction 

of the reach-to-grasp movements through the illumination of either the left or the right 

target object. The horizontal distance between the two targets was 11.0 cm. The 

distance between the start button and the targets varied depending on the arm length 
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of every participant but was approximately 45 cm. The experiment was conducted in 

complete darkness. The only visual input consisted of the illuminated target and a red 

light emitting diode (LED) serving as fixation light. The latter was attached to the 

ceiling of the scanner bore at the midline of the scanner. Eye and hand movements 

were recorded using MR-compatible cameras while fiber optics mounted on top of 

the head coil connected with an infrared light source outside the MR cabin provided 

invisible IR illumination of the movement space. 

 

--- Please insert figure 1 around here --- 

 

Experimental Procedure and Design 

The participant had to maintain fixation on the LED throughout the measurement. 

The right hand rested on the start button. As soon as one of the targets was 

illuminated the participant’s task was to move their hand to the (left or right) target, 

grasp the illuminated horizontal panel(s) (one or five) using a precision grip with the 

index and middle fingers opposing the thumb, and lightly press them into the 

apparatus. This extinguished the illumination of the target. After that, the participant 

returned the hand to the start button. A brief green flash of the fixation LED confirmed 

the return to the start button. The complete trial lasted 17.04 s. 

In perturbed trials, the illuminated target changed with the release of the start button. 

When reaching was perturbed (ReachP), the target location changed by switching 

the illumination from the left to the right object (or vice versa). When grasping was 

perturbed (GraspP), the target size changed by switching the number of illuminated 

target panels from one to five (SmallLarge) or vice versa (LargeSmall). When both 

reaching and grasping were perturbed (BothP), the target location and size switched 

simultaneously. Thus, participants had to perform online corrections of either arm 
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trajectory (ReachP), hand aperture (GraspP), or both (BothP) during movement 

execution. 

We implemented a 2 x 2 factorial design with the within-subject factors reaching 

perturbation (unperturbed vs. perturbed) and grasping perturbation (unperturbed vs. 

perturbed). The experiment consisted of two initial training sessions without MR 

scanning and eight sessions with scanning. Each session consisted of 32 trials of 

which 18 were perturbed. A preceding behavioral experiment (n = 13) in a mock 

scanner setup that was built similar to the real scanner demonstrated that this 

proportion of perturbed trials did not change behavioral performance in unperturbed 

trials in comparison to a session without any perturbed trials. The MR-experiment 

lasted approximately 2 hours including setup time (e.g. padding, adjustments for arm 

length) and recording of 320 trials (training and experimental sessions). 

 

Image acquisition 

Magnetic resonance images were acquired on a 3T Scanner (Siemens, TIM Trio, 

Erlangen, Germany) using a 12-channel receive head coil. Functional images with 

whole-brain coverage were collected using an echo planar T2* gradient echo pulse 

sequence (GRE-EPI, 33 axial slices, 3.0 x 3.0 mm in-plane resolution, 3.5 mm slice 

thickness, slice gap of 0.5 mm, flip angle 76°, 64 x 64 matrix, TR/ TE = 2130/ 35 ms). 

Each experimental session lasted 9 min 6 s and consisted of 32 trials. We recorded 

eight volumes per trial. Time-locking the presentation of the target objects to the 

volume acquisition ensured that the overall movements were completed during the 

acquisition of a single volume (please see results for Overall_MT below). The 

standard Siemens GRE field map covering the same volume as the EPIs was 

acquired for correcting static image distortions due to B0 inhomogeneities. In 

addition, a structural T1-weighted image (MPRAGE, 192 sagittal slices, matrix size = 
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256 × 256, voxel size = 1mm3, flip angle 9°, TR/ TE/ TI = 2300/ 2.98/ 1100 ms) was 

collected. 

 

Eye movement Analysis 

Eye position was recorded with ViewPoint (Arrington Research, Scottsdale, AZ) to 

control for continuous fixation of the LED during movement execution. Data from one 

participant was excluded from this analysis due to technical problems. The remaining 

data was analyzed using in-house MATLAB scripts (The MathWorks, Natick, MA). 

The position data was high-pass filtered (zero-phase shift filtering with 4th order 

Butterworth filter; 1 Hz cut-off frequency), followed by median filtering to remove 

spurious noise data points (window length was 180 ms). The position data was 

divided into time windows from 0.5 s before until 2 s after target presentation and 

baseline corrected using the periods before target presentation as references. For 

each trial, saccades were detected semi-automatically by applying a threshold 

criterion (derived from previous example data) and then by visual inspection. Finally, 

we analyzed the occurrence of saccades using a two-way repeated measures 

ANOVA with 2 factors: reaching (perturbed vs. unperturbed) and grasping (perturbed 

vs. unperturbed). 

 

Behavioral Analysis of Reach-to-Grasp Movements 

We assessed the following measures: reaction time (RT), defined as the time 

between onset of target illumination and release of the start button; movement time 

(MT), defined as the time between the release of the start button and a successful 

precision grasp of the target; and the overall time (Overall_MT), defined as the time 

between the release of the start button and the return to the start button. 
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Data analysis started with the visual inspection of the video recordings of the hand 

movements. This allowed us to exclude erroneous trials (e. g., the participant 

grasped the wrong target) and to assure that the participant performed a smooth 

online correction of the movement in reaction to the perturbations. There must be no 

recognizable hesitation of the movement trajectory in the video recordings that would 

separate a first movement to the initial target and a second, new and temporally 

separated movement with a new start position and the final target after the 

perturbation. A second naïve rater re-examined over 1,000 trials based on the same 

criteria that were used for the original rating of the full dataset by one of the authors 

(S.C). The correlation of the number of error trials was  = 0.93. Additionally, to 

examine whether the discarded trials were identical, we calculated an inter-rater 

agreement of  = 0.67, which can be regarded as good or substantial agreement. 

