
Machine Learning and Security of
Non-Executable Files

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Nedim Šrndić
aus Maglaj/Bosnien-Herzegowina

Tübingen
2017

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 4.10.2017
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Andreas Zell
2. Berichterstatter: Prof. Dr. Michael Menth

To my mother and my father and all people of good will coming after me.

Mojoj majci i mom tati i svim ljudima dobre volje koji dolaze poslije mene.

Abstract
Computer malware is a well-known threat in security which, despite the enormous time
and effort invested in fighting it, is today more prevalent than ever. Recent years have
brought a surge in one particular type: malware embedded in non-executable file formats,
e.g., PDF, SWF and various office file formats. The result has been a massive number
of infections, owed primarily to the trust that ordinary computer users have in these
file formats. In addition, their feature-richness and implementation complexity have
created enormous attack surfaces in widely deployed client software, resulting in regular
discoveries of new vulnerabilities.

The traditional approach to malware detection – signature matching, heuristics and
behavioral profiling – has from its inception been a labor-intensive manual task, always
lagging one step behind the attacker. With the exponential growth of computers and
networks, malware has become more diverse, wide-spread and adaptive than ever, scaling
much faster than the available talent pool of human malware analysts. An automated
and scalable approach is needed to fill the gap between automated malware adaptation
and manual malware detection, and machine learning is emerging as a viable solution.
Its branch called adversarial machine learning studies the security of machine learning
algorithms and the special conditions that arise when machine learning is applied for
security.

This thesis is a study of adversarial machine learning in the context of static detection
of malware in non-executable file formats. It evaluates the effectiveness, efficiency and
security of machine learning applications in this context. To this end, it introduces 3
data-driven detection methods developed using very large, high quality datasets. PJScan
detects malicious PDF files based on lexical properties of embedded JavaScript code and
is the fastest method published to date. SL2013 extends its coverage to all PDF files,
regardless of JavaScript presence, by analyzing the hierarchical structure of PDF logical
building blocks and demonstrates excellent performance in a novel long-term realistic
experiment. Finally, Hidost generalizes the hierarchical-structure-based feature set to
become the first machine-learning-based malware detector operating on multiple file for-
mats. In a comprehensive experimental evaluation on PDF and SWF, it outperforms
other academic methods and commercial antivirus systems in detection effectiveness.

Furthermore, the thesis presents a framework for security evaluation of machine learn-
ing classifiers in a case study performed on an independent PDF malware detector. The
results show that the ability to manipulate a part of the classifier’s feature set allows a
malicious adversary to disguise malware so that it appears benign to the classifier with a
high success rate. The presented methods are released as open-source software.

v

Abstract

vi

Kurzfassung
Schadsoftware ist eine gut bekannte Sicherheitsbedrohung. Trotz der enormen Zeit und
des Aufwands die investiert werden, um sie zu beseitigen, ist sie heute weiter verbreitet
als je zuvor. In den letzten Jahren kam es zu einem starken Anstieg von Schadsoftwa-
re, welche in nicht-ausführbaren Dateiformaten, wie PDF, SWF und diversen Office-
Formaten, eingebettet ist. Die Folge war eine massive Anzahl von Infektionen, ermög-
licht durch das Vertrauen, das normale Rechnerbenutzer in diese Dateiformate haben.
Außerdem hat die Komplexität und Vielseitigkeit dieser Dateiformate große Angriffsflä-
chen in weitverbreiteter Klient-Software verursacht, und neue Sicherheitslücken werden
regelmäßig entdeckt.

Der traditionelle Ansatz zur Erkennung von Schadsoftware – Mustererkennung, Heu-
ristiken und Verhaltensanalyse – war vom Anfang an eine äußerst mühevolle Handarbeit,
immer einen Schritt hinter den Angreifern zurück. Mit dem exponentiellen Wachstum
von Rechenleistung und Netzwerkgeschwindigkeit ist Schadsoftware diverser, zahlrei-
cher und schneller-anpassend geworden als je zuvor, doch die Verfügbarkeit von mensch-
lichen Schadsoftware-Analysten kann nicht so schnell skalieren. Ein automatischer und
skalierbarer Ansatz ist gefragt, und maschinelles Lernen tritt als eine brauchbare Lösung
hervor. Ein Bereich davon, Adversarial Machine Learning, untersucht die Sicherheit von
maschinellen Lernverfahren und die besonderen Verhältnisse, die bei der Anwendung
von machinellem Lernen für Sicherheit entstehen.

Diese Arbeit ist eine Studie von Adversarial Machine Learning im Kontext statischer
Schadsoftware-Erkennung in nicht-ausführbaren Dateiformaten. Sie evaluiert die Wirk-
samkeit, Leistungsfähigkeit und Sicherheit von maschinellem Lernen in diesem Kontext.
Zu diesem Zweck stellt sie 3 datengesteuerte Erkennungsmethoden vor, die alle auf sehr
großen und diversen Datensätzen entwickelt wurden. PJScan erkennt bösartige PDF-
Dateien anhand lexikalischer Eigenschaften von eingebettetem JavaScript-Code und ist
die schnellste bisher veröffentliche Methode. SL2013 erweitert die Erkennung auf alle
PDF-Dateien, unabhängig davon, ob sie JavaScript enthalten, indem es die hierarchische
Struktur von logischen PDF-Bausteinen analysiert. Es zeigt hervorragende Leistung in
einem neuen, langfristigen und realistischen Experiment. Schließlich generalisiert Hi-
dost den auf hierarchischen Strukturen basierten Merkmalsraum und wurde zum ersten
auf maschinellem Lernen basierten Schadsoftware-Erkennungssystem, das auf mehre-
ren Dateiformaten anwendbar ist. In einer umfassenden experimentellen Evaulierung auf
PDF- und SWF-Formaten schlägt es andere akademische Methoden und kommerzielle
Antiviren-Lösungen bezüglich Erkennungswirksamkeit.

Überdies stellt diese Doktorarbeit ein Framework für Sicherheits-Evaluierung von auf

vii

Kurzfassung

machinellem Lernen basierten Klassifikatoren vor und wendet es in einer Fallstudie auf
eine unabhängige akademische Schadsoftware-Erkennungsmethode an. Die Ergebnisse
zeigen, dass die Fähigkeit, nur einen Teil von Features, die ein Klasifikator verwendet,
zu manipulieren, einem Angreifer ermöglicht, Schadsoftware in Dateien so einzubetten,
dass sie von der Erkennungsmethode mit hoher Erfolgsrate als gutartig fehlklassifiziert
wird. Die vorgestellten Methoden wurden als Open-Source-Software veröffentlicht.

viii

Acknowledgements
This thesis would not have been possible without the support of Prof. Andreas Zell and
Dr. Pavel Laskov. I kindly thank Prof. Zell for his backing during both good and hard
times and for providing valuable advice and guidance. I owe a particular debt to Pavel
for his continuous mentorship and friendship during this entire journey and for teaching
me the value of perseverance in scientific investigations. Furthermore, I kindly thank my
colleagues and friends Dr. Blaine Nelson, Dr. Florian Mittag, Dr. Battista Biggio, Goran
Huskić and numerous members of the Cognitive Systems Department of the University
of Tübingen for their scientific feedback and collaboration. I would also like to thank
Prof. Saša Mrdović for helping me start my doctoral studies.

I acknowledge the support of the German Research Foundation (Deutsche Forschungs-
gemeinschaft, DFG) and the German Federal Office for Information Security (Bunde-
samt für Sicherheit in der Informationstechnik, BSI), especially Dr. Robert Krawczyk,
in funding a substantial part of this work. I kindly thank VirusTotal for providing access
to file data. The opinions in this thesis are those of its author and do not necessarily
reflect the opinions of funding sponsors.

Finally, this thesis would not have been completed without the love and support of my
family, including my wife Lola, daughter Luna, parents Mirsada and Idriz, and brother
Mahir.

ix

Acknowledgements

x

Contents

1 Introduction 1
1.1 Structure of the Dissertation . 4
1.2 Data Sources . 4

2 File Formats 7
2.1 Portable Document Format . 7
2.2 SWF File Format . 10

3 A Case Study of Malicious PDF File Detection 13
3.1 Introduction . 13
3.2 Prior Work . 16
3.3 JavaScript in PDF . 18
3.4 System Design . 19

3.4.1 Extraction of JavaScript Content 20
3.4.2 Lexical Analysis . 21
3.4.3 Learning and Classification . 22

3.5 Data Collection and Analysis . 25
3.6 Experimental Evaluation . 26

3.6.1 Objectives and Evaluation Criteria 27
3.6.2 Experimental Protocol . 28
3.6.3 Experimental Results . 29
3.6.4 Significant Features . 30
3.6.5 Throughput . 31

3.7 Discussion . 33
3.7.1 Later Work . 34

3.8 Conclusions . 36

4 A General Approach for Malware Detection in Non-Executable Files 37
4.1 Introduction . 37
4.2 Prior Work . 41
4.3 Hierarchically Structured File Formats 42

4.3.1 Portable Document Format (PDF) 43
4.3.2 SWF File Format . 46

4.4 SL2013 System Design . 47

xi

Contents

4.4.1 Feature Definition . 48
4.4.2 Extraction of PDF Document Structure 50
4.4.3 Learning and Classification . 51

4.5 SL2013 Experimental Evaluation . 53
4.5.1 Experimental Datasets . 53
4.5.2 Experimental Protocol . 54
4.5.3 Experimental Results . 56
4.5.4 Throughput . 60

4.6 Hidost System Design . 62
4.6.1 Logical Structure Extraction 63
4.6.2 Structural Path Consolidation 66
4.6.3 Feature Selection . 70
4.6.4 Vectorization . 71
4.6.5 Learning and Classification . 72

4.7 Hidost Experimental Evaluation . 72
4.7.1 Experimental Datasets . 73
4.7.2 Experimental Protocol . 73
4.7.3 Experimental Results . 75

4.8 Discussion . 81
4.8.1 Extensibility to Other File Formats 83
4.8.2 Adversarial Considerations . 85
4.8.3 Later Work . 86

4.9 Conclusions . 88

5 A Case Study of Machine Learning Classifier Evasion 91
5.1 Introduction . 92
5.2 Evasion Attacks against Learning Systems 94

5.2.1 Scenario F . 95
5.2.2 Scenario FT . 96
5.2.3 Scenario FC . 97
5.2.4 Scenario FTC . 97

5.3 PDFrate . 97
5.3.1 Features . 97
5.3.2 Datasets . 98
5.3.3 Classification Algorithm . 98
5.3.4 Adversarial Considerations . 99

5.4 Methodology . 100
5.4.1 Reimplementation of PDFrate Features 100
5.4.2 Modification of PDFrate Feature Values 101
5.4.3 Attack Algorithms . 105

5.5 Experimental Evaluation . 106
5.5.1 Datasets . 107

xii

Contents

5.5.2 Classifiers . 107
5.5.3 Attack Scenarios . 109
5.5.4 Results . 110
5.5.5 Defensive Measures . 113

5.6 Interpretation of Attacks . 114
5.7 Discussion . 117

5.7.1 Later Work . 119
5.8 Conclusions . 121

6 Summary and Conclusions 123

A PDFrate Feature Reimplementation 129

Abbreviations 131

Bibliography 133

xiii

Chapter 1

Introduction

The advent of the computer era has had a transformative effect on our world. The ubiq-
uitous availability of computers has changed the way we communicate, learn, work,
socialize, trade, etc. There is an unsurpassed amount of information available around
the hour at our fingertips, enabling an unprecedented level of prosperity for our society
globally.

The benefits of the computer era, however, do not come without drawbacks. As in
the physical world, where every economic niche attracts its share of criminals, there is a
thriving ecosystem of unlawful activity in the virtual realm as well. Whether interception
of personal communications, use of networks of slave computers for denial-of-service
attacks against businesses or ransom demands for the release of private data held hostage
– the consequences of such activity reach beyond the virtual realm and affect our daily
lives.

An especially wide-spread and effective method for computer-related criminal activi-
ties is malware, i.e., computer software with a malicious function. Historically, the ma-
jority of malware was distributed as executable files, e.g., MS-DOS programs or Portable
Executable (PE) files. However, in recent years there has been an increasing focus on
malware disguised inside non-executable files of different file formats, e.g., Portable
Document Format (PDF), SWF file format or office document formats such as OOXML
and ODF. Particularly for targeted attacks, non-executable file formats provide attackers
with multiple benefits: a) ordinary computer users have learned to distrust executable
files but not office documents, b) the complexity of popular non-executable file formats
whose specifications have thousands of pages has fueled a surge in documented vulner-
abilities in recent years, c) designed for flexibility, these formats facilitate the hiding of
malware using obfuscation, dynamic loading or encryption.

As the complexity and frequency of malware attacks grew, it warranted the develop-
ment of novel defensive technologies that can automate and scale the work of human
professionals in the field. A promising avenue of research was found in the area of
machine learning, with many successful applications. Still, as typical in science, many
more research questions were opened than answered. Specifically, applications of ma-
chine learning for security impose a set of constraints that make them more challenging
than in other areas. The cost of false predictions in, e.g., misuse detection, is a lot higher

1

Chapter 1 Introduction

(financial fraud) than in, e.g., product recommendation (loss of a sales opportunity). Fur-
thermore, while in many other areas, e.g., in speech recognition, the data has a relatively
stationary distribution or is evolving slowly, in security the data is often changing rapidly,
e.g., in intrusion detection, where there are new threats every day. Finally, a unique char-
acteristic of machine learning in the context of security is that the evolution of the data is
a direct response to the machine learning systems themselves. The data is continually be-
ing adapted to cheat the evolving systems, leading to an arms race. Adversarial machine
learning is the scientific discipline studying the interplay between machine learning and
security.

This thesis is a study of adversarial machine learning in the context of static detection
of malware in non-executable file formats. It evaluates the effectiveness, efficiency and
security of machine learning applications in this context. It introduces novel methods for
malware detection in non-executable file formats and presents a comprehensive experi-
mental analysis of their effectiveness and efficiency and, where available, an independent
evaluation of their security. Furthermore, it presents a framework for security evaluation
of machine learning classifiers with a case study of an established independently pub-
lished system for PDF malware detection.

Static detection is performed by examining the file itself, as opposed to the dynamic
approach that includes the execution of the file in a monitored environment. Static meth-
ods operate orders of magnitude faster and can be efficiently applied to massive datasets.
Their inherent drawback is the inability to access malicious content in cases where it
is dynamically loaded from otherwise seemingly benign files. Well-implemented dy-
namic methods solve this problem but are too slow for real-time detection and relatively
resource-intensive. They have to cope with stealthy malware and support a combinatorial
explosion of different versions of targeted software and libraries. A third type of meth-
ods, hybrid, combines both, in an attempt to balance their advantages and drawbacks.
The focus of this thesis is on high efficiency, i.e., methods that can be applied at network
speeds, which limits its scope to static approaches.

In 2011, when work on this thesis started, the state of the art in machine-learning-based
detection of malware in non-executable file formats was heavily focused on detecting
malware targeting web browsers using JavaScript [14, 22, 23, 29, 59, 72, 76, 80, 107].
In 2008 attackers started increasingly using PDF as their attack vector of choice and it
remained the dominant threat for several following years. Work on browser malware
detection, especially [80], has motivated the question of viability of detecting malware
in PDF files which make use of JavaScript, which forms the basis of the first method
published as part of this thesis. Most early PDF malware detectors were at least partly
based on dynamic execution [1, 22, 28, 71, 103, 104], but their long runtime is ill-suited
for network-level detection. The only 2 static methods [48, 84] are based on analysis
of n-grams extracted from binary PDF files. These methods are, however, highly prone
to evasion due to the wide-spread obfuscation techniques and file-level encryption built
into the PDF file format. Along with PDF, late 2000s saw a rapid rise in SWF malware.
The only SWF malware detector proposed before 2011, OdoSwiff, is a hybrid method

2

also using relatively vulnerable features.
The existing solutions at the time were limited to a single file format and could not

scale to data quantities traveling through modern networks. Furthermore, the established
practice in experimental evaluation was the use of relatively small datasets (some studies
used less than 100 samples) and cross-validation instead of a clear temporal separation of
training (old) and test datasets (unseen malware). Finally, published methods were com-
pared to previous academic work but rarely to commercial products. The contributions
of this thesis address these shortcomings and can be summarized as follows:

• Implementation and evaluation of a static machine-learning-based detector of ma-
licious PDF files, PJScan, based on lexical properties of JavaScript code used by
malware embedded inside PDF files. The experimental evaluation was performed
on an unprecedentedly large real-world PDF dataset. It demonstrated solid ef-
fectiveness and, with 31 ms/file/CPU, unsurpassed efficiency of the system. Fur-
thermore, it was able to detect 71 % zero-day malicious PDF files missed by all
surveyed antivirus scanners.

• Definition of a novel set of features for characterization of file formats internally
logically organized as hierarchies, e.g., PDF, SWF, HTML, office file formats, etc.

• Implementation and evaluation of a static machine-learning-based detector of ma-
licious PDF files SL2013 based on the defined structural features. A 10-week
simulated real-world deployment of the proposed detector on 440,000 malicious
and benign PDF files with weekly retraining achieved detection performance close
to that of the best antivirus tools.

• Implementation and evaluation of a static machine-learning-based detector of ma-
licious PDF and SWF files, Hidost, based on the defined structural features. This
is the first such system applicable to multiple file formats and extensible to other
ones. An experimental evaluation performed on both formats under the same simu-
lated real-world deployment experiment as SL2013 demonstrated that Hidost out-
performs all surveyed antivirus engines on PDF and ranks among the best on SWF
files.

• The first automated practical attack against a machine-learning-based detector of
malicious PDF files (PDFrate) deployed “in the wild”, performed without knowl-
edge of the learned model and entirely in problem space. Systematic evaluation
of different evasion scenarios with varying degrees of knowledge available to the
attacker, implemented in a software framework Mimicus, reveals that simple at-
tacks can lower the average classification score from almost 100 % down to 28 %
to 33 %.

• All developed methods and frameworks, i.e., PJScan, SL2013, Hidost and Mim-
icus, together with code for experiments evaluating Hidost are released as free

3

Chapter 1 Introduction

and open-source software to guarantee the reproducibility of the published results.
Furthermore, all datasets used for the evaluation of Hidost are released in form of
extracted feature vectors.

1.1 Structure of the Dissertation
The remainder of this thesis is structured as follows. Chapter 2 describes the technical
details of two file formats necessary for the understanding of subsequent chapters, i.e.,
the Portable Document Format (PDF) and the SWF file format.

Chapter 3 presents a case study of machine learning for malware detection on the
example of PDF, introducing PJScan. The subsequent Chapter 4 provides an elaborate
presentation of two static machine-learning-based malware detectors for non-executable
file formats based on hierarchical logical structure. The first, SL2013, is limited to PDF,
while its successor Hidost introduces a set of innovations that extend the basic idea and
the same feature set to a second format, SWF. Furthermore, a basic outline is provided
how to further extend it to generalize to other non-executable file formats, e.g., HTML,
OOXML and ODF.

While the last two chapters concern themselves with the question of applicability of
machine learning to detection of non-executable malware, Chapter 5 explores the ques-
tion of security of machine learning itself in this domain in a case study of evasion of a
deployed classifier.

Chapters 3, 4 and 5 present methods published in our earlier scientific publications,
cited at the beginning of each chapter. They provide a separate account of respective
relevant prior work. Furthermore, each has a section titled “Discussion” concerned with
the most important scientific findings, limitations of the proposed methods and relevant
later work citing the publications underlying the given chapter.

Finally, Chapter 6 concludes the manuscript. Technical details relevant to Mimicus
implementation are described in Appendix A.

1.2 Data Sources
Novel methods developed in this thesis were compared to previous work, both aca-
demic and commercial. Dataset collection and comparison to commercial antivirus tools
proceeded through VirusTotal1, a website enabling users to upload files to have them
scanned by virtually all commercial antivirus tools. Using data from VirusTotal en-
sured that all evaluations were performed on diverse real-world malicious and benign
files and that the data quantity was plentiful. Scan reports obtained from VirusTotal re-
flect static detection capabilities of deployed antivirus tools; their dynamic components
are not utilized. As such, they can be compared with the fully static methods presented in

1VirusTotal – https://virustotal.com/.

4

https://virustotal.com/

1.2 Data Sources

this thesis. Google Search was used as an independent source of benign PDF data. De-
tailed descriptions of concrete datasets can be found in sections concerning experimental
evaluation in every chapter.

5

Chapter 1 Introduction

6

Chapter 2

File Formats
Knowledge of these file formats is indispensable for understanding methods elaborated
in the remainder of this manuscript, hence we present in the following sections their
minimal self-contained description to serve as a common base for the coming chapters.

2.1 Portable Document Format
The Portable Document Format (PDF) is a file format that enables creation of docu-
ments that render and print consistently, independent of the underlying environment. It
was created by Adobe Systems Inc. in 1993 and published in 2008 as open standard
ISO 32000-1:2008 [67], a document referred to as the PDF Reference hereinafter. This
and later sections concerning the PDF format contain direct citations from the PDF Ref-
erence.

The syntax of PDF comprises four main elements and is illustrated in a simplified
example PDF file in Fig. 2.1:

• Objects. These are the basic building blocks in PDF described in more detail in
the remainder of this section.

• File structure. It specifies how objects are laid out, accessed and modified in a
PDF file. At this level, a PDF file consists of:

– a header with the PDF magic number %PDF- followed by the version of the
PDF standard utilized in the file, e.g., 1.7,

– a body with PDF objects that make up the actual content of the document,

– a cross-reference table introduced with the keyword xref, identifying indi-
rectly referenced objects in the body and their file offsets,

– a trailer, denoted by the keyword trailer, containing the location of the
cross-reference table and special objects in the file body and followed by the
keyword %%EOF.

Although linear PDF files exist, objects are layed out non-linearly in most PDF
files, including our example. In order to parse such a file, a PDF parser must

7

Chapter 2 File Formats

therefore begin by checking the version number and looking at the file trailer for
information about the location of the cross-reference table and some special objects
in the file body. Starting from there, it can locate the information necessary for
rendering.

The file structure lies at the heart of methods elaborated in Chapter 5.

• Document structure. It determines how objects are logically organized to repre-
sent the components of a PDF file, e.g., fonts, pages, etc. A detailed description of
the elaborate document structure is deferred to Chapter 4.

• Content streams. They describe the appearance of the content in PDFs and are
not further considered in this manuscript.

%PDF-1.7
1 0 obj <<
 /Type /Catalog
 /OpenAction <<
 /S /JavaScript
 /JS (alert("Hello!");)
 >>
 /Pages 3 0 R
>> endobj

3 0 obj <<
 /Type /Pages
 /Kids [22 0 R 23 0 R]
 /Count 2
>> endobj
...
22 0 obj <<
 /Type /Page
 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Resources ...
>> endobj
23 0 obj <<
 /Type /Page
 /Parent 3 0 R
 /MediaBox [0 0 333 444]
 /Resources ...
>> endobj
xref
0 317
0000000000 65535 f
...
0000375296 00000 n
trailer
...
startxref
377137
%%EOF

header

body

cross-reference
table

trailer

Figure 2.1: An example PDF file, simplified and formatted for brevity.

PDF objects reside in the body of a PDF file. There are 9 basic object types specified
in the PDF Reference:

8

2.1 Portable Document Format

1. Boolean objects can take on values true and false.

2. A numeric object may be an integer or a real number.

3. Strings may be stored in two ways:

• as a sequence of literal characters between parentheses ‘(’ and ‘)’, e.g., the
string alert(”Hello!”); in Fig. 2.1,

• as a sequence of hexadecimal numbers between angle brackets ‘<’ and ‘>’.

Strings may be encrypted.

4. A name is a sequence of 8-bit characters used as identifier. Names are introduced
using the forward slash character (‘/’) and can contain arbitrary characters except
null (0x00). Examples are Type, Catalog or MediaBox in Fig. 2.1.

5. The null object is denoted by the keyword null.

The object types introduced so far, i.e., boolean, numeric, string, name and null,
will be referred to as primitive types hereinafter.

6. An array is a one-dimensional sequence of PDF objects enclosed between square
brackets, ‘[’ and ‘]’, e.g., [0 0 333 444]. It may contain heterogeneous PDF
objects and be nested.

7. Dictionaries are unordered sets of key-value pairs enclosed between symbols ‘<<’
and ‘>>’. The keys must be name objects unique within a dictionary. The val-
ues may be of any PDF object type, including nested dictionaries. There are 5
dictionaries in Fig. 2.1, one of them being nested inside the first dictionary.

8. A stream is a dictionary followed by a sequence of bytes enclosed between key-
words stream and endstream. Streams are usually used to represent large ob-
jects, such as images, in a compact way. The content of the byte sequence may
be encoded or compressed and the associated dictionary contains information on
whether and how to decode or decompress it. Stream content may also be en-
crypted. A special type of streams are object streams containing arbitrary PDF
objects.

9. An indirect object is any of the previously defined objects supplied with a unique
object identifier and enclosed within keywords obj and endobj. Fig. 2.1 con-
tains 4 indirect dictionaries. The unique identifier comprises an object number
and a generation number, a sort of a version number for tracking changes to ob-
jects. Indirect objects can be referenced from other objects via indirect references
written as a sequence of the object number, the generation number and the capital
letter ‘R’. For example, 23 0 R in Fig. 2.1 refers to the dictionary with the object
number 23 and generation number 0.

9

Chapter 2 File Formats

The PDF body is structured as a hierarchy of objects interconnected in a semanti-
cally meaningful way to describe pages, outlines, annotations, etc. A central role in the
hierarchy belongs to the Catalog dictionary pointed to by the /Root entry in the cross-
reference table.

Having described the PDF file format in sufficient detail, we can now interpret the
body of the PDF file illustrated in Fig. 2.1 in its entirety1. It contains four indirect objects
indicated by two-part object identifiers, e.g., 1 0 for the first object, and the keywords
obj and endobj. They are all dictionaries, as they are surrounded by the symbols ‘<<’
and ‘>>’. The first indirect object is the Catalog dictionary, distinguishable by having
Catalog for its Type. The Catalog has 2 further dictionary entries:

• OpenAction is an example of a nested dictionary. It has two entries: S, a name
indicating that this is a JavaScript action dictionary, and JS, a string with the actual
JavaScript code, alert(’Hello!’);.

• Pages is an indirect reference to the object with the ID 3 0: the Pages dictionary
that immediately follows Catalog. It has an integer, Count, announcing that the
document has 2 pages, and an array Kids identifiable by the square brackets, with
two references to 2 Page objects describing the appearance of the pages. The
remaining objects are interpreted analogously.

Many parsers fail to strictly follow the PDF Reference. Even Adobe’s own Adobe
Reader is notorious for such lack of compliance. For example, it ignores arbitrary sym-
bols before the header [37] and can dispense with the trailer and cross-references [110].

2.2 SWF File Format
The SWF File Format (SWF, pronounced swiff) is a proprietary binary file format widely
used for interactive content on the World Wide Web. Adobe Systems Incorporated has
published the partial SWF Specification [95]. This and later sections concerning the SWF
format contain direct citations from the SWF Specification.

SWF files consist of a header and a sequence of tags – well-defined data structures
with a set of predefined fields and corresponding values. There are 65 different types of
tags specified, each defining its own set of fields with different names and data types.
Some basic SWF data types are:

• 8-, 16-, 32- and 64-bit integers, both signed and unsigned, arrays of these types
and integers with a variable number of bytes

• fixed- and floating-point numbers with different widths and precisions

• integer and fixed-point numbers with widths that are not exponents of 2
1Excepting the omitted parts denoted by ellipses (...).

10

2.2 SWF File Format

• strings

• various data structures such as 24- and 32-bit color records, rectangle records, 2D
transformation matrices, etc.

000 46 57 53 06 24 00 00 00 70 00 0b 9a 00 00 3e 80
010 00 01 02 00 43 02 aa bb cc 40 00 43 02 11 22 33
020 40 00 00 00

Figure 2.2: Hexadecimal view of an example SWF file. Left column shows hexadecimal
addresses of rows.

Fig. 2.2 shows a toy SWF file used for illustrative purposes. The physical layout of
SWF is too obscure for direct interpretation. Instead, we base our description of the
SWF file format on the decoded, human-readable depiction of the same file, illustrated
in Fig. 2.32.

[14:0]: SetBackgroundColor
 [14:0]: Header (Code: 9 Length: 3)
 [14:0]: TagAndLength : 579
 [B0:0]: BackgroundColor
 [16:0]: Red : 170
 [17:0]: Green : 187
 [18:0]: Blue : 204
[19:0]: ShowFrame
 [19:0]: Header (Code: 1 Length: 0)
 [19:0]: TagAndLength : 64
[1B:0]: SetBackgroundColor
 [1B:0]: Header (Code: 9 Length: 3)
 [1B:0]: TagAndLength : 579
 [E8:0]: BackgroundColor
 [1D:0]: Red : 17
 [1E:0]: Green : 34
 [1F:0]: Blue : 51
[20:0]: ShowFrame
 [20:0]: Header (Code: 1 Length: 0)
 [20:0]: TagAndLength : 64
[22:0]: End
 [22:0]: Header (Code: 0 Length: 0)
 [22:0]: TagAndLength : 0

Figure 2.3: SWF file depicted in Fig. 2.2, decoded, header omitted for brevity. Every line
starts with a hexadecimal number within square brackets denoting the offset, in bytes, of
the corresponding tag field from the beginning of the file.

2This textual description of the original SWF file was produced using the ConsoleDumper class
of SWFRETools, an open-source Java toolkit for reverse-engineering SWF files available at https:
//github.com/sporst/SWFREtools.

11

https://github.com/sporst/SWFREtools
https://github.com/sporst/SWFREtools

Chapter 2 File Formats

The illustration shows 5 SWF tags separated by dotted lines: two tags with type
SetBackgroundColor at bytes 0x14 and 0x1B, two ShowFrame tags at bytes 0x19
and 0x20 and an End tag at byte 0x22. Tags of a SWF file are laid out sequentially.
Every tag has a header with an unsigned 16-bit little-endian TagCodeAndLength field
that comprises a 10-byte tag type identifier and a 6-bit tag length field, with an optional
wider length field for tags longer than 62 bytes.

The first tag in this file is used to set the background color of the display. It is a simple
tag, defining 3 unsigned one-byte values of the red (0xAA= 170), green (0xBB= 187) and
blue (0xCC = 204) color components. The second tag makes the content of the canvas
render on screen for the duration of one frame. Following this, the background color is
set to #112233 and the screen is refreshed one more time. Finally, the End tag signals
the end of the file.

12

Chapter 3

A Case Study of Malicious PDF File
Detection
In this chapter we present a method for malicious PDF file detection that specializes in
PDF files that contain JavaScript code. At the heart of the detection approach lies the hy-
pothesis that lexical properties of embedded JavaScript code differ between benign and
malicious files. Due to its specialization, the proposed method has a restricted applicabil-
ity and is thus explored in form of a case study in this chapter. A more general detection
method for both PDF and Adobe Flash files will be presented in Chapter 4. The remain-
der of this chapter contains material from our Annual Computer Security Applications
Conference (ACSAC) 2011 publication [45].

After the introduction in Section 3.1, we present a survey of prior work (Section 3.2)
followed by a brief summary of mechanisms for embedding JavaScript into PDF (Sec-
tion 3.3). The system design and methodology is presented in Section 3.4. In Section 3.5
we explore the data corpus and analyze its statistical features. Our experimental evalu-
ation is presented in Section 3.6. Limitations of our method and related later work are
discussed in Section 3.7, and Section 3.8 concludes this chapter.

3.1 Introduction
Since the discovery of the first critical vulnerability in Adobe Reader in 20081, the
Portable Document Format has become one of the main attack vectors used by mis-
creants. PDF-based attacks were the most frequently used remote exploitation technique
in 2009 with a proud share of 49 %. Two specific PDF-based vulnerabilities were ranked
second and fifth among all discovered in 2009 [96]. Overall, more than 50 vulnera-
bilities were discovered in Adobe Reader in 2008–2010, which has led to numerous
security-related updates.

The vulnerabilities of Adobe Reader can be classified into three categories:

1. The earliest—and the largest—class of vulnerabilities arises from bugs in the im-
plementation of the Adobe JavaScript API. This API significantly extends the Ja-

1collab.CollectEmailInfo (CVE-2007-5659).

13

Chapter 3 A Case Study of Malicious PDF File Detection

vaScript functionality in the specific context of PDF files.

2. The second class of vulnerabilities is rooted in non-JavaScript features of Adobe
Reader but typically requires JavaScript for exploitation, e.g., using heap spraying.
Examples of such vulnerabilities are the JBIG2 filter (e.g., CVE-2009-0658) and
heap overflow (e.g., CVE-2009-1862) exploits.

3. Finally, the smallest class of vulnerabilities, e.g., the flawed embedded TrueType
font handling (CVE-2010-0195), does not involve JavaScript functionality.

Unlike other exploitation techniques such as drive-by-downloads, SQL injection or
cross-site scripting, PDF-based attacks have not received significant attention in the re-
search community before 2011. Previous work in this field has mostly focused on dy-
namic analysis techniques. For example, well-known sandboxes JSand [22] and CW-
Sandbox [109] have been adapted to the analysis of malicious PDF files. Due to heavy
instrumentation and security risks associated with dynamic analysis, the practical appli-
cability of such approaches is limited to malware research systems. For end-user sys-
tems, some early work on the detection of potential exploits in PDF files [48, 84] has
gone largely unnoticed, and in practice the detection of malicious PDF files hinges upon
signatures provided by antivirus vendors.

In this chapter we explore static techniques for detection of JavaScript-based PDF
malware. Our aim is to develop efficient detection methods suitable for deployment
on end-user systems as well as in the networking infrastructure, e.g., email gateways
and HTTP proxies. We present the tool PJScan2, capable of reliably detecting PDF
attacks with operational false positive rates in the promille range. Its low computational
overhead makes it very attractive for large-scale analysis of PDF files.

Conceptually, PJScan is closely related to static analysis techniques for detection of
browser-based JavaScript attacks. Similarly to previous work by Rieck et al. [80], our
methodology is based on lexical analysis of JavaScript code and uses machine learning to
automatically construct models from available data for subsequent classification of new
data. The crucial difference from browser-based JavaScript attacks is that reliable ground
truth information is hardly available for PDF files. It is especially difficult to identify
benign JavaScript-bearing PDF files. Firstly, as our study will show, such examples are
indeed much more rare than malicious ones. Secondly, while it is relatively easy to verify
that web content at a certain URL is benign, e.g., by using Google Safe Browsing3,
it is much more difficult to extract and analyze JavaScript code in PDF files. These
implications necessitate a conceptual re-design of detection methods. We therefore resort
to anomaly detection to learn only from malicious examples.

Furthermore, reliable extraction of JavaScript code from PDF files poses a challenge
in itself. Not only is PDF very complex, it is also rich with features that can be used for

2The source code of PJScan can be found at http://sf.net/p/pjscan.
3Google Safe Browsing – https://developers.google.com/safe-browsing/.

14

http://sf.net/p/pjscan
https://developers.google.com/safe-browsing/

3.1 Introduction

hiding the presence of JavaScript code. As elaborated in Chapter 2, PDF supports com-
pression of arbitrary objects as well as various encodings for JavaScript content. Such
features are routinely used by attackers to avoid detection by signature-based methods. In
our experience, none of the previous tools for static analysis of PDF files, e.g., PDFID4,
JSUNPACK5, or PDF Dissector (discontinued), were able to provide reliable extraction
of JavaScript code from PDF files. In the preprocessing component of PJScan, we have
developed an interface to the PDF rendering library Poppler6. Using this interface, our
system is able to handle nearly all potential locations of JavaScript known to us from the
PDF Reference7.

We have evaluated the effectiveness of PJScan on a large real-world dataset com-
prising 3 months of data uploaded by users to the malware analysis portal VirusTotal.
This is the first study of malicious PDF files carried out at such scale. Our analysis has
found zero-day PDF malware samples, i.e., malicious PDF files undetected by all an-
tiviruses (we have found 52 such files among more than 40,000 classified by VirusTotal
antiviruses as benign). In our experiments, PJScan has attained average detection rates
of 85 % for known and 71 % for previously unseen PDF malware with the average oper-
ational false positive rate of about 0.37 %. Due to the difference in the nature of benign
data, a direct comparison of PJScan with methods for detection of browser-based Java-
Script attacks is impossible. Wepawet, unfortunately since discontinued, was the only
previous detection method suitable for PDF-based JavaScript attacks. Much to our sur-
prise, while attaining a perfect false positive score and being very good in detection of
novel PDF attacks (90 %), Wepawet has shown poor performance on known PDF attacks,
for which it only reached the detection accuracy of 63.6 %. As a dynamic analysis tool,
Wepawet has been conceived for offline processing and therefore incurs a significant
runtime overhead.

In summary, this chapter provides the following contributions:

• Robust extraction of JavaScript from PDF files. We provide a detailed account
of mechanisms for embedding JavaScript into PDF files and present a methodology
for its reliable extraction using the open-source PDF parser Poppler.

• Fully static detection of malicious JavaScript. We describe a method for dis-
crimination between malicious and benign JavaScript instances based on lexical
analysis and anomaly detection. Unlike previous work, the proposed method does
not require manual ground truth labeling. This is especially important for PDF
files for which it is difficult to establish ground truth.

• High performance. The key advantage of static analysis is that it allows sev-
eral orders of magnitude higher processing speed. Our system PJScan attains an

4PDFID – http://blog.didierstevens.com/programs/pdf-tools/.
5JSUNPACK – https://github.com/urule99/jsunpack-n.
6Poppler – https://poppler.freedesktop.org/. Version 0.14.3 was used in our implementation.
7The sole exception, JavaScript code in XFA forms, will be discussed in Section 3.7.

15

http://blog.didierstevens.com/programs/pdf-tools/
https://github.com/urule99/jsunpack-n
https://poppler.freedesktop.org/

Chapter 3 A Case Study of Malicious PDF File Detection

average runtime of 31 ms/file/CPU, the fastest of all published methods.

• Comprehensive evaluation. We present the results of the first large-scale evalu-
ation of malicious PDF detection on a real-world dataset comprising over 65,000
PDF files. PJScan has detected 85 % PDF files labeled by at least 5 antivirus tools
deployed at VirusTotal as malicious. Furthermore, it detects 71 % of zero-day
malicious PDF files missed by all VirusTotal scanners. The promille-range false
positive rate of PJScan makes it suitable for practical deployment.

• Source code release. Source code of PJScan is released as open-source software.

3.2 Prior Work
The earliest approaches to identification of malware in PDF files [48, 84] were based
on n-gram analysis of raw file content. The scope of experimental evaluation in this
work was rather limited. It included self-generated malicious PDF files as well as a rela-
tively small number of examples (less than 300) from the outdated VXHeavens malware
repository. Due to the wide-spread use of evasion techniques in modern PDF malware,
especially object compression and code-level obfuscation, we find the analysis of raw
content of PDF files inadequate. Consequently, the approach taken in PJScan is funda-
mentally different from the above-mentioned work in that our methods spend a lot of
effort in discovering and utilizing the appropriate lexical features of PDF.

