INFERRING AND UNDERSTANDING ADAPTATION FROM
PATTERNS OF GENETIC DIVERSITY

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultat
der Eberhard Karls Universitdt Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
TAYLOR AUSTIN KESSINGER

aus Westminster, California, USA

Tiibingen, 2015



Taylor Austin Kessinger: Inferring and understanding adaptation from
patterns of genetic diversity, Dissertation © 2015

TAG DER MUNDLICHEN QUALIFIKATION:
08.12.2015

DEKAN:
Prof. Dr. Wolfgang Rosenstiel

BERICHTERSTATTER:
1. Prof. Dr. Daniel Huson
2. Dr. Richard Neher



ERKLARUNG

Hiermit erkldre ich, dass ich die Arbeit selbstindig und nur mit den
angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die
im Wortlaut oder dem Sinne nach anderen Werken entnommen sind,
durch Angaben der Quellen kenntlich gemacht sind.

Tiibingen, 2015

Taylor Austin Kessinger






ABSTRACT

The central goal of population genetics is to infer the evolutionary
history of a population from observed genetic variation. However, the
myriad of evolutionary processes often leave ambiguous signatures,
so it can be difficult to reconstruct the evolutionary past. Classical
methods typically assume that sequence variation is shaped by neu-
tral processes such as generation to generation sampling variance, i.e.,
genetic drift.

During the course of my doctoral work, I have undertaken sev-
eral projects aimed at analyzing populations that are dominated not
by neutral processes but by adaptive ones. First, the HIV popula-
tion within an infected patient experiences strong selection due to
immune pressure, and a low recombination rate causes beneficial
mutations to sweep concurrently and interfere. To this end, I con-
structed a realistic model for the evolution of HIV and a method
for inferring the selection coefficients of beneficial mutations thereby.
Second, many tests of natural selection fail to distinguish between de-
mographic expansion and rapid adaptation. Therefore, I developed a
novel method that quantifies the collective effect of many mutations
in the genome. The method does not depend on assumptions about
demography and can indicate whether genetic draft (i.e., widespread
hitchhiking) or genetic drift is the major factor shaping neutral vari-
ation. Finally, qualitative differences between rapidly adapting and
neutrally evolving asexual populations, such as the statistics of their
genealogies, are increasingly well understood, so I contributed to a
project that extends coalescence in asexual populations to sexual pop-
ulations. Properties of sexual populations can therefore be reduced to
those of asexual populations, with suitably rescaled parameters.

With this work, I have helped to further a broad and current re-
search program that recognizes the critical role of linked selection,
interference, and genetic draft in interpreting patterns of genetic di-
versity.

ZUSAMMENFASSUNG

Das Hauptziel der Populationsgenetik ist, die evolutiondre Vergan-
genheit einer Population aus der beobachteten genetischen Variation
zu rekonstruieren. Jedoch kann die Vielfalt evolutiondrer Prozesse
vieldeutige Signaturen hinterlassen und diese Inferenz erschweren.
Klassische Methoden setzen normalerweise als gegeben voraus, dass
die genetische Variation durch neutrale Prozesse, wie zum Beispiel



Sampling-Varianz von Generation zu Generation (genetische Drift),
bestimmt wird.

In meiner Doktorarbeit bschreibe ich verschiedene Projekte, deren
Zweck war, Populationen zu analysieren, die nicht durch neutrale
sondern adaptive Prozesse dominiert werden. Zum Einen ist die Pop-
ulation des HI-Virus innerhalb eines Patienten stdrker natiirlicher
Selektion durch das Immunsystem ausgesetzt. Seltene Rekombina-
tion hat zur Folge, dass mehrere adaptive Mutationen miteinander
konkurrieren und sich gegenseitig beeinflussen. Ich habe ein real-
istisches Model fiir die Evolution des Virus und eine Methode fiir
die Inferenz von Selektionskoeffizienten der adaptiven Mutationen
entwickelt. Zum Andern sind viele Tests auf natiirlichen Selektion
wenig geeignet, zwischen demographischer Expansion und schneller
Adaption zu unterscheiden. Deshalb habe ich eine neue Methode en-
twickelt, welche den kollektiven Effekt natiirlicher Selektion auf viele
Mutationen im gesamten Genom quantifiziert. Die Methode ist unab-
hédngig von der demographischen Geschichte und erlaubt zu entschei-
den ob genetische "Draft" oder genetische Drift der hauptsachliche
Faktor ist, der neutrale Variation dominiert. Dariiberhinaus werden
qualitative Unterschiede zwischen schnell adaptierenden und neu-
tral evolvierenden asexuellen Populationen zunehmend besser ver-
standen, zum Beispiel die Statistik ihrer Genealogien. Ich habe an der
Entwicklung einer Theorie der Koaleszenz in schnell adaptierenden
sexuellen Populationen mitgewirkt. Eigenschaften sexueller Popula-
tionen konnten durch geeignetes Reskalieren der Parameter auf das
dquivalente Problem in asexuellen Populationen zuriickgefiihrt wer-
den. Mit diesen Projekten habe ich zu dem breiten und aktuellen
Forschungsprogramm beigetragen, das die wichtige Bedeutung von
Genkopplung, Interferenz, und genetischem "Draft" bei der Interpre-
tation der beobachteten genetischen Diversitdtsmuster beriicksichtigt.

Vi



The fact is that most of us are rather ordinary,

having a roughly equal assortment of good and bad
genes at those loci where the frequencies of the two are
approximately equal. None of us is simultaneously
Mozart, Newton, da Vinci, Fisher, Haldane, and Wright.

— Warren J. Ewens
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INTRODUCTION

1.1 MOTIVATION

The earliest theories of evolution, such as those of Anaximander, Empe-
docles, and Aristotle [2, 23], were remarkably sparse on the details of
the evolutionary process: the idea that organisms changed over time
and had descended from earlier forms (i.e., descent with modifica-
tion) was much more important than the nuts and bolts of how change
happens, and they did not conceive of evolution as a process that
continued today. The lack of a clear, concrete mechanism arguably
inhibited the widespread acceptance of evolution, even when (two
millennia later) the work of British and French naturalists rekindled
interest in evolution, then known as "transmutation". This changed
substantially with the work of Darwin [30], who demonstrated that
natural selection might not only cull weak individuals from a pop-
ulation (as Blyth [13] had previously suggested) but also positively
aid populations in adapting to new or changing environments. Dar-
win’s thesis did not depend on unquantifiable, cryptic, pre-Galilean
notions such as "potentiality" but rather was extrapolated from the
observable process of artifical selection as practiced by breeders.

Unfortunately, even Darwin’s theory was rather simple. He did not
have a satisfactory explanation for how new genetic variation is in-
troduced into a population [31], and he had no concept of the im-
portance of genetic drift. But this setback is passed. A century and
a half later, the tapestry of evolutionary theory is woven with many
fibers: forces such as mutations, drift, population expansion and con-
traction, separation of populations, founder effects, epistasis, linkage
and hitchhiking, sexual selection, and many others must now be reck-
oned with.

The central goal of population genetics is to use sequence data (or
some other kind of discrete heritable variation, such as binary mor-
phological characters) to infer something about the evolutionary his-
tory of a population. The multiplicity of forces involved means that
this is not a straightforward task. Patterns of standing variation are
seldom unambiguous: it often happens that more than one evolution-
ary scenario is consistent with the sequence data we observe.

Natural selection remains one of the most important forces in evo-
lution and, consequently, in evolutionary theory and population ge-
netics. In addition to being the major deterministic component of evo-
lution and the only one that can directly lead to adaptation, natural
selection is tightly linked to the environment in which an organism
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finds itself. After all, the environment is ultimately what imposes the
constraints that cause some organisms to perform better than others
on average. In this way, selection bridges the gap between population
genetics and other areas of biology, such as ecology and functional
genomics.

A substantial portion of population genetics has historically been
devoted to understanding sequence variation in populations of mul-
ticellular eukaryotes. These populations are often somewhat similar
to ours, characterized by large genomes with many segregating sites,
frequent recombination that breaks up correlations between distant
loci, and small population sizes. One major suite of methods comes
from neutral theory, according to which most sequence variation is
neutral and is shaped by genetic drift, i.e., imperfect sampling of the
population from generation to generation [67].

Unfortunately, methods that are perfectly appropriate for under-
standing these populations are sometimes wrongly applied to popu-
lations that in many respects are quite different. For example, many
pathogens feature infrequent recombination, pervasive strong selec-
tion due to a hostile environment, and very large population sizes.
In these populations, selection at linked sites is hugely important in
shaping neutral variation. There is even some reason to think adap-
tive processes rather than neutral ones might be critical in shaping
neutral variation throughout the tree of life [76].

In my doctoral research, I have focused on the inference of selection
from sequence data. The overarching goal has been to detect selection,
especially in rapidly adapting organisms, in a way that robustly re-
spects these populations” unique dynamics.

1.2 SYNOPSIS

Chapter 2 begins by outlining the population genetic theory that
forms the groundwork for subsequent chapters. I discuss the behav-
ior of neutrally evolving and rapidly adapting populations, including
their coalescent properties, patterns of standing variation, and the
fates of individual alleles.

In Chapter 3, I present a novel, simple model for inferring selection
coefficients based on time series data from acute infection in HIV.
This model is highly parsimonious but takes into account the rapid
evolution and fairly low recombination rate of the virus. As a result, it
gives selection coefficient estimates that are significantly higher than
those of earlier studies.

Next, in Chapter 4, I relate a method for estimating the strength
of selection in rapidly adapting organisms. It is based solely on the
topology of a genealogy, not the branch lengths thereof. As a result, it
is insensitive to demographic change, which sets it apart from many
previous methods, and its performance coheres with our intuitions
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about the effects of selection on genealogies. It is a specific albeit
somewhat noisy tool for assaying the presence and importance of
natural selection. I employed this method to infer the strength of se-
lection acting on the HA segment of influenza A subtype H3N2 and
found evidence that the segment undergoes very rapid adaptation.

The dynamics, coalescent properties, and patterns of variation in
rapidly adapting asexual populations are increasingly well under-
stood. For my third project, which I outline in Chapter 5, I helped
extend these principles to sexual populations. The extension relies
on a simple, robust scaling argument that considers the length of an
effectively asexual block in a sexual genome. In this way, the prop-
erties of coalescence and genetic diversity in rapidly adapting sexual
populations can be reduced to those of asexual ones.

Finally, in Chapter 6, I offer some comments on major results, the
broader picture, and future directions.

STATEMENT ON DATA ANALYSIS AND COMPUTATION

During the course of this work, I have liberally made use of several
important Python packages, including:

e numpy and scipy [96]
e matplotlib [63]
e BioPython [24]and Bio.Phylo [120]

Several others are named and acknowledged in the main text.






BACKGROUND

2.1 NEUTRALLY EVOLVING POPULATIONS

The neutral theory of molecular evolution has proven one of the most
useful and successful research paradigms in population genetics. It
was initially formulated by Kimura [67], who suggested that the ob-
served level of divergence in mammal hemoglobin is too large to be
explained by natural selection. He posited, as a result of this level of
divergence, that most amino acid substitutions and hence mutations
are likely to be neutral rather than beneficial. Though he invoked the
degeneracy of the genetic code and functional unimportance of many
amino acid residues as a justification for this statement, subsequent
work, e.g. by Ohno [95], suggested that much of the genome is non-
coding and capable of accumulating mutations essentially unabated.

The neutral theory has two major components. One, most observed
variation between species or between lineages within a species is
neutral: beneficial mutations are rare, and deleterious mutations are
typically destined for extinction, but neutral alleles occur frequently
enough that they substitute often. Two, the dynamics of most neutral
alleles are governed by genetic drift, i.e., imperfect sampling from one
generation to the next. I will briefly recapitulate this in terms of the
Wright-Fisher model for a haploid population, one of the standard
models in population genetics, and explore its implications for the
genealogy of a population.

2.1.1  Wright-Fisher model

Biology is complicated, so it is almost always necessary to deal with
vastly simplified models in order to make useful predictions. As we
shall see, the Wright-Fisher model allows us to understand a great deal
about how populations evolve in certain limits.

We begin with the simplest form of the model, where all individu-
als are equal in fitness. Consider a population of N non-recombining,
haploid individuals, and form the next generation according to the
following rule: for each individual, choose a random ancestor in the
previous generation with probability 1/N (equal probability arises
from the assumption of equal fitness). The model can easily be ad-
justed to incorporate selection (by causing fit parents to be selected
with probability proportional to their relative fitness), demography,
or other processes. A schematic of this process can be seen in Fig-
ure 2.1.
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Figure 2.1: A schematic of the Wright-Fisher model (left). Each individual
randomly chooses an ancestor in the above generation. We trace
the genealogies of different sampled individuals (pink lines of
descent). The result is a genealogical tree (right) that is commen-
surate with the Kingman coalescent.

Herein, I consider two major applications of the neutral Wright-
Fisher model, which I will later contrast with a rapidly adapting
population: the behavior of neutral variation and the properties of
genealogies. I will discuss only the case of asexual haploid individ-
uals. Extensions to diploid individuals are often easily achieved by
replacing N with 2N.

Suppose our haploid population has two variants at some locus,
one wild type and one mutant. Let i be the number of mutant indi-
viduals at time ¢ (so that the frequency nu is i/N) and let j be the
number of mutant individuals at time ¢ + 1, i.e., the next generation.
Then the transition probability matrix relating i and j is given by

IOl I

This is just a binomial distribution with N trials and "success" proba-
bility i/N = v. Thus, for any value of v,

E(Av) =0 (2.2)

and
v(l—v)

N

In other words, there is no directional change in v from generation
to generation, but v will experience small fluctuations due to imper-
fect sampling: the frequency will "drift" with steps on the order of
~ v/v/N. It is worth noting that the variance is zero when v = 0 or 1.
These are "absorbing” states: extinct alleles do not re-emerge except
via mutations.

Var(Av) = (2.3)
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Selection is not difficult to incorporate into the Wright-Fisher model.
Suppose that, rather than all individuals having equal fitness, the
mutant has a selective advantage s over the wild type. The mean off-
spring number from a mutant individual, i.e., the probability that a
mutant individual is selected as the ancestor of a random offspring,
will not be 1 but rather (1+5s)/@, withw = v(1+s)+(1—v) =
1 + sv the mean fitness. Then

() () e

E(Av) = Sv(lw_v) (2.5)

which implies

and

v(l—v)(1+s)

N@? '
Note that, in a continuous limit, we can do away with @ with no
problems. This corresponds to rescaling time so that the mean growth
rate in the population is always 1.

At small v, 1 — v is effectively 1, meaning that v increases roughly
as sv per generation: but fluctuations due to drift are on the order
of v/v/N. This means that, when v is below 1/Ns, drift cannot be
neglected in the dynamics. A similar rule applies when v rises above
1 —1/Ns. In terms of the number of individuals, a beneficial mutation
with selection coefficient s needs to drift up to 1/s individuals to be
assured that it will fix. At this point, the change in the number of
mutant individuals Nvs due to selection is substantially larger than
the change due to drift.

The aforementioned general patterns become more obvious when
we consider the behavior of alleles in the limit of large population
size, i.e., considering the limit as N — oo and the time step t be-
comes small, with Nt kept constant. If f(v,t) is the (time dependent)
probability density of v, and if s is small and N large, then the time
evolution of f(v, t) can be represented as

Var(Av) = (2.6)

d 1 92 d
- gf(‘/rt) = N2 vl =v)f(v,t)] + S5, vl —=v)f(v,t)]. (2.7)

This is known as the diffusion approximation [66]. The 1/ N prefactor
in the first right hand side term sets the scale of diffusive "jumps" due
to drift, and the second term corresponds to selection.

One important relation that can be derived from a diffusion ap-
proximation is the fixation probability u(v) given that an allele with
selection coefficient s is currently at frequency v:

1— efZNsv

u(v,s) = (2.8)

1 — ¢ 2Ns '
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Several limits are worth considering. If v = 1/N, i.e., the allele is
present in one individual, the probability becomes (1 —e~%)/(1 —
e 2N %). In this limit, if s is small but N is large, the bottom exponent
— 0 and the top — 2s. (In some alternate models such as the branch-
ing process model of Desai and Fisher [32], the fixation probability in
this limit is s rather than 2s.) If s is zero, the probability becomes 1/N
(after applying L'Hopital’s rule). If s is negative, the fixation probabil-
ity quickly asymptotes toward zero. Thus, beneficial alleles stand a
good chance of fixing, whereas deleterious ones are very unlikely to
do so.

As one might expect, not every beneficial mutation is destined to
fix, i.e., reach frequency 1. Rather, beneficial mutations below 1/Ns
experience substantial fluctuations, meaning there is a high probabil-
ity that they will be lost to drift. Provided that one is ultimately des-
tined to fix, it persists in the population for roughly 1/s individuals
before passing the drift barrier.

Suppose a beneficial mutation has reached v ~ 1/ N, so that its dy-
namics begin to be governed primarily by selection rather than drift.
This condition is known as establishment. Then stochastic effects can
be ignored, and the expression for E(Av) above yields a differential
equation,

d
Pk sv(l—v), (2.9)

which has the solution

1/Oesl‘

v(t) = T+ (e —1) (2.10)

with v9p = 1/Ns. The time for the mutation to sweep through the
bulk of the population, i.e., to transition from v = 1/Ns to the other
drift barrier at 1 — 1/ N, is obtained by solving the above equation
for v =1—1/Ns. This yields
t= %log(l — %) + glog(NS). (2.11)
If the product Ns is small, the former term can be ignored, so that
the sweep time scales simply as ~ s~!log(Ns). This is often a very
short time interval. If the rate at which beneficial mutations enter
the population is U, then the total number entering the population
every generation is NU: so in general, a beneficial mutation will fix
every 1/NUs generations. Provided this is shorter than the typical
sweep time s~ ! log(Ns), beneficial mutations do not interfere: a beneficial
mutation is fixed by the time the next one arrives in the population.
Each beneficial mutation increases the mean fitness by s as it sweeps,
so fitness increases at a total rate v ~ NUs?2.
As an extremely general rule, genetic drift decreases genetic diver-
sity: it can cause loci to hit the absorbing barriers at 0 or 1, but it



2.1 NEUTRALLY EVOLVING POPULATIONS

cannot reverse this process. Consider p, the probability that two ran-
domly sampled gene copies at a locus are different (this is sometimes
referred to as the "heterozygosity"). Then the expected value of p,
when v is the frequency of a mutant allele, is simply

p=2v(l—v). (2.12)

What happens to p as an allele’s frequency changes due to genetic
drift? Let p’ and v/ be the values of p and v in the next generation.
Then

E(p) = B@v'(1—v) =2(1—)(1- 1) = p(1-5).  (213)
In general, t generations into the future, we have
1\ ,

E(p) =p (1 - N) A ope N, (2.14)

That is to say, genetic drift causes a decay in variation, and at long
time scales or in small populations, it is all but certain that even a
neutral allele will disappear from the population.

