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A Geochemistry Ditty 

- by Christopher Pearce 

 

As I sit here watching my columns drip, 

I thought I’d put together a little writ. 

It’s about something that’s not always so plain to see; 

the hidden world of isotope geochemistry. 

 

It starts with a rock, water or gas 

that contains an element of interest with a particular mass. 

You crush, dissolve, evaporate or ash 

until it resembles nothing more than a residual splash. 

 

Next, with hands as steady as they can be, 

weigh out some spike so that you can perform ID. 

(Of course if you are feeling particularly pious, 

using a DS will enable you to correct for subsequent mass bias.) 

 

A drop more acid then on we go, 

to run the columns that flow slow slow slow! 

With resin and frits that just won’t sit right, 

they’ll keep you stuck in the lab until late at night. 

 

But finally it’s done and the samples are now ready 

to be aspirated and analysed by mass spectrometry. 

You tweak and you tune and you wait all day long, 

but the blasted machine won’t behave unless you play its favorite song. 

 

Eventually the standards come down to a value that’s alright, 

at just about the time you planned to call it a night. 

However the lure of the data means you set the run going, 

while keeping everything crossed that the nebulizer stays flowing. 

 

The next day… oh joy, what fun, can you see? 

A brand new delta value that’s been generated just by me! 

Now back to the lab to clean all that plastic; 

a few hundred more runs like this doesn’t sound too drastic… 

 

To end, while I think that it’s absolutely fab, 

sitting on my own running columns in the lab. 

I do so wish there was someone who wanted a PhD, 

that would come and run all these wretched samples for me! 
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Abstract 

The Neoarchean-Paleoproterozoic Transvaal Supergroup in South Africa 

contains the Campbellrand-Malmani carbonate platform (CMCP), which was deposited 

in shallow seawater between ~2.58 to 2.50 billion years ago, about 200 million years 

before the rise of atmospheric oxygen (Great Oxidation Event - GOE). The platform is 

mainly composed of alternating stromatolitic carbonates and siliciclastic mudrocks and 

is a prominent candidate for (isotope-) geochemical mapping to investigate the 

appearance of very small amounts of free oxygen that accumulated in shallow seawater 

preceding the GOE. Thus, the CMCP might represent an Archean ‘oxygen oasis’ in an 

otherwise anoxic environment.  

The goal of this study was to reconstruct the paleoenvironmental conditions and 

the redox state of the CMCP over its time of deposition in order to understand if and 

how an oxygen oasis evolved in this setting. To do so, carbonate and mudrock samples 

from the platform facies of the CMCP were analyzed for their major and trace element 

composition as well as carbon, molybdenum, and iron isotope signatures. Additionally, 

Raman analyses, synchrotron-based X-Ray absorption spectroscopy, and oxygen and 

silicon isotope analyses were conducted to gain information on the diagenetic history of 

the samples and their Fe speciation. Results were combined with sedimentological 

observations and published data from other studies about the slope facies of the CMCP.  

Geochemical indicators, such as Fe-to-Mn ratios and REE+Y abundances reveal a 

dependence on water depth and changing influxes of different water sources from the 

open ocean and the continent. Furthermore, those abundances reveal the preservation 

of primary geochemical signatures despite large scale dolomitization and silicification. 

Raman spectra reveal that the CMCP experienced only lower greenschist metamorphic 

conditions and imply, in addition to δ18O signatures, that the here investigated samples 

are well preserved and reflect original signatures of some geochemical indicators that 

allow a paleoenvironmental reconstruction of the CMCP. 

Results indicate molybdenum and iron redox cycling within the carbonates and 

mudrocks, which was dominated by secondary processes within the soft sediment 

during early diagenesis and different respiration pathways of organic matter. However, 

heavy δ98Mo signatures of up to +1.40 ‰ in carbonates and mudrocks throughout the 

complete CMCP succession indicate the presence of free oxygen in the 

atmosphere-ocean system at the time of deposition and can be considered as a 

minimum value for Neoarchean seawater, which is in agreement with earlier 

molybdenum isotope studies on carbonates and mudrocks from the slope facies. 

Similarly, coupled light δ56Fe values and low iron concentrations of pure carbonates 
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that were deposited during open marine conditions, can be explained by Rayleigh 

distillation through partial Fe oxidation between ferruginous deeper water and 

oxygenated shallow water, although a fractionation by anaerobe photoferrotrophs 

cannot be ruled out. Concentration estimates of aqueous Fe(II) imply that 

concentrations on the platform were about three times lower than along the slope, and 

are strongly dependent on water temperature, sedimentation rate and Ca2+ 

concentration in the seawater. Overall, the Mo and Fe isotope composition of CMCP 

sediments support the presence of molecular oxygen in the shallow-marine system and 

emphasize the utility of Ca-Mg carbonates as proxies for trace metal systematics in the 

aqueous environment. 

Earlier studies showed that the CMCP developed from a steep ramp architecture 

in the lower part of the succession to a rimmed margin architecture in the upper part, 

which changed the dynamics of relative water influxes from the open ocean and the 

continent. The lower CMCP was rather exposed to reducing hydrothermal fluids from 

the open ocean. This reducing power was further fueled by the flux of organic material 

in the platform facies, and is reflected in Ca-Mg carbonates that are dominated by 

Fe(II)-species. With the development of the rimmed margin, the influx of open ocean 

water was diminished, which probably impacted the respiration pathways of the local 

ecosystem, changing from anaerobe photo- and chemolithotrophs to dominantly aerobe 

phototrophs. This change in respiration together with the increased supply of nutrients 

from the continent under aerobe water column conditions might have fueled primary 

production in the platform facies of the upper CMCP. This increased the burial rate of 

microbially produced organic material in siliciclastic mudrocks along the slope, 

resulting in a depletion of the dissolved inorganic carbon pool of the restricted platform 

interior in light 12C, which is reflected in a shift to higher δ13Ccarb signatures in the 

platform carbonates. All these factors imply a higher oxidation state in the upper CMCP 

compared to the lower CMCP, which is also reflected in the preservation of 

Fe(III)-species in the platform carbonates of the upper CMCP that might be explained by 

an aerobe oxidation of aqueous Fe(II) during adsorption on the carbonate surface. 

This study provides multiple indications that the CMCP represents an ancient 

oxygen oasis. However, it also shows that special environmental and depositional 

conditions were necessary to induce this development, in particular the formation of 

the rimmed margin and the restriction of the platform interior from the open ocean. In 

this restricted environment, oxygen production by aerobe photosynthesis could have 

increased relative to oxygen consumption by reducing species and induced an 

increasing oxidation of the shallow-marine environment over time.  
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Zusammenfassung 

Die Neoarchaisch-Paläoproterozoische Transvaal Supergroup (Südafrika) 

beinhaltet die Campbellrand-Malmani Karobonatplattform (CMKP), die im küstennahen 

Flachwasser zwischen ~2.58 bis 2.50 Milliarden Jahren abgelagert wurde, 200 

Millionen Jahre vor dem Anstieg von freiem Sauerstoff in der Atmosphäre („Great 

Oxidation Event“ – GOE). Die CMKP besteht größtenteils aus stromatolitischen 

Karbonaten und Schwarzschiefern und wurde bereits in früheren Studien hinsichtlich 

ihrer isotopengeochemischen Signaturen untersucht, um mögliche Rückschlüsse auf das 

Vorkommen von Sauerstoff im flachmarinen Milieu, noch vor dem GOE, zu ziehen. 

Daher könnte die CMKP eine sogenannte ‘Sauerstoffoase’ in einer ansonsten 

sauerstoff-freien Umwelt darstellen.  

Das Ziel dieser Studie war es, die Paläo-Umweltbedingungen sowie die 

Redox-Bedingungen über den Ablagerungszeitraum der CMKP zu rekonstruieren und 

zu verstehen, ob und wie sich eine Sauerstoffoase in diesem Ablagerungmilieu bilden 

konnte. Dabei wurden Karbonate und Schwarzschiefer von der Schelfplattform 

hinsichtlich ihrer Haupt- und Spurenelementzusammensetzung untersucht, sowie die 

Isotopenzusammensetzung von Kohlenstoff, Molybdän und Eisen in diesen Gesteinen 

ermittelt. Zusätzlich dazu wurden noch Raman und Synchroton Analysen, sowie 

Sauerstoff und Silizium Isotopenanalysen durchgeführt, um die diagenetische 

Überprägung und Eisenspeziierung der CMKP zu beurteilen. Die Ergebnisse wurden mit 

sedimentologischen Erkenntnissen und Daten von früheren Studien über den 

Kontinentalhang der CMKP in Zusammenhang gebracht.  

Geochemische Signaturen, wie das Fe zu Mn Verhältnis sowie Seltene Erd 

Muster zeigen eine Abhängigkeit von der Wassertiefe sowie von einer sich ändernden 

Zufuhr von Ozeanwasser und meteorischem Wässern. In Kombination mit Raman 

Spektren und δ18O Signaturen kann gezeigt werden, dass die CMKP sehr gut erhalten ist 

und immer noch primäre geochemische Signaturen aufweist, trotz Dolomitisierung und 

Silizifizierung. 

Die Ergebnisse deuten darauf hin, dass Molybdän und Eisen frühdiagenetisch im 

Sediment durch Redoxprozesse, insbesondere im Zusammenhang mit der Degradation 

von Organik, beeinflusst wurden. Allerdings deuten schwere δ98Mo Signaturen von bis 

zu +1.40 ‰ in Karbonaten und Schwarzschiefern auf freien Sauerstoff im 

Atmosphären-Ozean System hin und kann als Minimumwert für den Neoarchaischen 

Ozean angesehen werden, worauf schon zuvor Studien über Molybdän 

Isotopensignaturen am Kontinentalhang hingewiesen haben. Auch Eisen 

Isotopensignaturen und Konzentrationen in Karbonaten lassen Rückschlüsse auf eine 
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partielle Oxidation von Eisen zwischen anoxischem, eisenreichem Tiefenwasser und 

oxischem Flachwasser ziehen, obwohl eine anaerobe Oxidation durch photoferrotrophe 

Organismen nicht ausgeschlossen werden kann. Berechnungen über die Konzentration 

von gelöstem Fe(II) im Meerwasser lassen auf eine niedrigeren Eisengehalt im 

Schelfberich als am Kontinentalhang schließen. Die Konzentration ist dabei stark 

abhängig von der Wassertemperatur, der Sedimentationsrate und der Ca2+ 

Konzentration. Zusammenfassend lässt sich sagen, dass die Molybdän und Eisen 

Isotopenzusammensetzung der CMKP auf freien Sauerstoff im Flachwassermilieu 

hindeutet. Des Weiteren wird das Potential von Ca-Mg Karbonaten als Proxy für die 

Systematik von redox-sensitive Spurenmetallen im aquatischen Milieu gezeigt. 

Frühere Studien haben gezeigt, dass die CMKP zunächst eine rampenartige 

Struktur hatte (untere CMKP), die dem Zufluß von reduzierenden hydrothermalen 

Fluiden vom offenen Ozean ausgesetzt war. Die reduzierenden Bedingungen auf dem 

Schelf wurden noch zusätzlich verstärkt durch die Ablagerung von organischem 

Material, was dazu führte, dass die Karbonate von Fe(II) Spezies dominiert sind. Im 

Laufe der weiteren Ablagerung bildete sich ein Riff (obere CMKP), dass die Lagune vom 

Kontinentalhang getrennt hat, was den Zufluß von offenem Ozeanwasser signifikant 

eingeschränkte. Dies hatte wahrscheinlich auch Auswirkungen auf das Ökösystem, 

welches sich von einem anaerob photo- und chemolithotroph dominierten hin zu einem 

hauptsächlich aerob phototrophen entwickelte. Diese Entwicklung hat wahrscheinlich 

die Primärproduktion signifikant gesteigert und zu einer erhöhten Ablagerung von 

organischem Material entlang des Riffs geführt, was zu einer Verarmung des gelösten 

anorganischen Kohlenstoffpools in der quasi geschlossenen Lagune an leichtem 12C 

führte. Dies wird anhand von δ13Ccarb Signaturen in den dort abgelagerten Karbonaten 

angezeigt, die leicht positivere Werte aufweisen als die Karbonate des 

Kontinentalhangs. 

All diese Faktoren weisen auf einen höheren Oxidationszustand im 

Lagunenbereich der oberen CMKP hin, welches auch durch die Erhaltungen von 

Fe(III)-Spezies in den dort abgelagerten Karbonaten gezeigt wird.  

Diese Studie zeigt verschiedene Indizien dafür auf, dass die CMKP eine 

Sauerstoffoase war. Damit sich diese entwickeln konnte, waren bestimmte Umwelt- und 

Ablagerungsbedingungen notwendig, wobei die Riffbildung und der eingeschränkte 

Zufluß von Ozeanwasser von entscheidener Bedeutung war. Dadurch wurde es 

ermöglicht, dass die Sauerstoffproduktion durch Photosynthese relativ zum 

Sauerstoffverbrauch steigen konnte und sich so insgesamt ein höherer 

Oxidationszustand im flachmarinen Milieu einstellen konnte.   
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1. Introduction 

1.1. Motivation and significance of the study 

Archean shallow-marine settings are considered as a key element for the 

evolution and thriving of oxygenic photosynthesis on our planet (e.g. Cloud, 1968; 

Holland, 2006; Kasting, 1992) and the rise of atmospheric oxygen (Great Oxidation 

Event – GOE) at the Archean-Proterozoic transition (e.g. Canfield, 2005; Holland, 1962; 

Holland, 2006). Large-scale carbonate platforms deposited in these settings mostly 

consist of stromatolites, lithified microbial mats, that likely contained oxygen producing 

cyanobacteria and reveal geochemical signatures and biomarkers that support the local 

accumulation of oxygen in these ‘oxygen oases’ (e.g. Eigenbrode et al., 2008; Riding et al., 

2014; Waldbauer et al., 2009). However, the geochemical and biological signatures can 

be ambiguous and complex (e.g. Posth et al., 2013) and challenge the interpretation and 

the usage of those proxies (e.g. Heimann et al., 2010; Johnson et al., 2013).  

In this study, the ~2.58 to 2.50 billion year (Ga) old Campbellrand-Malmani 

carbonate platform (CMCP; Transvaal Supergroup, South Africa) was investigated. The 

platform is well-preserved, contains carbonate and siliciclastic mudrock sediments 

deposited in supratidal to deep subtidal settings, about 200 Ma before the GOE and 

within the timeframe of supposedly early localized production of oxygen in the marine 

environment (Fig. 1-1). Previous sedimentological and geochemical studies mainly 

investigated the slope facies of the CMCP in the context of the Agouron-Griqualand 

Paleoproterozoic Drilling Project (e.g. Fischer et al., 2009; Schroeder et al., 2006; 

Voegelin et al., 2010; Waldbauer et al., 2009; Wille et al., 2007). Here, the focus is set on 

the platform facies with conjunction of major and trace elements and isotope signatures 

of redox-sensitive elements as well as geological and sedimentological observations.  

The main aims of this study are: 

(1) The paleoenvironmental reconstruction of the CMCP in the 

interface of marine and terrestrial systems 

(2) The reconstruction of the redox conditions in the CMCP  

(3) The evaluation of ancient Ca-Mg carbonates as proxies for trace 

metal systematics in the shallow seawater 

Constraining the environmental requirements that allowed the accumulation of 

oxygen in the oceans and the atmosphere are still debated and makes it necessary to 

better understand the systematics in potential oxygen oases on Earth, also regarding 

future studies about the development of life on other planets.  
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1.2. Scope of the study 

This study is subdivided into nine chapters. Chapter 1 provides the scientific 

background, including a short review of the GOE, Archean carbonate platforms, and the 

concept of ‘oxygen oases’. Furthermore, the principles of stable isotope geochemistry 

and (non-)traditional stable isotopes is presented, with emphasize on carbon, 

molybdenum, and iron. 

Chapter 2 gives an overview of the geological setting of the lower Transvaal 

Supergroup and a detailed description of the KMF-5 drill core. Chapter 3 describes the 

analytical techniques used during this study and results are presented in Chapter 4. 

Chapter 5 discusses the depositional conditions and preservation of the CMCP, 

based on data of major elements, trace elements, oxygen isotopes and Raman analyses. 

This is crucial in order to evaluate the quality of geochemical and isotope signatures of 

the sediments. To do so, possible influence by early and late diagenetic processes is 

discussed, in particular the impact of dolomitization, silicification, and the intrusion of 

the Bushveld igneous complex. Furthermore, a paeoenvironmental reconstruction of 

the CMCP over time is provided. 

Chapter 6 focuses on the implications for the carbon cycle of the CMCP. The 

combination of the here presented data with previously published data from the slope 

facies (Fischer et al., 2009; Horstmann and Beukes, 2002) allows to investigate the 

temporal evolution of the inorganic carbon pool and the ecosystems from the 

continental slope onto the shallow-water platform. 

Chapter 7 reconstructs the molybdenum systematics of the CMCP and discusses 

environmental and diagenetic effects controlling molybdenum concentration and 

isotope signature in these ancient Ca-Mg carbonates. Data were combined with earlier 

Mo studies from the slope succession (Voegelin et al., 2010; Wille et al., 2007). 

Chapter 8 reconstructs the iron systematics of the CMCP. Thereby, the focus is 

set on the Ca-Mg carbonates with the goal to evaluate if those are good proxies for 

aqueous Fe(II) in seawater. Data were combined with Fe analyses from an earlier study 

on the slope region (Czaja et al., 2012) in order to compare different depositional 

settings along the CMCP. 

Chapter 9 provides a summary of the main findings of this study, a detailed 

temporal reconstruction of the CMCP, and changes in the biogeochemical cycles and 

redox state. Furthermore, it is discussed if the CMCP represents an oxygen oasis. 
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1.3. The rise of oxygen in the hydrosphere-atmosphere system 

The Great Oxidation Event (GOE) describes the first global rise of free 

atmospheric oxygen at the Archean-Proterozoic transition and is widely considered one 

of the most profound environmental changes in Earth’s history (Farquhar et al., 2011; 

Holland, 1962, 2006; Kasting, 2013; Kump et al., 2013; Lyons et al., 2014). Constraining 

and exploring the requirements to achieve such a net accumulation of oxygen in the 

atmosphere, when oxygen production exceeded oxygen consumption, is still 

scientifically debated and is part of multiple studies that are based on the usage of 

geochemical and mineralogical proxies (Fig. 1-1). In the case of the GOE, the 

disappearance of the mass-independent sulfur isotope fractionations (MIF-S) in marine 

sediments about 2.33 Ga ago is probably the strongest indicator for an increase in 

atmospheric oxygen over 10-5 of the present atmospheric level (PAL) (Farquhar et al., 

2000; Luo et al., 2016; Pavlov and Kasting, 2002). Other mineralogical clues for higher 

oxygen levels are the widespread appearance of Fe(III)-oxides in paleosols and redbeds 

and the disappearance of uraninite, siderite and pyrite as a detrital component of fluvial 

systems (Beukes, 1987; Beukes et al., 2002; Johnson et al., 2014; Rasmussen et al., 1999; 

Young et al., 2001).  

 In recent years several studies on Archean marine samples argue for an at least 

localized accumulation of oxygen in the atmosphere-hydrosphere system (‘whiffs of 

oxygen’) several hundred million years before the GOE, causing oxidative cycling of 

redo-sensitive elements (Anbar et al., 2007; Crowe et al., 2013; Duan et al., 2008; 

Kendall et al., 2010; Planavsky et al., 2014; Wille et al., 2007) (Fig. 1-1). In fact, the 

appearance of cyanobacteria and therefore the onset of oxygenic photosynthesis is 

proposed to have happened by about 2.7 Ga ago, as indicated by biomarkers (Brocks et 

al., 1999; Eigenbrode et al., 2008; Waldbauer et al., 2009), although the quality of some 

of those markers are questioned (Brocks, 2011; Rasmussen et al., 2008) and can even 

indicate anaerobe microbial activity (Fischer et al., 2005). Other studies suggest the 

evolution of cyanobacteria as early as 3.7 Ga (Frei et al., 2016; Rosing and Frei, 2004) or 

3.5 Ga (Schopf, 1993; Van Kranendonk, 2006) ago, based on the presence of 

microfossils, carbonaceous material and stromatolite structures, although the 

biogenicity of these old samples is doubted (e.g. Brasier et al., 2002). Stromatolitic 

features and carbon isotope signatures of organic carbon in the 2.9 Ga old Pongola 

Supergroup (South Africa) (Noffke et al., 2008), the 2.8 Ga old Steep Rock (Canada) 

(Grassineau et al., 2006), the 2.7 Ga old Hamersley Basin (Australia) (Buick, 1992; 

Eigenbrode and Freeman, 2006), and the 2.6 Ga old CMCP (South Africa) (Altermann 

and Schopf, 1995) give stronger indications for the presence of cyanobacteria, although 
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anaerobe processes can also form those microbial structures (Bosak et al., 2007) and 

isotope signatures (e.g. Hayes, 2001; Robinson et al., 2003). Nevertheless, evidence for 

the onset of oxygenic photosynthesis accumulate from ~ 2.7 Ga on (Fig. 1-1). In an 

otherwise anoxic world it was necessary to increase the oxygen production and to 

decrease the oxygen consumption by reducing species to ultimately gain a net 

production of oxygen. It has been suggested that the formation of large, stable cratons 

and shallow oceans during Meso- to Neoarchean times allowed on the one hand the 

development of carbonate platforms in the shallow-marine environment, where 

cyanobacterial communities could thrive and on the other hand enabled enhanced 

burial of organic carbon, which prevented consumption of oxygen via respiration and 

decomposition of these organics (Falkowski and Isozaki, 2008; Kump and Barley, 2007). 

Continental growth could have also caused a shift from submarine to subaerial 

volcanism, which led to a change from a reduced to an oxidized state of volcanic gases 

(Gaillard et al., 2011; Kump and Barley, 2007). Additionally, hydrogen escape to space 

prior to reaction with oxygen by ultraviolet photolysis of abundant methane has been 

proposed as another mechanism for irreversible atmospheric oxidation (Catling et al., 

2001). Either way, the investigation of carbonate platforms as settings of large-scale 

oxygen production is crucial to understand the arrangements leading to the first global 

rise of atmospheric oxygen. 

1.4. Archean carbonate platforms and oxygen oases 

Carbonate platforms are thick sequences of carbonate rocks typically deposited 

in a shallow-marine environment, e.g. along passive continental margins and in 

intracratonic basins. They can reach extensive scales and can give valuable information 

about seawater chemistry and dynamics, the interplay between the marine and 

terrestrial environment, the ecology, and even about the regional tectonic settings.  

The Meso- to Neoarchean time range was marked by the development of stable 

continental shelves and epicontinental seas and the weathering and erosion of emerged 

landmasses (Kump and Barley, 2007). These settings provided the required 

accommodation space and shallow marine conditions for large scale carbonate platform 

growth, probably for the first time in Earth’s history (Grotzinger, 1989; Hoffman, 1988; 

Hoffman and Grotzinger, 1988; Sumner and Grotzinger, 1996). These platforms could 

have been the site of early oxygen production on our planet, as Archean carbonates 

largely consist of stromatolites. These are the laminated, organosedimentary, 

non-skeletal products of microbial communities, which may have included 

oxygen-producing cyanobacteria (Burne and Moore, 1987). 
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Indeed, some of these shelves’ marine sediments exhibit geochemical and 

sedimentological features for transient oxygen in surface ocean water masses (Fig. 1-1). 

The CMCP, for example, documents signs of oxygenation, like (i) high abundances of 

authigenic rhenium and molybdenum in mudrocks indicating redox-cycling of these 

elements fostered by oxidative weathering combined with reductive adsorption in these 

marine sediments (Kendall et al., 2010; Wille et al., 2007), (ii) heavy Mo isotope 

signatures in mudrocks (Wille et al., 2007 and this study) and microbial carbonates 

(Voegelin et al., 2010 and this study) that indeed indicate the presence of oxidized 

molybdenum in the form of molybdate in the water column, (iii) heavy N signatures in 

slope dolostones and mudrocks that might reflect the onset of oxic nitrogen cycling 

(Garvin et al., 2009; Godfrey and Falkowski, 2009), and (vi) biomarkers indicating an 

aerobe ecosystem (Waldbauer et al., 2009). Similar observations are reported for 

marine sediments from the Hamersley basin (2.6 Ga, Australia), showing heavy Mo 

Figure 1-1: Free oxygen in shallow 
seawater probably preceded the rise of 
atmospheric oxygen. Black solid line 
indicates evolution of atmospheric 
oxygen (modified after Lyons et al., 
2014), with the GOE at ~2.33 Ga (Luo 
et al., 2016), constraint on the basis of 
isotopic and mineralogical proxies. 
Black dashed line indicates proposed 
oxygen overshoot during the 
Lomagundi-Jatuli Event (Karhu, 1993; 
Melezhik et al., 2007). Shaded beam 
symbolizes occasional production of 
sufficient oxygen (‘whiffs of oxygen’) in 
localized settings in the shallow 
seawater (e.g. Anbar et al., 2007; 
Kendall et al., 2010) and maybe even 
on land (Lalonde and Konhauser, 
2015). The CMCP might represent an 
‘oxygen oasis’, where oxygen produced 
by cyanobacteria is accumulated in the 
shallow seawater and forms a chemical 
gradient towards the still largely 
anoxic, ferruginous deeper ocean 
water. Fe(II) species would then have 
readily react with oxygen and organic 
carbon (modified after Beukes and 
Gutzmer, 2008) and were components 
of anoxygenic microbial activity 
(Johnson et al., 2008b; Kappler et al., 
2005). 
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isotope signatures (Duan et al., 2010) and authigenic enrichment of redox-sensitive 

elements (Anbar et al., 2007) in mudrocks and C isotope signatures of organic material, 

implying a shift from an anaerobe to an aerobe ecosystem (Eigenbrode and Freeman, 

2006; Eigenbrode et al., 2008).  The carbonate platform of Steep Rock (2.8 Ga, Canada) 

also provides C isotope signatures (Grassineau et al., 2006) that were interpreted as 

signs of oxygen photosynthesizers, which is reinforced by the appearance of a mild 

negative Ce anomaly in the very shallow water carbonates (Riding et al., 2014) and 

argues for a stratified water column with oxygenated shallow water and anoxic deeper 

water (Fig. 1-1).  

The similarities of those geochemical ‘fingerprints’ incline towards the 

suggestion that Archean carbonate platform settings represent ‘oxygen oases’ (Fig. 1-1) 

(Olson et al., 2013; Riding et al., 2014). (Fischer, 1965) first used this expression to 

describe a restricted pool of net oxygen production by aerobe ecosystems in an 

otherwise anoxic world, which might have reached oxygen levels of up to 0.08 PAL 

(Kasting, 1991, 1992). The production and the accumulation of oxygen within platform 

‘oases’ would have occurred effectively due to physical sheltering from upwelling deep 

ocean water masses (Sumner and Beukes, 2006), which contain chemically reducing 

hydrothermal species. Before the evolution of oxygenic photosynthesis, the reducing 

Archean environment was dominated by an anaerobic microbial biosphere, largely 

based on chemolithoautotrophic microorganisms centered near hydrothermal vents 

(Nisbet and Sleep, 2001). Early forms of anoxygenic photosynthesis depended on 

reduced hydrothermal fluids, using dissolved H2, H2S or Fe(II) as electron donors for 

their metabolism. This situation drastically changed with the evolution of oxygenic 

photosynthesis (Des Marais, 2001). This form of metabolism marked a major innovative 

step in the evolution of life, since it allowed microorganisms to use water itself as a 

source of electrons, which and therefore enabled photosynthetic organisms to diversify 

into the photic zone of any aquatic setting, sovereign from hydrothermal flux. The 

release of free molecular oxygen subsequently triggered the shift towards an aerobic 

biosphere, dominated by oxygenic photosynthesis and heterotrophic respiration 

(Eigenbrode and Freeman, 2006; Kasting and Siefert, 2002). A computer simulation ran 

by Olson et al. (2013) confirmed that a decreasing availability of other hydrothermal 

electron donors (e.g. Fe(II) and H2S) greatly influence the dominance of anoxygenic and 

oxygenic phototrophs and therefore the spatial extend of oxygen oases and oxygen 

concentrations maybe up to 10 µM (Reinhard et al., 2013). However, even though 

oxygen was produced on those sites, it was probably not sufficient enough to globally 

oxidize the atmosphere. Any oxygen released from the ocean water could have been 
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immediately consumed by the reducing atmosphere (Olson et al., 2013). Thus, an 

alternative explanation for oxidative weathering of sulfides for trace element 

mobilization, i.e. Mo, is the existence of terrestrial microbial mats, which allowed local 

oxidation on land and not within the shallow marine environment (Lalonde and 

Konhauser, 2015; Reinhard et al., 2013), as microbial mats likely kept the oxygen within 

their structure (Sumner et al., 2015). In a modern ‘oxygen oasis’ analogue in the 

Antarctic is has been shown that microbial mats can contain high amounts of oxygen 

without even temporarily oxidizing the overlying anoxic water column (Sumner et al., 

2015), which has also been postulated for the Precambrian world by Herman and Kump 

(2005). Riding et al. (2014) proposed a minimum oxygen concentration in shallow 

seawater of 10.25 µM based on siderite-calcite equilibrium calculations, which 

corresponds an oxygen level of 0.06 PAL and is therefore in the proposed range of 

0.08 PAL (Kasting, 1991, 1992).  

1.5. Traditional and non-traditional stable isotope systematics 

Each chemical element is defined by its atomic number, which is the number of 

protons in its nucleus. The atomic mass of an element is the sum of protons and 

neutrons in its nucleus. The number of neutrons can vary, which results in the 

phenomenon that the atoms of one element can have different atomic mass and are 

termed as isotopes. Isotopes can be radioactive, i.e. they are unstable and decay with a 

specific decay constant that is usually expressed in form of the half-life (e.g. 238U decays 

to 206Pb and has a half-life of 4.47∙ 109 years). Stable isotopes do not undergo radioactive 

decay (e.g. 206Pb) or have such an exceptional long half-life that they are quasi-stable 

(e.g. 209Bi with a half-life of 1.9∙1019 years).  

Stable isotope analyses are a widely used tool in the natural sciences to unravel 

physicochemical and biological processes that are mass-(in)dependent. Those analyses 

have been conducted on mass spectrometers since the 1950, in particular on the light 

stable isotopes oxygen (O), carbon (C), sulfur (S), hydrogen (H), and nitrogen (N), and 

are thus termed traditional stable isotopes. In the last two decades, the improvement of 

instrumentation, in particular of multicollector inductively coupled plasma mass 

spectrometers (MC-ICPMS), and development of novel chemical and analytical 

techniques, like the double-spike method, paved the way for the analyses of a long list of 

other elements, e.g. Mg, Ca, Fe, Zn, Cu, Li, Mo, Cr, and Si, the non-traditional stable 

isotopes (e.g. Johnson et al., 2004).  
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In this study, the focus is set on the isotope systems of carbon, molybdenum and 

iron and will thus be described below in detail. Additionally, silicon and oxygen isotopes 

were analyzed to complement the data. 

1.5.1. Principles of mass-dependent stable isotope fractionation 

During the chemical reaction of two molecules, A and B, a fractionation of the 

isotopes of an element X can be induced. The isotope abundance of X is given as the 

ratio of the heavy and the light isotope:  

R =
heavy−X

light−X
   

Normally, the isotope difference of a sample is given relative to a reference standard 

and is defined as the delta value and expressed in permille: 

δXsample(‰) =
(Rsample−Rstandard)

Rstandard
× 1000 .  

The isotope fractionation between two molecules A and B is following a fractionation 

factor α, whereby  

 αA−B =
RA

RB
 

Converted in permille, α can be expressed in a ε value: 

εA-B (‰) = (α-1) × 1000 

Furthermore, α is often converted as to ΔA−B, according to the approximation: 

 ΔA−B = δA − δB ≈ 1000ln α 

Mass-dependent stable isotope fractionation is basically the result of quantum 

mechanical effects, where bond energies of molecules depend on the mass of the 

isotopes of an element, making molecules with the heavier isotope more stable, as the 

bond energy is higher and the vibrational frequency is lower (Urey, 1947). The 

vibrational frequency of a molecule is thereby linked with the Zero-Point Energy (ZPE). 

The ZPE basically depends on the isotopic mass and defines the bond energy (Fig. 1-2). 

It is defined as:  

 EZPE =
1

2
× ℎ × 𝑣 

with 𝑣 =
1

2
× π × √

𝑓

µ
 

and µ =
mA×mB

mA+mB
 

h: Planck constant (6.6×1023 Js) 

v: Vibration frequency (s-1) 

f: force constant 

µ: reduced mass 

mA, mB: mass of atom A and B 
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Figure 1-2: Potential energy of a molecule A-B and the ZPE levels, which change their location, depending 
on the mass of the isotope in the bond of the molecule. Modified after Anbar and Rouxel (2007). 

 
Mass-dependent stable isotope fractionation can occur under equilibrium 

conditions, where the isotopes of an element are exchanged in a closed system between 

two molecules until the system reaches equilibrium (A ↔ B). Fractionation decreases 

with increasing temperature (~1/T2), increasing atomic mass, and decreasing relative 

mass difference between the isotopes of an element. Equilibrium fractionation is typical 

for inorganic reactions and is dependent on the bond energy, which basically means 

that heavy isotopes are preferred in the molecule with the highest bond energy that 

correlates with increasing oxidation state, low coordination number, type of bonding 

partners, high covalent bonds, and low-spin electron configuration.  

Kinetically driven fractionation is a unidirectional reaction (A → B). In this case 

isotopes of the product and the educt of a reaction are not exchanging isotopes, and can 

therefore not reach equilibrium. Kinetic fractionation typically happens during 

biological processes, and during evaporation and diffusion. It is dependent on the 

reaction rate and the pathways of the reaction, according to: 

 E =
1

2
m × v2 =

3

2
× k × T, where  𝑣 = √

3×𝑘×𝑇

𝑚
 

with 

E: kinetic energy of the molecule m: mass of the molecule 

v: velocity of the molecule  k: Boltzmann’s constant 

T: absolute temperature 
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This means that a molecule with a heavier isotope and thus higher mass has a 

smaller velocity than a molecule with a lighter isotope and thus lower mass. During 

reactions this results in the phenomenon that the lighter isotopes are preferentially 

enriched in the product.  

Detailed reviews about stable isotope fractionation are provided by Chacko et al. 

(2001) and Schauble (2004). 

1.5.2. Carbon systematics 

Carbon is a key element of life and plays a major role in biological, 

(bio)geochemical, and climate cycles. It has two stable isotopes (with natural 

abundances): 12C (98.93 %), and 13C (1.07 %) (de Laeter et al., 2003). Carbon isotope 

signatures are typically reported as δ13C, relative to the Vienna PeeDee belemnite 

standard (VPDB) (Craig, 1957). The C cycle is rather complex and consists of several 

sub-cycles, each of them recycle carbon on very different time scales. Those are, 

ordered after increasing time of C recycling and increasing size of C reservoir, the 

atmosphere-hydrosphere-biosphere sub-cycle (minutes to 103 years), the sedimentary 

sub-cycle (103 to 108 years), the higher metamorphic and igneous sub-cycle (106 to 109 

years), and the mantle sub-cycle (109 years) (Fig. 1-3; for a detailed review see Des 

Marais (2001)). Sources of CO2 are from outgassing from mid-ocean ridges and 

volcanoes, from carbonate sedimentation and metamorphism, and from decomposition 

of organic carbon. In the oceanic system at circumneutral conditions the largest carbon 

reservoir is dissolved inorganic carbon (DIC), which consists to >99 % of HCO3
− and 

CO3
2− and traces of CO2 and H2CO3 (Fig. 1-3), depending on the pH, salinity, pressure 

and temperature (Zeebe and Wolf-Gladrow, 2001). Oceanic DIC isotopically exchanges 

under equilibrium with atmospheric CO2 with a fractionation factor Δ13CDIC-CO2 of about 

+9 ‰ (Emrich and Vogel, 1970; Mook et al., 1974; Vogel et al., 1970). DIC typically 

reacts under equilibrium with Ca2+ ions to calcium-carbonate via 

Ca2+ + 2HCO3
− ↔ CaCO3 + CO2 + H2O and Ca2+ + CO3

2− ↔ CaCO3  

with isotope fractionation factors Δ13CCaCO3-DIC of about +0.9 ‰ for calcite (e.g. Emrich 

and Vogel, 1970; Rubinson and Clayton, 1969). The other important although 

significantly smaller oceanic carbon reservoir is organic carbon, where organisms take 

up CO2 to produce organic molecules. In the modern world the most important 

metabolic pathway is via photosynthesis/heterotrophic respiration:  

 CO2 + H2O ↔ CH2O + O2.  

In contrast to the inorganic carbon system, which is driven by isotopic 

equilibrium exchange reactions, organic carbon production fractionates kinetically, 
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with a concentration of light 12C into organic matter and thus showing depleted δ13C 

signatures, which strongly varies depending on the microbial species (Hayes et al., 

1989). ‘Fresh’ organic matter has rapid pathways and is an important reactant and 

electron donor in other major biogeochemical cycles of iron, manganese, nitrogen and 

sulfur (e.g. Berner, 1989; Froelich et al., 1979). This causes that ~99.9 % of organic 

matter is recycled again and thus basically dominates the short-term carbon cycle 

(minutes to 103 years) on Earth’s surface by its production and decomposition 

(Broecker and Peng, 1982; Des Marais, 1995). The input of C today is from the oceans, 

the atmosphere, and land. However, the input of C from land was probably very limited 

during the Neoarchean, because no land plants existed yet, which are the main source of 

terrestrial C. Moreover, the input of terrestrial organic C and its oxidation in the 

shallow-marine environment would have rather caused a decrease in δ13Ccarb (Holmden 

et al., 1998; Immenhauser et al., 2003; Oehlert and Swart, 2014). Thus, the important 

input sources of C in the Neoarchean shallow-marine environment were probably from 

the atmosphere and the oceans, with the oceanic C pool being significant larger 

(~37,000 Gt) than the atmospheric C pool (~700 Gt) (Fig. 1-3).  

The most important sedimentary reservoirs are sedimentary carbonate carbon 

(60,000,000 Gt) and organic carbon (14,000,000 Gt), which due to its much larger C 

reservoir ultimately influence the carbon system of ocean and atmosphere on a time 

scale of 103 to 108 years (Derry et al., 1992; Garrels and Perry, 1974). This long-term 

global carbon cycle is controlled by the isotope mass balance relation 

  δ13Cinput = fcarb × δ13Ccarb + forg × δ13Corg  ⇒  forg =
δ13Ccarb−δ13Cinput

δ13Ccarb−δ13Corg
 

which is normally used for the global carbon cycle, where forg is the fraction of the 

(global) influx of carbon (Cinput) buried as organic carbon (Corg), which ultimately defines 

fcarb as the fraction of buried inorganic carbon (Ccarb), as fcarb = 1 - forg. When forg increases, 

fcarb will decrease and δ13Ccarb and δ13Corg values simultaneously increase to satisfy the 

mass balance equation (Wickman, 1956). Furthermore, according to the equation  

 CO2 + H2O ↔ CH2O + O2 

with each mole of organic carbon buried, a mole of oxygen is released to the 

atmosphere and not consumed by oxidation of organic matter. A prominent example for 

this relationship is the Lomagundi-Jatuli Event (2.20 – 2.06 Ga) (Karhu, 1993; Melezhik 

et al., 2007), which is defined by a global excursion of δ13Ccarb up to +10 ‰. It was 

suggested that this excursion was caused by a coeval large-scale burial of organic 

matter, even though this is still under debate. Such a massive event of organic carbon 

burial probably also induced an overshoot of oxygen in the atmosphere (Fig. 1-1). 



32 
 

 

 

Figure 1-3: Global carbon cycle. Main sources and sinks of CO2 as well as reservoirs (mass × 1015 g C, modern values) and processes within the short-term and long-term carbon 
cycles. This illustration does not include the input of terrestrial biota, as those had not evolved yet in the Neoarchean. 
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1.5.3. Molybdenum systematics 

Molybdenum is a trace element in the average continental crust with a 

concentration of only about 1.1 µg/g (Rudnick and Gao, 2004) and has seven stable 

isotopes (with natural abundances): 92Mo (14.65 %), 94Mo (9.19 %), 95Mo (15.87 %), 

96Mo (16.67 %), 97Mo (9.58 %), 98Mo (24.29 %), 100Mo (9.74 %) (de Laeter et al., 2003). 

It shows variations of its isotopic composition and concentration in chemical sediments 

depending on the redox potential of the ambient ocean and pore fluids (e.g. Barling et 

al., 2001; Emerson and Huested, 1991; Shimmield and Price, 1986; Siebert et al., 2003). 

In the modern oxygen-rich environment Mo is normally oxidized during oxidative 

continental weathering from its tetravalent oxidation state in sulphides, the main 

source of Mo, to a hexavalent state, forming soluble oxy-molybdate MoO4
2-, which then 

enters the ocean (Barling et al., 2001; Greber et al., 2015; Miller et al., 2011; Morford 

and Emerson, 1999). Molybdate with a crustal δ98Moinput value of ca. -0.2 to +0.6 ‰ 

(relative to NIST3134 standard solution, set to +0.25 ‰, following Naegler et al. (2014)) 

is transported by rivers and groundwater, which can show signatures of about +0.7 ‰  

(Archer and Vance, 2008), to the oceans, where it behaves conservatively with a long 

residence time of 440.000 to 800.000 years at a homogenous concentration of ~100 nM 

(Collier, 1985; Emerson and Huested, 1991; Greber et al., 2011; Miller et al., 2011; 

Morford and Emerson, 1999; Voegelin et al., 2014). Light Mo isotopes are preferentially 

adsorbed onto oxic sediments, predominantly pelagic Fe-Mn crusts and nodules, due to 

sorption of molybdate to the reactive surfaces of Mn- and Fe-oxide minerals. This 

process results in an isotopic difference for Δ98Moseawater-FeMn crust of +2.7 to +3.2 ‰  

(Fig. 1-4) (Barling and Anbar, 2004; Goldberg et al., 2009; McManus et al., 2006; Naegler 

et al., 2014; Siebert et al., 2001; Siebert et al., 2003; Tossell, 2005). Under slightly 

euxinic conditions, where H2S is present in the water column or in pore water at 

concentrations below 11 µM, molybdate is incompletely transformed to 

(oxy)thio-molybdates Mo(VI)O4-xSx
2-, which readily adsorb on positively charged particle 

surfaces, like organic matter or Fe sulfide phases of sediments (Helz et al., 1996; 

McManus et al., 2002; Naegler et al., 2011; Tribovillard et al., 2006). However, 

transformation favors the lighter Mo to be incorporated within the thiomolybdate. 

Therefore, the preferential incorporation of isotopically light Mo in oxic to slightly 

euxinic sediments results in a heavy open ocean water δ98Mo of +2.3 ‰, which is 

homogenous due to the long mean ocean residence time of Mo. Above a threshold value 

of 11 µM H2S the transition from oxy-molybdate to thio-molybdate is very effective and 

Mo is nearly quantitatively scavenged into reduced sediments, such as mudrocks (i.e. 
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black shales), whereby this authigenic Mo mirrors the isotopic composition of the 

coeval seawater (Arnold et al., 2004; Barling et al., 2001; Erickson and Helz, 2000; Helz 

et al., 1996; Siebert et al., 2003). Between these two “end-members” of sedimentary 

redox conditions (oxic and euxinic), authigenic Mo enrichments in sediments show a 

broad range in their isotopic composition and are mainly controlled by redox gradients 

in the sediment pore fluids, induced by early diagenesis (Brucker et al., 2009; Dahl et al., 

2010; Naegler et al., 2011; Romaniello et al., 2016; Scott and Lyons, 2012). 
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Figure 1-4: Mo systematics in modern ocean system. Mo concentrations and isotope signatures of average continental crust are from Voegelin et al. (2014). Mo enters the ocean via 
riverine and hydrothermal input (relative fluxes are in green (Archer and Vance, 2008; McManus et al., 2006)), where it is homogeneously distributed as MoO42- and behaves 
conservatively. Relative fluxes of Mo-sinks are in red (Brucker et al., 2009 and references therein). Adsorption onto oxic sediments prefers light Mo isotopes, resulting in an 
isotopically heavier oceanic Mo pool. Transformation to reactive thio-molybdate and subsequent near-quantitative removal into euxinic sediments might transfer the oceanic isotope 
signature. Marine abiotic carbonates might also incorporate Mo without fractionation and thus reflect the seawater signature (Voegelin et al., 2009). 
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1.5.4. Iron systematics 

Iron is a major element of the silicate Earth and has four stable isotopes (with 

natural abundances): 54Fe (5.85 %), 56Fe (91.75 %), 57Fe (2.12 %), and 58Fe (0.28 %) (de 

Laeter et al., 2003). Isotope values are usually given as δ56Fe relative to the reference 

standard IRMM-014, from the Institute for Reference Material and Measurements 

(IRMM) in Geel, Belgium (Taylor et al., 1992). Magmatic differentiation can cause a 

slight isotope fractionation, and thus values for igneous rocks between -0.1 and +0.2 ‰ 

have been reported (e.g. Beard et al., 2003b; Craddock et al., 2013; Schoenberg and von 

Blanckenburg, 2006; Wang et al., 2014; Weyer et al., 2005).  

