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Abstract 

Knowledge of the spatial distribution of geotechnical, hydrological, petroleum, and 

environmental parameters in the subsurface is essential in environmental earth sciences. 

Latest developments in engineering geophysics and remote sensing data acquisition 

provide a large set of techniques for non-invasive and in situ data recording for high-

resolution ground probing. We developed different strategies based on knowledge 

discovery for analyzing environmental earth science databases.  One important type of 

these databases is geophysical tomography, which offers 2D or 3D valuable and unique 

information about the internal composition of the ground. Based on different data mining 

and machine learning (i.e., feature extraction, Artificial Neural Networks, etc.) techniques 

we developed a data analysis strategy based on artificial neural networks (ANNs) allowing 

for 2D or 3D probabilistic prediction of sparsely measured earth properties constrained 

by geophysical tomography fully accounting for tomographic reconstruction ambiguity. 

Furthermore, we try to take the uncertainty or variability of the input data into account for 

proving the results of this method. Additionally, we have evaluated whether the training 

performance of the prediction model of ANNs can be used to rank geophysical 

tomograms. Such prediction model can contribute to solving hydrological, petroleum, or 

engineering exploration tasks in a data-driven manner. Another important issue is 

mapping the earth which is a fundamental prerequisite required to address various 

environmental and economic issues, such as mining target identification, soil 

conservation, or ecosystem management. The datasets for mapping are either technical 

or subjective. We show the first attempts towards integrating technical and subjective 

spatial datasets in an automated and rapid manner based on different data mining 

algorithms (i.e., graph analysis, boundary detection, clustering, etc.). Such method aims 

to produce a crisp or fuzzy classified map outlining dominant structures in the database 

optimally consistent with all available information.  
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Zusammenfassung 

Einsicht in die räumliche Verteilung geotechnischer und hydrologischer 

Untergrundeigenschaften sowie von Reservoir- und Umweltparametern sind grundlegend 

für geowissenschaftliche Forschungen. Entwicklungen in den Bereichen 

geophysikalische Erkundung sowie Fernerkundung resultieren in der Verfügbarkeit 

verschiedenster Verfahren für die nichtinvasive, räumlich kontinuierliche  Datenerfassung 

im Rahmen hochauflösender Messverfahren. In dieser Arbeit habe ich verschiedene 

Verfahren für die Analyse erdwissenschaftlicher Datenbasen entwickelt auf der Basis von 

Wissenserschließungsverfahren. Eine wichtige Datenbasis stellt geophysikalische 

Tomographie dar, die als einziges geowissenschaftliches Erkundungsverfahren 2D und 

3D Abbilder des Untergrunds liefern kann. Mittels unterschiedlicher Verfahren aus den 

Bereichen intelligente Datenanalyse und maschinelles Lernen (z.B. Merkmalsextraktion, 

künstliche neuronale Netzwerke, etc.) habe ich ein Verfahren zur Datenanalyse mittels 

künstlicher neuronaler Netzwerke entwickelt, das die räumlich kontinuierliche 2D oder 3D 

Vorhersage von lediglich an wenigen Punkten gemessenen Untergrundeigenschaften im 

Rahmen von Wahrscheinlichkeitsaussagen ermöglicht. Das Vorhersageverfahren basiert 

auf geophysikalischer Tomographie und berücksichtigt die Mehrdeutigkeit der 

tomographischen Bildgebung. Außerdem wird auch die Messunsicherheit bei der 

Erfassung der Untergrundeigenschaften an wenigen Punkten in der Vorhersage 

berücksichtigt. Des Weiteren habe ich untersucht, ob aus den Trainingsergebnissen 

künstlicher neuronaler Netzwerke bei der Vorhersage auch Aussagen über die 

Realitätsnähe mathematisch gleichwertiger Lösungen der geophysikalischen 

tomographischen Bildgebung abgeleitet werden können. Vorhersageverfahren wie das 

von mir vorgeschlagene, können maßgeblich zur verbesserten Lösung hydrologischer 

und geotechnischer Fragestellungen beitragen.   
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Ein weiteres wichtiges Problem ist die Kartierung der Erdoberfläche, die von 

grundlegender Bedeutung für die Bearbeitung verschiedener ökonomischer und 

ökologischer Fragestellungen ist, wie z.B., die Identifizierung von Lagerstätten, den 

Schutz von Böden, oder Ökosystemmanagement. Kartierungsdaten resultieren entweder 

aus technischen (objektiven) Messungen oder visuellen (subjektiven) Untersuchungen 

durch erfahrene Experten. Im Rahmen dieser Arbeit zeige ich erste Entwicklungen hin zu 

einer automatisierten und schnellen Integration technischer und visueller (subjektiver) 

Daten auf der Basis unterschiedlicher  intelligenter Datenanalyseverfahren (z.B., 

Graphenanalyse, automatische Konturerfassung, Clusteranalyse, etc.). Mit solchem 

Verfahren sollen hart oder weich klassifizierte Karten erstellt werden, die das 

Untersuchungsgebiet optimal segmentieren um höchstmögliche Konformität mit allen 

verfügbaren Daten zu erzielen.  
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Chapter 1 

Introduction 

1.1 Knowledge Discovery in Databases (KDD) 

The different research disciplines (i.e., earth sciences, bioinformatics, engineering, 

biology, computer science, etc.), industry, or customer centered and service-oriented 

business are overwhelmed with the big amount of data. Data are measured or collected 

values about a desired quantity stored as raw material in many different types of 

databases that fuels different disciplines (sciences, industry, engineering, medicine, etc.) 

growth if only the data can be mined (Al-Hegami, 2004; Han et al., 2011). Since the 1980s 

database technology has been characterized by research and development activities 

which promote the development of application-oriented database systems, such as 

spatial, temporal, multimedia, stream, sensor, scientific and engineering, knowledge 

bases, and office information databases. The rapid progress of computer hardware and 

measurement tools in the past three decades has led to large supplies of powerful and 

affordable computers, data collection equipment, and storage devices. Based on such 

available and powerful technologies, it is not an exaggeration to say that the data get 

doubled every year due to the mechanical production of it (Stanton, 2012). Potential and 

abundance of big databases has been described as data-rich but information-poor 

situation in different disciplines and urges the need for powerful data analysis tools. 
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Researchers in different areas i.e., statistics, machine learning, artificial intelligence, 

expert systems, databases, visualization, etc., are striving to find new methods and 

techniques to transfer data into an effective, meaningful, and useful information that can 

play an important role in decision support systems. The advances in computer hardware, 

data collection, and database technologies make a huge number of databases and 

information repositories available for knowledge discovery in databases (KDD) (Olson, 

2008; Han et al., 2011).  

KDD is the process of extracting previously unknown, hidden, effective, and 

interesting patterns or information from a huge amount of data stored in databases. This 

type of analysis is an interactive and iterative process which involves many steps that 

must be done sequentially, attempting to solve the analysis and complexity in the big 

databases (Hegami, 2004). Figure 1-1 shows the structure of KDD. This process begins 

with the understanding of databases, mining the data, and ends with analysis and 

evaluation of the results. Actual extraction of patterns is preceded by a preliminary or pre-

processing (Fayyad et al., 1996; Olson, 2008; Han et al., 2011) of data, followed by an 

integration or selection of appropriate data from different databases. The main tasks in 

this step are pre-processing (removing noise and inconsistent data), data integration 

(where multiple databases may be combined with each other), data selection (where 

relevant data for the subsequent data mining part are selected from the database by 

feature selection algorithms), and data transformation (where the data are transformed or 

 

Machine 

Learning 

Statistics 

Image 

Processing 

Visualization 

Information 

Retrieval 

Other 

Discipline 

Data Mining  

Preprocessing, 

Integration and Selection 

Database 

Database 

e 

Database 

Pattern Evaluation 

Knowledge Base 

Human / Machine 

User Interface 

Figure 1-1: The structure of knowledge discovery in databases (KDD). It is based on the 
three important steps: preprocessing, data mining, and information evaluation by the end 
user. During these three steps the effective information will be extracted from big 
databases by KDD. 
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consolidated into forms appropriate for data mining by performing summary or 

aggregation operations) (Al-Hegami, 2004; Olson, 2008; Han et al., 2011). 

The pre-processing step is considered to be the most time-consuming stage of 

KDD (Zhang et al., 2003). The results of this step will be stored in a database and are 

influenced by the extraction algorithms used in the data mining (second) stage. The most 

important step of KDD is the data mining stage which is an essential process where 

intelligent, statistical, and machine learning methods are applied in order to extract 

important patterns and information from the preprocessed database. In the last step, the 

visualization and knowledge representation techniques are used to present the mined 

knowledge to the end user. During an iterative and interactive cycle, the expert user can 

have interaction with the data mining algorithms and send a feedback to the data mining 

algorithms. Such interaction can help different KDD stages to prove their results. 

In the heart of the KDD process (shown in Figure 1-1) is data mining, which refers 

to extracting, discovering, or “mining” effective, useful, and interesting knowledge, 

pattern, or information from large amounts of data stored in the databases (Han et al., 

2011, Al-Hegami, 2004). Many kinds of literature refer to data mining as a synonym for 

KDD, but it is the core or an essential step in the process of KDD (Han et al., 2011). Data 

mining involves an integration of techniques from multiple disciplines such as database 

technology (Silberschatz et al., 1997), statistics (Hill et al., 2006), machine learning 

(Witten and Frank, 2005), visualization (Cleveland, 1993), information selection (Kohavi 

and John, 1997), pattern recognition (Gonzalez and Thomason, 1978), image and signal 

processing (Russ and Woods, 1995), spatial or temporal data analysis (Bailey and 

Gatrell, 1995), etc. Therefore, operationally data mining involves the process of 

discovering patterns automatically or semi-automatically from large quantities of data 

based on the application of the mentioned disciplines. The extracted information by the 

data mining algorithms (i.e., clustering, classification, regression, association rules 

mining, etc.) can be used for different applications ranging from science exploration, 

industry, engineering, medical science, environmental earth science, production control, 

to decision making, market analysis, fraud detection, customer retention, etc.  

Noticing to the structure of KDD, there are some major issues in data mining 

regarding mining methodology, user interaction, performance, and diversity of the data 
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types, which have significant effects in the extracted knowledge or patterns by data 

mining algorithms. The mining methodology and user interaction issues are related to the 

kinds of knowledge at multiple granularities, the use of domain knowledge, and 

knowledge visualization. The issues of mining different kinds of knowledge in databases 

are due to different users which are interested in different kinds of knowledge. Therefore 

data mining should cover a wide aspect of data analysis and knowledge discovery 

algorithms, i.e., data characterization, association and correlation analysis, classification, 

clustering, regression, outlier detection, etc. These algorithms may use the same 

database in different ways and require the development of numerous pre-processing, 

integration, transformation and selection techniques. 

Interactive mining of knowledge or human in the loop at multiple levels of KDD are 

another issue which should be considered during the KDD process. Because it is difficult 

to know exactly what can be extracted from a database, therefore the KDD models or 

data mining algorithms should be an interactive procedure between machine and expert 

users, who want to get benefit from data mining results. Such interactive mining 

procedure allows KDD and users to focus on the search domain for patterns and 

structures as well as providing and refining data mining tasks based on extracted results. 

In this procedure, the user can interact with the data mining algorithms to view and 

evaluate the data and extracted patterns at multiple granularities and from different 

angles. Also, for offering better results, data mining algorithms should have cooperation 

with background knowledge or information regarding the domain under study. This 

cooperation guides the data mining process and allows discovered patterns to be 

represented in concise terms and at different levels of abstraction. Domain knowledge 

related to databases from the expert user, such as integrity constraints and deduction 

rules, can help the data mining process to focus and speed up, or judge the 

interestingness and efficiency of the extracted patterns (Han et al., 2011). Another 

important issue in the KDD or data mining process is handling uncertain, noisy, or 

incomplete data. The data stored in a database may be uncertain, reflect noise, 

exceptional cases, or incomplete. When applying the data mining algorithm to such 

uncertain data, it may confuse the process, and cause the data mining algorithms to over-

fit the data. Therefore, the accuracy of the data mining methods and efficiency of 
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discovered patterns can be poor. Understanding the different type of uncertainties, noise, 

or errors in the data, and applying data cleaning or uncertain data analysis methods that 

can handle uncertain and noisy data are required. 

1.2 Uncertainty and Error in Data  

In data measurements, the terms “error” and “uncertainty” are used to describe the 

same concept, when the measured data are unsure, noisy, or incomplete. With the 

emergence of new measurement technologies and application domains, such as location-

based services and sensor monitoring, uncertainty is ubiquitous due to reasons such as 

outdated sources, environmental noise, sampling error, limited number of observations, 

or imprecise measurement (Taylor, 1982; Zhang et al., 2003; Han et al., 2011). Therefore 

uncertain and complex databases have become ubiquitous, and lead to a number of 

unique challenges in the KDD and data mining process. As the volume of uncertainty 

increases in the databases, the cost of mining and evaluating will also increase. During 

mining or analyzing the uncertain database, the error, or uncertainty start to have 

significant effects on the results of KDD and data mining, because most algorithms just 

assume that the input data is completely reliable and true (Aggarwal and Philip, 2009; 

Aggarwal, 2010). In such scenario, data records are typically represented by probability 

distributions reflecting the inherent uncertainty or error rather than deterministic value. 

These situations have created a need for uncertain data management and mining 

algorithms for managing, and leveraging uncertainty to improving the quality of the KDD 

and data mining results.  

Recognizing different kinds of uncertainty or error in the data is a fundamental step 

to manage them during KDD process. In the literature error or uncertainty are classified 

in the different classes, i.e., systematic, random, gross, additive, multiplicative, absolute, 

relative, static, and dynamic classes (Wiley and Ltd, 1982), but the two major types of 

uncertainties in  measured data or databases are random and systematic uncertainties. 

Random uncertainty is an important type of uncertainty which is due to a deficiency in 

defining or measuring the physical quantity or associated with unpredictable variations in 

the experimental conditions under which the experiment is being performed. Also, they 

may arise from fluctuations in either the physical quantity due to the statistical nature of 
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the particular phenomena or the judgment of the experimenter, such as estimation of 

scale reading or variation in response time (Bevington and Robinson, 2003). Random 

uncertainty decreases the precision (how closely two or more measurements agree with 

each other) of an experiment (Pengra and Dillman, 2009). Systematic uncertainty is 

another type of uncertainty, which is related to built-in errors in the measuring instruments 

either in techniques, calibration, or design of the experiment. Systematic uncertainty 

decreases the accuracy (how close a measured value is to the true value or accepted 

value) of an experiment (Bevington and Robinson, 2003; Pengra and Dillman, 2009). 

 In the data measurement one option to estimate the systematic uncertainty is 

changing every component of an experimental setup which is highly expensive. In some 

field of application a true or accepted value for a physical quantity may be unknown. In 

such cases, there is no practical efficient procedure to estimate the systematic 

uncertainty, and it is sometimes not possible to determine the accuracy of a 

measurement.Measurements may have different combinations of accuracy and 

precision. Four combinations of accuracy and precision, which may occur in 

measurements are shown in Figure 1-2. When experiment or measured data are 

reported, the report most represents the uncertainties (or the combination of accuracy 

and precision) in the measured data or calculated values for physical quantities. The 

uncertainty of a quantity can be represented by probabilistic (Sarma et al., 2006; Zhang 

et al., 2008), Interval (Abrahamsson, 2002), or fuzzy (Galindo, 2005; Zhang et al., 2008) 

representation. These representations state how sure we are that the ‘true value’ is within 

the margin. Probabilistic representation is the most common approach used to represent 

uncertainty with a probabilistic distribution of the measured values. Interval analysis can 

Figure 1-2: Four combinations of accuracy and precision (Haibo, 2014). 
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be used to estimate the possible bounds to represent uncertainty about the quantities 

based on the interval representation or some statistic methods (Abrahamsson, 2002). In 

fuzzy representation, fuzzy entities, fuzzy attributes, fuzzy aggregation, fuzzy 

relationship, fuzzy membership, fuzzy constraints, etc., are used to represent the 

uncertainty and imprecision of the measured value (Galindo, 2005; Zhang et al., 2008).  

As was explained, the uncertainty of the measured data has significant effects on 

the results of KDD and data mining algorithms. Hence, for offering realistic data analysis 

results, in each stage of the KDD process (pre-processing, data mining, pattern 

evaluation stages) the random and systematic uncertainties of the measured data must 

be taken into account. This procedure is called error propagation (Taylor, 1982; Haibo, 

2014). The general purpose of this step is exerting the uncertainty of the measured data 

to estimate the highest precision and extracting probabilistic results from KDD or data 

mining algorithms (Bevington and Robinson, 1992; Haibo, 2014). Random uncertainty is 

much easier to quantify and propagate than the systematic uncertainty in the KDD or data 

mining procedure. For example, it can be determined by standard statistical techniques 

that measure variability or standard deviation of measured values for physical quantities 

(Sokal and Rohlf, 1995). When data are stored in the databases the only way for 

determining the systematic uncertainty is using the subjective beliefs of an expert user 

who has skill in the measurement and is able to determine the structure and behavior of 

the phenomenon in the field of study (Pengra and Dillman, 2009). Therefore, it is 

important recognizing or noticing all irregular phenomena and structures. Some 

information about the surrounding physical conditions, which can become the sources of 

systematic uncertainty, should be recorded during the data measurement. 

1.3 Subjective and Technical Data 

Data are either recorded using technical measurements by sensors, referred to as 

technical data in the following, or human expert knowledge, often in combination with an 

at least partly visual inspection of the object or area of interest, referred to as subjective 

data. Technical data are generally objective images or values of the physical quantity 

providing true information within the resolution of the sensor superimposed by random 

and systematic uncertainty (Paasche et al., 2014). Examples are satellite imagery or 
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geophysical maps in the environmental earth sciences. Technical data can be quantified 

by using statistical methods (Meeker and Escobar, 2014), or may be based on data-driven 

and domain-independent methods (Kadlec et al., 2009). Subjective data are determined 

based on user experience and understanding of the behavior of measurements, 

phenomena, and patterns in the domain, and shows how the domain has been perceived 

by an expert human. Such information can be either fully correct or incorrect for an 

individual physical quantity (Paasche et al., 2014). Quantification of data accuracy is 

usually not possible for subjective data, but is inherently subjective and highly specific. 

Use of objective or technical data in the KDD or data mining algorithms often leads 

to uncertain data analysis. Subjective believe of the expert user about the domain and 

measurements are required for considering the uncertainty, to improve, and achieve the 

high-quality KDD results (Haibo, 2014). Subjective believes of the user can be used in 

each stage of KDD process (pre-processing, data mining, pattern evaluation stages) to 

help the KDD or data mining algorithms to discover and extract novel, useful, realistic, 

and interesting knowledge (Aggarwal, 2010; Holzinger, 2016).  

1.4 Human in the Loop (HTL) 

Interactive or human in the loop machine learning (HTL) (Rothrock and Narayanan, 

2011; Liu et al., 2014; Holzinger, 2016) is a simulation framework, which requires human 

knowledge and experiences about the domain in an interactive model. Traditional 

knowledge discovery models observe human interaction as an external input in the case 

study database to use in the different stages of the KDD process. In the pre-processing, 

data mining and pattern evaluation stages of the KDD process (Figure 1-1) there are 

some problems (i.e., managing uncertain databases, reducing the volume of discovered 

patterns, or focus on the important pattern) for which the subjective belief of expert users 

is necessary to prove the KDD results (Geng and Hamilton, 2006; Holzinger, 2016). The 

interaction between KDD and a human in a HTL model typically does not provide us with 

completely true knowledge about the domain or quantity in the database. But these 

interactions are partially subjective and simply the results of a decision made by an expert 

user based on his observation, deep understanding, and skills in the domain. In this 

interaction the expert user specifies some constraints in the form of textual, conditions, 
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e,g., an additional input layer. By using an interface the user can be aware of the current 

state of the KDD process and is enabled to manipulate a data mining algorithm through 

interaction (Ankerst, 2001). As showed in Figure 1-1, such interaction can be done in an 

iterative loop in pre-processing, data mining, or evaluating the results of data mining 

algorithms with sending a feedback to each stage of a KDD process. Therefore, the HTL 

strategy is one of the key sources of a knowledge discovery process, providing enormous 

potential for economical and autonomous optimization, and proving KDD models to offer 

more realistic and useful knowledge. In such models, gaining unprecedented amounts of 

world knowledge is required to solve some of the complex knowledge discovery problems 

(Fails and Olsen 2003; Raman). 

Figure 1-3 shows different scenarios for interaction between a KDD process and 

an expert user. Figure 1-3a shows unsupervised learning (Albalate and Minker, 2013; 

Holzinger, 2016) where the learning algorithm is applied to the raw data and learning 

procedure (i.e., clustering or association rules mining) is fully automatic. This strategy 

does not require a human to manually label the data, but in the evaluation stage of the 

KDD process (Figure 1-1), the expert user can analyze the discovered knowledge or 

patterns objectively and/or subjectively to form a filter that minimizes the number of 

discovered rules and pattern which are easier to understand (Figure 1-3a). Figure 1-3b 

shows supervised machine learning (Kotsiantis et al., 2007) in which a human provides 

labels for the training data and/or selects features to feed the learning algorithm. In 

supervised learning (i.e., classification,) the subjective belief of the user can be used as 

a filter to concentrate and select a set of instances that should be given more attention 

and determining features, which are more important to the learning algorithms. Figure 1-

3c shows semi-supervised learning (Chapelle et al., 2009; Albalate and Minker, 2013) 

which can be a mixture of supervised and unsupervised learning that uses mixing of 

labeled and unlabeled data to find labels according to a similarity measure to one of the 

given groups in the learning algorithm. Figure 1-3d illustrates the human in the loop 

strategy where the human expert is seen as an agent directly involved in the actual 

learning or data mining stage of the KDD process. In this strategy, the subjective belief of 
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the user can guide the mining process to form a constraint in order to discover rules or 

patterns which are more efficient and realistic.  

With HTL based knowledge discovery models, on the one hand, users greatly 

benefit from the knowledge extracted by these KDD models. On the other hand, these 

KDD models can greatly benefit from the domain knowledge, which users provide and 

communicate through their interactions with the model. During this interaction, first, the 

domain knowledge of the human (e.g., focus on certain patterns, information about 

attribute values, or volume and type of uncertainty or error in the data) can be transferred 

to the KDD process and vice versa. Second, if the subjective belief of a human can specify 

how to search, or focus patterns in the domain it can make KDD or data mining algorithms 

more effective. Because a data mining algorithm typically searches in large search 

spaces, which the involvement of the user can narrow down  significantly and prove the 

data mining algorithm by more accurate search (Ankerst, 2001). The key challenge in the 

HTL based KDD process is that the subjective belief of users typically does not fit the 

standard machine learning or data mining algorithms outcome. However, for proving and 

offering realistic results of complex knowledge discovery models in today’s technological 

landscape humans as active participants must be included in their pre-processing, data 

mining, and evaluation stages.  

Figure 1-3: Four different interactions between KDD and humans. (a), (b), (c), and (d) 
show unsupervised, supervised, semi-supervised, and human in the loop approaches, 
respectively (Holzinger, 2016). 
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1.5 KDD in Earth Sicences 

Earth sciences typically contain many interrelated components and involve several 

disciplines, i.e., biology, geophysics, hydrology, chemistry, etc. Earth sciences are in part 

concerned with the observation of environment variables for the purpose of describing 

the process, pattern and structure understanding. Observing, analyzing or modeling the 

terrestrial environments provide the knowledge-based model to handle a wide variety of 

environmental, societal, or industrial issues such as ecosystem management or resource 

exploration (Recknagel, 2001). Recently, due to rapid developments of measurement 

tools, the earth science discipline experienced a rapid transformation from a data-poor to 

a data-rich situation (Kumar, 2010). In particular, geophysical, biological, hydrological and 

environmental observations of spatial data, time related data, acquired by remote sensors 

or on-site recording systems, as well as outputs of the large-scale computational 

platforms used for earth monitoring or exploring provide terabytes of temporal, spatial and 

spatio-temporal data (Kumar, 2010). These worth and big datasets offer a great potential 

for discovering, understanding, and predicting the behavior of the earth’s system to 

advance the different disciplines, i.e., biology, geophysics, hydrology, chemistry, etc. 

A variety of technical, economic, ecological, social and environmental factors 

increase the complexity of the earth sciences (Spate et al., 2006). For real world 

environmental problems, the measured data, which explain the physical environmental 

quantities, come from different sources with different format, resolution, and uncertainties. 

In some cases, the environmental databases carry a big volume of technical (i.e., satellite 

imagery and geophysical maps) and subjective information (i.e., soil maps and geological 

maps) about the structures in the terrestrial environment. Offering knowledge discovery 

models for extraction and analysis of interesting patterns in such databases is a big 

challenge in the earth sciences (Spate et al., 2006; Kumar, 2010; Paasche et al., 2014). 

Recently, different KDD models have been introduced in this area to discover patterns, 

knowledge, and structures from the earth science databases (i.e., Ramachandran et al., 

2000; Li and Narayanan, 2004; Hoffman et al., 2011; Siegel et al, 2016). Many 

researchers, universities, and organization (i.e., NASA, DLR, EGU, and etc.) are focusing 

on KDD applied to earth sciences databases. More studies are necessary to tackle 

different challenges of environmental databases (i.e., big data analysis, heterogeneous 
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spatio-temporal datasets, noisy or uncertain data management and analysis, integrating 

subjective and technical data, probabilistic analysis, dimensionality reduction, etc.) to 

prove the results of KDD models and make them trustable models for analyzing the earth 

science databases (Kumar, 2010; Hoffman et al., 2011; Paasche et al., 2014). The 

ultimate goal of this thesis involves the advancement of new strategies to setting up 

different KDD processes for application in earth science databases focusing on 

probabilistic analysis under uncertainty consideration and integration of subjective and 

technical data.  

1.6 Objectives of This Thesis 

This thesis is organized into three different parts, putting forward different 

objectives to offering knowledge discovery in environmental databases. One important 

type of environmental databases is geophysical tomography, which offers valuable and 

unique information about the internal composition of the ground. Geophysical 

tomographic datasets uniquely offer the ability to image physical parameter variations, 

e.g., radar or seismic wave propagation velocities, in a spatially continuous manner. The 

most important challenge when using geophysical tomography in hydrological, 

environmental or engineering exploration is, how to link the tomographically reconstructed 

physical parameter variations to the aquifer, reservoir or geotechnical target parameters 

of interest, which are usually different from those imaged by geophysical tomography 

(Paasche et al., 2006; Rumpf and Tronicke, 2014). The second chapter of this thesis 

shows a data analysis model allowing 2D or 3D probabilistic prediction of sparsely 

measured earth properties constrained by geophysical imaging fully accounting for 

tomographic reconstruction ambiguity. The main focus of this chapter is in the pre-

processing and data mining stage of the KDD process (Figure 1-1). This model tries to 

take the uncertainty or variability of the input data into account for offering a probabilistic 

prediction of the target parameters. Additionally, this chapter evaluates, whether the 

training performance of the prediction model can be used to rank geophysical tomograms. 