2.1.2  Kingman coalescence

The Wright-Fisher model is not only useful for understanding the
forward-time dynamics of a population. With a little work, we can
rewind the tape and model the genealogical history of a population,
as well.

Consider b individuals sampled from a population of size N. What
is the probability that, in the previous generation, b individuals have
exactly b distinct ancestors? Essentially one needs to throw b balls into
b distinct boxes out of N. When the first ball is thrown, the second
will land in a different box with probability 1 — 1/N: the third will
land in yet another box with probability 1 —2/N: and so on. Overall,
the probability becomes

P(b distinct boxes) = (1 — ;) <1 — ;) <1 — b;]1>
b—1 1
B 1
-1-5+0 ().

by tracking only the terms of order 1/N or higher. Similarly, two balls
land in the same box with probability 1/N, and there are (g) possible

=1

Nugh

N S

9
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pairs of balls: so the probability of landing b balls into exactly b — 1
boxes becomes

P(b — 1 distinct boxes) = (2;3 (1 - 11;) <1 - ;) (1 - b}f)

RONYES)

The remaining terms are of order 1/N? and can be ignored. In this
way, for large N, the process of individuals coalescing backwards in
time is like a series of Bernoulli trials with success probability b(b —
1)/2N. Taking the limit N — oo and considering a very large number
of trials (i.e., very small time steps) yields a process where individuals
merge at an exponentially distributed rate b(b —1)/2N.

Thus, in the limit of large population size, the genealogies of neu-
trally evolving Wright-Fisher populations can be simulated in the fol-
lowing way: when there are b individuals, wait for a period of time
distributed as exp(2N/b(b — 1)) and merge two at random. b begins
at n, and the process continues until b = 1, i.e., all lineages have been
merged. This is the Kingman coalescent [69]: refer to Figure 2.1 for an
illustration.

The Kingman coalescent is a powerful tool for modeling the evo-
lution of neutral populations. Individuals are treated as completely
exchangeable, i.e., the merging process is identical no matter which
labeled individuals belong to a lineage (or even whether the individ-
uals are labeled at all), and coalescence times are independent. It is,
additionally, easy to simulate, as only the n sampled individuals need
to be considered rather than potentially N individuals at many time
points (as in the forward Wright-Fisher model).

The Kingman coalescent provides a framework for analyzing a pop-
ulation’s history that can be much simpler to work with than the for-
ward Wright-Fisher model. For example, what is the mean time to co-
alescence of an entire sample of 7 individuals? Consider that, when b
lineages are extant, the mean wait time until the next branching event
is simply 2N /b(b — 1): thus,

E(Twvrea) = éb(bﬂjn zszé (1911 - 2) —2N (1— i)

(2.17)
Inserting n = 2 gives the average pair coalescence time, N. The vari-

ance in each coalescence time is simply 2N /b(b — 1)), and a similar
sum yields

(2.16)

n 2
Var(Tyirca) = 4N? [2 Y lz — (1 - 1) ] . (2.18)
= b n

It is worth noting that the two moments have similar behavior. The
total length of the tree can likewise be calculated by noting that, when
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there are b branches on the tree, the wait time until the next coales-
cence event 2N /b(b — 1) multiplied by b gives the branch length in
that interval: thus,

. 2N (=]
E(Tiotal) = gbm = ZNzg i Nlogn. (2.19)

The variance likewise becomes

) n—1 1
Var(Tioa1) = 4N Z 7 (2.20)
b=2

2.2 RAPIDLY ADAPTING POPULATIONS

In natural populations, individuals are essentially never equal in fit-
ness. Rather, some mutations convey a fitness advantage and others
a disadvantage. The situation that is often considered in population
genetics is one where fitness variation is determined by a fairly small
number of mutations with large fitness effects, which "sweep" out
neutral diversity as they expand in the population. In sexual pop-
ulations, these loci can be treated as outliers against a neutral ge-
netic background: the selective advantage s determines roughly how
quickly the sweep happens, but recombination occurs at rate p, decor-
relating distant loci from the effects of the beneficial mutant.

It is increasingly realized, however, that this picture may not be
accurate. Fitness variation may be due to the effects of multiple com-
peting genetic backgrounds or to "soft sweeps" [49, 59], where dif-
ferent beneficial alleles or copies thereof persist on distinct genetic
backgrounds. Selection can be frequent and ubiquitous, and the dis-
tinction between sweep and background often does not hold.

Prior work on rapidly adapting populations has typically focused
on regimes where drift is occasionally interrupted by strong selective
sweeps [6, 123] or strong purifying selection at a small number of sites
[122]. Here, we consider the alternate scenario, one where differences
in fitness between individuals are due to many loci of fairly small
effect so that the fitness distribution is somewhat smooth: in quanti-
tative genetics, this limit is sometimes referred to as the infinitesimal
model [21, 82]. Such populations are not only quantatively but also
qualitatively different from neutrally evolving populations. We focus
on the behavior of neutral alleles and the properties of genealogies:
later, I will comment on implications for the effects of population size
and patterns of neutral variation.

2.2.1  Traveling fitness waves

If fitness variation is due to the additive effects of many loci with
small contributions, then by the central limit theorem, the bulk of the
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Figure 2.2: The genealogy of a rapidly adapting population. When the fit-
ness distribution is due to many small effect loci, it is approxi-
mately Gaussian. The population adapts at a speed v = ¢2. Indi-
viduals quickly trace their lineage back to fit ancestors near the
nose of the fitness distribution (left). Such genealogies are well
described by the Bolthausen-Sznitman coalescent (right), with
multiple mergers and long terminal branches.

fitness distribution can be approximated as a Gaussian. The distribu-
tion will not remain stationary, however. Fit individuals near the nose
will expand quickly; their ancestors will later comprise the bulk of the
population, and unfit individuals in the tail will quickly be driven to
extinction. The width of this distribution determines how much fitter
the individuals in the nose are than the remainder of the population.
As they expand, the bulk of the distribution appears to move forward,
and if mutations provide an influx of fitness variation, the bulk shifts
ahead as individuals in the nose continue to dominate.

In such a scenario, the fate of neutral alleles is not governed pri-
marily by genetic drift. Rather, it matters on which background a new
mutation appears. Mutations that appear in fit individuals, i.e., near
the nose, will ride the wave as individuals carrying them give rise to
a large chunk of the population. Mutations that appear elsewhere in
the population are doomed to extinction.

We can now describe this process with just a bit more rigor. Con-
sider an asexual haploid population of size N with additive fitness
variance ¢2. Fisher’s "fundamental theorem" of natural selection [44]
states that the population’s mean fitness X will change as

d 2

—X=0

7 (2.21)

due to natural selection: see the left portion of Figure 2.2. A more com-
plete expression can be written incorporating the effects of epistatic
variance, contributions from individual mutations, and so on: we ig-
nore these for the sake of simplicity. We proceed by considering only
the case where the variance is roughly constant and an influx of mu-
tations maintains it.
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In this limit, beneficial mutations do not sweep as they might in a
neutrally evolving population: rather, they interfere. Recall that when
beneficial mutations are reasonably rare, so that a mutation’s sweep
time s~!log Ns is much smaller than the rate at which new muta-
tions establish NUs, beneficial mutations spread through the pop-
ulation unhindered. However, that is explicitly not the case in the
rapidly adapting populations under consideration. Instead, multiple
beneficial mutants may appear on the same background, aiding each
other’s expansion, or they may appear on different backgrounds, in
which case they will interfere. The latter is more likely, meaning that
the rate of adaptation is overall slowed: it is logarithmic rather than
linear in N and U [32, 50]. Note that frequent recombination can re-
store the "successive beneficial mutations" dynamics: recombination
decorrelates the behavior of sweeping alleles, so double mutants can
be produced fairly easily via recombination, and often they can sweep
without interference. Interference between beneficial mutants, espe-
cially at nearby loci, due to weak recombination is known as Hill-
Robertson interference [6, 61] and can be seen as a weaker form of
clonal interference.

Like a beneficial mutation, the frequency of a neutral mutation is
strongly affected not only by sampling variance from generation to
generation but also by hitchhiking, i.e., the relative fitness of the ge-
netic background. This widespread hitchhiking is known as genetic
draft [52]. Loci that appear in fit individuals stand a good chance of
fixation. Loci that do not are very unlikely to fix. One consequence
of this dependence on genetic background is that the overall fixation
probabilities averaged over the entire population remain the same, but
the fixation probability depends strongly on the fitness x of the ge-
netic background on which it appears. In general, it is exponential in
x as one nears the nose of the distribution, then linearly increases in
x thereafter [92]. This stands in stark contrast to the situation with ge-
netic drift where the fixation probability for a new neutral mutation
is 1/N no matter whose genome it appears in.

An important property of rapidly adapting populations in travel-
ing wave and other models is the distribution of the number of off-
spring. In a neutral Wright-Fisher population it is binomial (and is
often approximated as Poisson), with mean and variance 1. A rapidly
adapting population can be described by a Wright-Fisher model, but
there is a feature that becomes obvious over longer time scales. Con-
sider an asexual population and an individual with fitness x whose
lineage is large enough to have established in the population. Then
its number of descendants at time ¢ is given roughly by

1 xt—o2t2 /2
7

n(x,t) ~ ;e (2.22)

letting the mean fitness ¥ = 0 at t = 0. The second term in the
exponent corresponds to the increasing mean fitness in the rest of
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Figure 2.3: The behavior of neutral alleles under genetic drift (left) and ge-
netic draft (right). Under drift, neutral alleles take small, diffu-
sive steps in frequency (of order 1/+/N), and they may persist
for a very long time in the population before fixing or going ex-
tinct. Under draft, neutral alleles are rapidly swept about by the
effects of the underlying genetic background (note the different
time scales), and they take large, sustained jumps that do not
lend themselves to a diffusion approximation.

the population: 0?2 /2 = fot x(t')dt'. Since we know the distribution
P(x,0) = (2mc?)~2exp(x?/0?), we can calculate the distribution
P(n,t) by using the above approximation and computing P(n,t) =
P(x,t)dx/dn [91]. Doing so yields

1 o242 10g2 n

372°¢

P(n,t) ~ 82022, (2.23)
Integrating over time gives the distribution of the total number of
offspring a clone produces, which scales as

1

P(n) Nﬁr

(2.24)
in stark contrast to the binomial (or approximately Poisson) one-
generation offspring number distribution under the Wright-Fisher
model. One astonishing feature should now be obvious. The offspring
number variance is given by

2

Var(n) = /Ooo P(n)n?dn — (/Ooo P(n)ndn> , (2.25)

but both integrals diverge (the first one more quickly), meaning that
the offspring number variance likewise diverges [91]. In practical
terms, this divergence is prevented by the fact that the population
size is finite, meaning that the Gaussianity of the fitness distribu-
tion is cut off by the discretization of the number of individuals: the
fittest individual is present not at infinite fitness but rather roughly
xc = 0v/2log No [107, 121], which cuts off the integral. However, the
distribution is at least fat tailed, meaning that no diffusion approxima-
tion is possible.
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Over shorter time scales, the jumps in the allele frequency v are
likewise fat tailed. Allele frequencies take large jumps due to the
underlying ebb and flow of the genetic background that cannot be
captured by a diffusion approximation. This key difference between
drift and draft is illustrated in Figure 2.3. Over long time scales in a
sexual population, it is even possible to construct a modified Wright-
Fisher model where the relevant timescale is the average lifespan of
clones [91]: here, too, the distribution in the number of recombinant
offspring from one clone has a diverging variance.

2.2.2 The Bolthausen-Sznitman coalescent

An additional critical difference between rapidly adapting and neu-
trally evolving populations concerns the shapes of their genealogies.
In a rapidly adapting population, fit individuals give rise to dispro-
portionately large chunks of the future population. This means that
the Kingman coalescent is not an appropriate model for genealogies,
as individuals are no longer fully exchangeable: some organisms are
more equal than others. We consider here an alternative coalescent
model, the Bolthausen-Sznitman coalescent or BSC [14]. It is not straight-
forward to derive the BSC from a realistic model of adaptation, so we
outline its properties first and later argue how it can arise from rapid
adaptation. Note that the BSC has been explicitly shown to arise from
specific traveling wave models, in particular the "exponential model"
of Brunet et al. [20], as well as from populations where some lineages
undergo transient rapid expansion [113].

In the Kingman coalescent, when b lineages are present, two of
them merge at rate A, = b(b — 1) /2N. The Bolthausen-Sznitman coa-
lescent is similar in some respects to the Kingman coalescent, except
that it is possible that more than two lineages will merge. In general,
k out of b lineages merge at rate

k—2)1(b —k)!
b —1)!

)\b,k = ( (2.26)
Note that this applies to any set of k out of b lineages, so that the rate
at which any merger of size k happens is (?)A, x, and the total merger
rate is
b, (b
/\b = E ( )Ab,k =b— 1, (2.27)
k=2 k
again in contrast to the Kingman coalescent, where A, ~ b(b —1). It
is easy to see that E(k) ~ log b for an arbitrary merger event, i.e., each
merger decreases the number of lineages by about log b. Furthermore,
the distribution of coalescence times differs: the time for n individuals
to coalesce scales not as 1 —1/n as in the Kingman coalescent but as
loglogn, i.e., coalescence is much more rapid and less dependent on
the number of leaves.
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Two results here are important. First, multiple mergers lead to very
skewed branchings. In the Kingman coalescent, branchings tend to
be very balanced, but the BSC’s tendency to merge large swathes of
the population in a single step means that some lineages will have
many more descendants than others. Second, the merger rate’s less-
ened dependence on leaf number means that the BSC features dis-
proportionately longer terminal branches, including (in some cases)
terminal branches that persist deep into the tree.

In effect, differential fitness in the population means that individ-
uals are strictly speaking not exchangeable. The population has a
"memory": parent and offspring fitnesses are correlated, so that if
one individual gives rise to many offspring, its offspring likely will,
too. However, the BSC, like all coalescent models, assumes no correla-
tion between parent and offspring fitnesses, i.e., it treats individuals
as exchangeable. This apparent paradox is resolved by the fact that,
over fairly long time scales, the fitness of ancestors and descendants
does indeed decorrelate, which allows the BSC to be a good approxi-
mation.

An intuitive argument can make clear how the BSC, or something
like it, must emerge from models of rapid adaptation. As a popu-
lation moves toward higher fitnesses, individuals in the nose grow
and overtake the bulk of the population, essentially becoming the
new bulk. This means that extant sampled individuals in the present
must coalesce quickly to individuals in the fairly recent past. As very
fit individuals expand exponentially, comprising a large portion of
the bulk, likewise extant individuals will sometimes coalesce back to
these fit ancestors over short time scales. Lastly, unfit individuals can
still persist in the population albeit in small number, so their lineages
may merge with the bulk deep in the tree. Refer back to Figure 2.2.

The BSC is more typically associated with organisms with very
skewed offspring number distributions, in which "sweepstakes repro-
duction" or frequent (re-)colonization of environments are the norm
[37]. However, it emerges from at least one explicit model of adapta-
tion as previously mentioned, and it has been shown to characterize
more realistic models of rapid adaptation, both approximately [33, 89]
and rigorously [114]. The approximation emerges because true "mul-
tiple mergers" are rare in typical adaptation models. Rather, fit indi-
viduals expand and come to dominate large chunks of the population
over ~ 0! generations.

2.3 THE ROLE OF POPULATION SIZE

In the case of the Kingman coalescent, the Wright-Fisher diffusion,
and a variety of relations that can be derived from either one (such
as the sojourn time and fixation probability for various mutations
or the per-generation loss in variation), the population size plays a
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central role. In forward time, the population size sets the scale of
diffusive "jumps" in allele frequency, which primarily affects neutral
or nearly neutral alleles. In reverse time, the population size sets the
rate at which lineages coalesce (and ultimately the entire population
coalesces).

However, there are a variety of processes that can slightly alter
the dynamics. For example, in a sexual population, mate choice can
cause the number of reproducing males or females to be limited. This
means the effective breeding number of individuals is less than N.
Pervasive background selection or selective sweeps can likewise de-
press the number of participating individuals. One can also consider
the effects of a changing population size. Suppose that N changes at
each time step, with values Nj, Ny, ... N;. Then in general,

E(pr) = Pf[ <1 = ;) : (2.28)

What is the size of an effective population N, that loses variation at
the same as this one does? Observe that, when N is large, 1 — % ~
exp(—1/N): so

t
et/ Ne — He’l/N", (2.29)
i=1
or t
1 1 1
ﬁe - ? Z ﬁi. (2.30)

That is, the effective population size is the harmonic mean of the per-
generation population sizes. When some process other than demo-
graphic change is responsible for depressing the number of breeding
individuals, the relationship between N and N, can be more compli-
cated, but the result is purportedly the same: the population simply
evolves as though its size were N, rather than N.

In this way, a reduced neutral model still describes the population,
albeit with a larger diffusion step size and a shorter coalescence time.
In most other respects, populations are not treated any differently. It
is still assumed, for example, that neutral alleles behave in a well-
defined diffusive manner, that similar ratios between pairwise and
total coalescence times obtain, and that neutral site frequency spec-
tra decrease monotonically. In general N, should scale with N, and
therefore other statistics such as heterozygosity and the number of
segregating sites should likewise scale with N [66, 69].