Other prior work on PDF file classification has emerged from existing tools for static
and dynamic analysis. Early dynamic approaches were based on software emulation [1,
71] and abstract payload execution [103]. However, they were shown to be susceptible
to evasion and computationally intensive. Besides the portal Wepawet considered in our
experiments and based on the sandbox JSand [22], some other tools use a combination of
static and dynamic analysis. One example is MalOffice [28], which also employs heuris-
tics. Its static analysis is based on the utility PDFtk8, and its dynamic analysis builds
on CWSandbox [109]. Detections are made by combining scores from various heuris-
tics and policies attached to the analysis tools. Another example is MDscan, proposed
in [104]. From the architectural point of view, MDscan is similar to our approach. It
also uses static analysis to extract JavaScript content (although using a self-made parser)
and a heuristic approach for the extraction of JavaScript code. The extracted code is
interpreted using SpiderMonkey and the detection is carried out dynamically by utiliz-
ing the shellcode detection tool Nemu [71]. The method was evaluated on a set of 197
malicious PDF files artificially generated using the Metasploit framework and 2000 be-
nign files. Compared to MDscan, we use SpiderMonkey only for token extraction and
perform detection statically, which brings a performance improvement of two orders of
magnitude.

8PDFtk – https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/.

16

https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/

3.2 Prior Work

A significant body of prior work has addressed the detection of malicious JavaScript
in web content, especially in the context of drive-by-downloads. One cannot directly
compare the accuracy of such methods with PJScan due to the fact that the data corpora
used for the experimental evaluation of respective methods are very different. We will
hence focus on methodical comparison of our approach with such methods.

Similar to PDF malware, the methods for detection of malicious JavaScript in web
content can be classified into static, dynamic and hybrid. Purely dynamic methods de-
ploy various techniques for monitoring the run-time execution of processes accessing
web content, e.g., full-fledged host virtualization [107], client virtualization [59], instru-
mentation of a JavaScript engine [29] or heap monitoring [76]. Dynamic methods have
high detection accuracy and are hardly prone to false positives, however, due to their
performance overhead they are usually limited to “post-mortem” analysis.

Hybrid methods aim to minimize run-time overhead while retaining high detection
accuracy. Several such methods have methodical affinity with PJScan. JSand [22] uses
instrumented versions of HtmlUnit9, a Java-based browser simulator, and the Mozilla
Rhino10 JavaScript interpreter to extract heuristic features while monitoring code execu-
tion. These features are used to train an anomaly detection system by running JSand on
benign web pages. Cujo [80] is another interesting combination of static and dynamic
methods. Its static part is similar to PJScan, with the exception that PJScan employs
anomaly detection instead of two-class classification in its learning component. Cujo’s
dynamic component extracts symbolic features from the light-weight sandbox ADSand-
box [25] and deploys similar n-gram analysis and learning techniques as the static part.
As a “mostly static” detection system, Zozzle [23] avoids dynamic analysis except for
unraveling source-code obfuscation before using statistical feature extraction and su-
pervised learning for classification. Compared to these hybrid methods, PJScan uses
“reverse” anomaly detection—since only malicious data is widely available for PDF
files—and completely dispenses with run-time analysis. Another hybrid method has
been proposed by Provos et al. [72]; however, the lack of a technical presentation in this
reference prevents us from a detailed comparison.

The only fully static method in the web domain is Prophiler [14]. It deploys tech-
niques similar to JSand except that its features are extracted from a JavaScript engine at
the parsing stage without running the code (a similar idea is used in our method but one
step earlier, by stopping SpiderMonkey after the lexical analysis). However, Prophiler
has a high false positive rate and is intended to be used as a filter for subsequent dynamic
analysis.

9HtmlUnit – http://htmlunit.sourceforge.net/.
10Rhino – https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino.

17

http://htmlunit.sourceforge.net/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

Chapter 3 A Case Study of Malicious PDF File Detection

3.3 JavaScript in PDF
PDF provides several mechanisms for inclusion of JavaScript code. They are important
for the realization of interactive features, such as forms, dynamic content or 3D render-
ing. Some PDF usage scenarios relying on these features cannot be realized without
JavaScript.

The main indicator of JavaScript code is the presence of the keyword /JS in a PDF
dictionary. The JavaScript source code can be supplied directly as a string (literal or
hexadecimal) or stored in another object accessed via an indirect reference. In the latter
case, it is usually stored as a compressed or encrypted stream. Examples of typical syntax
for embedding of JavaScript code are shown in Fig. 3.1.

1 0 obj <<
/Type /Catalog
/Pages 2 0 R
/OpenAction <<
/S /Rendition
/JS 23 0 R

>>
>>
endobj

1 0 obj <<
/Type /Catalog
/Pages 2 0 R
/OpenAction <<
/S /JavaScript
/JS (alert(’Hello World!’);)

>>
>>
endobj

Figure 3.1: Examples of syntactic constructs for embedding JavaScript code in PDF files.
Left: code is placed in another object (omitted) pointed to by an indirect reference. Right:
code is supplied as a literal string.

A simple search for /JS patterns in PDF files – as it was realized in some tools for PDF
file analysis, e.g., PDFID – does not suffice for identification of JavaScript locations. It
can be easily evaded by placing dictionaries containing JavaScript into object streams.
PDF stream compression makes the keyword /JS in that case appear obfuscated when
viewed in plain text. The simple search may also yield multiple references to identical
code if different revisions of the same content are present.

In order to reliably extract JavaScript code, files must be processed at the semantic
level, i.e., considering potential uses of JavaScript in the file. In general, the use of Java-
Script code in PDF files is bound to the so-called action dictionaries. Such dictionaries
may be tagged by a keyword/value pair /Type/Action, but such explicit qualification is
optional and cannot be relied upon. A mandatory feature of all action dictionaries is the
keyword /S which may take on 18 different name values. Two of those, /JavaScript
and /Rendition, are important for the search for JavaScript code. The former must,
and the latter may have a keyword /JS [67], as shown in Fig. 3.1. Content associated
with the keyword /JS, i.e., the code itself, must be encoded using one of two encodings:
the encoding defined in the PDF Reference as PDFDocEncoding or the UTF-16BE (big-

18

3.4 System Design

endian) Unicode encoding. In the rest of this chapter we denote JavaScript source code
located in or referred to by one JavaScript or Rendition action dictionary as a JavaScript
snippet.

JavaScript or Rendition action dictionaries can be found at the following locations of
the PDF object hierarchy:

• the Catalog dictionary’s /AA entry may define an additional action specified by a
JavaScript action dictionary,

• the Catalog dictionary’s /OpenAction entry may define an action to be run when
the file is opened,

• the file’s name tree may contain an entry JavaScript that maps name strings to
file-level JavaScript action dictionaries executed when the file is opened,

• the file’s Outline hierarchy, referenced by the Outlines entry of the Catalog dic-
tionary, may contain references to JavaScript action dictionaries,

• pages, file attachments and forms may also contain references to JavaScript action
dictionaries11.

Besides being directly embedded in a PDF file, JavaScript code may also reside in a
different file on the local host computer or even be retrieved from a remote location using
the directives /URI or /GoTo. However, newer versions of PDF viewers restrict this
behavior to increase security. JavaScript also supports dynamic code execution using the
eval() function or its equivalent, setTimeOut(). Such code is generally inaccessible
to static analysis; however, it has to be fetched from existing snippets inside the file, i.e.,
entry point code, which we have access to.

3.4 System Design
Conceptually, our system comprises two main components, feature extraction and learn-
ing, as shown in Fig. 3.2. The first component extracts JavaScript code embedded in
PDF files and performs lexical analysis on it, outputting as result one sequence of lexi-
cal tokens for every file. The second component operates in two steps. In the first step,
i.e., at training time, it takes the extracted token sequences and trains an anomaly detec-
tion algorithm on examples of malicious files, thus learning a model of lexical properties
of JavaScript code in malicious PDF files. In the second step, i.e., during deployment,
this model is used for classification of new files for which the ground truth labels are
unknown. Classification is performed by measuring the deviation of a new file from
a learned model and comparing it against a predefined threshold usually determined at

11PJScan’s handling of file attachments and forms is described in Section 3.7.

19

Chapter 3 A Case Study of Malicious PDF File Detection

JavaScript
Extractor
(Poppler)

Tokenizer
(Spider-
Monkey)

Training
PDF File

Test
PDF File

JavaScript
Entity

Token
Sequence

Learning
Algorithm

Detector

Model

Prediction

Feature Extraction Learning

Figure 3.2: Architecture of PJScan.

training time. Files falling close to the learned model are classified as malicious and
otherwise as benign. Details of individual components depicted in Fig. 3.2 are reported
in the following sections.

3.4.1 Extraction of JavaScript Content

The main technical challenge in extracting JavaScript code from PDF files lies in the
decoding of object streams and handling of string encodings. Furthermore, a parser must
be robust against potential incompatibilities with the PDF Reference. For this reason,
contrary to the approach taken in [104], we have decided against parsing PDF files “by
hand” and instead utilize the popular open-source PDF parser Poppler.

Our JavaScript extractor begins by opening the PDF file and initializing Poppler and
its internal data structures. Next, the Catalog dictionary is retrieved which serves as
the starting point in the search for action dictionaries. All candidate locations listed in
Section 3.3 are checked, and the found action dictionaries are queried for their type. If
the type is Rendition or JavaScript and a dictionary contains the /JS key, the value of
this key (or the referenced object in case of an indirect reference) is retrieved. The string
containing JavaScript is then decompressed and decoded where necessary.

The peculiarity of our approach is that we fully process only those objects in which
JavaScript and Rendition action dictionaries may occur. This strongly reduces the com-
putational effort for JavaScript extraction and is crucial for efficient batch processing of
large datasets. Files without JavaScript are not processed beyond this stage.

20

3.4 System Design

3.4.2 Lexical Analysis

At the lexical level, source code is represented as a series of tokens denoting individual
lexical elements, e.g., keywords, literals, variable and function names, punctuation, etc.
Let us illustrate the tokenization process using an example. The malicious JavaScript
snippet

bvb(’var lBvXSUfYYL7RK = ev’ + ’al;’); // a real example
lBvXSUfYYL7RK(’var uzWPsX8 = this.info’ +

z("%2e%46%61%6b") + ’erss;’);

is translated into the lexical token sequence shown in Table 3.1, in order from top to
bottom.

Value Symbolic name Description

29 TOK_NAME identifier
27 TOK_LP left parenthesis
31 TOK_STRING string constant
15 TOK_PLUS plus
31 TOK_STRING string constant
28 TOK_RP right parenthesis
2 TOK_SEMI semicolon

29 TOK_NAME identifier
27 TOK_LP left parenthesis
31 TOK_STRING string constant
15 TOK_PLUS plus
29 TOK_NAME identifier
27 TOK_LP left parenthesis
31 TOK_STRING string constant
28 TOK_RP right parenthesis
15 TOK_PLUS plus
31 TOK_STRING string constant
28 TOK_RP right parenthesis
2 TOK_SEMI semicolon
0 TOK_EOF end of file

Table 3.1: Example token sequence.

We were motivated to use token sequences instead of other properties of JavaScript
code because their extraction and processing can be implemented very efficiently and
they capture the essential program flow.

21

Chapter 3 A Case Study of Malicious PDF File Detection

Lexical analysis is efficiently performed by the open-source JavaScript interpreter Spi-
derMonkey12 developed by the Mozilla Foundation. We have patched SpiderMonkey to
stop immediately after lexical analysis. This ensures that code does not get executed and
thus PJScan is guaranteed to be a static method. Our extractor queries SpiderMonkey for
lexical tokens until an end-of-file or an error is encountered. Tokens in SpiderMonkey
are defined as named integer constants ranging from -1 (error) to 85.

Some semantics of the code are lost during lexical analysis. For example, all identifiers
are translated to the same token TOK_NAME, regardless of their names. We refer to this
as identifier erasure. Similarly, calls to functions with different names but otherwise
identical signatures are translated into equal token sequences. As a result, two JavaScript
snippets with different source code may translate to identical token sequences. We say
for such snippets that they are distinct at the source code level but equivalent at the lexical
level.

Besides the tokens recognized by SpiderMonkey, we have defined extra tokens that
are indicative of malicious JavaScript snippets. The newly-introduced tokens are listed
in Table 3.2. Their impact on classification performance of is evaluated in Section 3.6.4.

Value Symbolic name Description

101 TOK_STR_10 string literal of length < 10
102 TOK_STR_100 string literal of length < 100
103 TOK_STR_1000 string literal of length < 1,000
104 TOK_STR_10000 string literal of length < 10,000
105 TOK_STR_UNBOUND string literal of length > 10,000
120 TOK_UNESCAPE call to unescape()

121 TOK_SETTIMEOUT call to setTimeOut()13

122 TOK_FROMCHARCODE call to fromCharCode()14

123 TOK_EVAL call to eval()

Table 3.2: Custom tokens.

3.4.3 Learning and Classification

In the last step of our processing chain, the learning component of PJScan determines
whether a PDF file is benign or malicious. After the feature extraction steps described in

12SpiderMonkey – https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
SpiderMonkey.

13In the PDF JavaScript API, the function setTimeOut() of the app object can be used as a replace-
ment for eval() to execute arbitrary JavaScript code after the specified timeout.

14fromCharCode() is a static method of the String object that converts Unicode values to characters.
In malicious files, it is used to decode encoded strings for execution using eval().

22

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

3.4 System Design

Sections 3.4.1 and 3.4.2 are completed, the distance of the token sequence from the new
file to the model is computed. Our system employs the One-Class Support Vector Ma-
chine (OCSVM) [101] as the learning method15, a specialization of the Support Vector
Machine classifier described in more detail in Section 4.4.3. Its main advantage is that
it only requires examples of one class, in our case malicious, to build a model. This is
necessary for our problem since examples of benign PDF files with JavaScript content
are quite rare, and it takes a lot of manual effort to verify that they are indeed benign. On
the other hand, examples of malicious PDF files abound on malware collection systems,
and their maliciousness can be ascertained with high confidence if they are detected by
antivirus products.

The learning stage of OCSVM, illustrated in Fig. 3.3a, amounts to finding the center c
and radius R of a high-dimensional hypersphere such that the total percentage of all data
points lying outside of the hypersphere is at most ν. A hypersphere may be extended
to arbitrary surfaces by a non-linear transformation to a special feature space equipped
with the so-called “kernel function”. The type of the employed kernel function and the
training rejection rate ν are the only parameters to be specified for training of OCSVM.
The learned model comprises the center of the sphere c and radius R.

In the classification stage of OCSVM, we compute the distance between the data point
of interest and the center of the hypersphere. If the distance is greater than R , i.e., the
data point lies outside of the hypersphere, then it is considered an anomaly and labeled
benign. The radius thus serves as a threshold that is automatically determined at the
training stage. The classification stage of OCSVM is illustrated in Fig. 3.3b.

c R

(a) Learning stage: the center c and the radius R
of the sphere are determined.

c R

(b) Classification stage: new data are accepted
(green) or rejected (red).

Figure 3.3: One-Class Support Vector Machine operation.

OCSVM cannot be directly applied to token sequences emitted by PJScan’s feature
extraction component. The reason for this is that OCSVM expects the data points to
be numeric values lying in a high-dimensional space equipped with typical mathemat-

15The popular open-source SVM implementation LibSVM [17] version 2.86 was used in our experi-
ments, extended to support one-class SVM.

23

Chapter 3 A Case Study of Malicious PDF File Detection

alert

29

(

27

“hello”

31

)

28

;

2

parseInt

29

(

27

“42”

31

)

28

0, …, 0, 1, 0, …, 0, 1, 0, …, 0, 1, 0, …, 0, 2, 0, …, 0, 1, 0 … 0Feature vector:

4-grams:

Token sequence:

JavaScript:

312729 28
+

[index] [0]

[48
83

16
70

0]

[2
32 -

1]

[52
19

29
24

5]

[45
50

23
61

8]

[46
99

00
57

1]

[35
46

19
19

]
3127 228 …

Figure 3.4: PJScan feature extraction. JavaScript is transformed into token sequences,
from which 4-grams are extracted and counted (for clarity, only 2 of 5 distinct ones
shown). Finally, the resulting counts are assigned to corresponding dimensions of the
feature space.

ical operations such as addition, multiplication with a constant and the inner product.
Sequential data does not form such a space: it is not immediately clear how to add or
multiply two strings. A solution to this problem involves a well-established technique of
embedding sequences in metric spaces [79]. By counting the occurrences of substrings
in data points and assigning the resulting numeric values to coordinate axes, the required
mathematical properties can be enforced.

Fig. 3.4 illustrates this in more detail. In the first step, the token sequence is obtained
by lexical analysis of the given JavaScript snippet. Next, all 4-grams are extracted from
the token sequence. Every n-gram corresponds to one dimension of the feature space,
as determined by the function t : Gn→ 1, |Gn|, where Gn is the set of all n-grams. Thus,
for G4 and an alphabet of 87 tokens, the feature space has 874 dimensions. However,
for performance reasons, PJScan uses 8 bits per token, resulting in a feature space of
284

= 232 dimensions. Function t operates by concatenating the 8-bit representations of
the 4 tokens and interpreting the resulting 32-bit number as an unsigned integer. For
example,

t(29,27,31,28) = 29 ·224 + 27 ·216 + 31 ·28 + 28 = 488316700.

Multiple occurrences of the same n-gram are summed, as illustrated on the example
of n-gram 29,27,31,28.

24

3.5 Data Collection and Analysis

Sequence embedding solves the problem of handling multiple JavaScript snippets in
the same file in an elegant way. To obtain an aggregated representation of all JavaScript
snippets, it suffices to sum them using the addition operation provided by the embedding.
To avoid the dependence on sequence length, the values in individual dimensions are
binarized (by setting any non-zero values to 1) and normalized so that the Euclidean
norm of the resulting vectors equals 1.

3.5 Data Collection and Analysis
The success of any learning-based approach crucially depends on the quality of data
available for training. Likewise, the viability of a learned model can only be demon-
strated on up-to-date real data. The evaluation of our method rests on an extensive dataset
collected from the research interface to VirusTotal, a web service that enables ordinary
users to upload suspicious files to be scanned by most commercially available antivirus
tools16. Our dataset comprises 65,942 PDF files with the total size of nearly 59 GB. This
data has revealed some interesting features, and is worth looking at in some detail.

We downloaded 3 batches of data at 3 separate occasions:

1. November 3, 2010
2. January 19, 2011
3. February 17, 2011.

Every downloaded batch contains all PDF files available at the given date. The data
is kept on VirusTotal only for 30 days. In fact, we were originally unaware of the 30-
day lifespan and started a periodic collection of snapshots only in January. There is
surprisingly little overlap between subsequent months as we have observed at most 200
identical files across different snapshots. Our corpora were split into two parts:

• Detected, comprising files labeled malicious by at least one antivirus product,
• Undetected, comprising supposedly benign data.

It is instructive to look at the statistical properties of our data presented in Table 3.3
where a number of revealing observations can be made. Files in the Detected corpora
with an average size of 0.106 MB are an order of magnitude smaller than those in Unde-
tected (1.39 MB), suggesting an utter lack of meaningful content in malicious PDF files,
a finding confirmed by a manual investigation of a subset of them. Furthermore, the
percentage of files with JavaScript in the Detected corpora (59.5 %) is in stark contrast
to the Undetected corpora (2.4 %), providing further indication that JavaScript plays a
crucial role in PDF-related exploits.

Further narrowing our focus to files containing JavaScript, we notice that there are on
average over 30 times less JavaScript snippets per file in Detected (7.2) than in Unde-
tected datasets (241.1). This observation seemed counter-intuitive before we analyzed

16During our evaluation there were 42 deployed antivirus tools.

25

Chapter 3 A Case Study of Malicious PDF File Detection

03. Nov. 2010 19. Jan. 2011 17. Feb. 2011

det. undet. det. undet. det. undet. Total

Dataset size 873MB 13GB 429MB 13GB 1.5GB 29GB 59GB
Files in the dataset 7592 7768 6465 9993 11634 22490 65942
Files with JavaScript 6626 272 1127 196 7526 492 16239
JavaScript snippets 26372 75199 33418 42265 50269 113994 341517
Distinct JS snippets 8597 5178 2376 3774 9238 6827 35990
Distinct token sequences 1108 429 815 356 2947 764 N/A
Distinct feature vectors 538 115 358 95 1900 237 N/A

Table 3.3: Statistics of PDF files collected from VirusTotal.

the snippets themselves, but we discovered that Undetected data usually contains hun-
dreds of very simple ones such as:

this.zoom=100;this.pagenum=39

while Detected ordinarily contains large snippets, i.e., complete programs. Furthermore,
distinctness of JavaScript snippets at the code level is 3.2 times higher in Detected cor-
pora than in Undetected (16.9 % vs. 5.2 %), suggesting that benign JavaScript in PDF
files essentially boils down to boring and redundant code.

Similar effects take place at the lexical level (Table 3.3, second-to-last row). One can
observe a further decrease in distinctness (6,419 vs. 35,990, or 17.8 %) due to lexical
analysis. This effect can be explained by identifier erasure as elaborated in Section 3.4.2.
As with source code, Detected remain more distinct than the Undetected sub-corpora on
the lexical level as well. Finally, the last row in Table 3.3 reveals that many files contain
identical sets of token sequences, i.e., when all their token sequences are embedded and
summed they result in the same feature vector. This can be explained by common code
reuse in both types of files.

To enable a quantitative evaluation of detection accuracy in the forthcoming experi-
ments, we have manually labeled the Undetected part of our data. Among 960 benign
files with JavaScript, we found 52 that we believe to have been falsely classified as be-
nign by all antivirus tools at VirusTotal. However, no cases were found where PDF files
belonging to the same group of lexically distinct files were assigned conflicting labels.

3.6 Experimental Evaluation

The real-world nature and the sheer size of the VirusTotal data make the evaluation chal-
lenging. Firstly, the distinction between Detected and Undetected corpora is somewhat
vague, as classifications by antivirus engines cannot be fully trusted. Secondly, the huge
size of the Detected corpus makes its manual analysis infeasible. On the other hand, the

26

3.6 Experimental Evaluation

size of the labeled JavaScript-bearing part of the Undetected corpus is too small to be
used for training purposes.

As the baseline for comparison we consider Wepawet, a web-based service using
JSand [22]. Wepawet performs both static and dynamic analysis of PDF files based
on their JavaScript content and can detect both malware that it has a signature for (la-
beled as malicious), as well as unknown malware (labeled as suspicious) using statistical
features. In the evaluation, we treat both categories as detections. Similar to our system,
Wepawet generally does not recognize PDF malware that lacks JavaScript. Table 3.4
shows Wepawet’s classification on the Detected and Undetected parts of the three data
corpora at our disposal. In some cases file uploads were rejected by Wepawet, referred
to as fail, or resulted in internal errors despite multiple submissions, referred to as error.
We treat such cases (about 1.7 % of the total data) as benign.

03. Nov. 2010 19. Jan. 2011 17. Feb. 2011

detected undetected detected undetected detected undetected

Fail 12 38 9 25 19 73
Error 15 1 5 0 83 0
Benign 3860 212 502 167 1050 397
Suspicious 1474 11 149 0 257 0
Malicious 1265 10 462 4 6117 22

Table 3.4: Wepawet classification results.

3.6.1 Objectives and Evaluation Criteria

Our experiments address the following questions:

1. How well do PJScan and Wepawet detect known malicious files?

This question may appear meaningless: why bother detecting something that is
already detected? In practice, however, it is infeasible to deploy all antivirus tools
from VirusTotal. For a single method, attaining the detection accuracy close to
that of the combined accuracy of all established antivirus tools is a very challeng-
ing goal17. The corresponding metric is the true positive rate on known attacks
T PRknown, defined as the percentage of correctly identified malicious JavaScript-
bearing files in the Detected corpus.

17Unfortunately we were unable to compare against the best detector at VirusTotal. At the time of
collection, labels in batch data from VirusTotal reflected only the number of detections but not the specific
detectors that classified a file as malicious.

27

Chapter 3 A Case Study of Malicious PDF File Detection

2. How well do both methods detect attacks that were missed by all VirusTotal de-
tectors?

We consider files in the Undetected corpus as novel attacks if they are shown
to be malicious during manual analysis. The true positive rate on unknown at-
tacks T PRunknown is defined as the percentage of correctly identified malicious
JavaScript-bearing files in the Undetected corpus. In Section 3.5 we have identi-
fied just 52 such files.

3. How many normal files are classified as malicious by the methods in question?

The laboratory false positive rate FPRlab is defined as the percentage of incor-
rectly classified benign JavaScript-bearing files in the Undetected corpus. There
are only 960 such files.

The operational false positive rate FPRoperational is the ratio between the number
of incorrectly classified benign files and the total number of files in the Undetected
corpus, i.e., including benign files without JavaScript.

The distinction between the laboratory and the operational false positive rates is
essential for estimation of the expected impact of false positives in practical de-
ployment.

3.6.2 Experimental Protocol
Our experiments were carried out using the following procedure. We merged all 3 cor-
pora from different dates keeping only the distinction between “detected” and “unde-
tected” parts, thus creating two data sets, Detected and Undetected. Next we extracted
token sequences from files – the most computationally intensive task in our experiments.
We randomly split the Detected dataset into two non-overlapping partitions in such a
way that they contained approximately the same number of distinct token sequences.
One of these data sets is used to train PJScan, the other to evaluate T PRknown. To de-
crease the impact of non-determinism via random splitting, we repeat the experiment
the second time by swapping the training and the evaluation datasets and averaging the
detection accuracy. This process is known as 2-fold cross-validation.

To determine the detection accuracy on unknown data, we apply the trained model on
the full Undetected corpus. We use the ground truth information to compute T PRunknown,
FPRlab and FPRoperational. The reported results are also averaged over the two partitions
of the training data.

Since the models used by Wepawet do not depend on our training data but rather on
the data it was trained on, the results presented here for Wepawet reflect its performance
on our complete datasets (Detected and Undetected).

Some experimentation was needed to choose the parameters for OCSVM. We selected
the training rejection rate ν = 0.15 and the n-gram length of 4, which seem to provide the
best trade-off between true positive and false positive rates, using a grid search.

28

3.6 Experimental Evaluation

3.6.3 Experimental Results
The results of a comparative evaluation of PJScan and Wepawet according to the criteria
specified in Section 3.6.1 are presented in Table 3.5. Two configurations of PJScan were
considered:

• using only native JavaScript tokens
• using a set of additional heuristic tokens introduced in Section 3.4.2.

Detection method T PRknown T PRunknown FPRlab FPRoperational

PJScan 84.80 71.15 16.35 0.3694
PJScan with extra tokens 85.17 71.15 17.35 0.3918
Wepawet 63.60 90.38 0.0 0.0

Table 3.5: Detection performance comparison.

It can be seen that PJScan significantly outperforms Wepawet on known malicious
data but is less accurate on previously unknown attacks. The cause for the low score on
novel attacks is a set of 11 very similar files in the already very small set of 52 novel
malicious files. The 11 files in question were all mislabeled as benign by our method due
to their minimalist JavaScript code. Namely, it comprised the following snippet:

app.setTimeOut(this.info.dgu,1)

The identifier dgu differed from file to file, but the snippet in question nevertheless
translates to a unique token sequence in all of them. The peculiarity of this example is
that the attack code resides not in the JavaScript snippet itself but in other code – a string
stored as a member of the PDF Info dictionary18 to which PJScan has no access. The
PDF JavaScript API allows for direct references to members of the Info dictionary like
this. The app.setTimeOut() function is equivalent to eval() but executes its code
after some specified time.

To fully cover such cases, a dynamic execution engine for PDF files is required which
Wepawet has but which needs orders of magnitude more time for code extraction. With
an exception of this kind of attack, the detection rate of PJScan would have also reached
the 90 % mark.

It is not clear to us why Wepawet has performed relatively poorly on known malicious
data. In a related comparative evaluation against Cujo [80] in the context of web-based
JavaScript attacks (drive-by-downloads), Wepawet was a clear winner with a detection
rate of 99.8 % compared to 94.4 %. Most likely, the reason for worse performance of

18An Info dictionary is used to store meta-data about the PDF file, e.g., author name, creation date,
creator software, etc.

29

Chapter 3 A Case Study of Malicious PDF File Detection

Wepawet in our experiments lies in technical problems with the extraction of JavaScript
code from PDF files.

A relative disadvantage of PJScan is the high false-positive rate. Measured against
only the JavaScript-bearing benign files it reaches the painful 17 %; however, due to
the rare presence of JavaScript in benign files, its operational false-positive rate remains
acceptable and corresponds, for our data, to 1.7 false alarms per day.

One can also see that heuristic tokens do not improve the performance of PJScan and
even lead to a slight degradation of the false-positive rate. The causes for this effect as
well as for the false positives are elucidated in the following section.

3.6.4 Significant Features

As noted by Sommer and Paxson [89], a security practitioner would always be interested
to know what a learning method has actually learned. The model created by the OCSVM
(the center c of the sphere) produces a numeric ranking of essential features encountered
in malicious JavaScript code. Since no benign data is used for training, this ranking does
not reflect the differences between two classes but rather describes only one class known
to it. Examples of the 5 most important and the 5 least important features in one of the
models learned by PJScan (created for one half of the data) are shown in Table 3.6.

Feature

Rank Value Weight ×105

1 NAME . NAME (5285
2 NAME ASSIGN STR ; 5106
3 NAME (NAME) 5092
4 (NAME) ; 4574
5 ; VAR NAME ASSIGN 4314

4051) NAME (THIS 2
4052 +- NAME !== NAME 2
4053]) - NAME 2
4054 NAME]) - 2
4055 TRUE } ; IF 2

Table 3.6: Features of the center point.

Although these features do not look particularly malicious, the top 5 clearly corre-
spond to typical lexical patterns of programming languages: member function derefer-
encing (1), string variable assignment (2), function calls (3 and 4) and variable decla-
rations (5). On the other end of the spectrum are the features that are obviously very
atypical for programming languages.

30

3.6 Experimental Evaluation

The scoring of a new data point in the detection stage involves the identification of
an overlapping subset of features between this data point and the learned model. The
smaller the “weighted overlap” between the new point and the center (i.e., the sum of
weights in the model corresponding to their common features), the larger the distance
from the center. This property is confirmed by the examples of accepted and rejected
points presented below.

For the accepted points, the main contributions are made by the top features of the
trained model. Table 3.7 shows a comparison of top features of one true and one false
positive observation. Both were ranked the most positive, i.e., closest to the center of the
hypersphere, among all observations in their class. In our example, 5 out of 7 top features
of malicious files are present in the false positive example. Such points are virtually
indistinguishable in our model, and this explains a high “laboratory” false positive rate
observed in our experiments.

Feature Weight ×105

Rank Value True Positive False Positive

1 NAME . NAME (456 554
2 NAME ASSIGN STR ; 441 535
3 NAME (NAME) 439
4 (NAME) ; 395
5 ; VAR NAME ASSIGN 372 452
6 ; NAME (NAME 340 413
7 NAME (STR) 318 386

Table 3.7: Comparison of top features of a true and a false positive observation.

It turns out, however, that very few benign examples share the “normal” programming
language features captured by the learned model. For the two examples of rejected points
(Table 3.8, one true and one false negative), the top features have much lower ranks in
the learned model. The majority of benign examples have a small “weighted overlap”
with the model and hence are rejected.

The investigation of significant features in our models suggests that the key property
that enables effective discrimination between malicious and benign code in PDF files is
the fact that benign usage of JavaScript is very rudimentary from the programming point
of view. Anecdotally, the benign example with the highest rejection score corresponds
to the code print(true).

3.6.5 Throughput
Throughput was measured on a commodity PC with a quad-core Intel Core i7 860
CPU, 8 GB of RAM and a 7,200 rpm SATA hard disk drive. Eight processes were run

31

Chapter 3 A Case Study of Malicious PDF File Detection

Feature Weight ×105

Rank Value True Negative False Negative

1 NAME . NAME (1593
7 NAME (STR) 390
8 VAR NAME ASSIGN NAME 390

10) ; NAME ASSIGN 359
14 THIS . NAME (338
15 ASSIGN NAME . NAME 338
98 . NAME . NAME 490

141 (THIS . NAME 394
154 THIS . NAME . 372
355 NAME (THIS . 177

Table 3.8: Comparison of top features of a true and a false negative observation.

concurrently for performance measurement.
Each stage of PJScan was run on a respective data partition (training on one half

of Detected corpus, evaluation on the other half and on the full Undetected corpus).
Unlike the accuracy measurement, we learned and classified using all files, ignoring their
redundancy. Learning with thousands of files instead of a few hundred distinct token
sequences reduces performance, but due to the fast learning and classification algorithms
the difference is negligible.

Processing times for all stages are shown in Table 3.9. In total, parsing 65,942 PDF
files, tokenizing 341,517 JavaScript snippets, learning on 15,279 “detected” files with
JavaScript and classification of 960 “undetected” files with JavaScript took 1547 s. All
measurements are expressed in wall clock time19. One can observe that JavaScript ex-
traction represents the most time-consuming stage of PJScan.

Total (s) Average (s) Percentage

Extraction 1356 (205±15)×10−4 87.65
Tokenization 180 (32±392)×10−4 11.63
Learning 10.19 N/A 0.0009
Classification 0.014 (15±9)×10−6 0.66

Table 3.9: Processing time for different stages of PJScan in batch mode.

When using a single process, 2041 s are required to handle the same dataset – just 30 %
19Wall clock time measures real time that elapses between the beginning and the end of a task. It

includes CPU time, I/O time and any overhead such as the time process spends waiting for execution. It is
a good indicator of real performance but is affected by system load.

32

3.7 Discussion

more than with 8 processes – resulting in an average processing time of 31 ms per file.
Overall the CPU usage was very low in our experiments (up to 40 %, with I/O waiting
of up to 30 %), while at the same time disk utilization remained above 95 % during
the extraction phase. Therefore, we conclude that disk throughput represents the main
performance bottleneck for this application. Using a faster storage device or streaming
files through a fast network would likely further improve the performance of PJScan.

Throughput Time Speed

(file/s) (Mbit/s) (s) (ms/file)

Detected 75.8 64.3 339 13
Undetected 33.3 370.5 1208 30

Combined 42.6 303.5 1547 23

Table 3.10: PJScan throughput measurements.

Table 3.10 shows that throughput has a strong dependency on the ground truth of
observations. “Detected” files are much faster to process than “undetected”, which
is consistent with much larger file size of benign samples. The average throughput
of 303.5 Mbit/s is suitable for batch processing tasks even for organizations that have
a very high volume of PDF traffic. The average processing speed is 23 ms per file. To
the best of our knowledge, no other software package achieves lower processing times
for PDF to date.

3.7 Discussion
The reported experimental results confirm the practical feasibility of our static, machine-
learning-based approach for detection of malicious JavaScript-bearing PDF files. PJ-
Scan’s preprocessing component can aid in the manual extraction and analysis of Java-
Script code from PDF files. The main benefit of its learning component is the ability
to extract knowledge from large-scale malware corpora. PJScan can derive light-weight
models from heuristic knowledge of several dozen virus detectors and tens of gigabytes
of collected data. Such models can be deployed with no manual interaction and negli-
gible performance overhead (<50 ms per file). The operational false-positive rate of less
than 0.4 % is admissible in practice. Even at a highly visible site like VirusTotal with
a strong bias for suspicious data, this corresponds to an average rate of 1.7 false alarms
per day for our data collection period (148 out of ca. 40,000 benign files over 90 days).

PJScan’s main limitation is its incapability of processing PDF files without JavaScript.
However, even in the domain of JavaScript-bearing PDF files, PJScan’s coverage is in-
complete. After the publication of PJScan in [45], the authors have learned of another
method of embedding JavaScript code into PDF files that is not part of the PDF Reference

33

Chapter 3 A Case Study of Malicious PDF File Detection

but of the therein referenced Adobe XML Forms Architecture (XFA). That technology
enables the inclusion of XML-based forms into PDF documents and the scripting of
forms is performed using JavaScript. In its published implementation, PJScan does not
have the ability to access code in XFA forms and is, therefore, vulnerable to malicious
JavaScript snippets in XFA. However, this is a technical limitation and not a design flaw.
With access to JavaScript from XFA forms, PJScan restores its detection capability. This
was demonstrated in a later study that extended PJScan [16], as elaborated later in this
section.

The high “laboratory” false-positive rate of PJScan (i.e. the rate measured only for
those benign files that contain JavaScript) indicates that our learning setup may indeed
have difficulty with accurate discrimination between malicious and benign JavaScript
content. This observation is also indirectly supported by our analysis of the learned fea-
tures. Learning from two classes, as it has been done in prior work on web-based Java-
Script content, e.g. [14, 23, 80], may be the right way to avoid this limitation. However,
the insufficient quantity of available benign JavaScript-bearing PDF data has prevented
us from evaluating this scenario for PDF files.

Another limitation of PJScan is its inability to detect malicious JavaScript located in
parts of the PDF file which were not designed to store JavaScript code. In this case,
elaborated in Section 3.6.3, only a very short code fragment is available in a standard
JavaScript entry point location that loads the “hidden” malicious code. This is an inherent
limitation of all static methods. While individual cases can be handled statically, e.g., by
implementing extraction procedures for known hiding locations, there is no general way
of extracting hidden code without using dynamic execution.

PJScan is in active use by the German Federal Office for Information Security (Bun-
desamt für Sicherheit in der Informationstechnik)20.

3.7.1 Later Work

Following its publication, PJScan was evaluated in multiple studies and compared to nu-
merous other detection methods [6, 16, 39, 54, 56, 57, 61, 62, 82, 85, 111, 112]. Most
direct comparisons with prior work confirm its superiority, while methods developed af-
terwards tend to have better detection accuracy but orders of magnitude slower process-
ing time. In some cases a direct comparison was impossible due to PJScan’s limitation
to JavaScript-bearing files.

Maiorca et al. find its performance on par with the worst-performing antivirus engines
on one experiment [56], while in a later study the same authors demonstrate that it out-
performs other benchmarked methods, even more recent ones, on detecting malicious
JavaScript code injected into benign PDF files [57]. They also show that PJScan fails to

20Disclosed in the keynote talk “Fighting Targeted Attacks on Government Networks” at the SIG
SIDAR Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA) 2013
in Berlin: http://dimva.sec.t-labs.tu-berlin.de/slides/dimva.2013.sanitised.pdf.