In the modern oxygenated ocean, Fe is heterogeneously distributed with a low 

residence time of less than a 100 years (Bruland et al., 1994) and a low concentration of 

aqueous Fe between 0.05 and 2 nM (e.g. de Baar and de Jong, 2001; Landing and 

Bruland, 1987; Martin et al., 1990). This is due to the poor solubility of Fe(III) particles 

in oxic seawater. Thus, even though aqueous Fe is scarce, colloidal and particulate Fe(II) 

and Fe(III) species are very common, as they rapidly react with other chemical species, 

such as sulfur, oxygen, and organics. Sorption of aqueous Fe species on particulate Fe, 

minerals and organics can cause isotope fractionation and catalyze oxidation (Icopini et 

al., 2004; Swanner et al., 2015b; Teutsch et al., 2005). Under microoxic and anoxic 

conditions, Fe is an essential nutrient for many organisms (Martin and Fitzwater, 1988; 

Moore et al., 2002) and can either act as an electron donor (Fe(II)) or as an electron 

acceptor (Fe(III)) in biogeochemical cycles (e.g. Boyd and Ellwood, 2010; Boyd et al., 

2000; Coale et al., 2004; Froelich et al., 1979; Pollard et al., 2009). All those aspects 

make the marine Fe cycle very complex (Fig. 1-5).  

In the low-temperature conditions of the marine environment, Fe isotope 

fractionations driven by equilibrium and/or kinetic effects can be large and influenced 

by microbial processes in the water column, the porewater and the sediment. The 

pathway under circumneutral conditions from Fe(II)aq to precipitation of Fe(III) 

includes the (aerobe) oxidation of Fe(II)aq to Fe(III)aq that quickly equilibrate and result 

in an isotopic fractionation εFe(III)aq-Fe(II)aq of ~3 ‰ (Welch et al., 2003). The 

precipitation of Fe(III)ppt is kinetically driven and leads to depletion of heavy Fe 

isotopes in the precipitate by 1-2 ‰ (Skulan et al., 2002), so the overall fractionation 

factor of oxidation and precipitation from Fe(II)aq to Fe(III)ppt is between 1-2 ‰ (Beard 

et al., 2003a; Bullen et al., 2001). Similar fractionation factors are also reported for 

anaerobe microbial-induced Fe(II) oxidation (Croal et al., 2004; Swanner et al., 2015b), 

and assimilatory/dissimilatory processes (Beard et al., 1999; Beard et al., 2003a; Crosby 
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et al., 2007; Icopini et al., 2004; Kappler and Straub, 2005), making it challenging to 

distinguish abiotic from biotic oxidation only based on the Fe isotope signature. 

There are multiple Fe sources to the marine environment, such as riverine and 

groundwater as well as aeolian dust, pore fluids from continental margin sediments and 

hydrothermal fluids (Anbar and Rouxel, 2007 and references therein), whereby the 

input from aeolian dust and continental margins are the most significant ones (Duce 

and Tindale, 1991; Elrod et al., 2004). Fe is subsequently removed, oxidized, 

precipitated, and re-dissolved by various biogeochemical processes and mainly 

deposited in estuaries, oxic, anoxic-euxinic, and pelagic sediments (Fig. 1-5) (de Baar 

and de Jong, 2001; Elrod et al., 2004). Those redox-processes are in particular active in 

estuaries and continental margins and can induce low δ56Fe signatures (down to -3 ‰) 

in porewaters (e.g. Severmann et al., 2006; Staubwasser et al., 2006) and in some cases 

even kinetically driven fractionation down to -5 ‰ (Rouxel et al., 2008). Secondary 

minerals, like Fe-carbonates and Fe-mono-and -di-sulphides, formed from such 

isotopically depleted waters usually also obtain light δ56Fe signatures (Beard et al., 

2003a; Butler et al., 2005; Préat et al., 2011; Rouxel et al., 2008; Severmann et al., 2006; 

Wiesli et al., 2004). 
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Figure 1-5: Iron sources are in green, sinks are in red. The dissolved iron pool is controlled by the mass balance of those sinks and sources. >99% of iron from hydrothermal vents is 
rapidly deposited along the vent system (Fitzsimmons et al., 2014). Thus, input from aeolian dust and fluids from continental margins are the most important sources. Two boxes 
name important aqueous Fe removal (red) and release (green) processes under circumneutral conditions in the marine environment. In blue are typical pathways of Fe species in the 
seawater-sediment interface (modified from Achterberg et al. (2001)). Isotope values and concentrations from Anbar and Rouxel (2007) and references therein, von Blanckenburg et 
al. (2008), Chever et al. (2015), Radic et al. (2011), and Rouxel et al. (2008). 
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2. Geological Setting 

2.1. The Campbellrand-Malmani carbonate platform 

The Neoarchean to Paleoproterozoic Transvaal Supergroup (TSG) consists of 

chemical and siliciclastic sedimentary rocks with subordinate volcanic units (Dorland, 

1999) (Fig. 2-1 a). It rests unconformably on older supracrustal volcano-sedimentary 

granite-greenstone terrains of the Kaapvaal Craton in southern Africa. The lower part of 

the TSG represents one of the first large carbonate platform systems on Earth known as 

the Campbellrand-Malmani carbonate succession (Beukes, 1987). It was deposited 

between ~2.58 and 2.50 Ga due to extensive flooding of the Kaapvaal Craton, a result of 

its thermal subsidence possibly related to prior 2.74-2.69 Ga Ventersdorp magmatism 

(Sumner and Beukes, 2006). The carbonate succession originally covered an area of 

approximately 600.000 km2 (Fig. 2-1 a) (Beukes, 1987), while today’s dimensions of 

~190.000 km2 are erosionally preserved in the Transvaal area (TA) in the eastern part 

and the Griqualand West area (GWA) in the western part of the Kaapvaal Craton, as well 

as the Kanye area (KA) in the north-central part of the platform (Fig. 2-1 a). The 

carbonate successions in these three areas are divided into several formations, which 

can be correlated by sedimentological characteristics and sometimes by U-Pb zircon 

geochronology of rare ash layers within the succession (Altermann and Nelson, 1998; 

Coetzee, 2001; Martin et al., 1998; Sumner and Beukes, 2006).  

 

 

Figure 2-1: (a) Geological overview of the Transvaal Supergroup (TSG), modified after Coetzee (2001) and 
Sumner and Grotzinger (2004). The TSG is divided into three basins (Transvaal, Kanye and Griqualand 
West basins); asterisks indicate the locations of the four drill cores KMF-5, BH-1, GKF01 and GKP01. (b) 
Paleoreconstruction of the Kaapvaal Craton 2.5 Ga ago, modified after Beukes (1987). 
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The ca. 2000 m thick Malmani Subgroup of the TA in the NE consists of mainly 

peritidal carbonates, while the contemporaneous shallow shelf carbonates of the 

Campbellrand Subgroup of the GWA in the SW were deposited under shallow subtidal 

conditions (Fig. 2-1 b). The far southwestern slope and basinal succession of the 

Campbellrand Subgroup in the GWA has been sub-classified as the Prieska facies, which 

is only 500 m thick compared to the up to >2400 m thick shallow carbonate shelf 

succession (Fig. 2-2), due to lower sedimentation rates within this marginal 

environment (Beukes, 1987; Sumner and Beukes, 2006). Reconstructions of the 

transition between shelf and basinal facies in the Campbellrand Subgroup in the GWA 

have been aided by detailed geochemical and sedimentological studies of drill cores 

GKP01 and GKF01, both from the Prieska facies, as well as drill core BH-1 that 

intersected the Campbellrand shelf facies on the farm Sacha near Sishen (GWA) 

(Fig. 2-1 a) (Altermann and Siegfried, 1997; Knoll and Beukes, 2009; Schroeder et al., 

2006).  

 

Figure 2-2: Cross section through chemical sediments of the lower TSG and schematic location of drill 
cores, modified after Beukes and Gutzmer (2008). 
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This study is focused on the shelf facies of the CMCP. Thus, in the following, a 

detailed sedimentological and stratigraphically description of the KMF-5 drill core is 

provided, as well as a short review of the BH-1 drill core and the Kuruman Kop outcrop, 

which contains carbonates from the shelf facies of the upper Campbellrand Subgroup 

(Sumner, 2002). 

2.1.1. Extended description of the KMF-5 drill core (Malmani Subgroup) 

The KMF-5 drill core contains a ca. 1200 m thick intersection of the Malmani 

succession from the Transvaal area near Johannesburg (Fig. 2-1 a), which was sampled 

by courtesy of Gold Fields of South Africa Limited (now Sibanye Gold Limited). The core 

was holed at 26°24‘28.16‘‘S/27°37‘40.87‘‘E, is preserved at the core store facility of 

Sibanya Gold Ltd at Oberholzer and intersected the Malmani Subgroup from the 

erosional base of the overlying Rooihoogte Formation of the Pretoria Group to the 

conformably underlying Black Reef Formation and its erosional contact with 

Ventersdorp Lava (Fig. 2-3 a). Four of the five formations of the Malmani Subgroup are 

preserved in the core, the upper Frisco Formation (Sumner and Beukes, 2006) and part 

of the Eccles Formation having been removed by erosion prior to deposition of the 

siliciclastics of the overlying Rooihoogte Formation  (Fig. 2-3 a). The drill core is located 

outside of the main metamorphic aureole of the Bushveld Complex. The Transvaal 

succession in this area close to Carltonville experienced at most lower greenschist facies 

metamorphism. The Malmani dolomites are thus for the most part very little 

recrystallized and preserve original microbial laminations often to the finest detail. The 

same applies to early diagentic chert bands in the succession that preserve sedimentary 

textures and structures even better than what is the case in adjacent unsilicified 

carbonate beds. The only exception to this is where the succession is intruded by 

relatively thin diabase sills (Fig. 2-3 a). These are most probably similar in age to the 

2.054 Ga  Bushveld Complex (Buick et al., 2001). Immediately adjacent to the sills the 

dolomites are altered, have a yellowish to brownish color and contain abundant 

ankerite and siderite. KMF-5 is situated in the inner shelf area of the CMCP where the 

succession is dominated by intertidal to supratidal light grey, partly silicified 

(chertified) dolomite of the Monte Christo and Eccles Formations with subordinate 

shallow subtidal dark grey chert-free dolomite of the Oaktree and Lyttleton Formations 

(Figs. 2-1 b, 2-3 a). Carbonate deposition was occasionally interrupted by influx of fine 

siliciclastic muds during marine regressions forming mudrock interbeds (Fig. 2-3 a). 

The basal Black Reef Formation is 22 m thick in KMF-5 and overlies Ventersdorp Lava 

with a sharp erosional contact. The lower part of the formation comprises of poorly 
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sorted pebbly fluvial quartzite with interbeds of mudrock and well-sorted marine 

orthoquartzite. This mixed fluvial to marine siliciclastic facies change upwards into an 

intertidal to shallow subtidal mixed siliciclastic-carbonate facies consisting of 

alternating dolarenite, stromatolitic dolomite, carbonaceous mudrock and 

orthoquartzite. The transition to inter- and shallow subtidal facies is quite rapid, 

marking a major transgression of the Kaapvaal craton and the onset of Malmani 

carbonate platform deposition.  

The subdivision of the Malmani Subgroup into different formations is based 

simply on the presence or absence of early diagenetic chert bands (Button, 1973; 

Eriksson and Truswell, 1974). This is a very practical subdivision that works very well 

both in outcrop and drill core intersections. The Oaktree and Lyttleton formations are 

chert-free and the Monte Christo and Eccles formations chert-bearing (Fig. 2-3 a). 

Another conspicuous difference, applicable in both outcrop and drill core, is that the 

chert-free Oaktree and Lyttleton formations are dominantly composed of very dark 

grey fine micritic dolomite, whereas the dolomites of the chert-bearing Monte Christo 

and Eccles formations are dominantly medium to light grey in color with abundant 

sparry fenestral and sugary dolarenite interbeds. In outcrop the micritic dolomites of 

the Oaktree and Lyttleton formations weather to a chocolate brown and those of the 

Monte Christo and Eccles formations to mainly grey colors. This difference is ascribed to 

the higher concentration of manganese in the structure of dolomites of the Oaktree and 

Lyttleton fomations relative to that in the other two formations (Button, 1973; Eriksson, 

1977; Eriksson et al., 1975). Similar principles of stratigraphic subdivisions apply to the 

dolomites of the Campbellrand Subgroup in Griqualand West but with additional well-

preserved primary limestone members (Beukes, 1987).  

When it comes to reconstruction of depositional environments of the carbonate 

succession it is very difficult and in some cases even impossible, to do that based merely 

on drill core intersections. The reason is that many, if not most, of the stromatolite 

structures have diameters larger than that of the core. These can therefore often be 

identified with some degree of certainty by making use of distinctive subordinate 

microbial laminations and textures as known from outcrops. Fortunately, the Zwartkop 

outcrop reference profile of the Malmani Subgroup is situated in rather close proximity 

to core KMF-5 (Fig. 2-1 a). Detailed descriptions of that profile by Eriksson and Truswell 

(1973, 1974) and Truswell and Eriksson (1972, 1975) could be used to reconstruct 

depositional environments of the succession in core KMF-5. 

In KMF-5 the bottom Oaktree Formation of the Malmani Subgroup is 126 m thick 

and essentially composed of chert-free dark grey fine micritic dolomite with several 5 
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20 cm thick black carbonaceous mudrock partings (Fig. 2-3 a). The micritic dolomite 

appears rather massive in the core except for the occasional fine wrinkled microbial 

laminations, features typical of giant elongated stromatolitic mounds as it is known 

from outcrops of the formation (Eriksson and Truswell, 1973). 

 

Figure 2-3: (a) Stratigraphy of the KMF-5 drill core with tidal conditions (supra-, inter- and subtidal) based 
on sedimentological observations as well as trans- and regressional fluctuations plotted alongside. (b) 
Silicified carbonate in the Monte Christo Formation, showing rip-up clasts of chert layer. (c) Exemplified 
Mini-Cycle in the Monte Christo Formation, ranging from mudrock to silicified carbonate and stromatolite 
structures back to silicified zones and eventually mudrock again. (d) Silicified and unsilicified carbonate 
alternating in the Eccles Formation within cm-scales. 
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Mudrock partings, spaced at stratigraphic intervals of 3-8 m, are especially 

abundant in the lower 20 m of the formation in close proximity to the underlying mixed 

siliciclastic-carbonate succession of the upper part of the Black Reef Formation 

(Fig. 2 3 a). The upper 100 m of the formation contain only two thin mudrock partings 

spaced about 35 m apart. The top of the formation is marked by a prominent 2 m thick 

mudrock with chert and mudrock rip-up clasts (Fig. 2-3 a). Such mudrock beds 

represent regressive sedimentary units in the succession, related to relative falls in sea 

level, decrease in accommodation space and influx of fine siliciclastic mud over the 

carbonate platform (Schroeder et al., 2009; Sumner and Beukes, 2006; Truswell and 

Eriksson, 1975). In contrast intervening giant stromatolitic mounds were most 

probably deposited in shallow subtidal environments (Eriksson, 1977; Truswell and 

Eriksson, 1975) at depths of not more than about 3-20 m as stromatolitic “reefs” 

elongated in line with dominant tidal currents in a carbonate ramp setting (Beukes, 

1987; Sumner and Beukes, 2006).  

The overlying Monte Christo Formation is 547 m thick in core KMF-5. It 

comprises of some 86 stacked upward-shallowing subtidal to intertidal and supratidal 

carbonate increments of sedimentation draped by regressive mudrock partings or beds 

(Fig. 2-3 a). The intertidal units are represented by complex assemblages of small 

columnar, pseudo-columnar and domal stromatolites with associated rippled dolarenite 

and occasional oolites (Eriksson, 1977; Sumner and Grotzinger, 2004; Truswell and 

Eriksson, 1975). Laminoid fenestrae are common in some of the subtidal stromatolite 

beds whereas precipitated small domal stromatolites, characterized by very even 

laminations (Sumner and Grotzinger, 2004) are typical for many of the intertidal units. 

Rippled dolarenite beds, sometimes associated with imbricated rip-up carbonate clasts 

often cap the shallowing-upward subtidal to intertidal increments of sedimentation and 

are considered to represent supratidal deposits. Early diagenetic silicification, 

represented by chert bands (Fig. 2-3 b), are essentially restricted to intertidal carbonate 

units and most typically developed in supratidal beds immediately below regressive 

mudrock beds (Fig. 2-3 c), that in turn may contain abundant rip-up clasts of chert 

(Fig. 2-3 c, d). This testifies to very early diagenetic or synsedimentary silicification of 

carbonate beds.  

Upward-shallowing increments of sedimentation are typically only a few meters 

thick in the lower part of the succession and in general become thicker, up to about 20-

30 m, upwards in the succession (Fig. 2-3 a). Some of the most prominent mudrock beds 

are present in the middle part of the Oaktree Formation (Fig. 2-3 a) indicating abundant 

supply of fine siliciclastic muds in these times during regressions. Organic carbon 
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supply and preservation were also higher as indicated by the black carbonaceous 

nature of the mudrocks. This stands in contrast to the light grey, organic poor nature of 

adjacent dolarenite and stromatolitic carbonate beds. Framboidal Fe-sulfide minerals 

(e.g. marcasite or pyrite) present in some mudrock layers coupled with preservation of 

organic carbon (Fig. 2-4) indicate highly reducing anoxic diagenetic conditions that 

could be compared with suboxic to perhaps even oxic conditions in the diagenetic 

environments of the carbonate beds. Such stark contrasts in redox state of diagenetic 

environments over centimeter stratigraphic scale is well known from modern tidal flat 

systems (Kowalski, 2010). 

 

 

Figure 2-4: Framboidal Fe-sulfide minerals in carbonate sample 1521.4 (Monte Christo Formation) and 
mudrock sample 1790.2 (Oaktree Formation) indicate oxygen-poor conditions with abundant organic 
carbon, iron and sulfur to form Fe-sulfides. 

 

The Lyttleton Formation has a thickness of 162 m in core KMF-5 (Fig. 2-3 a). It is 

composed of chert-free dolomite that is grey laminoid fenestral in the lower 66 m of the 

succession and dark grey fine micritic in the upper 96 m. The lower laminoid fenestral 

dolomite unit has a thin dark grey micritic dolomite basal unit that overlies intertidal 

partly silicified (chertified) small precipitated domal stromatolites of the Monte Christo 

Formation with sharp transgressive contact. The laminoid fenestral dolomites like that 

forming the lower part of the Lyttleton Formation are very well developed in parts of 

the Campbellrand Subgroup in GWA. Here they represent dolomitized equivalents of 

laminoid fenestral limestones interpreted to have been deposited in shallow subtidal 

carbonate platform lagoonal environments (Beukes, 1987; Sumner and Beukes, 2006). 

Similar to the Oaktree Formation, the dark grey fine micritic dolomite forming the 

upper part of the Lyttleton Formation, most probably represent giant microbial mounds 
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deposit as stromatolitic “reefs” in a shallow subtidal carbonate ramp environment. 

Overall this upper unit represents an upward-shallowing succession because fingerlike 

columns, oolite and dolarenite layers become more abundant to the top. Although the 

depositional environment of the Lyttleton Formation can be compared in broad terms 

to that of the Oaktree Formation there are significant differences. The Lyttleton is much 

more homogeneous than the Oaktree and is completely free of any mudrock partings 

(Fig. 2-3 a).  

The contact between the Lyttleton Formation and overlying Eccles Formation is 

gradational. The lowermost unit of the Eccles Formation is composed of partly silicified 

laminoid fenestral shallow subtidal lagoonal dolomite overlain by a prominent 5 m 

thick carbonaceous mudrock with interbeds of fenestral dolomite (Fig. 2-3 a). This 

succession thus represents a rapid regression with lagoonal carbonates draping the 

giant stromatolitic reefs to be covered in turn by siliciclastic muds derived from the far 

landward interior of the carbonate platform. 

About 330 m of the Eccles Formation is preserved in core KMF-5 below the 

erosional unconformity at the base of the Rooihoogte Formation of the overlying 

Pretoria Group (Figs. 2-2 and 2-3 a). The character and depositional setting of the Eccles 

Formation is rather similar to that of the Monte Christo Formation but for a lesser 

abundance of black carbonaceous mudrock interbeds (Fig. 2-3 a). It is also constructed 

of a large number of stacked shallowing-upward subtidal to lagoonal fenestral 

stomatolitic dolomite beds overlain by intertidal small domal and columnar 

stromatolite beds with associated rippled dolarenite (Fig. 2-3 a). The latter often mark 

the top of shallowing-upward increments of sedimentation and in a few cases contain 

oncolites. The succession is markedly silicified with replacive chert bands especially 

abundant in the lower and upper parts of the succession as preserved in core KMF-5 

(Fig. 2-3 a). Here silicified and unsilicified carbonates alternate on a cm to dm scale 

(Fig. 2-3 b).   

Comparing all formations it seems in particular that there was a change in 

sedimentation of detrital material, as the Oaktree and the Monte Christo formations 

host significantly more siliciclastic mudrock interbeds than the Lyttleton and Eccles 

formations (Fig. 2a). This might point to a change in carbonate platform architecture 

and/or dynamics in the siliciclastic continental source inland from the carbonate 

platform. With reference to platform architecture of the carbonate platform it is 

interesting to note that Beukes (1987) and Sumner and Beukes (2006) indicate that the 

CMCP developed from a carbonate ramp setting in the lower part of the succession to a 

mature rimmed shelf platform in the upper part. It is quite possible that with expansion 
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of the carbonate platform through time, siliciclastic source areas that were available 

during early stages of development of the carbonate platform became flooded and 

covered by carbonate sediments later on.  

2.1.2. BH-1 drill core and the Kuruman Kop (Campbellrand Subgroup) 

The BH-1 drill core contains the Campbellrand Subgroup succession, which is 

composed of seven formations and can be stratigraphically correlated with the Malmani 

Subgroup (Fig. 2-2) (Sumner and Beukes, 2006). A detailed description of BH-1 is 

provided by Altermann and Siegfried (1997). The lowermost Reivilo formation shows 

an upward transition from intertidal to subtidal facies and corresponds to similar facies 

in the Oaktree formation. The upper part of Reivilo was deposited contemporaneously 

to the Monte Christo formation and captures sub- to intertidal facies and the 

development of a steep platform margin. Analogues to the Monte Christo formation, the 

Reivilo formation records distinct intervals of sedimentation distinguished by changing 

water depths (Altermann and Siegfried, 1997; Button, 1973). The uppermost Reivilo 

formation reflects a rapid transgression and is overlain by the Kamden Member, which 

is a 1 to 2 m thick Fe formation layer. The transgressive sequence in the TA is 

subsequently featured in the Lyttleton and the lowermost Eccles formation and marks 

the transition to a rimmed platform margin. This stage is characterized by lagoonal and 

peritidal depositional conditions during which Fairfield, Klipfonteinheuwel, Papkuil, 

Klippan, Kogelbeen and Gamohaan formations were deposited, each representing shifts 

in water depth and style of carbonate precipitation. These uppermost formations 

contain more silicified carbonate, just like the correlative Eccles Formation (Altermann 

and Siegfried, 1997). The Fairfield and Klipfonteinheuwel formations capture peritidal 

conditions, which subsequently transition into shallow subtidal water depth of a lagoon 

as reflected in the facies of the Papkuil formation. As the new accommodation state was 

rapidly filled, peritidal conditions dominated again, despite a transgressional event 

(Sumner and Beukes, 2006). Klippan Formation reflects supratidal conditions 

dominating almost the entire platform. The Kogelbeen formation was deposited during 

changing water depth and records a variety of stromatolitic structures and rapid facies 

changes (Altermann and Siegfried, 1997; Sumner and Beukes, 2006). A transgressional 

event marks the beginning of the Kogelbeen deposition under lagoonal conditions and 

the establishment of peritidal conditions with ongoing carbonate precipitation. The 

facies of the Gamohaan Formation starts with intertidal features, which rapidly change 

to deeper water environments, reflecting the drowning of the entire platform and the 

subsequent deposition of iron formations (IF; Kuruman and Penge formations) 
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(Fig. 2-2). The correlative carbonate formation in the TA is the Frisco formation, which 

is as mentioned before not preserved in the KMF-5 drill core, as it was removed during 

erosion. 

The Kuruman Kop is an about 200 m high hill (Fig. 2-1), situated near the city of 

Kuruman and comprises the uppermost succession of the Campbellrand Subgroup, 

including Kogelbeen and Gamohaan formations, as well as a well preserved transition 

sequence towards the IF of the Kuruman Formation at the very top of the hill, reflecting 

the drowning of the carbonate platform. The Kogelbeen formation is only exposed at the 

very base of Kuruman Kop and is rather homogeneous with mainly lagoonal-type calcite 

with fenestrae, which are calcite fillings interpreted as direct seawater precipitates. In 

comparison, the more dolomitized Gamohaan sequence is very heterogeneous and 

comprises peritidal to lagoonal sedimentary features with a mixture of more clastic 

sediments and grainstones, indicating enhanced sediment transport as well as microbial 

mat layers and fenestral stromatolites with frequently occurring calcite cement. Deep 

subtidal features are present further up the Kuruman Kop sequence, with Fe-rich 

carbonate and mudrock sequences, accompanied by chert layers, which grade into the 

Kuruman Fe formation. The sedimentology of the Kuruman Kop is described in detail in 

Sumner (2002). 

2.2. Concluding remarks and sampling 

Studies by Eriksson et al. (1975) and Beukes (1987) indicated that by far the 

majority of dolomite in the CMCP is of very early diagenetic origin replacing primary 

sedimentary limestones. Such limestones are much better and more abundantly 

preserved towards the margin of the carbonate platform in the Campbellrand Subgroup 

of GWA, where water circulation was better and occasional flooding by open marine 

waters prevented complete dolomitization of the succession. However, in the interior of 

the carbonate platform, represented by the Malmani Subgroup, conditions were more 

restricted, the water circulation was poorer and exchange with open marine waters less 

effective. This resulted in accumulation of Mg-enriched brines and complete 

dolomitization of the platform carbonates (Beukes, 1987). It is also in this interior part 

of the carbonate platform that silicification of carbonates were most effective probably 

due to influx of acidic meteoric waters and partial replacement of especially intertidal 

carbonates by chert (Beukes, 1987; Eriksson et al., 1975). As mentioned earlier, there 

are examples of secondary coarsely recrystallized dolomites present in both the 

Malmani and Campbellrand successions. Apart from those, which are restricted to the 

margins of diabase sills, there are other regionally more widespread ones but confined 
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to veins or massive cross cutting bodies in the succession. They are more common in 

close proximity to small Pb-Zn deposits in the CMCP. Hydrothermal fluids that led to 

formation of these deposits were mainly derived during intrusion of the Bushveld 

Complex (Huizenga et al., 2006a; Huizenga et al., 2006b).  

Sampling was done on all four formations of the Malmani Subgroup available in 

KMF-5. As the Oaktree and the Lyttleton formations are much more homogenous, 

sampling density was lower than in the Monte Christo and Eccles formations. All 

available lithologies, stromatolitic carbonates were sampled in their variable 

morphological types, in particular some subtidal to intertidal increments of 

sedimentation of the Monte Christo Formation, in order to gain a good 

chemostratigraphic characterization of the succession. Apart from core KMF-5 a small 

set of samples was also obtained of the BH-1 and the Kuruman Kop outcrop. 

Well-preserved dolomite intervals were sampled for this study, with good preservation 

of sedimentary textures and structures and avoided veined, crackle brecciated and 

coarsely recrystallized intervals. 

According to the sedimentological studies by (Beukes, 1987) and (Sumner and 

Beukes, 2006) this study divides the CMCP into the lower CMCP, reflecting a steep 

ramp architecture and including the stratigraphical correlative formations Lower Nauga 

from the Campbellrand Subgroup (GKP01, GKF01; Prieska Area), Reivilo and the 

Kamden Member from the Campbellrand Subgroup (BH-1; GWA), and Oaktree and 

Monte Christo from the Malmani Subgroup (KMF-5; TA). The upper CMCP reflects the 

rimmed margin architecture and includes the formations Upper Nauga from the 

Campbellrand Subgroup (GKP01, GKF01; Prieska Area), Fairfield, Klipfonteinheuwel, 

Papkuil, Klippan, Kogelbeen, and Gamohaan from the Campbellrand Subgroup 

(BH-1; GWA), and Lyttleton and Eccles from the Malmani Subgroup (KMF-5; TA). 
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3. Analytical methods 

3.1. Sample preparation 

After documentation and imaging of the drill core and outcrop samples, about 1 

to 2 cm thick homogeneous sections were cut, crushed and powdered for elemental and 

isotope geochemical analyses. Thereby, utmost care was taken to avoid any secondary 

mineral veins. Additionally, thin sections of representative sections were prepared for 

Raman and synchrotron analyses. 

3.2. Major and trace element analyses 

3.2.1. XRF analyses 

Major and trace element concentrations of whole rock samples were 

determined using a wavelength dispersive X-ray fluorescence device (XRF) (Hahn-

Weinheimer et al., 1984). Loss on ignition (LOI) was determined on powdered samples 

at 1000 °C. For fused glass beads 1.5 g of dried sample powder (after drying for 24 h at 

105 °C) was mixed with 7.5 g MERCK Spectromelt A12 (mixture of 66 % Li-tetraborate 

and 34 % Li-metaborate) and melted at 1200 °C using an Oxiflux system from CBR 

analytical service. Measurements were performed on the Bruker AXS S4 Pioneer 

spectrometer (Rh-tube at 4kW) of the Isotope Geochemistry Group, University of 

Tuebingen with 32 standardized samples (Potts and Webb, 1992). Analytical error and 

detection limits vary and depend on element and sample composition uncertainties. 

Generally, uncertainties for all major elements are better than 1 % (1σ), for trace 

elements better than 5% (1σ). The international standards used are compiled in 

Govindarau (1989). 

In order to determine a more accurate detrital component of nearly detritus-

free carbonates, selected samples with Al2O3 concentrations below 1 % were analyzed 

by laser ablation ICP-MS on the same fused glass beads that were already used during 

XRF analyses for their Al concentrations. Selected mudrock samples were also 

measured to verify the XRF results for these elements. Measurements were carried out 

on a Thermo Fisher Scientific iCAP Qc® quadrupole ICP-MS, coupled with a Resonetics 

RESOlution M-50 excimer laser ablation system, with a frequency of 4 Hz, a spot size of 

130 µm, and a wavelength of 193 nm. 

Based on the comparison between XRF and laser ablation ICP-MS data of Al2O3 

measured on the same glass beads, this study distinguishes between three groups of 

nearly pure carbonates, silicified carbonates and carbonates with a detectable detrital 

component. Below a value of 1 wt-% Al2O3 the obtained XRF Al2O3 values are always 
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higher compared to the laser ablation ICP-MS Al2O3 values, which indicate that the XRF 

method already reached its accuracy limit. Because it is assumed that the detrital 

material corresponds to the composition of Post-Archean Australian Shale (PAAS; 

Taylor and MacLennan (1985)), 1 wt-% Al2O3 is defined as threshold value to 

distinguish between nearly detritus-free, “pure” carbonates and carbonates with a 

detectable detrital component (‘detritus-containing’ carbonates). PAAS data are also 

used to define the degree of silicification. For example, a carbonate with a 1 wt-% Al2O3 

contribution from a PAAS like detrital component (with 18.9 wt-% Al2O3 and 62.8 wt-% 

SiO2) will carry 3.32 wt-% SiO2 from this component. Higher SiO2 contents in the 

carbonates are thus assumed to originate from silicification. 

3.2.2. ICP-MS analyses 

Approximately 50 mg of sample powder were dissolved in ca. 5 g 2 % HNO3 

overnight at room temperature. Dissolved samples were centrifuged for 10 minutes at 

5000 rpm. Subsequently, ca. 0.5 g of the supernatant was diluted with ca. 15 g of 1 ppb 

In and Re solution in 2% HNO3 (internal standard). Trace element analyses were 

performed using an ESI SC-2DX autosampler coupled to a Thermo Fisher Scientific iCAP 

Qc® quadrupole ICP-MS instrument (Isotope Geochemistry Group, University of 

Tuebingen). Concentration data of the samples were derived from normalization of the 

oxide corrected ion signals to those of W2 international rock standard (U.S. Geological 

Survey) and from internal standardization to correct for instrumental drift and 

differences in ionization efficiency. Within-session accuracy was monitored by repeated 

analyses of international rock standards BHVO-2 and SCo-1 (U.S. Geological Survey). 

Depending on the element, deviations from the reference values used (Marx and 

Kamber, 2010) were ≤1.8% for the well characterized BHVO-2 reference material and 

<5% for SCo-1. 

3.3. Total organic carbon analyses 

Total organic carbon (TOC) and total carbon (TC) contents were determined on 

mudrock samples, silicified, and unsilicified carbonates. For TOC analyses 

approximately 0.8 g of sample powders had to be decalcified in 15 ml centrifuge tubes 

by drop-wise addition of 16 % HCl to remove all inorganic carbon (TIC). Residual 

samples were centrifuged for 10 min at 2000 rpm, decanted and again mixed with 

approximately 10 mL Milli-Q water. This procedure was done for repeated 7 to 10 times 

until samples were neutralized. Upon complete drying of the samples, between 5 to 70 

mg, depending on the estimated TOC content, of decalcified samples (for TOC analyses) 

and un-decalcified samples (for TC analyses) were weight into tin-capsules. TOC and TC 
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measurements were done with a VARIO EL Elemental Analyzer (ZAG, University of 

Tuebingen) and with an Elemental Analyzer NC2500 (Isotope Geochemistry Group, 

University of Tuebingen) by combustion at 950°C. 

3.4. Molybdenum isotope analyses 

Our Mo purification procedure was based on the purification protocol of Siebert 

et al. (2001), Voegelin et al. (2009) and Wille et al. (2007) with some modifications. Due 

to the low Mo content of the carbonates between 10 and 30 ng/g it was necessary to 

digest up to 2 g of sample powder to obtain adequate Mo isotopic signals for precise and 

accurate mass spectrometric analyses. The sample powder was weighed into 25 mL 

Erlenmeyer Duran® glass flasks and dissolved by adding 11 ml concentrated HCl 

dropwise to avoid sample loss due to the strong reaction of carbonate with hydrochloric 

acid. Siebert et al. (2003) and Voegelin et al. (2009) showed that even at low acid 

strength, Mo is very soluble and leached out of detrital material. Therefore, upon 

complete reaction at room temperature, the flasks were covered with a watch glass and 

placed on a hotplate for 24 h at 100°C to ensure complete leaching of detritus and 

organics. After cooling down, 100 µl of 30 % H2O2 was added to keep Mo in its oxidized, 

dissolved Mo6+ state. Subsequently, samples were centrifuged in 15 ml centrifuge tubes 

at 3000 rpm for 10 minutes to separate detritus and organics. Meanwhile, the 

Erlenmeyer glass flasks were cleaned with Milli-Q water, before transferring 

supernatant solution from the tubes into the flasks. 

Approximately 200 mg mudrock sample material was weight into 15 ml PFA 

beakers and leached with 5 ml concentrated HCl to dissolve any minor carbonate 

fraction. Supernatant solution was transferred into 7 ml PFA beakers and residual 

fractions were subsequently digested with 2 ml concentrated HF and 1 ml concentrated 

HNO3 for 24 hours at 110°C. After drying, samples were redissolved in 1 ml 6 M HCl and 

placed on a hot plate for 24 hours at 130°C. Sample solutions were then added to their 

respective aliquots, followed by drying and dissolving in another ml of 6 M HCl. 

Eventually, solutions were separated from any residual material by centrifugation in 1.5 

ml Eppendorf tubes® at 12000 rpm for 15 minutes. These were dried again and 

redissolved in 5 ml 6 M HCl.  

In order to resolve any isotopic fractionation of Mo during ion exchange 

purification and to correct for the instrumental mass bias during isotope analyses it is 

necessary to add an adequate amount of a 100Mo-97Mo double-spike to the sample 

solutions. 1:1 sample to spike mixtures allow for most accurate double spike 

deconvolutions (Rudge et al., 2009), making it necessary to determine the sample Mo 
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concentrations prior to double spike addition. To do so, an aliquot of about 4 % was 

taken from both carbonate and mudrock sample solutions, from which Mo was 

chemically purified by a miniaturized ion exchange-column containing 250 µl Dowex 

AG-1 X8, 200-400 mesh to remove any measurement-disturbing matrix, in particular Ca, 

and 100 % of the Mo was collected from this fraction. The aliquot was dissolved in 250 

µl 4 M HCl + 0.1 %H2O2 and loaded on the resin, followed by a cleaning step with 1 ml of 

4 M HCl + 0.1 % H2O2. The Mo fraction was collected by adding 2 ml of 2 M HNO3. Given 

the very low Mo to matrix ratios, this Mo purification step was necessary to allow 

accurate concentration determinations by solution ICP-MS on the Thermo Fisher 

Scientific iCAP Qc® instrument. After determination of their Mo contents the residual 

sample solutions were transferred to 15 ml PFA beakers, mixed with the double spike 

and dried on a hotplate at 130°C. Eventually, each sample was redissolved in 5 ml 

4 M HCl + 0.1 % H2O2 and loaded stepwise onto anion exchange columns (1 ml 

Eichrom® 1X8 resin, 200-400 mesh). Matrix elements of the samples were eluted by 

adding 7 ml of 4 M HCl + 0.1% H2O2, and Mo was finally released from the resin with 8 

ml of 2 M HNO3. The separation protocol for mudrock samples by anion 

chromatography differed from that of the carbonates, as they were dissolved in 3 ml 4 

M HCl + 0.1 % H2O2 and eluted with 7 ml 2 M HNO3.  

With a second ion exchange column (2 ml Eichrom® 50WX8 resin, 200-400 

mesh) Mo purification was enhanced by removing any residual Fe (Voegelin et al., 

2009). To do so, dried sample fractions were redissolved in 2 ml 0.5 M HCl + H2O2 and 

loaded stepwise on the resin, whereby the second ml was collected in PFA beakers. Mo 

was then completely eluted from the resin by adding 4 ml of 0.5 M HCl + 0.1 % H2O2 

(Voegelin et al., 2009).  

Additionally, the purified Mo analytes were treated with a 1:3 mixture of 

concentrated HCl and HNO3 to evaporate Ru and reduce its possible isobaric 

interference on mass 100 (Pearce et al., 2009).  

A challenging issue regarding the extremely low Mo contents of the carbonate 

samples was to keep procedural blanks at constantly low levels. Therefore, all 

laboratory material, such as Erlenmeyer flasks, centrifuge tubes, PFA beakers, pipette 

tips and the anion/cation resins were carefully pre-cleaned or leached with 0.5 M HCl. 

Hydrogen peroxide can be one of the major contributors to high Mo blanks. Therefore, 

Suprapur® hydrogen peroxide (30 %) was used during digestion and separation, as its 

Mo content is very low (< 0.1 ng/g). With all these precautions it was possible to 

minimize the procedural blank from 3 ng down to constantly less than 0.4 ng. This 

improvement of the Mo blank levels from ca. 5-30 % of the sample amounts down to 
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0.6-4 % was necessary to render the blank negligible on the samples’ Mo isotopic 

compositions. 

Samples were finally dissolved in 0.3M HNO3 and measured on a Thermo-Fisher 

Scientific Neptune® Plus multicollector ICP-MS in low resolution mode. Sample 

introduction was done with a CETAC Aridus IITM desolvating nebulizer system, 

achieving dry plasma. Solutions had concentrations between 10 and 100 ng/g and were 

measured with an uptake rate of about 70 µl/min at static mode with a signal of 5 V on 

95Mo (using a 1011 Ω resistor) at concentrations of ~50 ppb. Mo isotopic data are 

reported in ‰ and calculated as 𝛿98𝑀𝑜 = (

98𝑀𝑜

95𝑀𝑜𝑠𝑎𝑚𝑝𝑙𝑒
98𝑀𝑜

95𝑀𝑜𝑁𝐼𝑆𝑇3134
×0.99975

− 1) × 1000, following a 

proposal by (Naegler et al., 2014) to set the NIST3134 standard to 0.25 ‰ (Goldberg et 

al., 2013; Greber et al., 2012).  

Two carbonate standards, the ECRM 782-1 dolomite standard, and the BCS-CRM 

393 limestone standard were measured in every session to determine the external 

reproducibility of carbonate measurements. Results are listed in Table 3-1. Dolomite 

measurements (n = 9) show an average δ98Mo value of +0.20 ± 0.06 ‰ with a mean 

concentration of 0.117 ± 0.014 ppm, whereas the limestone measurements (n = 6) 

resulted in an average δ98Mo value of +0.99 ± 0.11 ‰ and a concentration of 

0.065 ± 0.007 ppm. These values are in agreement with data reported by (Voegelin et 

al., 2009), yielding values of +0.17 ± 0.11 ‰ and 0.12 ± 0.04 ppm (ECRM 782-1) and 

+0.96 ± 0.09 ‰ and 0.074 ± 0.004 ppm (BCS-CRM 393). 

 

Table 3-1: Mo isotope ratio (δ98Mo) and concentration results of dolomite and limestone standard 
measurements 

ECRM 782-1 
Dolomite Standard 

BCS-CRM 393 
Limestone Standard 

run δ98/95Mo 2SE Mo (ppm) run δ98/95Mo 2SE Mo (ppm) 
#1 0.24 0.02 0.122 #1 0.97 0.01 0.059 
#2 0.22 0.03 0.132 #2 1.03 0.01 0.057 
#3 0.23 0.03 0.120 #3 0.90 0.01 0.062 
#4 0.20 0.03 0.113 #4 1.05 0.01 0.065 
#5 0.19 0.02 0.121 #5 0.99 0.01 0.074 
#6 0.16 0.01 0.113 #6 0.97 0.01 0.072 
#7 0.18 0.01 0.101     
#8 0.16 0.01 0.094     
#9 0.20 0.01 0.138     

  2SD    2SD  
Avg. 0.20 0.06 0.117 Avg. 0.99 0.11 0.065 
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3.5. Carbon and oxygen isotope analyses 

Analyses of δ13Ccarb and δ18Ocarb were performed using a Finnigan MAT 252 gas 

source mass spectrometer combined with a Thermo-Finnigan Gasbench II/CTC Combi-

Pal autosampler (Isotope Geochemistry Lab, University of Tuebingen). Both devices are 

connected using the continuous flow technique with a He stream as carrier gas. This 

setup allows for online preparation of carbonate samples. About 0.1 mg dried sample 

powder is loaded into a 10 ml glass vial, sealed with a rubber septum. The vials are 

placed in an aluminum tray and set to 90°C. After purging with pure He gas, 20 drops of 

99% phosphoric acid are added. After a minimum reaction time of 2.5 hours released 

CO2 is transferred (using a GC gas column to separate other components) to the mass 

spectrometer using a He carrier gas. The sample CO2 is measured relative to an internal 

laboratory tank gas standard which is calibrated against in house (Laaser marble) and 

international (NBS18, NBS19) carbonate standards. All values are given in ‰ relative 

to V-PDB for carbon and V-SMOW/V-PDB for oxygen. The external reproducibility is 

± 0.1‰. 

Analyses of δ13Corg were conducted on an Elemental Analyzer NC2500 connected 

to a Thermo Quest Delta Plus XL mass spectrometer in continuous flow online-mode. 