In natural populations, however, the correlation between N and in-
ferred N, is surprisingly weak [53], which has been referred to as a
"paradox of variation" [76]. One explanation that has been offered for
this is that neutral diversity is governed primarily not by genetic drift
but by draft [29, 73]. If true, this accounts very well for the lack of
correlation between N and N,. Purportedly, even though the popula-
tion’s size is really N, it behaves as though its population size is N,:
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genetic drift affects it as though its population size is smaller, with the
size of diffusive "jumps" in neutral allele frequencies thereby being
larger. But again, when genetic draft is more important than genetic
drift, there is no diffusion limit [91], meaning that there is no effective
population size. Refer back to Figure 2.3. N, becomes a fudge factor for
rationalizing away problems with the standard neutral model, when
it is quite possible that an alternative null model is needed.

Likewise, rescaling N to N, affects the typical coalescence time of
populations under the Kingman coalescent. But if coalescence occurs
according to an alternative process such as the BSC, the dependence
on N is much weaker. For example, in the BSC, the population size
dependence of the average pair coalescence time (T), which deter-
mines the coalescence time scale for the remainder of the tree, turns
out to be very weak, proportional to {/log N [89], and the dependence
of higher coalescence times on (T,) is not as straightforward [20].
More importantly, BSC genealogies are different not only in terms of
branch length but also in terms of topology; i.e., the pattern of branch-
ing events itself: lineages undergo multiple mergers and sometimes
persist very deep into the tree unabated. Simply rescaling coalescence
times according to N, cannot capture this feature of a genealogy [111].

The relevant parameter for determining whether a population’s ge-
nealogy behaves in a Kingman or BSC-like manner is the product of
the population size N and the standard deviation in fitness ¢ [54, 93].
Large values of N ensure that, even if ¢ is small, the fittest individu-
als in the population (who will ultimately give rise to much of it) are
found far ahead of the bulk: and large values of ¢, of course, mean
that the population adapts rapidly (via v = ¢?. The intermediate
regime No ~ 1 is relatively unexplored.

As a result of considerations such as these, the battle cry death to
“effective population size!” can occasionally be heard among population
geneticists at conferences. There is clearly a pressing need to develop
a novel null model for understanding evolution that does not depend
primarily on rescaling the population size.

2.4 SITE FREQUENCY SPECTRA

Population geneticists often seek informative summary statistics, whose
values or distributions can be tested against an appropriate null model.
The site frequency spectrum, a graph that features, on the x axis, the fre-
quency v of an arbitrary (presumably neutral) derived allele, and on
the y axis, the proportion of mutations f(v) that are present at that
frequency, is one way to summarize the diversity in a population:
it incorporates information about useful statistics such as the mean
pairwise difference or number of singletons. The general shape of the
SFES depends on (and, accordingly, is informative about) the underly-
ing processes governing neutral variation. In fact, many classical tests
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Figure 2.4: The site frequency spectrum for various populations. Drift
causes the distribution to descend quickly as v~!. Population
expansion can lead to a steeper spectrum by preventing interme-
diate frequency or common alleles from accumulating. But the
non-monotonicity of the spectrum (excess of common alleles)
under draft is something that cannot be duplicated by simple
population expansion.

of natural selection are effectively tests of the shape of an observed
spectrum.

Under genetic drift, most mutations are doomed to extinction: they
appear in the population and persist for a few generations before
disappearing. A few lucky mutations may occasionally drift to high
frequency, but this is not common. However, if a mutation manages
to survive to intermediate frequencies, it is likely to persist for some
time. The spectrum scales as f(v) ~ v~!. Demographic effects can
distort the spectrum: for example, an expanding population yields
a steeper spectrum, as mutations that arose early in the population’s
history, when the population was small, stood a better chance of drift-
ing up to intermediate frequencies.

Unsurprisingly, genetic draft results in a qualitatively different spec-
trum. Mutations that arise on backgrounds not destined to domi-
nate the population are themselves destined for extinction. They are
swept out quickly, so that at low frequencies, the spectrum scales as
f(v) ~ v~2 [18]. However, mutations on fit genetic backgrounds may
ride the wave to very high frequencies, so that close to 1, the spectrum
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Figure 2.5: Coalescent trees. The Kingman coalescent gives rise to balanced
trees in general: the BSC features approximate multiple merg-
ers and skewed branchings. The middle case, representing pop-
ulation expansion, features higher merger rates in the past and
hence longer terminal branches. In this way, it can be mistaken
for a genealogy associated with rapid adaptation, even though
its topology does not necessarily differ from the Kingman expec-
tation.

behaves as f(v) ~ 1/(v —1)log(1 —v) [89], i.e., the spectrum is non-
monotonic and experiences a significant uptick close to v = 1. An
excess of common derives alleles is, therefore, a hallmark of selection.
This non-monotonicity can be understood in terms of a depletion of
intermediate frequency alleles, as well. There is no reason for an allele
in the middle of the spectrum to "stick around". To simplify, either it
is on an unfit background, in which case it will disappear shortly, or
it is on a fit background, in which case it will fix shortly. Refer back
to Figure 2.3.

The shape of the SFS is closely linked to the shape of genealogies,
which present a convenient summary of the genetic variation in the
population: see Figure 2.5. Novel alleles arise along the branches of
the genealogy and are inherited by all downstream individuals. In
the Kingman coalescent, branchings tend to be balanced, so there
are overall some intermediate frequency alleles, and the total branch
length on the tree slowly increases as one moves toward the present,
so rare alleles should dominate the spectrum. In the BSC, a substan-
tial portion of the tree’s branch length is terminal or near terminal,
so rare alleles are present in excess, but branchings tend to be very
uneven, meaning that common alleles (inherited by all individuals
downstream of the larger branch) are also abundant [71, 89].

The non-monotonicity of the site frequency spectrum under genetic
draft is a powerful but underappreciated signature of selection. As I
will discuss further in Chapter 4, it suggests a clear path for determin-
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ing whether a population’s neutral variation is governed primarily by
drift or by draft.






SELECTION COEFFICIENTS IN HIV EVOLUTION

3.1 INTRODUCTION

The human immunodeficiency virus (HIV) is a group of lentiviruses
descended from several simian immunodeficiency viruses (SIVs). HIV
has colonized humans on several occasions. A transmission event
from chimpanzees in the early 2o0th century [39, 125] gave rise to the
HIV-1 M clade, which is responsible for the majority HIV infections
worldwide.

HIV is of considerable importance due to its role in causing ac-
quired immune deficiency syndrome (AIDS). A typical HIV infection
proceeds as follows. Several weeks after exposure, an infected indi-
vidual experiences an acute flu-like illness as the number of virions
swells to around 10° individuals [98]. The immune system recovers
and hunts down but does not completely eradicate the virus. One
of the virus’ major hosts during this period is CD4+ cells. CD4+
cells, like most other cells, display fragments of viral protein on their
cell membranes. These fragments, known as epitopes, are recognized
by cytotoxic T lymphocytes (CTLs), whose major histocompatibility
(MHC) molecules interact with the epitope. The CTLs induce apopto-
sis in the infected cells. As months become years, this process gives
way to attack by antibodies. The viral load slowly rises until, a decade
or so after the initial infection, the infected individual’s immune sys-
tem is severely compromised.

HIV has also attracted significant attention from population geneti-
cists due to its rapid evolution. In terms of sequence divergence, the
equivalent of ten million years of fly evolution can occur within one
year of HIV infection. Samples from HIV patients therefore provide
a rare combination of high levels of divergence and an observable
"fossil record" of sequence data.

During acute infection, CTL attack is the primary driver of nat-
ural selection in HIV. Individual virions with mutant epitopes that
are more difficult to recognize are more successful: such mutations
typically carry an intrinsic fitness cost [42, 47, 77, 115], but this can
be compensated for by the ability to avoid CTL killing [5, 47]. This
difference between fitness cost and avoided killing is known as the
escape rate [86]. Escape rates are of interest not only for population
geneticists but also for immunologists and virologists. The environ-
ment that imposes selective constraints on the virus is, after all, the
host’s immune system; therefore, the strength and time variation in
the virus” evolution inform us about the ferocity and possible time
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Figure 3.1: A sketch of the behavior of several escape mutants in patient
CHs58: see also the actual data in Goonetilleke et al. [55].

attenuation of the immune system’s response. Moreover, because the
escape rate determines the success of individual virions relative to the
population average, it is a selection coefficient in the classical sense.

My goal in this project has been to determine, based on the very
sparse data available at the time, the escape rates of epitope mutations
in acute HIV infection. I begin by summarizing the state of the art
and explaining the shortcomings of previous attempts to infer escape
rates. I then set forth an alternative model, including a complete but
simple computational framework for accurately inferring escape rates
even from sparse data.

3.2 MODELS OF IMMUNE "ESCAPE"

Most sexually transmitted HIV infections are effectively founded by
a single individual, giving rise to a homogeneous initial population
[65, 110]. However, mutations quickly accumulate as the virus repro-
duces. Mutations that are absent from early samples and either fixed
or present at high frequencies later are a hallmark of HIV time se-
ries data, as seen in 3.1: see also Goonetilleke et al. [55] and Salazar-
Gonzalez et al. [110].

From an evolutionary point of view, there is nowhere near enough
time for such mutations to have spread through the population due to
drift in the sampling intervals under consideration (weeks or months).
The time to fixation for a neutral allele is on the order of N genera-
tions. In HIV, N can be as high as 10? virions but, for most of acute
infection, tends to be closer to 107 [15, 25, 99], and a viral generation
is on the order of one day [85]. If such mutations are under selection,
then their fixation over short time scales is not surprising. The time
for a beneficial mutation of selection coefficient s to sweep through
the population is on the order of s~! log Ns generations; refer back to
Section 2.1.1.
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HIV time series samples such as the ones provided by Goonetilleke
et al. [55] and Salazar-Gonzalez et al. [110] are neither particularly fre-
quent nor particularly deep, severely limiting our ability to infer the
underlying evolutionary dynamics. The state of the art for inferring
the escape rates of sweeping mutations in acute infection has been
to fit a deterministic model to the observed mutation frequencies by
minimizing some objective function, such as a likelihood or the sum
of squared deviations from the model [48, 74, 116]. A good model will
respect the underlying population dynamics of HIV. A great model
would be robust even in the limit of rare or shallow samples. In the
forthcoming pages, I will outline the model I developed for the anal-
ysis of HIV time series data from patients CH40, CH58, and CHyy
from Goonetilleke et al. [55].

3.2.1 Independent sites: logistic model

The simplest possible model considers a beneficial mutation with se-
lection coefficient s growing exponentially in the population. This oc-
curs when, from generation to generation, the expected growth in its
frequency v due to selection is larger than the size of fluctuations
due to drift, a condition that obtains roughly when Nv > 1/s, or
the mutation drifts to more than 1/s individuals. In the infinite sites
limit, i.e., assuming that a beneficial mutation arises exactly once, this
process takes ~ 1/s generations on average.

Suppose one samples a fairly small number of individuals from a
large population. Then a beneficial mutation, conditioned on the fact
that it is observed in the sample, has certainly passed this drift barrier,
and selection dominates its dynamics. The change in its frequency can
therefore be written

— =sv(l—v), (3.1)
which has the solution

B 1/Oest‘
1 +vp(est—1)

v(t) (3-2)
This model has two parameters, the initial frequency vy and the se-
lection coefficient s. The growth of a fit lineage is exponential at first,
then tapers off as the mutation saturates in the population. Close to
saturation, this deterministic model is inappropriate: at frequencies
close to 1 —1/s, drift dominates the allele dynamics once more. Note
that the initial frequency vy can be fixed as a parameter by using
a suitable population genetic approximation such as the transition
from stochastic to deterministic behavior occurring at vy ~ (Ns)71,
but then t in the exponent needs to be t — 7, with 7 the transition
time.
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This model is precisely the one used to infer the selection coeffi-
cients of sweeping mutations in acute HIV infection by Ganusov et al.
[47]. The initial frequency and selection coefficient most consistent
with the observed frequencies of escape mutations are estimated via
nonlinear least-squares regression: in the logistic function, the selec-
tion coefficient and initial frequency are treated as free parameters.
Stochastic effects are ignored, as the allele frequencies observed are
quite far from either drift barrier.

Selection coefficients on the order of 0.1 are inferred, with later es-
capes tending to be much weaker than earlier ones. One possible
explanation for this decrease in escape rate is that earlier sweeps
appear stronger because the virus is under more vigorous attack,
so avoided killing plays a stronger role in determining the escape
rate. Potential mechanisms for this attenuation include competition
between epitope-specific CTLs for resources such as cytokines or for
binding sites, as well as CD8+-mediated control of viral replication.
Another possibility is that later escapes incur a higher fitness cost.

The model depends on the assumptions of large population size
(so that drift is ignored), no recurrent mutations, and independence
between sites. Large population size is a reasonable assumption, as
N ~ 107 > 1/s. A more realistic model incorporating recurrent mu-
tations,

dv

== v) (- 2), 63)
is an unnecessary complication, provided y < s. There is good reason
to think this is the case, as often s &~ 0.1, whereas u ~ 10~° per site per
generation; we present the model here for completeness and because
it becomes useful later. The solution is

1 t
v(t) = % 157 2u + R tanh <D(;_R>] , (3-4)

where R = /s2 +4y2 and a = (4u — 2s)/(4u* + s?). It is not hard
to see that the logistic model re-emerges if s > p, as R — s and
a — —2/s: the alternate form tanh(x) = (1 —e~2*)/(1 + ¢~%*) makes
this more obvious.

Independence between sites means that the frequencies of different
alleles are uncorrelated. This behavior necessitates a high recombina-
tion rate, so that recombination can quickly break up correlations. If
there is no epistasis, i.e., if the fitness of a multiple mutant is simply
the sum of the individual mutations’ fitnesses, the fate of an allele
will depend only on itself, not the behavior of other alleles.

3.2.2  Toward a more realistic model

In natural populations, independence between sites can fail to obtain
for realistic values of p, especially when selection causes fit alleles
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Figure 3.2: Studies such as Ganusov et al. [47] fit observed allele frequen-
cies (dots) against a logistic model (dotted lines). However, if
linkage is important, then allele frequencies evolve according to
more complicated dynamics (solid lines), and a logistic function
will underestimate the escape rate. This is visible in the right
plot: when an allele’s dynamics transition from drift- to selection-
dominance (i.e., when v ~ 1/Ns), the slope (on a log scale)
roughly equals the escape rate. Here the true escape rates are
{0.3,0.22,0.15} but the inferred rates are {0.21,0.15,0.12}.

to expand quickly. The fate of an allele then depends sharply on its
genetic background, i.e., on the alleles in its genomic neighborhood.
A neutral allele that is linked to an expanding beneficial mutation
will ride the wave to high frequency, and an allele present on unfit
individuals will be quashed. If selection is strong enough relative to
recombination, neutral alleles can remain linked to beneficial genetic
backgrounds for the entirety of their lifespan.

Kouanbauy aj9)e

A similar pattern characterizes competing beneficial mutations. When

beneficial mutations are common and recombination is rare, correla-
tions (negative or positive) between beneficial mutation frequencies
are likely to arise. Double beneficial mutants will sweep very quickly
through the population, but beneficial mutations that appear in dis-
tinct individuals will compete with each other, limiting their ability
to sweep. If recombination is too rare to decorrelate them during their
solo sweep times, ~ s~ ! log Ns, they will interfere. In the infinite-sites
limit, one variant will go extinct, with the other’s sojourn time being
extended due to the interference. If we allow for recurrent mutations,
then it is possible for both mutations to sweep. But the only way this
can happen is for one of the mutations to arise independently on a ge-
netic background containing the other. Thus, if recombination is rare,
treating beneficial alleles as independent will cause us to persistently
underestimate the selection coefficients of the sweeping mutations, as
we will ignore the butting-up of one mutation against another during
expansion.

In HIV, recombination does occur but is rare: p ~ 107> per site
per generation [8, 9o]. While frequent switching of the reverse tran-
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scriptase between the two copies of the virus” genome causes recombi-
nants to be produced quite often [75], such recombination occurs only
between those two copies. The major exception is in cases of coinfec-
tion, where two virions infect the same cell. This is a sufficiently rare
event that p is kept low, so that recombinant beneficial mutants are
not likely to arise during the lifetimes of those mutants. As a result,
persistent linkage among beneficial mutations cannot be neglected,
and a logistic model is inappropriate, as summarized in Figure 3.2.

3.2.3  Appropriate simplifications for HIV
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Figure 3.3: Dominance of a handful of genotypes. The dynamics of individ-
ual alleles may appear roughly logistic (panel A), but it is more
accurate to consider the frequencies of their genotypes (panel
B). A model that treats genotypes rather than alleles is rendered
tractable by the fact that most genotypes are only ever present at
low frequencies and can be ignored (panel C, yellow lines).

A complete model that incorporates the dynamics of L polymor-
phic loci or 2! genotypes will not be tractable. However, the proper
approximations enable us to write down a model that is still an im-
provement on the logistic model. In the patient samples we consider,
several loci experience beneficial mutations that sweep, but most com-
binations of these beneficial mutations do not appear in samples at
all. Rather, beneficial mutants appear to sweep in a clear order, so that
first the wild type is observed, then a genotype containing the first
escape mutant, then a genotype containing the first and second, and
so on. If L loci experience beneficial mutations during the relevant
time interval, then there are L + 1 such "dominant" genotypes. This
situation is outlined in Figure 3.3.

In principle, the genotype dynamics will not be entirely determin-
istic, meaning they cannot be captured simply by a system of ODEs;
mutations and drift are stochastic processes. However, we can use our
understanding of population genetics to predict roughly when a mu-
tation should transition from stochastic to deterministic behavior. We
refer to these crossover times as seed times and treat them as nuisance
parameters; we will constrain them by applying population genetic
principles.
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Furthermore, escape mutants that appear and establish early in
infection will affect the dynamics of later mutants, if nothing else
by constraining their seed times. But by the time later mutants be-
come significant in the population, earlier ones are already at high
frequency. This means that, when the time comes to maximize the
likelihood of our model, we will not need to bother with fitting the
escape rates and seed times of all L escape mutants simultaneously.
Instead, we can fit the escape rate and seed time of one mutant at
a time, adding information from later escapes into our model in a
stepwise fashion.

