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1. Summary 

Post-translational regulation of membrane proteins is pivotal for all eukaryotic 

cells. In particular, the regulation of transporter proteins at the plasma membrane. 

They are post-translationally regulated by vacuolar degradation after their endo-

cytic removal. For this to occur, the vacuole needs a constant supply of soluble hy-

drolyzing enzymes. At the heart of this process operate vacuolar sorting receptors 

(VSRs) mediating the transport of these enzymes towards the lytic vacuole. Based 

on the research on mammalian cells, it is assumed that VSR transport occurs bidi-

rectional and follows the common principle of receptor-mediated transport: Recep-

tors bind ligands in the donor compartment, thereby forming a receptor-ligand 

complex that is transported to the acceptor compartment. Upon arrival, ligands are 

released and receptors recycle back to the donor compartment to reload ligands. It 

is presumed that this transport occurs between the trans-Golgi network/early en-

dosome (TGN/EE) and the multivesicular bodies/late endosomes (MVBs/LEs) in 

plants. It now became clear that VSR bind ligand in the early secretory pathway 

and transport them to the TGN/EE were they are released (Künzl et al., 2016). 

To analyze the post TGN/EE transport of soluble proteins, we generated a nano-

body-based system to follow the fate of soluble proteins lacking vacuolar sorting 

signals that were placed in the TGN/EE via the endocytic pathway. This enabled 

us to demonstrated that post TGN/EE transport of ligands to the vacuole occurs in-

dependently of VSRs (Künzl et al., 2016). Usage of this system, however, required 

testing that nanobody-triggered protein-protein interactions between two soluble 

proteins can occur in the endomembrane system (Früholz and Pimpl, 2017). 

With the demonstration that VSRs release ligands in the TGN/EE (Künzl et al., 

2016) it became clear that if VSRs do recycle, then the TGN/EE would be the 

starting point for such a recycling. To identify the target compartment of the VSR 

recycling route, we devised an approach where we employ simultaneously two dif-

ferent nanobody-epitope pairs. One to label VSRs fluorescently in the TGN/EE 

and a second to trigger the lockdown of recycled VSRs via an endocytosed dual 

epitope linker to block their further anterograde transport. Using this approach, we 

demonstrate that VSRs recycle from the TGN/EE to the cis-Golgi and show that 

recycled VSRs reload ligands there (Früholz et al., in press). 

Together, we proof that the bidirectional VSR-mediated transport exists and oc-

curs between the TGN/EE and the cis-Golgi.  
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2. Zusammenfassung 

Die post-translationale Regulation von Membranproteinen ist für alle eukaryoti-

schen Zellen von zentraler Bedeutung, vor allem die Regulation von Transporter-

proteinen an der Plasmamembran. Diese werden nach ihrem endozytischen Ab-

bau durch vakuoläre Degradation reguliert. Dazu benötigt die Vakuole eine dauer-

hafte Versorgung mit löslichen hydrolytischen Enzymen. Um dies zu gewährleis-

ten, werden vakuoläre Sortierungsrezeptoren (VSRs), die den Transport dieser 

Enzyme vermitteln, benötigt. Basierend auf der Forschung in Säugetierzellen wird 

vermutet, dass der Transport von VSRs bidirektional ist und nach dem allgemei-

nen Prinzip des Rezeptor vermittelten Transportes abläuft: Rezeptoren binden Lig-

anden in einem Donor Kompartiment und bilden einen Rezeptor-Liganden Kom-

plex, der zum Akzeptor Kompartiment transportiert wird. Dort dissoziieren die Lig-

anden vom Rezeptor und die Rezeptoren rezyklieren zurück zum Donor Komparti-

ment um neue Liganden zu binden. Bisher wurde vermutet, dass dieser Transport-

schritt in Pflanzen zwischen dem trans-Golgi Netzwerk/frühen Endosom (TGN/EE) 

und den multivesikulären Körpern/späte Endosomen (MVBs/LEs) stattfindet. Jetzt 

konnte erstmals gezeigt werden, dass VSRs Liganden bereits im frühen sekretori-

schen Weg binden und diese nur bis zum TGN/EE transportieren, wo sie dissozi-

ieren (Künzl et al., 2016). 

Um den post TGN/EE Transport von löslichen Proteinen analysieren zu können, 

haben wir ein System entwickelt, das auf Nanobody-Epitop Interaktionen basiert. 

Hierfür haben wir eine Strategie entwickelt um den Transport von löslichen Protei-

nen ohne Sortierungssignale, die durch den endozytischen Weg im TGN/EE pla-

ziert wurden, zu analysieren. Dadurch konnten wir zeigen, dass der post TGN/EE 

Transport von Liganden hin zur lytischen Vakuole unabhängig von VSRs ist (Künzl 

et al., 2016). Um dieses System anwenden zu können, musste im Vorfeld jedoch 

erst bestätigt werden, dass Nanobody-Epitop Interaktionen zwischen zwei lösli-

chen Proteinen im Endomembransystem auch tatsächlich erfolgen (Früholz and 

Pimpl, 2017). 

Der Beweis, dass Liganden im TGN/EE von VSRs dissoziieren, konnte daher 

auch als ein weiteres Indiz für die Vermutung, dass es sich bei dem TGN/EE auch 

um das Kompartiment handelt, von dem aus VSRs rezyklieren, herangezogen 

werden (Künzl et al., 2016). 
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Um das Zielkompartiment des VSR Rezyklierungsweges zu identifizieren, haben 

wir einen Ansatz entwickelt, bei dem wir gleichzeitig zwei Nanobody-Epitop Paare 

einsetzen. Ein Paar um den VSR im TGN/EE fluoreszent sichtbar zu machen und 

das Zweite um den rezyklierten VSR im Zielkompartiment festzuhalten und den 

weiteren Transport des VSRs zu blockieren. Mit diesem Ansatz konnten wir zei-

gen, dass VSRs vom TGN/EE zum cis-Golgi rezyklieren und dass rezyklierte Re-

zeptoren im cis-Golgi neue Liganden binden können (Früholz et al., in press). 

Zusammengefasst konnten wir beweisen, dass der bidirektionale VSR-vermittelte 

Transport existiert und zwischen dem TGN/EE und dem cis-Golgi stattfindet.  
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4. Personal contribution 

4.1 Receptor-mediated sorting of soluble vacuolar proteins ends at the 

trans-Golgi network/early endosome (Künzl et al., 2016) 

For this research article, I contributed the result which shows that VSRs are not 

involved in the post TGN/EE transport of soluble vacuolar proteins. Further, I 

showed that the vacuole is the default location of endocytosed soluble proteins. 