Decalcified samples (see TOC analyses for further details) containing 0.05 mg carbon 

are weight in tin capsules and combusted at 1050°C in an oxidation tube and at 650°C in 

a reduction tube, before they are cooled in a watertrap and transferred through a GC gas 

column into the mass spectrometer. Sample C is measured relative to an internal 

acetanilide standard which is calibrated against in house (e.g. Laaser marble) and 

international (USGS24) standards. 

3.6. Silicon isotope analyses 

For silicon (Si) isotope analysis the sample digestion and Si purification 

procedure follows the method described by van den Boorn et al. (2006) and Wille et al. 

(2010). Basically, after ~ 1 mg of sample powder and 0.5 ml of 2 M NaOH were added 

into PFA beakers, this mixture was decomposed in Berghof DAB-3 Bombs at ~200 °C for 

three days. The sample solution and solid residue were transferred into 2 ml centrifuge 

tubes, centrifuged, and the supernatant was separated from the residue. Subsequently, 

0.5 ml concentrated aqua regia was added to the residue, which was transferred into 

PFA beakers, capped and heated for 1 day at 100 °C. After complete dissolution of the 

residue, the solution was dried down and the residue dissolved in 0.5 ml 0.5 M HNO3. 

The sample solutions of the different steps were transferred onto 5 ml Pasteur Pipettes 

filled with 0.5 ml Biorad AG50-X8 resin, 200-400 mesh. The Si fraction was effectively 
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eluted by adding 3 ml of Milli-Q water. All samples and standard solutions were 

adjusted to match a Si concentration of 2 ppm by adding Milli-Q water. 

Samples and Si standard solutions were measured on a Thermo-Fisher Scientific 

Neptune® Plus multicollector ICP-MS in medium-resolution mode with standard (H) 

cones. Dry plasma conditions were applied using an Apex Q desolvating system by 

Elemental Scientific. Although sensitivity changed slightly from session to session, a 2 

ppm Si solution with an uptake of 100µl/min resulted in a 20 V signal on 28Si using a 

1011 Ω resistor. To correct for instrumental mass bias, a standard-sample-standard 

bracketing sequence was performed. Repeated analysis of internal Si Standard SP150, 

Demospongiae (66°19’12.0’’S/144°18’36.0’’E, 357m), yielded a δ30SiNBS28 isotopic value 

of -3.25 ± 0.12 ‰ (n = 6), which is well within uncertainties of previously published 

values for this standard of -3.18 ± 0.23 ‰ (Wille et al., 2010). 

3.7. Raman analyses 

Raman spectroscopy is the detection of inelastically scattered photons 

interacting with the vibrational modes of molecular bonds or crystal lattices. This yields 

information on the molecular structure of the analyzed material, which includes the 

electronic configuration of carbonaceous material. Hence, Raman spectroscopy detects 

the structural order of carbonaceous material (CM), which is best parameterized by the 

relative intensities of the so-called D (“disordered”) and G (“graphite”) bands, as well as 

their central peak positions and peak widths. The peak intensity ratio ID/IG increases in 

the case of graphite with the size of the domains, which allows determining the 

structural order of CM (Fig. 3-1). Both, the D- and G-bands broaden significantly with 

increasing disorder. Depending on the level of disorder of the material, other defect 

bands (such as the D2, D3, and D4) can appear, causing an apparent shift of the G-band 

to higher wavenumbers (Sadezky et al., 2005). In well-characterized terrestrial kerogen, 

D- and G-band characteristics allow to determine the peak metamorphic temperatures 

experienced by the material, because the structural changes are usually irreversible 

(Beyssac et al., 2004; Beyssac et al., 2002; Lahfid et al., 2010). In this study, the data are 

reported as the ratio of the peak intensities of the D- and G-bands (ID/IG) and the width 

of the D1 band (FWHM-D). All Raman band position wavenumbers (in cm-1) are given as 

shifts relative to the exciting laser wavelength. 
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Figure 3-1: Raman spectrum of disordered carbonaceous material at low-metamorphic conditions. 
Measured spectrum is composed of the G- and D-bands, which include subordinate defect bands (D1, D2, 
D3, D4). Illustration from Lahfid et al. (2010). 

 

Raman analyses were performed at the Institute de Physique du Globe de Paris. 

Selected carbonate and mudrock samples from KMF-5 and Kuruman Kop are prepared 

as thin sections with 30 µm thickness and polished down to 1 µm. Raman 

measurements were conducted on a Renishaw inVia Raman Microscope coupled to an 

Olympus BX61 confocal microscope, using an Ar monochromatic 514 nm laser source. 

Laser excitation was adjusted to an on-sample intensity of 0.4 mW at 2 x 20 s exposure 

time. Sample spots were focused with a 50x at 2 to 3 µm spots and acquisition was 

obtained in static mode within a range from 100 to 4000 cm-1, with the center at 1150 

cm-1. Beam centering and Raman spectra calibration were performed on a Si chip with a 

Raman band at 520.4 cm-1. 

3.8. Iron isotope analyses 

Between 15 and 170 mg powdered samples, corresponding to approximately  

200 µg of total sample Fe, were weighted into 15 ml PFA beakers. Sample digestion for 

carbonates was done using 20 % acetic acid to avoid digestion of Fe oxides and clay 

minerals, according to the chemical protocol of von Blanckenburg et al. (2008). 

Mudrocks were completely digested in a 2:1 mixture of distilled HF and HNO3. Fe 

purification was achieved using the method described in Schoenberg and von 

Blanckenburg (2005). Fe isotope measurements were performed on a ThermoFisher 

Scientific Neptune® Plus multicollector-inductively coupled plasma-mass spectrometer 

(MC-ICP-MS) at the facilities of the Isotope Geochemistry Group, University of 

Tuebingen, using the standard-sample-bracketing method (Schoenberg and von 
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Blanckenburg, 2005). Fe isotope data are reported relative to the IRMM-014 standard 

(Institute of Reference Material and Measurements, Geel, Belgium) as  

 δ56Fe = (

56Fe

54Fesample
98Fe

95FeIRMM014

− 1) × 1000  

and are expressed as permille (‰). Procedural blanks were between 20 and 60 ng, 

which is less than 0.03 % of the total amount of Fe that passed through the Fe 

purification procedure, and is negligible for the samples’ Fe isotope composition. The 

external reproducibility was determined by repeated analyses of the in-house HanFe 

standard, which gave +0.29 ± 0.06 (2σ) ‰ for δ56Fe (n = 76). Additionally, the dolomite 

standard ECRM 782-1 (δ 56Fe: -0.94 ± 0.17 ‰, n=14), the calcite standard BCS CRM 393 

(δ 56Fe: -0.23 ± 0.13 ‰, n=18), and the IF-G reference material (Dauphas and Rouxel, 

2006) (δ 56Fe : 0.64 ± 0.10 ‰, n=16) were also analyzed during every session. 

3.9. Synchrotron-based X-ray absorption spectroscopy 

3.9.1. Principles of X-Ray Absorption Near Edge Spectroscopy (XANES) 

The synchrotron-based X-Ray absorption spectroscopy (XAS) is a powerful tool 

to explore the molecular and atomic structure and behavior of matter. Thereby, an 

X-ray photon is absorbed by an atom and this energy is transferred to a core-level 

electron, which is subsequently ejected and excited to a continuum state. This causes 

the emission of fluorescent X-rays that scatter around the X-ray absorbing atom and 

create interferences. These occur at discrete energies and can be used to identify the 

absorbing atom regarding its oxidation state, ligands, structure, neighboring atoms, 

bond length and coordination number. XAS includes two techniques, the X-Ray 

Absorption Near Edge Spectroscopy (XANES) and the Extended X-Ray Absorption 

Fine-Structure (EXAFS) (Fig. 3-2). XANES features are sensitive to changes of the 

oxidation state, coordination chemistry, local structure and ligand symmetry around the 

photoabsorber and can be used to precisely identify chemical species in mixtures and 

complex materials. There are three regions in the XAS, the main edge, which signals the 

onset of the continuum state (E0), the pre-edge (E < E0), and the post-edge (E > E0) 

(Fig. 3-2). A higher oxidation state increases E0, whereas the shape of the post-edge 

spectra can give information about the chemical environment and the ligand geometry. 

The weak pre-edge spectra originate from dipole forbidden bound states transitions 

(s → d). The hybridization of electronic levels is strongly affected by details of the 

crystalline field caused by the ligand geometry, which means that elements can have 

same valence state but different local structure that becomes visible in the shape of the 
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spectra. Principles of synchrotron radiation are explained in detail in (Mobilio et al., 

2015). 

 

Figure 3-2: XAS Fe K-edge (7112 eV) spectrum of Fe0 foil. The main absorption edge infers the oxidation 
state and increases with higher valence state. 

3.9.2. Experimental setup 

We conducted micro X-Ray Absorption Near Edge Structure (µ-XANES) 

spectroscopy mapping in fluorescence and transmission mode using the “Turbo-XAS” 

design at the energy-dispersive XAS beamline ID24 at the ESRF (Pascarelli et al., 1999). 

The advantage of this beamline is its high flux and the collection of XANES spectra on 

every spot. For experiments in fluorescence mode 30 µm thick polished thin sections 

mounted on glass slides were prepared. For experiments in transmission mode 100 µm 

thick unmounted thin sections were prepared (Fig. 3-3). The advantage of transmission 

mode is a reduced acquisition time, which allowed collecting data of a 2000 x 2000 µm 

map and at a spot size of 20 µm in about the same amount of time as was required to 

collect data of an e.g. 500 x 500 µm map in fluorescence mode. Low-Fe samples 

(< 0.5 wt-% Fe2O3) are challenging to prepare for transmission, as the signal-to-noise 

ratio might be too low when the section is very thin but self-absorption effects increase 

with thickness and amount of Fe in the sample and can distort the XANES signal. During 

transmission mode a Si (311) bent polychromator was used in the Bragg geometry and 

analyzed an energy range around the Fe K edge from 6946 to 7413 eV. For fluorescence 

mode a monochromatic beam was created by placing a fast-moving slit at the 

polychromator, to avoid interferences of fluorescent X-rays with the I0 beam (Fig. 3-3). 

In this mode, measurements were conducted at an energy range from 7069 to 7311 eV. 
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Figure 3-3: Experimental setup of ID24 for synchrotron measurements in transmission and fluorescence 
mode. Modified after Pascarelli et al. (1999). 

3.10. X-Ray diffraction (XRD) 

XRD analyses were conducted at the Materials Analysis and Research 

Laboratory (MARL) of the Iowa State University. For this study representative samples 

for ‘pure’ carbonates, silicified carbonates, and mudrocks were measured on a Siemens 

D 500 diffractometer using CuKα radiation. Powdered samples were placed in a 

specimen holder, covered with plexiglass, and measured under conditions of 45 kV and 

30 mA. XRD patterns were acquired over a 2θ range of 4 to 75° and subsequently 

analyzed using JADE software.  
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4. Results 

4.1. Major and trace elements 

4.1.1. Malmani Subgroup (KMF-5, TA) 

Major element data reveal that KMF-5 carbonate samples are completely 

dolomitized and partly silicified (Table 4-1; Fig. 4-1). However, formations containing 

mostly intertidal sedimentary rocks (Eccles and Monte Christo) are more 

heterogeneous in their chemical composition than formations with subtidal 

sedimentary rocks (Lyttleton and Oaktree). Pure carbonate samples contain just minor 

detrital material (≤ 0.62 wt-% Al2O3) and are unsilicified (≤ 3.26 wt-% SiO2). Their 

silicified counterparts with SiO2 contents of 3.35 to 86.76 wt-% also contain low Al2O3 

contents, with values up to 0.52 wt-%, respectively. Carbonates with higher detrital 

components have Al2O3 contents varying from 1.01 to 17.56 wt %. Their SiO2 contents 

ranges from 3.82 to 46.92 wt-%. Silicification can also be seen in mudrock samples, 

which otherwise contain a high detrital component, with Al2O3 contents of 4.89 and 

27.34 wt-%.  

The Oaktree Formation comprises shallow subtidal carbonates, which were 

deposited during the expansion of the carbonate platform. Sedimentary rocks from this 

formation range from pure carbonates, carbonates with distinct detrital contribution 

(Al2O3 up to 3.53 wt-%) to mudrock samples with TOC values up to 1.73 %. No 

silicification of mudrocks or of carbonates is observed in this formation.  

Samples of the Monte Christo Formation were mainly deposited under peritidal 

conditions and have very heterogeneous geochemical signatures. As with samples from 

the Oaktree Formation, sedimentary rocks contain variable amounts of detrital material 

ranging from pure carbonates to mudrocks. Carbonates are mainly mixed with mudrock 

material, even though there are some silicified carbonates. Mudrocks occur very 

frequently in this formation and are silicified to various degrees. One silicate-rich 

carbonate sample (1265.1) occurs close to the top of the Monte Christo Formation and 

is exceptionally rich in iron (10.34 wt-% Fe2O3) compared to the other carbonate 

samples (0.17-2.13 wt-% Fe2O3). Although it contains a significant amount of detrital 

material (11.73 wt-% Al2O3), this sample strongly differs from other mudrock samples 

and detritus-rich carbonates, as it contains very litte organic material (0.04 wt-% TOC).  

The Lyttleton Formation was deposited under shallow subtidal conditions like 

the Oaktree Formation, in that it experienced nearly no silicification. However, it differs 
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significantly ways from the Oaktree Formation, as almost all samples are pure 

carbonates and do not contain any mudrock layers (Fig. 4-1).  

The Eccles Formation was governed by intertidal conditions and shows varying 

geochemical signatures. In contrast to the Monte Christo Formation, silicification is 

clearly dominant in the Eccles Formation and carbonate samples do not contain a 

significant detrital component. Moreover, this formation only hosts a few partly 

silicified mudrocks.  

 

 

Figure 4-1: Ternary diagram illustrating the extent of detrital input and the silicification of Malmani 
carbonates and mudrocks (KMF-5). “Detritus” is the sum of TiO2, Al2O3, Na2O, K2O, and P2O5 (all in wt-%). 
Sample 1265.1 is a Fe- and silicate-rich sample, probably correlative with the Kamden ‘IF’ Member. PAAS 
values from Taylor and McLennan (1985). P-C: ‘pure’ carbonate, S-C: silicified carbonate, D-C: detritus-
containing carbonate, MR: mudrock. 

4.1.2. Campbellrand Subgroup (BH-1 and Kuruman Kop outcrop; GA) 

The major element chemistry of BH-1 samples have a mostly the composition of 

pure carbonates (Table 4-2, Fig. 4-2). In the Reivilo Formation, samples 2121 and 2131 

are only partly dolomitized (Mg/Ca ratio of 0.19 and 0.45, respectively), contain more 

detrital material (Al2O3 content of up to 1.80 wt-%), and are partly silicified (SiO2 

content of up to 16.39 wt-%). Despite extensive dolomitization, there are still 

formations in the Campbellrand Subgroup of the GWA that contain pure limestone, in 

contrast to the completely dolomitized Malmani Subgroup of the TA (Beukes, 1987). 
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Sumner and Beukes (2006) correlated the Reivilo (GWA) with the Monte Christo 

Formation (TA), which was also governed by detrital input. This suggests that enhanced 

detrital input was not fully restricted to the tidal flat area of Transvaal area but also 

influenced partly the platform to the deeper regions of the Griqualand West area. Two 

samples from the Gamohaan Formation are also detritus-containing and silicified 

carbonates. Sample 1914 was deposited adjacent to the Kamden IF Member and is 

slightly silicified (3.73 wt-% SiO2), but has much higher Fe concentrations (Fe2O3 of 

3.64 wt-%).  

Outcrop samples from the Kuruman Kop are mostly pure carbonates, with one 

exception (Table 4-3, Fig. 4-2). Sample Ku12/04 is a chert, which was sampled near a 

siderite band as is from the Gamohaan Formation, in the transitional zone between 

carbonates in the lower part and IFs in the upper part of the Kuruman Kop.  

 

 

Figure 4-2: Ternary diagram illustrating the extent of detrital input and the silicification of Malmani 
carbonates (BH-1  and Kuruman Kop. “Detritus” is the sum of TiO2, Al2O3, Na2O, K2O, and P2O5 (all in wt-%). 
Sample 1914 is an Fe-rich carbonate, which was deposited adjacent to the Kamden ‘IF’ Member in the GWA. 
Upper CS is the Upper part of the Campbellrand Subgroup, including formations Gamohaan, Kogelbeen, 
Klippan, Papkuil, Klipfonteinheuwel, and Fairfield. Lower CS is the Lower Campbellrand Subgroup, which is 
here represented by the Reivilo. PAAS values from Taylor and McLennan (1985). P-C: ‘pure’ carbonate, S-C: 
silicified carbonate, D-C: detritus-containing carbonate. 

4.1.3. Fe numbers (Fe#) 

The ratio of Fe to Mn in the samples is expressed as Fe number (Fe# is 

[Fetot/(Fetot+Mntot)]). This is based on the chemostratigraphic behavior of Fe and Mn, 
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where Fe is precipitated in deeper waters at a lower oxygen fugacity than Mn (Beukes, 

1987). The determined Fe# of Malmani and Cambellrand whole rock samples 

(Tables 4-1 and 4-2) show variation with water depth as well as with lithology. Subtidal 

pure carbonates (upper Oaktree and Lyttleton formations) yield the lowest Fe# values, 

which fall in a narrow range between 0.32 and 0.42. Rocks from intertidal zones (lower 

Oaktree, Monte Christo and Eccles formations) yielded values from 0.40 to 1.00, 

depending on the lithological type, with pure carbonates ranging from 0.42 to 0.68, 

silicified carbonates from 0.40 to 0.99, detritus-containing carbonates from 0.56 to 0.88  

and mudrocks from 0.96 and 1.00.  

Pure carbonates of the lower Campbellrand Subgroup succession (Reivilo 

Formation) have even lower Fe# than Malmani rocks (0.14 and 0.32), and two 

detritus-containing carbonates of the same formation have Fe# of around 0.55. Pure 

carbonates of the upper Campbellrand Subgroup succession (Fairfield, 

Klipfonteinheuwel, Papkuil, Klippan, Kogelbeen formations) show overall higher Fe# 

between 0.28 and 0.47 compared to the Reivilo Formation. Detritus-containing 

carbonates 340 and 375 from the Gamohaan Formations yielded 0.49 and 0.57 in Fe#. 

Fe-rich carbonate sample 1914 shows a high Fe# of 0.65. Fe# for Kuruman Kop outcrop 

samples yielded for pure carbonates values between 0.19 and 0.61 and for chert sample 

Ku12/04 a value of 0.98, due to the high detrital component.  

Dolomites of the Malmani and Campbellrand Subgroup, that are near mudrock 

partings or which contain detrital material, show systematically higher Fe# and 

therefore this number also seems to be influenced by the degree of continental 

contamination, besides the dependence from water depth.  

4.1.4. Rare Earth Element and Yttrium (REE+Y) spectra 

Typical REE+Y features of reflecting seawater are depleted light REE, a positive 

La anomalies, as well as Y/Ho ratios higher than the PAAS value of 27 (Bau, 1999; Bau 

and Dulski, 1999; Kamber and Webb, 2001; Webb and Kamber, 2000). In carbonates the 

order of magnitude of these indicators is strongly influenced by mixing water masses 

from the continent and from hydrothermal vents (Kamber and Webb, 2001). 

Freshwater caries a continental ‘PAAS’ signature and would thus flatten the seawater 

REE+Y pattern in affected carbonates (Kamber and Webb, 2001 and references 

therein). A higher input of hydrothermal waters on the other hand results in an over 

increase in REE, more pronounced positive Eu anomalies and decreasing Y/Ho ratios 

(Derry and Jacobsen, 1990). In seawater with sufficient oxygen levels, Ce3+ is oxidized to 

Ce4+ and subsequently removed from the water column, which would be reflected in a 
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negative Ce anomaly in the carbonates precipitated from that seawater (Webb and 

Kamber, 2000). However, Ce oxidation and therefore the development of a negative Ce 

anomaly is inhibited when Fe and Mn concentrations in the seawater are higher than 

50 nM (Seto and Akagi, 2008), as they lower the Eh. Thus, even Fe (and Mn) 

concentrations of several µM in the shallow-marine environment (Table 8-2), could 

inhibit the development of a Ce anomaly even during oxygen production.  

Pure carbonates of KMF-5 and BH-1 were analyzed for their REE+Y distibutions. 

Additionally, four mudrock samples and the Fe- and silicate-rich sample 1265.1 from 

KMF-5 were measured. Absolute concentrations are listed in Tables 4-4 and 4-5. Y/Ho 

anomalies were calculated from absolute values. Concentrations were PAAS-normalized 

(index N) (Taylor and MacLennan, 1985) and La, Ce, and Eu anomalies were calculated. 

Positive La anomalies thereby indicated by Ce/Ce* values smaller than unity 

(Ce/Ce* = CeN/(0.5*LaN+0.5*PrN), negative Ce anomalies by Pr/Pr* values bigger than 

unity (Pr/Pr* = PrN/(0.5*CeN+0.5*NdN), and positive Eu anomalies by Eu/Eu* values 

bigger than unity (Eu/Eu* = EuN/(0.5*SmN+0.5*GdN) (Bau and Dulski, 1996; Webb and 

Kamber, 2000).  

From KMF-5 almost all carbonate samples reveal positive La (0.68 to 0.99; mean 

0.91 ± 0.11 (2σ)) and Eu (0.94 to 1.73; mean 1.27 ± 0.34) to anomalies as well as 

superchondritic Y/Ho ratios (23 to 83; mean 40 ± 26). None of them show any Ce 

anomaly (mean 0.99 ± 0.04). Mudrock samples lack of any La (0.95 to 1.05) and Ce (0.95 

to 1.00) anomalies and have no elevated Y/Ho ratios (23 to 28). Eu/Eu* is mostly below 

unity (0.58 to 1.06) and only shows a clear positive anomaly in sample 1265.1 (1.26). 

Carbonates of BH-1 reveal more pronounced Y/Ho ratios (29 to 88; mean 72 ± 31) and 

La anomalies (0.75 to 0.94; mean 0.85 ± 0.11). Eu anomalies are detectable (0.97 to 

1.29; mean 1.14 ± 0.16) but no Ce anomalies (0.99 ± 0.04).  

REE+Y patterns are described and discussed in detail in Chapter 5. 

4.2. Total organic carbon (TOC)  

TOC data of KMF-5 are listed in Table 4-1. Values of pure carbonates lie between 

0.01 and 0.17 wt-% (mean with 2σ: 0.03 ± 0.07 wt-%). TOC of silicified carbonates 

range from 0.01 to 0.15 wt-% (0.06 ± 0.09 wt-%). TOC values for detritus-rich 

carbonates are significantly higher, between 0.14 and 3.57 wt-% (1.80 ± 2.52 wt-%). 

TOC values in mudrock samples obtain a wide range between 0.83 and 8.50 wt-% 

(2.90 ± 4.14 wt-%). Pure carbonate samples of the BH-1 show TOC values between 0.01 

and 0.29 wt-% (0.07 ± 0.13 wt-%) and two detritus-containing carbonates 340 and 375 

show higher values of 0.28 and 0.20 wt-%, respectively (Table 4-2). 
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4.3. Carbon and oxygen isotopes 

Carbon and oxygen isotope data are of KMF-5 rocks are listed in Table 4-1 and 

illustrated in Fig. 4-3. Pure carbonates show a range in δ18Ocarb signatures between -10.0 

and -6.2 ‰ (mean with 2σ: -8.0 ± 1.5 ‰). Silicified carbonates range from -10.3 

to -5.4 ‰ (-7.6 ± 2.1 ‰), detritus-containing carbonates from -12.0 to -7.5 ‰ 

(-8.7 ± 2.8 ‰), and mudrocks from -17.1 to -8.0 ‰ (-13.9 ± 6.0 ‰). For δ13Ccarb, pure 

carbonates range from -0.9 and +0.3 ‰ (-0.4 ± 0.6 ‰). Silicified carbonates show 

values between -1.2 to +0.4 ‰ (-0.2 ± 0.8 ‰). Detritus-containing carbonates range 

from -1.0 to +0.1 ‰ (-0.6 ± 0.7 ‰), and mudrocks from -12.3 to -0.6 ‰ (-5.3 ± 7.9 ‰). 

The Fe- and silicate-rich sample 1265.1 shows relatively low δ18Ocarb and δ13Ccarb values 

of -16.4 and -3.2 ‰, respectively. For δ13Corg, pure carbonates range from -28.5 

and -21.6 ‰ (-25.4 ± 3.5 ‰), silicified carbonates from -28.6 to -20.5 ‰ (-25.2 ± 4.7 

‰), detritus-containing carbonates from -33.2 to -22.2 ‰ (-29.5 ± 6.2 ‰), and 

mudrocks from -39.4 to -21.8 ‰ (-32.0 ± 8.5 ‰).  
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Figure 4-3: TOC content, oxygen and carbon isotope signature of carbonates and organic matter of KMF-5 
samples. BR: Black Reef 

 

Carbon and oxygen isotope data are of BH-1 rocks are listed in Table 4-2 and 

illustrated in Fig. 4-4. Pure carbonates yield δ18Ocarb values between -13.2 and -7.7 ‰ 

(mean with 2σ: -9.5 ± 2.8 ‰), δ13Ccarb signatures between -1.1 and -0.1 ‰ 

(-0.6 ± 0.6 ‰), and δ13Corg signatures between -33.4 and -23.3 ‰ (-29.8 ± 4.5 ‰). 

Fe-rich carbonate 1914 shows values of -7.7 ‰ (δ18Ocarb), -1.3 ‰ (δ13Ccarb), 

and -28.9 ‰ (δ13Corg). Detritus-rich carbonates 340 and 375 show values of -11.5 ‰ 

and -9.6 ‰ (δ18Ocarb), -0.1 ‰ and 0.1 ‰ (δ13Ccarb), and -35.1 ‰ and -33.4 ‰ (δ13Corg), 

respectively. 
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Figure 4-4: TOC content, oxygen and carbon isotope signature of carbonates and organic matter of BH-1 
samples. Abbreviations of Formations: BP: Boomplaas; LM: Lokamonna; Monte.: Monteville; Kf.: 
Klipfonteinheuwel; Papk.: Papkuil; Kl: Klippan; Gh: Gamohaan 

4.4. Silicon isotopes 

Si isotope analyses on four highly silicified carbonate samples of the Eccles and 

Monte Christo formations yielded δ30Si values of +0.53 to +2.35 ‰ (Table 4-1). This 

isotopic range is heavier compared to the average values of modern solid Si reservoirs 

including igneous rocks of the upper continental crust (-0.3 ‰), silicretes and 

sandstones (-0.4 ‰), clays and hydrothermal deposits (-1.3 ‰) (Basile-Doelsch et al., 

2005; De la Rocha et al., 2000; Ding et al., 2004; Savage et al., 2011; van den Boorn, 

2008; Ziegler et al., 2005). 



69 
 

Table 4-1: Major element composition, TOC content, silicon, oxygen, and carbon isotope data of carbonates and mudrocks of KMF-5 (Malmani Subgroup, TA) 

Depth Lithology SiO2 TiO2 Al2O3 Fe2O3-tot MnO MgO CaO Na2O K2O P2O5 LOI Sum Fe# TOC δ30Si δ18Ocarb δ13Ccarb δ13Corg 

m   wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-%   % ‰ ‰ ‰ ‰ 

Eccles Formation 

665.08 S-C 4.6 0.02 --- 0.93 0.62 19.7 30.33 --- --- 0.01 43.43 99.64 0.58 
  

-6.8 0.4 
 

665.18 S-C 81.59 0.02 --- 0.26 0.1 3.72 5.41 --- 0.01 0.01 8.39 99.52 0.70 0.09 1.66 -7.1 0.0 -25.9 

665.28 MR 77.27 0.65 12.56 0.27 --- 0.72 0.22 0.12 3.81 0.16 2.94 98.82 
 

0.92 
   

-22.9 

672.77 S-C 53.61 0.02 --- 0.27 0.23 9.78 14.08 --- 0 0.01 21.73 99.74 0.51 0.08 2.35 -7.2 0.1 -23.5 

672.8 D-C 24.88 0.3 4.01 0.51 0.36 14.35 21.05 --- 1.25 0.03 33.26 100.03 0.56 0.53 
 

-7.8 0.1 -22.2 

673.8 MR 78.34 0.61 11.3 0.24 0.01 0.8 0.32 0.11 3.42 0.12 3.79 99.15 0.96 1.61 
 

-12.0 -0.6 -21.8 

673.84 S-C 86.76 0.01 --- 0.17 0.07 2.58 3.64 --- 0.01 0.01 5.8 99.06 0.69 0.15 
 

-7.9 0.0 -20.5 

673.87 S-C 12.98 0.01 --- 0.33 0.39 18.28 27.02 --- --- 0.01 40.04 99.05 0.43 0.02 
 

-5.4 0.3 -25.0 

674.55 P-C 1.37 0.03 0.16 0.38 0.42 20.72 30.71 --- 0.06 0.01 46.54 100.4 0.45 0.06 
 

-7.3 0.1 -25.6 

675.38 P-C 2.22 0.02 0.05 0.72 0.43 20.36 30.47 --- 0.02 0.01 46 100.3 0.60 0.04 
 

-7.3 0.0 -28.5 

676.57 S-C 65.79 0.02 0.03 0.26 0.18 7.11 10.35 --- 0.02 0.01 15.9 99.68 0.57 0.07 
 

-7.1 0.0 -27.6 

678.6 P-C 0.22 0.02 --- 0.52 0.48 20.99 31.88 --- --- 0.01 46.61 100.73 0.49 0.01 
 

-6.8 0.0 -24.2 

680.58 P-C 0.53 0.02 0.03 0.4 0.42 20.94 30.94 --- 0.02 0.02 47.16 100.47 0.46 0.10 
 

-7.5 0.2 -24.1 

681.76 S-C 17.24 0.02 --- 0.39 0.34 17.09 25.77 --- --- 0.01 38.65 99.49 0.51 0.01 
 

-7.0 0.0 -27.5 

682.7 P-C 2.36 0.01 --- 0.42 0.43 20.62 30.36 --- --- 0.01 46.23 100.45 0.47 0.02 
 

-7.6 0.3 -26.5 

689.2 S-C 35.47 0.01 --- 0.35 0.3 13.43 19.61 0.06 0.01 0.01 30.24 99.5 0.51 0.09 
 

-6.8 0.1 -23.4 

692.37 S-C 11.92 0.02 0.07 0.36 0.36 18.61 26.84 --- 0.04 0.01 41.64 99.88 0.47 0.10 
 

-7.4 0.2 -23.3 

692.98 S-C 30.13 0.02 --- 0.4 0.34 14.67 21.26 --- --- 0.01 32.88 99.71 0.52 0.12 
 

-7.2 -0.2 -21.7 

693.38 S-C 3.35 0.01 --- 0.37 0.39 20.16 30.18 --- --- 0.01 45.45 99.98 0.46 0.02 
 

-6.8 -0.1 -24.4 

695.99 S-C 53.02 0.01 --- 0.33 0.2 9.86 14.29 --- --- --- 21.92 99.65 0.60 0.05 
 

-7.5 0.1 -23.0 

697.03 S-C 86.69 0.01 --- 0.2 0.07 2.7 3.86 --- --- 0.01 6.05 99.59 0.72 0.08 1.11 -7.4 -0.2 -26.4 

697.18 P-C 2.92 0.03 --- 0.79 0.5 20.21 30.13 --- 0.01 0.01 45.6 100.2 0.59 0.03 
 

-6.9 0.0 -26.3 

698.89 S-C 4.79 0.02 0.1 0.74 0.45 19.64 29.5 --- 0.05 0.01 44.81 100.11 0.60 0.15 
 

-5.6 0.3 -28.6 

702.6 P-C 0.71 0.02 0.05 0.5 0.42 20.63 32.3 --- 0.03 0.02 45.06 99.74 0.52 0.03 
 

-6.3 0.0 -26.2 

703.3 P-C 2.65 0.02 0.07 0.48 0.44 20.36 30.7 --- 0.03 0.01 44.84 99.6 0.50 0.03 
 

-6.2 0.0 -26.9 

705.7 S-C 31.97 0.01 0.01 0.53 0.36 14.18 20.69 --- 0.01 0.01 31.99 99.77 0.57 0.03 
 

-7.0 0.1 -22.0 

707.6 S-C 5.69 0.02 0.03 0.5 0.46 19.68 30.28 --- 0.02 0.01 42.7 99.39 0.50 0.01 
 

-6.5 0.0 -27.2 

708.7 S-C 8.19 0.02 0.06 0.45 0.43 19.19 29.48 --- 0.03 0.01 41.47 99.33 0.49 0.05 
 

-6.4 0.0 -24.0 

711.7 S-C 9.64 0.02 --- 0.54 0.44 18.79 27.44 --- 0.01 0.01 42.59 99.49 0.53 0.01 
 

-7.0 0.1 -28.5 
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Table 4-1 continued 

Depth Lithology SiO2 TiO2 Al2O3 Fe2O3-tot MnO MgO CaO Na2O K2O P2O5 LOI Sum Fe# TOC δ30Si δ18Ocarb δ13Ccarb δ13Corg 

m   wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-%   % ‰ ‰ ‰ ‰ 

711.8 S-C 72.89 0.01 0.02 0.24 0.14 5.61 8.12 --- 0.03 0.01 12.6 99.68 0.61 0.08 
 

-8.0 -0.1 -27.5 

788.5 S-C 11.57 0.01 0.06 0.66 0.43 18.45 26.92 --- 0.01 0.01 41.29 99.36 0.58 
  

-7.4 -0.3 
 

867.3 MR 73.25 0.39 11.18 2.54 0.06 2.88 0.75 0.08 3.27 0.03 6.93 101.44 0.97 3.70 
   

-39.4 

875.5 P-C 0.68 0.02 --- 0.47 0.53 20.87 31.02 --- --- 0.01 46.81 100.42 0.44 
  

-7.7 -0.1 
 

884.83 P-C 2.92 0.01 0.29 0.45 0.49 20.32 30.93 --- 0.09 0.01 44.36 99.85 0.45 0.02 
 

-8.0 -0.2 -28.0 

921.78 P-C 1.06 0.01 --- 0.43 0.45 20.86 30.89 --- 0.01 0.01 46.79 100.52 0.46 0.01 
 

-7.2 0.1 -27.4 

Lyttleton Formation 

985.5 S-C 4.19 0.02 --- 0.51 0.68 20.05 29.74 --- 0.01 0.01 44.98 100.19 0.40 0.01 
 

-7.5 -0.1 -25.0 

1062.5 P-C 0.39 0.02 0.06 0.82 1.13 20.29 31.42 --- 0.03 0.02 45.99 100.16 0.40 0.02 
 

-7.5 -0.3 -22.8 

1072.73 P-C 0.44 0.02 0.01 0.68 0.91 20.56 31.59 --- 0.01 0.01 45.79 100.03 0.40 0.03 
 

-7.9 -0.3 -24.8 

1100.2 P-C 0.35 0.02 0.07 0.68 0.99 20.56 31.24 --- 0.05 0.02 46.58 100.55 0.38 0.05 
 

-7.6 -0.7 -25.0 

1109.5 P-C   
          

  
 

0.17 
 

-9.2 -0.6 -25.5 

1136.75 P-C 0.98 0.02 0.17 0.48 0.59 20.7 31.12 --- 0.08 0.02 46.02 100.18 0.42 0.02   -8.1 -0.6 -27.1 

Monte Christo Formation 

1143.7 P-C 1.04 0.02 --- 0.57 0.6 21.06 30.77 --- 0.02 0.01 46.54 100.63 0.46 0.01 
 

-7.6 -0.3 -22.9 

1197.3 D-C 7.44 0.05 1.89 0.44 0.44 19.16 27.66 --- 0.67 0.03 42.57 100.38 0.47 0.14 
 

-8.0 0.0 
 

1197.34 S-C 4.26 0.02 0.45 0.61 0.47 20.16 29.50 --- 0.15 0.02 44.86 100.47 0.54 0.03 
 

-7.3 0.1 -27.8 

1199.45 S-C 5.17 0.02 --- 0.47 0.42 20.38 29.44 --- 0.01 0.01 44.55 100.48 0.50 
  

-7.5 -0.2 
 

1199.5 S-C 81.22 0.01 0.14 0.28 0.10 3.82 5.48 --- 0.01 0.01 8.49 99.43 0.72 0.03 0.53 -10.3 -0.9 
 

1202.58 P-C 1.48 0.02 --- 0.45 0.37 21.09 30.70 --- 0.01 0.01 46.49 100.63 0.52 0.01 
 

-7.5 -0.2 -26.5 

1222.32 S-C 47.92 0.02 --- 0.59 0.25 10.84 15.83 --- 0.01 0.01 24.53 99.99 0.68 0.04 1.88 -8.7 -0.4 -23.8 

1239.98 P-C 1.71 0.02 --- 0.36 0.33 20.80 30.65 --- 0.02 0.01 46.51 100.41 0.50 0.01 
 

-7.7 -0.6 -26.6 

1265.1 S-C 54.60 1.45 11.73 10.34 0.14 5.02 6.82 3.29 1.72 0.19 3.27 98.82 0.99 0.04 
 

-16.4 -3.2 -27.7 

1350.66 S-C 4.83 0.03 0.14 0.75 0.47 19.85 29.91 --- 0.06 0.02 43.56 99.60 0.59 
  

-9.1 -0.4 
 

1350.9 MR 48.89 2.57 27.34 0.95 0.01 2.21 0.18 0.21 8.87 0.07 7.46 98.93 0.99 2.35 
 

-16.6 -3.4 -32.9 

1401.0 P-C 0.18 0.02 --- 0.53 0.44 21.38 31.00 --- 0.01 0.01 47.11 100.68 0.52 
  

-8.4 -0.5 
 

1403.8 P-C 1.16 0.02 --- 0.50 0.35 21.24 30.69 --- 0.01 0.02 46.67 100.66 0.56 0.01 
 

-7.9 -0.7 -26.0 

1406.7 D-C 27.92 0.50 10.08 1.72 0.22 12.44 15.33 0.09 3.31 0.03 28.29 100.00 0.88 2.65 
   

-31.5 

1406.8 P-C 1.28 0.02 --- 0.57 0.40 21.04 30.76 --- 0.02 0.01 46.52 100.62 0.56 
  

-8.5 -0.6 
 

1407.9 D-C 46.92 0.90 17.56 0.94 0.17 11.08 12.66 0.18 5.89 0.15 21.87 100.00 0.83 2.98 
 

-8.5 -0.6 -31.1 
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Table 4-1 continued 

Depth Lithology SiO2 TiO2 Al2O3 Fe2O3-tot MnO MgO CaO Na2O K2O P2O5 LOI Sum Fe# TOC δ30Si δ18Ocarb δ13Ccarb δ13Corg 

m   wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-%   % ‰ ‰ ‰ ‰ 

1411.1 MR 50.33 2.71 27.23 0.70 0.01 2.21 0.05 0.18 8.72 0.02 7.66 100.00 0.98 2.63 
   

-33.0 

1411.3 S-C 6.92 0.03 0.52 1.00 0.57 19.23 28.36 --- 0.20 0.03 43.42 100.29 0.61 
  

-8.6 -0.6 
 

1413.34 S-C 5.42 0.03 0.22 1.31 0.63 19.33 29.89 --- 0.11 0.01 42.44 99.39 0.65 
  

-8.9 -0.7 
 

1420.9 P-C 1.40 0.02 0.11 0.83 0.55 20.84 30.47 --- 0.05 0.02 46.31 100.60 0.58 0.03 
 

-8.1 -0.5 -23.6 

1425.4 P-C 1.01 0.02 --- 0.64 0.46 21.06 30.77 --- 0.01 0.02 46.69 100.67 0.56 
  

-8.9 -0.6 
 

1427.85 S-C 3.97 0.02 0.27 0.47 0.29 20.17 29.96 --- 0.11 0.01 45.20 100.49 0.59 
  

-8.9 -0.7 
 

1428.4 MR 83.09 0.20 9.43 0.39 0.01 0.89 0.02 0.09 3.20 0.02 2.60 100.00 0.97 0.96 
 

-16.9 -9.7 -35.0 

1429.1 MR 62.24 0.77 19.91 0.47 0.01 1.91 0.04 0.16 6.71 0.04 7.61 100.00 0.98 4.25 
   

-35.5 

1435.25 P-C 1.09 0.02 0.08 0.50 0.37 21.12 30.73 --- 0.05 0.01 46.61 100.60 0.55 0.04 
 

-8.2 -0.6 -22.7 

1442.17 P-C 0.93 0.02 --- 0.56 0.59 20.88 30.76 --- 0.01 0.01 46.69 100.46 0.46 
  

-7.2 -0.4 
 

1454.61 S-C 5.53 0.02 --- 0.61 0.41 19.95 28.62 --- 0.01 0.01 44.58 99.74 0.57 
  

-8.1 -0.4 
 

1460.05 S-C 3.81 0.02 0.13 0.58 0.44 20.39 29.64 --- 0.07 0.01 45.24 100.35 0.54 
  

-8.7 -0.5 
 

1461.8 P-C 2.13 0.02 0.18 0.51 0.54 20.65 30.38 --- 0.07 0.02 45.97 100.48 0.46 
  

-8.5 -0.5 
 

1462.1 MR   
          

  
 

3.83 
   

-27.7 

1464.3 P-C 1.04 0.01 --- 0.70 0.54 20.92 30.77 --- 0.03 0.01 46.47 100.51 0.54 0.02 
 

-8.0 -0.2 -23.8 

1467.1 P-C 1.21 0.02 0.01 0.54 0.44 21.14 30.58 --- 0.02 0.01 46.66 100.65 0.53 
  

-8.6 -0.6 
 

1475.35 P-C 3.19 0.03 0.39 0.42 0.53 20.38 30.16 --- 0.17 0.01 45.27 100.56 0.42 0.04 
 

-7.6 -0.5 -26.9 

1475.6 D-C 17.84 0.19 4.30 0.99 0.38 16.30 22.38 --- 1.21 0.03 36.36 100.00 0.70 0.89 
 

-7.5 -0.6 -28.2 

1478.6 D-C 29.77 0.59 9.56 1.79 0.31 11.96 14.44 --- 3.48 0.07 27.88 100.00 0.84 3.57 
 

-12.0 -0.9 -30.3 

1484.8 P-C 1.69 0.03 0.39 0.49 0.59 20.76 30.44 --- 0.16 0.02 45.99 100.55 0.43 0.04 
 

-8.1 -0.6 -24.0 

1491.3 P-C 0.64 0.02 --- 0.47 0.52 21.21 30.79 --- 0.02 0.01 46.74 100.42 0.45 
  

-8.1 -0.5 
 

1491.85 S-C 4.40 0.01 --- 0.69 0.46 20.46 29.53 --- 0.01 0.01 44.92 100.50 0.58 
  

-8.4 -0.4 
 

1493.5 MR 65.84 0.63 16.48 0.40 0.01 1.64 0.10 0.15 5.50 0.04 9.09 100.00 0.97 6.13 
 

-16.6 -3.8 -33.6 

1495.8 MR 54.68 1.17 21.84 0.60 0.01 2.13 0.11 0.19 6.96 0.04 12.43 100.00 0.98 8.50 
 

-16.0 -11.0 -34.8 

1499.6 S-C 5.38 0.03 0.27 0.44 0.43 19.64 29.62 --- 0.08 0.01 44.03 99.91 0.48 
  

-8.2 -1.0 
 

1499.85 MR 57.59 1.07 20.82 0.49 0.01 2.14 0.44 0.19 6.68 0.04 9.36 98.98 0.98 4.83 
 

-12.9 -2.9 -34.8 

1521.4 D-C 11.57 0.13 3.87 0.79 0.31 18.39 23.87 --- 0.27 0.02 40.77 100.00 0.70 3.21 
 

-9.4 -0.8 
 

1524.7 P-C 0.80 0.01 --- 0.45 0.42 21.32 30.70 --- 0.02 0.01 46.88 100.63 0.49 
  

-8.3 -0.6 
 

1528.48 S-C 4.18 0.03 0.38 0.46 0.51 19.86 29.75 --- 0.15 0.01 44.96 100.32 0.45 
  

-7.4 -0.7 
 

1539.9 P-C 1.89 0.02 0.25 0.58 0.62 20.59 27.93 --- 0.11 0.02 46.02 100.49 0.46 
  

-8.0 -0.7 
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Table 4-1 continued 