If this ranking is successful then, the feature selection, in an iterative relation between 

pre-processing and data mining stage, can be applied to the input data to decrease the 

volume of input data and increasing the performance of the KDD models.  
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Another main issue in the environmental databases is uncertainty or measurement 

error in the measured data (e.g., tomographic ambiguity, borehole logging data errors). 

For a realistic analysis (i.e., predictions of geotechnical target parameters) the 

uncertainty, or measurement errors, and the differences in spatial resolution must be 

taken into account (Rumpf and Tronicke, 2014; Asadi et al., 2016). The third chapter 

represents a spatially continuous probabilistic prediction model of sparsely measured 

ground properties constrained by ill-posed tomographic imaging considering data 

uncertainty and resolution. Such prediction model can contribute to solving hydrological, 

petroleum, or engineering exploration tasks. The main focus of this chapter is improving 

the results of the data mining stage (Figure 1-1) of the KDD process with application to 

an environmental earth database by feeding the uncertainty and measurement errors in 

the learning phase of the prediction model. Four different training strategies taking into 

account the uncertainty of logging data and geophysical tomographic ambiguity to avoid 

data overfitting of the prediction model are considered. This chapter shows a successful 

transformation of the uncertainty of logging data and geophysical tomographic 

reconstruction ambiguity as well as differences in spatial resolution of logging and 

tomographic models into the probabilistic 2D or 3D prediction of our target parameters in 

a data-driven manner. Such strategy allows application of the presented methodology to 

any combination of geophysical tomograms and hydrologic, petroleum or engineering 

target parameters solely measured in boreholes. Furthermore, the concept is also 

applicable to predict spatially continuous maps on the basis of geoscientific maps, e.g., 

probabilistically interpolating sparse soil moisture measurements on the basis of multiple 

geophysical, geochemical or remotely sensed maps.   

Mapping the earth is a fundamental prerequisite required to address various 

environmental and economic issues, such as mining target identification, soil 

conservation, or ecosystem management (Odeh et al., 1990; Paasche and Eberle, 2009; 

Behrens et al., 2010). Typical databases comprise disparate spatial datasets mapping 

the spatial variability of physical, chemical, biological or other properties of the earth 

considered to realize educated decisions on land and resource utilization. The datasets 

for mapping are either technical or subjective. In the fourth chapter of this thesis I present 

first attempts towards integrating technical and subjective spatial datasets in an 
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automated and rapid manner aiming to produce a crisp or fuzzy classified map outlining 

dominant structures in the database optimally consistent with all available information. 

This chapter focus on developing a KDD model based on the human in the loop (Figure 

1-1) to integrating subjective and technical databases in the earth sciences. This new 

model may potentially allow for multi-map integration and map analysis according to 

different features, such as color or absolute value, edge, and texture information in the 

mapped technical information and additional consideration of knowledge provided by 

human experts. The analyses in this chapter are based on a real dataset acquired in the 

Schäfertal, Germany, which is part of the TERENO Harz/Central German Lowland 

Observatory. 

Finally, the fifth chapter of this thesis presents conclusions and outlook where the 

major findings of this thesis are explained. In this chapter indications arising from this 

thesis for future research directions and recommendations for proving the discussed 

models for environmental earth data analysis are discussed. Furthermore, new 

application areas for which such models can be applied for discovering patterns, 

structures and knowledge are addressed. 
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Chapter 2  

2D Probabilistic Prediction of Sparsely 

Measured Earth Properties Constrained by 

Geophysical Imaging Fully Accounting for 

Tomographic Reconstruction Ambiguity 

Abduljabbar Asadi, Peter Dietrich, and Hendrik Paasche 
Manuscript published in Environmental Earth Sciences, 2016 

2.1 Abstract 

Many hydrological, environmental, or engineering exploration tasks require 

predicting spatially continuous scenarios of sparsely measured borehole logging data. 

We present a methodology to probabilistically predict such scenarios constrained by ill-

posed geophysical tomography. Our approach allows for transducing tomographic 

reconstruction ambiguity into the probabilistic prediction of spatially continuous target 

parameter scenarios. It is even applicable to datasets where petrophysical relations in the 

survey area are non-unique, i.e., different facies related petrophysical relations may be 

present. We employ static two-layer Artificial Neural Networks (ANNs) for prediction and 

additionally evaluate, whether the training performance of the ANNs can be used to rank 

geophysical tomograms, which are mathematically equal reconstructions of physical 

parameter distributions in the ground. We illustrate our methodology using a realistic 

synthetic database for maximal control about the prediction performance and ranking 

potential of the approach. For doing so, we try to link geophysical radar and seismic 

tomography as input parameters to porosity of the ground as target parameter of ANN. 

However, the approach is flexible and can cope with any combination of geophysical 

tomograms and hydrologic, environmental or engineering target parameters. Ranking of 
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equivalent geophysical tomograms based on additional borehole logging data is found to 

be generally possible, but risks remain that the ranking based on the ANN training 

performance does not fully coincide with the closeness of geophysical tomograms to 

ground truth. Since geophysical field datasets do usually not offer control options similar 

to those used in our synthetic database, we do not recommend the utilization of recurrent 

ANNs to learn weights for the individual geophysical tomograms used in the prediction 

procedure. 

 

Keywords: Geophysics, Petrophysics, Probabilistic Prediction, Tomography. ANN, 

global search inversion 
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2.2 Introduction 

Geophysical tomography offers valuable and unique information about the internal 

composition of the ground. Such information is essential for supporting many 

hydrological, environmental, and engineering exploration tasks. Geophysical 

tomographic datasets uniquely offer the ability to image physical parameter variations, 

e.g., radar or seismic wave propagation velocities, in a spatially continuous manner. The 

most important challenge when using geophysical tomography in hydrological, 

environmental or engineering exploration is to link the tomographically reconstructed 

physical parameter variations to the aquifer, reservoir or geotechnical target parameters 

of interest, which are usually different from those imaged by geophysical tomography. 

Numerous examples, where geophysical tomography is used for the characterization of 

aquifers and hydrocarbon reservoir (Hubbard et al., 2001; Binley et al., 2001; Tronicke 

and  Holliger, 2005; Paasche et al., 2006; Boisclair et al., 2011; Ruggeri et al., 2013), e.g., 

with porosity or hydraulic conductivity being typical exploration target parameters, exist. 

Geophysical tomography is also used for geotechnical ground characterization 

(Yamamoto, 2001; Angioni et al., 2003; Rumpf and Tronicke, 2014), e.g., with 

compression and shear strengths as exploration target parameters. In these studies the 

geophysical tomography offers spatially continuous 2D or 3D information about the 

subsurface, but the exploration target parameters can only be measured laterally sparse 

along one dimension in sparse boreholes or by direct-push probing.  

Numerous approaches are available to link geophysical tomograms to hydrological 

or engineering target parameters. Traditional techniques rely on empirical, semi-

empirical, or theoretically founded deterministic transfer functions (e.g., Archie, 1942; 

Gassmann, 1951; Wyllie et al., 1956; Topp et al., 1980; Angioni et al., 2003). Generally, 

these approaches convert the spatial distribution of one physical parameter imaged by 

geophysical tomography into a spatial distribution of the desired target parameter. 

Unfortunately the relationship between physical and exploration target parameters is 

usually non-linear, non-unique, spatially and temporally variable and hence often not 

exactly known (Schön, 1998). Recently, methodological frameworks have been proposed 

which allow for improved incorporation of uncertainty and non-unique inter-parameter 

relations building on statistical analysis methods, e.g., artificial neural networks (Cawley 
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et al., 2007), co-kriging (Cassiani et al., 1998; Gloaguen et al., 2001), Bayesian inference 

(Ezzedine et al., 1999; Hubbard et al., 2001; Chen et al., 2001; Bosch et al., 2010; 

Boisclair et al., 2011; Ruggeri et al., 2013), fuzzy systems (Paasche et al., 2006), or 

conditional stochastic simulations (Tronicke and Holliger, 2005; Dafflon et al., 2009). 

These approaches require measured information about the target parameter to be 

present, e.g., by borehole measurements or material extraction followed by laboratory 

analysis.  

Artificial Neural Networks (ANN) have been applied to a variety of problems  in the 

geophysical domain, particularly addressing seismic data processing issues (e.g., energy 

onset picking, deconvolution, trace editing, event classification, waveform recognition, 

etc.), well log data analysis (e.g., detection of subsurface layer boundaries), geophysical 

data inversion, lithology classification and porosity prediction based on attributes derived 

from reflection seismic data and borehole logging data, as well as stratigraphic feature 

interpretation based on seismic attribute analyses (e.g., Poulton, 2002; Van der Baan and 

Jutten, 2000; Leite and de Souza Filho, 2009; Khoshdel and Riahi, 2011; Leite and Vidal, 

2011; Raeesi et al., 2012). To our knowledge, ANNs have not been used before to link 

geophysical tomograms imaging different physical parameters with sparse logging data 

for 2D or 3D probabilistic prediction of sparsely measured earth properties. 

For most geophysical tomographic imaging problems, the tomographic 

reconstruction suffers ambiguity due to limited number of observations and observational 

accuracy (e.g., Friedel 2003). Traditionally, deterministic approaches based on local-

search gradient-based optimization techniques (e.g., Aster et al., 2005) are employed to 

reconstruct a single geophysical tomogram explaining the data and an additional 

constraint employed to regularize the ill-posed optimization problem. Local-search 

optimization techniques do not allow for realistic and quantitative appraisal of ambiguity 

inherent to geophysical tomographic datasets since they are inherently deterministic. 

Traditional approaches based on deterministic transfer functions and geostatistical 

concepts for predicting the target parameters based on geophysical tomograms did not 

incorporate the tomographic reconstruction ambiguity since they build on geophysical 

tomograms achieved by local-search optimization techniques. However, quantitative and 

realistic prediction of uncertainty in the exploration target parameter estimation would 
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offer valuable information for decision taking in hydrological, environmental, and 

engineering exploration tasks with regard to risk quantification and minimization. 

Recently fully non-linear optimization techniques, e.g., Particle Swarm Optimization 

(Kennedy and Eberhart, 1995), or Genetic algorithms (Mitchell, 1998), have been 

employed to reconstruct ensembles of geophysical tomograms fitting the underlying 

dataset equally well. While some approaches artificially limit the complexity of the 

subsurface variability to be tomographically reconstructed by using simple geological 

concepts, such as a layered subsurface (e.g., Velis, 2001; Roy et al., 2005; Tronicke et 

al., 2012), others are suitable to achieve tomograms of arbitrary and data driven 

complexity (Bodin and Sambridge, 2009; Bodin et al., 2012). The resultant tomogram 

ensembles can be used to assess the tomographic ambiguity in a realistic manner. While 

all these tomograms are mathematically equivalent answers to the geophysical 

tomographic reconstruction problem, they may resemble the internal composition of the 

ground to variable degrees. Currently it is not known whether these models can be ranked 

according to their approximation of reality using additional information from 1D exploration 

target parameter measured in a borehole. If this could be done successfully, the 

geophysical tomograms could be ranked and correspondingly weighted for the 

subsequent linkage to sparsely measured additional target parameters and the prediction 

of 2D or 3D distributions of these target parameters.  

Very recently, such ensembles of equivalent tomograms have been used for 

constraining the probabilistic inference of spatially continuous 2D predictions of 

exploration target parameter distributions. Rumpf and Tronicke (2014) employ Alternating 

Conditional Expectation (Breiman and Friedman, 1985) to link ensembles of 125 radar, 

seismic P-wave and S-wave tomograms with sparsely measured exploration target 

parameters, i.e., sleeve friction and effective grain size. In their tomographic 

reconstruction they rely on the concept of a layered ground and illustrate their prediction 

uncertainty by mean and median values in combination with percentile ranges. Paasche 

(submitted a) and Paasche (submitted b) employ fuzzy sets to translate tomographic 

ambiguity into the probabilistic inference of 2D target parameter models.   
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 In this paper we focus on the probabilistic prediction of 2D distributed porosity of 

the ground as target parameters, based on ensembles of equivalent radar and seismic 

wave propagation velocity tomograms. Additionally, we evaluate whether it is possible to 

rank the mathematically equivalent tomograms based on the measured target parameter 

information. For doing so a prediction based feature selection (Liu and Motoda, 1998; Liu 

and Motoda, 2001) method using an ANN (e.g., Seteiono and Liu, 1997; Verikas and 

Bacauskiene, 2002; Ganivada et al., 2013; Frénay et al., 2013; Yan and Yang, 2015), is 

applied for probabilistic prediction of porosity target parameters measured in two sparse 

boreholes and selecting the high quality related geophysical tomograms. We illustrate our 

analyses using a simulated experiment allowing for full evaluation of the results of the 

prediction and ranking procedures. Finally we discuss the results and highlight the 

limitations inherent to the approach particularly when it comes to ranking the tomograms.  

2.3 Methodology 

2.3.1 Geophysical Tomography as Feature Construction Problem 

Feature construction (Liu and Motoda, 1998) transforms a given set of input features 

to generate a new set that is more utilizable in the subsequent data mining tasks. For 

example the constructed feature may allow for linear or at least a more unique relation to 

a desired target parameter than the original data, which enables improved prediction 

performance. In geophysical tomography a dataset is inverted to achieve one or more 

geophysical tomograms imaging the spatial variability of a physical parameter (Aster et 

al., 2005), e.g., seismic velocity. Tomographic reconstruction techniques act here as 

feature construction step to achieve tomograms that are more suitable for geoscientific 

interpretation and linkage to exploration target parameters than the measured data itself. 

For example in Figure 2-1 we illustrate a geophysical cross-borehole tomographic 

experiment. Energy sources generating a signal, e.g., a seismic wave, are placed at 

different depths in one borehole. In a second borehole spaced several meters or tens of 

meters, sensors are mounted recording the excited energy after it has travelled from a 

source to the receivers. In a seismic or georadar tomographic experiment, we are 

interested in the traveltime required for the excited wave to reach the receivers. This 

measured feature is a function of source-receiver distance and material-specific 
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properties, e.g., velocities, between the boreholes. These velocities are yet unknown, 

spatially variable, and determine the fastest pathway of energy between sources and 

receivers. For linking the material-specific velocities with material-specific exploration 

target parameters, we have to construct new features out of the observed traveltimes that 

are free of the effects of the experimental setup, e.g., the source-receiver distances. In 

doing so, we strive to reconstruct the velocity distribution between the boreholes from the 

set of traveltime observations with different source and receiver positions. 

We use a global-search inversion technique (Paasche, 2015) to construct an 

ensemble of new features, i.e., velocity tomograms, on the basis of the observed 

traveltimes. The tomographic reconstruction problem is formulated as an optimization 

problem and solved using particle swarm optimization (PSO; Kennedy and Eberhardt, 

1995). We follow Schwarzbach et al., (2005) and set up a bi-objective optimization 

problem concurrently addressing a data misfit objective (rms error) and a regularization 

objective enforcing spatially smooth model parameter variations. Opposite to 

Schwarzbach et al. (2005) who use Tikhonov regularization (e.g., Aster et al., 2005), we 

employ a spatially acting smoothness constraint originally developed for constrained 

fuzzy cluster analyses (Pham, 2001). Other than Tikhonov regularization, this constrain 

does not tend to damp the total model parameter amplitudes and keep them artificially 

close to the global mean of all model parameters. Instead, it favours solutions that exhibit 

a piecewise smooth model parameter variability but also allows for significant contrasts 

wherever found to be necessary to explain the data. When solving the bi-objective 

optimization problem we balance the interests of the data misfit objective and the 

smoothness constraint using a game theoretic approach (Balling, 2003) implemented in 

Figure 2-1:  Schematic sketch of a 
geophysical cross-borehole 
tomographic experiment with sources 
and receivers in the left and right 
boreholes. 
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the PSO algorithm. The inversion results provide realistic information about the velocity 

variations between the two boreholes as well as quantitative information about the 

ambiguity of the tomographic model reconstruction. This method is data driven and does 

not require prior information about the ground. We obtain several different 2D velocity 

tomograms from the traveltime dataset, which are considered equivalently acceptable 

solutions of our tomographic reconstruction problem. Every found tomogram explains the 

underlying data to the same degree, i.e., the data misfit measure is of equal size for all 

found tomograms. While these tomograms are more suitable for target parameter 

prediction than the originally measured traveltimes, we have increased the dimensionality 

of the feature space during feature construction. Instead of one dataset we have now 

multiple tomograms, which cannot be ranked according to a feature construction quality 

measure, such as the data misfit. 

2.3.2 Feature Selection by Prediction 

The goal of feature selection (e.g., Liu and Motoda, 1998; Ganivada et al., 2013; 

Frénay et al., 2013; Yan and Yang, 2015) is to identify an optimal subset of features that 

is particularly suitable for the subsequent prediction task. Albeit feature construction 

resulted in an ensemble of tomograms that are mathematically equally plausible solutions 

of the tomographic reconstruction problem, some tomograms may be more realistic 

images of the internal composition of the ground than others. Since measured information 

about the exploration target parameters, e.g., acquired in boreholes, provides sparse 

information about the same ground (reality), we want to investigate, whether it can be 

used for ranking the tomograms. Selecting the realistic tomograms could improve the 

accuracy of the subsequent target parameter prediction and can be addressed by solving 

a typical feature selection problem. 

The most straight forward feature selection techniques are filter methods (Liu and 

Motoda, 1998), which select a subset of features based on general characteristics of 

features in datasets like correlation. They are run as preprocessing step and operate 

independently of the subsequent prediction. When employing filter methods the 

comparison between tomograms and target parameters can for example be done by 

linear or exponential correlation analysis. This is similar to the traditional petrophysical 
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transfer function concept for predicting the target parameters by a priori assuming a 

certain relation between tomographically imaged parameter and desired target 

parameter, e.g, linear or exponential, as valid across the survey area. When ranking the 

tomograms according to the correlation with the target parameter the results are not 

independent from the chosen correlation function. Hence, a priori information about the 

correct correlation, or transfer function would be required, which is, among others, 

dependent on measurement resolution, material composition, depositional history, and 

usually not known beforehand.  

This leads us to the utilization of nonlinear feature selection methods avoiding 

dependence on the proper selection of the correlation measure. Wrapper methods (e.g., 

Liu and Motoda 1998; Seteiono and Liu, 1997; Liu and Motoda, 2001; Ganivada et al., 

2013; Frénay et al., 2013; Yan and Yang, 2015), evaluate the performance and accuracy 

of feature subsets by integrating the feature selection problem into a learning method that 

can be used for prediction. Particularly, in situations with unknown correlations between 

features and target parameters wrapper methods offer more accurate feature selection 

or ranking than the filter methods (Liu and Motoda, 1998).  

In this paper we employ static two layer feed forward ANNs (Hornik, 1991; Ban and 

Chang, 2013; Widrow et al., 2013) as learning method for prediction based feature 

selection (e.g., Jain et al., 1996; Verikas and Bacauskiene, 2002; Leray and Gallinari, 

2002). Using ANNs we pairwise link physically different tomograms emanating from radar 

(electromagnetic) and seismic (mechanical) datasets to the exploration target parameter 

at locations where radar, seismic, and porosity are available for training the ANNs. This 

is at the left and right edges of the 2D tomographic plane. The prediction models obtained 

by the ANNs are used to generate spatially continuous distributions of the target 

parameter in regions not used for training, i.e., for all tomographic grid cells for which no 

logging data are available.  The mean squared error (MSE) of the learned prediction 

models, which is a performance parameter of ANNs, appears attractive as a measure for 

optimal tomogram or feature subset selection, i.e., which pair of selected radar-seismic 

tomograms can be easily brought into coincidence with the target parameter. The MSE 

in feed-forward ANNs is primarily dependent on the data and it can lead the strategy of 
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the next step in a recursively learning feature selection machine when using it as 

weighting parameter for ranking the tomograms (e.g., Van der Baan and Jutten, 2000). 

 The process of feature selection based on the ANNs can be done in a recursive 

loop or in a complex recurrent ANN machine (e.g., Bailly and Milgram, 2009; Quan et al., 

2014; Yan and Yang, 2015) that internally recouples the output layer to the connectivity 

of input and hidden layer. The final ranking results from such complex machine are not 

only depending on the training data, but they are also depending on the chosen machine 

learning strategy, e.g., how to weight the inputs of the ANNs based on the MSE (i.e. linear, 

exponential) or output layer. Since it is not known yet, whether our 2D tomograms can be 

realistically ranked using 1D measurements of the exploration target parameter, we 

decide to start using a two layer feed forward ANN without automated recursive learning. 

Such system can be regarded objectively data driven and allows for appraisal of the 

performance parameters suitability for model ranking. If desired, the MSE can be used in 

a recursive run of our methodology to manually reweight the contribution of the individual 

tomograms in the second and later iterations. If desired, such recursive learning strategy 

can be automated (e.g., Kiranyaz et al., 2009; Miche et al., 2010; Razavi and Tolson, 

2011; Jing et al., 2012; Wu et al., 2015; Duan  et al., 2015). However, the manual setup 

allows us to assess the general suitability of an internal performance parameter of the 

ANN, e.g., the MSE, for feature subset selection and tomogram ranking. 

2.3.3 Processing Flow  

The flowchart in Figure 2-2 summarizes our processing steps when working towards 

probabilistic prediction of 2D exploration target parameter distributions and ranking of the 

tomograms based on the performance of the prediction algorithm. We measured two 

types of data imaging reality into different sets of observations. The first type is crosshole 

tomographic traveltime data acquired between two boreholes. Two different traveltime 

datasets are recorded differing by their physical energy excitation, i.e., electromagnetic 

radar and mechanic seismic waves. The second type is measured in 1D only at the 

position of two boreholes. The measured quantity is porosity. The 1D porosity profiles 

provide sparse information about our target parameter. Porosity is one of the key 
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parameters in hydrological and environmental exploration to understand and simulate 

fluid flow and storage processes (e.g., water, oil, gas) in the subsurface. 

The traveltime datasets carry the information about the physical properties of the 

ground materials, e.g., radar and seismic wave propagation velocities, and the 

experiment’s geometry. For extracting the ground material information from the spatially 

continuous traveltimes we follow (Paasche, 2015) to construct 30 mathematically 

equivalent 2D velocity tomograms from the radar and seismic traveltime datasets, 

respectively, thus assessing tomographic reconstruction ambiguity. These new features 

are more suitable for porosity prediction.  

To achieve a probabilistic prediction model for our exploration target parameter and 

for ranking the tomograms, we link the resultant tomograms from the feature construction 

to the sparse target parameter employing a two layer feed forward ANN. All radar and 

seismic velocity tomograms are combined pairwise with each other to create the input 

data for training the ANNs. Based on the 30 radar and 30 seismic tomograms we have 

900 different combinations as input scenarios to our ANNs that are all linked to the target 

parameter. We train the ANNs individually for every input scenario and achieve 900 

prediction models, which can be used to generate 900 2D distributions of our target 

parameter, which is porosity. 

Figure 2-2:  Flowchart of the 
processing workflow for 
probabilistic prediction of 
spatially continuous models 
of sparsely measured target 
parameters and ranking non-
sparse tomograms achieved 
from inversion or feature 
construction algorithms. 
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 Additionally, we calculate the MSE measuring the difference between the output of 

the ANNs and the measured target parameter. High MSE values indicate a better 

compliancy among the considered pair of radar and seismic velocity tomograms and the 

target parameter. We use this information for ranking the radar and seismic tomograms. 

Since tomograms and target parameter are images of the same reality we hope that 

tomograms, which can be better brought into coincidence with the target parameter by 

the ANNs, are the more realistic images of the area between the boreholes. This 

expectation is also the driving force when striving to constrain geophysical inversion or 

tomographic model reconstruction by logging data. 

2.4 Case Study 

2.4.1 Tomographic Data Simulation  

In this paper we use a synthetic database for evaluation and illustration of the results 

of the introduced methodology. The synthetic database has been generated by (Paasche 

and Tronicke, 2007) as test database for investigating the efficiency of a newly developed 

joint inversion method. In the way we use it here this database carries three features 

about the subsurface: first-cycle radar wave traveltime, first-cycle seismic wave 

traveltime, and sparse porosity information measured in two boreholes.  

We begin by describing realistic subsurface conditions using a 2D porosity model 

that consists of multiple layers representing different lithologies (Figure 2-3a) considered 

typical for an unconsolidated aquifer. For each layer, a stochastic field with 1.25 cm 

sample spacing has been generated and superimposed with correlated noise employing 

a von Kármán auto-covariance function with horizontal and vertical correlation lengths of 

120 m and 20 m, respectively, and a moderate raggedness defined by a Hurst number of 

0.5. Mean values and standard deviations have been assigned to every layer to achieve 

a 2D porosity model that could be considered realistic for near-surface sedimentary 

settings, e.g., gravel, sand, or silt (Figure 2-3b). Using the deterministic transfer functions 

of Wharton et al. (1980) and  Raymer  et al. (1980), we convert the porosity model into 

2D distributions of radar and seismic wave velocities, respectively (Figures 2-3c, and d) 

√𝜀 = 𝜑 × (√𝜀𝑓 − √𝜀𝑚) + √𝜀𝑚,      (2-1)  
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𝑣𝑟 =
𝑐

√𝜀
,          (2-2)  

𝑣𝑝 = (1 − 𝜑) × 𝑣𝑚 + 𝜑 × 𝑣𝑓.       (2-3) 

φ,v,and ε denote porosity, velocity and dielectric permittivity. c denotes the velocity 

of an electromagnetic wave in air, and the subscripts r, p, f and m refer to radar, seismic 

p-wave, pore fluid and dry matrix material, respectively. Table 2-1 lists the values used 

for the various parameters and each layer. Note that equation 2-3 was developed initially 

for sandstones, but for the chosen parameters the resulting velocity range can also be 

regarded as realistic for unconsolidated clastic sediments. 

The resultant 2D velocity distributions are considered ground truth in our synthetic 

experiment and we refer to them as the original models. Since we assume a complex 

subsurface with petrophysical relationships that are facies dependent, the global 

interrelations for the entire 2D model area between porosity and radar and seismic 

velocities are non-unique and can thus not be described by a single petrophysical 

deterministic transfer function (Figures 2-3e and 2-3f). Note, in tomographic field 

Figure 2-3:  Original synthetic models representing ground truth. (a) Layered ground assumed. 
(b) Porosity variability in the ground. (c) Radar velocity and (d) seismic velocity are obtained from 
traditional deterministic petrophysical transfer functions used to convert porosity into physical 
parameters. (e) and (f) scatter plots of the models given in (b) and (c), and (b) and (d), 
respectively. 
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experiments the true parameter distribution for radar and seismic wave velocities are 

unknown and can be smeared by noise contaminating the logging data as well as by 

tomographic reconstruction ambiguity. 