For this, I developed the strategy for the endocytic uptake assay, performed all 

required experiments and generated the reported genetic constructs. Results 

are summarized in Figure 6 in Künzl et al. (2016). 

 

4.2 Analysis of nanobody-epitope interactions in living cells via quantitative 

protein transport assays (Früholz and Pimpl, 2017) 

This article illustrates the strategy that was established to test for an occurring 

interaction between two soluble proteins in the endomembrane system trig-

gered by a nanobody-epitope interaction. The nanobody-epitope interaction 

was verified with a quantitative protein transport assay. Therefore, I performed 

all experiments, analyzed the data and generated the reported genetic con-

structs. The article was written together with Peter Pimpl. 

 

4.3 Nanobody mediated lockdown of VSRs reveals ligand reloading in the 

Golgi (Früholz et al., in press) 

In this research article, we identified the cis-Golgi as the target compartment of 

the VSR recycling route and finally proof the concept of recycling and ligand re-

loading of the bidirectional VSR-mediated transport. For this achievement, I 

have developed a strategy that employs simultaneously two different nano-

body-epitope pairs. One pair to post-translationally label a VSR in the TGN/EE 

and the second to lock it after recycling in the target compartment to block its 

further anterograde transport. Therefore, I performed all experiments, did the 

statistical analysis and generated the reported genetic constructs. The experi-

ments were designed together with FF, ÜK and PP, the article was written to-

gether with PP.  
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5. Introduction 

5.1 The plant endomembrane system 

The plant endomembrane system is an interconnected system of different com-

partments comprised of the endoplasmic reticulum (ER), the Golgi apparatus, the 

trans-Golgi network (TGN), the multivesicular bodies (MVBs), the vacuoles and 

the plasma membrane (PM). Each of the compartments is characterized by a dif-

ferent set of lipids, enzymes and metabolites linked by dynamic and complex 

transport routes that are essential for cell growth and cell function as well as the 

response to environmental stimuli. Three main transport routes exist within the en-

domembrane system: (1) The secretory route that mediates the transport of pro-

teins from the ER to the PM or the extracellular space. (2) The vacuolar route that 

passes proteins from the ER to the vacuole and (3) the endocytic route, mediating 

the transport of PM-localizing proteins and solutes from the exterior to the trans-

Golgi network/early endosome (TGN/EE). From there, endocytosed proteins are 

transported via the multivesicular bodies/late endosomes (MVBs/LEs) to the vacu-

ole or might recycle back to the PM (Inada and Ueda, 2014). 

 

5.1.1 Transport routes in the plant endomembrane system 

Proteins, lipids and polysaccharides are synthesized, folded and glycosylated in 

the ER. Proteins that pass the quality control exit the ER. They are packed at ER 

exit sites (ERES) into coat protein complex II (COPII)-coated vesicles (Barlowe, 

1998; daSilva et al., 2004; Yang et al., 2005). Formation of COPII-coated vesicles 

is induced by the activation of the cytosolic GTPase secretion activated Ras-re-

lated protein 1 (Sar1) through the guanine nucleotide exchange factor Sec12. Sar1 

is recruited to the ER membrane and binds then the Sec23-24 and the Sec13-31 

dimers to form COPII-coated vesicles. (Barlowe et al., 1994; Miller and Barlowe, 

2010; Jensen and Schekman, 2011). These vesicles mediate the anterograde 

transport of proteins to the Golgi where they fuse with the target membrane after 

uncoating (Takeuchi et al., 2000; Brandizzi and Barlowe, 2013). ER export of solu-

ble proteins occurs by default. They enter passively COPII-coated vesicles 

(Phillipson et al., 2001) whilst membrane proteins carry specific sorting signals, for 

example a diacidic (DXE; sorting signal consisting of the two acidic amino acids 

aspartic acid and glutamic acid that are separated by a random amino acid) or a 
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diaromatic (FF, YF; sorting signal consisting of the aromatic amino acids phenylal-

anine-phenylalanine or tyrosine-phenylalanine) motif which interact with the 

Sec23-24 dimer (Contreras et al., 2004; Hanton et al., 2005). COPI-coated vesi-

cles mediate the retrograde transport between the Golgi and the ER. The ADP-ri-

bosylation factor 1 (ARF1) GTPase recruits the coatomer, a complex that consists 

of the seven subunits α, β, β′, γ, δ, ε, and ζ, en bloc to the Golgi membrane to form 

COPI-coated vesicles (Hara-Kuge et al., 1994; Contreras et al., 2000; Pimpl et al., 

2000). They recycle ER-resident proteins back to the ER that escaped the ER by 

bulk flow. For this sorting process, different sorting signals are known. Soluble pro-

teins that carry the C-terminal tetrapeptide HDEL or KDEL are recognized by the 

ENDOPLASMIC RETICULUM RETENTION DEFECTIVE 2 (ERD2) receptor pro-

tein in the Golgi (Denecke et al., 1992; Boevink et al., 1998). The cargo ERD2 

complex then interacts with p24 proteins of the delta subfamily at acidic pH 

(Montesinos et al., 2014). Dilysine motifs (KKXX or KXKXX) in the cytosolic tails of 

ERD2 and p24 interact with ARF1 leading to the formation of COPI-coated vesi-

cles. After vesicles bud off the membrane, the coat falls off and the uncoated vesi-

cles fuse with the ER membrane where HDEL/KDEL ligands are released into the 

compartmental lumen due to the neutral pH (Montesinos et al., 2014; Pastor-

Cantizano et al., 2016). Other ER-resident membrane proteins carrying a dilysine 

motif in their C-terminal cytosolic domain that have reached the Golgi are also 

transported to the ER in a COPI dependent manner (Letourneur et al., 1994; Gao 

et al., 2014). However, COPI is not only responsible for the ER retrieval, it further 

mediates the retrograde transport from the trans-Golgi cisternae to the cis-Golgi 

cisternae (Orci et al., 1997; Pelham and Rothman, 2000). It was further suggested 

that COPI, at least the β subunit, is involved in the formation of endosomal carrier 

vesicles (ECVs) which mediate transport between the early and late endosomes 

(Aniento et al., 1996). 