34

http://dimva.sec.t-labs.tu-berlin.de/slides/dimva.2013.sanitised.pdf

3.7 Discussion

detect malicious portable executable (PE) and PDF files embedded inside benign PDF
files. The PDF format allows for embedding files inside a PDF file which can subse-
quently be opened from a PDF viewer. We find this to be a technical limitation which
can be alleviated with a very simple extension to PJScan that would process embedded
files recursively.

Corona et al. demonstrate PJScan’s ability to detect completely novel attacks per-
formed years after its training, albeit with a lower detection rate, caused in part by its
inability to process files with certain CVEs [20]. Similar insights were made in a recent
study by Jerome et al. [39], where PJScan was tested on a dataset around 2 years newer
than its training dataset. It was able to process only 3.9 % of the dataset, likely due to
JavaScript in unreachable locations, but still attained an accuracy of 82.19 %. A study
by Smutz and Stavrou confirms PJScan’s incapability to handle files with JavaScript in
nonstandard locations [85]. Liu et al. demonstrate the higher detection performance of
more recent methods [51].

Cao and Yang implement a successful poisoning attack against 4 machine learning
systems, including PJScan [15]. In adversarial machine learning, a poisoning attack is a
situation in which an adversary manipulates the output of a classifier by injecting mis-
labeled, i.e., polluted, data points into its training set. Trained on such a dataset, the
classifier will produce wrong predictions when given similar data. In their paper, Cao
and Yang have managed to reduce our system’s accuracy from 81.5 % to 69.3 % when
polluting 21.8 % of its training set and to 46.2 % with 28.2 % polluted data. Although
the employed experimental dataset is very small, i.e., 65 malicious PDF files, and the
polluted training data subset relatively large, such an attack is a high risk in computer
security applications because it is inherently successful against all One-Class SVMs. To
mitigate this risk, Cao and Yang propose an approach for making learning algorithms
forget certain data samples from their training set. They call this process machine un-
learning and implement it as an extension to PJScan in just 30 lines of code, completely
restoring PJScan’s initial detection accuracy.

Very recently, Carmony et al. have proposed a novel attack against PDF malware
detectors called the PDF parser confusion attack [16]. It works by exploiting the dis-
crepancy between the detectors’ PDF parsing implementations and that of Adobe Reader.
Subtle deviations from Adobe Reader, itself deviant from the PDF Standard and incon-
sistent between versions, were recognized as vulnerabilities in third-party parsers that en-
able malware to hide from them altogether. The authors were able to produce a malicious
PDF file that combines a number of these implementation inconsistencies that has suc-
cessfully evaded all parsers in their evaluation. Apart from the missing implementation
of XFA forms, they have identified 2 additional inconsistencies in PJScan’s PDF pars-
ing library, Poppler, related to the handling of encryption in PDF21, that prevent it from
opening PDF files with recent implementations of encryption even if the encryption pass-
word is empty. Furthermore, the study authors developed a reference JavaScript extractor

21No support for revisions 5 and 6 of security handlers.

35

Chapter 3 A Case Study of Malicious PDF File Detection

that closely mimics that of Adobe Reader for 2 versions, 9.5.0 and 11.0.08, and created a
modified version of PJScan that employs this accurate extractor. With this enhancement
only and without altering its remaining system components, i.e., lexical tokenization,
learning and classification, PJScan’s true positive rate jumps from 68.34 % to over 94 %.
This result, along with its solid detection performance on timestamped datasets collected
years after training [39], indicate that PJScan’s underlying detection methodology has
remained both effective and efficient in the detection of rapidly-evolving malware since
its publication in 2011.

Studies that have measured runtime performance in their evaluations verify that PJ-
Scan remains the fastest PDF malware detector to date [16, 20].

For a very detailed recent survey of PJScan and other academic PDF malware detec-
tion methods, we refer the reader to [62]. Finally, a comparison of PJScan to our own
later work is presented in Section 4.5.3.

3.8 Conclusions
We have proposed a new static approach to detection of malicious JavaScript-bearing
PDF files based on lexical properties of JavaScript in malicious PDFs. The main ad-
vantages of our approach are its high performance and no need for special instrumenta-
tion, such as virtual machines or sandboxing. It can attain about 85 % of the combined
detection accuracy of all antivirus engines at VirusTotal while being the fastest pub-
lished method to date with a performance overhead of less than 50 ms per file. It is only
marginally affected by text-level obfuscation since the resulting JavaScript code remains
very conspicuous at the lexical level. Due to these advantages, our method is suitable for
deployment in email gateways and HTTP proxies.

The computational efficiency of our system PJScan has enabled us to evaluate it on
an unprecedentedly large real-life data corpus (over 65,000 PDF files) collected from
VirusTotal. This evaluation has confirmed a high detection accuracy of our method
for both known and unknown malware. PJScan is more prone to false positives than
dynamic approaches; however, its operational false positive rate still lies in the promille
range, which is feasible for practical deployment.

Thanks in part to its open-source availability, PJScanwas evaluated in multiple studies
and compared to numerous other detection methods in the years following its publication.
Most direct comparisons to prior work confirm its superiority, while methods developed
afterwards tend to have better detection accuracy but orders of magnitude slower pro-
cessing time. PJScan has been favorably evaluated on PDF files collected years after
its model was trained, demonstrating its generalization ability. Finally, it was extended
in two publications that repaired a flaw in its JavaScript extraction module and raised
its robustness against adversarial attacks. PJScan’s underlying detection methodology
remains both effective and efficient in the detection of PDF malware.

36

Chapter 4

A General Approach for Malware
Detection in Non-Executable Files
Recent targeted malware campaigns extensively use non-executable malware, most com-
monly PDF, Microsoft Office and SWF files, as a stealthy attack vector. There exists a
substantial body of previous work on the detection of non-executable malware, including
static, dynamic and combined methods. While static methods perform orders of magni-
tude faster, their applicability has been hitherto limited to specific file formats.

This chapter introduces Hidost, the first static machine-learning-based system capable
of detecting malware in multiple file formats. To this end, it combines file content with
logical structure defined by various file format specifications. The system has been im-
plemented and evaluated on two formats, PDF and SWF. However, thanks to its modular
design and general feature set, it is extensible to other formats whose logical structure is
organized as a hierarchy. Hidost was published in the EURASIP Journal on Information
Security [93] as an extension of our previous work, SL2013, described in the conference
paper [91] at Network and Distributed System Symposium (NDSS) 20131.

Following the introduction in Section 4.1 and an overview of prior work in Section 4.2,
we present the main properties of hierarchically structured file formats with a particular
focus on PDF and SWF in Section 4.3. Sections, 4.4 and 4.6, provide details about the
system design of SL2013 and Hidost, respectively, while sections 4.5 and 4.7 present
their comprehensive experimental evaluation. We discuss later work, our main findings
and extension to other file formats in Section 4.8 and conclude in Section 4.9.

4.1 Introduction
One of the most effective tools for breaking into computer systems remains malicious
software, i.e., malware. Malware has developed several insidious traits in the recent
decade to serve the needs of criminal business. One of them is the infection of files in
well-known formats used to exchange documents between businesses and individuals.
Such infection offers the following benefits to attackers:

1Parts of this chapter previously published in [91], including text, tables and figures, are copyrighted
by the Internet Society.

37

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

1. It is easier to lure users into opening documents than into launching executable
programs.

2. A steady stream of new vulnerabilities has been observed in the recent years in
document viewers due to their high complexity, caused, in turn, by the complexity
of document formats.

3. Flexibility and versatility of document formats offer ample opportunities for ob-
fuscation of embedded malicious content.

The same features also hinder the identification of malicious documents and increase the
computational burden on the detection tools.

The favorite formats used by attackers are PDF (targeting Adobe Reader), SWF (tar-
geting Adobe Flash Player) and various Microsoft Office formats [18, 97]. In 2012,
the pioneering exploit kit Blackhole targeted Java, PDF and SWF files, and its succes-
sors have continued this practice [90]. In 2013, the non-executable malware delivered
through the web was dominated by PDF and SWF files targeting Adobe Reader and Mi-
crosoft Office applications [18]. Flash has seen wide deployment recently for malicious
advertising, i.e., placement of malware on legitimate web sites by means of advertising
networks. Even some of the most prominent web sites have fallen victims to such at-
tacks [90]. Although prevalently used for redirection to sites serving exploit kits, it is not
uncommon for SWF files to target Flash Player directly.

Non-executable files are especially popular as a means for targeted attacks. Recent
years have brought a range of high-profile targeted attacks against governments and in-
dustry, and they are getting more common and ever stealthier. The Miniduke targeted
attack campaign against European government agencies used sophisticated PDF files
exploiting an Adobe Reader zero-day vulnerability. Four different zero-day vulnerabili-
ties in Microsoft Office were used in the Elderwood attack against the defense industry.
The group APT1/CommentCrew used zero-day vulnerabilities in Adobe Reader and Mi-
crosoft Office against government and industry targets [98]. Among the 24 zero-days
discovered in 2014, 16 targeted Adobe Reader and Flash Player (cf. Fig. 4.1), while
Microsoft Word files dominated the list of file types used for targeted attacks [97, 99]. In
the first 9 months of 2015, 8 out of top 10 vulnerabilities leveraged by exploit kits were
reported to be Flash Player vulnerabilities [77].

The main difficulty in detecting malicious non-executable files is the necessity to un-
derstand complex formats. While such difficulty is marginalized in the methods based
on dynamic analysis, i.e., rendering a file in an instrumented sandbox, such methods are
in general rather slow. Static analysis methods, known for their high performance, usu-
ally deploy format-specific detection techniques which do not generalize across formats.
To alleviate this problem, we propose a new static analysis method with the potential of
being more portable across formats. Our experiments demonstrate that, with the incor-
poration of an appropriate format parser, it can be applied to both PDF and SWF files.

38

4.1 Introduction

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

2014

Year

0

10

20

30

40

50

60

70

80

N
u

m
b

er
o

f
a

ss
ig

n
ed

C
V

E
s

Adobe Reader

Flash Player

Figure 4.1: Common Vulnerabilities and Exposures (CVEs) with the phrases “Adobe
Reader” or “Flash Player” in their description.

The proposed detection method is based on the analysis of hierarchical document
structure and is henceforth abbreviated as Hidost. It was originally designed for and
evaluated on the PDF file format in our publication [91]; we refer to the first version
as SL2013 hereinafter. In our subsequent publication [93] it was generalized to other
file formats with a hierarchical logical structure and evaluated on PDF and SWF. This
chapter presents both methods chronologically.

The novelty introduced by SL2013 was the use of logical structure for characteriza-
tion of malicious and benign PDF files. PDF logical structure is a high-level construct
defined by the PDF Reference that organizes basic PDF building blocks into a functional
document. Results published in [91] show that properties of malicious files such as the
presence of JavaScript and minimal use of benign content can be accurately determined
from their logical structure. Utilizing proper PDF parsing, SL2013 is less affected by
PDF obfuscation and physical structure falsification that plague methods based on super-
ficial file examination, e.g., using regular expressions. Evaluated on a real-world dataset
comprising 660,000 PDF files, SL2013 has demonstrated a combination of detection per-
formance and throughput that remains unrivaled among antivirus engines and published
scientific work. Nevertheless, in a realistic sliding window experiment on timestamped
data, the detection performance of SL2013 was shown to be inconsistent. Its feature
definition created a blind spot exploitable by evaders and its oversized feature set created
difficulties for more memory-intensive machine learning classifiers than the employed
Support Vector Machine.

Hidost inherits all the advantages of SL2013. It maintains the nearly perfect detection
performance and high throughput on PDF files that tailored SL2013 for centralized de-
ployment on busy networks. As a further advantage of a deep static approach, Hidost is

39

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

immune to PDF obfuscation and physical structure falsification.
Hidost furthermore addresses certain shortcomings of SL2013 discovered after its

publication. In particular, it was extended to support a novel technique used to merge
similar features called structural path consolidation (SPC). Such consolidated features
better preserve the semantics of logical structure and reduce the dependency of the fea-
ture set on the specific dataset. The benefits of SPC are three-fold: a) the attack surface
for evasion is reduced; b) the feature set is more stable with regard to fluctuations of PDF
malware over time, i.e., feature set drift is reduced; and c) the total number of features is
drastically reduced. Together, these improvements render Hidost much more secure and
practical than SL2013.

Most importantly, however, this chapter introduces a novel system design for Hidost
that enables its generalization to multiple unrelated file formats. To the best of our knowl-
edge, Hidost is the first static machine-learning-based malware detection system appli-
cable to multiple file formats. Its generality was achieved by extending the feature defini-
tion based on the PDF logical structure to a second file format with a hierarchical logical
structure, SWF. Finally, going beyond, Hidost considers not only the logical structure of
the file but its content as well, enabling a higher degree of precision on formats with less
discriminative structure such as SWF.

We experimentally evaluated Hidost on two formats: PDF and SWF. Our evaluation
protocol is intended to model the practical deployment of a data-driven detection method
and to account for a natural evolution of malicious data. In our protocol, a detection
model is trained on a fixed-size window of data and is deployed for a limited time pe-
riod. Once the model is deemed to be too old, it is re-trained on another window of
more recent data and again evaluated for a limited time period. Unlike the classical
cross-validation methods common in evaluation of machine learning algorithms, our ex-
perimental protocol accounts for a temporal nature of data in security applications and
never predicts the past data from the future one.

In summary, the main contributions of this chapter are as follows:

• A novel set of features is defined enabling the effective discrimination based on
file structure between benign and malicious files of two formats, PDF and SWF,
extensible to further ones.

• Using the proposed structural features, the design and evaluation of the PDF mal-
ware detector SL2013 is presented.

• A 10-week simulated real-world deployment of the proposed detector on 440,000
malicious and benign PDF files with weekly retraining achieved detection perfor-
mance close to that of the best deployed antivirus tool on VirusTotal.

• The throughput of SL2013 is evaluated and shown to be comparable to state-of-
the-art static detection techniques.

40

4.2 Prior Work

• Using the proposed structural features, the design and evaluation of a combined
PDF and SWF malware detector Hidost is presented, the first such system appli-
cable to multiple file formats.

• An experimental evaluation of Hidost is performed on both formats under the same
simulated real-world deployment experiment as SL2013, showing that Hidost out-
performs all antivirus engines at VirusTotal on PDF and ranks among the best on
SWF files.

• A prototype implementation of Hidost for two file formats, PDF and SWF, is re-
leased as open-source software.

• Source code required to reproduce the results of the evaluation of Hidost, including
experiments and plots, is released as open-source software.

• Datasets required to reproduce the results of the evaluation of Hidost are released
in form of feature vectors.

Before presenting the main features of the proposed method, we review prior work.

4.2 Prior Work
In Section 3.2 of the previous chapter we described relevant work in the area of PDF
malware detection that emerged prior to the publication of our PJScan system in 2011.
In this section we discuss publications produced afterwards, up to the publication of
SL2013, and leave the later work for Section 4.8.3.

Two simple static learning-based methods were proposed subsequent to PJScan utiliz-
ing heuristic features, Malware Slayer [56] and PDFrate [85]. Both achieve excellent
classification accuracy in their evaluations. However, in contrast to SL2013 and Hidost
which perform PDF parsing in conformance to the PDF Reference, they base their fea-
ture extraction on unparsed raw bytes of PDF files, i.e., the PDF physical structure. A
common vulnerability of these methods is the relative ease of falsification of the PDF
physical structure, as we demonstrate on the example of PDFrate in Chapter 5.

The family of dynamic detectors was also extended. Snow et al. proposed to em-
ploy hardware virtualization and evaluated their system ShellOS [88] on PDF malware.
While the dynamic approaches tend to be more accurate than the static ones, their execu-
tion time renders them inadequate for detecting malicious documents on busy networks
in real time. Furthermore, building and maintaining a dynamic detector capable of emu-
lating every version of a vulnerable software product in combination with every version
of each of its supported operating systems and libraries is a costly and technically chal-
lenging task. On the other hand, it suffices to omit one combination of target software
from the detector and a threat designed for that specific version will go undetected.

41

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

As a combined static and dynamic method, MPScan hooks into Adobe Reader for
JavaScript extraction and deobfuscation and performs static exploit detection [53]. Due
to its design, it is suitable for malware detection only on a single version of Adobe
Reader, and its dynamic component takes seconds to run.

Compared to PDF, research on detecting Flash malware has been scarce with only two
methods proposed in the recent years. The OdoSwiff system from 2009 used a heuristics-
based approach on features obtained with both static and dynamic analysis [32]. It was
succeeded in 2012 by FlashDetect, which upgraded its detection from ActionScript 2
to ActionScript 3 exploits and replaced its threshold-based approach with a Naive Bayes
classifier [65]. Both methods are based on an empirical approach, striving to encode the
knowledge of domain experts about existing ways of SWF exploitation. These expert
features perform very well. For example, FlashDetect’s machine learning classifier was
evaluated using a training dataset comprising only 47 samples of each class, but even
this small sample size was enough to achieve a high detection accuracy. However, as
the authors point out, some employed heuristics-based features are not robust against
steadfast evaders. Furthermore, embedded malware may detect the employed dynamic
execution environment based on its difference to Adobe Flash Player, covering its behav-
ior as a reaction. The methods proposed herein use a data-driven approach instead of
expert features, and their detection is based on structural differences between benign and
malicious SWF files. By remaining exploit-agnostic our systems remain open to novel
attacks and their static approach enables faster execution.

4.3 Hierarchically Structured File Formats

File formats are developed as a means to store a physical representation of certain infor-
mation. Some formats, e.g., text files, do not have any logical structure, but others, e.g.,
HTML, do. HTML files are a physical representation of logical relationships between
HTML elements. As the example in Fig. 4.2 shows, in an HTML file, a p element might
be a descendant of the body element, which in turn has the html element as its parent.

<html>
<body>

<p>This is a sample HTML file.</p>
</body>

</html>

Figure 4.2: A sample HTML file.

HTML elements have a logical structure in the form of a hierarchy. Work presented
in this paper is concerned with the detection of malware in hierarchically structured file
formats. The physical layout of the file format, which can substantially deviate from

42

4.3 Hierarchically Structured File Formats

its logical layout, is irrelevant for the operation of the proposed method. Examples of
hierarchically structured file formats include:

• Portable Document Format (PDF)

• SWF File Format (SWF)

• Extensible Markup Language (XML)

• Hypertext Markup Language (HTML)

• Open Document Format for Office Applications (ODF), an XML-based format for
office documents

• Office Open XML (OOXML), another XML-based format for office documents

• Scalable Vector Graphics (SVG), an XML-based format for vector graphics.

In the following we describe the hierarchical logical structure of two file formats im-
plemented in Hidost, PDF and SWF. We discuss the extension to other file formats in
Section 4.8.

4.3.1 Portable Document Format (PDF)
In Chapter 2 we have described the objects and file structure of PDF. Here we introduce
the PDF document structure which determines how objects are logically organized to
represent the contents of a PDF file, e.g., text, graphics, etc.

The body of the example PDF file from Fig. 2.1 is repeated in Fig. 4.3 for conve-
nience, however with primitive data types and references shown in green. Recall that
we identified 4 objects in the PDF body, one Catalog with ID 1 0, one Pages with ID 3
0 and two Page objects with IDs 22 0 and 23 0. The 4 objects are interconnected via
indirect references. Catalog points to Pages, which in turn points to both Page objects.
Furthermore, notice that each of the Page objects contains a backward reference to the
Pages object via their Parent entry.

The relations between PDF objects, such as in the preceding example, constitute the
document structure of PDF files. Notice that the document structure is not a tree but
rather a directed rooted cyclic graph, as indirect references may point to other objects
anywhere in the document structure. This graph can be reduced to a proper tree, called
a structural tree, as will be elaborated in Section 4.6.4, and we will henceforth limit our
discussion of the PDF document structure to its simplified, tree form. Fig. 4.4 shows the
structural tree of our example PDF.

The root node of the document structure is the Catalog dictionary. The edges cor-
respond to elements of dictionaries and arrays. Every element of a dictionary, i.e., a
key-value pair, corresponds to an edge and a child node; key representing the edge and

43

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

1 0 obj <<
/Type /Catalog
/OpenAction <<

/S /JavaScript
/JS (alert('Hello!');)

>>
/Pages 3 0 R

>> endobj

3 0 obj <<
/Type /Pages
/Kids [22 0 R 23 0 R]
/Count 2

>> endobj

22 0 obj <<
/Type /Page
/Parent 3 0 R
/MediaBox [0 0 612 792]
/Resources ...

>> endobj

23 0 obj <<
/Type /Page
/Parent 3 0 R
/MediaBox [0 0 333 444]
/Resources ...

>> endobj

Figure 4.3: Raw content of an example PDF file. Formatted for easier reading, details
omitted for brevity.

value the child node. Edges corresponding to dictionary keys are labeled by the key it-
self. For example, the key-value pair (Type, Catalog) corresponds to an edge labeled
Type and the child node Catalog. An array’s elements are its children nodes and their
edges are not labeled. Every object of a primitive type constitutes a leaf, i.e., terminal
node in the document structure. Intermediate nodes may be either arrays or dictionaries,
however, empty arrays and empty dictionaries are considered leaf nodes as they have no
children by definition.

We define a path in the PDF structural tree as a sequence of edges starting at the
Catalog and ending at a leaf node. For example, in Fig. 4.4 there is a path from the
root, i.e., leftmost, node through the edges named /Pages and /Count to the terminal
node with the value 2. This definition of a path in the PDF document structure, which
we denote a PDF structural path, plays a central role in our approach. We print paths
as a sequence of all edge labels encountered during path traversal starting from the root
node and ending in the leaf node. The path from our earlier example would be printed as
/Pages/Count.

The following list shows examples of structural paths from real-world benign PDF
files:

/Metadata
/Type

44

4.3 Hierarchically Structured File Formats

[]

/Page

3 0 R

333
444

/Pages/Catalog

/JavaScript

alert('Hello!');
792

612

0
2

0

/Page

0
0

/Type

/O
pe
nA
ct
io
n

/C
ou
nt

/Type

/Kids

/Pa
ren

t

/Type
/MediaBox

/Me
dia

Box

/Type

/Pages

/S
/JS

3 0 R

<< >>

<< >> << >>

<< >>

<< >>

[]

[]

/Parent

Figure 4.4: Structural tree of the PDF file depicted in Fig. 4.3. Dictionaries are illustrated
using the symbol ‘<< >>’, arrays using ‘[]’. Cycles were omitted for simplicity.

/Pages/Kids
/OpenAction/Contents
/StructTreeRoot/RoleMap
/Pages/Kids/Contents/Length
/OpenAction/D/Resources/ProcSet
/OpenAction/D
/Pages/Count
/PageLayout

Our investigation shows that these are the structural paths whose presence in a file is
most indicative that the file is benign, or, alternatively, whose absence indicates that a
file is malicious. For example, malicious files are not likely to contain metadata in order
to minimize file size, they do not jump to a page in the document when it is opened and
are not well-formed so they are missing paths such as /Type and /Pages/Count.

The following is a list of typical structural paths found in real-world malicious PDF
files:

/AcroForm/XFA
/Names/JavaScript
/Names/EmbeddedFiles
/Names/JavaScript/Names
/Pages/Kids/Type
/StructTreeRoot
/OpenAction/Type
/OpenAction/S
/OpenAction/JS

45

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

/OpenAction

We see that malicious files tend to execute JavaScript stored within multiple different
locations upon opening the document, and make use of Adobe XML Forms Architecture
(XFA) forms as malicious code can also be launched from there.

4.3.2 SWF File Format
As a second example of a hierarchically structured file format we present SWF. The
essential technical details of the SWF file format were described in Chapter 2. In the
following we introduce its logical structure reusing the example file from Chapter 2, this
time with values of tag fields colored green, depicted in Fig. 4.5.

[14:0]: SetBackgroundColor
 [14:0]: Header (Code: 9 Length: 3)
 [14:0]: TagAndLength : 579
 [B0:0]: BackgroundColor
 [16:0]: Red : 170
 [17:0]: Green : 187
 [18:0]: Blue : 204
[19:0]: ShowFrame
 [19:0]: Header (Code: 1 Length: 0)
 [19:0]: TagAndLength : 64
[1B:0]: SetBackgroundColor
 [1B:0]: Header (Code: 9 Length: 3)
 [1B:0]: TagAndLength : 579
 [E8:0]: BackgroundColor
 [1D:0]: Red : 17
 [1E:0]: Green : 34
 [1F:0]: Blue : 51
[20:0]: ShowFrame
 [20:0]: Header (Code: 1 Length: 0)
 [20:0]: TagAndLength : 64
[22:0]: End
 [22:0]: Header (Code: 0 Length: 0)
 [22:0]: TagAndLength : 0

Figure 4.5: Example SWF file. Every line starts with a hexadecimal number within
square brackets denoting the offset, in bytes, of the corresponding tag field from the
beginning of the file.

Fig. 4.6 illustrates a logical view of our example SWF file in which the file is structured
as a tree. Every tag is represented by a tree node and is a direct descendant of the abstract
root node. The edge from the root to the tag node is labeled by the tag type name, in our
case SetBackgroundColor, ShowFrame and End. Descendants of tag nodes are its
header and fields. Headers are connected with an edge simply labeled Header. The
edges leading to the fields are labeled by their names, e.g., BackgroundColor. The

46

4.4 SL2013 System Design

values of tags’ fields are considered leaf nodes, e.g., the value of the Red field of the first
SetBackgroundColor tag, 170.

Se
tB
ac
kg
ro
un
dC
ol
or

He
ad
er

BackgroundColor
Red
Green
Blue

204

187

170

579TagAndLength

SetBackgroundColor

He
ad
er

579TagAndLength

BackgroundColor

51

34

17
Red
Green
Blue

Sho
wFr

ame
Header

TagAndLength

ShowFrame
Header

TagAndLength 64

64

0End Header TagAndLength

Figure 4.6: Logical structure of the SWF file illustrated in Fig. 4.5.

We define a path in the SWF structural tree, analogous to the PDF case, as a series of
edges starting in the abstract root node and ending in a leaf node. For example, there is
a path from the root node through the edges labeled End, Header and TagAndLength
ending in the leaf node with the value 0. For better readability and consistency with PDF,
we prepend the forward slash symbol ‘/’ to every edge label when printing a path, hence
the path in question prints as /End/Header/TagAndLength.

In the following we describe the system design of SL2013 and Hidost, respectively,
and show how the two methods utilize logical structure for malware detection.

4.4 SL2013 System Design

The SL2013 system is limited to detecting malware in one file format, PDF. Its process-
ing can roughly be divided into two steps, schematically shown in Fig. 4.7:

1. Extraction of structural features. As the basic pre-processing step, the content
of a PDF file is parsed and converted into the special form, bag-of-paths, which
characterizes the document structure in a well-defined way.

47

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

2. Learning and classification. The detection process is driven by examples of mali-
cious and benign PDF files. In the learning step, a model is created from the data
with known labels, i.e., training data. The model encodes the differences between
malicious and benign data. In the classification step the model is applied to new,
evaluation data, to classify it as malicious or benign.

The technical realization of these two fundamental tasks is presented below.

Figure 4.7: SL2013 system design.

Source code for SL2013 is not published separately but as part of the Hidost system
in Section 4.6.

4.4.1 Feature Definition
A common approach to the design of data-driven security methods is to manually define
a set of “intrinsic features” which are subsequently used for learning and classification. It
was successfully applied for network intrusion detection [47, 55], botnet detection [35],
detection of drive-by-downloads [14, 22, 23], and other related problems. The challenge
in defining features for detection of malicious PDF files lies in the complex structure
of the PDF format. We therefore depart from the knowledge-driven strategy mentioned
above and consider a richer set of potential features that capture PDF’s complexity. These
features will be later automatically reduced to a smaller subset based on the available
data.

The goal of structural analysis of PDF files is to recover all parent-child relations
between their objects. The tree-like structure of PDF documents can be represented by a
set of paths from the root to leaves, as shown in Fig. 4.8.

For notational convenience, we will use the forward slash symbol ’/’ as a delimiter
between the names on a structural path2. The same path may occur multiple times in

2Technically, null is the only disallowed character in PDF names and hence, the only suitable delimiter
for structural paths.

48

4.4 SL2013 System Design

/OpenAction/JS
/OpenAction/S
/Pages/Count

/Pages/Kids/MediaBox
/Pages/Kids/Parent

/Pages/Kids/Resources
/Pages/Kids/Type

/Pages/Type
/Type

Bag-of-Paths

1
1
1
8
2

...
2
1
1

Count

Figure 4.8: Structural paths corresponding to the example PDF file in Fig. 4.3 and their
counts.

a document if it crosses an array with multiple elements. Empirical evidence indicates
that the counts of specific paths in a document constitute a good measure of structural
similarity between different documents. This motivates the choice of the set of structural
paths as the intrinsic features of our system.

Due to widespread use of indirect references in PDF files, multiple structural paths
may lead to the same object. Indirect references may even form circles in the structural
graph, in which case the set of paths becomes infinite. In some semantic constructs of
PDF, e.g., page trees, multiple paths to the same object are required to facilitate content
rendering. Precise treatment of indirect references is only possible with directed graphs.
Since the comparison of graphs is computationally difficult, we adhere to the tree-like
view of the document structure and introduce additional heuristics in the following sec-
tion which produce a finite set of structural paths while maintaining a reasonable seman-
tic approximation of the existing relations.

Thus, the main operation to be performed in our feature extraction step is counting
the structural paths in a document. Additional transformations, to be referred to as em-
beddings, can be applied to path counts. The binary embedding detects the presence of
non-zero counts, the frequency embedding divides the counts over the total number of
paths in a document, and the count embedding refers to the path count itself. All three
embeddings were experimentally evaluated and the binary one was chosen over the other
two for its slightly better detection performance.

/Dests
/Names

/OpenAction/JS
/OpenAction/S

/Outlines
/Pages/Count

/Type
Features

0
0
1
1
0
1
0

Values

Figure 4.9: Feature vector resulting from the bag-of-paths illustrated in Fig. 4.8.

49

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

For our feature set, we selected only structural paths which occur in at least 1,000
files in our corpus (see Section 4.5.1 for a detailed description of the data used in our
experimental evaluation). This reduces the number of features, i.e., structural paths, in
our laboratory experiments from over 9 million to 6,087. Fig. 4.9 illustrates the binary
embedding on a 7-dimensional feature set. We did not use class information for the
selection of “discriminative features” as it was done, e.g., in Zozzle [23]. Such manual
pre-selection of features introduces an artificial bias to a specific dataset and provides
an attacker with an easy opportunity to evade the classifier by adding features from the
opposite class to his malicious examples.

4.4.2 Extraction of PDF Document Structure

Extraction of structural features defined in Section 4.4.1 must meet the following re-
quirements:

R1: All paths must be extracted with their exact counts.

R2: The extraction algorithm must be deterministic, i.e., for two PDF files with the
same logical structure it must produce the same set of paths.

R3: The choice among multiple paths to a given object should be semantically the most
meaningful one with respect to the PDF Reference.

As the first step in the extraction process, the file is parsed using the PDF parser
Poppler, version 0.14.3. Its key advantages are the robust treatment of various encodings
used in PDF and the reliable extraction of objects from compressed streams. In principle,
other robust PDF parsers would be suitable for extraction of structural paths as well. Our
choice of Poppler was motivated by its open-source nature. The parser maintains an
internal representation of the document and provides access to all PDF objects.

Conceptually, path extraction amounts to a recursive enumeration of leafs in the docu-
ment structure, starting from the root node, i.e., Catalog. The extracted paths are inserted
into a suitable data structure, e.g., a hash table or a map, and their counts are accumulated.
However, several refinements must be introduced to this general algorithm to ensure that
it terminates and that the above requirements are met.

The requirement R1 is naturally satisfied by the recursive nature of our feature extrac-
tion. Since our recursion terminates only if a leaf node is encountered, the algorithm is
guaranteed to never underestimate the count of a particular path. However, an overesti-
mation of the path count may occur if there is a cycle in the structural graph leading to
infinite recursion. To prevent it, the requirement R3 must be enforced.

The enforcement of requirements R2 and R3 is tightly coupled and ultimately relies
on the intelligent treatment of indirect references. Obviously, one cannot always de-
reference them, as this may result in an infinite recursion. One cannot also avoid their

50

4.4 SL2013 System Design

de-referencing, as the algorithm would hardly ever move beyond the root node. Hence,
a consistent strategy for selective de-referencing must be implemented.

In our extraction algorithm, we approach these issues by maintaining a breadth-first
search (BFS) order in the enumeration of leaf objects. This strategy assumes that the
shortest path to a given leaf is semantically the most meaningful. For example, this
observation intuitively holds for various cases when circular relations arise from explicit
upward references by means of the Parent entry in a dictionary, as demonstrated by
our example in Fig. 4.3. We find the path /Pages to preserve more semantics than
/Pages/Kids/Parent which refers to the same object. In Section 4.6.2 we present
a refinement of this rough heuristic for selecting semantically more informative paths
introduced for Hidost.

Two further technical details are essential for the implementation of BFS traversal. It is
important to keep track of all objects visited during the traversal and backtrack whenever
an object was seen before in order to break graph cycles. It is also necessary to sort
all entries in a dictionary in some fixed order before descending to the node’s children.
Since no specific ordering of dictionary fields is required by the PDF Reference, such
ordering must be artificially enforced in order to satisfy the requirement R2.

4.4.3 Learning and Classification
Once the counts or other embeddings over the set of structural paths are extracted, various
learning algorithms can be applied to create a model from the given training data and use
this model to classify unknown examples. For an overview of suitable algorithms, the
reader may refer to any standard textbook on machine learning, e.g., [9, 36], or use any
entry-level machine learning toolbox, such as SHOGUN3 or WEKA4. It is beyond the
scope of this manuscript to provide a comprehensive experimental evidence as to which
machine learning method is most suitable for detection of malicious PDF files using
structural paths. We have chosen two specific algorithms, decision trees and Support
Vector Machines, for subjective reasons presented in the following section along with a
high-level description of the respective method.

Decision Trees

The decision tree is a popular classification technique in which predictions are made in
a sequence of single-attribute tests. Each test either assigns a certain class to an example
or invokes further tests. Decision trees have arisen from the field of operational decision
making and are especially attractive for security applications, as they provide a clear
justification for specific decisions – a feature appreciated by security administrators. An
example of a decision tree classifying whether one should take an umbrella when leaving
home is shown in Fig. 4.10.

3SHOGUN – http://www.shogun-toolbox.org/.
4WEKA – http://www.cs.waikato.ac.nz/ml/weka/.

51

http://www.shogun-toolbox.org/
http://www.cs.waikato.ac.nz/ml/weka/

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

Will it rain later today?

Is it raining now?

yes no

no

Take an
umbrella

yes

Leave
umbrella

Take an
umbrella

Figure 4.10: An example decision tree.

The goal of automatic decision tree inference is to build a decision tree from labeled
training data. Several classical algorithms exist for decision tree inference, e.g., CART
[11], RIPPER [19], C4.5 [73]. We have chosen a modern decision tree inference imple-
mentation C5.05 version 2.07 which provides a number of useful features, e.g., automatic
cross-validation and class weighting. It can also transform decision trees into rule sets
which facilitate the visual inspection of large decision trees.

Support Vector Machines

The Support Vector Machine (SVM) [21] is another popular machine learning algorithm.
Its main geometric idea, illustrated in Fig. 4.11, is to fit a hyperplane to data so that the
margin M between examples of 2 classes is maximized. In the case of a linear decision
function, it is represented by the hyperplane’s weight vector w and the threshold ρ which
are directly used to assign labels y to unknown examples x:

y(x) = w>x−ρ

Nonlinear decision functions are achieved by applying a nonlinear transformation to in-
put data which maps it into a feature space with special properties, the so-called Re-
producing Kernel Hilbert Space (RKHS). The elegance of SVM consists in the fact that
such transformations can be done implicitly, by choosing an appropriate nonlinear kernel
function k(x1, x2) which compares two examples x1 and x2. The solution α to the dual
SVM learning problem, equivalent to the primal solution w, can be used for a nonlinear
decision function expressed as a comparison of an unknown example x with selected ex-
amples xi in the training data, the so-called “support vectors” (circles with black outlines

5C5.0 – http://www.rulequest.com/see5-info.html.

52

http://www.rulequest.com/see5-info.html

4.5 SL2013 Experimental Evaluation

in Fig. 4.11):
y(x) =

∑
xi∈S V

αiyik(x, xi)−ρ

w
M

Figure 4.11: Linear and nonlinear SVM. Decision boundary (vector w) between the two
classes depicted with two colors is shown with a solid and the margins M with dashed
lines; points with a single outline are support vectors; point with a double outline is a test
point that falls within the margin.

Efficient implementations of SVM learning are available in various machine learning
packages. In our experiments, we used a well-known stand-alone SVM implementation
LibSVM6 version 3.12.

4.5 SL2013 Experimental Evaluation
The goal of experiments presented in this section is to measure the effectiveness and
throughput of SL2013 under both laboratory and deployment conditions. In addition,
we compare the classification performance of our method to other existing PDF malware
detection methods: PJScan and the established antivirus tools. Our evaluation is based
on an extensive dataset comprising around 660,000 real-world PDF files.

4.5.1 Experimental Datasets
Dataset quality is essential for the inference of meaningful models as well as for a com-
pelling evaluation of any data-driven approach. For our evaluation, we have obtained a
total of 658,763 benign and malicious PDF files (around 595 GB), the largest data corpus
hitherto used in evaluation of malware detectors for non-executable files. Our data was
collected from Google and VirusTotal and organized into the following 6 datasets:

6LibSVM – http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

53

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

D1: VirusTotalmalicious, containing 38,207 (1.4 GB) files obtained from VirusTotal
during 18 days, between the 5th and 22nd of March 2012, labeled by at least 5
antivirus tools as malicious,

D2: VirusTotal benign, comprising 79,200 (75 GB) files obtained from VirusTotal
during the same time period, labeled by all antivirus tools as benign,

D3: VirusTotal malicious new, with 11,409 (527 MB) files obtained from VirusTo-
tal 2 months later, during 33 days, between the 23rd of May and 24th of June 2012,
labeled by at least 5 antivirus tools as malicious,

D4: Google benign, containing 90,834 (73 GB) files obtained from 1,000 Google searches
for PDF files with a date range as the sole query argument; the 1,000 date ranges
covering 2,000 days, between the 5th of February 2007 and the 25th of July 2012,

D5: Operational malicious, with 32,526 (2.7 GB) files obtained from VirusTotal dur-
ing 14 weeks, between the 16th of July and 21st of October 2012, labeled by at
least 5 antivirus tools as malicious,

D6: Operational benign, comprising 407,037 (443 GB) PDF files obtained from Vi-
rusTotal during 14 weeks, between the 16th of July and 21st of October 2012,
which were labeled by all antivirus tools as benign.

The VirusTotal data comprises PDF files used by people from all over the world,
which brings us as close to real-world private PDF data as possible. In fact, the benign
VirusTotal data is even biased towards being malicious, as users usually upload files
they find suspicious. The dataset obtained by Google searches removes the bias towards
maliciousness in benign data and attempts to capture the features of regular benign PDF
files found on the Internet.