 For simulating radar and seismic cross-borehole tomographic surveys, we assume 

boreholes to be present at the left and right model edges. To generate tomographic 

datasets we place sources and receivers in the left and right boreholes, respectively 

(Figure 2-1). The uppermost sources and receivers in the boreholes are located at 0 m 

depth with additional sources and receivers being placed along the boreholes with a 

vertical spacing of 0.25 m. For all source-receiver combinations and the original models 

in Figures 2-3c and d, radar and seismic traveltime data are determined using finite 

difference solutions of the electromagnetic and acoustic wave equations followed by 

picking the times of first energy arrivals. The resultant radar and seismic wave traveltime 

datasets are shown in Figures 2-4a and 2-4b, respectively, after adding Gaussian random 

noise to the simulated traveltimes. These datasets are the input for the feature 

construction step, in order to achieve velocity tomograms of the ground.  

2.4.2 Feature Construction By Tomographic Reconstruction  

We tomographically reconstruct ensembles of radar and seismic velocity 

tomograms from the radar and seismic traveltime datasets fitting the underlying datasets 

equally well. The internal tomographic reconstruction performance parameter used to 

Table 2-1: Parameters used in equations 2-1, 2-2,and 2-3. All layers A-G are considered to 
consist of sandy or gravelly saturated sediments; Layers A and B are considered slightly 
consolidated, the pore fluid in layers D and G comprises a non-aqueous phase liquid 
component in addition to water. 
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measure the misfit between the data and the forward response of the achieved 

tomograms is the root mean squared (rms) error. We reinitialized the inversion 30 times 

to find 30 independent velocity tomograms for each dataset. All found tomograms fit the 

underlying dataset within the noise level added to the synthetic traveltimes. The rms 

errors of the 30 final radar velocity models vary between 2.2378 and 2.2501 ns and 

correspond to the mean noise level of 2.2511 ns. The rms errors of the 30 final seismic 

velocity models vary between 0.042567 and 0.042799 ms, which corresponds to the 

mean noise value of 0.042800 ms. 

The final ensemble of the 30 radar velocity tomograms is shown in Figure 2-5. All 

tomograms are reconstructions of the original radar wave velocity model (Figure 2-3c). 

When comparing the tomograms in Figure 2-5 with the true model we see that all 

tomograms correctly indicate regions of higher velocities in the upper half of the 

tomographic plane. The regions of high velocities in the top left corner of the tomographic 

plane are also captured by all tomograms. However, the achieved tomograms differ in 

their ability to reconstruct the region of intermediate velocity in the top right part of the 

tomograms. Some tomograms show here regions of high velocities (e.g., model R22 in 

Figure 2-5), which does not resemble ground truth. These differences in the tomograms 

illustrate the ambiguity of the tomographic reconstruction problem due to limited number 

of observations and noise-contaminated data.  

Figure 2-4:  Traveltimes of the (a) radar and (b) seismic tomographic datasets. 
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The final ensemble of the 30 seismic velocity tomograms is shown in Figure 2-6. All 

tomograms are tomographic reconstructions of the original seismic wave velocity model 

(Figure 2-3d). When comparing the tomograms in Figure 2-6 with the true velocity model 

we see that all tomograms again correctly indicate regions of lower velocities in the 

middle, and higher velocities in the upper and bottom part of the tomographic plane. The 

high velocities in the top right corner and bottom part, or the low velocity in the middle of 

the tomographic plane are also captured by all tomograms. However, the constructed 

tomograms differ in their ability to reconstruct the region of intermediate velocity in the top 

left part of the tomograms. Some tomograms show in the top left part regions of high 

velocities (e.g., models S3, and S30 in Figure 2-6), and some tomograms show in the 

middle bottom regions of low velocities (e.g., models S2, and S4 in Figure 2-6), which 

Figure 2-5: 30 tomographic 
reconstructions of radar wave 
propagation velocity distributions 
achieved by fully non-linear self-
organizing inversion (Paasche, 2015). 
The 30 tomograms are achieved by 
independent inversion runs and fit the 
underling tomographic dataset equally 
well. 
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does not resemble ground truth. Since the seismic tomograms suffer increased 

ambiguities in regions that are partly well resolved by all radar tomograms, a combination 

of tomograms reconstructed from different datasets is desirable when striving to constrain 

predictions of a target parameter by geophysical tomography, which is in this case 

porosity. 

2.4.3 Generation of Sparse Exploration Target Parameters 

In our synthetic experiment we simulate measurements of porosity in boreholes, as 

they could be done in practice using borehole logging tools. In our database this results 

in 1D porosity profile data at the left and right model edge. The black lines in Figure 2-7 

show the true porosity extracted from the porosity model in Figure 2-3b at the left and 

right model edges. However, realistic logging tools integrate over a certain sample 

Figure 2-6: The same as in Figure 

2-5 but for the seismic tomograms. 
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volume. We model this by assuming an ellipsoidal sample volume with vertical extension 

of 50 cm and lateral extension of 25 cm (Knödel et al., 1997). The sensitivity decreases 

linearly with distance from the measurement point. This procedure results in simulated 

borehole logging information. To be more realistic, we add random Gaussian noise with 

5 % relative error to simulate the contamination of borehole logging data by observational 

errors. The gray lines in Figure 2-7 show the simulated noisy porosity logging data 

acquired in the left and right borehole in our synthetic experiment. 

2.4.4 Setting up the Artificial Neural Network 

For assessing the effect of tomographic ambiguity in the prediction of our target 

parameters we repeatedly train the ANNs. For providing the training datasets comprising 

{(input, target)} tuples, one combination of a radar Ri and a seismic Sj tomogram with i = 

1, 2, .., 30 and j = 1, 2, .., 30 at the positions of the boreholes forms the input training 

data, and 1D porosity information at the positions of the boreholes (Figure 2-7) forms the 

target training data for an ANN prediction model. The reason for considering pairs of two 

physically different tomograms is the presence of non-unique, facies-dependent 

parameter inter-relations in our study, which could not adequately addressed in the 

subsequent inference of 2D porosity scenarios if only one geophysical dataset would be 

available. At the position of a borehole 20 equally spaced radar and seismic velocity 

values are available over the depth range from 0 to 10 m.   

Figure 2-7: Sparse porosity 
borehole logging data acquired in 
the boreholes at the (a) left (x=0 
m) and (b) right (x=10 m) model 
edges (see Figure 2-3). Original 
porosity represents the true 
information of the ground. Logging 
porosity represents the modelled 
response of a realistic borehole 
porosity logging probe. 
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 For assessing the effect of noise contaminating the measured sparse target 

parameter on the prediction results and the suitability of the ANN performance parameter 

MSE for feature selection, we repeatedly run our methodology using the original porosity 

(OP) and the simulated logging porosity (LP) data (Figure 2-7) for training the ANN. This 

results in two different types of training dataset tuples for the 900 possible tomogram pairs 

which are RSOP = {(R𝑥,𝑦
𝑖 S𝑥,𝑦

𝑗
, OP𝑥,𝑦,𝑚)} and RSLP = {(R𝑥,𝑦

𝑖 S𝑥,𝑦
𝑗

, LP𝑥,𝑦,𝑚)} with x ∈ (0, 1, …, 

10), y ∈ (0.25, 0.75, .., 9.75), and m=1,2,..,40. 

 y defines the center values of half-meter depth intervals with constant radar and 

seismic velocities. m refers to the 40 equally spaced porosity values that are available 

per half-meter depth in the left and right boreholes, i.e., for the selected tomographic grid 

cell defined by y. We randomly divide our data for training, validation, and testing into 

subsets comprising 70%, 15%, and 15%, respectively.   To ensure the utilization of a 

sufficiently complex ANN capable to offer a well-fitted prediction model we repeatedly 

train the ANNs for a given training dataset employing different numbers of neurons in the 

hidden layer. We test 3, 5, 10, 20 and 50 neurons in the hidden layer for the same training 

dataset. Prediction performance is measured by the MSE which will not be substantially 

lowered by further increasing the number of neurons in the hidden layer once the ANN 

offers sufficient complexity for linking the tomograms and the logging data. Figure 2-8 

shows the MSE for all 900 tomograms combined with original and noisy logging data and 

Figure 2-9:  Regression results of the training procedure of the ANN when using 
R30 and S30 tomograms as input and the (a) original porosity (RSOP) and (b) 
logging porosity (RSLP) as output information. Note, only the radar and seismic 
velocity information of the left and right model edges has been used for training. 
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different number of neurons. Increasing number of neurons allows generally for better 

ANN performance indicated by lowered MSE for increasing number of neurons. ANNs 

with only 3 and 5 neurons in the hidden layer show a rather systematic behavior clearly 

favoring distinct radar or seismic tomograms, which is indicated by stripy pattern in 

Figures 2-8a and b. For ANNs with 20 and 50 neurons, the stripy pattern of low MSE 

values is replaced by a rather random pattern. This indicates that the ANN is generally 

complex enough of fitting a prediction model for any radar-seismic tomogram 

combination. In turn, this may bear the risk of overfitting the tomogram pairs and the 

logging data beyond reasonably accuracy limits. Now the success or stopping of the 

training procedure seems to be of dominating influence on the size of the MSE. For 

prediction of our target parameter, we choose the solution of the ANNs run with 20 

neurons in the hidden layer.  

2.5 Results and Discussion 

2.5.1 Probabilistic Prediction of 2D Porosity Distributions 

Figure 2-9 shows the regression plots for ANNs trained with RSOP and RSLP 

datasets. Regression coefficients of RSOP=0.96 and RSLP=0.86 indicate a high 

accuracy of the prediction models found by the ANNs albeit the performance lowered for 

Figure 2-8:  MSE from ANN 
training for all combinations of 
spatially continuous tomograms. 
(a)-(e) represent the results of 
using ANNs with 3,5,10,20 and 
50 neurons, respectively. 
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the porosity data contaminated by volumetric integration and random noise. According to 

the regression coefficients our ANNs are for both target parameter datasets able 

achieving a satisfactory level of performance for our prediction task. Increasing noise 

components or non-Gaussian noise may result in further decreasing regression 

coefficients.  

Figure 2-10 shows the results of the probabilistic spatially continuous prediction of 

porosity. We illustrate the prediction uncertainty by showing relative frequency information 

drawn from the 900 2D porosity scenarios calculated. Figure 2-10a shows the 2D porosity 

distribution predicted by ANNs using the RSOP training data. The prediction results at the 

borehole locations (left and right model edges) are highly accurate, since the ANNs have 

been trained at these positions. Between these two positions the prediction ranges for 

porosity are broader. 

Due to the utilization of a synthetic database, we can evaluate the quality of the 

predicted porosity distribution. Figure 2-10b shows a comparison between predicted and 

realistic porosity of the subsurface extracted from the true porosity distribution (Figure 2-

3b). The black lines in Figure 2-10b determine the minimum and maximum of the range 

of the realistic porosity in the region corresponding to the tomographic mesh cell. At the 

boreholes the predictions are near to reality, which are the positions for training the ANNs. 

Between the boreholes the predicted porosity ranges exceed but include those of the 

original porosity model (Figure 2-3b). In most regions, the original porosity ranges are 

coincident with high relative frequency values of predicted porosities. However, at some 

regions, (e.g., x=6.5m, y~1m) the original porosity is within the prediction range, but not 

coincident with high prediction frequency. In this area, most tomographic reconstructions 

of radar and seismic velocities do not match reality as depicted by the original models (cf. 

Figures 2-3, 2-5 and 2-6). These tomographic reconstruction errors propagate into the 

prediction of porosity scenarios. Since some tomographic models are close to reality in 

these regions, the predicted porosity range is broad enough to include the true porosity 

range. Figure 2-10b proves that ANNs are capable to offer high quality and accurate 

prediction models for predicting the porosity based on the radar and seismic tomograms 

as well as to transduce tomographic reconstruction ambiguity into the probabilistic  

inference of target parameter distributions. The large ranges of predicted porosity result 
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Figure 2-10:  Prediction results of spatially continuous 2D porosity models based on the 
sparse logging data and 900 combinations of spatially continuous tomograms (Figure 2-5 and 
6). (a) Relative frequency of porosity prediction from ANN models trained with original porosity. 
(b)  The same as (a) but overlain by minimum and maximum range of true porosity of the 
ground (see Figure 2-3) shown by dashed black lines. (c) and (d) are analogue to (a) and (b) 
but for logging porosity instead of original porosity. Predicted porosities outside the displayed 
range are accumulated at the bins with lowest and highest porosities. They correspond to the 
ANN models trained with remaining high MSE. 
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from spatial resolution differences between the tomograms (0.5 m grid cell side lengths 

in vertical direction) and the logging data (1.25 cm sample distance). Since the ANN 

strives to learn a perfect prediction model, this may lead for some combinations of radar 

and seismic models with some logging readings to prediction models that are well fitted 

but physically not close to reality. When applying such prediction models error 

propagation may lead to rather extreme porosity values. This effect has also been 

observed when using a prediction technique based on fuzzy sets rather than ANNs 

(option 2 in Paasche submitted a). Such effects are inherent to data-driven prediction and 

inference approaches not taking the uncertainty of individual data samples or 

tomographic velocity values into account when learning the prediction model.  

Figure 2-10c shows the predicted porosity distribution when using the simulated 

noisy logging data for ANN training. The prediction ranges are broader and less focused 

then those obtained for the original porosity data (Figure 2-10a). This finding is due to the 

propagation of an additional data error contributed by the logging data which 

superimposes with the tomographic ambiguity. In Figure 2-10d the range of the original 

porosity variability is overlain on the prediction results achieved for the noisy logging data. 

In regions where the tomograms resemble reality well the prediction result still allows for 

correct prediction of reasonable porosity values indicated by maximal relative frequency. 

The prediction result in Figure 2-10c illustrates what can be hoped to achieve when 

working with field data. Deterministic prediction approaches, or approaches ignoring the 

tomographic reconstruction ambiguity inherent to geophysical tomography will probably 

mislead the interpreter by producing prediction results affected by artefacts. In our 

example, such artefacts are likely to occur in regions where the original porosity range 

does not coincide with high relative frequencies of predicted porosity values. A first 

application of the proposed prediction technique to a field dataset confirms the potential 

of the suggested probabilistic prediction method (Asadi et al., 2016).   
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2.5.2 Ranking of Tomograms 

We rank the radar and seismic tomograms according to the MSE achieved when 

using only 3 neurons in the hidden layer. We are aware that such a network is probably 

too simple to achieve good predictions, but Figure 2-8a shows, that some tomographic 

models can be systematically better linked to the target parameter than others. For 

example, the radar model R3 achieves always low MSE values regardless of the seismic 

tomograms it is combined with. These trends hold also for more complex networks 

(Figures. 2-8b and 2-8c) until the degree of complexity allows for learning input-output 

relations of very high complexity (Figures 2-8d and 2-8e). For each radar and seismic 

tomogram we calculate a mean MSE value based on the information in Figure 2-8a. We 

sort the radar and seismic tomograms according to their MSE (Figure 2-11). Analogue 

we order the radar and seismic tomograms when using the RSLP input for training (Figure 

2-11). Ordering of radar and seismic tomograms differs for the original and noisy logging 

data indicating that the observational errors of the logging data influence the ANN 

performance.  

Figure 2-11:  Ranking of tomograms (Figure 2-5 and 2-6) according to their relationships 
with reality. RSOP rank radar and seismic models according to their combination with original 
porosity for training the ANN models. Likewise RSLP rank radar and seismic velocity 
tomograms according to their combination with logging porosity for training the ANN models. 
This ranking has been outcome from ANN with three neurons in the hidden layer.   
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In our synthetic database the true radar and seismic velocity models are known and 

we can benchmark the ranking based on the ANN performance by directly comparing the 

tomographically reconstructed tomograms (Figures 2-5 and 2-6) with the true radar and 

seismic velocity distributions (Figures 2-3b and 2-3c). Figure 2-12 shows summed 

squared differences between ground truth information and all radar and seismic 

tomograms and for both training datasets RSOP and RSLP (The fine sampling of ground 

truth results in 40 x 80 squared differences per tomographic grid cell, which are summed). 

Summed squared differences are calculated for the positions of the boreholes (left and 

right model edges corresponding to the locations used for training the ANNs) and the 

entire 2D model area. The ordering of the feature number along the abscissa of the plots 

Figure 2-12:  Summed squared differences of 30 tomographic radar (R) and seismic (S) 
velocity tomograms from the true radar and seismic velocity models (Figures 2-3c, and 
2-3d). The ordering of the model number (abscissa) corresponds to those proposed by 
the ANNs trained with three neurons in the hidden layer (Figure 2-11). The black circles 
illustrate differences at the left and right edges (logging positions) of the tomograms. The 
gray rectangles illustrate the difference of the entire 2D area. (a) and (b) correspond to 
the ANN trained with original porosity. (c) and (d) correspond to the ANN trained with 
logging porosity. 
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in Figure 2-12 corresponds to the ranking according to the ANNs performance. When 

analyzing the results in Figure 2-12 it is obvious that the ANN performance does not allow 

for clear identification of the best tomographic models. For example, R22, which has been 

ranked 3rd by the ANN performance, offers a relatively poor reconstruction of the true 

radar velocity model, both at the positions of the boreholes as well as for the entire 2D 

area (Figure 2-12a). Additionally, some models match reality well at the positions of the 

boreholes but are poor reconstructions of the true 2D velocity distributions. Interestingly, 

this case occurs more frequently for models ranked low by the ANN performance. 

Generally, models ranked low by the ANN performance suffer increased chances to be 

indeed poor reconstructions of the real 2D velocity models, albeit some exceptions may 

exist. Tomograms ranked in the upper half by the ANN performance have increased 

chances to be slightly more realistic tomographic reconstructions of the reality than 

others. A distinct identification of the best tomogram cannot be made based on the ANN 

performance.  

When striving to recursively learn the prediction by individually ranking radar and 

seismic tomograms the computational effort will clearly increase. However, tomogram 

ranking based on ANN performance does not allow for certain reduction of the effects of 

poor tomographic reconstructions, since the prediction will be dominated by a very limited 

number of tomographic models, but a certain risk remains that some poor tomograms will 

be given high weights. This could probably result in even worse prediction than achieved 

when using the entire tomographic ensemble equally. Hence, we judge the possibility to 

rank mathematically equivalent tomograms based on their linkage to sparsely measured 

target parameters as quantitatively limited and consequently we do not repeat our 2D 

porosity prediction using recursively learning ANNs. This finding may also have 

consequences for geophysical inversion strategies considering logging data as 

constraints during the tomographic model reconstruction. Found geophysical tomograms 

will likely match the logging data where they are available. However, if the lateral spacing 

of the logging data clearly exceeds the lateral resolution of the tomographic data it is not 

granted that the found model will outperform inversion results in the entire tomographic 

reconstruction area achieved without considering the logging data in the inversion 

procedure.   
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2.6 Conclusions 

We have employed static two-layer feed forward ANNs for 2D probabilistic 

prediction of sparsely measured Earth properties constrained by ill-posed geophysical 

tomographic imaging. By using 900 pairs of collocated, physically different radar and 

seismic tomograms, which fit the underlying datasets equally we were able to transduce 

tomographic reconstruction ambiguity into the prediction of a target parameter, which is 

of higher relevance to hydrologic and engineering exploration tasks than the 

tomographically imaged parameters. The prediction performance of the methodology has 

been illustrated using a realistic but synthetic database allowing for optimal performance 

evaluation of the suggested methodology. Prediction performance was found to be 

excellent, and can be applied to any combination of geophysical tomograms and target 

parameters since at no point critical assumptions about the involved parameters or the 

expected relations between the considered datasets and parameters are made. It is even 

applicable to datasets where different facies dependent petrophysical relations are 

present. In such situations, it is essential to consider at least two physically different 

tomograms when constraining the prediction of the target parameter. When combining 

our approach with fully non-linear (globally searching) geophysical tomographic imaging 

this methodology can deliver objective and purely data-driven probabilistic predictions of 

target parameter distributions, which are essentially required when striving to assess, 

quantify and minimize risks in subsurface exploration and utilization.  

We evaluated, whether the performance of the ANNs training, measured by an MSE, 

can be used to rank the equivalent geophysical tomograms. Fundamental idea of this 

approach is that tomograms as well as sparse information about an exploration target 

parameter are images of the same reality and must therefore be compliant. In our 

synthetic database we could analyze this question which would be practically impossible 

when working with field data. A rather qualitative statement about the closeness of the 

tomograms to reality can be made based on the ranking results achieved by ANN training 

performance, i.e., tomograms ranked low suffer an increased risk of being poor 

reconstructions of reality. However, outliers from this rule may exist and therefore 

question the benefits from utilization of recurrent ANNs striving to learn which tomograms 

may be particularly useful for prediction based on the available database. Such approach 
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would build the prediction of target parameter distributions on a few models of high 

importance, but facing the risk that eventually a poor tomographic model will be 

considered with high weights, which leaves doubts on the chances to achieve better 

predictions when using recurrent ANNs instead of the simple feed-forward ANNs used in 

this study.  
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Chapter 3  

Spatially Continuous Probabilistic Prediction of 

Sparsely Measured Ground Properties 

Constrained by ill-posed Tomographic Imaging 

Considering Data Uncertainty and Resolution 

Abduljabbar Asadi, Peter Dietrich, and Hendrik Paasche 
Manuscript published in Geophysics, 2017 

3.1 Abstract 

Probabilistic prediction of 2D or 3D distributions of sparsely measured borehole or 

direct push logging data can contribute to solving hydrological, petroleum, or engineering 

exploration tasks. We employ and improve a recently developed workflow constrained by 

ill-posed geophysical tomography to achieve 2D probabilistic predictions of geotechnical 

exploration target parameters that could only be measured by 1D borehole or direct push 

logging. We use artificial neural networks (ANNs) to find the optimal prediction models 

between ensembles of equivalent geophysical tomograms and the sparsely measured 

logging data. During the training phase of ANNs we consider four different training 

strategies taking into account the logging data uncertainty and geophysical tomographic 

ambiguity to avoid data overfitting of the ANNs. Thus, we successfully transform the 

logging data uncertainty and geophysical tomographic reconstruction ambiguity as well 

as differences in spatial resolution of logging and tomographic models into the 

probabilistic 2D prediction of our target parameters in a data-driven manner, which allows 

application of our methodology to any combination of geophysical tomograms and 

hydrologic, petroleum or engineering target parameters solely measured in boreholes. To 

illustrate our workflow, we use an available field dataset collected at a field site South of 
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Berlin, Germany, to characterize near-subsurface sedimentary deposits. In this example 

we employ cross-borehole tomographic radar-wave velocity, P-wave velocity, and S-

wave velocity models to constrain the prediction of tip resistance, sleeve friction, and 

dielectric permittivity as target parameters.  

 

Keywords: Probabilistic prediction, data uncertainty, geophysical tomograms, artificial 

neural networks. 
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3.2 Introduction 

Geophysical tomographic datasets offer valuable information about the internal 

composition of the ground in two or three dimensions (e.g., Moorkamp et al., 2016). Such 

datasets uniquely image physical parameter variations, e.g., radar-wave velocity, seismic 

P-wave velocity, or S-wave velocity, in a spatially continuous manner. For solving many 

near-surface hydrological and engineering exploration tasks, when a detailed 

characterization of the subsurface is required, utilization of geophysical tomographic 

datasets is essential. Traditionally, hydrological or engineering exploration target 

parameters (e.g., tip resistance, sleeve friction, dielectric permittivity) are measured by 

1D exploration techniques, such as borehole and direct push logging (e.g., Lunne et al., 

1997; Rubin and Hubbard, 2005). Estimation of a 2D or 3D image of such parameters 

with traditional geotechnical or hydrological exploration techniques is costly and time 

consuming. Based on the relation between geophysical tomograms and measured target 

parameters at the position of the boreholes, the 2D or 3D geophysical tomograms can be 

converted into a 2D or 3D image of the desired target parameters. There are numerous 

examples, where geophysical tomography is used to estimate 2D or 3D distributions of 

target parameters for geotechnical ground characterization (Yamamoto, 2001; Angioni et 

al., 2003; Rumpf and Tronicke, 2014), hydrological characterization (Hubbard et al., 2001; 

Binley et al., 2001; Tronicke and  Holliger, 2005; Paasche et al., 2006; Dubreil-Boisclair 

et al., 2011; Ruggeri et al., 2013).   

Unfortunately, geophysical tomographic datasets suffer ambiguity due to limited 

number of observations and measurement errors. Traditionally, deterministic 

tomographic reconstruction techniques relying on regularized local-search optimization 

(e.g., Aster et al., 2005) are employed to generate a single geophysical tomographic 

model. Such approaches do not allow for realistic and quantitative ambiguity appraisal 

inherent to the model generation. Recently fully nonlinear optimization methods (Sen and 

Stoffa, 2013), have been employed to explore the model space in more detail and 

reconstruct ensembles of geophysical tomograms fitting the underlying datasets equally 

well. Thus, the tomographic ambiguity is represented by a number of equally plausible 
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geophysical tomograms. These tomogram ensembles can be used to assess the 

tomographic ambiguity in a realistic manner. 

While all resultant tomograms are mathematically equivalent answers to the 

geophysical tomographic reconstruction problem, they may resemble the internal 

composition of the ground to variable degrees. Due to the spatial resolution of 

geophysical tomographic datasets tomograms offer gross averaged physical quantities 

(on the scale of meters or tens of meters), while measurements of the target parameters 

offer spatial resolution of a few centimetres or decimetres, but only in the vertical direction. 

Additionally, like all experimental datasets, measurements of the target parameters by 

borehole or direct push logging are affected by a variable amount of measurement errors. 

Therefore, the most important challenge when using geophysical tomographic datasets 

in hydrological or engineering exploration is to link the 2D or 3D physical tomograms with 

the target parameters of interest to predict a spatially continuous model of the target 

parameters. Consequently, for realistic predictions tomographic ambiguity, logging data 

errors and the difference in spatial resolution must be taken into account. 

Numerous approaches are available to link geophysical tomograms to hydrological 

or engineering target parameters. Traditional techniques rely exclusively on geophysical 

data for quantitative estimation of the target parameters. This group includes diverse 

empirical, theoretical or semi-empirical deterministic transfer functions (Archie, 1942; 

Gassmann, 1951; Wyllie et al., 1956; Topp et al., 1980; Yamamoto, 2001; Angioni et al., 

2003) to convert one physical parameter into the desired hydraulic or engineering target 

parameters. Unfortunately the relations between physical and exploration target 

parameters are often non-linear, non-unique, and usually not exactly known (Schön, 

1998). Classical transfer functions cannot cope with non-uniqueness in the parameter 

relations and require knowledge about the relations between the available physical and 

the desired target parameters across different scales. 