Depth Lithology SiO2 TiO2 Al2O3 Fe2O3-tot MnO MgO CaO Na2O K2O P2O5 LOI Sum Fe# TOC δ30Si δ18Ocarb δ13Ccarb δ13Corg 

m   wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-%   % ‰ ‰ ‰ ‰ 

1544.1 MR 85.15 0.36 7.38 0.40 0.01 0.91 0.03 0.11 2.60 0.03 2.91 100.00 0.97 1.30 
 

-8.0 -12.3 -31.0 

1551.6 D-C 20.00 0.05 1.16 1.08 0.30 16.63 23.89 --- 0.31 0.02 35.82 99.28 0.76 
  

-7.8 -1.0 -33.2 

1551.7 MR 64.19 0.82 18.71 1.02 0.01 1.70 0.08 0.16 6.49 0.07 5.80 99.20 0.99 2.65 
 

-8.2 -1.1 -34.7 

1557.7 MR 75.66 0.51 11.04 0.36 0.01 1.15 0.07 0.13 3.80 0.06 7.12 100.00 0.97 5.32 
 

-15.7 -12.2 -34.8 

1558.88 P-C 3.26 0.02 --- 0.55 0.45 20.59 29.97 --- 0.02 0.02 45.63 100.53 0.52 0.02 
 

-8.1 -0.6 
 

1564.3 P-C 0.81 0.01 0.01 0.40 0.45 21.27 30.75 --- 0.02 0.01 46.92 100.66 0.45 0.01 
 

-8.1 -0.5 -24.9 

1574.15 P-C 0.95 0.00 0.03 0.32 0.35 21.44 30.68 --- --- 0.01 46.82 100.60 0.45 0.01 
 

-7.3 -0.5 
 

1574.2 P-C 0.73 0.02 0.40 0.39 0.35 21.20 30.74 --- 0.14 0.01 46.66 100.59 0.50 0.03 
 

-7.6 -0.6 -24.4 

1574.25 P-C 2.67 0.00 0.06 0.31 0.36 20.97 30.32 --- 0.01 0.01 45.90 100.56 0.44 0.01 
 

-8.1 -0.6 
 

1574.3 S-C 11.22 0.00 0.03 0.52 0.33 19.01 27.20 --- --- 0.01 41.87 100.17 0.59 0.02 
 

-8.7 -0.6 
 

1589.75 P-C 0.56 0.02 0.01 0.38 0.38 21.47 30.88 --- 0.03 0.01 46.92 100.65 0.47 0.02 
 

-8.5 -0.6 
 

1589.9 P-C 2.08 0.01 --- 0.52 0.37 21.15 30.25 --- 0.01 0.01 46.10 100.50 0.56 0.01 
 

-8.5 -0.6 
 

1604.6 P-C 0.32 0.02 --- 0.44 0.45 21.13 31.34 --- 0.00 0.02 46.57 100.29 0.47 0.02 
 

-7.9 -0.7 -24.9 

1673.1 S-C 3.82 0.02 0.06 0.94 0.57 19.80 29.79 --- 0.06 0.01 44.75 99.84 0.60 
  

-9.4 -1.2 
 

1673.3 MR 85.12 0.19 4.89 0.85 0.02 1.12 0.86 0.06 2.75 0.03 2.99 98.92 0.97 0.83 
 

-11.3 -4.1 -31.8 

Oaktree Formation 

1731.1 P-C 0.58 0.02 --- 0.97 1.36 20.26 30.77 --- 0.02 0.01 46.18 100.17 0.39 
  

-8.4 -0.5 
 

1731.3 P-C 0.61 0.02 --- 1.03 1.31 20.22 30.76 --- 0.01 0.01 46.20 100.17 0.42 
  

-9.9 -0.6 
 

1742.3 P-C 1.20 0.03 --- 1.16 2.26 19.44 30.75 --- 0.01 0.01 44.91 99.76 0.32 0.08 
 

-10.0 -0.9 -21.6 

1775.8 D-C 15.94 0.14 3.53 2.03 0.65 16.22 23.19 --- 2.10 0.03 35.66 99.53 0.74 0.43 
 

-8.4 -0.8 -30.4 

1776.0 MR 57.72 1.10 19.44 2.03 0.01 3.02 0.14 0.11 10.68 0.08 4.33 98.62 0.99 1.73 
 

-15.3 -3.4 -31.9 

1790.0 D-C 3.82 0.04 1.01 2.13 0.80 19.57 28.64 --- 0.32 0.03 43.70 100.07 0.71 
  

-8.8 -0.8 -29.1 

1790.1 P-C 2.86 0.04 0.62 2.00 0.84 19.23 29.37 --- 0.29 0.02 44.35 99.64 0.68 0.10 
 

-9.0 -0.6 -28.1 

1790.3 MR 62.03 0.76 16.74 2.68 0.01 4.05 0.10 0.09 8.26 0.04 3.84 98.72 1.00 1.31 
 

-15.4 -2.1 
 

1800.1 P-C 1.53 0.03 0.46 1.56 0.98 19.68 31.53 --- 0.19 0.02 43.29 99.26 0.59 0.05 
 

-8.3 -0.8 -26.4 

1800.3 MR 58.61 0.79 19.61 1.83 0.03 3.46 0.72 0.11 8.75 0.03 5.08 99.04 0.98 1.00 
 

-11.8 -3.1 -29.6 

1811.2 MR 48.99 0.83 16.78 9.20 0.15 6.65 2.14 0.07 5.23 0.07 8.77 99.06 0.98 1.30   -17.1 -4.9 -31.1 

Major element data by XRF, Laser ablation ICP-MS data in bold italic; ---: below detection limit 
P-C: ‘pure’ carbonate, S-C: silicified carbonate, D-C: detritus-containing carbonate, MR: mudrock 
Extern reproducibility for δ30Si is ± 0.12 ‰ (2σ); Fe-Mn ratio: Fe# = Fe/(Fe+Mn) 
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Table 4-2: Major element composition, TOC content, oxygen, and carbon isotope data of carbonates and mudrocks of BH-1 (Campbellrand Subgroup, GWA) 
Depth Lithology SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Sum Fe# TOC δ18Ocarb δ13Ccarb δ13Corg 

m   wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-%   wt-% ‰ ‰ ‰ 

Gamohaan Formation 

340 D-C 4.87 0.05 0.93 1.10 1.04 0.93 50.21 0.05 0.27 0.04 39.39 98.90 0.49 0.28 -11.5 -0.1 -35.1 

375 D-C 1.50 0.03 0.33 1.44 0.99 18.95 30.60 0.00 0.02 0.02 45.50 99.39 0.57 0.20 -9.6 0.1 -33.4 

Kogelbeen Formation 

488 P-C 0.15 0.01 --- 0.19 0.44 0.31 55.56 0.05 0.00 0.01 43.19 99.93 0.27 
 

-10.7 -0.7 -29.9 

670 P-C 1.46 0.02 --- 0.24 0.41 1.61 53.40 0.05 0.00 0.01 42.05 99.26 0.34 0.02 -13.2 -0.8 -27.0 

751 P-C 3.17 0.01 --- 0.83 0.84 20.17 29.56 0.00 0.00 0.01 44.68 99.28 0.47 0.01 -10.4 -0.2 -27.3 

Klippan Formation 

1235 P-C 0.69 0.02 --- 0.36 0.63 20.44 31.26 0.00 0.00 0.01 45.82 99.25 0.34 0.02 -8.2 -0.5 -23.3 

Papkuil Formation 

1400 P-C 0.90 0.02 0.10 0.74 0.99 20.42 30.09 0.00 0.06 0.01 46.21 99.56 0.40 0.07 -8.8 -0.4 -27.8 

1425 P-C 3.32 0.02 0.06 0.53 0.60 19.78 29.97 0.00 0.05 0.01 45.21 99.58 0.44 0.04 -9.8 -0.6 -33.3 

1455 P-C 3.03 0.03 0.31 0.63 0.84 19.95 29.49 0.00 0.15 0.02 44.59 99.07 0.40 0.13 -8.0 -0.1 -29.4 

1490 P-C 1.59 0.01 0.01 0.47 0.82 20.51 30.00 0.00 0.02 0.01 45.65 99.11 0.34 0.01 -8.3 -0.6 -30.4 

Klipfonteinheuwel Formation 

1520 P-C 0.53 0.02 --- 0.42 0.71 20.88 30.38 0.00 0.03 0.01 46.55 99.55 0.35 
    

Fairfield Formation 

1620 P-C 0.88 0.02 0.01 0.35 0.51 20.92 30.38 0.00 0.03 0.01 46.24 99.36 0.38 0.02 -8.0 -0.5 -29.4 

1750 P-C 2.81 0.04 0.60 0.78 1.29 19.29 29.54 0.00 0.31 0.02 44.27 98.97 0.35 0.11 -7.7 -0.8 -33.4 

1776 P-C 1.83 0.01 --- 0.52 0.60 20.53 30.10 0.00 0.02 0.01 45.49 99.13 0.44 0.10 -8.0 -0.5 -32.3 

Kamden Formation 

1914 S-C 3.73 0.02 --- 3.64 1.73 17.30 28.75 0.00 0.00 0.01 43.80 98.99 0.65 0.03 -7.7 -1.3 -28.9 

Reivilo Formation 

2041 P-C 0.56 0.03 --- 0.29 1.03 21.05 30.71 --- 0.02 0.03 46.27 100.00 0.20 0.10 -8.8 -0.4 -29.6 

2066 P-C 0.39 0.02 0.03 0.30 1.65 20.62 30.80 --- 0.04 0.01 46.45 100.30 0.14 0.07 -9.3 -0.3 -32.3 

2098 P-C 0.39 0.02 0.03 0.30 1.65 20.62 30.80 --- 0.04 0.01 46.45 100.30 0.14 0.29 -10.0 -0.9 -32.9 

2121 D-C 16.39 0.05 0.93 1.46 1.13 7.58 34.56 --- 0.72 0.03 36.58 99.43 0.54 
    

2131 D-C 14.72 0.06 1.80 1.82 1.33 14.51 26.85 --- 1.07 0.02 37.84 100.00 0.55 
    

2160 P-C 0.38 0.02 --- 0.45 0.85 21.27 30.60 --- 0.00 0.01 46.86 100.40 0.32 0.03 -9.9 -0.2 -28.6 

2250 P-C 0.37 0.02 --- 0.30 0.73 21.37 30.73 --- 0.01 0.01 46.90 100.45 0.27 0.02 -9.6 -0.3 -29.5 
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Table 4-2 continued 

Depth Lithology SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Sum Fe# TOC δ18Ocarb δ13Ccarb δ13Corg 

m   wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-%   wt-% ‰ ‰ ‰ 

2251 P-C 0.33 0.02 --- 0.48 0.90 21.20 31.03 --- 0.00 0.02 46.94 100.92 0.33 
    

2275 P-C 0.63 0.02 --- 0.57 1.07 21.09 30.86 --- --- 0.02 46.56 100.80 0.33 0.07 -9.8 -0.5 -29.0 

2293 P-C 0.57 0.01 0.03 0.67 2.82 19.60 30.58 --- 0.03 0.02 45.61 99.95 0.18 0.02 -9.6 -0.4 -29.7 

2355 P-C 0.81 0.02 0.04 1.23 3.54 18.52 30.61 --- 0.13 0.02 45.02 99.94 0.24 0.10 -10.0 -1.0 -30.1 

2379 P-C 0.57 0.01 0.03 0.67 2.82 19.60 30.58 --- 0.03 0.02 45.61 99.95 0.18 0.08 -10.2 -1.1 -29.8 

2400 P-C 0.27 0.01 --- 0.50 1.64 20.56 31.03 --- 0.00 0.01 46.40 100.40 0.22 0.06 -9.8 -0.7 -29.3 

2450 P-C   
          

  
 

0.15 -12.8 -0.9 -32.2 

Major element data by XRF, Laser ablation ICP-MS data in bold italic; ---: below detection limit 
P-C: ‘pure’ carbonate, S-C: silicified carbonate, D-C: detritus-containing carbonate 
Fe-Mn ratio: Fe# = Fe/(Fe+Mn) 
 

Table 4-3: Major element composition of carbonate and mudrock samples of the Kuruman Kop (Campbellrand Subgroup, GWA) 

Depth Lithology SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Sum Fe# 

m   wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-%   

Gamohaan Formation 

Ku12_04 D-C 79.72 0.30 10.18 2.42 0.04 1.11 0.18 0.31 2.84 0.08 2.70 100.90 0.98 

Ku12_06 P-C 1.53 0.03 0.27 0.54 1.06 0.54 53.67 0.05 0.25 0.02 42.21 100.20 0.32 

Ku12_25 P-C 1.14 0.03 0.13 1.68 0.97 19.67 30.73 0.00 0.08 0.02 45.63 100.10 
 

Ku12_26 P-C 0.45 0.02 0.00 0.27 0.53 1.99 53.62 0.05 0.04 0.02 43.42 100.42 
 

Kogelbeen Formation 

Ku12_31 P-C 0.12 0.03 0.00 0.12 0.45 0.50 55.46 0.00 0.00 0.01 42.89 99.61 0.19 

Major element data by XRF, Laser ablation ICP-MS data in bold italic; ---: below detection limit 
P-C: ‘pure’ carbonate, D-C: detritus-containing carbonate 
Fe-Mn ratio: Fe# = Fe/(Fe+Mn) 
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Table 4-4: Rare Earth Element and Yttrium (REE+Y) concentrations (in µg/g) of KMF-5 carbonates 

Depth (m) La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Tm Er Yb Lu Y/Ho Ce/Ce* Eu/Eu* 

KMF-5 carbonates 
              

  
   

674.55 1.017 2.038 0.267 1.036 0.221 0.047 0.199 0.030 0.175 0.966 0.035 0.013 0.093 0.077 0.011 28 0.90 1.04 

675.38 1.112 2.142 0.244 0.919 0.179 0.041 0.177 0.027 0.162 1.085 0.034 0.013 0.091 0.075 0.011 32 0.94 1.06 

678.6 1.228 2.343 0.267 1.064 0.229 0.056 0.245 0.038 0.235 1.795 0.051 0.021 0.142 0.121 0.017 35 0.94 1.09 

680.58 0.739 1.273 0.137 0.526 0.097 0.019 0.093 0.013 0.073 0.575 0.015 0.005 0.041 0.029 0.004 38 0.91 0.94 

697.18 0.169 0.399 0.051 0.210 0.046 0.013 0.049 0.008 0.049 0.307 0.010 0.004 0.026 0.022 0.003 31 0.98 1.27 

702.6 1.308 2.503 0.285 1.035 0.192 0.058 0.177 0.027 0.153 0.958 0.031 0.012 0.083 0.072 0.010 31 0.94 1.46 

703.3 1.753 3.298 0.372 1.332 0.236 0.051 0.210 0.031 0.180 1.087 0.037 0.015 0.101 0.093 0.013 29 0.94 1.07 

884.83 0.644 1.579 0.204 0.817 0.164 0.051 0.147 0.021 0.117 0.701 0.023 0.008 0.058 0.047 0.006 31 0.99 1.53 

921.78 0.199 0.394 0.047 0.186 0.038 0.012 0.038 0.006 0.032 0.209 0.006 0.002 0.017 0.014 0.002 33 0.94 1.50 

1072.73 0.347 0.605 0.065 0.249 0.051 0.016 0.053 0.008 0.046 0.343 0.009 0.003 0.025 0.021 0.003 37 0.92 1.44 

1100.2 0.727 1.150 0.141 0.561 0.121 0.042 0.154 0.023 0.149 2.138 0.036 0.015 0.107 0.093 0.015 60 0.82 1.40 

1109.5 0.396 0.769 0.098 0.398 0.102 0.031 0.115 0.017 0.095 0.610 0.018 0.006 0.047 0.037 0.006 33 0.90 1.31 

1136.75 1.399 2.781 0.310 1.172 0.252 0.061 0.264 0.043 0.256 1.430 0.052 0.021 0.140 0.132 0.019 28 0.97 1.10 

1143.7 0.244 0.445 0.051 0.191 0.036 0.009 0.037 0.005 0.032 0.257 0.007 0.002 0.018 0.014 0.002 39 0.92 1.17 

1202.58 0.322 0.542 0.059 0.217 0.040 0.011 0.041 0.006 0.034 0.272 0.007 0.003 0.020 0.015 0.002 37 0.90 1.23 

1239.98 0.365 0.594 0.062 0.228 0.038 0.010 0.036 0.005 0.025 0.174 0.005 0.002 0.012 0.009 0.001 36 0.90 1.23 

1401.0 0.344 0.478 0.053 0.203 0.032 0.010 0.036 0.004 0.025 0.219 0.005 0.002 0.014 0.008 0.001 44 0.80 1.37 

1403.8 0.585 0.991 0.108 0.392 0.070 0.020 0.069 0.010 0.062 0.488 0.013 0.005 0.036 0.030 0.004 38 0.90 1.30 

1420.9 0.521 0.954 0.110 0.416 0.077 0.021 0.076 0.011 0.067 0.877 0.015 0.006 0.046 0.041 0.007 57 0.91 1.30 

1425.4 0.863 1.616 0.182 0.664 0.127 0.032 0.123 0.019 0.115 0.753 0.023 0.010 0.064 0.058 0.008 32 0.94 1.19 

1435.25 0.608 1.008 0.115 0.426 0.074 0.020 0.074 0.011 0.063 0.804 0.014 0.006 0.041 0.033 0.005 57 0.87 1.24 

1464.3 0.630 1.256 0.141 0.506 0.085 0.031 0.080 0.012 0.067 0.664 0.014 0.006 0.039 0.034 0.005 47 0.97 1.73 

1467.1 0.514 0.914 0.105 0.387 0.068 0.018 0.069 0.010 0.060 0.789 0.014 0.006 0.041 0.036 0.006 58 0.90 1.22 

1475.35 1.333 2.422 0.258 0.907 0.154 0.036 0.132 0.019 0.105 0.564 0.019 0.007 0.051 0.041 0.006 29 0.95 1.19 

1484.8 0.796 1.402 0.170 0.634 0.122 0.028 0.114 0.017 0.099 1.186 0.021 0.009 0.063 0.055 0.008 56 0.87 1.12 

1524.7 0.580 1.013 0.114 0.423 0.078 0.020 0.074 0.011 0.060 0.375 0.012 0.004 0.031 0.023 0.003 33 0.90 1.23 

1539.9 0.830 1.414 0.164 0.621 0.119 0.033 0.123 0.018 0.111 1.766 0.026 0.011 0.079 0.065 0.011 67 0.88 1.28 

1564.3 0.282 0.503 0.055 0.196 0.033 0.011 0.032 0.005 0.026 0.160 0.005 0.002 0.013 0.010 0.001 32 0.92 1.53 

1574.25 0.385 0.630 0.066 0.232 0.039 0.011 0.037 0.005 0.031 0.205 0.006 0.002 0.016 0.013 0.002 34 0.90 1.28 

1589.75 0.394 0.699 0.076 0.279 0.051 0.015 0.048 0.007 0.040 0.241 0.008 0.003 0.020 0.017 0.002 31 0.92 1.38 

1589.9 0.289 0.540 0.060 0.218 0.041 0.013 0.040 0.006 0.034 0.217 0.007 0.002 0.017 0.014 0.002 33 0.94 1.53 

1604.6 0.489 0.773 0.081 0.294 0.051 0.015 0.050 0.007 0.042 0.298 0.008 0.003 0.021 0.016 0.002 36 0.88 1.35 

1731.1 0.517 0.852 0.094 0.357 0.070 0.019 0.092 0.014 0.088 1.137 0.021 0.009 0.063 0.058 0.010 54 0.88 1.09 

1742.3 0.400 0.431 0.046 0.177 0.035 0.011 0.049 0.007 0.051 1.208 0.014 0.007 0.047 0.042 0.007 83 0.69 1.25 

1790.1 2.350 7.210 1.091 5.184 1.707 0.436 1.847 0.323 1.946 8.774 0.382 0.154 1.028 0.939 0.137 23 0.98 1.14 

1800.1 1.913 4.616 0.622 2.741 0.813 0.183 0.877 0.147 0.886 5.130 0.176 0.067 0.470 0.391 0.055 29 0.96 1.00 
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Table 4-5: Rare Earth Element and Yttrium (REE+Y) concentrations (in µg/g) of KMF-5 mudrocks and Fe- and silica-rich sample 1265.1 (bold italic: 
analyzed by LA-ICP-MS) and BH-1 pure carbonates 

Depth (m) La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Tm Er Yb Lu Y/Ho Ce/Ce* Eu/Eu* 

KMF-5 
              

  
   

1265.1 S-C 37.525 78.496 9.520 37.470 7.743 1.979 7.178 1.167 6.744 32.928 1.348 3.731 0.574 3.343 0.494 24 0.95 1.24 

1495.8 MR 44.733 82.044 8.670 29.659 4.056 0.432 2.945 0.981 2.764 13.569 0.569 1.871 0.332 2.300 0.398 24 0.95 0.58 

1544.1 MR 0.854 1.399 0.152 0.593 0.141 0.034 0.154 0.033 0.215 1.676 0.059 0.247 0.045 0.396 0.065 28 0.88 1.06 

1776.0 MR 39.129 73.645 7.888 28.348 4.356 0.719 3.756 1.596 3.584 17.527 0.771 2.399 0.429 2.704 0.485 23 0.96 0.83 

1800.3 MR 2.884 7.454 0.900 3.978 1.024 0.192 1.141 0.525 1.799 10.405 0.430 1.449 0.275 1.876 0.316 24 1.05 0.82 

                   
BH-1 carbonates 

                  
2041 0.403 0.622 0.073 0.267 0.051 0.013 0.055 0.008 0.056 1.183 0.014 0.007 0.048 0.044 0.008 82 0.83 1.12 

2066 0.390 0.605 0.069 0.260 0.048 0.013 0.052 0.008 0.051 1.076 0.013 0.007 0.043 0.040 0.007 82 0.84 1.20 

2098 3.412 6.362 0.695 2.468 0.440 0.086 0.393 0.059 0.342 2.007 0.068 0.028 0.188 0.173 0.025 29 0.95 0.97 

2160 0.218 0.359 0.043 0.162 0.030 0.007 0.033 0.005 0.032 0.695 0.008 0.004 0.027 0.026 0.005 82 0.85 1.09 

2250 0.145 0.213 0.024 0.090 0.017 0.005 0.020 0.003 0.020 0.399 0.005 0.003 0.018 0.018 0.003 74 0.81 1.19 

2255 0.165 0.246 0.028 0.106 0.020 0.006 0.024 0.004 0.022 0.426 0.006 0.003 0.020 0.018 0.003 70 0.82 1.17 

2275 0.289 0.447 0.052 0.194 0.036 0.009 0.039 0.006 0.039 0.890 0.010 0.005 0.034 0.033 0.006 87 0.83 1.18 

2293 0.143 0.171 0.017 0.061 0.010 0.003 0.012 0.002 0.009 0.157 0.002 0.001 0.006 0.005 0.001 74 0.76 1.29 

2355 0.539 0.964 0.104 0.376 0.067 0.016 0.064 0.010 0.058 0.754 0.013 0.005 0.037 0.034 0.006 58 0.93 1.17 

2379 0.296 0.509 0.060 0.226 0.043 0.011 0.048 0.008 0.050 0.952 0.013 0.006 0.041 0.036 0.006 75 0.87 1.13 

2400 0.233 0.335 0.040 0.153 0.029 0.008 0.038 0.006 0.040 1.030 0.012 0.006 0.040 0.039 0.007 88 0.79 1.17 

2450 0.860 1.735 0.214 0.848 0.181 0.043 0.207 0.031 0.185 2.475 0.040 0.017 0.114 0.101 0.016 62 0.93 1.03 

S-C: silicified carbonate, MR: mudrock 
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4.5. Raman spectra of organic matter 

Organic material of KMF-5 carbonates and mudrocks yield an ID/IG ratios between 

1.2 and 2.1 and FWHM-D values between 39 and 71 (Table 4-6). Mudrock samples 665.1 

and 665.3 show the lowest FWHM-D values and have been apparently exposed to higher 

metamorphic conditions then the rest of the analyzed samples (Fig. 4-5). Those two samples 

excluded, the remaining KMF-5 samples obtain FWHM-D values between 44 and 71.  

Carbonate samples from Kuruman Kop reveal more ‘disordered’ signatures for 

organic material than those of KMF-5, with ID/IG ratios between 0.7 and 0.9 and 

FWHM-D values between 78 and 103 (Table 4-6). 

 

 

Figure 4-5: Raman data (ID/IG vs. FWHM-D) of marine sediments from the Malmani Subgroup (TA) and the 
Campbellrand Subgroup (GWA), as well as Raman spectra of characteristic lithologies. Changes in G- and 
D-bands implicate a change in the disorder of carbonaceous matter and reveal higher peak metamorphic 
conditions for some samples (in particular mudrocks 665.3 and 673.0). Temperature ranges are estimated 
following Kouketsu et al. (2014).  
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Table 4-6: Raman analyses of rock samples from KMF-5 and Kuruman Kop  
KMF-5 (Session 2014) 

 

KMF-5 (Session 2015) 

Sample Lithology Analysis ID/IG FWHM-D 

 

Sample Lithology Analysis ID/IG FWHM-D 

665.18 S-C 
spec-2a 1.83 44 

 
665.18 S-C 

spec1 1.67 55 

spec-3a 1.94 46 

 

spec2 1.74 52 

665.1 P-C 

spec-1a 1.85 53 

 665.1 P-C 

spec1 2.01 50 

spec-2a 1.86 52 

 

spec2 1.81 51 

spec-3a 1.86 50 

 

spec3 1.91 49 

spec-4a 1.91 51 

 

665.3 MR 

spec1 1.31 42 

spec-5a 1.84 51 

 

spec2 1.23 44 

676.6 S-C 

spec-1a 1.66 56 

 

spec3 1.54 43 

spec-2a 1.55 58 

 

spec4 1.24 43 

spec-3a 1.44 62 

 

spec1b 1.44 41 

1199.5 S-C 

spec-1a 1.64 53 

 

spec2b 1.51 39 

spec-2a 1.55 62 

 

673.0 MR 

spec1 1.19 42 

spec-3a 1.67 57 

 

spec2 1.19 41 

1428.4 MR 

spec-1a 1.38 61 

 

spec3 1.26 44 

spec-2a 1.48 58 

 

spec4 1.24 42 

spec-3a 1.34 63 

 

spec5 1.32 41 

spec-4a 1.46 57 

 

spec6 1.22 40 

1495.8 MR 

spec-1a 1.72 54 

 

spec7 1.25 41 

spec-2a 1.45 59 

 

spec1b 1.19 47 

spec-3a 1.53 57 

 

spec2b 1.19 40 

1521.4 MR 

spec-1a 1.65 52 

 

spec3b 1.31 42 

spec-2a 1.24 71 

 
676.6 S-C spec1 1.62 57 

spec-3a 1.36 59 

 

1557.7 MR 

spec-1a 1.41 64 

 
697.0 S-C 

spec1 1.98 46 

spec-2a 1.65 55 

 

spec2 1.88 48 

spec-3a 1.38 65 

 

708.5 S-C 

spec1 1.49 53 

spec-4a 1.83 49 

 

spec2 1.54 48 

1776.0 MR 

spec-1a 1.87 48 

 

spec3 1.57 51 

spec-2a 1.55 57 

 

spec4 1.53 50 

spec-3a 1.43 61 

 

spec1b 1.51 48 

spec-4a 1.71 52 

 

spec2b 1.44 48 

spec-5a 1.85 49 

 

spec3b 1.54 50 

1790.2 MR 

spec-1a 1.87 50 

 

spec4b 1.59 54 

spec-2a 1.83 49 

 

867.3 MR 

spec1 1.39 71 

spec-3a 1.68 54 

 

spec2 1.51 63 

spec-4a 1.72 52 

 

spec3 1.51 39 

1800.3 MR 

spec-1a 1.7 54 

 

spec4 1.57 57 

spec-2a 1.95 49 

 

spec5 1.43 63 

spec-3a 1.55 58 

 

spec6 1.5 58 

spec-4a 1.84 48 

 

884.9 P-C 

spec1 1.27 66 

     
 

spec2 1.38 66 

      

spec3 1.46 62 

      

spec4 1.64 57 

      

spec5 1.56 58 

      
921.8 P-C 

spec2 1.99 52 

      

spec3 1.93 51 

Kuruman Kop (Session 2015) 

 

spec4 1.86 53 

Sample Lithology Analysis ID/IG FWHM-D 

 

spec5 2.12 45 

Ku12-07  

Gamohaan 

fenestral 

carbonate 

spec1 0.8 87 

 

1109.5 P-C 

spec1 1.7 49 

spec2 0.73 96 

 

spec2 1.82 49 

spec3 0.93 78 

 

spec3 2.01 50 

spec4 0.92 79 

 

spec4 2.01 50 

Ku12-31 

Kogelbeen 

fenestral 

pure  
carbonate 

spec1 0.76 103 

 

spec5 1.83 52 

spec1b 0.79 98 

 
1136 P-C 

spec1 1.61 56 

spec2 0.75 100 

 

spec2 1.58 56 

spec3 0.84 96 

 

spec3 1.54 57 

spec4 0.74 99 

 

spec4 1.66 53 

spec5 0.82 92 

 

1776.0 MR spec1 2.02 46 

Notes: ID/IG is the ratio of peak-intensities of the D1- and G-bands, FWHM-D is the width of the D1 band  
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4.6. Molybdenum isotopes 

The Mo concentrations and isotope signatures of KMF-5 and BH-1 are illustrated in 

Fig. 4-6.  

Mo data of KMF-5 samples are listed in Table 4-7. Unsilicified, pure carbonates range 

between 5 and 56 ng/g Mo (mean with 2σ: 18 ± 19 ng/g), with corresponding δ98Mo values 

between -0.82 and +1.08 ‰ (+0.43 ± 0.56 ‰). Silicified carbonates have total Mo amounts 

of 5 to 158 ng/g (56 ± 90 ng/g) and δ98Mo values between -0.09 and +1.37 ‰ (+0.56 ± 0.58 

‰), similar to the pure carbonates. Detritus-containing carbonates have even higher Mo 

concentrations than pure and silicified carbonates, ranging between 0.04 and 1.31 µg/g 

(0.43 ± 0.86 µg/g), yet have Mo isotopic compositions that lie in the same range as the other 

carbonate samples, between -0.27 and +1.40 ‰ (+0.65 ± 0.71 ‰). The Fe- and silicate-rich 

sample 1265.1 contains 110 ng/g Mo and has a δ98Mo signature of +0.84 ‰. Mudrock 

samples show the highest Mo concentrations, varying between 0.44 and 5.27 µg/g (1.64 ± 

2.29 µg/g), the δ98Mo signatures range from +0.13 and +1.24 ‰ (+0.49 ± 0.64 ‰) and are 

thus in the same range as the carbonates. Compared to average continental crust, which has 

a Mo concentration of ~1.1 µg/g (Rudnick and Gao, 2004), mudrocks of Malmani Subgroup 

have an overall higher Mo content. 

Most rocks with δ98Mo signature heavier than continental crust (-0.2 to +0.6 ‰, 

Voegelin et al. (2014)) are hosted in the Oaktree and the Monte Christo formations that 

were deposited when the carbonate platform received relatively high input of suspended 

siliciclastic muds (Figs. 2-3 and 4-1). Rocks of the Eccles and Lyttleton formations show 

rather continental δ98Mo signatures (+0.11 to +0.60 ‰), with three exceptions of +0.63 ‰ 

(sample 705.7), +0.66 ‰ (985.5), and +1.24 ‰ (788.5), and were governed by other 

conditions with reduced input of detrital material but instead higher silicification. 

Presumably, these different depositional conditions had an effect on the Mo isotopic 

composition. 

Carbonate samples of BH-1 (Table 4-8) show Mo concentrations between 19 and 

130 ng/g (mean with 2σ: 46 ± 75 ng/g) and δ98Mo values from -0.32 to +0.68 ‰ 

(+0.40 ± 0.61 ‰).  
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Figure 4-6: Mo concentrations and isotopic compositions of carbonates and mudrocks from KMF-5 and BH-1. 
Shaded area at δ98Mo columns indicates the range of continental signatures from -0.2 to +0.6 ‰ (Voegelin et al., 
2014), Mo concentration of continental crust is 1 µg/g (Taylor and MacLennan, 1985). Dashed black line shows 
stratigraphical relation of formations which belong to the Campbellrand-Malmani slope-platform succession. 
Abbreviations of Formations: BP: Boomplaas; LM: Lokamonna; Monte.: Monteville; Kf.: Klipfonteinheuwel; Papk.: 
Papkuil; Kl: Klippan; Gh: Gamohaan. 

4.7. Iron isotopes 

The Fe concentration and δ56Fe data of carbonates and mudrocks from KMF-5 and 

BH-1 are displayed in Fig. 4-7. Data are complemented with previously published data of 

carbonates and mudrocks from the slope drill cores GKP01 and GKF01 (Czaja et al., 2012). 

Analogous to this study, the δ56Fecarb data (carbonate fraction) of the carbonate samples and 

the δ56FeWR data (whole rock) of the mudrock samples were used (Czaja et al. (2012).  
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Carbonate and mudrock samples of KMF-5 are listed in Table 4-7. Pure carbonates 

contain between 1422 and 12941 µg/g Fe and shows δ56Fe signatures between -0.88 and 

+0.08 ‰ (mean with 2σ: -0.48 ± 0.42 ‰). Silicified carbonates show concentrations from 

580 to 6270 µg/g and δ56Fe signatures from -0.88 to -0.24 ‰ (-0.53 ± 0.41 ‰). Carbonates 

of the Oaktree Formation shows a very good correlation (R2 = 0.93) of Fe concentrations 

and isotope composition. In the Monte Christo, Lyttleton, and Eccles Formations no such 

correlation can be observed. Mudrocks show, relative to the carbonate samples, mostly 

similar Fe contents between 366 and 1368 µg/g, whereby one mudrock shows a very high 

Fe concentration of 65032 µg/g. However, δ56Fe signatures of most mudrocks show heavier 

values between -0.37 and +0.79 ‰ (+0.25 ± 0.75 ‰). The carbonate fraction of Fe- and 

silicate-rich sample 1265.1 also shows a higher Fe concentration of 17148 µg/g and a δ56Fe 

signature of -0.04 ‰. 

Carbonate samples of BH-1 are listed in Table 4-8. Pure carbonates show Fe contents 

between 388 and 9546 µg/g and δ56Fe signatures between -1.24 and -0.23 ‰ (mean with 

2σ: -0.83 ± 0.5 ‰). Detritus-containing carbonates 340 and 375 contain 4415 and 

8526 µg/g Fe and have a δ56Fe composition of -1.82 and -0.85 ‰, respectively. Fe-rich 

carbonate 1914 has a very high Fe concentration of 27655 µg/g and shows a δ56Fe signature 

of -0.95 ‰. ‰). Three BH-1 samples (340, 488 and 670) are calcitic (>50 wt-% CaO) 

whereas samples 488 and 670 have isotope values of -0.88 and -0.56 ‰, respectively, and 

are isotopically in the same range as the dolomitized samples. Sample 340 yields a light 

isotope signature of -1.82 ‰ and is from the Gamohaan Formation, which was deposited 

during drowning of the platform. 

Kuruman Kop outcrop samples (Table 4-9) encompass a range of δ56Fe values 

from -1.74 to +0.45 ‰ and Fe concentrations between 463 and 12058 µg/g. Two samples 

from the Kogelbeen (Ku12/31) and the lowermost Gamohaan (Ku12/25) formations are 

detritus-free (fenestrate) limestones, which were deposited under lagoonal conditions and 

yield isotope values of -0.95 and -0.70 ‰ and Fe concentrations of 463 and 1076 µg/g, 

respectively. The other three samples are further up in the sequence of the Gamohaan and 

show variable values. Sample Ku12/26 is a detritus-poor Fe-rich dolostone (12058 µg/g, -

0.29 ‰), whereas Ku12/06 yields δ56Fe values of -1.74 ‰ and moderate Fe values of 3225 

µg/g. Ku12/04 is a clay-rich chert, which was deposited within a siderite-rich mudrock 

interval and shows heavy signatures of 0.45 ‰ and an Fe concentration of 4031 µg/g. 
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Figure 4-7: Fe concentrations and isotopic compositions of carbonates and mudrocks from KMF-5 and BH-1. 
Shaded area at δ56Fe columns indicates the range of continental signatures from -0.1 to +0.2 ‰ (e.g. Craddock et 
al., 2013; Schoenberg and von Blanckenburg, 2006; Wang et al., 2014; Weyer et al., 2005). Dashed black line 
shows stratigraphical relation of formations which belong to the Campbellrand-Malmani slope-platform 
succession. Abbreviations of Formations: BP: Boomplaas; LM: Lokamonna; Monte.: Monteville; Kf.: 
Klipfonteinheuwel; Papk.: Papkuil; Kl: Klippan; Gh: Gamohaan. 
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Table 4-7: Mo and Fe concentration and isotope composition of KMF-5 rock samples 
Depth Lithology Mo δ98Mo 2σ Fe δ56Fe 2σ δ57Fe 2σ 

m   µg/g ‰   µg/g ‰   ‰   

Eccles Formation 

665.08 S-C 0.015 0.44 0.03 6270 -0.88 0.04 -1.13 0.10 

665.18 S-C 0.158 0.52 0.01 922 -0.66 0.04 -1.02 0.09 

665.28 MR 0.523 0.23 0.01 
     672.77 S-C 0.061 0.57 0.02 

     
672.8 D-C 0.042 0.53 0.01 

     
673.8 MR 0.761 0.57 0.04 

     
673.84 S-C 0.104 0.53 0.01 580 -0.75 0.04 -1.12 0.08 

673.87 S-C 0.026 0.45 0.02 
     

674.55 P-C   
  

2211 -0.88 0.05 -1.30 0.08 

675.38 P-C   
       

676.57 S-C 0.097 0.49 0.01 
     

678.6 P-C 0.028 0.54 0.01 2997 -0.80 0.05 -1.16 0.08 

680.58 P-C 0.034 0.44 0.02 2436 -0.82 0.04 -1.25 0.08 

681.76 S-C   
       

682.7 P-C   
  

2275 -0.77 0.04 -1.14 0.07 

689.2 S-C   
       

692.37 S-C   
       

692.98 S-C 0.037 0.33 0.02 
     

693.38 S-C 0.022 0.36 0.01 
     

695.99 S-C 0.053 0.38 0.01 
     

697.03 S-C 0.112 0.53 0.01 
     

697.18 P-C 0.035 0.11 0.05 
     

698.89 S-C   
       

702.6 P-C   
       

703.3 P-C   
  

3106 -0.75 0.04 -1.11 0.07 

705.7 S-C 0.078 0.63 0.01 
     

707.6 S-C   
       

708.7 S-C   
       

711.7 S-C 0.030 0.58 0.02 
     

711.8 S-C 0.083 0.60 0.01 1203 -0.6 0.045 -0.85 0.08 

788.5 S-C 0.034 1.24 0.01 
     

867.3 MR   
       

875.5 P-C 0.022 0.60 0.01 2990 -0.4 0.051 -0.64 0.08 

884.83 P-C 0.009 0.12 0.03 2789 -0.5 0.04 -0.71 0.09 

921.78 P-C 0.026 0.56 0.01 2123 -0.4 0.032 -0.6 0.07 

Lyttleton Formation 

985.5 S-C 0.039 0.66 0.01           

1062.5 P-C 0.009 0.49 0.02 5413 -0.7 0.034 -0.98 0.06 

1072.73 P-C 0.021 0.26 0.02 4534 -0.8 0.043 -1.14 0.07 

1100.2 P-C 0.016 0.45 0.03 4138 -0.7 0.036 -0.97 0.07 

1109.5 P-C 0.016 0.24 0.03 
     

1136.75 P-C 0.010 0.29 0.02 2945 -0.7 0.033 -0.99 0.07 

Monte Christo Formation 

1143.7 P-C 0.018 0.59 0.03 3595 -0.7 0.046 -1.04 0.08 

1197.3 D-C 0.087 1.40 0.02 
     

1197.34 S-C 0.119 1.37 0.02 
     

1199.45 S-C 0.015 0.45 0.02 
     

1199.5 S-C 0.152 0.70 0.03 1279 -0.40 0.04 -0.63 0.08 

1202.58 P-C 0.021 0.10 0.02 2422 -0.51 0.05 -0.75 0.09 

1222.32 S-C 0.038 0.48 0.01 
     

1239.98 P-C 0.009 0.35 0.02 1885 -0.40 0.05 -0.60 0.08 

1265.1 S-C 0.114 0.84 0.05 17148 -0.04 0.03 -0.03 0.07 

1350.66 S-C   
       

1350.9 MR 1.821 0.34 0.02 6250 -0.37 0.04 -0.52 0.08 

1401.0 P-C 0.016 0.50 0.03 3084 -0.35 0.04 -0.57 0.08 

1403.8 P-C 0.012 0.59 0.03 2677 -0.35 0.03 -0.52 0.06 

1406.7 D-C 0.782 0.57 0.03 
     

1406.8 P-C 0.019 0.55 0.01 3188 -0.33 0.04 -0.50 0.07 

1407.9 D-C 0.604 0.43 0.03 
     

1411.1 MR 1.344 0.37 0.02 
     

1411.3 S-C   
       

1413.34 S-C 0.014 0.45 0.01 
     

1420.9 P-C   
  

5009 -0.46 0.05 -0.74 0.08 

1425.4 P-C 0.010 0.51 0.03 3935 -0.36 0.04 -0.51 0.07 
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Table 4-7 continued 

Depth Lithology Mo δ98Mo 2σ Fe δ56Fe 2σ δ57Fe 2σ 

m   µg/g ‰   µg/g ‰   ‰   

1427.85 S-C   
       

1428.4 MR 0.438 0.50 0.05 
     

1429.1 MR 1.427 0.26 0.02 
     

1435.25 P-C 0.023 0.49 0.02 3099 -0.35 0.05 -0.58 0.09 

1442.17 P-C 0.014 0.52 0.01 3289 -0.66 0.04 -1.03 0.08 

1454.61 S-C 0.020 1.00 0.01 3848 -0.41 0.05 -0.68 0.08 

1460.05 S-C   
       

1461.8 P-C   
  

3078 -0.41 0.04 -0.65 0.07 

1462.1 MR 1.719 0.14 0.02 
     

1464.3 P-C 0.018 0.64 0.02 3675 -0.50 0.04 -0.75 0.07 

1467.1 P-C 0.008 0.46 0.03 3340 -0.37 0.04 -0.59 0.08 

1475.35 P-C 0.009 0.31 0.02 2398 -0.40 0.04 -0.63 0.08 

1475.6 D-C 0.734 0.52 0.02 
     

1478.6 D-C 1.314 0.27 0.02 
     

1484.8 P-C 0.030 0.37 0.01 2873 -0.28 0.04 -0.41 0.07 

1491.3 P-C 0.056 0.43 0.01 
     

1491.85 S-C 0.005 0.39 0.04 4315 -0.35 0.04 -0.56 0.08 

1493.5 MR 1.474 0.38 0.02 
     

1495.8 MR 1.441 0.41 0.02 
     

1499.6 S-C   
       

1499.85 MR 2.674 0.40 0.01 2904 0.20 0.05 0.32 0.08 

1521.4 D-C 0.189 1.06 0.01 
     

1524.7 P-C 0.011 0.21 0.03 2568 -0.41 0.04 -0.57 0.06 

1528.48 S-C   
       

1539.9 P-C 0.019 0.33 0.02 3658 -0.38 0.04 -0.54 0.08 

1544.1 MR 1.066 0.13 0.03 
     

1551.6 D-C   
       

1551.7 MR 3.102 0.93 0.01 6544 -0.27 0.05 -0.40 0.08 

1557.7 MR 1.178 0.65 0.02 366 0.79 0.05 1.14 0.08 

1558.88 P-C 0.016 -0.82 0.02 2907 -0.25 0.04 -0.34 0.08 

1564.3 P-C 0.018 0.30 0.03 
     

1574.15 P-C 0.015 0.45 0.02 1422 -0.23 0.04 -0.33 0.09 

1574.2 P-C 0.016 0.87 0.02 
     

1574.25 P-C 0.015 0.40 0.03 1470 -0.20 0.05 -0.29 0.09 

1574.3 S-C 0.026 0.46 0.02 2969 -0.24 0.05 -0.34 0.08 

1589.75 P-C 0.019 0.83 0.03 1884 -0.27 0.04 -0.40 0.08 

1589.9 P-C 0.011 0.49 0.02 2941 -0.22 0.04 -0.34 0.08 

1604.6 P-C 0.008 0.71 0.02 2821 -0.28 0.03 -0.45 0.07 

1673.1 S-C 0.005 -0.09 0.03 
     

1673.3 MR 0.609 0.16 0.01 5223 0.38 0.05 0.54 0.08 

Oaktree Formation 

1731.1 P-C 0.007 0.57 0.04 6884 -0.67 0.03 -0.98 0.07 

1731.3 P-C 0.011 0.41 0.03 7268 -0.62 0.04 -0.88 0.07 

1742.3 P-C 0.005 0.27 0.04 8028 -0.72 0.04 -1.03 0.06 

1775.8 D-C 0.063 0.83 0.01 
     

1776.0 MR 2.653 1.17 0.02 13687 0.62 0.04 0.94 0.08 

1790.0 D-C 0.036 0.28 0.01 
     

1790.1 P-C 0.028 0.45 0.01 12941 0.08 0.04 0.05 0.08 

1790.3 MR 0.742 0.30 0.01 
     

1800.1 P-C 0.022 1.08 0.02 10433 -0.32 0.04 -0.51 0.07 

1800.3 MR 5.267 1.24 0.01 11244 0.44 0.05 0.64 0.08 

1811.2 MR 1.323 0.58 0.02 65032 0.24 0.04 0.36 0.07 

P-C: ‘pure’ carbonate, S-C: silicified carbonate, D-C: detritus-containing carbonate, MR: mudrock 
Extern reproducibility for δ98Mo is ± 0.11 ‰ (2σ), and for δ56Fe ± 0.06 ‰ (2σ)  
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Table 4-8: Mo and Fe concentration and isotope composition of BH-1 rock samples 
Depth Lithology Mo δ98Mo 2σ Fe δ56Fe 2σ δ56Fe 2σ 

m   µg/g ‰   µg/g ‰   ‰   

Gamohaan Formation 

340 D-C       4415.19 -1.82 0.04 -2.65 0.07 

375 D-C   
  

8525.88 -0.85 0.04 -1.26 0.07 

Kogelbeen Formation 

488 P-C   
  

388.23 -0.88 0.05 -0.62 0.09 

670 P-C   
  

513.84 -0.56 0.04 -0.81 0.07 

751 P-C   
  

4833.87 -0.93 0.04 -1.36 0.08 

Klippan Formation 

1235 P-C   
  

1629.05 -0.72 0.04 -1.07 0.08 

Papkuil Formation 

1400 P-C   
  

4034.57 -0.90 0.05 -1.25 0.08 

1425 P-C   
  

2831.81 -0.80 0.04 -1.20 0.06 

1455 P-C   
  

3574.02 -0.80 0.04 -1.19 0.07 

1490 P-C   
  

3075.41 -0.50 0.04 -0.78 0.09 

Klipfonteinheuwel Formation 

1520 P-C   
  

2104.83 -0.60 0.04 -0.88 0.08 

Fairfield Formation 

1620 P-C   
  

1667.11 -0.60 0.04 -0.91 0.08 

1750 P-C   
  

4491.31 -1.21 0.04 -1.82 0.08 

1776 P-C   
  

2645.31 -0.72 0.05 -1.10 0.07 

Kamden Formation 

1914 S-C   
  

27654.87 -0.95 0.04 -1.33 0.08 

Reivilo Formation 

2041 P-C 0.13 0.68 0.02 1582.02 -0.79 0.03 -1.19 0.07 

2066 P-C   
  

1686.15 -0.57 0.04 -0.85 0.07 

2098 P-C 0.07 -0.32 0.02 9546.17 -0.23 0.03 -0.36 0.08 

2121 D-C 0.04 0.43 0.02 
     

2131 D-C 0.02 0.28 0.02 
     

2160 P-C 0.03 0.55 0.02 
     

2250 P-C 0.02 0.43 0.02 2817.56 -1.07 0.04 -1.57 0.06 

2251 P-C   
       

2275 P-C 0.02 0.55 0.03 2930.77 -1.04 0.04 -1.55 0.07 

2293 P-C 0.02 0.43 0.03 3474.60 -1.08 0.04 -1.63 0.08 

2355 P-C   
  

7840.77 -1.20 0.04 -1.85 0.07 

2379 P-C   
  

4719.68 -1.07 0.03 -1.61 0.07 

2400 P-C 0.03 0.48 0.02 3397.90 -1.24 0.04 -1.81 0.08 

2450 P-C   
       

P-C: ‘pure’ carbonate, S-C: silicified carbonate, D-C: detritus-containing carbonate 
Extern reproducibility for δ98Mo is ± 0.11 ‰ (2σ), and for δ56Fe ± 0.06 ‰ (2σ) 

 

Table 4-9: Mo and Fe concentration and isotope composition of Kuruman Kop rock  
samples 

Depth Lithology Mo δ98Mo 2σ Fe δ56Fe 2σ δ56Fe 2σ 

m   µg/g ‰   µg/g ‰   ‰   

Gamohaan Formation 

Ku12_04 D-C   
  

4031.00 0.45 0.04 0.65 0.09 

Ku12_06 P-C   
  

3225.00 -1.74 0.06 -2.59 0.09 

Ku12_25 P-C   
  

12058.00 -0.29 0.04 -0.42 0.08 

Ku12_26 P-C   
  

1076.00 -0.70 0.05 -1.01 0.08 

Kogelbeen Formation 

Ku12_31 P-C   
  

463.00 -0.95 0.04 -1.37 0.08 

P-C: ‘pure’ carbonate, D-C: detritus-containing carbonate 
Extern reproducibility for δ98Mo is ± 0.11 ‰ (2σ), and for δ56Fe ± 0.06 ‰ (2σ) 
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4.8. XRD 

In this study representative carbonate samples were analyzed by XRD to 

complement results of XANES analyses. Pure carbonate samples clearly show a mixture of 

dolomite and quartz, depending on the silicification grade (Fig. 4-8). Some minor amounts of 

calcite can also be included. However, no Fe-mineral phase could be detected by XRD, 

probably because the detection limit of this method for crystalline material is between ~ 0.1 

and 0.5 wt-%. Most of the here investigated samples have Fe concentrations within this 

range. Thus, XANES analyses are necessary to carefully detect the Fe phase and speciation 

within the carbonates. 