Note that we consider a VirusTotal file to be malicious only if it was labeled as such
by at least 5 antivirus tools. Files labeled malicious by 1 to 4 antivirus tools are discarded
from the experiments because there is little confidence in their correct labeling, as we
verified empirically. Given the lack of reliable ground truth for these files, we assume a
zero false positive rate for antivirus tools and cannot directly compare them to SL2013
with respect to the false positive rate.

4.5.2 Experimental Protocol
Two types of experiments were devised to evaluate the detection performance of SL2013:
laboratory and operational experiments. The three laboratory experiments operate on
static data, captured in a specific point in time, where training and classification data are
intermixed using 5-fold cross-validation7:

75-fold cross-validation works as follows: we randomly split our data into 5 disjoint subsets, each
containing one fifth of malicious and one fifth of benign files. Learning and classification are repeated five

54

4.5 SL2013 Experimental Evaluation

• The CrossVal5 experiment is designed to evaluate the overall effectiveness of our
method on known malicious and average benign data. To this end, we use the
VirusTotal malicious dataset (D1) and the Google benign dataset (D4).

• The Suspicious experiment is designed to evaluate the effectiveness of our method
on PDF files that ordinary users do not trust. For this experiment, we use VirusTo-
tal malicious data (D1) and VirusTotal benign data (D2). The classification task
in this experiment is harder than in the CrossVal5 experiment since its benign data
is biased towards malicious.

• The WithJS experiment is designed to enable the comparison of our method to
PJScan. For this experiment, a subset of the datasets used for the CrossVal5 ex-
periment (D1 and D4) was used comprising only those files that contain directly
embedded JavaScript which PJScan can extract; i.e., 30,157 malicious and 906
benign files.

In contrast, in the two operational experiments, classification is performed on files
which did not exist at all at the time of training, i.e., files obtained at a later time:

• The Novel experiment evaluates our method on novel malicious threats when
trained on an outdated training set. For this experiment, we apply the models
learned in the CrossVal5 experiment to 2 months younger VirusTotal malicious
data D3. Novel benign data was not evaluated as its observed change in this time-
span was not significant.

• The 10Weeks experiment is designed to evaluate the classification performance
of our method in a simulated real-world, day-to-day practical operational setup
and directly compare it to the results achieved by antivirus tools in the same time
period. This experiment is performed on data from the Operational benign (D6)
and malicious (D5) datasets, containing files gathered during 14 weeks. It is run in
a sliding window fashion, with one evaluation every week, for 10 weeks starting
from week 5. In every iteration, feature selection is performed on files gathered in
the past 4 weeks and a new model is learned from scratch on these files using the
selected features. This model is then used to classify the files obtained during the
current week.

For example, the data obtained during weeks 1 to 4 is used to learn a model which
classifies data gathered in week 5, weeks 2 to 5 are used for week 6, etc. This pe-
riodic retraining approach is typical for large-scale machine learning deployments
in applications where the underlying data distribution changes continually, e.g., in
intrusion detection.

times, each time selecting a different combination of four subsets for learning and the remaining one for
classification. This experimental protocol enables us to classify every file exactly once while ensuring that
no file processed in the classification phase was used in the learning phase for the respective model.

55

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

Source code for the reproduction of this experiment is published as part of Hidost
source code release introduced in Section 4.7.

Note that, in practice, there are no fundamental difficulties for periodic retraining of
learning models as new labeled data becomes available. Models deployed at end-user
systems can be updated in a similar way to signature updates in conventional antivirus
systems. As we show in Section 4.5.4, SVMs are efficient enough to allow periodic
retraining of models from scratch. Our decision tree learning algorithm implementation,
however, lacked the required computational performance and was not evaluated in this
experiment.

4.5.3 Experimental Results
Both the decision tree learning algorithm and the SVM were evaluated in our laboratory
experiments. For the SVM, we selected the radial basis function (RBF) kernel with
γ = 0.0025 and a cost parameter C = 12, based on an empirical pre-evaluation. We
define PDF files with malware to be the positive class in our experiments.

The CrossVal5 experiment

Table 4.1 shows detection results for both classification algorithms in the CrossVal5
experiment. The top part shows the confusion matrices (the number of positive and
negative files with true and false classifications) obtained by aggregating the results of
all five cross-validation runs. The bottom part shows other performance indicators: the
true and false positive rates and the overall detection accuracy.

Decision tree SVM

True Positives 38,102 38,163
False Positives 51 10
True Negatives 90,783 90,824
False Negatives 105 44

True Positive Rate 0.9973 0.9989
False Positive Rate 5.6×10−4 1.1×10−4

Detection Accuracy 0.9988 0.9996

Table 4.1: Aggregated results of the CrossVal5 experiment.

The CrossVal5 experiment evaluates the overall performance of our method under
laboratory conditions. As Table 4.1 shows, although the SVM slightly outperforms the
decision tree learning algorithm, both algorithms show excellent classification perfor-
mance. Very high detection accuracy (over 99.8 %) was achieved, while false positives
rate remained in the low promille range (less than 0.06 %).

56

4.5 SL2013 Experimental Evaluation

The Suspicious experiment

Results for the Suspicious experiment are shown in Table 4.2. The classification perfor-
mance of both algorithms indeed decreases when applied to this harder, suspicious data
than in the baseline CrossVal5 experiment, but the difference is marginal.

Decision tree SVM

True Positives 38,118 38,163
False Positives 68 27
True Negatives 79,132 79,173
False Negatives 89 44

True Positive Rate 0.9977 0.9989
False Positive Rate 8.6×10−4 3.4×10−4

Detection Accuracy 0.9987 0.9994

Table 4.2: Aggregated results of the Suspicious experiment.

The WithJS experiment

Table 4.3 compares the results of both of our algorithms to PJScan. Since PJScan per-
forms anomaly detection; i.e., it learns using only examples of one class (malicious),
during its training the benign files are discarded.

Decision tree SVM PJScan

True Positives 30,130 30,149 21,695
False Positives 14 12 1
True Negatives 892 894 905
False Negatives 27 8 8,462

True Positive Rate 0.9991 0.9997 0.7194
False Positive Rate 0.0154 0.0132 0.0011
Detection Accuracy 0.9986 0.9993 0.7275

Table 4.3: Aggregated results of the WithJS experiment.

Overall, our method performs somewhat worse than in the CrossVal5 experiment due
to the strong class imbalance in the training dataset. Still, it significantly outperforms
PJScan, a method specialized for detecting malicious JavaScript, even on a dataset care-
fully chosen for it. PJScan’s high false negative rate in this experiment can be attributed
to its failure to process JavaScript code from XFA forms and code loaded at runtime. The

57

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

reported effectiveness of PJScan is consistent with the results presented in Section 3.6.3
and its high false negative rate was elaborated in Section 3.7.

Comparison to Prior Work

Table 4.4 compares SL2013 to prior work in terms of detection performance under lab-
oratory conditions. A direct comparison was not performed due to a lack of available
source code. Instead, we show the results reported in the original publications, measured
on datasets of various sizes and structure.

SL2013 MDScan ShellOS Malware Slayer

Number of malicious samples 38,207 197 405 11,157
Number of benign samples 90,834 2,000 179 9,989

True positive rate 0.9988 0.8934 0.8024 0.9955
False positive rate 0.0001 0 N/A 0.0251

Table 4.4: Comparison of SL2013 to prior work.

Our laboratory results represent a significant improvement over prior work. The clos-
est reported result, achieved by Malware Slayer, attains a similar true positive rate but
at the cost of more than 200-fold increase of false positive rate. Both dynamic meth-
ods, MDScan and ShellOS, generate no false positives but detect only 80 % to 90 % of
malware; it should be also noted that these results have been measured on an order of
magnitude smaller datasets.

The Novel experiment

Table 4.5 shows the results for the Novel experiment8.

Decision tree SVM

True Positives 10,681 10,870
False Negatives 728 539

True Positive Rate 0.9361 0.9527

Table 4.5: Aggregated results of the Novel experiment

Even when our learning algorithms are trained on a 2 to 3 month-old dataset, they still
achieve respectable 93 % (decision tree) or 95 % (SVM) true positive rates, indicating

8Note that some information, such as the true negative count, is missing for this experiment because it
was only applied to malicious data, since changes in benign performance were negligible.

58

4.5 SL2013 Experimental Evaluation

a slow pace of malware evolution when viewed through the prism of structural features
used in SL2013. The finding that the document structure of malicious PDF files exhibits
a small change in the wild even 2 months after the model was trained suggests that there
is little evolutionary pressure on malware to adapt in this regard. Our detector is not
commercially deployed and therefore malware can safely ignore it. Instead, the pressure
is asserted by antivirus tools to produce novel binary code, e.g., using polymorphism,
that will evade signature-based detection.

The 10Weeks experiment

Fig. 4.12 shows the comparison of our method to the best VirusTotal antivirus tool9

in the 10Weeks experiment in terms of true positive rate (TPR). The best antivirus tool
achieves an overall TPR of 92.81 %, significantly better than 87.14 % achieved by our
method. However, our method consistently outperforms the best antivirus tool in 7 out
of 10 weeks, and there is a draw in week 8. The performance degradation of our method
in weeks 14 and, most notably, 12 has motivated a further investigation which uncovered
a curious trend in VirusTotal submissions, discussed below.

5 6 7 8 9 10 11 12 13 14

Week

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

0

1000

2000

3000

4000

5000

6000

P
o

s
it
iv

e
 C

o
u

n
t

Our Method

Best Antivirus

Total Positives

Figure 4.12: Comparison of SL2013 to the best antivirus in terms of the true positive rate
achieved in the 10Weeks experiment.

The top half of Fig. 4.12 shows the number of PDF submissions to VirusTotal de-
tected by at least 5 antivirus tools, i.e., the number of positives, per week. In the first
week of October 2012, week 12, VirusTotal saw the positive submission count increase
by approx. 150 %, from around 2,000 to around 5,000. This elevated level of submis-
sions has persisted to the end of the experiment. A closer inspection of this week’s data
has revealed that there are two very large groups of submissions, one comprising 1,842

9The name of the best antivirus tool is not disclosed as there are several within a 5 % margin of the
TPR achieved in this experiment, and their rankings change in time.

59

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

and the other 2,595 files. In each group, the files differ byte-wise from each other, but
have identical PDF structure, i.e., every file in a group corresponds to the same bag-of-
paths. Furthermore, there is a high similarity between the two groups. The bag-of-paths
of the smaller group consists of 99 structural paths, all of which are present in the other
group as well. The only difference between the groups are additional 11 structural paths
in the bigger group. Files with the same bag-of-paths were also submitted later, but not
before this week. This finding strongly suggests that the submissions of week 12 and
later stem in great part from a single source and were generated using the same tools,
e.g., fuzzing techniques or a malware toolkit.

The cause for the false negative rate of 37 % in week 12 is that all files in the smaller
group (1,842) were mislabeled as benign by our method. The prediction is the same for
all files because they all translate into identical bags-of-paths, i.e., the same data point.
A wrong classification of one data point in this case led to a false negative rate of more
than 1/3 because the test data was heavily skewed by one source producing very similar
submissions. In about 20 cases, these files were also missed by all antivirus tools.

The data point corresponding to the bag-of-paths of the smaller group of files is located
on the wrong side of the SVM decision boundary, although very close to it. The addition
of further 11 structural paths positioned the data point corresponding to the bag-of-paths
of the larger group significantly over the decision boundary into the positive class. The
reason for this lies in the fact that 8 out of 11 added structural paths are strong indicators
of maliciousness in the learned SVM model10. In the weeks following week 12, these
examples showed up in the learning stage and were correctly classified.

The performance drop in week 14 comes from a very high number of submitted files
(over 900) which our parser could not open. This anomaly was not further investigated as
these are either a) malformed PDFs that pose no threat to the PDF renderer application
but are, nevertheless, scanned by ignorant antivirus tools, or b) parser bugs, in which
case it suffices to update or fix the parser or employ a completely different one, as our
method is parser-agnostic.

The overall false positive rate of SL2013 in this experiment is 0.0655 %, as in labora-
tory tests. The antivirus tools do not have false positives by definition of our experiments,
as the “undecided” files (the ones between 1 and 4 detections) are filtered.

4.5.4 Throughput

High throughput is an important consideration when dealing with large volumes of PDF
data, as is the case with VirusTotal, big companies or governments. Our system was
designed to handle such loads and utilize the parallel processing capabilities of modern
computers. We have measured the time it takes to perform feature extraction, learning

10A linear SVM was trained for the purpose of this feature interpretation which exhibits the same
misclassification problem for the smaller group of files. The evaluation was performed by computing and
sorting weights of all features.

60

4.5 SL2013 Experimental Evaluation

and classification for datasets D1, D3, D2 and D4 with both decision trees and SVMs.
The measurements were made on a quad-core CPU with 8 GB of RAM and a 7,200 RPM
SATA hard disk with the memory caches previously cleared.

Feature extraction is the most time-consuming operation, as it requires loading all PDF
files from the hard drive. It was performed using 7 parallel processes. In total, 7315 s
were spent on feature extraction for the 150 GB of data in the above-mentioned datasets,
of which 313 s were spent on malicious and 7002 s on benign files, yielding a throughput
of 168 Mbit/s.

Numbers for learning and classification differ for decision trees and SVMs. They are
presented in Table 4.6.

Learning Classification

Decision tree 391 s 52 s
SVM 83 s 54 s

Table 4.6: Time required for learning and classification in the CrossVal5 experiment.

Since each of the 5 cross-validation runs trains on 80 % of the training data, we di-
vided the total sum of execution times for all runs by four to obtain an estimate of how
long training would take for the entire dataset. The classification time is a simple sum
of 5 individual classifications, as each deals with 20 % of testing data. Note that execut-
ing cross-validation runs in parallel increases performance linearly with the number of
processes. Even though decision trees are significantly slower than the SVM, the overall
running time is dominated by feature extraction.

The total time required for feature extraction, learning and classification using SVMs
in the CrossVal5 experiment with the datasets D1 and D4 of 74.4 GB was 3602 s, yield-
ing the total throughput of around 169 Mbit/s and a mean processing time of 28 ms per
file. The high performance numbers are achieved by static detection and parallel exe-
cution. In contrast, dynamic methods such as MDScan (slightly less than 3000 ms per
malicious file, 1500 ms per benign file on average) and ShellOS (on average 5.46 s per
file for analysis, plus additional 2 s (benign) to 20 s (malicious, non-ROP) for buffer ex-
traction) require orders of magnitude more time. The only other fully static method with
published throughput metrics, PJScan, takes 23 ms per file, because it only extracts a
well-defined, limited subset of the entire PDF file.

Having introduced SL2013 and presented a detailed evaluation of its detection perfor-
mance and throughput, in the following section we describe Hidost, the improvements it
brings over SL2013 and its extension to other hierarchically structured file formats.

61

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

4.6 Hidost System Design

Hidost has been designed as a malware detection system capable of learning to discrim-
inate between malicious and benign files based on their logical structure. Due to the se-
mantic heterogeneity of various file formats it is hard to imagine a single format to act as
a “common denominator” for all conceivable hierarchically structured file formats. Yet
our design clearly separates format-specific processing steps from the detection method-
ology. As a result, Hidost, currently tested on PDF and SWF formats, can be extended
to other formats by implementing the format-specific components without rebuilding its
general framework. The proposed method was implemented as a research prototype
and its feature extraction subsystem was published as open-source software11. The pub-
lished code comprises a toolset for feature extraction from PDF (implemented in C++)
and SWF files (implemented in Python and Java) and can extract features for Hidost as
well as SL2013. Experiment reproduction code is published separately, as described in
Section 4.7.

PDF
Files

Structural
Multimap

Feature
Vector

Decision

PDF
Model

SWF
Model

Learning

Classification

SWF
Files

Other
Files

Other
Models

Structural
Path Consolidation

Structure Extraction

Structural
Multimap

Structural
Multimap

Feature Selection
(Thresholding)

Vectorization

Figure 4.13: Hidost system design.

The system design of Hidost is illustrated in Fig. 4.13. It comprises 6 main stages:

1. structure extraction, transforms structural features of different formats into a
common data structure – structural multimap – representing paths in the structural
hierarchy,

11Hidost – https://github.com/srndic/hidost.

62

https://github.com/srndic/hidost

4.6 Hidost System Design

2. structural path consolidation, groups similar structural paths into a single fea-
ture,

3. feature selection, finds the minimum set of features required for a successful ma-
chine learning application,

4. vectorization, transforms structural multimaps into numeric vectors processed by
machine learning methods,

5. learning, generates a discriminative model of malicious and benign files based on
their properties encoded in feature vectors,

6. classification, makes a decision whether a previously unseen sample is malicious
or benign based on the learned model.

In the following subsections, the main stages of our approach are presented in detail.

4.6.1 Logical Structure Extraction

The first step of our method transforms files into a more abstract representation, their
logical structure. This step is essential to our approach because it achieves two key
goals: a) use of logical structure for discrimination between malicious and benign files;
and b) generalization to multiple file formats.

In this manuscript the meaning of the term “logical structure” has a subtle but impor-
tant difference when used in describing SL2013 versus Hidost. In SL2013, it was limited
to expressing the hierarchical structure of files, enumerating the set of paths from the root
node to every leaf, while in Hidost it encapsulates both the hierarchy and the content, i.e.,
information contained in leaf nodes. This may be strings, numbers or other basic data
types that occur in PDF, SWF and other hierarchically structured file formats. As we
show experimentally in Section 4.7, it is the incorporation of this additional information
that enabled Hidost to effectively extend to SWF.

One suitable representation for this broader definition of logical structure of hierarchi-
cally structured file formats that accomodates both structure and content is a structural
multimap. A multimap is a generalization of the common map data structure, also known
as a dictionary or associative array. While maps provide a mapping between a key and
a corresponding value, multimaps map a key to a set of values. A structural multimap
is a multimap that maps every structural path of a structural tree to the set of all leafs
that lie on the given path. In map terminology, the structural paths represent the keys
and sets of all leafs that a path maps to represent the values of the map. It is clear that
structural multimaps encode more information about files than the bag-of-paths used in
SL2013 because they contain not only the structure, i.e., the paths themselves, but also
the content, i.e., values stored in leaf nodes.

63

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

/OpenAction/JS:
/OpenAction/S:
/Pages/Count:

/Pages/Kids/MediaBox:
/Pages/Kids/Parent:

/Pages/Kids/Resources:
/Pages/Kids/Type:

/Pages/Type:
/Type:

alert('Hello!');
/JavaScript
2
0|0|612|792|0|0|333|444
3 0 R|3 0 R
...
/Page|/Page
/Pages
/Catalog

Keys Values

Figure 4.14: A complete structural multimap of the PDF file depicted in Fig. 4.3. This
type of structural multimap is not used in Hidost but rather illustrated as an instructive
example.

An example of a structural multimap is shown in Fig. 4.14. Multiple values for the
same key are delimited using vertical bar symbols ‘|’. Comparing this structural mul-
timap to SL2013 bag-of-paths from Fig. 4.8, we see the breadth of information that is
discarded completely by SL2013. Hidost uses a slightly simplified form of structural
multimaps presented later in this section.

The reason why logical file structure requires a multimap instead of a map is that
multiple leafs may be reachable by the same structural path. Recall that in PDF files
this occurs when a path contains an array with more than one element. For example, the
path /Pages/Kids/MediaBox contains two arrays and reaches 8 leafs. In case of SWF
files, apart from arrays, multiple tags of the same type cause multiple leafs to lie in the
same path. Implementation of structure extraction for PDF and SWF is presented in the
following two sections.

PDF

The PDF logical structure is organized as a directed rooted cyclic graph. To transform
it into a structural multimap, it is first necessary to reduce the graph to a directed rooted
tree instead. This step was extensively documented as part of SL2013 in Section 4.4.1
and is mostly the same in Hidost. The only difference lies in the treatment of leaf nodes.
While they were previously discarded, they are essential in the new system.

Therefore, when the breadth-first search is performed on the file structure graph, in
the new approach we insert all pairs (p, l), where p is a structural path and l is a leaf
node located on the path p, into the resulting structural multimap. This ensures that the
complete content is retained as part of logical structure.

To be more precise, Hidost does not use full structural multimaps but a simplification
thereof. This simplification concerns the treatment of non-numeric data types, i.e., all
types except integers, real numbers and booleans. Strings, PDF names and other non-
numeric types, all convertible to strings, are replaced with a constant value, 1. The

64

4.6 Hidost System Design

/OpenAction/JS:
/OpenAction/S:
/Pages/Count:

/Pages/Kids/MediaBox:
/Pages/Kids/Parent:

/Pages/Kids/Resources:
/Pages/Kids/Type:

/Pages/Type:
/Type:

1.0
1.0
2
0|0|612|792|0|0|333|444
1.0|1.0
...
1.0|1.0
1.0
1.0

1.0
1.0
2.0

166.5
1.0
...
1.0
1.0
1.0

Structural Multimap Feature
Vector

Figure 4.15: Structural multimap and feature vector of the PDF file depicted in Fig. 4.3.

resulting structural multimap is shown in Fig. 4.15. Comparing it to the one shown
earlier (Fig. 4.14), we clearly see the binarization of non-numeric values. This choice
of treatment is a trade-off between fully discarding non-numeric values and performing
their extensive evaluation.

Different approaches to the treatment of string-like data types have been proposed in
related work, from static, e.g., embedding strings in metric spaces [45, 80], character-
izing them with simple properties such as their length, entropy, or distribution of key-
words [56, 85] or testing them for valid CPU instructions [1], to dynamic, e.g., CPU em-
ulation of strings [71, 104] or their execution [53, 88, 100]. However, these approaches
either conflict with the desired static system design (dynamic evaluation), lower compu-
tational performance (string embedding and testing for CPU instructions), or are easily
evadable (simple string properties).

The positive effect of the use of binarized non-numeric values compared to their com-
plete omission was experimentally confirmed. The effects of migrating from purely bi-
nary features used by SL2013 to numerical in Hidost are evaluated in Section 4.7.3.

SWF

The SWF logical structure is more straightforward to extract than PDF as it naturally
does not have cycles or ambiguities. The approach implemented in Hidost begins by
employing the ConsoleDumper class of the SWFRETools toolkit to parse the SWF file
and produce its textual representation, such as the one in Fig. 4.5. Parsing the output
generated by this tool suffices to extract the SWF logical structure. Every line of the
textual output that starts with zero or more spaces followed by an opening square bracket
‘[’ contains a tag or field name that represents one edge in the structural tree. The distance
of this edge from the root node is encoded as the number of spaces before the bracket,
divided by 2. Consequently, a line with a bracket preceded by no spaces signals the
beginning of a new tag. By keeping track of the most recent edges parsed at each level
in the hierarchy it is possible to reconstruct the entire path to the edge in the current line.
Finally, if the edge name is succeeded by a colon then this edge represents a tag field and

65

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

the remainder of the line encodes that field’s value. The pair (p,v), where p is the path
at the current line and v the parsed value, is then inserted into the structural multimap.
Strings and other non-numeric types are binarized in the same way as with PDF.

0.0
579.0
127.5
110.5
93.5
64.0

Structural Multimap Feature
Vector

0
579|579
204|51
187|34
170|17
64|64

/End/Header/TagAndLength:
/SetBackg...Color/Header/TagAndLength:

/SetBackg...Color/BackgroundColor/Blue:
/SetBackg...Color/BackgroundColor/Green:

/SetBackg...Color/BackgroundColor/Red:
/ShowFrame/Header/TagAndLength:

Figure 4.16: Structural multimap and feature vector of the SWF file depicted in Fig. 2.2.

The structural multimap corresponding to the SWFRETools output of Fig. 4.5 is il-
lustrated on the left-hand side of Fig. 4.16. The following section describes the second
processing step of our method, structural path consolidation.

4.6.2 Structural Path Consolidation

The syntactic richness and flexibility of many file formats enables semantically equiva-
lent logical structures to be expressed in syntactically different ways. For example, the
path /Threads/F represents the first element of a doubly linked list describing a PDF
article. The path /Threads/F/N points to the next element in the list and is a different
path than the previous one, but they both point to an object with the same semantics.
Such syntactic polymorphism decreases the detection accuracy because related objects
translate to different features. Furthermore, coupled with our thresholding feature se-
lection strategy, it provides an opportunity for attackers to hide their content in spurious
locations that are not used in common files. To address this problem, we have developed
a heuristic technique for consolidation of structural paths which reduces polymorphic
paths to somewhat consistent representation. This technique can be best exemplified for
the PDF format.

We have observed that many paths common among PDF files exhibit structural simi-
larities to other paths. In fact, we were able to identify through manual inspection groups
of paths similar to each other, yet not completely identical. Paths in these groups exhib-
ited a similarity in one of two ways:

1. all were identical except for exactly one customizable path element,

2. all shared a common repetitive subpath.

Importantly, however, all paths in a group of similar paths refer to objects with the same
purpose, i.e., the same semantics. For example, /Pages/Kids/Resources shares a

66

4.6 Hidost System Design

Table 4.7: PDF structural path consolidation rules.

Search regular expression Substitute regular expression

1.
/Resources/(ExtGState|ColorSpace|
↪→ Pattern|Shading|XObject|Font|
↪→ Properties|Para)/[^/]+

/Resources/\1/Name

2.
^Pages/(Kids/|Parent/)*(Kids$|Kids/|
↪→ Parent/|Parent$)

Pages/

3.
/(Kids/|Parent/)*(Kids$|Kids/|Parent/|
↪→ Parent$)

/

4. (Prev/|Next/|First/|Last/)+ <empty string>

5.

^Names/(Dests|AP|JavaScript|Pages|
↪→ Templates|IDS|URLS|EmbeddedFiles|
↪→ AlternatePresentations|Renditions)
↪→ /(Kids/|Parent/)*Names

Names/\1/Names

6. ^StructTreeRoot/IDTree/(Kids/)*Names
StructTreeRoot/IDTree/
↪→ Names

7.
^(StructTreeRoot/ParentTree|PageLabels
↪→)/(Kids/|Parent/)+(Nums|Limits)

\1/\3

8.
^StructTreeRoot/ParentTree/Nums/(K/|P
↪→ /)+

StructTreeRoot/
↪→ ParentTree/Nums/

9.
^(StructTreeRoot|Outlines/SE)/(RoleMap
↪→ |ClassMap)/[^/]+

\1/\2/Name

10. ^(StructTreeRoot|Outlines/SE)/(K/|P/)* \1/

11. ^(Extensions|Dests)/[^/]+ \1/Name

12. Font/([^/]+)/CharProcs/[^/]+ Font/\1/CharProcs/Name

13.

^(AcroForm/(Fields/|C0/)?DR/)(
↪→ ExtGState|ColorSpace|Pattern|
↪→ Shading|XObject|Font|Properties)
↪→ /[^/]+

\1\3/Name

14. /AP/(D|N)/[^/]+ /AP/\1/Name

15. Threads/F/(V/|N/)* Threads/F

16.
^(StructTreeRoot|Outlines/SE)/Info
↪→ /[^/]+

\1/Info/Name

17. ColorSpace/([^/]+)/Colorants/[^/]+
ColorSpace/\1/Colorants
↪→ /Name

18. ColorSpace/Colorants/[^/]+
ColorSpace/Colorants/
↪→ Name

19. Collection/Schema/[^/]+ Collection/Schema/Name

67

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

common repetitive subpath, /Kids, with /Pages/Kids/Kids/Resources, but both re-
fer to PDF dictionaries that have the same purpose – to provide a name for resources
required to render a page of a PDF file. Semantically, it is irrelevant which path the
structure extraction algorithm took before it visited a page’s resource dictionary – all
resource dictionaries have the same semantics.

Likewise, path /Pages/Kids/Resources/Font/F1 normally has a multitude of sim-
ilar paths, e.g., /Pages/Kids/Resources/Font/F42, that only differ in the last path
element which the PDF Reference mandates to be user-defined, but both refer to Font
dictionaries describing fonts for use in the PDF file. Again, regardless of the concrete
name a specific PDF writer gives to a font dictionary, all font dictionaries are semanti-
cally equivalent.

The existence of such groups of semantically equivalent paths questions the utility of
SL2013 feature definition which treats every individual path as a distinct feature. We
find it more instructive to preserve the semantics of paths by consolidating equivalent
ones to a single feature. This idea, called structural path consolidation (SPC), was im-
plemented in Hidost and experimentally evaluated in Section 4.7.3. It is a preprocessing
step for structure extraction that facilitates generalization to other file formats that may
have complicated logical structures, e.g., with many redundant elements.

The implementation of SPC is based on the substitution of key path components us-
ing regular expressions. Repetitive subpaths are completely removed from the path.
For example, both paths indicated above as examples with a common repetitive sub-
path would be consolidated into the path /Pages/Resources, removing the repetitive
subpath /Kids. On the other hand, user-defined path components are anonymized, i.e.,
replaced with the placeholder path component /Name. For instance, both paths from
the example above with user-defined font names would be consolidated into the path
/Pages/Kids/Resources/Name (if the rule concerning repetitive paths was not ap-
plied beforehand, of course). Table 4.7 lists SPC rules employed in Hidost for PDF,
implemented using the Boost.Regex library. Every rule comprises two regular expres-
sions: one is used to search for a pattern to replace (left) and the other to determine the
replacement string (right).

A single consolidation rule can be applied to multiple groups of semantically equiv-
alent paths. For example, /Pages/Kids/Resources and /Pages/Kids/MediaBox
can be consolidated by the same rule, but the resulting paths /Pages/Resources and
/Pages/MediaBox still belong to separate groups and are, therefore, two different fea-
tures.

SPC rules in Table 4.7 are the result of an empirical investigation of structural paths
occurring in our dataset, with the aim of minimizing their total count after transformation.
Our analysis was focused on rules that capture generic branches of the PDF document
structure instead of dataset-specific artifacts, e.g.:

• anonymized items such as resources (1 and 13),

• entries of various name trees, such as global (5) and structure tree (6),

68

4.6 Hidost System Design

• dictionaries for mapping custom names into other objects (9),

• color space items (17 and 18),

• or names of embedded files (19).

Other rules are used to flatten hierarchies (2, 3, 7, 8 and 10) and convert linked lists to
shallow sets (4) in order to create a generic, unified view of their elements, all on the
same level.

Due to the relatively shallow SWF logical file structure and no support for user-defined
path elements, only two SPC rules were compiled for this format, listed in Table 4.8, both
for handling repetitive subpaths.

Table 4.8: SWF structural path consolidation rules.

Search regex Substitute regex

(DefineSprite/ControlTags/){2,} DefineSprite/ControlTags/

(Symbol/Name/){2,} Symbol/Name/

No attempt was made to compile a complete list of SPC rules – there are further
ones to discover and extend the list. Especially for PDF, there is ample opportunity for
further anonymization and flattening of hierarchies such as name trees and number trees
not covered in our rules. However, even this limited set of rules provides the following
crucial benefits compared to SL2013:

• Reduced attack surface. Without SPC, every distinct path with an occurrence
count above a threshold constitutes a feature. An attacker striving to evade detec-
tion may in that case perform a hiding attack by concealing a malicious payload at
a custom path different from any in the feature set. For example, a path to a font
with a long, randomly generated name is highly unlikely to have been encountered
before. A malicious payload inserted there would be invisible to the detector that
does not have this particular path in its feature set. In case of SWF, where user-
defined paths are disallowed, payloads may be concealed in very deep hierarchies,
not encountered in “normal” files. PDF is affected by this issue as well.

These hiding attacks are cheap to implement and the primary security vulnerability
of SL2013. This avenue for evasion is closed in Hidost with the use of consoli-
dated paths.

• Limited feature set drift in time. In real-world machine learning applications,
the problem at hand often changes in time. This is especially true in security appli-
cations, where defenders are forced to adapt to unpredictable changes in attacks.

69

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

This problem is known in machine learning as concept drift [108] and has recently
started to attract interest in security literature [40].

The continual change in data renders classifiers ever more outdated as time elapses
since their training. Therefore, the need arises for regular updates to the learning
model in the form of periodic classifier retraining. With data-dependent features
such as in this work, it is advisable to perform feature selection anew before ev-
ery retraining in order to better adapt to concept drift. Periodic feature selection
causes the obsolescence of existing features and addition of new ones between two
retraining periods. We refer to changes in the feature set caused by periodic fea-
ture selection as feature set drift. PDF is more susceptible to feature set drift than
SWF due to its flexible structure. As Section 4.7.3 shows, SPC is effectively used
to reduce feature set drift in Hidost.

• Feature space dimensionality reduction. Finally, SPC has a tremendous impact
on the total number of features. Feature space dimensionality directly affects the
running time and memory requirements of learning algorithms. In our PDF ex-
periments with periodic retraining, the average feature set size was reduced by an
impressive 88 %, from 10,412.5 to 1,237.4 features per training.

However, there are limits in the effectiveness of SPC against manually crafted
paths. Because it has no notion of a semantically valid path, SPC cannot handle
unforeseen cases, e.g., arbitrary names in the Catalog dictionary. To tackle this
final “blind spot” in the coverage of the PDF logical structure, a whitelisting ap-
proach would be required with a complete and up-to-date representation – a model
of the entire structure – which is out of scope of this work.

The reduced attack surface and limited feature set drift represent an important contri-
bution to the operational security of Hidost as a machine-learning-based detector. Mas-
sively reduced feature count enables its application on even larger datasets. Together, the
described improvements bring Hidost a big step towards applicability in a real-world,
operational environment as an accurate, reliable and secure malicious file detector.

4.6.3 Feature Selection
Despite the reduction of syntactic polymorphism via structural path consolidation, there
may still exist paths that occur very infrequently in the observed data. Using such paths
to build discriminative models increases the dimensionality of the input space without
improving classification accuracy. Therefore, feature selection has to be carried out to
limit the impact of rare features. Before presenting the specific feature selection tech-
niques, we discuss the reasons why rare features occur in the two formats studied in
detail in the paper.

The SWF file format specification [95] strictly defines the names of all tags and all
their fields, prohibiting customization. Therefore, Hidost’s feature set for SWF theo-

70

4.6 Hidost System Design

retically comprises every structural path defined by the SWF specification. However,
in practice, no effort has been made to enumerate all paths in the SWF logical struc-
ture. Instead, the feature set comprises all paths observed in the training dataset, a total
of 3,177.

In contrast, the PDF file format specification [67] allows the use of user-defined names
in any PDF dictionary, essentially enabling an unlimited number of different paths. Our
data indicates that this PDF feature is widely used in practice as we have observed over 9
million distinct PDF structural paths. However, 2/3 of these paths do not occur in more
than one file. These and other paths that occur in a small percentage of the dataset
are considered anomalous. Therefore, SL2013 solved this problem by selecting paths
which occur in more than a fixed number of training files, i.e., 1,000, for its feature set.
This threshold controls the trade-off between detection accuracy (more paths) and model
simplicity (less paths) and may be freely adjusted.

After SPC and before every training in our periodic retraining experimental proto-
col, we applied the same occurrence threshold, i.e., 1,000 files, which corresponds to
around 1 % of the training set size.

4.6.4 Vectorization
Structural multimaps are a suitable representation of PDF and SWF logical file structure
but they cannot be directly used by machine learning algorithms. They first need to be
transformed into feature vectors, i.e., points in the feature space RN , in a process called
vectorization.

During vectorization, structural multimaps are first replaced by structural maps – or-
dinary map data structures that map a structural path to a corresponding single numeric
value. To this end, every set of values corresponding to one structural path in the mul-
timap is reduced to its median. We selected median as a more robust statistic than mean
(here we use the term robust in the statistical sense, denoting that median provides a bet-
ter characterization of the set of values in the presence of outliers, and not that it provides
any robustness against adversarial evasion). The only exception to this rule is that sets
of values in SWF structural multimaps consisting primarily of booleans are reduced to
their means, not medians. Mean preserves more information about booleans than me-
dian, which can only be 0, 1/2 or 1, and there is no possibility of outliers. This exception
is not implemented for PDF as its logical structure has relatively few boolean values.

Structural maps are transformed into feature vectors f ∈ RN by reserving a separate
dimension for every structural path and using values from structural maps as values of
corresponding dimensions. The mapping of individual structural paths to dimensions
of feature vectors is defined before feature extraction, during feature selection, and is
applied uniformly to all structural maps prior to both training and classification. Con-
sequently, a specific structural path corresponds to the same dimension in every feature
vector, enabling the learning algorithms to make sense of feature vectors.

The ordered collection of all features used by a learning algorithm is its feature set.

71

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

Figs. 4.15 and 4.16 illustrate feature vectors extracted from a PDF and a SWF structural
multimap, respectively. They show a simple case when the feature set is identical to the
set of keys in the structural multimap and every value of the feature vector is assigned. In
practice, however, files usually do not contain all structural paths present in the feature
set and the corresponding values in the feature vectors are set to zero. In summary, a
feature vector corresponding to a structural multimap m is a point f = f1, f2, . . . , fN in
feature space RN with specific values defined as

fi =

{
median(m[pi]), pi ∈ m
0, otherwise

∀i ∈ 1,N (4.1)

Here, pi denotes the ith path in the feature set and m[pi] denotes the value in a multimap
m associated with that path.

4.6.5 Learning and Classification

The stages presented so far transform samples, i.e., files, into feature vectors suitable
as input for machine learning algorithms. The choice of a concrete machine learning
classifier depends on a multitude of parameters, e.g., dataset size, feature space dimen-
sionality, available computational resources, robustness against adversarial attacks, etc.,
and classifiers are tailored for different uses. The published implementation of Hidost
therefore does not comprise learning and classification subsystems. Instead, its output
can be used with any classifier. For experiments presented in this paper, the Random For-
est implementation of the open-source scikit-learn Python machine learning library [68],
version 0.15.0b2, was utilized. This part of Hidost was published separately, as part of
experimental reproduction code, as detailed in the following section.

Random Forest [10] is an ensemble classifier. It is trained by growing a forest of
decision trees using the CART methodology. Each of the tRF trees is grown on its own
fixed-size random subset of training data drawn with replacement. At every branching of
a tree during training, the feature providing the optimal split is selected from a random
subset comprising fRF features not previously used for this tree. During classification,
the decision of every tree is counted as one vote and the overall outcome is the class
with the majority of votes. Random Forests are known for their excellent generalization
ability and robustness against data noise. For the experimental evaluation, forest size was
set to 200 trees and all other parameters to their scikit-learn defaults.

4.7 Hidost Experimental Evaluation

An extensive experimental evaluation was performed as part of this work to assess the de-
tection performance of Hidost. The entire source code and datasets needed to reproduce

72

4.7 Hidost Experimental Evaluation

all experiments and plots as part of the evaluation of Hidost are available online12.

