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1. Summary  
 

 

The communication between neurons within neural circuits relies on neurotransmitters 

(glutamate, γ-aminobutyric acid (GABA)) and neuromodulators (acetylcholine, dopamine, 

serotonin, etc.). However, despite sharing similar molecular elements, neurotransmitters 

and neuromodulators are distinct classes of molecules and mediate different aspects of 

neural activity and metabolism. Neurotransmitters on one hand are responsible for 

synaptic signal transmission (classical transmission) while neuromodulators exert their 

functions by mediating different postsynaptic events that result in changes to the balance 

between excitation and inhibition.  

Neuromodulation, while essential to nervous system function, has been significantly more 

difficult to study than neurotransmission. This is principally due to the fact that effects 

elicited by neuromodulators are usually of slow onset, long lasting, and are not simply 

excitation or inhibition. In contrast to the effects of neurotransmitters, neuromodulators 

enable neurons to be more flexible in their ability to encode different sorts of information 

(e.g. sensory information) on a variety of time scales. However, it is important to appreciate 

that one of the challenges in the study of neuromodulation is to understand the extent to 

which neuromodulators’ actions are coordinated at all levels of brain function. That is, from 

the cellular and metabolic level to network and cognitive control.  

Therefore, understanding the molecules that mediate brain networks interactions is 

essential to understanding the brain dynamic, and also helps to put the cellular and 

molecular processes in perspective. Functional magnetic resonance imaging (fMRI) is a 

technique that allows access to various cellular and metabolic aspects of network 

communication that are difficult to access when studying one neuron at the time. Its non-
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invasiveness nature allows the comparison of data and hypotheses of the primate brain to 

that of the human brain. Hence, understanding the effects of neuromodulation on local 

microcircuits is needed. Furthermore, given the massive projections of the 

neuromodulatory diffuse ascending systems, fMRI combined with pharmacological and 

neurophysiological methods may provide true insight into their organization and dynamics. 

However, little is known about how to interpret the effects of neuromodulation in fMRI and 

neurophysiological data, for instance, how to disentangle blood oxygenation level 

dependent (BOLD) signal changes relating to cognitive changes (presumably 

neuromodulatory influences) from stimulus-driven or perceptual effects. 

The purpose of this dissertation is to understand the causal relationship between neural 

activity and hemodynamic responses under the influence of neuromodulation. To this end 

we present the results of six studies.  In the first study, we aimed to establish a mass-

spectrometry-based technique to uncover the distribution of different metabolites, 

neurotransmitters and neuromodulators in the macaque brain. We simultaneously 

measured the concentrations of these biomolecules in brain and in blood. In a second 

study, we developed a multimodal approach consisting of fMRI (BOLD and cerebral blood 

flow or CBF), electrophysiological recording with a laminar probe and pharmacology to 

assess the effects of neuromodulation on neurovascular coupling. We developed a 

pharmacological injection delivery system using pressure-operated pumps to reliably apply 

drugs either systemically or intracortically in the NMR scanner. In our third study, we 

systemically injected lactate and pyruvate to explore whether the plasma concentration of 

either of these metabolites affects the BOLD responses. This is important given that both 

metabolites are in a metabolic equilibrium; if this equilibrium is disrupted, changes in the 

NAD and NADH concentrations would elicit changes in the CBF. In a fourth study, we 

explored the influence of dopaminergic (DAergic) neuromodulation in the BOLD, CBF and 

neurophysiological activity. Here we found that DAergic neuromodulation dissociated the 

BOLD responses from the underlying neural activity. Interestingly, the changes in the 
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neural activity were tightly coupled to the effects seen in the CBF responses. In a 

subsequent study, we explored whether the effects of dopamine (DA) on the 

electrophysiological responses are cortical layer dependent and whether specific patterns 

of neural activity can be used to infer the effects of neuromodulation on the neural activity. 

This is important, given that different types of neural activity provide independent 

information about the amplitude and dynamics from BOLD responses, and studies have 

shown that these bands originate from different cortical layers. What this study revealed, 

is that local field potentials (LFPs) in the midrange frequencies can indeed provide 

indications about the sustained effects of neuromodulation on cortical sensory processing. 

Given the results from the previous study, in our sixth study, we aimed at understanding 

how different cortical layers may process incoming and outgoing information in the 

different LFP bands.  

These findings provide evidence that neuromodulation has profound effects on 

neurovascular coupling. By changing the excitation-inhibition balance of neural circuits, 

neuromodulators not only mediate the neural activity, but also adjust the metabolic 

demands. Therefore, understanding how the different types of neuromodulators affect the 

BOLD response is essential for an effective interpretation of fMRI-data, not only in tasks 

involving attentional and reward-related processes, but also for future diagnostic use of 

fMRI, since many psychiatric disorders are the result of alterations in neuromodulatory 

systems. 
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1. Zusammenfassung  
 

 

Die Kommunikation zwischen den Neuronen innerhalb neuronalen Schaltkreise beruht auf 

Neurotransmitter (Glutamat, γ-Aminobuttersäure (GABA)) und Neuromodulatoren 

(Acetylcholin, Dopamin, Serotonin, etc.). Neurotransmitter und Neuromodulatoren sind 

jedoch unterschiedliche Klassen von Molekülen und verschiedenen Aspekte der 

neuronalen Aktivität und den Stoffwechsel vermitteln. Neurotransmitters sind einerseits 

verantwortlich für die synaptische Signalübertragung (klassische Übertragung), während 

ihre Funktionen ausüben, Neuromodulatoren durch verschiedene postsynaptischen 

Ereignisse zu vermitteln, die in Änderungen an der Balance zwischen Erregung und 

Hemmung führen. 

Neuromodulation , während wesentlich Funktion des Nervensystems hat sich als 

Neurotransmission wesentlich schwieriger gewesen, zu studieren. Dies ist hauptsächlich 

auf die Tatsache zurückzuführen, die durch Neuromodulatoren sind in der Regel von 

langsamen Beginn, langlebig, und sind nicht einfach Anregung oder Hemmung ausgelöst 

beeinflusst. Im Gegensatz zu den Wirkungen von Neurotransmittern, Neuromodulatoren 

ermöglichen Neuronen flexibler zu sein in ihrer Fähigkeit, verschiedene Arten von 

Informationen (beispielsweise sensorische Informationen) auf einer Vielzahl von 

Zeitskalen zu kodieren. Im Gegensatz zu den Wirkungen von Neurotransmittern, 

Neuromodulatoren ermöglichen Neuronen flexibler zu sein in ihrer Fähigkeit, 

verschiedene Arten von Informationen (beispielsweise sensorische Informationen) auf 

einer Vielzahl von Zeitskalen zu kodieren. Im Gegensatz zu den Wirkungen von 

Neurotransmittern, Neuromodulatoren ermöglichen Neuronen flexibler zu sein in ihrer 

Fähigkeit, verschiedene Arten von Informationen (beispielsweise sensorische 

Informationen) auf einer Vielzahl von Zeitskalen zu kodieren. Jedoch ist es wichtig, dass 
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eine der Herausforderungen bei der Untersuchung von Neuromodulations zu schätzen ist, 

das Ausmaß, in dem Neuromodulatoren Aktionen koordiniert sind auf allen Ebenen der 

Gehirnfunktion zu verstehen. Das heißt, von der zellulären und metabolischen Ebene zu 

vernetzen und kognitive Kontrolle. 

Daher die Moleküle zu verstehen, die Gehirn Netzwerke Interaktionen vermitteln ist 

wesentlich für das Verständnis des Gehirns dynamisch, und hilft auch, die zellulären und 

molekularen Prozesse in Perspektive zu setzen. Funktionellen Kernspintomographie 

(fMRI) ist eine Technik, die Zugang zu verschiedenen zellulären und metabolischen 

Aspekte der Netzwerk-Kommunikation ermöglicht, die schwer zugänglich sind, wenn zu 

der Zeit eines Neurons zu studieren. Seine nicht-Invasivität Natur ermöglicht den Vergleich 

von Daten und Hypothesen des Primatengehirn zu der des menschlichen Gehirns. Somit 

wurde das Verständnis der Auswirkungen der Neuromodulation auf lokale Mikro benötigt. 

Darüber hinaus sind die massiven Projektionen der neuromodulatorischen diffuse 

Aufstiegsanlagen gegeben, kombiniert fMRI mit pharmakologischen und 

neurophysiologischen Methoden wahren Einblick in ihre Organisation und Dynamik 

liefern. Allerdings ist nur wenig darüber bekannt, wie die Auswirkungen der 

Neuromodulations in fMRI und neurophysiologische Daten zu interpretieren, zum Beispiel, 

wie Blutoxydation pegelabhängig (BOLD) Signaländerungen in Bezug auf kognitive 

Veränderungen (vermutlich neuromodulatorischen Einflüsse) von Stimulus-driven oder 

Wahrnehmungseffekte zu entwirren. 

Der Zweck dieser Arbeit ist es, die kausale Beziehung zwischen neuronaler Aktivität und 

hämodynamischen Reaktionen unter dem Einfluss der Neuromodulations zu verstehen. 

Zu diesem Zweck stellen wir die Ergebnisse von sechs Studien. In der ersten Studie 

wollten wir eine auf Massenspektrometrie basierende Technik einzurichten, um die 

Verteilung von verschiedenen Metaboliten, Neurotransmittern und Neuromodulatoren in 

Makakengehirn aufzudeckenWir maßen gleichzeitig die Konzentrationen dieser 

Biomoleküle im Gehirn und im Blut. In einer zweiten Studie entwickelten wir einen 
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multimodalen Ansatz, bestehend aus fMRI (BOLD und zerebralen Blutflusses oder CBF), 

elektrophysiologische Aufzeichnung mit einer laminaren Sonde und Pharmakologie, die 

Auswirkungen der Neuromodulation auf neurovaskulären Kopplung zu beurteilen. Wir 

entwickelten eine pharmakologische Injektionsverabreichungssystem druckbetriebenen 

Pumpen mit zuverlässiger Medikamente gelten entweder systemisch oder intrakortikale 

im NMR-Scanner. In unserer dritten Studie injizierten wir systemisch Laktat und Pyruvat 

zu untersuchen, ob die Plasmakonzentration von entweder dieser Metaboliten die BOLD-

Antworten beeinflusst. Dies ist wichtig, dass beide gegeben Metaboliten in einem 

Stoffwechselgleichgewicht sind; wenn dieses Gleichgewicht gestört ist, Veränderungen in 

den NAD und NADH-Konzentrationen würden Veränderungen in der CBF entlocken. In 

einer vierten Studie untersuchten wir den Einfluss von dopaminergen (DA-erge) -

Neuromodulation im BOLD, CBF und neurophysiologische Aktivität. Hier fanden wir, dass 

DAerge -Neuromodulation die BOLD-Antworten von der zugrunde liegenden neuronalen 

Aktivität distanzierte. Interessanterweise waren verbunden, um die Veränderungen in der 

neuronalen Aktivität eng auf die in den CBF Reaktionen gesehen Wirkungen. In einer 

nachfolgenden Studie untersuchten wir, ob die Wirkungen von Dopamin (DA) auf die 

elektrophysiologischen Reaktionen sind Rindenschicht abhängig, und ob bestimmte 

Muster der neuronalen Aktivität verwendet werden kann, die Wirkungen von 

Neuromodulations auf die neurale Aktivität zu schließen. Dies ist wichtig, da verschiedene 

Arten von neuralen Aktivität liefern unabhängige Informationen über die Amplitude und die 

Dynamik von BOLD-Antworten, und Studien haben gezeigt, dass diese Bands aus 

verschiedenen kortikalen Schichten stammen. Was diese Studie ergab, dass lokale 

Feldpotentiale (LFP) in den mittleren Frequenzen in der Tat Hinweise über die nachhaltige 

Wirkung der Neuromodulation auf die kortikale sensorische Verarbeitung zur Verfügung 

stellen kann. In Anbetracht der Ergebnisse der früheren Studie, in unserer sechsten Studie 

wollten wir auf das Verständnis, wie die verschiedenen kortikalen Schichten verarbeiten 

kann ein- und ausgehenden Informationen in den verschiedenen LFP-Bands. 
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Diese Ergebnisse belegen, dass -Neuromodulation profunde Auswirkungen auf die 

neurovaskulären Kopplung hat. Durch die Veränderung der Erregungs Hemmung 

Gleichgewicht neuronaler Schaltkreise vermitteln Neuromodulatoren nicht nur die neurale 

Aktivität, sondern auch die metabolischen Anforderungen anzupassen. Daher verstehen, 

wie die verschiedenen Arten von Neuromodulatoren beeinflussen die BOLD-Antwort für 

eine effektive Interpretation von fMRI-Daten notwendig ist, nicht nur in Aufgaben 

attentional und Belohnung bezogenen Prozessen mit, sondern auch für zukünftige 

diagnostische Verwendung von fMRI, da viele psychiatrische Störungen sind das Ergebnis 

von Veränderungen in neuromodulatorischen Systemen. 
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1. Resumen 
 

 

La comunicación de las neuronas en los circuitos neuronales depende de los 

neurotransmisores (glutamato, acido γ-amino-butírico o GABA) y los neuromoduladores 

(acetilcolina, dopamina, serotonina, etc.). Sin embargo, tanto neurotransmisores como 

neuromoduladores son diferentes clases de moléculas y median diferentes aspectos de 

la actividad neuronal y del metabolismo, a pesar de compartir elementos moleculares muy 

similares. Los neurotransmisores, por una lado, son responsables de la transmisión 

sináptica de la información mientras que los neuromoduladores median diferentes eventos 

pos-sinápticos que resultan en cambios en el balance de la excitación e inhibición.  

La influencia de la neuromodulación es esencial para la función del sistema nerviosos, sin 

embargo es más difícil de estudiar que neurotransmisión. Esto se debe a que los efectos 

de los neuromoduladores suelen ser de un inicio lento, de larga duración, y no reflejan 

excitación o inhibición. En contraste a los efectos de los neurotransmisores, los 

neuromoduladores permiten que las neuronas sean más flexibles en su habilidad de 

codificar diferentes tipos de información (por ejemplo, información sensorial) en varias 

escalas temporales. Sin embargo, es importante darse cuenta que uno de objetivos 

primordiales en el estudio de neuromodulación es el de entender el grado en que la acción 

de los neuromoduladores está coordinada a todos los niveles de la función cerebral. Es 

decir, desde los aspectos celulares y metabólicos hasta los niveles de redes neuronales 

y control cognitivo.  

Por lo tanto, comprender los forma en la que diferentes moléculas median la interacción 

entre redes neuronal es esencial para el entendimiento de la dinámica cerebral, y también 

nos ayudara a comprender los procesos celulares y moleculares asociados a la 

percepción. La resonancia magnética funcional (fMRI, por sus siglas en inglés) es una 
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técnica que permite acceder a varios aspectos celulares y metabólicos de la comunicación 

entre redes neuronales que suele ser de difícil acceso. Al mismo tiempo y debido que la 

fMRI es de naturaleza no invasiva, también permite comparar resultados e hipótesis entre 

humanos y primates. Por lo tanto, entender los efectos de la neuromodulación en la 

actividad de los circuitos neuronales es de alta relevancia. Dado que las proyecciones 

anatómicas de los sistemas de neuromoduladores, el uso de fMRI en combinación con 

farmacología y neurofisiología puede incrementar nuestro conocimiento sobre la 

estructura y dinámica de los sistemas de neuromoduladores. Sin embargo, poco se sabe 

sobre cómo interpretar los efectos de neuromodulation usando fMRI y neurofisiología, por 

ejemplo, como diferenciar los cambios en la señal BOLD que están relacionados a 

diferentes estados cognitivos (presumiblemente reflejando la influencia de 

neuromodulation). 

El propósito de esta disertación es la de comprender la relación causal que existe entre 

la actividad neural y la respuesta hemodinámica bajo la influencia de neuromodulación. 

Para tal fin presentamos los resultados de seis estudios que fueron producto de esta 

disertacion. En el primer estudio, desarrollamos una técnica basada en espectrometría de 

masa para detectar y medir la concentración de diferente metabolitos, neurotransmisores 

y neuromoduladores en el cerebro de primates. Dicha cuantificación se desarrollo 

simultáneamente tanto in sangre y cerebro. En un segundo estudio, utilizamos varias 

técnicas de fMRI (BOLD y flujo cerebral sanguíneo, CBF por sus siglas en ingles), 

registros electrofisiológicos con electrodos laminares y farmacología para acceder a los 

efectos de neuromodulation en el acople neurovascular. Para este fin, desarrollamos un 

sistema de inyecciones, basada en cambios de presión, para aplicar substancias 

sistémicamente o intracorticalmente dentro de un escáner de resonancia magnética. En 

nuestro tercer estudio, comparamos los efectos de lactato y piruvato para explorar como 

el desequilibrio metabólico de estas dos substancias afecta la respuesta BOLD. Esto es 

de gran importancia ya que ambas substancias metabólicas usualmente están en 
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equilibrio. Sin embargo, cuando dicho equilibrio es interrumpido, los procesos metabólicos 

que acontecen en la mitocondria afectan las concentraciones de NAD y NADH causado 

cambios en el CBF. En un cuarto estudio, exploramos los efectos de las modulación 

dopaminergica (DAergic) en las señales BOLD, CBF y en la actividad neuronal. 

Encontramos que la modulación DAergic disocia las respuesta BOLD de la respuesta 

neuronal. Interesalmente, los cambios que observamos en la actividad de las neuronas 

estaba altamente acoplados a los efectos que observamos en la señal de CBF. En un 

estudio subsecuente, exploramos si los efectos de dopamina en la actividad neuronal es 

diferentes en las distintas capas de la corteza cerebral. Al mismo tiempo y ya que los 

neuromoduladores afectan la actividad de circuitos neuronales, exploramos si dichos 

efectos pueden usados como marcadores de la influencia de la neuromodulación . Esto 

es importante, ya que diferentes tipos de actividad neuronal brinda información sobre la 

amplitud y dinámica de la repuesta BOLD, y estudies han demostrado que estas bandas 

se originan de diferentes capas cortical. Este estudio revelo, que los potenciales de capo 

(LFPs, por sus siglas en ingles) en frecuencias intermedias puede ser indicativos sobre 

los efectos de neuromodulation en el procesamiento cortical. Dado los resultados en el 

estudio previo, en un sexto estudio, nos enfocamos a entender que tan diferentes las 

capas de la corteza procesan información entrante y saliente en diferentes frecuencias de 

los LFPs. 

Estos descubrimientos demuestran que los efectos de los neuromoduladores tiene una 

fuerte influencia en el acople neurovascular. Los neuromoduladores cambian el balance 

de excitación e inhibición de los circuitos neuronal, pero también median las demandas 

metabólicas. De esta manera, entender cómo interpretar los efectos de los 

neuromoduladores en la respuesta BOLD es esencial para una interpretación veraz y 

efectiva de los datos generados con fMRI. Estos resultados, no solo nos permiten 

comprender los procesos que están relacionados a la atención o de varios procesos 

cognitivos, sino que a su vez, nos permite comprender la señal de fMRI para su futuro uso 
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en la medicina diagnostica, ya que muchas enfermedades psiquiátricas están asociadas 

a trastornos en el sistemas neuromoduladores.  
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2. Synopsis  
 

 

“The brain is a very accommodating structure”… 

“It will let you generate a mass data and interpret them 

to support your ideas. However, the key is strict quality 

of methodology and keeping the ears resolute plugged 

against the siren of over-interpretation” 

Nikos Logothetis, 2005 

Source: The maestro of minds written by Alison 

Abbott, Nature, 2005. 
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2.1 Introduction 
 

2.1.1 General Remarks  

The communication between neurons within neural circuits relies on 

neurotransmitters (glutamate, γ-aminobutyric acid (GABA)) and neuromodulators 

(acetylcholine, dopamine, serotonin, etc.), which are usually released subsequent to 

presynaptic action potentials (Marder, 2012; Marder et al., 2014). However, despite 

sharing similar molecular elements, neurotransmitters and neuromodulators are distinct 

classes of molecules and they mediate different aspects of the neural computation and 

metabolism (Dayan, 2012; Disney et al., 2007; Fellous and Linster, 1998; Gil et al., 1997; 

Gu, 2002; Hasselmo, 1995; Yu and Dayan, 2005). Neurotransmitters on one hand are 

responsible for synaptic signal transmission (classical transmission) while 

neuromodulators exert their functions by mediating different postsynaptic events that result 

in changes to the balance between excitation and inhibition (Logothetis, 2008).  

Neuromodulation, while essential to nervous system function, has been significantly more 

difficult to study than neurotransmission. In principle, because the effects elicited by 

neuromodulators are usually of slow onset, long duration, and are not simple excitation or 

inhibition (Hamood and Marder, 2014; Harris-Warrick and Marder, 1991; Marder et al., 

2014). Neuromodulators, in contrast to neurotransmitters, give to neurons the opportunity 

to be more flexible in their ability to encode different sorts of information (e.g. sensory 

information) on a variety of time scales, and adjust their metabolic demands. However, it 

is important to appreciate that the main challenge in the study of neuromodulation, is to 

understand the extent to which neuromodulators action is coordinated at all levels of brain 

function (Dayan, 2012; Herrero et al., 2008; Yu and Dayan, 2005). That is, from the cellular 

and metabolic level, to network and cognitive control.  
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For instance, understanding the molecular basis by which brain networks interact and 

communicate between each other is essential for the comprehension of the brain 

dynamics, and also helps to put the cellular and molecular processes in perspective. 

However, although a great deal has been learned from characterizing the responses of 

single neurons involve in sensory-, motor- as well as in cognitive function. Functional 

magnetic resonance imaging (fMRI) is an example par excellence of a method allowing 

non-invasive investigation of groups of neurons and neural networks involve in behavior 

and sensory processing. Therefore, given the massive projection patterns of the 

neuromodulatory diffuse ascending systems, fMRI potentially combined with 

pharmacology and neurophysiology may provide insight into how neural networks 

dynamics is alerted by neuromodulation.  

An important aspect about fMRI signals, is that it can measure a broad variety of neural 

events, even if they are brief since most have metabolic consequences (Logothetis et al., 

2012; Russ and Leopold, 2015). However, it is worth noting that fMRI does not measure 

electrical or neurochemical activity directly, but it relies on a combination of changes in 

blood deoxygenation and blood flow that are induced by neural activity (Ogawa et al., 

1990; Ogawa et al., 1992). Nonetheless, whether all aspects of neural activity drive the 

blood-oxygen level dependent (BOLD) responses equally, and if not, which ones are more 

important: for instance the input versus the output from an area, or inhibition versus 

excitation, stimulus driven or neuromodulation activity. Answer to such questions will 

directly affect our interpretation of fMRI results and thus help us to understand results 

obtained with fMRI.  

In my PhD work I set out to investigate the influence of neuromodulation on neural and 

neurovascular coupling activity. To guide the reader into the intriguing world of fMRI and 

the neural, as well as the metabolic, events associated to the dynamics of this signal, I will 

summarize the knowledge regarding the technique. First, I will briefly discuss the known 

physical principles about fMRI signals as well as the metabolic and neural mechanisms 
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that give rise to the BOLD responses. Additionally, given the difference between 

neurotransmission and neuromodulation and that they mediate different aspects of neural 

computation and metabolism, we extensively discuss their similarities and the different 

processes they mediate. I also present the multimodal approach used for elucidating the 

causal relationship of neuromodulation into neural and haemodynamic activity. This 

approach consists of fMRI (BOLD and CBF), electrophysiological recording with a laminar 

probe and pharmacology which is extensively discussed in our manuscripts. 

Subsequently, I will briefly introduce the manuscripts and extensively discuss their 

findings. Based on our finding, I also formulate a number of new but ripe predictions for 

testing, and we also present possible clinical application relevant to the studies in this 

dissertation. I aim to give a comprehensive outline of this fascinating field and highlight the 

need of a novel approach to reach deeper insight into the unsettled mechanisms mediated 

by neuromodulation.  

2.1.2 Basic principles underlying fMRI signals 

fMRI techniques relay on set of physical principles and to properly understand them we 

should begin by looking at a single nucleus. Quantum particles such as the proton and the 

electron possess an important quantum mechanical property called spin. In the particular 

case of the protons as hydrogen atoms (1H), the most abundant element in the human 

body, Spin is a purely quantum mechanical property and has no macroscopic equivalent, 

but it can be thought of as spheres that are spinning about their axis. This gives rise to a 

net magnetic moment along the direction of the axis of the spins, which is the source of 

the signal we seek to measure. When placed in a strong magnetic field (B0), the nuclei 

align with the field, creating a net longitudinal magnetization in the direction of the field. 

While the aligned nuclei precess about the B0 axis at an angular frequency determined by 

the Larmor frequency, but at a random phase with respect to one another. The Larmor 

frequency is specific to the nucleus and depends on the field strength of B0. The application 

of a radiofrequency (RF) electromagnetic field pulse causes the nuclei to absorb the 
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energy at a particular frequency band, and become “excited”. We can imagine this process 

as the RF pulse aligning the phase of the precessing nuclei and tipping them over into the 

transverse plane, driving the net longitudinal magnetization M0 to zero, and establish 

phase-coherence in the x,y-plane, the transversal magnetization. The transverse 

component of the spins oscillates in the xy-plane (the so called free induction decay, FID) 

that can be measured by the RF-coil, which is the key signal measured in MRI and fMRI 

experiments. After the RF pulse is removed, the system gradually returns to equilibrium. 

Now the nuclei emit the absorbed energy as they “relax”. Net transverse magnetization 

disappear due to loss of phase-coherence, in a process known as transversal relaxation, 

while the longitudinal magnetization grows back to its original size in a process referred to 

as longitudinal relaxation. During this time a signal is created that can be measured using 

a receiver coil. Longitudinal relaxation represents the restoration of net magnetization 

along the B0 direction as the nuclei return to their original aligned state. It is seen as an 

exponential recovery in magnetization described by a time constant T1. Transverse 

relaxation is the loss of net magnetization in the transverse plane due to loss of phase 

coherence. Since the net magnetization depends upon the combined contribution of a 

large number of nuclei, its value is largest when all the nuclei are in phase. However, the 

removal of the RF pulse causes the nuclei to de-phase, causing an exponential decay in 

magnetization described by a time constant T2. Both the T1 and T2 values depend on tissue 

type and it is this property that allows for the creation of structural MR images that can be 

used to differentiate between different tissue types. The term T2* is similar to T2, but also 

depends on local inhomogeneities in the magnetic field caused by changes in blood flow 

and oxygenation. These inhomogeneities cause the nuclei to dephase quicker than they 

normally would. Certain pulse sequences are able to eliminate the effects of these 

inhomogeneities, while others seek to emphasize them. The T2* signal provides the basis 

for fMRI, as it is sensitive to neurovascular changes that accompany psychological and 

behavioral function. 
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One important aspect of magnetic resonance imaging is its ability to create a spatial map 

of signals non-invasively, based on a variety of different contrasts that are sensitive to both 

the number and properties of the nuclei being imaged. The basic principle of most of the 

commonly used sequences is fairly simple: assume the initial value of the net 

magnetization is given by M0. By altering how often we excite the nuclei (TR) and how 

soon after the excitation we begin data collection (TE) we can control which characteristics 

of the tissues is emphasized. The flip angle (FA) indicates the angle by which the net 

magnetization was tilted away from its alignment with B1.  

The MRI scanner is ultimately provides us with an image that is represented by a matrix 

of numbers corresponding to spatial locations. These images generally show the spatial 

distribution of some property of the nuclei, such as the density of the specific nuclei, their 

mobility, or the relaxation time, within a tissue or area. Therefore, the different pulse 

sequences define particular aspects of RF pulses and the shape of the magnetic field, that 

allow us to the acquired data into a map of the underlying signal sources. 

2.1.3 The tight neurovascular and neurometabolic coupling 

Individual neurons are surrounded by complex interaction with capillaries, glial cells and 

adjacent neurons (Hillman, 2014; Kasthuri et al., 2015). This coupling, so-called 

neurovascular and neurometabolic coupling, serves as medium for the cell-to-cell 

communication, metabolite transport and ensure adequate supply of oxygen and glucose 

to neurons when needed (Andreone et al., 2015; Leithner and Royl, 2014). The average 

width of the space between brain cells is ~ 20 nm, that is, three times smaller than the 

diameter of a neuron or a glial cell body (Kasthuri et al., 2015). Despite the small space 

between neurons, the diffusion of ions and other solutes within this thin brain-extracellular-

space is reasonably high, thus, providing the elements for the resting and action potential 

of cells, and acting as a volume-conductor (Logothetis et al., 2007).  
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The brain extracellular fluid (BECF) contains a large range of molecules involved in the 

communication within brain cells and in the maintenance of the brain’s high metabolic 

demands (Ivanisevic et al., 2014; Magistretti and Allaman, 2015). Additionally, the BECF 

is the route for which molecules such as O2, glucose and amino acids are delivered to the 

brain, and products of metabolism, including CO2 and catabolized neurotransmitters leave 

the brain (Leybaert, 2005).  

The composition and the concentration of solutes in the BECF are continuously changing 

with neural activity, and variations in the composition of the BECF can also affect the 

neural activity (Cauli and Hamel, 2010; Ding et al., 2016; von Pfostl et al., 2012; Zaldivar 

et al., 2014; Zhang et al., 2008). However, different and multiple mechanism are carefully 

deployed by the brain to control the composition of the BECF: i) the blood-brain-barrier 

(BBB) prevents that changes in the blood chemical composition affects the BECF 

(Hawkins and Davis, 2005; Rapoport, 1996; Weber et al., 2008); ii) the BECF and the 

cerebral-spinal-fluid (CSF; see Zhang et al., 2008) are in slow diffusional equilibrium, 

therefore self- and mutually-regulating their composition; and iii) the surrounding glial cells 

provide structural and metabolic support neurons, and they also condition the BECF 

composition (Amzica and Steriade, 2000). 

Following the activation of neural activity, the neurovascular coupling increases the 

cerebral blood flow (CBF) in order to match the supply of blood and nutrients (Logothetis, 

2008; Sokoloff, 1977b). Under normal circumstances, glucose is the only useful energy 

substrate for the brain but its metabolism differs in neurons and astrocytes (Chih and 

Roberts Jr, 2003; Magistretti and Allaman, 2015). For instance, neurons are preferentially 

oxidative while astrocytes prefer glycolysis (Bouzier-Sore et al., 2006). That is, neurons 

prefer to fully oxidized glucose and metabolites, such as pyruvate and lactate, for the 

production of end-stage fuel in the form of adenosine-triphosphate (36 ATP per glucose 

molecule or 17 if the substrate is lactate/pyruvate). All of these metabolic processes taking 

place in the mitochondria, involve the tricarboxylic acid (TCA) cycle and electro transfer in 
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the respiratory chain, O2 consumption, and the production of CO2 and H2O (Magistretti and 

Allaman, 2015; Pellerin and Magistretti, 2004). The glycolysis, however, involves the 

production of two molecules of ATP as glucose is processed into pyruvate. Lactate is also 

formed by glycolysis: under low oxygen tension (Hertz et al., 2007), pyruvate is converted 

to lactate in a process that regenerated NAD+, and essential cofactor to sustain a glycolytic 

flux (Belanger et al., 2011).  

However, lactate can also be produced under normal O2 conditions (Samuelsson et al., 

2007; von Pfostl et al., 2012; Yao et al., 2003) and when it is fully oxidized, it provides up 

to 10 % of the brain energy requirement (Boumezbeur et al., 2010; Gallagher et al., 2009). 

Usually lactate is transported out of the astrocytes, and into neurons, where it fuels the 

neural-activity-related energy needs, and studies have shown that neurons preferentially 

oxidizes lactate over glucose when both substrates are present in the BECF (Bouzier-Sore 

et al., 2006; Itoh et al., 2003). Nonetheless, the reasons for the increase in lactate 

production during neuronal activity is not entirely clear. Studies have suggested that 

lactate production increases when the glycolytic activity transiently exceeds ongoing 

oxidative metabolism. This is usually observed when the NADH shuttles are not activated 

as quickly as needed (Clarke et al., 1989a, b). 

Energy utilization is related to the activity of ionic pumps and metabolic transporters that 

help to reestablish the electrochemical gradient and the composition of the BECF. Several 

experimental evidence have suggested that the restoration of ion gradients occurs in 

parallel with the glutamate/glutamine cycling (Attwell and Laughlin, 2001a; Bak et al., 

2006). As a consequence of glutamatergic neurotransmission 80% of the glucose entering 

the brain is oxidized (Petroff et al., 2002). The same can be said for γ-aminobutyric acid 

(GABA), which can be included in the glutamate/glutamine cycle, because GABA is partly 

recycled in astrocytes via glutamine synthesis (McKenna, 2007). However, this process of 

GABA would not account for more than 8 – 10% of the total glutamine flux in the human 

cortex (Shen et al., 1999). The essential point is that the majority of the energy 
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consumption is directly reflecting the level of glutamatergic neurotransmission and its 

associated recycling.  

From an anatomical perspective, astrocytes are ideally positioned to guide information in 

a bidirectional manner between neurons and blood vessels (Belanger et al., 2011; Cauli 

and Hamel, 2010; Dienel et al., 2007). The endfeet of an astrocyte, usually contacts 

hundreds of synapses and covers about ~ 98 % of the alblumical surface of cerebral 

vessels (Mathiisen et al., 2010; Simard and Nedergaard, 2004). At the same time, 

astrocytes are also coupled via gap junctions, thus, establishing an electrical syncytium 

that allows localized signals to be spread across broad regions (Parys et al., 2010). This 

structural coupling provides an efficient means to spread and amplify metabolic signals 

across neural networks (Hertz et al., 2007). Moreover, gap junctions also provide a route 

for information to be conducted to the upstream pial circulation (Figueroa and Duling, 

2009). A variety of vasoactive molecules, such as H+, K+, adenosine nitric oxide, etc., 

increase the CBF in a activity-dependent manner (Attwell et al., 2010; Hamilton et al., 

2010), which entails that glutamate signaling on astrocytes causes/triggers vasomotor 

responses, either vasoconstriction and vasodilation (Attwell et al., 2010; Attwell and 

Laughlin, 2001a; Iadecola and Nedergaard, 2007). Not to mention, that these molecules 

have the capability to diffuse to smooth muscle cells and cause vascular effects influencing 

the hemodynamic signals (Iadecola and Nedergaard, 2007; Mathiisen et al., 2010). 

2.1.4 What we know about the mechanisms behind the BOLD 

The blood oxygenation-level dependent (BOLD) signal, takes advantage of differences in 

the magnetic properties of oxygenated- (OHb) and deoxygenated-hemoglobin (dHB; 

Ogawa et al., 1990). When the neuronal activity increases in a certain area, it triggers an 

increase in the metabolic demands for O2 and nutrients (Belanger et al., 2011; Magistretti 

and Allaman, 2015). It can also be seen, as the neural firing signaling the extraction of O2 

from OHb causing the hemoglobin to become paramagnetic as iron atoms are more 

exposed to the surrounding water (Buxton, 2013). This creates small distortions in the 
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magnetic field that cause a decrease in T2
∗, leading to a faster decay of the signal and a 

local decrease in BOLD signal (Logothetis and Wandell, 2004). Subsequently, 

overcompensation in blood flow increases the amount of OHb and a decrease in the dHb 

concentration which increases the T2
∗ and leads to a signal increase in the gradient-echo 

(GE) images (Kim, 1995; Ogawa et al., 1992).  

Moreover, the BOLD signal represents a complex response controlled by several 

parameters (Kim and Ogawa, 2012; Ogawa et al., 1990) and its magnitude is determine 

by the CBF, the cerebral-metabolic consumption of oxygen (CMRO2) and the cerebral 

blood volume (CBV; Buxton, 2013; Leontiev et al., 2007). The BOLD signals has both 

negative and positive components reflecting different neuronal (Logothetis et al., 2001; 

Shmuel et al., 2006) and metabolic processes (Goense et al., 2012; Sokoloff, 1977a, b). 

For instance, positive BOLD corresponds to the hyperoxygenated following an increased 

in the CBF, as the haemoglobin in capillaries and post-capillary vessels shifts toward OHb. 

This reduces the magnetic field gradients surrounding capillaries and veins and increases 

the signal intensity in BOLD images (Logothetis and Wandell, 2004; Ogawa et al., 1990; 

Ogawa et al., 1992). Following stimulation, CBV, which increases during elevated activity, 

returns to its basal value more slowly than CBF and CMRO2, resulting in a post-stimulus 

undershoot in signal intensity (Attwell and Laughlin, 2001a). On the other hand, negative 

BOLD occurs because the local increase in CMRO2 that accompanies neural activity 

precedes the elevation of CBF in the activated region, causing an early transient in dHb 

concentration. 

It is worth noting that, the BOLD signal only provides an indirect measure of neural activity. 

It is therefore important to understand how well the BOLD signal reflects actual increases 

in neuronal firing and whether all the types of neural activity drive the BOLD responses 

equally, and if not, which ones are more important: for instance the input versus the output 

from an area, or inhibition versus excitation, stimulus driven or neuromodulatory activity. 

In short, the work by Logothetis et al., (2001) showed that the BOLD signal corresponds 
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closely to the local electrical field potentials (LFPs) surrounding a group of cells, which is 

likely to reflect changes in post-synaptic activity under many conditions. In good 

agreement with these observations, several studies using the deoxyglucose (2-DG) 

autoradiographic techniques demonstrated that regional glucose utilization is directly 

related to neuronal synaptic activity (Sokoloff, 1977b; Sokoloff et al., 1977). In this view, 

the greatest 2-DG uptake was found to be in the neuropil, i.e. in areas rich in synapses, 

dendrites, and axons, rather than in cell bodies. Moreover, studies that compared 

orthodromic (activation of both pre- and postsynaptic terminals) and antidromic electrical 

stimulation (activating postsynaptic terminals only) demonstrated that glucose utilization 

increases only at presynaptic terminals (Kadekaro et al., 1985; Kadekaro et al., 1987). 

Along with these line of evidence, the highest density of cytochrome oxidase (enzyme of 

the respiratory chain) is found in somato dendritic regions adjacent to axon (Di Rocco et 

al., 1989; Kageyama and Wong-Riley, 1986). 

However, to better understand the relationship between BOLD signal and the underlying 

cellular activity it is of obvious importance to understand what type of neural activity drives 

the hemodynamic responses and how this relationship is mediated by the different 

neuromodulators (Logothetis, 2008).  

2.1.5 Neural correlates of the BOLD-fMRI signal 

Electrophysiological studies at the systems and behavioral level typically record 

extracellular signals, which reflect synaptic and spiking activity (Belitski et al., 2008; 

Belitski et al., 2010; Einevoll et al., 2013). As we discussed earlier, neurons are embedded 

in the BECF, which acts as a volume conductor, allowing the passive spread of electrical 

signal (Logothetis, 2008; Oeltermann et al., 2007): when excitatory postsynaptic potentials 

occur in one part of a neuron its membrane potential will momentarily be depolarized due 

to current flowing into the cell (inward currents). This causes an outward flow of current 

along the core of the cell (Einevoll et al., 2013; 2007). This current is, subsequently, 

matched by a return current flowing through the extracellular space. The active region of 
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the membrane together form a current sink, while the inactive region act collectively as a 

current source (current-source analysis, or CSD, is used for the source and sink 

detections). In other words, the current sink is localized at the site of synaptic excitation, 

where there is a net influx of positive ions.  

Given the resistive nature of the ECF these current generate the so-called extracellular 

field potentials (EFP; see Destexhe et al., 1999; Logothetis, 2008). The signals detected 

by an electrode placed at neural site represents the mean-EFP from the spatially weighted 

sum of sinks and sources along multiple cells at this particular point  (Buzsaki et al., 2012; 

Buzsaki and Wang, 2012). Three different signals are usually extracted from the 

extracellular microelectrode recordings, each covering a different frequency region of the 

acquired signals: (i) the multiple-unit-activity (MUA) is characterized as compound 

electrical signals in a frequency range around 900 to 3500 Hz. This signal has been shown 

to reflect population spiking activity of neurons (seems to incorporate signals from a sphere 

of 150–300 μm radius; (Buchwald et al., 1966; Gray et al., 1989; Legatt et al., 1980; 

Logothetis, 2008)) and vary systematically with stimulus properties in the same way as the 

activity of single neurons (Kayser et al., 2007; Whittingstall and Logothetis, 2009); (ii) 

covering the same frequency range as MUA, the single-unit activity (SUA) reports mainly 

on the activity of the principal neurons that form the major output of a cortical area; and 

(iii) the local field potentials (LFPs, low-pass filter cutoff of approximately 250 Hz) is defined 

as the low-frequency components of the EFP and represents the weighted average of 

synchronized dendro-somatic components of the synaptic signals (input of a given cortical 

area as well as its local intracortical processing) of a neuronal population within 0.5–3 mm 

of the electrode tip (Logothetis, 2008; Mitzdorf, 1985, 1987).  

The LFP-power modulation is traditionally decomposed and interpreted in the frequency 

domains initially introduced in the electroencephalography (EEG) literature (Coenen, 

1995; Nunez, 1981): delta (0.5 – 4 Hz), theta (4 – 8 Hz), alpha (9 – 15 Hz), beta/nMOD 

(18 – 38 Hz), gamma (50 – 100 Hz) and high-gamma (100 – 150/250 Hz). However, there 
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are inconsistencies in the exact definition of frequency bands, given that their frequency 

definition are associated to distinct behavioral states or sensory inputs (Steriade, 2006; 

Whittingstall and Logothetis, 2009). An alternative and powerful approach to separate 

functionally meaningful LFP-bands, is to quantify co-variation in amplitude across 

frequencies (Belitski et al., 2008). This procedure consists in computing correlation among 

LFP-bands to detect whether or not the amplitude variations in one band are dependent 

or independent from the amplitude variations in another (Belitski et al., 2008; Magri et al., 

2012a). Accordingly, to identify the boundaries between statistically independent bands 

two types of correlations among frequency have been used: (i) signal correlations reflect 

similarities between different frequency bands in their tuning to external conditions; (ii) 

noise correlations reflect the trial-by-trial variability between different bands after 

discounting their similarities in tuning (Belitski et al., 2008).  

The signal and noise correlations approach in combination with mutual information have 

provided powerful means to quantify both the amount and the nature of information carried 

by each frequency band (Belitski et al., 2008; 2010; Brunel, 2016; Brunel and Wang, 2001, 

2003; Panzeri et al., 2010). What these studies found, is that in visual cortex frequencies 

above 50 Hz and frequencies bellow 20 Hz shared neither signal correlation nor noise 

correlations, indicating that they act as independent visual information channels and 

probably originate from separate neural process. These studies, interestingly, also 

revealed that frequencies between 18 – 30 Hz exhibited high noise correlations but low 

signal correlations, and carry little stimulus information (Belitski et al., 2008). This profile 

of information and correlations have led to suggest that the signals in this frequency range 

are generated by common processes that are unrelated to the visual stimuli, perhaps, the 

influence of neuromodulation (Einevoll et al., 2013; Magri et al., 2012b). 

Given the distinction of the different signals that can be obtained from the extracellular 

recordings and due that they can be decomposed depending on the amount and nature of 

information they carry, one can ask which signals best explains the activity reflected in the 



 
 

pg. 51 
 

fMRI experiments?. Simultaneous measurements of intracortical neuronal activity and 

fMRI in the behaving and anesthetized non-human primates have characterized the 

relationship between the activity of each LFP and BOLD, as well as MUA and BOLD 

responses (Goense and Logothetis, 2008; Magri et al., 2012b; Rauch et al., 2008a; Rauch 

et al., 2008b; Zaldivar et al., 2014). In view of these studies, the correlation coefficients 

are higher between LFP and BOLD that between MUA and the BOLD signals (Logothetis 

et al., 2001; Viswanathan and Freeman, 2007). This implies that the overall synaptic 

activity or the input of an area is a strong generator of BOLD signal than its output 

(Logothetis, 2008; Logothetis et al., 2010; Viswanathan and Freeman, 2007). Furthermore, 

these findings also revealed that BOLD signals and LFP are preferentially correlated at 

specific frequency bands of the LFP (Magri et al., 2012b). This is not surprising giving that 

different LFP bands correlate with distinct behavioral states and reflect to a large extent 

the activity of different neural processing pathways (Belitski et al., 2008).  

Studies combining fMRI with neurophysiology, either simultaneously or consecutively, 

have found frequency-dependent match between the fMRI signals and the different LFP-

bands (Goense and Logothetis, 2008; Logothetis et al., 2001; Magri et al., 2012b). For 

instance, frequency bands bellow 12 Hz showed negative correlation with the imaging 

signals. In other words, reduced field potential during increased blood flow response 

(Magri et al., 2012b). However, high frequencies, in particular bands between 50 and 100 

Hz, showed good correlation with the imaging signal and, importantly, stronger correlations 

than the observed for the MUA (Logothetis et al., 2001; Rauch et al., 2008b).  

Another aspect worth to consider is that frequencies in the gamma range (50 – 100 Hz) 

and frequencies bellow 20Hz are strongly modulated by the sensory stimulus, which has 

been used to assess the correlations to the BOLD-responses (Belitski et al., 2008; Magri 

et al., 2012b). Moreover, as discussed ealier, the activity reflected in frequencies between 

18 to 38 Hz dissociates from the activity in the low and high-frequency bands. However, it 

appears that the activity in this frequency band is highly informative about how fast 
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changes in the BOLD signal occur following changes in the gamma power (Magri et al., 

2012b). That is, when the power in this band is high, BOLD responses would increase fast 

and decrease slowly (sustained decrease). On the other hand, when the power in this 

band is low, the BOLD responses would raise slowly but return to baseline activity faster. 

Release of neuromodulators such as acetylcholine, dopamine, noradrenaline, and 

serotonin has been shown to affect cortical excitability (Steriade, 1993). Neuromodulators 

are known to alter the relationship between the BOLD signal and neural activity in multiple 

and different ways (Dayan, 2012), for example, by affecting key neural parameters such 

as the balance between excitation and inhibition (Rauch et al., 2008b; Zaldivar et al., 

2014), or they may be involved in the regulation of cerebral blood flow and neurovascular 

coupling (Dayan, 2012; Iadecola, 2004), therefore allowing faster or slower hemodynamic 

responses.  

2.1.6 Neurotransmission and Neuromodulation  

Chemically mediated transmission is the major means by which signals are communicated 

between neurons within neural circuits. These transmitters of information can be 

conceptualized as an endogenous substance being released by neurons, acts on 

receptors typically located on the membranes of postsynaptic cells and produces 

functional changes in the biophysical properties of the target cells (Miledi, 1973). However, 

it is worth noting that not all of these molecules behave similarly (Dayan, 2012; Gil et al., 

1997) and given their difference in dynamics, transmitters can be divided in two basic 

types: (i) neurotransmitters which are release from sources intrinsic to a local circuit 

(classical neurotransmitters, such as glutamate, GABA and glycine); and (ii) 

neuromodulators, those that arise from extrinsic sources (such as dopamine, serotonin, 

etc.).  

The molecular elements that mediate neurotransmission and neuromodulation are similar 

but they have different temporal scales and dynamics, which can be explained by 

differences in the structure and function of their receptors (Clapham, 1994; Geppetti et al., 
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2015; Herguedas et al., 2016; Rao and Finkbeiner, 2007). For instance, when 

neurotransmitters are released by a presynaptic neuron, they directly, and immediately, 

influence its postsynaptic target. Such influence of the neurotransmitters, is usually fast 

given that their receptors are harnessed to ion-channels that open, to increase ion 

conductance, once the neurotransmitter binds its receptor (Rao and Finkbeiner, 2007). On 

the other hand, the effects elicited by neuromodulators, tend to be of slow onset and long 

duration since their receptors are coupled via second messenger pathways (also known 

as metabotropic receptors), which do not directly open ion-channels but modulate their 

opening and closing time, as wells as their affinity to specific ions (Clapham, 1994; 

Geppetti et al., 2015).  

Furthermore, neuromodulators and neurotransmitters alter the regional metabolic 

demands, whether they modulate global activity of microcircuits or differentially affect a 

small subset of neurons (Dayan, 2012; Harris-Warrick and Marder, 1991; Logothetis, 

2008). However, both classes of transmitters differ in their mechanisms mediating brain 

metabolism (Attwell and Laughlin, 2001a; Gibson et al., 1981; Gsell et al., 2006; Hawkins, 

2009; Leybaert, 2005). In principle, neurotransmitters are usually reabsorbed by 

presynaptic neurons or by glia, and/or broken down into a metabolite that can either be 

used to produce energy or to generate more neurotransmitter (Bak et al., 2006; Magistretti 

and Allaman, 2015). For example, glutamate and γ-aminobutyric acid (GABA), the major 

excitatory and inhibitory neurotransmitters (Gil et al., 1997; Hasselmo, 1995), are recycled 

by the presynaptic neurons to replenish the glutamate or GABA vesicular pool (Bak et al., 

2006; McKenna, 2007; Stobart and Anderson, 2013). In addition, the remaining 

glutamate/GABA in the synaptic cleft can, to some extent, be catabolized within the TCA-

cycle in astrocytes, thereby directly mediating the metabolic demands (Bak et al., 2006).  

Neuromodulators, in contrast to neurotransmitters, end up spending a significant amount 

of time in the BECF, influencing (or modulating) the activity from several other neurons 

and mediating the CBF (Dayan, 2012). Such influence in neural activity and CBF can either 
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be direct or indirect, and is highly dependent on receptors’ location and density. Hence, 

the effects of neuromodulators can be the result of various mechanisms: (i) given that the 

receptors of neuromodulators are usually expresses on the vasculature surface, they can 

directly mediate the vascular tone bypassing the glia-cells.. However, as mentioned 

earlier, such influence would highly depend on whether or not the receptors are expressed 

in a defined brain region (Krimer et al., 1998); (ii) the activation of neuromodulator 

receptors on the target cells results in a cascade of biochemical reactions that modulate 

the response properties of neurons and can either increase or decrease the synthesis of 

ion channels, metabolic transporter and enzymes (Froemke, 2015; Gil et al., 1997; Marder, 

2012; Marder and Thirumalai, 2002). Hence, resulting increased/decreased inflow/outflow 

of ions and metabolites which eventually changes the composition of the BECF and 

influence the vascular tone (Amzica and Steriade, 2000; Simard and Nedergaard, 2004); 

(iii) adenosine, which mediates the vascular tone directly, is usually produced as a 

consequence of activating second-messengers signaling cascades which yields to 

increased, or decreased, ATP-utilization and the release of adenosine to the BECF; and 

(iv) neuromodulators also mediate the responses of neurons via long-range interactions 

with other brain regions (Jbabdi et al., 2015; Knosche and Tittgemeyer, 2011). In other 

words, a neuromodulator can affect the activity from region A directly, but can also 

modulate the activity from the region B indirectly. That is, because region A and B are 

interconnected and their activity are dependent of each other. Therefore, if the activity from 

region A is highly influence by a certain class of neuromodulator, this would either increase 

or decrease the neural activity  in region B following by changes in its metabolic demands 

(Logothetis et al., 2010; Tolias et al., 2005; Zaldivar et al., 2014).  

Overall, neuromodulators alter the input/output properties of neural circuits and optimize 

their energy expenditure (Attwell and Laughlin, 2001b; Marder et al., 2014; Sengupta et 

al., 2014). The anatomy and physiology of neuromodulator systems have been well 

described (Gu, 2002). For instance, cortical innervation by axons containing the 
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neuromodulators, acetylcholine (Ach), dopamine (DA), noradrenaline (NE), serotonin 

(5HT) or histamine, arises mostly from cell groups located in the nucleus basalis of 

Meynert in the basal fore brain (Mesulam et al., 1983), ventral tegmental area of the 

midbrain (VTA), locus coeruleous (LC in the midbrain), raphe nuclei in the brain stem and 

tuberomammillary nucleus in the posterior hypothalamus (Matthews et al., 2016), 

respectively. Axon terminals of these neuromodulator systems build up a network 

occupying the entire cerebral cortex and mediating different aspects of neural computation 

(Gu, 2002). More interestingly, each of the neuromodulatory pathway tends to show a 

distinct laminar distribution patterns and densities of axon fibers, (Eickhoff et al., 2007a; 

2007b) and within a cortical region, the laminar distribution of a given neuromodulators is 

usually different across species (Gu, 2002). Furthermore, neuromodulators can form 

symmetric and asymmetric synapses with cortical neurons which include both pyramidal 

neurons (glutamatergic) and interneurons (GABAergic). Responses to each of the 

neuromodulator transmitters are mediated by numerous receptor subtypes which are 

linked to multiple signal transduction mechanism.  

2.1.7 Pharmacology: pharmaco-MRI (phMRI) 

The most direct way to test the “causal” role of the neurovascular coupling- and 

neurophysiology-related responses is to directly perturb that neural activity and measure 

its effects on fMRI activity (Logothetis et al., 2010; Rauch et al., 2008a; Rauch et al., 

2008b; von Pfostl et al., 2012; Zaldivar et al., 2014). Optogenetics strategies to control 

genetically distinct populations of neurons with light have been rapidly evolve and widely 

adopted in neuroscience (Lee et al., 2010). Although this technic have already reshaped 

neuroscience by allowing for more precise control of circuit function, current limitations of 

these approaches should be considered. For instance, it is unlikely that all neurons sharing 

the same genetic marker have the same function or project to the same sites. At the same 

time, given the diversity of neuron types, there is a lack of genetic tools for cell-type specific 

targeting of proteins in the primate brain (Izpisua Belmonte et al., 2015; Miller et al., 2016). 
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Lastly, but not least, photostimulation is not able to produce patterns of neural fluctuations 

that are above 80 Hz (Malyshev et al., 2015) 

Pharmacology has been used to investigate how neurotransmitter- and neuromodulatory-

systems influence neural activity, providing the means to study the neurochemical basis 

of brain modulation. It is through pharmacology that the characterizations of the 

neurotransmitters involve in excitation and inhibition was made possible (Hayashi, 1952, 

1959). For example, the excitatory and inhibitory nature of glutamate and GABA, 

respectively, was first motivated by pharmacology experiments carried by Takashi 

Hayashi. His studies revealed that the injections of glutamate into the cerebral ventricles 

of dogs caused generalized seizures (Hayashi, 1952) which were inhibited by subsequent 

intraventricular injections of GABA (Hayashi, 1959). This generalized seizures were the 

result of changing the composition in the CSF which affects the composition in the BECF 

(Amzica and Steriade, 2000; Hawkins and Davis, 2005; Hawkins, 2009; Hayashi, 1952, 

1959; McKenna, 2007). This resulted in a coordinated and generalized activation of 

glutamatergic receptors which caused the seizures.  

The neurotransmitters GABA and glutamate are important mediators of many critical 

physiological and metabolic, as well as pathophysiological, events underlying brain 

function and dysfunction. Pharmacological studies using drugs that selectively block or 

augment the action of GABA or glutamate support the notion that these two 

neurotransmitters, despite their opposing excitatory and inhibitory action, control the 

overall excitability in the brain (Armstrong-James et al., 1993; Bak et al., 2006; Chen et 

al., 2005; Gsell et al., 2006; Herguedas et al., 2016; Herrero et al., 2013). For instance, 

the excitatory actions of glutamate are mediated by AMPA (α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors located in 

postsynaptic neurons (Hirsch et al., 2015; Rao and Finkbeiner, 2007; Self et al., 2012; 

Siegelbaum and Tsien, 1983). Local excitation, perhaps induced by sensory stimulation or 

by a cognitive task, is strongly affected by recurrent inhibition mediated by GABAergic 
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interneurons (Douglas and Martin, 2004; Kujala et al., 2015). Together, glutamate and 

GABA are not only re responsible for a major part of neurotransmission but also mediate 

changes in the regional CBF (Goense and Logothetis, 2008; Logothetis, 2008).  

Despite their seemingly ubiquitous projections, neuromodulatory systems have strikingly 

specific activity-modulation through multiple neurochemicals and layer-specific projection 

profiles (Gu, 2002). It follows that each system likely modulates different aspects of neural 

activity and behavior (Dayan, 2012). Hence, it is expected that different neuromodulators 

exert different effects on the hemodynamic signals, because they have different projection 

patterns and receptor types (Rauch et al., 2008b; Zaldivar et al., 2014). These receptors 

are located in all neuronal compartments, influencing every aspect of neural computation 

and metabolism (Dayan, 2012; Sengupta et al., 2014) and their effects highly depend on 

their location, density and distribution (Gu, 2002; Krimer et al., 1998). Further, the effects 

of neuromodulators cannot be simply viewed as increases or decreases in neural 

excitability, but rather, having divergent actions on multiple ion conductances, and 

consequently on the metabolism of a neural network (Attwell and Laughlin, 2001a; Dayan, 

2012; Sengupta et al., 2014).  

Understanding how neuromodulators affect the BOLD response is evidently essential for 

an effective interpretation of fMRI-data, not only in task-related fMRI but may also aid 

diagnostic use of fMRI, since many psychiatric disorders are associated with alterations in 

neuromodulatory systems (Dayan, 2012; Mitterschiffthaler et al., 2006). Thus, the 

combination of fMRI and pharmacology can help understanding neuromodulatory 

mechanisms, and the further combination with electrophysiology become a powerful tool 

to test the coupling between fMRI signals, neural signals, and the different 

neuromodulators (Rauch et al., 2008b; Zaldivar et al., 2014).  