Rejection of trials based on this visual inspection was followed by the exclusion of 

trials exceeding quantitative a priori cutoff criteria. Movements with an RT of less 

than 200 or more than 700ms, an MT of less than 200 or more than 1200ms, or an 

RT or MT outside of the respective participant’s mean ± 3 S.D. were excluded. These 

combined criteria resulted in an average of 15% of the trials rejected per participant 

(SD = 10.19, range: 3 - 24%).  

Two-way repeated measures ANOVAs with the factors reaching perturbation 

(perturbed vs. unperturbed) and grasping perturbation (perturbed vs. unperturbed) 

was conducted for MT, RT and Overall_MT. Planned comparisons of MT, RT and 

Overall_MT between perturbed reaching and perturbed grasping movements, as well 

as between grip size corrections from small to large and from large to small, were 

conducted using two-sided paired t-tests. In addition, the effect of target size 

perturbations (small-large vs. large-small) was examined to investigate the influence 
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of difficulty on the functional organization of the dorsolateral and dorsomedial circuits. 

Only trials with an exclusive perturbation of grasping (i.e. without change in target 

location) were used for the latter analysis. 

 

Imaging Data Analysis 

Preprocessing. The preprocessing and analysis of the data were carried out using 

FSL 4.1 (FMRIB, Oxford University, UK). The first four volumes of each session were 

discarded to eliminate nonequilibrium effects of magnetization. The remaining 

volumes were motion corrected using six degrees-of-freedom (DoF) registrations to 

the reference volume. The EPI volume that was acquired immediately before the 

anatomical images was chosen as reference volume. This was followed by a brain 

extraction step and by the correction of static image distortions due to B0 

inhomogeneties, as measured by the acquired field map. The EPI images were 

transformed into MNI space in a two step approach: First, the distortion-corrected EPI 

images were linearly registered to the individual T1-weighted anatomical image using 

6 DoF. The T1-weighted image was then non-linearly registered to the structural MNI 

template using FSL FNIRT. Finally, the transformations for distortion-correction, for 

registration to the T1-weighted image, and further to MNI space were combined in a 

single transformation step and applied to the EPI images. The co-registered 

functional images were spatially smoothed using an isotropic Gaussian kernel with 5 

mm full-width at half-maximum and temporally high-pass filtered with a cutoff of 100 

s. 

Whole-brain analysis. A general linear model was used to compare the brain activity 

between the different movement conditions. Four regressors-of-interest modeled the 

unperturbed trials and the trials with perturbed reaching, perturbed grasping, or both. 
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Only correct trials were included in these regressors. In a second, independent 

analysis, we investigated the difference in brain activity for small-to-large and large-

to-small adjustments of the grasping component. In the latter analysis, two 

corresponding regressors-of-interest replaced the regressor for the perturbed 

grasping component. All regressors were modeled using stick functions that indicated 

the EPI volumes of movement execution for the respective conditions. Several 

additional regressors-of-no-interest were used to control for unspecific brain 

activations. The values for RT, MT and Overall_MT were first centered and 

standardized across all sessions and then used to weight stick functions representing 

the volumes of movement execution. This procedure served to account for the 

varying duration of neuronal signals associated with the varying length of RT, MT or 

Overall_MT (e.g. longer M1 activation during higher MTs). The error trials were 

modeled using stick functions indicating the incorrect movements. All aforementioned 

regressors were subsequently convolved with a gamma-shaped hemodynamic 

response function. To account for shifts in the onset of the hemodynamic response, 

temporal derivatives of the resulting time courses were included in the model as 

regressors-of-no-interest (Friston et al., 1997; Smith et al., 2004). 

Specific care was taken to control for artifacts and distortions of the magnetic field 

caused by hand movements. These artifacts do not possess the standard 

hemodynamic lag of about 5 seconds and were restricted to the single EPI volume 

during which the movement was executed. The successive volumes covered the 

hemodynamic response of the reach-to-grasp related neuronal processes (see 

Culham et al. 2008 for a similar procedure). We included a stick function as 

regressor-of-no-interest indicating the single volume per trial in which the movement 

was conducted (see Image Acquisition) to account for the variance induced by the 

artifacts. In addition, the six motion parameters obtained during preprocessing and 
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the average time courses of the cerebrospinal fluid (CSF), white matter (WM) and 

non-brain areas were included as regressors-of-no-interest (Verhagen et al., 2008). 

The latter three regressors were obtained using FSL FAST to create mask images 

based on the segmentation of the T1-weighted anatomical image. The masks were 

transformed into the individual EPI-space and applied to the volumes before taking 

the average time course of the remaining voxels. We decided to implement this 

rather high number of nuisance regressors to reduce the risk of false-positive 

findings. 

Even though other studies successfully implemented similar numbers of nuisance 

regressors (e.g. Grol et al., 2007) we considered that the high number of nuisance 

regressors might also diminish the statistical power of our study. Please note that we 

repeated our analyses using only two nuisance regressors to rule out that relevant 

activation differences between the conditions of interest were not detected due to a 

lack of sensitivity caused by the high number of regressors. The same regressors-of-

interest for the 4 different movement conditions and their temporal derivatives were 

included in the control analyses, but only two stick functions were used to model 

incorrect trials and the volume corresponding to movement execution, respectively.  