4.7.1 Experimental Datasets
Experiments were run on two datasets, one for each file format. Both were collected from
VirusTotal. VirusTotal enables us to compare Hidost’s detection performance to that
of deployed antivirus engines. As in the experimental evaluation of SL2013, we consider
files with at least 5 detections as malicious and those with 0 detections as benign. The
remaining files, labeled by 1 to 4 antivirus engines as malicious, are discarded from the
experiments because of the high uncertainty of their true class label.

For our PDF dataset we directly take datasets D5 and D6 from the evaluation of
SL2013, described in Section 4.5.1. As a reminder, they comprise 439,563 (446 GB)
files, 407,037 (443 GB) benign and 32,567 (2.7 GB) malicious, collected during 14 weeks,
between July 16 and October 21, 2012. Using the same dataset enables a direct compar-
ison with SL2013.

The SWF dataset was collected between August 1, 2013 and March 8, 2014 and
comprises 40,816 (14.2 GB) files, 38,326 (14.1 GB) benign and 2,490 (190 MB) mali-
cious. The VirusTotal SWF data had a benign-to-malicious ratio of around 52:1 during
the collection period, therefore a random subsampling of benign data was performed to
approximately match the ratio with that of PDF data.

4.7.2 Experimental Protocol
Our experimental protocol has the following two main goals: a) to evaluate the perfor-
mance of Hidost under realistic conditions; and b) to enable the comparison of Hidost’s
detection performance on PDF to its predecessor, SL2013. To this end, we adopt the
experimental protocol of the 10Weeks experiment from Section 4.5.2.

We partitioned our PDF dataset in the same manner as in the original experiment for
SL2013. The SWF dataset was partitioned analogously. The time period in which the
files were collected was divided into 14 smaller, consecutive time periods. For PDF, ev-
ery period was exactly one week long, for SWF 15 days, the last one 25 days. Every time
period was assigned a bucket, and every file was put into one of the buckets, according
to the time period when it was first seen. Then the sliding window approach was applied,
joining 4 consecutive buckets into a training dataset and using the following bucket as
the corresponding evaluation dataset, resulting in 10 data partitions for periodic retrain-
ing. Before every retraining, i.e., every week for PDF, every 15 days for SWF, all 4 steps
of feature extraction (i.e., structure extraction, SPC, feature selection and vectorization)
were applied to the training dataset.

Our datasets are illustrated in Fig. 4.17. Every retraining event is labeled by the date of
training, i.e., the day that marks the beginning of data collection for the evaluation period.

12Hidost-reproduction – https://github.com/srndic/hidost-reproduction.

73

https://github.com/srndic/hidost-reproduction

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

Aug 13

Aug 20

Aug 27
Sep 03

Sep 10
Sep 17

Sep 24
Oct 01

Oct 08
Oct 15

Date (2012)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
a

m
p

le
s

×105

(a) PDF dataset.

Sep 30
Oct 15

Oct 30

Nov 14

Nov 29

Dec 14

Dec 29
Jan 13

Jan 28
Feb 12

Date (2013 - 2014)

0.0

0.5

1.0

1.5

2.0

2.5

S
a

m
p

le
s

×104

Benign training

Malicious training

Benign evaluation

Malicious evaluation

(b) SWF-Normal dataset. Malicious training samples older than 4 time periods are discarded.

Sep 30
Oct 15

Oct 30

Nov 14

Nov 29

Dec 14

Dec 29
Jan 13

Jan 28
Feb 12

Date (2013 - 2014)

0.0

0.5

1.0

1.5

2.0

2.5

S
a

m
p

le
s

×104

(c) SWF-KeepMal dataset. Malicious training samples are kept indefinitely.

Figure 4.17: Experimental datasets.

74

4.7 Hidost Experimental Evaluation

While the benign-malicious class ratio for PDF is approximately equal throughout all
time periods, the distribution of malicious and benign SWF files in time is highly skewed.
Around 70 % of malicious SWF files in the SWF-Normal dataset were collected before
the first evaluation period, while less than 10 % of benign SWF files occur before the fifth
evaluation period. The result is a high class imbalance in most training and evaluation
datasets.

To quantify the effect of high class imbalance on detection performance, we generated
another data partitioning just for SWF data. Labeled SWF-KeepMal and illustrated in
Fig. 4.17c, it has the property that malicious training samples older than 4 periods are not
discarded. Instead, they are used for training in all subsequent periods. By discarding
old benign samples and keeping malicious ones throughout the experiment, the class
imbalance in training datasets is significantly reduced.

4.7.3 Experimental Results

Experimental results for different methods operating on PDF and SWF data are illustrated
in Figs. 4.18 and 4.19, respectively. The methods are compared using 4 performance in-
dicators typical for classification tasks: true positive rate(TPR), false positive rate (FPR),
accuracy and area under receiver operating characteristic (AUROC). AUROC, similar to
the area under the precision-recall curve, is a good detection performance indicator for
both balanced and unbalanced datasets. Due to the stochastic nature of the algorithm,
mean values of 10 independent runs are plotted for all Random Forest experiments. The
variance of these experiments was omitted from the plots due to its very low value.
SL2013 employs a Support Vector Machine (SVM) classifier, a deterministic algorithm,
therefore its results are obtained from a single experimental run.

Fig. 4.18 shows results for different variants of Hidost and SL2013 on PDF data.
For better comparison, we have evaluated 2 variants of SL2013: one using its original
classifier, SVM, the other with a Random Forest instead. Hidost is shown with both
binary and numerical features. These two variants of Hidost are also shown in Fig. 4.19
on SWF datasets SWF-Normal and SWF-KeepMal.

Classification Performance

Fig. 4.18 shows a direct comparison of Hidost to SL2013 on the PDF dataset. The
Random Forest variant of SL2013 was introduced to enable the comparison of the two
methods’ feature sets and classifiers independently. It can be seen that SL2013 results,
especially the true positive rate on October 1, can be promptly improved by using a
Random Forest instead of an SVM on the same binary unconsolidated features. On the
other hand, the expected classification performance indicated by AUROC is effectively
equal for all methods, including the SVM. The maximum difference between any two
methods in AUROC in a given time period is a mere 0.006 and all methods have an

75

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

0.992

0.994

0.996

0.998

1.000

A
re

a
u

n
d

er
R

O
C

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

u
ra

cy

SL2013 reproduction

SL2013 + Random Forest

Hidost binary

Hidost numerical

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

T
ru

e
p

o
si

ti
ve

ra
te

Aug 13

Aug 20

Aug 27
Sep 03

Sep 10
Sep 17

Sep 24
Oct 01

Oct 08
Oct 15

Date (2012)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

F
a

ls
e

p
o

si
ti

ve
ra

te

Figure 4.18: Results on PDF data. Performance of SL2013 with an SVM and Random
Forest classifier compared to Hidost with binary and numerical features.

76

4.7 Hidost Experimental Evaluation

0.75

0.80

0.85

0.90

0.95

1.00
A

re
a

u
n

d
er

R
O

C

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

A
cc

u
ra

cy

SWF-Normal binary

SWF-Normal numerical

SWF-KeepMal binary

SWF-KeepMal numerical

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
ru

e
p

o
si

ti
ve

ra
te

Sep 30
Oct 15

Oct 30

Nov 14

Nov 29

Dec 14

Dec 29
Jan 13

Jan 28
Feb 12

Date (2013 - 2014)

0.00

0.01

0.02

0.03

0.04

0.05

F
a

ls
e

p
o

si
ti

ve
ra

te

Figure 4.19: Results on SWF data. Performance of Hidost with both binary and numer-
ical features on two SWF datasets, SWF-Normal and SWF-KeepMal.

77

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

AUROC above 0.99 in every period. It can thus be concluded that Hidost achieves the
excellent classification performance of its predecessor, SL2013, on PDF data.

Hidost’s performance on SWF data is not on par with its success on PDF. Although
the mean detection accuracy lies above 95 %, as seen in Fig. 4.19, accuracy is not a
meaningful performance indicator due to the large class imbalance of 15:1 in favor of
benign samples in the SWF dataset. The class imbalance is even greater in the datasets
of individual time periods, shown in Figs. 4.17b and 4.17c, especially in the case of
SWF-Normal.

The effect of class imbalance is clearly reflected in the results. Applied on SWF-
KeepMal, where malicious training samples are accumulated over time, Hidost has an
overall much higher AUROC than on SWF-Normal, where malware is discarded after 4
periods. The true positive rate on SWF-KeepMal in the early stages, when the classes are
more balanced, is 5 % to 10 % higher than on SWF-Normal. Starting from December 29,
after a sharp rise in class imbalance, the advantage jumps to around 20 % – a tremendous
improvement. Access to more malicious training data also increased the false positive
rate, but the increase for the variant with numerical features remained within bounds,
except for the last time period. These findings clearly show Hidost’s potential for further
improvement of detection performance, given a greater availability of malicious SWF
training data. However, as the SWF dataset only comprises 2,490 malicious samples, it
is impossible to accurately quantify the potential for improvement.

Comparison to Antivirus Engines

To get an estimate of Hidost’s detection performance under day-to-day, realistic opera-
tional conditions, it is necessary to put it into a wider perspective. A direct comparison
with antivirus engines provides such a reality check. We compare the detectors in terms
of their true positive count, i.e., the number of malicious samples they have correctly
labeled. By definition of our ground truth, samples labeled malicious by at most 4 an-
tivirus engines are filtered out. Therefore, the antivirus engines have no false positives
and cannot be compared in that respect.

Figs. 4.20 and 4.21 show the results achieved by Hidost (average of 10 experimental
runs) and antivirus engines deployed by VirusTotal on both PDF and SWF files. An-
tivirus detection results were collected after the experiments were over, and not immedi-
ately after each new file was submitted to VirusTotal. This provided antivirus engines
with the opportunity to update their detection mechanisms in the meantime and correctly
detect any file resubmitted between its initial submission and the time when the detection
results were collected.

Nevertheless, Hidost ranks among the best overall. Its PDF detection rate is unsur-
passed, and even the SWF true positive count, comparatively much worse than PDF
“on paper”, ranks among the best when compared to established products under realistic
conditions.

78

4.7 Hidost Experimental Evaluation

0 5000 10000 15000 20000 25000

True positive count

Kingsoft
SUPERAntiSpyware

NANO-Antivirus
ByteHero

TheHacker
Antiy-AVL

Agnitum
eScan

VBA32
Panda

ViRobot
Rising

VirusBuster
CAT-QuickHeal

Jiangmin
TotalDefense

AhnLab-V3
eSafe

ClamAV
K7AntiVirus

MicroWorld-eScan
PCTools

Symantec
Emsisoft
Norman

TrendMicro
VIPRE

Fortinet
F-Prot

McAfee-GW-Edition
TrendMicro-HouseCall

Commtouch
F-Secure

Avast
AVG

McAfee
Ikarus

Microsoft
AntiVir

nProtect
DrWeb

Comodo
BitDefender

Kaspersky
ESET-NOD32

GData
Sophos
Hidost

Total

Figure 4.20: Comparison of Hidost to antivirus engines on PDF data.

79

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

0 100 200 300 400 500 600 700

True positive count

Kingsoft
CMC

Qihoo-360
Panda

K7AntiVirus
K7GW

ClamAV
ViRobot
PCTools

Antiy-AVL
Bkav

TotalDefense
Rising
F-Prot

CAT-QuickHeal
AhnLab-V3

ESET-NOD32
McAfee

Jiangmin
Comodo

Commtouch
Agnitum

DrWeb
VBA32

Ad-Aware
McAfee-GW-Edition

TrendMicro-HouseCall
VIPRE
Ikarus

Symantec
TrendMicro

NANO-Antivirus
Norman
Fortinet

Emsisoft
nProtect
F-Secure

BitDefender
AVG

MicroWorld-eScan
Microsoft

GData
Kaspersky

Hidost
Sophos
AntiVir

Avast
Total

Figure 4.21: Comparison of Hidost to antivirus engines on SWF (right) data.

80

4.8 Discussion

Effects of Structural Path Consolidation

SPC is one of the main novel features in Hidost with respect to SL2013, therefore an
evaluation of its effects on the performance of the system is only fitting. Fig. 4.18 shows
that SPC has no effect on detection performance, neither positive nor negative. Results
of SL2013 (no SPC) are virtually identical on PDF to those of Hidost (with SPC) when
the same Random Forest classifier is utilized. Effects on SWF are negligible because
its rigid logical structure disallows user-defined paths, resulting in minimal necessity for
SPC.

However, SPC has a strong positive effect on feature set drift. Fig. 4.22 illustrates fea-
ture set drift in our experiment with periodic retraining and periodic feature selection on
PDF data. It can be observed that in the first half of our 10-week experiment the feature
set had been expanded with up to 9 % of new features per week, while in the second half
many features were found obsolete and were removed from the feature set. Feature re-
moval is especially high in week 8, when almost a fifth of all features from the previous
week were deleted when SPC was not used. On the other hand, when utilizing SPC, the
overlap between feature sets of consecutive weeks was well above 90 % throughout the
entire experiment. Overall, the introduction of SPC in Hidost reduced feature set drift
by around 50 %.

Effects of Merging Content with Structure

Another novelty introduced in Hidost is the use of numerical instead of binary features,
reflecting the transition from learning on pure structure to learning on structure coupled
with content. Here we evaluate the impact of content on detection performance.

On PDF, the difference is insignificant, as shown in Fig. 4.18. On the other hand, the
effect on SWF is largely positive. As shown in Fig. 4.19, numerical features consistently
outperformed binary ones on both SWF datasets. They had the highest impact on false
positive rate, reducing it by as much as 50 %. TPR and AUROC also showed a significant
overall improvement.

The cause of the discrepancy between results for the two file formats may lie in the
nature of attacks against them. Malicious PDF files often use features uncommon in
benign files, i.e., their structure is different, while malicious SWF files mostly base their
attacks on different values, i.e., content, at specific paths, although these paths are also
common among benign files. While binary features suffice to describe the bare logical
structure, the added expressive power of numerical features enables the characterization
and, consequently, improved detection of both structure- and content-based attacks.

4.8 Discussion
In our description of SL2013 and Hidost we strive to depict their modus operandi con-
cisely, yet with enough detail to enable a thorough understanding. Having equipped the

81

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

0.00

0.02

0.04

0.06

0.08

0.10

N
ew

fe
a

tu
re

s

Without SPC

With SPC

0.00

0.05

0.10

0.15

0.20

O
b

so
le

te
fe

a
tu

re
s

2 3 4 5 6 7 8 9 10

Retraining period

0.80

0.85

0.90

0.95

1.00

U
n

ch
a

n
g

ed
fe

a
tu

re
s

Figure 4.22: Feature set drift in the PDF dataset. Illustrates change in the feature set
between consecutive feature selection events in our experiment, performed before every
training, i.e., once per week. For weeks 2 to 10, the percentage of features that have been
added to (new), removed from (obsolete) or remained (unchanged) in the feature set is
plotted, relative to the previous week.

82

4.8 Discussion

reader with particulars of both systems, in this section we elaborate on their most im-
portant characteristics and adversarial considerations. Finally, we present subsequently
published related work.

4.8.1 Extensibility to Other File Formats
The main novelty introduced by Hidost is its applicability to multiple file formats, im-
plemented and experimentally confirmed on PDF and SWF. Its application to other hier-
archically structured file formats, e.g., XML, HTML, ODF, OOXML and SVG, requires
the instrumentation of an existing parser or the development of a new one for each file
format. Given the ability to parse a specific file format, incorporating it into Hidost
amounts to developing a structure extraction module. In the following we discuss file
structure and content extraction for various hierarchically structured file formats.

The XML and the related HTML and SVG formats have a very clear and well-defined
hierarchical structure that represents one of their cornerstones. For example, Fig. 4.2 de-
picts an HTML file with the path /html/body/p. Furthermore, there exists a number of
mature open-source parsers for XML files. We estimate it to be very simple to implement
the extraction of both logical document structure and content from XML files.

Although based largely on XML, ODF and OOXML generally combine multiple XML
files into a ZIP archive and therefore require some additional processing. Both formats
prescribe a set of files and directories in which content, layout and metadata are sepa-
rately organized. The formats differentiate between textual and graphical content; tex-
tual being stored alongside logical structure in XML files and graphical in separate files
within the directory hierarchy. We observe that the files and directories are themselves
organized hierarchically and that the remaining logical structure is described in XML
files. Fig. 4.23 shows a simplified file and directory layout in an ODF file.

.
|-- content.xml
|-- manifest.rdf
|-- META-INF
| \-- manifest.xml
|-- meta.xml
|-- mimetype
|-- settings.xml
|-- styles.xml
\-- Thumbnails

\-- thumbnail.png

Figure 4.23: File and directory layout of an example ODF file.

We consider the directory hierarchy to be the top level of the logical structure. In
it, the root directory of the ZIP archive represents the root node of the entire structural

83

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

<?xml version="1.0" encoding="UTF-8"?>
<office:document -meta

xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0"
xmlns:ooo="http://openoffice.org/2004/office"
xmlns:grddl="http://www.w3.org/2003/g/data-view#"
office:version="1.2">

<office:meta>
<meta:initial -creator>John Smith</meta:initial -creator>
<dc:date>2013-04-11T13:51:33.009039356</dc:date>
<dc:creator>John Smith</dc:creator>
<meta:editing -duration>P0D</meta:editing -duration>
<meta:editing -cycles>1</meta:editing -cycles>
<meta:document -statistic

meta:table -count="0"
meta:image -count="0"
meta:object -count="0"
meta:page -count="1"
meta:paragraph -count="1"
meta:word -count="2"
meta:character -count="12"
meta:non -whitespace -character -count="11" />

</office:meta>
</office:document -meta>

Figure 4.24: Example meta.xml file.

hierarchy. XML files can be viewed as sub-trees rooted at the corresponding nodes in
the file system hierarchy. For example, ODF prescribes that the file meta.xml, depicted
in Fig. 4.24, resides within the root directory and has a set of XML tags describing
document metadata. Given this structure, the path to the dc:creator tag would be:

/meta.xml/office:document-meta/office:meta/dc:creator

By treating the directory hierarchy as the top level of the logical structure and XML
files as sub-trees belonging to it, we ensure the complete and unambiguous extraction of
logical structure. Compared to PDF and SWF, we prepend the file system path of a given
XML file, relative to the root of the ZIP archive, to structural paths extracted from the
file itself.

Multiple parsers for ODF and OOXML exist, of which some are open-source. We
believe that it would be possible, with moderate effort, to develop structure extraction
modules for both formats. Furthermore, in many cases completely benign OOXML files
are used as containers for embedding malicious SWF files and Hidost can already handle
them.

Structural path consolidation is the second and final format-specific step in Hidost and

84

4.8 Discussion

requires some tuning. We expect that different formats have different requirements for
SPC and acknowledge the necessity for deeper understanding of file formats for SPC rule
development. The variety of SPC rules for PDF versus SWF corroborates this hypothesis.

Finally, Hidost’s applicability to a given file format does not imply its effectiveness on
it. For example, despite our firm belief that extending Hidost to XML is straightforward,
its effectiveness, measured in its ability to detect malware disguised in XML files, can
only be evaluated experimentally. However, its use of both structure and content for
modeling makes it more likely to be successful.

4.8.2 Adversarial Considerations

Given the increasing interest for the application of learning methods to security problems,
some previous work has addressed the methodology for security analysis of learning al-
gorithms [2, 3, 44]. In this dissertation, we devote Chapter 5 to the analysis of robustness
to adversarial evasion of PDFrate, another PDF malware detection system. In the publi-
cation [91] introducing SL2013, we performed a quantitative analysis of the robustness
of our system against deliberate manipulation by malicious third parties. We defined a
probable attack scenario against a deployed SL2013 system in which the attacker was
motivated to evade detection. In our scenario, we assumed that the attacker had com-
plete knowledge of the system and its classification model. As a second assumption, we
postulated that the attacker would start from a malicious PDF that was correctly detected
by the system and attempt to add benign content to it. This would affect the file’s logical
structure and, as a result, influence our classifier’s decision, confusing it into labeling the
changed file as benign.

Our analysis found decision trees to be trivially evadable. For the linear SVM we were
able to implement and evaluate an algorithm that ranked the weights of the features based
on their coefficients in the support vectors of the SVM model. Having a list of features
sorted by their weights makes it trivial to affect the classifier’s decision by modifying
those that correspond to the most negative weights (in our implementation the SVM
predicted negative values for benign samples). This approach failed for the SVM with
the RBF kernel because, due to the utilization of the non-linear radial basis function,
the task of modifying a feature vector to yield a negative result becomes a non-convex
optimization problem.

As a more potent attack strategy against the RBF SVM, we then implemented a
mimicry attack, in which the most benign of a large set of benign files in the attacker’s
dataset would be selected as the mimicry target. The attack files were generated by in-
troducing all features from this highly benign mimicry target into a large set of diverse
malicious files. We evaluated this algorithm with 5,000 benign and 5,000 malicious files
and our results indicated that at most 30 attack files would have fooled the classifier. As
a result, we concluded that the RBF SVM was surprisingly resistant to mimicry attacks
using structural features.

85

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

However, when attempting to reproduce this mimicry attack at a later point, we dis-
covered a flaw in its source code. Namely, instead of mimicking the most benign sample
in the benign set, the flaw caused the most benign sample in the malicious set to be used
as the mimicry target. Naturally, the generated attack dataset was successfully detected
as such by the RBF SVM. Upon discovering this flaw, we removed it and performed a
corrected experiment. This time the attack was highly successful and the accuracy fell
to 50 %. We therefore correct the results of the mimicry attack experiment published
in [91] and see the success of the attack as evidence against the robustness of SL2013
in an adversarial environment. We present an independent adversarial analysis of our
system in Section 4.8.3.

As a final point, we would like to emphasize the importance of releasing source code
and datasets that enable the reproducibility of published research, especially in the area
of information security where data confidentiality and maliciousness often prevent full
disclosure. It is our view that the act of releasing itself motivates the researcher to better
scrutinize the released materials. Furthermore, had the flawed source code been released,
we strongly believe that the flaw would have been discovered by our peers shortly after-
wards. It is perhaps no coincidence that we found no such flaws in other publications
that form the basis of this dissertation as their source code and, in some cases, datasets
were made available from the start.

4.8.3 Later Work
Of the two publications presented in this chapter, the later one [93] was published very
recently and has, therefore, not been cited so far. The initial publication [91] presenting
SL2013 has, to the contrary, been referenced in numerous later work.

Kantchelian et al. published a study focused on adversarial drift [40] in which they
emphasize the importance of experimental evaluation of machine-learning-based sys-
tems that takes into account the dimension of time, i.e., temporal consistency of the data.
They specify as example our experiment 10Weeks with a sliding-window design. Their
conclusions and recommendations are in accordance with the intuition behind the design
of our experiment, subsequently repeated for the evaluation of Hidost. Recently, Miller
et al. proposed a novel experiment design that goes one step beyond [58]. It requires
temporal consistency not just from the samples used for training and evaluation, but also
from the labels. The labels assigned to samples change in time, e.g., when re-evaluating
them with updated antivirus labels. They find that detection performance drops signif-
icantly if training is performed on temporally consistent labels, collected at the time of
training, compared to labels obtained after the entire experiment. The two designs reflect
two different assumptions. We assume that relatively reliable ground truth is available,
while Miller et al. make the opposite assumption and use the next best source, an ensem-
ble of antivirus engines, as oracle.

In [57], Maiorca et al. demonstrate that a number of static PDF malware detection
methods and, by extension, SL2013, are vulnerable to a simple attack where a malicious

86

4.8 Discussion

PDF or portable executable (PE) file or a malicious JavaScript snippet is injected into a
benign PDF file, called a reverse mimicry attack. Our method was not evaluated against
this attack, nevertheless, we propose potential enhancements to effectively mitigate it:
a) embedded PE files would have to be extracted and scanned by a specialized PE scan-
ner; b) embedded PDF files would have to be recursively processed; and c) embedded
JavaScript snippets would introduce a small but noticeable change in the PDF structure;
given that JavaScript-related structural paths dominate the list of most common paths
in malicious files, this might suffice to correctly detect this kind of attack. Without a
dedicated evaluation, the effectiveness of the attack remains unknown.

Very recently, Xu et al. presented a much more elaborate evasion attack against PDF
malware detectors specialized on structural features. They use Genetic Programming, an
evolutionary optimization method, to stitch together evasive samples from a set of 500
correctly detected malicious seeds and a few benign files by inserting, deleting or replac-
ing objects between PDF files. The attack is evaluated against SL2013 and PDFrate,
although the authors erroneously refer to SL2013 as Hidost in the manuscript. A suc-
cessful run produced samples that evade SL2013 for each of the 500 seed PDF files
within 2 days on a single computer, producing on average one evasive file in 5 min.
We find it a major strength of the attack that it produces actual evasive malware sam-
ples instead of operating in the feature space. Furthermore, we find the evasion results
plausible, although likely optimistic. The reason for this is the bias of the chosen experi-
mental dataset. The authors take the Contagio PDF dataset with around 10,000 malicious
files and filter out files that do not generate network traffic in the Cuckoo sandbox. The
remaining 1,384 are scanned by SL2013 and only 502 were correctly detected. The se-
lected 500 files target two vulnerabilities13 affecting Acrobat Reader 8.1.1. We see two
potential causes for overly optimistic results:

• The files in the dataset target only two CVEs and a single version of Acrobat
Reader. We find that the dataset has too little diversity to make a confident conclu-
sion about the results.

• Our system generalized very poorly to the utilized malware dataset, detecting
only 502 of 1,384 candidate samples. We believe that this is due to an experimen-
tal flaw in the analysis, as the authors seem to have utilized features transformed
by SPC, while the model was trained on untransformed features. Effectively, this
led to a sparsification of the trained model, as only a subset of the original 6,087-
dimensional feature set has “survived” SPC unchanged.

It remains an intriguing open question how effective the corrected attack would be against
SL2013, but also Hidost with its structural path consolidation and the choice of the
Random Forest classifier.

The state of the art in the related category of dynamic detection was also advanced
in later work. Tang et al. published a dynamic approach using anomaly detection on

13CVE-2007-5659 and CVE-2009-0927.

87

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

low-level hardware features [100]. A novel combined static and dynamic method was
presented by Liu et al. [51] using document instrumentation and behavior monitoring.
Both publications present great detection performance and an evaluation of robustness
against adversarial evasion.

In contrast to fully automated methods presented so far, Nissim et. al. propose an
active learning approach, where a human expert manually labels interesting samples for
a machine learning algorithm, with the goal of keeping the detector up-to-date with the
newest threats [62]. They outline a design with a combination of signature detection
and multiple methods described so far, including the use of structural features inspired
by those defined in SL2013, but leave its implementation and evaluation for future work.
Recently, Nissim et al. present an implementation of the proposed active learning system
with a reimplementation of SL2013 used in one of the steps for pre-labeling unknown
PDF files [63].

In the domain of SWF malware, despite its wide spread and growing number of ex-
ploited vulnerabilities, there has been only one related later work published very recently
by Wressnegger et al. [113], presenting a combined static and dynamic SWF malware de-
tector Gordon. Similar to Hidost, its static component also performs SWF parsing and
hierarchical structure extraction with 3 main differences: a) Gordon works with SWF
tags while Hidost goes one step deeper and considers tag fields as basic structural ele-
ments; b) in addition to hierarchical structure, Gordon also preserves information about
the order of SWF tags by using n-grams; c) Hidost preserves values of tag fields. In a
sense, Gordon puts more focus on the order of SWF tags as opposed to the detailed struc-
tural and value perspective taken by Hidost. Although evaluated on a different dataset
and therefore not directly comparable, Gordon’s performance was measured on a dataset
from the same source, i.e., VirusTotal, and in an experiment with a very similar design.
With a true positive rate between 80 % and 99 % at a false negative rate of 1 %, its com-
bined static and dynamic approach achieves significantly better results than purely static
Hidost.

4.9 Conclusions
This chapter introduces a novel set of features that enable the modeling of file formats
which have a hierarchical logical structure. We presented 2 machine-learning-based sys-
tems that successfully apply this structural characterization of files in the domain of static
detection of malware in non-executable file formats.

The first system, SL2013, utilizes file structure to discriminate between malicious and
benign PDF files. A 10-week simulated operational deployment with weekly retraining
on an unprecedentedly large real-world dataset has demonstrated its strong performance,
while at the same time uncovering a difficulty in handling sudden changes of attack
patterns in time. Its computational efficiency is on par with the fastest previously known
static detection method PJScan: an order of magnitude higher than hybrid static/dynamic

88

4.9 Conclusions

methods and almost two orders of magnitude higher than dynamic ones.
The second system Hidost, an extension of SL2013, is the first static machine-learning-

based malware detector designed to operate on multiple file types. The generalization is
accomplished by extending the purely structural file format model to include file content
as well. Evaluated in the same realistic experiment, Hidost outperformed all antivirus
engines deployed by the website VirusTotal and detected the highest number of ma-
licious PDF files. It also ranked among the best on SWF malware. Compared to its
predecessor, it is much less vulnerable to malware hiding in obscured parts of PDF files.
Hidost also became more robust against the continual adaptation of malware to updated
defense through periodic retraining. The dramatic reduction of feature set dimensionality
achieved using structural path consolidation enables its efficient application on very large
datasets. Finally, the open-source availability of the system and the experiment repro-
duction code, combined with the release of utilized datasets, enable full reproducibility
of achieved results.

89

Chapter 4 A General Approach for Malware Detection in Non-Executable Files

90

Chapter 5

A Case Study of Machine Learning
Classifier Evasion

Machine learning classifiers are increasingly used for detection of various forms of mali-
cious data including malware, email spam, malicious web pages and advertisements, etc.
Although most such systems are confined to academic research environments, some have
seen Internet-scale deployment. Criminals have an economic incentive to trick deployed
systems, e.g., to evade the spam filter and have their message delivered, boosting their
illicit goods sale. They do this by manipulating data, e.g., the content of spam messages.
Examples of such attacks have been previously studied under the assumption that an at-
tacker has full knowledge about the deployed classifier. In practice, such assumptions
rarely hold, especially for systems deployed online. Nevertheless, a significant amount
of information about such systems can be obtained indirectly.

In this chapter, based on our work [92] published at the IEEE Symposium on Security
and Privacy 2014, we experimentally investigate the effectiveness of classifier evasion
using a deployed system, PDFrate, as a test case. After the introduction in Section 5.1,
we develop a taxonomy for practical evasion strategies in Section 5.2. Our taxonomy is
based on different levels of knowledge available to attackers about the target system. We
describe the details about PDFrate in Section 5.3 and our attack methodology in Sec-
tion 5.4. Our experimental results, discussed in Section 5.5, reveal a substantial drop in
PDFrate’s classification scores and detection accuracy after it is exposed even to simple
attacks. We further study potential defense mechanisms against classifier evasion. Our
evaluation shows that the original defensive technique proposed for PDFrate is only ef-
fective if the executed attack exactly matches the anticipated one. Section 5.6 presents
a detailed interpretation of results of our attack experiments. In the discussion of the
findings of our study in Section 5.7, we analyze some potential techniques for increasing
robustness of learning-based systems against adversarial manipulation of data. Finally,
we conclude this chapter in Section 5.8.

91

Chapter 5 A Case Study of Machine Learning Classifier Evasion

5.1 Introduction

Data analysis methods such as machine learning are increasingly used in security appli-
cations. For tasks like malware analysis, faced with an explosion in data, deployment of
automated learning methods has become imperative. Data-driven analysis enables auto-
matic attribution of seemingly heterogeneous malware samples to a modest number of
genuine malware families [4, 102]. Recent work has also witnessed several innovative
applications of machine learning for detection of various kinds of security violations,
e.g., drive-by-downloads [22, 75], malicious web pages [14, 94], compromised accounts
and fake identities in social networks [27, 33], unwanted P2P traffic [74] and many oth-
ers.

Clearly, deployment of learning methods in any security-critical context requires that
they can withstand potential attacks. The security of machine learning methods has
been previously discussed from conceptual [3], methodical [8, 13, 41, 42] and practi-
cal [6, 31, 69] viewpoints. Despite the growing evidence for susceptibility of learning-
based approaches to adversarial data manipulation, this seems to be of little hindrance
for their acceptance as a versatile tool for data-intensive security tasks. Typically, the
security analysis of proposed learning-based techniques is carried out informally and is
occasionally supported by experimental evaluation.

Security assessment of learning-based approaches faces several challenges. The main
theoretical hurdle is the lack of formal definitions of security in the context of data anal-
ysis. In contrast to privacy, for which several formalisms have been proposed, e.g.,
privacy-preserving data mining [50] or differential privacy [26], no formal connection
to established security objectives is known for machine learning. From the practical
perspective, the success of attacks against learning algorithms crucially depends on the
amount of knowledge available to an attacker. Most successful attacks reported previ-
ously assume that the attacker has full knowledge of the learned model [6, 7, 30, 31, 52,
69]. It can, therefore, be argued that reducing the amount of knowledge leaked about
the model, as well as a proactive response to potential exploitation of such knowledge
should provide adequate protection against adversarial data manipulation.

Still, it remains largely unclear what an attacker may learn about a learning-based
method deployed “in the wild” and how this information can be exploited. To investigate
this problem, we present the results of a case study we performed on a real learning-
based system, PDFrate1, an online service for detection of PDF malware [85]. For any
submitted PDF file, PDFrate provides a probabilistic estimate of its maliciousness. Our
study addresses the case when an attacker attempts to evade detection by modifying the
submitted PDF file so that its malicious functionality remains intact but the probabilistic
score returned by PDFrate is decreased.

We proceed by presenting two classes of evasion strategies suitable for several attack
scenarios varying in the amount of knowledge available to the attacker. Since PDFrate

1PDFrate – https://csmutz.com/pdfrate/.

92

https://csmutz.com/pdfrate/

5.1 Introduction

is a research system, its method and technical details are relatively well documented in
the original research paper [85] and the accompanying technical report [86]. Based on
this information, it is possible to partially reconstruct the features used for creation and
evaluation of models, reproduce the training procedures and even independently obtain
some of the training data2. To systematically explore the attacker’s options, we define
an orthogonal set of evasion strategies reflecting various degrees of available knowledge.
The general idea of our evasion technique is based on insertion of dummy content into
PDF files which is ignored by PDF renderers but affects the computation of features used
in PDFrate. Once we can influence a subset of PDFrate’s features, we develop algo-
rithms for constructing attack instances. In our experiments we evaluate the effectiveness
of our strategies on a set of 100 malicious files randomly drawn from a dataset known to
PDFrate.

Our results reveal that even with the smallest amount of available information, i.e., an
ability to freely modify 1/6 and increment another 1/6 of the features, our attacks reduce
the classification scores of PDFrate from almost 100% to the median of about 33%.
Additional information about the classifier, such as the knowledge of its type (trivial) and
possession of the training dataset (somewhat more difficult to obtain), further decreases
the median score to about 28%.

We have analyzed the defense strategy suggested and evaluated by the authors of PDF-
rate, although we do not know if it is deployed in the online system. The attack scenario
of [85] assumes that the attacker instruments a small subset of informative features. It
was shown that this attack can be effectively thwarted by including a small portion of
the anticipated attack data into the training set. We reconstructed this attack and verified
the effectiveness of the original defense strategy. However, such proactive defense turns
out to be effective only against the precise “strain” of the attack. Whenever the executed
attack does not match the anticipated one, the effect of the proactive defense essentially
vanishes, and the detection accuracy falls below 10%.

Our contributions can be summarized as follows:

• We present a general model for practical assessment of security of learning-based
detection techniques. This model enables systematic exploration of various kinds
of information leaks exploitable by an attacker and is applicable to systems beyond
PDFrate that have a modifiable subset of features.

• We present two evasion attacks that can be staged against a deployed classification
model in various scenarios.

• We demonstrate the first automated practical attack against a learning-based clas-
sifier deployed “in the wild” performed without knowledge of the learned model
and entirely in problem space.

2One of the training datasets used by PDFrate is publicly available for the research community.

93

Chapter 5 A Case Study of Machine Learning Classifier Evasion

• We provide an open-source software framework Mimicus for all experiments car-
ried out in our study for independent verification and extension of our results.

5.2 Evasion Attacks against Learning Systems
Any learning-based system deployed in a real-world environment and for which there
exists a critical amount of economic, political or military interest is certain to attract
the attention of individuals or groups striving to gain advantage by manipulating the
system with the intention to influence its decisions. There are numerous examples of
such activity. Besides the computer security applications mentioned in the introduction,
potential scenarios include adversarial advertisements [83], spam detection [60, 115],
recognition of writing style [12], plagiarism detection [64] and many others.

In this work we focus on classifiers, a particular kind of learning systems that classify
new data into two or more predefined classes. Classifiers usually make predictions by
computing some numeric or probabilistic score and comparing it with a fixed threshold.
The goal of an adversary aiming to manipulate a classifier is to confuse it into providing
a false classification. For binary classification problems, false classifications are called
false positives and false negatives. From an adversarial viewpoint, the more information
about a learning-based system is available, the higher the chances become that the system
can be successfully gamed.

In the taxonomy of different types of attacks against machine learning systems intro-
duced by Barreno et al. [2], the attacks are divided into 2 groups based on their influ-
ence: (1) causative, influencing the training data to alter the classifier before training
(also known as data poisoning), and (2) exploratory, influencing the classifier’s decision
after it has been trained. This work is concerned with the latter.

The essential components comprising every learning-based classifier system are:

• the set of features used by the classifier,
• the training dataset used for classifier training,
• the classification algorithm with its parameters.

It is, therefore, in the interest of the adversary to maximize their knowledge about the tar-
get classifier’s components. For example, an adversary A who knows the feature set and
training dataset of a certain classifier has a higher chance of evading it than an adversary
B who only knows the feature set. In this sense, the two adversaries A and B are operating
under different evasion scenarios. An evasion scenario is a problem setting for evasion
from an adversary’s point of view. It describes the classifier system information available
to the adversary in a structured way: it outlines whether the adversary has a low or high
amount of knowledge about the feature set, training dataset and classification algorithm.

To systematically explore evasion attacks against classifier systems, we propose the
taxonomy of evasion scenarios, depicted in Fig. 5.1, based on the amount of knowledge
adversaries possess about the three components of a classifier system.

94

5.2 Evasion Attacks against Learning Systems

Figure 5.1: Taxonomy of evasion scenarios for classifier systems. In every scenario,
represented as a point, the knowledge about a given classifier component is high if the
scenario point is within that component’s circle, otherwise low.

Our taxonomy comprises 8 evasion scenarios. Their names describe the information
available to the adversary. If any of the letters F, T or C, corresponding to the classifier
components feature set, training dataset and classifier algorithm, respectively, is present
in the name of a scenario, then the level of knowledge about the given classifier com-
ponent the adversary has in this scenario is high, otherwise low. The scenario named
O refers to the case when the adversary has low knowledge about all three classifier
components.

In our taxonomy, high knowledge does not necessarily mean complete knowledge,
and vice versa. There exist no strict criteria for deciding whether the knowledge level
about a certain classifier component should be categorized as high or low. We consider
the knowledge level high if it can be used to the substantial advantage of the adversary,
otherwise low.