Pharmacological-fMRI (phMRI) was initially used to map spatiotemporal patterns of brain 

activity elicited by acute pharmacological challenges (Honey and Bullmore, 2004; Schwarz 
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et al., 2007). For example, studies in humans using scopolamine (a selective 

acetylcholine-muscarinic receptor antagonist) to pharmacologically induce memory 

impairment, showed substantially reduced activation in the hippocampus, fusiform gyrus 

and prefrontal cortex (Honey and Bullmore, 2004; Sperling et al., 2002). Other studies 

found that cortical activation increased while subcortical activation decreased with the use 

of serotoninergic agonists (Loubinoux et al., 2002).  

It is worth noting that the effects of drugs on neural responses, vascular reactivity and 

neurovascular coupling are complex, and judicious interpretation of data is often hampered 

by the indirect nature of the fMRI signals (Dayan, 2012; Noudoost and Moore, 2011; 

Zaldivar et al., 2014). Hence, studies that cross-validate BOLD measures of drug action 

with behavior, electrophysiological measures and/or with other neuroimaging techniques, 

are invaluable in resolving these important issues. For instance, the use of a GABA-

antagonist induced a sustained increase in brain activation, likely due to reduced inhibition, 

whereas GABA-releasing agents correlated with decreased hemodynamic responses 

(Chen et al., 2005; Kalisch et al., 2004; Reese et al., 2000). Moreover, reduced tissue 

perfusion was accompanied by an increased tissue oxygen tension, demonstrating an 

overall reduction of oxidative metabolism due to GABAergic neurotransmission (Chen et 

al., 2005).  

Similarly, studies have shown that when presynaptic glutamate release is blocked (Kida 

et al., 2001; Kida et al., 2006) or when selective antagonists either for AMPA- or NMDA- 

receptors are used (Rao and Finkbeiner, 2007), BOLD and CBF responses are reduced. 

Furthermore, Gsell, et al. (Gsell et al., 2006) showed a differential contribution of the two 

major ionotropic glutamate receptors to the hemodynamic response. The reductions in 

BOLD and CBF were dose-dependent and stronger when using AMPA-receptor 

antagonists than when blocking NMDA-receptors (Gsell et al., 2006). This difference may 

reflect the different roles of the receptors. For instance, blockade of AMPA-receptors 

disturbs the thalamocortical input (feedforward), decreasing all neural responses and 
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consequently the blood flow (Logothetis, 2008; Rao and Finkbeiner, 2007). NMDA-

receptor antagonists reduce the postsynaptic currents (feedback) without affecting the 

feedforward responses (Gsell et al., 2006; Rao and Finkbeiner, 2007). Another possible 

reason may be that NMDA-receptors exert an indirect vasomotor role via the release of 

nitric oxide (Faraci and Breese, 1993).  Overall, different studies have shown that the 

effects mediated by GABAergic and glutamatergic neurotransmission (Chen et al., 2005; 

Gozzi et al., 2008; Gozzi et al., 2005; Zonta et al., 2003) are reflected in the fMRI signals. 

Yet, despite the tight correlation between neural activity and the hemodynamic responses, 

it is difficult to make inferences about particular brain functions by only using phMRI. For 

instance, Rauch et al. (2008b) showed how complex the relationship between neural 

activity and the hemodynamic response can be under the influence of neuromodulation. 

Using a selective serotonin (5HT1A-receptor) agonist in V1, which causes persistent 

hyperpolarization of pyramidal neurons, they found that despite the decreased spiking 

activity, both the local processing reflected in the LFP and the BOLD responses were 

unaffected. Thus, the output of a neural network poses relative little metabolic demands 

compared with the overall presynaptic and postsynaptic processing of the incoming 

afferent activity (Goense and Logothetis, 2008; Logothetis, 2008; Rauch et al., 2008b). 

Hence, combining fMRI, neurophysiology and pharmacology may help us to disentangle 

the relationships between the hemodynamic signal and the neural activity. Although in 

some cases the interpretation of the signals is straightforward (Rauch et al., 2008a), in 

other cases the effects of neuromodulators will strongly depend on receptor type, location 

and density, as well as on the particular functions they modulate (Dayan, 2012; Rauch et 

al., 2008b; Zaldivar et al., 2014). 

2.1.8 Primary Visual Cortex and Neuromodulation in Non-human Primates 

The primary visual cortex (V1) is the principal telencephalic recipient of visual input in 

humans and non-human primates (NHP; Callaway, 1998; Izpisua Belmonte et al., 2015), 
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and electrophysiological and neuroimaging mapping have revealed, that the visual field 

layout and basic neural selectivity of V1 are similar in humans and NHP (Papanikolaou et 

al., 2014; Self et al., 2016). 

V1 is the earliest cortical visual area and highly specialized for processing information 

about static and moving objects (DiCarlo et al., 2012; Leopold, 2012; Rajalingham et al., 

2015). This is principally due to the well-organized maps about the visual space that V1 

keeps (Douglas and Martin, 2004, 2007; Hubel and Wiesel, 1962). It is worth noting that 

nearly all lateral geniculate nucleus (LGN) projections are directed to V1. Such projections 

can be subdivided in different pathway: (i) magnocellular (M), (ii) parvocellular (P), and (iii) 

koniocellular (K). Each of these pathway receives inputs from different types of retina cells 

and projects to distinct zones in V1 (Callaway, 1998; Nassi and Callaway, 2009). In 

principle, neurons from the LGN-layers M and P project to separate subcompartments of 

layers 4C and 6 (Callaway, 1998). Moreover, neurons from the M-pathway have relatively 

large receptive fields and respond transiently to visual stimuli. In contrast, cell originating 

from the P-pathway have small receptive fields and convey more detailed fine spatial 

information (Nassi and Callaway, 2009).  

Another notable specialization of V1, is the high density and cellular morphology of 

neurons located in the granular layer (G-layer; Douglas and Martin, 2004; Roelfsema and 

Treue, 2014) which has been attributed to specialized class of thalamo-recipient neurons 

with dendritic spines with an unusually compact stellate morphology (Lewis and Lund, 

1990). This characteristic is also present in humans and in other primates (such as New 

World Primates; see Mitchell and Leopold, 2015), and it is totally absent among rodent 

(Takahata et al., 2006; Takahata et al., 2012). In the extragranular layers of primate V1 

(supragranular layers, SG; infragranular layers, IG), the information from the P, M and K 

pathways becomes less segregated and is, to some extent, reorganized to meet the 

requirements of dorsal and ventral processing streams (Callaway, 1998; Douglas and 

Martin, 2004; Nassi and Callaway, 2009). For example, information is segregated between 
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the “blobs” and “interblobs” in the SG (Horton, 1984) which have different visual response 

properties and projection targets (Federer et al., 2009). For instance, the primate interblob 

regions are organized into columns and are sensitive to a particular orientation. Such 

orientation columns are present in certain mammalian species such as cats (Hubel and 

Wiesel, 1962) and tree shrews (Humphrey and Norton, 1980) but they are, however, 

absent in rodents (Metin et al., 1988), including highly visual rodents such as squirrels 

(Van Hooser et al.,2005).  

Furthermore, the organization of the vasculature in the macaque V1 is highly specialized 

as well. It has a marked gradient in the microvascular density along the cortical layers, 

with the highest density in the G-layer (Logothetis, 2008; Weber et al., 2008). Moreover, 

this appears to be consistent across all monkey species and humans (Blinder et al., 2013; 

Duvernoy et al., 1981; Zheng et al., 1991) and it seems to be developed in parallel to the 

COX activity (Fonta and Imbert, 2002). Interestingly, the vascular density in other visual 

areas appears to be lower compared to the V1 (Duvernoy et al., 1981; Zheng et al., 1991) 

and the laminar differences also appear to be less pronounce (Weber et al., 2008) 

Therefore, V1 offers great advantages over other cortical structures for the study of 

neuromodulation and neurotransmission on the neurovascular coupling. First, the activity 

of the neurons in V1 is strongly but selectively influence by the stimulus and it offers the 

means to study event-related hemodynamic and neurophysiological responses and their 

causal relationship (Logothetis et al., 2001). This visual-induced modulation, can easily be 

separated into two stages of information processing: (i) an initial peak immediately after 

the stimulus onset (50 – 100 ms) which provides a measure for the feedforward input and 

the rapid local processing taking place within V1 (Maier et al., 2011; Xing et al., 2012); and 

(ii) a later sustained period of neural activity (100 ms and onwards) which provides a 

measure of recurrence modulation in V1 (Self et al., 2012; Self et al., 2013). Third, multiple 

studies have demonstrated that the neuromodulatory and neurotransmitter receptors are 

expressed in different cortical layer.  
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The laminar distribution of neuromodulator receptors and neurons are remarkably 

important, given that the population of neurons in different cortical layers employ different 

coding strategies (Hansen et al., 2012) which can be, in principle, differentially modulated 

by neuromodulators (Dayan, 2012). For example; the influence of the cholinergic system 

in V1, centrally involve in attention (Herrero et al., 2008), is mediated by two distinct types 

of cholinergic receptors, muscarinic and nicotinic, both located in different cortical layers 

(Disney and Aoki, 2008; Disney et al., 2007; Gu, 2002). The nicotinic receptors, located in 

the G-layers, enhances the sensory driven-activity while the muscarinic receptors, 

preferentially located in the SG-layer, suppress the lateral connectivity to prevent 

distracting signals (Disney et al., 2007). In addition,  dopaminergic (DAergic) 

neuromodulation appears to have strong influence in the visual cortex, and anatomical 

studies have shown that dopamine receptors (DARs) are neither expressed in V1 nor in 

the LGN (Ding et al., 2016; Krimer et al., 1998; Lidow et al., 1991; Lidow et al., 1990). 

However, neurophysiological studies have demonstrated that DAergic neuromodulation 

increases the readout of information in the V1 via long-range connection with higher-order 

areas (Arsenault et al., 2013; Noudoost and Moore, 2011; Shuler and Bear, 2006; Zaldivar 

et al., 2014). This is particularly interesting, giving that long range projections to V1 are 

mostly located in the SG-layers (Chatterjee and Callaway, 2003). 

In the following sections, I present six studies conducted to address the various questions 

regarding the effects of neuromodulation on the neurovascular coupling. These studies 

were carried out by using a multimodal approach consisting of fMRI (BOLD and CBF), 

multisite neurophysiological recordings (multiple laminar probes), chemical sampling 

(brain and blood sampling) and pharmacological methods (local and systemic injections 

of chemical substances) in the anesthetized NHPs. We presented various types of visual 

sensory stimulation in all the studies presented here, with the exception of the 

neurochemical study (Manuscript Nr. 1). The visual stimuli were delivered using a gamma 

corrected custom-built projector and a SVGA fiber-optic system (see details in Manuscript 
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Nr. 2). The visual stimuli that we used were: (i) black-and-white rotating checkerboard 

stimulus alternating with uniform black-background, to efficient elicit robust retinotopic 

maps in V1 (Slotnick et al., 2005); and (ii) naturalistic and colorful movies with no 

soundtrack also alternating with a uniform black-background. The importance of using 

naturalistic stimulus, are due to the fact that is not an static but varies on time scales 

allowing us to compute power and information changes associated to all of the existing 

visual features in the movie (Russ and Leopold, 2015).  

First, we present a mass-spectrometry-based method that we developed, to successfully 

uncover the distribution of different metabolites, neurotransmitters and neuromodulators 

in the brain and blood from the NHPs (Manuscript Nr. 1). After having stablished the 

relative distribution of multiple biomolecules in brain and blood, we developed a multimodal 

approach, consisting of fMRI (BOLD, CBF), electrophysiological recording and 

pharmacology, to investigate the influence of neuromodulation in neurovascular coupling 

(Manuscript Nr. 2). Third, giving that changes haemodynamic signals are highly dependent 

on the influence of metabolites supplying energy, we investigated how changes in the ratio 

of lactate/pyruvate levels affects the fMRI signals (Manuscript Nr. 3). In a fourth study, we 

showed dissociation of BOLD-signals from neural activity and CBF under the influence of 

DAergic neuromodulation (Manuscript Nr. 4). We then explored if the effects elicited DA 

are layer dependent and if any of the LFP-frequency bands can be used to predict 

neuromoulation influence (Manuscript Nr. 5). Subsequently, we investigated how distinct 

features in the visual scene are encoded by the different cortical layers and which LFP-

frequency bands can be informative about such features (Manuscript Nr. 6). Lastly, we 

discuss how our findings may relate to cognitive effects  on the fMRI signals, given that 

certain cognitive modalities are mediated by distinct types of neuromodulators. Based on 

our finding, we also formulate a number of new but ripe predictions for testing, and we also 

present possible clinical application relevant to the studies in this dissertation. Together 
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the findings reported here provide new insights of neuromodulatory effects on the 

haemodynamic responses and neural activity.  
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2.3 Introduction to Manuscripts 

Manuscript Nr. 1.  
Measuring multiple neurochemicals and related metabolites in blood 
and brain in the rhesus monkey by using dual microdialysis sampling 
and capillary hydrophilic interaction chromatography-mass 
spectrometry. 

Motivation 

An appropriate information processing and a prompt response of neurons to the animal’s 

cognitive demands, highly depends on the interactions between multiple molecules and 

their effectors (e.g. receptors). Accordingly, more than 99% of the communication between 

and within neuronal networks completely relies on the maintenance of concentration 

balance among different molecules (Magistretti and Allaman, 2015). Therefore, changes 

in the excitation-inhibition balance and/or in the brain metabolic demands inevitably affect 

the composition of the BECF, the neural and hemodynamic responses (Logothetis, 2008). 

Interestingly, to keep a constancy of neural function, the brain carefully controls the 

composition from the BECF by: (i) protecting the BECF from fluctuations in the blood 

composition using the BBB; (ii) the slow diffusional equilibrium between the CSF and 

BECF helps stabilizing the composition of the neural microenvironment; and (iii) the 

surrounding glial cells “condition’ the BECF. Thereby, the assessment of intraneural and 

interneural communications and complex interactions among brain regions and 

subregions, will ultimately define how metabolites mediate neural function. Hence, it is 

important to first stablish experimental techniques that allows to simultaneously quantify 

fluctuation from multiple neurochemicals BECF, as well as to estimate their relative 

distribution with respect to other compartments.  

Methods 

Microdialysis has been widely used in the field of neuroscience, because it measures free, 

unbound neurotransmitters, and various other biomolecules, from the BECF (Shackman 

et al., 2007; Zhang et al., 2007). This technique requires the insertion of probes, containing 

a semipermeable membrane at the tip, into the tissue of interest (brain and blood). This 
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dialysis probe is connected to an inlet and an outlet tubing which are continuously perfused 

with a solution (carrier solution) that resembles the composition of the surrounding tissue 

fluid (artificial cerebral-spinal-fluid, ACSF; or PBS (Lee et al., 2016)). Once the probe is 

positioned in the tissue, compounds in the extracellular fluid diffuse into the carrier solution 

and the concentration of the different compounds can be measure using various analytical 

techniques. It is worth noting, that microdialysis can easily be coupled with mass-

spectrometry (MS), allowing to selectively separate molecules according to their molecular 

mass and to quantify them with extremely high accuracy, even if their concentration is 

small (Zhang et al., 2007). However, the interpretation of the mass spectra is commonly 

difficult and it becomes progressively more of an issue when multiple, and different, 

molecular species are present within a sample. One approach for simplifying this situation 

involves coupling the mass spectrometer with another instrumental techniques to remove 

many of the unwanted components to be detected. For instance, high-performance-liquid-

chromatography (HPLC) has been widely used to separate, identify and quantitate 

compounds. However, the performance of this methodology would highly depend on the 

nature of the chemical sample and the HPLC modality used.  

Results 

In this study, we developed an alternative HPLC method for the detection of multiple 

functional and metabolically related molecules in brain and blood. This technique consists 

in coupling the MS with the hydrophilic-interaction-chromatography (HILIC-MS) modality, 

which allows to separate molecules through differences in polarity and hydrophilicity. This 

is of great importance, given that many of the cellular metabolites and neurotransmitters 

are highly polar in nature. Hence, we used HILIC-MS to measure the concentrations from 

multiple compounds that derivate from glucose and citrate cycles. In particular, we 

quantified acetylcholine, lactate, pyruvate, glutamate and glutamine levels form the BECF 

and blood. This dual microdialysis sampling in brain and blood helped us to determine 

concentration-time profiles to fully characterized the influx and efflux of molecules from 

brain and blood.   
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Manuscript Nr. 2.  
Pharmaco-based fMRI and neurophysiology in non-human primates 

Motivation 

As extensively described in the above sections, the activation of neuromodulator receptors 

changes the neural activity followed by changes in the regional brain metabolism and the 

regional-CBF, both reflected in the BOLD responses (Dayan, 2012). Nonetheless, despite 

the importance of neuromodulators on the neurovascular coupling dynamics, we still lack 

a clear understanding about their role and their possible mechanisms. 

Multiple studies have addressed these questions using new methodologies in combination 

with fMRI (Lee et al., 2010). For instance, optogenetics and fMRI (so called ofMRI) offers 

to possibility to investigate genetically specified networks in the living brain as well as to 

test their local and global impact in their projecting targets (Lee et al., 2010; Matthews et 

al., 2016). Although the enthusiasm for optogenetics is well deserved, these methods have 

some inherent limitations that are worth to consider: first, this combination is limited to the 

rodent brain due to the complexity of the primate brain and its diversity of neuron types 

(Logothetis, 2010). Similarly, given this diversity of neuron types, the lack of genetic tools 

for cell-type specific targeting of proteins in the primate brain (Izpisua Belmonte et al., 

2015) and the invasiveness of local injection of viral vectors combined with laser 

stimulation. Moreover, this combination also have the limitation to reproduce certain 

patterns of neural activity. For example, photo-stimulation is not able to reproduce 

neuronal fluctuations up to 100 Hz, while higher frequency components of the input are 

severely attenuated (Malyshev et al., 2015). Therefore, fMRI-optogenetics cannot really 

elucidate details onto the relationships between stimulus or task-selective neuronal activity 

and fMRI yet. 

Methods 

The combination of pharmacology and fMRI (phMRI) is a multimodal methodology that 

has already provided important evidence pertaining the neural events underlying the 

hemodynamic changes seen with fMRI and optical imaging (Gozzi et al., 2008; Gsell et 
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al., 2006; Hamel et al., 2015; Hillman, 2014; Rauch et al., 2008a; Rauch et al., 2008b; von 

Pfostl et al., 2012; Zaldivar et al., 2014). The importance of these techniques lies in their 

non-invasiveness, allowing us to test the same hypotheses in humans and in monkeys 

(Honey and Bullmore, 2004). However, it is worth noting that many pharmacological 

agents do not only affect neuronal activity, but also affect the blood flow directly, thereby 

complicating the interpretation of the signal. Hence, the combination of phMRI with 

concomitant invasive electrophysiology offers the possibility to better test the relationships 

between neural and fMRI signals under the influence of different neuromodulators. Hence, 

identifying the behaviorally relevant microcircuitry on which a given modulators acts, and 

demonstrating that such modulation is required for an specific stat-dependent influence on 

a specific behavior in vivo, is relevant for our understanding of the normal and diseased 

brain (Dayan, 2012). 

Results 

Hence, in this study we developed a multimodal approach consisting of fMRI, 

pharmacology and neurophysiology that help us understanding the causal relationship 

between neuromodulation and the neurovascular coupling in the visual cortex of 

anesthetized non-human primates. In this study we present an overview about the 

pressure-operated pumps that we developed to accurately deliver drugs, either locally or 

systemically. At the same time, we also showed how different aspects of the fMRI signal 

can be affect by neuromodulators and how they are associated to the neural activity. 
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Manuscript Nr. 3.  
Effects of lactate on the early visual cortex of non-human primates, 
investigated by pharmaco-MRI and neurochemical analysis. 

Motivation 

The O2 consumption supports the near-complete oxidation of the glucose entering the 

brain, and it is widely accepted that glucose and O2 are the main source of energy for the 

brain (Sokoloff, 1977a). Nonetheless, despite an apparent abundance of O2, neurons and 

glial cells maintain an elevated production of lactate, and intense stimulations increase 

glucose uptake out of proportion to O2 consumption (Fox and Raichle, 1986) resulting in 

substantial lactate build-up. Yet, why does brain metabolism need the “apparent” less 

efficient glycolytic pathway during enhanced activity and energy demand?.  

Multiple hypothesis have addressed this question with the well-known phenomenon of 

muscle physiology. During moderate-to-vigorous exercise, resulting in blood lactate 

concentrations of up to 10mM, the human brain takes up and oxidizes lactate to a 

considerably larger extent than under normal conditions, supplying up to 20 – 25 % of total 

brain energy demands (Hurley et al., 1984; Oyono-Enguelle et al., 1990; Quistorff et al., 

2008). This is remarkable, given that the lactate oxidation occurs at the expense of blood 

glucose utilization and has led to suggest that the lactate in plasma is an efficient energy 

substrate for the adult human brain.  

In this study we systematically increased the levels of lactate and pyruvate given that 

studies have observed that changes in the plasma level of lactate/pyruvate ratio increases 

the CBF. It is worth noting, that both lactate and pyruvate are in the near equilibrium, and 

changes in their concentrations affects the oxidization/glycolysis balance. Hence, we were 

interested to measure whether BOLD-signal is sensitive to detect changes in the 

concentrations of lactate and pyruvate (Hurley et al., 1984).  
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Methods 

We monitored the BOLD signal in primary visual cortex of anaesthetized macaques during 

systemic infusion of lactate and pyruvate, while we animals view a rotating checkerboard 

that was continuously changing in direction, followed by an isoluminant black-gray screen.   

Results 

We observed reliable lactate-induced BOLD responses, which could be confirmed at 

population and individual level by their strong correlation with systemic lactate 

concentrations. Comparable BOLD effects where observed after a slow infusion of 

pyruvate. We show here that physiological changes in lactate and pyruvate levels are 

indeed reflected in the BOLD signal, and describe the technical prerequisites to reliably 

trace a lactate challenge using BOLD-fMRI. 

  



 
 

pg. 71 
 

Manuscript Nr. 4.  
Dopamine-induced dissociation of BOLD and neural activity in 
macaque visual cortex 

Motivation 

Neuromodulators allow for a flexible reconfiguration of hard-wired connectivity to adapt 

neural circuits to the behavioral needs of the animal (Harris-Warrick and Marder, 1991). 

By altering the input-output properties of neural circuits, neuromodulation can also alter 

their energy expenditure, with concomitant effects on the hemodynamic responses, and 

thereby neuromodulators can affect fMRI signals as well (Arsenault et al., 2013; 

Pessiglione et al., 2006). Yet, it is still unclear how to interpret the effects of 

neuromodulation in fMRI signals, for instance, how to disentangle BOLD signal changes 

relating to task and reward (presumably neuromodulatory influences) from stimulus-driven 

or perceptual effects (Boynton, 2011; Dayan, 2012). Understanding how neuromodulators 

affect the BOLD response is essential for an effective interpretation of fMRI-data, not only 

in tasks involving attentional and reward-related processes, but also for diagnostic use of 

fMRI, since many psychiatric disorders lead to alterations in neuromodulatory systems 

(Mitterschiffthaler et al., 2006).  

DAergic neuromodulation is centrally involved in many cognitive processes, most notably 

those underlying reward and addiction (Redish, 2004; Schultz, 2007), learning and 

working-memory (Ljungberg et al., 1992; Puig and Miller, 2012), motivation, attention 

(Stanisor et al., 2013) and decision making (de Lafuente and Romo, 2011) and it also plays 

a role in perceptual processes (Algaze et al., 2005; Happel et al., 2014; Noudoost and 

Moore, 2011; Rogers, 2003). Furthermore, diseases such as Parkinson’s disease (PD) 

and schizophrenia show alterations in dopamine (DA) kinetics (Winterer and Weinberger, 

2004). Visual processing is affected in PD (Holroyd and Wooten, 2006), and L-DOPA 

(metabolic precursor of DA) is effective in treating amblyopia (Algaze et al., 2005; Rogers, 

2003) indicating a role of DA in early visual processing.  
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DA has been extensively studied in the prefrontal cortex (PFC) and striatum (Puig and 

Miller, 2012; Schultz, 2007), but how it affects processing in V1 is still relatively unexplored 

(Arsenault et al., 2013). It has been shown that DA improves the signal-to-noise ratio 

(SNR) in PFC and sensory areas, including V1 (Happel et al., 2014; Jacob et al., 2013; 

Servan-Schreiber et al., 1990), and thereby changes the signal detection performance at 

the behavioral level (Puig and Miller, 2012; Shuler and Bear, 2006). Recent work has also 

provided insights into the effects of DA on the BOLD signal, highlighting the complexity of 

interpreting the relationship between neural activity and fMRI signals under 

neuromodulation: increases as well as decreases were seen depending on area, paradigm 

and methodology (Arsenault et al., 2013; Linville et al., 1993; Pessiglione et al., 2006; 

Serences, 2008; Watanabe et al., 2011). However, there often seems to be a mismatch 

between the BOLD and neurophysiological responses in V1 (Boynton, 2011), as the 

expectation of reward tends to increase neural spiking (Shuler and Bear, 2006) but reduce 

fMRI responses (Arsenault et al., 2013; Serences, 2008). 

Another factor affecting the interpretation of the effect of neuromodulators on the BOLD 

response is that many neuromodulators exert a direct influence on the vasculature (Dayan, 

2012; Krimer et al., 1998; Linville et al., 1993; Yamada et al., 2001), as well as through 

their effects on neural activity. In the case of DA, both vasodilation (Esaki et al., 2002; 

Mandeville et al., 2013; Marota et al., 2000) and vasoconstriction (Krimer et al., 1998) have 

been reported. These effects, however, are highly dependent on the distribution and 

density of DA-receptors (DARs) (Mandeville et al., 2013). In V1, the dopamine receptor 

density is low to almost undetectable (Lidow et al., 1991), which allows for study of 

dopamine’s neuromodulatory effects without the confound of direct vascular effects in V1. 

Methods 

Summarizing, the effects of DA neuromodulation on fMRI signals remain seemingly 

contradictory, because of variations in task, reward and attentional state, and DA’s 

involvement in all these processes. To resolve some of these issues, in this study we 
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combined systemic- and intracortical injections of DA with pharmaco-MRI (BOLD and 

cerebral blood flow, CBF) and electrophysiology, to investigate the impact of DAergic 

neuromodulation on neurovascular coupling in macaque V1. Applying DA in anesthetized 

animals allowed us to investigate the mechanisms by which DA affects the neural and 

BOLD signals, without the effects of behavioral processes like reward expectation or value 

and attention, which can be difficult to disentangle (Arsenault et al., 2013; Stanisor et al., 

2013).  

Results 

We found that systemic application of L-DOPA+Carbidopa (LDC) increased the neural 

responses, while decreasing the BOLD-response and increasing the CBF-response, 

suggesting that energy consumption increases by a disproportionate amount relative to 

the hemodynamic response. DA increases the fidelity of the neural network at a high 

metabolic price, which was more faithfully reflected in the CBF than in the BOLD-

responses. However, it also implies that especially in the case of neuromodulation, 

increases or decreases in the BOLD signal may not necessarily be interpreted as 

decreases or increases in neural responses or metabolic demands. 
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Manuscript Nr. 5.  
Lamina and frequency specificity of information in primary visual 
cortex. 

Motivation 

One of the primary goals of systems neuroscience is to understand the neural mechanisms 

underlying behavior. Although a great deal of knowledge has been learnt from 

characterizing the responses of single neurons involve in sensory, motor and cognitive 

function (Romo and Salinas, 2003), we still lack a clear understanding about the collective 

interaction between neural networks. The LFP activity, generated by transmembrane 

current originating from cells near to the intracortical electrode tip (Haider et al., 2016; 

Logothetis and Wandell, 2004; Mitzdorf, 1985) is an important marker for neural 

cooperation as it reflects several local perisynaptic integrative processes (Haider et al., 

2016; Whittingstall and Logothetis, 2009). The activity reflected in the LFPs is traditional 

decomposed and interpreted in different frequency bands reflecting diverse aspects of 

neural activity (Magri et al., 2012a; Whittingstall and Logothetis, 2009).  

In the macaque V1, single-channel LFP analysis revealed two distinct frequency bands 

that carry independent information about the sensory stimuli: a low frequency band (1 – 

24 Hz), and a high frequency (50 – 100 Hz) gamma oscillation range (Belitski et al., 2008; 

Belitski et al., 2010). However, it is worth noting that LFP-dynamic patterns and associated 

mechanisms are highly dependent on the detailed local properties of the networks, 

including the recurrent local organization and synaptic inputs from other brain structures. 

Therefore, one would expect that differences in the source and strength of inputs to 

neurons in different cortical layers would change the nature and amount of information on 

each frequency band. For instance, one important distinction between cortical networks in 

the middle-, superficial- and deep-layers (G-, SG- and IG- layers, respectively) is the 

spatial spread of intracortical connections. In the G-layers, which receives inputs from 

LGN, the spatial spread of connections is small (Briggs and Callaway, 2005), whereas in 
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SG- and IG-layers neurons receive recurrent import from larger distances via long-range 

interactions (Callaway, 1998; Nassi and Callaway, 2009). 

Methods 

In this study, we explored whether the nature and the amount of information in each LFP-

bands differ across cortical layers. Here we used laminar electrodes with fine spacing 

spanning the whole cortical depth. We acquired LFP in V1 under anesthesia while 

presenting a 2 minute long Hollywood color movie clip.  We then computed the Current 

Source Density (CSD) for each trial. From the time-resolved power of the CSD in each 

trial, we estimated the mutual information that the power at each frequency carries about 

which section of the movie is being presented, and how much information there is in 

frequency bands about different spatial resolutions of changes in luminance. 

Results 

We found, across depth and frequency, two distinct regions carrying large amounts of 

independent information about the movie stimulus: the low frequency (4-16 Hz) band had 

high information at depths corresponding to layers 4-6, whereas the high frequency (64-

250 Hz) band had high information in layers 1-3. This suggests that different laminae of 

cortical circuits generate independent information channels that code information in 

separate frequency ranges. Furthermore, we found the low frequency band contained 

information about low spatial frequencies changes in luminance (<1 cycle per degree), 

whilst the high frequency band contained information about finer spatial details (1-6 cycles 

per degree). This suggests information about these two spatial frequency components 

arises through two different cortical mechanisms within V1, and information about them is 

encoded separately in two different frequency bands. 
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Manuscript Nr. 6.  
Dopamine elicits lamina and frequency specific increase of 
information in the macaque primary visual cortex.  

Motivation 

The LFP are generally used to investigate cortical network mechanism involve in sensory 

processing (Belitski et al., 2008), motor planning and higher cognitive processes (de 

Lafuente and Romo, 2011; Puig and Miller, 2012), including attention, memory and 

perception. The LFP are also signals that are highly used for steering neuroprosthetic 

devices and for monitoring neural activity in human recordings because they are more 

easily and stably recorded in chronic settings than are spikes.  

The oscillatory activity patterns reflected in the LFPs are crucial for the engagement and 

disengagement of functional neural circuits as animals engage into different cognitive 

operations (Haegens et al., 2011a; Haegens et al., 2011b; Nacher et al., 2013). That is, 

because they provide an effective means to control the timing of neuronal firing to 

coordinate the cooperation and communication between functionally active neural circuits 

(Buzsaki et al., 2012; Buzsaki et al., 2007). Therefore, the activity measured with the LFPs 

generally reflects different aspects of neural activity, which are generated by distinct neural 

mechanism’s and expressed in different frequency ranges. The relative strength of these 

components thus determine a so-called specific spectral fingerprint. However, previous 

studies in the macaque V1 showed that these frequency bands not only vary in the 

amplitude but also the tuning to sensory features, the type and amount of sensory 

information vary across the LFP’s frequency bands (Belitski et al., 2008; Magri et al., 

2012b). However, a stricking discrepancy between the activity reflected in the low- (< 20 

H) and high- frequency bands (> 50 Hz) dissociate from the activity reflected in the middle-

frequency band (18 - 38). It has been proposed, based on statistical considerations, that 

this middle frequency band reflectes the influence of neuromodulation.  
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Methods 

Here in this study, we used laminar electrodes with fine spacing spanning the whole 

cortical depth of V1 and investigated the whether the middle frequency bands can be an 

indicative for neuromodulation influence and whether it relates to stimulus encoding. Given 

that the different cortical layers generate independent information channels that code 

information in separate frequency ranges, we explored whether this information is 

disrupted or improved under the influence of DAergic neuromodulation.  

Results 

DAergic neuromodulation elicited frequency- and stimulus dependent power changes in 

the recorded LFPs. During spontaneous activity, we observed a remarkable increase 

specific to the middle-frequency (18 – 38 Hz) band power accompanied by a decrease of 

gamma (50 – 150 Hz) power. In contrast, during visual stimulation with movie clips DA 

increased both the power of gamma and of the middle frequency band. Moreover, DA 

increased the information in LFP power, particularly superficial and deep layers and in the 

gamma (50 – 100 Hz) frequency band. Overall, our results show that the middle-frequency 

band captures endogenous non-stimulus driven oscillations that are modulated by 

dopamine, and that dopamine regulates gamma-range information coding in visual cortex. 

. 
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2.4 General Discussions 

The communication between neurons highly depends on the interaction and cooperation 

between multiple neurotransmitters and neuromodulators. They provide to neurons within 

neural circuits the flexibility of adjusting their activity and metabolic demands depending 

on the animal’s cognitive demands. However, to better understand the relationship of 

neuromodulation on functional imaging, the relationship between neural activity, 

metabolism, and their association to the different classes of neuromodulator receptors 

must be explored. Furthermore, the cell types of the brain, the mechanisms that supply 

nutriments for energy production, and mechanisms that link neural activity to energy 

production and consumption, likely play important roles in the relationship between 

neuromodulation and functional imaging and, therefore, also require study. 

The pharmacological approach that we developed Manuscript Nr. 2, offered us great 

advantages over iontophoresis. In principle, because the pharmacological agents 

available for iontophoresis should be ionized and in aqueous solutions, therefore limiting 

the selection of the drugs, which in most cases, lack selectivity. Therefore, by using 

pressure-operated systems any substance can be injected either intracortically and/or 

systemically (Figure 4.4 and Figure 4.5). Another important aspect about our system, is 

that it provided us with the flexibility to easily adjust flow-rates and volumes. This is 

remarkable, given that high volume and flow rates for intracortical injections can disturb 

the neural microenvironment and change the neural activity independent of the 

pharmacological challenge.  

 The metabolic profile in the brain and blood of the non-human 
primates 

In this dissertation, we first aimed to gain comprehensive insight into the metabolic 

processes that mediate neural function. We developed a targeted mass spectrometry-

based approach capable of measuring a broad range of metabolites, neurotransmitters 

and neuromodulators (Manuscript Nr.1; Li et al., 2011). The development of this HILIC-



 
 

pg. 80 
 

MS method (Manuscript Nr. 2) was applied to quantify five biomolecules in the BECF from 

the macaque’s brain (Manuscript Nr. 1; Manuscript Nr. 2; and Manuscript Nr. 3). In Figure 

3.2, we show classical chromatograms from all of the detected molecules in the brain, as 

well as for the compounds that were used for characterizing the spectrometry profiles of 

each of the detected molecules. It is worth noting that the chromatograms are usually 

characterized by a series of peaks, each one representing a compound passing 

throughout the HPLC detector (Schlichtherle-Cerny et al., 2003). Each of the peaks are 

two-dimensional plots with the ordinate axis giving concentration in terms of detector 

response (intensity) and the abscissa representing the time taken to detect a particular 

compound (retention time). The combination of these two factors, allowed us to identify a 

specific molecule, and thereby helped to determine a concentration of molecules. In view 

of the results depicted in the Figure 3.2, one can clearly see that each of the molecules 

have different chromatogram profiles, i.e., different retention times and different intensities, 

that allows us to understand the selectivity and sensitivity of our method. More importantly, 

this method demonstrated that biomolecules of interest were, indeed, simultaneously 

detected and were consistent across different animals from which we collected data.  

The average concentration of each neurotransmitter and metabolite is listed in the Table 

3.3. The concentration of acetylcholine was measured at the low nanomolar (nM) level, 

whereas the concentration from the lactate, pyruvate, glutamate and glutamine were in the 

micromolar (µM) range. This is remarkably important, given that the levels of glutamate 

and acetylcholine appear to be similar to those obtained from human cerebral spinal fluid 

(CSF; Parrot et al., 2004) whose chemical composition is highly dependent on the 

composition of the BECF (Cauli and Hamel, 2010; Ding et al., 2016). However, the 

concentrations from lactate, pyruvate and glutamine are slightly different to those reported 

in humans (Quistorff et al., 2008; van Hall et al., 2009). This is not surprising given that the 

levels of these molecules are highly dependent of multiple factors, such as the subject’s 

gender, weight, diet and physical condition (Zhang et al., 2007).  
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We also considered factors related to the methodology itself, that could be a confound in 

the detection and interpretation of this data. For instance, it has been shown that the pH, 

and the concentration of solutes and water in the buffer solutions seem to strongly affect 

the chromatographic behavior of the analytes (Schlichtherle-Cerny et al., 2003; Uutela et 

al., 2005; Zhang et al., 2007). In order to avoid such interference and to achieve an optimal 

detectability of the five molecules, we also examined how each of these factors affects the 

HILIC’s detection performance of each molecule. It is remarkable that the results in Figure 

3.1 provided us with the suitable conditions for an optimal HILIC-MS separation.  

Another advantage of the combined microdialysis and HILIC-MS, is that it continuously 

monitors molecules over time, which allows kinetic analysis within the same animal (Zhang 

et al., 2008). This is important for two reasons: (i) because it avoids the inter animal 

variability that confounds the data from single-time point, therefore helping to construct a 

single concentration time profile; (ii) because it helps to determine changes in the 

concentration that could be associated to fluctuations in the influx and efflux of the brain.  

Therefore, taking into account the advantages mentioned above, we simultaneously 

measured the concentrations of the biomolecules in the brain and blood to quantitatively 

estimate the transport process in the BBB. These results are shown in the Figure 3.2; the 

concentration of each of the molecules in the blood are depicted in the Table 3.1. Here we 

found that the concentration levels of each molecule are substantially different between 

brain and blood. For instance, higher concentrations for all of the molecules were found in 

blood and are in good agreement with the values reported in healthy humans (Hawkins, 

2009). This highlights the importance of the neuronal microenvironment and its different 

mechanisms to control the composition of the BECF, given that they restrict the movement 

of solutes, despite their higher concentrations in the blood, in order to provide constancy 

for neuronal function (Magistretti and Allaman, 2015; Viswanathan and Freeman, 2007).  
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The neuromodulators, neurotransmitters and metabolites identified so far, are rather 

simple chemicals that are either available as the products of normal metabolism or from 

common food. Indeed, some neurotransmitters and neuromodulators are simply amino 

acids, as part of the proteins in food. Once neurotransmitters and neuromodulators have 

been synthetized or eaten, they must be transported to the axon terminals (unless they 

are synthetized there) and stored in vesicles ready for release (Ivanisevic et al., 2014). 

Thereby, the reported concentrations in the brain and blood are the net result of all 

transport (transporter-mediated and/or diffusion) and metabolic processes that contribute 

to the formation and removal of metabolites (Zhang et al., 2008). At steady state, and 

during anesthesia, the overall concentration of a metabolite is stable even though 

individual molecules are continuously entering and leaving the BECF/blood (Ivanisevic et 

al., 2014; Kaddurah-Daouk and Krishnan, 2009; Li and Freeman, 2015).  

The molecules reported above (Manuscript Nr. 1) have important implications in the 

regulation of neural and hemodynamic responses (Belanger et al., 2011; Dayan, 2012; 

Magistretti and Allaman, 2015)., Any fluctuations in their levels (reflecting changes in the 

flux due to normal brain activity or dysfunction) would inevitably affect the fMRI signals 

(Magistretti and Allaman, 2015). In the normal brain, there are multiple factors that can 

change the flux of a metabolite, for example; the availably of the enzymes and coenzymes 

controlling the reactions (activation or inactivation of biochemical reactions), metabolite 

concentrations and transport, diffusion and tissue pH (Wishart, 2016). One critical step or 

factor in the synthesis and storage of the neurotransmitter, neuromodulators and 

metabolites, and perhaps the stability of the haemodynamic signals, is the rate-limiting 

factor. For instance, multiple studies have estimated the rate-limiting factor by calculating 

the ratios between the “immediate metabolite” and the “molecule of interest” to assess 

the dynamic state of metabolic pathways (Bellander et al., 2004; Petroff et al., 2002; 

Richards et al., 2003; Zlotnik et al., 2011). For example, an increase in the ratio of 

lactate/pyruvate in brain has been used as an indicator of a deficient  metabolic supply in 
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brain, such as what is observed in Alzheimer’s disease (Iadecola, 2004). In addition, a 

decreased glutamine/glutamate ratio has been suggested as indicative of a traumatic 

injury in brain (Richards et al., 2003), hypoxia (Raman et al., 2005; Samuelsson et al., 

2007) and epilepsy (Petroff et al., 2002).  

We also calculated the ratios in blood and brain for the lactate/pyruvate and 

glutamine/glutamate, and found that in both cases the ratios are higher in brain than in 

blood (Figure 3.3). The striking difference in the ratio of glutamine/glutamate in brain and 

blood are possibly reflect the higher turnover rate of glutamate in brain than in blood, 

resulting in the high levels of glutamine and low levels of glutamate in the brain (Petroff et 

al., 2002; Shen et al., 1999). We also found that the ratio of lactate/pyruvate was slightly 

higher in brain than in the blood (Figure 3.3), which lead us to suggest than lactate and 

pyruvate are in the near equilibrium in both compartments (Hertz et al., 2007; Mintun et 

al., 2004). Indeed, changes in the ratio of lactate/pyruvate in blood also affects the 

lactate/pyruvate ratio in brain, and conversely (Iadecola, 2004; Mintun et al., 2004).  

 Glycolytic alterations and BOLD-CBF regulation  

It is worth noting that in the normal brain, lactate and pyruvate are known to serve as 

equivalent substrates for the production of metabolic energy, and their equilibrium highly 

depend on each other. That is, if the lactate concentrations increase, the pyruvate levels 

also increase (Belanger et al., 2011; Li and Freeman, 2015; Magistretti and Allaman, 2015; 

Pellerin and Magistretti, 2004). More importantly, any change in their concentrations, either 

in brain or blood, would inevitably affect the CBF given that they are in near equilibrium 

with the NADH/NAD+ (Mintun et al., 2004). This is supported by the evidence reported in 

our Manuscript Nr. 3, in which we increased the plasma levels of both lactate and pyruvate.  

The results in the Manuscript Nr. 3 clearly show that the BOLD and CBF responses 

increased due to the injections of lactate (BOLD results in Figure 5.1D and Figure 5.2A 

and CBF results in Figure 5.4) and pyruvate (BOLD results in Figure 5.7A and CBF results 
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not shown). More interestingly, the profiling induced by both substances were similar and 

highly correlated to their respective plasma levels (blood sampling results Figure 5.1D and 

Figure 5.2B). In both cases, we observed a positive baseline increase in the intensity of 

the BOLD and CBF signals, with minor and non-significant effects in visually-induced 

neural activity (Figure 5.2A, Figure 5.7A-B).  

However, the effects of lactate appear to be delayed relative to the injection onset (Figure 

5.1D). This might be due to the lactate influx into the red-blood cells (Skelton et al., 1998; 

Smith et al., 1997) which is, indeed, supported by our blood chemistry sampling showing 

delayed changes in the concentration of lactate relative to the start of the injections (Figure 

5.1D, Figure 5.2B). Technical issues related to the pressure-operated pumps that we 

developed are discharged (Figure 4.1; see details in Manuscript Nr. 2) given that our 

system reliably and accurately delivers substances systemically and intracortically in non-

human primate, placed inside an NMR scanner (Manuscript Nr. 2; Manuscript Nr. 3; 

Manuscript Nr. 4). In addition, our data also suggests that the strength of lactate/pyruvate 

effects on the BOLD response varies depending on the physical condition of the animal 

(Figure 5.3; see Freund et al., 1990; Oyono-Enguelle et al., 1990; Voytko and Tinkler, 

2004). These differences are actually reflected in the different onset and dynamics of the 

BOLD responses and in our blood-chemical sampling (Figure 5.3A-B).  

Evidence from in vitro and in vivo biochemical and imaging studies converge to indicate 

that: (i) the major energetic load in the brain is localized at the synapse; and (ii) synaptic 

activity and local energy demand is balance by multiple molecular mechanisms. Hence, 

astrocytes are the key cells for coupling synaptic activity and energy metabolism (Attwell 

et al., 2010; Belanger et al., 2011; Gordon et al., 2008; Hertz et al., 2007; Hillman, 2014; 

Magistretti and Allaman, 2015). In principle, after crossing the BBB, the glucose in blood 

that enters the brain, first encounters the astrocytic endfoot. Although at this point glucose 

can diffuse directly to neurons, it is preferentially taken up by astrocytes and metabolized 
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to lactate via astrocytic-glycolysis. Most of this lactate is excreted into the BECF 

surrounding neurons. 

Multiple studies have demonstrated that astrocytes transport substances between the 

blood and neurons by providing fuel to neurons in the form of lactate (Attwell et al., 2010; 

Belanger et al., 2011; Chih and Roberts Jr, 2003; Dienel et al., 2007; Iadecola and 

Nedergaard, 2007). Therefore, the observed changes in the BOLD and CBF after lactate 

and pyruvate injections most likely originates from the interaction of neuronal and vascular 

effects (lactate Figure 5.5A-B and pyruvate Figure 5.6A-B). Hence, the advantage of using 

lactate for neuronal function is that it provides a form of substrate buffering, as second 

energy reservoir that is available to neurons (Magistretti and Allaman, 2015). It is worth 

noting that the availability of glucose in the neuronal microenvironment highly depends on 

the moment-to-moment supply provided by blood and it varies with neural activity (Li and 

Freeman, 2015). The concentration of extracellular lactate, however, is buffered against 

such variability by the surrounding astrocytes, which continuously shuttle lactate to the 

BECF through the metabolism of glucose or by breaking down glycogen stored in the 

astrocytes (Magistretti and Allaman, 2015). What determines this exchange between 

astrocytes and neurons? The answer to this question lies in the redox state of cells; 

neurons are predominantly oxidative (glucose mostly oxidized in neurons) whereas 

astrocytes are highly glycolytic (Magistretti and Allaman, 2015; Pellerin and Magistretti, 

2004). Hence, according to the redox switch model, the inhibition of glucose transport 

induced by glutamate in neurons increases the favorable condition for the use of lactate 

as an energy substrate in this cell type as these two processes compete for intracellular 

NAD+ (Cerdan et al., 2006).  

 Effects of neuromodulation on BOLD and neural activity 

Glucose is the primary energy source for the neurons, it is transported from the 

bloodstream across the BBB according to need, and its metabolism usually occurs in two 

stages: an anaerobic or non-oxidative stage, (glycolysis) followed by an aerobic stage 
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(oxidative phosphorilazation). The balance between these two stages has consequences 

for both the amount of O2 consumed and the energy produced. However, such balance 

depends on the multiple factors, such as: (i) vasoactive substances that either dilate or 

constrict vessels, such as the vasoactive intestinal poly-peptide (VIP; Magistretti et al., 

1981); (ii) the concentrations of K+ which increase the glycolytic rate of astrocytes (Bittner 

et al., 2011); and (iii) neuromodulators (Dayan, 2012).  

Most of the neuromodulators and their receptors have been extensively studied because 

they have been recognized as an essential element for the function or dysfunction of the 

central nervous system (Dayan, 2012; Yu and Dayan, 2005). As we have extensively 

discussed during the course of this dissertation, neuromodulators change the 

excitation/inhibition balance which can inevitably affect brain metabolism, CBF and the 

oxygenation of the tissue, all impacting the BOLD-responses (Goense and Logothetis, 

2008; Logothetis, 2008). However, studying the effects of neuromodulators on the 

neurovascular coupling is not simple, given that multiple factors can affect the 

interpretation of the effects of neuromodulation on the BOLD responses (Logothetis, 

2008). For instance, many neuromodulator receptors exert direct influence on the 

vasculature, as well as through their effects on neural activity (Krimer et al., 1998; Linville 

et al., 1993; Yamada et al., 2001). The effects of neuromodulators ultimately depend on 

the expression and distribution of their receptor types (Dayan, 2012; Gil et al., 1997; Krimer 

et al., 1998; Lidow et al., 1991).  

In the Manuscript Nr. 4, we took advantage of the anatomical organization of dopaminergic 

(DAergic) system in the early visual cortex. In V1, for instance, the density of dopamine- 

(DA-) receptors (DARs) is low to almost undetectable (Lidow et al., 1991; Lidow et al., 

1990), which allowed to study DA’s neuromodulatory effects without the cofound of direct 

vascular effects in V1 (Zaldivar et al., 2014). It is worth noting that the effects of DA have 

been extensively addressed by using different pharmacological approaches in rats and 

monkeys, for example, the blocking of the DA-transporter (DAT) to enhance the levels of 



 
 

pg. 87 
 

DA in the synaptic cleft (e.g. amphetamines; Esaki et al., 2002; Mandeville et al., 2013). 

However, these substances are not usually selective to the DAT and can also alter the 

kinetics of other neurochemicals (such as norepinephrine, serotonin, etc) and change the 

CBV (Leonard and Shallice, 1971). Hence, we mimicked DAergic neuromodulation by 

systemically applying L-DOPA+Carbidopa (LDC; Black et al., 2003; Dadeya et al., 2009). 

L-DOPA and Carbidopa increases the bioavailability of L-DOPA (which is the DA’s 

metabolic precursor) by inhibiting its breakdown in the periphery, before it crosses into the 

brain, and preventing increased cardiovascular output, which could affect the 

haemodynamic responses in the brain. Carbidopa inhibits DOPA-decarboxylase (DDC), 

the enzyme responsible for the conversion of L-DOPA to DA. It is worth noting that LDC is 

the first line of medication in Parkinson’s disease where levels of DA are usually depleted 

(Black et al., 2003; Gordon et al., 2007).  

Our results revealed that LDC strongly dissociated the BOLD and neural activity in V1. We 

found, that the injections of LDC reduced the visual-induced modulation in the BOLD 

responses (Figure 6.1C-D) while increased the power and the signal-to-noise ratio (SNR) 

from the gamma and MUA bands (Figure 6.2 gamma shown in dark blue and MUA in red). 

These results extend previous observation in humans and macaques in which fMRI 

responses decreased with cues that predict and anticipate reward (Arsenault et al., 2013; 

Serences, 2008). However, our findings further revealed that fluctuations in the neural 

activity were not faithfully followed by the BOLD responses, and were not compatible with 

the idea of decreased metabolic consumption to explain the BOLD reduction (Arsenault et 

al., 2013). Interestingly, a decrease in BOLD-responses in V1 during an improvement in 

behavioral performance was also seen in studies of amblyopia, after an acute dose of L-

DOPA (Algaze et al., 2005; Rogers, 2003), agreeing with our findings. 

Furthermore, we measured CBF to resolve this apparent contradiction (BOLD and neural 

activity dissociation). It is remarkable that both fMRI techniques are sensitive to different 

aspects of the hemodynamic response and their combination allows to better assess the 
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effects of DA on O2 consumption (CMRO2) and metabolism (Leontiev and Buxton, 2007; 

Leontiev et al., 2007; Sicard and Duong, 2005). Interestingly, we found that the baseline 

and the visually-induced modulation increased during the LDC injections (Figure 6.4).  

The increase in neural activity and CBF, and the decrease in BOLD-signal can be best 

explained as a disproportionate increase in CMRO2 triggered by DA. The BOLD signal 

reflects the concentration of dHb, and is affected by CBF, CBV and CMRO2. Given that 

the stimulus-evoked CBF increased and the stimulus-evoked BOLD decreased upon DA 

injection, this indicated the stimulus-evoked dHb is higher after dopamine application. 

Since the CBF increased, this is most likely due to an increased dHb production, i.e. an 

increase in CMRO2. In other words, an increase in CBF modulation and a decrease in 

BOLD-response can occur when the O2-consumption increases by a proportionally larger 

amount than the inflow of fresh blood, leading to a relative increase in concentration of 

dHb and a decrease in the BOLD signal compared to the pre-injection response to the 

stimulus. 

Effects of DA on the neuronal or astrocytic oxygen metabolism are unlikely to explain our 

results, in principle, because local applications of DA did not have any effect on the neural 

responses (Figure 6.6). If L-DOPA acted on neural or astrocytic oxygen metabolism, we 

would have expected changes under local DA application, which we did not observe in 

any of the concentrations tested. It can also be argued that the lack of neural responses 

to DA could be due to a failure of delivering the drugs intracortically. However, we ruled 

out this possibility by performing local application of GABA in V1 (Figure 4.5B). Multiple 

concentrations were tested to determine the performance of our injection system. As 

expected, the V1 responses to GABA injection were concentration dependent and 

demonstrate that our intracortical DA results are not due to incorrect pharmacological 

technique (Figure 4.5B).  
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Therefore, we suggest that the findings in the Manuscript Nr. 4 are the result of long-range 

interactions with higher order regions, for instance prefrontal cortex (PFC; Jacob et al., 

2013; Noudoost and Moore, 2011). Indeed, various studies have shown that this 

interaction with the PFC enhances states of high persistent activity in sensory cortex, 

thereby improving the stimulus detection performance (Happel et al., 2014; Jacob et al., 

2013). These effects are the result of DAergic modulation acting on different cell-types in 

the PFC by: (i) increasing the excitability from cells that gate sensory inputs to PFC by an 

enhancing their SNR; and (ii) by strengthening persistent representations of sensory 

signals which may allow to adapt behavior in response to changes in the sensory 

environment (Ott et al., 2014).  

It is important to appreciate that different neuromodulators are likely to cause differential 

effects on BOLD, CBF and neural activity (Dayan, 2012). This is not only because 

neuromodulators are distinct classes of molecules, but because their effects are mediated 

by diverse types of receptors that can either be located in distinct subsets of neurons or 

activate different signaling pathways (Billimoria et al., 2006; Brunel and Wang, 2001; 

Constantinople and Bruno, 2011; Dayan, 2012; Fellous and Linster, 1998; Hamood and 

Marder, 2014; Hasselmo, 1995; Zaldivar et al., 2014). For example, the application of 

serotonin receptor agonist, which causes persistent hyperpolarization of pyramidal 

neurons, leads to a ceasing of the MUA response (Rauch et al., 2008b). However, at the 

very same time, both the LFP and the BOLD signal still respond to visual stimulation with 

no alterations in their amplitude and their SNR. The results from this study not only showed 

that BOLD signal is coupled to the synaptic activity instead of neural spiking response, but 

it also supports the notion that different types of neuromodulatory pathways can elicit 

differential effects in BOLD and neural activity (Rauch et al., 2008b; Zaldivar et al., 2014).  

 Lamina specific effects of dopamine in V1 

The results in Manuscript Nr. 4, can also be interpreted as DA enhancing the excitatory 

recurrence through interaction with higher cortical areas and promoting the cortical 



 
 

pg. 90 
 

representation of sensory information (Noudoost and Moore, 2011). Accordingly, given 

that the different layers in V1 encode different aspects of the sensory information one 

should expect that DA indirectly exerts differential effects in each cortical layer. For 

instance, an important distinction between cortical networks in the middle (G-layers), 

superficial (SG-layers) and deep layers (IG-layers) is the spatial spread of their intracortical 

connections. In G-layer, for example, neurons receive inputs from the LGN and the spatial 

spread of connections is small (Adesnik et al., 2012; Briggs and Callaway, 2001, 2005; 

Callaway, 1998; Gilbert, 1977). On the other hand, SG- and IG-layers receive recurrent 

input from larger distances (up to several mm) via long horizontal circuitry (Callaway, 1998; 

Gilbert, 1977). Therefore, it was important to determine if the effects described in the 

Manuscript Nr. 4 are similar of different in all cortical depths.  

We first characterized how changes in power and information are reflected in the distinct 

frequency bands and layers. In the Manuscript Nr. 5 we found that LFP power is smooth 

and its depth profile is close to flat (Figure 7.2A, B). We found that there are two cortical 

regions at which oscillations in these frequency ranges are more informative. Namely 4 – 

16 Hz at G- and IG-layers, and 50 – 60 Hz at SG. Previous work has shown that in the 

macaque Vq information is codded in two frequency bands (< 20 Hz and > 50 Hz) 

containing independent information about the sensory stimulus. Having stablishes that 

there are two cortical regions at which oscillation in these frequency range are much 

informative (Manuscript Nr. 5), hence we investigated how these profiles of information 

and power are affected by the influence of DAergic neuromodulation. Given that the results 

from Manuscript Nr. 4 are compatible with the idea that DA indirectly mediates recurrence, 

we expected that neurons from the SG-layers, and possibly IG-layers, would be mostly 

affected by the LDC injections. In the Manuscript Nr. 6, we investigated the effects of LDC 

on the different LFP bands. As discussed earlier, the LFPs reflect several components of 

neural activity generated by different neural mechanisms and expressed in different 

frequency regimes (Figure 4.3). These distinct frequencies are associated to different 
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aspects of the sensory stimulus and convey independent information about the sensory 

stimulus (Belitski et al., 2008; Einevoll et al., 2013; Magri et al., 2012a).  