In each of the above analyses, separate general linear models were estimated for the 

experimental sessions in each participant. The results of the single sessions were 

then combined in each participant using a fixed-effects analysis. Finally, the results of 

the single-subject analyses were subjected to a mixed-effects group analysis with 

experimental conditions and participants as fixed and random factors, respectively. If 

not indicated otherwise, group Z-statistical images were derived using a corrected 

statistical threshold of p < .05 at the cluster level based on Gaussian random field 

theory (Worsley et al., 1996). The threshold applied on the voxel level was Z > 2.3 

(corresponding to an uncorrected p < 0.01). 
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Region of Interest analysis (ROI) 

The goal of the ROI analysis was to maximize the sensitivity of our approach towards 

finding specific reaching and specific grasping activation patterns associated with 

movement execution (i.e. ReachP vs. GraspP, respectively) within the regions of the 

fronto-parietal motor networks (Culham et al., 2008). The definition of the ROIs was 

based on previously reported anatomical landmarks and MNI coordinates in 

combination with the positions of the activation peaks observed for ReachP or 

GraspP on the group level in our study. This resulted in ROIs optimally placed to 

capture effector-related activations for the arm and hand, respectively. For example, 

when aiming to test whether a ROI showed a reaching-specific activation pattern, its 

position was first based on the activation pattern for ReachP versus unperturbed 

movements. The subsequent ROI-based analysis then assessed the contrast 

ReachP vs. Grasp. Obviously, these ROI analyses are not statistically sound in case 

of positive signal difference detection because they were based on group level 

contrasts that at least partially predicted a signal increase within the respective ROI. 

However, if we do not see any differences even in these tests, albeit being strongly 

biased towards positive findings, we might conclude that there are indeed no 

differences detectable between both perturbation conditions. 

MNI coordinates and anatomical landmarks were chosen bilaterally for PMd, PMv, 

aIPS, medial IPS (mIPS), and superior parieto-occipital cortices (SPOC), as follows. 

The PMd locations were determined using the junction of the superior precentral 

sulcus with the superior frontal sulcus (Tomassini et al., 2007). The aIPS was 

localized using the junction of the IPS with the postcentral sulci (Frey et al., 2005). 

mIPS was defined as being halfway up the length of the IPS and close to the 

coordinates reported in Grefkes et al. (2004). The SPOC was defined as the medial 
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areas close to the brain surface directly anterior to the posterior endings of the 

parieto-occipital fissures (Gallivan et al., 2011) including parietal aspects but not part 

of the cuneus. These positions were further confirmed using the anatomy toolbox of 

SPM (Eickhoff et al., 2005). Subsequently we used group level contrasts of perturbed 

trials versus unperturbed trials to identify the nearest local signal peaks to the 

aforementioned anatomical landmarks. Centered on these peak signal locations we 

created spheres with a diameter that depended on the variability of the individual 

activation peak MNI coordinates between participants on the single-subject level. 

Two different radii were tested in order to demonstrate the robustness of the results, 

corresponding to 2 and 3 S.D.’s of the positions of individual peaks. 

Preferably, as outlined above, we used the specific contrasts ReachP > Unperturbed 

and GraspP > Unperturbed to determine ROI locations to push the probability of a 

signal difference detection between ReachP and GraspP in the absence of any 

significant differences between these conditions in the whole brain analysis. As only 

exception, the bilateral PMv exhibited no significant differences for these contrasts. 

For this reason, the PMv ROIs were based on the comparison of all perturbed trials 

(reaching, grasping and both perturbed) versus unperturbed trials. The ROI centers 

were chosen according to the peak activations close to the PMv coordinates reported 

by Tomassini et al. (2007) and lying within Brodman 6 as indicated by the probability 

maps of the SPM anatomy toolbox. All ROIs are presented in table 1 together with 

the respective group level contrast that was used for their definition, mean MNI 

coordinates and SDs and atlas labels and probabilities taken from the anatomy 

toolbox of SPM (Eickhoff et al., 2005). 

 

--- Please insert table 1 around here --- 
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In the ROI analyses, the average of the parameter estimates (PE) obtained in the 

single-subject analyses was determined across the voxels in each ROI for each 

participant. We used t-tests to detect average signal differences in these ROIs for the 

contrast ReachP vs. GraspP. Additional t-tests were conducted to compare signal 

levels between large to small and small to large grip size corrections. The results are 

reported corrected for multiple comparisons across the number of ROIs (n = 11) 

using a Bonferroni correction (indicated as pB) for a global error probability threshold 

of p = 0.05. 

 

Connectivity Analysis. The aim of the connectivity analysis was to assess whether 

the functional coupling pattern within the fronto-parietal network exhibited effector-

specific differences. That is, whether the correlations between signal time courses of 

the aforementioned ROIs differed between perturbed reaching and perturbed 

grasping movements. The time course in a “seed” ROI (averaged across voxels; ROI 

size: 2 S.D.) was subdivided into four condition-specific time courses by multiplying it 

with box functions that indicated the trials for ReachP, GraspP, BothP and Unpert, 

respectively. These condition-specific time courses were centered and standardized 

before subjecting them to a GLM analysis as regressors-of-interest, thereby replacing 

the normal boxcar/hrf regressors for the four conditions. The other regressors were 

identical to those used in the GLM for the whole-brain analysis with two nuisance 

regressors for incorrect trials and volumes corresponding to movement executions 

(please see section on whole-brain analysis above). In each participant, estimation 

results of the single sessions were combined using a fixed-effects analysis, and the 

average parameter estimates (PE) for each regressor-of-interest were extracted from 

each ROI. The average PE for a single regressor-of-interest indicates the degree of 

correlation between the signal time courses of the respective seed and target ROIs 
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only for the time periods of a given condition such as ReachP or GraspP. In 

combination with the mean centering and standardization of the seed time courses 

within each condition this approach ensures that general task-related differences do 

not influence the observed correlations. Finally, we compared the average PEs for 

the ReachP and GraspP conditions for each ROI using paired t-tests across 

participants. This direct comparison between conditions excluded an impact of 

spontaneous purely physiological correlations across regions that would be 

independent of the particular conditions. Thus, we tested if the time course of the 

“seed” ROI explained different amounts of variance in one of the other ROIs 

depending on the condition (GraspP vs. ReachP), as would be expected if the 

condition modulates the functional coupling, corresponding to a psychophysiological 

interaction analysis (Friston et al. 1997). This procedure was repeated for each ROI 

serving as the “seed” region. Again, results are reported with a correction for multiple 

comparisons (n = 11) using a Bonferroni correction (indicated as pB) for uncorrected 

p-values < 0.05. 