We can now begin to outline our model more rigorously. Consider
an arbitrary genotype g; containing escape mutants at locus 1 through
J- Suppose the sampled frequency k;; of genotype g; at time point ¢;
is drawn from a population in which the true frequency of g; is ;(t;).
Then the probability of observing a particular sample is

7’11‘! .
P(sample) = ey T Ti(1)", (3.5)
]

where n; is the sample size at time point ¢;. The challenge is to select
the best values of ;(t;) for all the observed genotypes.

In general the frequencies 7;(t;) will depend on the escape rates at
individual loci via their individual growth rates,

F(g,t) = Fo(t) +)_eihy, (3.6)
l

where /i is 1 for an escape mutant at locus / and 0 otherwise and ¢; is
the escape rate (selection coefficient, usually written as s) of that mu-
tation. Fy(t) is a time dependent modulation of the total growth rate:
we fix it so that the population size remains constant, i.e., the average
growth rate is zero. It could in principle be modulated according to
external constraints, such as variable numbers of target cells [46, 100].

It may appear that we ignore the effects of epistasis, by simply
summing the individual effects of each escape mutant and ignoring
possible higher order contributions. However, the €; we ultimately fit
are not completely independent of each other: rather, they are the ¢;
conditioned on a particular genetic background containing mutations
1...j—1, which are the only escape rates that can really be estimated
given the available data. Our method is agnostic as to how important
epistasis actually is.

Provided that deterministic factors contribute much more to -;(t)
than stochastic ones do,

dvét(t) = F(gj,1)7j(t) + p [7j1(8) = (1)) (3-7)

is a good summary of «;(t)’s dynamics. (For 7y, i.e., the wild type, the
first term in the mutation contribution does not apply.) This obtains
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when the change in 7;(t) due to selection is more important than that

due to drift and the change in 7;(t) due to mutations p [j_1(t) — v;(t)]
is large enough to be essentially deterministic. These amount to a con-

straint on the size of ;(t) and 7;_1(¢).

This constraint can be realized by selecting an appropriate seed
time. Genotype g; arises at a rate uNv;_1 from the g; 1 genotype.
This is unlikely to happen while ;1 is small, but once it is apprecia-
bly large, ¢; is produced frequently. Note that we ignore the establish-
ment probability ~ 1/¢; in our analysis, as we assume that successive
escape mutants generally arise many times and that €; is rather high:
the establishment time is therefore of order 1. (We also implicitly set
the generation time to 1 day: if it happens to be two days, this has ef-
fects similar to cutting the population size in half.) The distribution of
the seed time 7; is determined by the rate at which g; is produced and
the probability that it has not been produced up to this point: the lat-
ter is given by exp(—pu szl N-yj_1(t)dt). Accordingly, the distribution
can be approximated by

QU [17-1()) ~ pNyya (e I MO0 g
This limits the plausible values for 7; based on ;1. In conjunction
with the observed frequency counts, we should be able to reasonably
estimate the ¢; for each escape mutation. Since the trajectories 7y, are
uniquely specified by the €; and 7; via Equation 3.7, we can write
down the full likelihood function:

L({e; 7}1©) = P(O|{e;, 7)) [ Plsample,[©) [T Q(5@)U(e,).
! J
(3.9)
Here, U(e;) is a prior that biases our escape rate estimates toward
lower values. We select a Laplace prior U(e) = exp(—®Pe), where
higher values of ® favor lower escape rates. In general the prior
makes little difference but slightly slopes our likelihood surface, yield-

ing conservative estimates. For most of our analysis, we set & = 10.

3.3 INFERRING ESCAPE RATES

We implement the previously described ODE model and likelihood
function in a simple fitting scheme. A brief outline follows.

1. Manually count the number of occurrences of each escape mu-
tant genotype, omitting any that do not reach high frequency.

2. Generate initial estimates of the escape rates and seed times
for each of the escape mutations using simple one-dimensional
models in a maximum likelihood framework.
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3. For each mutant, jointly estimate the escape rate and seed time
conditioned solely on the behavior of previous mutants, in a
maximum likelihood framework using our ODE model.

4. For each mutant, adjust escape rate and seed time estimates
while keeping the trajectories for all other mutants fixed. Repeat
until convergence.

5. Generate posterior distributions by Markov chain Monte Carlo.

For our initial estimates, we note that the first mutant genotype is
seeded from a wild type population that quickly reaches around 10°
individuals [25, 99]. Accordingly, we rely on Equation 3.4 to estimate
€1, as the injection of mutant individuals even early in the growth of
the mutant lineage is significant: see Ganusov et al. [48]. We assume
that 71 ~ 20 days prior to the date of first sampling, as each of the
patients was identified in Fiebig stage II [1], corresponding roughly to
the onset of symptoms [43]. Later escape rates are initially estimated
by using Equation 3.2, with the seed time 7; and escape rate ¢; jointly
fitted.

The best fit is determined by maximizing the likelihood function
Equation 3.9 using the scipy function fmin [96]. For the initial esti-
mate phase of our analysis, the data-dependent portion of the likeli-
hood is given by

L
P(sample;|®) = 21 <Z;> vj(ti)kff(l — v]-(tz-))"_kff : (3.10)
j=

that is to say, the observed allele counts v; are assumed to be bino-
mially sampled from an underlying frequency distribution described
by our logistic(-like) functions. Here, k;; is the observed number of
counts of allele j at time point i. Note that the sum begins at 1: there
is no sense in fitting the "wild type" via a logistic.

Next, we iterate the procedure by adjusting the seed time and es-
cape rate of the first locus only. The data-dependent portion of the
likelihood becomes

1
P(samplei|®) = 20 <:ZZ]> ’)/j(ti)kij(l — ’)/j(ti))ﬂ—kijl (3.11)
j=

where the 7; obey equation Equation 3.7 and the k;; are now the
counts of genotype g;. The computationally expensive numerical solu-
tion of these ODEs is implemented in C++ and exposed in Python us-
ing SWIG [9]: the sum ranges from 0 (wild type) to 1 (mutant genotype
with an escape at the first locus only). We reiterate this procedure for
subsequent escapes up to L, so that the data-dependent portion of the
likelihood function becomes

Loy,
P(sample,|©) =) <Zl>71<fi)kff(1 — j(t:)" . (3.12)

j=0 \ij
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Figure 3.4: Fitting of epitope frequencies from toy data. We fit the first epi-
tope’s escape rate with T fixed, then successively add later es-
capes by minimizing the likelihood across their two-dimensional
likelihood surfaces (panel A). Subsequent rounds of fitting are
performed by adjusting € and T for each epitope, keeping later
escapes fixed In this example, N = 107, U = 107%, and € €
[0.5,0.4,0.25,0.18,0.08] per day. The estimated e values (panel B)
are close.

(The only change from Equation 3.11 is the upper summation bound.)

Selection of the best fit of €; and 7; is accomplished thusly: We
construct two dimensional likelihood surfaces, with €j on one axis
and T7; on the other, and minimize the likelihood along this surface.
All previous €, and T, (k < j) are held fixed. Minimization is some-
what confounded by the fact that 7; is discrete by construction: there
are no "fractional" generations in our approach. Therefore, minimiza-
tion algorithms such as gradient descent, which rely on a continuous
likelihood surface, are not appropriate, as likelihood surfaces appear
locally flat in the 7; direction.

The minimization algorithm we employed is a custom greedy algo-
rithm: we permit vertical, horizontal, or diagonal steps on the surface
with size 67 = +1 day and de = £0.02 per day. This is repeated until
no favorable move is found, at which point Je is adjusted to £0.01
and £0.001 per day. On the rare occasions where two or more muta-
tions were present at exactly the same frequencies in the population
(see Section 3.3.2), we assumed that their selection coefficients were
equal and permitted steps that changed the selection coefficients, in-
dividual seed times, all seed times, or random combinations of seed
times and selection coefficients.

The use of a greedy algorithm is justified by the observation that
two-dimensional slices of the likelihood space overwhelmingly tend
to be smooth, with a single, wide valley. This is intuitive. As ¢; de-
creases, the data-dependent portion of the likelihood function favors
lower values of T, because establishment needs to occur earlier in or-
der for sweep times to agree with the data, but 7; is also dependent
on the fitted dynamics of the j — 1 genotype, as g; cannot arise while
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Figure 3.5: The effects of sampling uncertainty due to shallow (panel A) or
rare (panel B) sampling. Imputed escape rate estimates are very
noisy when sampling is infrequent, as mutants are sampled es-
sentially only at frequencies 0 and 1. In contrast, even shallow
sampling is not a problem for our maximum likelihood model.
The dotted line indicates an unbiased estimate, i.e., estimates are
normalized by dividing by the true escape rate.

gj—1 is too rare. These competing constraints suggest that it is not
reasonable to expect a complex likelihood surface with many valleys.

Once each of the €; and 7; has been estimated using this approach,
we reiterate the fitting process, this time incorporating data from later
escapes and keeping all other escape rates and seed times fixed. This
procedure is repeated until all escape rates and seed times converge,
which takes about one minute on one 2011 desktop machine (Apple
iMac iy 2.93GHz).

To map the likelihood surfaces and thereby assign confidence inter-
vals to our estimates, we attempt to change all seed times and escape
rates by 0t = £1 day and de = £0.01 per day with random sign.
Steps are accepted with probability min(1,exp(A)), with A the differ-
ence in log-likelihood before and after the change (so that steps im-
proving the likelihood were always accepted). The resulting Markov
chain is sampled every 1000 moves. This step takes about 20 minutes
on the same desktop computer.

3.3.1 Testing our inference method

To demonstrate the accuracy of our method, we relied on in silico
data where it was possible to know the escape rates a priori, as well
as control for parameters such as N and y, which regrettably it is hard
to estimate with a high level of precision in natural populations. The
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Figure 3.6: The effects of faulty model parameter estimates. We simulated
escape dynamics with fixed, known values of N = 107, u = 10~°.
In A and B, model estimates of N and y are as shown. In the
simulations considered in panels A and B, p = 0; in panel C, it
varies as shown. If estimates of either N or especially u are too
high, successive escape mutants are impute to arise too early, de-
flating the escape rate estimates. Underestimates of p primarily
bias the escape rate estimates for later escapes by allowing them
to be seeded earlier than we permit. When N, y, and p are consis-
tent between model and simulation, the estimates are unbiased.

data were generated with the forward population simulation package
FFPopSim [128]. We initialize a population at fixed size N and muta-
tion rate y, setting the selection coefficients of L = 5 mutations to
{0.5,0.4,0.25,0.15,0.08}. We record the genotype frequencies at vari-
able sampling intervals; we then sample binomially from the geno-
type frequencies. The escape rate values were chosen because they
are about what we expect to observe in HIV, and the selected sam-
pling intervals mimic the sparseness of data from HIV time series
samples.

It is important to recognize two possible sources of error in our
inference. The first is uncertainty due to limited sample size or fre-
quency. The second is systematic error due to an inappropriate choice
of model parameters, such as N and yu, or even an inappropriate
model altogether. We use our toy data to probe the effects of both.

More frequent or deeper sampling should generally reduce the un-
certainty in our parameter estimates. These conditions would make
it possible to determine the mutation’s escape rate simply from the
rate at which it increases, which is how studies such as Ganusov et al.
[47] attempt to proceed. However, in the sparse data typical of lon-
gitudinal HIV studies, it often happens that a mutation is observed
at zero frequency and at fixation, with no intermediate frequencies
observed. We find that even when sample sizes are kept quite small,
the constraint we impose on escape rates via constrained seed times
and our Laplace prior forces escape rate estimates into an accurate
range, even with less data. On the other hand, infrequent sampling
can bias estimates significantly, as shown in Figure 3.5.
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Systematic error due to a poor choice of model or parameters is
a more pressing concern. We first investigated the effects of faulty
estimates of N or p. We forward simulated populations with the
aforementioned escape rates, taking samples of size 20 at time points
t = {0,20,40,60,120,250} generations, and let the simulated N = 107
and p = 10~* or 10~°. We then attempted to infer escape rates given
values of N ranging from 10° to 10® and values of u ranging from
107 to 1072.

Results are shown in Figure 3.6. As it happens, our estimates de-
pend only weakly on the precise values of N and y: they are robust
against errors in these parameters. One reason is that the seed time
prior has a relatively sharp peak: the log likelihood depends on the
log of NuQ(7j|vj-1), which peaks when Nuv;_; ~ 1. In the early
stages of growth, 7, 1 is expanding exponentially, so it dominates
the seed time prior: the Ny prefactor influences the seed time only
logarithmically. A notable exception occurs when Ny is small. In this
case, the seed time prior is no longer sharply peaked: the dynam-
ics are highly stochastic, so seed times can take on a wide range of
plausible values.

In fact, even though we have explicitly assumed no recombination
in our model, our estimates are nonetheless robust even when recom-
bination is introduced in simulations. If the rate of recombination
is low, then its major effect is to cause mutations to "seed" slightly
earlier. Therefore, by wrongly assuming no recombination, we infer
that mutations seed later than in reality, slightly skewing their es-
cape rates toward higher values. In general the flexibility afforded by
probabilistically constraining the seed times allows our estimates to
remain rather accurate even if recombination is introduced. Recom-
bination does not induce significant errors until p is of order u or
higher, which implies a very high rate of coinfection: otherwise, mu-
tations are much more important in determining the seed time than
recombination is, and we are safe in ignoring it.

3.3.2  Unobserved intermediates

In time series samples, the dominant genotype at two subsequent
time points sometimes differs by more than one escape mutation.
There are, broadly speaking, two possible explanations for this. One
is that several beneficial mutations arose in rapid succession on the
same genetic background. The other is that the mutations interact
via sign epistasis: the first mutation carries a significant fitness cost,
which is undone by a compensatory mutation. Both possibilities can
be accounted for in our scheme.

In the case of individually beneficial mutations that are always ob-
served together, intermediate genotypes can be incorporated into our
model by assuming, conservatively, that the intermediates have the
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Figure 3.7: The effects of unobserved intermediates or compensatory mu-
tations (valley crossing). In A, the blue genotype is not sam-
pled even though it was transiently dominant. We assume the
blue mutant has the same escape rate as the green one for par-
simony’s sake. In B, the third and fourth escape mutations are
deleterious unless they appear together: accordingly, the green
genotype must appear as a double mutant from the blue one,
and seed time estimates are broadly distributed.

same escape rate. This keeps the number of parameters down, though
the resulting escape rate estimates should be taken with a grain of salt:
there simply is not enough information available to estimate more
than an average escape rate for such intermediates. Somewhat sur-
prisingly, escape rate estimates tend to increase as more intermediates
are assumed. This is intuitive if one considers the seed time priors:
each intermediate must be at a high enough frequency to make the
seeding of subsequent mutants likely.

Deleterious intermediates are somewhat more difficult to incorpo-
rate. Broadly speaking, there are two ways to generate a double mu-
tant when intermediates are deleterious [124]. First, deleterious in-
termediates can segregate at low frequencies due to drift, with dou-
ble mutants occasionally arising on a deleterious lineage, a process
known as tunneling. Second, multiple mutations can arise on one in-
dividual.

We consider only the latter. The disadvantage s of an intermediate
can be quite significant, meaning that it is unlikely to drift to high
frequencies. In general, a single deleterious intermediate can drift to
frequency v = 1/Ns, or about 1/s individuals, before selection begins
to sharply limit its growth. These 1/s individuals will birth double
mutants at a rate y /s, which is quite small. Moreover, the product Nu
is quite large, and in fact Nu? is often not much less than one. This
means that the deleterious intermediate gap can plausibly be crossed
within one step, i.e., a double mutant can appear all at once on a wild
type background within a realistic length of time.
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Figure 3.8: Escape rate estimates for patients CH4o, CH58, and CHyy, as-

suming no recombination and y = 10

~3. The curves show escape

rate posterior estimates generated by MCMCMC: black lines in-
dicate the estimates and confidence intervals given by Ganusov
et al. [47]. The lower right shows the most likely trajectory for

patient CHgo, with N = 107.

Thus, in the simplest case where intermediates are all deleterious,

the only change that really needs to be made is to replace y with u

k+1

in the seed time prior, where k is the number of deleterious inter-
mediates, in the seed time prior. In more complex escape scenarios,
the rate at which double mutants appear can be calculated using a
branching process approximation. Unfortunately, in the simple case,
the seed time prior turns out to not to be very well constrained. If
N = 10® and u = 1075, the width of the seed time prior (dependent
on Nyu?) is more than 100 days. More data are required in such a

scenario in order to accurately infer the escape rate.

3.3.3 Escape rates in patient data

We proceed to stimate the escape rates of beneficial mutants in pa-
tients CHgo0, CH58, and CH7y7. CTL escape in these patients was pre-
viously characterized by Goonetilleke et al. [55] and Salazar-Gonzalez
et al. [110] and analyzed mathematically by Ganusov et al. [47]. These
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time [days] | founder | env581 | env830 | nef10o5 | gag236
9 5 2 0 0 0
45 Y Y 5 3 Y
85 0 0 0 0 8

Table 3.1: Format of input data for patient CH58. Escape mutations are or-
dered first by the time at which they first appear in samples and
then by their adundance. The value in each cell is the number of
times a sequence is observed at that time point containing that
column’s escape mutation and all previous ones.

patients were untreated, so their viral populations evolved in a fairly
pristine manner. The sequences were obtained via single genome am-
plification followed by traditional sequencing. Unfortunately, the sam-
ples are shallower (5 — 10 samples per time point) and less frequent
than the toy data we used to test our model, so our escape rate esti-
mates are somewhat imprecise. Furthermore, we do not know exactly
when each patient was infected or when CTL selection began: the
time stamps given in the data are relative to the first sample drawn.
We estimate that both of these began roughly T = 20 days before
the first sample date, consistent with a rough timeline of HIV symp-
tom progression [43], as each patient presented in Fiebig stage II [1].
Changing the sampling time to T = 0 days affects estimates of the
escape rate at the first locus but not subsequent loci.