Our results revealed that depending on the stimulus condition LDC increases the LFP-

power from certain frequencies. For instance, during spontaneous activity, LDC increases 

the power in the intermediate frequencies (18 – 38 Hz) while decreasing the power in the 

gamma (50 – 150 Hz). In contrast, during the stimulus presentation the power from both 

gamma and intermediate bands increase (Figure 8.2).  

Interestingly, previous neurophysiology studies in the macaque showed that low (<20 Hz) 

and high frequencies (> 40 Hz) dissociate from the activity from the intermediate bands 

(18 – 38 Hz), and given their high noise- and low signal-correlations it has been proposed 

that they reflect neuromodulation influence (Figure 4.3; see Belitski et al., 2008; Einevoll 

et al., 2013; Magri et al., 2012b).  

Our results, thus, support the notion that intermediate frequencies reflect the influence of 

neuromodulation; therefore we named this frequency band as the neuromodulation band 

(nMOD-band). Basic circuit function and internal brain states directly depend on 

neuromodulator actions (Dayan, 2012; Herrero et al., 2008; Yu and Dayan, 2005). Our 

data suggests that the power modulation in the nMOD band is linked to ongoing 

mechanisms that help the system to maintain the current cognitive status which can, in 

principle, be instantiated by neuromodulators (Engel and Fries, 2010; Gray et al., 1989). 

Therefore, increases in power in this frequency band might be because the system has to 

maintain the current cognitive set (a decrease in power is associated to unexpected or 

novel events; see Buschman and Miller, 2007; Engel and Fries, 2010; Lundqvist et al., 

2016). It is therefore remarkable that the nature of our manipulation in this study consisted 

of continuous infusions of the immediate DA metabolic precursor which allows maintaining 

the concentrations of DA constant while assessing the effects on the neural activity (Black 

et al., 2003; Zaldivar et al., 2014). Thus, the fact that nMOD power increases during the 
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stimulus presentation highlights the efficiency of our manipulations to keep DAergic 

systems in a continuous operating mode. Furthermore, the increased DA-levels, and the 

subsequent activation of DA-receptors (DARs), results in an elevated and sustained neural 

activity due to strong recurrent excitation and enhance SNR mediated by DARs, as 

observed in the Manuscript Nr. 4.  

To test whether the observed changes in power have any significance in the stimulus 

encoding, we computed the mutual information that each frequency band carry about the 

sensory stimulus (Figure 7.2 and Figure 8.3). Interestingly, we found that LDC increases 

the information from alpha, nMOD and gamma bands, in particular in the SG- and IG-

layers (Figure 8.3). Second, we also found that alpha information increases in all layers. 

Interestingly, recent studies have indicated that alpha and gamma bands are important for 

feedback and feedforward activity respectively (van Kerkoerle et al., 2014). What these 

studies show, is that gamma oscillations initiate at the G-layer and propagate further to the 

SG and IG layers while alpha propagates in the opposite directions. Our results further 

suggest that these oscillations are generated at one cortical depth without too much 

stimulus dependency (low information and signal-CV in the G), but as the oscillations 

propagate to further layers (SG and IG) these are amplified or suppressed in a stimulus 

dependent manner. Hence, the fact that DA increases the gamma information in the top 

and deep layers, supports the theory that DA provide with mechanism for an efficient 

propagation of sensory information towards higher areas and for communication back to 

the thalamus for efficient processing of incoming sensory inputs (Swadlow and Gusev, 

2001; Timofeev and Steriade, 1996, 1998). 

The multimodal approach described in this dissertation allowed us to better understand 

the effects of neuromodulation on hemodynamics, neurometabolism and neurophysiology 

responses. These findings support the notion that neuromodulators determine how neural 

circuits process information during sensory stimulation. In this dissertation, we showed 

that neuromodulators can have strong influence on the BOLD and CBF responses, and 
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combining fMRI with pharmacological and neurophysiological techniques can aid 

understanding the effects of neuromodulation on neural circuits and neurovascular 

coupling. If we are able to identify signatures of individual neuromodulators in the fMRI 

and neurophysiological signals, we may also be able to detect chemical imbalances 

associated with brain diseases. 

 Limitations 

The set of studies used in this dissertation provide reliable knowledge about the effects of 

neuromodulation on neurovascular coupling and the concomitant effects on neural activity 

(Manuscript Nr. 2; Manuscript Nr. 4; Manuscript Nr. 5). We also showed that such effects 

of neuromodulators can disturb the stimulus encoding from the different cortical layers 

(Manuscript Nr. 5 and 6) and that neuromodulation effects can be inferred by looking at 

the power modulation of the midrange frequency bands (Manuscript Nr. 6). Nonetheless, 

one possible concern in the interpretation of these results is that the data was collected 

under anesthetized conditions.  

Several studies have reported layer dependent changes in neural activity associated to 

anesthesia (Alkire and Miller, 2005; Sellers et al., 2013; Sellers et al., 2015; Wanger et al., 

2013). What these studies have revealed is that sensory evoked activity and the cortico-

cortical interactions with higher areas are usually disrupted in the top layers (SG) using 

isoflurane  (Sellers et al., 2015), while concentration-dependent difference in power across 

layers are usually observed with urethane (Wanger et al., 2013). These studies suggest 

that the effects of anesthesia on cortical layers would highly depend on the class of 

anesthetic and their mechanisms of action. For instance, the anesthesia protocol used in 

our current study has been extensively used to investigate the neurovascular coupling in 

sensory areas (Goense and Logothetis, 2008; Magri et al., 2012b; Zaldivar et al., 2014). 

These studies have revealed that neural responses and hemodynamic signals under this 

anesthesia regime are very similar to those in the awake state (Goense and Logothetis, 

2008). Indeed, no differences on the activation of the neural networks associated to face 
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recognition have been observed between anesthetized and awake monkeys (Ku et al., 

2011). Also, LFP-power modulation, signal and noise correlations, as well as the 

information spectrum look very similar in the awake and the anesthetized condition 

(Belitski et al., 2010). Another important aspect to consider is that μ-opioid receptors are 

usually located at high densities in basal ganglia and thalamus, especially in regions 

associated to motor commands, while regions associated with cognition, ventral tegmental 

area, substantia nigra and frontal regions, have low densities of μ-opioid receptors.  

Therefore, the advantage of using anesthetized monkeys is that we can assess the effects 

of different neuromodulators on neural and hemodynamic properties without needing to 

take behavioral parameters, like reward- and attentional effects, into account. However, 

differences in regional CBF under the effects of neuromodulation have also been observed 

between awake and anesthetized animals (Hershey et al., 2000; Hershey et al., 2004). 

Furthermore, differences depending on the type of anesthesia are expected. Given that 

neuromodulatory properties are strongly dependent on behavioural state of the animal, or 

its level of alertness, fMRI studies on neuromodulatory effects are complex. Ideally it would 

be interesting to compare many of the neuromodulators effects in awake and anesthetized 

animals under the same protocol. Further comparative studies are needed to address 

cortical versus neuromodulatory contributions to neural processing, and their relation to 

haemodynamic responses.  

 Outlook 

In this dissertation we have made great strides in delineating the effects of 

neuromodulation on the neurovascular coupling of the macaque V1 using pharmacology, 

laminar neurophysiology, fMRI (BOLD and CBF) and chemistry sampling. While the results 

presented here have provided valuable insights into the effects of neuromodulation in 

these signals, they also raise a number of interesting questions and hypotheses.  
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For instance, we showed that we are able to simultaneously measure multiple 

neurochemicals in the BECF and blood, which helped us to define regional metabolic 

process that contribute to the homeostasis in the normal monkeys brain (Manuscript Nr. 

1). However, these experiments were mostly collected while the monkeys were 

anesthetized and with no sensory stimulation. Yet, how these chemical profiles may 

change under the influence of sensory stimulation and how these profiles can vary during 

sensory- and/or cognitive tasks, are questions that will ultimately define how metabolites 

and neuro-transmitters/modulators mediate neural function. To answer this question, one 

needs to first complement the neurochemistry analysis with other techniques, such as 

electrophysiology and fMRI (BOLD, CBF, CBV or CMRO2), to better characterize the 

signaling molecules associated to the different neuronal events. In addition, given that the 

data for the Manuscript Nr. 1 was mostly collected in V1, it will be interesting to assess 

differences in a broad array of metabolites across different anatomical regions during 

resting state and during cognitive tasks. This will increase our knowledge about the 

distribution of metabolites in the brain, given that the knowledgebase for regional 

distribution of brain metabolites appears to be contradictory and limited to a small set of 

molecules in the brain of rodents (Minati et al., 2010; Pouwels and Frahm, 1998).  

Moreover, in our Manuscript Nr. 3, we combined pharmaco-MRI and neurophysiology 

(approach developed in the Manuscript Nr. 2) with blood-chemistry sampling. Although in 

this study we found that lactate and pyruvate exerted similar effects in the BOLD and CBF 

responses, associated to increased lactate and pyruvate levels, the neurophysiology 

experiments were slightly different (Figure 5.5 and Figure 5.6). Here we found that lactate 

elicits stronger and long-lasting effects in the LFPs than pyruvate (Figure 5.5 and Figure 

5.6). This is surprising, giving that lactate and pyruvate are in near-equilibrium and their 

metabolism equally depends of the presence of the lactate dehydrogenase (LDH; 

Magistretti and Allaman, 2015; Pellerin and Magistretti, 2004). Hence, these results raise 

the question of whether different cell types have distinct metabolic profiles and/or 
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preferences (Belanger et al., 2011; Pellerin and Magistretti, 2004; Simard and Nedergaard, 

2004). In particular it is not known if such a difference can also be found between 

interneurons and pyramidal cells. If such difference existed, this will imply the existence of 

rich and coordinated cell signaling mechanisms in the regulation of metabolic processes 

for the overall balance of excitation and inhibition. Therefore, the development of novel 

techniques, with even higher spatial and temporal resolution, will provide new tools to 

refine our understanding of intracellular metabolic exchanges and possibly reveal a higher 

level of regulation in subcellular compartments (Belanger et al., 2011; Magistretti and 

Allaman, 2015). This is important given that neuromodulators acts through different 

intracellular signal pathways which result in changes in the metabolism as well as in the 

synthesis of different molecules that subserve different aspects of intracellular 

communication.  

In our Manuscript Nr. 2 and Manuscript Nr. 4, we explored the effects DA into the 

neurovascular coupling. Briefly, we found that DA dissociated the BOLD signal from the 

underlying neural activity. A phenomena that is not locally mediated by DARs in V1 

(Zaldivar et al., 2014). Multiple studies have suggested that the effects of DA in the sensory 

information are the result of long-range interactions with higher order areas, possibly via 

prefrontal cortex (PFC; Happel et al., 2014; Jacob et al., 2013; Noudoost and Moore, 

2011). However, little is known about how this interaction between V1 and PFC may 

evolve. Therefore, it will be interesting to conduct experiments that mimic DAergic 

neuromodulation, either pharmacologically or by a cognitive task, while simultaneously 

recording BOLD, CBF and neurophysiology activity in V1 and PFC. This is also relevant 

for the Manuscript Nr. 6, given that we found that SG-layer increased their information 

capabilities under the influence of DA. Therefore, it will remarkable to explore the effects 

of DA using high-resolution fMRI and investigate laminar difference in neurovascular 

coupling under the influence of DA. Given that DAergic neuromodulation in V1 increases 

the information capabilities from SG- and IG-layers, but not in the G-layers, it is expected 
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that the profile that we observed in the Manuscript Nr. 4 would likely change in different 

layers.  

In the Manuscript Nr. 5 and Manuscript Nr. 6, we investigated differences in power and 

information-content from the cortical layers in V1, either with and without the influence of 

neuromodulation. These findings, allows us to separate the effects of feedforwards signals 

from feedback signals and to identify the neural activity associated to neuromodulatory 

processes. However, it will be interesting to investigate how different can these profiles be 

under the effects of other neuromodulators. This will probably require the exploration about 

their effects using CSD analysis to better understand their effects in the propagation of 

oscillatory activity. This will imply that different neuromodulators are likely to generated 

different CSD profiles.  

 Outlook for clinical applications 

Multiple studies in the clinical neuroscience, have been focused at targeting structural 

changes associated to different brain disorders (Cahn et al., 2002; Clark and Sahakian, 

2008; DeLisi et al., 2006; Karlsgodt et al., 2010). Although a great deal of information has 

been learnt about the anatomical abnormalities associated to brain dysfunction, much of 

the reported structural changes usually reflect the post-onset period of a certain disease 

(Karlsgodt et al., 2010). An important new challenge for clinical neuroimaging, in particular 

fMRI, is being set with the availability of therapies that could delay the onset or expression 

of chronic neurological diseases (Iadecola, 2004). However, the clinical obstacle is to 

identify early disease specifically and with confidence, in order to assist clinical decisions 

(Bartsch et al., 2006; Jezzard and Buxton, 2006).  

One of the essential problems for such clinical aids is that we need to understand the 

magnitude of the BOLD signal in a meaningful way. That is, rather than a mapping study, 

where the central goal is simply to detect where activation is happening, the goal in many 

disease studies is to detect differences in the level of the response (Jezzard and Buxton, 
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2006). Many studies are applying fMRI techniques to try to shed light on disease 

mechanisms or to provide a means to assess the progression of disease or the response 

to treatment (Karlsgodt et al., 2010; Rashid et al., 2015). Yet there is a fundamental 

ambiguity underlying these studies: if a disease group shows a different BOLD response 

to that of a healthy group in response to a standard task, how should this be interpreted? 

It could represent a difference in the neural activity associated with the task, but it could 

also be an effect of the disease on vascular responsiveness, or the coupling of neural 

activity with CBF, or chronic changes in the baseline state. Unfortunately, from the BOLD 

responses alone, we cannot distinguish any of these possibilities. 

To move forward, an important step is to determine the specific molecular basis associated 

to the brain disorders, such as changes in neurotransmitter systems and cellular signaling, 

as well the associated metabolic and neural changes. However, we must first gain insights 

into the aspects that better reflected in the fMRI-BOLD responses. The findings presented 

in this dissertation provided us with a concise idea about the complexity of the mechanisms 

modulating the neurovascular coupling. We showed that neuromodulators can have 

profound effects in the BOLD responses that not necessarily correspond to the neural 

activity, therefore implying that that caution is necessary in interpreting BOLD signals. 

Thus, combining BOLD with PET, EEG and MEG can deepen our understanding of 

physiological function and pathologies involving neuromodulatory systems.   
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3.1 INTRODUCTION  

The physiological function of neurons and the correct information processing within the brain 

depend critically on neuroactive molecules and metabolites (NMs). These NMs consisting of 

neurotransmitters like glutamate or neuromodulators like acetylcholine can be detected by 

appropriate techniques in the extracellular fluid of the brain. The concentrations of these NMs 

are tightly controlled and stable within narrow boundaries. Many disorders of the central 

nervous system (CNS) such as Parkinson’s disease (Calabresi et al., 2000), Alzheimer’s 

disease (D'Aniello et al., 1998), and schizophrenia (Carlsson and Carlsson, 1990), are 

correlated with or even caused by changes in the concentrations of such substances. NMs 

can be sampled from the extracellular brain fluid (EBF) which allows us to investigate their 

dynamic reflecting changes in neuronal activity. The EBF forms a complex, dynamic 

environment embedding all neural elements and serves as medium for the cell-to-cell 

communication and metabolite transport. Many of these NMs also exist in the blood system, 

but their concentrations are commonly different from those in the brain because of the 

differential permeability of the blood brain barrier (BBB) and of differences in absorption 

mechanisms, synthesis, and metabolism. Simultaneous and quantitative monitoring of these 

NMs from the brain and the blood system will therefore allow us to assess their relation 

between the brain and the blood system. 

In the present study, we focused on a selection of NMs functionally and metabolically related 

and developed a direct and sensitive analytical method to monitor acetylcholine, lactate, 

pyruvate, glutamine, and glutamate in parallel from the brain and the blood. All these five 

substances are derivates from glucose and the citrate cycles (Gibson et al., 1981; Hertz et al., 

2007). Additionally, acetylcholine is able to modulate glutamatergic release and can interact 

with the brain energy metabolism (Andersson and Arner, 1995; Briand et al., 2007; Yang et 

al., 2009). To do so, we used microdialysis to collect samples from EBF and blood of 

anesthetized nonhuman- primates in parallel. This will allow us to investigate changes in their 
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relation caused by functional and metabolic challenges or by pathologies in the future. 

However, their chemical and physical properties are different which makes it difficult to 

separate and detect these NMs together. To the best of our knowledge, there is currently no 

report describing the simultaneous determination of all five aforementioned substances by a 

single analysis. Indeed, so far, most analytical methods developed were only focusing on the 

determination of one or two of such targeted substances. For example, electrochemical 

detection (ECD) is commonly used to monitor these compounds (Monge-Acuna and 

Fornaguera-Trias, 2009; Tsai et al., 1996; Yao et al., 2003), but an additional enzyme reactor 

is needed to generate electrochemically detectable hydrogen peroxide for acetylcholine 

detection(Huang et al., 1995), so it is difficult to monitor all these substances in a single 

analytical run using ECD as detector. Compared to the classical ECD, mass spectrometry 

(MS) is able to detect diverse NMs with high sensitivity and selectivity. Recent analytical 

advances have been made by using MS detection coupled with ion-pair reversed-phase liquid 

chromatography (RPLC) or ion exchange chromatography (IEC) as separation tools. For 

instance, acetylcholine has been analyzed by strong cation exchange (SCX)-MS (Shackman 

et al., 2007) or ion-pair RPLC-MS (Prokai et al., 2008; Zhu et al., 2000). Pyruvate was 

analyzed by weak anion exchange (WAX)-MS (van Dam et al., 2002), while lactate and 

pyruvate together were detected by RPLC-ESI/MS (electro spray ionization, ESI), but a time-

consuming derivatization process with 3-nitrophenyl-hydrazine was needed (Uran et al., 

2007). Glutamine and glutamate were determined by ion-pair RPLC-MS using an ion-pairing 

regent which might cause ESI suppression (Eckstein et al., 2008). 

In contrast to ion-pair RPLC or IEC-based analytical approaches, hydrophilic interaction liquid 

chromatography (HILIC)–MS is an alternative technique that allows separating and 

determining multiple polar analytes irrespective of being a base or an organic acid (Alpert, 

1990; Zhang et al., 2008). It already has proved its merits in determining peptides, proteins 

and small polar molecular compounds in complex matrices (Fu et al., 2008; Preinerstorfer et 

al., 2010; Schlichtherle-Cerny et al., 2003; Zhang et al., 2007). Recent reports demonstrated 
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that HILICMS is well suited to determine polar neurotransmitters in EBF offering high 

sensitivity combined with timesaving procedures for sample preparation (Uutela et al., 2005; 

Zhang et al., 2007). 

In this study, we report the successful combination of capillary HILIC-ESI/MS with dual 

microdialysis sampling for simultaneous measurement of five NMs together in brain and blood 

dialysates of non-human primates. First, our approach allows us to compare the relation of 

these NMs to each other under different physiological and pathological states of the brain. 

Second, the simultaneous sampling from the brain and the blood can be used to extrapolate 

from blood measurements to brain concentrations of these NMs. Relation changes of these 

NMs detectable in the blood can serve as easy accessible biomarkers reflecting physiological 

or pathological states of the brain (Kaddurah-Daouk and Krishnan, 2009). 

3.2 METHODS 

3.2.1 Chemicals 

HPLC-MS grade acetonitrile, formic acid, and ammonium formate were purchased from 

Sigma-Aldrich Munich, Germany). [3-13C] lactate (as aqueous solution, 20% w/w in H2O) (13C-

lactate), glutamine-L-2, 3, 3, 4, 4-d5 (glutamine-d5), and glutamic acid-L-2, 3, 3, 4, 4-d5 

(glutamate-d5) were purchased from Cambridge Isotope Laboratories (Andover, USA). 

Acetylcholine-N,N,N-trimethyl-d9 chloride (acetylcholine-d9) was bought from Medical 

Isotopes, Inc (Pelham, USA). Acetylcholine chloride, sodium lactate (lactate), sodium 

pyruvate, glutamine, glutamate, [1-13C] sodium pyruvate (13C-pyruvate), and the chemicals for 

preparing frits were all obtained from Sigma-Aldrich. Pure water was produced by a TKA 

superpure water system (Niederelbert, Germany). Artificial cerebral spinal fluid (a-CSF) for 

standard solutions consisted of 148 mM NaCl, 3.00 mM KCl, 0.80 mM MgCl2, and 1.40 mM 

CaCl2, pH 7.3.  



 
 

Page | 132  
 

3.2.2 Fabrications of capillary columns  

The preparation of capillary columns was adopted and modified from Zhang et al. (Zhang et 

al., 2007). To prevent the packing material from spilling out of the column a frit was formed at 

one end by in situ free radical polymerization  modified from Viklund et al. (Viklund et al., 

1997). Compared to the frit formed by sintered reaction, our frit can easily withstand long 

exposure to high pressure (>3,000 psi) and minimize extra-column band broadening. After the 

reaction, unreacted material and other soluble compounds were removed from the pores by 

washing with ethanol followed by purging with helium for 15 min. The column was packed with 

acetone slurry (1.5 mL) containing 50 mg of 5 μm polyhydroxyethyl aspartamide particles 

(PolyLC, USA) with the help of a helium pressure cell with a stirring bar to maintain particle 

suspension running under a pressure of 100 bars for 30 min. The packed column was cut to 

15 cm for use. 

3.2.3 Preparation of Calibration Standards and Internal Standards 

To increase the reproducibility of the quantitative analysis of acetylcholine, lactate, pyruvate, 

glutamine, and glutamate, acetylcholine-d9, 13C-lactate, 13C-pyruvate, glutamine-d5, and 

glutamate-d5 were used as their respective internal standards (IS). Stock solutions of the 

analytes were prepared in 30 % acetonitrile containing 0.1 % formic acid and stored at 5 °C in 

the refrigerator. To characterize the analytical performance of capillary HILIC-MS methods for 

the quantitative measurement of the analytes, the stock solution was serially diluted using a 

solution containing a-CSF/solution A (90 % acetonitrile, 0.1 % formic acid) (1:4, v/v). The 

calibration solutions of acetylcholine ranged from 0.5 to 250 nM and consisted of three levels 

(low, medium, and high) of quality control (QC) samples with 2.5, 25, and 125 nM. For lactate 

and pyruvate the calibration solutions ranged from 10 to 5000 µM, and QC samples were 50, 

500, and 2500 µM. For glutamine the calibration solutions ranged from 0.5 to 250 µM, and QC 

samples were 2.5, 25, and 125 µM. For glutamate the calibration solutions ranged from 0.25 

to 125 µM, and QC samples were 1.25, 12.5, and 62.5 µM. Two IS stock solutions were 

prepared in water containing 0.1 % formic acid: one (IS1) is used for the calibration curve 
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preparation and the blood microdialysate samples analysis, which contains 500 nM 

acetylcholine-d9, 10 mM 13C-lactate, 10 mM 13C-pyruvate, 500 µM glutamine-d5, and 250 µM 

glutamate-d5; the other one (IS2) is used for the monkey brain microdialysate samples analysis 

containing 300 nM acetylcholine-d9, 6 mM 13C-lactate, 6 mM 13C-pyruvate, 300 µM glutamine-

d5, and 150 µM glutamate-d5. These internal standards were diluted 10 times (IS1) and 6 times 

(IS2) on the day of the assay using a-CSF/solution A (90 % acetonitrile, 0.1 % formic acid) 

(1:4, v/v). The calibration curve was constructed based on the response ratio of the peak area 

(Panalyte / PIS) versus the nominal standard concentrations by a least-squares regression using 

a weighting factor of 1/concentration2. 

3.2.4 Microdialysis Sampling 

Two male rhesus monkeys (Macaca mulatta) were used with an age of 5 years weighing 

between 6 and 7 kg. The experimental procedures were approved by the local authorities 

(Regierungspraesidium) and are in agreement with guidelines of the European Community for 

the care of laboratory animals. During the experiment the monkeys were anesthetized with full 

monitoring of all vital parameters. Before the experiment the monkeys were sedated with 

ketamine (15 mg/kg). Anesthesia was induced with fentanyl (31 µg/kg), thiopental (5 mg/kg) 

and succinyl chloride (3 mg/kg). Afterwards the monkeys were intubated and ventilated with a 

Servo Ventilator 900C (Siemens, Germany). The maintenance of anesthesia was attained with 

remifentanyl (0.2-1 µg/kg/min) and mivacurium chloride (4-7 mg/kg/h). A crystalloid solution 

(Ionosteril, Fresenius Kabi, Germany) with 2.5 % glucose was infused at a rate of 10 ml/kg/h. 

During the experiment body temperature was kept between 38.5 and 39.5°C, SpO2 above 

95% and end tidal CO2 at 35 mmHg.  

The monkeys had a miniaturized PEEK chamber over primary visual cortex that gave access 

to the brain. The probe was inserted through a small incision in the dura. The probe for blood 

sampling was placed into a superficial leg vein trough a catheter.  
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For brain sampling microdialysis probes CMA 12 with 2 mm PAES membrane of  0.5 mm outer 

diameter (o.d.) and a 20 kDa cut-off (CMA Microdialysis AB, Sweden) were used. The probe 

was flushed with a-CSF solution at a flow rate of 2µL/min for 15 min, and then conditioned at 

a flow rate of 600 nL/min for 2 hrs before insertion into the cortex of the monkey. For the blood 

sampling a microdialysis catheter CMA 64, 20 mm PAES membrane, 0.6 mm o.d., 20 kDa 

cut-off (CMA Microdialysis AB, Sweden) was flushed with saline containing fragmin 25 IU/mL 

(Pfizer Pharma GmbH, Germany) at a flow rate of 2 µL/min for 2 hrs before insertion. The 

collections of microdialysis samples were started 2 hrs after the insertion of the probes for 

blood sampling as well as for brain sampling.  

The dialysates were collected in parallel by two refrigerated fraction collectors CMA 740 (CMA 

Microdialysis AB, Sweden) at 6 °C for 1 hr. The samples were collected at an interval of 3 

minutes for both brain and blood sampling. Before sampling the IS solution was added to the 

glass inserts used for sample collection and then put into the refrigerated fraction collectors. 

After the experiment the brain microdialysate samples were concentrated by a vacuum 

concentrator (Eppendorf, Germany) under room temperature for 5 min and reconstituted by 

solution B (60 % acetonitrile, 0.1 % formic acid) for further analysis. The blood microdialysate 

samples were directly diluted by solution C (80 % acetonitrile, 0.1 % formic acid) and then 

analyzed.  

In vitro recovery of CMA 12 probes has been tested, and it was 50.2 % to 66.8% for all analytes 

with a reliable stability not exceeding 3.6 % standard errors. The measured in vitro recovery 

of CMA 64 probes for all analytes was 42.5 % to 49.3 % with good reliable stability not 

exceeding 4.3 % standard errors. 

3.2.5 Capillary Liquid Chromatography and Mass Spectrometry  

An Agilent capillary HPLC 1100 system coupled to a XCT plus ion trap mass spectrometer 

(Agilent, Waldbronn, Germany) was used for analysis. Mobile phase A was an aqueous 

solution containing 50 mM ammonium formate and 1.0 % formic acid (pH 2.87), and mobile 
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phase B was acetonitrile. The analysis was performed using a gradient profile: 0.0 to 10.0 min, 

85 % B to 45 % B, then 45 % B was kept for 5 min. The column was reconditioned using an 

85 % solution of B for 10 min before further injection. The flow rate was 3.5 µL/min, and a 

sample of 0.3 µL was injected in the column each time. 

MS analysis was performed by switching between positive and negative ion mode. Tandem 

mass spectrometry (MS/MS) experiments were applied to isolate and fragment the precursor 

ions. Ion-trap tandem mass spectrometry (MS/MS) experiments were applied to isolate and 

fragment precursors ions. The mass spectrometer was operated in MRM mode (multiple-

reaction-monitoring) for the quantitative analysis. Five scans were averaged for each 

spectrum with an scan range of m/z 50 – 2,000. MS scans were split into three segments 

considering the different MS behaviors of five compounds. In the first segment (0.0-3.5 min) 

acetylcholine and acetylcholine-d9 were monitored  under a positive mode with the capillary 

voltage of 3,5000 V, while lactate, 13C-lactate, pyruvate and 13C-pyruvate were monitored 

under a negative mode in the second segment (3.5-8.6 min) with the capillary voltage of 2,541 

V, and glutamine, glutamin-d5, glutamate and glutamate-d5 were monitored under a positive 

mode in the third segment (8.6-15.0 min) with capillary voltage of 3,200 V. The MS parameters 

of five analytes and their corresponding internal standards are listed in Table 3.1. Lactate and 

pyruvate did not generate significant and stable product ions, so we could not use the product 

ions for lactate and pyruvate in MRM conditions. We used ion fragmentation amplitude of 0.5 

V and ion fragmentation cut-off of 58 which reduced the background noise keeping the lactate 

and pyruvate unaffected. This procedure could compensate for the lack of specificity which is 

achieved by monitoring the transfer from the precursor ion to the product ion.  The MS settings 

such as capillary exit, skimmer and lens voltages were optimized and tuned by the data 

acquisition software during infusion of a standard solution for each compound.  
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Table 3.1 MS parameters for five analytes and their internal standards 

Compounds MRM transition Width Frag. Cut-off 

(m/z) 
Frag. Amplitude 

(V) 
ICC smart 

target (m/z) 
ICC accumulation 

time (ms) 

Ach 146 →  87 1.0 62 1.38 200,000 200 

Ach-d9 155 → 87 1.0 62 1.38 200,000 200 

Lac 89 → 89 1.0 58 0.50 200,000 100 

13C-Lac 90 → 90 1.0 58 0.50 200,000 100 

Pyr 87 → 87 1.0 58 0.50 200,000 100 

13C-Pyr 88 → 88 1.0 58 0.50 200,000 100 

Gln 147 → 130  1.0 69 1.20 50,000 200 

Gln-d5 152 → 135 1.0 69 1.20 50,000 200 

Glu 148 → 130 1.0 60 0.98 50,000 200 

Glu-d5 153 → 135 1.0 60 0.98 50,000 200 
 

 

3.3 RESULTS AND DISCUSSION  

3.3.1 HILIC-MS Analytical Method Development 

Highest intensities for all the analytes were achieved when both the positive and the negative 

ionization mode of the mass spectrometer were used in the ESI experiments. Previous studies 

showed that chemicals can have different ESI/MS responses because of their different 

physical and chemical properties (Cech and Enke, 2001). In our case, lactate and pyruvate, 

which are organic acids, had much higher intensities in negative ionization mode than in 

positive ionization mode. The other analytes, acetylcholine, glutamine and glutamate 

generated responses with high intensity only in positive ionization mode. For our experiments, 

we thus used positive ionization mode for detecting acetylcholine, glutamine, and glutamate, 

while negative ionization mode for lactate and pyruvate. In the analytical experiments, we 

selected HILIC as the method to separate the five polar analytes. Our initial tests showed that 

HILIC was able to separate them simultaneously (data not shown). The elution order was 

acetylcholine, lactate, pyruvate, glutamine, and glutamate. Because both positive and 

negative ionization mode were used for ESI/MS detection, the efficient separation of lactate 

and pyruvate from the other analytes has to be achieved to ensure that each analyte reliably 

matches the time window of the appointed ionization mode. 
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To achieve optimal separation and intensity of the five analytes on the HILIC-MS, we 

examined the influence of pH value, water content and buffer concentration of the mobile 

phase on the retention behavior and MS signal of each analyte. Figure 3.1a shows that the 

pH value had clearly stronger effects on lactate and glutamate compared to the other three 

analytes when we varied the pH of mobile phase A from 2.7–4.2 by adjusting formic acid 

proportions from 0.05–1.50%. In particular, the elution order of lactate and pyruvate reversed 

when pH value ranged from 3.9–2.7. This may be because lactate is ionized at higher pH 

values compared to its pKa of 3.85. Figure 3.1d indicates that the MS intensity of the five 

analytes was also affected by the pH value. Their intensities were on average higher at lower 

pH value; 1.0% formic acid (pH 2.9) was finally used for the following optimization warranting 

efficient separation combined with high intensity. 

The water content had strong influence on the chromatographic behaviors and MS signal 

intensities of all five analytes. When the water content was decreased to 30% or lower, lactate 

and pyruvate could be very well separated from their neighboring peaks of acetylcholine and 

glutamine in the chromatogram (Figure 3.1b). Figure 3.1e illustrates that the reduced water 

content (from 60–30%) could enhance the MS intensity, which is the benefit of the increased 

electrospray ionization efficiency in a high organic phase. On the other hand, a MS signal 

decline was observed when the water content ranged from 30% to 20%. This might result from 

the low solubility of the polar compounds in the high organic phase mobile. 

During the method development, we found that the salt content in the buffer solution had a 

great impact on the peak shapes and MS signal of the analytes (Figure 3.1f), but less effect 

on retention time (Figure 3.1c). Sharp peak shapes and high reproducible retention times were 

obtained for all analytes when the ammonium formate concentration was increased from 10–

50 mM. Therefore, a higher concentration of buffer solution was used for the elution, although 

ion suppression could be observed at this level. 
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Taken together, the aqueous phase consisted of a buffer solution containing 50 mM 

ammonium formate and 1.0% formic acid using a gradient profile that started at 85% 

acetonitrile for separation of the targeted analytes. This optimized separation method ensured 

that each analyte was matching the appointed time window of the chosen ionization mode 

without any interferences. The typical HILIC-ESI/MS chromatograms containing the five NMs 

(acetylcholine, lactate, pyruvate, glutamine, and glutamate) are shown in Figure 3.2. 

 

 

 

3.3.2 Analytical performance of the capillary HILIC-ESMI/MS method 

The capillary HILIC-ESI/MS method was validated for the quantitative measurements of 

acetylcholine, lactate, pyruvate, glutamine, and glutamate concentrations from in vivo 

 

Figure 3.1 Influences of mobile phase on retention behavior and MS signal of the five analytes. a Effects 
of pH value on the retention time. b Effects of water content on the retention time. The aqueous phase 
containing 50 mM ammonium formate and 1.0% formic acid. C  Effects of buffer concentration on the 
retention time. Mobile phase A containing 1.0% formic acid. d Effects of pH value on MS signal. E Effects 
of water content on MS signal. f Effects of buffer concentration on MS signal. An isocratic elution of 
mobile phase A: mobile phase B (15:75, v/v) was used to test the influence of pH value and buffer 
concentration. *Acetylcholine (Ach), Lactate (Lac), Pyruvate (Pyr), Glutamine (Gln), Glutamate (Glu). 
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dialysates. We characterized a series of parameters like the limits of detection (LODs), limits 

of quantification (LOQs), linearity, selectivity, accuracy, precision and stability by analyzing 

different levels of standard mixtures of the target NMs while using optimized MRM transitions 

and positive/negative ionization modes. The validated results of the analytical performance 

are listed in Table 3.2. The LODs of lactate and pyruvate in negative mode were 3 and 2 μM, 

respectively, whereas the LODs of acetylcholine, glutamine, and glutamate in positive mode 

were 150 pM, 5 nM, and 50 nM, respectively. Although the LODs of lactate and pyruvate were 

much higher than those of the other three analytes (acetylcholine, glutamine, and glutamate) 

we still can measure them, because their basal concentrations in the brain as well in the blood 

are much higher than the other three. The matched MS/MS pattern between the endogenous 

NMs and their standards allowed confirming the high selectivity of the HILIC-MS method. 

Additionally, the retention time of the endogenous NMs always matched well with those of 

internal standards under different gradient elution conditions, which also proved the high 

selectivity of the method. The accuracy, precision and stability have been tested by replicate 

analysis (five determinations per concentration) of three different levels of QCs (see the 

section “Preparation of calibration standards and internal standards”). It is shown in Table 3.2 

that the results of the accuracy, intra- and inter-day precisions were all in good agreement with 

the requirements of biological analysis (Shah et al., 1991). The stability test results indicated 

that the stock solution was stable for 1 month at −20 °C with the RSD< 12.5%, and the QCs 

were stable for about 2 weeks in the autosampler at 4 °C with the RSD<15.1%. Additionally, 

the freeze (−20 °C) and thaw stability has also been tested for these analytes. After two freeze-

thaw cycles, the QCs were analyzed on the third cycle, and the results showed a good stability 

with the RSD<13.1%. 
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Table 3.2 Validation results of the HILIC-ESI/MS method for the analysis of the five 
neurochemical analytes 

Compounds LOD LOQ Linear range r
2 Accuracy 

(%) 
Precision 

a 
Intra-day 

RSD %, n = 5 
Inter-day 

RSD %, n = 3 
ACh 150 pM 450 pM 0.5 - 250 nM 0.9989 82.6 - 109.0 11.6 12.8 
Lac 3 µM 10 µM 10 - 5000 µM 0.9990 86.0 - 106.8 9.6 15.2 
Pyr 2 µM 6 µM 10 - 5000 µM 0.9989 85.6 - 117.4 10.5 14.3 
Gln 5 nM 15 nM 0.5 - 250 µM 0.9990 81.5 - 117.8 10.3 13.3 
Glu 50 nM 150 nM 0.25 -125 µM 0.9988 86.0 - 106.9 14.6 15.0 

 

a Intra-day and Inter-day precisions were analyzed by one-way ANOVA analysis. 

 

In addition, we adopted the post-extraction spike method proposed by Matuszewski et al. 

(Matuszewski et al., 2003) to evaluate the matrix effect of the acquired in vivo samples in our 

study. To reliably determine the endogenous concentration of the five analytes we analyzed 

them according our developed method and then checked the same brain and blood samples 

by spiking with appropriate standard solutions. The spiked concentration of acetylcholine, 

lactate, pyruvate, glutamine, and glutamate was 8 nM, 150 μM, 10 μM, 40 μM, and 1 μM 

respectively for the brain samples, while 20 nM, 400 μM, 60 μM, 300 μM, and 30 μM for the 

blood samples. The total concentrations of the five analytes in the spiked samples and the 

endogenous concentrations in the nonspiked samples were then determined and used to 

calculate the recovery of each analyte. We used the following formula for calculating the 

recovery: (measured value−endogenous value)/ added value×100. The obtained recoveries 

for the five analytes fell in the range of 93–112%. 
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3.3.3 Concentrations of acetylcholine, lactate, pyruvate, glutamine, and 
glutamate in the brain and blood microdialysates  

We applied capillary HILIC-ESI/MS method together with simultaneous blood and brain 

microdialysis sampling to measure the concentrations of five NMs from two anesthetized male 

rhesus monkeys. The microdialysis probe in the brain was placed into the primary visual cortex 

(V1). The concentrations of acetylcholine, lactate, pyruvate, glutamine, and glutamate in 

dialysates from primary visual cortex and blood are shown in Table 3.3. The values we 

monitored were in good agreement with the Human Metabolome Database Version 2.5 

(www.hmdb.ca), and the values reported in the literature (Bjerring et al., 2008; Boutelle et al., 

1992; Cynober, 2002; Eckstein et al., 2008; Fujii et al., 1995; Hawkins, 2009; Kawashima et 

al., 1987; Mintun et al., 2004; Molina et al., 2005; Zhang et al., 2007). 

Figure 3.2 Representative HILIC-ESI/MS chromatograms of five NMs under the 
optimized conditions a blood sample b brain sample. Both positive and negative ion 
mode was adopted for the detection of five analytes during each run 
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Table 3.3 Concentrations of acetylcholine, lactate, pyruvate, glutamine and glutamate in the 
dialysates of brain and blood. 

Compounds Ach (nM) Lac (µM) Pyr (µM) Gln (µM) Glu (µM) 

Brain 4.0 ± 1.4 220.4 ± 90.9 21.3 ± 8.3 50.4 ± 21.9 1.1 ± 0.2 
Blood 10.3 ± 4.4 511.3 ± 78.7 91.5 ± 37.6 176.4 ± 45.3 26.7 ± 5.3 

 

Anesthetized monkeys, resting status. Values are given as mean ± standard error of the mean (S.E.M.); n=4. 

 

3.3.4 Comparison of lactate/pyruvate and glutamine/glutamate ratios in the 
brain and the blood 

To further understand across the BBB, respectively, between the brain and the blood, we 

examined and compared the lactate/pyruvate and glutamine/glutamate ratios between the 

brain and blood dialysates. The results showed that the concentration ratio of lactate/pyruvate 

and glutamine/glutamate was significantly different between the brain and the blood. The 

values of lactate/pyruvate and glutamine/glutamate were calculated and are shown in Figure 

3.3. The mean lactate/pyruvate ratio in the brain was 14.5, but only reached 9.0 in the blood 

system. The mean ratio of glutamine/glutamate in the brain was 53.4, significantly higher than 

the blood value of 7.9. One-way ANOVA analysis confirmed the statistical significance of these 

findings (p<0.05). 

The lactate/pyruvate ratio in the human brain is currently considered a specific, sensitive 

marker that could potentially indicate whether glucose and oxygen supply meet the energy 

requirements of the brain tissue (Bellander et al., 2004). Such marker, that hint upon the 

adequacy of energy and metabolite supply are of great importance for the detection of onset 

of neurodegenerative diseases (Iadecola, 2004). In the human brain, a lactate/pyruvate ratio 

above 40 indicates an “energy crisis” (Samuelsson et al., 2007). Additionally it was shown that 

lactate can increase the cerebral blood flow which correlates with an increase of the 

lactate/pyruvate ratio in the plasma (Mintun et al., 2004). A decreased interstitial 

glutamine/glutamate ratio has been observed in acute and chronic brain damage such as 

traumatic brain injury (Richards et al., 2003), hypoxia (Raman et al., 2005), and epilepsy 

(Petroff et al., 2002). Although such findings are still preliminary for diagnosis, we consider the 
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simultaneous monitoring of blood and brain concentrations of important NMs a necessary step 

in this direction to get a clear understanding of their chemical relation across the BBB. On the 

basis of this data, extrapolations from the blood concentrations to brain concentrations of 

pathologically relevant NMs might be envisioned. 

 

 

3.4 CONCLUSIONS 
We developed a capillary HILIC-ESI/MS method for the simultaneous determination of 

multiple chemicals including acetylcholine, lactate, pyruvate, glutamine and glutamate from 

the brain (EBF) and blood system of anesthetized non-human primates. To achieve highest 

intensity of these NMs, positive and negative ionization modes were used for MS detection. 

The optimized chromatographic separation allowed us to switch between the two detection 

modes and to simultaneously measure these NMs in a single run. A simple and fast sample 

treatment was carried out after collection by microdialysis without any additional sample 

purification or derivatization. We have successfully demonstrated that our method can reliably 

quantify these NMs in dialysates collected from the blood and the primary visual cortex of non-

human primates. Additionally we found that the concentration ratio of lactate/pyruvate and 

glutamine/glutamate was significantly different between the brain and the blood, reflecting the 

active transports and different metabolic processes between the blood and the nervous 

system respectively across the BBB. Quantified coupling parameters between the blood and 

the nervous system of NMs are of outmost importance due to their possible use in the 

Figure 3.3 Comparison of lactate/pyruvate 
(Lac/Pyr) and glutamine/glutamate (Gln/Glu) in 
primary visual cortex and the blood system of 
rhesus monkey. Ratios of Lac/Pyr and Gln/Glu in 
monkey primary visual cortex were significantly 
higher than the blood system (p<0.05) 
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diagnosis of pathological processes in the brain. To further investigate the correlation of these 

NMs between the brain and the blood systems, we will use the developed analytical method 

to test the dynamic change of these NMs across the BBB by pharmacologically simulating 

dysfunctional states of the brain. 



 
 

Page | 145  
 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

4. Manuscript Nr. 2 
 

Pharmaco-based fMRI and neurophysiology in non-human 

primates 
 

 
This chapter was published in 2016 in the book In vivo Neuropharmacology and Neurophysiology, (Ed) 

Athineos Philippou. Neuromethods of Springer Science Series by 

Daniel Zaldivar, Nikos Logothetis, Alexander Rauch & Jozien Goense. 

 

 

 

doi: 10.1007/978-1-4939-6490-1_3 



 
 

Page | 148  
 

  



 
 

Page | 149  
 

4.2 INTRODUCTION 

One of the primary goals of systems neuroscience is to understand the neural mechanisms 

that underlie behavior. Although a great deal has been learned from characterizing the 

responses of single neurons involved in sensory-, motor- as well as cognitive functions and 

dysfunctions (Dayan, 2012; Yuste, 2015), little is known about collective properties of 

contiguous or distributed neural networks underlying such behavior (Boynton, 2011a; 

Logothetis, 2008; Yuste, 2015). Functional magnetic resonance imaging (fMRI) is an example 

par excellence of a method allowing non-invasive investigation of groups of neurons and 

networks involved in behavior and sensory processing, which cannot be identified by studying 

one neuron at a time (Boynton, 2011a; Logothetis, 2008; Logothetis et al., 2001). Furthermore, 

the response properties of neurons can be tuned and configured in different ways by different 

neuromodulators, such as dopamine, serotonin etc., and fMRI combined with 

electrophysiology and pharmacology may provide insights into the neural networks and how 

their dynamics are altered by neuromodulation (Logothetis, 2008). 

The most commonly used fMRI technique measures the blood-oxygenation-level-dependent 

(BOLD) signal, which relies on changes in deoxyhemoglobin [dHb], which acts as an 

endogenous paramagnetic contrast agent (Ogawa et al., 1992). Following increases in neural 

activity due to a stimulus or performing a task, local cerebral blood flow (CBF) increases to 

meet the increased metabolic demand. This results in an increase in oxygen supply to the 

active tissue that is larger than the oxygen consumed, and hence there is a relative increase 

in the oxyhemoglobin concentration [Hb], and a decrease in the dHb content in the local 

capillaries, venules and draining veins, leading to an increase in image intensity. BOLD 

responses are therefore an indirect measure of neural activity, and changes in the CBF, 

cerebral blood volume (CBV) and the cerebral metabolic rate of oxygen (CMRO2) all affect the 

BOLD response (Goense and Logothetis, 2008; Logothetis, 2008; Logothetis et al., 2001). 

Yet, despite progress in our understanding of the neural events underlying fMRI signals 

(Logothetis et al., 2001; Magri et al., 2012b), it is still not clear how faithfully the BOLD signal 



 
 

Page | 150  
 

reflects the patterns of neural activity underlying these changes in brain oxygenation. 

Especially unclear is how to differentiate between function-specific processing and 

neuromodulation, between bottom-up and top-down signals, or between excitation and 

inhibition (Shmuel et al., 2006). A clear answer to these questions will not only increase our 

knowledge of these various neural processes, but is also likely to help us to better understand 

the results obtained with fMRI.  

Many of the questions above are being addressed using new technologies combining invasive 

measurements with fMRI. For instance, optogenetics combined with fMRI can be used to 

investigate genetically specified networks in the living brain (Lee et al., 2010). Yet, the 

combination cannot be readily used for the brain of primates given their diversity of neuron 

types (Logothetis, 2010), the lack of genetic tools for cell-type specific targeting of proteins in 

the primate brain (Izpisua Belmonte et al., 2015) and the invasiveness of local injection of viral 

vectors combined with laser stimulation. The combination of pharmacology and fMRI (phMRI) 

is a multimodal methodology that has already provided important evidence pertaining the 

neural events underlying the hemodynamic changes seen with fMRI and optical imaging 

(Gozzi et al., 2008; Gsell et al., 2006; Hamel et al., 2015; Hillman, 2014; Rauch et al., 2008a; 

Rauch et al., 2008c; Zaldivar et al., 2014). The importance of these techniques lies in their 

non-invasiveness, allowing us to test the same hypotheses in humans and in monkeys (Honey 

and Bullmore, 2004). However, it is worth noting that many pharmacological agents do not 

only affect neuronal activity, but also affect the blood flow directly, thereby complicating the 

interpretation of the signal. Hence, the combination of phMRI with concomitant 

electrophysiology offers the possibility to better test the relationships between neural and fMRI 

signals under the influence of different neuromodulators.  

Neuromodulation affects how neural circuits process information during different cognitive 

states (Dayan, 2012; Marder et al., 2014). This is in contrast to classical neurotransmission, 

in which a presynaptic neuron directly and immediately influences its postsynaptic target(s). 

Neuromodulators and neurotransmitters have different temporal scales and dynamics, which 
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can be explained by differences in the structure and function of their receptors (Clapham, 

1994; Dayan, 2012; Marder et al., 2014). For instance, responses elicited by neurotransmitters 

are fast because their receptors are linked to ion-channels that open and close when the 

neurotransmitter binds to the receptor. On the other hand, the effects elicited by 

neuromodulators tend be of slow onset and long duration since their receptors are coupled 

via second-messenger pathways, which do not directly open ion-channels but modulate their 

opening and closing time, as well as their affinity to specific ions (Clapham, 1994). Both 

neuromodulation and neurotransmission alter the regional metabolic demands, whether they 

modulate global activity of microcircuits or differentially affect a small subset of neurons. It 

follows that sheer observations of hemodynamic responses, however quantitatively such 

observations are made, may fail to discriminate between activations reflecting information 

processing and those associated to the different cognitive modalities. In this chapter we aim 

to provide an overview of fMRI, pharmaco-based fMRI (phMRI) and electrophysiology as tools 

to study the effects of neuromodulation on the BOLD and neurophysiological responses. We 

propose that such mixed invasive and non-invasive methods may provide greatly useful 

information related to the interpretation of neural and hemodynamic signals. It goes without 

saying that the latter can substantially improve the application of fMRI in translations research. 

4.2.1 Mechanisms of BOLD responses 

To better understand the relationship between any cognitive activity, such as perception, 

learning, memory, decision making or motor action, and the BOLD signal in any brain structure 

of interest, it is important to differentiate between neural activity related to information 

processing and that due to cognitive state, typically reflecting the interaction of various 

neuromodulatory systems (Logothetis, 2008). One way to achieve this is by combining 

intracortical neurophysiology with fMRI in monkeys or other animals, either simultaneously or 

consecutively (Goense and Logothetis, 2008; Logothetis et al., 2010; Logothetis et al., 2001; 

Zaldivar et al., 2014).  



 
 

Page | 152  
 

A large amount of our knowledge about neural and brain function is based on extracellular 

recording methods in anesthetized or alert animals (Belitski et al., 2008; Einevoll et al., 2013). 

The signal measured with extracellular electrodes captures the mean extracellular field 

potential signals (mEFP), representing the weighted sum of all sinks and sources including 

single unit action potentials, depending on the impedance of the electrode. Three different 

signals are usually extracted from the mEFP: single-unit activity (SUA) representing the action 

potentials of well-isolated neurons near the electrode tip (within 50 μm); multiple unit activity 

(MUA) reflecting the spiking activity of small neuronal populations occurring in a sphere of 

100–300 μm around the electrode tip; and local field potentials (LFP), which represent mostly 

slow events reflecting cooperative activity in neural populations within 0.5–3 mm of the 

electrode tip (Mitzdorf, 1985, 1987). MUA and LFP encompass a range of frequencies (Belitski 

et al., 2008; Whittingstall and Logothetis, 2009). The frequency range of 900–3000 Hz is used 

in most recordings to obtain MUA. The modulations of the LFP are traditionally decomposed 

and interpreted in the frequency bands used in the electroencephalography (EEG) literature 

(Coenen, 1995; Nunez, 1981): delta (0 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (12 – 

24 Hz), low-gamma (50 – 80 Hz) and high-gamma (90 – 150 Hz). This classification is based 

on the association of these band-limited power (BLP) signals with distinct behavioral states or 

sensory inputs. An alternative approach to define functionally meaningful frequency-bands is 

to quantify co-variations in amplitude across different bands (Belitski et al., 2008). This 

approach aims to detect if amplitude variations in one band are independent of amplitude 

variations in another, and if they are, then these two bands probably capture different neural 

contributions to the LFP (Belitski et al., 2008; Magri et al., 2012a).  

Simultaneous measurements of intracortical neural activity and fMRI in behaving and 

anesthetized non-human primates have characterized the relationship between the LFP and 

BOLD, as well as between MUA and BOLD responses (Goense and Logothetis, 2008; Magri 

et al., 2012b; Rauch et al., 2008c; Zaldivar et al., 2014). These studies showed that correlation 

coefficients are higher between LFP and BOLD than between MUA and BOLD signals 
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(Goense and Logothetis, 2008; Logothetis et al., 2001; Magri et al., 2012b), implying that the 

overall synaptic activity or the input of an area is a stronger generator of BOLD signal than its 

output. Furthermore, these findings also demonstrated that BOLD signals and LFP are 

preferentially correlated at specific frequency bands of the LFP (Goense and Logothetis, 2008; 

Magri et al., 2012b). This is not surprising giving that different LFP bands correlate with distinct 

behavioral states and reflect to a large extent the activity of different neural processing 

pathways (Belitski et al., 2008).  

In agreement with the aforementioned observations, studies using 2-deoxyglucose (2-DG) 

autoradiography have shown that local glucose utilization is directly associated with synaptic 

activity (Sokoloff, 1977; Sokoloff et al., 1977). For instance, the greatest 2-DG uptake was 

found to occur in the neuropil, i.e. in areas rich in synapses, dendrites, and axons, rather than 

in cell bodies. Furthermore, studies using electrical microstimulation have shown that during 

orthodromic and antidromic stimulation (the former activating pre- and postsynaptic terminals 

and the later activating postsynaptic terminals only) increases in glucose utilization only 

occurred at presynaptic terminals (Kadekaro et al., 1985; Kadekaro et al., 1987). Similarly, the 

highest density of cytochrome oxidase (enzyme of the respiratory chain) is found in 

somatodendritic regions adjacent to axons (Di Rocco et al., 1989; Kageyama and Wong-Riley, 

1986). 

Functional-MRI reflects best the regional modulation and/or processing of the input signals, 

which correlate largely with changes in the LFPs; in other words, it mostly mirrors regional 

perisynaptic activity (Goense and Logothetis, 2008; Logothetis et al., 2001; Oeltermann et al., 

2007). The latter comprises the sum of excitatory and inhibitory postsynaptic potentials, as 

well as a number of integrative processes, including somatic and dendritic spikes with their 

ensuing afterpotentials, and voltage-dependent membrane oscillations. However, the coupling 

between neural activity and the BOLD signal usually changes under different cognitive 

conditions (Arsenault et al., 2013; Boynton, 2011b) and in some cases the BOLD responses 
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may not faithfully reflect changes in the expected (assumed) information processing (Boynton, 

2011b; Zaldivar et al., 2014).  

4.2.2 Pharmacological Magnetic Resonance Imaging (phMRI) 

Pharmacology has been used to investigate how neurotransmitter- and neuromodulatory 

systems influence neural activity, providing the means to study the neurochemical basis of 

brain modulation. For instance, glutamate is an excitatory neurotransmitter that acts on 

postsynaptic neurons via AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and 

NMDA (N-methyl-D-aspartate) receptors (Hirsch et al., 2015; Rao and Finkbeiner, 2007; 

Siegelbaum and Tsien, 1983). Moreover, local excitation induced by sensory stimulation or by 

a cognitive task is strongly affected by recurrent inhibition mediated by GABAergic 

interneurons (Douglas and Martin, 2004; Kujala et al., 2015). Together, glutamate and GABA 

are the most abundant neurotransmitters in the brain and are responsible for a major part of 

neurotransmission, which in turn is accompanies by changes in the regional CBF (Goense 

and Logothetis, 2008; Logothetis, 2008; Logothetis et al., 2010).  

The overall regulation of cortical dynamics and neural excitability is modulated by a number 

of other neurochemicals (neuromodulators) including dopamine (DA), acetylcholine (ACh), 

norepinephrine (NE), serotonin (5-HT), and various peptides (Dayan, 2012; Rauch et al., 

2008c; Zaldivar et al., 2014), that alter the input-output properties of neural circuits as well as 

optimize their energy expenditure (Attwell and Laughlin, 2001; Marder et al., 2014; Sengupta 

et al., 2014). The aforementioned neuromodulatory systems, also known as “diffuse 

ascending systems” originate in various nuclei located in the brainstem and basal forebrain, 

and project diffusely to very large portions of cortical and subcortical regions (Dayan, 2012; 

Hasselmo, 1995). Examples include the dopaminergic (DAergic) ascending system 

innervating cortex from the ventral tegmental area (VTA), the cholinergic system from the 

nucleus basalis of Meynert, the serotonergic system from the middle and the raphe regions of 

the pons and upper brainstem, and the noradrenergic system originating in the locus coeruleus 

(Dayan, 2012).  
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Despite their seemingly ubiquitous projections, neuromodulatory systems have strikingly 

specific activity-modulations through multiple neurochemicals and layer-specific projection 

profiles. It follows that each system likely modulates different aspects of neural activity and 

behavior (Dayan, 2012). Hence, it is expected that different neuromodulators exert different 

effects on the hemodynamic signals, because they have different projection patterns and 

receptor types (Rauch et al., 2008c; Zaldivar et al., 2014). These receptors are located in all 

neuronal compartments, influencing every aspect of neural computation and metabolism 

(Dayan, 2012; Sengupta et al., 2014) and their effects highly depend on their location, density 

and distribution. Thus, the effects of neuromodulators cannot be simply viewed as increases 

or decreases in neural excitability, but rather, having divergent actions on multiple ion 

conductances, and consequently on the metabolism of a neural network (Attwell and Laughlin, 

2001; Dayan, 2012; Sengupta et al., 2014). 