In a second ROI analysis, the differences in connectivity between grasp corrections 

from large to small and from small to large were tested by creating condition-specific 

time courses for grasping perturbed large to small and grasping perturbed small to 

large and testing for average PE differences between these two conditions. 

 

Results 

Behavioral data: Saccades 

Saccades occurred in 5.76% (SD = 7.2) of all trials. Saccade frequency did not differ 

between conditions (reaching perturbation: F(1,14) = 0.35, p = 0.558, M = 6.66%, SD 
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= 8.2; grasping perturbation: F(1,14) = 2.12, p = 0.167, M = 7.13%, SD = 9.6; 

interaction reaching x grasping: F(1,14) = 2.63, p = 0.127). 

 

Behavioral data: Reaching and grasping 

Reaction time was not influenced by any condition (reaching perturbation, F(1, 15) = 

0.42, p = 0.52; grasping perturbation, F(1, 15) = 1.62, p = 0.22, interaction reaching x 

grasping, F(1, 15) = 1.59, p = 0.22) indicating that the required amount of movement 

planning was similar. Moreover, comparing RT in perturbed grasping trials directly 

with perturbed reaching trials revealed no difference (t(15) = 1.17, p = 0.25). As 

expected, analysis of MT revealed highly significant main effects for the factors 

reaching perturbation (F(1,15) = 89.59, p < .001) and grasping perturbation (F(1,15) 

= 138.98, p < .001), and the interaction between the factors (F(1, 15) = 151.01, p < 

.001). These findings reflect the fact that movements in completely unperturbed trials 

were shorter compared to perturbed trials (see table 2). More importantly, the 

comparison of trials in which only grasping was perturbed (but not reaching) and 

trials in which only reaching was perturbed (but not grasping) revealed no difference 

(t(15) = 0.98, p = 0.33), indicating that the additional behavioral effort was similar for 

both types of perturbation. The analysis of Overall_MT followed the pattern found for 

MT and showed highly significant main effects for reaching perturbation (F(1,15) = 

48.74, p < .001) and grasping perturbation (F(1, 15) = 54.57, p < .001) as well as a 

significant interaction (F(1, 15) = 45.06, p < .001). Unperturbed trials had a shorter 

overall movement duration compared to perturbed trials. Within perturbed trials, 

however, Overall_MT was not different between perturbed reaching and perturbed 

grasping trials (t(15) = 0.35, p = 0.72). 

 

--- Please insert table 2 around here --- 
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When subdividing the trials with perturbed grasping into SmallLarge and LargeSmall 

corrections, we found an effect of the direction of grip size perturbations (t(15)= 5.10, 

p < .001; pB < .001) on RT. Participants started the movement on average 18 ms 

later if initially preparing to grasp a small (in SmallLarge trials) compared to large 

target (in LargeSmall trials). The analysis of unperturbed trials confirmed that RT was 

23 ms longer for small targets. Furthermore, the direction of the grip size perturbation 

had a highly significant effect on MT (t(15) = 6.30, p < .001; pB < 0.001). Correcting 

the grip size from a small target to a large target led to 80 ± 76 ms shorter movement 

times as compared to adapting the grip size from a large target to a small target. 

Overall_MT followed the same pattern, in that, grip size corrections from a small to a 

large target required less total movement time than corrections from large to small 

targets; however, the difference did not reach significance (t(15) = -1.9, p = .075). 

To summarize, the behavioral findings demonstrate an expected general increase in 

MT for perturbed versus unperturbed movements. Notably, no behavioral difference 

occurs when comparing perturbed reaching versus perturbed grasping movements. 

In contrast, grip size is demonstrated to affect both RT and MT specifically for 

perturbed grasping movements. 

 

Whole-Brain Analysis 

All conditions revealed typical activation patterns for visually guided reaching and 

grasping movements with the right dominant hand (green maps in Fig. 2), spreading 

bilaterally from the primary visual cortex (V1: left: x= -4, y= -82, z= 10; right: 6, -80, 8) 

and V5 (or MT+, left: -40, -76, 6; right: 50, -64, 8) to parietal areas, including the 

SPOC (left: -8, -84, 48; right: 22, -74, 50), IPS (right: 36, -48, 42; left: -40, -42, 40) 

and clusters located in the SPL (left: -36, -38, 44; right: 38,-36, 44) and extending into 
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the SMG (left: -40, -38, 42; right: 54, -32, 50). On both hemispheres, the activation 

pattern further extends medially into the supplementary motor area (SMA, left: -4, 4, 

48; right: 6, 4, 56) and the cingulate motor area (CMA, left: -6,-4, 46; right: 6, 4, 44). 

Laterally, it spreads into the dorsal and ventral premotor cortex, thereby including the 

primary motor cortex (M1, left: -34, -16, 54) and the primary somatosensory cortex 

(S1, left: -30, -38, 56) on the left hemisphere.  