Recently, statistical or geo-statistical frameworks have been proposed which allow 

for improved incorporation of uncertain and non-unique parameter relations based on 

statistical analysis methods, e.g., Bayesian inference (Ezzedine et al., 1999; Hubbard et 

al., 2001; Chen et al., 2001; Bosch et al., 2010; Boisclair et al., 2011; Ruggeri et al., 2013), 
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fuzzy systems (Paasche et al., 2006), or conditional stochastic simulations (Tronicke and 

Holliger, 2005; Dafflon et al., 2009). Usually, they require some measured information 

about the target parameter, and link deterministically derived geophysical tomograms with 

the target parameter thus not incorporating tomographic reconstruction ambiguity and 

logging data errors in their results. 

Very recently, ensembles of equivalent tomograms have been taken into account 

by Rumpf and Tronicke (2014) and Asadi et al. (2016) for constraining the probabilistic 

inference of spatially continuous 2D predictions of exploration target parameter 

distributions. Rumpf and Tronicke (2014) employ Alternating Conditional Expectation 

(Breiman and Friedman, 1985) to link ensembles of 125 radar-wave velocity, seismic P-

wave velocity and S-wave velocity tomograms with sparsely measured exploration target 

parameters, i.e., sleeve friction and effective grain size. In their tomographic 

reconstruction they rely on the concept of a layered ground and illustrate their prediction 

uncertainty by mean and median values in combination with percentile ranges. They do 

not consider the measurement errors of logging data in their prediction model. 

Asadi et al., (2016) show a methodology for 2D probabilistic prediction of target 

parameters based on ensembles of radar-wave velocity and seismic velocity tomograms, 

and two layer feed-forward artificial neural networks (ANN; Hornik, 1991; Van der Baan 

and Jutten, 2000). Based on the synthetic dataset their results show that ANNs are able 

to determine very well the unknown relation between geophysical tomograms and 

exploration target parameters. Logging data errors are not considered in their prediction 

model. 

In this paper we present the first application of the approach of Asadi et al. (2016) 

to measured datasets recorded by Linder et al. (2010). We show the probabilistic 

prediction of 2D tip resistance, sleeve friction, and dielectric permittivity as target 

parameters based on ensembles of equivalent radar-wave velocity, seismic P-wave 

velocity, and S-wave velocity tomograms.  Furthermore, we extend the approach of Asadi 

et al. (2016) in a way that also estimated or, if available, measured logging data errors 

can be considered in the 2D probabilistic target parameter inference as well as difference 

in the spatial resolution of the tomograms and the logging data. 
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3.3 Methodology 

3.3.1 Artificial Neural Networks (ANNs) 

ANNs are powerful and well-studied Machine Learning tools for finding non-linear 

prediction models (Haykin, 2008; Ban and Chang, 2013). They have been applied to a 

variety of problems in the geophysical domain particularly in processing of seismic 

reflection data (Van der Baan and Jutten, 2000; Poulton, 2002; Leite and de Souza Filho, 

2009; Leite and Vidal, 2011). Asadi et al., (2016) used feed-forward ANN for porosity 

prediction based on attributes derived from radar and seismic velocity tomography, and 

borehole logging data. In this paper we use and improve the approach of Asadi et al., 

(2016) using a two layer feed-forward ANN (Figure 3-1) for geophysical parameter 

prediction. Our ANN is composed of interconnected neurons placed in different layers 

known as input, hidden and output layers. Neurons are the processing units of an ANN 

and their functionality is related to the layer which they are participating in. Any connection 

between neurons is evaluated by a weight coefficient w which determines the importance 

of this connection in the ANN. 

  Neurons in the input layer assay to prepare a vector of input data (e.g., [a1, a2, ..., 

an], which are here radar-wave velocity, P-wave velocity, and S-wave velocity. The 

operation of the hidden layer is based on sets of input information, actual weight 

coefficients of inputs, an activation function, and a bias parameter. The activation function 

Figure 3-1: Structure of artificial 
neural networks (ANNs). ANNs are 
consisting of three interconnected 
layers. The input layer prepares 
data for feeding the ANN. The 
operation of hidden layer is based 
on sets of input information, 
weights of inputs w and bias 
parameter b. Neurons in this layer 
form a feedforward network with 
sigmoid formation. The operation of 
the output layer has been 
determined by the hidden layer and 
is connected to the results of the 
ANN training step. 
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defines the output of a neuron given an input or set of inputs. Different activation functions 

exist, e.g., linear, sigmoid or Gaussian. A combination of two layer feed forward ANN with 

sigmoid function in the hidden layer, and linear function in the output layer can be trained 

to approximate any function (Beale et al., 1992). The sigmoid function for input d is 

defined by 

sig(d) =
1

1+𝑒−𝑑  .       (3-1) 

The result of sig(d) is a number between 0 and 1, and it acts as transfer functions in each 

neuron of the hidden layer. The output oi of the ith neuron in the hidden layer is 

oi=𝑠𝑖𝑔(∑ 𝑤𝑖𝑗 ∗ 𝑎𝑗 + 𝑏)𝑛
𝑗=1  .       (3-2) 

n is the number of observations in the vector of input data [a1, a2, ..., an], and b is the 

bias parameter that shifts (together with all wij) the activation function (in this case 

sigmoid) to the left or right for finding the best fit to the target parameters. In this paper 

tip resistance, sleeve friction, and dielectric permittivity are our target parameters. The 

operation of the output layer is determined by the hidden layer and is connected to the 

results of the ANN in the training phase. A linear function acts as transfer function in the 

output layer for preparing the results of ANNs. 

Three steps are necessary when employing ANN: training or learning, validation, 

and testing. During the training process based on minimizing the performance parameters 

ANNs try to discover the best weight coefficient of each connection to find the optimal fit 

between inputs and outputs of the ANN. In this paper we use two different performance 

measures, mean squared error (MSE) and weighted mean squared error (WMSE). During 

training the performance measure is computed in order to evaluate the accuracy of the 

trained ANN. If{(a1,t1),(a2,t2),…,(aN,tN)} be a set of training tuples, where ai⊂A a vector of 

input attributes, and ti⊂T a vector of target parameter, the MSE and WMSE are defined 

as 

MSE=
1

𝑁
∑ (𝑜𝑖 − 𝑡𝑖)

2𝑁
𝑖=1             (3-3)  

and 

WMSE=
1

𝑁
∑ 𝑒𝑖 (𝑜𝑖 − 𝑡𝑖)

2𝑁
𝑖=1    .      (3-4) 
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N is the number of tuples in the training dataset (Beale et al.,1992).  ei determines 

the weights of the related training tuples for ANN and is mathematically considered to be 

the inverse of the square of the standard deviations of measurement errors (e.g., 

Tarantola, 1978). When using the MSE, logging errors, and tomographic uncertainty, i.e., 

model parameter or grid cell uncertainty, are ignored during the training step of the ANNs. 

If measurement errors shall be considered during the training step of the ANNs the MSE 

must be replaced with the WMSE. In this case we define ei by cumulated relative errors 

of the logging data and the tomographic uncertainty. This allows ANNs to prevent over-

fitting input and target parameters, i.e., by adjusting the ANN to a degree where it also 

explains even the error present in the training datasets. Our choice here deviates from 

mathematical theory. However, in practice standard deviations and the assumption of 

uncorrelated noise may be error descriptions of limited representativeness in cases were 

residuals or observations are non-normally distributed. Here, conservative but robust 

estimates, e.g., ranges, could practically replace standard deviations albeit resulting in 

usually larger estimates of relative errors. Since we follow such a conservative error 

estimation strategy here we do not square the already rather large relative errors before 

using them in equation 3-4. However, if preferred, our approach can easily be adjusted 

to classical statistical theory, e.g., by using standard deviation, or other robust error 

measures, such as quartile ranges. 

Note, since the true relationships between physical parameters imaged by 

geophysical tomography and the logging data providing information about the target 

parameter are scale dependent, spatially variable, related to measurement setups (e.g., 

static vs dynamic, or frequency dependencies) and usually non-unique and unknown, the 

prediction models learned by the ANNs are inherently site specific. It is not possible to 

quantify site and data-specific effects of scale differences, or spatial resolution differences 

on the learned prediction model. This is the reason why we do not recommend 

transferring a prediction model learned by an ANN at a site to other datasets acquired at 

different field sites, even if the local geology is generally comparable. 
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3.4 Processing Flow 

Figure 3-2 outlines the processing flow when working towards probabilistic 

prediction of 2D tip resistance, sleeve friction, and dielectric permittivity constrained by 

ensembles of radar-wave velocity, P-wave velocity, and S-wave velocity tomograms. Two 

types of data imaging reality into sets of observations are available. The first type is 

crosshole tomographic travel-time data acquired between two adjacent boreholes. Three 

different geophysical travel-time datasets are available differing in their source energy, 

i.e., by exciting electromagnetic radar-waves, seismic P-waves or S-waves. The second 

type is measured in 1D by direct push probes as exploration target parameters. The 

measured quantities are tip resistance, sleeve friction, and dielectric permittivity, which 

serve as sparse information about our target parameters. For extracting the ground 

material information from the travel-time dataset we apply a global-search inversion 

approach (Paasche, 2015). This results in ensembles of q 2D velocity tomograms for the 

radar-wave travel-time, P-wave travel-time, and S-wave travel-time datasets, 

respectively. Each of the q tomograms fits the underlying traveltime dataset equally well, 

Figure 3-2: Processing workflow to probabilistically predicting spatially continuous models for 
sparsely measured target parameters and geophysical tomograms achieved from fully non-
linear inversion. Based on the training strategy, v determines the number of prediction models 
resulted from ANNs. 
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albeit the imaged velocity distribution may be different for each tomogram. The ensemble 

of tomograms fitting the underlying dataset equally well provides discrete information 

about the ambiguity of the tomographic reconstruction problem.  

For achieving probabilistic prediction models of our exploration target parameters, 

we link the available tomograms to the sparse target parameters employing two layer 

feed-forward ANNs. Predictions are independently and repeatedly done using the MSE 

and WMSE as performance measure for training the ANNs. To ensure an equal 

contribution of every tomogram, all radar-wave velocity, P-wave velocity, and S-wave 

velocity tomograms are combined with each other to achieve different sets of the input 

data for training the ANNs. Per tomographic grid cell at the measurement position of 1D 

target parameters, u observations have been measured for each target parameter.  

Based on the q radar-wave velocity, q P-wave velocity, and q S-wave velocity tomograms 

we have q3 different combinations of input scenarios to our ANN that are all linked to the 

u observations of a target parameter. This can give us v different scenarios according to 

the combination strategy of inputs with targets. We train the ANNs individually for every 

input scenario and achieve v prediction models, which can be used to generate 2D 

probabilistic distribution scenarios of tip resistance, sleeve friction, and dielectric 

permittivity simultaneously.  

3.5   The Database 

3.5.1 The Field Site  

We use a dataset measured by Linder et al., (2010), which has been acquired on a 

field site located 30 km south of Berlin sustained by the German Federal Institute for 

Materials Research and Testing (BAM) (Niederleithinger, 2009). Three PVC-cased 

boreholes with an inner diameter of 80 mm have been used reaching down to depths of 

approximately 17 m. The local geology is primarily composed of glacial and glaciofluvial 

sands and gravels. Drillings show that the near-subsurface in this area consists of thin 

top soil layer followed by layers of medium, partly silty sands and fine gravels with 

interbedded thin layers of medium gravel and organic material in depth below ~8 m. The 

ground water table was approximately 3 m below surface at the time of measurement. 



Data Acquisition 
  
 

53 
 

The first borehole used in the experiment at x = 0 m is considered to define the left edge 

of the tomographic plane, the second and third boreholes are placed at 5.01 m and 10.96 

m distance from the first borehole when following the tomographic plane. A magnetic 

deviation logging tool was used for measuring the borehole trajectory, which indicated 

that the borehole trajectories were deviating no more than 4 cm from verticality at 16 m 

depth. Thus, when inverting the travel times from crosshole experiments we consider 

vertical boreholes.  

3.6 Data Acquisition 

3.6.1 Tomography 

Georadar data were acquired operating the borehole receiver antenna in borehole 

two located at x = 5.01 m in our tomographic plane. The transmitter borehole antenna 

was operated in boreholes 1 and 3. Nominal centre frequency of the transmitted signal 

was 100 MHz. The acquisition parameter and signal characteristic, e.g., source and 

receiver spacing, sample interval, dominant frequency, and dominant wave length were 

0.25 m, 0.04 ns, ~ 60 MHz, and ~ 1 m, respectively. First signal onsets in the recorded 

shot gathers have been determined using an automated picker (Tronicke, 2007) and the 

quality of the picked travel-times has been controlled manually. 

P-wave seismic energy was generated in the water saturated zone by a 

conventional sparker source and a 24-channel hydrophone string was used for recording 

seismic energy, i.e., the wave train at the receivers. Source and receiver spacing were 

0.25 m covering a depth range of 4.5 m to 16 m. Dominant wave length of ~2.5 m relay 

on dominant frequency of ~750 Hz and average velocity value of the respective 

parameters. Picking consistency and data quality have been checked using source- 

receiver pick images (Harris et al., 1995).  

S-wave seismic energy was achieved by an electrodynamic borehole impactor 

source which generates horizontally polarized SH-waves. At every shot location shots 

with 180˚ opposite excitation direction were fired to ensure later on a reliable identification 

of S-wave first on sets. Shear wave energy was recorded using two five-component 

borehole geophones. The acquisition parameter and signal characteristic, e.g., source 
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and receiver spacing, sample interval, dominant frequency, and dominant wave length 

for the S-wave data were 0.5 m, 0.021 ms, ~ 200 Hz, and ~ 1.3 m, respectively. Similar 

to the P-wave after checking quality and consistency the S-wave travel time was obtained 

for inversion (Linder et al., 2010). 

3.6.2 Sparse Logging Data  

Our methodology requires us to have at least sparse knowledge about the 

exploration target parameters, e.g., in a borehole or at direct push positions within the 

tomographic model area. Tip resistance, sleeve friction, and dielectric permittivity of the 

ground are our target parameters. For measuring the target parameters direct push 

experiments were carried out at two selected locations between the boreholes but in the 

inter-borehole planes. For measuring tip resistance and sleeve friction cone penetration 

test have been done. A standard piezocone probe with 4.4 cm diameters, controlled force 

and constant speed of 2 cm/s was pushed into the underground. Readings were recorded 

with 1 cm vertical spacing. Figures 3-3a, and 3-3b show the measured tip resistance and 

sleeve friction, respectively. The black line shows the measured target parameters at 

x=2.75 m, whilst the gray line shows the measured target parameters at x=8.0 m. 

Measured data show similar dynamics in the depth but an offset exist between them. The 

higher tip resistance and sleeve friction (Figure 3-3a, and 3-3b) are observed beloow 

y=7.0 m, and above y=14 m. Furthermore, at a frequency of 30 MHz the dielectric 

Figure 3-3: Target 
parameter logging data 
acquired by direct push 
technology at x=2.75 m 
and x=8.0 m for (a) tip 
resistance, (b) sleeve 
friction, and (c) dielectric 
permittivity. 
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permittivity was measured using a soil moisture probe (Linder et al., 2010). Figure 3-3c 

shows the dielectric permittivity at x= 2.75 m and x= 8.0 m. 

3.7 Processing 

3.7.1 Tomography 

For 2D tomographic reconstruction of radar-wave velocity, P-wave velocity, and S-

wave velocity models we use an inversion approach searching the model space globally 

(Paasche, 2015). The inversion performance parameter used to measure the misfit 

between the data and the forward model response is the root mean squared (rms) error. 

We reinitialized the inversion 30 times to find 30 equivalent and independent geophysical 

tomograms for each dataset. All found tomograms fit the underlying dataset equally well. 

The rms errors of the 30 final radar-wave velocity, P-wave velocity, and S-wave velocity 

models vary between 0.98 and 1.0 ns, 0.04181 and 0.04199 ms, 0.886 and 0.899 ms, 

respectively.  

The final ensemble of 30 equivalent radar-wave velocity tomograms is shown in 

Figure 3-4. All models show regions of lower velocities in the center of the model 

reconstruction area. High velocities are found at depth around 16 m and between 4.5 and 

Figure 3-4: 30 tomographic reconstructions of radar-wave propagation velocity achieved by 
fully non-linear (global-search) inversion. The 30 tomograms are achieved by independent 
inversion runs and fit the underling tomographic dataset equally well. 
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8 m depth (e.g., models R12 and R29 in Figure 3-4). The solutions diverge increasingly 

towards the upper and lower model edge, whereas the velocities in the more central parts 

of the tomograms are well defined. Divergence is maximal for model parameters in the 

vicinity of the boreholes, which reflects the typical imaging capabilities of a crosshole 

tomographic dataset.  

 

Figure 3- 5: The same as in Figure 3- 4 but for P-wave velocity. 

Figure 3- 6: The same as in Figure 3- 4 but for S-wave velocity. 
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Figure 3-5 shows the final ensemble of the 30 equivalent seismic P-wave velocity 

tomograms. The high velocity in the bottom part and low velocity in the middle part is 

captured by all tomograms, whereas significant differences exist for the high-velocity 

regions at 6-7 m depth. 

Figure 3-6 shows the final ensemble of the 30 equivalent seismic S-wave velocity 

tomograms. The increased velocities at the bottom of the mode l reconstruction area, as 

well as the low velocities in the middle of the tomographic plane are captured by all 

tomograms.    

3.7.2 Tomographic Uncertainty  

The differences in the tomograms in Figures 3-4, 3-5, and 3-6 illustrate the ambiguity 

of the tomographic reconstruction problem due to limited number of observations and 

noisy data. All tomograms in Figures 3-4, 3-5, and 3-6 are considered as equivalently 

acceptable solutions of our inverse problems for radar-wave, P-wave and S-wave 

tomographic velocity reconstruction, respectively. For achieving a more realistic 

prediction model and to fit the data to an acceptable level but not beyond, the uncertainty 

from geophysical tomograms should be propagated in the prediction results.  

The two locations for measured target parameters by direct push are at x=2.75 m 

(black lines in Figure 3-3), and x=8.0 m (gray lines in Figure 3-3). For incorporating model 

parameter uncertainty derived from equivalent geophysical tomograms in the ANN 

training, we take cells from these equivalent tomograms into account at the positions 

where direct push logs are coincident with tomogram grid cells. The measured direct push 

log at x= 2.75 m coincides with grid cells laterally centered at x= 2.5 m. Then we link the 

measured target parameter at x= 2.75 m to grid cells centered at x= 2.5 m. Also, The 

direct push log at x= 8.0 m is between cells laterally centered at x= 7.5 and 8.5 m. We 

link the measured target parameter to related cells at x= 7.5 and 8.5 m in the tomogram 

grid domain. Therefore, velocity values of grid cells located at x= 2.5, 7.5, and 8.5 m will 

participate in the training phase of the ANNs. We determine the uncertainty of the i-th 

radar-wave velocity tomogram (R∆x,y,i) out of the set of k=30 equivalent radar-wave 

velocity tomograms for all grid cells C at x= 2.5, 7.5, and 8.5 m, and y=5 m, …, 15.5 m as 
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R∆x,y,i= 
(max[𝐶𝑥,𝑦,𝑘]𝑘=1

30 − min[𝐶𝑥,𝑦,𝑘]𝑘=1
30 )

C𝑥,𝑦,𝑖
  .           (3-5) 

In an analogue fashion, equation 3-5 is used to calculate the tomogram uncertainty 

of P-wave (P∆), and S-wave (S∆) velocity tomograms. Note, the range in the nominator of 

equation 5 could be replaced by other measures of variance, e.g., standard deviation, 

interquartile range, or others. Since the distribution of velocities for each grid cell does 

not match a normal distribution for each grid cell, we do not use the standard deviation 

here. However, choosing the range in equation 3-5 may result in over-accounting for the 

contribution of outliers, which could be seen of following a very careful and pessimistic 

weighting strategy striving to avoid over-fitting of observations in any case.   

3.7.3 Logging Data Uncertainty 

Assessing errors in direct push logging data is difficult, because no repeated 

measurements in undisturbed ground are possible. However, interpretation or 

measurement uncertainty of direct push logs should be taken into account when training 

the ANNs. All logging datasets (Figure 3-3) comprise different unknown errors, e.g., 

random or systematic. For assessing logging data uncertainty, we create a low pass zero-

phase digital filter (Dutoit and Marques, 2010) with the window length adjusted to the 

estimated size of the sample volume. Here, we assume a vertical filter length of 50 cm 

and 25 cm for the CPT and dielectric permittivity logs, respectively.  Fundamental 

assumption of this filtering is that anomalies with vertical extension less than the vertical 

extent of the sample volume cannot be imaged clearly. Hence, we assume that 

differences between the filtered log and the original log will largely be related to random 

measurements error or changing coupling conditions of the probe. The noise components 

of the logging data are computed by subtracting the filtered log from the original logging 

data. In Figure 3-7 we illustrate this step for tip resistance. In Figure 3-7a the black line 
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depicts tip resistance logging data and the gray line shows the zero-phase filtered log. 

Then, we calculate the absolute difference between logging data and filtered log for 

assessing the relative noise component σ (Figure 3-7b).  

Furthermore, the flat areas in the logging data or areas of low gradient are our 

desirable regions for learning the prediction model by ANN linking tomograms and logging 

data. Wherever the measured target parameters show high gradients this may indicate 

the presence of boundaries in the ground. Due to the finite sample volume of direct push 

probes their response integrates over a certain subsurface volume. From the log alone it 

is not possible to judge, whether subsurface boundaries are sharp discontinuities or 

gradually changing. For avoiding the effect of such uncertainty in each point P of 

measured target parameters we calculate the first absolute derivative between related 

neighboured readings in the log (i.e., 𝜌i=(| Pi-Pi-1|+| Pi-Pi+1|)/(2*Pi)) (Figure 3-7c). The 

logging data error ϑ for reading i is then estimated as 

𝜗i= 𝜎i+𝜌i  .                    (3-6) 

3.8 Setting up the ANNs 

3.8.1 Combination of Tomograms for ANNs 

We train the ANNs by providing {(input, target)} tuples as training dataset like  

{(input, target)} = {(R𝑥,𝑦
𝑖 P𝑥,𝑦

𝑗
S𝑥,𝑦

𝑘 , L𝑥,𝑦 )}  ,       (3-7) 

Figure 3-7: Tip resistance error 
calculation based on a low pass 
zero-phase digital filter. The 
black line in Figure 3-7a 
determines the measured tip 
resistance; the gray line shows 
the filtered log. In Figure 3-7b 
the relative difference between 
measured and filtered tip 
resistance are shown which is 
considered as data noise 
component. Figure 3-7c 
determines the slope based on 
the low pass zero-phase digital 
filter in Figure 3-7a.   
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with x= 2.5, 7.5, and 8.5 m, y= 5,…, 15 m, and i,j,k= 1,…,30. For incorporating 

tomographic ambiguity we create tuples for all possible combinations of radar-wave 

velocity (R), P-wave velocity (P), and S-wave (S) velocity tomograms. There exist 27 000 

(= 303) different combinations from {R1, R2… R30}, {P1, P2… P30}, with {S1, S2…S30}. L 

determines the measured logging data which is either tip resistance, sleeve friction, or 

dielectric permittivity in our study. The measured logging data at x= 2.75 m are considered 

representative for grid cells centred at x= 2.5 m. Also the measured logging data at x= 

8.0 m are considered representative for grid cells centred at x= 7.5 m and 8.5 m. Per one 

tomographic grid cell 50 observations of the target parameters are available.  

3.8.2 Training Without Error Incorporation 

ANN models which are trained with this strategy incorporate averaging of target 

parameters per grid cell. In this case L represents a vector of 50 observations of the target 

parameters per tomographic grid cell. Each combination of tomographic grid cells is 50 

times repeated in the training dataset and linked to the 50 different observations of the 

target parameter per grid cell. Note, that the ANN learns a prediction model averaging 

over the 50 samples per grid cell. Therefore we repeatedly train 27 000 (= 303) different 

ANN prediction models. In doing so, we use 93 150 000 (= 303(= combination of 

tomograms)*3(= x positions of logs)*23(= number of grid cells per log)*50(= logging 

samples per grid cell)) tuples in total in the training datasets presented to the ANNs in the 

training phase. Per trained ANN a training dataset comprises 3 (= x positions of logs) * 

23 (= number of grid cells per log) * 50 (= logging samples per grid cell) tuples. This 

training procedure results in 27 000 2D scenarios of the target parameters. In this strategy 

the performance parameter for ANNs in the training phase is MSE.  

3.8.3 Training With Error Incorporation 

In this strategy ANNs are trained based on the WMSE, and the related uncertainty 

of tomograms ∆ and logging data measurements ϑ have been fed to the ANNs 

simultaneously. So the training dataset will be {(input, target, e)} and again 27 000 model 

combinations are used in this strategy. We estimate e in equation 3-4 for the i-th tuple 

like:  
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ex,y,i =1/( R∆x,y,i+ P∆x,y,i+ S∆x,y,i+ 𝜗i)  .        (3-8) 

3.8.4 Training With Separate Logging Data  

This strategy is based on the separation of individual logging datasets in the training 

phase. The training datasets are created either by logging data measured at x= 2.75 m, 

or at x= 8.0 m and independently linked to grid cells of the tomograms in the training 

tuples. Each training dataset in this strategy can carry information about only one position 

of logging data. This enables assessment of possible systematic shifts in the logging data 

when analyzing the prediction results. In this strategy the performance parameter in the 

training phase is WMSE for training 27 000 ANN models per logging data position. For x 

= 2.75 m a training dataset comprises 1 * 23 * 50 tuples, and for x = 8.0 m, a training 

dataset comprises 2 * 23 * 50 tuples. 

3.8.5 Training Accounting for Resolution Difference 

This strategy does not average the target parameters per grid cell, but considers 

the logs at x = 2.75 m and x = 8.0 m separately in the training phase. In the training tuples, 

now, we link each combination of tomographic grid cells to one observation of the target 

parameter. In this case L is a scalar and represents one observation of the target 

parameter per tomographic grid cell. To ensure equal contribution of every reading in the 

logs we first employ the uppermost log reading falling into a grid cell. Then we repeat the 

ANN training using a training dataset comprising the second-uppermost log reading in the 

grid cells in the tuples. We repeatedly train 1 350 000 (=303* 50) different ANN prediction 

models. Also in this training strategy ANNs are trained based on the WMSE as 

performance parameter. With this training strategy we not only consider the tomographic 

ambiguity but additionally the difference in the spatial resolution between tomograms (0.5 

m vertical grid cell length) and logging data (1 cm vertical sample spacing) is transformed 

into prediction uncertainty. This training procedure results in 1 350 000 2D scenarios of 

the target parameters. 
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3.8.6 Selecting the Number of Neurons in the Hidden Layer 

To ensure the utilization of sufficiently complex ANNs capable to propose a well-

fitted prediction model we use the same strategy as Asadi et al., (2016) for selecting the 

number of neurons in the hidden layer. ANNs are repeatedly trained for a given training 

dataset employing different numbers of neurons in the hidden layer. We test 15, 25, 35, 

50 and 100 neurons in the hidden layer for the same training dataset. The main criterion 

for selecting the number of neurons in the hidden layer is the prediction performance 

measured by the MSE. When increasing the number of neurons in the hidden layer the 

MSE will not be substantially lowered once the ANN offers sufficient complexity for linking 

the tomograms and the logging data. Figure 3-8 shows the MSE for all 27 000 tomograms 

combined with measured target parameters and different number of neurons trained with 

the averaging strategy. Increasing number of neurons allows generally for better ANN 

performance indicated by lowered MSE. The rather constant MSE for 50 and 100 neurons 

indicates that the ANN is complex enough for fitting a prediction model for any input 

combination. In the following we show the prediction results achieved using 50 neurons 

in the hidden layer. 