Understanding how neuromodulators affect the BOLD response is evidently essential for an 

effective interpretation of fMRI-data, not only in task-related fMRI but may also aid diagnostic 

use of fMRI, since many psychiatric disorders are associated with alterations in 

neuromodulatory systems (Dayan, 2012; Mitterschiffthaler et al., 2006). Thus, the combination 

of fMRI and pharmacology can help understand neuromodulatory mechanisms, and combined 

with electrophysiology is a powerful means to test the coupling between fMRI signals, neural 

signals, and the different neuromodulators (Rauch et al., 2008c; Zaldivar et al., 2014).  

Pharmacological fMRI (phMRI) was initially used to map spatiotemporal patterns of brain 

activity elicited by acute pharmacological challenges (Honey and Bullmore, 2004; Schwarz et 

al., 2007). For example, studies in humans using scopolamine (a selective acetylcholine-

muscarinic receptor antagonist) to pharmacologically induce memory impairment, showed 

substantially reduced activation in the hippocampus, fusiform gyrus and prefrontal cortex 

(Honey and Bullmore, 2004; Sperling et al., 2002). Other studies found that cortical activation 

increased while subcortical activation decreased with the use of serotoninergic agonists 

(Loubinoux et al., 2002).  
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It is worth noting that the effects of drugs on neural responses, vascular reactivity and 

neurovascular coupling are complex, and judicious interpretation of data is often hampered by 

the indirect nature of the fMRI signals (Dayan, 2012; Noudoost and Moore, 2011; Zaldivar et 

al., 2014). Hence, studies that cross-validate BOLD measures of drug action with behavior, 

electrophysiological measures and/or with other neuroimaging techniques, are invaluable in 

resolving these important issues. For instance, the use of a GABA-antagonist induced a 

sustained increase in brain activation, likely due to reduced inhibition, whereas GABA-

releasing agents correlated with decreased hemodynamic responses (Chen et al., 2005; 

Kalisch et al., 2004; Reese et al., 2000). Moreover, reduced tissue perfusion was 

accompanied by an increased tissue oxygen tension, demonstrating an overall reduction of 

oxidative metabolism due to GABAergic neurotransmission (Chen et al., 2005).  

Similarly, studies have shown that when presynaptic glutamate release is blocked (Kida et al., 

2001; Kida et al., 2006) or when selective antagonists either for AMPA- or NMDA- receptors 

are used (Rao and Finkbeiner, 2007), BOLD and CBF responses are reduced. Furthermore, 

Gsell, et al. (Gsell et al., 2006) showed a differential contribution of the two major ionotropic 

glutamate receptors to the hemodynamic response. The reductions in BOLD and CBF were 

dose-dependent and stronger when using AMPA-receptor antagonists than when blocking 

NMDA-receptors (Gsell et al., 2006). This difference may reflect the different roles of the 

receptors. For instance, blockade of AMPA-receptors disturbs the thalamocortical input 

(feedforward), decreasing all neural responses and consequently the blood flow (Logothetis, 

2008; Rao and Finkbeiner, 2007). NMDA-receptor antagonists reduce the postsynaptic 

currents (feedback) without affecting the feedforward responses (Gsell et al., 2006; Rao and 

Finkbeiner, 2007). Another possible reason may be that NMDA-receptors exert an indirect 

vasomotor role via the release of nitric oxide (Faraci and Breese, 1993).  Overall, different 

studies have shown that the effects mediated by GABAergic and glutamatergic 

neurotransmission (Chen et al., 2005; Gozzi et al., 2008; Gozzi et al., 2005; Zonta et al., 2003) 

are reflected in the fMRI signals. 
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Yet, despite the tight correlation between neural activity and the hemodynamic response, it is 

difficult to make inferences about particular brain functions by only using phMRI. For instance, 

Rauch et al. (Rauch et al., 2008c) showed how complex the relationship between neural 

activity and the hemodynamic response can be under the influence of neuromodulation. Using 

a selective serotonin (5HT1A-receptor) agonist in V1, which causes persistent 

hyperpolarization of pyramidal neurons, they found that despite the decreased spiking activity, 

both the local processing reflected in the LFP and the BOLD responses were unaffected. Thus, 

the output of a neural network poses relative little metabolic demands compared with the 

overall presynaptic and postsynaptic processing of the incoming afferent activity (Logothetis, 

2008; Rauch et al., 2008c). 

Hence, combining fMRI, neurophysiology and pharmacology may help us to disentangle the 

relationships between the hemodynamic signal and the neural activity. Although in some 

cases the interpretation of the signals is straightforward (Rauch et al., 2008a), in other cases 

the effects of neuromodulators will strongly depend on receptor type, location and density, as 

well as on the particular functions they modulate (Dayan, 2012; Rauch et al., 2008c; Zaldivar 

et al., 2014). 

4.3 Materials  

4.3.1 The animal model – non-human primates 

Non-human primates (NHPs) are a common animal model for research in vision and higher 

cognitive functions (Rajalingham et al., 2015), owing to their evolutionary proximity to humans, 

which is reflected in the similarity of its cerebral anatomy and its perceptual and behavioral 

specializations (Buckner and Krienen, 2013). The neocortex forms 70-80% of the NHP and 

human brain respectively, while in rodents it is only 28% of their brains (Buckner and Krienen, 

2013; Mantini et al., 2013). In addition, compared to other mammal species, the primary visual 

cortex (V1) of the NHPs has a high density and diversity of neural-cell types (Carlo and 

Stevens, 2013; Collins et al., 2010). It is therefore not surprising that findings from NHP 

research have triggered and guided fMRI experiments in humans, and have greatly helped 
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with interpretation of neuroimaging findings in the latter species (Goense and Logothetis, 

2008; Logothetis, 2008; Zaldivar et al., 2014). Combining imaging with electrophysiological 

recordings and pharmacology in NHPs allow us to directly compare fMRI signals and neural 

activity associated with neuromodulatory pathways (von Pfostl et al., 2012; Zaldivar et al., 

2014), and thereby better interpret human results as well. We acquired neurophysiology and 

fMRI responses from anesthetized NHPs (weight 6-11 kg) while the animals were viewing 

visual stimuli. We focused on V1, given that the activity of the neurons in V1 is strongly but 

selectively influenced by the stimuli (Callaway, 1998; Douglas and Martin, 2004).  

The experimental procedures were carried out using 6 - 10 years old healthy rhesus monkeys 

(Macaca mulatta; four females and two males) weighing 5 – 12 kg. Animals are socially 

housed in an enriched environment, under daily veterinary care. Weight, food and water intake 

are monitored on a daily basis in full compliance with the guidelines of the European 

Community (EUVD 86/609/EEC).  

4.3.2 Pressure-operated pumps for local and systemic pharmacology 

Aside from carefully controlling the chemical properties and pH of the pharmacological 

solutions that are injected systemically or intracortically, it is important to precisely control the 

injected volume and flow of the solutions, because high volume and flow rates for intracortical 

injections can disturb the neural microenvironment and change the neural activity independent 

of the pharmacological challenge. Similarly, high systemic injection rates or volumes can alter 

the hemodynamic responses measured with fMRI due to blood volume changes, which may 

also affect the blood-pressure. Hence, we custom built pressure-operated pumps to precisely 

control the pharmacological injections (Figure 4.1A) The pumps consisted of two independent 

single-stage pressure regulators (one for local pharmacology and one for local and systemic 

applications depending on the experimental needs), each connected to a digital closed-loop 

electropneumatic controller (ER5000 with 267 ml capacity; TESCOM, Emerson Electric Co., 

Germany). Each controller houses two pulse-width-modulated solenoid valves (Nickel-plated 

brass, TESCOM, Emerson Electric Co., Germany) which are connected to a PID-based 



 
 

Page | 159  
 

microprocessor (16-bit microprocessor with ceramic sensors) and to a computer running 

custom-written MATLAB software to visualize and control the pressure and the resulting 

volume and flow-rates.  

The aforementioned valves measure the pressure at two different points (Figure 4.1A, upper 

right corner); one of the valves measures the desired-pressure in the inlet (pressure set in the 

computer, setpoint) and the second detects the actual pressure in the line (outlet-line, 

feedback point). The signals emitted by the valves are compared every 25 ms and based on 

the pressure difference between the setpoint and the feedback-point, the electropneumatic 

controller opens or closes either of the valves to compensate for the pressure difference 

(Figure 4.1A, right corner). If the pressure-difference is greater than zero, the controller opens 

the inlet valve (Figure 4.1A, red arrows), if less than zero the exhaust valve is opened (Figure 

4.1A, black arrows). Both valves remain closed if the pressure needs no adjustment. The gas 

at the desired pressure is distributed to the syringe pump (systemic pharmacology) or to the 

pressure-cells (intracortical pharmacology) through the outlet-line (Figure 4.1A, blue arrows).  

The pressure-cells were custom-built and made of brass (80 mm diameter and 100 mm 

height), and housed four small compartments (15 mm inner-diameter and 35 mm height each) 

adequate for 2 ml bottles (12 mm outer-diameter and 32 mm height, Agilent Technologies, 

Santa Clara, CA, USA). This configuration allowed for independent lines to switch between 

different solutions during an experiment. Prior to the experiments, the bottles containing the 

solutions were positioned in the small compartments (Figure 4.1A). The fused-silica infusion 

lines (50 µm inner diameter) were inserted in the bottles and the other end of the tubing was 

connected to the injector.  As pressure is applied in the pressure-cells, it induces a positive 

displacement of the solution through the lines.  

The syringe pump consisted of a self-contained double-acting cylinder made of aluminum 

(bore size 8 mm and 190 mm height). The double-acting cylinders have two gas-ports: one on 

the top and one on the bottom, and allow the cylinder-rod to move in or out depending on the 
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gas entry point (Figure 4.1A). Systemic injection using this device was achieved using the gas-

port located at top of the cylinder, which drives the cylinder-rod inside the cylinder-bore which 

consequently pushes the syringe plunger. The infusion lines consisted of fused-silica tubing 

that was connected to the syringe and to the injector. All the injection lines (for systemic and 

local pharmacology) were monitored by liquid flow sensors (Sensorion SLx-Series, 

Switzerland) controlling the exact applied volume and flow. These sensors have an integrated 

CMOS-microchip, which is connected to the same computer used for controlling the 

electropneumatic controller. This allowed us to set the pressure to a certain value while 

simultaneously measuring the resulting flow-rate and volume of the applied substances.  

All chemicals were purchased from Sigma Aldrich (Schnelldorf, Germany). Drugs and 

solutions were freshly prepared prior to the experiments. Drugs for systemic injection were 

diluted in a phosphate-buffered-saline (PBS) solution and for intracortical injection in artificial-

cerebro-spinal-fluid (ACSF). The PBS solution contained NaCl 137 mM, KCl 2.7 mM, 

Na2HPO4 8.1 mM, KH2PO4 1.76 mM, and the pH was adjusted to 7.35 using NaOH. The ACSF 

contained 148.19 mM NaCl, 3.0 mM KCl, 1.40 mM CaCl2, 0.80 mM MgCl2, 0.80 mM Na2HPO4 

and 0.20 mM NaH2PO4. As in the PBS solution, the pH was adjusted to 7.35 using NaOH. 

Control experiments were performed using the unmodified- PBS and ACSF solution at similar 

volumes and flow rates as used for drug injections. 
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Figure 4.1 Injection setup 
used for combined fMRI 
and (intracortical and 
systemic) pharmacology. 

(a) The pressure 

operated-pump consisted 

of electropneumatic-

controllers that housed 

two solenoid valves 

connected to a computer 

running custom-written 

MATLAB software. Each 

of these valves had a 

sensor that measured the 

pressure in the inlet-line 

(pressure coming from the 

external gas-supply) and 

the pressure in the outlet-

line (pressure going to the 

syringe pump and to the 

pressure-cells). The 

sensors detect differences 

in pressure between the 

inlet and the outlet lines; if 

differences are detected in 

either of the lines, it will 

automatically open one of 

the valves for 

compensation. This 

system provided us with 

an accurate pressure that was tightly controlled by a computer with negligible delays (25 ms time to 

reach the desired pressure). The resulting flow-rate and volume of the solution being injected were 

monitored using Sensirion liquid flow sensors (Sensirion, Switzerland) located at the side of the 

pump. Pressure-cells contained small compartments adequate for 2 ml bottles containing solutions. 

Once a bottle was placed inside the pressure-cell, it was tightly closed to prevent leakage. As 

pressure was applied in the pressure cell, it causes displacement of the solution through the lines. 

The infusion lines for the systemic and local pharmacology consisted of fused-silica tubing connecting 

the syringe and the pressure-cells to the injectors. (b) Neuronexus multicontact laminar electrodes 

were used to record neuronal activity across the cortex. The electrodes (50 µm thick) had 16 contact-

points spaced 150 µm apart, with a recording area of 176 µm2. These electrodes had a fused-silica 

injector attached for intracortical pharmacological injection. (c) The custom-built injectors for systemic 

pharmacological injection consisted of a fused-silica fluidic tube with an outer diameter of 100 µm 

and were attached to the infusion line prior to the experiments. (d) Intracortical injection of 

manganese (Mn2+) at high pressure and volume in monkey V1 using a custom-built pharmacological-

probe; see Rauch et al. (Rauch et al., 2008c) for details. This was used to evaluate the performance 

of the pump and to estimate the extent of diffusion using this approach. 
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4.3.3 Electrodes and Injectors 

To reduce neural tissue damage due to the electrodes we used micro-electro-mechanical 

systems (MEMS), fabricated using silicon (NeuroNexus Technologies, Ann Arbor, USA). We 

used a multisite probe that had 16 contacts on a single shank of ~3 mm length and 50 μm 

thick. The contacts were arranged in a row and spaced 150 μm apart, with a recording area 

of 176 μm2 (Figure 4.1B). The probes for combined pharmacology had a fused-silica fluidic 

tube mounted with an outer diameter of 75 μm, which combined with the neurophysiology 

probe resulted in a 125 μm thick probe. The fluidic tube was mounted on the back of the 

microelectrode array, and the delivery port was located at the level of the central electrodes 

(Figure 4.1B) and positioned in the middle of the cortex. The fluidic tube was connected to the 

pressure-operated pump using a HPLC pump-tubing adapter (Figure 4.1B). The injectors for 

systemic injections were custom-designed and were made of fused-silica capillary tubing 

(outer diameter 150 μm and inner diameter 100 μm) which was connected to the infusion line 

(Figure 4.1C). 

We evaluated the performance of the pressure-operated pumps by intracortical injection of 

manganese (Mn2+) in monkey V1 (Figure 4.1D). This allowed us to visualize the location of 

the signal enhancement and estimate the Mn2+-diffusion. We applied a low concentration of 

0.05 mM at a high flow-rate of 1.4 µl/min during 5 min, with an end volume of 7 µl, and 

observed that Mn2+ was dispersed within a radius of 2 mm.  

4.3.4 MRI setup and monkey chair 

fMRI experiments were conducted using two custom-built vertical primate scanners. See 

(Goense et al., 2010; Logothetis et al., 1999b; Pfeuffer et al., 2004) for a detailed description. 

Briefly: 1) a 4.7T scanner (BioSpec 47/40v, Bruker BioSpin GmbH, Ettlingen, Germany) with 

a 40 cm bore and equipped with a 48 mT/m (224 μs rise time) actively shielded gradient coil 

(Bruker, BGA26) of 26 cm inner diameter. 2.) a 7T scanner (BioSpec 70/60V, Bruker BioSpin 

GmbH, Ettlingen, Germany) with a 60 cm diameter bore, and a 75 mT/m actively shielded 
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gradient with 500 mT/m/ms slew rate (Bruker, BGA38S2). The MR systems were controlled 

by Bruker BioSpec consoles running ParaVision 5.1 under the Linux operating system. 

Custom-built chairs were used to position the monkey in the magnet (Figure 4.2A) (Logothetis 

et al., 1999b; Pfeuffer et al., 2004). The chairs consisted of two parts made of NMR compatible 

materials. The lower part of the chair (Figure 4.2A, red arrow) was made of aluminum, which 

contained all the infusion lines (including the lines for systemic and local pharmacological 

injections), the tubing for the anesthesia machine, preamplifiers for electrophysiological 

recording and the lines to keep eyes hydrated (Figure 4.2A). The upper part of the chair (Figure 

4.2A, green arrow) consisted of a semi-cylinder made of fiberglass impregnated with epoxy 

(GFK, epoxy-glass resin: Hippe, Hildesheim Germany). The monkeys sit on a platform made 

of plastic (Delrin Polyoxymethylene); the height of this platform is adjusted according to the 

length of the monkey’s body. This cylinder had two openings that enable access to the seat 

for monitoring the monkey’s position, both of which are closed using covers of the same 

material as the chair, and were easily and firmly closed using nylon screws. The infusion lines, 

the tubing for the anesthesia machine and the cables for the coils run along the inner surface 

of the chair.  

4.4 Methods 

4.4.1 Animal preparation, anesthesia and sensory stimulation 

Detailed description can also be found in (Logothetis et al., 1999b; Zaldivar et al., 2014). 

Before each experiment the monkeys were given an intramuscular (IM) injection of 

glycopyrrolate (0.01 mg·kg-1) to reduce salivary, tracheobronchial and pharyngeal secretions, 

and prevent obstructive asphyxia. Subsequently, monkeys were sedated with an IM injection 

of ketamine (15 mg·kg-1). An intravenous (IV) cannula wais placed in the saphenous or 

posterior tibial vein to allow administration of fluids, medication and anesthetics. 

Subsequently, fentanyl (3 mg·kg-1), thiopental (5 mg·kg-1) and succinylcholine chloride (3 

mg·kg-1) were injected via IV. Immediately after the application of these drugs, animals were 

intubated with an endotracheal tubus (Rusch, Teleflex, USA) and ventilated using a Servo 
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Ventilator 900C (Siemens, Germany) maintaining an end-tidal CO2 of 33–35 mm Hg and 

oxygen saturation above 95%. General anesthesia was maintained with remifentanil (0.4 – 1 

μg·kg-1min-1) and mivacurium chloride (2 – 6 mg·kg-1h-1) to ensure complete paralysis of the 

eye muscles. The combination of these drugs has been extensively used for combined fMRI 

and electrophysiology experiments, and neurovascular and neurophysiological responses in 

V1 of monkeys remain largely unaffected (Logothetis et al., 2010). A study combining 

experiments in anesthetized (using the same anesthesia protocol described above) and 

awake monkeys, reported few differences between the face-processing network in awake and 

anesthetized monkeys (Ku et al., 2011). Nonetheless, it is important to note that given the 

nature of the general anesthesia, one needs to be sure about possible interactions with the 

different neuromodulatory centers. By knowing the pharmacodynamics of the tested drugs, 

one can predict whether possible interactions might happen that affect the absorption, 

distribution, metabolism or elimination of the drugs or anesthetics. A critical point to know is 

whether an interaction between drugs is expected when two or more drugs produce similar 

effects by different mechanisms.  

Given that changes in body temperature, pH, blood pressure and oxygenation can affect the 

fMRI signals, the physiological state of the animal was continuously monitored; the normal 

physiological values during the general anesthesia are shown in Table 4.1. We tightly 

maintained the body temperature between 38.5–39.5°C, and applied lactate Ringer’s 

(Jonosteril, Fresenius Kabi, Germany) with 2.5% glucose at a rate of 10 ml· kg-1h-1 to maintain 

an adequate acid-base balance, intravascular volume, and blood pressure; hydroxyethyl 

starch (Volulyte, Fresenius Kabi, Germany) was administered as needed. Prior to emergence 

of anesthesia, remifentanil and mivacurium were stopped. Emergence from anesthesia was 

typically without complication and lasted on average between 30 – 40 min after mivacurium 

was stopped. When spontaneous respiration was assured and an appropriate muscular tone 

was assessed, the trachea was extubated. Subsequently, the monkeys were placed inside an 

acrylic custom-built box to monitor their behavior after extubation. Once the monkeys were 
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freely moving with a full control of their body posture, they were taken to their cage. After each 

experiment, the monkeys were given a resting period of at least 15 days.  

We applied 1-2 drops of 1% ophthalmic solution of anticholinergic cyclopentolate 

hydrochloride in each eye to achieve cycloplegia and myadriasis. The eyes of the monkeys 

were kept open with custom-made irrigating lid speculae to prevent drying of the eyes. The 

speculae irrigated the eyes at the medial and lateral canthus, with a saline infusion rate of 0.07 

ml·min-1. Refractive errors were measured and hard contact lenses (Wöhlk-Contact-Linsen, 

Schönkirchen, Germany) were placed on the monkey’s eyes. Lenses with the appropriate 

dioptic power were used to bring the animal’s eyes to focus on the plane where stimuli were 

presented.  

 

Table 4.1 Physiological parameters during the general anesthesia maintenance 

Physiological Parameter Units Average Value 

Heart rate beats/min 128 ± 18 

 

Systolic blood pressure mm Hg 100 ± 12 

 

Diastolic blood pressure mm Hg 48 ± 15 

 

Respiration rate 1/min 27 ± 6 

 

Tidal volume ml 98 ± 42 

 

Oxygen saturation % 97 ± 2 

 

End-tidal CO2 mm Hg 33 ± 2 

 

Temperature ˚C 38.7 ± 0.8 

 

Mean physiological parameters under general anesthesia during fMRI and 
neurophysiology experiments. Animal age and weight were comparable across all 
experiments (5 females and 2 males; 8-12 years, weight 6-12 kg). The parameters in 
the table were averaged across all experimental sessions (N = 40).  

 

The visual stimuli were delivered using a PC equipped with two VX113 graphics systems. All 

image generation was in 24-bit true color, using hardware double buffering to provide smooth 

animation. The stimulation software was written in C and utilized Microsoft’s OpenGL 1.1. The 

640 x 480 VGA output was converted (Professional Graphic/TV Converter) to a video signal 

(NSTC) for driving the video interface using a fiber-optic system (Avotec, Silent Vision, 
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Florida). The field of view of the system was 30 horizontal x 23 vertical degrees of visual angle. 

The system’s effective resolution, determined by the fiber-optic projection system, was 800 

horizontal x 225 vertical pixels (Logothetis et al., 2001).  

Binocular presentation of stimuli was done using a custom-built projector and SVGA fiber optic 

system. The periscopes for stimulus display (Figure 4.2A) were independently positioned 

using a modified fundus camera (Zeiss RC250, (Logothetis et al., 2001)) that permitted 

simultaneous observation of the fundus and a 30° horizontal x vertical calibration frame. This 

process ensured the alignment of the stimulus with the fovea. 

The visual stimulation paradigm consisted of blocks of rotating black and white polar 

checkerboards of 10x10° in size lasting 48 s (ON, Figure 4.2B) alternated with an isoluminant 

gray blank period of equal length (OFF, Figure 4.2B). The stimulus timing was controlled by 

an industrial computer (Advantech 510, Germering, Germany), running a real-time OS (QNX, 

Ottawa, Canada). The direction of the rotation was reversed every 8 s to minimize adaptation. 

This block was repeated 29 times yielding a total of 46 min for each phMRI experiment. Usually 

three phMRI experiments were acquired per day: two consisted a pharmacological injection 

(either local or systemic) with a drug of interest and the other of a PBS-injection that was used 

as a control (see Methods).  
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Figure 4.2 fMRI and 
neurophysiological 
responses to 
sensory stimulation.  

(a) The 7T vertical 

primate scanner. 

The monkey chair 

consisted of two 

parts: the lower part 

(red arrow) 

consisted of an 

aluminum case that 

housed the tubing 

for the anesthesia 

machine and the 

infusion lines. The 

upper part of the 

chair is composed of 

a semi-cylinder 

made of fiberglass, 

which contained the 

seat for the 

monkeys. To 

position the monkey 

chair in the magnet, 

a vertical transport 

system based on 

spindle drives and 

magnetically 

screened motors 

was used; see 

Pfeuffer et al. 

(Pfeuffer et al., 

2004) for details. (b) 

The stimulation 

paradigm consisted of blocks of a rotating polar black-and-white checkerboard followed by a blank 

period of equal duration. (c) Functional activation maps, acquired at 7T, showing voxels with 

significant responses to the visual stimulus; axial and sagittal slides were acquired using an 8-shot 

GE-EPI (FOV: 64x48 mm2; TE/TR: 20/750 ms; flip-angle 40˚). (d) Representative time courses of 

BOLD, CBF and neural responses to visual stimulation (left panel) showing reliable visually induced 

modulation (acquired independently). The right panel shows the different neuronal events obtained 

by decomposing the raw neurophysiology signals into LFP (band-passed 0–150 Hz), MUA (band-

passed 900–3000 Hz) and the spike density function (SDF, action potentials convolved with a 

Gaussian of fixed kernel). 
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4.4.2 Functional MRI in monkeys 

Monkeys were positioned in the magnet in a custom-made chair (Figure 4.2A). For the BOLD 

experiments we used a custom-built quadrature volume coil that allows imaging of deep brain 

structures while maintaining a high signal-to-noise ratio in the visual cortex. We used a single-

shot gradient-echo EPI with a FOV of 72x72 mm2 and matrix size of 96x96. 11 slices were 

acquired with a thickness of 2 mm, TE/TR 20/3000 ms and flip angle of 90˚. Each experimental 

session consisted of 928 volumes. Shimming was done with FASTMAP over a volume of 

12x12x12 mm3. For functional CBF measurements, we used a Helmholtz volume coil to 

transmit in combination with a custom-built, 4-channel phased array (Goense et al., 2010). 

Perfusion imaging was performed using flow-sensitive alternating inversion recovery [FAIR; 

(Kim, 1995)]. At 7T we used an inversion time of 1400 ms, slab thickness 6 mm, FOV 5.5x2.4 

mm2, TE/TR 9.5/4500 ms and receiver BW 150 kHz. Experiments at 4.7T were performed 

using an inversion time 1400 ms, slab 6 mm, FOV 6x3.2 mm2, TE/TR 9.1/4500 ms and BW 

125 kHz (Goense et al., 2012). 

We defined a region of interest (ROI) consisting of early visual cortex (V1-V2). A 12-min 

localizer scan was used to define the ROI that was subsequently used for the injection scan. 

We used a boxcar convolved with a haemodynamic response function (gamma variate 

function) as regressor to calculate the correlation coefficient. Voxels showing robust visually 

induced modulation (p < 0.02) were included for further analysis, and were then monitored 

during the 46-min injection scan.  

Figure 4.2C shows typical functional activation maps in V1 and V2 with an in-plane resolution 

of 0.75 x 0.75 mm2 and 2 mm slice thickness. The activated voxels are color-coded according 

to their percentage changes. The average time courses for the BOLD and the CBF responses 

are shown in Figure 4.2D (gray and green respectively), showing increases in response during 

stimulus presentations. To quantify changes in the visually induced modulation, we subtracted 

the ON-periods from the OFF periods, and then divided the result by the OFF-period. In 

addition, baseline changes were computed by taking the image intensity in the periods without 
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visual stimulation (OFF-periods). For both baseline and modulation we computed the 

percentage change relative to the before condition. 

4.4.3 Neurophysiological Measurements in monkeys 

Due to the complexity and experimental difficulties (multiple probes, fragile laminar probes, 

multichannel interference compensation at 7T), electrophysiological recordings were done in 

separate experiments, using the same methods for injection as described in the previous 

section. The electrophysiology preparation was done by making a small skull trepanation (~3 

mm diameter) using an electrical drill with diamond tip (Storz, Switzerland). Subsequently, the 

meninges were carefully dissected under a microscope (Zeiss Opmi, MDU/S5, Germany) 

without damaging the cortical surface. The laminar probes were inserted using manual 

micromanipulators (Narashige Group, Japan) under visual and auditory guidance. The exact 

location of the electrode contacts was verified post-hoc based on the spontaneous spiking 

activity, coherence maps and current-source-density analysis (CSD, data not shown). We then 

positioned a flattened Ag wire under the skin that served as reference electrode (Murayama 

et al., 2010). Finally, in order to guarantee a good electrical connection between the animal 

and the ground contact, we filled the recording area with a mixture of 0.6% agar in NaCl 0.9% 

at pH 7.4. Note that we did not consider layer-specific changes here, and averaged the PSD 

over all contacts.  

Signals were acquired using a multichannel Alpha-Omega amplifier system (Alpha-Omega 

Engineering, Nazareth, Israel), running their acquisition software. The signals were amplified 

and filtered into a band of 1 Hz – 8 kHz and digitized at 20.833 kHz with 16-bit resolution 

(National Instruments, Austin, TX), ensuring sufficient resolution for both LFPs and spikes. 

The time-course of the averaged raw electrophysiology data is shown in Figure 4.2D. Note 

that similar to the BOLD and CBF responses, the electrophysiological recording shows reliable 

visually evoked responses. We extracted the LFPs and MUA by band-pass filtering the signals 

using custom-written MATLAB routines. The broadband LFPs were obtained by band-pass 

filtering the neural responses between 1 and 150 Hz (Figure 4.2D, right panel). To filter, the 
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neural signals were digitized, and their sampling rate reduced by a factor 3 from 20.835 kHz 

to 6945 Hz. Subsequently, the signal was band-pass filtered and downsampled in two steps: 

1) first to a sampling rate of 1.5 kHz using a fourth order Butterworth filter (500 Hz cutoff edge); 

and 2) to 500 Hz using a Kaiser window between 1 and 150 Hz, with a transition band (1 Hz) 

and stopband attenuation of 60 dB (Magri et al., 2012a; Magri et al., 2012b). This two-step 

procedure was computationally more efficient than a single filtering operation to the final 

sampling rate. The sharp second filter was used to avoid aliasing, without requiring a higher 

sampling rate attributable to a broad filter transition band, which would increase the 

computational cost of all subsequent operations. Forward and backward filtering was used to 

eliminate phase shifts introduced by the filters.  

To extract MUA, the 6945 Hz signal was high-pass filtered at 100 Hz using a Butterworth 

fourth-order filter, and then band-pass filtered in the rage of 350 – 3000 Hz using a Kaiser 

window filter with a transition band of 50 Hz, stopband attenuation of 60 dB, and passband 

ripple of 0.01 dB. The absolute value of the signal was taken, and decimated by a factor of 8 

to reduce computation time. Finally, it was low-pass filtered at 250 Hz and resampled at 500 

Hz to match the sampling rate of the LFP. The MUA obtained in this way represents a weighted 

average of the extracellular spikes of neurons within a sphere of approximately 140 – 300 µm 

around the tip of the electrode, which helps to detect overlapping spikes produced by the 

synchronous firing of many cells (Einevoll et al., 2013; Einevoll et al., 2007). To extract single 

spikes, the 6945 Hz signal was filtered in a range of 900 – 3500 Hz. The threshold for spike 

detection was set at 3.5 SDs. The results of these procedures are shown in Figure 4.2D (right 

panel).  

The MUA and spikes are primarily attributed to spiking activity of large pyramidal neurons, and 

thus they are considered measures of cortical output (Belitski et al., 2008; Rauch et al., 2008c). 

LFPs have been suggested to reflect the input and intracortical processing in a cortical area 

(Belitski et al., 2008; Rauch et al., 2008c; Whittingstall and Logothetis, 2009; Zaldivar et al., 

2014) and they are traditionally decomposed and interpreted in the frequency domain (Belitski 
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et al., 2008; Whittingstall and Logothetis, 2009). Figure 4.3C, shows five band-limited power 

(BLP) LFP signals extracted from the recordings in V1. However, the definition of the 

frequency bands is often inconsistent and based on observations associated to distinct 

sensory inputs or behavioral states (Michels et al., 2010). For instance, quantifying amplitude 

co-variations across bands has been extensively used to define functionally meaningful LFP 

bands (Belitski et al., 2008; Magri et al., 2012a; Magri et al., 2012b). That is, if amplitude 

variation in one band is independent of amplitude variation in another, then the two bands 

presumably capture different neural contributions to the LFP. Two types of correlations are 

used to distinguish the boundaries between statistically independent frequency regions in the 

LFP and can be used to separate functionally distinct contributors to the LFP (Belitski et al., 

2008; Einevoll et al., 2013; Magri et al., 2012a). Signal correlations reflect the similarity of 

different frequency bands in their tuning to external conditions (Figure 4.3B, top panel). Noise 

correlations reflect the trial-by-trial co-variations between different frequency bands after 

discounting for their similarities in tuning to external conditions (Figure 4.3B, bottom panel).  

The combination of signal and noise correlations, allows us to determine LFP frequencies that 

share common neural properties (Einevoll et al., 2013). For example, the LFP-frequencies <50 

Hz do not share any substantial signal or noise correlations with the higher LFP-frequencies 

(Figure 4.3B) suggesting they are driven by different neural processes. Indeed, combining this 

approach with information theoretical tools has helped determine which frequency bands carry 

information about the sensory stimulus (Belitski et al., 2008; Magri et al., 2012a; Magri et al., 

2012b). Low frequencies <20 Hz and frequencies of 40 – 150 Hz (gamma range) were shown 

to be the most informative about naturalistic visual stimuli and both have high signal 

correlations (Figure 4.3B). In contrast, intermediate LFP frequency bands (18 – 38 Hz) carry 

little information about the stimulus and have low signal but high noise correlation (Figure 

4.3B). Together with the fact that these frequency ranges do not increase in power during 

stimulation (Figure 4.3A), this suggests that they might be influenced by a common input, such 
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as diffuse neuromodulatory input (Belitski et al., 2008; Magri et al., 2012b). Further 

experimental work is needed to confirm this. 

 

Figure 4.3 Separation of 
functionally distinct LFP 
frequency bands.  

(a) Power spectrum of the 
LFPs during presentation 
of the checkerboard 
stimulus. The red line 
shows the trial-averaged 
LFP power spectrum 
during the ON-period. The 
black line shows the 
averaged LFP power 
spectrum during the OFF-
period. LFP power was 
highest at low frequencies 
(≤8 Hz) and decreased at 
higher frequencies, with a 
second peak at 50 - 150 
Hz. (b) Correlations 
between pairs of different 
LFP frequencies during 
visual stimulation (ON 
period). The signal 
correlation was calculated 
between the trial-
averaged power at two 
different frequencies (f1 
and f2) during visual 
stimulation (upper panel). 
Positive values indicate 
that the two frequencies 
have similar stimulus 
preferences, whereas a 
zero or negative value 

indicates that the two frequencies prefer un- or anti-correlated stimuli respectively.  The noise 
correlation (i.e. trial-by-trail fluctuations around the mean) of the LFP power after discounting for their 
similarities in tuning, for each pair of frequencies (f1 and f2) during the presentation of visual stimulus. 
Positive values indicate that the mean fluctuations in the power of a frequency alters the fluctuations 
in other frequency.  (c) Time courses of the different LFP frequency bands recorded in V1 in response 
to the visual stimulus.  
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4.4.4 Observations, Findings and Perspectives  

To illustrate how the aforementioned methodology is used to assess the effects of 

neuromodulation on neurovascular coupling, we describe the effect of systemic and 

intracortical dopamine injection on the hemodynamic and neural responses (Zaldivar et al., 

2014). DAergic neuromodulation is involved in many cognitive processes, including reward 

and addiction, learning and working memory (Dayan, 2012), motivation, attention and decision 

making (de Lafuente and Romo, 2011a), and it has also been shown to play a role in visual 

processing (Noudoost and Moore, 2011; Zaldivar et al., 2014). We mimicked DAergic 

neuromodulation by systemically applying L-DOPA and Carbidopa (LDC). The combination of 

these two agents is used for the treatment of Parkinson’s disease, in which DA levels are 

depleted (Kwak et al., 2012). L-DOPA is used because it is the metabolic precursor of DA, 

which is metabolized to DA as soon as it crosses the blood-brain-barrier (BBB). Once in the 

brain it activates the DA-receptors (DARs). The role of Carbidopa is to enable the BBB-

crossing of L-DOPA by inhibiting the breakdown of L-DOPA to DA in the periphery. This is 

important given that the activation of DARs in the periphery causes hypotension, which can 

alter brain perfusion and affect the interpretation of fMRI results (Black et al., 2003).  

The experimental paradigm for the systemic DA injections is shown in Figure 4.4A. During and 

after the pharmacological manipulation with the LDC complex, the modulation in response to 

the visual stimulus decreased for the BOLD-responses while it increased for the CBF-

responses (Figure 4.4B-C). Given that the combination of the two fMRI-based methods allows 

us to make predictions about the cerebral metabolic rate of oxygen consumption (CMRO2), 

this dissociation of BOLD- and CBF responses is likely the consequence of increased energy 

metabolism induced by dopamine (Zaldivar et al., 2014). However, increases in BOLD signal 

are typically interpreted as increases in neural activity or increased processing, while 

decreases in BOLD signal are interpreted as decreases in neural activity. The combination of 

BOLD- and CBF-based fMRI already indicates that the effects of dopamine on neurovascular 

coupling are governed by multiple factors. To evaluate the effects of LDC on the neural activity 
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we computed the absolute power spectral density (PSD) in a one-second window for two 

bands: LFP-gamma and MUA (Figure 4.4C-E). These two bands are most informative about 

the visual stimulus (Goense and Logothetis, 2008; Logothetis et al., 2001). We calculated 

changes in the visually induced modulation (Figure 4.4D) and in the SNR (Figure 4.4E). 

Calculation of the SNR allowed us to assess whether DA influences the fidelity of the V1 

responses (Sengupta et al., 2014) and was calculated by taking the power of the visually 

evoked responses (signal) and dividing it by the power during the OFF-periods (noise). Our 

results revealed that during and after the injection period the gamma and MUA amplitude of 

the visually-induced modulation increased, as did the SNR (Figure 4.4D-E).  

Together these results show a clear method-dependent dissociation between the BOLD 

response and the neural activity induced by the systemic injection of DA. These findings 

highlight the different aspects of the hemodynamic response that are measured by the 

different CBF- and BOLD-based fMRI methods, and combining them can allow us to evaluate 

the effects of oxygen consumption and metabolism (Zaldivar et al., 2014). This can potentially 

be exploited to better understand fMRI signals or to disentangle the different neural events 

associated with different behavioral conditions.  

Given the relative lack of DA receptors in V1, this raises the question whether DA influences 

visual processing in V1 directly or via a more remote influence. In patients with amblyopia, for 

instance, L-DOPA improves visual acuity while studies in rats and cats show that DA exerts 

an inhibitory influence on visually evoked responses in V1 (Gottberg et al., 1988; Reader, 

1978). Thus, we locally applied DA in V1 at different concentrations and measured whether 

these manipulations exerted effects on gamma (Figure 4.5A, left panel) or MUA responses 

(Figure 4.5A, right panel), similar to those observed with systemic injections. Interestingly, our 

results revealed that visually induced modulations and SNR in the gamma and MUA frequency 

bands were unaffected by local DA application, independent of the concentration. This finding 

is in good agreement with the low density and sparse distribution of DARs in V1 (Lidow et al., 

1991) and suggests that long-range interactions from higher-order regions, for instance frontal 
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regions (Noudoost and Moore, 2011) mediate the changes in neural activity shown in Figure 

4.4.  

To confirm that the methodology for delivering pharmacological agents in the cortex is 

adequate and that our protocol for local pharmacological application leads to measurable 

changes in neural activity, we applied GABA in V1 at different concentrations. Application of 

GABA decreased the power in both gamma and MUA bands (Figure 4.5B). These effects were 

concentration-dependent and in good agreement with previous studies (Kujala et al., 2015), 

indicating that the pressure operated system optimally delivers drugs at the desired 

concentration.  

The multimodal methodology described here allows us to better understand the effects of 

neuromodulation on fMRI signals and neural metabolism. This was illustrated by showing the 

effect of systemic and intracortical application of dopamine on the neural and fMRI signals in 

macaque V1. Our findings suggest that under neuromodulation BOLD responses alone may 

not always faithfully reflect changes in neural activity (Zaldivar et al., 2014), and combining 

BOLD measurements with other methods such as electrophysiology, CBF and/or CBV can 

potentially help disentangle local sensory processing from neuromodulation.  
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Figure 4.4 Effect of 
systemic Dopamine 
injection on 

neurovascular 
coupling.  

(a) Experimental 
design and stimulus 
paradigm: 1) a 
functional localizer 
scan (12.8 min) was 
used to define voxels 
that respond to the 
visual stimulus; 2) 

Pre-conditioning 
(12.8 min) consisting 
of Carbidopa 
injection to prevent 
the breakdown of L-
DOPA in the 
periphery; 3) a 46-
min session during 
which L-

DOPA+Carbidopa 
was injected. (b) 
fMRI activation maps 
for BOLD (acquired 
at 7T: eight-shot GE-
EPI; FOV: 72x72 
mm2; resolution of 
0.75x0.75 mm2, 2 
mm slice thickness; 
TE/TR 20/3000 ms; 
flip angle 90°) and 
CBF (acquired at 7T: 
FOV: 5.5x2.4 mm2; 
1x1 mm2, 3 mm slice 
thickness ; TE/TR 
9.5/4500 ms; TI 
1400 ms; slab 6 

mm). (c) Mean BOLD response (purple), CBF response (green), gamma LFP (blue) and MUA (red) 
responses during the different experimental periods. To asses statistical significance we computed 
the changes relative to the “Before” condition. Decreases in BOLD were observed during and after 
systemic LDC whereas CBF and neurophysiology (MUA and gamma) increased. (d) Mean 
percentage changes in visually induced modulation (left panel) and mean percentage baseline 
changes (right panel) of the BOLD (purple bars) and CBF (green bars) responses during each 
session. (e) Mean percentage changes in visually induced modulation (left panel) and SNR (right 
panel) for the gamma LFP band (blue bars) and the MUA (red bars). See Zaldivar et al. (Zaldivar et 
al., 2014) for details. 
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Figure 4.5 V1 neural responses following intracortical application of dopamine and GABA. 

(a) Mean changes induced in gamma LFP (left panel) and MUA (right panel) after intracortical 
application of DA at different concentrations (2.5, 5, 7, 8 and 10 mM) are color-coded. No changes 
were observed at any concentration. (b) Mean changes induced in gamma LFP and MUA (left and 
right panel respectively) after intracortical application of GABA at different concentrations (0.25, 0.5, 
1, 1.5 and 2 mM). Concentration-dependent effects were observed under influence of GABA. The 
effects of GABA at 0.25 and 0.5 mM did not significantly differ from the control condition. However, 
significant power changes were observed from concentrations of 1 to 2 mM. 

4.5 Hints, tips and caveats  
1) Monkeys should be fasted 8 hrs before any experimental procedure under anesthesia.  

2) In some cases, to fully achieve sedation additional ketamine may be required. Under 

such circumstance, we recommended to inject an additional 10% of the initial dose.  

3) Prior to the experiment, all infusion lines need to be flashed with saline. Similarly, all 

lines should be grounded by inserting Ag-wires in the lines.  

4) Before endotracheal intubation, the tubus should be sprayed with lidocaine (1 or 2% 

solution). This suppresses airway-circulatory reflexes, which could lead to adverse 
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effects including hypertension, tachyarrhythmias, and increased intracranial pressure 

caused by endotracheal-tube induced coughing. 

5) An important  step for fMRI is accurate positioning of the monkey. The head should be 

supported by a skull fixation device. For this, we used earplugs made of acrylic that 

were inserted in ear canals.  

6) The physiological state of the monkey should be continuously monitored and be kept 

stable within tight limits throughout animal preparation and experiment. Out-of-range 

values during preparation leads to a suboptimal physiological state and can potentially 

lower or abolish the BOLD signal for hours. Table 4.1 shows the normal physiological 

values from the macaques under anesthesia. 

7) NMR coils should be tightly fixed throughout the experiment. 

8) The image SNR (signal/SD of the noise in a single volume) in the region of interest 

should be higher than 50 but preferably >100. The noise level is best calculated by 

acquiring a volume with the transmitter turned off. Alternatively, an ROI outside the 

brain and free of artifacts can be used. 

9) Before any incision, fur should be washed with detergent solution and alcohol to 

facilitate the shaving that should be performed up to 2 cm from the region of the 

surgical incision. This allows better fixating of the surgical field and reduces the risk of 

infection. Afterwards, antisepsis should be carried out with povidone and benzoin.  

10) We performed craniotomies between 2 and 4 mm diameter, which provides sufficient 

space for the incision and dissection of the meninges. At the same time, the small 

craniotomy has neurosurgical advantages, which include improved postoperative 

recovery, decreased cerebral edema, and decreased risk of hemorrhage and infection.  

The meninges were dissected under the microscope. First, a linear incision of less than 

1 mm was made parallel to the direction of the dura fibers, which facilitates CSF 

drainage and reduces the risk of meningeal infection. Both the arachnoid and pia mater 

can carefully be dissected layer-wise using dura dissectors. This minimally invasive 

procedure has been shown to be effective in achieving closure of the dura mater 
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avoiding the use of suturing techniques or any other product that could damage the 

brain surface.  

11) A flattened Ag-wire was positioned under the skin and close to the entry point of the 

electrodes in the cortex. For laminar neurophysiology we recommend NeuroNexus 

probes because their long shank and thinness reduces neural tissue damage. The 

probes are reusable when properly cleaned and stored. Before the experiments 

electrode contacts were refreshed by discharging 100 µF capacitor through a 1 kOhm 

resistor in a normal saline bath. The capacitor was initially charged to +9 V, with a plus 

contact referring to the electrode and the minus contact to a platinum wire located in 

the saline bath (Murayama et al., 2010). After each experiment, the probes were 

cleaned by flashing them with H2O2, propranolol and distilled water, and were gently 

dried using a cotton tissue.  

12) The final position of the laminar probes was based on three important points: a) the 

granular layer in sensory cortices (layer 4) usually has the highest spiking rate during 

spontaneous activity and this can be used for auditory guidance; b) the electrode 

contacts should all share the same ocular dominance and receptive field, otherwise 

electrode penetration is at an angle, in this case reposition the electrode; c) after 

detecting the receptive field present a brief block of the visual stimulus (2 s ON and 2 

s OFF repeated 8 times) to perform CSD analysis on the LFP time series. We advise 

the reader to use the inverse CSD (iCSD) method given that it allows defining the 

geometrical distribution of the CSD sources. Unlike traditional CSD, the iCSD method 

can include any assumption or a priori knowledge about the neural sources, such as 

the lateral size of columnar activity and discontinuities or direction dependence of the 

extracellular conductivity; it can be applied to any geometrical arrangement of 

electrode contacts; and it can estimate the CSD at the positions of the electrode 

contacts at the boundary of the electrodes. For more detailed information about this 

method we reference the reader to (Einevoll et al., 2007). Furthermore, laminar LFP 

coherence can also be performed to determine the boundaries between infragranular 
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and granular layers. For more detailed information about this method we reference the 

reader to (Maier et al., 2010). 

4.6 Conclusions 
The findings from the aforementioned methodological approach support the notion that 

neuromodulators determine how neural circuits process information during a variety of 

cognitive states. It shows that neuromodulators can have strong effects on BOLD and CBF 

responses, and that combining fMRI with pharmacology and electrophysiology can aid 

understanding the effects of neuromodulation on neural circuits and neurovascular coupling. 

Ultimately, these combined approaches will contribute to the understanding of the BOLD 

response at a deeper level and more biological meaningful way. Through the use of these 

multimodal techniques, one can identify individual signatures of the different neuromodulators 

and help to differentiate their contributions from the cognitive and/or sensory evoked 

responses. The experiments shown here, where we describe how the DAergic 

neuromodulation affects the fMRI signals and neural activity, illustrate the usefulness of 

multimodal approaches. Furthermore, we found that systemically applied DA increased the 

neural and the CBF responses, while decreasing the BOLD response. Although we would 

expect similar effects in awake animals, it might be challenging to isolate pure dopamine 

effects from the multitude of cofounding behavioral effects (and associated neuromodulator 

concentration changes) inherent to the awake animal. Hence, using anesthetized NHPs offers 

the advantage of being able to focus on a single aspect of the neuromodulatory mechanism, 

and allowing assessment of the neurovascular coupling features that are affected under DA. 

Furthermore, the methodology and the findings presented here have important implications 

for diagnostic use of fMRI, since many psychiatric disorders are associated with alterations to 

neurmodulatory systems. Thus, if we are able to identify signatures of individual 

neuromodulators we may also be able to detect chemical imbalances associated with brain 

diseases. 
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5.1 INTRODUCTION 

Functional magnetic resonance imaging (fMRI) is one of the most frequently used 

neuroimaging techniques for basic and clinical brain research in humans, and is used 

surprisingly less often for clinical diagnostics (Jezzard and Buxton, 2006). The systematic 

implementation of fMRI in diagnostics would evidently require extensive preliminary 

investigations of the degree to which fMRI may be sensitive to  changes in the concentrations 

of various metabolites or neurotransmitters that are often induced by neurodegenerative 

disorders. For example, lactate exhibits a prominent role in brain metabolism (Fox and 

Raichle, 1986; Pellerin and Magistretti, 2004). Transient neuronal activation can apparently 

trigger glycolysis, resulting in elevated lactate levels (Hu and Wilson, 1997; Prichard et al., 

1991). Lactate and pyruvate can then be funneled into the tricarboxylic acid cycle to provide 

neurons with energy (Pellerin and Magistretti, 2004). The apparent use of the glycolytic 

pathway was demonstrated by an increase in cerebral blood flow (CBF), and the metabolic 

rate of glucose which was accompanied by only a slight increase in the metabolic rate of 

oxygen (Fox and Raichle, 1986; Fox et al., 1988). The coupling of the CBF response to the 

NADH/NAD+ ratio which is in near equilibrium with the lactate/pyruvate ratio was then shown 

by (Mintun et al., 2004; Vlassenko et al., 2006). Given the importance of lactate in the context 

of physiological brain metabolism, changes in lactate levels are to be expected under 

pathological circumstances. For example, elevated lactate levels in the cerebrospinal fluid of 

patients suffering from Alzheimer disease (AD) have already been observed (Redjems-

Bennani et al., 1998). Such changes reflect abnormalities in the regulation of cerebral 

metabolism and potentially neurovascular coupling, which in turn could have diverse effects 

on the fMRI signal (Iadecola, 2004; Reiman et al., 2001; Reiman et al., 2004, 2005). However, 

before one can investigate how these abnormalities affect the blood oxygen level-dependent 

(BOLD) signal, we should focus on the question of how the physiological formation of lactate 

contributes to the BOLD signal. 
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We set out to study fMRI responses in the monkey brain after moderate increases of systemic 

lactate concentration. To do so, we used direct systemic application to mimic the physiological 

formation of lactate and measured BOLD contrast in the early visual cortex of anesthetized 

macaques, while using microdialysis (venous catheter) to monitor blood lactate concentration. 

To best simulate the physiological formation of lactate in the brain, we increased plasma 

lactate levels moderately and continuously over the course of minutes, with overall increments 

in blood lactate concentration corresponding to light physical exercise (Freund et al., 1990). 

We present evidence that such moderate changes in blood lactate concentration are indeed 

detectable using BOLD fMRI, and are accompanied by moderate increases in neuronal 

activity. This finding suggests that, at least in principle, changes in lactate levels due to 

physiological, age-related, or pathological metabolic adaptations, such as those reported in 

neurodegenerative disorders, can be assessed using noninvasive BOLD fMRI methodology. 

5.2 METHODS 

For this study, we used ten anesthetized rhesus monkeys (Macaca mulatta, 7 male and 3 

female, age range 4 to 11 years, weighing 4.6 to 12.5 kg). The experimental procedures were 

approved by the local authorities (Regierungspraesidium) and are in agreement with 

guidelines of the European Community for the care of laboratory animals. Procedures have 

previously been described in detail (Logothetis et al., 1999a). All vital parameters were 

monitored during anesthesia. After sedation of the animals using ketamine (15mg/kg), 

anesthesia was initiated with fentanyl (31 μg/kg), thiopental (5mg/kg), and succinylcholine 

chloride (3 mg/kg), and then the animals were intubated and ventilated. A Servo Ventilator 

900C (Siemens, Germany) was used for ventilation, with respiration parameters adjusted to 

each animal's age and weight. Anesthesia was maintained using remifentanil (0.2–1 

μg/kg/min) and mivacurium chloride (4–7 mg/kg/h). An isosmotic solution (Jonosteril, 

Fresenius Kabi, Germany) was infused at a rate of 10 ml/kg/h. During the entire experiment, 

each animal's body temperature was maintained between 38.5 °C and 39.5 °C, and SpO2 was 

maintained above 95 %. 
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Every test subject received the same amount of lactate per minute adjusted to its individual 

body weight (0.04 mmol/kg/min) to ensure the comparability of any lactate-induced effects. 

The individual dose was adjusted by adapting lactate concentration and the infusion flow rate 

to each individual test subject. The lactate concentrations used ranged from 0.15 M to 0.6 M 

(pH, 7.2 – 7.35) and the flow rates ranged from 0.8 ml/min to 2.5 ml/min, resulting in an infusion 

time of 12 min to 20 min. Lactate solution was applied to the continuous infusion of Jonosteril 

electrolyte solution (10 ml/kg/h) to dilute lactate to the above-mentioned concentrations. This 

application protocol also ensured that any pH changes stayed within a small range. We 

explicitly did not use a bolus injection because we wanted to mimic a physiological lactate 

increase comparable to lactate increases during moderate physical exercise (Freund et al., 

1990). We applied the same volume of phosphate-buffered-saline in five experimental 

sessions for control experiments (131.5 mM sodium chloride, 10 mM disodium hydrogen 

phosphate, 2.5 mM monosodium phosphate; pH = 7.2). Furthermore, we applied 0.04 

mmol/kg/min of pyruvate in eight experimental sessions. Lactate was applied using a custom-

made, pressure-operated pump that used high-precision flow meters to control flow and 

volume (Sensirion, Switzerland), in combination with Matlab functions to provide an online 

readout (The MathWorks, Natick, MA, USA). All chemicals were purchased from Sigma-

Aldrich (Schnelldorf, Germany). MR images were acquired using a vertical 4.7 T Bruker 

BioSpec scanner with an inner bore diameter of 40 cm and a 7T Bruker BioSpec scanner with 

an inner bore diameter of 60 cm (Bruker BioSpin, Ettlingen, Germany). We performed three 

experiments at 4.7T (lactate), 40 experiments at 7T (27 lactate, five saline, eight pyruvate) 

and five cerebral blood flow (CBF) experiments at 7T (lactate). At 4.7T, we used a custom-

built phased array (Goense et al., 2010) in combination with a linear transmit-coil and eight-

shot gradient echo planar imaging (EPI) with a field of view (FOV)=64×48 mm, matrix=128×96, 

7 slices (slice thickness=1 mm), echo time/repetition time (TE/TR)=20/500 ms, and flip angle 

(FA)=40°. At 7T, we used a custom-made quadrature volume coil (Augath et al., in 

preparation) and an eight-shot gradient echo EPI, FOV= 96×96 mm, matrix= 128 × 128, 13 

slices (slice thickness=2 mm), TE/TR=20/750, and FA= 47.6°. To further improve efficiency at 
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7T, we also used a single-shot gradient EPI, with FOV= 72 × 72 mm, matrix= 96 × 96, 11 

slices (slice thickness= 2 mm), TE/TR= 20/3000, and FA= 90°. For the six functional CBF 

measurements at 7T, we used a volume coil to transmit in combination with a custom-built, 4-

channel phased array (Goense et al., 2010). Perfusion imaging was performed using flow-

sensitive alternating inversion recovery (FAIR; (Kim, 1995)) for arterial spin labeling, with 

alternating slab-selective and nonselective inversion pulses (13–15 ms hyperbolic secant 

pulse). Inversion time was 1300 ms, slab 6 mm, FOV= 64 × 48 mm, resolution= 1 × 1 mm, 

slice thickness= 3 mm, receiver BW= 150 kHz, a shortest possible TE= 6 to 7 ms, TR= 3000 

ms, and FA= 90°. 

Visual stimuli were presented using a fiber optic system (Avotec, Silent Vision, USA). To adjust 

the plane of focus, contact lenses (hard PMMA lenses, Wöhlk, Kiel, Germany) were inserted 

to the monkey's eyes. The stimulus was presented in a block design that showed a full field 

rotating polar checkerboard for 48 s (ON period), followed by an isoluminant blank screen for 

the same duration (OFF period). The direction of rotation was reversed every 8 s to avoid 

adaptation. 