The plant Golgi has a stacked morphology and consists of different cisternae 

(Staehelin and Moore, 1995; Dupree and Sherrier, 1998). The cisternae of the 

Golgi are defined as cis, medial and trans whereby the cis-cisternae faces the ER 

and the trans-cisternae the TGN (Schoberer and Strasser, 2011). Whilst trafficking 

through the Golgi, proteins are glycosylated in the trans-Golgi (Strasser, 2014) and 

afterwards reach the TGN. The TGN is a tubular-vesicular structure (Dettmer et 

al., 2006; Viotti et al., 2010; Kang et al., 2011). Based on the findings that super-
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resolution confocal live imaging microscopy (SCLIM) identified Golgi-associated 

TGNs (GA-TGNs) that locate at the trans-side of the Golgi and Golgi-released in-

dependent TGNs (GI-TGNs) that do not locate in close proximity to the Golgi and 

behave independently (Uemura et al., 2014), it is suggested that two different 

TGNs exist. Further, it is assumed that the secretory and the vacuolar pathway 

separate in the TGN (Dettmer et al., 2006). Secretory proteins are transported with 

secretory vesicles (SVs) to the PM or the extracellular space (Dettmer et al., 2006) 

whilst vacuolar proteins are transported towards the vacuole. Multivesicular bodies 

(MVBs) mediate the vacuolar pathway: they bud off the TGN by maturation and 

deliver cargo to the lytic vacuole by fusion (Scheuring et al., 2011). The secretory 

and vacuolar pathway is described schematically in Figure 1.  

 

 

Figure 1: Schematic description of the main transport routs in the plant endomembrane sys-
tem. (1) The secretory pathway mediates the transport of proteins from the ER to the PM. (2) The 
vacuolar route passes proteins from the ER to the vacuole and (3) the endocytic route mediates the 
transport of PM-localizing proteins and solutes from the exterior to the TGN/EE. 

 

The endocytic uptake of proteins, lipids and extracellular proteins from the PM is 

important for growth and development of cells, the cell-cell communication, hor-

mone signaling and for the response to environmental stimuli such as pathogen 

defense and nutrient delivery (Chen et al., 2011; Fan et al., 2015). The endocytic 

pathway starts at the PM were PM-localizing proteins present endocytic sorting 

signals that are located in their cytosolic tails. Three different endocytic sorting sig-

nals are described: (1) linear amino acid motifs (Chen et al., 1990; Collawn et al., 
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1990; Letourneur and Klausner, 1992), (2) conformational motifs (Pryor et al., 

2008; Yu et al., 2010; Miller et al., 2011) and (3) posttranslational modifications 

like ubiquitination or phosphorylation (Ferguson et al., 1996; Hicke and Riezman, 

1996). As linear amino acid motif, the tyrosine-based motif YXXΦ (where Φ is a 

bulky hydrophobic amino acid and X is any amino acid) is described. This sorting 

motif, located in the cytosolic tail of PM proteins is recognized by clathrin adaptors 

and PM proteins are packed into clathrin-coated vesicles (CCVs) for internalization 

(Traub, 2009). For example the ETHYLENE INDUCING XYLANASE (LeEIX2) re-

ceptor from tomato (Solanum lycopersicum) has a tyrosine motif in the cytosolic 

domain (Ron and Avni, 2004). Upon binding of the fungal elicitor Ethylene-induc-

ing xylanase (EIX) to LeEIX2, the defense response is induced, clathrin adaptors 

bind to the tyrosine-based motif and the EIX-LeEIX2 complex is internalized into 

CCVs (Bar and Avni, 2009; Bar and Avni, 2012). For ubiquitination as endocytic 

sorting signal, two variants are known; either one ubiquitin (monoubiquitination) or 

more ubiquitin molecules (polyubiquitination) are attached to lysine residues (Paez 

Valencia et al., 2016). After binding of the bacterial flagellin (flg22) to the flagellin 

receptor FLAGELLIN SENSING 2 (FLS2) (Robatzek et al., 2006), ubiquitin ligases 

are recruited. After their BRI1-ASSOCIATED KINASE 1 (BAK1)-mediated phos-

phorylation, they polyubiquitinate FLS2 (Lu et al., 2011). The polyubiquitinated 

complex is then endocytosed with CCVs and degraded. Other receptors that are 

endocytosed after polyubiquitination are the brassinosteroid (BR) receptor 

BRASSINOSTEROID INSENSITIVE1 (BRI1) (Russinova et al., 2004; Martins et 

al., 2015) and the auxin efflux carriers PIN-PERFORMED (PIN) (Dhonukshe et al., 

2007). The IRON-REGULATED TRANSPORTER 1 (IRT1) cycles between the 

TGN/EE and the PM or is send to the vacuole for degradation when it is mon-

oubiquitinated (Barberon et al., 2011). IRT1 binds divalent metals at the PM and 

transports them to the TGN. A transporter that combines different endocytic sort-

ing signals is the BORON TRANSPORTER 1 (BOR1) (Takano et al., 2010). At 

high boron conditions, BOR1 is mono- and diubiquitinated and the three tyrosine-

based sorting motifs in the cytosolic tail recruit clathrin adaptors to be packed into 

CCVs. BOR1 is then transported to the vacuole for degradation and further 

transport of boron is avoided (Takano et al., 2005; Kasai et al., 2011). 

If the ubiquitin sorting signal is mutated by removing the two C-terminal glycines 

(UbΔGG), PM proteins are no longer internalized and stay at the PM. The reason 
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is that UbΔGG can then only be monoubiquitinated and it is speculated that this 

might not be sufficient to trigger internalization (Scheuring et al., 2012). 

After the formation of CCVs, the internalized vesicles are detached from the mem-

brane by the activity of dynamin and dynamin-related proteins (Fujimoto et al., 

2010). However, it was also noted that a pathway exists which endocytoses pro-

teins in a clathrin-independent manner (Bandmann and Homann, 2012; 

Bandmann et al., 2012; Li et al., 2012), but coat proteins that mediate this pathway 

still have to be identified. 

Detached endocytic vesicles uncoat and fuse with the early endosome (EE). The 

TGN-localizing proteins VHA-a1 and SCAMP1 colocalized with the endocytic 

tracer FM4-64, indicating that the TGN is the EE in plants (Dettmer et al., 2006; 

Lam et al., 2007). This also suggests that the TGN/EE is the intersect of the bio-

synthetic and the endocytic pathway. Spinning disc confocal microscopy revealed 

that a TGN/EE and a Golgi marker move independently, but the TGN marker can 

closely associate with the Golgi marker or with other TGNs (Viotti et al., 2010). Ac-

cordingly, the TGN/EE has to be considered as an independent compartment, 

even though it is derived from the Golgi (Viotti et al., 2010; Kang et al., 2011; 

Uemura et al., 2014).  

PM-localizing proteins that are endocytosed to the TGN/EE are either recycled 

back to the PM or transported via the late endosomes (LEs) to the vacuole for 

degradation (Paez Valencia et al., 2016). Recycling of endocytosed PM-proteins 

was reported to occur for PINs, BOR1 or IRT1 (Geldner et al., 2003; Takano et al., 

2010; Barberon et al., 2011). Cargo that is destined for vacuolar degradation 

passes the LE before it is delivered to the vacuole (Tse et al., 2004; Dettmer et al., 

2006; Viotti et al., 2010). LEs consist of intraluminal vesicles (ILV) and are thus 

named multivesicular bodies (MVBs) (Tse et al., 2004). Scheuring et al. (2011) 

identified that the transport from the TGN/EE to the MVB/LE occurs via maturation. 