Our study is limited to the 4 evasion scenarios in which the level of knowledge about
the feature set is high. Without the knowledge of features, the attacker is faced with a
major challenge of either deducing them from observation of classification results, or
otherwise to attempt to directly measure the sensitivity of a classifier to changes in the
original data. A novel technique for inferring the feature set [49] is presented as part of
later work in Section 5.7.1.

In the following subsections, we describe high-level algorithms for staging evasion
attacks in the 4 scenarios of interest.

5.2.1 Scenario F

In scenario F, only the feature set is available to the adversary, to a varying extent. The
adversary might be aware of some or all features, mistakenly consider obsolete features
as being used, be capable of reading a subset or all features or be able to modify some

95

Chapter 5 A Case Study of Machine Learning Classifier Evasion

or all features to a varying degree. Manipulation of a sufficient subset of features is,
however, required in order to be able to modify samples and proceed with evasion.

An adversary with no knowledge about the classifier and training dataset may still per-
form evasion. If he has access to data samples certified as benign by the target classifier,
he can try to align his malicious examples with known benign examples. This strategy
is known as a mimicry attack. A particular implementation of this attack for PDFrate
is presented in Section 5.4.3. In general, a mimicry attack is most effective if the at-
tacker can submit probes to the target system during the attack, in order to ensure the
benign classification of the source examples for the mimicry attack or to choose among
multiple benign sources. However, online probing of a target system may be detectable
and is therefore less desirable than a fully offline attack, in which only the final result is
submitted to the target system.

An adversary that collects a sufficient amount of malicious samples, e.g., those found
on the black market, may combine them with a collection of benign samples and thus
build a surrogate dataset. This dataset can be used to train an off-the-shelf, surrogate
classifier, which can then be evaded using a special-purpose attack tuned for this partic-
ular classifier. The rationale behind the surrogate classifier attack is that the inference of
predictive models is based on general statistical properties which are shared among many
learning methods. Hence, it is quite likely that one can approximate an unknown classi-
fier with a suitable proxy classifier whose behavior can be controlled by the attacker. The
effectiveness of this strategy critically depends on the quality of the data available to the
attacker. If surrogate data is a realistic sample of the true distribution of the training data,
one can expect the resulting attack to be effective against the original, unknown target
classifier. The attack based on the surrogate classifier can be performed offline, with only
the final result submitted to the target classifer.

5.2.2 Scenario FT

This scenario enables the adversary to take advantage of the knowledge the target clas-
sifier’s training dataset, in addition to the known features. The dataset may be fully or
partially leaked, enabling more accurate decisions in the process of generating a success-
ful attack sample.

Knowledge of the benign training points enables the adversary to generate evasion
samples which closely mimic them, using the mimicry attack, thereby increasing the
chances of a successful attack in comparison to scenario F. Training a potent classifier
on the original dataset creates a surrogate classifier that better approximates the target
classifier than the on trained in scenario F, again opening up the way to the use of tailored
methods for evasion of the surrogate classifier. Knowledge of training data enables the
attacker to perform the entire attack offline before submitting the final result.

96

5.3 PDFrate

5.2.3 Scenario FC

In Scenario FC, the adversary knows the feature set and some details about the classi-
fier, such as its type, parameters or the specific implementation. An adversary with no
information about the training dataset at all and without a surrogate dataset has little
advantage of knowing the classifier. With a surrogate dataset they can train a surrogate
classifier of the right type, yet the accuracy of this approximation depends on the quality
of the gathered data. This attack can also be performed offline, similar to other attacks
based on surrogate classifiers.

5.2.4 Scenario FTC

The adversary has the best chance of evading the target classifier if he knows the details
of all three classifier components. In that case, he can fully reproduce the online classifier
in an offline setting, submitting the attack results only when a sufficiently good evading
sample has been found. An offline mimicry attack or an offline classifier-specific attack
that defeat the offline classifier have a strong probability of defeating the online one as
well.

We describe the target system PDFrate and the specific algorithms used to implement
the above-mentioned general attack scenarios in the following section.

5.3 PDFrate

PDFrate employs the Random Forest algorithm to classify PDF files into benign or mali-
cious based on their metadata and certain structural features3. The following subsections
provide an overview of PDFrate’s features, classification algorithm, datasets and adver-
sarial considerations; further details can be obtained from the original paper [85].

5.3.1 Features

PDFrate employs a total of 202 integer, floating point and boolean features. 135 of those
were described in [86], the rest remain unknown. A subset of features are shown with
their values for one specific file in Table 5.1. The features reflect various properties such
as size and version of the file, character counts of PDF metadata items such as author
name, creation and modification date, structural properties such as the count of Acrobat
forms and their relative positions in the file, etc. All features were manually defined by
the authors and selected for best classification performance and robustness against ad-
versaries, respectively. The features are extracted by running a set of regular expressions

3PDFrate’s structural features describe physical rather than logical structure, and are not to be con-
fused with the PDF document structure.

97

Chapter 5 A Case Study of Machine Learning Classifier Evasion

on raw bytes of the PDF file. By not performing proper PDF parsing, authors of PDF-
rate have consciously given preference to speed and simplicity rather than completeness
and correctness, as some of the features might lay in encoded and/or compressed object
streams, beyond the reach of regular expressions.

The features exhibit significant interdependence. When one feature’s value is mod-
ified, many others may be affected because they directly or indirectly depend on the
targeted feature. For example, by modifying the number of lower-case characters of the
Author metadata field (author_lc), the related feature author_len will be affected,
but so will less directly related ones such as file size (size). A change in size triggers
further changes of seemingly completely unrelated features pos_acroform_*, that de-
note the relative file offset of one or more keywords AcroForm. Feature interdependence
makes the adversarial control of feature values difficult.

5.3.2 Datasets

Three datasets were involved in the creation and evaluation of PDFrate. Three models
have been trained on them, which are used separately to assess new data submitted by
users.

Two of the three datasets were used in the experimental evaluation of PDFrate pre-
sented in [85]: Contagio and Operational. The Contagio dataset is a collection of mali-
cious and benign PDF files contributed by malware researchers, available for download4.
Training of PDFrate was carried out on a subsample of the Contagio dataset contain-
ing 5,000 benign and 5,000 malicious files5. The trained classifier was evaluated on the
Operational dataset comprising 100,000 PDF files collected “on a large university cam-
pus”. Presumably, the same dataset was used to train the model currently available as the
George Mason University (GMU) used by PDFrate.

The last dataset, Community, was created from files submitted and rated by PDFrate
users and was not used in its original evaluation.

5.3.3 Classification Algorithm

PDFrate employs Random Forests [10], an ensemble learning method comprising a
number tRF of independently trained decision trees. In the training step, every tree is
learned using the CART methodology, but using only a subset of the available training
samples. A different subset is generated for every tree by randomly sampling a fixed
number of times from the training data, with replacement – a procedure called bootstrap
aggregating or bagging. When a new decision node is added to a tree, only a randomly
chosen subset of fRF features is considered, where fRF is less than the total number of

4The Contagio archives are available at the following URL: http://contagiodump.blogspot.de/
2010/08/malicious-documents-archive-for.html.

5MD5 sums of those files: http://pdfrate.com/contagio_md5_class.csv.

98

http://contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html
http://contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html
http://pdfrate.com/contagio_md5_class.csv

5.3 PDFrate

features. A decision is made by majority voting among all decision trees on a given
new data point. Random forests are known for their excellent generalization ability and
robustness against data noise. PDFrate uses the R port of Leo Breiman’s and Adele Cut-
ler’s original Random Forest implementation, available as the package randomForest6.
tRF and fRF are parameters of randomForest called ntree and mtry, respectively. The
values ntree = 1000 and mtry = 43 are used by PDFrate.

All three classifiers deployed by PDFrate, i.e. the ones trained on the Contagio, GMU,
and Community datasets, produce as their result the output of their decision function,
i.e., a real value in the interval [0,1] denoting the percentage of decisions that have
labeled the submitted file as malicious. There is no threshold given in [85] determining
at what percentage should a file be considered malicious. Note that by providing this
percentage value instead of a binary decision, PDFrate reveals much more information
about its classification engines than necessary for decision-making and thus enables the
adversaries to make more informed decisions.

5.3.4 Adversarial Considerations

Before describing our attacks, we discuss the properties of PDFrate crucial for the ad-
versarial setting of our study. In our evaluation, we are only concerned with the evasion
of the Contagio classifier. We do not consider the GMU and Community classifiers be-
cause their training datasets were unavailable to us and hence we could not evaluate the
full spectrum of attack scenarios defined in Section 5.2. Besides being freely available,
the Contagio dataset seems to remain static. Periodic retraining, an important security
measure, would have complicated the consistent evaluation of effectiveness of our eva-
sion methods, as every classifier update would have rendered previous results outdated.
Furthermore, although PDFrate provides a second level of analysis by classifying mali-
cious files into “targeted” and “opportunistic”, our study is limited to evading the initial
binary classifier.

From an adversarial perspective, the level of knowledge available to attackers about
PDFrate is high. The availability of its feature definitions facilitates the creation of
manipulated samples. Although robust against data noise, the Random Forest classi-
fier was not designed for resilience against adversarial noise. Periodic retraining is also
not carried out in the deployed system. These weaknesses make PDFrate an excellent
candidate for our case study. Other, more prominent machine-learning-based malware
detectors have features which are either unknown or much more difficult to control.

Despite its weaknesses, adversarial considerations were indeed present in PDFrate’s
inital design. The attack model considered in [85] assumes that the adversary knows
the means and standard deviations of the 6 most important features, i.e., those on top
of the list of variable importance measures of the Random Forest model, for the benign
training files. The adversarial model assumes that an attacker can create camouflaged

6randomForest – http://cran.r-project.org/web/packages/randomForest/index.html.

99

http://cran.r-project.org/web/packages/randomForest/index.html

Chapter 5 A Case Study of Machine Learning Classifier Evasion

malicious samples in which a subset of top features is set to random values drawn from
the normal distributions with the given means and standard deviations characterizing the
benign samples. We refer to this attack as “benign random noise” (BRN). It was shown
in [85] that the BRN attack can severely degrade the detection accuracy of the classifier.
To counter this attack, a proactive defense strategy was proposed: to modify a subset of
malicious data points in the training set in exactly the same way as an attacker would
proceed. This simple defense strategy proved to be surprisingly effective.

The BRN attack was implemented synthetically, i.e., by modifying the top 6 features
directly in feature space. Therefore, it does not address the issue of whether real PDF
files can be generated with the required feature vectors. Due to strong feature interdepen-
dencies, such an assumption is unrealistic in practice. In our evaluation of the defense
mechanisms presented in Section 5.5, we depart from the feature space and evaluate this
attack using real PDF files. Furthermore, we investigate the robustness of the proposed
countermeasure against our own mimicry attack.

5.4 Methodology
Since our study of evasion scenarios assumes a stealthy attacker, the key elements of
our methodology involve reimplementation of the methods deployed by PDFrate. We
first reconstructed a subset of PDFrate’s features using the available public knowledge.
The next step was to develop a technique for manipulation of PDF files which affects
the selected subset of features. The last step in our methodology was to design attack
algorithms for carrying out the generic attack strategies presented in Section 5.2.

The above techniques and methods were implemented in our experimental evasion
framework called Mimicus. The framework consists of a Python module which supports:

• feature extraction,
• PDF file modification,
• upload to PDFrate and score retrieval,
• classifier training and
• classifier attack.

Mimicus is free and open-source software, suitable for extension with other attacks and
attack targets. It is available for download7, bundled with all training data (as feature
vectors), classifier models and code required to fully reproduce our experimental results.
All attack files used in our experiments can be obtained from the Contagio database.

5.4.1 Reimplementation of PDFrate Features
Our four evasion scenarios have one common assumption: the adversary knows the fea-
tures of the attacked system. The level of knowledge about particular features may, how-

7Mimicus – https://github.com/srndic/mimicus.

100

https://github.com/srndic/mimicus

5.4 Methodology

ever, vary widely. The attacker may not be aware of some features’ existence at all. Even
for features with known description, the attacker may have partial or no control of their
values. Finally, interdependence between features prevents the attacker from arbitrary
manipulation of their values.

The knowledge about PDFrate’s features comes from three sources: the original re-
search paper [85], the technical report [86], and the behavior of PDFrate as deployed
online. As stated in [85], a total of 202 features are employed by PDFrate. However,
only 135 of them are described in [86], to a varying extent. This limits the set of features
potentially under attacker’s control to roughly 2/3 of the reported number. Furthermore,
it cannot be ruled out that the deployed system uses a different set of features compared
to the reported ones due to a natural progress in development.

As a first step, we reimplemented the extraction of 135 known features by following
the general guidelines on feature extraction from [86]. Subsequently, regular expressions
were developed for each feature except for size, which was read directly. During this
process we also examined metadata output produced by PDFrate for a fixed test suite
comprising PDF files with a broad range of values for many features. Values of some
features, e.g., counts of Page or obj keywords, can be accurately deduced from the
metadata output. The regular expressions were further refined until consistent behavior
was achieved across all test files. Although the reimplementation process required time-
consuming expert work, it would be a small hurdle for an incentivized adversary.

Thanks to the availability of the Contagio dataset, we were able to verify the correct-
ness of our reimplementation by comparing our classification results on that dataset with
those reported in [85]. We, furthermore, verified that despite the discrepancy in the set of
implemented features, our local clone of PDFrate produces similar classification scores
as the online system on a benchmark dataset presented in Section 5.5.1.

5.4.2 Modification of PDFrate Feature Values
The development of the PDF file modification method for our study was guided by the
following design goal: once modified, the file in question has to appear indistinguishable
from the original to any PDF parser, yet reliably affect PDFrate’s feature extraction.
The reason for this is that such a semantics-preserving method can be safely applied to
malicious PDF files in our experiments, regardless of the diverse vulnerabilities they may
exploit, without the risk of breaking their potentially subtle modus operandi.

The feature modification component of Mimicus can arbitrarily modify values of 35
and increment values of 33 features of PDFrate, as detailed in Appendix A. Modifi-
cation of further features would have required delicate changes to the structure of PDF
files, increasing both the implementation effort and the risk of breaking the malicious
functionality.

Our approach to file modification was motivated by the discrepancy between the oper-
ation of PDF readers and PDFrate. This approach was described in [38] as an example
of a semantic gap in the interpretation of various file formats. PDFrate evaluates a set

101

Chapter 5 A Case Study of Machine Learning Classifier Evasion

of regular expressions over the raw bytes in a PDF file, reading from the beginning to the
end of the file. In contrast, PDF readers parse PDF files in adherence to the PDF syntax
prescribed by the PDF Reference. A conformant PDF reader reads a file starting from
its end. It checks the trailer to find the location of the cross-reference table (CRT) and
then jumps directly to it in order to locate the objects in the file body. This difference is
illustrated in Fig. 5.2, showing the layout of a PDF file before and after our modifications.

Figure 5.2: The PDF modification method takes the original PDF (left) and injects new
content between the cross-reference table (CRT) and the trailer. Such a modified file
(right) confuses PDFrate into accepting the newly-injected content as part of the file,
while the PDF readers jump from the trailer directly to the CRT, skipping the injected
content completely.

Our solution exploits this semantic gap: as long as the file header, body and CRT are
not modified or moved, the trailer can be moved arbitrarily far away from the CRT8,
thereby generating an empty space in the file where arbitrary content can be injected.
Such content will be processed by PDFrate, but PDF readers will always ignore it.

The described content injection approach leaves behind file modifications which are
trivial to detect if one knows what to look for. We believe that it is possible to rewrite the
PDF files, modifying the content in-place instead, thereby concealing the modifications
altogether. In fact, a method was developed after the publication of our work [92] that
achieves this, as presented in Section 5.7.

Our modification method proceeds by injecting a set of whitespace-separated string
patterns into the gap between the CRT and the trailer of the target PDF file. The patterns
are crafted to make specific PDFrate regular expressions match them, thereby influenc-
ing the extracted feature values. For example, injecting into a file with 5 obj keywords

8It is only important that the trailer remains at the end of the file.

102

5.4 Methodology

the string “obj obj” will change its count_obj feature value from 5 to 7, as PDFrate’s
regular expressions will match them all. As another example, the length of the Author
metadata field can be “reduced” from 10 to 3 by injecting a new Author field with 3
characters, “/Author(abc)”, as PDFrate tends to only take into account the content of
the last metadata field in the file. By injecting our payload just before the trailer we can
ensure that this condition is fulfilled.

Using the described modification method it can be safely assumed that the behavior of
PDF readers will not be altered9, but PDFrate would be tricked into reading the desired
feature values from the modified file. Our experiments have confirmed this behavior
for two PDF readers, Adobe Reader and Evince. In addition, we have submitted all
malicious files involved in our evasion experiments to Wepawet [22] before and after
modification and verified that the exploit effectiveness of each sample was unaffected.

As already mentioned, the features of PDFrate are heavily interdependent, i.e., it is, in
general, impossible to perfectly translate data points in feature space into files in problem
space. Given a malicious file before the attack Fbe f ore and a data point Pattack generated
by the attack algorithm run on Fbe f ore, the adversary wants to generate the attack file
Fa f ter that optimally defeats the classifier. This is achieved by modifying the feature
values of Fbe f ore by setting them to Pattack. However, due to feature interdependence,
the resulting file F′a f ter , Fa f ter has different features, which may or may not defeat the
classifier.

Table 5.1 shows an example using the Gd-Kde attack, described in Section 5.4.3.
Feature pos_acroform_min denotes the relative file offset of the first occurrence of
the keyword AcroForm and is not modifiable by Mimicus, however, it was indirectly
influenced by the increase of the total file size. On the other hand, although feature
author_len, denoting the length of the Author metadata field, is directly modifiable,
it got the value 11 instead of the desired 0. This occurred because other modifiable
features, i.e., author_{lc|num|oth|uc}, denoting different character classes in the
Author field, drove the total character count to 11.

Another important consideration regarding the translation of data points from feature
space to problem space is that algorithms operating in feature space may construct data
points which are not feasible in problem space. Examples are the size and version
features to which the attack algorithms attempted to assign negative values. It is neither
feasible to enumerate all feature interdependencies and account for their effects a priori,
nor to identify invalid data points before translation to problem space.

Our approach to dealing with these two limitations is opportunistic: we generate the
file from the feature vector by translating features one by one, independently from each
other and without taking the limitations into consideration, in the hope that the resulting
file’s features are not too far away from the desired values. Although this approach
results in hardly predictable outcome, the resulting files have feature values sufficiently

9Provided that they do not parse the injected content, but perform the direct jump prescribed by the
PDF Reference instead.

103

Chapter 5 A Case Study of Machine Learning Classifier Evasion

Feature Fbe f ore Pattack F′a f ter

author_lc 0 2 2
author_len 0 0 11
author_num 0 3 3
author_oth 0 5 5
author_uc 0 1 1
count_acroform 1 0 1
count_endobj 11 918 465
count_endstream 1 169 85
count_eof 0 2 2
count_font 0 86 86
count_image_large 0 1 1
count_image_small 0 6 6
count_image_total 0 0 11
count_image_xsmall 0 4 4
count_javascript 3 0 3
count_obj 14 922 922
count_objstm 0 28 28
count_page 0 29 29
count_stream 1 169 85
count_trailer 1 0 1
count_xref 1 0 1
createdate_ts −1 7.52×108 7.52×108

image_totalpx 0 0 813898
moddate_ts −1 1.0 ×109 1.0 ×109

pos_acroform_avg 7.04×10−2 7.04×10−2 7.16×10−3

pos_acroform_min 7.04×10−2 7.04×10−2 7.16×10−3

pos_acroform_min 7.04×10−2 7.04×10−2 7.16×10−3

size 2726 −426760 26782
version 0 −4 0

Table 5.1: Changes of feature values for a subset of features in an example Gd-Kde attack
in scenario F. The column Fbe f ore shows the feature values extracted from a malicious
candidate file, with the SHA-1 hash a39cf14b806db14a9e877b665324d203e5a5a666.
Gd-Kde transformed these values in feature space into data point Pattack. Point Pattack
was used to modify file Fbe f ore in problem space and generate the attack file Fa f ter.
However, feature interdependence caused the file F′a f ter to be generated instead, with
slightly different feature values.

104

5.4 Methodology

close to the desired ones and are suitable for evasion purposes. As a concrete example,
compare columns Pattack (desired outcome) and F′a f ter (actual outcome) of Table 5.1.

Additional safety mechanisms implemented in Mimicus prevent feature modification if
the desired value is outside of valid bounds specific to the feature and the file, e.g., if there
was an attempt to modify size to a positive value less than the file already had. Rea-
sonable lower and upper bounds enforced by our method were inferred by enumerating
the feature values of all files in the dataset, described in Section 5.5.1, and extracting the
minimum and maximum values for each feature. Another reason for preventing feature
modifications is a feature data type mismatch, e.g., when a data-type-agnostic algorithm
wants to set a boolean feature to 7. In the end, the result is a valid PDF file with features
close to the desired ones.

5.4.3 Attack Algorithms

The second major component of Mimicus are its attack algorithms. Their main goal is to
generate PDF files whose feature vectors are likely to receive low classification scores.
To this end, we have adapted two previously known methods to the specific context of
PDFrate’s features.

Mimicry Attack

The mimicry attack is well-known in the security literature. Its idea is to transform
a malicious sample in such a way that it mimics a chosen benign sample as much as
possible, making the resulting mimicry sample harder to detect. This attack is simple
to implement, can be applied to any classification algorithm, and does not necessarily
depend on a particular learned classifier model. Therefore, it is suitable for evaluation in
every evasion scenario. Our implementation takes a malicious file and simply attempts
to modify all of its modifiable features at once to take on the values of the features of a
chosen mimicry target, a benign file. To increase the effectiveness of a mimicry attack,
we repeat it 30 times using different benign targets for every attack file. The resulting 30
files are evaluated using a local classifier, and only the sample which best evades the
local classifier is submitted to PDFrate.

Due to the existence of undisclosed features and technical limitations discussed in
the previous section, it is impossible to generate a file which exactly corresponds to the
feature vector resulting from a mimicry attack. It is important that the conversion of a
feature vector into a file is performed after the mimicry is complete in the feature space.
The latter is technically straightforward: we simply merge a malicious feature vector into
a chosen benign one while protecting existing values. Modifying features one at a time
while translating them into a file is not a good strategy, as the interdependency between
features dominates the transformation and generates a lot of uncontrollable changes. Us-
ing a single-step transformation makes such interdependency less prominent.

105

Chapter 5 A Case Study of Machine Learning Classifier Evasion

The generality of the mimicry attack, i.e., its independence of the specific learning
algorithm and the underlying dataset, makes it applicable to other learning-based systems
which, like PDFrate, have a known and modifiable subset of features. An inverse attack,
performed by injecting malicious content into a benign PDF file, was described in [57]
and demonstrated to be effective against PDFrate in a small-scale experiment.

Gradient Descent and Kernel Density Estimation (Gd-Kde) Attack

The second attack evaluated against PDFrate is based on a method employing gradient
descent and kernel density estimation (hence we call it Gd-Kde) to defeat a classifier
with a known, differentiable decision function [7]. It requires the knowledge of a specific
learned model and a set of benign samples. Additionally, because it is based on gradient
descent, it is only applicable to differentiable classifiers, e.g., SVM or artificial neural
networks, and cannot be applied to the Random Forest. Hence, the Gd-Kde attack is
applicable only to scenarios with differentiable surrogate classifiers, F and FT.

The Gd-Kde algorithm proceeds by following the gradient of the weighted sum of the
classifier’s decision function and the estimated density function of benign examples. The
starting point of the gradient descent is the feature vector of the malicious sample. The
starting sample is usually correctly classified as malicious; the goal is to move to the area
where the classification algorithm classifies points as benign. In order to avoid moving
to infeasible areas of the feature space with negative classifications, the algorithm’s ob-
jective function has the second term, the density of benign examples. This ensures that
the final result lies close to the region populated by real benign examples. The density
function must be estimated beforehand, using the standard techniques of kernel density
estimation [66]. Similarly to the mimicry attack, we run Gd-Kde in feature space to
completion before transforming the result into a file.

5.5 Experimental Evaluation

The experiments to be presented in this section assess the effectiveness of evasion tech-
niques presented so far. In our evaluation protocol, we take on the role of an attacker
and combine all available means to defeat an up-to-date version of PDFrate as it is de-
ployed. An attacker has no control over PDFrate’s deployment, hence no guarantees can
be provided that the system has not changed between individual experiments. Since our
evaluation was carried out against the model trained on a static dataset and took place
within one week, it is quite unlikely that any changes in the production system have
occurred.

In another set of experiments, we also investigate the impact of our attack on the
defensive measures suggested in the original PDFrate publication [85].

106

5.5 Experimental Evaluation

5.5.1 Datasets
Three datasets were used in our experiments: two datasets, Contagio and Surrogate,
were intended for training of local classifiers needed for attack implementation, while
the Attack dataset consisted of malicious files used as starting points for generating
attack samples targeting PDFrate.

Contagio dataset

This dataset is an exact copy of the original PDFrate training dataset, described in Sec-
tion 5.3.2. It contains 5,000 benign and 4,999 malicious PDF files10. It is reasonable to
assume that an adversary knows that this dataset was used for training and obtains access
to it.

Surrogate dataset

This dataset is designed as a dataset that an adversary without access to Contagio data
might have collected to approximate it. Malicious files in the dataset are a random sub-
sample of dataset D1 described in Section 4.5.1, i.e., PDF files uploaded to VirusTotal
between the 5th and 22nd of March, 2012. These files are newer than Contagio data
but were known before PDFrate was published. Four files in the dataset were found to
be present in the Contagio dataset and were removed to ensure strict complementarity
of data. Benign files in the Surrogate dataset are randomly subsampled from dataset
D4, i.e., files obtained using keywordless Google web searches for PDF files published
between February 5, 2007 and July 25, 2012. The Surrogate dataset has the same size
and composition as the Contagio dataset.

Attack dataset

This dataset contains 100 malicious files that we used as starting points for all attacks.
This dataset was deliberately chosen to be small in order to minimize operational impact
on PDFrate. The adversary has access to these files in all scenarios. The files were
randomly drawn from the Contagio dataset. They were already known to the classifier
and therefore make evasion even more challenging for the attacker. Both PDFrate and
Wepawet classify all of them as malicious; PDFrate with a very high score, as shown in
Fig. 5.3, “Baseline”. All files are distinct in both the problem and feature space.

5.5.2 Classifiers
Depending on whether the attacker knows the exact classification algorithm employed
by PDFrate or not, he might use either the original or an unrelated, surrogate classifier.

10Malicious file with the MD5 hash 35b621f1065b7c6ebebacb9a785b6d69 was missing from the
archives.

107

Chapter 5 A Case Study of Machine Learning Classifier Evasion

Our experimental framework Mimicus models these two cases by deploying the Random
Forest classifier in scenarios FC and FTC, where the classifier type is known, and a
Support Vector Machine (SVM) classifier in scenarios F and FT.

Random Forest

The classifier implementation and parameters are identical to the original classifier of
PDFrate described in Section 5.3.3.

Support Vector Machine

We have chosen the SVM [21] as a surrogate classifier because it delivers high classifica-
tion performance on many problems, including the discrimination between malicious and
benign PDF files using PDFrate features, and is unrelated to the Random Forest. The
SVC implementation of the scikit-learn [68] machine learning toolkit version 0.13.1
was used.

As elaborated in Section 4.4.3, the SVM learns by mapping labeled training points into
a high- or even infinite-dimensional feature space, optionally applying a kernel function
to the input feature vectors to make them better separable. It then finds a separating
hyperplane in the new space with the largest possible margin, i.e. the distance between
the convex hulls of the two classes of points, malicious and benign. The hyperplane
vector, represented by support vectors and their weights, constitutes an SVM model.
When classifying new data, the distance between the hyperplane and the new data point
is calculated. This distance, called the decision function score, is a real value whose
meaning is similar to the classification score of PDFrate. A binary decision can be made
by taking the sign of the decision function score for the new data point. We assign the
positive score to the malicious class by convention. To evade an SVM, the adversary
needs to modify a malicious data point so that its decision function score changes sign.

Two kernel functions were evaluated: linear and RBF. The linear kernel

klinear(x1, x2) = x1 · x2 (5.1)

provides a linear transformation of two input vectors x1 and x2, while the RBF kernel

kRBF(x1, x2) = exp(−γ||x1− x2||
2) (5.2)

utilizes the Gaussian radial basis function as a nonlinear transformation of its arguments.
For optimal evasion results, a grid search was carried out on the two adversary’s datasets,
optimizing the SVM parameters C for the linear, C and γ for the RBF kernel. The
highest achieved accuracy using 10-fold cross-validation and a 60:40 training-test split
was 98.7 % on the Contagio and 99.5 % on the Surrogate dataset.

The parameters found in the grid search are the same for both datasets: RBF kernel,
C = 10, γ = 0.01. However, the generalization ability of the two learned models for the

108

5.5 Experimental Evaluation

two datasets differs greatly. The SVM trained on Contagio data achieves an accuracy
of 98.5 % on Surrogate data, but the SVM trained on the Surrogate data performs very
poorly on Contagio data, with an accuracy of 61 %. Of course, the adversary in scenarios
F and FC, without access to original training data, would be unable to check how well
its SVM performs on it. Bad approximation of the training data strongly affects the
performance of the Gd-Kde attack.

Due to differences in scale among features and as a general rule when using SVMs,
feature standardization was performed on extracted data points by subtracting the feature
mean from the feature value and dividing the result by the standard deviation of that
feature. Means and standard deviations of all features were calculated on the Contagio
dataset.

5.5.3 Attack Scenarios
The following subsections elucidate the implementation of the 4 main attack scenarios
described in Section 5.2 in our experiments, summarized in Table 5.2.

Table 5.2: Realized Attack Scenarios.

Scenario Classifier Dataset Attacks

F SVM Surrogate Mimicry, Gd-Kde
FC Random Forest Surrogate Mimicry
FT SVM Contagio Mimicry, Gd-Kde
FTC Random Forest Contagio Mimicry

Scenario F

In scenario F, all that the adversary knows about PDFrate is how to read 135 and mod-
ify 68 features. Nevertheless, there are two attacks he can perform, depending on the
available datasets, as elaborated in Section 5.2.1. The mimicry attack uses randomly
sampled benign files from the Surrogate dataset, as the Contagio dataset is unknown.
Similarly, the surrogate classifier is trained on the Surrogate dataset for evasion using
Gd-Kde. The classifier parameters are optimized using grid search on the Surrogate
dataset. Both attacks were performed offline, without classifier feedback, and their re-
sults were uploaded to PDFrate for evaluation.

Scenario FT

In scenario FT, besides the limited knowledge of features, the adversary has a complete
knowledge of the training dataset. Therefore, the Contagio dataset is used to train a
surrogate classifier for the Gd-Kde attack in this scenario, and randomly sampled benign

109

Chapter 5 A Case Study of Machine Learning Classifier Evasion

files from Contagio are used as mimicry targets for the mimicry attack. This time, the
surrogate classifier is optimized using grid search on the Contagio dataset. Only the final
attack results are submitted to PDFrate.

Scenario FC

Knowledge about the classifier is added to the limited knowledge of features in this sce-
nario. The adversary knows the original classifier, its implementation and parameters.
They use the Surrogate dataset with the original classifier to produce a surrogate clas-
sifier, which they evade offline using the mimicry attack, with mimicry targets randomly
selected from the Surrogate dataset. Results are submitted to PDFrate for evaluation.

Scenario FTC

Given the limited knowledge of features and complete knowledge of the training dataset
and classifier, the attacker creates a local clone of PDFrate and evades it offline. Only
the final attack results are submitted online.

5.5.4 Results
Before the attack experiments were run, all 100 files in the Attack dataset were evaluated
by PDFrate. The results of this evaluation, shown in Fig. 5.3, “baseline”, provide a
baseline with which we compare the attack results. All but 3 files received a 100%
malicious classification score.

Our evaluation followed a simple protocol. For every attack, 100 files from the Attack
dataset were used to generate attack samples. The effectiveness of generated attack files
was evaluated by submitting them to PDFrate and comparing the received classification
scores with the baseline. All attack samples were submitted to Wepawet to verify that
they remained malicious after modification.

The summary of PDFrate’s scores for attack files is presented in Fig. 5.3. For each
attack, the population of 100 classification scores is represented as a box plot, with the
median shown as a thick line, the 25th and 75th percentiles (“interquartile range” or
IQR) as a box, scores within 1.5 IQR from the median as “whiskers”, and the remaining
outliers as single points. Plots are grouped by attack scenario.

The results show that PDFrate was evaded in all 4 attack scenarios. The median
score dropped down to 28 % to 42 % for mimicry and 29 % to 34 % for Gd-Kde attacks,
depending on the scenario. For all attacks except mimicry in scenario F, the 75th per-
centile of the box plot lies below the 50 % mark, implying that 75 % of attacks would be
classified as benign if a 50 % threshold over classification scores were used for decision
making. The significance of these results is further emphasized by the fact that only a
third of features were modifiable, and the files used for evaluation were already known
to PDFrate at training and hence more difficult to evade.

110

5.5 Experimental Evaluation

Baseline Mimicry GD-KDE Mimicry Mimicry GD-KDE Mimicry
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
D

F
ra

te
 s

c
o
re

Scenario F Scenario FC Scenario FT Scenario FTC

Figure 5.3: Populations of PDFrate scores of all 100 attack samples from the Attack
dataset before (baseline) and after each attack (remaining boxes). Attacks are grouped
by scenario. The boxes extend from the first to the third quartile, with the median value
between them (thick line). The whiskers extend to the farthest datum within 1.5 times
the interquartile range from the box, while the squares represent the outliers.

Results in scenarios with a surrogate classifier, F and FT, demonstrate the superior-
ity of Gd-Kde over mimicry. Furthermore, the mimicry attack in the scenario with the
highest amount of knowledge, FTC, only marginally outperforms Gd-Kde in scenario
FT. Further insights into the behavior of the Gd-Kde attack are given in Fig. 5.4. It
shows the decision function values of two SVMs, one trained on the Surrogate dataset
in scenario F, the other on the Contagio dataset in scenario FT, before and after attack.
The post-attack SVM scores demonstrate that the Gd-Kde attack reliably steers all sam-
ples far across the decision boundary into the benign region. If the SVM classifier were
deployed by PDFrate, it is very likely that the Gd-Kde attack would have attained per-
fect evasion, driving all scores below zero. Since the SVM only approximately matches
the decision function of a Random Forest, attacks against PDFrate fall far from being
perfect, but still significantly decrease the scores.

By careful observation of Fig. 5.4 it is evident that over 25 % of pre-attack samples in
scenario F have a negative decision function value, i.e., are classified as benign by the
SVM (but not PDFrate) before attack. This is a consequence of operating under scenario
F, where the adversary trains using the Surrogate dataset but attacks using samples from
the Contagio dataset. Because of the poor generalization of SVM models in this case, as
elaborated in Section 5.5.2, the samples are often misclassified. In scenario FT, where
the attacker also trains on the Contagio dataset, the baseline SVM scores are strictly
positive.

Another important observation based on Fig. 5.3 is the improvement of attack effec-
tiveness with the increase of adversary’s knowledge about the target system. This finding
is in agreement with our initial conjecture about the importance of adversary’s knowledge

111

Chapter 5 A Case Study of Machine Learning Classifier Evasion

Baseline GD-KDE Baseline GD-KDE
−3

−2

−1

0

1

2

3

S
V

M
 s

c
o
re

Scenario F Scenario FT

Figure 5.4: Populations of SVM decision function values for all 100 attack samples from
the Attack dataset before and after Gd-Kde attacks in scenarios F and FT. Parameters of
the box plot are described in Fig. 5.3.

for classifier robustness. However, it is curious that the improvement from scenario F to
scenario FTC is not as dramatic as one might expect: mimicry improves by around 14 %
and Gd-Kde in scenario F is outperformed by the best overall attack, mimicry in scenario
FTC, by a mere 6%. This is an important finding indicating that merely knowing a subset
of features might provide the adversary more advantage than previously considered.

The possession of training data is the second most important contribution to the attack-
ers’ success, after the knowledge of features. Fig. 5.5 compares the scores of two local
Random Forests with that of PDFrate on mimicry attacks in scenarios FC, using Surro-
gate, and FTC, using Contagio data. It can be seen that on Surrogate data, the locally
implemented classifier with the exact parameters used by the target makes an overly op-
timistic assessment of the attack effectiveness, achieving a median score of about 18 %,
while the same files get a median score of 37 % when submitted to PDFrate. However,
when staged with the Contagio dataset, the local estimate of the attack score is almost
identical to PDFrate’s (29 % and 28 %, respectively). This similarity is surprising, tak-
ing into account that the local classifier was trained using only a subset of PDFrate’s
features and that the training process of Random Forests is heavily randomized.

As a final step in our evaluation, we investigate the impact of attacks on the detection
performance of PDFrate. Recall that the classification score still needs to be compared
with some threshold for a binary decision to be made. Earlier, we reported that 75 % of
attack points would have fallen under the radar if the threshold were set at the specific
value of 0.5. To analyze the detection performance for all possible thresholds, the Re-
ceiver Operating Characteristic (ROC) curves are presented in Fig. 5.6 for the baseline
and all attacks.

The ROC curves were obtained on a mixed dataset containing the same 100 attack

112

5.5 Experimental Evaluation

PDFrate Local PDFrate Local
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
a
n
d

o
m

 f
o

re
s
t

s
c
o

re

Scenario FC Scenario FTC

Figure 5.5: Populations of Random Forest scores for all 100 attack samples from the
Attack dataset by PDFrate and two local Random Forests on two mimicry attacks. Pa-
rameters of the box plot are described in Fig. 5.3.

samples and all 1051 benign samples from the original Contagio database not in the
Contagio dataset. It is clear that, especially in the lower range of false alarm rates (less
than 0.5 %), the detection performance of PDFrate is dramatically decreased by the
attacks, and the mimicry attack of the FTC scenario has caused a 7 % false positive rate.
The relative effectiveness of attacks with respect to detection performance is similar to
their relative effectiveness with respect to classification scores (cf. Fig. 5.3).

5.5.5 Defensive Measures
In our last experiment, we have investigated the robustness of defenses proposed in [85]
to our evasion technique. To set the baseline, we have reproduced the mimicry attack
and the defense technique in exactly the same way as it was originally proposed, using
the Random Forest classifier trained on the Contagio dataset. Our classifier ranked the
following 10 features significantly above others as most important, in descending order:

count_font pos_box_max len_stream_min producer_len
count_js pos_eof_avg count_endobj
count_javascript pos_eof_max count_obj

We have then reimplemented the original “benign random noise” (BRN) attack in feature
space and extended it to problem space by materializing the attack’s final feature vector
as a file. Fig. 5.7 compares these two attack variants as a function of number of modified
features.