Fixed parameter estimates for our model proceeded as follows. In
chronically infected patients, there are around 4 x 107 infected cells
[57], but during acute infection, this can vary substantially, as the viral
load can be much higher during peak viremia, as well as due to any
number of immune-related factors. Consistent with our testing pro-
cedure for the toy data, we determined posterior distributions for N
ranging from 10° to 10%. The per-site mutation rate in HIV is around
10> [84], but epitopes may permit escape at more than one site: in
this case, a mutation rate closer to 10~* is more appropriate. We con-
sider both possibilites. We ignore recombination for reasons previ-
ously discussed: stepwise mutations are anyway likely to be more
important than recombination in generating multiple mutants.

For each of the three patients, we considered all nonsynonymous
mutations that are eventually sampled at high frequency as possible
escape mutants. We treated nearby mutations in the same epitope as
part of the same escape: a more complete treatment might regard each
of these as a distinct competing escape. We further refined this by con-
sidering only time points early in infection, with more than 5 samples
per time point, and only the first handful of strong escapes: later in
infection, nonsynonymous diversity is very high, and our approach is
ill suited to fitting a time course for many of the mutations observed.
Mutations whose frequencies do not increase monotonically, such as
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Figure 3.9: Escape rate estimates for patients CH4o, CH58, and CHyy, as-
suming # = 10~* instead of 10~°. Simulation parameters are
otherwise as in Figure 3.8.

pol8o in subject CH40, were ignored. Mutation frequencies and their
linkage into multi-locus escape genotypes were imputed based on
the alignment of Salazar-Gonzalez et al. [110]. This regrettably omits
linkage between the 5" and 3’ halves of the genome, but that can be
imputed by assuming sequential escapes, as we do. The number of
mutant genotypes was counted and input into a tab-delimited table,
as represented in Table 3.1.

In CHgo, the first five time points were ¢t = 0,16,45,111,181 days.
We identified six epitopes as escape targets: nefi8s, three indistin-
guishable escapes in gag113, gag389, and vpry4, and two escapes in
vif161 and envig4s. The number denotes the beginning of the 18-mer
peptide encompassing the epitope. The envi45 mutation is one that
Ganusov et al. [47] did not analyze: the 145 refers to the mutated
amino acid in gp120. We treated gagi13, gag389, and vpry4 as sequen-
tial, individually beneficial escapes, as discussed previously (they are
assumed to have the same escape rate).

The dynamics were somewhat simpler in the other two patients. In
CH58 we considered samples drawn at the first four time points (t =
0,9,45,85 days) and identified four escapes: env581, env830, nef10s,
and gag236. In CHy7 we considered only the first three time points
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(t = 0,16,32 days) and identified four escapes: tatss, env3so, nefiy,
and nef73.

We proceeded to estimate escape rates as previously outlined. For
each escape mutant, we used a simple one-dimensional logistic (or
nearly logistic) model to obtain an initial estimate for the escape rates
€j. We refined this by iterating over our multi-epitope fitting process a
maximum of five times (after which convergence obtained). We then
performed an MCMC simulation using our likelihood function, let-
ting the Markov chain run for 10° steps and sampling every thousand
steps.

Our estimates are displayed in Figure 3.8 and Figure 3.9 for y =
107° and 10~4, respectively, with the best fit model for patient CHg0
and the estimates of Ganusov et al. [47] in black. Although we ob-
tain fairly broad posterior distributions, we nonetheless suggest that
escape rates are higher than previously estimated. In contrast to pre-
vious work, we do not infer a strong correlation between the time at
which an escape mutant emerges and its escape rate. We suggest that
this is an artifact of the underlying population genetics: escapes that
happen to be strong establish more easily. It is worth noting that, for
the multiple mutants, our estimates are especially noisy: still, strong
selection is clearly required for multiple mutants to fix in just a few
weeks.

3.4 CONCLUSION

We have developed a method for inferring viral escape rates from
serially sampled sequences, based on a realistic understanding of
the behavior of rarely sexual populations such as HIV. Our method
capitalizes on the sequential nature in which new mutations arise,
which allows us to respect linkage between beneficial mutations with-
out excess nuisance parameters or complication. Typical methods
for inferring escape rates have proceeded by fitting the observed
data to a logistic curve. This has been used to analyze the dynam-
ics of recombinant HIV [81], drug resistance [16, 97], and CTL escape
[4, 5, 46, 47, 101]. These methods can be useful if data are deeply and
frequently sampled enough, but when data are sparse, they provide
only lower bounds. The implicit assumption in such models is that
the recombination rate is high, but recombination in HIV is somewhat
rare [8, 9o].

Because our method respects interference between competing es-
cape mutants, it tends to estimate somewhat higher escape rate val-
ues than prior methods. Even with a large prior against high escape
rates (® = 10), we estimate that € for the first few escapes can be as
high as 0.3 — 0.4 per day. In fact, provided the population size is large,
these values are essentially insensitive to the choice of prior. Early in
infection, N = 107 is a reasonable estimate [15, 25, 99]. But if the
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population size is even smaller, then relaxing the prior against high
escape rates results in even higher estimates. Clearly it is important
to consider competition between escape mutants in order to avoid
underestimating the strength of selection acting on them.

Like any method for inferring escape rates, ours is somewhat lim-
ited by the sparse data available. For example, our escape rate esti-
mates for the three simultaneous escapes in patient CH40 have broad
posterior distributions: with identical dynamics and essentially no
time resolution, our estimates are accurate but not particularly pre-
cise. More precise results, especially correlations with factors such as
immunodominance [80], will necessitate more data.

As previously mentioned, we do not observe a strong correlation
between escape rates and the time at which a mutation appears. Rather,
our model suggests an explanation for the phenomenon of slower
sweeps following later escapes other than possible time attenuation
or higher fitness costs later in infection. The population size and mu-
tation rate of HIV are large enough (Nu > 1) that every single nu-
cleotide variant appears somewhere in the population every gener-
ation. Therefore, the escape mutants that sweep early are naturally
the ones with the strongest escape rates, since they have the low-
est drift barrier to overcome and outcompete other mutations upon
crossing the barrier. Selection does not significantly affect subsequent
mutants until they appear on a genetic background containing the
earlier, stronger escapes.

This method for analyzing time series data involving many sweep-
ing loci could be extended to other situations where a population can
be observed and sampled over relevant time scales, such as cancer
evolution or microbial evolution experiments. Many rapidly adapt-
ing populations in which multiple beneficial mutations segregate si-
multaneously are of great clinical significance. A realistic attempt to
understand their behavior must respect the role of interference and
linkage in determining their evolutionary trajectories.
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GENETIC DRAFT AND THE SHAPE OF
GENEALOGIES

4.1 INTRODUCTION

The genealogy of a population is a summary of its evolutionary his-
tory, which ultimately is what determines the patterns of genetic di-
versity we observe. In fact, if the population is asexual, a genealogy
can be a very accurate model of its history: each individual has ex-
actly one ancestor in the previous generation. In Chapter 2, I argued
for a close link between the shape of a genealogy and the processes
that have given rise to it. But what, exactly, can genealogies tell us
about those processes? Very rapid adaptation can yield genealogies
more consistent with the BSC than with the Kingman coalescent [89],
but processes such as demographic expansion or bottlenecks can also
distort genealogies [129]. Can we disentangle these effects and zero
in on rapid adaptation?

That question is what gave rise to the following project. I begin
by outlining standard site frequency spectrum based methods for
determining whether a population (or a suitably defined region in
a population’s genome) is experiencing positive selection. As previ-
ously suggested in Section 2.4, there is a tight relationship between
a genealogy’s shape and the population’s site frequency spectrum.
Skewed branchings can correspond to a non-monotonic SFS, which
in turn suggests that neutral variation is shaped by hitchhiking rather
than draft. I elaborate further on this relationship here.

The outcome is a procedure for differentiating between drift and
dratft that, unlike previous methods, is unaffected by the confound-
ing effects of demography. We consider only the topology and order
of branching events on a tree, not the branch lengths thereof, which al-
lows us to focus solely on the exponential amplification of fit lineages
consistent with genetic draft. Similar methods have recently been de-
veloped by Li [78] and Li and Wiehe [79], who proposed statistical
tests for positive selection based on genealogical topologies. We go a
step further by explicitly comparing our statistic, the partition entropy,
to the value of No (which characterizes a population’s adaptation)
and showing how it can be used to infer No when it is not known.

We test our method by applying it to the HA segment of influenza
A subtype H3N2. We find that its genealogies are consistent with high
values of No and a rejection of genetic drift. This further strengthens
the call for novel null models of sequence variation in rapidly adapt-
ing organisms. Most of the work in this chapter refers only to asexual

43



44

GENETIC DRAFT AND THE SHAPE OF GENEALOGIES

populations for which a genealogy is well defined, but in Chapter 5,
I will outline how it can be adapted to sexual populations.

4.1.1  Classical tests of selection

A variety of methods exist for inferring the strength of selection from
sequence data. Typically they are used in sliding window analyses or
applied to some well defined linkage block or haplotype. One exam-

ple is the ratio
K, dN

IZ = s (4.1)

of nonsynonymous substitutions per nonsynonymous site to synony-
mous substitutions per synonymous site. In general, w = 1 indicates
neutrality, w < 1 suggests purifying selection (as nonsynonymous
substitutions are disfavored), and w > 1 (as nonsynonymous mu-
tations, when present, fix more quickly than nonsynonymous ones,
leading to a higher substitution rate). Estimating w from sequence
data is often not easy: complicating factors such as codon bias, a
skewed transition-transversion ratio, or multiple substitutions at the
same site must be taken into account. Moreover, selection frequently
occurs in regulatory regions, where the genetic code is not important.

There are many other methods for detecting selection in sequence
data. Moving forward, I will consider only tests for selection that
depend on the SFS in a population or sample thereof. These can be
given straightforward genealogical interpretations, so they can help
us to determine exactly how genealogies can inform the evolution-
ary process. It is worth noting that compound approaches, which
combine SFS- and genetic code-based methods, have been somewhat
successful in inferring selection [58].

One well known statistic that depends only on the SFS is Tajima’s
D [119],

D= O (4.2)
/Var6,, — 6, '

where 0 is the average pairwise difference between individuals and
s = S/a,_1 is the number of segregating sites divided by the n — 1th
harmonic number Y7~ 'i~!. Note that that 8, can be expressed in
terms of the per-site "heterozygosity",

2 n—1

Or = —F—— ) i(n—i)s;, .
with s; the number of mutations that appear in i individuals.

The denominator /Var(6; — 0s) is the standard deviation of 6, —

s under the Kingman coalescent; it is typically computed [119] as

Var(6; — 6;) = e1S + e25(S — 1), (4.4)
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with , , .
n-+
and
1 2(n*+n+3) n+2 by
= - LI N 6
€2 a2 + by, ( 9n(n—1) nay * a2 (4.6)

in which b, = Zf;ll i—2.

Tajima’s D has a ready genealogical interpretation. In the infinite
sites limit, S scales as the total branch length of the tree a, ~ logn,
as this (multiplied by the mutation rate) is the expected number of
segregating sites. The average pairwise difference 0, scales as twice
the average pair coalescence time, as mutations along both lines of de-
scent from a common ancestor contribute to the pairwise difference.

Typically, a value of D less than zero is taken to imply recent pos-
itive selection: long terminal branches, which contribute dispropor-
tionately to s, suggest a sharp reduction in diversity in the past,
consistent with a recent selective sweep. A value greater than zero
implies balancing selection: a long pair coalescence time implies that
diversity persists for longer than expected under a neutral model, sug-
gesting that haplotypes are prevented from fixing or going extinct,
which occurs in the case of heterozygote advantage or frequency-
dependent selection. Recall that, under the Kingman coalescent, the
SFS scales as f(v) ~ v~!. Essentially, D picks up on deviations from
this neutral spectrum: the heterozygosity corresponds to the interme-
diate portion of the spectrum, and the total number of segregating
sites reflects the total area underneath it.

Tajima’s D benefits from being an unbiased estimator (i.e., under
the Kingman coalescent its expected value is zero). It has no known
analytical distribution under the Kingman coalescent, but it can be ap-
proximated with a Beta distribution [119]. Today, the most common
approach is to simulate the Kingman coalescent or some similar pop-
ulation model many times, generate an empirical null distribution,
and thereby impute a p value. As an extremely rough rule of thumb,
a value of D greater than 2 or less than —2 indicates significant de-
viations from neutrality. Unfortunately Tajima’s D is not particularly
useful for imputing the strength of selection: for example, it cannot
be used to estimate selection coefficients. However, in sexual pop-
ulations, a sliding window analysis can be appropriate for finding
regions of the genome that may be under strong selection.

Some other common statistics that summarize the shape of differ-
ent parts of the SFS include Fu and Li’s D and F statistics [45],

D =

—— (4.7)
\ upy + vpn?

and
Or — ante

VUEn —|—UF172’

F= (4-8)
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with 7 and 7, the total number of segregating sites and the number
of singletons, respectively. The u and v terms in the denominator
are derived from the variances of the numerator terms (under the
Kingman coalescent). Fu and Li’s D measures the proportion of non-
terminal branch length on the tree, and F compares the intermediate-
frequency and singleton portions of the SFS, i.e., the pair coalescence
time and total terminal branch length.
The last statistic worth mentioning is Fay and Wu’s H [40],

= V/Var(0, — 0) (4.9)

Here,
2 n—1 )
by = ——— Y i%,, .
H 7’1(7’1—1) izzll Sl (4 10)

with s; defined as above. The i weighting term means that the sum
heavily favors mutations at the common end of the SFS. The variance
is difficult to compute, but note that 6, — 0y = 2(0; — 6r), with

1 n—1
0 = is; : 11
e I (4.11)
as a result, H can be rewritten as
97r - eL

H =

/Var(6, — ;) (4.12)

in which the variance can be computed exactly [130]. H purportedly
compares the high frequency and intermediate portions of the SFS.

4.1.2  The effects of demography

A major shortcoming of the use of branch length dependent statistics
is that they are all subject to the confounding effects of demography,
which cannot be overstated. In genealogical terms, a rapid population
expansion, perhaps due to recovering from a disaster or colonizing a
new enviroment, implies a lower population size and hence higher
merger rate in the past. As a result, terminal branches are long rel-
ative to internal branches, and the rare end of the SFS tends to be
steeper, similar to the case of positive selection: recall Figure 2.4 and
Figure 2.5.

One can approximate Tajima’s D’s dependence on growth rate by
considering the shape of Kingman coalescent genealogies. When pop-
ulation size is fixed, the average pairwise distance scales roughly as
2Ny and the number of segregating sites as 2N logn (for large n,
i.e., ignoring the distinction between a, and logn). The latter is seen
by considering the total branch length on the tree ~ 2N logn. How-
ever, if a population expands rapidly, almost all the branch length on
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the tree will be terminal. This means that the average pairwise dis-
tance will scale as 4N,y (introducing N, solely for convenience), or
twice the total coalescence time for the entire population (ignoring
the 1 —1/n term). The number of segregating sites, on the contrary,
will scale as N,un, effectively increasing by a factor of n/2logn: each
of the n terminal branches will persist for N, generations, accumulat-
ing N,y mutations. The second term dominates, so the numerator of
Tajima’s D asymptotes slowly to ~ —nN,u/ logn, or generally a very
negative number. The n and S dependence in the variance means that
D ends up closer to 0, but values less than —2 are common.

This behavior, where most of the branch length on the tree is termi-
nal, can also arise when rapidly expanding fit lineages overtake the
population. A similar pattern applies to Fu and Li’s D and F, because
when almost the entire branch length of the tree is terminal, most
mutations will be singletons whether selection or demographic ex-
pansion is responsible. Previous simulation studies have found that
all of these statistics (except for H) depend sharply on assumptions
about demography [105, 131].

In the literature, this confounding between demographic expan-
sion and selection is so complete that positive selection is sometimes
equated with a past reduced effective population size [7, 64]. The im-
plication seems to be that selection and a reduction in diversity due
to low population size are utterly indistinguishable, even in principle.
As previously argued in Section 2.2, there are important differences
between population expansion and selection that cannot be papered
over simply by rescaling the population size.

The only real way to control for demography is to construct a sce-
nario of demographic history, i.e., a schedule of changing population
sizes, and to use these to determine merger rates in one’s Kingman
coalescent simulations. This is a risky endeavor, as it is very difficult
to ascertain a population’s demographic history. Moreover, real popu-
lations can undergo substantial demographic fluctuations, which can
entail many parameters.

The only standard statistic that is nominally insensitive to demo-
graphic change is Fay and Wu’s H. Recall that rapidly adapting pop-
ulations are well described by the Bolthausen-Sznitman coalescent.
In the BSC, a non-monotonic SFS results, as rapidly expanding fit lin-
eages carry derived mutations that are then passed to all descendants:
comparing the high and intermediate portions of the SFS means that
H might in principle be sufficient for detecting selection. Population
expansion and contraction cannot produce this pattern [52].

In fact, there is a close link between a non-monotonic SFS and an
unusual tree topology. An excess of common derived variants is con-
sistent with recent rapid expansion of a fit lineage, all of whose mu-
tations will be inherited by its descendants. These descendants will
likewise comprise a large portion of the population. As a general rule,
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Figure 4.1: A schematic of the partition entropy. After the k — 1 branching
event, there are k lineages. We compute the sum of the Shan-
non entropies of the downstream branch populations, with a 1/k
weighting factor (panel A). The 1/k term serves to favor early
branching events, meaning that the partition entropy is, in a way,
sensitive to the common end of the SFS (panel B). Note that the
draft (BSC) curve in panel B differs slightly from Figure 2.4 in its
normalization.

a changing population size distorts branch lengths on a genealogy,
but it cannot distort a genealogy’s topology [111].