We used low-flow microdialysis for systemic lactate sampling in 8 experiments. Lactate 

concentrations were analyzed using hydrophilic liquid interaction chromatography coupled to 

electro-spray ionization mass spectrometry (Li et al., 2011). We sampled from a superficial 

large leg vein using a microdialysis catheter CMA 64, 20-mm PAES membrane, 0.6 mm o.d., 

20 kDa cut-off (CMA Microdialysis AB, Sweden). We allowed the semi-permeable membrane 

to stabilize for 1 h, then sampling was initiated with a flow rate of 2 μl/min. We used a 

refrigerated fraction collector CMA 740 (CMA Microdialysis AB, Sweden) in which the samples 

were stored at 6 °C. The temporal resolution of the sampling process was 3 min. After the 

experiment, the samples were diluted with a solution of 80% acetonitrile containing 0.1% 

formic acid, and then centrifuged for 3 min (4000 rpm at 4 °C). 3-13C-Lactate (13C-Lac) was 

used as internal standard for lactate. The mass spectrometer was operated in multiple-

reaction monitoring (MRM) mode for quantitative analysis. Lactate and 13C-Lac were 



 
 

Page | 189  
 

monitored based on transfers of m/z 89→89, and m/z 90→90, respectively. The detection limit 

of lactate was 0.9 pmol (for a 6-μl in vivo sample).  

We applied lactate and pyruvate to two monkeys in nine electrophysiology experiments. These 

two monkeys had miniaturized chambers implanted over V1 and were used for invasive 

recordings. We used NeuroNexus probes (NeuroNexus Technologies, Ann Arbor, USA) of 

150 μm thickness and 3 mm long shank with 16 electrode sites with 50 μm site spacing and 

413 μm2 electrode sites. The impedance of the electrodes was in the range of 700 kΩ. The 

preamplifiers for the electrophysiological recordings were custom-made. The signals were 

amplified and filtered into a band of 1–8 kHz (Alpha-Omega Engineering, Nazareth, Israel) 

and then digitized at 20.833 kHz with 16-bit resolution (National Instruments, Austin, TX), 

ensuring enough resolution for both local field and spiking activities. The analog-to-digital 

converter was linked directly to a PC running a real-time QNX operating system, where the 

signal was stored. 

5.2.1 Data Analysis  

Our region of interest (ROI) consisted of the early visual cortex (V1 and V2). A short scan (12 

min) preceding the injection scan was used to identify voxels within the ROI that showed 

reliable visually-induced modulation. We used a boxcar convolved with a hemodynamic 

response function (gamma variate function) as a regressor to detect visually-induced 

modulation. The correlation coefficient of every voxel with this regressor was calculated. 

Voxels demonstrating robust visually-induced modulation (P < 0.02) were considered for 

further analysis. The voxels identified by the short preceding scan were then monitored during 

the long (40 min) injection scan and studied for lactate-induced effects. This approach allowed 

us to investigate lactate-induced effects without making any a priori assumptions regarding 

the potentially induced BOLD response. The same approach was used for the CBF 

measurements, for which voxels were selected according their visually-induced modulation 

during the short scan preceding the injection scan. The time course of CBF changes was 

obtained with linear surround subtraction (Wong et al., 1997). We acquired BOLD fMRI data 
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in 35 sessions during lactate injections. Five of these scans were discarded: two because of 

a defect in the infusion pump, two because of artifacts caused by a shift in the monkey’s 

position, and one because of a lack of visually-induced modulation. Additionally, one of the six 

functional CBF measurements was discarded because of a positioning artifact. The remaining 

30 BOLD fMRI and five CBF voxel time courses were linearly detrended and then normalized. 

The single traces were normalized so that the mean amplitude of the stimulus-induced 

modulation before lactate injection corresponded to one. Every trace was tested for lactate-

induced changes in the visually-induced modulation and the baseline. Visually-induced 

modulation was calculated by subtracting the OFF periods from the ON periods in the 

averaged voxel time course of our ROI. The baseline shifts in the BOLD signal were analyzed 

by calculating the mean values of the ON and OFF periods. The threshold for changes in 

modulation and baseline was set at P > 0.05. This threshold had to be crossed for at least 6.4 

min (the duration of the pre-injection period). We determined four variables that defined the 

effect: the maximal percentage change, the start of the change (when modulation or baseline 

crossed the threshold), the time of the maximal effect, and the end of the effect (the last point 

above the threshold). For statistical analysis, a time window of 6.4 min around the maximum 

change was selected (range, 19.2 – 25.6 min) and the modulation and respective baseline 

during this window was compared with the pre-injection period (range, 0 – 6.4 min) with a two-

tailed t-test (alpha = 0.05). Additionally, two other time windows before (range, 6.5 – 12.8 min) 

and after (range, 28.9  35.3 min) the maximum change were defined for further comparison. 

The plasma lactate levels were also compared using two-tailed t-tests (alpha = 0.05) during 

these different time windows. The time windows were adapted to match even numbers of 

scanned volumes, which explains the odd time stamps of the selected windows. Analysis was 

performed using custom written code based on Matlab. 

To analyze the electrophysiological data, we used a one-second window to calculate the 

power spectral density of two bands: 24–90 Hz LfpH (high local field potential) and 800–3000 

Hz MUA (multiunit activity, (Rauch et al., 2008c)). We did not consider layer-specific effects, 
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and averaged the obtained PSD trace over all 16 channels. Next, we calculated changes in 

modulation and baseline. Visually-induced modulation was calculated by subtracting the OFF 

periods from the ON periods in the averaged PSD trace. The baseline shifts were analyzed 

by calculating the mean values of the ON and OFF periods. From these traces, we extracted 

the maximal percentage change, the start of the change (when modulation or baseline crossed 

the threshold), the time of the maximal effect, and the end of the effect (the final point above 

the threshold). In addition, we performed two-tailed t-tests using the same time windows as 

were used for the BOLD analysis in the single experiments (averaged over 16 channels), as 

well as in the average of the six experiments. 

5.3 RESULTS 

We applied lactate systemically in eight monkeys, with a total of 30 fMRI scans. We used 

systemic lactate concentrations comparable to those produced by moderate physical exercise 

(Freund et al., 1990). The concentrations were adapted such that all monkeys received an 

identical amount of lactate per minute according to individual body weight (see Methods). 

Figure 5.1 depicts the effects on the BOLD signal after a lactate infusion, and the 

corresponding plasma lactate concentrations for a single experiment (J08, an 8-year-old, 10.5-

kg, male monkey). Figure 5.1A–C show the distribution of the visually-activated voxels in the 

early visual cortex (V1 and V2), while Figure 5.1D shows the averaged BOLD time course 

across the depicted voxels (gray) and the time course of the plasma lactate levels (green). We 

depict the distribution of the selected voxels for the three central slices in V1 and V2 with an 

in-plane resolution of 0.75 × 0.75 mm and 2-mm inter-slice distance; the depicted voxels are 

color-coded according to their correlation with the visual stimulation paradigm. Lactate 

application started after the fourth ON – OFF period (6.4 min) and lasted 14 min (gray 

shading). First, a reliable, visually-induced modulation was observed throughout the entire 

experimental period, and was not significantly affected by lactate. Second, we induced a 

positive baseline shift in the BOLD response after the systemic application of lactate. The 

positive shift in the BOLD response was tightly correlated with the monitored increase of 
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plasma lactate, which reached its peak at 24 min of total scan time. Plasma lactate levels 

reached 3.4 mM (which is comparable to serum lactate levels observed during moderate 

physical exercise; (Freund et al., 1990), starting from levels slightly above 2 mM before 

infusion. 

 

 

To test for the consistency of the observed effects on BOLD response and plasma lactate 

levels, we performed a group analysis of all 30 experiments. Our population of test animals 

consisted of 1 female and 7 male monkeys (J08, E04, I02, I08, A09, C06, K07, J07) with an 

age range from 4 to 11 years, weighing between 4.6 and 12.5 kg, provided with identical 

housing and comparable food supply. In Figure 5.2, the averaged time courses of the BOLD 

response across all 30 experiments are depicted with the onset of systemic lactate application 

after the fourth ON – OFF period. The time windows were selected to match even numbers of 

Figure 5.1 Example experiment functional magnetic resonance imaging (fMRI) and systemic lactate 

application: Panels A–C depict the distribution of voxels that are significantly correlated with the stimulus 

(eight-shot GE-EPI overlaid on an anatomical scan (FLASH), acquired at 7 T, slices 7 through 9, 

0.75×0.75 mm resolution, and 2-mm inter-slice distance). The correlation coefficient with the regressor 

is color-coded. The gray trace in panel D depicts the mean time course of the above voxels during the 

scan with lactate infusion. The infusion began after the fourth stimulus repetition and lasted for 14 min 

(gray shading). The red dashed lines delineate the amplitude of stimulus-induced modulation during the 

pre-injection period. Image intensity has been normalized so that the modulation of the pre-injection 

period corresponds to one. The green trace shows the plasma lactate levels of the same monkey in a 

separate experiment using the same infusion protocol as was used for the fMRI experiment. 
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acquired volumes and are of identical size. During the pre-infusion period (blue) we observed 

a reliable, visually-induced modulation of 2.8 ± 1.1%. As in the single experiment depicted in 

Figure 5.1, we observed a positive baseline shift in BOLD signal that peaked within a time 

window of 19.2 to 25.6 min (red). The positive baseline shift resulted in an increase of 0.6 ± 

0.2% of the mean BOLD signal compared with pre-infusion (blue), which corresponds to 22.1 

± 7.4% of the visually-induced modulation (2.8 ± 1.1% of the signal). This baseline shift was 

significant in 26 of the 30 experiments (P < 0.05); no reliable effect was observed in the 

remaining four experiments. The lactate-induced BOLD response lasted up to 27.8 min of the 

total scan time, and then recovered so that no changes were detectable in the time window 

from 28.9 to 35.3 min (gray). In the time window just after the start of lactate application (from 

6.5 to 12.8 min of total scan time; green), no apparent changes in BOLD response were 

observed, and plasma lactate remained at pre-infusion levels. This finding is most likely due 

to our slow infusion protocol and the capacity of erythrocytes to buffer lactate to a certain 

degree, mitigating sudden increases (Smith et al., 1997). 

In Figure 5.2B, we compared the mean plasma lactate levels across eight experiments (blue 

trace) with the mean baseline shift over all 30 experiments (red trace). Four male monkeys 

(J08, C06, K07, J07; age range 6 to 9 years; weight range 5 to 11.5 kg) were used to monitor 

plasma lactate levels. The induced effects were compared for the identical time window as is 

depicted in Figure 5.2A. We observed significant plasma lactate increases in all eight 

experiments (P < 0.05). In the red time window (19.2 to 25.6 min), plasma lactate levels 

reached a mean maximum of 2.5 ± 0.9 mM, starting from a mean baseline concentration of 

1.1 ± 0.5 mM (blue time window, 6.5 to 12.8 min). Maximum plasma lactate was reached at 

22.9 ± 4.8 min of total scan time. Compared with lactate levels, BOLD response reached its 

maximum after 23.4 ± 8 min of total scan time, which we consider a very reliable match 

considering the different temporal resolutions of the fMRI and the sampling method. Reliability 

is also indicated by the high correlation between the plasma lactate time course and the BOLD 
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response at an individual level (coefficients of correlation: 0.60 for J08, 0.52 for C06, 0.69 for 

K07, and 0.85 for J07). 

 

 

To estimate the distribution of the observed effects on BOLD response within the studied 

population, we extracted the timing and the peak of the lactate-induced baseline shift, and 

compared them to each other in a scatter plot (Figure 5.3A). The amplitude of the BOLD 

response was extracted as a percentage of the overall visually-induced modulation (see 

above). In every test subject, lactate induced a positive baseline shift in the BOLD signal, 

although the amplitude varied from 16 % in the weakest responder to 39 % in the strongest 

responder. The onset of the BOLD baseline increases began between 7.6 min (onset effect, 

early responder) and 19.8 min (onset effect, late responder), with a mean onset of 16.9 ± 7.5 

min. The actual BOLD response lasted for a period of 5.6 to 27.6 min (short versus long 

pharmacokinetics), with a mean duration of 11.0 ± 8.5 min. Differences in the lactate-induced 

BOLD response are also reflected in the actual plasma lactate levels (Figure 5.3B). We 

extracted the individual lactate levels before and after infusion and the timing of the peak 

Figure 5.2. A) Mean time course 
over 30 functional magnetic 
resonance imaging (fMRI) 
sessions; the lactate infusion 
started after the fourth stimulus 
repetition (6.4 min) and lasted for a 
mean duration of 18 min (black 
dashed lines). Shading indicates 
the time windows used for statistical 
analysis: blue, before injection (0–
6.4 min); green, during injection 
(6.5–12.8 min); red, shortly after 
injection (19.2–25.6 min); and gray, 
recovery phase (27.2–33.6 min). 
(B) The mean plasma lactate 
concentration over 8 experiments 
(blue) and the mean baseline 
change over 30 fMRI experiments 
(blood oxygen level-dependent 
signal, red); lactate injection started 
after 6.4 min and lasted for a mean 
duration of 18 min. 
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concentration. The lactate levels ranged from 0.3 to 2.1 mM before infusion and reached 

maximum levels between 2.0 and 4.0 mM. The onset of plasma lactate increases began 

between 10.1 (early responder) and 20.6 min (late responder), with a mean onset of 14.1 ± 

4.5 min. Lactate remained elevated for a duration of 12 to 21min (short versus long 

pharmacokinetics), with a mean duration of 18.4 ± 7.4 min. Lactate infusion is indicated by 

gray shading, and onset timings are provided in relation to total scan time (Figure 5.3A, B). 

Taken together, and also taking into account the variability within the studied population and 

irrespective of differences in temporal resolution between the methods used, the BOLD 

response and the actual plasma lactate levels correlated to a high degree. The variability 

observed in the timing and amplitude of the lactate-induced effects reflects known differences 

in lactate turnover that depend on the training level and metabolic state of the test subject 

(Oyono-Enguelle et al., 1990). 

 

 

Figure 5.3 Inter-individual differences 
in blood oxygen level-dependent 
functional magnetic resonance imaging 
(BOLD-fMRI) (A) and plasma lactate 
concentration (B). For both datasets, 
we determined four variables that 
defined the effect: the maximal change, 
the start of the change (when baseline 
or concentration crossed the threshold 
of P=0.05), the time of the maximal 
effect, and the end of the effect (the 
final point above the threshold). These 
variables were averaged for each 
subject and plotted here. Panel A 
depicts the percentage BOLD baseline 
change and respective standard 
deviation for each subject; the 
percentage value is referenced to the 
stimulus-induced modulation before 
the injection (100%). Panel B depicts 
plasma lactate concentration before 
injection, and maximal concentration 
reached after lactate injection. For both 
panels, timing and standard deviation 
of the effect are plotted on the X-axis. 
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We were also interested in whether we could observe reliable vascular effects induced by 

lactate application, because it has already been  shown that lactate has distinct vasodilatory 

effects (Reiman et al., 1989). However, these vascular effects were triggered by relatively high 

doses of lactate. Therefore, we only expected subtle changes in CBF using our infusion 

protocol, which is comparable to a protocol used by Ido et al. that produced CBF changes only 

in the range of 4 % (Ido et al., 2004). Figure 5.4 depicts the mean of five CBF measurements 

after lactate infusion. We observed reliable visually-induced modulation in the CBF recordings 

in the range of 19 ± 7 % (Zappe et al., 2008a), but did not detect any significant baseline shifts 

comparable to the changes in the BOLD recordings. 

 

 

To investigate the neuronal activity underlying the BOLD effect, we performed six 

electrophysiological recordings in two monkeys. During the lactate infusion, we observed an 

effect in the LfpH band (24 – 90 Hz, Figure 5.5). Both baseline and stimulus-induced 

modulation increased significantly in five of six experiments. Lactate infusion induced a mean 

baseline increase of 23.0 ± 1.2% and a mean modulation increase of 76.0 ± 20%; this effect 

lasted from 12.5 ± 1.5 min to 32.0 ± 4.3 min. No significant effect was observed in the MUA 

(400–3000 Hz). We also tested the effect of pyruvate on the BOLD signal and 

electrophysiology, because of the dependence of lactate and pyruvate mediated by lactate 

dehydrogenase (Williamson et al., 1967). Here we report the electrophysiology results, the 

Figure 5.4 Mean time course of 
regional cerebral blood flow 
(CBF) measurements during 
lactate infusion (N=5). The red 
dashed lines delineate the 
amplitude of stimulus induced 
modulation during the pre-
injection period. Gray shading 
symbolizes the time of lactate 
application (13.5 min). Image 
intensity has been normalized so 
that the modulation of the pre-
injection period corresponds to 
one. 
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BOLD effect is described later. The three pyruvate injections exhibited a comparable effect in 

the LfpH band (Figure 5.6) with a mean baseline increase of 31.0 ± 7.3%. This effect lasted 

from 8.5 ± 2.1 min to the end of the recording. In two cases, we also observed a significant 

increase in modulation. Also the pyruvate injections did not show a significant effect in the 

MUA. 

 

 

As control experiments, we infused buffered saline solution to ensure that lactate-induced 

BOLD responses were primarily caused by lactate itself. We also wanted to test whether the 

applied volumes (although relatively small) triggered any cardiovascular responses that 

interfered with the BOLD signal. We used buffered saline (pH= 7.2) for five applications in 

three monkeys (Figure 5.8). No significant changes were observed in the BOLD signal after 

saline infusion using the same protocol as was used for lactate infusion (P > 0.05). During 

pyruvate injection (Figure 5.7), we observed a mean baseline increase of 0.9 ± 0.5%, which 

corresponds to 98.9 ± 63.3 % of the stimulus-induced modulation. This effect exhibited earlier 

onset than the lactate effect, lasting from 9.2 ± 2.3 min to 27.5 ± 5.9 min, with the maximal 

effect at 17.1 ± 3.1 min. 

 

 

Figure 5.5 The power spectrum 
density of the LfpH band (24–90 Hz). 
Lactate injection started at 6.4 min 
and lasted for 12min (gray shading). 
The average over the 16 channels in 
one representative experiment (A), 
and the average over all six 
experiments (B) are shown. The red 
dashed lines depict the amplitude of 
stimulus induced modulation during 
the pre-injection period. 
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Figure 5.6 The power spectrum 
density of the LfpH band (24–90 
Hz). Pyruvate injection started at 
6.4 min and lasted for 12min (gray 
shading). The average over the 
16 channels in one representative 
experiment (A), and the average 
over all six experiments (B) are 
shown. The red dashed lines 
depict the amplitude of stimulus-
induced modulation during the 
pre-injection period. 

 

 

 

Figure 5.7 Mean time course over eight functional 
magnetic resonance imaging (fMRI) sessions. The 
pyruvate infusion started after the fourth stimulus 
repetition (6.4 min) and lasted for a mean duration of 
18 min (gray shading). (B) The mean baseline change 
over 30 fMRI experiments with lactate injection (red), 
and the mean baseline change over eight fMRI 
experiments with pyruvate injection (blue). 
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5.4 DISCUSSION 

Our study results demonstrate that lactate induces a reliably detectable BOLD response, with 

even low lactate doses producing plasma concentrations comparable to those brought about 

by moderate muscular exercise  (Freund et al., 1990). We measured the BOLD response after 

a pharmacological challenge by lactate, which we induced by systemic application in eight 

anesthetized monkeys. We primarily observed an increase in the BOLD baseline in visually 

stimulated early visual cortex, with little effect on the visually-induced modulation. The BOLD 

baseline change correlated directly with the increase in systemic lactate levels. Moreover, 

even in this rather heterogeneous group of test subjects, we could reliably detect lactate-

induced changes in the BOLD signal (this is an important finding because the differences in 

physiological respectively metabolic conditions did not interfere with our measurements). 

Especially if clinical applications are envisioned in the future, substantial jitter in the BOLD 

response must be anticipated precisely because of the above-mentioned physiological 

differences between individuals. Above all, lactate metabolism depends critically on the 

training condition and general physiology of human subjects (Oyono-Enguelle et al., 1990), 

and this should also hold true for non-human primates that show an overlap with human 

physiology to a very high degree (Voytko and Tinkler, 2004). Indeed, such metabolic 

differences are reflected in the different onsets and dynamics observed after lactate 

application. However, they were not substantial enough to jeopardize our use of subtle lactate 

concentrations, and at an individual level we have shown a high degree of consistency 

between BOLD response and plasma lactate levels. 
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The observed increase in the BOLD response after lactate application most likely originates 

from a combination of neuronal and vascular effects. Therefore, we also performed 

electrophysiological recordings in two monkeys after lactate application, and observed an 

increase of neuronal activity in the LfpH band. From previous studies conducted in our lab, we 

had already shown that LfpH neuronal activity is a reliable driver of the BOLD signal 

(Logothetis et al., 2001; Rauch et al., 2008c). Although lactate-induced increases in neuronal 

activity have been described in rat hippocampus, the reason for these increases is yet not fully 

understood (Bergold et al., 2009). Furthermore, lactate is known to increase CBF by inducing 

the production of nitric oxide and other vasodilatory molecules (Gordon et al., 2008; Ido et al., 

2004). However these CBF changes apparently depend to a certain degree on lactate dose 

and application modality (bolus vs. slow infusion). For example, a bolus injection that 

increases systemic lactate to 9.8 ± 2.4 mM has induced a change in CBF in the range of 38 – 

53 % in human visual cortex (Mintun et al., 2004). This finding contrasts with the results of a 

subtle and continuous application of lactate (2 mmol/kg) in rats (reaching plasma 

concentrations of 3.5 ± 0.4 mM), which did not yield CBF changes greater than 4 % (Ido et al., 

2004). We verified the CBF changes induced by lactate application (low-dose and continuous 

infusion) using FAIR recordings, which did not demonstrate reliable CBF changes. We must 

consider two possible reasons for the lack of CBF changes. The first reason is most likely the 

very low changes in CBF induced by our lactate application protocol, which would agree with 

the findings in rats described by (Ido et al., 2004). The second reason is related to the detection 

 

 

Figure 5.8 Control experiment: 
The mean time course of five 
experiments with phosphate 
buffered saline injection. Saline 
infusion began after the fourth 
stimulus repetition and lasted 
for 12 min (gray shading). 
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threshold of the FAIR recordings, which is just within the range of the expected CBF changes 

(namely, approximately 5 %). Consequently, the detection threshold was better for the BOLD 

response (namely, 0.5 %) than for the FAIR recordings. Therefore the lactate challenge 

described herein (flow 0.04 mmol/kg/min) most likely does not trigger changes in CBF 

appreciably greater than 5 %. It follows that although we are reliably able to observe lactate-

induced BOLD responses, a CBF increase in the range of 5 % cannot be excluded, but is not 

detectable to a statistically significant extent in the same animals. It has been hypothesized 

that the increase of CBF observed in the work of (Mintun et al., 2004) depends on 

NADH/NAD+ ratio which is in near equilibrium with the lactate/pyruvate ratio. Elevated NADH 

and lactate levels partially trigger the CBF increase, which in turn can be counterbalanced by 

increasing the levels of pyruvate and NAD+, respectively (Vlassenko et al., 2006). However, 

our systemic application of pyruvate (using a dosage identical to the dosage of lactate) did 

exhibit effects in BOLD and neuronal responses comparable to lactate. Apparently, in this low 

physiological range, lactate and pyruvate may serve as equivalent substrates to induce the 

BOLD and neuronal effects that we have observed. The faster BOLD response to pyruvate 

might be explained by pyruvate's direct access to the tricarboxylic acid cycle, while lactate 

must still be transformed into pyruvate. 

The main focus of this study was to test the lower detection boundaries of lactate-induced 

BOLD responses to investigate the impact of the physiological formation of lactate on the 

BOLD signal. If the physiological formation of lactate has an impact on the BOLD signal (which 

we mimic using our slow infusion protocol), then a potential diagnostic application could be 

developed. For example, the changes in lactate metabolism in neurodegenerative disorders 

like AD are gradual and develop over a long period of time. Therefore, the lack of BOLD 

responsiveness to a lactate challenge within the physiological range of lactate formation might 

be a potential hallmark of AD. The reduced responsiveness of CBF to sensory stimulation has 

already been described in AD patients; this reduced CBF responsiveness also correlated with 

the severity of AD progression (Mentis et al., 1998). In agreement with these findings, Kalman 
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et al. did not observe a single-photon emission computed tomography response after a lactate 

challenge (2.5 mmol/kg) in AD patients induced plasma lactate levels of 5.5 ± 1.226 mM 

(Kalman et al., 2005). Reduced responsiveness to physiological lactate formation in AD is in 

agreement with a recent review highlighting the close resemblance of AD to a vascular 

disorder in which delayed and weakened responses to increased metabolic demand might be 

a preclinical feature (Iadecola, 2004). 

Taken together, we demonstrate that physiological lactate formation can contribute to the 

BOLD signal, and therefore can be reliably traced by fMRI. This finding might be exploited for 

neurodegenerative disorders like AD in which lactate metabolism is disturbed (Redjems-

Bennani et al., 1998). Patients at risk of (Richard and Amouyel, 2001) or in the early stages of 

AD might potentially exhibit a change of the BOLD signal in response to physiological lactate 

formation. Future clinical studies are needed to demonstrate whether our approach can deliver 

such diagnostics. 
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6.1 INTRODUCTION  

Neuromodulators determine how neural circuits process information during cognitive states 

such as wakefulness, attention, learning and memory (Dayan, 2012). fMRI can provide insight 

into their function and dynamics, but their exact effect on BOLD-responses remains unclear 

(Logothetis, 2008; Rauch et al., 2008c; Sirotin and Das, 2009), limiting our ability to interpret 

the effects of changes in behavioral state using fMRI. Here, we investigated the effects of 

dopamine (DA) injections on neural- and haemodynamic signals in macaque V1 using fMRI 

(7T) and intracortical electrophysiology. Aside from dopamine’s involvement in diseases such 

as Parkinson’s and schizophrenia, it also plays a role in visual perception (Arsenault et al., 

2013; Noudoost and Moore, 2011; Rogers, 2003; Shuler and Bear, 2006). We mimicked 

DAergic neuromodulation by systemic injection of L-DOPA+Carbidopa (LDC) or by local 

application of DA in V1 and found that systemic application of LDC increased the signal-to-

noise ratio (SNR) and amplitude of the visually evoked neural responses in V1. However, 

visually induced BOLD-responses decreased, while cerebral blood flow (CBF)-responses 

increased. This dissociation of BOLD and CBF suggests that dopamine increases energy 

metabolism by a disproportionate amount relative to the CBF-response, causing the reduced 

BOLD-response. Local application of DA in V1 had no effect on neural activity, suggesting the 

dopaminergic effects are mediated by long-range interactions. The combination of BOLD- and 

CBF-based fMRI can provide a signature of dopaminergic neuromodulation, indicating the 

application of multimodal methods can improve our ability to distinguish sensory processing 

from neuromodulatory effects.  

6.2 METHODS  

fMRI and electrophysiology data were collected from six (four females) healthy rhesus 

monkeys (Macaca mulatta; 5–11 kg, 6-12 years). All experimental procedures were carried 

out under approval of the local authorities (Regierungspräsidium, Baden-Württemberg, 

Tübingen, Germany, Project K4/09) and were in full compliance with the guidelines of the 

European Community (EUVD 86/609/EEC). 
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6.2.1 Anesthesia and visual stimulation for neurophysiology and fMRI 
experiments  

The anesthesia protocol has been described previously (Logothetis et al., 1999a; Logothetis 

et al., 2001). Briefly, glycopyrrolate (0.01 mg·kg-1) and ketamine (15 mg·kg-1) were used for 

preanesthesia. After induction with fentanyl (3 mg·kg-1), thiopental (5 mg.kg-1) and 

succinylcholine chloride (3 mg.kg-1), animals were intubated and ventilated using a Servo 

Ventilator 900C (Siemens, Germany) maintaining an end-tidal CO2 of 33–35 mm Hg and 

oxygen saturation above 95%. The anesthesia was maintained with remifentanil (0.4 – 1 

μg.kg-1min) and mivacurium chloride (2 – 6 mg.kg-1h) to ensure complete paralysis of the 

eye muscles. In our previous work on neurovascular coupling in V1 we showed that neural 

responses and neurovascular coupling under this anesthesia regimen are very similar to those 

in the awake state (Goense and Logothetis, 2008; Logothetis et al., 2001). In a comparison of 

(face-selective) visual responses between awake and anesthetized monkeys (Ku et al., 2011) 

few differences in the activated areas were seen throughout the brain. Furthermore, μ-opioid 

receptors are located at high densities in basal ganglia and thalamus, especially in regions 

associated to motor commands, but regions associated with cognition, ventral tegmental area, 

substantia nigra and frontal regions, have low densities of μ-opioid receptors. Therefore, we 

expect that the anesthesia used, does not cause major interference with DAergic effects on 

neural responses and neurovascular coupling.  

fMRI signals are very sensitive to changes in body temperature, pH, blood pressure and 

oxygenation, the physiological state of the monkey was monitored continuously and kept 

within normal limits. Body temperature was tightly maintained at 38.5–39.5°C. Throughout the 

experiment lactate Ringer’s (Jonosteril, Fresenius Kabi, Germany) with 2.5% glucose was 

continuously infused at a rate of 10 ml.kg-1.hr-1 to maintain an adequate acid-base balance 

and intravascular volume and blood pressure; hydroxyethyl starch (Volulyte, Fresenius Kabi, 

Germany) was administered as needed.  
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Two drops of 1% cyclopentolate hydrochloride were used in each eye to achieve mydriasis. 

The visual stimuli were presented binocularly using a custom-made MR-compatible display 

system with a resolution of 800 x 600 pixels and a frame rate of 60 Hz. Animals were wearing 

hard contact lenses (Wöhlk-Contact-Linsen, Schönkirchen, Germany) to focus the eyes on 

the stimulus plane. The eyepieces of the stimulus presentation system were positioned using 

a modified fundus camera (Zeiss RC250; see (Logothetis et al., 2001)). The visual stimulation 

protocol consisted of blocks of rotating black and white polar checkerboards of 10x10° in size 

lasting 48 seconds alternated with an isoluminant gray blank period of equal length. The 

stimulus timing was controlled by a computer running a real-time OS (QNX, Ottawa, Canada). 

The direction of the rotation was reversed every 8 s to minimize adaptation. This block was 

repeated 29 times yielding in total 46 minutes for each experiment. 

6.2.2 Systemic and Local Injections  

Systemic applications of L-DOPA and Carbidopa and saline were performed with a custom-

made pressure-operated pump (von Pfostl et al., 2012). The actual flow and volume were 

continuously monitored by high precision flow-meters (Sensirion, Switzerland). The 

preconditioning with Carbidopa consisted of 1.5 mg/kg diluted in 50 ml and injected at 1.1 

ml/min over a period of 12 minutes. The combined L-DOPA and Carbidopa applications 

consisted of a total amount of 2.1 mg/kg + 0.5 mg/kg, diluted in 50 ml injected at 1.1 ml/min 

over 12 min. All the drugs that were systemically applied were diluted in a phosphate-buffered-

saline (PBS) solution and the pH was adjusted with NaOH to 7.35. The PBS solution was 

composed of NaCl 137 mM, KCl 2.7 mM, Na2HPO4 8.1 mM, KH2PO4 1.76 mM. The control 

experiments were performed with the PBS solution where we applied the same volume at 

similar flow rate (5 experimental sessions). Because of the sensitivity of the BOLD and CBF 

measurements, injections were done over a period of 12 min to avoid changes in blood volume 

or volume-related changes in other physiological parameters, and no adjustments to the 

anesthesia were made during the 46-min scan.  
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Local applications of DA in V1 were performed using three independent injection lines driven 

by three separate HPLC pumps (M5, VICI, USA; (Rauch et al., 2008c)). The three independent 

lines allowed us to switch between different solutions in successive trials within one 

experiment. All lines were monitored by high-precision flow meters (Sensirion, Switzerland) 

controlling the exact applied volume and flow. The DA-containing solution was freshly 

prepared using DA-hydrochloride diluted in artificial cerebrospinal fluid (ACSF) at final 

concentrations of 2.5-10 mM. The pH was adjusted to 7.35 with NaOH. The ASCF consisted 

of NaCl 148.19 mM, KCl 3.0 mM, CaCl2 1.40 mM, MgCl2 0.80 mM, Na2HPO4 0.20 mM. The 

control solution was the unmodified ACSF solution. All chemicals for local and systemic 

application were purchased from Sigma Aldrich (Schnelldorf, Germany). ACSF and DA 

injections were delivered at 0.6 μl/min for a duration of 12 min.  

Data analysis procedures were implemented using custom-written routines in MatLab 

(Mathworks, Natick, MA). No smoothing was applied in any of the data sets. The 

electrophysiology and fMRI (BOLD and CBF) scans were divided in three epochs: the ‘pre-

drug’, ‘drug’ and ‘post-drug’ periods. The ‘pre-drug’ period consisted of 8 blocks of visual 

stimulation (12.8 min) while the ‘drug’ condition consisted of systemic (L-DOPA and Carbidopa 

or PBS) or local (DA or ACSF) infusion starting immediately after 8 blocks of visual stimulation. 

We used the ‘pre-drug’ period as a reference to compute changes during the ‘drug’ and ‘post-

drug’ periods, from the visual induced modulation, baseline and the SNR of the 

electrophysiology signals. Statistical significance in all the data was accessed by using a 

paired t-test comparing the ‘pre-drug’ period with the ‘drug’ and ‘post-drug’ period. This 

procedure was performed for the statistical significance in changes of the visual-induced 

modulation, baseline changes and SNR.  

6.2.3 Neurophysiology data collection and analysis  

For electrophysiological recordings first a small skull trepanation (~3 mm diameter) was made. 

Subsequently, the meninges were visualized with a microscope (Zeiss Opmi MDU/S5, 

Germany) and carefully dissected. Electrodes were NeuroNexus laminar probes (NeuroNexus 
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Technologies, Ann Arbor, USA) for all recordings. We used a 16-contact probe on a single 

shank of 3 mm length and 50 μm thickness. The electrode sites were spaced 150 μm apart, 

with a recording area of 413 μm2. The impedance of the contact points ranged from 500 to 

700 kΩ. The electrodes were slowly advanced into the visual area under visual and auditory 

guidance using a manual micromanipulator (Narashige Group, Japan). The depth was 

determined based on the spontaneous spiking activity of each of the cortical layers (Self et al., 

2013). The signals were amplified and filtered into a band of 1 Hz – 8 kHz (Alpha-Omega 

Engineering, Nazareth, Israel) and digitized at 20.833 kHz with 16-bit resolution (National 

Instruments, Austin, TX), ensuring sufficient resolution for both local field potentials and 

spiking activity. The recording area was filled with a mixture of 0.6% agar dissolved in NaCl 

0.9%, pH 7.4 which guaranteed a good electrical connection between the ground contact and 

the animal (Oeltermann et al., 2007).  

To analyze electrophysiology data, we used a one-second window to calculate the power 

spectral density in three frequency bands: low LFP (θ: 4-8 Hz), high LFP (γ: 40-150 Hz) and 

MUA (900-3000 Hz; (Belitski et al., 2008)). The θ-band was used to indicate whether LDC 

affects the broadband LFP power and to assess whether DA-injection induces changes in the 

level of anesthesia (Kortelainen et al., 2011). The signal-to-noise ratio (SNR) of the 

electrophysiological signals was calculated by dividing the power of the visually evoked 

responses (meaningful information) by the power of the responses during the off-period.  

6.2.4 MRI data collection and analysis  

The fMRI experiments were conducted in a vertical 7T scanner with a 60 cm diameter bore 

(Bruker BioSpin GmbH, Ettlingen, Germany) and in a vertical 4.7T with a 40 cm diameter bore. 

We performed fifteen BOLD experiments and five CBF experiments at 7T, and one CBF 

experiment at 4.7T. We used a custom-made chair to position the monkey into the magnet. 

For BOLD experiments, we used a custom-built quadrature volume coil that allows  
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imaging of deep brain structures while still maintaining a high signal-to-noise ratio in the visual 

cortex. We used a single-shot gradient-echo EPI with a FOV of 72x72 mm2 and matrix size of 

96x96. 11 slices were acquired with a thickness of 2 mm, TE/TR 20/3000 ms and flip angle of 

90˚. Each experimental session consisted of 928 volumes. Shimming was done with 

FASTMAP over a volume of 12 mm3. Six functional CBF measurements were acquired at 7T 

and one at 4.7T. For the CBF experiments we used a volume coil to transmit in combination 

with a custom-built, 4-channel phased array (Goense et al., 2010). Perfusion imaging was 

performed using flow-sensitive alternating inversion recovery (FAIR; (Kim, 1995), with 

alternating slab-selective and nonselective inversion pulses. At 7T we used inversion time 

1400 ms, slab 6 mm, FOV 5.5x2.4 mm2, TE/TR 9.5/4500 ms and receiver BW 150 kHz. The 

experiments at 4.7T were performed using an inversion time 1400 ms, slab 6 mm, FOV 6x3.2 

mm2, TE/TR 9.1/4500 ms and BW 125 kHz.  

We included 15 of 18 data sessions during L-DOPA injections in the data analysis; the rest 

were devoted to the development of the injection technique. We defined a region of interest 

(ROI) consisting of early visual cortex (V1-V2). A short scan (12 min) preceding the injection 

scan was used to define the ROI that was subsequently used for the injection scan. We used 

a boxcar convolved with a haemodynamic response function (gamma variant function) as 

regressor to calculate the correlation coefficient. Voxels showing robust visually induced 

modulation (p < 0.02) were included for further analysis, and were then monitored during the 

long (46.4 min) injection scan to study L-DOPA induced effects. This approach allowed us to 

investigate L-DOPA induced effects without making a priori assumptions.  

BOLD and CBF time courses were linearly detrended and normalized. Every trace was tested 

for L-DOPA induced changes in the visually induced modulation. For the calculation of the 

modulation we subtracted the ON periods from the OFF periods, the result was then divided 

by the OFF period and multiplied by 100. Baseline changes were computed by taking the 

image intensity in the periods without visual stimulation (OFF periods). To determine how LDC 

affected evoked BOLD- and CBF-responses, we analyzed the modulation in response to 
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visual stimulation normalized to the pre-drug condition. The BOLD-modulation in the pre-drug 

period was 2.5±1.1%, which is typical for anesthetized monkeys at 7T (Goense et al., 2010; 

von Pfostl et al., 2012; Zappe et al., 2008a). Similarly, baseline changes induced by LDC were 

calculated by computing OFF periods normalized to the pre-drug condition (von Pfostl et al., 

2012). 

6.3 RESULTS 

We combined fMRI with neurophysiology and pharmacology in five anesthetized non-human 

primates (Macaca mulatta), where we acquired BOLD, functional CBF (fCBF) and 

electrophysiology data while the animals viewed a rotating checkerboard stimulus. Figure 1A 

shows the experimental paradigm. We pharmacologically mimicked DAergic 

neurotransmission by systemic application of L-DOPA and Carbidopa. Carbidopa inhibits the 

breakdown of L-DOPA in the periphery, thereby preventing systemic changes in cerebral 

blood volume (CBV) that may affect the fMRI results (Figure 6.5). The lack of systemic effects 

of the LDC injection is evidenced by the highly stable physiological parameters during and 

after injection (Table 6. 1). 

6.3.1 Evoked BOLD and neural responses under systemic LDC 

Figure 6.1B shows representative fMRI responses in V1 to visual stimulation. Figure 6.1C 

shows the changes in the BOLD-response over the course of the LDC injection. BOLD-

modulation in the pre-drug period was 2.5±1.1%, which is typical for anesthetized monkeys at 

7T (Goense et al., 2010; von Pfostl et al., 2012; Zappe et al., 2008a). During the drug infusion 

we observed a significant reduction in the visually induced modulation (Figure 6.1C,D; 

MODdrug=50±5.3%; p=0.034), which was sustained after the infusion was stopped 

(MODpost=60±4.2%; p=0.05). No significant changes in the baseline were found (Figure 6.1D).  
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Figure 6.1 BOLD Responses under L-DOPA and Carbidopa Influence in Visual Cortex 

(A) Experimental paradigm and design. The stimulus was a rotating checkerboard of 48 s followed 

by an isoluminant blank screen of 48 s (right). Every experiment was divided into three conditions: 

(1) a 12.8 min experiment without pharmacological manipulation, (2) a 12.8 min session with 

Carbidopa preconditioning (1.5 mg/kg diluted in 50 ml of PBS and injected at 1.1 ml/min), and (3) a 

46 min session consisting of LDC manipulation (2.1 mg/kg + 0.5 mg/kg diluted in 50 ml of PBS and 

injected at 1.1 ml/min over a period of 12 min). (B) Activation maps showing voxels with a significant 

response to the visual stimulus (eight-shot GE-EPI; FOV: 72 3 72 mm2; TE/TR: 20/3,000 ms; flip 

angle 90°; matrix: 96 3 96), overlaid on an anatomical scan (FLASH), acquired at 7T with an in-plane 

resolution of 0.75 3 0.75 mm2 and 2 mm slice thickness. (C) The average BOLD time course (928 

volumes) over 18 fMRI experimental sessions (five animals) shows a decrease in visually induced 

modulation by L-DOPA and Carbidopa; the green and the red lines show the start and stop of the L-

DOPA-Carbidopa infusion. (D) The average BOLD response to the visual stimulus (left), decreased 

by 50% compared to the predrug period, whereas the baseline did not change under L-DOPA and 

Carbidopa (right). The shaded areas represent the SE. 
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We recorded local field potentials (LFP) and multiunit spiking activity (MUA) to evaluate the 

effects of LDC application on neural activity. The power in three different frequency ranges 

was calculated: γ (40-150 Hz) and MUA (900-3000 Hz), which are most strongly correlated 

with the BOLD signal (Goense and Logothetis, 2008; Logothetis, 2008; Rauch et al., 2008c), 

while θ (4-8 Hz) was used to indicate whether LDC affects the broadband-LFP power and to 

assess whether DA-injection induces changes in the level of anesthesia. Figure 6.2A-C shows 

the average time course across experiments for the θ-, γ- and MUA-bands respectively. LDC 

application resulted in an 18% increase in visual modulation in the γ-band (Figure 2D; 

MODγ,drug=118±4.2%; p=0.024) and a 19% increase in the MUA-band (MODMUA,drug=119±5%; 

p=0.031). The effect of LDC on the MUA-amplitude reached baseline values ~4.5 min after 

the infusion was stopped. In contrast, for the γ-band the increase in visually induced 

modulation was long-lasting and started to reduce ~12 min after the infusion was stopped. 

Additionally, we observed an increase in the SNR of the γ- and MUA-bands starting shortly 

after LDC injection (Figure 6.2E); the response to the stimulus increased while the variability 

decreased (Figure 6.2B,C). The SNR in the γ-band (SNRγ,drug=13.7±2.0 dB; p=0.011) kept 

increasing after the infusion was stopped (SNRγ,post=14.7±2.0 dB; p=0.012). The MUA-band 

also showed an SNR-increase after the start of the injection (SNRMUA,drug=12.2±2.2 dB; 

p=0.012) which continued until the end of the trial (SNRMUA,post=11.0±2.0 dB; p=0.026). In the 

θ-band (Figure 6.2A) neither visually induced modulation nor SNR changed upon LDC 

infusion.  

6.3.2 Dopamine effects are not locally induced in V1 

We next investigated whether the increases in neural activity are locally induced in V1 or are 

due to a remote influence from other regions by injecting DA intracortically in V1 to determine 

whether this induces similar effects as systemic dopamine. Figure 6.3A-C shows the averaged 

traces of the θ-, γ- and MUA-bands during intracortical application of DA (5 mM) and shows 

no discernible changes. Visually induced modulation in the γ- and MUA-bands (Figure 6.3D) 

was unchanged (p=0.23). The SNR of the γ- and MUA-bands also remained unchanged 
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during the experimental session (Figure 6.3E, SNRγ,drug=9.0±1.5 dB; p=0.31; 

SNRγ,post=8.8±2.0 dB; p=0.13; SNRMUA,drug=10.1±0.5 dB; p=0.18; SNRMUA,post=10.8±2.0 dB; 

p=0.18). Since different concentrations of DA can exert multiple modes of action (Seamans 

and Yang, 2004), we tested whether different concentrations of intracortical DA affected the 

responses in V1. However, no concentration dependent effects were observed (Figure 6.6). 

6.3.3 The effects of LDC on CBF suggest an increase in energy expenditure  

Stimulus-induced increases in γ-power and in MUA occurred simultaneously with a decrease 

in BOLD-modulation. To resolve this potential discrepancy we measured fCBF using arterial-

spin-labeling (ASL). Figure 6.4A shows fCBF in early visual cortex and Figure 6.4B the 

averaged time course of the CBF across experiments. There was a reliable visually induced, 

CBF-modulation of 19±7% during the pre-drug period, in agreement with earlier studies 

(Zappe et al., 2008a). During the ‘drug’ period we observed an increase in modulation by 34% 

(MODdrug=134±10%; p=0.045). The maximum CBF-increase of 43% was observed ~12 min 

after the infusion started and lasted ~20 min (MODpost=143±10%; p=0.034). We also observed 

significant increases in baseline CBF during and after the injection. An increase in the baseline 

was evident ~8 min after the start of the injection (CBFbaseline,drug=128±5.2%; p=0.022). The 

time course of the CBF-changes upon LDC injection were similar to the time courses of the 

changes in the neuronal responses, suggesting that increases in neural activity may cause 

the CBF-increases.  
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Figure 6.2 Systemic Application of L-DOPA and Carbidopa Increases Neural Responses in V1 

Average time course of the neural activity (LFP and MUA bands) across experiments in response to 

LDOPA and Carbidopa injection (n = 16). (A) q LFP band (4–8 Hz). (B) g LFP band (40–150 Hz). (C) 

MUA band (900–3,000 Hz). The green and red lines denote the beginning and end of the systemic 

LDC infusion. In the MUA and g bands, the amplitude of the visual response increased after LDC, 

whereas the variability of the baseline decreased. (D) Percentage change in visual response of the 

g band (blue) and MUA (red). (E) The SNR of the g band (blue) and the MUA (red) increased upon 

DA infusion. No changes were observed in the q band. The shaded areas represent the SE. 

 

6.4 DISCUSSION 

Using BOLD- and CBF-based fMRI combined with intracortical electrophysiology, we found 

that DAergic neuromodulation increased neural- and CBF-responses to a visual stimulus, 
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while decreasing the BOLD-response. Neuromodulators can exert strong influences on neural 

responses and alter neurovascular coupling (Dayan, 2012; Logothetis, 2008); our results show 

that changes in the BOLD-fMRI signal alone cannot be used to make inferences about 

increases or decreases in the underlying neural activity.  

6.4.1 Neurophysiological effects of dopamine injection 

Neurophysiological recordings under systemic LDC injection showed an increase in the 

amplitude and SNR of visually evoked responses. DA has been shown to improve the SNR in 

PFC and in sensory areas, including V1 (de Lafuente and Romo, 2011a; Happel et al., 2014; 

Jacob et al., 2013; Shuler and Bear, 2006), thereby changing detection performance at the 

behavioural level (de Lafuente and Romo, 2011a; Servan-Schreiber et al., 1990; Shuler and 

Bear, 2006; Stanisor et al., 2013). Increased neuronal activity in V1 has been shown to predict 

the timing of reward delivery, even when the cells were not driven by a visual stimulus (Shuler 

and Bear, 2006; Stanisor et al., 2013), highlighting the importance of DA for extracting 

behaviourally relevant information (Serences, 2008; Servan-Schreiber et al., 1990).  

However, local dopamine application did not change neural activity, in good agreement with 

the low density and sparse distribution of DARs in V1 (Lidow et al., 1991) and suggesting that 

DA does not exert its effects on V1 itself. The increase in neural activity upon systemic DA 

may be mediated by long-range interactions from higher-order regions, for instance frontal 

regions (Jacob et al., 2013; Noudoost and Moore, 2011). Large-scale interactions have been 

reported in other sensory modalities, including the visual-, somatosensory- and auditory 

systems, suggesting that DA prepares the higher-order area for the processing of incoming 

sensory signals, and promotes the readout of task-related information (de Lafuente and Romo, 

2011a; Happel et al., 2014; Jacob et al., 2013). Manipulation of prefrontal D1-receptors 

increased the magnitude, reliability and selectivity of neuronal responses in V4 (Noudoost and 

Moore, 2011), and similar mechanisms may play a role in V1.  
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Figure 6.3 Local Application of 
DA Does Not Alter Neural 
Responses in V1  

Average time course of the 

neural activity (LFP and MUA 

bands) across experiments, in 

response to local application of 

DA (n = 10; DA was diluted in 

artificial cerebrospinal fluid to a 

final concentration of 5 mM). 

(A) q LFP band (4–8 Hz). (B) g 

LFP band (40–150 Hz). (C) 

MUA band (900–3,000 Hz). 

The green and red lines 

denote the beginning and end 

of the DA infusion. In the MUA 

and g bands, the amplitude of 

the visual response was not 

affected by DA infusion. (D) 

Percentage change in visual 

response of the g (blue) band 

and MUA (red). (E) The SNR 

of the g band (blue) and the 

MUA (red) shows no changes 

upon DA. No changes were observed in the q band. The shaded areas represent the SE. 

 

The lack of DAergic effects upon local application is contrary to the inhibitory responses 

observed earlier (Gottberg et al.; Reader, 1978). Although DA can exert different actions 

depending on concentration (Seamans and Yang, 2004), none of the DA concentrations used 

in this study changed the amplitude or SNR of the visually evoked responses. Aside from 

species differences (Lidow et al., 1991; Phillipson et al., 1987), another possibility that could 

explain the differences is that the earlier experiments were performed with solutions in which 

the pH was not tightly controlled, whereas acidic pH depresses neuronal excitability 

(Tombaugh and Somjen, 1996).  

6.4.2 Functional imaging 

Our finding of a decrease in the evoked BOLD-response and an increase in the CBF-response 

upon systemic LDC injection, extends previous observations in humans and macaques in 
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which fMRI responses in V1 decreased with cues that predict and anticipate reward (Arsenault 

et al., 2013; Serences, 2008). A decrease in BOLD-responses in V1 while behavioral 

performance improved after an acute dose of L-DOPA was seen in studies of amblyopia 

(Algaze et al., 2005; Rogers, 2003). However, BOLD-increases have also been observed in 

humans in primary auditory and somatosensory cortex after DA-agonist administration (Pleger 

et al., 2008; Weis et al., 2012). These differences in BOLD-responses upon DAergic 

neuromodulation can be partly explained by the difference in densities of DARs and DA-

innervation between cortical regions. DARs and DA-innervations decrease along a rostro-

caudal gradient having the highest density in PFC and the lowest (or almost nonexistent) in 

occipital cortex (Lidow et al., 1991). Thus, BOLD-responses to DAergic neuromodulation could 

differ in various sensory cortices, since local influences of DA on the vasculature may 

modulate the blood supply (Krimer et al., 1998a; Mandeville et al., 2001). 

The effects of DA on the hemodynamic signals have been extensively addressed using 

different pharmacological agents in rats and monkeys (Delfino et al., 2007; Esaki et al., 2002; 

Jenkins et al., 2004; Mandeville et al., 2001; 2013). For instance, amphetamines decreased 

CBV-responses in occipital regions (Jenkins et al., 2004). However, amphetamines are known 

to increase DA-levels as well as alter the kinetics of other neurochemicals that affect the 

regional CBV (Leonard and Shallice, 1971), while CBV-responses may differ from BOLD-

responses (Goense et al., 2012). Different DARs exert different effects on the hemodynamic 

signals (Mandeville et al., 2013); stimulation of D1-receptors (D1Rs) increases CBV and BOLD 

(Delfino et al., 2007; Mandeville et al., 2013) whereas blocking these receptors decreases it 

(Choi et al., 2010; Mandeville et al., 2013). The activation and deactivation of D2-receptors 

(D2Rs) produces opposite effects (Choi et al., 2006). The present study did not consider 

receptor specific-responses, but instead focused on understanding the balanced effects 

mediated by D1R and D2R interaction.  

 



 
 

Page | 221  
 

 

Figure 6.4 CBF Increases with L-DOPA and Carbidopa 

(A) Activation patterns of functional CBF (using flow-sensitive alternating inversion recovery) in early 

visual cortex (monkey A09) in response to visual stimulation. (B) The average time course over six 

CBF experimental sessions shows an increase in baseline-induced as well as visually induced CBF 

(six sessions acquired at 7T: TI, 1,400 ms; slab 6 mm; FOV, 5.5 3 2.4 mm2; TE/TR, 9.5/ 4,500 ms; 

BW, 150 kHz, and one session acquired at 4.7T: TI, 1,400 ms; slab 6 mm; FOV, 633.2mm2 ; TE/TR, 

9.1/4,500 ms; BW, 125 kHz). (C) The average visually induced modulation increased by 43% (left) 

and the baseline changed by 31% (right) upon L-DOPA and Carbidopa infusion. The shaded areas 

represent the SE. 

 

6.4.3 Neurovascular coupling under dopamine 

Changes in the LFP are usually mirrored by changes in spiking and in the haemodynamic 

responses (Goense and Logothetis, 2008). Our observation of a dissociation between the 

BOLD- and neurophysiological responses indicates that neurovascular coupling may differ 
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under states of neuromodulation. Our results suggest that the increase in neural activity and 

CBF and the decrease in BOLD are caused by a disproportionate increase in O2-consumption 

due to DAergic neuromodulation. The BOLD-signal reflects the deoxyhemoglobin 

concentration [dHb], and is affected by CBF, CBV and the cerebral metabolic rate of oxygen 

consumption (CMRO2). The stimulus-evoked BOLD-decrease could be due to a CBF-

decrease or a [dHb] increase after dopamine application. Since CBF increased, dHb-

production is most likely also increased, i.e. an increase in CMRO2. An increase in CBF-

modulation and a decrease in BOLD-response can occur when the O2-consumption increases 

by a proportionally larger amount than the inflow of fresh blood, leading to a relative increase 

in [dHb] and a decrease in the BOLD-signal compared to the pre-injection response. 

The increased neural activity also suggests a CMRO2-increase, since it has been shown that 

improving neurons’ sensitivity is energetically draining (Laughlin et al., 1998; Servan-

Schreiber et al., 1990). Using autoradiography it has also been shown that the application of 

L-DOPA increases brain metabolism (Porrino et al., 1987a). These observations are not 

surprising given that energy usage is tightly coupled to neural performance (1998; Logothetis, 

2008). The increase in CBF likely relates to neuronal activity because glucose metabolism, 

CMRO2 and CBF are closely coupled (Kim and Ogawa, 2012; Logothetis, 2008). Increased 

neural activity in response to reward increases has been shown to increase the CBF 

(Obayashi et al., 2009).  

The increased baseline CBF upon acute LDC injection commonly seen in humans and non-

human primates (Hershey et al., 2000; Leenders et al., 1985; Montastruc et al., 1987) is 

usually attributed to vasodilation. However, the stimulus-induced CBF-increases cannot be 

attributed to vasodilation alone. Vasodilation increases the baseline CBF- and BOLD-signals, 

and reduces stimulus-evoked CBF- and BOLD-signals due to limited reserves, as seen in the 

case of hypercapnia (a potent vasodilator) (Sicard and Duong, 2005; Zappe et al., 2008b). 

The possibility that the BOLD-reduction is due to a ceiling effect, as seen in the case of 
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hypercapnia or in pathology, is therefore unlikely, since evoked CBF decreases in the case of 

vasodilation (e.g. in hypercapnia) or an inadequate CBF-response (Blicher et al., 2012). 

PET-studies have shown little or no change in CMRO2 upon L-DOPA administration (Leenders 

et al., 1985), the latter reflecting little or no change in baseline response, as was observed 

here. A lack of CMRO2-increase however, would not be able to explain our stimulus-driven 

results: comparing again with hypercapnia where CMRO2 and neural activity do not change 

considerably; this would lead to very different CBF- and BOLD-responses to the stimulus than 

observed here (Zappe et al., 2008b). Whether the increase in baseline CBF corresponds to 

an increase in metabolism cannot be deduced based on the current data. The baseline of the 

BOLD time-course did not change, with a minor tendency to go down. It is possible that the 

increase in CBF is balanced out by an increase in [dHb] in the baseline state, leading to little 

or no net baseline changes. Following the same reasoning as with the stimulus-induced 

responses, the small decrease in the baseline BOLD-trace may indicate a small increase in 

CMRO2 in the baseline condition as well. However, further study is needed to verify this.  

The effects observed here are unlikely to be due to DA-induced changes in the level of 

anaesthesia, since no differences were observed in the θ-band or the physiological 

parameters. The advantage of using anesthetized animals is that we could assess the effect 

of dopamine on neural and hemodynamic properties without needing to take behavioural 

parameters like attention, reward and anticipation into account. Anesthetized animals also 

allow us to discriminate small changes since it allows for longer averaging times. However, 

differences in regional CBF under DAergic influence have been observed between awake and 

anesthetized animals (Hershey et al., 2000), and differences may depend on the type 

anaesthesia. Since neuromodulatory properties strongly depend on the animal’s behavioural 

state, including its level of alertness, this highlights the complexity of fMRI studies of 

neuromodulation, and ideal would be a comparison of dopaminergic effects in awake and 

anesthetized animals.  
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The findings presented here provide us with a better understanding of the influence of 

neuromodulation on fMRI-signals. The decrease of the BOLD-signal in the face of an 

increased energy use, implies that the BOLD-response may not always faithfully reflect the 

neural responses under neuromodulation, and imply caution is necessary in interpreting 

BOLD-signals under neuromodulation. Combining BOLD-measurements with CBF- and/or 

CBV-measurements can resolve these complexities and potentially provide a tool to 

discriminate sensory processing from neuromodulation. Such multidisciplinary approaches 

may improve the interpretation of fMRI-studies where neuromodulation plays a role, for 

example, studies of reward or attention, but also facilitate clinical applications of fMRI. 