 

Figure 4-8: XRD pattern of three representative carbonate samples from KMF-5 show a dolomite-quartz mixture 
with minor amounts of calcite. No Fe-minerals could be clearly detected with this method. 

4.9. XANES spectra 

Fluorescence and transmission data were pre-processed using the PyMCA software 

package, which allows evaluation of large data sets (Sole et al., 2007). The transmission 

spectra were calculated as follows: 𝐼1 = 𝐼0𝑒−µ(𝐸)  µ(𝐸) = −ln 
𝐼1

𝐼0
, where µ is the absorption 

in dependence of the energy E, I0 is the incident X-ray beam intensity, and I is the remaining 

beam intensity after transmission through the sample. For fluorescence spectra the 

absorption is defined as µ(𝐸) ∝  
𝐼𝑓

𝐼0
 , where If is the fluorescence intensity. First, all spectra of 
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a selected sample were energy calibrated by analyzing metallic Fe at the same experimental 

setup as used for sample analyses (i.e., fluorescence or transmission mode) and setting the 

first inflection of Fe K-edge to 7112 eV. Subsequently, all spectra were normalized and those 

spectra, which were over- or undersaturated were automatically excluded by the software 

and not used for the statistical evaluation of the spectra. By selecting specific regions of the 

XANES spectra (energy range from 7100 to 7175 eV), maps of Fe concentration and 

oxidation state were generated (Fig. 4-9-A and -B). The edge-jump maps show the intensity 

of absorption or fluorescence at the Fe edge-jump, which is the qualitative representation of 

the Fe concentration (Munoz et al., 2006). The oxidation state of Fe is indicated by the main 

edge position, i.e. the maximum of the first derivative of the spectra, which is specific to each 

Fe redox species (O'Day et al., 2004). 

For the statistical evaluation of the XANES, the number of unique mineralogical 

components represented by the collection of XANES spectra was determined using the 

‘principle component analysis’ (PCA) tool from PyMCA. In Table 4-10 the variance of the 

first five principle components (PC01 – PC05) is shown, the percentage indicates the 

significance of the respective PC. According to that, all samples are represented by two to 

three distinct mineralogical components. A ‘linear combination fitting’ of the composite was 

performed, which are average spectra from each sample with the Athena software package 

(Ravel and Newville, 2005), using the number of components determined by PCA to guide 

the number of mineral standard spectra used. The standard database consisted of spectra 

from ankerite, siderite, goethite, magnetite, pyrite, marcasite, chlorite and ferrosmectite 

(Table 4-11). The exact proportions are listed in Table 4-10 and the corresponding linear 

fits are illustrated in Fig. 4-9-A/-B and Fig. 4-10. Eleven representative samples were 

analyzed, eight carbonates, one silicified carbonate (665.18), one mudrock (1776.0) and one 

Fe- and silicate-rich carbonate (1265.2) (Fig. 4-10). The results show that carbonates from 

the lower CMCP (Oaktree, Monte Christo, Reivilo formations; steep ramp architecture) 

predominantly show the coordination environment of Fe(II) mineral species, mainly 

ankerite, with minor amounts of siderite, Fe sulfide (pyrite, marcasite), and mixed-valence 

Fe oxides (magnetite). The mudrock sample 1776.0 from the Oaktree Formation contains 

mainly pyrite with minor magnetite and the Fe- and silicate-rich sample 1265.2 (Kamden 

Member equivalent) consists mainly of chlorite with minor siderite and ferrosmectite. 

Towards the upper CMCP (Lyttleton, Eccles, Kogelbeen formations; rimmed margin 

architecture) this mineral composition significantly changes in favor of Fe(III) mineral 

species, in particular Fe(III)-(oxyhydr)oxides (goethite) (Fig. 4-10). The Lyttleton Formation 

carbonates consist mainly of ankerite, but already show some admixture of goethite in the 

XANES spectra (1100.3). The carbonates of the Eccles Formation (665.08, 665.18 and 884.9) 
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show significantly different spectra from the rest of the analyzed carbonates, and best fit by 

the goethite standard. Other components of Eccles samples are siderite and ferrosmectite 

(detailed amounts in Table 4-10), whereas there is no sign of Fe-sulfide. Interestingly, also 

the few organic carbon rich mudrocks of the Eccles Formation lack of framboidal pyrite, in 

contrast to the Fe-sulfide and organic carbon rich mudrocks of the Oaktree and the Monte 

Christo formation, which do contain framboidal pyrite (Fig. 2-4). This indicates that the 

lower CMCP had more reducing conditions and the upper CMCP more oxidizing conditions, 

which didn’t allow the formation of pyrites. Sample 340 (Gamohaan Formation, BH-1, GWA) 

shows mainly Fe(II)-carbonate signatures with minor amounts of pyrite that are visible as 

hotspots in the XANES maps (Fig. 4-9-A and -B). The Gamohaan Formation was deposited 

during a transgression, thus, an influx of more reducing species from the open ocean water 

is likeable and would explain this change in mineralogy. 

As the pre-edge can also give valuable information about the oxidation state and 

speciation of Fe, a plot was constructed, based on the normalized absorption values θ, κ, and 

μ at defined energies (7110, 7113 and 7117.5 eV) (Marcus et al., 2009). As the Fe K-edge 

during the experiment was at 7112 eV, in contrast to the Fe K-edge of 7110.75 used by 

Marcus et al. (2009), θ, κ, and μ values for the samples were defined at 7111.25, 7114.25 

and 7118.75 eV, respectively, and compared to the θ, κ, and μ values defined for Fe(II), FeS, 

mixed valence, and Fe(III) mineral standards of Marcus et al. (2009). The results are 

displayed in Figure 4-11 and confirm that Fe is present as FeS, Fe(II), and Fe(III) species, 

and that the samples indeed show an increase in the oxidation state towards the upper 

CMCP. 

 

Figure 4-11: Classification of distinct Fe (redox-)species analyzed by Marcus et al. (2009), displaying the 
absorption at 7111.25 (θ), 7114.25(κ) and 7118.75(μ). Plotted with composite spectra from samples of the 
CMCP, showing that with continuing growth of the platform, the Fe oxidation state increases. See Table 4-10 for 
details. 
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Table 4-10: XAS analyses, statistical evaluation and characterization of Fe species from KMF-5 and BH-1 carbonate and mudrock samples 

Formation 
Sample  
(Depth) 

XAS  
Method 

Remarks 
map size  
(µm*µm) 

spot size  
(µm) 

Fe-species (Adsorption 
intensity; Marcus et al., 2009) 

Principle component analyses  
(variance, %) 

Linear combination fitting - best fit 

            θ (eV) κ (eV) μ (eV) PC01 
PC0

2 

PC0

3 

PC0

4 
PC05 proportion amount of iron species 

            7111.25 7114.25 7118.75                     

KMF-5                             total R-factor chi2 
chi2 

reduced 

Eccles 

665.08 Fluo P-C 700x340 20 0.008 0.034 0.098 96.45 2.53 0.40 0.23 0.20 
goethite (0.846)  

siderite (0.139) 
0.99 0.0078 0.2568 0.0017 

665.18 Fluo S-C 500x500 20 0.018 0.045 0.125 84.00 9.05 3.67 1.13 0.60 
goethite (0.649) 
siderite (0.124) 

ferrosmectite (0.233) 

1.01 0.0077 0.2543 0.0017 

884.9 Fluo P-C 1000x1000 50 0.011 0.040 0.100 90.19 6.79 1.03 0.73 0.35 
goethite (0.603) 

ferrosmectite (0.438) 
1.04 0.0098 0.3681 0.0024 

Lyttleton 

1062.5 Trans P-C 2000x2000 20 0.045 0.056 0.243 93.46 3.67 2.28 0.19 0.08 
ankerite (0.869) 

siderite (0.090) 
0.97 0.0015 0.1000 0.0003 

1100.3 Fluo P-C 400x400 10 0.004 0.036 0.125 94.11 3.72 0.46 0.31 0.22 
ankerite (0.735) 
goethite (0.233) 

0.97 0.0128 0.4234 0.0027 

Monte  

Christo 

1265.2 Fluo 
S-C  

(Fe-rich) 
300x300 15 0.040 0.073 0.209 88.72 6.75 2.34 1.12 0.51 

chlorite (0.861) 

siderite (0.107) 
ferrosmectite (0.060) 

1.03 0.0017 0.0580 0.0004 

1524.7 Trans P-C 2000x2000 20 0.056 0.068 0.219 92.81 4.44 1.08 0.47 0.29 
ankerite (0.939) 

siderite (0.059) 
1.00 0.0091 0.6506 0.0020 

Oaktree 

1742.3 Trans P-C 2000x2000 20 0.024 0.041 0.221 94.76 3.36 1.31 0.12 0.07 
ankerite (0.909) 
siderite (0.071) 

0.98 0.0033 0.2323 0.0007 

1742.3 Trans 
pyrite 

hotspots 
   20 0.046 0.103 0.457           

pyrite (0.658) 

siderite (0.296) 

ankerite(0.056) 

1.01 0.0072 0.3721 0.0011 

1776.0 Fluo MR 700x700 23 0.041 0.122 0.567 84.64 9.60 3.73 0.93 0.21 
pyrite (0.945) 

magnetite (0.076) 
1.02 0.0012 0.0304 0.0002 

BH-1                                     

Gamohaan 

340 Trans D-C 2000x1700 20 0.069 0.074 0.239 94.64 4.54 0.23 0.12 0.07 

ankerite (0.670) 

siderite (0.212) 

minor pyrite(0.037) 

0.92 0.0053 0.2883 0.0009 

340 Trans 
pyrite 

hotspots 
  20  0.048 0.107 0.545           

pyrite(0.829) 
siderite (0.117) 

ankerite (0.066) 

1.01 0.0018 0.0930 0.0003 

Reivilo 2540 Fluo P-C 400x400 10 0.038 0.078 0.250 84.00 6.68 3.24 1.54 1.41 
ankerite (0.936) 

marcasite (0.079) 

magnetite (0.100) 

1.12 0.0051 0.2037 0.0013 

R-factor: discrepancy index, the agreement between calculated and observed intensities; chi2: 'Goodness of fit'-test, squared difference between calculated and observed data;  
chi2 reduced: chi2 divided by the number of degrees of freedom; Fluo: fluorescence method, Trans: transmission method;  
P-C: ‘pure’ carbonate, S-C: silicified carbonate, D-C: detritus-containing carbonate, MR: mudrock 
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Figure 4-9-A: XAS map of edge-jump and edge-position of analyzed carbonate and mudrock samples. Dark blue 
fields represent excluded spectra, which were over- or under-saturated or had a poor signal-to-noise ratio. 
Linear combination fitting (LCA fit) was performed on representative spectra and mineral proportions are 
indicated below those fits.  
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Figure 4-9-B: XAS map of edge-jump and edge-position of analyzed carbonate and mudrock samples. Dark blue 
fields represent excluded spectra, which were over- or under-saturated or had a poor signal-to-noise ratio. 
Linear combination fitting (LCA fit) was performed on representative spectra and mineral proportions are 
indicated below those fits. 
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Table 4-11: Fe mineral standards used for linear component analyses 

Mineral Structural formula Source Reference 

Ankerite Ca(Fe(II),Mg, Mn)(CO3)2 natural E. Swanner 

Siderite Fe(II)(CO3) synthetic T. Borch, C. Hansel, S. Fendorf 

Goethite α-Fe(III)O(OH) natural Sirine Fakra, Matthew A. Marcus 

Magnetite Fe3O4 natural J. Frommer and A. Voegelin 

Pyrite FeS2 natural J. Frommer and A. Voegelin 

Marcasite FeS2 
 

E. Swanner 

Chlorite (Ripidolite - CCa2) Ca0.5(Mg4.44,Fe(III)3.47,Fe(II)3.02,Al0.60,Mn0.01,Ti0.06)(Si4.51,Al3.49)O20(OH)16 
Clay Mineral 

Society 

Source Clay Repository (2001) Source clay physical/chemical data:  

http://web.missouri.edu/~geoscjy/SourceClay/chem.html. 

The Clay Minerals Society 

Ferrosmectite  

(Fe-bearing montmorillonite) 
(Na0.48Ca0.03K0.01)(Al1.54Mg0.33Fe(III)0.09Fe(II)0.02)(Si3.87Al0.13) O10(OH)2·nH2O natural T. Borch, C. Hansel, S. Fendorf, J.W. Stucki 
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5. Depositional reconstruction and diagenesis of the CMCP 

The geochemical and isotopic composition of marine carbonates can reflect the 

primary conditions during their precipitation. However, in reality these primary signatures 

are often altered by secondary processes, in particular post-depositional alteration by 

hydrothermal fluids and/or freshwater. This also applies to the Transvaal Area, because it 

was intruded by the 2.054 Ga old Bushveld igneous complex (Buick et al., 2001) (Fig. 2-1), 

raising the possibility of contact-metamorphic overprint of adjacent carbonates 

(Frauenstein et al., 2009). Moreover, early diagenetic dolomitization and silicification also 

affected large parts of the platform and clearly signal interaction of seawater with 

freshwater (Beukes, 1987). Thus, different geochemical proxies have to be examined 

carefully to unravel primary and potential secondary signals and to avoid misinterpretation. 

Potential effects of secondary fluid alteration during diagenesis and contact metamorphism 

were tested here by δ18Ocarb, δ30Si signatures and elemental composition. Careful 

determination of peak metamorphic conditions and post-depositional overprint of the 

samples is crucial in order to evaluate the potential of preservation of the original 

geochemical signatures. In this study this was investigated by Raman spectroscopy. 

In the following the preservation of geochemical signatures will be carefully 

evaluated and subsequently the paleoenvironmental conditions of the CMCP will be 

reconstructed based on those findings. 

5.1. Evaluation of influence of Bushveld intrusion on the Malmani Subgroup 

The sediments of the Transvaal Area, including the Malmani Subgroup (KMF-5) were 

intruded by the Bushveld igneous complex 2.054 Ga ago (Buick et al., 2001) (Fig. 2-1). 

Newly grown minerals such as garnet, pyroxene, siderite, and ankerite are abundant in the 

carbonates near the contact aureole (Frauenstein et al., 2009) and point to strong 

recrystallization and alteration due to high-T fluid circulation. Although the rocks of KMF-5 

are in c. 80 km distance and thus not in direct contact with the main Bushveld intrusion, 

they are intersected by a few mafic dykes (Fig. 2-3). The latter are probably related to the 

emplacement of the Bushveld complex and caused alteration of the adjacent carbonate 

sections resulting in the formation of secondary siderite and ankerite. Apart from these 

spatially limited alteration zones, which were avoided during sampling, the carbonate rocks 

in the drill core show no macroscopic signs of secondary mineral growth induced by the 

Bushveld complex. Carbonates of the far more distant Griqualand and Prieska area 

(Campbellrand Subgroup; BH-1, GKP01, GKF01; Figs. 2-1, 2-2), are unaffected by the 

Bushveld complex (Beukes, 1987). 
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Based on δ18Ocarb analyses, Frauenstein et al. (2009) observed that the degree of fluid 

alteration in the sedimentary country rocks of the Transvaal area decreases with increasing 

distance from the Bushveld complex. Three kilometers from the contact zone, δ18Ocarb values 

are as low as -22 ‰ and interpreted to be the result of intense fluid-rock interaction. With 

increasing distance, δ18Ocarb values increase continuously to ~ -10 ‰ at 18 km distance 

from the contact. Such high isotope values probably reflect rather pristine, marine 

signatures (Crne et al., 2014) and are close to the best estimate for Neoarchean seawater 

(δ18Ocarb ~ -8 ‰) (Fig. 5-1) (Shields and Veizer, 2002; Veizer et al., 1999). Pure and silicified 

carbonate rocks of KMF-5 (Table 4-1; Fig. 4-3) yield δ18Ocarb values between -10.3 to -5.4 ‰ 

(mean with 2σ: -7.8 ± 1.8 ‰), similar to stratigraphically correlative carbonate sequences 

of the GKP01 (-8.2 ± 3.9), GKF01 (-7.6 ± 1.8 ‰) (Fischer et al., 2009), and BH-1 

(-9.5 ± 2.8 ‰), which are unaffected by the Bushveld complex fluids (Table 4-2; Fig. 5-1). 

The δ18Ocarb values of GKP01 and GKF01 were obtained from micritic microbialites 

(Fig. 5-2). In contrast, some other samples from all four drill cores are coarse-grained, show 

secondary carbonate veins, and yield significantly lighter δ18Ocarb values (down to -17 ‰), 

possibly due to alteration by fluids produced during devolatization reactions or intense 

recrystallization (Figs. 5-1, 5-2) (Fischer et al., 2009; Horstmann and Beukes, 2002; Valley, 

1986).  

 

 

Figure 5-1: (a) Plot (δ18Ocarb vs. δ13Ccarb) of all analyzed samples from KMF-5 and BH-1, analyzed for this study. 
δ18Ocarb vs. δ13Ccarb data of GKP01 and GKP01 are from (Fischer et al., 2009; Horstmann and Beukes, 2002). Data 
of all four drill cores greatly overlap and are interpreted and discussed in the text. However, some distinctive 
trends show the influence of fluids on the δ18Ocarb signatures, the influence of microbial induces organic carbon 
oxidation during dissimilatory iron reduction (DIR) on the δ13Ccarb trend and a probably a mixture of those two 
diagenetic processes reflected in the mudrock composition. (b) Illustration from Kasting et al. (2006) shows δ18O 
signatures of marine calcites and calcitic fossils over the last 4 billion years, thick line is cubic smoothing spline 
evolution and authors suggest that values heavier than that represent pristine δ18O signatures. The red diamond 
shows range of carbonates from CMCP with an average of about -8 ‰ relative to VPDB standard. 
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Figure 5-2: Stratigraphic correlation and δ18Ocarb data of GKP01, GKF01, BH-1 (SACHA) and KMF-5. Black 
triangles represent isotope data on carbonates of GKP01, GKF01 and BH-1 (SACHA) from Horstmann and Beukes 
(2002) and Fischer et al. (2009). Other isotope data of BH-1 and KMF-5 carbonates are from this study. Dashed 
black lines show stratigraphical relation of formations, which belong to the Campbellrand-Malmani slope-
platform succession. Thicker dashed line indicates Kamden Member. VB: Vryburg; BP: Boomplaas; LM: 
Lokamonna; Monte.: Monteville; KN: Klein Naute; Ku: Kuruman; Kf.: Klipfonteinheuwel; Papk.: Papkuil; Kl: 
Klippan; Gh: Gamohaan; BR: Black Reef 

 

The pristine nature of some other geochemical signatures of these carbonates have 

been confirmed, like the depth-variant Fe and Mn concentrations, which are supplied by 

hydrothermal input from the open ocean and controlled by the depositional depth below 

sea level as well as different solubility behavior (Beukes, 1987; Beukes and Gutzmer, 2008 

and this study). As the exposure to magmatic fluids from the Bushveld complex would have 

led to an obliteration of the water depth related signal, a impact of such fluids on the 

majority of the rocks can be ruled out. Furthermore, the interaction of the carbonates with 

magmatic fluids is expected to produce very positive Eu anomalies, no Y anomaly as well as 
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an overall slight increase in abundance from light REE to heavy REE (relative to PAAS) 

(Maier and Barnes, 1998). However, the REE+Y spectra obtained in our study rather 

resemble those of seawater with variable admixtures of open ocean and riverine waters. 

The elemental distributions and significance for the paleoenvironment are discussed in 

detail in chapters 5.4 and 5.5. 

Altogether, visual inspection, geochemical features, and oxygen isotope signatures of 

the studied samples do not reveal any indication of secondary fluid alteration resulting from 

the emplacement of the Bushveld igneous complex.  

5.2. Preservation of organic material and metamorphic conditions 

The CMCP has been described as one of the best preserved Archean platforms, which 

was metamorphosed very early under lower greenschist facies conditions (Button, 1973; 

Miyano and Beukes, 1984). However, amphibolite facies metamorphism has been observed 

near the contact to the Bushveld complex (Frauenstein et al., 2009). Thus, Raman analyses 

were conducted to examine the degree of alteration of organic matter in KMF-5 samples 

from the TA and Kuruman Kop samples from the GWA and to evaluate the quality of δ13Corg 

signatures. The intensity ratio of the D- and G-bands (ID/IG) and width of the D1-peak 

(FWHM-D) can be used to describe the degree of carbonization of organic material (Beyssac 

et al., 2002; Lahfid et al., 2010; Sforna et al., 2014) (Fig. 4-5). With increasing degree of 

carbonization caused by progressive diagenesis and low-grade metamorphism, the 

FWHM-D will become smaller (from > 200 cm-1 to ca. 60 cm-1) and the ID/IG-ratio will 

increase (from ca. 0.8 to more than 2). Further alteration at higher temperatures will cause 

the growth and parallel stacking of layers until graphitic structural units are formed. This 

process of graphitization causes the FWHM-D to further decrease (from ca 60 cm-1 to 

30 cm-1), while the ID/IG ratio decreases steadily to 0 (at granulite facies metamorphism). 

Organic material throughout KMF-5 has an ID/IG ratio between 1.3 and 2.1 and FWHM-D 

values between 45 and 70, which confirms regional lower greenschist-facies metamorphism 

in the TA (Table 4-6; Fig. 4-5). These samples show a large spread in δ13Corg 

from -39.4 to -24.0 ‰. It should be note, however, that the δ13C signature of organic 

material can be shifted toward heavier values already under greenschist facies conditions 

(Valley and O'Neil, 1981). Two mudrock samples, 665.3, 673.0 (KMF-5), are more altered 

and show signs of early graphitization (ID/IG = 1.2-1.5, FWHM-D = 39-47). Clearly, they 

experienced a higher peak metamorphic temperature, which is also indicated by heavy 

δ13Corg signatures of -22.9 and -21.8 ‰, respectively. The strongly silicified character of 

these samples suggests that they were pervasively altered by fluids and are likely to have 

lost their primary δ13Corg signature. However, some other strongly silicified carbonate 



97 
 

samples obtain similar FWHM-D values and δ13Corg values as un-silicified samples 

(Table 4-1). Therefore, silicification is not the only explanation for the stronger alteration of 

some samples and another factor had to be involved in this process. Outcrop samples from 

fenestral carbonate of Kuruman Kop contain organic material that has experienced a lesser 

degree of carbonization than that found in KMF-5 (Fig. 4-5). Carbonates from the same 

formation in the BH-1 yield δ13Corg values from -29.9 to -27.0 ‰ (Table 4-2). Furthermore, 

only a slight discrepancy in δ13Corg values between mudrocks and carbonates in the slope 

region has been described (Fischer et al., 2009) in contrast to a larger offset between 

different lithologies in the peritidal region of the TA, as it is implicated by mudrock sample 

867.3 (δ13Corg = -39.4 ‰) and the stratigraphically close carbonate sample 884.9 

(δ13Corg =  28.0 ‰) (KMF-5; Table 4-1; Fig. 5-3). Although we acknowledge the possibility 

that some rock samples of KMF-5 were affected by higher temperatures, which might have 

caused an isotope shift in organic carbon toward slightly heavier values, there are more 

reliable indicators that primary signatures were indeed preserved. First, the majority of 

δ13Corg data of Transvaal and Griqualand West samples overlap (Figs. 4-3, 4-4), revealing 

that higher peak metamorphic temperatures for the Transvaal area play a minor role for a 

shift in isotope values. Second, the abovementioned samples 867.3 and 884.9 are two of the 

least affected samples of KMF-5 regarding their Raman spectral characteristics (ID/IG down 

to 1.39 and 1.27, FWHM-D up to 71 and 66, respectively), and therefore argue for the actual 

preservation of their primary signatures, which are dependent upon the depositional 

environment (Fig. 5-3). Third, δ13Corg signatures depend on the fractionation of carbon by 

different microbial species (Fig. 5-3). As microbial mats contain communities of several 

microbial species, the δ13Corg signatures therefore rather reflect mixed signals of these 

species, and that a trend to lighter or heavier signatures can give us information about the 

dominant microbial species, depending on available nutrients, electron donors, light and 

other environmental factors. Thus, we propose that in KMF-5 samples with high FWHM-D 

the large isotope difference of δ13Corg between carbonates and mudrocks is rather related to 

different microbial activity in these different environmental settings, particularly a stronger 

influence of cyanobacteria in the very shallow marine microbial mats, alternating with more 

anaerobic microbial activity during deposition of the mudrocks. This topic is further 

discussed in chapter 6.2. 
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Figure 5-3: Combined Raman (FWHM-D) and δ13Corg data of carbonate (P-C: Pure carbonate, S-C: Silicified 
carbonate) and mudrock (MR) samples from KMF-5 (Malmani Subgroup, TA). Mudrocks provide overall lighter 
isotope values than carbonates, except of two samples which also provide the lowest FWHM-D values. Solid 
boxes reflect δ13Corg isotope range of GKP01, GKF01, BH-1 and KMF-5 (black boxes: mudrocks, white boxes: 
carbonates). Isotope data of GKP01 and GKF01 are from Fischer et al. (2009). ‘?’ completes the full range of 
measured δ13Corg isotope values, however these heavier values might be rather a sign of 12C-loss due to 
metamorphic overprint. Isotope ranges of most common microbial communities (ABP: Anoxygenic 
photoautotroph bacteria) indicate a mixed δ13Corg signal and probably change in dominance of microbial 
organisms, with dependence on water depth and lithology (Freeman et al., 1990; Hayes, 2001; Robinson et al., 
2003; Scott et al., 2004; Sirevag, 1995; Tabita, 1999; Valentine et al., 2004). 

5.3. Early diagenetic dolomitization and silicification  

Geochemical data presented in Figures 4-1 and 4-2 and Tables 4-1, 4-2, and 4-3 

reveal that carbonate rocks of the Malmani Subgroup (TA) are fully dolomitized and partly 

silicified, whereas carbonates of the Campbellrand Subgroup (GWA) are partly still calcitic 

(Beukes, 1987).  

Dolomitization is the replacement of calcite by dolomite, according to the equation 

proposed by Lippmann (1973) and Morrow (1982), 

(2 − x)CaCO3 + Mg2+ + xCO3
2− → CaMg(CO3)2 + (1 − x)Ca2+ (x: mole)  

and is usually initiated by large-scale fluid flow through soft sediments and interaction 

between calcium-carbonate and Mg-rich saline pore fluids from seawater, which is the main 

source of Mg2+ (Purser et al., 1994). Kinetic hindrance of dolomitization can be overcome by 

an increase of the Mg2+/Ca2+ ratio in the solution via evaporation (Land, 1985), a decrease of 

the ionic strength by dilution of seawater with freshwater (Folk and Land, 1975), and an 
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increase of alkalinity (CO32- anions) by dissolution of limestone (Murray, 1960). The 

evaporation of seawater and the formation of highly Mg-rich brines and the pumping of this 

slightly hypersaline marine waters through a carbonate succession is one the most common 

models (Simms, 1984). Pumping of vast volumes of dolomite-oversaturated seawater 

through a carbonate succession has been suggested as dolomitization process for the 

platform in the Bahamas (Kohout, 1967; Simms, 1984). In combination, these scenarios 

could explain why some parts of the Campbellrand Subgroup in the GWA still contains some 

limestone, whereas the Malmani Subgroup is fully dolomitized. Carbonates deposited near 

the slope would still have had better exchange with open ocean water, in contrast to the 

interior platform, where poor water circulation and restricted influx of fresh open marine 

water allowed the formation of Mg-enriched brines and thus enhanced the complete 

dolomitization of the Malmani Subgroup (Beukes, 1987).  

The silicification observed in the upper succession of the Malmani Subgroup is fairly 

typical for Precambrian carbonate platforms, partly because Si concentrations in the 

seawater were significantly higher than today (Knauth, 1979). The replacement of 

carbonate by silicic phases is an early diagenetic process, caused by the interaction between 

marine and meteoric pore fluids in the mixing zone of near-shore sediments, and is 

dependent on porosity, salinity, pH, and fCO2 (Knauth, 1979; van den Boorn, 2008). 

Increasing partial pressures of CO2 and lower fluid pH can lead to undersaturation of 

carbonate and oversaturation of silica, resulting in calcite dissolution and silica 

precipitation, respectively. An early diagenetic origin for the silicification in the Malmani 

Subgroup, as opposed to a possible later hydrothermal overprint, is supported by heavy 

δ30Si values from +0.53 to +2.35 ‰ of silicified carbonate samples from the Eccles and the 

Monte Christo formations (Table 4-1). Such heavy Si isotopic compositions are in the range 

of modern surface waters like rivers (average δ30Si of +0.8 ‰) and shallow seawater 

(average δ30Si of +1.1 ‰) (De la Rocha et al., 2000; Georg et al., 2007; Ziegler et al., 2005) 

and not for hydrothermal fluids with typical δ30Si values between -0.3 and +0.3 ‰ 

(Chakrabarti et al., 2012 and references therein; van den Boorn, 2008).  

It has been proposed that silicification occurred locally with dolomitization as both 

processes are promoted by mixing of fresh- and seawater (Knauth, 1979; Magaritz et al., 

1980; Runnels, 1969; Smart et al., 1988). However, silicification in the CMCP is restricted to 

the supratidal environment, whereas dolomitization affected almost the complete platform, 

with some exceptions in the GWB (Beukes, 1987; Sumner and Beukes, 2006). The strong 

increase of silicification in the Eccles Formation (Figs. 2-3, 4-1) can be explained by the 

development of the rimmed margin in the second half of platform evolution (Sumner and 

Beukes, 2006), which restricted the exchange with open ocean water and thus increased the 
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influence of freshwater in the shallow seawater. In modern coastal carbonates the mixing 

with freshwater can cause a significant shift to lighter δ18Ocarb signatures, together with a 

shift to lighter δ13Ccarb values. The latter is caused by the oxidation of organic material, 

supplied by land plants in particular, which contain more 12C (Holmden et al., 1998; Oehlert 

and Swart, 2014). Such an effect would become visible during rise and fall of seawater level. 

Even though the platform clearly experienced several of these trans- and regression event, 

such a trend to negative values related to a sea-level change is not observed for the 

investigated microbial carbonates, neither for δ13Ccarb nor for δ18Ocarb signatures (Figs. 4-3, 

4-4, 5-2). Regarding the δ13Ccarb, this can be explained with the lack of land plants during the 

Neoarchean, which would have affected the δ13Ccarb signature in very shallow marine 

settings. Instead, a change in the carbon budget on the platform is a plausible explanation 

for such a shift in δ13Ccarb and will be discussed in detail in Chapter 6.1. Concerning 

dolomitization and silicification, a shift to lighter δ13Ccarb and δ18Ocarb would be strong 

indicators for syndepositional interaction of seawater and (isotopically light) freshwater. 

However, there is no shift to more negative δ18Ocarb values in KMF-5 (Fig. 4-3) that would be 

associated with such a mixing (Allan and Matthews, 1982; Immenhauser et al., 2003). One 

likely explanation for that would be that there was no or only a little difference in the δ18O 

signatures of the seawater and the freshwater because of warmer climate conditions and 

thus no shift in the isotope signature was produced during water mixing (Schmidt et al., 

1999). 

5.4. Preservation of geochemical signatures 

Sedimentological and geochemical observations reveal that the distinctions between 

individual sediments of the CMCP were mainly governed by water depth, water circulation, 

detrital supply from the adjacent land area and diagenesis. In particular, large-scale 

dolomitization and silicification in the peritidal environment clearly indicate mixing of 

fresh- and seawater in the shallow ocean and subsequent changes in some mineralogical 

(dolomite) and geochemical (Mg and Si) signatures during diagenesis. Some studies note 

that other characteristic trace element patterns in carbonates indicate severe diagenesis 

and alteration that could overprint primary signals, e.g. the decrease of Sr and Na and 

increase of Mn and Fe concentrations (Banner, 1995; Brand and Veizer, 1980; Veizer, 1983). 

Mn and Fe would have been added from leaching and dissolution of siliciclastics, sulphides 

and oxyhydroxides to altered carbonates (Veizer, 1983). However, pure carbonates with 

little to no detrital component could be suitable targets reflecting primary seawater 

signatures (Webb and Kamber, 2000). 
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The input of trace elements into the carbonate structure is dependent on the 

concentration of trace elements in the porewater, the water-rock ratio and the effective 

distribution coefficient. The ionic radii of Mg2+, Fe2+ and Mn2+ are very similar and their 

distribution coefficients are higher than unity, such that they are preferentially incorporated 

into the carbonate structure (Reeder, 1983). In chapter 4.1.3., it is described how the Fe/Mn 

ratio (expressed as Fe#) in carbonates correlate with water depth and detrital input. The 

dependence of Fe and Mn concentrations from water depth is a result of the lower redox 

potential of Fe compared to Mn. This promotes Fe precipitation from more reducing, deeper 

water beyond the shelf area and Mn precipitation at shallower, more oxidized waters of the 

platform (Beukes, 1987). As a result, the Fe/Mn ratios of pure carbonates from the slope to 

basinal Prieska facies (Fig. 2-2) reported in Voegelin et al. (2010) (Fe# mean with 2σ: 

0.52 ± 0.15) are slightly higher in the than those of the Campbellrand shelf facies 

(Fe# 0.31 ± 0.11) and the subtidal carbonates of the Malmani inner shelf facies 

(Fe# 0.39 ± 0.06) determined in this study (Tables 4-1, 4-2 and 4-3). Pure carbonates of the 

subtidal lower Oaktree Formation and the intertidal Monte Christo and Eccles formations 

show higher Fe/Mn ratios (Fe# 0.56 ± 0.16), contradicting the concept of preferential Fe 

precipitation over that of Mn at lower oxygen fugacity. The lower Oaktree Formation reveals 

the highest Fe/Mn ratio for pure carbonates in KMF-5 (samples 1790.1 and 1800.1 with Fe# 

values of 0.68 and 0.59, respectively) and might indicate a higher influx of open ocean 

water. Intertidal carbonates on the other hand are frequently intercalated by Fe-rich 

mudrocks, in particular the Monte Christo Formation (Fig. 2-3). It is possible that early-

diagenetic processes released iron from these mudrocks to the carbonates (Veizer, 1983). 

Freshwater might also have had an influence, as silicified carbonates reveal higher Fe/Mn 

ratios (Fe# 0.56 ± 0.16) (Table 4-1). Since freshwater can carry a continental trace element 

signature (Kamber and Webb, 2001 and references therein), it is likely that an aqueous Fe 

source from the continent might have influenced the peritidal carbonates. Nevertheless, the 

dependence of the Fe/Mn ratio in subtidal carbonates from the TA and GWA on the water 

depth indicates that those signatures are pristine and were not affected by dolomitization. It 

also argues for a very early dolomitization (Beukes, 1987), maybe within the first 1-2 Ma 

after deposition, as described for the Bahamian carbonate platform (Mcneill and Kirschvink, 

1993; Swart et al., 1987). However, detrital input and mixing with freshwater seem to have 

perturbed peritidal settings. 

Original marine signatures are also shown by PAAS-normalized REE+Y distributions 

of pure carbonates (Tables 4-4, 4-5), which reflect mixture of shallow seawater 

(Y/Ho anomaly > 27, positive La anomaly, depleted light REE over heavy REE) with deeper 

open ocean water carrying a hydrothermal signature (positive Eu anomaly, depleted light 
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REE over heavy REE) and freshwater carrying a continental ‘PAAS’-signature (Y/Ho around 

27, flattened patterns) (Kamber and Webb, 2001 and references therein). Carbonates of the 

lowermost Oaktree Formation (1790.1 and 1800.1) show elevated heavy REE patterns due 

to an enhanced hydrothermal influence at the beginning of carbonate growth during the 

first massive flooding along the Kaapvaal Craton (Figs. 5-4, 5-5) (Sumner and Beukes, 2006). 

Lagoonal carbonates from the upper Oaktree Formation (KMF-5) and Reivilo Formation 

(BH-1) carry shallow seawater REE+Y signatures with barely any hydrothermal influence 

(Fig. 5-5). A stronger influence from freshwater with ongoing platform growth becomes 

obvious from flattened REE+Y signatures in the peritidal Monte Christo and Eccles 

carbonates and partly in the lagoonal Lyttleton carbonates (Fig. 5-5). Overall a more 

pronounced average Eu anomaly of 1.53 and a lower average Y/Ho ratio of 48 for slope 

carbonates compared to coeval lagoonal carbonates with values of 1.19 and 75, respectively, 

reveal a diminishing hydrothermal influence from the slope towards the shallow-water 

platform and confirm Fe and Mn distributions (Fig. 5-5). The draw-down of hydrothermal 

influx onto the shallow-water platform might have induced an evolutionary advantage for 

oxygenic photosynthesis, which is independent from reduced species, and therefore set the 

stage for the development of a thriving aerobe ecosystem (e.g. Des Marais, 2001). This is 

discussed in Chapter 6. 

5.5. Paleoenvironmental reconstruction of the CMCP 

Even though most of the CMCP is dolomitized, sedimentological features and 

structures as well as some primary geochemical signals are still preserved and allow 

reconstructing the environmental conditions and the evolution of this carbonate platform. 