Recall from Section 2.3 that the compound parameter No is what
determines whether neutral variation is governed primarily by drift
or by draft, and hence whether genealogies are better described by
the Kingman coalescent or the BSC [89] If No < 1, then the fittest
individual in the population is unlikely to be much fitter than the
average, so equal fitness is a reasonable approximation. If No > 1,
the fittest individual may be far ahead of the distribution’s bulk. The
fitness position of the individual that is likely to give rise to the dis-
tribution’s bulk (setting ¥ = 0 as before) is roughly x = 0/2log No.
Rapid turnover of the population is therefore to be expected, and
most of the future population will descend from fit individuals near
the nose. It stands to reason that it should be possible, based on a
genealogy, to determine whether No < 1 or No >> 1, or even to
assign a value of No to a genealogy. But classical imbalance statis-
tics, which are sensitive to branch lengths and (with the exception of
H) investigate deviations from neutrality primarily in the rare end of
the spectrum, are unlikely to be particularly useful for this purpose,
as they fail to distinguish between population expansion and rapid
adaptation.

4.2 THE PARTITION ENTROPY

To this end, we define a novel statistic, the partition entropy, that de-
pends only on the topology of a tree and therefore cannot be distorted
away from a neutral expectation by demographic effects. "Topology"
in this case refers not only to the branching pattern but also the order
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Figure 4.2: A comparison of the behavior of classical imbalance statistics and
the partition entropy H (divided by its Kingman average) under
selection. The classical statistics, for the most part, cannot dis-
tinguish at all between demographic expansion and adaptation
(parametrized by No). The partition entropy can.

of branching events (i.e., the tree is ranked). There is no dependence
on branch length whatsoever: it is therefore, by construction, indepen-
dent of demography, as population expansion and contraction cannot
distort the topology of a tree. We consider only slices of a tree ("par-
titions") in between branching events, then compute the Shannon en-
tropy of the number of descendants of each extant branch.

If T is a binary, rooted, ultrametric tree with n leaves (and hence
n — 1 branching events), the partition entropy is

»\H

n k n; n;

; ;g og (4.13)
where 1, is the number of observed individuals descended from branch
i. The sum proceeds from the branching event just after the root,
where there are k = 2 extant lineages, and scans forward until the
present, where there are k = n extant lineages (corresponding to the
leaves of the tree). A schematic is provided in Figure 4.1.

The 1/k weighting term serves to favor earlier branching events,
where strong imbalance events are most likely to be significant. Devi-
ations from the Kingman coalescent in early partitions are likely to be
due to expanding fit lineages, whereas deviations in late partitions a)
are severely limited by construction (the range of possible values the
branch offspring number can take on is small) and b) are likely to be
statistical artifacts, i.e., due to drift or sampling noise. The partition
entropy unfortunately has ugly moments that do not admit a simple
representation, but they can be calculated explicitly, which we do in
Appendix A. If an unbiased estimator is desired, one can simply sub-
tract the expected value of the partition entropy from the result and
compare its value to zero.
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Figure 4.3: Comparison of the partition entropy and the Sackin, Colless, and
cophenetic index for trees of varying size. Mean values are dis-
torted so that they take on values in the interval [0, 1]: standard
deviations (dotted lines) are divided by the same normalization.
Though all have essentially the same dependence on the adap-
tation parameter N, the partition entropy consistently has the
smallest standard deviation and therefore the best signal to noise
ratio.

4.2.1  Dependence on rates of growth and adaptation

By construction, the partition entropy should not depend on demog-
raphy at all: on the other hand, demography and adaptation should
be very difficult to disentangle for branch length dependent statistics.
We confirm this with simulations. To test the effects of demography,
we relied on the program ms [62], simulating the Kingman coalescent
with an exponential growth rate r = {0,1,2,4,...1024}. To test the
effects of selection, we relied on forward simulation with FFPopSim
[128], with No set to the same range of values and genealogies sam-
pled at specified time intervals (see Section 4.2.3 for methods).

Our results confirm the claims set forth in Section 4.1.2. Most of
the branch length dependent statistics have no ability at all to distin-
guish between demographic expansion and adaptation: the partition
entropy does. Somewhat curiously, Fay and Wu’s H turns out not to
depend sharply either on No or on r at all.

Next, we considered several other statistics that summarize the de-
gree of imbalance in a tree, namely the Sackin, Colless, and total
cophenetic indices [27, 87, 109]. The Sackin index is a sum over the
number of nodes traversed between each leaf and the root of the tree:
the Colless index is a sum of each node’s "balance" (absolute value
of the number of leaves downstream of each daughter node): and the
total cophenetic index is the sum of the number of nodes traversed
between the MRCA of each pair of leaves and the root. Note that the
Colless and Sackin indices almost measure the same thing [87].

These are typically applied not to genealogies but to phylogenetic
trees, for the purpose of distinguishing between models of speciation,
in particular whether some lineages speciate more rapidly than oth-
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Figure 4.4: Partition entropy values for simulated trees of varying No and
size (see legend), divided by their Kingman mean. The rela-
tionship between them becomes log-linear starting at around
No = 10; later, we argue that log(1l + No) is a better rela-
tion. Sampling more leaves effectively causes the dependence on
log No to be linear over a greater range: more sampling is better.

ers. The simplest model of speciation is the Yule model, where each
lineage gives rise to daughter lineages at a fixed rate [127]. This pro-
duces trees with statistics identical to the Kingman coalescent [132],
with the exception that the time between branching events scales as
the number of extant branches k rather than k(k — 1)/2. There is no
obvious a priori reason why they should not be applicable to tests of
selection especially because, being dependent only on topology, they
are likewise independent of assumptions about demography.

We test the imbalance statistics” and partition entropy’s dependence
on No with forward simulations using FFPopSim [128]. A comparison
of their dynamic range with the No dependence of their standard
deviations, as a rough signal to noise ratio, is visible in Figure 4.3.
As it happens, while each of the three is sensitive to the kinds of
distortions induced by selection, all of them are substantially noisier
than the partition entropy. This sharply limits their utility for infer-
ring the strength of selection. One reason for the partition entropy’s
superior performance is that the partition entropy relies on the order
of branching events, which adds a minimal element of extra informa-
tion to our analysis, and favors early branching events that are more
likely indicative of the expansion of fit clones.

The partition entropy H and the adaptation parameter No are well
correlated. H appears to be roughly linear in log No (see Figure 4.4)
or log(1+ No), and the correlation between them is much stronger at
larger sample sizes 1. In our comparison, we rely on the real geneal-
ogy of our trees rather than inferred genealogies. In real populations,
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Figure 4.5: Partition entropy values for real and inferred genealogies and
varying values of No: here the sample size is 100. Since we are
not concerned with branch lengths, only the tree topology must
be reliably inferred, so real and inferred trees agree quite well.

we will not have access to the true genealogy. However, since we only
need the tree topology to compute H, the process of inferring a ge-
nealogy is unlikely to introduce substantial errors. We check this by
using FFPopSim to generate both sequences and genealogies, inferring
trees from the sequences via FastTree [102], and ultrametrizing them
by tweaking their branch lengths.

Distortion of branch lengths is performed according to the follow-
ing algorithm. Consider two adjacent terminal branches v; and v,
with branch lengths I, and [,: "adjacent" means that they are sis-
ter nodes. We compute the average (I, + l»,)/2 and set both branch
lengths equal to that. We then move one step up the tree and consider
the node wy ancestral to v; and v, as well as its closest relative w,.
Let [,, be the sum of the branch lengths downstream of w;, and like-
wise for w,. Then we multiply the entire branch length downstream
of wy, including that of any daughter nodes, by (I, + lw,)/2ly,, and
likewise for w,. After this process, wy and w, are now equally distant
from the present. We reiterate this process until the tree is ultrametric.
This conservatively lengthens short branches and shortens long ones
so that the overall topology of the tree is not changed and branching
events occur in roughly the same order. As expected, inferred and
true genealogies have partition entropy values that agree quite well
with each other: see Figure 4.5.

4.2.2  Statistical rejection of neutrality

Standard SFS based statistics do not have analytically calculable null
distributions. Typically, one either chooses a suitable approximate



4.2 THE PARTITION ENTROPY

1.0

0.8+

o
o

I
S

rejection power

0.2

Figure 4.6: Power to reject the null hypothesis as a function of No, at the
« = .05 significance level, for various sample sizes (legend). We
simulate trees of fixed No and compare them to the Kingman
partition entropy distribution to obtain the rejection probability.
As No and the number of leaves # increase, so does the power to
reject the null (Kingman) hypothesis. Note that at very low No
or a small number of leaves, the probability is roughly equal to
« (dotted line), as expected.

null distribution, such as a Gaussian or Beta distribution, or simu-
lates the Kingman coalescent to generate a large number of samples,
which can then be used to compile an "empirical" null distribution.
The latter approach has gained traction in recent years because coa-
lescent processes can be simulated very quickly.

Coalescent models furthermore can easily incorporate demography
by rescaling the time between merger events. In general, let T be the
time elapsed between two merger events when the population size
is fixed. If the true time between these events is t, during which the
population size decreases from Ny to N;, then solving

T = A(t) = A(0) (4.14)

yields the rescaled time t, where A(t) = f(f A(lt/)dt’ and A(t) is the
time-dependent population size relative to the initial time point.
Unfortunately, demographic models sometimes have many free pa-
rameters, and inferring population size history is not straightforward,
which mitigates the advantage afforded by incorporating demographic
history into a model. On the other hand, the partition entropy is by
construction independent of demography. So the Kingman coalescent
with a constant merger rate, by itself, is a suitable null model for dis-
tinguishing between selection and neutrality. Hence a statistical test
can be conducted in a manner similar to SFS based statistics, with no

need to consider a demographic scenario at all.
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We have implemented this in a simple Python script that takes as
its input a tree, ultrametrizes it according to the procedure outlined in
Section 4.2.3, and simulates the Kingman coalescent a large number
of times to generate an empirical distribution. The neutral hypoth-
esis can be rejected by considering the area under the curve more
extreme than the computed value of H. The statistical power of this
test increases strongly with the true No associated with the tree, as
illustrated in Figure 4.6.

4.2.3 Simulation methods

We determined the relationship between No¢ and the various imbal-
ance statistics via forward simulation with FFPopSim. For the ma-
jority of our simulations, we considered a model where ¢ is kept
constant by an external constraint. We initialized populations with
No € [274,...,217] according to the following rule. For No < 26, we
set N = 4000 and varied o: for No > 2°, we set ¢ = 0.02 and let N
vary. All loci were assigned a random exponentially distributed fit-
ness: all selection coefficients were adjusted every generation to keep
the variance constant.

We employed an approximate infinite sites model where, every
time a locus becomes monomorphic, a mutant at that locus is in-
jected into a random individual in the population, and set each in-
dividual to have L = 50000 loci. In an asexual infinite sites model,
the maximum possible number of populated clones is L, but this
can decrease sharply due to selection rapidly driving clones to ex-
tinction or small population sizes. Decreasing the number of loci has
little effect on our results except at very large sample sizes n, where
the number of clones can be of order n. Genealogies were sampled
every min(0.4N,5/0) generations, which we found empirically was
about long enough for genealogies sampled from the same popula-
tion no longer to be well correlated with each other. Populations were
allowed to equilibrate a condition that we determined by checking
whether the population’s coalescence time was less than the number
of generations elapsed; after the burn-in time, five sampling interval
times elapsed before sampling began.

To test the effects of varying N and ¢ while keeping No¢ constant,
we employed the same model but multiplied N by 2 and ¢ by 0.5 or
vice versa. To verify that our results do not depend strongly on the
choice of mutational model, we also performed simulations where
mutations were injected into individuals at a constant rate = 1.0/L
per site per generation, with L = 3000. All loci were initialized with
negative selection coefficients; at exponentially distributed time inter-
vals (with parameter 10/¢), the selection coefficient of one locus was
flipped.
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Figure 4.7: Dependence of the partition entropy on the mutational model
and on the precise values of N and ¢. The only difference notice-
able is in the constant mutation rate model at high values of n,
which is likely a byproduct of the fairly small number of loci we
used.

For all simulations, a large number of genealogies (typically 1000)
were generated by running several simulations in parallel. To avoid
the need to repeat our analysis, we furnish a table of averages and
standard deviations for varying sample sizes and values of No.

During simulation, it sometimes happens that more than one in-
dividual is sampled from the same clone. Because the relationship
between individuals within a clone is not tracked, this appears on
the genealogy as an unresolved "comb" node. This typically only hap-
pens in terminal or near terminal nodes. Any time it does, we con-
servatively replace the comb node with a random Yule-Kingman tree
topology, with short branch lengths. This does not significantly dis-
tort the values of H we ultimately infer.

The precise values of N and ¢ turn out not to matter at all: only
their product is meaningfully correlated with any of the imbalance
statistics, as expected. Furthermore, the ersatz "infinite sites” model
we employ is not a necessary assumption: the behavior is essentially
the same even if mutations are injected at a constant rate, provided
the fitness variance is kept constant: see Figure 4.7.

4.2.4 Maximum likelihood of No

For modest values of No (up to roughly 10%), H is roughly linear
in the variable ¢ = log(Nc + 1). This may be intuitive. The value
of No + 1 determines whether drift (parametrized by 1/N) or draft
(parametrized by ) is more important in shaping the fate of neutral
alleles. This relationship breaks down somewhat at very high values
of No, depending on the precise value of n: sampling more leaves
extends the linear relationship. Refer back to Figure 4.4. The fact that
H depends strongly on N¢ (via ¢) means that it should be possible
to use H to construct a maximum likelihood estimator No for a given
tree, a possibility that we explore here.
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To avoid the need to repeat our time intensive simulation process,
we furnish a table of H mean and variance values for many combina-
tions of No and n. The dependence on 7 is not trivial, though, so the
user must rely on splining between the mean and variance values we
provide for nearby sample sizes. This provides a list of H mean and
variance values for a new sample size.

We then leave the user one of two options. The user may either esti-
mate No by globally inferring a linear relationship between ¢ and H,
with slope and intercept values estimated via maximum likelihood,
and selecting the estimator ¢ thereby. Or they may spline one step
further, i.e., select ¢ by assuming that there is a locally linear relation-
ship between ¢ and H, depending only on the nearest values of H
for the tree in question. This second approach is only viable if ¢ is
monotonic in H, or else the relationship between them is not one to
one. At low numbers of leaves, noise can remove this monotonicity,
so the ability to infer No is somewhat dependent on the sample size.

The former method is performed in a maximum likelihood frame-
work. Suppose that errors in H are roughly Gaussian. Then the log of
the likelihood ¢ becomes

!

L . 2
10g€(Dn,mn,bn) _ Z <_ (Vnz My @i by) > (4.15)

2
i—1 20,

(plus a constant), where D,, are the partition entropy values for sam-
ple size n, m, and b, are the slope and y-intercept, i ranges over the
I values of No used to generate training data, and p,; and 0,; are
the data mean and standard deviation of H. We minimize the log-
likelihood to obtain estimates of m, and b, for a given sample size.
All minimizations were performed using the Nelder-Mead algorithm
implemented in scipy [96], with (Hmax — Hmin)/ (NOmax — NOmin) as
our initial estimates.

No matter which method is selected, the subsequent process is the
same. We seek the value of ¢ that maximizes the likelihood L(¢|H) =
P(H|¢). Assume that the probability density P(H|¢) for a particular
value of H is Gaussian, with linearly interpolated y and ¢ values
given by u = mug +v¢ and ¢ = 0y + 7¢. Then the maximum likeli-
hood estimator ¢ is achieved by solving

$*1 + ¢ (27200 — V2o — HTv + Tvip) (416)
1

+ (10§ + Hvog + H*T — voguo — 2Htpo + TH3) =0 +

for ¢. Confidence intervals are obtained via ¢ + c\/Z(¢$), with the

Fisher information ;.

2 2t +v

I(¢) = Yz

and c a z-score critical value (= 1.96 for p < 0.05). The maximum
likelihood estimator for N¢ is then given by No = exp(¢) — 1.

(4.17)



4.3 RAPID ADAPTATION IN INFLUENZA A SUBTYPE H3N2

16
—— Kingman
144 —— No=32.0
—— No=1024.0
S IR S N SR
Q7 A K L O N7 7 L ™
o | S F S S s
o 104 \ N \\ |‘ R J ’,’ s )
c \ \ o ’ e ’/’ /
(] \ \ A S, 7 ’
© N R VS //:’/ /
_.? 8 N\ NS o0 !
: n
©
Qa
S 6
a
A
4 / \
2 I
| V
0 : a8 —1 1. :
0.6 0.7 0.8 0.9 1.0 1.1

Normalized partition entropy

Figure 4.8: The distribution of the partition entropy under the Kingman co-
alescent and in rapidly adapting populations. The black dotted
line indicates the cutoff for « = 0.05 deviation from neutrality:
high values of Nc yield partition entropy values that make it
very likely the null hypothesis will be rejected. The normalized
partition entropy values for H3N2 sequences are indicated with
black lines: all of them pass the « = 0.05 threshold. We briefly
discuss the shape of the distributions in Section 4.4.

4.3 RAPID ADAPTATION IN INFLUENZA A SUBTYPE H3N2

As a demonstration of our method, we investigated rapid adapta-
tion in Asian influenza A sequences (subtype H3N2), segment HA.
Influenza is an ideal candidate for our analysis. While flu viruses fre-
quently reassort different segments of their genome when hosts are
infected by multiple copies of the virus, individual segments evolve
asexually [17, 118]. Additionally, the H3N2 subtype is clinically sig-
nificant, as it is becoming increasingly common [12]. A combination
of very high mutation rate and strong pressure to adapt suggest that
No may be quite far from 1.

We selected sequences from Asia, as pandemics tend to originate
there [103, 108], and therefore we can be reasonably certain that we
are sampling a well mixed population rather than distant offshoots.
For each year from 2004 to 2013, we downloaded all H3N2 HA se-
quences from the Influenza Research Database [117], limiting our se-
lected samples to one per geographical location per year (to avoid
oversampling from a particular area and ensure some level of ran-
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Figure 4.9: Inferred genealogies of H3N2 for sequences from 2010. Tree A is
the original genealogy inferred from FastTree. Tree B shows the
distortion of branch lengths we perform in order to guarantee ul-
trametricity. Either variation of the tree clearly indicates a strong
deviation from neutrality.

domness). We aligned the sequences for each year using MUSCLE [35]
and applied a rudimentary filtering criterion, excluding any sequences
with more than three ambiguous nucleotides or gaps of larger than
size three.