6.5 APPENDIX 

6.5.1 L-DOPA without Carbidopa intervention and saline control  

Systemic L-DOPA, without any Carbidopa was applied in three animals. Concentrations, flow 

and final volume were similar to those used in the L-DOPA and Carbidopa interventions. 

Figure 6.5A shows the averaged BOLD responses across all experimental sessions (n = 5, 

upper panel, blue). As in the L-DOPA and Carbidopa condition we divided each session in 

three conditions: ‘pre-drug’, ‘drug’ and ‘post-drug’ and calculated the changes in the visually 

induced modulation and in the baseline. There were no changes in the visually induced 

modulation during (MODdrug = 99%; p = 0.09 paired t-test;) and after the injection (MODpost = 

104%; p = 0.09 paired t-test; medianpost = 101%). We observed a significant increase in the 

baseline BOLD signal during and after the injection period (Figure 6.5B). The increase was 

evident ~8 min after the start of the injection (BOLDbaseline,drug = 112 ± 8%; p = 0.05 paired t-

test; median BOLDbaseline,drug = 108%). This increase lasted ~10 min after the injection was 

stopped (BOLDpost,drug = 116 ± 6%; p = 0.05 paired-test; median BOLDpost,drug = 112%). 

Systemic injection of saline showed that both the visually induced modulation and the baseline 

were unchanged during and after injection (Figure 6.5C and Figure 6.5D; MODdrug = 102%; 

mediandrug = 107%; p = 0.08 paired t-test; MODpost = 104%; medianpost = 102%; p = 0.23 paired 

t-test). 
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6.5.2 Effect of different concentrations of dopamine in V1  

We locally applied dopamine at different concentrations in V1 (2.5 and 10 mM; Figure 6.6). 

Figure 6.6A and Figure 6.6B show the results for the 2.5 mM condition. Figure 6.6C,D show 

the 10 mM condition. Both pharmacological conditions were divided in pre-drug, drug and 

post-drug, for which we calculated the PSD for the θ (4 – 8 Hz), γ (40 – 150 Hz) and MUA- 

(900 – 3000 Hz) bands. No significant effects were observed in any of the computed frequency 

bands for both pharmacological manipulations. 
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Figure 6.5 Effects of L-DOPA without Carbidopa and saline; Related to Figure 1.  

A. Average BOLD time course over five fMRI experimental sessions of L-DOPA application without 

Carbidopa (shown in blue). The green and red lines show the start and stop of the L-DOPA infusion. 

B. The average visually induced modulation did not change (left) while the baseline showed a small 

increase (right). The systemic changes in the peripheral vascular system and the lack of effects on 

the visual modulation indicate the breakdown of L-DOPA in the periphery. C. Shows the average 

BOLD time course during saline infusion (shown in gray), similarly green and red lines denote the 

infusion period. D. Visually induced modulation (left) and baseline (right) did not change in response 

to saline infusion 
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Figure 6.6 V1 responses to local DA application at different concentrations; Related to Figure 3.  

Average time courses of the neural activity (LFP and MUA bands) across experiments, in response 

to local application of DA at different concentrations. A. DA at 2.5 mM: responses in θ-band (4 – 8 

Hz), γ-band (40 – 150 Hz) and MUA (900 – 3000 Hz). The green and red lines denote the beginning 

and end of the DA infusion. B. Changes in visually induced modulation for each of the bands recorded 

during the pre-drug, drug, post-drug condition; no changes were observed at this concentration. C. 

DA at 10 mM: responses in θ–band, γ–band and MUA. D. No changes in visually induced modulation 

were observed upon dopamine application. 
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Table 6. 1 Mean physiological parameters under general anesthesia. Related to Figure 6.1and 
Figure 6.4 

 

Included in the table are the mean physiological parameters under general anesthesia during the 
pre-drug, drug and post-drug conditions (four females and two males). The parameters included in 
this table were computed across all experimental sessions.  
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7.1 INTRODUCTION  

The cortical column is widely regarded as the fundamental processing unit of the neocortex 

(Mountcastle, 1997). Under this hypothesis, there is a common microcircuit spanning the 

depth of the cortex which is repeated across the cortical plane. As the circuitry of the 

microcolumn is expected to have structural and functional similarities across the sensory 

modalities, therefore understanding this generic circuitry of the columnar computation will 

have far reaching impacts. However, despite some progress towards understanding knowing 

the different types of neurons in present in different layers (Briggs and Callaway, 2001, 2005; 

Callaway, 1998; Chatterjee and Callaway, 2003), and the distribution of their most prominent 

inter-connections (Hansen et al., 2012; Hansen and Dragoi, 2011), and a structural wiring 

diagram for the cortical microcircuit (Douglas and Martin, 2004), is still unknown. Furthermore, 

the functional structure and computation of the microcircuit, which is to say the purpose of the 

processing in each cortical layer, is also still unknown. In this paper, we aim to elucidate the 

functional structure of the cortical layers in primary visual cortex (V1) by examining the 

information contained in population activity at the various layers using local field potentials 

(LFPs). 

LFPs are thought to reflect an integration of the membrane depolarization in the neurons 

surrounding the electrode location. The LFP captures changes within the dendritic trees of 

neighboring neurons as well as the soma. The low frequency LFP (< 20 Hz) captures slower 

changes in the population activity, and reflects more of the dendritic level of processing, 

integrated over a larger region than the high frequency LFP (Leski et al., 2013). We previously 

found that in the macaque V1 there are two LFP frequency bands, 1–8 Hz and 60–100 Hz, 

which encode independent information in the macaque V1 about natural stimuli (Belitski et al., 

2008). In this study we expand the previous study by studying information as a function of 

cortical depth, and identify one aspect of natural scenes which is encoded differently by the 

two cortical frequency bands. We hypothesized the two bands of information are generated 

through different cortical processes and originate at different locations in the cortex. In this 
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study we expand the previous study by studying information as a function of cortical depth, 

and identify one aspect of natural scenes which is encoded differently by the two cortical 

frequency bands. Recent work has shown stimulation in V1 induces gamma activity in 

extrastriate visual cortex area V4 (V4) (feedforward), whilst stimulation in V4 induces alpha 

oscillations in V1 (feedback) (van Kerkoerle et al., 2014a). 

7.2 METHODS 

Data was collected from V1 in four healthy rhesus monkeys (Macaca mulatta; four males 8–

11 kg; 10–12 years). All the experimental procedures were approved by the local authorities 

Regierungspräsidium, Baden-Württemberg, Tübingen, Germany; Project Number KY4/09) 

and were in full compliance with the guidelines of the European Community (EUVD 

86/609/EEC) and were in concordance with the recommendation of the Weatherall report for 

the care and use of non-human primates (Weatherall, 2006). The animals were group-housed 

in an enriched environment, under daily veterinarian care. Weight, food and water intake were 

carefully monitored on a daily basis.  

7.2.1 Anesthesia for Neurophysiology Experiments 

The anesthesia protocol for all the experimental procedures have been described previously 

(Logothetis et al., 1999a; Logothetis et al., 2001). Briefly, glycopyrrolate (0:01 mg kg-1) and 

ketamine (15 mg kg-1), were used previous to general anesthesia. Induction with fentanyl (3 

mg kg-1), thiopental (5 mg kg-1) and succinylcholine chloride (3 mg kg-1), animals were 

intubated and ventilated using a Servo Ventilator 900C (Siemens, Germany) maintaining an 

end-tidal CO2 of 33–35mmHg and oxygen saturation above 95%. The anesthesia was 

maintained with remifentanil (0:5–2 μg kg-1min) and mivacurium chloride (2–6 mg kg-1 h) which 

ensured no eye movement during electrophysiological recordings. The anesthetics dosage 

were established by measuring stress hormones and were selected to ensure unaffected 

physiological response at normal catecholamine concentrations (Logothetis et al., 1999a). In 

addition, it has been shown that using remifentanil has no significant effect on the 

neurovascular and neural activity of brain areas that do not belong to the pain matrix (Goense 
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and Logothetis, 2008). In particular, visual cortex does not bind remifentanil. We monitored 

the physiological state of the monkey continuously and kept within normal limits. Body 

temperature was tightly maintained at 38–39 °C. Throughout the experiment lactate Ringer’s 

(Jonosteril, Fresenius Kabi, Germany) with 2:5% glucose was continuously infused at a rate 

of 10 ml kg-11 h-11 in order to maintain an maintained by the administration of hydroxyethyl 

starch as needed (Volulyte, Fresenius Kabi, Germany). We used anesthetized animals 

because the preparation allows longer data acquisition times and to associate particular neural 

events to specific stimulus features without the strong effects of animal cognitive state, 

including effects of attention and arousal that would introduce additional complication in the 

interpretation of signals. 

7.2.2 Visual Stimulation 

A few drops of 1% cyclopentolate hydrochloride were used in each eye to achieve mydriasis. 

Animals were wearing hard contact lenses (Wöhlk-Contact-Linsen, Schönkirchen, Germany) 

to focus the eyes on the stimulus plane. The visual stimulation in all experimental sessions 

was presented in the eye with stronger ocular preference of recording sites. The stimulus was 

presented using either an in-house custom-built projector (SVGA fibre-optic system with a 

resolution of 800 _ 600 pixels, a frame rate of 30 Hz), or a CRT monitor (Iiyama MA203DT 

Vision Master Pro 513, frame rate 118 Hz) placed at eye level, 50 cm in front of the eye. We 

found the same results with both display devices, except that monitor refresh with the 30 Hz 

stimulus induced cortical oscillations at 30 Hz. Since this is the result of using an artificial 

stimulus with a low refresh rate (a well-known issue at this stimulus frequency), we removed 

this from the data (see Artefact Removal) and pooled the results across all sessions. The 

visual stimulus consisted of high contrast (100%), gamma corrected, fast-moving, colourful 

movie clips (no soundtrack) from commercially available movies. Stimulus timings were 

controlled by a computer running a real-time OS (QNX, Ottawa, Canada). Stimulus-on periods 

of 120 s (5 sessions; 1 session: 40 s) were interleaved  with stimulus-off periods (isoluminant 

grey screen) of 30 s.  
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7.2.3 Neurophysiology Data Collection and Analysis 

The electrophysiological recordings were performed by doing a small skull trepanation, after 

which the dura was visualized with a microscope (Zeiss OpmiMDU/S5, Germany) and 

carefully dissected. The electrodes were slowly advanced into the visual areas under visual 

and auditory guidance using manual micromanipulator (Narashige Group, Japan). Electrodes 

consisted of laminar probes (NeuroNexus Technologies, Ann Arbor, USA). These electrodes 

contained 16 contacts on a single shank 3mm long and 150 μm thick. The electrode sites were 

spaced at 150 μm apart, with a recording area of 413 μm2 each. We used a flattened Ag wire, 

which was positioned under the skin, as reference electrode (Murayama et al., 2010). The 

recording access was filed with a mixture of 0:6% agar dissolved in NaCl 0:9%, pH 7.4 solution 

which guaranteed good electrical connection between the ground contact and the animal 

(Oeltermann et al., 2007). The impedance of the contact points was always measured during 

the experiments and ranged from 480–800 k. The signals were amplified and filtered into a 

broadband of 1–8000 Hz (Alpha-Omega Engineering, Nazareth, Israel) and then digitized at 

20:833 kHz with 16 bit resolution (PCI-6052E; National Instruments, Austin, TX). 

7.2.4 Luminosity Function 

In order to best approximate the luminosity perceived by macaques, we relied on analogies 

with the human visual system. Research with humans suggest the luminosity function is 

linearly related to the long (L) and medium (M) cone activation, and independent of the short 

(S) cone activation (Stockman et al., 2008). Furthermore, the weighting of L and M activations 

towards perceived luminance is believed to be similar to the L:M ratio in the individual 

(Stockman et al., 2008). Old world monkeys such as macaques have an L:M ratio which is 

approximately 1:1 (Dobkins et al., 2000), so we assumed a luminosity function equally 

weighed between the L and M cone activations, Y = L + M. The 10° cone fundamentals of 

(Sharpe et al., 2005) were used since the cone fundamentals of old world monkeys are known 

to be very similar to humans (Dobkins et al., 2000). By taking the product of the emission 

spectra for pure red, green and blue with the luminosity function, integrating over wavelength 
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and normalizing, we obtained the following equations for relative luminance in terms of pixel 

intensity for the two devices used in the experiment.  

 

𝑌projector = 0.2171 ∙ 𝑅 + 0.6531 ∙ 𝐺 + 0.1298 ∙ 𝐵 

𝑌CRT = 0.1487 ∙ 𝑅 + 0.6822 ∙ 𝐺 + 0.1691 ∙ 𝐵 

 

7.2.5 Artefact Removal 

An artefact removal procedure was performed to reduce the effects of line noise (one session) 

and monitor refresh (the three sessions with 30 Hz stimulus). Artefact frequencies were 

identified by large, localized peaks in the power spectral density, which was computed with 

the periodogram method. In each case, the average artefact waveform was found and 

subtracted from the recorded signal. To correct for phase shifts of the artefact, the averaging 

and subsequent subtraction were performed in blocks of 50 artefact periods with a phase 

chosen to maximize the cross-covariance of the signal with the artefact waveform. 

7.2.6 Current Source Density 

The CSD was computed using the inverse CSD method (Pettersen et al., 2006). To compute 

this, we used a δ-source model of local field generation with a diameter of 500 μm, chosen to 

correspond to the effective size of columnar activity (Horton and Adams, 2005; Lund et al., 

2003). Since this method requires an even spacing between voltage measurements, gaps 

caused by faulty recording contacts in the electrode were filled in with a local average (Wójcik 

and Leski, 2010). A homogeneous cortical conductivity of 0:4 Sm-1 was assumed (Logothetis 

et al., 2007). The agar solution placed on top of the recording access point had an NaCl 

concentration of 9 mgmL-1, and the conductivity of this was estimated to be 2:2 Sm-1 (Kandadai 

et al., 2012). The CSD was spatially smoothed with a three-point Hamming filter (Einevoll et 

al., 2013). 
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7.2.7 Multiunit Activity 

Figure 7.1 MUA was calculated by band-passing the voltage recording between 900 and 3000 

Hz with a zero-phase sixth-order Butterworth filter, taking the absolute value, applying a 300 

Hz low pass third-order Butterworth filter, and then down-sampling. This yields a smoothed 

spike rate, analogous to a population firing rate. Figure 7.3: MUA was calculated by down-

sampling by a factor of 3, band-passing the voltage recording between 900–3000 Hz with a 

zero-phase sixth-order Butterworth filter, taking the absolute value, down-sampling by a 

further factor of 12. 

7.2.8 Receptive Field Locations 

The spatial RFs were found by reverse correlating the MUA and the pixel-by-pixel Z-scored 

frame-by-frame difference in luminance with a fixed lag of 66:7 ms. The rate of change in 

luminance was used because it is known to correlate well with thalamic drive. For each 

session, the RF center was located using the average of the reverse correlation across all 

cortical channels.  

7.2.9 Identification of Cortical Laminae  

Depth calibration of the electrode was performed by considering the spikes and CSD induced 

by both the onset of the movie and by 100 ms full-screen flashes (6 s flash interval). From the 

measured potentials, we determined the CSD and spike densities. Spikes were detected by 

high pass filtering the raw signal above 500 Hz with a zero-phase eighth-order Butterworth 

filter, and classifying any points more than 3.5 standard deviations above the mean signal 

during pre- and poststimulus periods as a spike, with a minimum inter-spike-interval of 1 ms. 

The majority of thalamic afferents in V1 stimulate L4 (indirectly: see Hansen et al., 2012), with 

the first cortical response manifesting at layer 4Cα (Callaway, 1998), resulting in an initial 

current sink and first burst of spiking activity located here. For each recording session, we 

found the contact exhibiting the first spiking and CSD response, the center of the most 

responsive region, and the center of the first CSD sink for both the movie onset and flash 

evoked activity. We took the average of these 8 locations and identified the closest electrode 
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contact as the location of layer 4C_. We estimated the laminar location of the rest of the 

recording depths by cross-referencing literature describing average thickness of cortical 

laminae in Macaca mulatta, area 17, (Lund, 1973). From this, the cortical depth was divided 

into 3 broad regions: supragranular (SG; layers 1– 3), granular (G; layer 4), and infragranular 

(IG; layers 5–6). High-resolution magnetic resonance imaging (MRI) scans of two of the 

animals were used to determine their cortical thickness at the recording location  

To identify the depth of each contact, we measured the potential evoked in response to the 

onset of the movie clip, and in response to full-screen maximum luminance 100 ms flash 

stimuli with a 6 s interval. From the measured potentials we identified the boundary between 

the granular (G; layer 4) and infragranular (IG; layers 5–6) regions as the source/sink reversal 

in the evoked current source density (CSD; see Experimental Procedures and Supplementary 

Materials). We estimated the location of the boundary between the granular and supragranular 

(SG; layers 1–3) regions by cross-referencing literature describing average thickness of 

cortical laminae in Macaca mulatta, area 17 (Lund, 1973). 

7.2.10 Power as a function of depth and frequency 

To compute power and information as a function of temporal frequency, the cortical data (LFP 

and CSD) were filtered in a series of bands each with a fractional bandwidth of 50%, because 

cortical power falls off rapidly with frequency in a 1/f relationship. Each successive band begins 

and ends with frequencies 1.291 times higher than the last, so that each band has 0% overlap 

with bands further away than its immediate neighbors and a 44% and 56% overlap with its 

preceding and succeeding bands respectively. The data was filtered with a zero-phase sixth-

order Butterworth filter, after which the instantaneous power was estimated by taking the 

squared absolute value of the Hilbert transform. The power in each band was integrated over 

a series of 50 ms windows, centered at the time of each frame change in the movie (once 

every 33 ms, leading to a 50% overlap of neighboring windows). The power in the 4–16 Hz 

and 60– 170 Hz bands was computed similarly. Figure 7.3A–B are plotted with power values 

averaged over all windows and trials, then expressed in decibels relative to the average power 
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1:5–248 Hz (estimated by summing the power in alternate bands). Throughout Figure 7.3A–

B and Figure 7.10, data points are shown at the band centers.  

7.2.11 Information as a function of depth and frequency 

Power in each band was computed as above, then for each frequency band and depth we 

took a 10-bin histogram of the power across all the 50 ms windows for all repetitions. The bin 

edges were chosen such that 10% of the distribution fell into each bin, and the identity of which 

bin the window was allocated into was taken to be its “stimulus”. We found the mutual 

information between the response and which frame was on screen at that time — the 

“stimulus” — by computing the Shannon information using the information breakdown toolbox 

(Magri et al., 2009b). Bias due to under-sampling was corrected for using the Panzeri-Treves 

method (PT) method (Treves and Panzeri, 1995). Each information calculation was also 

bootstrapped 20 times with a randomly shuffled mapping of stimulus to response (also bias-

corrected). To ensure the amount of information was statistically significant, we checked each 

information estimate exceeded the bootstrap mean by more than 3 standard deviations of the 

bootstrap values. The bootstrap mean was then subtracted from the estimated information, to 

counter any residual bias. 

7.2.12 Cortical Distribution of Power 

For each session, the distribution of power across the cortical depth (Figure 7.2A–B right-hand 

insets) was determined by normalizing the power at each depth by the summed power across 

all cortical depths for that band. We then took an average across sessions, weighted by the 

number of cortical recording sites in each session to prevent faulty (omitted) electrode contact 

sites from distorting the result. 

7.2.13 Information redundancy 

Information redundancy was computed with the same stimuli windows as used in the 

information calculations. Let 𝑆 denote the set of stimuli, and let 𝑋 and 𝑌 each be the set of 

powers during each stimulus in one of the frequency bands at a particular depth.  The 
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information in each 𝐼(𝑋; 𝑆) and 𝐼(𝑌; 𝑆) was computed in the same manner as above.  The 

information in the joint distribution 𝐼({𝑋, 𝑌}; 𝑆) was computed by considering each combination 

of the binned 𝑋 and 𝑌 as a different response, yielding a total of 100 different responses for 

{𝑋, 𝑌}. 

The relative redundancy is then defined as 

Redundancy =
𝐼(𝑋; 𝑆) + 𝐼(𝑌; 𝑆) − 𝐼({𝑋, 𝑌}; 𝑆)

𝐼({𝑋, 𝑌}; 𝑆)
 

and was computed using the information breakdown toolbox  

7.2.14 Information about Spatial Components 

The method to find the change in luminance in each spatial frequency band is illustrated in Figure 7.4. 

First, we took the 2D fast-Fourier transform of a 224 px square from the movie. A fourth-order 

Butterworth filter with a width of one octave was applied using a mask in the Fourier domain, and the 

result was projected back to the spatial domain. We then took the pixel-wise difference between each 

spatially filtered pair of consecutive frames. To provide a measure of the amount of change in luminance 

at this spatial resolution, we took the absolute amount of change in each pixel and summed this within 

a 2° diameter circular window centered at the receptive field location.  

Applying this to the entire movie provided a temporal sequence of luminance changes in each spatial 

range. Similar to before, we took a 10-bin histogram and took the identity the bin in which each 

luminance change fell to be the “stimulus”. The mutual information between this stimulus and the neural 

response — the power within 4–16 Hz and 60–170 Hz frequency bands — was computed with a 67 ms 

lag between stimulus and response. 

7.2.15 Information about Fine and Coarse Luminance Changes 

Coarse and fine luminance changes in the stimulus were isolated in the same manner as the 

spatial components above, but using a low-pass (<0:3 cpd) and high-pass (>1 cpd) fourth-

order Butterworth filter respectively. For both the 4–16 Hz and 6–170 Hz CSD powers, we 

computed the correlation and mutual information with the coarse and fine luminance changes, 

and averaged across sessions.  
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7.2.16 Information lag between granular and infragranular regions 

The information about fine and coarse stimuli contained in 4–16 Hz and 60–170 Hz neural 

frequency bands was computed as a function of the lag between stimulus and response, in 

steps of 1:73 ms. For each cortical recording depth, we found response lag at which the 

information was at its maximum. For each session, the response peak-lag was averaged 

across the three electrode contacts in IG and also averaged across the three electrodes in G. 

A paired t-test was performed across all 6 sessions to test whether the G information peaked 

with a shorter lag than the IG information.  

7.2.17 Cross-Frequency Phase-Amplitude Coupling 

Strength of cross-frequency coupling was measured using the Modulation Index (Tort et al., 

2010). CSD data was filtered for two bands, 4–16 Hz and 60–170 Hz, using a zero-phase 

sixth-order Butterworth filter, and the instantaneous phase of 4–16 Hz and envelope amplitude 

of 60–170 Hz were each estimated using a Hilbert transform. We took a histogram of the 4–

16 Hz phase data points with 16 bins each of width π/8 radians, and took the average of the 

60–170 Hz amplitudes simultaneous with the phase data points in each bin. This provides a 

distribution of amplitude at one depth as a function of phase at another. The Modulation Index 

is then the normalized Kullback-Leibler divergence of this distribution from a uniform 

distribution. 

7.3 Results 

To understand how oscillatory activity at different layers of primary visual cortex (V1) encodes 

naturalistic visual information, we recorded neural activity in cortical area V1 with a multi-

contact laminar electrode array in four monkeys (Macaca mulatta), anaesthetized with opiates. 

The animals were presented with a clip from a Hollywood movie which lasted 30 s or 120 s 

and was repeated 40–150 times, depending on session (see Experimental Methods).  
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Figure 7.1 Overview of data collection and example data.  
A: Illustration of experimental recording setup, showing approximate locations of electrode contacts 
in relation to a Nissl stained section of macaque V1 cortex. Boundaries between cortical laminae are 
indicated with arrowheads. (Stain reproduced from Tyler et al. (1998), with permission.) (Note: 
Electrode width is not to scale.) B: Receptive field locations were consistent across the cortical depth. 
Location of receptive field for each cortical recording site was identified by reverse correlating the 
MUA with the luminance changes of each pixel in the movie (session E07nm1). C: Example CSD 
traces from simultaneous recordings at three cortical depths for eight repetitions of a movie fragment 
(session H05nm7). The data are split into three temporal frequency bands (4–16 Hz, 28–44 Hz and 
6–170 Hz, see Methods). 

 

Each electrode housed 16 equally spaced (150 μm) contacts spanning a total depth of 2250 

μm, and was inserted perpendicular to the cortical surface (Figure 7.1A). We recorded 

broadband LFPs from each electrode contact, and used the LFPs to compute at each 

electrode location the current source density (CSD), a measure of the local flow of charge at 

any given point (Einevoll et al., 2013). To align the depth of the electrodes across recording 

sessions, we identified the border between Layer 4 and 5 as the inversion of the CSD from 

sink to source in response to the onset of visual stimulation (Figure 7.8). We then divided the 

cortical depth into supragranular (G), supragranular (SG), and infragranular (IG) 

compartments (see Experimental Methods for details).  

In order to identify the spatial regions of the movie stimulus that modulated the neural activity 

that we recorded, we estimated the spatial receptive field (RF) of the multi-unit activity (MUA) 



 
 

Page | 244  
 

recorded in each electrode contact site by reverse-correlating the rate of change of luminance 

of each pixel in the movie with the MUA. The spatial-RF locations that we identified (see Figure 

7.1B for an example session) did not vary with depth, confirming the perpendicularity of the 

electrode penetration and that all electrode contacts were recording from the same cortical 

column. 

7.3.1 Distribution of information across depth and frequency 

We then considered how neural activity in different frequency bands was modulated by the 

movie. Figure 7.1C shows, at three cortical depths, CSD traces from eight example trials 

during a portion of the movie clip. We considered traces filtered within three frequency bands: 

4–16 Hz, 28–44 Hz and 60–170 Hz. One can observe that the low-frequency activity repeats 

across trials for the G and IG depths. Activity in the 28–44 Hz range is inconsistent at all 

depths, and does not seem to be stimulus modulated. The envelope amplitude of the 60–170 

Hz band is also consistent across trials, most clearly for the SG compartment.  

We quantified these observations by computing the amount of information about the movie 

contained in the neural activity. We computed information about which frame is currently on 

screen in various frequency components of the LFP and CSD (see Experimental Methods). 

Excluding boundary effects at the top and bottom of the cortex where white matter 

contaminates estimates, power is fairly smooth across depth and decays as frequency 

increases (Figure 7.2A-B). However, the information contained in the power does not have 

such a smooth distribution and differs from this in both space and frequency domains. Instead, 

information is contained in specific frequencies at specific depths, in a similar manner for LFP 

and CSD (Figure 7.2C–D), with prominent maxima in the 4–16 Hz range at the top of the G 

region, and the 60–250 Hz range near the top of the SG region. Additionally, there are local 

maxima in IG for both the 4–16 Hz and 60 250Hz ranges. These results are consistent across 

sessions (Figure 7.9). As the information in the CSD has better spatial localization than the 

LFP (Einevoll et al., 2013; Kajikawa and Schroeder, 2011), for the remainder of the paper we 
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study only the CSD. These findings suggest that there are different information channels in a 

single cortical column.  

 

Figure 7.2 Distribution of visual stimulus information across both cortical depth and 
frequency.  
A: Distribution of LFP power during stimulus presentation. Plot shows the geometric mean power 
over 6 sessions. Above, mean power within SG, G and IG regions. Right, laminar distribution of LFP 
power in 4–16 Hz and 6–170 Hz frequency bands. B: Same as A, but distribution of CSD power 
instead of LFP power. C: Distribution of information about the stimulus contained in LFP power. Plot 
shows the mean information over 6 sessions. Above, mean information within SG, G and IG regions. 
Right, cortical distribution of information in the power in 4–16 Hz and 6–170 Hz frequency bands. D: 
Same as C, but for information in CSD power instead of LFP power. Note that the information (C+D) 
is distributed very differently from the LFP and CSD power 

 

7.3.2 Information redundancy between frequencies 

Having identified the most informative regions in depth and frequency, there are two 

possibilities: either these regions contain the same information about the stimulus, through 

transcoding of one frequency range to another across the cortex, or the regions contain 

different information about the stimulus. We investigated how similar the information was by 

computing the redundancy of information contained in pairs of frequencies (see Experimental 

Methods). We found there are two frequency domains within which information is redundant: 

4–40 Hz and >40 Hz (Figure 7.3A). Furthermore, the information contained in neural 

frequencies <40 Hz is different to the information contained in frequencies SI>40Hz, since 
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these measured to be independent (redundancy 0%). The same <40 Hz and >40 Hz division 

is observed for the signal correlation (Figure 7.10), and our results corroborate earlier findings 

(Belitski et al., 2008). Based on these and the above results, we extracted two bands (4–16 

Hz and 60–170 Hz) that contain the most information and independently encode information 

about the stimulus. 

 

Figure 7.3 CSD information redundancy across frequency bands and laminae.  
A: Median redundancy between pairs of frequencies over the 12 recording sites, averaged over 6 
sessions. B: Redundancy between pairs of recording sites of the information in three frequency 
bands. Mean of 6 sessions. C: Average of cross-channel redundancy shown in B. Note, that while 
there is substantial redundancy within bands and between the 60–170 Hz and 900–3000 Hz bands, 
there is little redundancy between the 4–16 Hz and 6–170 Hz band, indicating independent coding. 

 

7.3.3 Information redundancy across depth 

Having established the independence of these bands, we investigated the redundancy 

between the power of oscillations at different cortical depths (Figure 7.3D). For the 4–16 Hz 

frequency range, we found there is some redundancy across the entire cortical depth, but 

there are two distinct cortical regions (above and below the CSD reversal, marked as 0mm 

depth) within which information is more redundant. These findings are in agreement with 

(Maier et al., 2010), who found a transition corresponding to the G/IG boundary which isolated 

two cortical regions with high coherence <100 Hz. Gamma oscillations (6–170 Hz) code, with 

substantial redundancy across the cortical depth, with some compartmentalization of SG and 
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IG activities. In addition we also included the MUA signal, which corresponds to the local 

population firing rate. There is less redundancy of information across cortical depths for MUA 

than for gamma; this observation is due to spiking activity being more localized than gamma 

oscillations. In agreement with previous findings (Belitski et al., 2008), we find that information 

contained in the gamma range and information in the MUA are redundant with each other. 

This is to be expected, since MUA is known to be correlated with the gamma cycle.(due to 

peaks/troughs in gamma relating to peaks/troughs in firing rate). Overall redundancy is 

summarized in Figure 7.3C, which shows the average across all cortical depths for each pair 

of frequency bands. Importantly, we find the information in the 4–16 Hz range is independent 

of the information contained in both gamma and MUA frequency ranges across all cortical 

depths. In particular, this means the two localized high information regions in depth-frequency 

space from Figure 7.2D contain independent information to one-another. Importantly, this 

mean this argues against a situation where SG contains the same information as G/IG activity 

transcoded from low-frequency to high-gamma oscillations; at least some of the information is 

unique to each. 

 

7.3.4 Information about spatial frequency components of visual stimulus 

In the above, we have seen there are two frequency bands in V1 which, across all the cortical 

depth, contain independent information to each other. Next we investigate what aspects of the 

visual scene these two independent components contain. Since neurons in the primary visual 

cortex are known to respond strongly to moving sinusoidal gratings with specific spatial 

frequencies, we considered how much information the frequency bands contained about 

changes in luminance as a function of spatial frequency. Hereto, we decomposed the series 

of frames in the movie into set of spatial frequency components by finding the rate of change 

of luminance within a given set of spatial frequency bands (see Figure 7.4; Experimental 

Methods), and then computed the amount of information about this series contained in the 

neural activity. 
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We found the low frequency CSD bands (<40 Hz) contained more information about low, 

coarse spatial frequencies (0:1–0:6 cpd), whereas the higher frequencies (>40 Hz) contained 

more information about high, fine spatial frequencies (0:6–5:0 cpd; Figure 7.5B). This was not 

a continuous transition; instead we observe an abrupt change at 40 Hz, with lower and higher 

neural oscillation frequencies tuned to stimulus features with different spatial frequencies. This 

was true across the entire cortical depth (Figure 7.5C–D), where the two frequency bands (4–

16 Hz and 60–170 Hz) contained information about opposing spatial frequencies. The 

distribution of information across the cortical depth corresponds to that found in Figure 7.2D. 

These results are summarized in Figure 7.5A, which shows the average across the cortical 

depth. Information reaches its maxima around 0:2 cpd for the 4–16 Hz frequency range and 

2:5 cpd for the 60–170 Hz frequency range. 

In Figure 7.6, we summarise the previous results by extracting two spatial frequency bands: 

coarse (<0:3 cpd, low-pass spatial filter) and fine (>1 cpd, highpass spatial filter), example 

traces for which are shown above Figure 7.6A. These spatial components have low correlation 

between them (Figure 7.6B; r = 0:18). Example CSD traces are also shown for two electrode 

contacts over same time period (left side). Note that peaks and troughs in the coarse 

luminance signal are coincident with peaks and troughs with the alpha power, and similarly for 

the fine luminance and gamma power, indicating the positive relationship between stimulus 

and cortical response. This observation is quantified by the correlation and mutual information 

between these components (Figure 7.6A). 
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Figure 7.4  Extraction of spatially filtered luminance components.  
The luminance of the original video (left) is fast-Fourier transformed in a 224 px χ 224 px square for 
each frame (top-left: FFT of “current frame”). The mask isolates bands of spatial frequencies that are 
one octave wide (Row 1), yielding the spatially filtered frames (Rows 2 and 3). The stimulus 
magnitude at each spatial frequency band was obtained by taking the luminance difference of 
successive frames (Row 4), taking its absolute value (Row 5), and averaging this within the receptive 
field (Row 6). 

 

7.3.5 Layer 1 6–170 Hz amplitude is coupled to L5 4–16 Hz phase 

In previous section “Information redundancy across depth”, we showed that high and low LFP 

frequencies contain independent information to one-another. To further investigate the 

relationship between these two bands, we computed the cross-frequency coupling between 

the low frequency phase and high frequency oscillation amplitude. In agreement with previous 

work (Spaak et al., 2012), we found there is significant coupling between the 4–16 Hz phase 

in lower-G and mid-IG with the and amplitude of 6–170 Hz oscillations in upper SG (Figure 
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7.7). There is also localized coupling between the 4–16 Hz phase with 6–170 Hz amplitude in 

G and IG. These findings were all true of both the stimulus driven and spontaneous recordings. 

 

Figure 7.5 Information about different spatial components across laminae and frequency 
bands.  
A: Information about spatial components of the stimulus contained in low frequency CSD power (4–
16 Hz, average of information within G region; green) and high frequency CSD power (6–170 Hz, 
average of information within SG region; purple). Shaded region: standard error across 6 sessions. 
B: Information about visual spatial components contained in a range of CSD frequencies, median 
over 12 recording sites. C,D: Information in low (4–16 Hz) and high (6–170 Hz) CSD frequency bands 
across cortical laminae. Plots A-D are mean of 6 sessions. 

 

7.4 DISCUSSION 

In summary, we find while LFP power is smooth and its depth profile is close to flat (Figure 

7.2) the information that the LFP encodes reveals much more structure. We found there are 

two cortical regions at which oscillations in these frequency ranges are much more informative. 

Namely 4–16 Hz at upper granular and mid-infragranular, and 6–170 Hz at upper 

supragranular and mid-infragranular regions.Previous work (Belitski et al., 2008) has shown 

that in the macaque primary visual cortex information is coded in two frequency bands (<40 

Hz and >40 Hz) containing independent information about natural visual scenes. Our analysis 
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extended across the cortical depth, and we found there are two cortical regions at which 

oscillations in these frequency ranges are much more informative (4–16 Hz at upper-G and 

mid-IG; 6–170 Hz at upper-SG and mid-IG regions). 

 

Figure 7.6 Overview of information components.  
A: Relationship between Coarse/Fine changes in luminance and Low/High frequency neural activity. 
Left: Instantaneous power in 4–16 Hz band (averaged over trials and SG layers) and 6–170 Hz band 
(averaged over trials and G layers) for an example session (H05nm7). Above: Coarse (<0:3 cpd) and 
fine (>1 cpd) rate of change in luminance over the same time period. The barchart shows, for each 
pair of stimulus and response, Pearson’s correlation coefficient (pale grey; left-hand axis) and mutual 
information (dark grey; right-hand axis). B: Fine versus coarse change in luminance for each frame 
change in the stimulus. C: Lag between stimulus and response yielding maximal information (green: 
4–16 Hz and coarse luminance; purple: 6–170 Hz and fine luminance). 

 

We also examined whether changes in luminance at different spatial frequencies induced 

differential changes in the cortex as a function of neural frequency and depth. Namely, high 

spatial frequencies are encoded in oscillations faster than 40 Hz and low spatial frequencies 

are encoded in oscillations slower than 40 Hz. We found that frequencies below and above 

40 Hz contain information about different spatial frequencies. 
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Figure 7.7 Cross-frequency phase-amplitude coupling  
Phase-amplitude modulation index between low frequency (4–16 Hz) phase and high frequency (6–
170 Hz) amplitude (A: movie driven activity; B: spontaneous activity). Mean of 5 sessions. Above, 
amplitude as a function of binned phase for an example session (H05391). Left inset: IG/IG coupling; 
Right inset: IG/SG coupling. 

 

There are multiple possible interpretations of these findings, of which one, many, or even none 

may be correct. Firstly, it is conceivable that the coding of different aspects of the stimulus into 

different frequency bands is a computational strategy of the cortex. Our results suggest there 

is multiplexing in the cortex, with low frequency and high frequency oscillations of the same 

population activity simultaneously encoding low and high spatial frequency components of the 

stimulus respectively. The idea of different frequency bands conveying different spatial 

frequency components of the stimulus has been proposed before from the results of an EEG 

study (Smith et al., 2006). 

One would expect that if certain oscillation frequencies in the visual cortex contain information 

about specific aspects of the stimulus, this is likely to be because the brain has encoded this 

information into oscillations in the activity of the local population. This would only make sense 

if the information is utilized by the brain in order to interpret its stimuli. Consequently, our 

results indicate there is multiplexing in the cortex, with low frequency and high frequency 
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oscillations of the same population activity simultaneously encoding low and high spatial 

frequency components of the stimulus respectively. Intuitively, information contained in the 

two frequency bands can be combined by downstream visual cortical regions to regain the 

original stimulus as necessary. The idea of different frequency bands conveying different 

spatial frequency components of the stimulus has been proposed before from the results of 

an EEG study (Smith et al., 2006). 

Additionally, we can speculate about why separating the visual scene into low frequency 

(coarse) and high frequency (fine) components in V1 is useful. One possibility is that low 

frequency oscillations are output from V1 along the dorsal visual stream, whereas high 

frequency oscillations travel propagate through the ventral stream. Another possibility is that 

broad, coarse changes in the stimulus are useful for making rapid responses in the motor 

cortex to sudden changes, such as approaching threats.  

Separation into low and high frequency domains with different properties seems to be a 

common property of the cortex. In motor cortex, activity at <13 Hz and >60 Hz relates to 

behavior but there is a separating band ≈30 Hz which does not (Rickert et al., 2005). In the 

hippocampus, there is a gating effect between 30 Hz and 40 Hz, with lower but not higher 

frequencies able to propagate to the cortex (Moreno et al., 2015). This suggests this encoding 

scheme is common across the cortex. Some studies have suggested that the coupling of 

oscillations between two cortical regions facilitates the transmission between them (Buffalo et 

al., 2011; Fries et al., 2001; Rossi et al., 2001). 

A separation of visual stimuli into coarse and fine channels is known to occur before the stimuli 

arrive in the cortex. The outputs from different types of retinal ganglion cells (RGCs) travel to 

the cortex through different regions of a lateral geniculate nucleus (LGN). The M-pathway 

arises from RGCs with large, achromatic receptive fields, and projects mainly onto layer 4Cα 

in V1. The P-pathway originates with RGCs with smaller, chromatic RFs providing higher 

spatial resolution but lower temporal resolution; this pathway projects onto layer 4Cβ 
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(Callaway, 1998). It is possible that the two frequency channels in V1 relate to the two 

pathways providing its inputs. 

Since layer 4 of V1 (L4) is generally regarded as the primary layer of V1 which receives 

afferent inputs from a LGN, some readers might wonder how information in the gamma band 

has “arisen” in SG layers without passing through G. However, our results do not necessitate 

this. Fine-resolution information about the visual stimulus can arrive from the LGN into L4 of 

V1, with the information encoded into which neurons the afferent connections target. This 

information is not detectable from the population level activity.  

We observed that each frequency has a similar amount of power across the cortical depth, 

but oscillations at these frequency ranges contain much more information at particular cortical 

depths. This is curious as it indicates that, for any given frequency band, oscillations are 

present in all cortical depths, but most of the oscillations exhibited are not stimulus encoding.  

We observed qualitatively that information-carrying events in L4 were large, temporary 

deflections with a long duration (low frequency), whereas L5/6 contained sustained oscillations 

(Figure 7.1 for examples). The deflections in L4 were usually coincident with scene cuts or 

rapid changes in the stimulus. This could be interpreted as an error signal, since sudden, large 

changes in the stimulus would result in any predictive model of the stimulus making large 

errors. However, a more simple interpretation is these deflections correspond to changes in 

the afferent input to V1 from LGN. In support of this, we note that the spatial scale of the 

information in the low frequency band (0:25 cpd) approximately corresponds to the size of 

receptive fields for regions of the V1 corresponding to the parafovea (2°). 

The sustained oscillations in L5/6 also contain information about coarse changes in the stimuli. 

These cortical layers are known to have connections to the motor cortex, feedback to a LGN 

and receiving feedback from higher cortical regions. 

Recent work has indicated that alpha and gamma bands are important for feedback and 

feedforward activity respectively (van Kerkoerle et al., 2014a). This study found that gamma 
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waves are initiated at L4 and propagate outwards to the top of SG and bottom of IG, with alpha 

waves propagating in the opposite direction. Our study finds the most information in gamma 

bands at the very top (and very bottom) of the cortex, and the most information in alpha bands 

at the top of L4 (and layer 6 of V1 (L6)). Reconciling these results together, we find that there 

is most information in the power of the alpha and gamma oscillations at the cortical depths 

where they terminate, and the least where they originate. This suggests that the oscillations 

are generated at one cortical depth without much stimulus dependency, but as the oscillations 

propagate up and down the cortex they are either amplified or suppressed in a stimulus 

dependent manner. 

In agreement with previous work (Spaak et al., 2012), we found there was cross-frequency 

coupling between the stimulus-encoding power of gamma oscillations in layer 1 of V1 (L1) and 

the phase of alpha oscillations in lower L4. Anatomically, we believe this is related to the 

pyramidal cell bodies in layer 5A of V1 (L5A), which have apical dendritic tufts in L1 (Hill et al., 

2013) (Zhu and Zhu, 2004). This cross-frequency coupling could be one mechanism through 

which the L1 gamma wave containing high levels of information about the stimulus is 

converted into an alpha oscillation for feedback into the hierarchically lower cortical region. 

Neurons in layer 5 of V1 (L5) are known to be related to long-range cortical output  (Hill et al., 

2013). 
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7.5 APPENDIX  

 

Figure 7.8 Electrode alignment. 
A-B: High resolution MRI scans of two animals used to measure cortical thickness. C: Stimulus 
triggered average CSD responses. For sessions H05391, H05nm7, H05nm9 and E07nm1, the 
average response to onset of the movie stimulus is shown, whereas for sessions  F10nm1 and 
J10nm1 the response to a full-field flash is shown. D: Corresponding spike densities for the responses 
in panel C (1ms window duration). [Accompanies Figure 7.1] 
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Figure 7.9 Distribution of information about the movie across both cortical depth and 
frequency for individual sessions  
A-F: Same as Fig. 2D, but shown for each recording session individually. Distribution of 
information about movie stimulus contained in power. Plot shows the mean information over 
6 sessions. Above, mean information within SG, G and IG regions. Right, cortical distribution 
of information in the power of two frequency bands; 4-16Hz and 60-170Hz. [Accompanies 
Figure 7.2] 
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Figure 7.10 Signal and noise correlations.  
A: Median signal correlation between pairs of frequencies of the 12 recording sites, mean across 6 
sessions. B: Signal correlation between pairs of recording sites across the three frequency bands. 
Mean of 6 sessions. C: Average signal correlation shown in B. D-F: Same as in A-C, but for noise 
correlation instead of signal correlation. [Accompanies Figure 7.3]. 
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8.1 INTRODUCTION  

An animal’s response to a sensory stimulus depends not only on the stimulus but also on the 

animal’s cognitive state. These cognitive states are under the control of diverse 

neuromodulators that enable transitions across brain states. Neuromodulators have a wide 

range of effects on the highly nonlinear dynamics of membrane properties and synapses 

(Dayan, 2012; Grashow et al., 2009). This complexity of the effects of neuromodulation likely 

serves key computations, enabling neurons to be more flexible in their ability to encode and 

process differently information in different contexts (Dayan, 2012; Marder et al., 2014). For 

this reason, the effect of neuromodulation must adapt to the intrinsic dynamics of target 

neurons or circuits (Dayan, 2012) and it may be profoundly different, for example, between 

resting state and sensory- or task-related neural responses. Understanding the effects of 

neuromodulators on neural information processing is thus essential to understand the neural 

bases of adaptive computations. Furthermore, identifying signatures of neuromodulation-

induced changes in neural activity is key to reveal the potential causes of cognitive deficits 

and establish potential links to the pathophysiology of brain disorders (Uhlhaas and Singer, 

2015).  

Here we investigate the effect of neuromodulation on mesoscopic cortical activity measured 

by the local field potential (LFP). LFPs capture synaptic activity and other integrative neural 

processes expressed by neural populations located a few hundred microns from the electrode 

tip (Belitski et al., 2008; Magri et al., 2012b; van Kerkoerle et al., 2014b; Whittingstall and 

Logothetis, 2009). Importantly, LFP recordings reveal oscillatory activity expressed by 

interacting networks of neurons over a wide range of frequencies (Einevoll et al., 2013; 

Logothetis, 2008), which are traditionally decomposed into bands which correlate with distinct 

behavioral states (Basar et al., 1980; Lindsley and Wicke, 1974; Steriade et al., 1991; Steriade 

and Hobson, 1976), and are thought to originate from distinct types of neural events triggered 

by different processing pathways. This network-level oscillatory activity is viewed as an 
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important “middle ground” linking single-neuron activity to behavior (Buzsaki and Draguhn, 

2004), and has been implicated in several brain computations, including sensory coding 

(Belitski et al., 2008; Schroeder and Lakatos, 2009; van Kerkoerle et al., 2014b; van Kerkoerle 

et al., 2017) and dynamically modulating information transmission along feedforward, lateral 

and feedback pathways (Einevoll et al., 2013; Logothetis, 2008; van Kerkoerle et al., 2014b).  

The mammalian sensory cortex has a clear six-layered organization (“laminar”) structure 

(Lund, 1988). Every layer is composed of excitatory and local inhibitory neurons that have 

distinct patterns of projections within and between layers, and to other cortical and sub-cortical 

areas (Callaway, 1998; Henry et al., 1979; Lund, 1973, 1988; Nassi and Callaway, 2009). For 

example, input layers project locally to superficial and deep layers; superficial layers project 

to higher-order visual areas and also locally to superficial and deep layers; deep layers project 

primarily to subcortical nuclei. Such laminar organization of projection suggest that sensory 

coding, and possibly its neuromodulation, must be layer-dependent. 

To study how neuromodulation affects visually-evoked and intrinsic neural processes, it is 

therefore critical to investigate the laminar influence of neuromodulators in the cortical 

laminae. We used laminar probes to simultaneously record LFPs at different depths and 

investigated the effects of systemically injected dopamine (DA) in V1 of anesthetized 

monkeys. We focused on the effects of DA because it is known to improve visual sensory 

processing through long-range interactions (Moore and Zirnsak, 2017; Noudoost and Moore, 

2011; Zaldivar et al., 2014) and because alterations in the dopaminergic (DAergic) system are 

associated with visual deficiencies in Parkinson’s disease patients. Presentation of naturalistic 

movies elicits a rich spectrum of LFP activity because it introduces sufficiently high variations 

in the experimental conditions that are more likely to engage distinct neural processes (Belitski 

et al., 2008; Belitski et al., 2010; Szymanski et al., 2011). We found a clear marker of the 

presence of DA in the power of mid-frequency [19-38 Hz] spontaneous (i.e., non-stimulus 

driven) LFP oscillations. We found that DA increased the stimulus information encoding over 

all frequencies, both more markedly in the gamma range and in the superficial and deep 
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layers, suggesting that DAergic neuromodulation may prepare the higher order area for the 

processing of incoming sensory signals and promote the readout of task-related information. 

8.2 METHODS 

8.2.1 Ethical Statement 

Data were collected from the visual cortex of adult monkeys (Macaca mulatta: three female, 

H09, G09, and G11; one male, K07; 5–11 kg, 6-12 years). All the experimental procedures 

were approved by the local authorities (Regierungspräsidium, Baden-Württemberg, Tübingen, 

Germany, Projects Nr. KY 4-09 and KY 4-16) and were in full compliance with the guidelines 

of the European Community (EUVD 86/609/EEC) and following the recommendations of the 

Weatherall report for the care and use of non-human primates. 

8.2.2 Pharmacological Injections 

Each experiment (n = 15 in 4 animals) consisted of neural recording during which systemic 

applications of L-DOPA+Carbidopa were performed. We used a custom-built pressure 

operated pump to systemically inject dopamine (Zaldivar et al., 2017). The actual flow and 

volume were continuously monitored by high precision flowmeters (Sensirion, Switzerland). 

Preconditioning was done with 1.5 mg/kg Carbidopa diluted in 50 ml phosphate-buffered-

saline (PBS) and injected at 1.1 ml/min over a period of 12 minutes. The combined L-

DOPA+Carbidopa applications used 2.1 mg/kg + 0.5 mg/kg L-DOPA+Carbidopa, diluted in 50 

ml PBS and injected at a rate of 1.1 ml/min over 12 min. The PBS solution consisted of NaCl 

137 mM, KCl 2.7 mM, Na2HPO4 8.1 mM, KH2PO4 1.76 mM, and had a pH of 7.35. All chemicals 

were purchased from Sigma-Aldrich (Schnelldorf, Germany).  

8.2.3 Neurophysiology Data Collection and Analysis  

We performed a small skull trepanations (4-5 mm diameter) in primary visual cortex (V1) using 

the stereotaxic coordinates in each monkey. Subsequently, the meninges were carefully 

dissected layer-wise (~1mm dissection diameter) under the microscope (Zeiss Opmi MDU/S5, 

Germany). The laminar electrodes (NeuroNexus Technologies, Ann Arbor, USA) were slowly 
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advanced into the cortex under visual- and auditory guidance using a manual 

micromanipulator (Narashige Group, Japan). The final electrode position was determined 

based on CSD analysis (Pettersen et al., 2006) and coherence analysis (Maier et al., 2010). 

Coherence analysis measures the similarity in the temporal structure of two signals and 

quantifies the extent to which they are linearly correlated. This helped us to better estimate 

the boundaries between deep and middle layers (Maier et al., 2010). As a final confirmation, 

the location of layer 4 was confirmed by analysis of multi-unit-activity (MUA) that identified 

layers with shortest latency of spiking activity (not shown). Our laminar probes contained 16-

contacts on a single shank of 3 mm length and 50 µm thicknesses. The contacts were spaced 

150 µm apart, with a recording area of 176 µm2 each. We used a flattened Ag wire positioned 

under the skin as reference (Zaldivar et al., 2017). The area around the electrode was filled 

with a mixture of 0.6% agar dissolved in NaCl 0.9%, pH 7.4 which guaranteed good electrical 

contact between the ground and the animal. The impedance of the electrodes sites was 

measured before and during the experiments and ranged from 500 to 800 kΩ. 

The signals were amplified and filtered into a band of 1-8 kHz using a multi-channel-processor 

amplifier system (Alpha-Omega Engineering, Nazareth, Israel) and then digitized at 20.833 

kHz with a 16-bit resolution ADC-converter (National Instruments, Austin, TX), ensuring 

sufficient resolution to capture both local field potentials and spiking activity. The LFPs were 

extracted from the raw recordings by bandpass filtering the signals between 1 and 150 Hz. 

The filtering procedure was as follows: First, the neural signals sampling rate was reduced 

from the original sampling rate by a factor of 3 (from 20,835 to 6945 Hz). It was then 

bandpassed filtered and down-sampled in two steps: first to a sampling rate of 1.5 kHz with a 

fourth order Butterworth filter (500 Hz cutoff), and then to a rate of 500 Hz using a Kaiser 

window between frequencies of 1 and 150 Hz, sharp transition bandwidth (1 Hz). The two-

step procedure was computationally more efficient than a single filtering operation to the final 

sampling rate. The sharpness of the second filter was used to avoid aliasing, without requiring 

a higher sampling rate attributable to a broad filter transition band, which would increase the 
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computational cost of all subsequent operations. Forward and backward filtering was used to 

eliminate phase shifts introduced by the filters. The PSD were computed over 500ms non-

overlapping windows using the multitaper method. The normalized PSDs were obtained by 

dividing the power at each frequency by the average power computed during the pre-injection 

movie presentations at that frequency. 

8.2.4 Information Theoretic Analysis 

To determine how well the power, 
fr , (of either LFP or spikes) at a certain frequency, f, 

encodes the visual features in the movie, we computed the mutual information, ( ; )fI S R  

(Quian Quiroga and Panzeri, 2009; Shannon, 1948), between the stimulus window in the 

movie and the power at frequency f  as 

2

( | )
( ; ) ( ) ( | ) log

( )
f

f

f f

s r f

P r s
I S R P s P r s

P r
 

,    (1) 

where ( )P s  is the probability of presentation of the stimulus window s (here equal to the 

inverse of the total number of stimulus windows), ( | )fP r s  is the probability of observing a 

power 
fr  at frequency f in response to a single trial to stimulus s, and ( )fP r  is probability of 

observing power rf across all trials in response to any stimulus. ( ; )fI S R  quantifies the 

reduction of the uncertainty about the stimulus that can be gained from observing, in a single-

trial, the power at frequency f . Since we use base-two logarithms, ( ; )fI S R  is expressed in 

units of bits. One bit of information means that, on average, observation of the neuronal 

response in one trial reduces the observer’s stimulus uncertainty by a factor of two.  

To estimate numerically from the LFP power the values of information in Eq (1) in the real 

data, we used the information breakdown toolbox (Magri et al., 2009a) and proceeded as 

follows. First, the power values across trials at each frequency was discretized into 5 equally 

populated bins. The binned values were then used to estimate the stimulus – LFP power 
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probabilities in Eq 1. We used the Panzeri-Treves algorithm (Panzeri and Treves, 1996) for 

estimating and subtracting out the bias in information estimates due to limited sampling. We 

assessed the statistical significance of the information values against a null-hypothesis 

“bootstrap” distribution of values obtained by pairing at random movie scenes and power of 

neural responses in each trials, thus effectively removing any relationship between the power 

at a given frequency and the movie scene eliciting it (bootstrap test). 

8.2.5 LFP- signal and noise correlations across different frequencies and layers 

We determined which frequencies have related stimulus selectivity, and which have shared 

sources of stimulus-unrelated variability, by performing a linear analysis of correlation (signal 

and noise) across frequencies. The signal correlation coefficient was computed for each 

frequency pair ( 1f  and 2f ) and channel as the Pearson’s correlation coefficient across 

stimuli of the trial averaged response (Belitski et al., 2008). Positive values resulting from this 

analysis are an indication that two frequencies have similarities in their stimulus preferences, 

whereas zero value indicates that the two frequencies have not relationship in their activity 

(Averbeck et al., 2006; Panzeri et al., 1999).  

The noise correlations are defined as covariations in the trial-by-trial fluctuations around the 

mean response. (Averbeck et al., 2006; Einevoll et al., 2013). The noise correlation coefficient 

was computed for each frequency pair ( 1nf  and 2nf ) and channel as the Pearson’s 

correlation coefficient across stimuli of the trial-averaged-subtracted power. This quantifies 

the correlations of the variations around the mean of each trial and stimulus window (Averbeck 

et al., 2006; Belitski et al., 2008). Positive values for the noise correlation indicate that when 

the power of one frequency raises above its mean, the power in the other frequency is also 

more likely to do so (Belitski et al., 2008).  

The overall amount of correlation across all trials and stimulus windows between the 

responses at frequencies 1f  and 2f , is the result of both noise and signal correlations. The 

strength of correlations was quantified as the Pearson correlation coefficient (across all trials 
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and stimulus windows) of the powers 1f  and 2f . The overall correlation is typically higher 

than the noise correlation if both noise and signal are positively correlated, whereas it can be 

smaller than the noise correlation if the noise correlation is positive and the signal correlation 

is negative or null (Belitski et al., 2008).  