MVBs/LEs bud off the TGN/EE and finally fuse with the vacuole to deliver cargo. 

The endocytic pathway is described schematically in Figure 1. 

 

5.2 Receptor-mediated sorting of soluble vacuolar proteins 

Receptor-mediated sorting of soluble proteins exists in all eukaryotic cells. It is 

suggested that the receptor-mediated transport of soluble proteins follows the 
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common principle of the bidirectional receptor mediated transport: Receptors bind 

ligands in a donor compartment and form a receptor-ligand complex. This complex 

is then transported to the acceptor compartment where the receptor-ligand com-

plex dissociates and the receptors recycle back to the donor compartment for fur-

ther rounds of ligand transport. The first identified cycling receptor was the low-

density lipoprotein (LDL) receptor (Brown et al., 1983). The LDL receptor binds 

LDL at the cell surface of cultured human fibroblasts (Goldstein and Brown, 1974). 

After forming a receptor-ligand complex, it is endocytosed in coated vesicles, 

which fuse with each other to larger vesicles, called endosomes (Anderson et al., 

1982; Brown et al., 1983). There, the receptor-ligand complex dissociates and the 

receptors recycle back to the PM to reload ligands whilst released ligands are 

transported to the lysosome for degradation (Brown et al., 1983).  

Receptors that mediate the transport of soluble vacuolar or lysosomal proteins are 

the cation-independent (CI)-mannosyl 6-phosphate receptor (MPR) and the cation-

dependent (CD)-MPR in mammals (Sahagian et al., 1981; Hoflack and Kornfeld, 

1985), the vacuolar protein sorting 10 (VPS10) receptor in yeast (Marcusson et al., 

1994) and the vacuolar sorting receptor in plants (Kirsch et al., 1994). 

In mammals, soluble lysosomal proteins are glycosylated in the ER and trans-

ported to the Golgi. There, oligosaccharide chains are modified by the GlcNac-1-

phosphotransferase (Braulke and Bonifacino, 2009). Soluble lysosomal proteins 

are then transported to the TGN were the uncovering enzyme (UCE) exposes the 

mannose 6-phosphate (M6P) residues and the sorting signal becomes accessible 

(Rohrer and Kornfeld, 2001). The M6P residues are then recognized by the MPRs 

and form a receptor-ligand complex. This complex leaves the TGN in CCVs and 

fuses with the membrane of the early endosome. There, the MPR-ligand complex 

dissociates due to the low pH (< 5.5) (Olson et al., 2008) and MPRs recycles back 

to the TGN. This retrograde transport occurs in a retromer-dependent manner 

(Arighi et al., 2004; Seaman, 2004), a protein complex consisting of five subunits 

that bind the unoccupied receptor (Bonifacino and Hurley, 2008). Further transport 

of ligands occurs with the fluid phase in a receptor-independent manner from the 

early endosome to the lysosome via maturation (Kornfeld and Mellman, 1989; 

Huotari and Helenius, 2011). 
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Deciphering of vacuolar sorting in plants started with the discovery that vacuolar 

sorting signals (VSS) are not encoded in post-translational modifications but are 

encoded in the primary amino acid sequence, instead. 

Three different classes of VSSs have been described: (1) sequence-specific VSSs 

(ssVSS), (2) C-terminal VSSs (ctVSS) and (3) protein structure-dependent VSSs 

(psVSS) (Xiang et al., 2013). The N-terminal ssVSS with the amino acid sequence 

NPIR was described for barley (Hordeum vulgare) aleurain (Holwerda et al., 

1992), potato (Ipomoea batatas) sporamin (Nakamura and Matsuoka, 1993; Koide 

et al., 1997) and castor bean (Ricinus communis) 2S albumin (Brown et al., 2003) 

and ricin (Frigerio et al., 2001; Jolliffe et al., 2004). The C-terminal ssVSS AFVY 

was described for phaseolin from Phaseolus vulgaris (Frigerio et al., 1998) whilst 

FAEAI and LVAE for barley lectin (Bednarek et al., 1990; Bednarek and Raikhel, 

1991) and GLLVDTM for tobacco (Nicotiana tabacum) chitinase (Neuhaus et al., 

1991) act as ctVSS. After the description of the different VSS, VSRs were discov-

ered by the extraction of CCVs from Golgi membranes of developing pea (Pisum 

sativum L.) cotyledons (Kirsch et al., 1994). The extract was applied to a proaleu-

rain coated affinity column and a type I integral transmembrane protein of 80 kDa, 

named 80 kDa binding protein (BP80), was bound to the column. Analysis of topol-

ogy revealed that BP80 contains a luminal N-terminus and a cytosolic C-terminus 

which contains the NPIR binding domain for proaleurain (Kirsch et al., 1994). 

Later, the ligand specificity of BP80 was further analyzed. It was shown that BP80 

also binds to prosporamin and pro-2S albumin, the C-terminal VSS from Brazil nut 

(Bertholletia excels), in vitro (Kirsch et al., 1996).  

Soon thereafter, several homologues of BP80 were identified by molecular cloning 

and homology searches in Arabidopsis, maize (Zea mays) and pumpkin (Cucur-

bita sp.) (Ahmed et al., 1997; Paris et al., 1997; Shimada et al., 1997) revealing 

that vacuolar sorting receptors are a conserved family that is unique to plants (De 

Marcos Lousa et al., 2012). Localization studies of all seven VSRs (AtVSR1-7) 

from Arabidopsis (Shimada et al., 2003) show that VSRs localize at the trans-Golgi 

face and the prevacuolar compartment (PVC) (Paris et al., 1997; Sanderfoot et al., 

1998; Li et al., 2002). Moreover, it was demonstrated that VSR bind the ligand Al-

eurain which carries the ssVSS NPIR in vitro in a pH dependent manner: VSRs 

bind ligands at neutral pH and release them at a lower pH (Kirsch et al., 1994; 
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Ahmed et al., 2000). The luminal part of the VSR, involved in the VSR-ligand inter-

action, consists of a protease-associated (PA) domain, a central domain and three 

epidermal growth factor (EGF) repeats. It is suggested that the PA and the central 

domain recognize the NPIR motif from the ligand and built a receptor-ligand com-

plex. The EGF repeats, however, might function as calcium binding domains, 

which induce a conformational change of the PA and the central domain that stabi-

lizes the VSR-ligand complex (Cao et al., 2000; Watanabe et al., 2002; Watanabe 

et al., 2004). To get more insights into the VSR-ligand interaction, the PA domain 

of VSR1 was crystalized alone and in complex with a NPIR-containing peptide. 