The contrasts for ReachP > Unpert, GraspP > Unpert and BothP > Unpert (red and 

yellow maps in Fig. 2) revealed areas that are associated with online control of reach-

to-grasp movements. For all three contrasts, we observed bilateral activation 

increases for perturbed movements in the SPOC (left: -10, -78, 48; right: 24, -76, 48), 

whereas only right hemisphere activation increases were observed in the PMd (right: 

28, -4, 56) and the supramarginal gyrus (SMG, right: 56, -32, 50). With cluster-level 

correction, aIPS was significantly activated bilaterally for the contrast GraspP > 

Unpert and BothP > Unpert, but only in the right hemisphere for the contrast ReachP 

> Unpert. Without cluster-level correction, the left aIPS showed similar activation 

peaks for ReachP > Unpert (z-value = 2.62; -44, -40, 42) and GraspP > Unpert (z-

value = 2.91; -42, -40, 42). Compared to the implicit baseline, the activation patterns 

for ReachP and GraspP were very similar (green activation patterns in Figure 2), 

particularly at the left aIPS (ReachP: z= 3.60, GraspP: z= 3.76). Thus, the absence of 

a significant difference in the left aIPS in the contrast ReachP > Unpert seems to be 

caused by differences in cluster size, not in effect strength. 

Directly comparing GraspP and ReachP did not reveal any significant differences in 

the whole brain analysis. Even without cluster-level correction, only a small cluster 

occurred in the Precunus for ReachP > GraspP (left: z-value = 2.49; coordinates: -2, -

54, 46; right: z-value = 3.28; coordinates: 4, -54-, 54).  
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The complementary analysis with a reduced number of nuisance regressors did not 

show any differences to our main analysis. In summary, all three types of 

perturbation (reach, grasp, and combined) resulted in similar signal increases relative 

to the unperturbed trials. 

Focusing on the predictions based on the results of Grol et al. (2007), the comparison 

of trials with grasping perturbations from small to large versus large to small (or vice 

versa) with a cluster-level correction did not reveal any significant activation 

differences in the whole brain analysis. On an uncorrected level, several clusters in 

the right medial IPS and right SPL exhibited tendencies towards higher activations for 

perturbations from small to large compared to large to small (z-value = 2.63; 38, -48, 

58; z-value = 2.69; 14, -48, 62; z-value = 2.63; 28, -58, 54). 

 

--- Please insert figure 2 around here --- 

 

Region of Interest Analyses 

All ROIs are listed in table 1. Confirming the results of the whole brain analysis, we 

found no significant differences when comparing ReachP versus GraspP for any of 

the ROIs, even when not correcting for multiple comparisons (Table 3, t-test ReachP 

vs GraspP). Please note that we failed to find any effector-specific differences 

despite the fact that the ROIs were optimally positioned to capture either grasping- or 

reaching-related activity using the contrasts GraspP>Unpert and ReachP>Unpert, 

respectively, and therefore strongly biased towards a potential signal difference. A 

control analysis using the GLM with the reduced number of nuisance regressors (see 

paragraph on whole-brain analysis in the Methods section) to calculate the average 

PEs in the ROIs confirmed the above results, ruling out that the absence of signal 



 22 

differences was caused by a reduced sensitivity of the model. Similarly, increasing 

the ROI sizes to 3 SD’s did not affect the results. 

 

--- Please insert table 3 around here --- 

 

In contrast, comparing the corrections between the two possible perturbations in grip 

size revealed differences in the average PEs in a specific subset of ROIs. Corrected 

for multiple comparisons, the right mIPS robustly exhibited a higher signal for target 

size changes from small-to-large versus large-to-small (Fig. 3 & Table 3). 

Furthermore, right PMd and left PMv showed a similar trend on the uncorrected level 

(Table 3). Neither aIPS nor SPOC showed higher signals in response to the required 

change of grip size. Conducting the ROI analysis with the GLM results for the 

reduced number of nuisance regressors or using a ROI size of 3 SD’s did not affect 

the results. Our finding not only supports the previous report and interpretation of 

Grol et al. (2007) but also indicates that the failure to detect a general difference 

between perturbed grasping and perturbed reaching cannot be simply attributed to a 

ceiling effect or insufficient sensitivity of our approach. 

 

--- Please insert figure 3 around here --- 

 

Connectivity Analysis 

The analysis of connectivity strength revealed no differences between any of the 

perturbed reaching vs. perturbed grasping contrasts after correcting for multiple 

comparisons. 

Focusing on the predictions based on the results of Grol et al. (2007), the 

connectivity analysis contrasting small-to-large and large-to-small grasp corrections 
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resulted in 5 modulations of inter-regional connectivity after correcting for multiple 

comparisons. We found an increased coupling across the dorsolateral and 

dorsomedial circuit within the ipsilateral hemisphere, specifically between the right 

SPOC and the right aIPS, for grip size corrections from small to large (figure 4). Also, 

within the ipsilateral hemisphere, the same modulation pattern occurred between the 

mIPS (associated with the dorsomedial circuit) and aIPS (associated with the 

dorsolateral circuit) regardless of whether mIPS was defined by the contrast GraspP 

> Unpert or ReachP > Unpert. We also observed increased coupling across 

hemispheres, namely between the ipsilateral (right) mIPS (defined by the contrast 

GraspP > Unpert) and contralateral (left) aIPS (table 4). Finally, we found an 

increased ipsilateral coupling between the right PMd (defined by the contrast ReachP 

> Unpert) and the right aIPS. 