8.2.6 Coefficient of Variations of Signal and Noise 

The information analysis determines which frequencies allow better discrimination among 

stimuli on a single trial, but it does not tell if the increase in information increase at certain 

frequencies can be attributed to greater reliability across trials of the responses at these 

frequencies, or to a more marked stimulus modulation of neural activity. To separate out the 

contribution of stimulus modulation and of response variability, it is useful to characterize the 

response rf in each stimulus window as “signal plus noise” (Averbeck et al., 2006; Belitski et 

al., 2008; Belitski et al., 2010) as follows: 

 

f f fr r n 
      (2) 

where the “signal” fr is the trial-averaged power (the bar denotes the average across trials 

at fixed stimulus) and the “noise” the trial-by-trial fluctuations 
fn  of the response around their 

averaged across trials. We stress that such “noise” does not necessarily reflect only noise in 

the real sense, but reflects all types of variations at fixed stimulus, which may well include the 

effect of various types of potentially important neural contributions such as modulation from a 

common ascending pathway. 

To quantify how well the stimuli are encoded, we computed the coefficient of variation (CV) 

for the signal and the noise of each channel and frequency. The signalCV , is defined as the 

coefficient of variation (CV) of the trial-averaged power across the stimulus windows in the 

movie, as follows:  
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( )
,

fstim

f
stim

std r
signalCV

r


     (3) 

where ...
stim

and stimstd  denotes the mean and the standard deviation (SD) over the stimulus 

windows respectively. Furthermore, we also quantified the unreliability of the power across 

trials by computing the CV of the power fluctuations across trials about its mean for each 

stimulus and frequency ( noiseCV ). 

( )
,

stim f

f
stim

std n
noiseCV

r


     (4) 

where trlstd  denotes the SD across trials at fixed stimulus window.  

8.3 RESULTS 

We simultaneously recorded the LFP from the different laminae of area V1 of anaesthetized 

macaque monkeys using a laminar, vertically inserted, linear probe with 16 with 150 µm 

spacing (Figure 8.1A). We recorded a total of 15 experimental sessions obtained in 4 different 

animals.  

To determine the cortical layer in which each electrode site was located, we used established 

methods based on the analysis of the current source density (CSD) extracted from the laminar 

LFP (Figure 8.1B and Figure S2A). The CSD estimates the net current density that, at each 

particular depth and time, enters or leaves the extracellular medium through cell membranes 

(Einevoll et al., 2013; Mitzdorf and Singer, 1979), and was used to assign electrode locations 

to either supragranular (SG), granular (G), or infragranular (IG) compartments. In brief (see 

Materials and Methods), we used the trial-averaged CSD (average over all sessions shown in 

Figure 8.1B, top), computed after the onset of the movie, to identify the border between G and 

IG (the bottom end of the early sink at 40-60 after movie onset). The G/IG border was 

confirmed as the point where a sudden drop is found in the LFP gamma-band coherence with 
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the electrodes placed above (Dougherty et al., 2017; Maier et al., 2010; Maier et al., 2011; 

Pettersen et al., 2006); see Figure 8.1B, bottom. The cortical boundaries and the location of 

the SG/G boundary were determined based on the average thickness of cortical laminar 

compartments in macaques (Lund, 1973; O'Kusky and Colonnier, 1982; Self et al., 2013). 

To investigate both endogenous and stimulus-driven processes, we recorded neural activity 

in V1 both in absence of visual stimulation (isoluminant gray screen, which we termed 

“spontaneous activity”) and during the presentation of Hollywood movie clips (Figure 8.1A). 

Such movies contain a wide range of naturalistic variations of visual features and thus elicit a 

rich spectrum of LFP activity likely capturing several distinct neural processes (Belitski et al., 

2008; Belitski et al., 2010; Szymanski et al., 2011). Our stimulus protocol consisted of a block 

paradigm alternating Hollywood movie-clips (20 seconds) with two isoluminant gray screen 

periods (each lasting 20 seconds before and after each clip; Figure 8.1A, top panel). Using 

techniques developed in our previous work (Zaldivar et al., 2017; Zaldivar et al., 2014), we 

mimicked dopaminergic (DAergic) neuromodulation by systemic injections (injection period of 

12 min, corresponding to 12 blocks of visual stimulation) of L-DOPA and Carbidopa (LDC; 2.1 

mg/kg and 0.5 mg/kg respectively, (Black et al., 2003)). L-DOPA is the metabolic precursor of 

DA, which is metabolized to DA once it crosses the blood-brain barrier (BBB). Once in the 

brain it activation DA-receptors. The role of Carbidopa, on the other hand, is to prevent the 

breakdown of L-DOPA in the periphery, thereby optimizing the BBB’s crossing of L-DOPA. 

We used systemic LDC injections rather than local application of DA in V1 because we 

previously found that only the former modulates neural activity in V1 (Zaldivar et al., 2014). 

This pharmacological approach is widely used for the treatment of Parkinson’s disease 

patients and it has also been shown to be effective in treating amblyopia (Algaze et al., 2005). 

8.3.1 Visually driven and spontaneous oscillatory activity in V1 

First, in this section we considered the characteristics of oscillatory activity before the injection 

of LDC (Figure 8.1C-D).  
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To investigate how oscillation strength was modulated by the presentation of a visual stimulus, 

we quantified the strength of the oscillatory activity across different frequencies by computing 

the average LFP spectrum (see Materials and Methods) separately for spontaneous and 

movie-evoked activity. Figure 8.1D shows the spectrum averaged over all electrode sites in 

all sessions. We found, in both conditions, activity distributed with significant power (p = 

0.0012; t test) over the entire frequency range (1 to 150 Hz) considered. The highest LFP 

power was at low frequencies (peak at 7 ± 2 Hz), and decreased steeply at increasing 

frequencies. By comparing the averaged LFP spectrum evoked during the movie with the LFP 

spectrum during spontaneous activity, we found an increase of power during movie stimulation 

over that of spontaneous activity throughout the entire spectrum (Figure 8.1D). Consistent with 

previous studies (Belitski et al., 2008; Frien et al., 2000; Henrie and Shapley, 2005), the larger 

movie-evoked power increase over spontaneous activity was, both in absolute and 

proportional terms, in the gamma (γ, 50-100 Hz) and high-γ bands (maximal peak during 

movie 24 ± 3 dB at 99 ± 3 Hz; maximal response during spontaneous activity 16 ± 3 dB at 90 

± 2 Hz; Figure 8.1D and S1A-B).  

A large increase in neural oscillation power during visual stimulation does not necessarily 

imply that neural oscillations carry visual information. The amount of information carried by 

neural activity is determined by the combination of how large are the modulations of neural 

activity across different movies scenes and how small is the trial-to-trial variability of neural 

activity across multiple repetitions of the same scene. The combined effect of stimulus 

modulation and across-trial reliability is quantified by the mutual information that the LFP 

power at each frequency conveys about the section of the movie being presented. This 

measure, in units of bits, captures the information about all the possible visual attributes 

occurring in the movies and does not depend on assumptions about which features in the 

movie are encoded by the neural signals (Belitski et al., 2008; de Ruyter van Steveninck et 

al., 1997). Results averaged over all electrodes in all sessions are shown in Figure 8.1E. In 

agreement with a previous study in the same cortical area and under the same anesthesia 
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condition, but without laminar resolution (2008; Belitski et al., 2010), we found two informative 

bands in the LFP spectrum. The first informative LFP region was the low-LFP-frequency range 

(up to 15 Hz, covering the delta, δ; theta, θ; alpha, α, bands), with a peak information in this 

region reaching a value of 0.15 ± 0.02 bits (significantly non-zero; p<0.05; bootstrap test) at 7 

Hz (Figure 8.1E). (Hereafter, unless otherwise stated results are reported as mean ± sem 

across all available channels in the dataset). The second LFP frequency range with highly 

informative (and thus reliably stimulus modulated, see Figure 8.1C) power was a broad region 

covering the γ and high-γ range of 50 – 150 Hz (Figure 8.1E). The peak information value in 

the high frequency region was 0.26 ± 0.02 bits (significantly positive; p<0.05; bootstrap test) 

at 60 Hz. Importantly, previous work (Belitski et al., 2008), as well as our further analyses (see 

later Sections) showed that low and high-frequency LFP bands carry independent information 

about the movie, and should thus be considered as different bands.  



 
 

Page | 274  
 

 

Figure 8.1 Experimental Design, Spontaneous Neural Activity and Response to Movie Clips  
(A) Experimental paradigm and design. The stimulus consisted of movie clips of 20 sec followed by 
a 20 sec presentation of isoluminant blank screen. Each experiment consisted of three phases: (1) 
12 min recording without pharmacological intervention; (2) 12 min recording with carbidopa 
preconditioning, which does not affect neural activity and prevents the peripheral conversion of L-
DOPA to DA; (3) a 48 min long session in which L-DOPA and carbidopa were injected. (B) Left: 
Multicontact laminar electrodes were used to record neural activity across the cortical layers. Top 
right: Session averaged current-source density after the movie onset. The sink polarity inversion was 
used to identify the G/IG border. Bottom right: session average of the coherence between gamma-
band LFPs across electrode pairs are used to confirm the location of the G/IG border. The borders 
of the IG compartment and corical thickness were determined from averaged anatomical data (C) 
Example LFP traces during presentation of a 20 s long movie. (D) Power spectrum of the 
spontaneous LFP (red) and the LFP during movie presentation (black). (E) Information about the 
movie in the total LFP power across all layers. Shaded areas show the SE. 

 
Despite their relatively high power (on average 18 ± 3 dB), LFP frequencies in the middle 

frequency range (19–38 Hz) conveyed much less information about the movie (0.04 ± 0.01 
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bits; Figure 8.1E and S1C; significantly non-zero; p<0.05; bootstrap test) and was not reliably 

stimulus-modulated (see Figure 8.1C). This result was consistent with previous studies in 

monkeys (Belitski et al., 2008; Whittingstall and Logothetis, 2009) and humans (Donner et al., 

2007). Given that the powers of pairs of frequencies within this high-power, low information 

mid-frequency region share strong noise correlations (see (Belitski et al., 2008) and later 

Sections) we previously suggested on statistical bases that this band may capture the 

fluctuations of one or few sources of stimulus-unrelated neuromodulation; we therefore have 

termed this band “neuromodulation band” (nMOD; see Belitski et al., 2008; Belitski et al., 

2010). However, until now the hypothesis that this band reflects neuromodulation has not been 

causally tested.  

Based on the above results, hereafter we singled out four frequency bands for further 

analyses. Three bands cover the stimulus-informative range: α [8 – 15 Hz], γ [50 – 100 Hz] 

and high-γ [101 – 150 Hz], with the high frequency range partitioned into two ranges that may 

have a different neural origin (Gieselmann and Thiele, 2008; Ray and Maunsell, 2011). One 

band covers the stimulus-unrelated middle-frequency range (nMOD [19-38 Hz]). To avoid 

biasing the results with the choice of specific band boundaries, we complemented the band 

analysis with an analysis of the power of individual Fourier coefficients, which is completely 

free from assumptions about band partitions. 
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Figure 8.2 Dopamine Increases nMOD Oscillations and Induces Frequency and Stimulus 
Specific Power Changes in Other Bands 
Average across trials and sessions of effects of L-DOPA on the LFP in supragranular (A and D), 
granular (B and E) and infragranular (C and F) layers during spontaneous activity (A-C) and during 
the presentation of movie clips (D-F). The plots above each spectrogram show the mean time course 
for the LFP bands: alpha (8 – 12 Hz, green), nMOD (19 – 38 Hz, red), gamma (50 – 100 Hz, yellow) 
and high-gamma (101 – 150 Hz, brown). Dashed lines denote the beginning and the end of the 
systemic L-DOPA infusion. In the nMOD band, the power during spontaneous activity increases as 
a result of DA injection, suggesting that the activity in this band is sensitive to neuromodulation. The 
power in the gamma and high-gamma bands decreases during the injection of dopamine for 
spontaneous activity but increases during the movie clips. LFP averaged over 15 neurophysiology 
sessions totaling 240 electrode sites. Shaded areas show the SEM across session.  

 
 

8.3.2 Layer- and frequency-specific power changes induced by dopamine 
during visual stimulation and spontaneous activity. 

We next explored how oscillations in different LFP bands are affected by DAergic 

neuromodulation. Given that the effect of neuromodulation on V1 likely depends on the current 
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operational mode of the network, we examined the LFP-spectrum under systemic injection of 

LDC, either during trials without stimulus presentation (Spontaneous; Figure 8.2A-C top panels) 

or while presenting movie clips (Movie; Figure 8.2A-C bottom panels). Since different cortical 

layers show distinct patterns of connectivity and physiology related to sensory processing 

(Callaway, 1998; Lund, 1973; Nassi and Callaway, 2009) we quantified the effect of DAergic 

neuromodulation separately on the LFP spectrum recorded in each of the three laminar 

compartments (SG, G and IG). Importantly was to stablished how DA links local and global 

cortical circuit systems by determining how cortical layer. 

We observed profound changes in V1 LFP power during injection of LDC compared to before 

the injection (Figure 8.2). These effects are highly dependent on cortical depth and frequency, 

and were different for the movie-evoked and spontaneous activity.  

We quantified the changes in power after DA injection by normalizing the power of each band 

so that its value, averaged across trials and time points in the 12 min preceding the injection, 

was set to 1. When considering spontaneous activity, we found that during the LDC injections 

the LFP-power increased in the middle-frequency nMOD band (19 – 38 Hz; Figure 8.2 A-C, top 

panel), while it decreased in the γ-band (50 - 150 Hz; Figure 8.2 A-C, top panel). These effects 

were larger in the SG (nMOD: averaged normalized power = 1.73 ± 0.12, p = 0.021, t-test; γ 

average normalized power = 0.53 ± 0.08, p = 0.038, t-test) and IG layers (nMOD: averaged 

normalized power = 1.45 ± 0.08, p = 0.035, t-test; γ: average normalized power = 0.53 ± 0.07, 

p = 0.026, t-test). Modulation of nMOD and γ during DA injection was much weaker in the G 

than in the IG or SG compartment (nMOD: average normalized power 1.22 ± 0.04, p= 0.041, 

paired t-test; γ: average normalized power = 0.085 ± 0.03, p = 0.048, paired t-test). The change 

of power after injection was significantly weaker (high significance in SG, p= 0.043, paired t-

test) in the α band than in the other bands (Figure 8.2A-C).  

These results, obtained after partitioning the LFPs into three separate bands, were confirmed 

by a further analysis that was free from assumptions about the boundaries of the frequency 
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bands (Figure 8.2 A-C, bottom panels). We computed the LFP power of each Fourier coefficient 

and we quantified its time course as percentage changes relative to the pre-injection period. 

The single Fourier coefficient analysis confirmed the results obtained using band-limited 

power, indicating in particular a strong increase in power in the 19-38 Hz range and a strong 

decrease in power in the 50-150 Hz range in the SG and IG compartments (Figure 8.2 A-C, 

bottom panels).  

These results show that DA elicited highly frequency- and layer-specific changes in power of 

the spontaneous activity, instead of unspecific broadband LFP-power changes, suggesting 

effects of DA in different sets of networks. 

Frequency-specific changes in power following LDC injection were also found during 

stimulation with natural movies (Figure 8.2 D-F). Interestingly, the DA-induced changes 

observed during movie were very different from those observed for spontaneous activity. We 

observed a significant increase in the nMOD-power in the SG (p = 0.028, paired t-test), and 

IG compartments (p = 0.033, paired t-test), but not in the G compartment (p = 0.058, paired t-

test). However, the γ power in all cortical layers significantly increased during the injection 

(SG: p = 0.024; IG: p = 0.031; G: p = 0.032, all paired t-tests; Figure 8.2A-C, bottom panel).  

In the post-injection recovery phase, we observed a tendency of all bands to return to baseline 

both during spontaneous and movie-evoked activity; however, the trend toward return to 

baseline appeared slower in the nMOD and the α band (Figure 8.2C, F), suggesting that 

systemic injection of DA has a particularly strong and prolonged effect on these bands. This 

can, in principle, be ascribed to the slow clearance of DA from the brain (Black et al., 2003). 

In summary, these results suggest that DA elicits LFP power changes in V1 that were not only 

frequency- and layer-specific, but that were also profoundly different depending on whether or 

not the V1 network was processing a visual stimulus. This highlights the strong dependence 

of the effect of DA neuromodulation on the operational state of the network.   
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8.3.3 Layer- and Frequency-Specific Changes in Information Induced by 
Dopamine. 

The above results indicate an increase in power during movie stimulation in several bands 

(Figure 8.2A-C), and suggest that DA may alter how oscillations encode visual information. 

However, an increase or a decrease in power with visual stimulation per se does not imply an 

increase or decrease of visual information, as power and information do not necessarily 

correlate (Belitski et al., 2010). To address directly the effect of DA on the information carried 

by different oscillation frequencies in different laminae, we computed the information carried 

by the power at each frequency about which movie scene was being presented (Eq. 1), both 

before, during and after DA injection (Figure 8.3).  

When computing the power in the four predefined bands, we found that the γ and high-γ bands 

carried the most information about the movie, reaching the highest values of 0.24 ± 0.021 and 

0.23 ± 0.015 bits in the SG layers, respectively (Figure 8.3B). γ and high-γ had lower values in 

the G layers (0.15 ± 0.012 and 0.12 ± 0.020 bits, respectively) and intermediate in the IG 

layers (0.17 ± 0.021 and 0.12 ± 0.015 bits, respectively). The α band carried less information 

than the γ, reaching values of 0.15 ± 0.013 bits in the G layer and showing overall a less 

pronounced layer dependence than γ and high-γ. The nMOD power carried little movie 

information, with a less pronounced layer dependence and was maximal (0.04 ± 0.011 bits) in 

the SG layers. 

The results were confirmed when considering the individual Fourier coefficient analysis, which 

showed high information in the SG for the entire high frequency range (50 – 150 Hz, covering 

the γ and high-γ ranges, with a maximal information of 0.23 ± 0.02 bits; Figure 8.3A). 

Information in the (50 – 150 Hz) high frequency range was lower for the G (0.15 ± 0.04 bits) 

and IG (0.17 ± 0.02 bits). In addition, the information in frequencies below 50 Hz was lower 

and less layer dependent than the information in the frequencies above 50 Hz. Moreover, the 

information in the middle frequency range (19 – 38 Hz), corresponding to the nMOD band, 

was particularly low, thereby confirming the results of the analysis of discrete frequency bands.  



 
 

Page | 280  
 

We then tested the effect of DA injection on the frequency- and layer-specific distribution of 

information (Figure 8.3A-B). Interestingly, we found that following DA injection there was a 

tendency to an increase in information about the movie across a wide spectrum of frequencies 

and cortical depths. However, this increase on information was more pronounced when 

considering activity from SG layers. In particular, we observed an increase in the information 

content in the γ range in the SG layers (50 – 100 Hz) during injection (γ: 0.34 ± 0.02 bits, p = 

0.031; high-γ: 0.32 ± 0.021 bits, p = 0.021; α: 0.22 ± 0.021 bits, p = 0.013; nMOD: 0.15 ± 0.02, 

and p = 0.039; all comparisons made with paired t-test, n = 60). In the G layer, the increase in 

information during DA injection was significant for the α band (0.21 ± 0.020 bits, p = 0.031). In 

the IG layers, the increase in movie information after DA injection was significant for nMOD 

(0.10 ± 0.03 bits, p = 0.043), γ and high-γ (0.30 ± 0.04 bits, p = 0.045; and 0.23 ± 0.02 bits, p 

= 0.037, respectively, see Figure 8.3). The pattern of these effects of DA injection on the 

selected frequency bands and cortical layers was also visible when considering individual 

Fourier coefficients and electrodes, as shown in Figure 8.3. 

We also observed that the information about the movie remained high after the end of the 

injections (Figure 8.3B, ‘after period’ shown in red). In particular, we observed that the 

information in the SG in the γ and high-γ bands remained high compared to the pre-injection 

period (0.29 ± 0.03 bits, p = 0.030; 0.27 ± 0.03 bits, p = 0.033, see Figure 8.3A-B shown in 

red). We observed a similar pattern in the information in IG (0.17 ± 0.04 bits, p = 0.038 in the 

γ range and 0.18 ± 0.02 bits, p = 0.037 for the high-γ range). However, this profile of changes 

in information about the movie in the γ and high-γ was not observed in the G layer, where we 

saw that the information in this layer remained high for the α range after the injection period 

(0.23 ± 0.011 bits, p = 0.032).  
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Figure 8.3 Dopamine Increases the Information Content in SG and IG layers  
(A) Average over all sessions of changes in information content in individual frequency bands (alpha, 
nMOD, gamma and high-gamma) across cortical layers: supragranular (SG), granular (G) and 
infragranular (IG) layers before (blue), during (black) and after (red) DA injection. Error bars represent 
SE. (B) Average over all sessions of the information in the power of the LFP before, during and after 
injection of dopamine. Before the injection, the information about the visual stimulus was frequency- 
and layer-dependent in the majority of the bands. During and after injection of DA there was an overall 
increase in information, which did not affect the information distribution across layers.  
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8.3.4 Dopamine Induced LFP-Variability Changes  

The amount of information about the movie carried by the LFP power depends on both the 

signal (how the LFP changes across different movie scenes) and the noise (variability of LFP 

power to repeated presentations of the same movie scene, Eq. 2). The changes of information 

caused by the injections of DA may thus be attributable to a higher signal or to lower noise, or 

both. We address this question by quantifying, independently for each frequency, changes in 

the signal and noise after DA injection. For this, we computed the changes in the signal, as 

the coefficient of variation (CV) of the trial-averaged evoked LFP-power responses across 

different scenes of the movie (“signalCV”; Eq. 3; solid lines in Figure 8.4). Furthermore, we 

quantified the changes in the noise as the CV from the trial-to-trial response variability 

unrelated to the stimulus (“noiseCV”; Eq. 4; dashed lines in Figure 8.4). 
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Figure 8.4 Layer Dependent Increase in Signal and Noise Variability Induced by Dopamine 
(A) The session-averaged average signal-CV (solid line) and noise-CV (dashed line) across all 
experiments and electrodes, shows high CV values for frequencies <12 Hz and frequencies >50 Hz 
(B) Layer specific differences in the session-averaged signal-CV and noise-CV: supragranular (SG, 
green), granular (G, blue) and infragranular (IG, red) layers. (C) Effect of DA on the session-averaged 
signal-CV and noise-CV in different cortical layers. DA injection increased the signal-CV in SG and 
IG layers while the signal-CV in G layers was changed only at low frequencies. The noise-CV 
decreased for SG and IG mostly in frequencies <50 Hz. The shaded area indicates the SEM across 
sessions. 

 
 

We first considered the distribution of signal and noise across layers before DA injection 

(Figure 8.4A). In agreement with previous studies, that did not record laminar specific changes 

(Belitski et al., 2008), we found that on average across layers, the γ and high-γ band contained 

more information because they had both a high signalCV and low noiseCV. More specifically, 

the γ band had the highest signal (peaking at 0.31 ± 0.04 at 99 ± 4 Hz) and the lowest noise 

(dipping at 0.64 ± 0.05 at ~55 Hz). Frequencies in the nMOD band had the lowest signal (0.09 

± 0.01) and a particularly high noise (0.88 ± 0.02), which explains the very little information 

seen in this band.  
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Since our results indicate that information is not uniformly distributed across layers (Figure 

8.3A), we quantified whether such laminar information profiles can be ascribed to differences 

in the signal or noise from the different layers. For this, we computed the signal and noise 

variability from each cortical layer before DA injection (Figure 8.4B). We found that LFPs in SG 

layers tended to have more signal than G and IG layers across a wide frequency spectrum 

(covering the α-band; p = 0.035, but especially prominent in γ and high-γ bands; p = 0.031 

and p = 0.035) and less noise specifically in the in γ and high-γ bands (Figure 8.4B, p < 0.038 

and p = 0.042)). 

We further quantified how the injection of DA affected the noise and signal across cortical 

layers and frequency bands (Figure 8.4C). Therefore, we computed the signal and noise across 

the recording depths and frequencies before and after DA injection. In general, injection of DA 

tended to both increase signal and decrease noise in a layer dependent fashion. In particular, 

we observed a more marked effect in SG and IG layers than in the G layer (Figure 8.4C). In 

the SG, the maximal increase of signal due to DA injection was 0.43 ± 0.03 at ~105 Hz, and 

maximal decrease of noise was 0.64 ± 0.02 at 75 Hz). More specifically, injection of DA 

increased the signal CV over a wide frequency range including nMOD, γ and high-γ bands in 

SG and IG layers (Figure 8.4C). Injection of DA also decreased the noise throughout the 

spectrum in the α, nMOD, γ and high-γ bands in SG layers, and decreased the noise in the 

nMOD, γ and high-γ bands in IG layers (Figure 8.4C). 

In summary, DA increases the information in SG and IG due to the increased signal and 

decreased noise in these cortical layers. In contrast, the signal and noise in the G layers did 

not change much after the injections of DA, which supports the idea that information content 

in this layer is largely unaffected by DAergic neuromodulation.  
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8.3.5 Layer Dependent Changes in the LFP Correlated Variability 

Another important question is whether DA changes not only the information content of 

individual frequency bands, but also the relationship between oscillations in different bands 

(Averbeck et al., 2006; Einevoll et al., 2013). Following previous studies (Averbeck et al., 2006; 

Belitski et al., 2008; Panzeri et al., 1999), we distinguish between two possible types of 

correlations between the power of different bands. The first is signal correlation, quantifying 

the similarity of stimulus preferences between the power of different frequencies, and defined 

as the Pearson correlation between the trial averaged-induced power to each movie scene. 

The second is noise correlation, quantifying the correlation in neural activity not due to stimulus 

covariation, and defined here as the Pearson correlation at fixed movie scene between the 

trial-to-trial fluctuations of the power of the two frequencies around their across-trial average 

(Averbeck et al., 2006; Belitski et al., 2008; Panzeri et al., 1999). Figure 8.5 reports the average 

signal correlation over the entire dataset for different oscillation frequencies and cortical 

depths, before and during DA injection, for individual frequencies (Figure 8.5A) and band-

limited data (Figure 8.5B). Before the injection, signal correlation was highest in the γ and high-

γ band, particularly in SG and IG layers. The mean signal correlation over all frequency pairs 

within the γ band was 0.60 ± 0.02 in SG; 0.38 ± 0.01in G; 0.59 ± 0.03 in IG layers. The mean 

signal correlation within the high-γ band was 0.44 ± 0.02 for SG, 0.36 ± 0.01 for G; and 0.38 

± 0.02 for IG, respectively. Signal correlation within the α band was relatively high, with a mean 

of 0.58 ± 0.03 in the SG layers, and was much smaller for the nMOD band, with a mean of 

0.38 ± 0.03 in the SG layers. Signal correlations across bands were smaller than those within 

the same band (Figure 8.5). 
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Figure 8.5 Dopamine Increases LFP Signal Correlations Across Frequencies and Layers 

(A) Pearson signal correlations between pairs of LFP frequencies ( 1f  and 2f ) in supragranular 

(SG), granular (G) and infragranular (IG) layers before and during dopamine injection (12 sessions). 
Correlations within and between gamma and high-gamma frequencies increased during DA injection 
(B) Mean ± SEM over sessions of the correlations within and between LFP bands across different 
cortical layers before (light) and during (dark) pharmacological injection.  

 
 

The most prominent effect of DA was to greatly increase the signal correlation (and thus the 

similarity of stimulus preferences of LFP power response across different movie scenes) in 

the γ and high-γ range. In the γ band, the effect was pronounced and significant (p< 0.05; 

paired t test) in each layer (Figure 8.5B), but most prominently in G and IG. The γ-band signal 

correlation before and during DA injection was 0.60 ± 0.02 vs 0.82 ± 0.03 (p< 0.05) in SG, 

0.38 ± 0.03 vs 0.63 ± 0.05 (p< 0.05) in G; and 0.59 ± 0.03 vs 0.72 ± 0.03 (p < 0.05) in IG. The 

increase of within-band signal correlation was also found for the α band, particularly for the 

SG (0.73 ± 0.02) and IG (0.66 ± 0.02) layers, but not within the nMOD band. Notably, DA 

injection also increased across band signal correlations in all layers, but especially in the SG 

layer.  
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Interestingly, we also observed that DA increased the correlations between different bands. 

For instance, the pairwise correlations between frequencies in the α and nMOD bands 

increased in the SG layers (mean of all frequencies in α correlated with the mean of all 

frequencies in nMOD 0.58 ± 0.02) as well as in the G layer (correlations between α and nMOD 

0.44 ± 0.03). In addition, the correlations between α and γ increased in all layers (SG: 0.38 ± 

0.02; G: 0.12 ± 0.02; IG: 0.33 ± 0.04). Furthermore, the strength of the correlations between 

nMOD and γ were layer dependent (SG: 0.62 ± 0.02; G: 0.34 ± 0.03; IG: 0.45 ± 0.04) while 

the correlations between γ and high-γ increased in all layers with similar values (SG: 0.63 ± 

0.02; G: 0.61 ± 0.03; IG: 0.60 ± 0.04).   

In summary, as well as increasing the amount of information over a wide range of oscillations, 

a second effect of DA injection was to make different frequency ranges respond more similarly 

to different stimuli, as DA increased signal correlation across frequencies and particularly in 

the SG and IG layers.  

One possibility is that the increased similarity of the stimulus tuning of different frequencies 

with DA injection is due to individual frequency bands becoming larger in width and thus 

overlapping more. If that were the main reason for a signal correlation increase, we would 

expect to also observe an increase in noise correlation across frequencies. However, we found 

that noise correlation did not change in any band at any depth during injection (Figure S4). 

Also, correlations among frequencies during spontaneous activity did not change during DA 

injection (Figure S5).   

Interestingly, and consistent with a previous study (Belitski et al., 2008), noise correlations 

were much larger between α and nMOD frequencies than between γ and high-γ frequencies. 

This is the opposite of what we found for signal correlation. These results suggest that, while 

the γ band is primarily driven by the stimulus, the α band and particularly the nMOD band are 

primarily driven by, and covary with, internal rather than external factors.  
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8.4 DISCUSSION  

Neuromodulation provides to anatomically defined circuits with the flexibility to adjust their 

activity and reconfigure networks into different functional neural circuits in order to meet 

cognitive demands. An important question regards the effects of neuromodulation in the power 

and information content of oscillatory activity, an aspect of neural activity thought to be central 

to cortical information processing. By recording neural activity in different cortical layers of V1 

in anesthetized monkeys, and pharmacologically mimicking DAergic neuromodulation, we 

demonstrated that the power on middle-frequency endogenous oscillations correlates with the 

level of DA. Furthermore, we demonstrated that these changes in the levels of DA significantly 

enhances the sensory information throughout the cortex over a wide range of frequencies, but 

it especially increases the information in the γ range in the cortical output layers. We discuss 

our findings in greater detail and provide possible explanations that could account for our 

results.  

8.4.1 Endogenous middle-frequency [19-38 Hz] oscillations as marker of 
neuromodulation 

The effects of neuromodulation are not stationary but, rather, produce a dynamic regulation of 

neural circuits (Dayan, 2012; Grashow et al., 2009). Hence, being able to follow the elicited 

changes of neuromodulators over the course of time, and even at the level of individual trials, 

is important for many reasons. In principle, it is crucial to understand how neuromodulators 

affect neural oscillations and how to impute disorder-specific abnormalities of cortical 

oscillations to dysfunction of neuromodulatory systems. In addition, it is also important to 

stablish how neuromodulators dynamically regulate cortical computations in healthy brains, 

and shape cognitive functions such as learning and attention. Given that in many experiments 

only cortical recordings are available, and it is difficult to simultaneously record the activity 

from neuromodulatory nuclei, it is important to be able to find statistical markers of fluctuations 

of neuromodulation in cortical activity. We found that the power of the middle frequency [19-

38 Hz] band was the most suitable statistical marker of the level of DA, because it increases 
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in power when DA was pharmacologically increased. The power in this band increases 

markedly during spontaneous activity and to a lesser extent during movie stimulation, when 

interventionally changing the level of DA modulation with systemic LDC injection. Statistical 

analysis of naturally varying activity confirmed previous results that this band is less modulated 

by external factors such as stimulus drive, and all frequencies in this range strongly covary 

together according to non-stimulus driven factors (Belitski et al., 2008; Belitski et al., 2010). 

The relatively weak dependence of this band on external sensory stimuli, as well as its weak 

correlation with the power of other stimulus-driven bands, allows to ascribe its changes to 

internal state variations driven by DAergic modulation. These findings suggest that this band 

can, at least in V1, be rightfully termed a neuromodulatory “nMOD” band, and that can be used 

to statistically infer changes of neural activity associated to the levels DA. Importantly, the LFP 

shares the same biophysical origin with surface EEG recordings and correlates well with EEG 

at the single trial level (Whittingstall and Logothetis, 2009). This suggests that pre-stimulus 

fluctuations in power in occipital EEG electrodes in the middle frequency band could be used 

to mark, to some extent, the level of fluctuations of DA and, perhaps, from other 

neuromodulators. 

We also found that the γ and high-γ bands dramatically decreased their spontaneous power 

after injecting DA. However, given the stronger modulation of γ and high-γ power by 

exogenous factors such as sensory stimulation, found here and in other studies, (Belitski et 

al., 2008; Fries, 2009; Whittingstall and Logothetis, 2009) it is difficult to use the γ band as a 

direct marker of neuromodulation and DA. In this respect, the decrease of γ power with DA 

injection, that we found during spontaneous activity, may be more directly interpreted as an 

increase of a difference between baseline and visually-evoked activity. This in turn would 

underlie an increase of the signal-to-noise ratio of stimulus detection, and would thus still be 

interpreted as evidence that DA enhances γ-band visual processing.  

Our findings fit well with earlier studies suggesting that middle-frequency power modulations 

reflect endogenous ongoing neural (Belitski et al., 2008; Buschman and Miller, 2007; Engel 
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and Fries, 2010; Haegens et al., 2011; Lundqvist et al., 2016; Whittingstall and Logothetis, 

2009) and are not visually driven processes (Schmiedt et al., 2014; Wrobel, 2000). It also in 

accordance with studies linking oscillations in the mid-frequency range to the ongoing 

mechanisms that help the brain to maintain its current cognitive status (Engel and Fries, 2010; 

Haegens et al., 2011). For instance, increase in power in this range have been associated 

with maintenance of the current cognitive set, whereas decreases in power of this band have 

been associated with unexpected or novel events (Engel and Fries, 2010). It is thus natural to 

suggest that cortical nMOD power changes reflect changes in cortical operations, which can 

be instantiated by fluctuations in the concentration of neuromodulators (Dayan, 2012; Engel 

and Fries, 2010; Yu and Dayan, 2005). 

8.4.2 Layer dependent increase of informations due to dopamine  

Our study confirmed earlier results that the power in the γ-band and low frequencies (<20 Hz) 

are the ones conveying the most visual information (Belitski et al., 2008; Belitski et al., 2010; 

Magri et al., 2012b). However, our findings provide additional knowledge about the differences 

in the information distribution across layers from the different oscillatory bands. Studies 

considering the firing rates of individual neurons have revealed laminar profiles of information 

content that suggest that different cortical layers employ different coding strategies, probably 

reflecting their differences in anatomical projection patterns (Callaway, 1998; Hansen et al., 

2012; Lund, 1973, 1988; Nassi and Callaway, 2009). Our results show that similar laminar 

diversity of coding applies also to the oscillatory activity expressed in each layer.  

In particular, we found that across all bands the information was higher in the SG layers, and 

especially for the most informative band, the γ-band. Information in the γ-band was also lower 

in the G than in the IG layer. Gamma oscillations are thought to be generated by local 

interactions between inhibitory neurons, and between excitatory and inhibitory neurons 

(Buzsaki and Wang, 2012; Einevoll et al., 2013). The fact that the amount of information in the 

γ-band from the SG layer was higher, with respect to the information in the thalamic recipient 

G layers, may arise because of the larger number of recurrent connections between excitatory 
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and inhibitory neurons in the upper layers, which may facilitate the generation and dynamic 

variations of such γ oscillations.  

Our examination of the effect of DA on information coding revealed a general increase of 

information across layers, but also shows layer and frequency dependence of the information 

gain induced by DA. The most notable effect was that DA pronouncedly increased the 

information of the γ band in the SG and IG layers. Gamma oscillations have been implicated 

in the dynamical transmission of information along feedforward pathways (Bosman et al., 

2012; van Kerkoerle et al., 2014b), and SG neurons project in a feedforward manner to higher 

cortical areas (Rockland and Pandya, 1979). These facts suggest that the DA-mediated 

increase in γ SG information may reflect a DA-mediated higher efficiency in the propagation 

of sensory information to higher areas (Fries et al., 2008; Jacob et al., 2013; Self et al., 2013; 

van Kerkoerle et al., 2014b). This, in turn, may enhance the readout of task-related 

information, a role often imputed by models to dopamine (de Lafuente and Romo, 2011b; 

Happel et al., 2014; Jacob et al., 2013). For example, manipulation of prefrontal D1-receptors 

increase the magnitude, reliability and selectivity of neuronal responses in V4 (Noudoost and 

Moore, 2011), and similar mechanisms may play a role in V1.  

The larger increase in visual information in IG and SG layers during DA injection, with respect 

to what observed in G layers, may at least in part be mediated by cross laminar feedback 

loops that dynamical regulate the stimulus-response gain and that are known to be enhanced 

by DA (Happel, 2015; Happel et al., 2014).  

We also found that information in the α-band increases in the SG and G layers. Recent studies 

proposed that the α frequencies mediate top-down information flow (Dougherty et al., 2017; 

van Kerkoerle et al., 2014b). One possible interpretation of the information increase in the α 

range during DA injection may be that DA improves the cortico-cortical communication from 

higher areas to V1 (Noudoost and Moore, 2011; van Kerkoerle et al., 2014b; Zaldivar et al., 

2014). However, it should be noted that the involvement of the top-down component of α 
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oscillations in our anaesthetized data is likely to be limited with respect to other experiments 

showing a prominent role of these oscillations in operations such as figure-ground 

segregation, attention and working memory (Ekstrom et al., 2008; Self et al., 2013; van 

Kerkoerle et al., 2017). 

In sum, we suggest that the increase in information in the γ band promotes the readout of 

sensory information and improving behavioral performance (Happel et al., 2014; Shuler and 

Bear, 2006). 

8.4.3 Shared sources of signals between nMOD and the other bands 

The effect of DA was not only to increase the information across laminae and across the 

frequency spectrum. DA also increased the signal correlation, that is the similarity of tuning to 

different movie scenes, of different frequency bands. Given that we found that DA did not 

change the noise correlation, the effect of an increase of signal correlation is to increase the 

coherence, or redundancy, of the information carried by each band. One function of 

representing some visual features in a similar way across several frequency bands is that this 

enhanced redundancy across frequencies could facilitate the behavioral readout of such set 

of visual features, because information about them can be read out by more than one band. 

This finding fits with theories suggesting that the extraction and amplification of specific 

sensory features, whose high behavioral relevance to a particular situation has been 

established by reinforcement learning, is orchestrated in a layer-dependent way by dopamine 

(Happel et al., 2014).  

These results may also provide insight into the possible mechanisms that might underlie DA-

mediated neuromodulation. For instance, the fact that DA increases the signal correlations 

between nMOD and γ might be because the mechanisms involved in their generation are 

affected by DA in the same way (Lundqvist et al., 2016; Trevino et al., 2007). Both oscillations 

are thought to depend on the dynamics of the interaction between excitatory and inhibitory 

neurons, and among inhibitory neurons (Buzsaki and Wang, 2012; Kopell et al., 2000; 
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Logothetis, 2008; Siegel et al., 2012; Traub et al., 1999; Trevino et al., 2007). Gamma 

oscillations seem more closely related to the time constants of GABA and AMPA receptors 

(Buzsaki and Wang, 2012; Isaacson and Scanziani, 2011) whereas slower frequencies in the 

nMOD range appear to be mediated by the interaction between NMDA, GABA and 

metabotropic-glutamate receptors (mGlutR; Kopell et al., 2000; Traub et al., 1999). DA 

enhances both GABA- and NMDA-mediated synaptic inputs, resulting in sustained and 

elevated neural firing rates in a stimulus-specific manner (Seamans et al., 2001a; Seamans 

et al., 2001b). Such changes induced by DA have been extensively reported as mechanisms 

regulating goal-directed behaviors and working memory (Jacob et al., 2013; Noudoost and 

Moore, 2011; Ott et al., 2014), which also appear to enhance the modulation of the power in 

the nMOD frequency regime (Haegens et al., 2011). Thus, the fact that DA increases both 

information and power of the nMOD band might reflect DA increasing recurrence between 

sensory- and higher-order areas (Jacob et al., 2013).  

8.4.4 Implications for neuroimaging  

It is worth noting that the activity in different LFP-bands is correlated with distinct features of 

the blood-oxygen level dependent (BOLD) signal commonly measured in functional magnetic 

resonance imaging (fMRI) experiments. (Goense and Logothetis, 2008; Magri et al., 2012b; 

Zaldivar et al., 2014). In particular, the power in the γ band is mostly correlated to the BOLD 

amplitude (Magri et al., 2012b; Rauch et al., 2008b) while the nMOD band is closely linked to 

temporal shifts of the BOLD response peak (Magri et al., 2012b). If the power in nMOD is high, 

the BOLD response increases faster than when the power in nMOD is low (Magri et al., 2012b; 

Scheeringa et al., 2011). Our results, thus led us to suggests that temporal shifts in the BOLD 

signal may be related to variations in neuromodulation, likely due to the role of 

neuromodulators in promptly adjusting responses of cortical microcirculation to meet 

metabolic demands (Krimer et al., 1998b). This idea is supported by our earlier study, which 

showed that DA (using the same pharmacological approach as we did here) dissociated the 

BOLD-response signal from the activity in the γ band and cerebral blood flow (CBF, see 
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(Zaldivar et al., 2014)). We explained this dissociation as the result of increased energy use, 

given that the increase in CBF and neural activity and the decrease in BOLD indicate 

enhanced cerebral metabolic rate of oxygen (CMRO2, (Zaldivar et al., 2014)), agreeing with 

autoradiography studies in monkeys showing increases brain metabolism due to LDC injection 

(Porrino et al., 1987b). We thus suggest that future studies combining BOLD with CBF or CBV 

can provide a better picture about the coupling between γ power, neuromodulation and 

variations in the metabolic demands (Goense et al., 2016; Zaldivar et al., 2014). 

8.4.5 Considerations on the effects of other neuromodulators in oscillatory 
cortical processing 

Effects of neuromodulators may differ from one structure to another, likely depending on 

receptor location, distribution and expression level (Dayan, 2012; Gu, 2002; Happel, 2015; 

Zaldivar et al., 2017). For example, neuromodulators can mediate local recurrent excitation (if 

receptors are expressed within one area), recruit of long-range corticocortical feedback (if 

receptors are expressed in a higher order area, which reciprocally connect with a region 

without receptor) or the combination of both (Dayan, 2012; Happel, 2015). Therefore, further 

experimental work is needed to understand how different neuromodulators, such as 

acetylcholine (ACh) or noradrenaline (NA), affect oscillatory cortical processing. In particular, 

whether the fluctuations of other neuromodulators affect the same [19-38 Hz] band that we 

showed here to reflect changes in DA, and whether other neuromodulators affect information 

processing in the same or different way. For example, changes in ACh have been reported to 

reduce excitatory recurrent interactions and increase inhibitory drive, resulting in enhanced 

signal-to-noise ratio of cortical responses (Minces et al., 2017). On the other hand, NA has 

been associated with modulation of the stimulus-response gain of cortical afferents (Safaai et 

al., 2015). Nonetheless, further studies are needed to determine the laminar and frequency-

band specificity of such effects, and to find markers able to dissociate the effect of different 

neuromodulatory systems and their effect on cortical information processing.  
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8.5 APPENDIX  

8.5.1 Animal Preparation and Anesthesia 

The anesthesia protocol for all the experimental procedures has been described previously 

(Logothetis et al., 2012; Zaldivar et al., 2014). Briefly, before each experiment the monkeys 

were sedated with intramuscular (IM) injections of glycopyrrolate (0.01 mg·kg-1) and ketamine 

(15 mg·kg-1). An intravenous (IV) cannula was placed in the saphenous- or posterior tibial vein 

for administration of liquids, medication and anesthetics. After induction with fentanyl (3 mg·kg-

1), thiopental (5 mg.kg-1) and succinylcholine chloride (3 mg.kg-1), animals were tracheally 

intubated (Rusch, Teleflex, USA) and ventilated using a Servo Ventilator 900C (Siemens, 

Germany) maintaining an end-tidal CO2 of 33-35 mm Hg and O2 saturation above 95%. 

Balanced anesthesia was maintained with remifentanil (0.5 – 2 μg.kg-1min-1) and muscle 

relaxation was achieved with mivacurium chloride (2 – 6 mg.kg-1h-1) to ensure complete 

paralysis of the eye muscles. The physiological state of the monkey was kept within normal 

limits throughout the experiment. Body temperature was maintained at 38-39°C. Lactate 

Ringer’s (Jonosteril, Fresenius Kabi, Germany) with 2.5% glucose was continuously infused 

at a rate of 10 ml.kg-1.hr-1 in order to maintain an adequate acid-base balance and intravascular 

volume and blood pressure; hydroxyethyl starch (Volulyte, Fresenius Kabi, Germany) was 

administered as needed.  

Two drops of 1% ophthalmic solution of anticholinergic cyclopentolate hydrochloride was 

applied into each eye to achieve cycloplegia and mydriasis. The eyes of the monkeys were 

kept open with custom-made irrigating-lid speculae to prevent drying of the tissue. The 

speculea irrigated the eyes with saline from the medial and lateral canthus at an infusion rate 

of 0.07 ml.min-1. Refractive errors were measured and hard contact lenses (Wöhlk-Contact-

Linsen, Schönkirchen, Germany) were placed on the monkey’s eye to focus on the plane on 

which stimuli are presented. 
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8.5.2 Visual Stimulation  

The visual stimulus was presented using an in-house custom-built projector (SVGA fiber optic 

system with a resolution of 800x600 pixels). All image generation was done in 24-bit true color, 

using hardware double-buffering to provide smooth animation. The eyepieces of the stimulus 

presentation system were positioned and adjusted using a modified fundus camera (Zeiss 

RC250; see Logothetis et al., 1999a). The visual stimulus consisted of high contrast (100%) 

gamma corrected, fast-moving, colorful movie clips (no soundtrack) from commercially 

available movies. Stimulus timing was controlled by a Pentium computer (Advantec) running 

a real-time OS (QNX-Ottawa, Canada). We induced activity in V1 by using a block paradigm 

consisting isoluminant blank screen lasting 20 seconds, subsequently a 20 seconds movie 

segment (full field) was presented followed by a 20 seconds grey screen (spontaneous; Figure 

1a). This block design was repeated 48 times yielding a 48-minutes experiment time (Figure 

1a). A photodiode attached to the stimulus presentation monitor was used to ensure accurate 

control of the timing of stimulus presentation.  

8.5.3 LFP average spectrum across monkeys  

We computed the LFP-average spectrum from individual monkeys during the two stimuli 

conditions (spontaneous and movie clips) and found consistency in the LFP-average spectrum 

shape across all monkeys. Figure S1 depicts typical spectrograms from recordings in V1 from 

every monkey that participated in this study (Figure S1, monkeys are color coded; K07, n = 3; 

G11, n = 2; G09, n = 4; H09, n = 3). In good agreement with Figure 1c and with the study from 

Belitski, et al. (2008), we found significant power at frequencies between 0 – 150 Hz. In both 

stimuli condition the power steeply decreased at higher frequencies after a peak at the low 

frequencies (7 ± 2 Hz). This analysis also showed that power differences between 

spontaneous and sensory-evoked activity from each monkeys, was mostly located in the 

gamma range (50 – 150Hz; Figure S1a-b) as we reported in Figure 1c. We also computed the 

mutual information carried by the LFP power at each frequency from every monkey (Figure 

S1c). In consistency with Figure 1d we found two informative bands in the LFP spectrum from 
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all monkeys. These peaks corresponded to frequencies <20 Hz and to frequencies in the 

gamma range (>50 Hz; Figure S1c).  

8.5.4 Correlations 

We computed the noise correlation in oscillations at different cortical depths, both within the 

same band at each depth, and between different bands (Figure S4 a-b). We did not observe 

layer dependency in the correlation values between all frequencies. We first considered the 

correlations shared by two frequencies, f1 and f2, in frequencies <40 Hz given that this was 

the region in which correlations were maximal before the injections. We found that the pairwise 

correlation between frequencies in the nMOD-range exhibited higher correlation values (mean 

pairwise correlations over all frequencies at 18 and 38 Hz and accords all layers: 0.38 ± 0.02) 

compared to the pairwise correlation between frequencies in the alpha-range (mean pairwise 

correlations over all frequencies at 8 and 12 Hz and accords all layers: 0.24 ± 0.03). Therefore, 

the results of high noise-correlations (Figure S4) and low signal-correlations (Figure 8.5) in 

the nMOD range are fully compatible with the observations from Belitski et al (2008), in which 

they suggested that the activity reflected in this frequency regime originates from a common 

source that is not sensitive to the sensory stimulation. In contrast, the pairwise correlation 

between frequencies in the alpha range exhibited high noise-correlation and signal 

correlations which suggested that the frequencies in this range share both sources of noise 

and of signal. In addition, the noise-correlation between two frequencies in the whole gamma 

range was similar in all layer (mean pairwise correlations in the gamma range: 0.13 ± 0.03, 

Figure S4). Non-changes in the noise correlations were observed due to the injections of DA 

(Figure S4b) 

We also computed the correlations during spontaneous activity across all frequency pairs and 

layers (Figure S5). Note that for spontaneous activity and noise correlation are similar because 

there is no stimulus. We found that the correlations were also highest for the low frequencies 

(< 40 Hz). We found that the pairwise correlation in the nMOD range was high (mean pairwise 

correlations over all frequencies at 18 and 38 Hz and across all layers: 0.22 ± 0.02) as well as 
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the correlations between pairs of alpha range (mean pairwise correlations over all frequencies 

at 8 and 12 Hz and accords all layers: 0.23 ± 0.02). However, the correlations between pairs 

of frequencies in the gamma range were the lowest (mean pairwise correlations in the gamma 

range: 0.08 ± 0.03, Figure S5). We did not observe changes in the correlations during 

spontaneous activity due to the injections of DA. 
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Figure S 1: Individual LFP-power Spectrum During Spontaneous and Movie Clips 
(A) Average LFP power spectrum over the entire movie clips for different animals and without 
pharmacological injections (K07 shown in blue, n = 4; G11 shown in green, n = 3; G09 shown in red, 
n = 4; H09 shown in yellow, n = 4). (B) Average LFP power spectrum during spontaneous activity 
from different monkeys. (C) Information about the movie in the LFP power from different monkeys. 
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Figure S 2: CSD and coherence profiles from different monkeys used for the electrode 
alignment 

(A) Stimulus triggered average CSD response from four monkeys. Averaged CSD profiles were 

computed before any pharmacological manipulation and for each monkey individually (n = 15 

experiments). (B) Mean LFP coherence (30 – 100 Hz) computed between all pairs or laminar positions. 

This shows the inter-compartmental coherence over all session collected in all monkeys. Note that 

contact in the G and SG layers show string coherence with other G and most of the SG positions, but 

the coherence level fell abruptly in the IG. This coherence analysis helped us to determine the 

boundaries between IG and G. 
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Figure S 3 (related to Figure 5). Noise Correlations among pairs of LFP frequencies. 
(A) Noise correlations between pairs of LFP frequencies from different cortical depths; SG, G and IG 
layers (15 sessions in total). The figure shows the averaged Pearson noise correlation between the 

LFP power at frequencies 1f  and 2f  (15 neurophysiology sessions). (B) Average correlation within 

and between individual LFP bands before (light) and during pharmacological injection (dark). 
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Figure S 4: Correlations during Spontaneous among pairs of LFP frequencies. 
(A) Correlations during spontaneous activity between pairs of different LFP frequencies from different 
cortical depths; supragranular (SG), granular (G) and infragranular (IG) layers (15 sessions in total). 
It shows the averaged Pearson correlation between the powers observed at two different LFP 

frequencies 1f  and 2f  during spontaneous activity. (B) Average correlation within and between 

individual LFP bands before (light) and during pharmacological injection (dark).  
  

 

 
  



 
 

Page | 303  
 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. References  
 



 
 

Page | 306  
 

  



 
 

Page | 307  
 

9. References 
 

 

Algaze, A., Leguire, L.E., Roberts, C., Ibinson, J.W., Lewis, J.R., and Rogers, G. (2005). The effects of L-
dopa on the functional magnetic resonance imaging response of patients with amblyopia: a pilot 
study. J AAPOS 9, 216-223. 

Alpert, A.J. (1990). Hydrophilic-interaction chromatography for the separation of peptides, nucleic 
acids and other polar compounds. J Chromatogr 499, 177-196. 

Andersson, K., and Arner, P. (1995). Cholinoceptor-mediated effects on glycerol output from human 
adipose tissue using in situ microdialysis. Br J Pharmacol 115, 1155-1162. 

Arsenault, J.T., Nelissen, K., Jarraya, B., and Vanduffel, W. (2013). Dopaminergic reward signals 
selectively decrease fMRI activity in primate visual cortex. Neuron 77, 1174-1186. 

Attwell, D., and Laughlin, S.B. (2001). An energy budget for signaling in the grey matter of the brain. J 
Cereb Blood Flow Metab 21, 1133-1145. 

Averbeck, B.B., Latham, P.E., and Pouget, A. (2006). Neural correlations, population coding and 
computation. Nature Reviews Neuroscience 7, 358-366. 

Basar, E., Gonder, A., and Ungan, P. (1980). Comparative frequency analysis of single EEG-evoked 
potential records. J Biomed Eng 2, 9-14. 

Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M.A., Logothetis, N.K., and Panzeri, S. 
(2008). Low-frequency local field potentials and spikes in primary visual cortex convey independent 
visual information. J Neurosci 28, 5696-5709. 

Belitski, A., Panzeri, S., Magri, C., Logothetis, N.K., and Kayser, C. (2010). Sensory information in local 
field potentials and spikes from visual and auditory cortices: time scales and frequency bands. J 
Comput Neurosci 29, 533-545. 

Bellander, B.M., Cantais, E., Enblad, P., Hutchinson, P., Nordstrom, C.H., Robertson, C., Sahuquillo, J., 
Smith, M., Stocchetti, N., Ungerstedt, U., et al. (2004). Consensus meeting on microdialysis in 
neurointensive care. Intensive Care Med 30, 2166-2169. 

Bergold, P.J., Pinkhasova, V., Syed, M., Kao, H.Y., Jozwicka, A., Zhao, N., Coplan, J.D., Dow-Edwards, 
D., and Fenton, A.A. (2009). Production of panic-like symptoms by lactate is associated with 
increased neural firing and oxidation of brain redox in the rat hippocampus. Neurosci Lett 453, 219-
224. 

Bjerring, P.N., Hauerberg, J., Frederiksen, H.J., Jorgensen, L., Hansen, B.A., Tofteng, F., and Larsen, 
F.S. (2008). Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver 
failure. Neurocrit Care 9, 3-7. 



 
 

Page | 308  
 

Black, K.J., Carl, J.L., Hartlein, J.M., Warren, S.L., Hershey, T., and Perlmutter, J.S. (2003). Rapid 
intravenous loading of levodopa for human research: clinical results. J Neurosci Methods 127, 19-29. 

Blicher, J.U., Stagg, C.J., O'Shea, J., Ostergaard, L., MacIntosh, B.J., Johansen-Berg, H., Jezzard, P., and 
Donahue, M.J. (2012). Visualization of altered neurovascular coupling in chronic stroke patients 
using multimodal functional MRI. J Cereb Blood Flow Metab 32, 2044-2054. 

Bosman, C.A., Schoffelen, J.M., Brunet, N., Oostenveld, R., Bastos, A.M., Womelsdorf, T., Rubehn, B., 
Stieglitz, T., De Weerd, P., and Fries, P. (2012). Attentional Stimulus Selection through Selective 
Synchronization between Monkey Visual Areas. Neuron 75, 875-888. 

Boutelle, M.G., Fellows, L.K., and Cook, C. (1992). Enzyme packed bed system for the on-line 
measurement of glucose, glutamate, and lactate in brain microdialysate. Anal Chem 64, 1790-1794. 

Boynton, G.M. (2011a). Spikes, BOLD, attention, and awareness: a comparison of 
electrophysiological and fMRI signals in V1. J Vis 11, 12. 

Boynton, G.M. (2011b). Spikes, BOLD, attention, and awareness: a comparison of 
electrophysiological and fMRI signals in V1. J Vis 11, 1-16. 