Results show, that the PA domain binds the amino acid sequence Alanine-Aspar-

tic acid-Serine (ADS) from the NPIR-containing peptide and induces thereby a 

conformational change. This change might relocate the central domain, which is 

then suggested to recognize the NPIR motif of the ligand (Luo et al., 2014). 

Another factor that seems to be crucial for the transport of VSRs is their homodi-

merization. Kim et al. (2010) suggest that VSR1 mutants which lack the tyrosine 

motif YMPL in the cytosolic domain (C2A mutant) cannot homodimerize and are 

thus not transported. They were able to show that this mutant localizes to the 

Golgi and TGN and that vacuolar cargo was secreted into the culture medium 

when coexpressed with the C2A mutant in Arabidopsis protoplasts. 

The same tyrosine motif YXXΦ (YMPL) that is conserved among all Arabidopsis 

VSRs (Paris et al., 1997; Hadlington and Denecke, 2000) might also be important 

for the clathrin-mediated anterograde transport in the endomembrane system. This 

tyrosine-based motif interacts in vitro with the Arabidopsis µA-subunit of the clath-

rin adaptor protein (AP) complex which localizes at the TGN (Happel et al., 2004). 

If the tyrosine motif is mutated in a truncated receptor, where the N-terminal lu-

minal-binding domain (LBD) was replaced by the green fluorescent protein (GFP; 

GFP-BP80), it was not targeted correctly (daSilva et al., 2006). For this, the tyro-

sine was replaced with an alanine (Y612A). After overexpression of the mutated 

VRS in tobacco protoplasts, the receptor partially retained in the Golgi or was mis-

targeted to the PM, resulting in a delayed transport of the mutated VSRs to the 

PVC. The sorting motif for the retrograde transport of VSRs also appears to be in 

the C-terminal cytosolic tail. If the IM motif of GFP-BP80 is mutated by exchanging 

it for two alanins, the receptor is mistargeted to the vacuole (Saint-Jean et al., 
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2010). Due to the vacuolar delivery of the mutated receptors, the authors con-

cluded that the IM motif might be important for the recycling of VSRs. 

It was suggested that the recycling of VSRs is retromer-mediated (Oliviusson et 

al., 2006; Shimada et al., 2006; Jaillais et al., 2007). The cytosolic retromer is re-

cruited to the membrane of endosomes to recycle VSRs after ligand release back 

to the donor compartment. The retromer complex is made up of two subunits, a 

large one, consisting of vacuolar sorting protein (VPS)26, VPS29 and VSP35 that 

functions as cargo recognition complex (Oliviusson et al., 2006; Jaillais et al., 

2007). The small subunit consists of sorting nexin (SNX)1 and SNX2 and induce 

the membrane curvature (Jaillais et al., 2006; Niemes et al., 2010b). The interac-

tion between the VSR and the retromer complex is suggested to occur via VPS35. 

In vitro interaction analysis showed that antibodies, directed against VPS35, im-

munoprecipitate VSRs (Oliviusson et al., 2006). 

Together, the data from the localization studies of VSRs and in vitro receptor-lig-

and interaction analysis suggests that VSRs mediate the transport of soluble vacu-

olar proteins between the trans-Golgi cisternae or the trans-Golgi network, which 

is the early endosome in plants (TGN/EE) (Dettmer et al., 2006) and the PVC, 

identified to be the MVB/LE (Tse et al., 2004). It is speculated that VSRs bind lig-

ands in the TGN/EE and transport them with CCVs to the MVB/LE (Kirsch et al., 

1994; Happel et al., 2004) where they are released due to the low pH (Kirsch et 

al., 1994; Paris et al., 1997). It is suggested that the pH drops en route to the vac-

uole similar as in mammals, where the late endosomes are the most acidic com-

partment en route to the lysosome (Casey et al., 2010). The unoccupied receptors 

recycle then in a retromer-dependent manner back to the TGN/EE (Oliviusson et 

al., 2006; Shimada et al., 2006; Jaillais et al., 2007) for further rounds of ligand 

transport (see Figure 2). However, in vivo there is no molecular evidence for lig-

and binding and release in the TGN/EE and the MVB/LE, respectively. 

 



Introduction 

19 
 

 

Figure 2: Schematic description of transport processes in the plant endomembrane system. 
Protein transport starts at the ER. (1) There, proteins are packed into COPII-coated vesicles and 
transported anterograde to the Golgi apparatus. (2) The retrograde protein transport from the Golgi 
back to the ER occurs via COPI-coated vesicles. (3) After passing the Golgi, proteins are trans-
ported to the trans-Golgi network/early endosome (TGN/EE). (4) From there, secretory proteins are 
transported with secretory vesicles (SVs) to the plasma membrane (PM). (5) Soluble vacuolar pro-
teins are bound to vacuolar sorting receptors (VSRs) in the TGN/EE and transported with CCV to 
the multivesicular bodies/late endosomes (MVBs/LEs). (6) In the MVBs/LEs, vacuolar proteins dis-
sociate from the receptors and their vacuolar delivery occurs by the fusion with the lytic vacuole 
(LV). (7) VSRs recycle from the MVB/LE back to the TGN/EE with the retromer complex, were they 
can go for further rounds of ligand transport. (8) Starting from the PM, proteins are endocytosed in 
CCVs to the TGN/EE. From there, they recycle back to the PM or they are transported towards the 
LV. (Adapted and modified from (Früholz et al., in press). 

 

5.2.1 Open questions 

Recently, evidence was provided that VSRs might recycle between the TGN/EE 

and an upstream compartment (Niemes et al., 2010b; Robinson and Pimpl, 2014). 

VSRs were localized by immunogold labeling in Arabidopsis root cells at the 

TGN/EE and the MVB/LE (Niemes et al., 2010b; Stierhof and El Kasmi, 2010; 

Viotti et al., 2010). Further, the retromer components SNX1, SNX2a and VPS29 

were localized at the TGN/EE suggesting that retromer-mediated recycling of 

VSRs starts at the TGN/EE (Niemes et al., 2010b; Stierhof et al., 2012) and not at 

the MVB/LE as proposed earlier. This assumption, however, implies that VSRs re-

lease their ligands already in the TGN/EE and subsequently, that VSRs bind cargo 

in a compartment of the vacuolar transport route that is upstream of the TGN/EE. 