The Oaktree and Monte Christo formations (lower CMCP, steep ramp architecture) are 

detritus-dominated and chert-poor while the Lyttleton and Eccles formations are 

detritus-poor and in the case of Eccles chert-dominated (upper CMCP, rimmed margin 

architecture), which is indicated by the two trends between the carbonate-silica and 

carbonate-PAAS end-members and a well-defined gap in between (Fig. 4-1). These trends, 

particularly portrayed by the inter-tidal Monte Christo and Eccles formations, are 

independent of water depth but rather related to the development of the rimmed margin 

(Fig. 5-5). The decline in siliciclastic detrital run-off to the platform from the deposition of 

the Lyttleton Formation upwards in the succession could be speculated to be due to 

expansion of the platform and subsequent covering of the sediment source, or a change of 

the river flow directions in the hinterland of the basin as a consequence of a landscape 

change, or due to decreased weathering as a consequence of climate change. REE+Y patterns 

as well as Fe and Mn concentrations can be correlated with the stratigraphy, the water 
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depth, and the input of hydrothermal or continental fluids (Figs. 5-4, 5-5) (Voegelin et al., 

2010 and this study). It is possible based on the geochemistry to distinguish between 

sedimentary facies that interacted with the open ocean, i.e. the slope environment and the 

early stages of steep platform architecture, and facies that indicate more restricted 

conditions on the platform, in particular at peritidal settings and the transformation to the 

rimmed margin architecture. Four major platform evolution stages can be distinguished 

(Fig. 5-4). During the initial flooding of the Kaapvaal Craton and incipient carbonate 

deposition, the samples of the lower Oaktree Formation show elevated Fe, Mn and REE 

concentrations as well as REE+Y signatures that are characteristic for hydrothermal fluids 

from mid-ocean ridges (Pearce, 1983), defined by depleted light REE relative to the heavy 

REE. This changes with the build-up of the platform and a decreasing influx of open ocean 

(hydrothermal) water, so that the carbonates of the upper Oaktree Formation show REE+Y 

signatures characteristic for Archean shallow seawater, enriched in heavy REE relative to 

light REE and with a positive La and Y anomaly (Fig. 5-5) (Kamber et al., 2004). After the 

build-up of the steep ramp platform and during a regression the peritidal Monte Christo 

Formation and the lagoonal Reivilo Formation were deposited. During this stage more 

continental material was deposited and was preserved as organic-rich mudrocks, which 

show REE+Y signatures of continental material (PAAS). The carbonates of the Monte Christo 

Formation are more depleted in REE+Y compared to the mudrocks, but show a distinct and 

flattened ‘continental’ pattern, defined by slighter La and Y anomalies and without a 

depletion of light REE over heavy REE, compared to the ‘seawater’ pattern of Oaktree and 

Reivilo carbonates (Fig. 5-5). We interpret that the Monte Christo carbonates were stronger 

influenced by continental fluids. The Kamden ‘Iron Formation’ Member was deposited 

during a temporary major transgression and is geochemically visible in Fe-rich rocks 

throughout the platform (Sumner and Beukes, 2006). The detritus-rich sample 1265.2 in 

KMF-5 shows a REE+Y pattern that resembles a mudrock composition and is close to PAAS. 

However, in contrast to the mudrocks, 1265.2 also reveals a positive Eu anomaly, which 

indicates increased influence of hydrothermal fluids from the open ocean water, probably 

during the transgression and deposition of the Kamden Member, which is also supported by 

the high Fe2O3 content (> 10 wt-%) (Table 4-1). Eventually, the architecture of the CMCP 

changed from a steep ramp to a rimmed margin, which served as a shelter against the influx 

of open ocean water. Thus, the influence of continental water masses prevailed over the 

influence of open ocean water, visible in the ‘continental’ REE+Y patterns of the Lyttleton 

and Eccles carbonates (Fig. 5-5). However, some samples retained a ‘seawater’ pattern and 

even show a slight Eu anomaly, which indicates an occasional influx of open ocean water 

into the lagoon. REE+Y patterns of slope carbonates (Voegelin et al., 2010) show compared 
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to the platform carbonates by an order of magnitude higher REE+Y values and pronounced 

Eu anomalies, confirming that the slope was mainly influenced by open ocean water. The 

influence of different trace element sources (open ocean vs. continental) are supported by 

the Fe/Mn ratio of carbonates (displayed in Fig. 5-5 as Fe#) and also reveal the dependence 

of water depth as Fe has a lower redox potential than Mn. This results in Fe# >0.4 in slope 

carbonates of Lower and Upper Nauga compared to platform subtidal carbonates (Reivilo, 

upper Oaktree, Lyttleton formations and most of the upper CMCP of BH-1) with Fe# <0.4 or 

close to 0.4, which reflects a simultaneous decrease of Fe and relative to that increase of Mn 

from slope to platform (Fig. 5-5). There is a clear difference between platform carbonates 

(BH-1 and KMF-5) deposited in the lower or upper CMCP. The Reivilo and Monte Christo 

formations (lower CMCP) were deposited coevally and whereas carbonates from the Monte 

Christo Formation show Fe# between 0.4 and 0.6, the Reivilo carbonates obtain Fe# values 

between 0.1 and 0.4 (Fig. 5-5). In the upper CMCP the platform carbonates show values 

between about 0.3 to 0.6, some silicified carbonates with occasional excursion up to 0.8, and 

are thus much more homogeneous than in the lower CMCP. This is in particular visible in 

BH-1 and confirms that the shift from a steep ramp to a rimmed margin architecture had an 

impact on source influxes from an open ocean dominated to a continental dominated influx. 
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Figure 5-4: Simplified paleoenvironmental reconstruction of the CMCP over time with relative influxes of open ocean and freshwater. 
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Figure 5-5: Fe# ([Fetot/(Fetot+Mntot)]) and trace element data of slope and platform sediments and reveal a dependence on water depth and source water influx. Data of GKP01 and 
GKF01 are from Voegelin et al. (2010). 
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6. Reconstruction of the inorganic carbon pool and ecosystem of the 

CMCP 

6.1. Indications for heterogeneous DIC pool in the shallow marine environment 

Carbonates of the CMCP obtain some distinct δ13Ccarb values, depending on the 

depositional environment. Carbonates of the very shallow-marine platform facies (KMF-5) 

reveal an average δ13Ccarb signature of -0.38 ± 0.92 (2σ) ‰, and are somewhat isotopically 

heavier than the carbonates from the stratigraphically correlative lagoonal platform facies  

of -0.58  ± 0.80 (2σ) ‰ (BH-1) and slope facies of -0.70 ± 1.74 (2σ) ‰ (GKF01) 

and -0.54 ± 1.22 (2σ) ‰ (GKP01) (Fischer et al., 2009; Horstmann and Beukes, 2002 and 

this study).  Thereby, the carbonates of KMF-5 follow an overall trend from bottom to top 

from ca. -1.2 ‰ towards heavier isotope signatures of ca. +0.2 ‰ (Fig. 6-1), and also the 

carbonates of BH-1 indicate such a trend from about -1.6 to +0.1 ‰, even though it is not 

very apparent. The deeper slope carbonates from the stratigraphically correlative 

successions of GKP01 and GKF01 lack this increasing trend but instead vary erratically 

between about -1.4 to +0.5 ‰, with various excursions to negative values (down 

to -3.7 ‰). Those excursions represent siderite-rich layers within the slope succession and 

are related to the deposition of siliciclastic mudrocks and discrete IF (Fig. 6-1). All four drill 

cores exhibit negative excursions related to the deposition of the hematite- and siderite-rich 

Kamden Member, where GKP01 shows values down to -1.0 ‰, GKF01 down to -7.1 ‰, 

BH-1 down to -2.4 ‰, and KMF-5 down to -3.2 ‰. Those negative excursions are induced 

during diagenetic microbial processes such as dissimilatory iron reduction (DIR), during 

which isotopically light organic material is likely oxidized to HCO3
−  and 

Fe(III)-(oxyhydr)oxides reduced to Fe(II)aq in the porewater, where it reacts to isotopically 

light Fe(II)-carbonate (Fischer et al., 2009; Heimann et al., 2010; Johnson et al., 2008a; 

Johnson et al., 2008b; Johnson et al., 2008c): 

 4Fe(OH)3 + CH2O + 3HCO3
− → 4FeCO3 + 3OH− + 7H2O 

The mild shift of Ca-Mg-carbonates towards isotopically heavier δ13Ccarb signatures 

in the platform interior from the lower CMCP to the upper part of the CMCP indicates an 

isotopic change of the dissolved inorganic carbon (DIC) pool in the shallow-marine 

environment, which was independent of the open ocean DIC pool. In order to test if this 

assumption is correct, a detailed analysis of the δ13Ccarb trends throughout the slope and the 

platform was conducted by generating histograms of the distribution of δ13Ccarb data in the 

single drill cores with emphasis on the lower CMCP (steep ramp architecture) and upper 
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CMCP (rimmed margin architecture). Results are displayed in Figure 6-1 and reveal some 

distinct patterns for slope and platform successions that support a heterogeneous DIC pool 

in the shallow-marine environment. During the deposition of the lower CMCP (Lower Nauga 

Formation), including the Kamden Member, the slope succession reveals mean values 

(with 2σ) of -0.5 ± 0.6 ‰ (GKP01) and -0.9 ± 2.5 ‰ (GKF01) and a wide distribution of 

δ13Ccarb, where some excursions, in particular from the Kamden Member, tend to very light 

δ13Ccarb values and cause a high 2σ value  (Figs. 6-1, 6-2). In the upper CMCP (Upper Nauga 

Formation), δ13Ccarb data (-0.6 ± 1.56 ‰ for GKP01 and -0.6 ± 1.08 ‰ for GKF01) are still 

widely distributed and negative excursions are more frequent. This coincides with the more 

frequent occurrence of mudrock layers in the upper Nauga Formation (Fig. 6-1), which 

contained organic carbon that likely fueled DIR-related diagenesis of Fe-(oxyhydr)oxides in 

the sediment and production of siderite with light δ13Ccarb signatures (Fischer et al., 2009; 

Heimann et al., 2010; Johnson et al., 2008b). The platform carbonate succession of the lower 

CMCP reveals similar observations with slightly lighter average δ13Ccarb signatures and an 

overall wider distribution than the upper CMCP, with BH-1 (Reivilo Formation) 

showing -0.7 ± 0.9 ‰ and KMF-5 (Oaktree and Monte Christo formations) 

showing -0.6 ± 0.8 ‰. The Oaktree and Monte Christo formations (KMF-5) contain 

mudrocks, which show bulk negative δ13Ccarb excursions down to -12.3 ‰ (Fig. 4-3), which 

might indicate oxidation of organic matter, however it is unclear whether this signal solely 

reflects siderite, since the bulk sample was analyzed and no distinctive siderite bands 

related to the mudrock layers were observed as in the slope succession (Fischer et al., 

2009). This implicates that DIR processes were probably not as efficient in the platform 

interior as along the slope, potentially because not sufficient Fe-(oxyhydr)oxide was 

available. The carbonates of the upper CMCP, after the development of the rimmed margin, 

clearly show a different pattern than the Upper Nauga carbonates from the slope facies. In 

BH-1 (all formation from Fairfield to Gamohaan) δ13Ccarb data have a mean of -0.5 ± 0.62 ‰, 

a slight but clear tendency towards heavier values, no negative excursions and a more 

narrow distribution (Fig. 6-2). The carbonates of the upper CMCP in KMF-5 (Lyttleton and 

Eccles formations) show a shift in δ13Ccarb towards heavier signatures of 0.0 ± 0.5 ‰. Even 

though these shifts are slight, the different development of δ13Ccarb signatures in the slope 

and platform facies gives some indications for the environmental and maybe even the redox 

conditions. 

The development of the CMCP from a steep ramp to a rimmed margin architecture 

influenced the relative input of water masses from the open ocean and the continent. This 

affected the trace element and Fe# signatures of the carbonates depending on their 

depositional environment (Fig. 5-5). The different development of δ13Ccarb signatures in the 
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slope and platform successions also seems to reflect an influence of this different platform 

architecture on the DIC pool of the shallow-marine environment. During earlier stages the 

steep ramp architecture allowed the exposure of the carbonates to open ocean water that is 

the largest carbon reservoir in the atmospheric-ocean system (Fig. 1-3) and would have 

mainly influenced the δ13C signatures of the DIC. This is supported by similar mean δ13Ccarb 

signatures and distributions in the lower CMCP of slope and platform carbonates, whereby 

some negative excursion imply microbial-induced degradation of isotopically light organic 

matter (Fig. 6-2). During the rimmed margin stage the carbonates from the slope facies of 

the upper CMCP were still exposed to open ocean water and show similar δ13Ccarb values, 

distributions similar to the lower CMCP, and indications for organic matter degradation. The 

carbonates from the upper CMCP of the platform facies were less exposed to the open ocean 

water due to the development of the rimmed margin (Beukes, 1987; Sumner and Beukes, 

2006) and the restricted conditions probably allowed a distinct development of the DIC pool 

within the very shallow environment, independent of the open ocean DIC pool. Since these 

carbonates record a shift towards heavier δ13Ccarb signatures (Fig. 6-2), it can be suggested 

that also the DIC pool from which they precipitated was isotopically heavier than coeval 

open ocean seawater. To explain this overall shift it is important to consider the timerange 

the upper CMCP represents. The platform was deposited over a timerange of about 80 Ma, 

and even though detailed age constraints of the single formations are still uncertain 

(Sumner and Beukes, 2006), the deposition of the upper CMCP took some tens of millions of 

years. Over such timescales the fluxes between the atmosphere-ocean system and the large 

sedimentary reservoirs of carbonate and organic carbon mainly influence the DIC pool 

(Fig. 1-3). Indeed, there is a change in organic carbon deposition along the CMCP. In the 

lower CMCP, mudrocks and some organic-rich carbonates from the slope reveal mean 

(with 2σ) TOC contents of 1.61 ± 1.70 wt.-% (GKP01) and 1.43 ± 2.52 wt-% (GKF01 – one 

excursion of 9.60 wt-%). In the platform facies TOC contents are even higher, showing 

values of 2.73 ± 4.02 wt-%. In the upper CMCP the TOC contents show a slight increase in 

the mean of GKF01 (1.84 ± 2.85 wt-%) and only a negligible decrease in GKP01 

(1.52 ± 2.04 wt-%). The platform facies on the other hand shows a strong decline in TOC, 

coupled with a scarcity of mudrocks (Fig. 6-1).   

The combination of higher TOC values along the slope and increase in deposition of 

mudrocks along the marginal slope environment, represented in GKF01, can be interpreted 

as an increasing burial of organic matter, which argues for enhanced primary production in 

the marine environment. In a detailed review of Des Marais (2001) about the carbon cycle 

during the Precambrian, it is shown that a shift from chemolithoautotrophy and anoxygenic 

photosynthesis to oxygenic photosynthesis would have induced a significant increase in 
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primary production. This is because chemolithoautotrophy and anoxygenic photosynthesis 

depend on electron donors like H2, H2S, or Fe2+ from reduced hydrothermal fluids, and 

estimates for the Precambrian range from 2 to 20 × 1012 mol/yr C from primary production 

via those pathways (des Marais, 1985; Turcotte, 1980). Oxygenic photosynthesis is 

independent of the availability and amount of reduced hydrothermal species and uses H2O 

as electron donor, fueling primary productivity (modern rate in marine environment 

~ 4000 × 1012 mol/yr C) (Field et al., 1998). The development of a rimmed margin and Fe# 

and trace element data implicate a reduced influx of hydrothermal fluids into the shallow-

marine platform interior (Fig. 5-5). This probably reduced the activity of microorganisms 

depending on those reduced species and on the other hand allowed oxygenic 

photosynthesizers to dominate the ecosystem and increase the primary production (Des 

Marais, 2001). A shift to an aerobe ecosystem would also explain the low amount of organic 

carbon preserved on the platform facies of the upper CMCP, because the C budget of 

microbial mats containing cyanobacteria, is basically steady state in carbon fixation by 

primary production and carbon loss by heterotrophic respiration (Canfield and des Marais, 

1993). The organic- and mudrock-rich slope facies on the other hand indicates that some 

organic material produced during enhanced primary production on the platform was 

transported via clay minerals to greater depths and deposited along the possibly more 

anoxic margin and slope of the CMCP (Klein and Beukes, 1989). This means that light 12C 

was subsequently removed from the carbon pool of the shallow-water lagoon. Normally, the 

influx of fresh ocean water would balance this loss of 12C by organic burial. However, since 

the rimmed margin architecture restricted this open ocean influx it is reasonable that the 

DIC pool in the shallow-marine environment became more and more depleted in 12C and 

increased in its 13C/12C ratio. It is important to note that this increase is solely a local effect 

and does not reflect a global rise of δ13Ccarb like the Lomagundi-Jatuli Event (Karhu, 1993; 

Melezhik et al., 2007). There is no reported change in the global DIC pool during the 

Neoarchean (Krissansen-Totton et al., 2015), and the only reason why such a shift still can 

be observed in the carbonates of the upper CMCP is that the rimmed margin architecture 

allowed the development of special conditions, restricted to the very shallow-marine 

environment. Nevertheless, removal of organic carbon, an effective reductant, from the 

shallow-marine system does also mean an increase in the oxidation state (e.g. Garrels and 

Perry, 1974) and would therefore support the establishment of an oxygen oasis. 

6.2. Signs of an aerobe ecosystem in the CMCP 

Slope carbonates of the Lower and Upper Nauga formations show mean δ13Corg 

signatures (with 2σ) of  -31.5 ± 3.16 ‰ (GKP01) and -31.5 ± 4.0 ‰ (GKF01) (Fischer et al., 
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2009; Horstmann and Beukes, 2002). Lagoonal carbonates show a mean of -30.2 ± 5.0 ‰, 

while peritidal carbonates (KMF-5) reveal with -25.8 ± 5.2 ‰ a shift to heavier signatures 

(Table 4-1, 4-2), although some carbonates might be altered and do not record pristine 

values (see detailed discussion in chapter 5.2.). Nevertheless, most carbonate signatures of 

organic material from the peritidal environment up to ~-25 ‰ still show a disordered 

structure and low carbonization (Figs. 4-5; 5-3), which might indicate a different ecosystem 

in the very shallow-marine environment. 

Microorganisms kinetically fractionate C and produce organic material with very 

light δ13C signatures that strongly vary, depending on the metabolic pathway (Figs. 5-3, 6-1) 

(for a review, see Hayes, 2001). Most of the carbonate and mudrock samples from the CMCP 

show signatures between -40 and -20 ‰. Assuming a marine DIC pool with a δ13C signature 

of ~ 0 ‰, aerobe photoautotrophy (e.g., by cyanobacteria) would typically yield δ13Corg 

signatures between -33 to -24 ‰, although those signatures can also be produced by some 

anaerobic bacteria such as photoferroautotrophic, sulfate-reducing, methanogenic and even 

methanotrophic bacteria (Thomazo et al., 2009 and references therein) (Fig. 6-1). However, 

evidence for dissolved oxygen in the shallow seawater of the Campbellrand-Malmani area, 

such as authigenic accumulation of redox-sensitive elements and the enrichment of 

carbonates and mudrocks in heavy stable molybdenum and nitrogen isotopes (Godfrey and 

Falkowski, 2009; Voegelin et al., 2010; Wille et al., 2007 and this study), and fossil 

biomarkers, in particular steranes (Waldbauer et al., 2009), makes a strong case for the 

existence of oxygen-photosynthesizers in marine microbial mats. This is further supported 

by slightly heavier δ13Ccarb signatures in the restricted platform facies that argues for an 

increasing oxidation state in the shallow-marine environment. Diminished ferrous iron 

delivery to shallow water, as indicated by trace element systematics and depth variant Fe 

concentrations of the carbonates (Fig. 5-5), would have favored enhanced activity of 

cyanobacteria, which are susceptible to ferrous iron toxicity (Swanner et al., 2015a) and 

would have restricted the activity of ferrous anoxygenic phototrophs. Mudrocks from the 

slope toward the shallow-water platform show a mean δ13Corg value of ~-32 ‰ (Fig. 6-2), 

which indicates mainly heterotrophic respiration of photosynthetic mass. However, some 

negative excursions down to -40 ‰ and below (Fig. 6-1) argue for methane cycling or 

sulfate-reduction by an anaerobic microbial community within reducing sediments. Overall, 

δ13Corg isotope signatures of carbonates along the CMCP show a dominance of 

photoautotrophic bacteria and heterotrophic respiration of the photosynthetic biomass, 

with the possibility of locally occurring anaerobic microbial activity in some mudrocks. 

Despite the possibility that some of these signatures might have been slightly shifted due to 

higher peak metamorphic temperatures, as indicated by Raman analyses (see chapter 5.2), 
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the range in δ13Corg from ~ -40 ‰ in mudrocks to up to ~ -25 ‰ in peritidal carbonates 

cannot be explained by metamorphic overprinting but rather support a diverse ecosystem 

(Waldbauer et al., 2009) with a dominance of aerobic ecosystems in the platform’s shallow 

waters. This is consistent with data from other Archean carbonate successions of Steep Rock 

(2.8 Ga, Canada) (Grassineau et al., 2006) and Hamersley Basin (2.6 Ga, Australia) 

(Eigenbrode and Freeman, 2006), which also contain sediments with similarly varying 

δ13Corg values that point to a change from anaerobic to enhanced aerobic microbial activity 

on consolidated shallow marine platforms. 
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Figure 6-1: δ13Ccarb, δ13Corg and TOC data of carbonate and mudstone samples from GKP01 and GKF01 (slope) and BH-1 and KMF-5 (platform). Stratigraphy for GKP01, GKF01, and 
BH-1 is modified from Fischer et al. (2009). Black dashed lines mark the correlated sequences of all drill cores. Isotope data of GKP01, GKF01 and most of BH-1 are from Fischer et al. 
(2009) or are provided by Uwe Horstmann. The box included in the legend reflect the δ13C isotope range of common marine microbial species, grey shaded area marks the range in 
which δ13Corg data of CMCP samples fall (Thomazo et al. (2009) and references therein, relative to CO2,aq. APB: anoxygenic photoautotrophic bacteria, Pat: photoautotrophic bacteria 
(e.g. cyanobacteria), SRB: sulfur-reducing bacteria, MgB: Methanogenic bacteria, MtB: Methanotrophic bacteria. (Formations: VB-Vryburg; BP-Boomplaas; LM-Lokamonna; 
Monte-Monteville; KN-Klein Naute; Ku-Kuruman; Fairfi.-Fairfield; Kf.-Klipfonteinheuwel; Papk.-Papkuil; K.-Klippan; Gh-Gamohaan; BR-Black Reef) 
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Figure 6-2: Histograms showing data distribution of δ13Ccarb, δ13Corg values from all slope and platform drill cores, with corresponding average and 2σ values. All data 
from GKP01 and GKF01, and most δ13Ccarb data of BH-1 are from Fischer et al. (2009) and Horstmann and Beukes (2002). 
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7. Molybdenum isotope systematics of the CMCP 

7.1. Objectives 

Redox changes of the atmosphere-hydrosphere system over geological times should 

perturb the marine Mo isotopic cycle by introducing heterogeneities in different 

sedimentary redox regimes (Fig. 1-4). This should result in an evolution of the seawater 

δ98Mo value, which can be mirrored in black shales precipitated within an euxinic setting. 

Several studies suggest the build-up of small amounts of free oxygen before the GOE, based 

on fluctuations of Mo concentrations and isotopic compositions of Archean chemical 

sediments (Anbar and Rouxel, 2007; Duan et al., 2010; Planavsky et al., 2014; Voegelin et al., 

2010; Wille et al., 2007).  

It has been suggested that non-skeletal marine carbonates also might mirror the Mo 

isotopic composition of the ambient seawater and thus provide another viable rock archive 

to reconstruct the redox-evolution of the hydrosphere-atmosphere system over Earth’s 

history through variations in seawater δ98Mo values (Voegelin et al., 2010; Voegelin et al., 

2009). Particularly, Voegelin et al. (2010) found shifts towards heavy δ98Mo values in 

carbonates from drill core samples of the 2.6 to 2.5 Ga old Ghaap Group of the Griqualand 

West Basin (South Africa), which were suggested to result from changes in redox-conditions 

of the ambient environment, such as fluctuations in free atmospheric oxygen at that time. 

Contemporaneous black shales from the same drill cores follow an overall increasing trend 

in δ98Mo up section, corroborating the interpretation of gradually rising atmospheric oxygen 

during this time (Wille et al., 2007). There are several advantages to exploring the carbonate 

record of Mo, if these sediments are indeed high fidelity records of the seawater Mo 

reservoir. Carbonates are deposited over a much wider range of sedimentary environments 

than black shales, which are deposited under specifically reducing conditions. Carbonates 

are also well preserved in sedimentary successions as far back as the Archean and would 

allow a broader sample spectrum over time compared to black shales deposited within 

euxinic settings. As they were formed in oxygen-producing, shallow environments they 

could be used as a direct proxy for the Precambrian Mo seawater composition as well as 

possible indicator for local O2 fluctuations (Voegelin et al., 2009). Yet, it requires evaluation 

whether redox changes of seawater or the atmosphere are the only significant parameters 

impacting the Mo record in the carbonates or if the changing depositional environment and 

early diagenetic redox processes within the sediment could also have a major effect.  

Therefore, carbonate and mudrock samples from the CMCP were analyzed for their 

Mo isotope chemistry. In contrast to a previous study investigating the Mo isotopic 
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composition of deeper platform settings from the Griqualand West basin (Voegelin et al., 

2010), samples from this study are from the shallow shelf part of the platform, which 

eliminates the influence of strong sedimentary perturbations that are typical for a slope 

area (Schroeder et al., 2006). The goals are 1) to verify whether there is a correlation 

between the Mo isotopic composition of the carbonates and their depositional depth or 

environment, 2) to utilize Mo isotopes to interpret the chemical setting of the shallower 

Neoarchean Ocean, and 3) to evaluate the extent to which diagenetic and biological factors 

impact the sedimentary geochemical signals of carbonates. To do so, Mo concentrations and 

δ98Mo values from closely spaced samples were combined with geochemical characteristics, 

stratigraphy and sedimentological observations. 

7.2. Mo geochemistry of the platform succession 

Earlier studies combining Mo concentration and Mo isotope composition of the 

CMCP are provided by Wille et al. (2007) and Voegelin et al. (2010), on mudrock and 

carbonate samples from GKP01 and GKF01 (Schroeder et al., 2006), representing slope to 

basinal sedimentary rocks (Figs. 2-1, 2-2). In Figure 7-1 δ98Mo spectra and isotope 

signatures are combined for the entire CMCP succession. Comparison of the data from 

deeper platform sediments with our results from shallower platform sediments reveals 

some inconsistencies. Molybdenum isotopic signatures in the carbonaceous mudrocks, for 

instance, show decreasing values upsection from the Oaktree to the Eccles formations, 

which is the opposite pattern described for the mudrock samples of the slope succession 

(Wille et al., 2007). Our Mo isotopic values of carbonates along the Malmani succession 

fluctuate in the same range as the data presented by (Voegelin et al., 2010). However, our 

high-resolution measurements from even single increments of sedimentation span the 

range of Mo isotopic compositions observed throughout the entire KMF-5 and the Agouron 

cores (Voegelin et al., 2010; Wille et al., 2007). An example of these small-scale spatial 

stratigraphic variations is supplied by a ~15 cm long carbonate section of the Monte Christo 

Formation in KMF-5 (Fig. 7-1). It displays significant lithological differences from oolitic 

dolomite structures (1574.3) as well as domal (1574.25) and fine-grained areas (1574.2 and 

1574.15), indicating a change of depositional conditions influencing abiogenic carbonate 

formation. These short-term changing depositional conditions result in varying TOC of 0.01 

- 0.03 %, Mo concentrations of 15-26 ppb, and δ98Mo from +0.40 to +0.87 ‰, respectively, 

with heavier Mo isotopic compositions occurring in one organic rich layer (1574.2). This 

single sample from the KMF-5 core reveals that the carbonates most likely not only reflect 

the Mo isotopic composition of the ambient seawater, but rather, that local environmental 

redox fluctuations within the sediment affected the primary Mo isotope signals.
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Figure 7-1: Mo concentrations and isotopic compositions of carbonates and mudrocks from KMF-5, BH-1 (platform succession), GKP01, and GKF01 (slope succession (Voegelin et 
al., 2010; Wille et al., 2007)). Picture of a 15 cm long hand-specimen from the Monte-Christo Formation is shown on the right, together with measured δ98Mo values. Shaded area at 
δ98Mo columns indicates the range of continental signatures from -0.2 to +0.6 ‰ (Voegelin et al., 2014), Mo concentration of PAAS as detrital component is 1 µg/g (Taylor and 
MacLennan, 1985). Dashed black line shows stratigraphical relation of formations which belong to the Campbellrand-Malmani slope-platform succession (Sumner and Beukes, 
2006). Thicker dashed line indicates Kamden Member. Abbreviations of Formations: VB: Vryburg; BP: Boomplaas; LM: Lokamonna; Monte.: Monteville; KN: Klein Naute; Kf.: 
Klipfonteinheuwel; Papk.: Papkuil; Kl: Klippan; Gh: Gamohaan; BR: Black Reef 
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Therefore, a possible correlation between the Mo concentrations and isotopic 

compositions with the Al2O3 and TOC content of carbonates and mudrocks was examined 

(Fig. 7-2). Mo concentrations clearly correlate with Al2O3, the latter used as proxy for the 

detrital input (Fig. 7-2 a). Detritus-containing samples yield Mo concentrations of up to 

1 µg/g, corresponding to PAAS (Taylor and MacLennan, 1985). However, detrital input does 

not seem to be the only contributor of Mo to carbonates and mudrocks. In pure and silicified 

carbonate samples with Al2O3 values below 0.10 wt-%, authigenic enrichment seems to 

dominate the detrital contribution, as these samples plot above the “PAAS-line” (Fig. 7-2 a). 

Authigenic enrichment, scavenging Mo, can also be assumed for seven mudrock samples 

(1499.85, 1544.1, 1551.7, 1557.7, 1673.3, 1776.0, and 1800.3), which have higher Mo/Al2O3 

ratios (0.107 to 0.269) than the rest of the mudrock samples with Mo/Al2O3 ratios (0.042 to 

0.089) similar to PAAS (0.053). Furthermore, in agreement with the data of Wille et al. 

(2007), a weak correlation between TOC and Mo contents (Fig. 7-2 b) and no correlation 

between TOC and δ98Mo signatures can be observed. This can be likely explained by 

scavenging of Mo on organic matter (McManus et al., 2006), yet the Mo isotopic signature is 

obviously not solely affected by this parameter (Wille et al., 2007). Overall the same Mo 

isotopic spread in three of the four formations exposed in KMF-5 can be observed, which is 

independent of the lithology of the samples (Fig. 7-2 c) or of any mixed isotope signals 

caused by two different reservoirs (Fig. 7-2 d). This supports our proposition that while 

redox changes of the water column can be responsible for the observed δ98Mo variability, 

the Mo isotopic signatures are likely also influenced by local sedimentary processes. 
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Figure 7-2: (a) – (d) Mo concentration and isotopic composition vs. Al2O3 and total organic carbon (TOC) 
content. (a) Predictions of Mo added by incorporated into marine abiogenic carbonates via sorption from 
seawater for a range of seawater Mo concentrations. Dotted curves are modeling carbonate-bound Mo directly 
adsorbed from seawater, based on experiments performed by S. Goldberg (personal communication; Appendix), 
and for different Mo concentrations of seawater (average modern seawater: 0.1 µM (Collier, 1985); estimated 
average Neoarchean seawater: 0.001 µM (Czaja et al., 2012; Duan et al., 2010) to 0.01 µM (Dahl et al., 2011; Scott 
et al., 2008)); Mo/Al2O3 ratio of PAAS is 0.053 (Taylor and MacLennan, 1985). (b) Weak correlation between Mo 
and TOC contents (R2 =0.27). (c) All lithologies show δ98Mo signatures heavier than continental crust. Three 
mudrock samples (1551.7,1776.0, and 1800.3) showing authigenic Mo enrichment combined with heavy δ98Mo 
signatures. Shaded area indicates the range of continental δ98Mo signatures from -0.2 to +0.6 ‰ (Voegelin et al., 
2014). (d) No clear correlation between 1/Mo and Mo isotopic composition indicates that there was no mixture 
between different Mo reservoirs, which could explain the isotope signatures. 

7.3. Mo systematics in carbonates, tidal flat systems, and microbial mats 

7.3.1. Marine carbonates as archive of seawater Mo 

Based on the Mo isotopic composition of modern oolitic samples, it has been 

suggested that non-skeletal abiogenic carbonates can mirror the Mo isotopic composition of 

contemporary seawater (Voegelin et al., 2009). However, under marine pH conditions of 8.2 

the very low adsorption coefficients of Mo onto carbonates (Goldberg et al., 1996) results in 

a low Mo concentration within these modern oolitic samples compared to other marine 

sedimentary reservoirs. This raises the question of whether Mo isotope variations in 

platform carbonates are a good archive for seawater Mo and suitable for environmental 

paleo-reconstruction.  
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Adsorption experiments of Mo from a stock solution on synthetically manufactured 

carbonate (Goldberg, pers. comm.; Appendix) show enhanced Mo adsorption with 

decreasing pH. These results cannot be directly applied to Mo adsorption on natural 

carbonates in a marine environment, as natural carbonates have a much smaller surface 

area and batch experiments were set up with an enriched and finite soluble Mo reservoir 

compared to modern seawater (Goldberg, pers. comm.). However, linear extrapolation of 

Mo adsorption of these batch experiments to modern Mo seawater concentration of 0.1 µM 

will result in about 10 ng/g adsorbed Mo on carbonate, which is in agreement with 

measured 18 and 38 ng of adsorbed Mo per gram CaCO3 of modern ooids formation from 

the Bahamas (Voegelin et al., 2009). This indicates that the Mo concentration on primary 

precipitated, unaltered, biogenic carbonates is mainly dependent on the Mo concentration of 

the surrounding aqueous solution from which the carbonate will form, providing that the pH 

is constant (Fig. 7-2 a; Appendix). Seawater Mo concentration during the Neoarchean is 

assumed to  range from ~0.001 µM (Czaja et al., 2012; Duan et al., 2010) to ~0.01 µM (Dahl 

et al., 2011; Scott et al., 2008) with an Archean shallow water pH value similar to that of the 

modern oceans (Beukes and Gutzmer, 2008). Integration of these two Mo concentration 

estimates of Neoarchean seawater into our adsorption calculations yield values between 

about 0.1 and 1 ng/g of adsorbed Mo on carbonates. These values are much lower than 

measured concentrations in Malmani pure carbonate samples (18 ± 19 ng/g for pure 

carbonates; Fig. 7-2 a). It should be noted that a difference between the pH of the 

Neoarchean ocean (± 7.8) and the modern ocean (± 8.2) would not shift these results 

significantly. Hence, a significant amount of Mo within the analyzed carbonates must have 

been added by secondary processes, which overprint the original primary Mo seawater 

signal of the carbonates. As these processes affected the Mo content they might also have 

affected the Mo isotopic composition. In the following section, several possibilities for likely 

processes are discussed. 

7.3.2. Direct adsorption of Mo on organic matter 

Organic matter can scavenge molybdate (Head and Burton, 1970; Helz et al., 2011) 

and can act as an important sink for Mo (Dellwig et al., 2007). Temporary Mo fixation on 

organic aggregates in oxygen-depleted zones within tidal flat sediments and a subsequent 

release of Mo due to decomposition of these organics causes a non-conservative behavior of 

Mo in shallow waters (Dellwig et al., 2007). A weak correlation between Mo concentration 

and TOC content of the Malmani samples (Fig. 7-2 b), points to a coupled enrichment 

process of both Mo and organics within the carbonates. The preferential adsorption of 

isotopically light Mo isotopes on organics can lead to a significantly lighter isotope signal of 
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organically bound Mo compared to seawater Mo (Δ98Moseawater-organics of up to +1.0 ‰; 

(Kowalski et al., 2013). This mechanism could have resulted in a depleted Mo isotopic 

composition of our sediment samples compared to the contemporary ambient seawater and 

could therefore explain their variable Mo isotopic composition (Fig. 7-3). A flux of organic 

compounds to carbonates is often associated with deposition of suspended particulate 

matter (SPM) and other detrital material, like clays (Kowalski et al., 2013; Potter et al., 

2005). This detrital pathway can imitate authigenic Mo enrichment from seawater, which 

results in the Mo-TOC relationship seen in modern euxinic sediments (Algeo and Lyons, 

2006; Naegler et al., 2011). For the data set of this study, it rather reflects varying 

contribution of Mo from lithogenic particles than Mo scavenging from sea-/ pore water. 

When only pure and silicified carbonates are considered, no correlation between TOC and 

Mo is observed. Also, the Mo isotopic compositions do not show any dependence on the 

presence or abundance of detrital (Fig. 7-2 c) or organic compounds or even with a certain 

rock type, as all of them show the same isotopic spread in δ98Mo. Most Mo isotope signatures 

show upper continental crust signatures (Fig. 4-6, 7-2 c). However, carbonates that are 

associated with mudrocks with a heavy δ98Mo signature are also heavier and vice versa. 

Interestingly, three of the mudrock samples (1551.7,1776.0, and 1800.3) with the highest 

Mo contents also have the heaviest δ98Mo values, all of them deposited in the lower section 

of the Malmani Subgroup (Fig. 7-2 c). This points to a rather indirect relationship between 

TOC and authigenic Mo accumulation possibly derived by early diagenetic processes. 

7.3.3. Early diagenetic redox cycling within the sediment 

The settling of organic matter will drive early diagenesis within the sediment with 

in-vivo organisms using different oxidants. These organisms re-mineralize organic matter 

with oxidants available according to the free energy yield of these reactions (Martin and 

Sayles, 2003). Therefore, in modern sediments, aerobic respiration first consumes free 

oxygen until pore water O2 concentrations are virtually zero. Once all free oxygen is 

consumed, oxidants, such as nitrate or Mn(III/IV)-oxides, are used, followed by 

Fe(III)-oxides and sulfate. This successive consumption of different oxidants results in a 

vertical redox zonation within the sediment, with corresponding stratification in the pore 

water chemistry (Froelich et al., 1979). The occurrence and vertical extent of this different 

redox zonation is dependent on the depositional environment, which can have different 

bottom water oxygen concentrations, sediment accumulation rates, sediment composition 

and physical properties such as grain size, porosity and permeability. Utilizing the concepts 

of modern, early diagenetic sedimentary redox zonation within the framework of the 

Neoarchean Malmani carbonate formation, Mo concentrations and isotopic compositions in 
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shallow water chemical sediments are mainly governed by oxic and anoxic mechanisms of 

precipitates and pore fluids (Brucker et al., 2009; McManus et al., 2002; Scott and Lyons, 

2012). Mo isotopic fractionation due to adsorption of soluble Mo on Mn-oxides, as it is 

common today, can be ruled out, as the redox conditions were insufficiently oxygen-rich to 

oxidize Mn, as is indicated by the lack of Mn-O layers deposited during that time. Therefore, 

it is likely that mainly redox processes involving Fe and sulfur cycling led to the 

fractionation of Mo and that the extent of suboxic to anoxic conditions within the sediment 

affected its Mo isotopic composition. Early diagenetic effects on Mo in modern, 

carbonate-rich sediments lead to Mo concentrations between 99 – 170 ppb with 

corresponding δ98Mo isotope ratios of 1.07 to 1.24 ‰ at pore water H2S concentrations of 

3-30 µM (Romaniello et al., 2016). These higher Mo concentrations and lighter δ98Mo 

isotopic values compared to modern ooids samples from the Bahamas (Voegelin et al., 2009) 

indicate that scavenging of Mo and the offset of Mo isotope composition from seawater 

signal is strongly dependent on depositional environment in terms of pore water sulfide and 

organic content (Algeo and Lyons, 2006; Erickson and Helz, 2000; Helz et al., 1996; 

Romaniello et al., 2016). These observations indicate a strong dependence of the Mo 

behavior on dissolved sulfide concentrations, and thus a dependence on early diagenetically 

mobilized pore fluids, which can easily overprint the isotopic information of the primary 

absorbed Mo in abiogenic carbonates (Fig. 7-3). Varying depositional environmental 

settings accompanied by Malmani carbonate formation changed the extent of vertical 

sedimentary redox zonation and dissolved sulfide concentrations of pore water, leading to 

changing Mo mobility within the sediment. Here, mudrocks are of particular interest 

because they contain much more Mo than carbonates, and may be a source of Mo for these 

carbonates during early diagenesis. Chemical exchange between carbonates and mudrocks 

is indicated by the Fe enriched carbonates of the shallower Eccles and the Monte Christo 

formations. 

7.3.4. Biological effect on Mo in microbial mats 

Apart from early diagenetic redox cycling fueled by organic matter sinking down to 

mudrocks in the water column, degradation of organics in microbiological mats could have a 

similar influence on early sediment redox cycling and therefore authigenic Mo 

accumulation. Stromatolites are laminated deposits of lithifying microbial mats and consist 

of Ca(Mg)-carbonate containing varying amounts of trapped and bound sediment (Burne 

and Moore, 1987; Dupraz and Visscher, 2005; Riding, 1991). Carbonate precipitation of 

microbial mats is biologically induced (organo-mineralization), which has a strong 

environmental dependence (e.g. pH, temperature, pressure, alkalinity, salinity), making 
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microbialites a useful proxy for paleo-reconstructions (e.g. Kamber et al., 2004; Kamber and 

Webb, 2001; Riding, 2011). 

Marine microbial mats are a few cm thick and contain a variety of 

carbonate-precipitating and -dissolving species driven by microbial metabolic processes 

that cause a geochemical gradient within the mat (Dupraz and Visscher, 2005). The mats are 

bound by extracellular polymeric substances (EPS), which consist of sugar and protein that 

are involved in precipitation of calcium carbonate by serving as a physical template of Ca2+ 

cations and carboxyl groups (Dupraz and Visscher, 2005). Oxygen-producing cyanobacteria 

generally only inhabit the top mm of the mat, while the lower layers are dominated by 

anaerobic microorganisms, such as anoxygenic phototrophs and sulfate reducing bacteria 

(SRB). The different biogeochemical reactions cause fluctuations of oxygen, sulfide and pH 

within the mat that generally occur on diel cycles (Dupraz and Visscher, 2005).  

Although Mo might be directly adsorbed onto CaCO3 precipitated within microbial 

mats, redox changes during lithification might affect Mo behavior to a greater extent than 

adsorption. The majority of the mat contains anoxic microorganisms, such as SRB, which are 

capable of H2S production. H2S consumes OH-, which drives the pH down and enhances Mo 

sorption, which makes it very probable that biological sulfur cycling had a strong impact on 

Mo signatures in stromatolitic carbonates (Fig. 7-3). 

Modern microbial mats from a hypersaline environment show an extreme 

enrichment of Mo compared to the crustal background (Valdivieso-Ojeda et al., 2014). 

Molybdenum adsorption on Mn oxides in the uppermost oxic zone has been proposed as a 

first authigenic Mo enrichment process from seawater. Dissolution of these oxides under 

anoxic conditions within the mat liberates Mo, which is subsequently scavenged by 

SRB-produced H2S. Although the Mo cycling in microbial mats of an open marine 

Neoarchean environment would have been different to a hypersaline environment, it is very 

likely that a similar process of Mo scavenging and liberation during degradation occurred in 

the Neoarchean microbial mats. 
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Figure 7-3: Summary of possible processes during adsorption and early diagenesis on Mo content and isotopic 
signature in Malmani carbonates and mudrocks (Algeo and Lyons, 2006; Collier, 1985; Czaja et al., 2012; Dahl et 
al., 2011; Dellwig et al., 2007; Dupraz and Visscher, 2005; Erickson and Helz, 2000; Goldberg, pers. comm.; Helz 
et al., 1996; Kowalski et al., 2013; Romaniello et al., 2016; Scott et al., 2008; Voegelin et al., 2014). Figure of 
metabolic pathways and geochemical gradients is modified after Dupraz and Visscher (2005). 