Briand, L.A., Gritton, H., Howe, W.M., Young, D.A., and Sarter, M. (2007). Modulators in concert for 
cognition: modulator interactions in the prefrontal cortex. Prog Neurobiol 83, 69-91. 

Briggs, F., and Callaway, E.M. (2001). Layer-specific input to distinct cell types in layer 6 of monkey 
primary visual cortex. Journal of Neuroscience 21, 3600-3608. 

Briggs, F., and Callaway, E.M. (2005). Laminar patterns of local excitatory input to layer 5 neurons in 
macaque primary visual cortex. Cereb Cortex 15, 479-488. 

Buckner, R.L., and Krienen, F.M. (2013). The evolution of distributed association networks in the 
human brain. Trends Cogn Sci 17, 648-665. 

Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., and Desimone, R. (2011). Laminar differences in 
gamma and alpha coherence in the ventral stream. PNAS 108, 11262-11267. 

Buschman, T.J., and Miller, E.K. (2007). Top-down versus bottom-up control of attention in the 
prefrontal and posterior parietal cortices. Science 315, 1860-1862. 

Buzsaki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926-
1929. 

Buzsaki, G., and Wang, X.J. (2012). Mechanisms of gamma oscillations. Annu Rev Neurosci 35, 203-
225. 

Calabresi, P., Centonze, D., Gubellini, P., Marfia, G.A., Pisani, A., Sancesario, G., and Bernardi, G. 
(2000). Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol 
61, 231-265. 

Callaway, E.M. (1998). Local circuits in primary visual cortex of the macaque monkey. Annu Rev 
Neurosci 21, 47-74. 

Carlo, C.N., and Stevens, C.F. (2013). Structural uniformity of neocortex, revisited. PNAS 110, 1488-
1493. 



 
 

Page | 309  
 

Carlsson, M., and Carlsson, A. (1990). Interactions between glutamatergic and monoaminergic 
systems within the basal ganglia--implications for schizophrenia and Parkinson's disease. Trends 
Neurosci 13, 272-276. 

Cech, N.B., and Enke, C.G. (2001). Practical implications of some recent studies in electrospray 
ionization fundamentals. Mass Spectrom Rev 20, 362-387. 

Chatterjee, S., and Callaway, E.M. (2003). Parallel colour-opponent pathways to primary visual 
cortex. Nature 426, 668-671. 

Chen, Z., Silva, A.C., Yang, J., and Shen, J. (2005). Elevated endogenous GABA level correlates with 
decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase. J Neurosci Res 
79, 383-391. 

Choi, J.K., Chen, Y.I., Hamel, E., and Jenkins, B.G. (2006). Brain hemodynamic changes mediated by 
dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular 
coupling. Neuroimage 30, 700-712. 

Choi, J.K., Mandeville, J.B., Chen, Y.I., Grundt, P., Sarkar, S.K., Newman, A.H., and Jenkins, B.G. 
(2010). Imaging brain regional and cortical laminar effects of selective D3 agonists and antagonists. 
Psychopharmacology (Berl) 212, 59-72. 

Clapham, D.E. (1994). Direct G protein activation of ion channels? Annu Rev Neurosci 17, 441-464. 

Coenen, A.M. (1995). Neuronal activities underlying the electroencephalogram and evoked 
potentials of sleeping and waking: implications for information processing. Neurosci Biobehav Rev 
19, 447-463. 

Collins, C.E., Airey, D.C., Young, N.A., Leitch, D.B., and Kaas, J.H. (2010). Neuron densities vary across 
and within cortical areas in primates. PNAS 107, 15927-15932. 

Cynober, L.A. (2002). Plasma amino acid levels with a note on membrane transport: characteristics, 
regulation, and metabolic significance. Nutrition 18, 761-766. 

D'Aniello, A., Lee, J.M., Petrucelli, L., and Di Fiore, M.M. (1998). Regional decreases of free D-
aspartate levels in Alzheimer's disease. Neurosci Lett 250, 131-134. 

Dayan, P. (2012). Twenty-five lessons from computational neuromodulation. Neuron 76, 240-256. 

de Lafuente, V., and Romo, R. (2011a). Dopamine neurons code subjective sensory experience and 
uncertainty of perceptual decisions. PNAS 108, 19767-19771. 

de Lafuente, V., and Romo, R. (2011b). Dopamine neurons code subjective sensory experience and 
uncertainty of perceptual decisions. Proc Natl Acad Sci U S A 108, 19767-19771. 

de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle, R., and Bialek, W. (1997). 
Reproducibility and variability in neural spike trains. Science 275, 1805-1808. 

Delfino, M., Kalisch, R., Czisch, M., Larramendy, C., Ricatti, J., Taravini, I.R., Trenkwalder, C., Murer, 
M.G., Auer, D.P., and Gershanik, O.S. (2007). Mapping the effects of three dopamine agonists with 
different dyskinetogenic potential and receptor selectivity using pharmacological functional 
magnetic resonance imaging. Neuropsychopharmacol 32, 1911-1921. 



 
 

Page | 310  
 

Di Rocco, R.J., Kageyama, G.H., and Wong-Riley, M.T. (1989). The relationship between CNS 
metabolism and cytoarchitecture: a review of 14C-deoxyglucose studies with correlation to 
cytochrome oxidase histochemistry. Comput Med Imaging Graph 13, 81-92. 

Dobkins, K.R., Thiele, A., and Albright, T.D. (2000). Comparison of red-green equiluminance points in 
humans and macaques: evidence for different L:M cone ratios between species. Optical Society of 
America 17, 545-556. 

Donner, T.H., Siegel, M., Oostenveld, R., Fries, P., Bauer, M., and Engel, A.K. (2007). Population 
activity in the human dorsal pathway predicts the accuracy of visual motion detection. J 
Neurophysiol 98, 345-359. 

Dougherty, K., Cox, M.A., Ninomiya, T., Leopold, D.A., and Maier, A. (2017). Ongoing Alpha Activity in 
V1 Regulates Visually Driven Spiking Responses. Cereb Cortex 27, 1113-1124. 

Douglas, R.J., and Martin, K.A. (2004). Neuronal circuits of the neocortex. Annu Rev Neurosci 27, 
419-451. 

Eckstein, J.A., Ammerman, G.M., Reveles, J.M., and Ackermann, B.L. (2008). Analysis of glutamine, 
glutamate, pyroglutamate, and GABA in cerebrospinal fluid using ion pairing HPLC with positive 
electrospray LC/MS/MS. J Neurosci Methods 171, 190-196. 

Einevoll, G.T., Kayser, C., Logothetis, N.K., and Panzeri, S. (2013). Modelling and analysis of local field 
potentials for studying the function of cortical circuits. Nat Rev Neurosci 14, 770-785. 

Einevoll, G.T., Pettersen, K.H., Devor, A., Ulbert, I., Halgren, E., and Dale, A.M. (2007). Laminar 
population analysis: Estimating firing rates and evoked synaptic activity from multielectrode 
recordings in rat barrel cortex. Journal of Neurophysiology 97, 2174-2190. 

Ekstrom, L.B., Roelfsema, P.R., Arsenault, J.T., Bonmassar, G., and Vanduffel, W. (2008). Bottom-up 
dependent gating of frontal signals in early visual cortex. Science 321, 414-417. 

Engel, A.K., and Fries, P. (2010). Beta-band oscillations--signalling the status quo? Curr Opin 
Neurobiol 20, 156-165. 

Esaki, T., Itoh, Y., Shimoji, K., Cook, M., Jehle, J., and Sokoloff, L. (2002). Effects of dopamine receptor 
blockade on cerebral blood flow response to somatosensory stimulation in the unanesthetized rat. J 
Pharmacol Exp Ther 303, 497-502. 

Faraci, F.M., and Breese, K.R. (1993). Nitric oxide mediates vasodilatation in response to activation of 
N-methyl-D-aspartate receptors in brain. Circ Res 72, 476-480. 

Fox, P.T., and Raichle, M.E. (1986). Focal physiological uncoupling of cerebral blood flow and 
oxidative metabolism during somatosensory stimulation in human subjects. PNAS 83, 1140-1144. 

Fox, P.T., Raichle, M.E., Mintun, M.A., and Dence, C. (1988). Nonoxidative glucose consumption 
during focal physiologic neural activity. Science 241, 462-464. 

Freund, H., Oyono-Enguelle, S., Heitz, A., Ott, C., Marbach, J., Gartner, M., and Pape, A. (1990). 
Comparative lactate kinetics after short and prolonged submaximal exercise. Int J Sports Med 11, 
284-288. 



 
 

Page | 311  
 

Frien, A., Eckhorn, R., Bauer, R., Woelbern, T., and Gabriel, A. (2000). Fast oscillations display sharper 
orientation tuning than slower components of the same recordings in striate cortex of the awake 
monkey. Eur J Neurosci 12, 1453-1465. 

Fries, P. (2009). Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical 
Computation. Annual Review of Neuroscience 32, 209-224. 

Fries, P., Reynolds, J.H., Rorie, A.E., and Desimone, R. (2001). Modulation of oscillatory neuronal 
synchronization by selective visual attention. Science 291, 1560-1563. 

Fries, P., Womelsdorf, T., Oostenveld, R., and Desimone, R. (2008). The effects of visual stimulation 
and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci 
28, 4823-4835. 

Fu, B., Gao, X., Zhang, S.P., Cai, Z., and Shen, J. (2008). Quantification of acetylcholine in 
microdialysate of subcutaneous tissue by hydrophilic interaction chromatography/tandem mass 
spectrometry. Rapid Commun Mass Spectrom 22, 1497-1502. 

Fujii, T., Yamada, S., Yamaguchi, N., Fujimoto, K., Suzuki, T., and Kawashima, K. (1995). Species 
differences in the concentration of acetylcholine, a neurotransmitter, in whole blood and plasma. 
Neurosci Lett 201, 207-210. 

Gibson, G.E., Peterson, C., and Sansone, J. (1981). Neurotransmitter and carbohydrate metabolism 
during aging and mild hypoxia. Neurobiol Aging 2, 165-172. 

Gieselmann, M.A., and Thiele, A. (2008). Comparison of spatial integration and surround suppression 
characteristics in spiking activity and the local field potential in macaque V1. Eur J Neurosci 28, 447-
459. 

Goense, J., Bohraus, Y., and Logothetis, N.K. (2016). fMRI at High Spatial Resolution: Implications for 
BOLD-Models. Front Comput Neurosci 10, 66. 

Goense, J., Logothetis, N.K., and Merkle, H. (2010). Flexible, phase-matched, linear receive arrays for 
high-field MRI in monkeys. Magn Reson Imaging 28, 1183-1191. 

Goense, J., Merkle, H., and Logothetis, N.K. (2012). High-resolution fMRI reveals laminar differences 
in neurovascular coupling between positive and negative BOLD responses. Neuron 76, 629-639. 

Goense, J.B., and Logothetis, N.K. (2008). Neurophysiology of the BOLD fMRI signal in awake 
monkeys. Curr Biol 18, 631-640. 

Gordon, G.R., Choi, H.B., Rungta, R.L., Ellis-Davies, G.C., and MacVicar, B.A. (2008). Brain metabolism 
dictates the polarity of astrocyte control over arterioles. Nature 456, 745-749. 

Gottberg, E., Montreuil, B., and Reader, T.A. (1988). Acute effects of lithium on dopaminergic 
responses: iontophoretic studies in the rat visual cortex. Synapse 2, 442-449. 

Gozzi, A., Large, C.H., Schwarz, A., Bertani, S., Crestan, V., and Bifone, A. (2008). Differential effects 
of antipsychotic and glutamatergic agents on the phMRI response to phencyclidine. 
Neuropsychopharmacol 33, 1690-1703. 



 
 

Page | 312  
 

Gozzi, A., Schwarz, A.J., Reese, T., Crestan, V., Bertani, S., Turrini, G., Corsi, M., and Bifone, A. (2005). 
Functional magnetic resonance mapping of intracerebroventricular infusion of a neuroactive peptide 
in the anaesthetised rat. J Neurosci Meth 142, 115-124. 

Grashow, R., Brookings, T., and Marder, E. (2009). Reliable neuromodulation from circuits with 
variable underlying structure. Proc Natl Acad Sci U S A 106, 11742-11746. 

Gsell, W., Burke, M., Wiedermann, D., Bonvento, G., Silva, A.C., Dauphin, F., Buhrle, C., Hoehn, M., 
and Schwindt, W. (2006). Differential effects of NMDA and AMPA glutamate receptors on functional 
magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the 
rat. J Neurosci 26, 8409-8416. 

Gu, Q. (2002). Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. 
Neuroscience 111, 815-835. 

Haegens, S., Nacher, V., Hernandez, A., Luna, R., Jensen, O., and Romo, R. (2011). Beta oscillations in 
the monkey sensorimotor network reflect somatosensory decision making. Proc Natl Acad Sci U S A 
108, 10708-10713. 

Hamel, E.J., Grewe, B.F., Parker, J.G., and Schnitzer, M.J. (2015). Cellular level brain imaging in 
behaving mammals: an engineering approach. Neuron 86, 140-159. 

Hansen, B.J., Chelaru, M.I., and Dragoi, V. (2012). Correlated variability in laminar cortical circuits. 
Neuron 76, 590-602. 

Hansen, B.J., and Dragoi, V. (2011). Adaptation-induced synchronization in laminar cortical circuits. 
PNAS 108, 10720-10725. 

Happel, M.F. (2015). Dopaminergic impact on local and global cortical circuit processing during 
learning. Behav Brain Res 299, 32-41. 

Happel, M.F., Deliano, M., Handschuh, J., and Ohl, F.W. (2014). Dopamine-modulated recurrent 
corticoefferent feedback in primary sensory cortex promotes detection of behaviorally relevant 
stimuli. J Neurosci 34, 1234-1247. 

Hasselmo, M.E. (1995). Neuromodulation and cortical function: modeling the physiological basis of 
behavior. Behav Brain Res 67, 1-27. 

Hawkins, R.A. (2009). The blood-brain barrier and glutamate. Am J Clin Nutr 90, 867S-874S. 

Henrie, J.A., and Shapley, R. (2005). LFP power spectra in V1 cortex: the graded effect of stimulus 
contrast. J Neurophysiol 94, 479-490. 

Henry, G.H., Harvey, A.R., and Lund, J.S. (1979). The afferent connections and laminar distribution of 
cells in the cat striate cortex. The Journal of comparative neurology 187, 725-744. 

Hershey, T., Black, K.J., Carl, J.L., and Perlmutter, J.S. (2000). Dopa-induced blood flow responses in 
nonhuman primates. Exp Neurol 166, 342-349. 

Hertz, L., Peng, L., and Dienel, G.A. (2007). Energy metabolism in astrocytes: high rate of oxidative 
metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 
27, 219-249. 



 
 

Page | 313  
 

Hill, D.N.V., Z., Jia, H., Sakmann, B., and Konnerth, A. (2013). Multibranch activity in basal and tuft 
dendrites during firing of layer 5 cortical neurons in vivo. PNAS 110. 

Hillman, E.M. (2014). Coupling mechanism and significance of the BOLD signal: a status report. Annu 
Rev Neurosci 37, 161-181. 

Hirsch, J.A., Wang, X., Sommer, F.T., and Martinez, L.M. (2015). How inhibitory circuits in the 
thalamus serve vision. Annu Rev Neurosci 38, 309-329. 

Honey, G., and Bullmore, E. (2004). Human pharmacological MRI. Trends in pharmacological sciences 
25, 366-374. 

Horton, J.C., and Adams, D.L. (2005). The cortical column: a structure without a function. Philos 
Trans R Soc Lond B Biol Sci 360, 837-862. 

Hu, Y., and Wilson, G.S. (1997). A temporary local energy pool coupled to neuronal activity: 
fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based 
sensor. J Neurochem 69, 1484-1490. 

Huang, T., Yang, L., Gitzen, J., Kissinger, P.T., Vreeke, M., and Heller, A. (1995). Detection of basal 
acetylcholine in rat brain microdialysate. J Chromatogr B Biomed Appl 670, 323-327. 

Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev 
Neurosci 5, 347-360. 

Ido, Y., Chang, K., and Williamson, J.R. (2004). NADH augments blood flow in physiologically 
activated retina and visual cortex. PNAS 101, 653-658. 

Isaacson, J.S., and Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron 72, 231-243. 

Izpisua Belmonte, J.C., Callaway, E.M., Caddick, S.J., Churchland, P., Feng, G., Homanics, G.E., Lee, 
K.F., Leopold, D.A., Miller, C.T., Mitchell, J.F., et al. (2015). Brains, genes, and primates. Neuron 86, 
617-631. 

Jacob, S.N., Ott, T., and Nieder, A. (2013). Dopamine regulates two classes of primate prefrontal 
neurons that represent sensory signals. J Neurosci 33, 13724-13734. 

Jenkins, B.G., Sanchez-Pernaute, R., Brownell, A.L., Chen, Y.C., and Isacson, O. (2004). Mapping 
dopamine function in primates using pharmacologic magnetic resonance imaging. J Neurosci 24, 
9553-9560. 

Jezzard, P., and Buxton, R.B. (2006). The clinical potential of functional magnetic resonance imaging. 
J Magn Reson Imaging 23, 787-793. 

Kaddurah-Daouk, R., and Krishnan, K.R. (2009). Metabolomics: a global biochemical approach to the 
study of central nervous system diseases. Neuropsychopharmacol 34, 173-186. 

Kadekaro, M., Crane, A.M., and Sokoloff, L. (1985). Differential-Effects of Electrical-Stimulation of 
Sciatic-Nerve on Metabolic-Activity in Spinal-Cord and Dorsal-Root Ganglion in the Rat. PNAS 82, 
6010-6013. 



 
 

Page | 314  
 

Kadekaro, M., Vance, W.H., Terrell, M.L., Gary, H., Eisenberg, H.M., and Sokoloff, L. (1987). Effects of 
Antidromic Stimulation of the Ventral Root on Glucose-Utilization in the Ventral Horn of the Spinal-
Cord in the Rat. PNAS 84, 5492-5495. 

Kageyama, G.H., and Wong-Riley, M. (1986). Laminar and cellular localization of cytochrome oxidase 
in the cat striate cortex. The Journal of comparative neurology 245, 137-159. 

Kajikawa, Y., and Schroeder, C.E. (2011). How local is the local field potential? Neuron 72, 847-858. 

Kalisch, R., Salome, N., Platzer, S., Wigger, A., Czisch, M., Sommer, W., Singewald, N., Heilig, M., 
Berthele, A., Holsboer, F., et al. (2004). High trait anxiety and hyporeactivity to stress of the 
dorsomedial prefrontal cortex: a combined phMRI and Fos study in rats. Neuroimage 23, 382-391. 

Kalman, J., Palotas, A., Kis, G., Boda, K., Turi, P., Bari, F., Domoki, F., Doda, I., Argyelan, M., Vincze, G., 
et al. (2005). Regional cortical blood flow changes following sodium lactate infusion in Alzheimer's 
disease. Eur J Neurosci 21, 1671-1678. 

Kandadai, M.A., Raymond, J.L., and Shaw, G.J. (2012). Comparison of electrical conductivities of 
various brain phantom gels: Developing a 'Brain Gel Model'. Materials science & engineering C, 
Materials for biological applications 32, 2664-2667. 

Kawashima, K., Oohata, H., Fujimoto, K., and Suzuki, T. (1987). Plasma concentration of acetylcholine 
in young women. Neurosci Lett 80, 339-342. 

Kida, I., Hyder, F., and Behar, K.L. (2001). Inhibition of voltage-dependent sodium channels 
suppresses the functional magnetic resonance imaging response to forepaw somatosensory 
activation in the rodent. J Cerebr Blood F Met 21, 585-591. 

Kida, I., Smith, A.J., Blumenfeld, H., Behar, K.L., and Hyder, F. (2006). Lamotrigine suppresses 
neurophysiological responses to somatosensory stimulation in the rodent. Neuroimage 29, 216-224. 

Kim, S.G. (1995). Quantification of relative cerebral blood flow change by flow-sensitive alternating 
inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34, 293-
301. 

Kim, S.G., and Ogawa, S. (2012). Biophysical and physiological origins of blood oxygenation level-
dependent fMRI signals. J Cereb Blood Flow Metab 32, 1188-1206. 

Kopell, N., Ermentrout, G.B., Whittington, M.A., and Traub, R.D. (2000). Gamma rhythms and beta 
rhythms have different synchronization properties. Proc Natl Acad Sci U S A 97, 1867-1872. 

Kortelainen, J., Vayrynen, E., and Seppanen, T. (2011). Depth of Anesthesia During Multidrug 
Infusion: Separating the Effects of Propofol and Remifentanil Using the Spectral Features of EEG. 
Ieee T Bio-Med Eng 58, 1216-1223. 

Krimer, L.S., Muly, E.C., 3rd, Williams, G.V., and Goldman-Rakic, P.S. (1998a). Dopaminergic 
regulation of cerebral cortical microcirculation. Nat Neurosci 1, 286-289. 

Krimer, L.S., Muly, E.C., Williams, G.V., and Goldman-Rakic, P.S. (1998b). Dopaminergic regulation of 
cerebral cortical microcirculation. Nature Neuroscience 1, 286-289. 

Ku, S.P., Tolias, A.S., Logothetis, N.K., and Goense, J. (2011). fMRI of the face-processing network in 
the ventral temporal lobe of awake and anesthetized macaques. Neuron 70, 352-362. 



 
 

Page | 315  
 

Kujala, J., Jung, J., Bouvard, S., Lecaignard, F., Lothe, A., Bouet, R., Ciumas, C., Ryvlin, P., and Jerbi, K. 
(2015). Gamma oscillations in V1 are correlated with GABAA receptor density: A multi-modal MEG 
and Flumazenil-PET study. Sci Rep 5, 16347. 

Kwak, Y., Peltier, S.J., Bohnen, N.I., Muller, M.L., Dayalu, P., and Seidler, R.D. (2012). L-DOPA changes 
spontaneous low-frequency BOLD signal oscillations in Parkinson's disease: a resting state fMRI 
study. Front Syst Neurosci 6, 1-15. 

Laughlin, S.B., de Ruyter van Steveninck, R.R., and Anderson, J.C. (1998). The metabolic cost of 
neural information. Nat Neurosci 1, 36-41. 

Lee, J.H., Durand, R., Gradinaru, V., Zhang, F., Goshen, I., Kim, D.S., Fenno, L.E., Ramakrishnan, C., 
and Deisseroth, K. (2010). Global and local fMRI signals driven by neurons defined optogenetically by 
type and wiring. Nature 465, 788-792. 

Leenders, K.L., Wolfson, L., Gibbs, J.M., Wise, R.J., Causon, R., Jones, T., and Legg, N.J. (1985). The 
effects of L-DOPA on regional cerebral blood flow and oxygen metabolism in patients with 
Parkinson's disease. Brain 108 ( Pt 1), 171-191. 

Leonard, B.E., and Shallice, S.A. (1971). Some Neurochemical Effects of Amphetamine, 
Methylamphetamine and Para Bromomethyl Amphetamine in Rat. Br J Pharmacol 41, 198-&. 

Leski, S., Linden, H., Tetzlaff, T., Pettersen, K.H., and Einevoll, G.T. (2013). Frequency dependence of 
signal power and spatial reach of the local field potential. PLoS Comput Biol 9, e1003137. 

Li, J., von Pfostl, V., Zaldivar, D., Zhang, X., Logothetis, N., and Rauch, A. (2011). Measuring multiple 
neurochemicals and related metabolites in blood and brain of the rhesus monkey by using dual 
microdialysis sampling and capillary hydrophilic interaction chromatography-mass spectrometry. 
Anal Bioanal Chem. 

Lidow, M.S., Goldman-Rakic, P.S., Gallager, D.W., and Rakic, P. (1991). Distribution of dopaminergic 
receptors in the primate cerebral cortex: quantitative autoradiographic analysis using 
[3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40, 657-671. 

Lindsley, D.B., and Wicke, J.D. (1974). The Electroencephalogram: Autonomous Electrical Activity in 
Man and Animals. In Bioelectric Recording Techniques: Electroencephalography and Human Brain 
Potentials, R.F. Thompson, and M.M. Patterson, eds., pp. 3-83. 

Logothetis, N.K. (2008). What we can do and what we cannot do with fMRI. Nature 453, 869-878. 

Logothetis, N.K. (2010). Bold claims for optogenetics. Nature 468, E3-E4. 

Logothetis, N.K., Augath, M., Murayama, Y., Rauch, A., Sultan, F., Goense, J., Oeltermann, A., and 
Merkle, H. (2010). The effects of electrical microstimulation on cortical signal propagation. Nat 
Neurosci 13, 1283-1291. 

Logothetis, N.K., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H.C., Besserve, M., and 
Oeltermann, A. (2012). Hippocampal-cortical interaction during periods of subcortical silence. 
Nature 491, 547-553. 

Logothetis, N.K., Guggenberger, H., Peled, S., and Pauls, J. (1999a). Functional imaging of the monkey 
brain. Nat Neurosci 2, 555-562. 



 
 

Page | 316  
 

Logothetis, N.K., Guggenberger, H., Peled, S., and Pauls, J. (1999b). Functional imaging of the 
monkey brain. Nat Neurosci 2, 555-562. 

Logothetis, N.K., Kayser, C., and Oeltermann, A. (2007). In vivo measurement of cortical impedance 
spectrum in monkeys: implications for signal propagation. Neuron 55, 809-823. 

Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001). Neurophysiological 
investigation of the basis of the fMRI signal. Nature 412, 150-157. 

Loubinoux, I., Pariente, J., Boulanouar, K., Carel, C., Manelfe, C., Rascol, O., Celsis, P., and Chollet, F. 
(2002). A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: 
double-blind, placebo-controlled, fMRI study in healthy subjects. Neuroimage 15, 26-36. 

Lund, J.S. (1973). Organization of neurons in the visual cortex, area 17, of the monkey (Macaca 
mulatta). The Journal of comparative neurology 147, 455-496. 

Lund, J.S. (1988). Anatomical organization of macaque monkey striate visual cortex. Annu Rev 
Neurosci 11, 253-288. 

Lund, J.S., Angelucci, A., and Bressloff, P.C. (2003). Anatomical Substrates for Functional Columns in 
Macaque Monkey Primary Visual Cortex. Cerebral cortex 12, 15-24. 

Lundqvist, M., Rose, J., Herman, P., Brincat, S.L., Buschman, T.J., and Miller, E.K. (2016). Gamma and 
Beta Bursts Underlie Working Memory. Neuron 90, 152-164. 

Magri, C., Mazzoni, A., Logothetis, N.K., and Panzeri, S. (2012a). Optimal band separation of 
extracellular field potentials. J Neurosci Methods 210, 66-78. 

Magri, C., Schridde, U., Murayama, Y., Panzeri, S., and Logothetis, N.K. (2012b). The amplitude and 
timing of the BOLD signal reflects the relationship between local field potential power at different 
frequencies. J Neurosci 32, 1395-1407. 

Magri, C., Whittingstall, K., Singh, V., Logothetis, N.K., and Panzeri, S. (2009a). A toolbox for the fast 
information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neurosci 10, 81. 

Magri, C., Whittingstall, K., Singh, V., Logothetis, N.K., and Panzeri, S. (2009b). A toolbox for the fast 
information analysis of multiple-site LFP, EEG and spike train recordings. Bmc Neuroscience 10. 

Maier, A., Adams, G.K., Aura, C., and Leopold, D.A. (2010). Distinct superficial and deep laminar 
domains of activity in the visual cortex during rest and stimulation. Front Syst Neurosci 4. 

Maier, A., Aura, C.J., and Leopold, D.A. (2011). Infragranular sources of sustained local field potential 
responses in macaque primary visual cortex. J Neurosci 31, 1971-1980. 

Mandeville, J.B., Jenkins, B.G., Kosofsky, B.E., Moskowitz, M.A., Rosen, B.R., and Marota, J.J. (2001). 
Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain. Magn 
Reson Med 45, 443-447. 

Mandeville, J.B., Sander, C.Y., Jenkins, B.G., Hooker, J.M., Catana, C., Vanduffel, W., Alpert, N.M., 
Rosen, B.R., and Normandin, M.D. (2013). A receptor-based model for dopamine-induced fMRI 
signal. Neuroimage 75C, 46-57. 



 
 

Page | 317  
 

Mantini, D., Corbetta, M., Romani, G.L., Orban, G.A., and Vanduffel, W. (2013). Evolutionarily novel 
functional networks in the human brain? J Neurosci 33, 3259-3275. 

Marder, E., O'Leary, T., and Shruti, S. (2014). Neuromodulation of circuits with variable parameters: 
single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. 
Annu Rev Neurosci 37, 329-346. 

Matuszewski, B.K., Constanzer, M.L., and Chavez-Eng, C.M. (2003). Strategies for the assessment of 
matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical Chemistry 75, 
3019-3030. 

Mentis, M.J., Alexander, G.E., Krasuski, J., Pietrini, P., Furey, M.L., Schapiro, M.B., and Rapoport, S.I. 
(1998). Increasing required neural response to expose abnormal brain function in mild versus 
moderate or severe Alzheimer's disease: PET study using parametric visual stimulation. Am J 
Psychiatry 155, 785-794. 

Michels, L., Bucher, K., Luchinger, R., Klaver, P., Martin, E., Jeanmonod, D., and Brandeis, D. (2010). 
Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency 
bands. PLoS One 5, e10298. 

Minces, V., Pinto, L., Dan, Y., and Chiba, A.A. (2017). Cholinergic shaping of neural correlations. Proc 
Natl Acad Sci U S A 114, 5725-5730. 

Mintun, M.A., Vlassenko, A.G., Rundle, M.M., and Raichle, M.E. (2004). Increased lactate/pyruvate 
ratio augments blood flow in physiologically activated human brain. PNAS 101, 659-664. 

Mitterschiffthaler, M.T., Ettinger, U., Mehta, M.A., Mataix-Cols, D., and Williams, S.C. (2006). 
Applications of functional magnetic resonance imaging in psychiatry. J Magn Reson Imaging 23, 851-
861. 

Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: 
investigation of evoked potentials and EEG phenomena. Physiol Rev 65, 37-100. 

Mitzdorf, U. (1987). Properties of the evoked potential generators: current source-density analysis of 
visually evoked potentials in the cat cortex. Int J Neurosci 33, 33-59. 

Mitzdorf, U., and Singer, W. (1979). Excitatory synaptic ensemble properties in the visual cortex of 
the macaque monkey: a current source density analysis of electrically evoked potentials. The Journal 
of comparative neurology 187, 71-83. 

Molina, J.A., Gomez, P., Vargas, C., Ortiz, S., Perez-Rial, S., Uriguen, L., Oliva, J.M., Villanueva, C., and 
Manzanares, J. (2005). Neurotransmitter amino acid in cerebrospinal fluid of patients with dementia 
with Lewy bodies. Journal of Neural Transmission 112, 557-563. 

Monge-Acuna, A.A., and Fornaguera-Trias, J. (2009). A high performance liquid chromatography 
method with electrochemical detection of gamma-aminobutyric acid, glutamate and glutamine in rat 
brain homogenates. J Neurosci Methods 183, 176-181. 

Montastruc, J.L., Celsis, P., Agniel, A., Demonet, J.F., Doyon, B., Puel, M., Marc-Vergnes, J.P., and 
Rascol, A. (1987). Levodopa-induced regional cerebral blood flow changes in normal volunteers and 
patients with Parkinson's disease. Lack of correlation with clinical or neuropsychological 
improvements. Mov Disord 2, 279-289. 



 
 

Page | 318  
 

Moore, T., and Zirnsak, M. (2017). Neural Mechanisms of Selective Visual Attention. Annu Rev 
Psychol 68, 47-72. 

Moreno, A., Morris, R.G., and Canals, S. (2015). Frequency-Dependent Gating of Hippocampal-
Neocortical Interactions. Cerebral cortex. 

Mountcastle, V.B. (1997). The columnar organization of the neocortex. Brain 120 ( Pt 4), 701-722. 

Murayama, Y., Biessmann, F., Meinecke, F.C., Muller, K.R., Augath, M., Oeltermann, A., and 
Logothetis, N.K. (2010). Relationship between neural and hemodynamic signals during spontaneous 
activity studied with temporal kernel CCA. Magn Reson Imaging 28, 1095-1103. 

Nassi, J.J., and Callaway, E.M. (2009). Parallel processing strategies of the primate visual system. Nat 
Rev Neurosci 10, 360-372. 

Noudoost, B., and Moore, T. (2011). Control of visual cortical signals by prefrontal dopamine. Nature 
474, 372-375. 

Nunez, P.L. (1981). Electric Fields of the Brain: The Neurophysics of EEG (Oxford, UK: Oxford 
University Press). 

O'Kusky, J., and Colonnier, M. (1982). A laminar analysis of the number of neurons, glia, and 
synapses in the adult cortex (area 17) of adult macaque monkeys. The Journal of comparative 
neurology 210, 278-290. 

Obayashi, S., Nagai, Y., Suhara, T., Okauchi, T., Inaji, M., Iriki, A., and Maeda, J. (2009). Monkey brain 
activity modulated by reward preferences: a positron emission tomography study. Neurosci Res 64, 
421-428. 

Oeltermann, A., Augath, M.A., and Logothetis, N.K. (2007). Simultaneous recording of neuronal 
signals and functional NMR imaging. Magn Reson Imaging 25, 760-774. 

Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H., and Ugurbil, K. (1992). 
Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic 
resonance imaging. PNAS 89, 5951-5955. 

Ott, T., Jacob, S.N., and Nieder, A. (2014). Dopamine receptors differentially enhance rule coding in 
primate prefrontal cortex neurons. Neuron 84, 1317-1328. 

Oyono-Enguelle, S., Marbach, J., Heitz, A., Ott, C., Gartner, M., Pape, A., Vollmer, J.C., and Freund, H. 
(1990). Lactate removal ability and graded exercise in humans. J Appl Physiol 68, 905-911. 

Panzeri, S., Schultz, S.R., Treves, A., and Rolls, E.T. (1999). Correlations and the encoding of 
information in the nervous system. P Roy Soc B-Biol Sci 266, 1001-1012. 

Panzeri, S., and Treves, A. (1996). Analytical estimates of limited sampling biases in different 
information measures. Network-Comp Neural 7, 87-107. 

Pellerin, L., and Magistretti, P.J. (2004). Neuroenergetics: calling upon astrocytes to satisfy hungry 
neurons. Neuroscientist 10, 53-62. 

Petroff, O.A., Errante, L.D., Rothman, D.L., Kim, J.H., and Spencer, D.D. (2002). Glutamate-glutamine 
cycling in the epileptic human hippocampus. Epilepsia 43, 703-710. 



 
 

Page | 319  
 

Pettersen, K.H., Devor, A., Ulbert, I., Dale, A.M., and Einevoll, G.T. (2006). Current-source density 
estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal 
activity and conductivity discontinuities. J Neurosci Methods 154, 116-133. 

Pfeuffer, J., Merkle, H., Beyerlein, M., Steudel, T., and Logothetis, N.K. (2004). Anatomical and 
functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup. Magn Reson 
Imaging 22, 1343-1359. 

Phillipson, O.T., Kilpatrick, I.C., and Jones, M.W. (1987). Dopaminergic Innervation of the Primary 
Visual-Cortex in the Rat, and Some Correlations with Human Cortex. Brain Res Bull 18, 621-633. 

Pleger, B., Blankenburg, F., Ruff, C.C., Driver, J., and Dolan, R.J. (2008). Reward facilitates tactile 
judgments and modulates hemodynamic responses in human primary somatosensory cortex. J 
Neurosci 28, 8161-8168. 

Porrino, L.J., Burns, R.S., Crane, A.M., Palombo, E., Kopin, I.J., and Sokoloff, L. (1987a). Local cerebral 
metabolic effects of L-dopa therapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced 
parkinsonism in monkeys. PNAS 84, 5995-5999. 

Porrino, L.J., Burns, R.S., Crane, A.M., Palombo, E., Kopin, I.J., and Sokoloff, L. (1987b). Local cerebral 
metabolic effects of L-dopa therapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced 
parkinsonism in monkeys. Proc Natl Acad Sci U S A 84, 5995-5999. 

Preinerstorfer, B., Schiesel, S., Lammerhofer, M., and Lindner, W. (2010). Metabolic profiling of 
intracellular metabolites in fermentation broths from beta-lactam antibiotics production by liquid 
chromatography-tandem mass spectrometry methods. J Chromatogr A 1217, 312-328. 

Prichard, J., Rothman, D., Novotny, E., Petroff, O., Kuwabara, T., Avison, M., Howseman, A., 
Hanstock, C., and Shulman, R. (1991). Lactate rise detected by 1H NMR in human visual cortex during 
physiologic stimulation. PNAS 88, 5829-5831. 

Prokai, L., Frycak, P., Stevens, S.M., Jr., and Nguyen, V. (2008). Measurement of Acetylcholine in Rat 
Brain Microdialysates by LC - Isotope Dilution Tandem MS. Chromatographia 68, s101-s105. 

Quian Quiroga, R., and Panzeri, S. (2009). Extracting information from neuronal populations: 
information theory and decoding approaches. Nat Rev Neurosci 10, 173-185. 

Rajalingham, R., Schmidt, K., and DiCarlo, J.J. (2015). Comparison of Object Recognition Behavior in 
Human and Monkey. J Neurosci 35, 12127-12136. 

Raman, L., Tkac, I., Ennis, K., Georgieff, M.K., Gruetter, R., and Rao, R. (2005). In vivo effect of chronic 
hypoxia on the neurochemical profile of the developing rat hippocampus. Brain Res Dev Brain Res 
156, 202-209. 

Rao, V.R., and Finkbeiner, S. (2007). NMDA and AMPA receptors: old channels, new tricks. Trends 
Neurosci 30, 284-291. 

Rauch, A., Rainer, G., Augath, M., Oeltermann, A., and Logothetis, N.K. (2008a). Pharmacological MRI 
combined with electrophysiology in non-human primates: effects of Lidocaine on primary visual 
cortex. Neuroimage 40, 590-600. 



 
 

Page | 320  
 

Rauch, A., Rainer, G., and Logothetis, N.K. (2008b). The effect of a serotonin-induced dissociation 
between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci U S A 105, 
6759-6764. 

Rauch, A., Rainer, G., and Logothetis, N.K. (2008c). The effect of a serotonin-induced dissociation 
between spiking and perisynaptic activity on BOLD functional MRI. PNAS 105, 6759-6764. 

Ray, S., and Maunsell, J.H. (2011). Different origins of gamma rhythm and high-gamma activity in 
macaque visual cortex. PLoS Biol 9, e1000610. 

Reader, T.A. (1978). The effects of dopamine, noradrenaline and serotonin in the visual cortex of the 
cat. Experientia 34, 1586-1588. 

Redjems-Bennani, N., Jeandel, C., Lefebvre, E., Blain, H., Vidailhet, M., and Gueant, J.L. (1998). 
Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from 
Alzheimer patients. Gerontology 44, 300-304. 

Reese, T., Bjelke, B., Porszasz, R., Baumann, D., Bochelen, D., Sauter, A., and Rudin, M. (2000). 
Regional brain activation by bicuculline visualized by functional magnetic resonance imaging. Time-
resolved assessment of bicuculline-induced changes in local cerebral blood volume using an 
intravascular contrast agent. NMR Biomed 13, 43-49. 

Reiman, E.M., Caselli, R.J., Chen, K., Alexander, G.E., Bandy, D., and Frost, J. (2001). Declining brain 
activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using 
positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. PNAS 
98, 3334-3339. 

Reiman, E.M., Chen, K., Alexander, G.E., Caselli, R.J., Bandy, D., Osborne, D., Saunders, A.M., and 
Hardy, J. (2004). Functional brain abnormalities in young adults at genetic risk for late-onset 
Alzheimer's dementia. PNAS 101, 284-289. 

Reiman, E.M., Chen, K., Alexander, G.E., Caselli, R.J., Bandy, D., Osborne, D., Saunders, A.M., and 
Hardy, J. (2005). Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging 
measurements of regional hypometabolism. PNAS 102, 8299-8302. 

Reiman, E.M., Raichle, M.E., Robins, E., Mintun, M.A., Fusselman, M.J., Fox, P.T., Price, J.L., and 
Hackman, K.A. (1989). Neuroanatomical correlates of a lactate-induced anxiety attack. Arch Gen 
Psychiatry 46, 493-500. 

Richard, F., and Amouyel, P. (2001). Genetic susceptibility factors for Alzheimer's disease. Eur J 
Pharmacol 412, 1-12. 

Richards, D.A., Tolias, C.M., Sgouros, S., and Bowery, N.G. (2003). Extracellular glutamine to 
glutamate ratio may predict outcome in the injured brain: a clinical microdialysis study in children. 
Pharmacol Res 48, 101-109. 

Rickert, J., Oliveira, S.C., Vaadia, E., Aertsen, A., Rotter, S., and Mehring, C. (2005). Encoding of 
movement direction in different frequency ranges of motor cortical local field potentials. J Neurosci 
25, 8815-8824. 

Rockland, K.S., and Pandya, D.N. (1979). Laminar origins and terminations of cortical connections of 
the occipital lobe in the rhesus monkey. Brain Res 179, 3-20. 



 
 

Page | 321  
 

Rogers, G.L. (2003). Functional magnetic resonance imaging (fMRI) and effects of L-dopa on visual 
function in normal and amblyopic subjects. Trans Am Ophthalmol Soc 101, 401-415. 

Rossi, A.F., Desimone, R., and Ungerleider, L.G. (2001). Contextual modulation in primary visual 
cortex of macaques. J Neurosci 21, 1698-1709. 

Safaai, H., Neves, R., Eschenko, O., Logothetis, N.K., and Panzeri, S. (2015). Modeling the effect of 
locus coeruleus firing on cortical state dynamics and single-trial sensory processing. Proc Natl Acad 
Sci U S A 112, 12834-12839. 

Samuelsson, C., Hillered, L., Zetterling, M., Enblad, P., Hesselager, G., Ryttlefors, M., Kumlien, E., 
Lewen, A., Marklund, N., Nilsson, P., et al. (2007). Cerebral glutamine and glutamate levels in 
relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage 
patients. J Cereb Blood Flow Metab 27, 1309-1317. 

Scheeringa, R., Fries, P., Petersson, K.M., Oostenveld, R., Grothe, I., Norris, D.G., Hagoort, P., and 
Bastiaansen, M.C. (2011). Neuronal dynamics underlying high- and low-frequency EEG oscillations 
contribute independently to the human BOLD signal. Neuron 69, 572-583. 

Schlichtherle-Cerny, H., Affolter, M., and Cerny, C. (2003). Hydrophilic interaction liquid 
chromatography coupled to electrospray mass spectrometry of small polar compounds in food 
analysis. Anal Chem 75, 2349-2354. 

Schmiedt, J.T., Maier, A., Fries, P., Saunders, R.C., Leopold, D.A., and Schmid, M.C. (2014). Beta 
oscillation dynamics in extrastriate cortex after removal of primary visual cortex. J Neurosci 34, 
11857-11864. 

Schroeder, C.E., and Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of 
sensory selection. Trends Neurosci 32, 9-18. 

Schwarz, A.J., Gozzi, A., Reese, T., and Bifone, A. (2007). In vivo mapping of functional connectivity in 
neurotransmitter systems using pharmacological MRI. Neuroimage 34, 1627-1636. 

Seamans, J.K., Durstewitz, D., Christie, B.R., Stevens, C.F., and Sejnowski, T.J. (2001a). Dopamine 
D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc 
Natl Acad Sci U S A 98, 301-306. 

Seamans, J.K., Gorelova, N., Durstewitz, D., and Yang, C.R. (2001b). Bidirectional dopamine 
modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21, 3628-
3638. 

Seamans, J.K., and Yang, C.R. (2004). The principal features and mechanisms of dopamine 
modulation in the prefrontal cortex. Prog Neurobiol 74, 1-58. 

Self, M.W., van Kerkoerle, T., Super, H., and Roelfsema, P.R. (2013). Distinct roles of the cortical 
layers of area V1 in figure-ground segregation. Curr Biol 23, 2121-2129. 

Sengupta, B., Laughlin, S.B., and Niven, J.E. (2014). Consequences of converting graded to action 
potentials upon neural information coding and energy efficiency. PLoS Comput Biol 10, e1003439. 

Serences, J.T. (2008). Value-based modulations in human visual cortex. Neuron 60, 1169-1181. 



 
 

Page | 322  
 

Servan-Schreiber, D., Printz, H., and Cohen, J.D. (1990). A network model of catecholamine effects: 
gain, signal-to-noise ratio, and behavior. Science 249, 892-895. 

Shackman, H.M., Shou, M., Cellar, N.A., Watson, C.J., and Kennedy, R.T. (2007). Microdialysis 
coupled on-line to capillary liquid chromatography with tandem mass spectrometry for monitoring 
acetylcholine in vivo. J Neurosci Methods 159, 86-92. 

Shah, V.P., Midha, K.K., Dighe, S., Mcgilveray, I.J., Skelly, J.P., Yacobi, A., Layloff, T., Viswanathan, 
C.T., Cook, C.E., Mcdowall, R.D., et al. (1991). Analytical Methods Validation - Bioavailability, 
Bioequivalence and Pharmacokinetic Studies - Conference Report. Eur J Drug Metab Ph 16, 249-255. 

Shannon, C.E. (1948). A Mathematical Theory of Communication. At&T Tech J 27, 379-423. 

Sharpe, L.T., Stockman, A., Jagla, W., and Jagle, H. (2005). A luminous efficiency function, 
V*(lambda), for daylight adaptation. J Vis 5, 948-968. 

Shmuel, A., Augath, M., Oeltermann, A., and Logothetis, N.K. (2006). Negative functional MRI 
response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9, 
569-577. 

Shuler, M.G., and Bear, M.F. (2006). Reward timing in the primary visual cortex. Science 311, 1606-
1609. 

Sicard, K.M., and Duong, T.Q. (2005). Effects of hypoxia, hyperoxia, and hypercapnia on baseline and 
stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25, 850-
858. 

Siegel, M., Donner, T.H., and Engel, A.K. (2012). Spectral fingerprints of large-scale neuronal 
interactions. Nat Rev Neurosci 13, 121-134. 

Siegelbaum, S.A., and Tsien, R.W. (1983). Modulation of Gated Ion Channels as a Mode of 
Transmitter Action. Trends Neurosci 6, 307-313. 

Sirotin, Y.B., and Das, A. (2009). Anticipatory haemodynamic signals in sensory cortex not predicted 
by local neuronal activity. Nature 457, 475-479. 

Smith, E.W., Skelton, M.S., Kremer, D.E., Pascoe, D.D., and Gladden, L.B. (1997). Lactate distribution 
in the blood during progressive exercise. Med Sci Sports Exerc 29, 654-660. 

Smith, M.L., Gosselin, F., and Schyns, P.G. (2006). Perceptual moments of conscious visual 
experience inferred from oscillatory brain activity. PNAS 103, 5626-5631. 

Sokoloff, L. (1977). Relation between physiological function and energy metabolism in the central 
nervous system. J Neurochem 29, 13-26. 

Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., 
and Shinohara, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral 
glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino 
rat. J Neurochem 28, 897-916. 

Spaak, E., Bonnefond, M., Maier, A., Leopold, D.A., and Jensen, O. (2012). Layer-specific entrainment 
of gamma-band neural activity by the alpha rhythm in monkey visual cortex. Curr Biol 22, 2313-2318. 



 
 

Page | 323  
 

Sperling, R., Greve, D., Dale, A., Killiany, R., Holmes, J., Rosas, H.D., Cocchiarella, A., Firth, P., Rosen, 
B., Lake, S., et al. (2002). Functional MRI detection of pharmacologically induced memory 
impairment. PNAS 99, 455-460. 

Stanisor, L., van der Togt, C., Pennartz, C.M., and Roelfsema, P.R. (2013). A unified selection signal 
for attention and reward in primary visual cortex. PNAS 110, 9136-9141. 

Steriade, M., Dossi, R.C., Pare, D., and Oakson, G. (1991). Fast Oscillations (20-40 Hz) in 
Thalamocortical Systems and Their Potentiation by Mesopontine Cholinergic Nuclei in the Cat. P Natl 
Acad Sci USA 88, 4396-4400. 

Steriade, M., and Hobson, J. (1976). Neuronal activity during the sleep-waking cycle. Prog Neurobiol 
6, 155-376. 

Stockman, A., Jagle, H., Pirzer, M., and Sharpe, L.T. (2008). The dependence of luminous efficiency on 
chromatic adaptation. J Vis 8, 1 1-26. 

Szymanski, F.D., Rabinowitz, N.C., Magri, C., Panzeri, S., and Schnupp, J.W. (2011). The laminar and 
temporal structure of stimulus information in the phase of field potentials of auditory cortex. J 
Neurosci 31, 15787-15801. 

Tombaugh, G.C., and Somjen, G.G. (1996). Effects of extracellular pH on voltage-gated Na+, K+ and 
Ca2+ currents in isolated rat CA1 neurons. J Physiol-London 493, 719-732. 

Tort, A.B., Komorowski, R., Eichenbaum, H., and Kopell, N. (2010). Measuring phase-amplitude 
coupling between neuronal oscillations of different frequencies. J Neurophysiol 104, 1195-1210. 

Traub, R.D., Whittington, M.A., Buhl, E.H., Jefferys, J.G., and Faulkner, H.J. (1999). On the mechanism 
of the gamma --> beta frequency shift in neuronal oscillations induced in rat hippocampal slices by 
tetanic stimulation. J Neurosci 19, 1088-1105. 

Treves, A., and Panzeri, S. (1995). The Upward Bias in Measures of Information Derived from Limited 
Data Samples. Neural Comp 7, 399-407. 

Trevino, M., Vivar, C., and Gutierrez, R. (2007). beta/gamma oscillatory activity in the CA3 
hippocampal area is depressed by aberrant GABAergic transmission from the dentate gyrus after 
seizures. Journal of Neuroscience 27, 251-259. 

Tsai, T.R., Cham, T.M., Chen, K.C., Chen, C.F., and Tsai, T.H. (1996). Determination of acetylcholine by 
on-line microdialysis coupled with pre- and post-microbore column enzyme reactors with 
electrochemical detection. J Chromatogr B Biomed Appl 678, 151-155. 

Uhlhaas, P.J., and Singer, W. (2015). Oscillations and neuronal dynamics in schizophrenia: the search 
for basic symptoms and translational opportunities. Biol Psychiatry 77, 1001-1009. 

Uran, S., Landmark, K.E., Hjellum, G., and Skotland, T. (2007). Quantification of 13C pyruvate and 13C 
lactate in dog blood by reversed-phase liquid chromatography-electrospray ionization mass 
spectrometry after derivatization with 3-nitrophenylhydrazine. J Pharm Biomed Anal 44, 947-954. 

Uutela, P., Reinila, R., Piepponen, P., Ketola, R.A., and Kostiainen, R. (2005). Analysis of acetylcholine 
and choline in microdialysis samples by liquid chromatography/tandem mass spectrometry. Rapid 
Commun Mass Spectrom 19, 2950-2956. 



 
 

Page | 324  
 

van Dam, J.C., Eman, M.R., Frank, J., Lange, H.C., van Dedem, G.W.K., and Heijnen, S.J. (2002). 
Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange 
chromatography and electrospray ionization with tandem mass spectrometric detection. Analytica 
Chimica Acta 460, 209-218. 

van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.A., Poort, J., van der Togt, C., and 
Roelfsema, P.R. (2014a). Alpha and gamma oscillations characterize feedback and feedforward 
processing in monkey visual cortex. PNAS 111, 14332-14341. 

van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.A., Poort, J., van der Togt, C., and 
Roelfsema, P.R. (2014b). Alpha and gamma oscillations characterize feedback and feedforward 
processing in monkey visual cortex. Proc Natl Acad Sci U S A 111, 14332-14341. 

van Kerkoerle, T., Self, M.W., and Roelfsema, P.R. (2017). Layer-specificity in the effects of attention 
and working memory on activity in primary visual cortex. Nat Commun 8, 13804. 

Viklund, C., Ponten, E., Glad, B., Irgum, K., Horstedt, P., and Svec, F. (1997). ''Molded'' macroporous 
poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) materials with fine controlled 
porous properties: Preparation of monoliths using photoinitiated polymerization. Chem Mater 9, 
463-471. 

Vlassenko, A.G., Rundle, M.M., Raichle, M.E., and Mintun, M.A. (2006). Regulation of blood flow in 
activated human brain by cytosolic NADH/NAD+ ratio. PNAS 103, 1964-1969. 

von Pfostl, V., Li, J., Zaldivar, D., Goense, J., Zhang, X., Serr, N., Logothetis, N.K., and Rauch, A. (2012). 
Effects of lactate on the early visual cortex of non-human primates, investigated by pharmaco-MRI 
and neurochemical analysis. Neuroimage 61, 98-105. 

Voytko, M.L., and Tinkler, G.P. (2004). Cognitive function and its neural mechanisms in nonhuman 
primate models of aging, Alzheimer disease, and menopause. Front Biosci 9, 1899-1914. 

Weatherall, D. (2006). The Weatherall report on the use of non-human primates in research. 
London:The Royal Society. 

Weis, T., Puschmann, S., Brechmann, A., and Thiel, C.M. (2012). Effects of L-dopa during auditory 
instrumental learning in humans. PLoS One 7, e52504. 

Whittingstall, K., and Logothetis, N.K. (2009). Frequency-band coupling in surface EEG reflects 
spiking activity in monkey visual cortex. Neuron 64, 281-289. 

Williamson, D.H., Lund, P., and Krebs, H.A. (1967). The redox state of free nicotinamide-adenine 
dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103, 514-527. 

Wójcik, D.K., and Leski, S. (2010). Current source density reconstruction from incomplete data. 
Neural Comp 22, 48-60. 

Wong, E.C., Buxton, R.B., and Frank, L.R. (1997). Implementation of quantitative perfusion imaging 
techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10, 237-
249. 

Wrobel, A. (2000). Beta activity: a carrier for visual attention. Acta Neurobiol Exp (Wars) 60, 247-260. 



 
 

Page | 325  
 

Yang, T.T., Chang, C.K., Tsao, C.W., Hsu, Y.M., Hsu, C.T., and Cheng, J.T. (2009). Activation of 
muscarinic M-3 receptor may decrease glucose uptake and lipolysis in adipose tissue of rats. 
Neurosci Lett 451, 57-59. 

Yao, T., Yano, T., Nanjyo, Y., and Nishino, H. (2003). Simultaneous determination of glucose and L-
lactate in rat brain by an electrochemical in vivo flow-injection system with an on-line microdialysis 
sampling. Anal Sci 19, 61-65. 

Yu, A.J., and Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron 46, 681-692. 

Yuste, R. (2015). From the neuron doctrine to neural networks. Nat Rev Neurosci 16, 487-497. 

Zaldivar, D., Logothetis, N.K., Rauch, A., and Goense, J. (2017). Pharmaco-Based fMRI and 
Neurophysiology in Non-Human Primates. In In Vivo Neuropharmacology and Neurophysiology, A. 
Philippu, ed. (New York, NY: Springer New York), pp. 37-66. 

Zaldivar, D., Rauch, A., Whittingstall, K., Logothetis, N.K., and Goense, J. (2014). Dopamine-induced 
dissociation of BOLD and neural activity in macaque visual cortex. Curr Biol 24, 2805-2811. 

Zappe, A.C., Pfeuffer, J., Merkle, H., Logothetis, N.K., and Goense, J.B. (2008a). The effect of labeling 
parameters on perfusion-based fMRI in nonhuman primates. J Cereb Blood Flow Metab 28, 640-652. 

Zappe, A.C., Uludag, K., and Logothetis, N.K. (2008b). Direct measurement of oxygen extraction with 
fMRI using 6% CO2 inhalation. Magn Reson Imaging 26, 961-967. 

Zhang, X., Rauch, A., Lee, H., Xiao, H., Rainer, G., and Logothetis, N.K. (2007). Capillary hydrophilic 
interaction chromatography/mass spectrometry for simultaneous determination of multiple 
neurotransmitters in primate cerebral cortex. Rapid Commun Mass Spectrom 21, 3621-3628. 

Zhang, X., Rauch, A., Xiao, H., Rainer, G., and Logothetis, N.K. (2008). Mass spectrometry-based 
neurochemical analysis: perspectives for primate research. Expert Rev Proteomics 5, 641-652. 

Zhu, Y., Wong, P.S., Cregor, M., Gitzen, J.F., Coury, L.A., and Kissinger, P.T. (2000). In vivo 
microdialysis and reverse phase ion pair liquid chromatography/tandem mass spectrometry for the 
determination and identification of acetylcholine and related compounds in rat brain. Rapid 
Commun Mass Spectrom 14, 1695-1700. 

Zhu, Y., and Zhu, J.J. (2004). Rapid arrival and integration of ascending sensory information in layer 1 
nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex. J Neurosci 
24, 1272-1279. 

Zonta, M., Angulo, M.C., Gobbo, S., Rosengarten, B., Hossmann, K.A., Pozzan, T., and Carmignoto, G. 
(2003). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat 
Neurosci 6, 43-50. 



 
 

pg. 326 

 

 