Figure 3-8: MSE from ANN 
training for all combinations of 
spatially continuous tomograms 
with 15, 25, 35, 50, and 100 
neurons in the hidden layer. 
Based on this comparison 50 
neurons have been selected as 
optimal number of neurons. 
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3.9 Results and Discussion 

3.9.1 Prediction Results of ANNs 

In each training strategy the achieved {(input, target)} tuples have been separated 

with 70%, 15%, 15%, for training, validation and test phase, respectively. We use random 

sampling for creating validation and test sets from our dataset, The evaluation procedure 

is done by the Neural Network Toolbox (The Mathworks Inc.) based on the MSE or 

WMSE. Mostly our trained ANN models show regression coefficients of approximately 

0.95, 0.96, and 0.85 for tip resistance, sleeve friction, and dielectric permittivity, 

respectively, which indicate a high accuracy of the prediction models found by the ANNs. 

According to the regression coefficients our ANNs are able to achieve a satisfactory level 

of performance for prediction of the desired target parameters. 

3.9.2 Training Without Error Incorporation 

Figure 3-9 shows the results of the probabilistic spatially continuous prediction of tip 

resistance qc sleeve friction fs, and dielectric permittivity εr, respectively, trained with 

averaging of target parameter observations per grid cells and MSE as performance 

parameter without error incorporation. We illustrate the prediction uncertainty by showing 

relative frequency information drawn from the calculated 27 000 2D prediction scenarios. 

At the logging position (i.e., x= 2.5, 7.5, and 8.5 m in Figure 3-9) where the training has 

been performed the learned prediction models offer highly accurate prediction. In the rest 

of the 2D area the prediction ranges for the target parameters are significantly broader 

and largely unfocused. This is due to simple error propagation, i.e., tomographic and 

logging data uncertainty are ignored in the ANN training strategy. When applying the over-

fitted prediction model to these regions this result in partly poor estimates of the target 

parameter, which can even take on values outside physically based limitations, e.g., tip 

resistance below zero MPa. Such values should be excluded from further processing or 

interpretation. Hence, it is important to account for tomographic and logging data 

uncertainties when learning the prediction models by ANN training.   
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3.9.3 Training With Error Incorporation 

To account for tomographic and logging data uncertainties we repeat our predictions 

based on the WMSE. Figure 3-10 shows the prediction results for training with error 

incorporation. They scatter now at the position of the logging data and the prediction 

range is broader at these positions than in Figure 3-9. But in the rest of the 2D area 

prediction models are able to offer sharper and more focused ranges for predictions of 

the target parameters. However, for tip resistance and sleeve friction, at the logging data 

Figure 3-9: Prediction results of spatially continuous 2D target parameters based on the 
sparse logging data and 27,000 combinations of spatially continuous tomograms (Figure 3-4, 
3-5 and 3-6) shown as histographic plot. 2D probabilistic prediction plots show (a) tip 
resistance, (b) sleeve friction, and (c) dielectric permittivity prediction. The dotted white lines 
show the measured logging data of target parameters (Figure 3) that are used for training the 
ANN. Red colors correspond to high relative frequencies. Blue colors correspond to low relative 
frequencies. 
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positions the most likely prediction results indicated by highest relative frequencies are 

systematically lower or higher than the measured logging data. This indicates that the two 

logs are not fully fitting together when they are integrated in one training dataset for 

training the ANNs, i.e., both logs provide conflicting information in the training set when 

linked to the tomograms. In such case, ANNs take the average of both measured loggings 

data when they are in one training dataset. If the considered tomograms would exhibit 

systematic lateral velocity changes, the ANNs could have been able to fit both logs. It is 

difficult to decide, whether the logs acquired at x= 2.75 m and x= 8.0 m carry a systematic 

shift, the tomographic imaging missed lateral velocity variations, or petrophysical relations 

between tomograms and logs are spatially highly variable. When comparing the tip 

Figure 3-10: The same as in Figure 3-9, but trained considering tomographic and logging 
uncertainty when training the ANN. 
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resistance and sleeve friction logs acquired at x= 2.75 m and x= 8.0 m (Figure 3-3), it 

appears that both logs systematically differ at depths below 7 m. Tip resistance and 

sleeve friction are recorded during the same cone penetration test. The dielectric logs are 

acquired using a different probe and here the high relative frequencies coincide better 

with the major trends of the logs (Figure 3-10c). Hence we repeat our prediction training 

the ANNs individually for the logging data acquired at different positions.  

3.9.4 Training With Separate Logging Data  

Figure 3-11 shows the prediction results when training individually for the logs from 

two locations. In this case the computational time will be increased. The result differs from 

those previously achieved (c.f. Figure 3-9 and 3-10). For tip resistance and sleeve friction 

Figure 3-11: The same as in Figure 3-10, but now training was individually performed for 
logs at x =2.75 m and x = 8.0 m. 



Results and Discussion 
  
 

67 
 

the prediction results show clearly a bi-modal distribution indicating that the logs contain 

a systematic difference, with regard to the velocity variations in the tomographic data. The 

prediction ranges are now narrow and highly focused. At each position the logging data 

can be linked very well to the velocity variability in the tomograms. However, a number of 

small-scale anomalies present in the logging data exceeds the prediction range.  

3.9.5 Taking Resolution Differences into Account 

For the prediction results in Figures 3-9, 3-10, and 3-11 the employed training 

schemes are not able to consider measured small scale variability of the target 

parameters in their prediction results. In the training phase ANNs try to average the target 

Figure 3-12: The same as in Figure 3- 11 but, now repeatedly considering individual samples 
from the logging datasets per grid cell when training the ANN, rather than averaging over all 
samples corresponding to a grid cell. 
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parameter observations per gird cell in a least square sense. We repeat our prediction 

using the training strategy without averaging. The results of this training strategy are 

shown in Figure 3-12. Prediction ranges increase now significantly, but are large enough 

to incorporate all logging data. Regions of high relative frequency are slightly more 

smeared and particularly for sleeve friction prediction the bi-modal character is smeared 

out.  

3.9.6 Comparative Discussion 

In Figure 3-13 we compare tip resistance predictions at x = 6.5 m drawn from the 

Figures 9-12. The panels in Figure 3-13 illustrate results achieved with the four different 

strategies for training the ANNs ( Figure 3-13a without error incorporation, Figure 3-13b 

with error incorporation, Figure 3-13c error incorporation and separate logging datasets 

for training, Figure 3-13d additionally accounting for resolution/sampling difference 

between tomograms and logs). Summarizing, accounting for logging data and 

tomographic uncertainty reduced the prediction ranges and sharpened the region of high 

relative frequencies depicting most likely tip resistance values. If the measured logs 

cannot be brought into full coincidence with the available tomograms by the ANN, either 

due to lateral differences not captured by the available tomographic datasets, laterally 

changing petrophysical links between imaged physical parameters and the quantities 

measured in the logs, or due to systematic shifts when acquiring the logging data we 

recommend that each training dataset should be created with only one log considered 

(Figure 3-13c). This will result in bi- or multi-modal distributions if two or more logs are 

available, but it is regarded as the most honest and conservative approach. Logs should 

only be shifted, e.g., mean-value calibrated, if there is evidence that the bi-modal 

prediction results are caused by systematic acquisition errors, e.g., calibration errors. 

However, in most situations, it will be impossible to decide about this issue with high 

certainty. Particularly, when striving to achieve good most-likely estimates of the target 

parameter, the results shown in Figures 13b and c appear optimal. However, when 

striving to predict plausible ranges of highest or lowest possible target parameter values, 

it is essential to even incorporate differences in resolution/sampling between tomographic 

grid cell sizes and logging data sample interval. Hence, when the prediction objective is 
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rather directed towards a conservative assessment of realistic and data-driven prediction 

ranges, training of the ANNs should be done with a strategy avoiding the averaging of 

target parameters per grid cell (Figure 3-13d). 

3.9.7 Transferability and Outreach of Results 

When employing ANNs for the probabilistic prediction of 2D or even 3D target 

parameter distributions no limitations are present with regard to (i) the number of 

considered tomographic datasets, (ii) the size of the ensembles of equivalent tomograms, 

and (iii) the nature of the target parameter measured in boreholes. Our analyses in this 

work are limited to crosshole tomographic acquisition schemes, but since tomographic 

ambiguity is considered, it will also be transferable to other tomographic setups. However, 

when considering tomographic datasets acquired solely from the Earth surface, ambiguity 

is usually expected to increase systematically with depth. In such cases, the prediction 

model learned by the ANN may be dominated by near-surface information. Speculating, 

modifications of the presented approach, e.g., by additionally incorporating depth as 

information layer in the ANN training, may help learning prediction models that evenly 

apply to strongly depth-dependent parameter interrelations.  

The probabilistic inference may be of particular interest in exploration or 

interpretation projects, where decisions on future actions require a critical and quantitative 

risk assessment. Here, it can substantially help to use a data-driven inference technique 

translating tomographic ambiguity, scale or resolution differences, and observational 

Figure 3-13: Example of comparison of 
tip resistance predictions at x= 6.5m 
drawn from Figures 3-9, 3-10, 3-11, and 
3-12. Trained (a) without error 
incorporation, (b) with error 
incorporation, (c) separate logging 
data, and (d) accounting for resolution 
difference between logs and 
tomograms. 



Conclusions 
  
 

70 
 

uncertainties into prediction uncertainty suitable to define realistic upper and lower 

bounds for the expected underground states.  

In near-surface applications, mobile crosshole tomography relying on temporary 

installations realized by direct-push or sonic-drill technology (Paasche et al., 2013) can 

replace the classical cross-borehole tomography making the permanent installation of 

boreholes obsolete. Such highly mobile crosshole tomography allows for on-site 

adaptation of the tomographic acquisition setup. The resultant tomograms can be linked 

to exploration target parameters, e.g., acquired by CPT or other 1D exploration 

techniques as discussed here, for realizing a highly flexible, site-adapted, probabilistic 

exploration for hydrological or engineering tasks.  

3.10 Conclusions 

We have employed static two-layer feed forward ANNs to establish a link between 

geophysical tomographic images and target parameters solely measured in the boreholes 

or by direct push technology. Based on this relation we are able to calculate 2D 

probabilistic predictions of the target parameters which are of higher relevance to 

hydrologic, petroleum, and engineering exploration tasks than the tomographically 

imaged parameters. The used geophysical tomograms resulted from fully non-linear 

inversion generating ensembles of geophysical tomograms that fit the underlying datasets 

equally well. We have tested different learning strategies when training the ANNs. It is 

important to incorporate uncertainties from tomographic imaging and the target logging 

data in the ANN training to avoid overfitting the training data offered to the ANN. 

Depending on the chosen training strategy, our method results in focused probabilistic 

predictions with small ranges suitable to assess the most likely values of the target 

parameters in the 2D tomographic plane. Alternatively, the ANNs can be trained such that 

even small-scale anomalies beyond the spatial resolution of the tomograms are 

considered, which results in broad and rather conservative prediction ranges. This 

methodology can be applied to any combination of geophysical tomograms and 

geotechnical or hydrological logging data. Tomographic ambiguity, logging data 
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uncertainty, and difference in spatial resolution between tomograms and logging data can 

be transduced into the probabilistic prediction of the target parameters.  

 Prediction performance was found to be excellent, and can be applied to any 

combination of geophysical tomograms and target parameters since at no point critical 

assumptions about the involved parameters or the expected relations between the 

considered datasets and parameters are made. When combining this approach with fully 

non-linear geophysical tomographic imaging, this combination can deliver objective and 

purely data-driven probabilistic predictions of the target parameter distributions, which are 

essentially required when striving to assess, quantify and minimize risks in resource 

exploration and utilization. We believe taking the uncertainty of tomograms and logging 

data ambiguity into account for probabilistic prediction of target parameters can help in a 

variety of geophysical applications to analyze and identify complex parameter relation 

which cannot be described by more conventional and often linear models. 
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Chapter 4  

Conceptual Developments for Clustering 

Mapped Data Emanating From Technical 

Sensors and Subjective Insights of 

Human Experts 

4.1 Abstract 

When exploring the ground, earth scientists frequently map the available observations in 

individual but collocated thematic images, e.g. geological, hydrological, magnetic, 

electrical conductivity or radiometric maps. Scientists in these fields try to analyse these 

datasets (i.e., map or image information) according to their subjective beliefs or 

experience. In recent years, attempts have been made in various fields of earth sciences 

towards rapid, automated, and objective information extraction from spatially continuous 

disparate datasets based on powerful statistical analyses, machine learning, or data 

mining techniques (i.e., clustering, classification, regression, etc.). One of the important 

tasks in earth observation data analysis is the integration and segmentation of multiple 

thematic images, e.g., by cluster analysis, such as fuzzy c-means or k-means. Traditional 

workflows for map integration and segmentation are able to offer rapid and automated 

clustering results of the multi-parameter geophysical datasets only considering the 

technical or objective data which are measured by sensors or some technical devices. 

However, currently there is no way for an intelligent combination and utilization of (partly) 

subjective and technical information in such cluster analyses, e.g., by considering the 

information provided by pre-classified geological or soil maps. We are going to discuss 

conceptual ideas inspired by data mining for integrating and clustering multi-parameter 
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geospatial datasets while paying attention to the subjective and technical acquisition 

procedure. The explained approach in this chapter may potentially allow for multi-

parameter integration and cluster analysis according to the technical or objective 

information and additional consideration of knowledge provided by human experts. We 

belief that such integration can strongly help to solve the problem of handling noisy data 

and unusual structures in geospatial data analysis. We illustrate critical aspects of our 

conceptual ideas using small synthetic datasets illustrating problems and potential when 

clustering data emanating from technical sensors and subjective insights or expectations 

of a human expert. Furthermore, we apply our idea to a real world datasets containing 

subjective and technical data of the area to offer segmentation or clustering of the 

considered domain. 
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4.2 Introduction  

Technological developments in ground-borne and air-borne passive and active 

sensing technologies provide new opportunities for getting information about the ground. 

These advances result in the acquisition of big databases comprising complementary 

datasets imaging ground properties and conditions. Often such datasets are presented 

as highly sophisticated and eye-catching images. The analysis, integration and 

interpretation of such multi-parameter databases is still a time-consuming challenge and 

extraction of patterns and assignment of a meaning to them is often a non-trivial task. The 

success of processing and interpretation is usually related to the experience of the 

interpreter or scientist and bears at least a partly subjective component. In the last 

decades, attempts have been made in various fields of earth sciences towards rapid, 

automated and objective information extraction from spatially continuous disparate 

datasets. Statistical pattern recognition and data mining tools (i.e., image processing, 

clustering, or classification) have proven valuable for largely automated and rapid 

information extraction from multi-parameter spatial datasets (e.g., Leung, 2010; Fischer 

and Getis, 2013).  

One of the vital tasks in dealing with multi-parameter air-borne and space-borne 

spatial datasets is clustering or segmenting these datasets to achieve maps or images 

outlining dominant units of similar ground material composition. Clustering is a generic 

term for a wide variety of powerful data mining algorithms grouping large sets of multi-

parameter data into several segments or clusters based on some similarity or distance 

measures calculated between the data points. Such clustering can be done by crisp or 

fuzzy cluster analysis. Crisp cluster algorithms provide information about the cluster a 

data point is most reliably assigned to, whereas fuzzy cluster algorithms follow the 

concept of partial cluster membership and quantify the assignment of a data point to each 

cluster by a cluster membership measure and provide information about the statistical 

significance of the assignment of a data point to a certain cluster (e.g., Höppner et al., 

1999; Kaufman and Rousseeuw, 2009). Multiple families of cluster analyses algorithms 

exist, e.g., hierarchical, partitioning, density-based, model-based and spectral clustering. 

Out of these, partitioning cluster algorithms have been widely used for analysis of earth 
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observation databases. For example, crisp cluster analysis has been used to recognize 

statistically significant structures or clusters in air-borne geophysical datasets (e.g., 

Peschel, 1973; Lanne, 1986; Pires and Harthill, 1989; and Martelet et al., 2006), and 

geological and soil degradation mapping (e.g., Eberle, 1993; and Anderson-Mayes, 

2002). Furthermore,  fuzzy cluster analysis has been employed routinely for segmentation 

of remotely sensed data (e.g., Du and Lee, 1996; Ahn et al., 1999; Shi et al., 2003), 

analysis of  rock magnetic and geochemical parameters of different materials (e.g., 

Kruiver et al., 1999; Urbat et al., 2000; Knab et al., 2001), for data-driven soil clustering 

(e.g., de Bruin and Stein, 1998; Bragato, 2004, Schröter et al., 2015), geophysical and 

geological mapping (e.g., Paasche et al., 2006; Paasche et al., 2007; Paasche and 

Eberle, 2009), and soil moisture mapping (e.g., Schröter et al., 2015).  

Despite the emergence of new spatial data measurement technologies noise, or 

outliers, are ubiquitous in technical or objective datasets (Taylor, 1982; Zhang et al., 2003; 

Han et al., 2011). In addition to random noise, systematic anthropogenic or environmental 

effects may contaminate measured data, e.g., farmers driving lanes on arable land or 

increasing cloudiness or dustiness, respectively. As the volume of noise increases in the 

databases, the cost of mining and evaluating will also increase. Most clustering algorithms 

are vulnerable to noise and outliers and they may offer unusual segments or clustering 

results when there is noise in the datasets. Penalizing a clustering algorithm using a 

spatial domain may increase clustering robustness regarding random noise (e.g., Pham, 

2001). However, all new developments in the earth map integration based on clustering 

(crisp or fuzzy clustering) usually only consider technical, i.e., measured by technical 

system, or objective spatial datasets which inherently carry noise. Therefore auxiliary 

information about the considered domain and careful choice of clustering methodology 

and preparatory processing must be made if the data in the application contain a large 

amount of noise (Han et al., 2001).  

For proving clustering results of spatial geoscientific databases the integrated 

segmented maps can be compared to subjective insight of geoscientific experts as an 

auxiliary information about the considered domain. Alternatively, additional ground 

truthing measurements may be carried out striving to characterize the found segments. 
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However, sparse ground truthing and human experts may see or overlook some 

structures, properties or situations of the domain which the technical sensors are not able 

to catch or have caught, respectively. In such comparisons (partly) subjective belief (i.e., 

in the form of a soil map or a geological map) about the domain will be shown as an 

additional map or dataset which highlights the structures which are recognizable by expert 

scientists. In such map, the only information which is important from a pattern analysis 

point of view is the boundary between segments which expert scientist draw for 

separating the structures of the domain.  

To our knowledge there is no sophisticated method available allowing the integrated 

clustering of subjective and objective spatial data (i.e., emanating from technical sensing, 

such as satellite imagery) in an intelligent and logical way during the data processing 

stage. In this chapter, we are going to test and discuss conceptual ideas inspired by data 

mining and machine learning techniques such as boundary detection, graph theory, 

sampling, and clustering for integrating and clustering spatial datasets, while paying 

attention to their subjective (humanly beliefs about the domain) and technical acquisition 

origin. We employ boundary detection techniques and graph theory to weight subjective 

and objective datasets based on their importance or accuracy before calculating similarity 

measures between the data points striving towards data clustering. We begin by 

explaining our processing flow. This is followed by applying it to a synthetic and a field 

database. Finally, we explain and discuss the results achieved for both databases. 

4.3 Methodology 

4.3.1 The K-means Clustering 

The k-means clustering algorithm (MacQueen, 1976; Kaufman and Rousseeuw, 

2009) has become a popular tool for partitioning of multi-variate databases and is 

independently applied in different scientific fields (i.e., computer sciences, image 

processing, environmental earth sciences, etc.). This algorithm is one of the most widely 

used unsupervised clustering algorithms that generates a specific and disjoint number of 

clusters from data points stored in the datasets. The main reasons for the popularity of 

the k-means cluster algorithm are ease of implementation, simplicity, efficiency, 
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robustness, and empirical success. Let P={p1, …,pn} be a set of position vectors 

specifying n points in a d-dimensional space. This should be partitioned into sets Sj with j 

= 1, …, k. k specifies the number of clusters. Each set defines a cluster described by its 

cluster center position cj in the d-dimensional space. The k-means algorithm finds clusters 

such that the sum of squared errors SSE between the cluster centers, described by the 

mean value of all data points belonging to a cluster, and the data points belonging to this 

cluster is minimized by  

       SSE=arg min
S

∑ ∑ ‖𝐩𝑖 − 𝐜𝑗‖
2

𝐩𝑖ϵS𝑗

𝑘
𝑗=1    .                        (4-1) 

‖𝐩𝑖 − 𝐜𝑗‖
2
is the distance between data point pi and the centroid cj, which is known as 

Euclidean distance (Danielsson,1980). Euclidean distance computations are not invariant 

to linear transformations, which makes the clustering results dependent on most standard 

data scaling or normalization techniques. It analyses the entire database globally and 

does not consider spatial information about data point arrangement in the map domain, 

which makes it sensitive to measurement errors.  

k-means cluster analysis could be directly applied to a multivariate database, e.g., 

when scaling the different physical quantities mapped by each dataset along orthogonal 

axes (e.g., Paasche and Eberle, 2009). Clustering would then take place in the spanned 

physical parameter space, but only the physically measured values at every location in 

the mapped database would form the information base considered for clustering. Further 

information present in the mapped images, such as texture or boundary information, 

cannot be considered in a simple k-means cluster analysis application, if applying the 

algorithm directly to the database. Nevertheless, it would often be desirable to do the 

cluster analysis on different image properties, particularly, since human contemplators 

consider image texture, boundary information and measured values when analysing a 

mapped database. Preparatory processing is required to extract information about 

boundary, measured value, and/or texture information, described by different features or 

attributes. It must be integrated paying attention to the nature and characteristics of the 

individual considered datasets when integrating the extracted information prior to 

clustering.   
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4.3.2 Graph Theory and Shortest Path 

Graphs are mathematical structures to model pairwise relations between data 

points. A graph is made of connected nodes (or vertexes). Nodes represent data points 

and the connections between them are called edges. Edge weights illustrate distance or 

similarity between connected nodes. Here, we only consider undirected graphs, i.e., 

connectivity and connection weights are independent from direction. Each graph G= (V, 

E) comprises a set of data points V and edges E. One of the important tasks with relation 

to graph theory is the shortest path problem (Dijkstra, 1959), i.e., finding a path between 

two nodes (or data points) in a graph such that the sum of the edge weights of its 

constituent edges along the path is minimized. When two nodes have a similarity (or 

dissimilarity) with each other then they are adjacent and both are incident to a common 

edge. A single shortest path is a sequence of nodes Q= (v1, v2 ,…, vn) ϵ V. vi is adjacent 

to vi+1 and 1≤ i≤n. Q is a path from node v1 to vn with length n-1. When ei be the weight of 

the edge between nodes vi and vi+1,than the shortest path from node v1 to vn is the 

minimum of ∑ 𝑒𝑖
𝑛−1
𝑖=1  (Dijkstra, 1959). 

In graph theory, a shortest path from a source node to all other nodes in a graph is 

called shortest path tree. The all pairs shortest path problem determines the task when 

we have to find the shortest paths between every pair of all nodes in a graph. There are 

different algorithms to find single shortest paths, shortest path trees, and all shortest paths 

in the graph (i.e., Dijkstra's algorithm (Dijkstra, 1959), A* search algorithm (Goldberg and 

Harrelson, 2005), Floyd–Warshall algorithm (Burfield, 2013), and etc.). Dijkstra's 

algorithm (Dijkstra, 1959) is one of the oldest and the most popular algorithm to find 

different types of paths.  

4.3.3 Boundary Detection 

Numerous image processing techniques identify features in images or maps that 

are relevant for estimation and extraction of objects or structures in images. Boundaries 

are one of the important properties which go along with significant local changes in the 

intensity of the image (Davis, 1975). Figure 4-1 shows different types of boundaries in 

images or maps. A boundary can be either a step function, where the intensity of an image 

https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Weighted_graphs_and_networks
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abruptly changes from one value on one side to a different value on the other side, a line, 

where the intensity of an image abruptly changes but then returns quickly to the starting 

value. When intensity is not instantaneous and occurs over a finite distance the step 

boundaries will be converted to ramp boundaries and line boundaries will be converted 

to roof boundaries. 

Different boundary detection algorithms have been introduced to produce a set of 

boundaries from an image (Senthilkumaran and Rajesh, 2009). A boundary detection 

solution should address three criteria. First of all, the boundary detection technique should 

accurately catch all possible and different types of boundaries. Second, the boundary 

point should be localized on the center of the boundaries, and third, the image noise 

possibly should not create false boundaries (Davis, 1975, Senthilkumaran and Rajesh, 

2009). One of the useful boundary detection techniques, which consider these three 

criteria, is the Canny boundary detection algorithm developed by Canny (1986). For 

extracting the boundaries the Canny boundary detection algorithm follows five steps: 

1. Apply Gaussian filter to remove the noise boundary and smooth the image 

2. Calculate the intensity gradient of the image 

3. Apply non-maximum supervision to extract boundaries on the center and get rid 

of spurious response  

4. Use a threshold to determine all potential boundaries 

Figure 4-1: Different types of boundaries in an image (a) step (b) line (c) ramp (d) roof. 
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5. Finalize the detected boundaries by removing all other boundaries that are weak 

or not connected to strong boundary using information of eight connected 

neighbour pixels or mapped data points 

When applying a Gaussian moving window filter the noise in the image will be 

smoothed out. It further smooth the boundaries as high-frequency feature in a way that 

increases the possibility of missing weak boundaries and emphasizes the strong 

boundary points in the results.  

Another type of boundary detection which can be applied to a color image or color-

coded map is introduced by Martin et al., (2004), who determine a function Pb(x, y, θ) that 

predicts the posterior probability of a boundary at each image pixel (x, y) with orientation 

θ by measuring the difference in color, local image brightness, and texture channels 

(Arbelaez et al., 2011). The basic idea of the Pb boundary detector is the computation of 

an oriented gradient signal G(x, y, θ) from an intensity map m. This procedure proceeds 

by placing a circular disc at location or data point (x, y) and split the area around this 

position into two independent half-discs (i.e., h1 and h2) by a diameter at angle θ. For 

each half-disc, the histogram of the intensity values or color of the pixels will be calculated. 