7.4. Implications for Mo isotope signatures of Neoarchean shallow seawater 

The Kaapvaal and Pilbara Cratons are interpreted as parts of the same 

epicontinental sea in the Neoarchean (Cheney, 1996; de Kock et al., 2009), and the δ98Mo 

values preserved in their carbonates might be well suited to reconstruct the Mo isotopic 

composition of the contemporaneous seawater. A direct temporal  δ98Mo correlation of the 

shallow water TA samples (this study) with the deep water samples of the GWA (Voegelin et 

al., 2010; Wille et al., 2007) and samples from the Pilbara Craton is difficult due to missing 

stratigraphic markers throughout these basins and poor age constraints. Nevertheless, the 

heaviest δ98Mo values presented in this study are up to +1.40 ‰ and in a similar range as 

values from samples of GKP and GKF from the GWA (Fig. 7-1). In the latter area the mudrock 

samples yielded δ98Mo values of up to +1.72 ‰ (Wille et al., 2007) and are in good 

agreement with corresponding carbonate samples from the same drill cores with values up 

to +1.64 ‰ (Voegelin et al., 2010). Furthermore, the Neoarchean Mount McRea Shale from 

the Pilbara Craton in Australia yielded δ98Mo values of up to +1.86 ‰, and is correlative with 

the upper Nauga Formation of the Kaapvaal Craton (Duan et al., 2010). Therefore, heavy Mo 
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isotopic signatures from carbonates of the TA are interpreted as a minimum value for 

Neoarchean seawater, as was already suggested in the previous studies of mudrocks and 

carbonates from the Pilbara Craton and the Griqualand West Basin of the Kaapvaal Craton 

(Duan et al., 2010; Voegelin et al., 2010; Wille et al., 2007). This study also reinforce the 

assumption that free atmospheric oxygen caused oxidative weathering on the continents, 

resulting in the built-up of a heavy oceanic Mo reservoir at that time (Anbar et al., 2007).  
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8. Iron speciation and isotope systematics of the CMCP 

8.1. Objectives 

The concentration of Fe in seawater over Earth’s history largely depends on the 

ocean’s redox state and is linked to the emergence of oxygenic photosynthesis and the GOE 

about 2.33 Ga ago (Luo et al., 2016). The deposition of mixed-valence Fe minerals in iron 

formations (IF) (Fig. 8-1 a) during the Precambrian strongly indicates that seawater had 

significantly higher concentrations of well-soluble Fe(II)aq compared to the modern ocean 

and that Fe(II)aq was removed from seawater by oxidation to form poorly soluble Fe(III) 

particles via photosynthetically produced oxygen (Cloud, 1968; Isley and Abbott, 1999). 

Alternatively, anaerobic oxidation of Fe(II)aq by photoautotrophic bacteria has been 

postulated as a way of generating Fe(III)-minerals for IF (Crowe et al., 2008; Garrels and 

Perry, 1974; Kappler et al., 2005; Konhauser et al., 2002). In the modern oxygenated ocean, 

Fe(II)aq concentrations are normally between 0.05 and 2 nM (e.g. de Baar and de Jong, 2001; 

Landing and Bruland, 1987; Martin et al., 1990) and are much lower than estimates for the 

Neoarchean anoxic ocean, ranging from 40 to 120 µM (Canfield, 2005). These calculations 

are based on the solubility product of siderite and calcite under the assumption of 

oversaturation and direct precipitation of those two minerals from seawater (Holland, 

2004). Herzog et al. (1989) showed that at Fe(II)aq concentrations higher than 10 µM, 

aragonite and siderite would co-precipitate and calcite precipitation inhibited. Riding et al. 

(2014) thus proposed that Fe(II)aq concentrations in the shallow-marine environment 

reached levels below 10 µM to allow calcite precipitation. However, recent studies strongly 

suggest that siderite was rather formed secondarily within the sediment during diagenesis 

(Fischer et al., 2009; Heimann et al., 2010; Johnson et al., 2003; Johnson et al., 2008b; 

Johnson et al., 2013), questioning siderite saturation in seawater as a valid assumption of Fe 

concentration estimates.  

The peak of IF deposition between 2.9 and 2.3 Ga coincides with a period of highly 

variable δ56Fe signatures in Fe-(oxyhydr)oxides, -sulfides, and -carbonates, bulk IF, bulk 

mudrocks, and Ca-Mg carbonates, with excursion down to -3.68 ‰ (Fig. 8-1 b) (e.g. Czaja et 

al., 2012; Heimann et al., 2010; Johnson et al., 2003; Johnson et al., 2008c; Planavsky et al., 

2012; Rouxel et al., 2005; Steinhoefel et al., 2010; Yamaguchi et al., 2005). Although peak IF 

deposition nearly coincides with the GOE, the occurrence of IF and deposition in shallower 

water must have occurred ~500 Ma earlier and overlaps within the suggested time-range 

for the onset of oxygen production by oxygenic photosynthesis, represented by the chemical 

equation  

 H2O + CO2 + ℎ𝑣 →  CH2O + O2 
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in the shallow-marine environment (Fig. 1-1) (e.g. Anbar et al., 2007; Crowe et al., 2013; Frei 

et al., 2009; Kurzweil et al., 2015; Voegelin et al., 2010; Wille et al., 2007 and this study). 

Abiological partial oxidation of anoxic and iron-rich (ferruginous) deep seawater along a 

vertical chemical gradient (chemocline) by oxygen in surface waters according to 4Feaq
2+ +

O2 + 8OH− + 2H2O →  4Fe(OH)3 

would lead to the precipitation of isotopically heavy Fe(III)ppt precipitates, and leave the 

remaining dissolved Fe(II)aq pool isotopically lighter (Rouxel et al., 2005). The isotopically 

light Fe(II)aq could then be recorded in marine sediments via precipitation of Fe(II)-sulfides 

and -carbonate minerals. Anaerobe biological Fe(II) oxidation by photoferrotrophs, 4Feaq
2+ +

HCO3
− + 10H2O + ℎ𝑣 →  4Fe(OH)3 + CH2O + 7H+  

(Hegler et al., 2008) shows a similar fractionation factor εFe(III)ppt-Fe(II)aq of 1-3 ‰ and is 

thus indistinguishable from aerobe oxidation (Balci et al., 2006; Beard et al., 2003a; Bullen 

et al., 2001; Croal et al., 2004; Kappler et al., 2010; Swanner et al., 2015b). However, the 

conservation of such an isotopically light Fe seawater reservoir within sediments is 

superimposed by benthic microbial dissimilatory Fe reduction (DIR). It has been suggested 

as an important pathway to produce those very negative signatures by partial reduction of 

Fe-oxides and oxidation of organic carbon, reacting to Fe-carbonate typically siderite, 

4Fe(OH)3 + CH2O + HCO3
− → 4FeCO3 + 3OH− + 7H2O  

(Heimann et al., 2010; Johnson et al., 2008a; Johnson et al., 2008b; Johnson et al., 2008c). 

The ability of these minerals to record primary seawater Fe isotope signatures has 

been questioned based on the prevalence of secondary diagenetic Fe redox cycling in 

organic-rich sediments, e.g. DIR and the precipitation and dissolution processes of 

Fe(II)-sulfide (Johnson et al., 2013; Matthews et al., 2004; Rouxel et al., 2006; Yamaguchi et 

al., 2005; Yamaguchi and Ohmoto, 2006). For this reason it has been suggested that 

microbial Ca-Mg carbonates, like stromatolites, could be potential proxies for the Fe isotope 

composition of coeval seawater (Johnson et al., 2013; von Blanckenburg et al., 2008). 

Microbial carbonate precipitation from seawater is biologically induced 

(organo-mineralization) (Burne and Moore, 1987; Dupraz and Visscher, 2005) with little 

elemental fractionation of a wide range of trace elements and, therefore, have the potential 

to record seawater geochemical evolution (e.g. Webb and Kamber, 2000). However, 

diagenetic (fluid) alteration and dissolution of detrital components challenges the 

interpretation of seawater Fe geochemistry from carbonates (Banner, 1995; Brand and 

Veizer, 1980; Matthews et al., 2004; Veizer, 1983).  
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Figure 8-1: (a) Appearance of Banded Iron Formations over Earth’s history (modified from Bekker et al. (2010)) 
(b) Compilation of analyzed δ56Fe isotope signatures over Earth’s history, analyzed on bulk IF, hydrothermal 
deposits, bulk mudrocks, Fe-(oxyhydr)oxides, -carbonates, -sufides, and Ca-Mg carbonate (modified from 
Busigny et al. (2014)). 

 

In order to test the potential of Ca-Mg carbonates as proxies for the seawater Fe 

isotope composition, carbonate and mudrock samples of KMF-5 and BH-1 were analyzed for 

their Fe isotope composition and concentration. These results were combined with X-ray 

absorption spectroscopy (XAS) data of representative rock sections to examine the Fe-redox 

speciation and mineralogy. The data of the platform shelf collected in this study are further 

combined with published data of the platform slope (Czaja et al., 2012) and with elemental 

data of this study. The goal is to reconstruct the Fe cycling in a shallow-marine, possibly 

oxygen-producing, carbonate platform system and to decipher the factors controlling the Fe 

inventory.  

8.2. Mineralogy and Fe speciation of platform succession 

Even though the isotope signatures of carbonates and mudrocks of the CMCP differ, 

their Fe contents are in the same range and follow very similar paths (Fig. 4-7). Mudrocks 

contain significantly lower amounts of Fe (<1.50 wt-% Fe) than the average continental 
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crust (3.92 wt-%, Rudnick and Gao (2004)) and PAAS (5.05 wt-% Fe, Taylor and MacLennan 

(1985)). The low Fe content and the presence of sulfides (Table 4-10) indicate anoxic, 

sulfidic conditions and Fe-cycling within the sediment, even though some putatively 

primary Fe(III)-(oxyhydr)oxides were preserved, which implicate oxidation of Fe(II) species 

or detrital input of Fe(III)-(oxyhydr)oxides, and insufficient content of reductants like 

sulfide and/or organic carbon (Quinbyhunt and Wilde, 1994). 

Data of XAS analyses reveal major differences in the oxidation state of Fe 

incorporated in the lower (steep ramp architecture) and upper (rimmed margin 

architecture) CMCP carbonates (Figure 4-10, Table 4-10). XRD data show that carbonate 

samples consist of dolomite (CaMg(CO3)2), with minor calcite and silica (Fig. 4-8), as it is 

also shown by the major element composition (Figs. 4-1, 4-2). However, the dominant Fe 

component of the lower part of the platform carbonates (Oaktree, Monte Christo, and 

Reivilo formations) is Fe-containing carbonate, in particular ankerite (CaFe2+(CO3)2). This 

means that Fe substituted with Mg in the dolomite structure, forming 

Ca2+·(Mg2+,Fe2+))(CO3)2, which was not traced by XRD, probably because it is below the 

detection limit of the method (0.1 to 0.5 wt-%), but is still detectable spectroscopically. 

Ankerite is heterogeneously distributed in the samples (Figure 4-9-B), minor amounts of 

Fe(II)-sulfides are visible as discrete particles in the XANES maps (Figure 4-9-B, samples 

SH98, 1742.3). Similar to secondary pyrite formation in some mudrocks of the Malmani 

succession (Fig. 2-4), these particles likely formed secondarily as aggregates during 

diagenesis by the reaction of mobilized Fe(II) and dissolved sulfide species (Wilkin and 

Barnes, 1997). Overall the carbonates in the Oaktree, Monte Christo and Reivilo formations 

solely contain Fe(II) species. This changes towards the upper part of the CMCP 

(Figure 4-10), where the carbonates of the Lyttleton and Eccles formations contain 

Fe(III)-(oxyhydr)oxide in form of goethite (FeOOH), which is a minor Fe species in the 

Lyttleton Formation and eventually becomes the dominant Fe species in the Eccles 

Formation (Table 4-10). Ankerite is still the major Fe species in the Lyttleton Formation, but 

is no longer a component in the Eccles Formation, where instead minor amounts of siderite 

and ferrosmectite are present. Neither in the Lyttleton nor in the Eccles formations 

Fe(II)-sulfide is present, which implies an insufficiency of organic material or sulfide species 

in the sediment. The scarcity of organic-rich mudrocks in the Eccles Formation supports this 

possibility (Figs. 4-1, 4-3). 

Major and trace element data of CMCP showed that the here investigated carbonates 

were not subject of fluid alteration by the Bushveld complex and there is no reason why 

dolomitization and silicification processes would form goethite in the upper part of the 

CMCP but not in the lower part. A detrital input of goethite is possible, however the analyzed 
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samples (665.08, 665.18, and 884.9) are pure carbonates with negligible detrital component 

(some minor amounts in 884.9) and XAS-maps of the edge-positions show that goethite is 

finely distributed into the carbonate structure (Fig. 4-9-A), which rather argues for a 

formation within the sediment. Furthermore, detrital material most likely consist of 

phyllosilicates like chlorite and ferrosmectite, based on XAS spectra of detritus-rich sample 

1265.1 (Table 4-10). Thus, another process must have formed goethite in the carbonates. An 

experimental study of Mettler (2002) investigated the adsorption of Fe(II) cations on calcite 

surfaces. In an oxygen-free environment adsorbed Fe(II) equilibrates with calcite and is 

subsequently incorporated in the calcite structure forming a mixed Fe(II)/CaCO3 phase with 

a relative molar ratio of ~0.4 % (Dromgoole and Walter, 1990; Mettler, 2002), making Fe(II) 

inaccessible for later oxidation. However, in an oxygenated circumneutral environment 

adsorbed Fe(II) is oxidized at the carbonate surface to Fe(III)-(oxyhydr)oxides in form of 

goethite, which is a kinetically faster process (minutes) than Fe(II) incorporation into 

carbonate (hours-weeks) (Mettler et al., 2009). This kinetically fast oxygenation is 

necessary, as Fe(II) oxidation competes with other redox processes, in particular aerobic 

respiration that rapidly consumes oxygen. Another study by van der Zee et al. (2003) 

describes the formation of nanogoethite (~12 nm) in lake and marine sediments and 

proposes that diagenetic formation of goethite is the main reactive Fe phase that 

precipitates in aquatic sediments and is an important component for the Fe cycle along 

oxic-anoxic boundaries within the sediment. A possible scenario for the microbialites of the 

CMCP could therefore be the adsorption of Fe(II)aq from solution on calcite and the 

subsequent oxidation to goethite within the surface layer of the sediment either by 

photosynthetically produced oxygen or metabolically by anoxygenic photoautotrophy.  

Conditions probably changed again in the uppermost CMCP, as the analyzed 

carbonate sample from the Gamohaan Formation (340, BH-1) was deposited during the final 

drowning of the platform and contains mainly ankerite and minor siderite and pyrite, 

indicating reducing conditions (Table 4-1). 

The stratigraphical equivalent of the Lyttleton and the Eccles formations in the TA is 

the Upper Nauga Formation in the GWA, which represents the slope succession and, in 

contrast to the Lyttleton and Eccles formations, does contain Fe(II)-sulfides (Czaja et al., 

2012). That means that, based on the Fe-speciation data, the lower CMCP and the slope 

succession were governed by an anoxic sedimentary geochemical redox regime, while the 

lagoonal interior during the rimmed margin architecture stage (the upper CMCP) allowed 

the preservation of Fe(III)-(oxyhydr)oxides (Fig. 4-11). The reason for this was probably 

that the organic carbon content in the upper CMCP was too low to exploit the 

Fe(III)-(oxyhydr)oxides (Berner, 1981; Froelich et al., 1979), in contrast to the organic-rich 
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lower CMCP, where Fe(III)-(oxyhydr)oxides were reductively dissolved and Fe(II)aq 

released, which could get subsequently incorporated into carbonates and sulfides. Another 

reason could have been the more intense interaction of the slope carbonates and platform 

carbonates of the lower CMCP (steep ramp architecture) with open ocean water that 

contained more reducing species (e.g. CH4, Fe2+, Mn2+) from hydrothermal vents, while the 

lagoonal interior was protected from those species by the rimmed margin. Either way, the 

presence of Fe(III)-(oxyhydr)oxides in the upper part of the CMCP argue for increasing 

oxidizing conditions in the shallow marine environment and emphasize the dependence on 

the platform architecture, as well as hydrothermal and continental input. 
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Figure 8-2: Fe concentrations and isotopic compositions of carbonates and mudrocks from KMF-5, BH-1 (platform succession), GKP01, and GKF01 (slope succession (Czaja et al., 
2012)). Shaded area at δ56Fe columns indicates the range of continental signatures from -0.1 to +0.2 ‰ (e.g. Craddock et al., 2013; Schoenberg and von Blanckenburg, 2006; Wang et 
al., 2014; Weyer et al., 2005). Dashed black line shows stratigraphical relation of formations which belong to the Campbellrand-Malmani slope-platform succession. Thicker dashed 
line indicates Kamden Member. Abbreviations of Formations: VB: Vryburg; BP: Boomplaas; LM: Lokamonna; Monte.: Monteville; KN: Klein Naute; Kf.: Klipfonteinheuwel; Papk.: 
Papkuil; Kl: Klippan; Gh: Gamohaan; BR: Black Reef 
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8.3. Fe isotope geochemistry of the platform succession 

It is difficult to depict a clear systematic trend in the Fe isotope and concentration 

data throughout the stratigraphy of slope (GKP01, GKF01) and platform (BH-1, KMF-5) 

carbonates and mudrocks displayed in Fig. 8-2.  It is obvious, however, that mudrocks from 

the platform (KMF-5) show overall positive δ56Fe signatures (mean with 2σ: +0.25±0.75 ‰; 

n = 8) and are heavier than the typical Fe isotopic composition of igneous rocks with values 

from -0.1 to +0.2 ‰ (e.g. Craddock et al., 2013; Schoenberg and von Blanckenburg, 2006; 

Wang et al., 2014; Weyer et al., 2005), while the mudrocks from the slope succession of the 

CMCP (Boomplaas, Lokammona, Monteville, lower and upper Nauga - GKP01) mostly show 

overall negative δ56Fe signatures (-0.67 ± 1.81 ‰; n = 21) (Czaja et al., 2012) and are lighter 

than the δ56Fe range of igneous rocks. The dominant Fe mineral in the platform and slope 

mudrocks are Fe(II)-sulfides as shown by XANES (this data) and XRD (Czaja et al., 2012) 

analyses and thus control the Fe isotope composition. This indicates that the slope and 

platform environments were dominated by different Fe cycling processes.  

Ca-Mg carbonates of slope and platform successions consistently show δ56Fe 

signatures lighter than the igneous rock range, with one exception in the lower Oaktree 

Formation (1790.1, δ56Fe of 0.08 ‰). Silicified carbonates plot in the same range as pure 

carbonates, indicating that silicification did not alter the δ56Fe signature. When plotting 

δ56Fe signatures vs. Fe concentrations of pure carbonates including data of Kuruman Kop 

carbonates (Fig. 8-3), some dependence on the depositional environment and water depth 

becomes apparent. Two positively correlating trends in the dataset (‘Platform’ and ‘Slope’) 

are revealed as well as a cluster of data in a more restricted range of lower Fe 

concentrations (marked by a circle). The ‘Platform’ trendline involves Oaktree (KMF-5) and 

Reivilo samples (BH-1), which were deposited during the earlier steep platform stage and 

therefore were partly exposed to open ocean water. Samples Ku12/06 and Ku12/25 from 

the Gamohaan Formation (Kuruman Kop) also line up in this trend, were deposited during 

the drowning of the CMCP, and thus also in contact with open ocean water. The ‘Slope’ 

trendline consists of samples from the slope facies (GKP01, GKF01) and signifies stronger 

exposure to Fe-rich deep ocean water. This is reflected in the higher Fe concentrations of 

the slope pure carbonates (up to 27700 µg/g) (Czaja et al., 2012).  
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Figure 8-3: Fe concentration vs. δ56Fe isotope data of pure carbonate (cc = calcitic) samples from CMCP. Data of 
GKP01 and GKF01 are from (Czaja et al., 2012), data from BH 1 and KMF-5 are from this study. Trendline 
‘Platform’ represent carbonates from the Oaktree, Reivilo and Gamohaan formations and trendline ‘Slope’ 
carbonates from the slope succession. Both were exposed to ferruginous open ocean water. Both trendlines 
show a positive correlation between Fe isotopes Fe content, which probably reflects Rayleigh fractionation 
processes during oxidation of Fe(II)aq and deposition of isotopically heavy Fe(III)ppt. Carbonates deposited in 
shallow settings, and after development of a rimmed platform margin/lagoonal setting, likely reflect a 
predominantly continental Fe source and the presence of free oxygen. Heavy δ56Fe signatures in carbonates of 
the Monte Christo Formation probably reflect the composition to adjacent pyrite-containing and isotopically 
heavy mudrocks (Fig. 8-2).  

 

Platform carbonates, which fall into the circled cluster have Fe concentrations below 

5000 µg/g. Those samples are from peritidal settings and/or were deposited in the context 

of the rimmed platform architecture, so they represent restricted shallow-marine 

conditions, with poor exchange with open ocean water, but exposed to riverine water and 

detrital material from the continent. Carbonates of the Monte Christo Formation show 

overall heavier δ56Fe signatures (mean with 2σ: -0.38 ± 0.25 ‰; n = 23) than platform 

carbonates from the Upper CMCP, including the Lyttleton and Eccles formations 

(-0.73 ± 0.36 ‰; n = 12) (Fig. 8-3). Since the Monte Christo Formation contains isotopically 

heavy mudrocks, it seems obvious that those affected the adjacent carbonates. All these 

observations are confirmed by other geochemical and sedimentological data, which show 

flattened REE+Y patterns and fluctuations in the Fe# that are connected to the input of 

siliciclastic mudrocks and interpreted as localized remobilization of Fe from the mudrocks 

into the adjacent carbonates (Fig. 5-5). 
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8.3.1. Sources of Fe(II)aq in the Neoarchean marine environment 

Fe isotope analyses reveal that there is no isotope difference between calcitic and 

dolomitic samples (Fig. 8-3; Tables 4-7, 4-8), which supports a study of von Blanckenburg et 

al. (2008), showing that dolomitization has no effect on the δ56Fe isotope composition of 

carbonate. There is no experimentally determined fractionation factor for Fe(II)aq into 

Ca-Mg carbonates yet. However, dolomitization itself does not invoke a redox change, i.e. a 

shift in the reduction potential (Eh), which means that a Fe isotope fractionation due to 

redox-reactions is not expected and that any such fractionation must have been 

independent from dolomitization.  

Even though δ56Fe signatures seem to be unaffected by dolomitization, dolomite 

samples from the platform facies have one to two order of magnitude higher Fe 

concentrations than their calcitic counterparts. This might indicate that even though 

dolomitization did not invoke a shift in the Fe isotope signature, it caused a rise in the Fe 

concentration. However, not all calcitic samples do show lower Fe contents. Some 

limestones from the slope facies show Fe contents similar to dolomite and even follow the 

same ‘Slope’ trend. This can also be observed for sample Ku12/06, which contains 3225 

µg/g Fe, but has a light δ56Fe signature of -1.74 ‰. This can rather be explained by titration 

of Fe from seawater that results in a low Fe concentration and isotope signature. Calcitic 

samples with an equally low Fe content but heavier δ56Fe signature were deposited in the 

Upper CMCP and all fall into the cluster of carbonates reflecting peritidal and restricted 

conditions. Thus, the calcitic carbonates can, like the dolomitic carbonates, be distinguished 

by their depositional environment. Following from the observed dependence of the Fe 

concentration on water depth (Fig. 5-5), Fe(II)aq was mainly delivered from seawater and 

interacted with the sediment surface, where it could have been directly incorporated into 

the calcite structure (Dromgoole and Walter, 1990; Mettler, 2002). Thus, for the Ca-Mg 

carbonates, which were exposed to the open ocean, it can be suggested that the Fe 

incorporated into the dolomite structure rather stemmed from the recrystallized calcite 

itself and not from an external (i.e. continental) source. In contrast to that, a detrital and 

riverine input of Fe into the peritidal environment clearly affected the local carbonates 

(Fig. 5-5) and can explain the significantly higher Fe concentrations of the dolomite in those 

restricted settings (circled sample group in Fig. 8-3). All these observations agree with the 

trace element results and show that the Fe budget was controlled by the depositional 

environment and the relative input from the open ocean and the continent. This affirms the 

quality of dolomitized carbonate as a proxy for Fe in ancient marine environments and 

allows drawing implications on the redox processes in coeval seawater and sediment.  
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8.3.2. Fe systematics along an aqueous redox-boundary 

Fe isotope behavior in aqueous environments is complex as Fe is redox active and 

shows a change in chemical behavior along chemoclines. In modern aqueous environments 

redox-boundaries exist in a variety of lakes and restricted marine basins, which are 

considered as analogues to a potential Archean seawater situation with deep anoxic and 

shallow oxic layers allowing implications for the Fe isotope evolution of ancient seawater 

(Busigny et al., 2014; Severmann et al., 2008; Staubwasser et al., 2013; Staubwasser et al., 

2006). Aerobe oxidation of Fe(II)aq to Fe(III)ppt causes an enrichment of heavy Fe isotopes in 

the precipitate by 1-2 ‰ (Beard et al., 2003a; Bullen et al., 2001) and is similar to anaerobe 

microbial Fe(II) oxidation that shows an enrichment of about 1.5 ‰ (Croal et al., 2004). The 

oxidation of Fe(II)aq in the water column along a chemocline separating anoxic ferruginous 

deeper water from oxic shallow water and the subsequent precipitation of 

Fe(III)-(oxyhydr)oxides along this chemocline is a commonly cited scenario for the 

formation of some Precambrian IFs (e.g. Cloud, 1968; Isley and Abbott, 1999). Incomplete 

oxidation causes the remaining dissolved Fe(II) pool to become isotopically lighter, due to 

the  separation of the precipitated Fe(III)-(oxyhydr)oxides and the reservoir of dissolved 

Fe(II) remaining in seawater (Rouxel et al., 2005). A study of Busigny et al. (2014) examined 

in the ferruginous, anoxic Lac Pavin if the Fe cycle is rather influenced by water column 

redox chemistry or by benthic microbial Fe reduction. The Fe isotope composition of pyrite 

along the chemocline is variable, overall negative and mirrors the Fe isotope composition of  

aqueous Fe. They conclude that Fe sulfide formation induces only a limited Fe isotope 

fractionation and that the observed isotope fractionation in the Lac Pavin setting is not 

connected to pyrite formation but to the Fe(II) oxidation within the water column. The 

implication is that the strong Fe isotope variability in the Neoarchean (Fig. 8-1 b) can rather 

be linked to partial ferrous Fe oxidation in upwelling water masses (Kurzweil et al., 2016).  

Oxidation of Fe(II) along a chemocline probably played an important role in the 

CMCP, as several studies indicate the presence of oxygen in the shallow water (Brucker et 

al., 2009; Czaja et al., 2012; Godfrey and Falkowski, 2009; Kendall et al., 2010; Sumner and 

Grotzinger, 1996; Voegelin et al., 2010; Wille et al., 2007). The appearance of minor Fe 

formations, like the Kamden Member that formed in course of a short transgressive event, 

shows the presence of coeval ferruginous deeper water (Fig. 5-5) (Beukes and Gutzmer, 

2008; Sumner and Beukes, 2006). Rayleigh distillation through partial Fe(II) oxidation, 

resulting in lower Fe concentrations and isotopically lighter Fe(II)aq would be consistent 

with the ‘Platform’ and ‘Slope’ trendlines (Fig. 8-3) and Ca-Mg carbonates would therefore 

reflect such a process in the environment of the CMCP.  
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8.3.3. Rayleigh distillation along the CMCP 

It was tested in this study if Rayleigh distillation could explain the ‘Platform’ and 

‘Slope’ carbonate trends. The hypothesis hereby is that Fe(II)aq from seawater is directly 

incorporated into carbonates and that any isotopic difference between the carbonates is 

from Rayleigh fractionation between Fe(II)aq and Fe(III)ppt along a redox boundary between 

ferruginous deeper water, which was supplied via upwelling into oxygenated shallow 

seawater. The goal was to determine the initial Fe(II)aq concentration of the seawater and 

the fractionation factor α (converted to permille units via ε = (α - 1) × 1000) between 

Fe(II)aq and Fe(III)ppt. As initial δ56Fe signature of seawater Fe(II)aq-initial of 0 ‰ was chosen 

to reflect hydrothermal derived Fe(II), which was probably the dominant contributor of 

Fe(II)aq into the anoxic ocean and assuming that higher hydrothermal activity in the Archean 

decreased fractionation effects along those systems (Fig. 1-5) (Bau and Moller, 1993; Beard 

et al., 2003b; Derry and Jacobsen, 1990; Jacobsen and Pimentelklose, 1988).  

The ‘Platform’ and ‘Slope’ trendlines were calculated separately with the Solver tool of 

Microsoft Office Excel by minimizing the sum of chi2 values (Σchi2) for the fractionation 

factor α (expressed as εFe(III)ppt-Fe(II)aq) and Fe(II)aq-initial, which was determined by 

comparing the fit to the δ56Fe carbonate dataset. The fit was based on the Rayleigh equation 

for δ56Fe(II)aq and the corresponding δ56Fe(III)ppt under the assumption that the δ56Fe 

signature of the carbonates represents the δ56Feaq signature of the remaining Fe(II)aq after 

the precipitation of Fe(III)ppt:  

 δ56Fe(II)aq = (δ56Fe(II)aq−initial + 1000)f α−1 − 1000 

 δ56Fe(III)ppt = (δ56Fe(II)aq−initial + 1000) × (
1−fα

1−f
) − 1000 

 with f =
Fe(II)aq

Fe(II)aq,initial
. 

The Fe(II)aq concentration was calculated on the Fe concentration of the carbonates, 

based on precipitation experiments and Fe incorporation into calcite from Dromgoole and 

Walter (1990), which is controlled by the distribution factor DFe2+. The distribution factor is 

mainly dependent on the temperature and precipitation rate and is defined as: 

 D𝐹𝑒2+ =

𝐹𝑒2+

𝐶𝑎2+
calcite

a
𝐹𝑒2+

a
𝐶𝑎2+solution

 

where 𝐹𝑒2+

𝐶𝑎2+calcite
 is the molar ratio of Fe2+ and Ca2+ in the precipitated calcite and 

a
𝐹𝑒2+

a
𝐶𝑎2+

solution

is the activity ratio of Fe2+ and Ca2+  (Dromgoole and Walter, 1990). The activity a 

of a chemical species i is the product of its concentration [i] and the activity coefficient 

γi (ai = γi × [i]). The activity coefficient γi depends on the ionic strength, but was during the 

experiments of Dromgoole and Walter (1990) always close to unity. This means that ai 
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basically corresponds to the concentration of the chemical species in solution. Several 

distribution factors DFe2+ were determined by Dromgoole and Walter (1990), depending on 

temperature and activity ratio. For the carbonates of this study, we used the equation for 

precipitation experiments at 25°C and an activity ratio 
a

𝐹𝑒2+

a𝐶𝑎2+
 of 0.001:  

 log 𝐷𝐹𝑒2+ = 0.98 − 0.158 × log (𝑟𝑎𝑡𝑒) 

where rate is the precipitation rate of the calcite. The precipitation rate was calculated from 

the assumed sedimentation rate along the slope (~10 m/Ma) and the platform 

(~100 m/Ma) of the CMCP (Altermann and Nelson, 1998). Furthermore, as an 

approximation, it was assumed that all Fe(II) in the dolomite was originally incorporated 

into calcite before dolomitization. Furthermore, not the real molar Ca concentration of the 

dolomite was used, but an artificial molar Ca concentration to simulate a calcite composition 

(Table 8-1). For Ca2+
aq concentrations, 20 mM were assumed (Horita et al., 2002). The 

results are summarized in Table 8-1 and illustrated in Figure 8-4 and give for the Rayleigh 

fit of the ‘Platform’ trend a Fe(II)aq-initial of 180 µM and an εFe(III)ppt-Fe(II)aq of 0.75 ‰, with 

a Σchi2 of 0.922. The Rayleigh fit of the ‘Slope’ trend yields a Fe(II)aq-initial of 555 µM and an 

εFe(III)ppt-Fe(II)aq of 0.58 ‰, however the Σchi2 of 5.437 is very poor. A Rayleigh fit of the 

‘Slope-Limestone’ (only calcitic slope carbonates) (GKF01: 1386.26, 1458.42, and 1429.08 

(Czaja et al., 2012)) yields a similar Fe(II)aq-initial of 573 µM and a higher εFe(III)ppt-Fe(II)aq of 

0.82 ‰, with a Σchi2 of 0.011. However, those samples were deposited at the lowermost 

CMCP and there is the possibility that they not represent the complete slope succession. The 

high Σchi2 value of the ‘Slope’ trendline indicates that secondary processes, like DIR, might 

have had disturbed the primary Fe isotope composition of some samples (Czaja et al., 2012; 

Heimann et al., 2010; Johnson et al., 2008b; Johnson et al., 2013). The activity ratios  
a

𝐹𝑒2+

a𝐶𝑎2+
 

for all calculated samples are >0.001, which would affect the precipitation equation and 

probably yield slightly higher Fe(II)aq concentrations. However, this increase will not be 

significant, as the activity ratios are  still in the same order of magnitude (Dromgoole and 

Walter, 1990).  

In this simulation, Fe(II)aq-initial decreases at higher temperatures, lower Ca2+aq 

concentrations, and a lower sedimentation rate and increases at lower temperatures, higher 

Ca2+
aq concentrations, higher sedimentation rate (Table 8-2). Based on the calculations, it 

can be suggested, that Fe(II)aq-initial concentrations along the slope were between 61 µM 

(50 °C, 10 mM Ca2+
aq, 2 m/Ma sedimentation rate) and 1368 µM (10 °C, 30 mM Ca2+

aq, 

20 m/Ma sedimentation rate), whereas Fe(II)aq-initial concentrations in the shallow marine 

environment of the platform were between 28 µM (50 °C, 10 mM Ca2+aq, 50 m/Ma 

sedimentation rate) and 394 µM (10 °C, 30 mM Ca2+
aq, 150 m/Ma sedimentation rate). This 
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is a huge span and emphasizes the strong dependency of dissolved Fe(II)aq in seawater on 

external factors. Early estimates of seawater temperatures for the Archean of ~70 to 80 °C, 

based on oxygen isotope data of cherts, have been revisited as too high and recent estimates 

argue for a maximum of 40 (Hren et al., 2009) or 60 °C (Brock and Madigan, 1991). Blake et 

al. (2010) proposed a range between 26 and 35 °C, based on oxygen isotopes in phosphates. 

Assuming that seawater temperatures were between 25° and 50°C, this limits the range of 

Fe(II)aq concentrations in this simulation between 61 and 928 µM for the slope and 28 to 

288 µM for the platform succession for varying Ca2+aq (Canfield, 2005; Horita et al., 2002) 

and sedimentation rates (Altermann and Nelson, 1998). This is still a large range but 

whatever the exact conditions were that prevailed in the seawater, two important 

implications are gained. First, that Fe(II)aq concentrations in seawater were probably 

significantly higher than previously assumed and second, that a concentration gradient 

existed, with higher Fe(II)aq concentrations along the deeper slope facies and lower Fe(II)aq 

concentrations in the shallow platform environment. This implicates the removal of Fe(II)aq 

supplied during upwelling along the carbonate platform margin, probably due to a 

chemocline between ferruginous deeper water and oxygenated shallow water. This is also 

implicated by the fractionation factors of the Rayleigh fits (εFe(III)ppt-Fe(II)aq of +0.58 ‰ or 

+0.82 ‰ for the ‘Slope’ trend and +0.75 ‰ for the ‘Platform’ trend), even though those are 

slightly lower than the reported fractionation factors of 1-3 ‰, during oxidation by 

dissolved oxygen or by microbially-induced oxidation  (Balci et al., 2006; Beard et al., 2003a; 

Bullen et al., 2001; Croal et al., 2004; Kappler et al., 2010; Swanner et al., 2015b). The 

decreasing Fe(II)aq concentrations on the platform would also lower the risk of Fe toxicity 

for cyanobacteria and increase their thriving (Swanner et al., 2015a). This reinforces the 

assumption of a change from an anaerobe to an aerobe ecosystem in the CMCP, as already 

indicated by heavier δ13Corg signatures in KMF-5.  
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Table 8-1: Rayleigh fit of ‘Platform’ and ‘Slope’ trendlines (Fig. 8-4) based on Fe(II)aq incorporation into calcite 
  PLATFORM TRENDLINE 

  Precipitation rate: 309 µmol/h/m2 (100 m/Ma, Altermann and Nelson, 1998); Ca2+
aq = 20 mM; 25 °C 

  Σchi2 = 0.922; εFe(III)ppt-Fe(II)aq = 0.75 ‰; Fe(II)aq-initial: 180 µM 

Location Formation Sample 
Fe  

(wt-%) 

Ca  

(wt-%) 

Fe2+

Ca2+
calcite

 
aFe2+

aCa2+
solution

 Fe(II)aq  

(mM) 

δ56Fe  

(‰) 

Kuruman  

Kop 

(GWA) 

Gamohaan 

Ku12_06 0.32 38.36 0.006 0.002 0.031 -1.74 

Ku12_25 1.21 35.74 0.024 0.006 0.125 -0.29 

BH-1 

(GWA) 
Reivilo 

2098 0.95 35.74 0.019 0.005 0.099 -0.23 

2250 0.28 35.74 0.006 0.001 0.029 -1.07 

2275 0.29 35.74 0.006 0.002 0.030 -1.04 

2293 0.35 35.74 0.007 0.002 0.036 -1.08 

2355 0.78 35.74 0.016 0.004 0.082 -1.20 

2379 0.47 35.74 0.009 0.002 0.049 -1.07 

2400 0.34 35.74 0.007 0.002 0.035 -1.24 

KMF-5 

(TA) 
Oaktree 

1731.1 0.69 35.74 0.014 0.004 0.072 -0.67 

1731.3 0.73 35.74 0.015 0.004 0.076 -0.62 

1742.3 0.80 35.74 0.016 0.004 0.084 -0.72 

1790.1 1.29 35.74 0.026 0.007 0.135 0.08 

1800.1 1.04 35.74 0.021 0.005 0.109 -0.32 

                  

  SLOPE TRENDLINE 

  Precipitation rate: 31 µmol/h/m2 (10 m/Ma, Altermann and Nelson, 1998); Ca2+
aq = 20 mM; 25 °C 

  Σchi2 = 5.44; εFe(III)ppt-Fe(II)aq = 0.57 ‰; Fe(II)aq-initial: 555 µM 

Location Formation Sample 
Fe  

(wt-%) 

Ca  

(wt-%) 

Fe2+

Ca2+
calcite

 
aFe2+

aCa2+
solution

 Fe(II)aq  

(mM) 

δ56Fe 

(‰) 

GKP01 

(GWA) 

upper 

Nauga 

346.9 2.77 35.74 0.056 0.010 0.200 -0.56 

460.3 0.57 35.74 0.012 0.002 0.041 -0.68 

480.64 2.49 35.74 0.050 0.009 0.180 -0.26 

567.4 0.86 35.74 0.017 0.003 0.062 -0.84 

619 0.53 35.74 0.011 0.002 0.039 -1.23 

634.45 0.64 35.74 0.013 0.002 0.047 -1.12 

667 0.52 35.74 0.010 0.002 0.038 -1.37 

lower 

Nauga 

693.84 0.58 35.74 0.012 0.002 0.042 -1.38 

755.51 0.57 35.74 0.011 0.002 0.041 -1.48 

796.22 0.90 35.74 0.018 0.003 0.065 -1.46 

859.9 0.91 35.74 0.018 0.003 0.066 -1.25 

911.8 0.83 35.74 0.017 0.003 0.060 -1.62 

Monteville 987.24 1.46 35.74 0.029 0.005 0.105 -2.12 

GKF01 

(GWA) 

upper 

Nauga 

395.4 1.36 35.74 0.027 0.005 0.098 -1.06 

570.16 0.56 35.74 0.011 0.002 0.040 -0.76 

790.18 0.41 35.74 0.008 0.001 0.030 -1.04 

lower 

Nauga 

925.9 0.46 35.74 0.009 0.002 0.034 -1.46 

1094.84 2.09 35.74 0.042 0.008 0.152 -1.01 

Monteville 
1386.26 1.45 36.40 0.029 0.005 0.103 -1.50 

1429.08 0.09 34.43 0.002 0.000 0.006 -3.69 

Lokammona 1458.42 1.63 32.23 0.036 0.007 0.131 -1.16 

                  

  SLOPE TRENDLINE - LIMESTONES 

  Precipitation rate: 31 µmol/h/m2 (10 m/Ma, Altermann and Nelson, 1998); Ca2+
aq = 20 mM; 25 °C 

  Σchi2 = 0.011; εFe(III)ppt-Fe(II)aq = 0.82 ‰; Fe(II)aq-initial: 573 µM 

Location Formation Sample 
Fe  

(wt-%) 

Ca  

(wt-%) 

Fe2+

Ca2+
calcite

 
aFe2+

aCa2+
solution

 Fe(II)aq  

(mM) 

δ56Fe 

(‰) 

GKF01 

(GWA) 

Monteville 
1386.26 1.45 36.40 0.029 0.005 0.103 -1.50 

1429.08 0.09 34.43 0.002 0.000 0.006 -3.69 

Lokammona 1458.42 1.63 32.23 0.036 0.007 0.131 -1.16 

Ca concentration in bold are from XRF analyses and represent limestones. All other Ca concentrations represent 
an artificial calcite composition of the analyzed dolomite. All Fe concentrations and isotope signatures are from 
ICP-MS analyses. 
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Figure 8-4: Rayleigh fitted curves for ‘Platform’ and ‘Slope’ trendlines (Fig. 8-3), based on the calculations in 
Table 8-1. ‘Slope-Limestone’ curve is fitted for calcitic carbonate samples from the slope succession (GKF01). 
Curves have different initial Fe(II)aq concentration. 0P, 0S, and 0SL are the initials of ‘Platform’, ‘Slope’, and 
‘Slope-Limestone’ trendline, respectively. 

 
Table 8-2: Calculated Fe(II)aq-initial concentrations on different temperatures, Ca2+aq  
concentrations and sedimentation rates 

Ca2+aq = 10 mM SLOPE PLATFORM 

Sedimentation rate 2 m/Ma 10 m/Ma 20 m/Ma 50 m/Ma 100 m/Ma 150 m/Ma 

Temperatur Fe(II)aq-initial (µM) 

10°C 334 415 456 113 124 131 

25°C 215 277 309 81 90 96 

50°C 61 87 102 28 32 36 

              

Ca2+aq = 20 mM SLOPE PLATFORM 

Sedimentation rate 2 m/Ma 10 m/Ma 20 m/Ma 50 m/Ma 100 m/Ma 150 m/Ma 

Temperatur Fe(II)aq-initial (µM) 

10°C 668 831 912 226 248 262 

25°C 430 555 619 161 180 192 

50°C 122 174 203 56 65 71 

              

Ca2+aq = 30 mM SLOPE PLATFORM 

Sedimentation rate 2 m/Ma 10 m/Ma 20 m/Ma 50 m/Ma 100 m/Ma 150 m/Ma 

Temperatur Fe(II)aq-initial (µM) 

10°C 1003 1246 1368 339 373 394 

25°C 645 832 928 242 270 288 

50°C 182 261 305 83 97 107 

Regression equations for Fe(II) incorporation into calcite, based on the distribution coefficient DFe2+ for an activity 

ratio 
aFe2+

aCa2+
 = 0.001 𝑎𝑡  10°𝐶: log 𝐷𝐹𝑒(𝐼𝐼) = 0.79 − 0.135 × log (𝑟𝑎𝑡𝑒) ; 25°𝐶: log DFe2+ = 0.98 − 0.158 × log (𝑟𝑎𝑡𝑒) ; 

50°𝐶: log DFe2+ = 1.58 − 0.223 × log (𝑟𝑎𝑡𝑒) (Dromgoole and Walter, 1990)  
(rate = precipitation (sedimentation) rate in µmol/h/m2) 

8.3.4. Fe remobilization during synsedimentary redox processes 

The circulation of porefluids in marine benthic sediments is an essential aspect in 

early diagenetic processes, and the source of these fluids is not only from sea- and 

freshwater, but also from dewatering processes within the sediment. Thereby, associated 
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redox processes and changes in Fe speciation within the bulk sediment, microbial processes, 

as well as fresh- and seawater mixing in estuaries can impact the fractionation of Fe 

isotopes (Beard et al., 2003a; Butler et al., 2005; Préat et al., 2011; Rouxel et al., 2008; 

Severmann et al., 2006). Modern suboxic and anoxic sediments from continental margins 

typically show light Fe isotope signatures as a result of incomplete reduction of Fe(III) 

particles, mostly by microbial processes (DIR), leaving the residual reactive Fe(III) in the 

sediment isotopically heavy, while isotopically light Fe(II)aq diffuses back into the seawater, 

or is reoxidized above the Fe(III) reduction zone at the sediment surface (Rouxel et al., 

2008; Severmann et al., 2006; Severmann et al., 2008; Staubwasser et al., 2006). An 

alternative way of Fe(III) reduction is abiotically by dissolved sulfide in the sediment, 

typically H2S, which can subsequently form Fe(II)-sulfides and also favors light Fe isotopes 

(Butler et al., 2005; Raiswell and Canfield, 1998). Due to the process Fe(II)-sulfide 

precipitation, Fe is rather removed from the porewater (Raiswell and Canfield, 1998), while 

during DIR-driven diagenesis Fe is remobilized and recycled.  