Next, we inferred the genealogy for a given year using FastTree
[102], with default settings. We did not concern ourselves too much
with the inference itself, as in principle only the topology is needed,
which is easily inferred by neighbor joining. Any multiple mergers
in the output genealogy (e.g., due to no mutations that differentiate
an internal node) were replaced with a random Yule-Kingman tree
topology, with branch lengths of approximately 10~°. Then, the out-
put genealogies were distorted to ensure ultrametricity: the decision
to compare only sequences from within the same year was made to
limit the effects of distorting the tree, as the coalescence time for flu
is on the order of two to five years [10]. An H3N2 genealogy before
and after applying the distortion algorithm (outlined in Section 4.2.1)
is visible in Figure 4.9.

Based on the shape of these genealogies and our understanding of
flu’s dynamics, we straightforwardly predict that genealogies should
overwhelmingly be consistent with very high values of No and a re-
jection of genetic drift. To test the null hypothesis of genetic drift,
we simulated 100000 Kingman coalescent trees for each sample size
to generate a null distribution. We normalized the flu partition en-
tropy values by dividing by the sample size dependent expectation
and compared their values to a distribution of trees of size 100. The
resulting p values are not surprising: in each case, we decisively reject
the null hypothesis of genetic drift (p < 107°). A sketch of the test
can be seen in Figure 4.8.
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year No interval sample size
2003 | 77948x | (7115,853830x) 136
2004 | 2172 (455,10350) 346
2005 | 204192« | (7081,5887425x) 428
2006 | 27627 (2209, 345373+) 349
2007 | 18292 (1745,191660%) 332
2008 | 176935% | (11930,2623957) 132
2009 | 2647 (500,13995) 369
2010 | 82 (41,182) 94
2011 | 46782 (3063,714378x) 350
2012 | 9394 (2091,43010) 129
2013 5 (0,2051) 30

Table 4.1: Statistics of the inferred H3N2 genealogies. The inferred No val-
ues and 95% confidence intervals are shown. Values marked
with an asterisk are beyond the reliable range of our simulations
(No = 65536), so we urge special caution with respect to them.

Normalized partition entropy

Figure 4.10: Relationship between the partition entropy and No for trees of
size 136. The green dotted line is the predicted relationship: red
dots and bars denote the estimators N for each flu tree and
confidence intervals. The corresponding black bars on the right
show the position of each partition entropy value relative to the
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null (Kingman) distribution, similar to Figure 4.8.
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These results immediately suggest that H3N2 trees might be more
consistent with an extreme value of No than with the Kingman co-
alescent. Determining which value of No is most appropriate is our
next task. We used our maximum likelihood model to assign an es-
timate for No to each tree: results are shown in Figure 4.10 and are
further summarized in Table 4.1.

Again unsurprisingly, we find very large values of No, some of
order 10°: note that we only simulated No up to 2'7, and several trees
(from 2003, 2008, and 2005) appear to correspond to even larger No
values. Note, furthermore, that even though we predict No based on
the inferred relationship between H and No¢ (green line), the inferred
values (red dots) do not generally fall on this line. This is because
the relationship generally depends on the sample size: the values of
H shown are normalized relative to each tree’s sample size, and the
values of No will depend on the simulation mean and variance values
for that particular size. In general the confidence interval width is
somewhat sensitive to the sample size: the confidence interval for the
year 2013 actually hits No = 0.

We caution that the relatively wide variation in No from year to
year should not be taken to indicate that selection was many orders
of magnitude more or less influential in different years; note the very
broad confidence intervals. Rather, variation in N¢ is variation in the
tendency for rapid expansion of clones, rather than slow diffusion-
like drift, to determine the behavior of neutral alleles. We tackle the
question of alternative interpretations of N¢ in the subsequent sec-
tion.

4.4 CONCLUSION

We have described a novel, demography independent method for in-
ferring the presence and strength of selection from the shape of a
single genealogical tree. The demography independence is not acci-
dental but rather by construction: demography cannot affect a tree’s
topology. Our emphasis on skewed branchings, especially early skewed
branchings, makes our method sensitive to the shape of the SFS, pri-
marily focusing on the common end of the spectrum.

The lack of understanding of the partition entropy’s analytical be-
havior is a regrettable shortcoming of our work. In A, we demonstrate
how to calculate its first and second moments under the Kingman
coalescent, by considering the branch offspring distribution as a par-
tition of n leaves into k categories: the partition, in the Kingman limit,
is uniform on the simplex of integers 1, ... n. Simplex representations
for other coalescent processes such as the Bolthausen-Sznitman coa-
lescent [113], are available, which may shed some light on the proper
way to understand the partition entropy’s analytics. A glance at Fig-
ure 4.8 suggests that different values of No yield values of H that
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might be roughly Beta distributed, with the interval given by the par-
tition entropies for maximally balanced and maximally skewed trees.

Hitherto we have restricted our analysis solely to asexual popu-
lations. It may also be applied to asexual chromosomes in sexual
populations. Nonetheless, most populations of interest undergo at
least infrequent recombination. A further generalization is possible
to well defined linkage blocks in sexual populations, which behave
effectively asexually. This is a task we tackle in Chapter 5. We would,
nonetheless, welcome extensions of this work to ancestral recombi-
nation graphs, where regrettably the theory is less robust but the
general applicability is greater.

Naturally, caveats apply to our work in this section. We require
that the genealogies under consideration be ultrametric, which some-
what mollifies the advantage afforded by relying solely on topology.
However, many phylogenetic software packages easily facilitate the
construction of ultrametric trees, e.g., BEAST [34]. We stress the need
to consider only samples that are gathered on a time scale short rel-
ative to the total coalescence time of the population. An additional
concern is sampling bias (also known as ascertainment bias), which
is an issue for any method of inferring selection [94, 104]. Correcting
for it, for example by incorporating an explicit model of how sam-
pling occurs [19], is not straightforward. Nonetheless, through our
emphasis on early branching events, we believe this issue is not likely
to be significant for the partition entropy: we expect sampling bias to
effect artefactual imbalance primarily in near-terminal nodes.

We have argued that the shape of flu genealogies is highly inconsis-
tent with genetic drift. Clearly, alternative models of neutral variation
are needed in order to understand their dynamics. One may imme-
diately raise the question of whether the high values of No we infer
are indeed due to selection rather than some other process that might
lead to rapid amplification of a lineage. In the case of flu, which lin-
eage survives to dominate a population might not necessarily be a
product of the ability to stay ahead of the host population’s immune
response but rather which individual is lucky enough to end up in
virgin territory (e.g.., a naive host population). We believe two fac-
tors mitigate this concern. First, we have selected flu samples in Asia,
which close to the geographic origin of major outbreaks: flu lineages
in this region constantly compete with each other, so random col-
onization events are less likely to determine which one dominates.
Second, the evolution of influenza is canalized enough by selective
constraints to be somewhat predictable [11]. These suggest that while
stochastic processes, such as fortunate colonization of a fresh host
population, have some effect on our high estimates of No, they are
not entirely responsible.

Distinguishing between various non-diffusive population processes
remains an interesting problem, however. Many biological systems,
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such as Atlantic cod [3] or Pacific salmon [22], are well described
by genealogies that do not appear Kingman. Broad offspring number
distributions may be due to very large clutch sizes and quickly declin-
ing survivorship curves, and which individual’s offspring dominate
the future population is determined essentially by luck. This does
not appear to be "selection", since their success is not heritable: the
offspring number of an individual is not well correlated with that of
its descendants.

One possibility for distinguishing between selection and rapid ex-
pansion due to some other process is to consider sexual populations
and to compare the genealogy in different parts of the genome. Non-
Kingman behavior throughout the genome might indicate strong se-
lection and many sweeping loci throughout the entire genome, or it
might indicate rapid expansion of lineages due to a more random
process: but a difference from one part of the genome to the next may
be an indicator of rapid adaptation in one portion and more neutral
processes in the other.

This distinction is the kind of argument used by Batini et al. [7] and
Karmin et al. [64], who noted that the human Y chromosome in Eu-
rope coalesces quickly to a small number of individuals: the genealo-
gies they produce appears inconsistent the Kingman coalescent. This
rapid coalescence is not observed in the mitochondria or autosomes,
leading them to conclude that the sweeping of the Y chromosome is
due to sex-specific selection factors. (They speculate that this is likely
due to social and cultural factors, such as increased social stratifi-
cation and new technology around the time these individuals lived:
whether this really qualifies as "selection” is an interesting philosoph-
ical question.) As previously discussed in Section 2.3, their analysis
equivocates between a depression in N, and strong selection on the Y
chromosome. Our work further heightens the need for researchers to
differentiate these distinct processes.



RAPIDLY ADAPTING SEXUAL POPULATIONS

5.1 INTRODUCTION

In the previous chapter, I described a project that focuses on genealo-
gies in asexual populations. Indeed, the very notion of a "genealogy"
suggests that the population of interest is asexual: if individuals have
two ancestors rather than one, something like an ancestral recombina-
tion graph is a more complete model of the population’s evolutionary
history. Here I describe a project to which I contributed primarily by
performing simulations, the aim of which was to extend the theory
of rapidly adapting asexual organisms to sexual populations.

In asexual populations, new beneficial mutations that arise com-
pete with others and can slow or inhibit their sweeping, a phenomenon
known as clonal interference [32, 51, 88]. In the limit of high recombi-
nation rate p, on the other hand, sweeping beneficial mutations essen-
tially do not compete at all, and drift is the major force that shapes
neutral variation. The intermediate picture is somewhat more com-
plicated: distant loci decorrelate, but tightly linked ones have related
histories. This interference between closely linked loci is also known
as Hill-Robertson interference [61] and decreases the effectiveness of
selection at linked parts of the genome.

The transition from drift to draft in asexual populations, includ-
ing the effect on site frequency spectra and on the shape of genealo-
gies, is heavily governed by No [33, 89, 54]. Most populations are not
truly asexual, however: even nominally "asexual" organisms tend to
be facultatively sexual or undergo ersatz "outcrossing" through a re-
lated process like horizontal gene transfer. This is not surprising, as
recombination affords many evolutionary advantages, including the
avoidance of Hill-Robertson effects [41] (though see Schwander and
Crespi [112] for an alternate perspective on the rarity of true asexual-
ity). The ubiquity of sexual reproduction can be reconciled with the
importance of genetic draft: if selection acts on many loci throughout
the genome, then draft may be critical in shaping genetic variation
even in sexual organisms. This may further help explain the "paradox
of variation" [76], the lack of correlation between population size and
genetic diversity, which runs directly counter to the neutral theory
[68].

What follows is a simple scaling argument that reduces the prob-
lem of coalescence in sexual populations to the better understood pro-
cess of coalescence in asexual populations. The central realization is
that suitably defined portions of the genome behave effectively asex-
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Figure 5.1: Coalescence and recombination. Panel A shows typical trees in
the limits of drift and draft dominance, respectively: the No < 1
tree is roughly Kingman, and the No > 1 tree is roughly BSC.
Panel B illustrates coalescence in sexual populations, with poly-
morphisms as colored balls. The genealogy changes as one slides
along the chromosome. Over distances shorter than ¢, loci share
most of their history: within this block length, neutral variation
and coalescence are driven either by drift or by fitness differences
in the genetic background. The size of (; is related to the coales-
cence time Tyrca: shorter coalescence times lead to larger blocks,
since there has been less time for recombination to break up the
block. It is also related to the proportion o7 of the total fitness
variance o2 segregating in the block: a higher (Tg corresponds to
a more recent TyrcA-

ually: "suitably defined" refers to a portion of the genome whose size
depends on competition between recombination and selection. Thus,
the behavior of sexual populations can be characterized in terms
of asexual populations, with appropriately rescaled parameters. We
test our predictions using forward simulations from FFPopSim [128]
(see Section 5.3) which were my major personal contribution to this
project.

5.2 COALESCENCE IN SEXUAL POPULATIONS

We outline the scaling argument briefly using heuristics before jus-
tifying it with slightly more rigor. In a sexual population, fit alleles
tend to drag neutral variation with them, amplifying a nearby block
of the genome. Recombination chops up these blocks, decorrelating
the behavior of sufficiently distant loci (i.e., breaking up linkage). But
over some block length, the rate at which a fit chunk of the genome
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Figure 5.2: Pair coalescence times. As Noj, — 0, the block length ¢}, becomes
shorter, and we recover the standard neutral coalescence time
(T2) = N. In the opposite limit, the coalescence time characteris-
tic of rapid adaptation applies.

is amplified is roughly equal to the rate at which it is chopped up.
Within this block length, most loci tend to share most of their ge-
nealogical history, and the block length likewise sets the scale over
which linkage disequilibrium decays. Additionally, natural selection
should shape the genealogy of this block. Rapid adaptation leads to
rapid coalescence to fit individuals in the recent past: recombination,
by breaking up associations between loci, recovers neutral dynamics
and sends coalescence events further into the past. Such a block can
be modeled as effectively asexual, meaning that many of the results of
Neher and Hallatschek [89] should apply. This process is illustrated
in Figure 5.1.

We proceed by identifying the appropriate block length based on
the coalescence properties of an asexual population. Consider an asex-
ual haploid population with fitness variance ¢ due to many small
effect mutations. If No > 1, the fittest individuals are the only ones
whose lineages stand a good chance of surviving. In terms of fitness,
they are roughly x, = 0y/2log No ahead of the mean [107, 121], and
their lineages will take approximately o~!,/21log No generations to
dominate the population [89]. Thus, the probability that two random
individuals had a common ancestor roughly c~!,/2log No genera-
tions ago is of order 1. On the other hand, if No < 1, coalescence is
dominated by genetic drift and takes approximately N generations.
So the mean pair coalescence time is given by

N if No < 1,

co~1y/2logNo if No > 1,

with ¢ of order 1 depending on the details of the particular model.
For the infinitesimal model we rely on, it is V12 [89].

These two limits determine the overarching behavior of the popu-
lation’s genetic variation, as well as its history. We will see that much

(Th) ~ (5.1)
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Figure 5.3: Linkage disequilibrium, measured by r? between loci as a func-
tion of the distance between them. The characteristic length was
determined using Equation 5.2: after normalization with respect
to ¢p, all simulations follow essentially the same master curve,
demonstrating that ¢, sets the length scale for the decay of LD.

the same applies in a sexual population, with the exception that ¢
must be rescaled. Let ¢ be the characteristic distance over which loci
share most of their history. In general, ¢ will decrease due to recom-
bination: L ,
S0 = T ot ~ o
pt P
If fitness variation is distributed rougly evenly throughout the pop-
ulation, a block of the genome will harbor a fraction Ug of the total
fitness variance. For a block of length ¢, this is

(5.2)

P o
The relevant o7 is the amount of fitness variation ¢}, that segregates
in a block of length ¢, that is unlikely to be broken up during the
coalescence timescale.

If fitness variation in the block is substantial (i.e., Noj, > 1, coales-
cence in this part of the genome will occur in (T>) = cy/21log Noy, /0y
generations. Plugging (T5) into Equation 5.2 yields

b

_ Tb
~ cpy/2logNa,’ (54

or equivalently

o2

= Locy/2log Noy, 55)

2

and
o

S = 2Lp%clog Noy,’ (5.6)

If, on the other hand, coalescence in this block is not primarily due
to exponential amplification of fit lineages but rather due to drift pro-
cesses, then we recover &, ~ (Np)~!, as expected under genetic drift
[60]. We confirm the behavior of (T,) with simulations: see Figure 5.2.
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Figure 5.4: Site frequency spectra normalized by ® = 2Ny for many param-
eter combinations. Increasing Ny, causes spectra to converge to
the BSC expectation. Note that the normalization of the BSC de-
pends on Noy, so the BSC curve serves as a guide to the eye:
compare with Figure 2.4.

In general, ¢ sets the characteristic distance over which linkage dise-
quilibrium in the genome decays exponentially. Within blocks of this
length or less, most loci tend to share most of their genetic history,
and LD remains elevated: see Figure 5.3. Sexual populations thereby
behave quite similarly to asexual ones, with ¢ being replaced by 0.
When Noj < 1, the Kingman limit applies, and when No > 1, the
BSC arises in the genetic block under consideration. It is worth not-
ing that this result obtains only in the limit No > 1. If this condition
is not satisfied, then (T;) = N, and linkage disequilibrium extends
therefore over | ~ (Np)~! nucleotides. In effect, Noy, > 1 is a more
stringent constraint than No > 1: by decorrelating selected loci, re-
combination can cause genealogies to appear locally Kingman over a
wide parameter range.

One way to appreciate the rescaling is to consider the site frequency
spectrum as a function of No;. We predict that the site frequency
spectrum within an effectively asexual block should behave similarly
to that of an asexual population, with Noj, determining whether the
spectrum is closer to the Kingman coalescent or the BSC. Figure 5.4
illustrates this. As Noj, ramps up, the spectrum smoothly interpolates
between the v~! behavior of the Kingman coalescent and the v~2 or
1/ [(v—1)log(1 — v)] scaling of the BSC.

Let us now consider the explicit dependence on the typical selec-
tion coefficient of a mutation s. If the variance o7 within a block is
due to many small effect loci, then we expect [26, 121]

2 Gop <52>

0 > (Ty) . (5.7)

67



RAPIDLY ADAPTING SEXUAL POPULATIONS

1071} ‘ ‘ o oY L
XN
[)
o ng e
g
&
1072} @226@3“ ]
o *°® 10.1
] %O.
e 0 o008
H °s*
8 .
103 ..ooo o |
I o %o ]
o
&
§8 ° 0.01
8
103 102 101

L+/s?uplog No

Figure 5.5: Fitness variation due to weak effect mutations in a "dynamic bal-
ance" model where beneficial and deleterious mutations keep the
mean fitness roughly constant. The color shows the average num-
ber of crossovers per generation.