It was shown that chimeric VSRs where the LDB was fused to the ER-retention 

signal HDEL were able to accumulate ligands in the early secretory pathway 
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(Watanabe et al., 2004; daSilva et al., 2005). When the LDB was fused to the ER-

resident protein Calnexin and coexpressed with a soluble vacuolar ligand in to-

bacco protoplasts, the ligand retained in the ER (Niemes et al., 2010a). These re-

sults show that VSR-ligand interaction can occur in compartments upstream of the 

TGN/EE.  

At the time, it was reported that a pH between 6.0 and 7.5 triggers the VSR-ligand 

interaction, whereas ligands dissociate from the receptors at a pH lower than 5.0 

in vitro (Kirsch et al., 1994; Cao et al., 2000). Just recently, the intraluminal pH val-

ues were identified (Martiniere et al., 2013; Shen et al., 2013). pH in the ER is 

around 7.1 - 7.5 and in the Golgi between 6.8 and 6.9. The TGN/EE is with a pH of 

6.1 - 6.3 the most acidic compartment, or slightly more alkaline as the MVB/LE 

(6.2 - 6.7), en route to the vacuole. These pH values further support the sugges-

tion that VSRs might recycle from the TGN/EE and indicate that VSR-ligand inter-

action occurs in the early secretory pathway and ligand dissociation in the 

TGN/EE. However, there is no experimental evidence for this suggestion so far.  

This proposed mechanism is also supported by the fact that the transport between 

the TGN/EE and the MVB/LE occurs via maturation of the MVBs/LEs, which finally 

fuse with the vacuole (Scheuring et al., 2011). The authors could show further-

more that the inhibition of the clathrin-mediated transport does not block the vacu-

olar delivery of soluble vacuolar proteins. Hence, the maturation of MVBs/LEs pro-

vide an alternative explanation that transport between the TGN/EE and the 

MVBs/LEs can occur independently of VSRs. 

A compartment specific VSR-ligand interaction analysis demonstrated that VSRs 

release ligands in the TGN/EE (Künzl et al., 2016). This suggests that the post 

TGN/EE transport of soluble vacuolar proteins does not require VSRs. Proving this 

suggestion would, however, require the dissection of the vacuolar transport route 

in VSR-dependent and VSR-independent transport steps. Therefore, the post 

TGN/EE transport of soluble proteins lacking vacuolar sorting signal has to be an-

alyzed because these cargos are transported independently of VSRs. Moreover, 

the retrograde transport of VSRs has to be examined. If VSRs release ligands in 

the TGN/EE and the VSR-mediated transport occurs bidirectional, VSRs might be 

recycled from the TGN/EE to an upstream target compartment to reload ligands 

for further rounds of ligand transport.  
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6. Objectives 

The post-translational regulation of plasma membrane localizing proteins such as 

receptors or translocators is of great importance for plant cells. They are trans-

ported to the lytic vacuole for degradation, requiring a constant supply of the vacu-

ole with these enzymes. This transport strictly depends on vacuolar sorting recep-

tors (VSRs). VSR-mediated protein transport is suggested to be a bidirectional 

process and was initially supposed to occur between the TGN/EE and the 

MVB/LE, according to the estimated similarities between plant and mammalian 

cells. However, the suggested model is only based on VSR localization studies 

and in vitro VSR-ligand binding analyses that do not reflect the in vivo situation.  

One objective of this work is the identification of VSR-dependent and VSR-inde-

pendent transport steps. To determine whether VSRs are required for the 

transport of ligands between the TGN/EE and the MVB/LE, we wanted to analyze 

the post TGN/EE transport of soluble proteins. To this end, we placed soluble pro-

teins that lack vacuolar sorting signals via the endocytic route in the TGN/EE and 

followed their fate. Together with results from a compartment-specific VSR-ligand 

interaction analysis, it became clear that VSRs release their ligands in the TGN/EE 

and that VSRs might recycle from this compartment. Therefore, another aim was 

to demonstrate that VSRs recycle and to identify the elusive target compartment of 

the VSR recycling route. This first necessitates a differentiation of VSRs on the an-

terograde and VSRs on the retrograde route. Hence, we post-translationally la-

beled a VSR, based on nanobody epitope interactions, with an endocytosed GFP 

in the TGN/EE, the compartment where ligands release occurs. Upon recycling of 

the post-translationally labeled VSR to the upstream target compartment, we 

wanted to lock the recycled receptors there by the interaction of a second nano-

body-epitope pair to prevent its further anterograde transport. Finally, we aimed to 

show whether VSRs reload ligands after recycling for subsequent rounds of ligand 

transport and release. 

Together, the analysis for the post TGN/EE transport of soluble vacuolar proteins 

as well as the analysis of the anterograde and retrograde transport was proof of 

concept for the bidirectional receptor-mediated transport.  
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7. Results and Discussion 

7.1 The post TGN/EE transport of soluble vacuolar cargo occurs independ-

ent of VSRs 

To better understand the mechanisms of the VSR-mediated transport of ligands in 

the plant endomembrane system, a determination of compartments in which VSR-

ligand interaction can occur is necessary. To date, receptor-ligand interaction anal-

ysis were performed only in vitro. This, however, does not allow to establish a 

model for VSR-mediated sorting of soluble vacuolar proteins in the plant endo-

membrane system, since it cannot be assumed where these interactions do occur. 

In the research article “Receptor-mediated sorting of soluble vacuolar proteins 

ends at the trans-Golgi network/early endosome” (Künzl et al., 2016), we have an-

alyzed all compartments of the vacuolar transport route for VSR-ligand interac-

tions. Since full length VSRs (Sanderfoot et al., 1998; Hillmer et al., 2001; Tse et 

al., 2004; Hinz et al., 2007; Niemes et al., 2010b; Saint-Jean et al., 2010; Stierhof 

and El Kasmi, 2010; Viotti et al., 2010; Wang et al., 2011), but also trafficking mu-

tants of VSRs (daSilva et al., 2006; Foresti et al., 2010; Saint-Jean et al., 2010) 

exhibit pleiotropic localizations, we had to develop a system that allows for precise 

targeting of VSRs to specific compartments. For this, we chose to use the soluble 

luminal ligand-binding domain (LDB) of AtVSR4, since it was shown that the LBD 

is sufficient to bind ligands in vivo (Watanabe et al., 2004; daSilva et al., 2005). 

Therefore, we targeted the LDB selectively to specific compartments to test for 

LDB ligand interactions. VSRs are type I transmembrane proteins and therefor can 

only be fused to other type I transmembrane proteins because the LBD has to face 

the compartmental lumen for ligand interaction analysis (Niemes et al., 2010a). 

Based on topology restrictions, however, it was not possible to place the LBD as 

translational fusion protein to different compartments along the vacuolar route. 