 

--- Please insert figure 4 around here --- 

 

--- Please insert table 4 around here --- 

 

Discussion  

Specificity of fronto-parietal pathways 

We investigated the functional organization of the dorsomedial and dorsolateral 

fronto-parietal pathways during movement execution. Employing a perturbation 

paradigm allowed us to measure BOLD signal changes that were specifically 

associated with the manipulation of the execution phase without the need to 

introduce time delays between target presentation and movement execution. The 

results revealed that almost the entire parieto-frontal motor network exhibited 
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increased activity during increased demands of online control. We found no signal 

differences between the execution of grasp corrections and reach corrections, 

neither in the dorsomedial nor in the dorsolateral circuit. Even in ROI analyses of 

individual regions of these circuits which were on purpose biased to capture either 

reaching or grasping specific activation we found no signal difference between 

perturbed grasping and perturbed reaching trials. Importantly, in contrast to the 

absence of general differences between grasp perturbations and reach perturbations 

we observed a robust and specific signal difference in the mIPS for grasping 

perturbations from small-to-large versus large-to-small that was consistent with 

interpretations and predictions of previous reports (Grol et al., 2007; Verhagen et al., 

2013). Beyond this confirmation the detection of a difference between small-to-large 

and large-to-small corrections showed that null-findings in the general comparisons 

between types of perturbations were not simply due to a general lack of sensitivity. A 

connectivity analysis addressing changes in the pair-wise functional coupling 

patterns between the regions of interest provided consistent results. The comparison 

between different online changes in grip aperture resulted in a robust modulation in 

coupling strength between parietal and premotor regions. Consistent with prior 

results (Grol et al., 2007) this suggests an increased coupling between the 

dorsomedial and dorsolateral pathways for grip aperture corrections from small to 

large. This again included the mIPS as one of the network nodes that exhibited 

changes in the coupling strength with other ROIs. In contrast, comparing perturbed 

grasping and perturbed reaching trials in general, no differences in coupling were 

observed during the execution phase.  

Studies in non-human primates served as major support for the hypothesis of an 

effector-specific organization of the PPC, with the dorsomedial network contributing 

predominantly to the control of reaching movements (Galletti et al., 1996; Galletti et 
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al., 1997) and the dorsolateral network being mainly involved in the control of 

grasping (Gallese et al., 1994; Murata et al., 2000). However, more recent studies 

challenged these early studies and generated a more complex view. Neurons in area 

V6A apparently not only encode the direction of arm reaching (Fattori et al., 2001; 

Fattori et al., 2005; Monaco et al., 2011) but also encode hand orientation (Fattori et 

al., 2009) during planning and movement execution as well as hand preshaping and 

grip formation (Fattori et al., 2010; Gamberini et al., 2009). A similar complex picture 

has emerged on the role of the human PPC for reaching and grasping. Although 

some previous work has indicated that the aIPS (dorsolateral stream) shows 

preferences for grasping and the mIPS and SPOC regions (dorsomedial stream) 

show preferences for reaching, using both fMRI (Cavina-Pratesi et al., 2010b; 

Culham et al., 2003; Culham et al., 2008) and TMS paradigms (Tunik et al., 2005; 

Vesia et al., 2010), other studies employing the same methods could not confirm 

clear-cut functional preferences in these regions (Gallivan et al., 2011; Glover et al., 

2005; Heed et al., 2011; Reichenbach et al., 2011). 

Some of these discrepancies might stem from methodological factors such as the 

available sensory information, its way of manipulation, the target object's 

affordances, and whether planning and execution phase were analyzed jointly 

(Gallivan et al., 2009; Gibson, 1979, Beurze et al., 2009). For example, Tunik et al. 

(2005) reported that TMS applied to the aIPS disturbed grasping but not reaching in 

a reach-to-grasp task. However, in their paradigm, only the grasping component had 

to be adjusted by the participants during movement execution, initiated by a change 

of the object size, but not the reaching component. In other words, TMS disrupted 

only the component that required an increased amount of online control. In line with 

the latter interpretation, a subsequent study demonstrated that TMS over aIPS also 

affected the transport component by explicitly testing the participants’ ability to 
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correct for target and cursor displacements (Reichenbach et al., 2011). This 

observation is difficult to reconcile with the view that aIPS is functionally specific for 

grasping but not for reaching, but is in accordance with the previous interpretation 

that this region plays a crucial role for the online correction of movements to 

accomplish goal-directed movements. Similarly, besides the involvement of the 

mIPS in visually guided reaching movements (Prado et al., 2005), that area was also 

shown to contribute to online adjustment of the grasping component in response to 

grasping perturbations (Glover et al., 2005) and the control of hand aperture (Grol et 

al., 2007).  

One important reason for the conflicting findings might be that either the planning 

phase or the execution phase was investigated, or both phases were not 

disentangled at all. A separate investigation is crucial since the effector-specificity of 

PPC areas seems to differ across the temporal phases of reach-to-grasp movements 

with more clear-cut findings for the planning compared to the execution phase 

(Beurze et al., 2007; Beurze et al., 2009). It could be argued that during movement 

execution the PPC is continuously flooded by sensory (in particular visual) input, 

making it more difficult to detect any functional specificity during that phase. 

However, the observed differences between large-small and small-large aperture 

corrections in our study and the work of Grol et al. (2007) argue against this 

interpretation as well as the observed deficits in reaching and grasping after TMS 

stimulation of aIPS (Tunik et al. 2005; Reichenbach et al., 2011). Our findings 

indicate that demands on online control, but not effector specificity, determine the 

coupling and the separation between dorsomedial and dorsolateral cortical areas 

during movement execution. 
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Lateralization of online corrections 

We observed a general effect of online-corrections on the lateralization in the reach-

to-grasp network with stronger involvement of the ipsilateral hemisphere for both 

types of perturbations. This finding is in agreement with other studies that 

investigated movements of higher complexity. For example, demanding sequencing 

tasks are correlated with ipsilateral activation (e.g. Haaland et al., 2004; Solodkin et 

al., 2001) and the extent of ipsilateral activity changes with task complexity 

(Verstynen et al., 2005). TMS experiments supported these observations by 

demonstrating an interaction effect of inhibitory ipsilateral TMS and movement 

complexity on motor deficits (Chen et al., 1997; Avanzino et al., 2008).  