Mudrocks of the CMCP contain Fe(II)-sulfides, which is the dominant Fe mineral 

phase and show negative δ56Fe signatures in the slope facies (Czaja et al., 2012), while the 

peritidal facies show positive δ56Fe signatures up to +0.79 ‰ (Table 4-7; Fig. 8-2). This 

seems to be in contradiction to studies that show sulfides favoring light Fe isotopes 

(Busigny et al., 2014; Rouxel et al., 2005). There is no simple explanation for this difference, 

but it is probably related to the distinct environmental conditions. Severmann et al. (2006) 

reported of such isotopic differences in porewaters of continental margins dominated by 

different pathways of organic carbon oxidation. In marine settings, which are dominated by 

bacterial sulfate reduction processes (BSR) and only shows limited DIR, produced dissolved 

sulfide forms Fe(II)-sulfide with positive δ56Fe signatures. DIR is probably limited by the low 

concentration of Fe(III)-(oxyhydr)oxides in the sediment. Severmann et al. (2008) 

suggested that along continental shelves high organic fluxes from primary production allow 

the reduction of isotopically heavy Fe(III)-(oxyhydr)oxides (Berner, 1981). Given complete 

reduction of the heavy Fe(III), BSR would immobilize it and form isotopically heavy 

Fe(II)-sulfides. In contrast to that, DIR-dominated settings contain abundant 

Fe(III)-(oxyhydr)oxides and the precipitated Fe-sulfides show negative δ56Fe signatures. 

Indeed, the organic-rich, pyrite-containing mudrock layers of the Monte Christo and Oaktree 

formations in the TA (up to 8.5 wt-% total organic carbon) indicate that anoxic/sulfidic 

conditions were generated within the sediment from organic decay and subsequent sulfate 

reduction (Berner, 1981). In this reducing, sulfide- and organic-rich environment detrital 

Fe(III)-containing minerals could get reduced and react to Fe(II)-sulfide (Berner, 1981). 

This is supported by mudrock sample 1776.0 (KMF-5), which shows a δ56Fe signatures of 
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+0.62 ‰ and almost solely consists of pyrite as Fe species and only traces of magnetite, 

which might have been the originally reduced as isotopically heavy Fe(III)-oxide phase 

(Table 4-10), although it could have also formed secondarily in the sediment, forming from 

excess Fe(III)-(oxyhydr)oxides and Fe(II)aq, according to  

3Feaq
2+ + 6OH− + 6Fe(OH)3 → 3Fe3O4 + 12H2O (Heimann et al., 2010). 

The slope setting in the GWA, on the other hand, contains more sediment layers containing 

Fe(III)-(oxyhydr)oxides (Sumner and Beukes, 2006), which could have been a driver for 

enhanced DIR in the slope facies, as indicated by siderite microbands that occasionally occur 

throughout the slope succession (Fischer et al., 2009; Schroeder et al., 2006).  

Some carbonates in the Monte Christo Formation also show traces of Fe(II)-sulfides 

as indicated by XANES spectra (Table 4-10). Considering, that those carbonates were 

originally deposited under (sub)oxic conditions shows that strong redox gradients 

prevailed, and that aqueous sulfide species from the pore water likely migrated between 

adjacent mudrock and carbonate layers. This is supported by strongly varying δ98Mo 

signatures (-0.82 to +1.40 ‰) in the mudrock-rich Oaktree and Monte Christo formations 

(Table 4-7; Fig. 7-1), as Mo is strongly influenced by the flux of dissolved sulfide and organic 

matter that scavenge and remobilize Mo during early diagenesis within the sediment 

(Fig. 7-3). Elevated Fe# values in the peritidal setting of the Monte Christo Formation also 

indicate localized Fe circulation during diagenesis. All these observations can explain the 

heavier δ56Fe signatures of carbonates in the Monte Christo Formation (Fig. 8-3), which 

were likely influence by diagenetically mobilized Fe(II)aq from isotopically heavy mudrocks. 

A study on a carbonate succession from the Upper Jurassic (Kimmeridge Clay Formation, 

UK) reported that carbonates adjacent to isotopically light, organic- and pyrite-rich 

mudrocks also showed a lighter Fe isotope compositions relative to mudrock-free carbonate 

layers in the same succession. They concluded that carbonates are locally affected by 

mudrocks in course of diagenetic Fe circulation in the sediment (Matthews et al., 2004). 

Analogous to this study we propose that the isotopically heavy mudrocks of the Monte 

Christo formation influenced the adjacent carbonates. 

Platform carbonates of the Upper CMCP were deposited in the context of the rimmed 

margin architecture and are isotopically lighter than the Monte Christo carbonates, but still 

heavier than the potentially ‘Rayleigh’-dependent carbonates exposed to the open ocean. 

Due to the rimmed margin the interior lagoon influx of open ocean water was restricted and 

freshwater from the continent had a greater impact on the carbonates. This is shown by 

REE+Y spectra and elevated Fe#, indicating that Fe transported via riverine water 

influenced the carbonates. Riverine water has variable but preferentially lighter δ56Fe 

signatures between about -0 and -1 ‰ and could thus explain the mean of -0.73 ± 0.36 ‰ 



144 
 

in the Upper CMCP carbonates of the platform facies. The impact on the Fe isotope signature 

because of Fe(II) oxidation in the Eccles and Lyttleton formation, which contain goethite, is 

not really clear. The fractionation factor between Fe(II)aq and goethite is experimentally 

determined and reported as -1.05 ± 0.08 ‰ (Beard et al., 2010), although the fractionation 

factor might be different for the oxidation of adsorbed Fe(II) on carbonate (Mettler, 2002). 

Moreover, Lyttleton and Eccles formations show no difference in their Fe isotope 

composition, even though the dominant Fe phase in Lyttleton carbonates is ankerite and 

only minor goethite, whereas Eccles mainly contains goethite. It still remains elusive, how 

and if this change in Fe speciation had an effect on the isotope composition at all and if there 

might be a diagenetic effect after all, influencing the carbonates, similar to the processes in 

the Monte Christo formation. 

8.4. Implications for redox state of Neoarchean shallow seawater and for 

carbonates as Fe redox proxy 

Carbonate platforms and their shallow-marine environment are the interface of 

oceanic and terrestrial processes. In a predominantly anoxic Neoarchean world with a much 

higher Fe(II)aq concentration in seawater and presumably limited oxidative weathering than 

today, hydrothermal vents were most likely the major Fe source, with moderate 

contributions from continental freshwater sources. Fe concentration, isotope composition 

and speciation in carbonates and mudrocks of the Neoarchean CMCP give insights into the 

dynamics of those two sources and unravel redox processes influencing the Fe inventory in 

the shallow-marine system. Pure carbonates, deposited during open marine conditions, 

record a Rayleigh titration of ferruginous deeper water and oxygenated shallow water, 

although a fractionation by anaerobe photoferrotrophs cannot be ruled out. Calculations of 

Fe(II)aq incorporation into calcite indeed implicate a concentration gradient from the slope 

facies to the platform facies of the CMCP and support the loss of Fe(II)aq via oxidation and 

precipitation of Fe(III)ppt. Concentration estimates of Fe(II)aq are around 180 µM for 

shallow-marine seawater and 555 µM for the open ocean and therefore higher than earlier 

estimates. However, those are strongly dependent on water temperature, sedimentation 

rate and Ca2+aq concentration in the seawater. Carbonates, which were deposited in the 

peritidal settings and during the rimmed margin stage, reveal that Fe cycling in the platform 

interior was dominated by freshwater input from the continent and early diagenetic Fe 

remobilization in the soft sediment, in particular from adjacent mudrocks. However, there is 

no clear indication that dolomitization and silicification affected the Fe isotope signatures. 

Instead, Fe would have been rather added from leaching and dissolution of siliciclastics, 

sulphides and oxyhydroxides to altered carbonates (Veizer, 1983). Fe speciation of CMCP 
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carbonates reveals an increase to higher oxidation state throughout the platform, with a 

Fe(II)-dominated speciation in the lower CMCP and a Fe(III)-dominated speciation in the 

upper CMCP. This can be explained by a lower content of reductants in the upper CMCP, in 

particular organic carbon and sulfide species, and by the rimmed margin architecture, 

protecting the environment from reducing species from the anoxic open ocean. 

This study strongly implicates that Ca-Mg carbonates are good and valuable proxies 

for Fe systematics in ancient shallow-marine systems and can give insights into Fe sources, 

redox-processes and secondary Fe circulation in the sediment. An important requirement is 

that the depositional environment is well reconstructed by major and trace element data 

and sedimentological observations. Thus, further studies are necessary to refine the use of 

this proxy and to maybe extend it to other aquatic systems, e.g. lakes.  
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9. Summary and implications for the evolution of Archean oxygen oases 

The emergence of oxygenic photosynthesis in the Archean shallow marine 

environment initiated a marine redox evolution, reflected in shifts in the concentration and 

isotope composition of redox-sensitive elements deposited to sediments from seawater. A 

great example thereby is the Neoarchean Campbellrand-Malmani carbonate platform (South 

Africa) that was deposited about 200 Ma before the Great Oxidation Event and contains 

geochemical and biological signatures that indicate early oxygen production and possibly 

represents an ‘oxygen oases’ in an otherwise anoxic world. 

In order to examine if the CMCP was an oxygen oases and to understand how this 

oxygen oasis developed over time, a detailed biogeochemical and sedimentological 

reconstruction of the paleoenvironmental conditions was conducted. Thereby, the study 

focused on the platform succession and complimented data of other studies from the slope 

succession of the CMCP. In the following the aims of this study are revisited and main 

findings are listed: 

 

(1) The paleoenvironmental reconstruction of the CMCP in the interface of marine 

and terrestrial systems 

 Based on sedimentological observations, the CMCP can be divided into a lower CMCP, 

characterized by a steep ramp architecture, and an upper CMCP, characterized by a 

rimmed margin architecture. 

 Changing Fe/Mn ratios of carbonates argue for a water depth dependence as a result of 

the lower redox potential of Fe compared to Mn, and thus varying with sea level change 

during trans- and regression events. 

 PAAS-normalized REE+Y distributions reveal two major water sources, from the open 

ocean transporting hydrothermal species, and freshwater from the continent supplying 

detrital material. The supply of those different sources is dependent on the seawater 

level and the platform architecture. 

 Fe(II)aq concentrations in seawater were probably about three times higher along the 

slope than on the platform due to higher exchange with open ocean water. The 

estimates range from 61 to 928 µM Fe(II)aq for the slope and 28 to 288 µM Fe(II)aq for 

the platform, depending on temperature, Ca2+ concentration in seawater and 

sedimentation rate. 

 Early diagenetic remobilization of Fe and Mo can be observed in carbonate successions 

that contain abundant mudrock layers, and is probably driven by degradation of 

organic matter during dissimilatory iron reduction (DIR) and bacterial sulfate 
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reduction (BSR). Localized diagenetic element cycling in is also supported by secondary 

Fe-sulfides present in mudrocks and some carbonates. 

 Large-scale dolomitization of most of the CMCP, probably within the first 1-2 Ma after 

deposition, argues for interaction between seawater and freshwater in particular in the 

very shallow-marine platform facies. 

 Silicification is also caused by interaction between seawater and freshwater, however, 

it is more restricted to the peritidal environment and becomes more abundant in the 

upper CMCP, after the development of the rimmed margin. 

 Deposition of siliciclastic and organic-rich mudrocks dynamically changes over time in 

the CMCP. In the lower CMCP, mudrocks are abundant in the shallow-marine platform, 

while in the upper CMCP mudrocks are scarce on the platform, but accumulate along 

the slope, indicating changes in the supply from the continent and maybe higher 

primary production and heterotrophic respiration in the platform and higher rates of 

organic burial along the slope. 

 

(2) The reconstruction of the redox conditions of the CMCP 

 δ98Mo values of some carbonates and mudrocks from the CMCP are heavier than the 

crustal range, with up to +1.4 ‰ in platform sediments (this study) and +1.7 ‰ in 

slope sediments (Voegelin et al., 2010; Wille et al., 2007). Those can be regarded as 

minimum values of ocean water Mo isotopic composition at the time of deposition and 

indicate sufficient oxygen in the atmosphere to mobilize Mo from the continental by 

oxidative weathering (Greber et al., 2015), leading to the buildup of an isotopically 

heavy marine Mo reservoir.   

 Carbonate sections that were deposited along the slope in contact with open ocean and 

during the early stages of carbonate platform evolution and intensive transgression 

events, record an Fe pool that is diminishing in concentration and becoming isotopically 

lighter, consistent with being the residual Fe(II) remaining after Fe oxidation. Those 

findings support the existence of an oxic-anoxic boundary in the Neoarchean shallow 

sea, although an anaerobe oxidation pathway via microbial activity cannot be ruled out. 

 δ98Mo and δ56Fe fluctuations in mudrocks and adjacent carbonates display changing 

redox conditions and redox zonation within the soft sediment during early diagenesis, 

which influenced the Mo and Fe mobility and isotopic composition on a small scale. 

 Authigenic Mo enrichment and Fe remobilization during early and probably 

microbial-driven diagenesis overprinted the initially incorporated seawater molybdate 

and Fe(II) in the precipitated carbonates. Thereby, the flux of organic carbon and 
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dissolved sulfur species control early diagenetic redox cycling between mudrock and 

carbonate sediments and affect their Mo and Fe inventory: 

 Mo is scavenged and remobilized within sediment and pore water during 

degradation of organic matter and circulating dissolved sulfur species. Distinction 

between the role of supply of water column organics or organics supplied by 

biological mats to Mo remobilization in biologically-induced carbonates is difficult, 

but regardless, both scenarios likely influenced the perturbation of Mo 

concentration and isotopic signals. 

 Heavy δ56Fe signatures in mudrocks of platform succession indicate BSR as 

dominant pathway of organic matter oxidation, whereas light δ56Fe signatures in 

mudrocks of the slope indicate a dominance of DIR. Those early diagenetic processes 

clearly affected adjacent carbonates due to circulating pore fluids.  

 Fe speciation changes over time in the carbonates of the CMCP. In the lower CMCP 

Fe(II) species dominate, incorporated into the dolomite structure and as distinctive 

Fe(II)-sulfides in the sediment. This changes towards the upper CMCP, as soon as the 

rimmed margin was formed, when Fe(III)-(oxyhydr)oxides, in form of goethite, 

dominate the shallow-marine platform facies and are incorporated in the carbonate. A 

possible scenario would be the adsorption of Fe(II)aq from solution on calcite and its 

subsequent oxidation to goethite, likely by photosynthetically produced oxygen. 

 Heavier δ13Ccarb values on the platform facies of the upper CMCP compared to the slope 

facies support a continued removal of light 12C from the system, as indicated by the 

deposition of organic-rich mudrocks along the slope facies of the upper CMCP. This also 

implicates the supply of nutrients, presumably from local oxidative continental 

weathering that must have further fueled microbial growth on the platform.  

 Heavier δ13Corg signatures in peritidal platform carbonates compared to the slope facies 

support indications from heavier δ13Ccarb values and argue for an enhanced activity of 

oxygenic phototrophs in the shallow-marine environment. This is also supported by 

reduced exchange of in the very shallow water facies and thus hydrothermal species 

(i.e. Fe(II)), which diminished the activity of anaerobe photo- and chemolithotrophic 

microorganisms and also diminished the risk of Fe toxicity on oxygenic phototrophs. 

However, light δ13Corg signatures down to ~40 ‰ in mudrocks rather indicates 

anaerobe activity locally within the sediment, restricted to the mudrock partings.  Such 

negative excursions can be explained, for example, by cycling of methane or BSR during 

anoxic diagenetic conditions.  
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(3) The evaluation of the potential of ancient Ca-Mg carbonates as proxies for trace 

metal systematics in the shallow seawater 

 Despite early diagenetic dolomitization and silicification, pristine information of 

geochemical indicators like Fe, Mn, and REE+Y signatures can still be connected to 

changes in water depth and different water sources and thus allow a 

paleoenvironmental reconstruction. 

 Mo isotope ratios in some Ca-Mg carbonates reveal heavy signatures and might reflect 

primary signatures. However, early diagenetic processes dominated the Mo cycling in 

the carbonates, in particular adjacent to mudrock partings. Thus, at least in the CMCP, 

Mo analyses can rather be used to obtain information about diagenetic cycling in the 

sediment than about the seawater evolution of Mo. Future studies on other ancient 

carbonate platforms with different depositional conditions could give more 

implications about this issue.  

 Fe isotope systematics of Ca-Mg carbonates are more promising to reflect seawater 

systematics than Mo, as some carbonates that were deposited during intense exchange 

with open ocean water reflect coupled Fe concentration and isotope signature that can 

be explained by titration of Fe from seawater by oxidation and allow the calculation of 

Fe(II)aq concentrations in seawater. Compared to that Fe systematics in the 

shallow-marine environment with restricted access of open ocean water rather reflect 

secondary Fe remobilization during diagenesis. However, those signatures are, similar 

to Mo, valuable to draw implications about the biogeochemical processes. 

 Overall, we propose that Mo and Fe isotope signatures and concentrations of Ca-Mg 

carbonates can serve as good proxies for paleoenvironmental reconstructions and 

biogeochemical processes of ancient shallow-marine settings. Thereby, it is crucial to 

complement the isotope data with other mineralogical, sedimentological, and 

geochemical information of the targeted carbonate setting to evaluate diagenetic 

alteration of the primary isotopic signals. 

 

Based on the findings of the study, the lower and the upper CMCP can be subdivided 

into two stages of platform evolution each, which are illustrated in Figures 9-1 and 9-2. 

Overall, the biogeochemical systematics mainly governed by water depth, water circulation, 

water source, detrital supply, platform architecture and diagenesis in the soft sediment. 
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Figure 9-1: During the initial flooding of the Kaapvaal Craton ~2.6 Ga ago, enough 
accommodation space was created for sufficient carbonate sedimentation and the 
growth of the platform. Carbonates mainly exchanged with open ocean water, and Fe 
isotope signatures and concentrations indicate Rayleigh distillation of Fe (Fe-RD) by 
aerobe or anaerobe oxidation. Data also indicate a concentration gradient with higher 
Fe(II)aq concentrations in the slope facies than in the platform facies. This is also 
indicated by REE+Y data, which show a shift from hydrothermal dominated signatures 
to signatures typical for Archean shallow seawater. Mo isotopes signatures already 
indicate a heavy Mo reservoir in the ocean and supply of Mo from the continent, 
presumably during oxidative weathering by microbial mats in the terrestrial or 
supratidal environment (Lalonde and Konhauser, 2015; Reinhard et al., 2013). Even 
though this is highly speculative, the high influx of reducing hydrothermal species 
might have been an ecological benefit for anaerobe photolitho- and 
chemolithoautotrophic bacteria, even though aerobe microorganisms likely belonged 

to the microbial community. However, dominant Fe(II) species in carbonates indicate 
rather reducing conditions in the sediment.  

With continuing growth of the platform a steep ramp architecture 
developed, which was still connected to the ocean, however during events of 
regression, influx of continental material and freshwater were of greater importance. 
This is shown by the frequent occurrence of mudrocks in the peritidal succession of 
the platform and the change in REE+Y signatures that record an increasing influence 
of the continent. Even though the influx of ocean water was probably diminished, 
maybe allowing a shift to a more aerobe ecosystem, the overall conditions in the 
sediment were still dominantly reducing, as carbonates and solely contain Fe(II) 
species. However, heavy Mo signatures still indicate an isotopically heavy molybdate 
pool in the seawater. Overall, the lower CMCP was dominated by secondary 
remobilization of redox-sensitive elements and microbially-driven diagenesis, 
whereby DIR dominated the slope facies and BSR the peritidal facies. 
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Figure 9-2: The deposition of the Kamden Member iron formation was a short 
intense transgressive event and is reflected in very Fe-rich sediments, even in the very 
shallow-marine platform succession. There, the intense influx of open ocean water is 
implicated by a clear positive Eu anomaly in a siliciclastic-rich carbonate. Low δ13Ccarb 
signatures implicate enhanced DIR processes, probably fueled by the enhanced 
availability of Fe-(oxyhydr)oxides. Furthermore, a high influx of hydrothermal species 
probably benefitted a rather anaerobe ecosystem.   

After the deposition of the Kamden Member and in course of a major 
transgression, the provided accommodation space was rapidly filled and rimmed 
margin architecture developed, which drastically changed the environmental 
conditions in the upper CMCP. Due to the special rimmed margin the influx of open 
ocean water was very poor and a restricted lagoon in the platform interior could 
develop. Due to the reduced influx of hydrothermal species, the ecosystem probably 
changed and aerobe microorganisms dominated the lagoonal interior. The relatively 
enhanced influx of freshwater, indicated by flattened REE+Y patterns, fueled 

silicification in the peritidal facies. At the same time organic-rich mudrock layers are 
only scarce in the platform, in contrast to the slope, where more organic-rich 
mudrocks are deposited, leading to a slight increase in δ13Ccarb signatures. This can be 
explained by an increase in primary production and heterotrophic respiration, which 
supports a dominantly aerobe ecosystem. The slope succession shows no change in 
the overall δ13Ccarb signature, as it was still mainly exposed to the open ocean, which is 
indicated by REE+Y signatures that show higher REE+Y concentrations and a more 
pronounced Eu anomaly. Interestingly, carbonates of the restricted platform interior 
are dominated by Fe(III) species in form of goethite, that also implicate an increase in 
the oxidation state of the platform. Mo and Fe systematics are still mainly controlled 
by secondary sedimentary processes, although the lack of organic-rich mudrocks 
probably changed the dynamics of Mo and Fe mobilization in the sediment, which is 
for example indicated by fewer heavy Mo isotope excursions. 
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This study provided multiple indications that the CMCP indeed represents an 

ancient oxygen oasis or that at least the oxidation state on the platform significantly 

increased. However, it also shows that special environmental and depositional conditions 

were necessary to induce this development. The probably most important factor was the 

shift from a steep ramp to a rimmed margin architecture. This drastically diminished the 

influx of reducing hydrothermal fluids from the open ocean and therefore also impacted the 

respiration pathways of the local ecosystem, changing from anaerobe photo- and 

chemolithotrophs to dominantly aerobe phototrophs. This change in respiration with the 

increased supply of availability of redox-sensitive micronutrients under aerobe water 

column conditions might have fueled primary production and the burial rate of microbially 

produced organic material in siliciclastic mudrocks along the slope. Overall, increasing 

oxygen accumulation by oxygenic photosynthesis and decreasing the amount of reducing 

species in the rimmed margin stage of the CMCP is very likely and strongly supported by the 

preservation of Fe(III) species in the carbonates and heavier δ13Ccarb signatures that point to 

an increasing oxidation state. 

For future studies other ancient carbonate platforms or carbonates from terrestrial 

freshwater systems, e.g. lakes, would be interesting targets, in order to see if there is a 

similar systematic like in the CMCP or if other conditions prevailed. This would further 

improve our knowledge about the phenomenon ‘oxygen oasis’ and would help to set 

constraints for their requirement. Furthermore, more detailed studies on the behavior of Mo 

and Fe in microbial mats and carbonates are necessary provide a framework for more 

precise interpretation of the processes impacting Mo and Fe concentrations and their 

isotopic composition in biologically-precipitated carbonates.  
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Appendices 

1. Detailed log of drill core KMF-5 
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Note: Shale ≙ Mudrock (fine grained siliciclastic sedimentary rock); Core logging results were 

generously provided by Nic Beukes 

2. Mo adsorption on Multifex calcite as a function of pH 

Note: All experiments described below were performed by S. Goldberg, who generously 

provided information about the experimental set-up and results for this study. 

Adsorption experiments were performed with Multifex calcite, which was in 

suspension in a Mo containing stock solution (200 g CaCO3 per liter stock solution). Two 

stock solutions of different concentration were used during the experiment. The goal was to 

determine the adsorption of Mo on calcite at different pH and at different concentrations. 

Results are summarized in Table A-1 and A-2. Figure A-1 shows an approximation of 

adsorbed Mo on calcite in form of a non-linear fit, which allows making a good assumption 

for the amount of adsorbed Mo at a certain pH level. Obviously, the amount of adsorbed Mo 

is not influenced by the Mo concentration in the stock solution but rather by the prevailing 

pH value. Therefore, we can assume that a similar adsorption pattern also looms for 

seawater Mo values (Modern: 0.1 µmol/L (Collier, 1985); Neoarchean: 0.001 µmol/L (Czaja 

et al., 2012) to 0.01 µmol/L (Scott et al., 2008)(Scott et al., 2008)). In Figure A-2 presumable 

adsorption of Mo on calcite at a different solution concentrations is shown, together with 

concentrations of natural modern (Voegelin et al., 2009) and Neoarchean (this study) 

samples. Results are showing that modern samples are nearly in agreement with the 

adsorption line. Neoarchean samples plot clearly beside this line, indicating that other 

processes were involved in Mo inventory of the carbonates.  
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Table A-1:  Stock solution = 99.82 mg Mo per liter (Goldberg, pers. comm.) 

pH 
Mo in solution 

(mg/L) 
Mo adsorbed 

(mmol/kg CaCO3) 
Mo adsorbed 

(wt%/g CaCO3) 

7.2 76.68 6.03 0.116 

7.31 80.61 5.01 0.096 

7.43 80.32 5.08 0.098 

7.45 76.63 6.04 0.1168 

7.82 86.8 3.39 0.0658 

8.12 83.66 4.21 0.081 

8.29 89.45 2.70 0.052 

8.51 91.91 2.06 0.040 

8.8 92.43 1.93 0.037 

8.95 85.57 3.71 0.071 

9.11 93.07 1.76 0.034 

9.28 93.56 1.63 0.031 

9.58 92.41 1.93 0.037 

9.81 95.44 1.14 0.022 

9.92 92.97 1.78 0.034 

9.99 93.71 1.59 0.031 

 
Table A-2: Stock solution = 26.94 mg Mo per liter (Goldberg, pers. comm.) 

pH 
Mo in solution 

(mg/L) 
Mo adsorbed 

(mmol/kg CaCO3) 
Mo adsorbed 

(wt%/g CaCO3) 

7.13 20.63 20.63 0.117 

7.28 20.89 20.89 0.112 

7.52 21.97 21.97 0.092 

7.76 22.68 22.68 0.079 

8.17 23.75 23.75 0.059 

8.68 24.49 24.49 0.046 

8.95 24.6 24.6 0.043 

9.37 25.02 25.02 0.036 

9.62 24.98 24.98 0.036 

9.92 24.77 24.77 0.040 

10.14 24.89 24.89 0.038 

10.33 24.9 24.9 0.038 

10.5 24.98 24.98 0.036 

10.66 24.89 24.89 0.038 

10.72 25.03 25.03 0.036 

10.85 25.18 25.18 0.033 
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Figure A-1: Results of adsorption experiments in dependency of pH and at different solution concentrations 
(Goldberg, personal communication). 

 

 
Figure A-2: Approximation for adsorbed Mo on calcite from solution and concentrations of natural modern 
(Voegelin et al., 2009) and Neoarchean (this study) samples. Dotted line is based on adsorption experiments 
performed by Goldberg (personal communication). 
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3. Additional tables of Fe isotope analyses 

Table A-3: Sample-Standard-Bracketing Fe isotope results of single measurements of KMF-5 samples 

              

 Depth 

(m) 

δ56Feavg 

 (‰) 

 δ57Feavg 

 (‰) 

  Analyses 1   Analyses 2   Analyses 3 

  δ56Fe 2σ δ57Fe 2σ δ58Fe 2σ   δ56Fe 2σ δ57Fe 2σ δ58Fe 2σ   δ56Fe 2σ δ57Fe 2σ δ58Fe 2σ 
   (‰)    (‰)    (‰)      (‰)    (‰)    (‰)      (‰)    (‰)    (‰)   

665.08 -0.88 0.04   -0.85 0.04 -0.97 0.10 -1.35 0.59   -0.96 0.05 -1.46 0.09 -2.31 0.45   -0.84 0.04 -0.96 0.09 -1.38 0.66 

665.18 -0.66 0.04   -0.65 0.04 -0.99 0.09 -1.58 0.48   -0.68 0.04 -1.04 0.08 -1.16 0.59               

673.84 -0.75 0.04   -0.75 0.05 -1.12 0.08 -1.96 0.56   -0.74 0.04 -1.12 0.08 -1.94 0.44               
674.55 -0.88 0.05   -0.90 0.05 -1.33 0.08 -1.94 0.49   -0.86 0.04 -1.27 0.08 -1.84 0.46               

678.60 -0.80 0.05   -0.81 0.04 -1.10 0.08 -1.01 0.49   -0.80 0.05 -1.22 0.07 -1.43 0.49               

680.58 -0.82 0.04   -0.83 0.03 -1.23 0.07 -1.34 0.44   -0.81 0.05 -1.26 0.09 -1.60 0.45               

682.70 -0.77 0.04   -0.73 0.03 -1.10 0.06 -1.22 0.37   -0.81 0.04 -1.18 0.07 -1.56 0.40               

703.30 -0.75 0.04   -0.72 0.04 -1.08 0.07 -1.59 0.48   -0.77 0.04 -1.13 0.08 -1.42 0.51               

711.80 -0.55 0.04   -0.56 0.05 -0.87 0.07 -1.04 0.49   -0.55 0.04 -0.83 0.08 -1.16 0.50               
875.50 -0.40 0.05   -0.41 0.05 -0.64 0.08 -1.46 0.52   -0.38 0.05 -0.64 0.08 -0.67 0.36               

884.83 -0.47 0.04   -0.49 0.04 -0.69 0.08 -0.51 0.46   -0.45 0.04 -0.72 0.09 -0.70 0.46               

921.78 -0.41 0.03   -0.40 0.03 -0.63 0.07 -0.71 0.44   -0.43 0.03 -0.58 0.07 -0.68 0.39               
1062.50 -0.67 0.03   -0.65 0.03 -0.92 0.07 -1.26 0.36   -0.69 0.03 -1.04 0.06 -1.18 0.35               

1072.73 -0.77 0.04   -0.77 0.04 -1.11 0.06 -1.41 0.36   -0.78 0.04 -1.16 0.07 -1.64 0.34               
1100.20 -0.66 0.04   -0.66 0.04 -0.95 0.06 -0.76 0.42   -0.65 0.03 -0.99 0.07 -1.39 0.30               

1136.75 -0.68 0.03   -0.65 0.03 -0.95 0.07 -1.29 0.42   -0.71 0.04 -1.02 0.08 -1.48 0.30               

1143.70 -0.71 0.05   -0.74 0.05 -1.06 0.08 -1.47 0.46   -0.72 0.05 -1.06 0.08 -1.37 0.48   -0.67 0.04 -0.99 0.08 -1.46 0.40 
1199.50 -0.40 0.04   -0.42 0.05 -0.62 0.08 -1.11 0.50   -0.38 0.04 -0.64 0.09 -1.04 0.44               

1202.58 -0.51 0.05   -0.54 0.05 -0.77 0.07 -1.06 0.50   -0.48 0.05 -0.73 0.10 -0.78 0.49               

1239.98 -0.40 0.05   -0.43 0.05 -0.64 0.08 -0.80 0.56   -0.41 0.05 -0.56 0.09 2.12 0.44   -0.36 0.04 -0.60 0.08 -0.54 0.56 

1265.10 -0.04 0.03   -0.04 0.04 -0.06 0.07 -0.19 0.36   -0.03 0.03 -0.01 0.07 0.00 0.36               

1350.90 -0.37 0.04   -0.43 0.04 -0.57 0.08 -0.67 0.45   -0.40 0.05 -0.60 0.07 -1.15 0.46   -0.27 0.04 -0.40 0.07 -1.20 0.40 

1401.00 -0.35 0.04   -0.36 0.05 -0.57 0.09 -0.99 0.54   -0.35 0.04 -0.56 0.07 -0.29 0.50               
1403.80 -0.35 0.03   -0.34 0.04 -0.54 0.06 -0.80 0.33   -0.36 0.03 -0.50 0.06 -0.72 0.45               

1406.80 -0.33 0.04   -0.30 0.04 -0.43 0.06 -0.24 0.32   -0.37 0.04 -0.57 0.08 -0.70 0.38               

1420.90 -0.46 0.05   -0.47 0.05 -0.76 0.08 -1.13 0.55   -0.45 0.04 -0.72 0.07 -0.71 0.55               
1425.40 -0.36 0.04   -0.34 0.04 -0.48 0.07 -0.77 0.31   -0.39 0.04 -0.53 0.06 -0.67 0.39               

1435.25 -0.35 0.05   -0.35 0.05 -0.59 0.09 -0.72 0.49   -0.35 0.05 -0.57 0.09 -0.56 0.46               

1442.17 -0.66 0.04   -0.66 0.05 -0.95 0.09 1.71 0.49   -0.70 0.04 -1.07 0.09 -1.42 0.61   -0.64 0.04 -1.06 0.08 -1.07 0.51 
1454.61 -0.41 0.05   -0.43 0.04 -0.66 0.08 -1.00 0.57   -0.39 0.05 -0.70 0.08 -0.54 0.50               

1461.80 -0.41 0.04   -0.43 0.04 -0.63 0.07 -1.36 0.49   -0.39 0.04 -0.66 0.08 -0.81 0.50               

1464.30 -0.50 0.04   -0.52 0.04 -0.73 0.08 -1.04 0.50   -0.48 0.04 -0.77 0.07 -1.34 0.47               
1467.10 -0.37 0.04   -0.41 0.04 -0.66 0.08 -1.02 0.44   -0.34 0.04 -0.53 0.08 -1.38 0.53               

1475.35 -0.40 0.04   -0.43 0.04 -0.66 0.08 -1.37 0.49   -0.36 0.04 -0.60 0.07 -1.46 0.51               

1484.80 -0.28 0.04   -0.26 0.04 -0.39 0.07 -0.57 0.38   -0.30 0.04 -0.43 0.06 -0.50 0.36               

1491.85 -0.35 0.04   -0.38 0.04 -0.59 0.08 -0.73 0.47   -0.32 0.04 -0.53 0.07 -0.99 0.50               

1499.85 0.20 0.05   0.14 0.05 0.27 0.08 0.44 0.52   0.17 0.04 0.24 0.08 -0.14 0.46   0.29 0.05 0.44 0.09 -0.28 0.44 

1524.70 -0.41 0.04   -0.42 0.04 -0.61 0.06 -0.95 0.37   -0.39 0.04 -0.53 0.07 -0.89 0.34               
1539.90 -0.38 0.04   -0.40 0.04 -0.56 0.08 -0.59 0.52   -0.44 0.04 -0.60 0.07 -1.22 0.85   -0.30 0.04 -0.46 0.09 -0.94 0.44 
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Table A-3 continued             

1551.70 -0.27 0.05   -0.30 0.05 -0.43 0.08 -0.77 0.43   -0.24 0.05 -0.37 0.07 -1.33 0.48               

1557.70 0.79 0.05   0.76 0.05 1.10 0.08 1.08 0.43   0.81 0.04 1.17 0.07 1.00 0.47               

1558.88 -0.25 0.04   -0.30 0.04 -0.40 0.09 -1.74 0.98   -0.26 0.03 -0.33 0.07 -0.84 0.54   -0.20 0.05 -0.29 0.09 -1.06 0.46 
1574.15 -0.23 0.04   -0.28 0.04 -0.38 0.10 -0.52 0.43   -0.22 0.04 -0.34 0.06 -0.65 0.60   -0.19 0.04 -0.29 0.09 -0.70 0.43 

1574.25 -0.20 0.05   -0.23 0.05 -0.34 0.09 -0.71 0.53   -0.18 0.05 -0.25 0.09 -0.76 0.47               

1574.30 -0.24 0.04   -0.29 0.05 -0.45 0.09 0.05 1.44   -0.23 0.05 -0.32 0.08 -3.53 0.44   -0.18 0.04 -0.26 0.08 -0.84 0.50 
1589.75 -0.27 0.04   -0.31 0.05 -0.45 0.07 0.02 1.44   -0.20 0.04 -0.32 0.09 -0.75 0.43   -0.30 0.04 -0.44 0.08 -0.59 0.47 

1589.90 -0.22 0.04   -0.25 0.05 -0.38 0.08 -0.54 0.45   -0.25 0.04 -0.40 0.07 0.05 0.42   -0.15 0.04 -0.23 0.09 -0.76 0.44 

1604.60 -0.28 0.03   -0.24 0.03 -0.40 0.06 -0.41 0.47   -0.32 0.03 -0.50 0.07 -0.78 0.33               
1673.30 0.38 0.05   0.34 0.04 0.46 0.07 0.32 0.56   0.42 0.06 0.62 0.08 -0.28 0.47               

1731.10 -0.62 0.04   -0.63 0.04 -0.94 0.07 -1.11 0.45   -0.60 0.04 -0.85 0.06 -1.25 0.33               

1731.30 -0.67 0.03   -0.70 0.03 -1.01 0.07 -1.39 0.33   -0.63 0.03 -0.91 0.07 -1.04 0.35               
1742.30 -0.72 0.04   -0.71 0.04 -1.03 0.06 -1.68 0.42   -0.73 0.04 -1.04 0.07 -1.38 0.34               

1776.00 0.62 0.04   0.58 0.04 0.85 0.09 1.10 0.46   0.65 0.04 1.03 0.07 0.64 0.45               

1790.10 0.08 0.04   0.06 0.05 -0.01 0.08 0.13 0.48   0.10 0.04 0.11 0.09 -0.61 0.41               
1800.10 -0.32 0.04   -0.35 0.05 -0.55 0.07 -0.53 0.49   -0.28 0.04 -0.46 0.08 -1.32 0.43               

1800.30 0.44 0.05   0.40 0.05 0.59 0.07 -4.95 0.53   0.48 0.04 0.68 0.08 0.46 0.40               

1811.20 0.24 0.04   0.20 0.04 0.34 0.07 -0.32 0.52   0.28 0.04 0.39 0.08 -0.33 0.55               

2σ: 2 sigma standard deviation of 20 measurement cycles per sample analysis on ICP-MS               
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Table A-4: Sample-Standard-Bracketing Fe isotope results of single measurements of BH-1 samples 

 Depth 

(m) 

 δ56Feavg 

 (‰) 

δ57Feavg 

 (‰) 

  Analyses 1   Analyses 2   Analyses 3 

  δ56Fe 2σ δ57Fe 2σ δ58Fe 2σ   δ56Fe 2σ δ57Fe 2σ δ58Fe 2σ   δ56Fe 2σ δ57Fe 2σ δ58Fe 2σ 

   (‰)    (‰)    (‰)      (‰)    (‰)    (‰)      (‰)    (‰)    (‰)   

340 -1.82 -2.65   -1.82 0.04 -2.64 0.07 -3.61 0.49   -1.82 0.04 -2.67 0.06 -3.29 0.50               

375 -0.85 -1.26   -0.85 0.04 -1.23 0.07 -1.47 0.54   -0.86 0.04 -1.29 0.07 -1.63 0.46               
488 -0.91 -1.28   -0.91 0.05 -1.28 0.09 -1.85 0.42                             

670 -0.56 -0.81   -0.57 0.05 -0.84 0.07 -1.41 0.42   -0.55 0.04 -0.79 0.08 -1.20 0.42               

751 -0.93 -1.36   -0.94 0.04 -1.32 0.08 -1.85 0.45   -0.91 0.04 -1.40 0.08 -1.60 0.46               
1235 -0.72 -1.07   -0.73 0.04 -1.05 0.08 -1.52 0.38   -0.71 0.05 -1.09 0.08 -1.46 0.43               

1400 -0.90 -1.25   -0.83 0.05 -1.31 0.08 -1.83 0.43   -0.95 0.04 -1.21 0.08 -1.26 0.66   -0.91 0.06 -1.23 0.08 -1.59 0.49 

1425 -0.80 -1.20   -0.81 0.04 -1.19 0.06 -1.90 0.48   -0.79 0.05 -1.20 0.07 -1.34 0.46               
1455 -0.80 -1.19   -0.82 0.04 -1.20 0.07 -1.81 0.44   -0.79 0.04 -1.19 0.07 -1.36 0.45               

1490 -0.50 -0.78   -0.50 0.04 -0.76 0.09 -1.06 0.50   -0.50 0.03 -0.80 0.08 -0.31 0.48               

1520 -0.60 -0.88   -0.61 0.04 -0.96 0.07 -1.37 0.38   -0.61 0.05 -0.84 0.08 -1.20 0.51   -0.59 0.04 -0.84 0.08 -1.12 0.42 
1620 -0.60 -0.91   -0.59 0.04 -0.86 0.08 -0.91 0.50   -0.61 0.04 -0.96 0.08 -1.66 0.49               

1750 -1.21 -1.82   -1.22 0.05 -1.81 0.09 -2.47 0.41   -1.20 0.04 -1.82 0.07 -2.51 0.45               

1776 -0.72 -1.10   -0.74 0.05 -1.10 0.07 -1.42 0.41   -0.70 0.04 -1.09 0.08 -1.23 0.45               
1920 -0.95 -1.33   -1.08 0.05 -1.31 0.08 -1.35 0.79   -0.90 0.04 -1.31 0.07 -1.79 0.51   -0.87 0.04 -1.35 0.09 -1.55 0.47 

2041 -0.79 -1.19   -0.80 0.03 -1.22 0.06 -1.59 0.34   -0.78 0.03 -1.16 0.07 -1.36 0.39               

2066 -0.57 -0.85   -0.60 0.04 -0.84 0.07 -1.37 0.48   -0.54 0.04 -0.87 0.08 -1.04 0.49               
2098 -0.23 -0.36   -0.23 0.03 -0.39 0.08 -0.49 0.37   -0.22 0.03 -0.32 0.07 -0.45 0.40               

2250 -1.07 -1.57   -1.08 0.04 -1.60 0.06 -2.06 0.38   -1.05 0.03 -1.54 0.06 -2.35 0.35               

2275 -1.04 -1.55   -1.05 0.05 -1.55 0.07 -1.86 0.47   -1.03 0.04 -1.55 0.07 -1.99 0.42               
2293 -1.08 -1.63   -1.11 0.04 -1.67 0.07 -2.29 0.39   -1.05 0.04 -1.58 0.08 -2.07 0.34               

2355 -1.20 -1.85   -1.22 0.03 -1.89 0.07 -2.30 0.46   -1.19 0.04 -1.82 0.07 -1.81 0.47               
2379 -1.07 -1.61   -1.08 0.03 -1.59 0.06 -2.29 0.44   -1.06 0.04 -1.63 0.09 -1.98 0.41               

2400 -1.24 -1.81   -1.25 0.03 -1.81 0.07 -2.50 0.40   -1.22 0.04 -1.80 0.08 -2.22 0.37               

2σ: 2 sigma standard deviation of 20 measurement cycles per sample analysis on ICP-MS 

 

 

Table A-5: Sample-Standard-Bracketing Fe isotope results of single measurements of Kuruman Kop outcrop samples 

 Sample 
Name 

 δ56Feavg 
 (‰) 

 δ57Feavg 
 (‰) 

  Analyses 1   Analyses 2 

  δ56Fe 2σ δ57Fe 2σ δ58Fe 2σ   δ56Fe 2σ δ57Fe 2σ δ58Fe 2σ 

   (‰)    (‰)    (‰)      (‰)    (‰)    (‰)   

KU 12/04 0.45 0.65   0.41 0.04 0.58 0.09 0.91 0.52   0.49 0.04 0.71 0.09 0.61 0.44 
KU 12/06 -1.74 -2.59   -1.77 0.05 -2.64 0.09 -4.12 0.51   -1.72 0.06 -2.53 0.10 -4.75 0.42 

KU 12/26 -0.29 -0.42   -0.32 0.04 -0.47 0.08 2.46 0.57   -0.26 0.04 -0.38 0.09 -0.84 0.51 
KU 12/25 -0.70 -1.01   -0.74 0.04 -1.06 0.07 -0.98 0.51   -0.65 0.05 -0.97 0.09 -1.66 0.49 

KU 12/31 -0.95 -1.37   -1.01 0.04 -1.46 0.09 0.78 0.53   -0.90 0.04 -1.29 0.08 -2.50 0.45 

2σ: 2 sigma standard deviation of 20 measurement cycles per sample analysis on ICP-MS 
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