Type I transmembrane proteins are only known for the ER and the MVB/LE and 

not for the Golgi and the TGN/EE. To overcome these topology restrictions, we as-

sembled genetically encoded VSR sensors in vivo. For this purpose, we used the 

variable domain of an alpaca (Lama paco) heavy chain antibody (VHH) that was 

raised against GFP (Kubala et al., 2010). Heavy chain antibodies from Camelidae 

sp. have no light chain and consist only of a heavy chain (Hamers-Casterman et 
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al., 1993; Muyldermans, 2013). The variable domain of these heavy chain antibod-

ies is termed nanobody (Nb) and forms the smallest functional antigen-binding 

fragments with a size of 13 kDa (Muyldermans, 2001). In living cells, GFP-nano-

body-tagged proteins specifically bind GFP-tagged proteins after coexpression 

(Rothbauer et al., 2006; Rothbauer et al., 2008; Schornack et al., 2009). There-

fore, we translationally fused the GFP-Nb to the soluble LBD (LBD-Nb). 

To target the LBD to specific compartments, we assembled genetically encoded 

VSR sensors. Therefore, we coexpressed the nanobody-tagged LBD (LBD-Nb) 

with different established GFP-tagged membrane marker proteins, GFP-Calnexin 

(CNX) for the ER, α-mannosidase 1 (Man1)-GFP for the cis-Golgi cisternae, sialyl-

transferase (ST)-GFP for the trans-Golgi cisternae, SYP61-GFP for the TGN/EE 

and GFP-BP80 for the MVB/LE. After coexpression, the GFP-nanobody epitope 

interaction between the GFP from the marker protein and the Nb from the LBD oc-

curs to assemble the compartment specific membrane bound VSR sensors (LBD-

Nb:GFP-CNX, LBD-Nb:Man1-GFP, LBD-Nb:SYP61-GFP and LBD-Nb:GFP-

BP80). 

Usage of these VSR sensors allowed for a compartment-specific VSR-ligand inter-

action analysis and identified that the ER and the Golgi provide an environment 

that fosters VSR-ligand interaction whereas the TGN/EE and the MVB/LE do not. 

This suggests that the VSR-mediated transport occurs towards the TGN/EE were 

ligands are released from the receptors and that the post TGN/EE transport of sol-

uble vacuolar proteins might occur independently of VSRs. 

To test this assumption, we envisaged a system allowing us to generally analyze 

the post TGN/EE transport of soluble proteins, and the general requirement of 

VSSs for post TGN/EE transport. These signals, however, are a mandatory re-

quirement for the VSR-mediated transport. To analyze the post TGN/EE transport 

we took advantage of the TGN being the early endosome in plants (Dettmer et al., 

2006; Lam et al., 2007). To test the requirement of VSSs in the post TGN/EE 

transport, we placed soluble proteins that lack VSS via the endocytic pathway in 

the TGN/EE and followed their fate. For this, culture medium of triple (3x)RFP ex-

pressing protoplasts was used as fluorescent reporter for the endocytic uptake. 

3xRFP was expressed as a secretory protein in tobacco mesophyll protoplasts 

and was recovered from the culture medium after expression. Usage of this proto-
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plast secreted 3xRFP ensures that the proteins do not carry intrinsic vacuolar sort-

ing signals and that they have passed the quality control mechanisms of the cell 

(Pimpl et al., 2006; Scheuring et al., 2012). To analyze protein transport, we sup-

plemented a second population of protoplasts with the protoplast secreted 3xRFP. 

This population expressed cytosolic (Cyt)-GFP as internal control. 3xRFP was en-

docytosed and transported to the vacuole, demonstrating that the endocytosed 

3xRFP is delivered to the vacuole independent of VSRs. After cell fractionation by 

centrifugation of these cells, 3xRFP was only present in the soluble and not in the 

membrane fraction, whereas in controls, the PM-localizing protein RFP-TMD23 

fractionated with the membranes, showing that the endocytosed reporter 3xRFP 

did not bind unspecifically to membranes. To rule out that the 3xRFP molecules 

reached the vacuole via an alternative route rather than via the endocytic route, 

we mapped the route of the endocytosed 3xRFP. For this, we fused the GFP-

nanobody to the 3xRFP, resulting in 3xRFP-Nb. After having verified that 3xRFP-

Nb is endocytosed and transported to the vacuole in Cyt-GFP expressing proto-

plasts, we mapped its transport route. Cells expressing the PM marker SYNTAXIN 

OF PLANTS 132 (SYP132)-GFP, the TGN/EE marker SYP61-GFP or the MVB/LE 

marker GFP-BP80 were supplemented with 3xRFP-Nb for the endocytic uptake. A 

requirement for this was that the GFP from the compartment specific membrane 

marker faces the compartmental lumen so that the GFP nanobody-epitope interac-

tion can occur to bind the endocytosed 3xRFP-Nb. Confocal laser scanning mi-

croscopy (CLSM) revealed that endocytosed 3xRFP-Nb was anchored due to 

nanobody-epitope interaction in all cases, showing that the 3xRFP followed the 

endocytic pathway via the TGN/EE and the MVB/LE to the vacuole. These results 

clearly show that vacuolar sorting signals and thus VSRs are not required for the 

post TGN/EE transport of soluble proteins. Together with previous observations 

that endocytosed polystyrene beads reach the vacuole (Etxeberria et al., 2006), 

we demonstrated that the vacuole is the default location of the endocytic pathway. 

Taken together, results from the analysis of the post TGN/EE transport of soluble 

vacuolar proteins and the results from the compartment specific VSR-ligand inter-

action analysis, performed by Fabian Künzl, provide evidence that the transport of 

soluble vacuolar proteins occurs in a two-stage process: the first one is VSR-de-

pendent and the second VSR-independent. VSRs bind ligands in the ER or Golgi, 

compartments of the early secretory pathway, and transport them to the TGN/EE 
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were ligands are released. Further transport of ligands occurs independently of 

VSRs and leads per default to the vacuole. This is in agreement with the localiza-

tion of retromer subunits at the TGN/EE (Niemes et al., 2010b; Stierhof et al., 

2012), since retromer is suggested to mediate the retrograde transport of VSRs 

back to the donor compartment after ligand release. Moreover, the finding that 

transport from the TGN/EE to the MVB/LE occurs via maturation of the MVBs/LEs, 

which fuse with the vacuole (Scheuring et al., 2011) support our result even further 

that VSRs are not necessary for this transport step. 

In vitro VSR ligand analysis identified that ligand binding occurs at neutral pH (6.0 

-7.5) and ligand release at a pH lower than 5 (Kirsch et al., 1994; Cao et al., 2000). 