At location (x, y), the gradient magnitude G is defined by the χ2 distance between the two 

half-disc histograms h1 and h2: 

χ2 (h1,h2)= 
1

2
∑

(ℎ1(𝑖)−ℎ2(𝑖))2

ℎ1(𝑖)+ℎ2(𝑖)𝑖      .     (4-2) 

The χ2 distance for the pixels show the gradient magnitude of the 2D image or map for 

each pixel and highlight the boundary of the images (Martin et al., 2004; Arbelaez et al., 

2011). 

4.3.4 Sampling Strategy 

In statistics and data analysis, sampling is the technique of selecting a subset of 

individual points from a statistical data point for the estimation of the characteristics or 

properties of the whole population (Israel, 1992; Marshall, 1996). Two important 

advantages of applying sampling to a population for data analysis are that the cost and 
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running time of the algorithms is lower than measuring the whole population. The 

sampling procedure has several important steps (Israel, 1992): 

 determining the population of interest 

 defining a sampling rule by a set of items or events which are possible to 

measure 

 selecting a sampling method for selecting a subset of items or events from the 

population 

 selecting the sample size   

 sampling or collecting data from the population based on the desired sampling 

method   

 In the last decades different sampling strategies have been introduced with regard 

to the nature, quality, accuracy, or cost of the chosen sampling strategy (Israel, 1992; 

Esfahani and Dougherty, 2013). A popular sampling technique is the systematic sampling 

method (Esfahani and Dougherty, 2013), which relies on arranging and ordering the 

population according to some rules and conditions. Then, the subsets or elements will be 

selected at regular intervals from the ordered list. Systematic sampling involves a random 

start point and then proceeds with the selection of every kth (= population size/sample 

size) element from then forward. 

4.3.5 Processing Flow 

 Figure 4-2 outlines the processing flow when working towards integration and 

clustering of multi-parameter spatial databases. Two types of datasets that image the 

reality into sets of observations are available. The first type is named as objective datasets 

(i.e., hyper spectral, EMI, or radar data), which are measured by some technical sensors 

or devices. Such datasets inherently carry noise and different types of boundaries (i.e., 

step, line, ramp, or roof). The second type is subjective (i.e., soil maps, or geological 

maps), at least partly, created by humans or expert scientists that can be either correct 
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or incorrect based on the experience of the scientist. Such datasets carry only step 

boundaries or show sharply contoured structures.  

Datasets 

Objective 
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Create new information 
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Apply clustering to the new 
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Figure 4-2: Processing workflow to integration and segmentation of subjective and 
objective datasets. After normalizing the datasets two processing branches will be 
followed in the workflow. In the right part the similarity only based on the objective data 
will be calculated. Simultaneously in the left part the boundary of the subjective and 
objective maps will be extracted. Then, the new information vector based on results of 
these two branches will be calculated. This new information vector will be considered 
as new dataset and will be the input for the clustering algorithm.    
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In the next step normalization will be applied to each dataset to have parameters varying 

in the same scale range. One normalization method which is usually well known for 

rescaling data is scaling all numeric variables in the range [0, 1] by  

𝑝𝑛𝑒𝑤= 
𝑝𝑑−𝑚𝑖𝑛𝑑

𝑚𝑎𝑥𝑑−𝑚𝑖𝑛𝑑
       ,    (4-3) 

where Pd is a value of data point p in a d-dimensions dataset. After normalization, two 

processing branches will be applied to the datasets (see Figure 4-2) focusing on either 

boundary information or the measured physical values. Here, a third branch could 

potentially be added considering image texture information. In the branch for calculating 

the similarity between all pixels of a datasets or image, we use only the objective datasets 

by applying Gaussian similarity for a data point p with d dimention formulated as: 

Sim(pi,pj)=exp(-||pi - pj||2  / 2Ω2)   .      (4-4) 

In the branch for extracting the boundary information all subjective and objective 

datasets will be used. The spatial subjective and technical datasets can be seen as an 

image of the map domain and each data point in a dataset defines a pixel in the image. 

Therefore, a boundary point is a data point in a dataset or a pixel in an image with 

coordinates [x,y] where a significant local intensity change occurs. Different types of 

boundary detection can be applied to the datasets. In the subjective map because only 

the boundary points are important a method which be able to extract sharp boundary is 

necessary (i.e., Canny boundary detection). But in the technical map the gradients over 

the whole area should be extracted to cover all structure’s changes in the map. Here, for 

subjective datasets we apply a gradient based method like Canny and for objective 

datasets we use the χ2 distance, which are both able to extract boundaries from a different 

type of map or image. In the next step, all extracted boundaries from subjective and 

objective datasets will be integrated into one boundary map referred to as total boundary 

map (TBM). When there are m independent boundary subjective maps (BS) and n 

independent boundary objective maps (BO), then the value of pixel i,j in TBM is equal to: 

TBM(i,j)=∑ (𝛼𝑚𝐵𝑆(𝑖, 𝑗) ∗ ∑ 𝜎𝑛𝐵𝑂(𝑖, 𝑗)) + ∑ 𝜎𝑛𝐵𝑂(𝑖, 𝑗))𝑛𝑛𝑚                 (4-5) 
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The first term of this equation,∑ (𝛼𝑚𝐵𝑆(𝑖, 𝑗) ∗ ∑ 𝜎𝑛𝐵𝑂(𝑖, 𝑗))𝑛𝑚  explains when the 

boundary of the subjective map can be participated in the TBM if it is supported at-least 

by one objective map. The second part∑ 𝜎𝑛𝐵𝑂(𝑖, 𝑗))𝑛  controls that the boundary of an 

objective map can be directly participated in the TBM. 𝛼 and 𝜎 are tuning parameters to 

weight the subjective and objective maps, respectively.  

Next, we convert the 2D total boundary map to a graph, where each node in the 

graph represents a pixel from the 2D map domain and each node is connected to the 

eight connected neighbor pixels of the 2D map domain. The weight of the edge in the 

graph between two nodes is the sum of the related pixel values in the total boundary map 

TBM. Therefore, two pixels or nodes in the graph that have a low-weight connection are 

in a flat map area or, in other words, there is no boundary between them. Contrary, when 

two pixels or nodes have a high weight connection it shows that they are not in a flat map 

area and there is probably a boundary between them or, in other words, they are likely in 

different classes/clusters. When applying an all shortest path algorithm to the boundary 

graph, the relation between all pixels in the 2D map or the nodes in the graph will be 

clarified based on the boundary between them. If the edge of two nodes is part of a longer 

shortest path between two nodes then they are maybe in the same class and are related 

to each other, else they are not in the same class.  

When the graph is big, the shortest path algorithm will be costly and timely 

expensive. For avoiding this problem, sampling techniques can be applied to the graph. 

Based on the total boundary map we determine a systematic sampling method to select 

a subset of pixels in the maps or nodes in the graph. We arrange all points of the total 

boundary map in a list from minimum value to maximum value. Then, from this ordered 

list a sample with size s can be selected by considering every kth point from the list. Now, 

a shortest path algorithm can be applied to the graph with only calculating all shortest 

paths and path from these s nodes to all nodes in the graph. This results in two matrices 

(all shortest path and all path length) with s rows and n columns for each matrix where n 

is the total number of pixel in the map or all nodes in the graph. In the next step the same 

s rows from the similarity matrix resultant from the objective datasets will be selected 

which results in a Sims*n matrix. Then, based on the selected subset from the similarity 



The Datasets 
  
 

85 
 

matrices (Sims*n), all shortest paths (SPs*n), and all path lengths (PLs*n) matrixes we create 

a new information vector IVs*n  

IV s*n = 
𝑆𝑖𝑚𝑠∗𝑛

𝑆𝑃𝑠∗𝑛+𝑃𝐿𝑠∗𝑛
     ,    (4-6) 

with n samples or data points with s attributes or variable layers which carry the 

information about colors and boundary information of points in the map. The denominator 

of equation 5 decrees the similarity of the point when there is a boundary between them 

or a long path is passed between them. This new information vector will be the input for 

clustering. Different clustering algorithms can be applied to this new information vector. 

When the number of cluster is k the k-means clustering results in a 1*n vector with values 

between 1 to k for each cell in the vector, which shows the cluster for a related data point 

in the 2D map. 

4.4 The Datasets 

4.4.1 The Synthetic Datasets 

A synthetic example dataset is used to illustrate the efficiency and performance of 

the introduced method in this chapter. Three equally normalized maps in Figure 4-3 

provide 2D information about the variability of properties in an exemplary survey region. 

The modeled database comprises one subjective map (Figure 4-3a) and two objective 

maps (Figure 4-3b and 4-3c). These maps are independent parameters which provide 

information about the same survey region. We consider 6 different structure in the whole 

Figure 4-3: Synthetic datasets for a 30*30 2D domain with (a) subjective map, (b) and (c) 
objective technical maps. The subjective map shows structures mostly the same as in the 
technical maps, but with step boundaries and noise free. The technical maps show structures 
with different boundaries (i.e., step, line, roof, and ramp), noise, and anomalies from 
anthropogenic effects. 
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area. In each map there is some information which is not captured by another one. While 

the subjective map exhibits five zones characterized by step boundaries and noise-free 

information (see Figure 4-3a), the technical maps display different boundaries (i.e. step, 

ramp, or line) and partly different zones with some anomalies and environmental or 

technical noise superimposed, which are not captured by the subjective map (compare 

Figure 4-3a with 4-3b and 4-3c). These datasets are scaled to the interval [0 1]. 

4.4.2 The Field Datasets 

The real-world datasets are measured at the Schäfertal research site (11°03¢E, 

51°39¢N) located in the Lower Harz Mountains in central Germany (150 km southwest of 

Berlin) that is a small low-mountain catchment and is part of the long-term Earth 

observation network TERENO (Zacharias et al., 2011). Surface topography is V-shaped 

with a first-order stream in the valley and with gentle to moderate slopes (up to 20%) on 

both sides of the stream (Schröter et al., 2015). The site is determined by distinct 

landforms i.e., north-facing slope and south-facing slope, both intensively used for 

agriculture, the valley bottom with pasture or meadow, and topographic depressional 

areas disrupting the slopes on both sides of the stream (Schröter et al., 2015). The 

catchment is underlain by shale and Devonian greywacke covered by a complex of 

periglacial layers with different fractions of rock fragments and silt (Altermann, 1985). 

According to the sequence of the cover layer and landscape position different types of 

Figure 4-4: Two subjective maps of the Schäfertal catchment created by (a) (Borchardt 1985; 
Ollesch et al. 2005) and (b) Landesamt für Geologie und Bergwesen Sachsen-Anhalt. They 
show the structures in this catchments based on observations recorded by scientists. 

 



The Datasets 
  
 

87 
 

soils have evolved from this area. The dominant soils comprise peaty Gleysols in the 

valley bottom, Luvisols and Cambisols on the hillslopes (Borchardt, 1982).  

From this catchment subjective and technical datasets are exemplary considered 

in this study. Figure 4-4 presents two independent types of at least partly subjective soil 

maps created by different expert scientists to highlight the structure in the area with step 

boundary and noise free information (Borchardt 1985; Ollesch et al. 2005). Information 

about potential classification errors or the underlying sampling scheme is not available. 

Each map shows four segments or structures which are not completely similar. The 

diversity showed in these maps is related to the experience and beliefs of scientists who 

are responsible for sampling the ground properties and structures in the catchment. 

Different experiences can highlight different structures.  

Figure 4-5 shows technical maps prepared and used by Schröter et al., (2015). These 

are relying on topographic information in the Schäfertal catchment obtained from a high-

Figure 4-5: Four attributes shown as objective or technical maps; (a) elevation, (b) slope, 
(c) SAGA wetness index, and (d) annual potential incoming solar radiation derived form 
a 2-m digital elevation model for the Schäfertal catchment (Schröter et al., 2015). 
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resolution 1 * 1 m2 digital elevation model measured by air-borne laser scanner. Figure 

4-5a-d present elevation, slope, topographic wetness index (TWI), and total annual 

incoming solar radiation (TIR), respectively, which are all quantities derived from the 

degitial elevation model  Each map independently contributes information about 

contextual and local landscape conditions commonly used in the literature (Western et 

al., 1999; Wilson et al., 2005; Takagi and Lin, 2012, Schröter et al., 2015). The elevation 

(Figure 4-5a) can be used to describe the gravitational potential energy and landscape 

position that drives water flow. The slope information (Figure 4-5b) is indicative of the 

hydraulic gradient which drives near-subsurface and surface fluxes (Western et al., 1999). 

The TWI (Figure 4-5c) presents zones of surface saturation for a more realistic prediction 

for cells situated in valley floors with small vertical distance to a channel (Böhner and 

Selige, 2006). The Insolation (Figure 4-5d) presents annual potential incoming solar 

radiation derived for the Schäfertal catchment. This technical information (Figure 4-5a - 

d) are related to hydrological processes controlling the spatial distribution of soil moisture. 

For example, such information was used by Schröter et al., (2015) in their fuzzy c-means 

clustering for segmentation of the area to optimize the sampling support for soil moisture 

measurements in order to predict the spatial soil moisture based on the clustering results. 

4.5 Experiments and Results 

4.5.1 Application to the Synthetic Dataset 

To evaluate the efficiency and performance of our introduced method we apply the 

processing steps to the synthetic dataset (Figure 4-3). First of all, after normalizing the 

data based on equation 3, we calculate the similarity for the technical maps (Figure 4-3a 

and 3b) of the synthetic dataset. The 2D maps are a 30*30 matrix and comprise 900 data 

points. We use the Gaussian similarity based on equation 4 for calculating point to point 

similarities, which results in a 900*900 similarity matrix shown in Figure 4-6. In parallel 

the boundary detection techniques will be applied to the subjective and objective maps 

(Figure 4-3a-c) to extract the boundary information. For extracting the boundaries of the 

subjective map (Figure 4-3a) we use Canny’s boundary detection. For the objective maps  
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we use χ2 distance to highlight the boundary information shown in Figure 4-7a-c related 

to the maps in Figure 4-3a-c, respectively.        

Using equation 5 we calculate the total boundary information of the boundary maps 

(shown in Figure 4-7a-c) that results in a 2D total boundary map presented in Figure 4-

7d. This map carries the boundary information of all subjective and technical maps. Here, 

we set the tuned parameters as 𝛼 = 1 and 𝜎 = 1  for weighting and summing the 

boundary information. In this case we trust completely the subjective and technical maps 

and a boundary point of subjective boundary will be accepted if it will be supported by a 

technical map. For this reason the boundary shown in the range between x=15 - 23 and 

y= 24 -30 is not shown in the total boundary map because it is not supported by any 

boundary in the technical maps. In this test we assume that all boundaries of technical 

maps will contribute to the total boundary map.  

Figure 4-7: Boundary information for the maps in the synthetic datasets. (a) Extracted 
boundaries based on Canny boundary detection for the subjective map, (b) and (c) 
extracted boundaries based on the χ2 distances for technical maps, (d) calculated total 
boundary map of subjective and objective boundary maps.  
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Figure 4-6: 900*900 Gaussian 
similarity matrix for the data points 
in the synthetic dataset based on 
the absolute values in technical 
maps. The similarity of points is a 
value between 0 and 1.  
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 In the next step, the total boundary map will be converted into a graph by 

calculation of all shortest paths and path lengths. In this experiment, because of the low 

number of data points (900 data points), we take the sample size equal to the number of 

data points in the 2D map. We calculate all shortest paths between the 900 data points 

which results in two 900*900 matrices for shortest path and path length, shown in Figure 

4-8a and 8b, respectively. 

Applying equation 6 to the selected samples from the similarity matrices related to 

shortest paths and path lengths we define the new information vectors shown in Figure 

4.9 for 900 data points (the number of columns) and 900 attributes or variables (the 

number of rows). This new information vectors will be the input for k-means clustering 

with considering k=6 in the whole area. Figure 4-10 shows the results of k-means 

Distance Matrix 
1 900 
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Max 
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b) 

Figure 4-8: 900*900 matrices resultant from Dijkstra algorithm (a) all shortest paths 
and (b) all path lengths for data points in the synthetic dataset. 

 

Figure 4-9: 900*900 matrix as new 
information vector resultant from 
similarity, shortest paths, and path 
lengths matrices. The columns show 900 
samples or data points and rows show 
900 attributes or variable layers. This 
matrix carries the information about 
colors and boundary information of points 
in the map. 
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clustering with two strategies. Figure 4-10a presents the k-means clustering results based 

on the new information vectors resultant from the introduced strategy in this chapter. 

Figure 4-10b shows the results of clustering without considering the edge information, 

only taking the measured values (color) of the data points into account. When comparing 

these results to Figure 4-3a-c, it shows that the introduced strategy in this chapter is able 

to consider the boundary information of the maps and taking the subjective information 

into account which improves the clustering results. The results achieved when only using 

the measured values are shown in Figure 4-10b. This type of clustering has problem in 

dealing with roof and ramp type boundaries and handling anthropogenic effects or 

unusual structures in the date sets (i.e., the gradient noise in at left part of Figure 4-3c 

effects in the clustering resultant as separated clusters in the left part presented in Figure 

4-10b).   

4.5.2 Application to the Field Dataset 

We apply the introduced strategy to the field datasets shown in Figures 4-4 and 4-

5. There are 364096 data points in these maps. Calculating the similarity based on the 

normalized objective maps (shown in Figure 4-5) results in a 364096*364096 similarity 

Figure 4-10: k-means clustering results for the synthetic dataset with two strategies. (a) 
The k-means clustering results based on the new information vector resultant from the 
introduced strategy in this chapter, (b) the results of clustering without considering the 
boundary information of the subjective map. 6 cluster are desired in this dataset. 
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matrix. In parallel the boundary detection will be applied to the subjective and objective 

maps. First, we apply Canny’s boundary detection to the subjective maps. The results of 

this method are shown in Figure 4-11a for the subjective map shown in Figure 4-4a. 

Figure 4-11a shows that Canny’s boundary detection has some problems with corners 

and junctions (see Figure 4-11a). Therefore, we use Gaussian filtering for solving this 

problem which results in bulky boundaries different than the sharp edges of Canny’s 

boundary detector but strongly connected. The results of the Gaussian filtering boundary 

detection are presented in Figure 4-11b and 11c for the subjective maps presented in 

Figure 4-4a and 4b, respectively. For extracting the boundaries of the objective maps 

shown in Figure 4-5 we use the χ2 distance with a radius equal to 10 pixels for the disc 

and 5 bins for the histogram in each half disc. Because the slope (Figure 4-5b) is the 

derivative (or boundary) of elevation (Figure 4-5a), we only apply the χ2 to the TWI and 

insolation maps (Figure 4-5c and 4-5d). Slope information will directly participate in the 

boundary detection procedure of objective maps as a boundary information of the 

elevation map. Figure 4-12a and 4-12b present the results of χ2 distance for the TWI and 

insolation datasets (Figure 4-5c and 4-5d), respectively. 

Figure 4-11: Boundary information 
extracted from subjective maps in the 
Schäfertal catchment. (a) Canny’s 
boundary detection results for the 
subjective map shown in Figure 4-4a. 
Problems with corners and junctions exist 
(see inlet), (b) and (c) Gaussian filtering for 
extracting bulky boundary subjective maps 
showed in Figure 4-4a and 4b, respectively. 
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Then, the total boundary map will be calculated based on the weighting of the 

extracted boundary maps of subjective and objective maps presented in Figure 4-11 a-c 

and Figure 4-12a-b. When summing the subjective boundaries, they can be weighted 

based on their accuracy. We assume that the subjective map shown in Figure 4-4a is 

90% true and the subjective map shown in Figure 4-4b is 70% true, therefore, we set the 

tuning parameters 𝛼1 and 𝛼2 equal to 0.9 and 0.7, respectively. We set the tuning 

parameter 𝜎=1 for all technical maps. Figure 4-12c shows the total boundary map 

calculated based on the maps shown in Figure 4-11a-c and Figure 4-12a-b by means of 

equation 5.  

In the next step, the total boundary map will be converted to the graphs by 

calculating all shortest paths and path lengths. Because of the high number of data points 

(364096 data points) we test the introduced method with a sampling size s=1000 data 

points in the 2D map. Figure 4-13a shows the s=1000 sampling points with systematic 

sampling selection strategy. We calculate all shortest paths from the selected 1000 data 

points to all other data points in the 2D map which results in SP1000*364096 and PL1000*364096 

Figure 4-12: Boundary 
information for (a) TWI and (b) 
insolation maps of the Schäfertal 
catchment based on the χ2 
distance. (c) Presents the total 
boundary map of subjective and 
objective maps for the Schäfertal 
catchment. 
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for shortest path and path length matrices, respectively. Figure 4-13b and 4-3c show the 

shortest path and path length, respectively, for the exemplary point selected in Figure 4-

13a at x=640.2 and y=5725 km to all other points in the map. 

From the similarity matrix, we extract the similarities of the selected 1000 samples 

to all other n=364096 data points that results in a matrix of size 1000*364096. Applying 

equation 6 to the selected samples and the corresponding shortest paths and path 

lengths we shape the new information vector IV1000*364096 with 364096 data points (the 

number of columns) and 1000 attributes or variables (the number of rows). This new 

information vector will be the input for k-means clustering with k=30. We use the same 

number of clusters determined by Schröter et al., (2015) which delineates the major 

sub-surface zonation.  

Figure 4-14 shows the results of k-means clustering following two different 

strategies. Figure 4-14a presents the k-means clustering results on the new information 

vector resultant from the newly introduced strategy. Figure 4-14b shows the results of 

clustering without considering the edge information as done by Schröter et al., (2015). As 

shown in Figure 4-14b the method used by Schröter et al., (2015) has problems, i.e. by 

finding highly nested clusters, and it cannot cope with anthropogenic effects, such as 

Figure 4-13: (a) The selected s=1000 
sampling points using systematic 
sampling selection strategy. (b) The 
shortest path and (c) path length 
resultant from Dijkstra algorithm for the 
exemplary point selected at x=640.2 
and y=5725 km to all other points in the 
map. 
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driving lanes, in the data. When taking the subjective maps into account and incorporating 

boundary information our method is more robust. When there is a big structure in the 

subjective map the introduced method tries to separate this area based on the edge 

information and absolute values of the technical maps (see northern part in the map 

shown in Figure 4-14a). When the size of a structure is small this method try to determine 

a cluster result based on the subjective information (see the valley part of Figure 4-14a). 

Because of the optimum number of the samples is not achieved (I select only 1000 

samples) in some parts the method shows some anomaly or nested clusters which with 

finding the optimum sample number this problem can be solved. Another shortcoming of 

this method is due to the bulky boundaries of the subjective maps, which are presented 

Figure 4-15: The same as in Figure 4-14a, but now with sampling size reduced to (a) 
500 and (b) 250 samples. 

Figure 4-14: The results of clustering the maps of the Schäfertal catchment with two 
strategies,(a) the k-means clustering results on the new information vector resultant 
from the introduced strategy in this chapter, (b) presents the results of clustering 
without considering the boundary information (Schröter et al., 2015). 30 clusters are 
desired in this catchment, each color determine an independent cluster. 
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as an individual class. For testing the stability with regard to the sample size in the 

introduced method, Figure 4-15a and 4-15b show the clustering results for only 500 and 

250 samples, respectively. These samples are a subset of the 1000 samples used before. 

Comparing Figures 4-14a, 4-15a, and 4-15b reveals that in most parts of the 2D area the 

introduced method is able to offer stable results for clustering. The differences illustrate 

the effects of the number of sampling points on the results of this integration method.  

4.6 Conclusions 

Traditional integration and segmentation methods do not allow taking subjective 

maps (i.e., soil or geological maps, which inherently carry beliefs of the scientists about 

the catchments) into account, such that inherent data characteristics are acknowledged. 

Our straightforward and rapid integration and segmentation method has been designed 

such that subjective maps can be integrated with objective or technical maps via the 

boundary information provided by subjective maps. We can weigh the subjective and 

technical maps relative to each other thus increasing the performance of the integration 

and segmentation method and matching them to the scientists understanding. At the 

same time, we experience an increasing ability of the clustering against noise and 

unusual structures. We have employed boundary detection, graph theory, sampling, and 

cluster analysis to integrate a multi-parameter spatial database comprising partly noise 

free subjective and technical datasets that inherently carry noise. The technical datasets 

need to be normalized prior to the integration procedure. Effects of the chosen 

normalization procedure may exist (see Appendix H). New information vectors are 

created based on boundary information and the measured values in the available 

technical maps. Then a crisp clustering algorithm like k-means enabled the rapid and 

automatic integration of a segmented integrated map delineating distinguished sub-

surface units upon the information provided by each subjective and technical dataset. 

This methodology can be applied to any combination of the subjective and objective maps 

to offer a better segmentation of the considered domain. More testing is certainly 

necessary to show investigate the flexibility, efficiency, applicability, and robustness of 

the approach, particularly in view of the chosen sampling strategy and data normalization.  
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Chapter 5 

Summary and outlook  

 

 

5.1 Data Mining Techniques Add Value to Geophysical Tomography and 

Logging Data 

The main core of this thesis was putting forward different objectives towards offering 

knowledge discovery in environmental datasets. I focused on geophysical tomography 

which is one important type of environmental datasets that offers valuable and unique 

information about the internal composition of the ground. In chapter 2 and 3 I had 

answered the most important challenge when using geophysical tomography in 

hydrological, environmental or engineering exploration, that was, how to link the 

tomographically reconstructed physical parameter variations to the aquifer, reservoir or 

geotechnical target parameters of interest, which are usually different from those imaged 

by geophysical tomography. One major goal of this thesis which I had presented in 

chapter 2 was to develop a framework based on artificial neural networks (ANNs) for 2D 

or 3D probabilistic prediction of sparsely measured Earth properties constrained by ill-

posed geophysical tomographic imaging acting here as preprocessing of the measured 

database. The structure of this framework follows KDD’s structure (see Figure1-1). 

Tomogram inversion is the preprocessing of the available traveltime datasets, in the data 

mining part the ANN learn the optimal link between tomograms and target parameters, 

due to the probabilistic nature and error accounting in this method the evaluation part is 

limited to interpretation, but not critical interaction or rerun of the ANN. First I showed the 

application of this method based on a realistic but synthetic database that allows for 
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optimal performance evaluation of the suggested methodology containing different 2D 

radar and seismic tomograms and 1D porosity as target parameter. The employed static 

two-layer feed forward ANNs, based on the introduced strategy in chapter 2 of this thesis 

can successfully fit the underlying datasets equally well in a way that I was able to 

transduce tomographic reconstruction ambiguity into the prediction of a target parameter. 