The recruitment of ipsilateral regions is a general finding for reach-to-grasp 

movements; for instance, of the mIPS, PMd and parieto-occipital regions during 

reaching (Prado et al., 2005) and of the aIPS during precision grasping (Binkofski et 

al., 1999; Culham et al., 2003). A single unit recording study by Battaglia-Mayer et al. 

(2012) also demonstrated the pivotal role of ipsilateral motor regions in monkeys. It 

showed that neither ipsi- nor contralateral inactivations of SPL alone are sufficient to 

induce deficits in pointing, but bilateral transient lesions lead to increased movement 

times, suggesting that the ipsilateral SPL is able to compensate contralateral 

dysfunctions. Similar processes seem to take place in humans as indicated by a 

study showing primarily ipsilateral activation during grasping movements with the 

right hand in Patient D.F. who suffered a substantial loss of grey matter at the left 

PPC (James et al., 2003). The behavioral significance of these ipsilateral activations 

was further demonstrated in healthy participants by the demonstration that only 

bilateral TMS-induced lesions are sufficient to affect hand shaping, but not an 

unilateral lesion (Davare et al., 2007) and that TMS stimulation of the ipsilateral 
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parieto-occipital cortex affected the planning of reaching movements (Busan et al., 

2009). 

 

Conclusions 

The demand of online control during movement execution seems to be a major 

factor that determines the amount of separation and functional coupling between the 

dorsomedial and dorsolateral stream. In contrast, we found no evidence for an 

effector-specificity in areas of the dorsomedial and dorsolateral fronto-parietal 

pathways for movement control and correction processes during movement 

execution. However, we only investigated the execution phase. Notably, this finding 

likely does not transfer to the planning phase as previous studies showed that there 

might be differences in effector-specificity between planning and execution (Beurze 

et al., 2007; Beurze et al., 2009). The successive recruitment of ipsilateral 

homologue areas of the fronto-parietal reach-to-grasp network with increasing task 

demands seems to be a general mechanism independent of the type of movement 

correction. Again, in agreement with previous studies our data suggests that the 

demand of online control, rather than effector-specificity, determines the amount of 

ipsilateral recruitment in the online-correction of reach-to-grasp movements. 

Our findings thus pave the way for future research tackling the question of how the 

contributions of the areas documented here are coherently integrated to coordinate 

the overall reach-to-grasp movement. For example, using TMS on premotor areas, 

this has been successfully done for grip-lift movements, showing that the left PMd 

contributes to the temporal coordination of the grasping and lifting phases while PMv 

being solely involved in grasping control (Davare et al., 2006). A similar approach 

might prove fruitful for deciphering the roles of the mainly parietal brain areas 

targeted here. 
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Tables 
 
Table 1: Regions of interest and their defining contrast, the average MNI coordinates of the ROI 
centers across participants and the standard deviations of the center coordinates (SD; characterizing 
the positional jitter of the individual centers) and the volume size. The Z-scores refer to the peak 
activations for the defining contrasts at the ROI centers. The anatomical locations are reported as 
percentage overlap with the regions reported in the anatomy toolbox for SPM (Eickhoff et al., 2005). 
Abbreviations see Figure 2. 
 

ROI 
hemis-
phere 

contrast 
x 

(SD) 
y 

(SD) 
z 

(SD) 
volume 
(mm3) 

z 
score 

anatomical location 

aIPS left 
GraspP > 

Unpert 
-46 

(4.9) 
-42 

(4.9) 
48 

(5.4) 
4280 2.87 

left Area 2 (30.8%) 
left hIP2 (28.2%) 

left IPC (PF) (17.4%) 
 right IPC (PFm) (7.2%) 

aIPS right 
GraspP > 

Unpert 
46 

(5.3) 
-38 

(4.1) 
48 

(4.9) 
3576 3.68 

right Area 2 (33.4%) 
right hIP2 (18.7%) 

right IPC (PF) (17.2%) 
right IPC (PFt) (11.8%) 

mIPS left 
GraspP > 

Unpert 
-38 

(3.9) 
-52 

(4.9) 
46 

(3.6) 
2312 3.37 

left hIP1 (54.0%) 
left hIP3 (21.1%) 

left hIP2 (6.7%)  
left IPC (PFm) (6.6%) 

mIPS right 
GraspP > 

Unpert 
32 

(6.8) 
-62 

(3.4) 
46 

(3.7) 
2888 3.75 

right hIP3 (24.4%) 
right IPC (PGa) (10.7%) 

right SPL 7A (8.1%) 
right hIP1 (3.2%) 

mIPS right 
Reach > 
Unpert 

36 
(4.2) 

-46 
(3.7) 

52 
(5.7) 

2920 3.25 

right Area 2 (40.2%) 
right hIP3 (23.3%) 

right SPL (7PC) (22.1%) 
right hIP2 (11.0%) 

SPOC left 
ReachP > 

Unpert 
-12 
(5) 

-76 
(4.1) 

52 
(4.6) 

3040 3.57 
left SPL (7P) (70.7%) 
left SPL (7A) (9.7%) 

SPOC right 
ReachP > 

Unpert 
26 

(4.8) 
-78 

(2.6) 
45 

(4.1) 
1704 3.82 

right SPL (7P) (25.9%) 
right IPC (PGp) (5.6%) 

PMd right 
GraspP > 

Unpert 
24 

(5.0) 
-10 

(4.4) 
56 

(2.8) 
2136 2.97 right Area 6 (38.3%) 

PMd right 
ReachP > 

Unpert 
30 

(4.7) 
-4 

(4.7) 
56 

(4.8) 
3688 2.85 right Area 6 (13.7%) 

PMv left 
Perturbation

> Unpert 
-56 

(4.0) 
6 

(4.0) 
26 

(4.0) 
2056 5.94 

left Area 44 (57.5%) 
left Area 6 (22.9%) 
left Area 4p (1.1%) 

PMv right 
Perturbation

> Unpert 
58 

(4.0) 
8 

(4.0) 
16 

(4.0) 2056 6.42 right Area 44 (19.2%) 
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Table 2: Behavioral Data. Mean ± standard deviation for reaction time (RT) and movement time (MT) 
for all conditions (Unpert= unperturbed movements, ReachP= perturbed reaching; GraspP= perturbed 
grasping, LargeSmall= grasp corrections from large to small, SmallLarge= grasp corrections from 
small to large). 