We observe that the behavior of the synthetic variant of the BRN attack (solid line)
closely resembles the results reported in [85], with a slightly higher impact on accu-

113

Chapter 5 A Case Study of Machine Learning Classifier Evasion

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it
iv

e
 R

a
te

FTC, Mimicry

FT, Mimicry

FC, Mimicry

F, Mimicry

FT, GD-KDE

F, GD-KDE

Baseline

Figure 5.6: ROC curves of the baseline and all attacks.

racy11. However, when applied to files, the BRN attack is ineffective (dashed line). Only
the modification of one or two features exhibits some impact on detection accuracy. At-
tempting to modify further features leads to increasing inadvertent modifications which
end up steering the mimicry samples towards the benign class. Furthermore, only 5
of the top 10 features are modifiable. Therefore, the BRN attack in problem space is
impractical and, compared to other attacks presented in Section 5.5.4, suboptimal.

Finally, we have evaluated the effectiveness of the “vaccination” mechanism proposed
by PJScan authors which modifies a fraction of malicious samples in the training dataset
in such a way that they are more similar to expected attack samples. Two scenarios
are considered: when the defender anticipates the (1) right and the (2) wrong kind of
attack. Fig. 5.8 compares the effectiveness of the vaccination defense against the BRN
attack under both scenarios. Our experiment confirms the effectiveness of the vaccination
defense when the right kind of attack, i.e., BRN, is anticipated (dashed curve). However,
the classifier vaccinated with the BRN attack showed no resistance to our mimicry attack
from the FTC scenario (dotted curve).

Repeating the experiment with the vaccination defense, this time seeded using our own
mimicry attack, revealed that the resistance to the attack was restored (Fig. 5.9). Hence
it can be concluded that the vaccination mechanism is effective against any correctly
anticipated attack. The latter assumption, however, is rather unrealistic in practice.

5.6 Interpretation of Attacks
From the operational perspective, it is crucial to understand which features contribute
most to the success of reported attacks. In general, interpretation of models created by

11Accuracy scores vary due to experiment randomization, different models and cutoff values.

114

5.6 Interpretation of Attacks

co
u
n
t_

fo
n
t

(+
)
co

u
n
t_

js
(+

)
co

u
n
t_

ja
va

sc
ri
p
t

(+
)
p
o
s_

b
ox

_
m

a
x

(+
)
p
o
s_

e
o
f_

av
g

(+
)
p
o
s_

e
o
f_

m
a
x

(+
)
le

n
_
st

re
a
m

_
m

in
(+

)
co

u
n
t_

o
b
j

(+
)
co

u
n
t_

e
n
d
o
b
j

(+
)
p
ro

d
u
ce

r_
le

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y

Feature space

Problem space

Figure 5.7: Results of the BRN attack applied on data points in feature space versus files
in problem space. The attack was applied 10 times, starting with only count_font and
progressively modifying ever more features.

learning techniques is difficult. Although Random Forest classifiers provide a ranking
of features according to their informativeness, which has been crucial for the design of
the BRN attack, this information is only indirectly related to the two types of attacks
presented in this chapter. Hence, a different analysis technique had to be developed to
interpret our attacks.

Our interpretation is based on the binary difference between feature vectors before and
after an attack. While it may be tempting to claim that the features with largest change
are the most informative, this measure is strongly misleading in our case since the ranges
of feature values are vastly different. Even re-scaling the changes to valid value ranges is
not suitable since the bounds for specific features can only be determined on the basis of
an empirical sample of PDF files and are prone to outliers. Furthermore, only one third
of the features is directly modifiable in our approach, yet all of them may be indirectly
modified as a result of some other changes.

The only conceivable characterization of the mimicry attack is the empirical support
of specific features, i.e., the percentage of files for which a given feature was changed by
the attack. The histograms of feature support are shown in Figures 5.10a and 5.10b for
the Gd-Kde and mimicry attack, respectively. It can be seen that both attacks perform
a significant amount of feature modifications, hence one cannot explain the attacks by a
small number of essential features. Between the two attacks, the modifications produced

115

Chapter 5 A Case Study of Machine Learning Classifier Evasion

0 0.05 0.1 0.5 1 5 10 50 100
Training set perturbation (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y Unmodified data

BRN attack

Our mimicry attack

Figure 5.8: Performance of the defensive measure proposed in [85] seeded with BRN
attack samples. Averaged results of 5 independent trials, using 10-fold cross-validation.

by Gd-Kde are more uniform, having a set of 45 features that are changed in almost
every attack. The remaining 23 features are rarely modified, most likely due to the
opposite direction of change (recall that 35 features are only incrementable in our setup)
or due to the infeasibility of the requested change. The changes effected by the mimicry
attack exhibit higher variability of support. It is also interesting to observe that direct
modifications are accompanied by an almost balanced amount of indirect modifications.
This serves as another example for the high interdependency of PDFrate’s features.

A practical way to interpret attacks is to observe concrete changes in feature values
produced by the attacks. Although it does not scale to cases with many features and
files, this kind of investigation provides deep insight into the modus operandi of the
attack at hand. Table 5.1 shows how the features of one specific file changed in the
Gd-Kde attack. Recall that Gd-Kde operates by steering malicious data points across
the decision boundary into the benign area using gradient descent, and at the same time
utilizes kernel density estimation to push them towards seen benign samples. This “be-
nignization” is evident in the provided example. By comparing the Fbe f ore and Pattack
columns, we see that the attack has added an author (author* features), set the cre-
ation (createdate_ts) and modification (moddate_ts) date into recent past, reduced
JavaScript occurrences (count_javascript), added some pages (count_page), fonts
(count_font), images (count_image*), etc. – all changes towards the benign class.
Some features, e.g., size and version, were changed to invalid values, possibly due to
the influence of the gradient descent component.

116

5.7 Discussion

0 0.05 0.1 0.5 1 5 10 50 100
Training set perturbation (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y

Clean data

Our mimicry

Figure 5.9: Effect of the defensive measure proposed in [85] on our mimicry attack
seeded with mimicry attack samples. Averaged results of 5 independent trials.

5.7 Discussion
While the results of our study are only applicable to a single system, our findings suggest
several important implications. It was the first attempt to perform a comprehensive prac-
tical evaluation of a deployed learning-based system, hence we cannot expect that our
results can be exactly reproduced for a large number of similar systems. Still, some key
issues revealed by our experiments deserve careful consideration, as they pinpoint some
general problems that need to be addressed in the design of future data-driven systems.

The main message of our experiments is that an attacker can significantly decrease the
accuracy of a learning-based system if he has sufficient knowledge of its features and
methods. The main factor that contributes to this insecurity is the knowledge of features.
For PDFrate we have observed that even the simplest attack from our arsenal, with
no further knowledge of the system except for its features, can reduce maliciousness
scores for a chosen representative set of malicious samples from 100 % to the median
of 33 %. This was possible despite the fact that roughly 1/3 of the classifier’s features was
completely unknown to us and another 1/3 not modifiable by our tools. Such an impact
suggests that even a small amount of knowledge about the features can be exploited to
stage evasion attacks. Additional factors such as knowledge of training data and the
precise type of the algorithm are helpful but not crucial for the attack, as this information
can be approximated well by surrogate sources.

The fundamental problem underlying the insecurity of learning-based approaches lies
in the design of features. The growing popularity of machine learning in various kinds
of information systems – far beyond security – is largely due to its ability to predict,
with greater or lesser success, causes from side effects. It is this generalization ability
that makes machine learning algorithms the means of choice for finding solutions to

117

Chapter 5 A Case Study of Machine Learning Classifier Evasion

0 10 20 30 40 50 60 70 80 90 100
Number of changes in 100 attack files

0

5

10

15

20

25

30

35

40

45
C

o
u
n

t
o
f

fe
a

tu
re

s

Modifiable

Not modifiable

(a) Gd-Kde attack in scenario FT.

0 10 20 30 40 50 60 70 80 90 100
Number of changes in 100 attack files

0

5

10

15

20

25

30

35

40

45

C
o
u
n
t
o
f
fe

a
tu

re
s

Modifiable

Not modifiable

(b) Mimicry attack in scenario FTC.

Figure 5.10: Histograms of the number of features whose values were modified grouped
by the number of attack samples (from a total of 100 attacks) in which the modifications
occurred.

118

5.7 Discussion

problems shrouded by uncertainty, when one has neither enough understanding of the
problem to design a solution, nor can figure it out from looking at the raw data. The
prevailing approach for designing features for learning algorithms by hand-picking a set
of easily computable side effects, or “expert features”, obviously has the peril that the
attacker may do exactly the same.

Are there alternative solutions that can make learning methods more robust to evasion?
One potential solution is to use features that inherently represent, at least to a reasonable
degree, the causes to be detected. One example of such features can be found in previous
work on shellcode detection and classification, e.g., [43, 78, 84, 106], which uses n-
grams, or short byte sequences, as basic features. Similar approach has been explored
for detection of JavaScript malware, with the same techniques applied to sequences of
syntactic tokens [45, 80]. The discriminative power of these methods lies in the inherent
statistical difference between shellcode and usual packet content, as well as between
malicious JavaScript code and benign programs. Hence one can expect such features
to be less prone to malicious manipulation than “expert features”. If fact, it has been
shown that exact evasion of n-gram-based features is NP-complete [30], and approximate
solutions are widely believed to be difficult in practice.

Another potential solution can be offered by methods attempting to uniformly spread
the “discriminative power” across as many features as possible. Some methods of this
kind have been proposed for learning on problems with potential feature deletion or
corruption [24, 34]. At the cost of a significant increase in the complexity of training
problems, such methods offer a reasonable protection for limited amount of feature noise,
regardless of the type of features. Assuming that the attacker has modification access to
a limited number of features, as it was the case in our study, one can expect such methods
to deliver a good trade-off for the cases when no “intrinsic features” can be devised.

Finally, methods based on multiple classifier systems [81] should be mentioned as a
potential solution. Evading a number of complementary classifiers can be significantly
harder than a single classifier. Some applications of multiple classifier systems in security
and other adversarial scenarios have been considered [5, 70].

5.7.1 Later Work
The publication of Mimicus [92] was followed by a number of interesting related works.
The authors of PDFrate have recently reproduced our results and published a method
for detecting evasion attempts against ensemble classifiers [87]. It follows the intuition
that an ensemble decision with a high disagreement among its members is indicative of
an evasion attempt. This is implemented by means of an adjustable threshold on the
ensemble decision, e.g., labeling samples with less than 25 % positive votes as negative,
those above 75 % as positive and the rest as uncertain. An evaluation on a large-scale
benign PDF dataset produced around 1.6 % uncertain labels. The authors also attacked
their method using Mimicus in all our scenarios with a success rate of 7 % in scenarios F
and FC, 10 % in FT and 33 % in FTC, the majority of remaining attack samples labeled

119

Chapter 5 A Case Study of Machine Learning Classifier Evasion

uncertain. We find the method relatively effective in “trapping” attack samples (except
in the difficult case of scenario FTC). However, we see the effective redefinition of class
labels as potentially problematic when it comes to labeling benign samples. The results
show an almost perfect ensemble consensus on this data. However, it is reasonable to
expect that it would drop in a more realistic experiment than the employed randomized
training-evaluation dataset split12. The reason for this lies in the natural emergence of
concept drift when the dimension of time is introduced into such a problem. Then,
the PDF dataset becomes non-stationary due to normal changes in time, e.g., with new
versions of PDF writers. In that case the number of false uncertain labels for benign
data would rise, in turn raising the number of costly detailed examinations required for
uncertain files. In fact, ensemble disagreement might be useful for concept drift detection
and quantification.

Thanks to its open-source availability, Xu et al. were able to utilize our system Mimi-
cus to develop a new attack against PDFrate in their evasion study [114], as we describe
in Section 4.8.

Wang et al. evaluated the resilience of multiple algorithms, e.g., Random Forest, SVM,
J48 decision tree and Bayesian probabilistic models, against both causative (data poison-
ing) and exploratory (evasion) attacks in the context of detecting malicious crowdsourc-
ing workers [105]. All algorithms were found to be vulnerable in their experiments. Fur-
thermore, they show that more accurate models consistently show higher vulnerability
to attacks. Their finding that attacks are much more effective given complete knowledge
about the target classifier corroborates our experimental results, although in our study
the difference is less pronounced. Finally, in their experiments Random Forest was the
only classifier that in some cases achieved both high accuracy and relative robustness
against attacks. As this finding contradicts the results of our case study we see the need
to further investigate the limits of Random Forest robustness in future work.

A recent study by Liang et al. [49] demonstrates a highly successful, practical evasion
attack against Google Chrome’s phishing pages filter (GPPF). Starting from what in our
taxonomy would be scenario O, i.e., without any information about the classifier, they
perform reverse engineering on the client-side component of GPPF to recover informa-
tion about classifier type (logistic regression) and manage to recover 85 % of the 2,130
scoring rules based on 1,009 features. Moving from black box to scenario FC, they were
able to defeat the classifier on a dataset of 100 recent phishing pages by modifying on
average less than 4 features. This study is an example how evasion scenarios outside
the 4 evaluated in this work can be reduced to one of them by first inferring the feature
set.

12For example, with periodic retraining using temporally consistent samples as in our evaluation of
Hidost in the previous chapter or using temporally consistent labels as suggested in [58].

120

5.8 Conclusions

5.8 Conclusions
In this chapter, we have presented the first empirical security evaluation of a deployed
learning-based system. Our study assumed that an attacker has no specific insider in-
formation about the system. It demonstrated, however, that enough information can be
gathered from various sources and extended with approximations and automatic infer-
ence algorithms in order to stage a successful evasion attack.

We presented a taxonomy of evasion attacks against machine learning classifiers based
on the knowledge about 3 classifier components – training dataset, classifier type and
feature set – focusing on scenarios with known feature sets. In our experiments carried
out on an established system for detection of PDF malware, PDFrate, the significant drop
in classification scores (from almost 100 % down to 28 % to 33 %) as well as deterioration
of detection rates has been observed.

Decisions made when building and deploying classifiers strongly affect their robust-
ness. Considerations such as the potential for adversarial influence on training or eval-
uation data, choice of features, level of knowledge about the system available to the
adversary and many other ones need to be seriously evaluated. We have observed that
simple countermeasures against evasion attacks, such as including a small fraction of
attacks in the training data, are only effective if the anticipated attack exactly matches
the performed one. Recent work has shown even established black box classifiers to be
vulnerable to reverse engineering and subsequent evasion.

Our evaluation methods are applicable to other learning-based systems with modifi-
able features. The open availability of Mimicus source code has already facilitated other
studies and continues to guarantee reproducibility of our results.

121

Chapter 5 A Case Study of Machine Learning Classifier Evasion

122

Chapter 6

Summary and Conclusions

This thesis presented a study of adversarial machine learning in the context of static mal-
ware detection in non-executable file formats. It identified 3 main criteria for a successful
deployment of machine learning applications in this context: effectiveness, efficiency and
security, and evaluated them experimentally. To this end, the thesis introduced 3 novel
machine-learning-based methods for detection of malware in different file formats and
measured their effectiveness and efficiency. Furthermore, it proposed a framework for
the evaluation of security of machine learning applications.

The first two methods, PJScan and Hidost, detect malicious PDF files. PJScan per-
forms anomaly detection based on lexical properties of embedded JavaScript code and
is, therefore, limited to PDF files containing JavaScript. SL2013 introduced a novel set
of features based on the hierarchical logical internal structure of PDF files and can be
applied to any PDF file. The third method, Hidost, generalizes the feature definition
of SL2013 to formats beyond PDF. It was successfully implemented and evaluated on
malicious PDF and SWF files and is extensible to other hierarchically structured for-
mats, e.g., XML, HTML, SVG, OOXML and ODF. Mimicus, a novel framework for the
security evaluation of machine learning applications was presented and used in an ex-
perimental evaluation of an independently published, actively deployed PDF malware
detector, PDFrate.

Of the 4 published methods, PJScan, Hidost and Mimicus were released as open-
source software. Furthermore, source code for experiment reproduction for Hidost and
Mimicus was also released as open-source software, and datasets used for evaluation of
Hidost were made available for download in an effort to ensure reproducibility of results
published in this thesis.

The 3 introduced detection methods were developed in a strictly data-driven fashion.
All employed features are well-defined properties of files, extracted directly or with mi-
nor transformations. This is in contrast with features based on expert heuristics, i.e.,
manually defined properties that indicate benign or malicious intent, used by some re-
lated work [32, 85]. Intuitively, data-driven features provide a more objective and gen-
eral characterization of data and remain relatively stable in time, while expert heuristics
capture concrete anomalies better but have to be updated for novel attacks. The recent
advances in deep neural networks that go one step further and automatically learn sig-

123

Chapter 6 Summary and Conclusions

nificant features out of raw data have demonstrated the power of strictly data-driven
methods [46]. A crucial requirement for data-driven methods is the availability of a suf-
ficient quantity of high-quality data for learning. The experimental evaluations of the
presented detection methods were performed on datasets whose size shadows all previ-
ously published work. Data quality is validated through the use of VirusTotal, the data
source with the highest quality available to researchers, and long-term data acquisition,
i.e., weeks to years per dataset.

In the following we present the main results of this thesis with respect to the 3 main
criteria for successful deployment of machine learning methods in our context.

Effectiveness

Effectiveness expresses the detection performance, i.e., the ability to correctly clas-
sify previously unseen samples. All presented detection methods have achieved break-
throughs in effectiveness compared to prior work.

Subsequently to its publication as the first fully static PDF malware detector evaluated
on a large data corpus, PJScan was compared in numerous studies and found to outper-
form prior work in terms of detection performance. Its model was able to generalize
and retain its accuracy even when evaluated on malware collected years after its training.
In the following period, however, a large number of detectors were published of which
some were able to surpass PJScan by a large margin. Nevertheless, SL2013 was shown
to be even better. It was the first method to be directly compared to antivirus engines,
where it ranked among the best. Its excellent detection was only recently matched by
Hidost, ranking better than all antivirus engines on PDF data and among the top on SWF
data. It is the first static machine-learning-based malware detector applicable to multiple
non-executable file formats.

Our experimental evaluation pioneered a novel approach in measuring effectiveness,
combining comparison to antivirus engines and a simulated long-term operational de-
ployment. The status quo ante in security experiment design involving machine learning
was a randomized training-test split or cross-validation, with the comparisons limited to
other academic methods. By comparing a method to state-of-the-art practical commer-
cial solutions, the new approach puts it into a wider perspective. Furthermore, a long-
term simulated operational deployment with temporally consistent samples ensures the
method’s evaluation is performed exclusively on novel data. Together, these elements
combine to make experimental conditions almost perfectly realistic (the only missing
condition is temporal consistency of labels [58]).

Given the demonstrated detection performance of our methods that come close to or
even outperform all antivirus engines under realistic experimental conditions, we con-
clude that machine learning methods are highly effective in the context of static malware
detection in non-executable file formats.

124

Efficiency

We measure efficiency as the amount of computing resources required to process data for
detection. In our experiments we measured throughput (processed bits per second) and
file processing time.

In machine learning one can distinguish between training and prediction tasks and
measure their efficiency separately. However, in the common case of batch learning,
e.g., in our 3 methods, only the prediction task is perceived by users as causing latency –
training is performed independently ahead of time and causes no delay. In online learning
the 2 tasks cannot be decoupled.

All detection methods presented in this thesis are static. Compared to dynamic prior
work, they usually run orders of magnitude faster. As reported in our own and indepen-
dent publications, PJScan is the fastest among all academic methods published to date.
Measured on a commodity PC from 2010 in a 2-fold cross-validation experiment using
approximately 65,000 (60 GB) PDF files, it achieves a combined training and predic-
tion time of 1547 s, resulting in a throughput of approximately 300 Mbit/s or 23 ms per
file on average. Our analysis shows that it was severely limited by hard drive through-
put. Feature extraction amounted to almost 90 % of its time, while prediction only took
around 15 µs. SL2013 performed around 20 % slower, nevertheless much faster than
other work, while the efficiency of Hidost was not measured.

Unfortunately, we have no data on the efficiency of static components of antivirus en-
gines and therefore cannot compare directly. Nevertheless, PJScan and SL2013 demon-
strate excellent efficiency of machine learning methods in this context.

Security

In adversarial machine learning, security denotes the resistance of a machine learning
algorithm to adversarial manipulation. Attacks are categorized into causative, where
the adversary manipulates training data, and exploratory, where only test samples are
manipulated [2]. This thesis described independent third-party security evaluations of the
presented methods, where available, and our own security evaluation of an independently
published machine learning method, PDFrate.

PJScan was evaluated in multiple studies. In a causative attack, Cao and Yang imple-
ment successful poisoning of training data [15], drastically reducing accuracy. Subse-
quently they design a defensive measure called machine unlearning and implement it as
an extension to PJScan in just 30 lines of code, completely restoring its initial detection
accuracy. Others have performed exploratory attacks, exploiting PJScan’s inability to
extract JavaScript from XFA forms and arbitrary PDF strings. However, Carmony et al.
show that implementing part of the missing functionality boosts PJScan’s true positive
rate in their experiment from 68.34 % to over 94 % [16].

SL2013 was targeted in 2 exploratory attacks. In the reverse mimicry attack [57],
malware in form of PE files, JavaScript or PDF files is injected into an otherwise benign

125

Chapter 6 Summary and Conclusions

PDF file. Our method was not evaluated against this attack but we proposed a set of
enhancements to mitigate it. Xu et al. used Genetic Programming to evolve evading
samples from an initial set of malicious PDF files [114]. However, their evaluation is
limited to malware exploiting one of only 2 CVEs targeting a single version of Acrobat
Reader. Furthermore, the trained model of SL2013 used in the evaluation had poor
detection performance on the data even before the attack. The strongest attack against
SL2013 was our own mimicry attack that completely defeated the method. However,
that attack represents the worst case and was performed only in feature space. Hidost’s
security was not evaluated to date.

Our own evaluation of the third-party deployed PDF malware detector PDFrate using
our framework Mimicus attempted to estimate its robustness from a broader perspec-
tive. To this end, we developed a taxonomy of exploratory attacks based on the level
of knowledge available to adversaries about the target system. We identified the feature
set, training dataset and classifier details as the main components of machine learning
based malware detectors. Each of the 8 combinations of high or low knowledge about
these 3 components is called an evasion scenario. We limited our analysis to the 4 sce-
narios in which the feature set is known, guided by the idea that the remaining scenarios
can be reduced to one of these 4 if the feature set can be deduced in some way. Our
results show that an attacker can significantly degrade the accuracy of a learning-based
system if he has sufficient knowledge about the system. The main factor that contributes
to this insecurity is the knowledge of features, while the remaining 2 components can
be approximated well from surrogate sources. However, even without access to any of
the components, it was practically demonstrated in related work that security through
obscurity does little more than raise the cost of exploitation [49].

The main findings presented above indicate the need for substantial future research
in the security of machine learning applications for malware detection. Adversarial ma-
chine learning is a young discipline. The state of the art lacks a precise and comprehen-
sive method for security evaluation and the theoretical and practical limits remain largely
unknown. Consequently, a method is demonstrated to be insecure when a vulnerability
is discovered, but there exists no mechanism to prove its security in the absence of vul-
nerabilities. However negative, this result does not present a fundamental limitation to
the applicability of machine learning methods in this context. In fact, it is true for most
other areas of security as well. Until a provably secure method can be developed, the
common approach is to evolve the methods in reaction to novel attacks. A good example
is PJScan which was independently successfully attacked and improved twice after its
publication.

In the long term, more understanding is required about the relationships between ef-
fectiveness, efficiency and security. Does there fundamentally exist a trade-off between
security and effectiveness as implied by a lot of existing work? Can machine learning be
made provably secure, similar to cryptography? Would it still remain efficient? Finding
an answer to these and other questions exploring the theoretical and practical limits of
adversarial machine learning is an indispensable step towards its final goal – the devel-

126

opment of effective, efficient and secure methods.

127

Chapter 6 Summary and Conclusions

128

Appendix A

PDFrate Feature Reimplementation
The Mimicus experimental framework supports reading of 135 PDFrate features (66%)
described in [86]. The remaining 67 of 202 features were not disclosed. Modification of
values of the following 68 features (33%) is supported:

• Features whose value can only be incremented (33):
count_acroform count_image_xlarge
count_acroform_obs count_image_xsmall
count_action count_javascript
count_action_obs count_javascript_obs
count_box_a4 count_js
count_box_legal count_js_obs
count_box_letter count_obj
count_box_other count_objstm
count_box_overlap count_objstm_obs
count_endobj count_page
count_endstream count_page_obs
count_eof count_startxref
count_font count_stream
count_font_obs count_trailer
count_image_large count_xref
count_image_med size
count_image_small

• Features whose value can be both incremented and decremented (35):
author_dot keywords_dot subject_dot
author_lc keywords_lc subject_lc
author_num keywords_num subject_num
author_oth keywords_oth subject_oth
author_uc keywords_uc subject_uc
createdate_ts moddate_ts title_dot
createdate_tz moddate_tz title_lc
creator_dot producer_dot title_num
creator_lc producer_lc title_oth
creator_num producer_num title_uc
creator_oth producer_oth version
creator_uc producer_uc

129

Abbreviations

API Application Programming Interface
CVE Common Vulnerabilities and Exposures
HTML HyperText Markup Language
JS JavaScript
ODF Open Document Format
OOXML Office Open XML
PDF Portable Document Format
PE Portable Executable
SVG Scalable Vector Graphics
SVM Support Vector Machine
XFA Adobe XML Forms Architecture
XML Extensible Markup Language

131

Abbreviations

132

Bibliography
[1] Periklis Akritidis, Evangelos P. Markatos, Michalis Polychronakis, and Kostas G.

Anagnostakis. STRIDE: polymorphic sled detection through instruction sequence
analysis. In Ryôichi Sasaki, Sihan Qing, Eiji Okamoto, and Hiroshi Yoshiura,
editors, Security and Privacy in the Age of Ubiquitous Computing, IFIP TC11 20th
International Conference on Information Security (SEC 2005), May 30 - June 1,
2005, Chiba, Japan, volume 181 of IFIP, pages 375–392. Springer, 2005.

[2] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D.
Tygar. Can machine learning be secure? In Ferng-Ching Lin, Der-Tsai Lee,
Bao-Shuh Paul Lin, Shiuhpyng Shieh, and Sushil Jajodia, editors, Proceedings of
the 2006 ACM Symposium on Information, Computer and Communications Se-
curity, ASIACCS 2006, Taipei, Taiwan, March 21-24, 2006, pages 16–25. ACM,
2006. doi: 10.1145/1128817.1128824. URL http://doi.acm.org/10.1145/
1128817.1128824.

[3] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. The se-
curity of machine learning. Machine Learning, 81(2):121–148, 2010. doi:
10.1007/s10994-010-5188-5. URL http://dx.doi.org/10.1007/s10994-
010-5188-5.

[4] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Krügel,
and Engin Kirda. Scalable, behavior-based malware clustering. In Proceedings of
the Network and Distributed System Security Symposium, NDSS 2009, San Diego,
California, USA, 8th February - 11th February 2009. The Internet Society, 2009.
URL http://www.isoc.org/isoc/conferences/ndss/09/pdf/11.pdf.

[5] Battista Biggio, Giorgio Fumera, and Fabio Roli. Multiple classifier systems for
adversarial classification tasks. In Jon Atli Benediktsson, Josef Kittler, and Fabio
Roli, editors, Multiple Classifier Systems, 8th International Workshop, MCS 2009,
Reykjavik, Iceland, June 10-12, 2009. Proceedings, volume 5519 of Lecture Notes
in Computer Science, pages 132–141. Springer, 2009. doi: 10.1007/978-3-642-
02326-2_14. URL http://dx.doi.org/10.1007/978-3-642-02326-2_14.

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against sup-
port vector machines. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012.
icml.cc / Omnipress, 2012. URL http://icml.cc/2012/papers/880.pdf.

133

http://doi.acm.org/10.1145/1128817.1128824
http://doi.acm.org/10.1145/1128817.1128824
http://dx.doi.org/10.1007/s10994-010-5188-5
http://dx.doi.org/10.1007/s10994-010-5188-5
http://www.isoc.org/isoc/conferences/ndss/09/pdf/11.pdf
http://dx.doi.org/10.1007/978-3-642-02326-2_14
http://icml.cc/2012/papers/880.pdf

Bibliography

[7] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against ma-
chine learning at test time. In Hendrik Blockeel, Kristian Kersting, Siegfried Ni-
jssen, and Filip Zelezný, editors, Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2013, Prague, Czech Repub-
lic, September 23-27, 2013, Proceedings, Part III, volume 8190 of Lecture Notes
in Computer Science, pages 387–402. Springer, 2013. doi: 10.1007/978-3-642-
40994-3_25. URL http://dx.doi.org/10.1007/978-3-642-40994-3_25.

[8] Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of pat-
tern classifiers under attack. IEEE Trans. Knowl. Data Eng., 26(4):984–996,
2014. doi: 10.1109/TKDE.2013.57. URL http://dx.doi.org/10.1109/
TKDE.2013.57.

[9] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[10] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
doi: 10.1023/A:1010933404324. URL http://dx.doi.org/10.1023/A:
1010933404324.

[11] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984. ISBN 0-534-98053-8.

[12] Michael Brennan, Sadia Afroz, and Rachel Greenstadt. Adversarial stylometry:
Circumventing authorship recognition to preserve privacy and anonymity. ACM
Trans. Inf. Syst. Secur., 15(3):12:1–12:22, 2012. doi: 10.1145/2382448.2382450.
URL http://doi.acm.org/10.1145/2382448.2382450.

[13] Michael Brückner, Christian Kanzow, and Tobias Scheffer. Static prediction
games for adversarial learning problems. Journal of Machine Learning Re-
search, 13:2617–2654, 2012. URL http://dl.acm.org/citation.cfm?id=
2503326.

[14] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel. Prophiler:
a fast filter for the large-scale detection of malicious web pages. In Sadagopan
Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and
Ravi Kumar, editors, Proceedings of the 20th International Conference on World
Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011, pages 197–
206. ACM, 2011. doi: 10.1145/1963405.1963436. URL http://doi.acm.org/
10.1145/1963405.1963436.

[15] Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine
unlearning. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015, pages 463–480. IEEE Computer Society, 2015.
doi: 10.1109/SP.2015.35. URL http://dx.doi.org/10.1109/SP.2015.35.

134

http://dx.doi.org/10.1007/978-3-642-40994-3_25
http://dx.doi.org/10.1109/TKDE.2013.57
http://dx.doi.org/10.1109/TKDE.2013.57
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://doi.acm.org/10.1145/2382448.2382450
http://dl.acm.org/citation.cfm?id=2503326
http://dl.acm.org/citation.cfm?id=2503326
http://doi.acm.org/10.1145/1963405.1963436
http://doi.acm.org/10.1145/1963405.1963436
http://dx.doi.org/10.1109/SP.2015.35

Bibliography

[16] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht Bhaskar, and
Mu Zhang. Extract me if you can: Abusing PDF parsers in malware detectors. In
23nd Annual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016. The Internet Society, 2016.
URL http://www.internetsociety.org/sites/default/files/blogs-
media/extract-me-if-you-can-abusing-pdf-parsers-malware-
detectors.pdf.

[17] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM TIST, 2(3):27:1–27:27, 2011. doi: 10.1145/1961189.1961199.
URL http://doi.acm.org/10.1145/1961189.1961199.

[18] Cisco. 2014 annual security report, 2014. URL http://www.cisco.com/web/
offer/gist_ty2_asset/Cisco_2014_ASR.pdf. Accessed 13 Apr 2015.

[19] William W. Cohen. Fast effective rule induction. In Armand Prieditis and Stuart J.
Russell, editors, Machine Learning, Proceedings of the Twelfth International Con-
ference on Machine Learning, Tahoe City, California, USA, July 9-12, 1995, pages
115–123. Morgan Kaufmann, 1995.

[20] Igino Corona, Davide Maiorca, Davide Ariu, and Giorgio Giacinto. Lux0r: De-
tection of malicious pdf-embedded javascript code through discriminant analysis
of API references. In Christos Dimitrakakis, Aikaterini Mitrokotsa, Benjamin
I. P. Rubinstein, and Gail-Joon Ahn, editors, Proceedings of the 2014 Workshop
on Artificial Intelligent and Security Workshop, AISec 2014, Scottsdale, AZ, USA,
November 7, 2014, pages 47–57. ACM, 2014. doi: 10.1145/2666652.2666657.
URL http://doi.acm.org/10.1145/2666652.2666657.

[21] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learn-
ing, 20(3):273–297, 1995. doi: 10.1007/BF00994018. URL http://dx.doi.
org/10.1007/BF00994018.

[22] Marco Cova, Christopher Krügel, and Giovanni Vigna. Detection and analysis
of drive-by-download attacks and malicious javascript code. In Michael Rappa,
Paul Jones, Juliana Freire, and Soumen Chakrabarti, editors, Proceedings of the
19th International Conference on World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, pages 281–290. ACM, 2010. doi: 10.1145/

1772690.1772720. URL http://doi.acm.org/10.1145/1772690.1772720.

[23] Charlie Curtsinger, Benjamin Livshits, Benjamin G. Zorn, and Christian Seifert.
ZOZZLE: fast and precise in-browser javascript malware detection. In 20th
USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011, Pro-
ceedings. USENIX Association, 2011. URL http://static.usenix.org/
events/sec11/tech/full_papers/Curtsinger.pdf.

135

http://www.internetsociety.org/sites/default/files/blogs-media/extract-me-if-you-can-abusing-pdf-parsers-malware-detectors.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/extract-me-if-you-can-abusing-pdf-parsers-malware-detectors.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/extract-me-if-you-can-abusing-pdf-parsers-malware-detectors.pdf
http://doi.acm.org/10.1145/1961189.1961199
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://doi.acm.org/10.1145/2666652.2666657
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018
http://doi.acm.org/10.1145/1772690.1772720
http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf

Bibliography

[24] Ofer Dekel, Ohad Shamir, and Lin Xiao. Learning to classify with miss-
ing and corrupted features. Machine Learning, 81(2):149–178, 2010. doi:
10.1007/s10994-009-5124-8. URL http://dx.doi.org/10.1007/s10994-
009-5124-8.

[25] Andreas Dewald, Thorsten Holz, and Felix C. Freiling. Adsandbox: sandbox-
ing javascript to fight malicious websites. In Sung Y. Shin, Sascha Ossowski,
Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung, editors, Pro-
ceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre,
Switzerland, March 22-26, 2010, pages 1859–1864. ACM, 2010. doi: 10.1145/

1774088.1774482. URL http://doi.acm.org/10.1145/1774088.1774482.

[26] Cynthia Dwork. Differential privacy: A survey of results. In Manindra Agrawal,
Ding-Zhu Du, Zhenhua Duan, and Angsheng Li, editors, Theory and Applications
of Models of Computation, 5th International Conference, TAMC 2008, Xi’an,
China, April 25-29, 2008. Proceedings, volume 4978 of Lecture Notes in Com-
puter Science, pages 1–19. Springer, 2008. doi: 10.1007/978-3-540-79228-4_1.
URL http://dx.doi.org/10.1007/978-3-540-79228-4_1.

[27] Manuel Egele, Gianluca Stringhini, Christopher Krügel, and Giovanni Vi-
gna. COMPA: detecting compromised accounts on social networks. In
20th Annual Network and Distributed System Security Symposium, NDSS
2013, San Diego, California, USA, February 24-27, 2013. The Internet So-
ciety, 2013. URL http://internetsociety.org/doc/compa-detecting-
compromised-accounts-social-networks.

[28] M. Engelberth, C. Willems, and Holz. T. MalOffice – analysis of various applica-
tion data files. In Virus Bulletin International Conference, 2009.

[29] B. Feinstein and D. Peck. Caffeine Monkey: Automated collection, detection and
analysis of malicious JavaScript. In Black Hat USA, 2007.

[30] Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: for-
mal reasoning and practical techniques. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, Ioctober 30 - November 3, 2006, pages 59–68. ACM, 2006. doi: 10.1145/

1180405.1180414. URL http://doi.acm.org/10.1145/1180405.1180414.

[31] Prahlad Fogla, Monirul I. Sharif, Roberto Perdisci, Oleg M. Kolesnikov,
and Wenke Lee. Polymorphic blending attacks. In Angelos D.
Keromytis, editor, Proceedings of the 15th USENIX Security Symposium,
Vancouver, BC, Canada, July 31 - August 4, 2006. USENIX Associa-
tion, 2006. URL https://www.usenix.org/conference/15th-usenix-
security-symposium/polymorphic-blending-attacks.

136

http://dx.doi.org/10.1007/s10994-009-5124-8
http://dx.doi.org/10.1007/s10994-009-5124-8
http://doi.acm.org/10.1145/1774088.1774482
http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://internetsociety.org/doc/compa-detecting-compromised-accounts-social-networks
http://internetsociety.org/doc/compa-detecting-compromised-accounts-social-networks
http://doi.acm.org/10.1145/1180405.1180414
https://www.usenix.org/conference/15th-usenix-security-symposium/polymorphic-blending-attacks
https://www.usenix.org/conference/15th-usenix-security-symposium/polymorphic-blending-attacks

Bibliography

[32] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni Vigna. Analyzing
and detecting malicious flash advertisements. In Twenty-Fifth Annual Computer
Security Applications Conference, ACSAC 2009, Honolulu, Hawaii, 7-11 Decem-
ber 2009, pages 363–372. IEEE Computer Society, 2009. doi: 10.1109/ACSAC.
2009.41. URL http://dx.doi.org/10.1109/ACSAC.2009.41.

[33] David Mandell Freeman. Using naive bayes to detect spammy names in social
networks. In AISec’13, Proceedings of the 2013 ACM Workshop on Artificial
Intelligence and Security, Co-located with CCS 2013, Berlin, Germany, November
4, 2013, pages 3–12, 2013.

[34] Amir Globerson and Sam T. Roweis. Nightmare at test time: robust learning
by feature deletion. In William W. Cohen and Andrew Moore, editors, Ma-
chine Learning, Proceedings of the Twenty-Third International Conference (ICML
2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, volume 148 of ACM
International Conference Proceeding Series, pages 353–360. ACM, 2006. doi:
10.1145/1143844.1143889. URL http://doi.acm.org/10.1145/1143844.
1143889.

[35] Guofei Gu, Phillip A. Porras, Vinod Yegneswaran, and Martin W. Fong.
Bothunter: Detecting malware infection through ids-driven dialog correlation.
In Niels Provos, editor, Proceedings of the 16th USENIX Security Sympo-
sium, Boston, MA, USA, August 6-10, 2007. USENIX Association, 2007.
URL https://www.usenix.org/conference/16th-usenix-security-
symposium/bothunter-detecting-malware-infection-through-ids-
driven.