The prediction results of this chapter are of higher relevance to hydrologic and 

engineering exploration tasks than the tomographically imaged parameters. When 

combined with fully non-linear (globally searching) geophysical tomographic imaging I 

demonstrated that this methodology can deliver objective and purely data-driven 

probabilistic predictions of target parameter distributions, which are essentially required 

when striving to assess, quantify and minimize risks in subsurface exploration and 

utilization. A classical user-based tuning or result evaluation interacting with the machine 

learning or prediction task is here of minor importance since the major uncertainties in the 

available database, resulting from tomographic reconstruction ambiguity are already 

taken into account in the probabilistic prediction approach.   

Furthermore, in chapter 2 I evaluated, whether the performance of the trained ANNs, 

measured by MSE, can be used to rank the equivalent geophysical tomograms. 

Fundamental idea which I was looking at to prove this assumption was that tomograms 

as well as sparse information about an exploration target parameter are images of the 

same reality and must therefore be compliant. In our synthetic database I could analyze 

this question which would be practically impossible when working with field data. A rather 

qualitative statement about the closeness of the tomograms to reality can be made based 

on the ranking results achieved by ANN training performance, i.e., tomograms ranked low 

suffer an increased risk of being poor reconstructions of reality. However, outliers from 

this rule may exist and therefore question the benefits from utilization of recurrent ANNs 

striving to learn which tomograms may be particularly useful for prediction based on the 

available database. I found that such approach would build the prediction of target 

parameter distributions on a few tomograms of high importance, but facing the risk that 

eventually a poor tomographic model will be considered with high weights, which leaves 

doubts on the chances to achieve better predictions when using recurrent ANNs instead 
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of the simple feed-forward ANNs used in chapter 2 and 3. Based on this finding it seems 

not promising to develop complex tools for incorporating the information of the logging 

data in the solution of the tomographic reconstruction problem when following approaches 

resulting in most-likely or best-fit computations without giving a probabilistic overview 

about the possible solution range.  

5.1.1 Taking Data Uncertainty into Account in the Machine Learning Prediction 

Part 

Another main challenge in the environmental datasets is uncertainty of measured 

data (e.g., borehole logging data errors) or ambiguity resulted from preprocessed 

datasets (e.g., tomographic ambiguity of the inversion results). For realistic and objective 

predictions of geotechnical or hydrological target parameters the uncertainty and 

differences in spatial resolution must be taken into account. In chapter 3 of this thesis I 

have shown an application of the method introduced in chapter 2 to solve real-world 

problems. Furthermore, I have improved this method by considering the uncertainty or 

variability of the input data when offering a probabilistic prediction of the target 

parameters. When doing so, it is important to incorporate uncertainties from tomographic 

imaging and the target logging data in the training phase of the ANN to avoid overfitting 

the training data by the ANN. Depending on the different training strategy introduced in 

chapter 3, my introduced method resulted in focused probabilistic predictions with smaller 

ranges suitable to assess the most likely values of the target parameters in the 2D 

tomographic plane. I have shown that ANNs can be trained such that even small-scale 

anomalies beyond the spatial resolution of the tomograms are considered, which resulted 

in broad and rather conservative prediction ranges, which do not significantly distort the 

most-likely predictions. I believe that the approach followed in chapter 3, taking the 

uncertainty of tomograms and logging data ambiguity into account for probabilistic 

prediction of target parameters, can help in a variety of geophysical applications to 

analyze and identify complex parameter relations which cannot be described by 

traditional petrophysical models. 
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5.1.2 Choosing Optimum Parameters for Artificial Neural Networks 

One drawback of my approach for probabilistic prediction of hydrological or 

geotechnical target parameters introduced in chapters 2 and 3 is the lack of robust criteria 

for determining the optimum ANN architecture, that means finding the optimum number 

of neurons in the layers, selecting the best activation function for the hidden layer, and 

selecting the best training strategy. I used the most common approaches to determine 

the optimum number of neurons in the hidden layer that start with a very small number of 

neurons (see chapter 2 or 3) estimating the mean squared error of the prediction results. 

I had repeated the procedure increasing the number of neurons in the hidden layer. In 

this case I had selected the optimum number of neuron in the hidden layer so that the 

related artificial neural network model offer the minimum mean squared error. Another 

important parameter when setting up the neural networks is selecting the activation 

function of the neurons in the hidden layer which can be step, linear combination, softmax, 

or sigmoid functions. I have tried different functions, but the best one was a sigmoid 

function since the combination of sigmoid function with neurons in one hidden layer ANN 

was sufficient for all prediction applications. While employing the ANN for probabilistic 

prediction of geophysical target parameters, I found in chapter 2 and 3 that the results 

were only weakly dependent on the number of neurons in the hidden layer and the type 

of activation function. In future works when applying these introduced methods in the 

distinct datasets, different strategy can be tested for selecting the optimum number of 

neurons and activation function to prove the training phase and the performance of the 

achieved neural networks prediction model. In future applications I suggest to follow the 

strategy introduced by Yuan et al. (2003) for estimating the number of hidden neurons in 

feed-forward neural networks based on information entropy, or the strategy introuduced 

by Benardos and Vosniakos (2007) for optimizing feedforward artificial neural network 

architecture. Furthermore, different training strategy like Bayesian regularization 

backpropagation (Kay, 1992), resilient backpropagation (Riedmiller and Braun, 1993), 

and structure like cascade-forward neural network (Fahlman and Lebiere, 1990) or new 

techniques like deep learning (Schmidhuber, 2015) can be tested for evaluating and 

finding the best ANN structure. 
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When incorporating aggregated relative errors in the training of the ANNs (the 

WMSE measure in chapter 3), I simply summed relative range information. However, 

weighted MSE computation is usually relying on Gaussian distribution of errors, e.g., 

standard deviations. In many practical cases we do not know the distribution and use 

Gaussian assumptions due to their mathematically simple implementation and 

description. However, improvements, and a more rigorous incorporation of uncertainties, 

may require developing improved error models moving away from Gaussian assumptions 

that may allow for more realistic selections than existing approaches. This may probably 

be a challenging task requiring the development of mathematic error models away from 

simple statistical ideas, such as standard deviations etc.   

5.1.3 Testing with Different Tomograms and Target Parameters 

The prediction performance of the introduced methods in chapter 2 and 3 was 

excellent, and the offered methods in these chapters can be applied to any combination 

of geophysical tomograms and target parameters since at no point critical assumptions 

about the involved parameters or the expected relations between the considered datasets 

and parameters are made. For showing the applicability of the introduced methods more 

combinations of geophysical tomograms and geotechnical or hydrological logging data 

should be tested in future works. While my developed approach in chapters 2 and 3 is 

highly flexible and applicable, it would be a relatively trivial matter to incorporate 3D 

tomographic datasets to offer 3D probabilistic prediction of the target parameters. 

However, more interesting would be to employ tomographic datasets solely acquired from 

the Earth’s surface. For such data, tomographic ambiguity increases systematically with 

depth. Consequently, ANNs would learn the relations between tomograms and logging 

data primarily at the very near surface, since tomographic ambiguity, and thus the 

considered errors, will systematically increase with depth. Depending on the specific 

ground composition in some cases, additional considerations may be necessary to 

ensure that also tomogram-logging data relations at greater depths will contribute to the 

learned prediction model.  
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5.2 Human in the Loop for Mapping, Integration, and Segmentation of 

Geophysical Datasets 

Interactive mining of knowledge or human in the loop at multiple levels of knowledge 

discovery models are an issue that, when considered during the KDD process, can help 

to know exactly what can be extracted from a dataset. A fundamental target in earth 

sciences and environmental study which can get benefit of human in the loop of KDD 

process is mapping that address various environmental and economic issues, such as 

mining target identification, soil conservation, or ecosystem management. In chapter 4, I 

have discussed the conceptual idea of a workflow towards integration and segmentation 

of environmental datasets considering subjective data of a human or expert scientist in a 

logical and acceptable way, such that it matches with the experience of a geophysical 

scientist. For doing this I employed boundary detection, graph theory, selected sampling, 

and cluster analysis to integrate a multi-parameter geophysical database comprising 

subjective and technical datasets that inherently carry noise and erroneous information. 

The obtained clustered multi-physics map projects multi-parameter information 

emanating from the underlying subjective and technical datasets onto a two-dimensional 

map. The resultant segmented 2D map can be used to develop optimal sampling 

schemes including all major segments, i.e., defining the locations of a limited number of 

sampling locations to monitor near-surface or subsurface catchments, or the earth 

properties at the small catchment scale. I have shown the efficiency of the introduced 

method by applying it on a synthetic dataset and a real world problem recorded in the 

Schäfertal catchment, which is part of the TERENO Harz/Central German Lowland 

Observatory. In chapter 4, by using the idea of the human in the loop I was able to: (i) 

take the scientists experiments into account, (ii) determine a way to weighing the 

subjective and technical maps (iii) increasing the performance of the integration and 

segmentation method and matching them to the scientists understanding with solving the 

nested clustering problem and increasing their robustness against noise and unusual 

structures, and (iv) to add value to the subjective data. 
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5.2.1 Further Testing the Idea of the Human in the Loop for Integration and 

Segmentation of Geoscientific Datasets 

I have shown that the idea of the tacking the subjective data can prove the 

integration and segmentation results and it increase the ability of the integration method 

to work with noise, anomaly and unusual structure. But for proving and showing the ability 

of this method more field and laboratory analysis and testing is necessary to assign a 

geological meaning to the achieved zones in the 2D segmented map. Consequently, for 

getting deeper insight into environmental or subsurface transactions and properties more 

subjective or technical datasets (i.e., hyperspectral, multispectral datasets, and etc.) 

should participate in the integration analysis. I recommend that for the Schäfertal 

catchment more data and more field and laboratory analysis should be done to achieve 

a better understanding of the detected segments. This should go in line with a more 

thorough testing of the suggested methodology. For example, within this thesis it was not 

possible to prove or carefully investigate the impacts of the individual processing settings 

and selections on the final segmentation. For example this incorporates the investigation 

of different edge detection features, different similarity measures or graph partitioning 

techniques. The approach is flexible enough to incorporate additional image texture 

features, which may improve broaden the analyses on which the segmentation patterns 

are learned.  

Furthermore, in future works the introduced methods in chapters 3 and 4 can be 

combined to offer a probabilistic prediction of desired target parameters in the Schäfertal 

catchment. I believe that the combination of these two methods can offer great prediction 

results for recognizing the distribution of target parameters in this area. When running the 

ANNs employed in the prediction procedure on fuzzy representations of the segmented 

input database, subjective and technical maps can be evenly considered in the prediction 

procedure without the need to teach the ANNs learning the prediction model how to deal 

with human data in the processing loop. Compared to Schröter et al., (2015), who use a 

fuzzy segmented map for deterministic interpolation of sparse soil moisture 

measurements solely considering technical maps, such a combined approach could 

produce fuzzy segmented maps incorporating additional subjective data and the 
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probabilistic prediction approach could provide likelihood information for soil moisture all 

over the catchment. 
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Appendix A  

Towards Probabilistic Prediction of Soil Moisture in the 

Schäfertal Catchment 

A.1 Introduction 

             Probabilistic prediction of soil moisture patterns and their temporal dynamics is an 

important issue to infer hydrological flux and flow pathways to improve the description 

and prediction ability of hydrological, ecological, and pedological models. Measurement 

campaigns offer uncertain information about the target parameter according to limited 

number of observations or measurement errors. Traditionally, soil moisture prediction 

models do not offer a probabilistic prediction based on these errors. Quantitative and 

realistic prediction of uncertainty in the exploration target parameter estimation would 

offer valuable information for decision taking in hydrological, ecological, and pedological 

tasks with regard to risk quantification and minimization. In this work based on Artificial 

Neural Network algorithms I illustrate a data-driven recent attempt towards probabilistic 

prediction of soil moisture.  

A.2. Methodology 

One of the most powerful algorithms for prediction are Artificial Neural Networks 

(ANN) (see chapters 2 and 3). ANNs are composed of an input and an output layer 

interconnected by a hidden layer of "neurons" which are capable of learning complex 

interrelations between input data and target prediction parameters. For creating my 

prediction model I use the same strategy for creating and training the ANNs as in chapter 

2. 
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A.3 Processing  

For probabilistic prediction of soil moisture in the Schäfertal catchment I have used 

the same dataset used by Schröter et al., (2015) (see also chapter 4). They separated 

the catchment in two distinct parts shown in Figure A-1 as farm land used for agriculture 

and growing crops as well as grass land.  

Schröter et al., (2015), used only topographic information (Figure A-2) which is 

related to hydrological processes controlling the spatial distribution of soil moisture, 

particularly at generally wet states. Figure A-2 shows topographic attribute maps 

prepared and used by Schröter et al., (2015) of the Schäfertal catchment obtained from 

a high-resolution 2 x 2 m2 digital elevation model measured by air-borne laser scanning. 

Figure A-1: Land use map created by  
Schröter et al., (2015). Arable land is 
depicted by light gray, grassland by 
dark gray colors. 

Figure A-2: Four topographic attributes as objective or technical maps; (a) elevation, 
(b) slope, (c) SAGA wetness index, and (d) annual potential incoming solar radiation 
derived form a 2-m digital elevation model for the Schäfertal catchment (Schröter et 
al., 2015). 
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Figure A-2 presents elevation, slope, SAGA wetness index (SWI), and total annual 

incoming solar radiation (TIR), respectively. Each map independently contributes 

information about contextual and local landscape conditions commonly used in the 

literature (Western et al., 1999; Wilson et al., 2005; Takagi and Lin, 2012, Schröter et al., 

2015).  

Schröter et al., (2015) used this information in a fuzzy c-means clustering for 

segmentation of the area to support efficient sampling for soil moisture measurements 

and to predict the soil moisture distribution in the area based on the clustering results. 

The location of the soil moisture sample points is shown in Figure A-3. At each location 

three soil moisture samples had been measured by Schröter et al., (2015). In this work I 

use 71 samples in the crop and 23 samples in the grass area. At each point 3 samples 

for soil moisture are considered. Based on this dataset I calculate prediction models for 

1000 random selections of samples resulting in probabilistic prediction of soil moisture in 

the crop and grass area, independently. I follow here the strategy outlined in chapter 2 

using ANNs to realize the predictions. Prediction uncertainty results here solely from 

uncertainty in soil moisture measurements. 

 

 

  

 

Figure A-4 presents an exemplary result of regression in the training phase 

(Figures 4-4a and 4-4b) and the test phase (Figures 4-4c and 4-4d) in crop (Figures 4-

4a and 4-4c) and grass (Figures 4-4b and 4-4d) area, respectively, for one exemplary 

model of the 1000 trained models. The regression coefficient R indicates good training 

results for this example.  

Figure A-5 presents the results of probabilistic soil moisture prediction in the 

Schäfertal catchment using ANN models based on the grass and crop land use. Here I 

Figure A-3: Soil moisture 
measurements in the Schäfertal. 
Locations for sampling the target 
parameter volumetric soil moisture 
are indicated by black dots.  
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have trained 1000 ANNs based on different combinations of soil moisture samples by 

selecting one out of the three soil moisture measurements per sample location. The 

probabilistic results are shown using glyphs representing the posterior probability density 

function scaled on a 50*50 m grid. Each glyph depicts predicted soil moisture (color) and 

relative frequency (length) resultant from 1000 ANN models. Figure A-5b shows the most 

likely soil moisture extracted from Figure A-5a. 

A.4 Conclusion 

          In this work I tried to offer a probabilistic prediction of soil moisture in a small-scale 

catchment. For doing so I used elevation, slope, TWI, and insulation as input data to 

estimate their relation to the measured soil moisture values. Based on the land use I 

separated the area in crop and grass land. I created 1000 trained ANNs with random 

a) b) 

c) d) 

Figure A-4: An exemplary result of regression in the training phase (a and b) 
and the test phase (c and d) in crop (a and c) and grass (b and d) area. 
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selection of target soil moisture data. Accordingly, with this method I was able to generate 

probabilistic information and could quantify a prediction interval at each location. I showed 

the results of this probabilistic prediction method for the Schäfertal catchment. I believe 

that more research is necessary to prove the target parameter prediction in the Schäfertal 

catchment based on the introduced methods in this thesis, since no independent 

validation set of soil moisture data remains. Such method can be developed in any field 

catchment for probabilistic prediction of target parameters also if non-topographic 

attribute maps shall be included. If uncertainty information for each pixel in the considered 

maps would be available, it could be considered when training the ANNs to avoid 

overfitting (see chapter 3). 

Figure A-5: (a) Probabilistic map of volumetric soil moisture content using ANN models 
based on the grass and crop land use. The scale for each point is 50*50 m. Each glyph 
depicts soil moisture (color) and relative frequency (length). One exemplary glyph is 
zoomed in Figure A-5a to present the results of the 1000 ANN models for the related 
position. (b) shows the most likely soil moisture extracted from (a). 



B.1 Abstract 
  
 

118 
 

Appendix B 

A New Methodology for Prediction of 2D Distributions of 

Sparsely Measured Logging Data under Full Consideration 

of Tomographic Model Generation Ambiguity   

Abduljabbar Asadi, Peter Dietrich, Hendrik Paasche 

Extended Abstract of the Near Surface Geoscience,  

 Turin, Italy, 6-10 September 2015 

B.1 Abstract 

We present a novel methodology to probabilistically predict spatial distributions of 

sparsely measured borehole logging data constrained by multiple geophysical crosshole 

tomograms. In doing so, we fully account for the ambiguity of the tomographic model 

reconstruction procedure by taking advantage of a recently developed fully non-linear 

inversion approach. We use Artificial Neural Networks to link the results of the non-linear 

inversion with sparse information of tip resistance logging data. Additionally, we achieve 

information during the training phase of the ANN about the compliancy of tomographic 

models found by the inversion with the available logging data, which may help to identify 

those tomographic models that may reconstruct the subsurface more realistically.  

B.2 Introduction 

 Geophysical tomographic datasets have proven valuable in supporting many near-

surface hydrological, and engineering exploration tasks. They uniquely offer the ability to 

image physical parameter variations, e.g., radar or seismic wave velocities, in a spatially 

continuous manner. However, for many geophysical tomographic imaging problems, the 

geophysical model generation suffers ambiguity due to limited number of observations 

and limited observational accuracy. Traditionally, deterministic approaches are employed 
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to generate geophysical tomographic models, which do not allow for realistic and 

quantitative ambiguity appraisal of the model generation ambiguity inherent to a 

tomographic dataset. For answering geotechnical or hydrological issues, physical 

parameter variations imaged in geophysical tomograms have to be converted or linked to 

other target parameters of higher relevance for engineers or hydrologists, such as 

porosity, tip resistance or sleeve friction. These additional target parameters can usually 

only be recorded sparsely or along one dimension.  

 Numerous approaches are available to link geophysical tomograms and sparsely 

measured hydrological or engineering target parameters. Particularly popular are 

deterministic transfer functions linking one physical parameter imaged in a tomogram with 

a sparsely measured target parameter, e.g., recorded in a borehole. An example for such 

approaches is the equation suggested by Raymer et al. (1980) linking P-wave velocity 

and porosity explicitly.  

 Here, we follow a different approach striving to link multiple geophysical tomograms 

to the same sparsely measured target parameter in order to achieve spatially continuous 

predictions of the 2D distribution of the target parameter. In doing so, we employ an 

Artificial Neural Network (e.g., Alpaydin, 2014) to link the tomograms and the target 

parameter. Thus, we avoid the utilization of an explicitly formulated deterministic transfer 

function. Additionally, we assess the tomographic ambiguity inherent to the considered 

tomographic datasets by fully non-linear self-organizing inversion (SOI; Paasche 2015) 

and propagate them into the prediction of several thousand scenarios of 2D distributions 

of the sparsely measured target parameter.  

B.3 Artificial Neural Networks (ANN) 

 Nowadays prediction is one of the most important tasks in machine learning that has 

great advantages and applications in different scientific fields like Geosciences, Computer 

Science, Bioinformatics, Marketing and so on. Among the most powerful algorithms for 

the creation of prediction models are Artificial Neural Networks (ANN). The functionality 

of ANN is similar to the behavior of networks of neurons in the human brain. ANNs are 

created from different layers of interconnected nodes; each node producing a non-linear 
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function according to its input values. The input values of a node may come from the 

results of other nodes or directly from the input dataset. Also there are some nodes that 

prepare the output of the ANN. The complete network represents a complex system, 

which can incorporate any degree of nonlinearity, that allows general functions, such as 

linear or exponential, to be modelled according to the training dataset as a predictor. The 

general structure of neural networks is shown in Figure B-1. 

 

 

B.4 Methodology 

 Fundamental assumption of our work is that a dataset can be considered as an 

image of reality, i.e., a certain 3D volume or 2D plane of the ground. When imaging reality 

into a dataset, informational loss occurs due to experimental limitations, e.g., limited 

resolution capabilities and limited number of observations. Nevertheless, any dataset 

recorded over the same subsurface area must comprise compliant information about the 

same reality, even when being expressed in a different way, for example in the form of 

tip resistance logging data or radar wave traveltime information emanating from a 

tomographic experiment. Furthermore, a unique noise component may affect every 

dataset. In our methodology we strive to take advantage of the fact that tomographic 

datasets and sparse logging data are images of the same reality, albeit with different and 

unknown imaging functions.  

Figure B-1: Structure of an 
Artificial Neural Network. We have 
three layers. The input layer 
prepares data for feeding the ANN. 
The operation of the hidden layer is 
determined by inputs and weights 
of inputs (W). The operation of the 
output layer is guided by the hidden 
layer and connected to the results 
of ANN training. 
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 Figure B-2 outlines the processing steps when working towards the probabilistic 

prediction of spatially continuous distributions of sparsely measured tip resistance data 

constrained by radar and seismic tomograms. In our example, radar, S-wave and P-wave 

crosshole tomographic datasets comprise complimentary information about the ground 

and allow for spatially continuous 2D imaging of radar, S-wave and P-wave velocity 

variations. We use fully non-linear SOI to achieve ensembles of 30 equivalent radar, S-

wave and P-wave tomographic models illustrating the ambiguity of the tomographic model 

reconstruction for each underlying dataset. These ensembles allow for 27 000 possible 

combinations of radar, S-wave and P-wave tomograms (303).  

 

 One combination of radar, S-wave and P-wave velocity information provided by the 

tomograms at locations where 1D logging data about tip resistance are available forms 

the input layer of an ANN. The corresponding tip resistance information forms the output 

layer. Then, the network is iteratively trained to learn the relationship between input and 

output layer information. Here, we strive to train the neurons in the hidden layer in an 

optimal manner to suite a linear relationship between input and output layer information. 

Practically, this training procedure strives to learn an optimal transformation of input and 

output layer information described by the information in the hidden layer. We repeatedly 

train the ANN for 27 000 different input layer information according to all possible 

combinations of geophysical tomograms.  

Figure B-2: 
Flowchart of 
processing steps 
for the prediction of 
2D tip resistance 
models and 
tomographic model 
ranking  
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 Next, we apply the 27 000 learned prediction models to the remaining parts of the 

tomograms to achieve predictions for 2D distributions of tip resistance. Finally, we 

achieve 27 000 2D scenarios of tip resistance constrained by all available geophysical 

tomograms and the sparse calibration data.   

 Additionally, we measure the mean square error (MSE) between predicted and 

measured tip resistance data, which allows us to judge the quality of the learned 

prediction model. High MSE values indicate a generally lower compliancy between 

tomographic models and sparse logging data. This information may be helpful to identify 

Figure B-3: Geophysical velocity tomograms achieved by fully non-linear SOI. 
Rectangular grid cells of 1 m lateral and 0.5 m vertical side lengths have been 
used for model parameterization. The black lines illustrate (a) 30 radar, (b) 30 S-
wave, (c) 30 P-wave velocity models. 
 

a) 

b) 

c) 
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tomographic models that are rather mathematical solutions with model features that 

cannot easily be linked to additional data describing the same reality.  

B.5 Application to a Field Dataset 

 We apply our methodology to a field dataset previously measured by Linder et al. 

(2010). The recorded crosshole tomographic radar, S-wave and P-wave datasets have 

been re-inverted using the SOI to achieve ensembles of equivalent radar, S-wave and P-

wave tomograms reaching from 4.5 m to 16 m depth and covering a 2D plane with 11 m 

lateral extension (Figure B-3). At two different lateral locations, 1D tip resistance data 

have been recorded (Figure B-4). The information from the tomograms and logging data 

is delivered to the ANN. When fitting a prediction model we set up our ANN with 50 

neurons in the hidden layer.  

Figure B-4 shows the spatially continuous prediction of tip resistance for all possible 

combinations of tomographic models. At the locations of the logging data, the training has 

been performed, which results in highly accurate predictions at these two locations. In all 

other areas, the variability of the tomographic models results in increased prediction 

uncertainty.  

Figure B-4: Results of our 2D tip resistance prediction shown as histographic plot. The dotted 
white lines show the measured logging data of tip resistance that are used for training the 
ANN. Red colors correspond to high relative frequencies. Blue colors correspond to low 
relative frequencies. Note the reduced sharpness of prediction at depths where the logging 
data are different and cannot be brought in full compliance with the velocity variations in the 
tomograms.     
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In Figure B-5, we show the corresponding MSE information for every radar, S-wave and 

P-wave velocity model. These 90 models fit their underlying datasets equally, and are 

thus purely equivalent solutions of the geophysical inverse problem. However, differences 

exist how well they can be linked by the ANN to the tip resistance data. Following our 

assumption that tomograms and logging data carry compliant information of the same 

reality, tomographic models with higher MSE can less easily be connected with the 

available logging data indicating that these models are rather mathematical solutions to 

the inversion which may not be close to reality in their physical parameter variations.  

B.6 Conclusions 

We suggest a new workflow allowing to link multiple tomographic geophysical models 

with sparse information about engineering or hydrological target parameters, e.g., logging 

data. By taking advantage of a fully non-linear inversion procedure we are able to predict 

many scenarios of 2D models of only sparsely measured logging data. The training 

procedure of the employed Artificial Neural Network allows for ranking the available 

equivalent geophysical tomograms achieved by fully non-linear inversion according to 

their closeness to reality as defined by complimentary logging data. 

Figure B-5: MSE from ANN 
training for 30 models of radar, S-
wave and P-wave velocity. Blue 
color for radar models, black 
color for S-wave and red color for 
P-wave seismic models. Models 
with low MSE can be brought 
more easily in compliance with 
the tip resistance logging data.   

 



C.1 Abstract 
  
 

125 
 

Appendix C 

2D probabilistic prediction of sparsely measured 

geotechnical parameters constrained by tomographic 

ambiguity and measurements errors  

Abduljabbar Asadi, Peter Dietrich, Hendrik Paasche 
Extended Abstract of the 78th EAGE Conference & Exhibition 2016, 

Vienna, Austria, May 30 - June 2, 2016. 

C.1 Abstract 

We present a new approach for 2 D probabilistic prediction of sparsely measured 

target parameters, e.g., measured by direct push technology or borehole logging. 

Geophysical tomography is used to constrain the prediction. The presented approach 

fully accounts for tomographic ambiguity and transduces it into prediction uncertainty. 