This applies whether s tends to be negative or positive, i.e., whether
fitness variation is primarily due to many beneficial or deleterious
mutations or a combination of both, since it depends only on the
second moment (s?). Inserting Equation 5.2 into the above yields

2 V<52>

oy 20 (5.8)

There is no dependence on the coalescence time at all, so the variance
of an effectively asexual block is the ratio of the rate at which fitness
variance is injected per nucleotide and the crossover rate. As a result,

N if Ny (s?) /p <1,
E

where c is again of order 1. The total rate of adaptation, when coales-
cence is driven by selection, is

0% ~ cLy/pp (s2) log Noy, (5.10)

a result that holds whether mutations tend to be beneficial, deleteri-
ous, or a mix thereof: see Figure 5.5.

(Th) ~ (5.9)

5.3 SIMULATION METHODS

To test our predictions, we relied on forward simulation. We con-
sidered several different models and implemented them in FFPopSim
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Figure 5.6: Beta coalescent trees for varying &, produced with betatree. As
« moves from 1 to 2, branches become more balanced and multi-
ple mergers occur less frequently.

[128]. For all models, we permitted populations to equilibrate for ap-
proximately 10Tvirca generations before sampling: then, we sampled
in intervals of roughly (T,) generations.

First, we considered a model where the injection of beneficial mu-
tants keeps fitness variation ¢? constant. As elaborated in Section 4.2.3,
we force loci to remain polymorphic at all times by randomly intro-
ducing a mutation at a particular locus whenever that locus becomes
monomorphic. The mutation rate is therefore kept small relative to
(T>). We simulated a grid of parameters, with N € [1000, 3000, 10000],
o € [0.01,0.03,0.1], and Lp five logarithmically spaced values between
0.1¢ and 1.0¢. Simulation results were filtered such that ¢; > 30 and
¢y < L/3.

Second, we considered a "dynamic balance" model where mutants
are injected at a constant rate y with small fitness effect s. The grid
of parameters was L € [3000,10000], N € [1000,3000,10000], s €

[—0.001, —0.003, —0.01], Ly € [1,3,10,30], and Lp logarithmically spaced

between s and 1.0. Simulations were filtered as in the first model, with
the added constraint that (T) p < 0.5. We also considered a variant
where mutations with positive s were injected (the other parameters
were otherwise the same), as well as an infinite sites model where
both deleterious and beneficial mutations were injected.

5.4 BETA COALESCENCE

The Kingman and Bolthausen-Sznitman coalescent describe the be-
havior of asexual genealogies when No < 1 and No > 1, respec-
tively: in sexual populations, the limits No, < 1 and Noy, > 1 apply.
For more moderate values of No or N}, an intermediate coalescent
process may be a better model. In fact the Kingman and BSC are spe-
cific cases of the so called Beta coalescent, which in turn is a specific
class of A-coalescents, in which

1
Apk = /0 K21 — x)P KA (dx) (5.11)
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and A(dx) is the Beta(2 — &, a) distribution:
r(2)

[(a)T(2—a)
Letting « = 2 gives the Kingman coalescent; the BSC is the a = 1
case. Lower values of a correspond to more extreme merger statistics,
culminating in the star coalescent at « = 0, where all lineages merge at
once. Intermediate values result in trees that are somewhere between
the BSC and Kingman extremes: see the examples in Figure 5.6.

As a component of this project, we wrote betatree, a Python pack-
age that allows the user to quickly simulate many Beta coalescent
trees for a selected value of a. Trees can easily be used to generate site
frequency spectra, which can be used to compute summary statistics
for comparison with null models. Many of the site frequency spectra
and coalescent trees in this thesis were generated using betatree.

A(dx) = X171 — x) %, (5.12)

5.5 CONCLUSION

We have provided a robust but simple scaling argument for under-
standing the process of coalescence in adapting sexual populations.
Provided the condition No > 1 is satisfied, results from asexual pop-
ulations apply to well defined linkage blocks: the parameter Noj, is
what sets the time scale of coalescence, the speed of adaptation, the
shape of the SFS, and the length scale over which LD decays. In con-
junction with the results outlined in Chapter 4, we can move a step
further and attempt to determine the value of Noj in an effectively
asexual block. In a roundabout way, we can even use Equation 5.9 to
probe the distribution of mutational effects in a block, which might
allow for comparison with the results of Rice et al. [106].

In our model, fitness variation is not due to a handful of major loci
that sweep strongly against a neutral backdrop but rather a large
number of polymorphisms. This is in contrast to other models of
adaptation in sexual organisms such as Weissman and Barton [123],
which have typically focused on a few mutations of large effect. Our
results are similar in the limit of fairly small linkage blocks that are
occasionally perturbed by selective sweeps.

Previously we have argued that genetic draft due to the effects of
many weak loci may help explain the "paradox of variation", the lack
of correlation between genetic diversity and population size [76]. This
also has implications for quantitative genetics (from whence the "in-
finitesimal model" originates). If many loci in the genome experience
weak selection, they may be cryptically correlated with quantitative
traits. In effect, our work implies that genomic "dark matter" of un-
known function might be a major part of the solution to the "missing
heritability" problem [36, 83, 126] and may help to erect a bridge
between quantitative genetics and the population genetics of rapid
adaptation.



5.5 CONCLUSION

One interesting consequence of our work concerns the effects of
nearly neutral loci. Recombination is infrequent in many organisms of
interest: in others, it varies by several orders of magnitude across the
genome [28]. As a result, haplotypes or well defined linkage blocks
persist for long periods of time across regions of low recombination.
This means that the block length ¢, can be quite large. The density of
segregating sites in the genome scales roughly as 2 (T»), so the num-
ber of segregating sites in the block length &, ~ p/ (T?) is roughly
n = u/p. The fitness variance in the block is given by 07 = (s?)n, so
the condition Noj, > 1 implies N? (s>} n > 1. This means that, some-
what surprisingly, selection can dominate neutral variation even if it
is due to (nominally) nearly neutral mutations, for which s < 1/N:
their combined effects cause individuals to have substantial fitness
variance. Note that the second moment (s?) of mutational fitness ef-
fects does not depend on the sign of s: it applies whether mutations
tend to be beneficial or deleterious.

It has long been argued that nearly neutral mutations present a
stumbling block for the evolutionary process. As deleterious muta-
tions of small effect fix (a variant of Muller’s ratchet), the fitness in
a population is slowly reduced: and indeed, in the limits of many
loci, high mutation rate, and low population size, deleterious muta-
tions should fix quite easily. This is the parameter regime that char-
acterizes many large eukaryotes. Truncation selection, a form of syn-
ergistic epistasis (also referred to as "Kondrashov’s hatchet"), is one
purported mechanism that keeps fitness from decaying irreversibly
[70]; occasional large effect beneficial mutations are another [56]. Our
results suggest an additional possibility. Deleterious mutations con-
fined to some linkage block may actually inhibit fixation because the
total number of deleterious alleles in the block can vary substantially:
even though individual deleterious mutations have effects too small
to be noticed by selection, variation in mutation number can lead to
significant fitness variation, meaning that selection can counteract the
effects of drift. A large block harbors more variation, suggesting that,
while a high recombination rate aids beneficial mutations by inhibit-
ing Hill-Robertson effects, a low recombination rate may be useful for
counteracting nearly neutral deleterious mutations.

One nagging question to which we have devoted considerable time
is the relationship between Beta coalescent trees and No (or Noy). It
stands to reason that if the Kingman coalescent and BSC represent
extremes in No, more moderate values of No should correspond to
an intermediate coalescent with a value of a between 1 and 2. This
would in principle not be difficult to show with simulations, given the
right choice of summary statistic: in fact this is similar to what Arna-
son and Halldorsdéttir [3] attempted to do. But the intermediate Beta
coalescents have analytical properties that are not as well behaved
as their extreme variants are, which limits our ability to make direct
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analogies between them and real (or simulated) populations. Still, we
would gladly welcome additional work in this area.



OUTLOOK

Classic neutral theory is a convenient framework for interpreting se-
quence data. Genetic drift is a well understood process, and it can
be relatively straightforward to identify sweeping beneficial muta-
tions against a neutral background. Nonetheless, evidence continues
to mount that this characterization of the evolutionary process is not
correct. This evidence is particularly strong for large, rapidly adapt-
ing populations such as many pathogens, where selection at linked
sites pervades the genome, but other organisms may likewise be well
served by a better understanding of genetic draft.

The main results of this doctoral work are several fold. First, we
have established how traditional methods for understanding the fierce
competition between the HIV virus and the host immune system can
be misguided. A simple picture of the virus” evolution, where escape
mutations sweep freely through the intra-patient population, engen-
ders confusion about the immune response during acute infection.
Our realistic but still tractable model for inferring the strength of vi-
ral escape suggests that the arms race between host and virus remains
intense well into acute infection. We hope that similar approaches will
see light in the study of other pathogens.

Second, we have provided a reasonable and parsimonious method
for determining whether a particular pattern of neutral diversity is
more consistent with genetic drift or genetic draft. In doing so, we
have partially answered the question: to what extent can genealogies
themselves inform us about the evolutionary process they represent?
Approaches similar to ours have gained some traction in recent years,
as it is increasingly realized that genealogical imbalance is informa-
tive in a way that traditional methods for assaying the presence of
selection may not be. Our work comes at a fortuitous time, as the
tendency to treat selection merely as a change in the "effective pop-
ulation size" can otherwise cause adaptation in the genome to be
overlooked. Extensions of this work may be useful in the study of sex-
ual organisms, where individual segments of the genome have their
own genealogies, may further close the gap between rapidly adapting
asexual organisms and bulkier species.

This gap is bridged partially by our third major result. The coa-
lescence properties of asexual organisms have been remarkably well
developed in preceding decades. We have successfully demonstrated
that these properties can be extended to sexual organisms in the right
limits, subject to a suitable rescaling of parameters. Our work also
hints at a way to identify important population genetic parameters,
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such as No, in sexual populations. Further development might focus
on ancestral recombination graphs, the distinction between different
methods of recombination, more complex genetic maps (e.g., ones
that involve hotspots), or specific forms of fitness variation.

It is clear that genetic draft plays a critical role on some branches of
the tree of life. But it remains difficult to say just how pervasive it is
or what broader implications it may have for evolutionary theory as a
whole. Is genetic draft important primarily in large microbial popula-
tions, or does it have major effects on other organisms, perhaps even
humans? Cries of "the neutral theory is dead: long live the neutral
theory" have been issued for decades now [72], and they are unlikely
to stop any time soon. I began my doctoral work with the hope of
furthering a new kind of population genetics, something more com-
plicated but more robust than the standard neutral theory. Now, I
hope to continue doing so.



APPENDIX: MOMENTS OF THE PARTITION
ENTROPY

We proceed to derive explicitly the first and second moments of H(T).
With some modification, these results can be generalized to any linear
sum over the partitions in a Yule-Kingman tree: they can, for example,
be used to verify the v! scaling law of the site frequency spectrum.
Additionally, with a different partitioning of the simplex, they can be
extended to other coalescent processes.

EXPECTED VALUE OF THE PARTITION ENTROPY

By definition, the expected value

K(H(T)) = 1 P(H(T) (A1)

in which 7, is the set of all binary rooted trees with n leaves. Note
that a particular tree T can be decomposed into a set of partitions 7y ,,
of n leaves into k groups:

Y P(T)H(T)= Y. P(mou .. un)H(Ton, - Tupn), (A2)
T€77’l HZ,n/~-~Hn,n

where I} ,, is the set of all partitions r ,. Each partition 77, depends
only on its predecessor 7tx_1 ,, so the expected value becomes

n

Z P(T(Z,n) Z P(7T3,n’7'f2,n) e Z P(T[n,n|7-fn—l,n) Z H(T[k,n)/ (A3)

I, I3, 1T, k=2

where the sums are nested, not multiplied. In general, for any k the
sum involving P(7ty,|mk_1,) will be multipled by H(7m,) but not
any further terms in the internal sum, With some rearranging of
terms, we therefore have

n

Y, P(DH(T) =) Y P(mien) H(mn)- (A.4)

TeTa k=211,

Unfortunately the multiplicity of Ij, can be very large, but we can
distill this somewhat. Consider an arbitrary branch in the kth parti-
tion of the tree. There are k such branches, and in the Yule-Kingman
scenario, an arbitrary branch has size m with probability

Pk,n (m) =

(A.5)
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for 1 <m <mn — k+ 1. For notation’s sake, it is useful to define
hin(m) = ———log —, (A.6)

the component of the partition entropy due to a branch containing m
individuals in the kth partition of n leaves. Thus,

n—k+1
Z P(nk,n)H(ﬂk,n) =k Z Pk,n(m)hk,n(m)/ (A7)
Hk,n m=1
and the expected value becomes
n  n—k+1

Zk Z Py, (m)hy , (m). (A.8)

This admits no simpler representation, but it can at any rate be com-
puted in O(n?) time.

VARIANCE OF THE PARTITION ENTROPY

The variance
Var(T) = E(H*(T)) — E(H(T))>. (A.9)

The first term can be broken up into parts:

EHXT)) = Y. P(mon... un)H* (Mo - .. Tun). (A.10)
HZ,nr—--Hn,n

Expanding out H? would reveal

E(H*(my,...m,)) =E <f Hz(nk,n)>
k=2
+2E <i i H(ﬂk,n)H(ﬂ']',n>> .

k=2 j=k+1

(A.11)

In the first term, H?(my,) = Yxen,, Lxeny, Min(Mx): we must sum
over the branches x in the k partition, which have m, downstream in-
dividuals. This will yield k "diagonal" terms (where the same branch
is sampled twice), and we know the probability distribution for the
values of m. Hence there will be a contribution k Y15 Py, (m)hZ , (m)
to the sum. There are also k(k — 1) “off-diagonal” terms, where two
different branches are sampled: and in general, if P ,(m) is the
probability distribution for size of the first branch, the second be-
comes Pr_1,_n, (m2), as there are now n — m; individuals to dis-
tribute into k — 1 groups. Hence the off-diagonal contribution is k(k —

1) Y E Ty K2 By (1) P oy (m2) g (m11) g (m2) . (Note that
the dependence of my on my shows up in the probability term but not
in h itself.)
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We therefore obtain

E(in(nkn> anflpkn m)h ,(m)

n—k+1 n—k—m1+2
Z Z Pk,n(ml)Pk—l,n—rm(mZ)hk,n(ml)hk,n<m2)'

mp=1 my=1

(A.12)

The cross term 2E (Y ¢, Y 1 H(7t,0) H(7j,4)) will be much more
complicated, as 71y, and 77;, within a particular tree are not indepen-
dent. We can contract the expectation with no problems. In general,

E(H(ﬂkn 7T]n Z P ﬂkn nk,n) Z P(nj,n‘nk,n)H(n—j,n)'

Hk n Hj,n
(A.13)
This can be rewritten as

E(H (7t,u) H(7tj0)) = E(H (70,0 ) E(H (75,0) | 7Tk ) ) - (A.14)

As before, we can decompose this into the possible branch sizes at the
k and j partition. The internal expectation will simply be a sum over
the possible sizes m, that a branch y in 7, can take on, conditioned
on the size m, of a branch x in 7y ,,.

There are plainly two possibilities: either y is descended from x or
it is not. To compute the distribution P(m,|m,) in the case of descent
from x, we need to know how many branching events [ have arisen
from x at partition k: then the distribution becomes Py, (m,), as x
has I + 1 descendants. Likewise, in the case that y is not descended
from x but from one of the k — 1 other branches at partition k, the
distribution becomes Pj_; 1, m, (my), as there are n — m, remaining
individuals and j — I — 1 branches that do not descend from x.

We need the probability mass P(I) of branch sizes I. Clearly, if a
branch x at partition k has m, offspring, the probability that it will be

the next lineage to branch is "Zl’fkl. Some induction reveals that

. | —k
P(l|my,n,k,j) = <]l )

(my—1)!  (m—k—my+1)! (n—j—1)!
(my—1—-DN(n—j—my+1+1)! (n—k)! "~
(A.15)
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provided all the arguments are 0 or higher. Iterating over the possible
values of /, then the possible values of m, conditioned on descent or
lack of descent from x, yields the cross term:

E(H(nk,n)E(H(nj,n)‘nk,n» =
n—k+1 j—k
k Z Pk,n(mx)hk,n(mx)ZP(l]mx,n,k,j)

my=1 1=0

my—I+1
x ((l $1) Y P, ()i (my) (A.16)

my=1

n—my—j+1-1

+(] —1-1) Z ijl+1,nfmx (my)hk,n(my)) .

my=1

With the cross term available, the first term of the variance

E(HX(T)) = i (E(H2<7Tk,n>)+2 i E<H<7Tk,n)H(7Tj,n))> (A.17)

k=2 j=k+1

can be obtained. Sadly, the iteration over P(I) substantially worsens
the run time, which appears to be O(n*).

A simple argument can help make these scalings tangible. At a par-
ticular partition k, there are k individuals, each of which has roughly
n/k offspring and contributes roughly k~!logk to the total H. But
fluctuations are on the same order of magnitude. Thus, the variance
from the k partition is roughly k~!log?k, which integrates ~ log’ 1.
This suggests that the ratio of the mean and standard deviation de-

cays slowly, as roughly (logn)~'/?: compare with Figure 4.4.



PUBLICATIONS

Some ideas and figures have previously appeared in the following
publications:

* Kessinger T, Perelson A, and Neher R. Inferring HIV escape rates
from multi-locus genotype data. Frontiers in Immunology 4:252,
2013.

- Text and figures from this manuscript appear in Chapter 3.
* Neher R, Kessinger T, and Shraiman B. Coalescence and genetic

diversity in sexual populations under selection. Proceedings of
the National Academy of Science, 110(39):15836-15841, 2013.

— Text and figures from this manuscript appear in Chapter 5.
In addition, the following manuscript will shortly be submitted:

» Kessinger T, Neher R. Genetic draft and the shape of genealogies.
2015

- Text and figures from this manuscript appear in Chapter 4.
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