[36] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
data mining, inference and prediction. Springer series in statistics. Springer, New
York, N.Y., 2009. 2nd edition.

[37] K. Itabashi. Portable document format malware. Symantec white paper, 2011.

[38] Suman Jana and Vitaly Shmatikov. Abusing file processing in malware detectors
for fun and profit. In IEEE Symposium on Security and Privacy, SP 2012, 21-
23 May 2012, San Francisco, California, USA, pages 80–94. IEEE Computer
Society, 2012. doi: 10.1109/SP.2012.15. URL http://dx.doi.org/10.1109/
SP.2012.15.

[39] Quentin Jerome, Samuel Marchal, Thomas Engel, et al. Advanced detection tool
for pdf threats. In Data Privacy Management and Autonomous Spontaneous Se-
curity, pages 300–315. Springer, 2014.

137

http://dx.doi.org/10.1109/ACSAC.2009.41
http://doi.acm.org/10.1145/1143844.1143889
http://doi.acm.org/10.1145/1143844.1143889
https://www.usenix.org/conference/16th-usenix-security-symposium/bothunter-detecting-malware-infection-through-ids-driven
https://www.usenix.org/conference/16th-usenix-security-symposium/bothunter-detecting-malware-infection-through-ids-driven
https://www.usenix.org/conference/16th-usenix-security-symposium/bothunter-detecting-malware-infection-through-ids-driven
http://dx.doi.org/10.1109/SP.2012.15
http://dx.doi.org/10.1109/SP.2012.15

Bibliography

[40] Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan Islam, Brad Miller,
Michael Carl Tschantz, Rachel Greenstadt, Anthony D. Joseph, and J. D. Ty-
gar. Approaches to adversarial drift. In Ahmad-Reza Sadeghi, Blaine Nelson,
Christos Dimitrakakis, and Elaine Shi, editors, AISec’13, Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security, Co-located with CCS 2013,
Berlin, Germany, November 4, 2013, pages 99–110. ACM, 2013. doi: 10.1145/

2517312.2517320. URL http://doi.acm.org/10.1145/2517312.2517320.

[41] M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal
on Computing, 22(4):807–837, 1993.

[42] Marius Kloft and Pavel Laskov. Security analysis of online centroid anomaly
detection. Journal of Machine Learning Research, 13:3681–3724, 2012. URL
http://dl.acm.org/citation.cfm?id=2503359.

[43] Jeremy Z. Kolter and Marcus A. Maloof. Learning to detect and classify malicious
executables in the wild. Journal of Machine Learning Research, 6:2721–2744,
2006. URL http://www.jmlr.org/papers/v7/kolter06a.html.

[44] Pavel Laskov and Marius Kloft. A framework for quantitative security analysis
of machine learning. In Dirk Balfanz and Jessica Staddon, editors, Proceedings
of the 2nd ACM Workshop on Security and Artificial Intelligence, AISec 2009,
Chicago, Illinois, USA, November 9, 2009, pages 1–4. ACM, 2009. doi: 10.1145/

1654988.1654990. URL http://doi.acm.org/10.1145/1654988.1654990.

[45] Pavel Laskov and Nedim Šrndić. Static detection of malicious javascript-bearing
PDF documents. In Robert H’obbes’ Zakon, John P. McDermott, and Michael E.
Locasto, editors, Twenty-Seventh Annual Computer Security Applications Con-
ference, ACSAC 2011, Orlando, FL, USA, 5-9 December 2011, pages 373–382.
ACM, 2011. doi: 10.1145/2076732.2076785. URL http://doi.acm.org/10.
1145/2076732.2076785.

[46] Quoc V. Le. Building high-level features using large scale unsupervised learn-
ing. In IEEE International Conference on Acoustics, Speech and Signal Process-
ing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013, pages 8595–8598.
IEEE, 2013. doi: 10.1109/ICASSP.2013.6639343. URL http://dx.doi.org/
10.1109/ICASSP.2013.6639343.

[47] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. A data mining framework
for building intrusion detection models. In 1999 IEEE Symposium on Security
and Privacy, Oakland, California, USA, May 9-12, 1999, pages 120–132. IEEE
Computer Society, 1999. doi: 10.1109/SECPRI.1999.766909. URL http://dx.
doi.org/10.1109/SECPRI.1999.766909.

138

http://doi.acm.org/10.1145/2517312.2517320
http://dl.acm.org/citation.cfm?id=2503359
http://www.jmlr.org/papers/v7/kolter06a.html
http://doi.acm.org/10.1145/1654988.1654990
http://doi.acm.org/10.1145/2076732.2076785
http://doi.acm.org/10.1145/2076732.2076785
http://dx.doi.org/10.1109/ICASSP.2013.6639343
http://dx.doi.org/10.1109/ICASSP.2013.6639343
http://dx.doi.org/10.1109/SECPRI.1999.766909
http://dx.doi.org/10.1109/SECPRI.1999.766909

Bibliography

[48] Wei-Jen Li, Salvatore J. Stolfo, Angelos Stavrou, Elli Androulaki, and Angelos D.
Keromytis. A study of malcode-bearing documents. In Bernhard M. Hämmerli
and Robin Sommer, editors, Detection of Intrusions and Malware, and Vulnera-
bility Assessment, 4th International Conference, DIMVA 2007, Lucerne, Switzer-
land, July 12-13, 2007, Proceedings, volume 4579 of Lecture Notes in Computer
Science, pages 231–250. Springer, 2007. doi: 10.1007/978-3-540-73614-1_14.
URL http://dx.doi.org/10.1007/978-3-540-73614-1_14.

[49] Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, and Gang Yang. Cracking
classifiers for evasion: A case study on the google’s phishing pages filter. In
Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks, and Ben Y.
Zhao, editors, Proceedings of the 25th International Conference on World Wide
Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016, pages 345–356. ACM,
2016. doi: 10.1145/2872427.2883060. URL http://doi.acm.org/10.1145/
2872427.2883060.

[50] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. J. Cryptology,
15(3):177–206, 2002. doi: 10.1007/s00145-001-0019-2. URL http://dx.doi.
org/10.1007/s00145-001-0019-2.

[51] Daiping Liu, Haining Wang, and Angelos Stavrou. Detecting malicious javascript
in PDF through document instrumentation. In 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN 2014, Atlanta,
GA, USA, June 23-26, 2014, pages 100–111. IEEE Computer Society, 2014. doi:
10.1109/DSN.2014.92. URL http://dx.doi.org/10.1109/DSN.2014.92.

[52] Daniel Lowd and Christopher Meek. Good word attacks on statistical spam fil-
ters. In CEAS 2005 - Second Conference on Email and Anti-Spam, July 21-22,
2005, Stanford University, California, USA, 2005. URL http://www.ceas.cc/
papers-2005/125.pdf.

[53] Xun Lu, Jianwei Zhuge, Ruoyu Wang, Yinzhi Cao, and Yan Chen. De-obfuscation
and detection of malicious PDF files with high accuracy. In 46th Hawaii Interna-
tional Conference on System Sciences, HICSS 2013, Wailea, HI, USA, January 7-
10, 2013, pages 4890–4899. IEEE Computer Society, 2013. doi: 10.1109/HICSS.
2013.166. URL http://dx.doi.org/10.1109/HICSS.2013.166.

[54] Michael Maass, William L. Scherlis, and Jonathan Aldrich. In-nimbo sandboxing.
In Laurie A. Williams, David M. Nicol, and Munindar P. Singh, editors, Proceed-
ings of the 2014 Symposium and Bootcamp on the Science of Security, HotSoS
2014, Raleigh, NC, USA, April 08 - 09, 2014, page 1. ACM, 2014. doi: 10.1145/

2600176.2600177. URL http://doi.acm.org/10.1145/2600176.2600177.

139

http://dx.doi.org/10.1007/978-3-540-73614-1_14
http://doi.acm.org/10.1145/2872427.2883060
http://doi.acm.org/10.1145/2872427.2883060
http://dx.doi.org/10.1007/s00145-001-0019-2
http://dx.doi.org/10.1007/s00145-001-0019-2
http://dx.doi.org/10.1109/DSN.2014.92
http://www.ceas.cc/papers-2005/125.pdf
http://www.ceas.cc/papers-2005/125.pdf
http://dx.doi.org/10.1109/HICSS.2013.166
http://doi.acm.org/10.1145/2600176.2600177

Bibliography

[55] Matthew V. Mahoney and Philip K. Chan. Learning rules for anomaly detection
of hostile network traffic. In Proceedings of the 3rd IEEE International Confer-
ence on Data Mining (ICDM 2003), 19-22 December 2003, Melbourne, Florida,
USA, pages 601–604. IEEE Computer Society, 2003. doi: 10.1109/ICDM.2003.
1250987. URL http://dx.doi.org/10.1109/ICDM.2003.1250987.

[56] Davide Maiorca, Giorgio Giacinto, and Igino Corona. A pattern recognition sys-
tem for malicious PDF files detection. In Petra Perner, editor, Machine Learn-
ing and Data Mining in Pattern Recognition - 8th International Conference,
MLDM 2012, Berlin, Germany, July 13-20, 2012. Proceedings, volume 7376
of Lecture Notes in Computer Science, pages 510–524. Springer, 2012. doi:
10.1007/978-3-642-31537-4_40. URL http://dx.doi.org/10.1007/978-
3-642-31537-4_40.

[57] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Looking at the bag is
not enough to find the bomb: an evasion of structural methods for malicious
PDF files detection. In Kefei Chen, Qi Xie, Weidong Qiu, Ninghui Li, and
Wen-Guey Tzeng, editors, 8th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, Hangzhou, China - May 08 - 10,
2013, pages 119–130. ACM, 2013. doi: 10.1145/2484313.2484327. URL
http://doi.acm.org/10.1145/2484313.2484327.

[58] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
Anthony D. Joseph, and J. D. Tygar. Reviewer integration and performance mea-
surement for malware detection. In Juan Caballero, Urko Zurutuza, and Ricardo J.
Rodríguez, editors, Detection of Intrusions and Malware, and Vulnerability As-
sessment - 13th International Conference, DIMVA 2016, San Sebastián, Spain,
July 7-8, 2016, Proceedings, volume 9721 of Lecture Notes in Computer Sci-
ence, pages 122–141. Springer, 2016. doi: 10.1007/978-3-319-40667-1_7. URL
http://dx.doi.org/10.1007/978-3-319-40667-1_7.

[59] Jose Nazario. Phoneyc: A virtual client honeypot. In Wenke Lee, edi-
tor, 2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats,
LEET ’09, Boston, MA, USA, April 21, 2009. USENIX Association,
2009. URL https://www.usenix.org/conference/leet-09/phoneyc-
virtual-client-honeypot.

[60] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Benjamin
I. P. Rubinstein, Udam Saini, Charles A. Sutton, J. Doug Tygar, and Kai Xia. Ex-
ploiting machine learning to subvert your spam filter. In Fabian Monrose, editor,
First USENIX Workshop on Large-Scale Exploits and Emergent Threats, LEET
’08, San Francisco, CA, USA, April 15, 2008, Proceedings. USENIX Association,

140

http://dx.doi.org/10.1109/ICDM.2003.1250987
http://dx.doi.org/10.1007/978-3-642-31537-4_40
http://dx.doi.org/10.1007/978-3-642-31537-4_40
http://doi.acm.org/10.1145/2484313.2484327
http://dx.doi.org/10.1007/978-3-319-40667-1_7
https://www.usenix.org/conference/leet-09/phoneyc-virtual-client-honeypot
https://www.usenix.org/conference/leet-09/phoneyc-virtual-client-honeypot

Bibliography

2008. URL http://www.usenix.org/events/leet08/tech/full_papers/
nelson/nelson.pdf.

[61] Nir Nissim, Aviad Cohen, Robert Moskovitch, Asaf Shabtai, Mattan Edry, Oren
Bar-Ad, and Yuval Elovici. ALPD: active learning framework for enhancing
the detection of malicious PDF files. In IEEE Joint Intelligence and Secu-
rity Informatics Conference, JISIC 2014, The Hague, The Netherlands, 24-26
September, 2014, pages 91–98. IEEE, 2014. doi: 10.1109/JISIC.2014.23. URL
http://dx.doi.org/10.1109/JISIC.2014.23.

[62] Nir Nissim, Aviad Cohen, Chanan Glezer, and Yuval Elovici. Detection of mali-
cious PDF files and directions for enhancements: A state-of-the art survey. Com-
puters & Security, 48:246–266, 2015. doi: 10.1016/j.cose.2014.10.014. URL
http://dx.doi.org/10.1016/j.cose.2014.10.014.

[63] Nir Nissim, Aviad Cohen, Robert Moskovitch, Asaf Shabtai, Matan Edri, Oren
Bar-Ad, and Yuval Elovici. Keeping pace with the creation of new malicious PDF
files using an active-learning based detection framework. Security Informatics, 5
(1):1, 2016. doi: 10.1186/s13388-016-0026-3. URL http://dx.doi.org/10.
1186/s13388-016-0026-3.

[64] Gabriel Oberreuter, Gaston L’Huillier, Sebastián A. Ríos, and Juan D. Velásquez.
Outlier-based approaches for intrinsic and external plagiarism detection. In An-
dreas König, Andreas Dengel, Knut Hinkelmann, Koichi Kise, Robert J. Howlett,
and Lakhmi C. Jain, editors, Knowlege-Based and Intelligent Information and
Engineering Systems - 15th International Conference, KES 2011, Kaiserslautern,
Germany, September 12-14, 2011, Proceedings, Part II, volume 6882 of Lecture
Notes in Computer Science, pages 11–20. Springer, 2011. doi: 10.1007/978-
3-642-23863-5_2. URL http://dx.doi.org/10.1007/978-3-642-23863-
5_2.

[65] Timon Van Overveldt, Christopher Kruegel, and Giovanni Vigna. Flashdetect:
Actionscript 3 malware detection. In Davide Balzarotti, Salvatore J. Stolfo, and
Marco Cova, editors, Research in Attacks, Intrusions, and Defenses - 15th In-
ternational Symposium, RAID 2012, Amsterdam, The Netherlands, September
12-14, 2012. Proceedings, volume 7462 of Lecture Notes in Computer Science,
pages 274–293. Springer, 2012. doi: 10.1007/978-3-642-33338-5_14. URL
http://dx.doi.org/10.1007/978-3-642-33338-5_14.

[66] Emanuel Parzen. On estimation of a probability density function and mode. The
Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

[67] PDFReference. Document management - Portable document format - Part 1: PDF
1.7, 2008. URL https://www.adobe.com/devnet/pdf/pdf_reference.
html. Accessed 23 Jan 2015.

141

http://www.usenix.org/events/leet08/tech/full_papers/nelson/nelson.pdf
http://www.usenix.org/events/leet08/tech/full_papers/nelson/nelson.pdf
http://dx.doi.org/10.1109/JISIC.2014.23
http://dx.doi.org/10.1016/j.cose.2014.10.014
http://dx.doi.org/10.1186/s13388-016-0026-3
http://dx.doi.org/10.1186/s13388-016-0026-3
http://dx.doi.org/10.1007/978-3-642-23863-5_2
http://dx.doi.org/10.1007/978-3-642-23863-5_2
http://dx.doi.org/10.1007/978-3-642-33338-5_14
https://www.adobe.com/devnet/pdf/pdf_reference.html
https://www.adobe.com/devnet/pdf/pdf_reference.html

Bibliography

[68] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learning Research, 12:2825–2830,
2011. URL http://dl.acm.org/citation.cfm?id=2078195.

[69] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M.I. Sharif. Misleading worm sig-
nature generators using deliberate noise injection. In 2006 IEEE Symposium on
Security and Privacy (S&P 2006), 21-24 May 2006, Berkeley, California, USA,
pages 17–31, 2006.

[70] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke Lee.
Mcpad: A multiple classifier system for accurate payload-based anomaly detec-
tion. Computer Networks, 53(6):864–881, 2009. doi: 10.1016/j.comnet.2008.11.
011. URL http://dx.doi.org/10.1016/j.comnet.2008.11.011.

[71] Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.
Comprehensive shellcode detection using runtime heuristics. In Carrie Gates,
Michael Franz, and John P. McDermott, editors, Twenty-Sixth Annual Computer
Security Applications Conference, ACSAC 2010, Austin, Texas, USA, 6-10 De-
cember 2010, pages 287–296. ACM, 2010. doi: 10.1145/1920261.1920305. URL
http://doi.acm.org/10.1145/1920261.1920305.

[72] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian Monrose.
All your iframes point to us. In Paul C. van Oorschot, editor, Proceedings of
the 17th USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA,
USA, pages 1–16. USENIX Association, 2008. URL http://www.usenix.org/
events/sec08/tech/full_papers/provos/provos.pdf.

[73] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993. ISBN 1-55860-238-0.

[74] Babak Rahbarinia, Roberto Perdisci, Andrea Lanzi, and Kang Li. Peerrush:
Mining for unwanted P2P traffic. In Konrad Rieck, Patrick Stewin, and Jean-
Pierre Seifert, editors, Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment - 10th International Conference, DIMVA 2013, Berlin, Germany,
July 18-19, 2013. Proceedings, volume 7967 of Lecture Notes in Computer Sci-
ence, pages 62–82. Springer, 2013. doi: 10.1007/978-3-642-39235-1_4. URL
http://dx.doi.org/10.1007/978-3-642-39235-1_4.

[75] Moheeb Abu Rajab, Lucas Ballard, Noe Lutz, Panayiotis Mavromma-
tis, and Niels Provos. CAMP: content-agnostic malware protection. In
20th Annual Network and Distributed System Security Symposium, NDSS

142

http://dl.acm.org/citation.cfm?id=2078195
http://dx.doi.org/10.1016/j.comnet.2008.11.011
http://doi.acm.org/10.1145/1920261.1920305
http://www.usenix.org/events/sec08/tech/full_papers/provos/provos.pdf
http://www.usenix.org/events/sec08/tech/full_papers/provos/provos.pdf
http://dx.doi.org/10.1007/978-3-642-39235-1_4

Bibliography

2013, San Diego, California, USA, February 24-27, 2013. The Internet So-
ciety, 2013. URL http://internetsociety.org/doc/camp-content-
agnostic-malware-protection.

[76] Paruj Ratanaworabhan, V. Benjamin Livshits, and Benjamin G. Zorn. NOZZLE:
A defense against heap-spraying code injection attacks. In Fabian Monrose, ed-
itor, 18th USENIX Security Symposium, Montreal, Canada, August 10-14, 2009,
Proceedings, pages 169–186. USENIX Association, 2009. URL http://www.
usenix.org/events/sec09/tech/full_papers/ratanaworabhan.pdf.

[77] Recorded Future. Gone in a flash: Top 10 vulnerabilities used by exploit kits,
2015. URL https://www.recordedfuture.com/top-vulnerabilities-
2015/. Accessed 15 Nov 2015.

[78] Konrad Rieck and Pavel Laskov. Language models for detection of unknown at-
tacks in network traffic. Journal in Computer Virology, 2(4):243–256, 2007. doi:
10.1007/s11416-006-0030-0. URL http://dx.doi.org/10.1007/s11416-
006-0030-0.

[79] Konrad Rieck and Pavel Laskov. Linear-time computation of similarity measures
for sequential data. Journal of Machine Learning Research, 9:23–48, 2008. doi:
10.1145/1390681.1390683. URL http://doi.acm.org/10.1145/1390681.
1390683.

[80] Konrad Rieck, Tammo Krueger, and Andreas Dewald. Cujo: efficient detection
and prevention of drive-by-download attacks. In Carrie Gates, Michael Franz, and
John P. McDermott, editors, Twenty-Sixth Annual Computer Security Applications
Conference, ACSAC 2010, Austin, Texas, USA, 6-10 December 2010, pages 31–
39. ACM, 2010. doi: 10.1145/1920261.1920267. URL http://doi.acm.org/
10.1145/1920261.1920267.

[81] Fabio Roli, Giorgio Giacinto, and Gianni Vernazza. Methods for designing
multiple classifier systems. In Josef Kittler and Fabio Roli, editors, Multi-
ple Classifier Systems, Second International Workshop, MCS 2001 Cambridge,
UK, July 2-4, 2001, Proceedings, volume 2096 of Lecture Notes in Computer
Science, pages 78–87. Springer, 2001. doi: 10.1007/3-540-48219-9_8. URL
http://dx.doi.org/10.1007/3-540-48219-9_8.

[82] Florian Schmitt, Jan Gassen, and Elmar Gerhards-Padilla. PDF scrutinizer: De-
tecting javascript-based attacks in PDF documents. In Nora Cuppens-Boulahia,
Philip Fong, Joaquín García-Alfaro, Stephen Marsh, and Jan-Philipp Steghöfer,
editors, Tenth Annual International Conference on Privacy, Security and Trust,
PST 2012, Paris, France, July 16-18, 2012, pages 104–111. IEEE Computer So-
ciety, 2012. doi: 10.1109/PST.2012.6297926. URL http://dx.doi.org/10.
1109/PST.2012.6297926.

143

http://internetsociety.org/doc/camp-content-agnostic-malware-protection
http://internetsociety.org/doc/camp-content-agnostic-malware-protection
http://www.usenix.org/events/sec09/tech/full_papers/ratanaworabhan.pdf
http://www.usenix.org/events/sec09/tech/full_papers/ratanaworabhan.pdf
https://www.recordedfuture.com/top-vulnerabilities-2015/
https://www.recordedfuture.com/top-vulnerabilities-2015/
http://dx.doi.org/10.1007/s11416-006-0030-0
http://dx.doi.org/10.1007/s11416-006-0030-0
http://doi.acm.org/10.1145/1390681.1390683
http://doi.acm.org/10.1145/1390681.1390683
http://doi.acm.org/10.1145/1920261.1920267
http://doi.acm.org/10.1145/1920261.1920267
http://dx.doi.org/10.1007/3-540-48219-9_8
http://dx.doi.org/10.1109/PST.2012.6297926
http://dx.doi.org/10.1109/PST.2012.6297926

Bibliography

[83] D. Sculley, Matthew Eric Otey, Michael Pohl, Bridget Spitznagel, John
Hainsworth, and Yunkai Zhou. Detecting adversarial advertisements in the wild.
In Chid Apté, Joydeep Ghosh, and Padhraic Smyth, editors, Proceedings of
the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Diego, CA, USA, August 21-24, 2011, pages 274–282. ACM,
2011. doi: 10.1145/2020408.2020455. URL http://doi.acm.org/10.1145/
2020408.2020455.

[84] M. Zubair Shafiq, Syed Ali Khayam, and Muddassar Farooq. Embedded mal-
ware detection using markov n-grams. In Diego Zamboni, editor, Detection of
Intrusions and Malware, and Vulnerability Assessment, 5th International Con-
ference, DIMVA 2008, Paris, France, July 10-11, 2008. Proceedings, volume
5137 of Lecture Notes in Computer Science, pages 88–107. Springer, 2008. doi:
10.1007/978-3-540-70542-0_5. URL http://dx.doi.org/10.1007/978-3-
540-70542-0_5.

[85] Charles Smutz and Angelos Stavrou. Malicious PDF detection using metadata
and structural features. In Robert H’obbes’ Zakon, editor, 28th Annual Computer
Security Applications Conference, ACSAC 2012, Orlando, FL, USA, 3-7 Decem-
ber 2012, pages 239–248. ACM, 2012. doi: 10.1145/2420950.2420987. URL
http://doi.acm.org/10.1145/2420950.2420987.

[86] Charles Smutz and Angelos Stavrou. Malicious PDF detection using metadata
and structural features. Technical Report GMU-CS-TR-2012-5, Department of
Computer Science, George Mason University, 4400 University Drive MSN 4A5,
Fairfax, VA 22030-4444 USA, 2012.

[87] Charles Smutz and Angelos Stavrou. When a tree falls: Using diversity in
ensemble classifiers to identify evasion in malware detectors. In 23nd An-
nual Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016. The Internet Society, 2016.
URL http://www.internetsociety.org/sites/default/files/blogs-
media/when-tree-falls-using-diversity-ensemble-classifiers-
identify-evasion-malware-detectors.pdf.

[88] Kevin Z. Snow, Srinivas Krishnan, Fabian Monrose, and Niels Provos. SHELLOS:
enabling fast detection and forensic analysis of code injection attacks. In 20th
USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011, Pro-
ceedings. USENIX Association, 2011. URL http://static.usenix.org/
events/sec11/tech/full_papers/Snow.pdf.

[89] Robin Sommer and Vern Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In 31st IEEE Symposium on Security
and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA,

144

http://doi.acm.org/10.1145/2020408.2020455
http://doi.acm.org/10.1145/2020408.2020455
http://dx.doi.org/10.1007/978-3-540-70542-0_5
http://dx.doi.org/10.1007/978-3-540-70542-0_5
http://doi.acm.org/10.1145/2420950.2420987
http://www.internetsociety.org/sites/default/files/blogs-media/when-tree-falls-using-diversity-ensemble-classifiers-identify-evasion-malware-detectors.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/when-tree-falls-using-diversity-ensemble-classifiers-identify-evasion-malware-detectors.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/when-tree-falls-using-diversity-ensemble-classifiers-identify-evasion-malware-detectors.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Snow.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Snow.pdf

Bibliography

pages 305–316. IEEE Computer Society, 2010. doi: 10.1109/SP.2010.25. URL
http://dx.doi.org/10.1109/SP.2010.25.

[90] Sophos. Security threat report 2014, 2014. URL http://www.sophos.com/en-
us/medialibrary/pdfs/other/sophos-security-threat-report-
2014.pdf. Accessed 13 Apr 2015.

[91] Nedim Šrndić and Pavel Laskov. Detection of malicious PDF files
based on hierarchical document structure. In 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San Diego, Cali-
fornia, USA, February 24-27, 2013. The Internet Society, 2013. URL
http://internetsociety.org/doc/detection-malicious-pdf-files-
based-hierarchical-document-structure.

[92] Nedim Šrndić and Pavel Laskov. Practical evasion of a learning-based classifier: A
case study. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014, pages 197–211. IEEE Computer Society, 2014. doi:
10.1109/SP.2014.20. URL http://dx.doi.org/10.1109/SP.2014.20.

[93] Nedim Šrndić and Pavel Laskov. Hidost: a static machine-learning-based detector
of malicious files. EURASIP J. Information Security, 2016:22, 2016. doi: 10.
1186/s13635-016-0045-0. URL http://dx.doi.org/10.1186/s13635-016-
0045-0.

[94] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Shady paths:
leveraging surfing crowds to detect malicious web pages. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, Novem-
ber 4-8, 2013, pages 133–144. ACM, 2013. doi: 10.1145/2508859.2516682. URL
http://doi.acm.org/10.1145/2508859.2516682.

[95] SWFSpec. Swf file format specification (version 19), 2012. URL https://www.
adobe.com/devnet/swf.html. Accessed 23 Jan 2015.

[96] Symantec. Internet security threat report. Symantec, 2010.

[97] Symantec. 2014 internet security threat report, volume 19, 2014. URL
https://www.symantec.com/content/en/us/enterprise/other_
resources/b-istr_main_report_v19_21291018.en-us.pdf. Accessed 13
Apr 2015.

[98] Symantec. 2014 internet security threat report, volume 19, appendix,
2014. URL https://www.symantec.com/content/en/us/enterprise/
other_resources/b-istr_appendices_v19_221284438.en-us.pdf. Ac-
cessed 13 Apr 2015.

145

http://dx.doi.org/10.1109/SP.2010.25
http://www.sophos.com/en-us/medialibrary/pdfs/other/sophos-security-threat-report-2014.pdf
http://www.sophos.com/en-us/medialibrary/pdfs/other/sophos-security-threat-report-2014.pdf
http://www.sophos.com/en-us/medialibrary/pdfs/other/sophos-security-threat-report-2014.pdf
http://internetsociety.org/doc/detection-malicious-pdf-files-based-hierarchical-document-structure
http://internetsociety.org/doc/detection-malicious-pdf-files-based-hierarchical-document-structure
http://dx.doi.org/10.1109/SP.2014.20
http://dx.doi.org/10.1186/s13635-016-0045-0
http://dx.doi.org/10.1186/s13635-016-0045-0
http://doi.acm.org/10.1145/2508859.2516682
https://www.adobe.com/devnet/swf.html
https://www.adobe.com/devnet/swf.html
https://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_appendices_v19_221284438.en-us.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_appendices_v19_221284438.en-us.pdf

Bibliography

[99] Symantec. 2015 internet security threat report, volume 20, 2015. URL http:
//know.symantec.com/LP=1123. Accessed 15 Apr 2015.

[100] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. Unsupervised
anomaly-based malware detection using hardware features. In Angelos Stavrou,
Herbert Bos, and Georgios Portokalidis, editors, Research in Attacks, Intrusions
and Defenses - 17th International Symposium, RAID 2014, Gothenburg, Sweden,
September 17-19, 2014. Proceedings, volume 8688 of Lecture Notes in Computer
Science, pages 109–129. Springer, 2014. doi: 10.1007/978-3-319-11379-1_6.
URL http://dx.doi.org/10.1007/978-3-319-11379-1_6.

[101] David M. J. Tax and Robert P. W. Duin. Support vector data description. Machine
Learning, 54(1):45–66, 2004. doi: 10.1023/B:MACH.0000008084.60811.49.
URL http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49.

[102] Olivier Thonnard. Vers un regroupement multicritères comme outil d’aide à
l’attribution d’attaque dans le cyber-espace. (A multi-criteria clustering ap-
proach to support attack attribution in cyberspace). PhD thesis, Télécom Paris-
Tech, France, 2010. URL https://tel.archives-ouvertes.fr/pastel-
00006003.

[103] Thomas Toth and Christopher Krügel. Accurate buffer overflow detection via
abstract payload execution. In RAID, pages 274–291, 2002. doi: 10.1007/3-540-
36084-0_15. URL http://dx.doi.org/10.1007/3-540-36084-0_15.

[104] Zacharias Tzermias, Giorgos Sykiotakis, Michalis Polychronakis, and Evange-
los P. Markatos. Combining static and dynamic analysis for the detection of ma-
licious documents. In Engin Kirda and Steven Hand, editors, Proceedings of the
Fourth European Workshop on System Security, EUROSEC’11, April 10, 2011,
Salzburg, Austria, page 4. ACM, 2011. doi: 10.1145/1972551.1972555. URL
http://doi.acm.org/10.1145/1972551.1972555.

[105] Gang Wang, Tianyi Wang, Haitao Zheng, and Ben Y. Zhao. Man vs. machine:
Practical adversarial detection of malicious crowdsourcing workers. In Kevin Fu
and Jaeyeon Jung, editors, Proceedings of the 23rd USENIX Security Symposium,
San Diego, CA, USA, August 20-22, 2014., pages 239–254. USENIX Association,
2014. URL https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/wang.

[106] Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo. Anagram: A content anomaly
detector resistant to mimicry attack. In Diego Zamboni and Christopher Krügel,
editors, Recent Advances in Intrusion Detection, 9th International Symposium,
RAID 2006, Hamburg, Germany, September 20-22, 2006, Proceedings, volume

146

http://know.symantec.com/LP=1123
http://know.symantec.com/LP=1123
http://dx.doi.org/10.1007/978-3-319-11379-1_6
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
https://tel.archives-ouvertes.fr/pastel-00006003
https://tel.archives-ouvertes.fr/pastel-00006003
http://dx.doi.org/10.1007/3-540-36084-0_15
http://doi.acm.org/10.1145/1972551.1972555
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang

Bibliography

4219 of Lecture Notes in Computer Science, pages 226–248. Springer, 2006. doi:
10.1007/11856214_12. URL http://dx.doi.org/10.1007/11856214_12.

[107] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Verbowski, Shuo
Chen, and Samuel T. King. Automated web patrol with strider honeymonkeys:
Finding web sites that exploit browser vulnerabilities. In Proceedings of the Net-
work and Distributed System Security Symposium, NDSS 2006, San Diego, Cal-
ifornia, USA. The Internet Society, 2006. URL http://www.isoc.org/isoc/
conferences/ndss/06/proceedings/papers/honeymonkeys.pdf.

[108] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift
and hidden contexts. Machine Learning, 23(1):69–101, 1996. doi: 10.1007/

BF00116900. URL http://dx.doi.org/10.1007/BF00116900.

[109] Carsten Willems, Thorsten Holz, and Felix C. Freiling. Toward automated dy-
namic malware analysis using cwsandbox. IEEE Security & Privacy, 5(2):32–39,
2007. doi: 10.1109/MSP.2007.45. URL http://dx.doi.org/10.1109/MSP.
2007.45.

[110] Julia Wolf. OMG WTF PDF. Chaos Communication Congress (CCC), December
2010.

[111] Christian Wressnegger, Frank Boldewin, and Konrad Rieck. Deobfuscating em-
bedded malware using probable-plaintext attacks. In Salvatore J. Stolfo, Ange-
los Stavrou, and Charles V. Wright, editors, Research in Attacks, Intrusions, and
Defenses - 16th International Symposium, RAID 2013, Rodney Bay, St. Lucia,
October 23-25, 2013. Proceedings, volume 8145 of Lecture Notes in Computer
Science, pages 164–183. Springer, 2013. doi: 10.1007/978-3-642-41284-4_9.
URL http://dx.doi.org/10.1007/978-3-642-41284-4_9.

[112] Christian Wressnegger, Guido Schwenk, Daniel Arp, and Konrad Rieck. A
close look on n-grams in intrusion detection: anomaly detection vs. classifica-
tion. In Ahmad-Reza Sadeghi, Blaine Nelson, Christos Dimitrakakis, and Elaine
Shi, editors, AISec’13, Proceedings of the 2013 ACM Workshop on Artificial In-
telligence and Security, Co-located with CCS 2013, Berlin, Germany, Novem-
ber 4, 2013, pages 67–76. ACM, 2013. doi: 10.1145/2517312.2517316. URL
http://doi.acm.org/10.1145/2517312.2517316.

[113] Christian Wressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Com-
prehensive analysis and detection of flash-based malware. In Juan Caballero, Urko
Zurutuza, and Ricardo J. Rodríguez, editors, Detection of Intrusions and Malware,
and Vulnerability Assessment - 13th International Conference, DIMVA 2016, San
Sebastián, Spain, July 7-8, 2016, Proceedings, volume 9721 of Lecture Notes

147

http://dx.doi.org/10.1007/11856214_12
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/papers/honeymonkeys.pdf
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/papers/honeymonkeys.pdf
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1109/MSP.2007.45
http://dx.doi.org/10.1109/MSP.2007.45
http://dx.doi.org/10.1007/978-3-642-41284-4_9
http://doi.acm.org/10.1145/2517312.2517316

Bibliography

in Computer Science, pages 101–121. Springer, 2016. doi: 10.1007/978-3-319-
40667-1_6. URL http://dx.doi.org/10.1007/978-3-319-40667-1_6.

[114] Weilin Xu, Yanjun Qi, and David Evans. Automatically evading clas-
sifiers: A case study on PDF malware classifiers. In 23nd Annual
Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016. The Internet Society, 2016.
URL http://www.internetsociety.org/sites/default/files/blogs-
media/automatically-evading-classifiers.pdf.

[115] Chao Yang, Robert Chandler Harkreader, and Guofei Gu. Die free or live hard?
empirical evaluation and new design for fighting evolving twitter spammers. In
Robin Sommer, Davide Balzarotti, and Gregor Maier, editors, Recent Advances
in Intrusion Detection - 14th International Symposium, RAID 2011, Menlo Park,
CA, USA, September 20-21, 2011. Proceedings, volume 6961 of Lecture Notes
in Computer Science, pages 318–337. Springer, 2011. doi: 10.1007/978-3-642-
23644-0_17. URL http://dx.doi.org/10.1007/978-3-642-23644-0_17.

148

http://dx.doi.org/10.1007/978-3-319-40667-1_6
http://www.internetsociety.org/sites/default/files/blogs-media/automatically-evading-classifiers.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/automatically-evading-classifiers.pdf
http://dx.doi.org/10.1007/978-3-642-23644-0_17

	1 Introduction
	1.1 Structure of the Dissertation
	1.2 Data Sources

	2 File Formats
	2.1 Portable Document Format
	2.2 SWF File Format

	3 A Case Study of Malicious PDF File Detection
	3.1 Introduction
	3.2 Prior Work
	3.3 JavaScript in PDF
	3.4 System Design
	3.4.1 Extraction of JavaScript Content
	3.4.2 Lexical Analysis
	3.4.3 Learning and Classification

	3.5 Data Collection and Analysis
	3.6 Experimental Evaluation
	3.6.1 Objectives and Evaluation Criteria
	3.6.2 Experimental Protocol
	3.6.3 Experimental Results
	3.6.4 Significant Features
	3.6.5 Throughput

	3.7 Discussion
	3.7.1 Later Work

	3.8 Conclusions

	4 A General Approach for Malware Detection in Non-Executable Files
	4.1 Introduction
	4.2 Prior Work
	4.3 Hierarchically Structured File Formats
	4.3.1 Portable Document Format (PDF)
	4.3.2 SWF File Format

	4.4 SL2013 System Design
	4.4.1 Feature Definition
	4.4.2 Extraction of PDF Document Structure
	4.4.3 Learning and Classification

	4.5 SL2013 Experimental Evaluation
	4.5.1 Experimental Datasets
	4.5.2 Experimental Protocol
	4.5.3 Experimental Results
	4.5.4 Throughput

	4.6 Hidost System Design
	4.6.1 Logical Structure Extraction
	4.6.2 Structural Path Consolidation
	4.6.3 Feature Selection
	4.6.4 Vectorization
	4.6.5 Learning and Classification

	4.7 Hidost Experimental Evaluation
	4.7.1 Experimental Datasets
	4.7.2 Experimental Protocol
	4.7.3 Experimental Results

	4.8 Discussion
	4.8.1 Extensibility to Other File Formats
	4.8.2 Adversarial Considerations
	4.8.3 Later Work

	4.9 Conclusions

	5 A Case Study of Machine Learning Classifier Evasion
	5.1 Introduction
	5.2 Evasion Attacks against Learning Systems
	5.2.1 Scenario F
	5.2.2 Scenario FT
	5.2.3 Scenario FC
	5.2.4 Scenario FTC

	5.3 PDFrate
	5.3.1 Features
	5.3.2 Datasets
	5.3.3 Classification Algorithm
	5.3.4 Adversarial Considerations

	5.4 Methodology
	5.4.1 Reimplementation of PDFrate Features
	5.4.2 Modification of PDFrate Feature Values
	5.4.3 Attack Algorithms

	5.5 Experimental Evaluation
	5.5.1 Datasets
	5.5.2 Classifiers
	5.5.3 Attack Scenarios
	5.5.4 Results
	5.5.5 Defensive Measures

	5.6 Interpretation of Attacks
	5.7 Discussion
	5.7.1 Later Work

	5.8 Conclusions

	6 Summary and Conclusions
	A PDFrate Feature Reimplementation
	Abbreviations
	Bibliography