 RT (ms) MT (ms) Overall_MT (ms) 

Unpert 414 ± 45 625 ± 74 1529 ± 272 

ReachP 413 ± 47 721 ± 86 1642 ± 280 

GraspP 410 ± 49 713 ± 64 1638 ± 283 

   LargeSmall 402 ± 47 747 ± 76 1663 ± 267 

   SmallLarge 420 ± 47 667 ± 76 1615 ± 330 

Small 426 ± 47 643 ± 77 1527 ± 266 

Large 403 ± 45 607 ± 80 1532 ± 282 

 
 
 
Table 3: Results of the main analysis for ROIs with a size of two standard deviations. The column 
'Contrast' indicates where the respective peak location had been taken from. Results corrected for 
multiple comparisons using Bonferroni are indicated by pB. 

 

 

 

 

 

 

 

 

 

 

 

ROI Contrast 
t-test 

ReachP vs GraspP 
t-test 

small_large vs large_small 

  t p t p pB 

left SPOC ReachP > Unpert 1.119 0.280 0.813 0.429  

right SPOC ReachP > Unpert 0.501 0.623 0.483 0.636  

left aIPS GraspP > Unpert 0.626 0.540 0.382 0.708  

right aIPS GraspP > Unpert 0.282 0.780 1.188 0.080  

right mIPS ReachP > Unpert 0.683 0.505 4.313 0.001 0.007 

left mIPS GraspP > Unpert 1.204 0.247 0.518 0.612  

right mIPS GraspP > Unpert 0.275 0.787 0.575 0.574  

right PMd ReachP > Unpert 0.940 0.362 2.279 0.038 0.415 

right PMd GraspP > Unpert 2.092 0.054 2.646 0.018 0.201 

left PMv Perturbation > Unpert 0.377 0.697 2.178 0.046 0.508 

right PMv Perturbation > Unpert -0.396 0.360 0.094 0.93  
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Table 4: Results of the connectivity analysis for ROIs with a size of two standard deviations. The 
column 'Whole brain contrast' indicates where the respective peak location had been taken from. 
Results corrected for multiple comparisons using Bonferroni are indicated by pB. 

 

 

 

Figure captions 
 
Figure 1: Experimental setup. Targets were fixed on the arc-shaped target-holder above the 
participant’s hip and groin. The right arm was fixed in an elevated position. The head was elevated 
and additionally tilted to allow a direct line of sight on the targets. MR-compatible cameras were used 
to record hand (camera 1) and eye (camera 2) movements. Fiber optics mounted on the head coil 
illuminated the whole setup with invisible infra red light. A fixation LED was attached to the scanner 
bore right above the target area. Inset: The two targets and the fixation LED seen from camera 1. The 
targets could vary in size by changing the illumination of the individual object panels (here: full 
illumination of the left target and illumination of the central panel of right target). During the 
experiment, only one target was visible at a time. 

 
Figure 2: Group activation patterns of the whole brain analysis. The green overlays indicate activation 
for ReachP, GraspP and BothP relative to the implicit baseline (mixed effects analysis, voxel level of Z 
> 2.3). Red to yellow heat maps show difference signals based on the following contrasts: perturbed 
grasping > unperturbed movements (GraspP > Unpert), perturbed reaching > unperturbed movements 
(ReachP > Unpert), and both movements perturbed > unperturbed movements (BothP > Unpert) 
(mixed effects analysis, voxel level of z > 2.3, cluster level p < 0.05 corrected for multiple 
comparisons). Functional maps are overlayed on the mean of sixteen participants T1-weighted 
anatomical scans.  

 
Figure 3: Bar graphs display the average magnitude of the BOLD signal from the right mIPS (defining 
contrast ReachP > Unpert), right aIPS (defining contrast GraspP > Unpert) and right SPOC (defining 
contrast ReachP > Unpert) at the group level. Abbreviations see Table 2 and Figure 2. Red lines 
indicate standard errors. 
 
Figure 4: The modulation of coupling as a function of condition is indicated by differences in the 
average parameter estimates in the right aIPS (left: “seed” right SPOC; right: “seed” right mIPS). The 
four bars on the left show the results of the analysis focusing on perturbed reaching and perturbed 
grasping. The two rightmost bars show the results of the comparison of grip size changes. 
Abbreviations see Table 2 and Figure 2. 

 

 

 

ROI 1 (“seed”) Contrast ROI 2 Contrast 
t-test: small_large vs 

large_small 

    t p pB 

right SPOC ReachP > Unpert right aIPS GraspP > Unpert 4.382 0.001 0.005 

right mIPS ReachP > Unpert right aIPS GraspP > Unpert 3.914 0.008 0.015 

right mIPS GraspP > Unpert left aIPS GraspP > Unpert 3.147 0.001 0.006 

right mIPS GraspP > Unpert right aIPS GraspP > Unpert 4.378 0.001 0.002 

right PMd ReachP > Unpert right aIPS GraspP > Unpert 3.640 0.002 0.026 
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Figures 
 
 Figure 1: 
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