Furthermore, errors of the logging data can be considered to avoid overfitting when 

learning the optimal link between tomograms and logging data by means of Artificial 

Neural Networks. Consideration of errors results in improved predictions, which we 

exemplary illustrate here by 2D sleeve friction prediction. 

C.2 Introduction 

 For solving many near-surface engineering exploration tasks, geophysical 

tomographic datasets are increasingly used to support more traditional geotechnical 

exploration techniques, such as borehole and direct push logging. Geophysical 

tomographic datasets are unique in their potential to image ground variability in a spatially 

continuous manner. The imaged parameters are physical ground properties, for example 

propagation velocities of seismic waves. Geophysical tomographic imaging suffers 

ambiguity due to measurement errors and limited number of observations. Traditionally, 



C.2 Introduction 
  
 

126 
 

deterministic tomographic reconstruction approaches relying on regularized local-search 

optimization are employed to generate geophysical tomographic models. Such 

approaches do not allow for realistic and quantitative ambiguity appraisal inherent to the 

model generation.  

 Recently, fully non-linear inversion techniques gain increasing popularity. They 

search the solution space of the tomographic reconstruction problem globally and result 

in ensembles of tomographic models equally fitting the underlying dataset. Thus, the 

tomographic ambiguity is represented by a number of equally plausible models.  

 When employing geophysical tomograms for spatially continuous geotechnical site 

characterization physical parameter variations imaged by geophysical tomograms have 

to be converted or linked by prediction models to other geotechnical target parameters of 

higher relevance for engineers, such as tip resistance or sleeve friction emanating from 

cone penetration tests. Such target parameters are measured at a few locations and offer 

detailed 1D logging information. Like all experimental datasets, also logging data carry 

some measurement errors. When striving to integrate geophysical tomograms and sparse 

geotechnical logging data for inferring a spatially continuous model of the geotechnical 

target parameter tomography ambiguity, logging data errors as well as spatially variable 

and usually unknown inter-parameter relations between the datasets to be integrated 

must be taken into account.  

Traditionally, deterministic transfer functions have been used to link geophysical 

parameters, e.g. P- and S-wave velocities, with geotechnical target parameters, e.g., 

sleeve friction. Such approaches have severe limitations handling unknown and non-

unique inter-parameter relations. Recently, statistical or geo-statistical frameworks have 

been proposed which allow for improved incorporation of uncertainty and non-unique 

inter-parameter relations. Usually, they are used to link deterministically derived 

geophysical tomograms with the target parameter and thus do not incorporate 

tomographic reconstruction ambiguity. Only recently, statistical approaches have been 

developed and applied to link ensembles of equivalently plausible tomographic models 
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with target parameters measured in boreholes (e.g. Rumpf and Tronicke, 2014; Asadi et 

al., 2015).  

 Based on Asadi et al., (2015), we strive to link multiple ensembles of equivalent 

seismic P-wave, S-wave and radar velocity tomograms with sleeve friction logs. In doing 

so, we transduce the tomographic ambiguity described by 30 equivalent P-wave, S-wave 

and radar velocity models into probabilistic statements about 2D sleeve friction 

distribution. We extent the approach of Asadi et al. (2015) in a way that also estimated 

logging errors can be considered in the 2D probabilistic sleeve friction prediction. We 

employ an Artificial Neural Network (e.g., Asadi et al. 2015) to link the tomograms and 

the target parameter. Thus, we ensure sufficient flexibility to cope with unknown and even 

non-unique relations between sleeve friction, P-wave, S-wave and radar velocity.  

C.3 Artificial Neural Networks (ANN)  

Feed-forward artificial neural networks are well-studied and widely applied machine 

learning algorithms for earth science applications to prediction nonlinear functions 

between inputs and target parameters of the ANN. This machine learning method does 

not require the assumption of a prior solution structure or data linkage model. ANNs 

consist of different layers, referred to as input, hidden and output layer. In the hidden layer 

interconnected elements known as neurons are present acting as linking elements 

between input and output information. During training, test, and validation phase ANNs 

try to find the best fit between input and target parameters. The structure of feed-forward 

neural networks is shown in Figure C-1. During the learning phase the ANN tries to 

Figure C-1: Structure of a three-layer 
Artificial Neural Network. The input layer 
prepares data for feeding the ANN. The 
operation of the hidden layer is determined by 
inputs and weights of inputs (W). The 
operation of the output layer is guided by the 
hidden layer and connected to the results of 
ANN training. 
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minimize the mean squared error (MSE) or weighted mean squared error (WMSE), i.e., 

the error between the predicted output of the ANN and the measured target values. MSE 

and WMSE are parameters evaluating the accuracy of the trained ANN. If 

{(x1,t1),(x2,t2),…,(xN,tN)} be a set of training tuples, where xi⊂X be a vector of input 

attributes, and ti⊂T a vector of target attributes, the MSE is defined as MSE=
1

2
∑ (𝑌𝑖 −𝑁

𝑖=1

𝑡𝑖)
2. N is the number of observations in the training dataset. If measurement errors shall 

be considered during the training, the MSE must be replaced by the WMSE. The WMSE 

is defined as WMSE=
1

2
∑ 𝑤𝑖(𝑜𝑖 − 𝑡𝑖)

2𝑁
𝑖=1 , w determines the weight of the related results of 

ANN, which can be the accumulated relative errors of the logging data and the 

tomographic reconstruction ambiguity. 

C.4 The Processing Flow  

Basic assumption of this study is that logging data and tomographic datasets image 

the same reality and are therefore compliant. Figure C-2 shows the processing flow 

followed to create a probabilistic prediction of 2D sleeve friction constrained by ensembles 

of equivalent radar, P-wave, and S-wave tomograms. Prediction is repeatedly done using 

the MSE and the WMSE as performance measure when training the ANN. When using 

the MSE, tomographic ambiguity and logging errors are ignored during the training. 

Figure C-2: Processing steps for the prediction of 2D sleeve friction models constrained by 
ill-posed geophysical tomography. 
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Instead, the ANN considers the provided training information as true and strives to link 

tomograms and logging data as good as possible. This results in prediction models that 

can be excellent for the given training data, but poor at different locations in the model 

area. When using the WMSE training residuals are error normalized. This reduces the 

importance of tomographically determined velocity information suffering from poor 

determination accuracy and particularly noisy sleeve friction readings during the training 

procedure. The learned linkage model may be less accurate but not over-fit the data 

beyond their uncertainty limit.  

In our example, radar, S-wave and P-wave crosshole tomographic datasets comprise 

complimentary information about the ground and allow for spatially continuous 2D 

imaging of radar, S-wave and P-wave velocity variations. We use fully non-linear self-

organizing inversion (Paasche, 2015) to achieve ensembles of 30 equivalent radar, S-

wave and P-wave tomographic models illustrating the ambiguity of the tomographic model 

reconstruction for each underlying dataset. This results in 27000 possible combinations 

of radar, S-wave and P-wave tomograms (303) for training. Finally, we apply the 27000 

trained prediction models to the model areas, where no sleeve friction information has 

been measured to achieve 2D probabilistic sleeve friction information. 

C.5 Results 

We use the database recorded by Linder et al. (2010) comprising two cone 

penetration tests within the 2D tomographic plane of cross-borehole P-wave, S-wave and 

radar traveltime datasets. Figure C-3 shows 30 equivalent radar, P-wave, and S-wave 

tomograms achieved by self-organizing inversion (Paasche, 2015) of the tomographic 

datasets. The solutions diverge increasingly towards the upper and lower model edge, 

whereas the velocities in the central parts of the tomograms are well defined. The velocity 

variability in the tomograms illustrates the ambiguity of the tomographic reconstruction 

problems.  

For each combination of tomograms a relative error weight 

wi=1/(ERi+ESi+EPi+ESFi,) is calculated for every tomographic grid cell i used for training. 

ERi, ESi, and EPi are the relative errors of Radar, S-wave and P-wave velocity expressed 
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as ratio of the actual velocity of the chosen model at the i-th cell over the velocity range 

of all 30 models at the i-th cell. ESFi is the relative error of measured sleeve friction 

integrated over the i-th tomographic grid cell. Wi is considered as error weight in the 

WMSE when training the ANN.  

Figure C-4 shows the probabilistic prediction results of 2D sleeve friction based on the 

ANNs trained with all combination of radar, P-wave, and S-wave tomograms. The result 

achieved when using the MSE performance measure for training is shown in Figure C-

4a. At the location of the logging data the training has been performed and the learned 

prediction model offers highly accurate prediction at these positions. In the remaining part 

of the 2D area the ranges of predicted sleeve friction are large, due to simple error 

propagation when applying the over-fitted prediction model to this model regions.  

When trying to account for measurement errors in the training step, the predicted range 

is clearly reduced. Furthermore, the regions of high relative frequencies are now more 

sharply contoured. At the position of the boreholes the prediction accuracy is decreased 

Figure C-3: 2D geophysical velocity tomograms illustrated as laterally neighboured 1D 
velocity panels. The black lines illustrate 30 equivalent (a) radar, (b) P-wave, (c) S-wave 
velocity models. Tomographic grid cells have 0.5 m and 1m vertical and lateral side 
lengths, respectively. 
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but at the rest of the area this type of training strategy can offer better constrained 

predictions.  

C.6 Conclusions 

 In this work we offer a strategy for linking multiple geophysical tomograms to sparse 

geotechnical information, e.g., logging data. We fully account for tomographic ambiguity 

expressed by ensembles of equivalent tomograms and transduce this ambiguity into 

prediction uncertainty. Additionally, logging errors can be incorporated to avoid an 

overfitting of the ANN used to learn the linkage model relation tomographic and logging 

information. The results in this work are exemplary illustrated based on the sleeve friction 

as target parameter. However, this method can be applied to any combination of 

tomograms and logging data to achieve 2D or 3D probabilistic predictions of the target 

parameter variability. 

Figure C-4: Results of our 2D probabilistic prediction of sleeve friction. The dotted black 
lines show the measured logging data of sleeve friction that are used for training the ANN 
and calculation of the logging error. Red color corresponds to high relative frequencies. 
Blue color corresponds to low relative frequencies. Note that the ANNs trained with (a) with 
the MSE performance measure offer increased ranges of sleeve friction compared to the 
results (b) achieved when using the WMSE.  
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Appendix D 

Predicting Porosity According to Ensembles of Collocated 

Radar and Seismic Tomographic Models with Artificial 

Neural Networks 

A. Asadi, P. Dietrich, H. Paasche 
Abstract of the 75th annual conference of the DGG,  

23. - 26. March 2015, Hannover 

D.1 Abstract 

Predicting the porosity of the ground according to radar and seismic tomographic 

information is an important task in geophysics but there are some problems in traditional 

ways for doing this prediction. Frequently, people select deterministic models of radar and 

seismic velocities and use them for prediction of porosity distributions using deterministic 

petrophysical transfer functions. This traditional method cannot offer realistic confidence 

and prediction intervals. A confidence interval determines a range of values that are 

considered as acceptable for prediction result with a specified probability that the value 

of a parameter lies within it. A prediction interval is an estimate according to the observed 

information offering a range in which future observations will fall with a certain probability. 

In our work we use Artificial Neural Networks (ANN) that are one of the most powerful 

tools for prediction of target parameters. ANNs are able to learn from multi-layer input 

information, such as ensembles of equivalent tomographic geophysical models achieved 

by fully non-linear inversion, during the train step and can reveal hidden and strongly non-

linear dependencies, even when there is a significant noise in the training set. Calibration 

with sparse information about the target parameter, e.g., porosity information achieved 

by borehole logging, is required for training ANN. Results show that our approach is 
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powerful for predicting the porosity distribution of the ground while providing quantitative 

information about confidence and prediction intervals. 
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Appendix E 

Conceptual Developments for Clustering Mapped Data 

Emanating from Technical Sensors and Subjective 

Insights of Human Experts 

A. Asadi, P. Dietrich, H. Paasche 
Abstract of the 75th annual conference of the DGG,  

23. - 26. March 2015, Hannover 

 E.1 Abstract 

When exploring the ground, geophysicists and other Earth scientists frequently 

map the available observations in individual but collocated thematic images, e.g. 

geological, hydrological, magnetic, electrical conductivity or radiometric maps. As 

humans we are trying to analysis these images according to three features: Color or 

absolute value of every point, edge information of structures and textures in the maps. 

Integrating and segmenting multiple thematic images, e.g., by cluster analysis, such as 

fuzzy c-means, k-means or expectation maximization (EM) is one of the important tasks 

in geoscientific map analysis. Traditional algorithms have some problems in this subject. 

For example, partitioning or model-based cluster analyses, e.g., fuzzy c-means or EM, 

analyze just the color or absolute values and they do not consider other features like 

edges and texture in the maps. Furthermore, there is no way for intelligent combination 

and utilization of (partly) subjective and technical information in such cluster analyses, 

e.g. pre-classified geological maps or geophysical maps, respectively. We are going to 

discuss conceptual ideas inspired by data mining for integrating and clustering maps, 

while paying attention to their subjective and technical acquisition procedure. The new 

concepts may potentially allow for multi-map integration and cluster analysis according to 

the color or absolute value, edge and texture information in the mapped technical 
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information and additional consideration of knowledge provided by human experts. We 

illustrate critical aspects of our conceptual ideas using small synthetic datasets illustrating 

problems and potential when clustering data emanating from technical (geophysical) 

sensors and subjective insights or expectations of human experts. 
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Appendix F 

Probabilistic Integration of Tomograms and Logging Data 

Accounting for Tomographic Ambiguity and Logging Data 

Errors 

A. Asadi, P. Dietrich, H. Paasche 
Abstract of the 77th annual conference of the DGG,  

2017, Potsdam, Germany 

F.1 Abstract 

Probabilistic prediction of 2D or 3D images of hydrologic or geotechnical parameters 

solely measured along one dimension in boreholes can contribute to solve hydrological, 

petroleum, or engineering exploration tasks. We build on a recently developed fully data-

driven workflow interpolating logs of the same hydrological or geotechnical target 

parameter acquired in different boreholes by considering ill-posed geophysical 

tomography. Tomographic images between the boreholes are reconstructed using a 

particle swarm optimization algorithms searching the solution space of the underlying 

inverse problem globally. We compute multiple tomograms for each available 

tomographic dataset, which all fit the underlying dataset equally well. We use Artificial 

Neural Networks (ANNs) to find the optimal prediction models between the computed 

ensembles of equivalent geophysical tomograms and the sparse measured logging data. 

During the training phase of ANNs we take the uncertainty of logging data into account 

as well as the ambiguity of geophysical tomographic image reconstruction to avoid data 

overfitting when learning the prediction model. Additionally, we account for differences in 

the spatial resolution of logging data and tomographic models. This approach can be 

applied to any combination of geophysical tomograms and hydrologic, petroleum or 

engineering target parameters solely measured in boreholes. To illustrate our workflow, 
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we reprocess an available field dataset collected at a field site South of Berlin, Germany, 

to characterize near-subsurface sedimentary deposits. In this example we employ 2D 

cross-borehole tomographic radar, P-wave, and S-wave velocity models to constrain the 

prediction of tip resistance, sleeve friction, and dielectric permittivity as target parameters. 
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Appendix G 

Incorporating Hyperspectral Datasets in the Integration 

Strategy Introduced in Chapter 4  

 

G.1 Process  

Hyperspectral datasets provide information about the electromagnetic spectrum for 

each data point in the map domain (or pixel in the image domain) to achieve information 

about objects, material or physical processes in the domain. I have tested the method 

presented in chapter 4 to segment a small part of the Schäfertal catchment (100*100 data 

point) only based on hyperspectral technical information. The goal of this study was 

showing the ability of the introduced method in chapter 4 to work with different technical 

datasets and showing the potential of the hyperspectral datasets to identifying and 

segmenting structures in the Schäfertal catchment. The used hyperspectral dataset 

comprises 340 spectral bands. I used 72 bands by selecting every 5th band. This has 

been done to reduce the amount of data based on the knowledge that neighbored spectral 

bands are usually highly correlated. Alternatively, principal component analyses striving 

to describe dominant patterns in the hyperspectral cube by a few eigenvectors are 

popular data reduction tools, but go always along with filtering out some information, 

which may be critical.  
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Figure G-1 presents exemplary three selected bands of the considered 

hyperspectral information. Like other technical data, the hyperspectral dataset carries  

noise, e.g., random or anthropogenic effects (e.g., driving lanes of tractors).  The data 

which I had used was d100*100*72, a 100 x 100 data point/ pixel region for the considered 

Figure G-1: Two exemplary bands of the hyperspectral data, each band carries random 
noise and anthropogenic effects. 

Figure G-2: (a) 72 bands of information for one pixel in 2D area, red, gray, and blue line 
show measured data, fitted linear model, and difference between measured data and fitted 
model, respectively. (b) all measured data (red line) and difference between measured data 
and fitted liner model for 10000 pixel in the 2D area. The selected two position presents the 
decreasing of the difference between noisy points (lower bands) and normal points (higher 
bands), in the measured data and fitted data, which in fitted results this difference has been 
decreased. 
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72 bands. I considered it as two dimensional data matrix d10000*72, with 10000 being equal 

to the number of data points or pixels in the 2D area. For recognizing the difference 

between points in the driving lanes (which carry some anthropogenic effect) and normal 

points (points without any anthropogenic effects), I had compared these points with each 

other. I recognized that points affected by anthropogenic and environmental noise exhibit 

systematically decreased values in all bands. For solving this problem I fitted a polygon 

function in each pixel. Then, I had calculated the difference between fitted model results 

and measured data. Figure G-2 illustrates this step, Figure G-2a shows measured data, 

fitted model, and the difference between fitted data and measured data for an exemplary 

point in the 2D area. Figure G-2b shows the measured data and difference for all 10000 

data points in the 2D area. In the further steps for clustering I used the difference data 

resultant from fitted models instead of the measured data.  

Based on the difference data, in each band boundaries have been detected, and I 

had calculated the total boundary map resultant from all boundary information from 72 

bands in the 2D area. Then, based on shortest path calculations the new information 

vector had been created as input for the clustering method (see workflow of chapter 4). 

Figure G-3a presents the total boundary map of the 72 filtered hyperspectral bands that 

resulted from boundary detection and shortest path computation. Figure G-3b shows the 

Figure G-3: Results of the clustering method. (a) Total boundary map of selected 72 bands, 
(b) Clustering results for small part of Schäfertal (100*100 pixel) based on the hyperspectral 
datasets for desired four clusters. 
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integration and segmentation results for a 4 cluster solution of the small part (100*100 

pixel) of the Schäfertal based on the hyperspectral datasets. For finding the meaning of 

the clusters, detailed ground sampling would be necessary. In principal, it is possible to 

expand the results to the entire Schäfertal catchment dataset. 
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Appendix H 

Histogram Normalization 

H. 1 Process and Results 

In chapter 4 addressing integration and segmentation of subjective and objective 

maps, I tested different types of data normalization (0 and 1 interval as illustrated in 

chapter 4, and histogram normalization) in the objective datasets. Here, I present the 

results of the histogram normalization which is a method in image processing for contrast 

adjustment based on the image histogram (Hum et al., 2014). Figure H-1 shows the 

results of the histogram normalization in the objective datasets used in chapter 4 for 

integration and segmentation of the Schäfertal catchment data. This type of normalization 

has good ability to highlight the structure in the map or image, but comparing this figure 

Figure H-1: Histogram normalization for (a) elevation, (b) slope, (c) TWI, and (d) insolation 
maps of the Schäfertal catchment.  
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with Figure H-5 in chapter 4, it is obvious that the histogram normalization highlights also 

the anthropogenic effect (i.e., driving line of the farmer) which is not suitable and realistic 

for the integration and segmentation method. 

I have followed the workflow presented in chapter 4 but now based of the histogram 

normalized datasets. After normalizing the datasets, the boundary detection had been 

applied to the subjective (see Figure 4-4 in chapter 4) and normalized maps (Figure H-

1). Figure H-2 presents the results of the boundary detection for the histogram normalized 

data. Figure H-2a and b show the boundary related to the TWI and insolation, 

respectively.  Figure H-2c presents the total boundary of the technical maps which is 

based on the boundaries of TWI (Figure H-2a), insolation (Figure H-2b) and slope 

(FigureH-1b). Figure H-2d presents the total boundaries based on the boundary of the 

subjective maps (Figure 4-11 in chapter 4) and the boundaries of the technical maps 

(Figure H-2c).  

After determining the total boundary map, I had selected 1000 samples based on 

the sampling strategy described in chapter 4 (presented in Figure H-3a) for calculating 

Figure H-2: Boundary detection results. (a) Boundary of TWI, (b) boundary of  insolation, (c) 
total boundary of technical maps, and (d) total boundary of subjective and technical maps.  
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all shortest paths and path lengths form these samples to all other points in the 2D area 

of the Schäfertal catchment. After calculating the shortest paths, path lengths, and 

corresponding similarities the new information vector has been created based on the 

shortest path results and the similarity matrix. This new information vector had been 

considered as input for clustering. Figures H-3b and c present the results of the clustering 

based on 1000, 500, and 250 samples, respectively. In the left part of these figures it is 

obvious that the driving lanes are presented in the results of clustering. Furthermore, in 

the up and bottom parts of this area nested clusters are obvious. Comparing these results 

with clustering results based on the 0 and 1 interval normalization (see Figure 4-14 in 

chapter 4) I suggest to use 0 and 1 interval normalization in the Schäfertal catchments. 

 

 

 

 

Figure H-3:  (a) Distribution of 1000 samples. (b) - (d) clustering results for 30 
clusters based on 1000, 500, and 250 samples, respectively.  
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2012  Azad Shojaei, Abdoljabar Asadi,”Presenting a Parallel Algorithm for 
Constructing Cartesian Trees and its Application in Generating Separate 
and Free Trees”, Journal of American Science, 8(6), pp: 811-813. 

 

 
 
Conference Papers and Presentations 
 
30 May - 2 Jun 2016    A. Asadi et al.,”2D Probabilistic Prediction of Sparsely Measured Geotechnical 

Parameters Constrained by Tomographic Ambiguity and Measurements 
Errors,” 78th EAGE Conference & Exhibition 2016, Vienna, Austria. 
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6-10. Sep 2015         A. Asadi et al.,” Predicting continuous distributions of sparse data under full 
consideration of tomographic reconstruction ambiguity,” Near Surface 
Geoscience 2015 - 21st European Meeting on Environmental and 
Engineering Geophysics, Turin, Italy. 

23- 26. Mar 2015    A. Asadi et al., “Predicting porosity according to ensembles of co-located 
radar and seismic tomographic models with Artificial Neural Networks,” 
75.Jahrestagung der Deutschen Geophysikalischen Gesellschaft, Hannover, 
Poster. 

23- 26. Mar 2015   A. Asadi et al., “Conceptual developments for clustering mapped data 
emanating from technical sensors and subjective insights of human 
experts,” 75.Jahrestagung der Deutschen Geophysikalischen Gesellschaft, 
Hannover. 

12-14. Mar  2013    A. Asadi et al., ” Provide automatic method for finding the optimal threshold 
value and discovering efficient association rules using Binary Particle 
Swarm Optimization," 18th National CSI Computer Conference, Iran, 
Tehran, In Persian. 

22-28. Feb 2013      A. Asadi et al.,” A new method for automatic discovery of threshold value and 
positive or negative association rules," 11th Iranian Conference on 
Intelligent Systems, Kharazmi University, Tehran, In Persian. 

04-05. Dec 2012     A. Asadi et al.,” A new method for the discovery of the best threshold value 
for finding association rules using Binary Particle Swarm Optimization,” 
THE SIXTH DATA MINING CONFRANCE IDMC’12 . IRAN, TEHRAN. 

04-05. Dec 2012     A. Asadi et al.,” Provide a new method for detecting positive and negative 
optimal performance association rules in very large databases using Binary 
Particle Swarm Optimization, “THE SIXTH DATA MINING CONFRANCE 
IDMC’12 . IRAN, TEHRAN. 

2011   B. Maghsodi, B. Nori, and A. Asadi,” Using data mining to predict the 

amount of gas,” Third National Conference on Computer Engineering and 

Information Technology, Hmadan, Iran, In Persian. 

2011 A. Asadi et al.,” A bidder offering the best service components,” 

Conference on Computer Engineering and Information Technology, Islamic 

Azad University, Bukan, Iran, In Persian. 

 

 

Attend Courses and Workshops 
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16-18 Dec 2015  Spatial Point Pattern Analysis, UFZ-Leipzig, Germany. 

7-8 Dec 15 / 8 Jan 2016  Time Series Analysis Using Matlab, Leipzig, Germany. 

11-13 Mar 2015 Image Processing, UFZ- Halle, Germany. 

2014 Optimization Algorithms, UFZ, Leipzig, Germany. 

2014 Applied Geophysics and Hydrogeophysics in Geophysical Field Seminar, 10 
days, University of Göttingen, Germany. 

2014 Geographic Information System (GIS), University of Tubingen, Germany. 

2010 Workshop on Data Mining, Tehran, Iran. 

2010 Workshop on Data Mining, Kurdistan University, Sanandaj. Iran. 

Awards and Honors 

2011 Best teacher at the University of Applied Sciences, Divandare Branch 

2002 Third stage in the student part of Khwarizmi International Award at the 
state of Kurdistan, Iran 

2001-2003  ranked as best student in Taleghani Vocational School, Sanandaj, 
Kurdistan, Iran 

 

Interests 

Research Areas: 

 Data Mining 

 Machine Learning 

 Geoinformatics 

 Optimization Algorithms  
 

Application: 

 Business intelligence 

 Market analysis 

 Geoinformatics 
 

 

Topics: 
 Big Data  
 Spatial and temporal data 
 Incomplete data sets and 

noisy observations 

 

Skills 

 Languages: English (Fluent), German (B2), Persian (Native), Arabic (B1), Kurdish (Mother 

Language). 
 

 Programming: Python (Semiskilled), C# (Proficient), ASP.Net (Proficient), C++/C (Semiskilled), 
MATLAB/Octave (Proficient), Pascal (Proficient), Visual Basic (Proficient), JavaScript(Familiar), 
Assembly (Proficient). 
 

 Data Mining Programs: R (Proficient), Microsoft R Services (Proficient), MATLAB (proficient), 

Weka (proficient), BI in SQL Server (Semiskilled). 
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 DBMS: SQL Server (Semiskilled), Access (Semiskilled). 
 

 Visualization: d3 (Semiskilled). 
 

 GIS: ArcGIS (Familiar). 
 

 Platforms: Windows (Proficient), Linux (Familiar).  
 

 Others: Hadoop (Familiar), DirectX Programing, Photoshop, Multi-Threaded and Parallel 
Programming, Java (Familiar). 

Hobbies and Interests 

 Music & Art: Visiting Concerts, Cinema, and Theater, Photography. 
 

 Sport: Football, Running, and Swimming. 
 

 Others: Reading, Internet, Visiting Family and Friends, Computer Programming 

 

 