However, at this time compartmental pH values were not known. Together with lo-

calization data for VSRs, the prevacuoles were suggested to be the compartment 

for ligand release (Ahmed et al., 1997). Recently, experimental data on pH values 

for all compartments became available (Martiniere et al., 2013; Shen et al., 2013; 

Luo et al., 2015). Measurements revealed that the pH in the ER is neutral (7.1 – 

7.5). Strikingly, in vitro ligand-binding studies were also performed at neutral pH 

(Watanabe et al., 2002; Watanabe et al., 2004; Shen et al., 2014). Together with 

our data, these results demonstrate that ligand binding occurs at neutral pH in vitro 

and in vivo. pH measurements further reveal that the pH values decrease from the 

ER towards the vacuole. The TGN/EE, however, is the most acidic compartment 

(6.1 – 6.3) en route to the vacuole. pH values for the MVB/LE are with an value of 

6.2 either similar (Shen et al., 2013) or with an value of 6.7 more alkaline 

(Martiniere et al., 2013) than the TGN/EE. An explanation therefore might be that 

the V-ATPases which are mainly responsible for the acidification localize at the 

TGN/EE (Dettmer et al., 2006) and are absent from MVBs/LEs (Viotti et al., 2013). 

The acidification between the TGN/EE and the MVB/LE promotes our suggestion 

that VSR-mediated sorting occurs towards the TGN/EE and that the post TGN/EE 

transport of ligands occurs by default. 

Another factor that seems to be important for the VSR-mediated transport of lig-

ands is the concentration of calcium ions (Ca2+) (Watanabe et al., 2002). Ca2+ was 

shown to bind to the EGF repeats in the LBD and thereby induce conformational 

changes of the LBD that stabilize the receptor ligand complex (Cao et al., 2000; 

Watanabe et al., 2002). Ca2+ even promotes ligand binding at pH 4 and otherwise 

triggers ligand release at neutral pH and a low Ca2+ concentration (Watanabe et 
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al., 2002). It is assumed that the ER is with an concentration of 50 - 500 µM free 

Ca2+ the compartment with the highest calcium concentration (Stael et al., 2012). It 

drops in the compartments along the vacuolar route and was shown to be in a na-

nomolar range in the Golgi (Ordenes et al., 2012). These data suggest that the lu-

minal pH and the calcium concentration might be the two key components for oc-

curring VSR-ligand interactions. However, there might be more influencing factors 

that are crucial for this interaction which are still unknown. 

 

7.2 Analysis of nanobody-epitope interactions in living cells via quantitative 

protein transport assays (Früholz and Pimpl, 2017) 

To analyze protein-protein interactions between soluble proteins in the lumen of 

the compartments of the endomembrane system, we have developed a system 

using nanobody-epitope interactions. To test for occurring nanobody-epitope inter-

actions, we apply quantitative protein transport assay. 

For the quantitative protein transport assays, we used the secretory protein α-am-

ylase from barley (Rogers, 1985). α-amylase is synthesized and folded in the ER 

of the aleurone layer during seed germination and is transported to the endosperm 

along the secretory pathway. There, starch is hydrolyzed by the α-amylase into 

sugars that provide energy for the growing embryo. Secretion of the soluble α-am-

ylase occurs signal-independently by bulk flow (Denecke et al., 1990; Phillipson et 

al., 2001). However, signals are needed for the accumulation of proteins in the ER 

(Denecke et al., 1991; Contreras et al., 2004) or to target them to the vacuole 

(Bednarek et al., 1990; Holwerda et al., 1992; Koide et al., 1997; Frigerio et al., 

1998). Therefore, sorting signals were fused to secretory proteins to generate re-

porter proteins to analyze protein sorting and transport in the endomembrane sys-

tem. 

The secretory α-amylase has frequently been used as reporter to study transport 

processes in the endomembrane system and it has an endogenous enzymatic ac-

tivity whereby it can be detected. With the usage of different α-amylase-based re-

porter constructs, different transport routes in the endomembrane system were 

characterized (Leborgne-Castel et al., 1999; Pimpl et al., 2000; Phillipson et al., 

2001; Pimpl et al., 2003; daSilva et al., 2004; daSilva et al., 2005; daSilva et al., 

2006; Bottanelli et al., 2011; Gershlick et al., 2014). 
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To test if a nanobody-epitope interaction can occur in the endomembrane system 

we evolved a new approach. For this, we used α-amylase as quantifiable reporter 

for the readout and a vacuolar reporter as putative interactor. In case of an interac-

tion, the vacuolar reporter is expected to reduce the secretion of α-amylase by re-

directing it through the attachment of the vacuolar sorting signal. For this purpose, 

we fused the GFP epitope to the α-amylase, resulting in the secretory reporter α-

amylase-GFP. The GFP-nanobody (NbG) was fused to the soluble vacuolar protein 

Aleu-RFP (Aleu-RFP-NbG) which carries the ssVSS NPIR. 

After having verified that α-amylase-GFP is secreted efficiently into the culture me-

dium of electrotransfected tobacco protoplasts, α-amylase-GFP was coexpressed 

with Aleu-RFP-NbG. Upon coexpression of the two different constructs, the secre-

tion index (Denecke et al., 1990), a value that represents the secretion efficiency, 

is reduced to a value lower than one. This means that the transport of the secre-

tory α-amylase-GFP is rerouted to vacuole after the nanobody-triggered attach-

ment of the vacuolar sorting signal. In controls, the secretory α-amylase or the ER-

retained α-amylase-HDEL (Phillipson et al., 2001) were coexpressed with Aleu-

RFP-NbG. In both cases, the coexpressed Aleu-RFP-NbG did not influence the 

transport of the reporter protein due to the absence of a nanobody-epitope interac-

tion. 

Results show that the nanobody-epitope interaction is specific and occurs in the 

transit of the endomembrane system, since α-amylase-GFP was only rerouted to 

the vacuole after the nanobody-triggered attachment of the vacuolar sorting signal. 

Thus, this quantitative protein transport assay offers a good opportunity to study 

protein-protein interactions of soluble molecules. 

 

7.3 Nanobody mediated lockdown of VSRs reveals ligand reloading in the 

Golgi (Früholz et al., in press) 

Compartment specific VSR-ligand interaction analysis revealed that ligands are re-

leased in the TGN/EE from the receptors (Künzl et al., 2016). This, however, is 

also the location of the retromer complex, which is suggested to mediate the retro-

grade transport of VSR (Niemes et al., 2010b; Stierhof et al., 2012). Together with 

the demonstration that the post TGN/EE transport of soluble vacuolar proteins oc-

curs independent of VSRs, it became clear that if VSRs do recycle back to a donor 
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compartment to reload ligands, then the TGN/EE would be the starting point for 

such a recycling (Künzl et al., 2016). However, the upstream target compartment 

of the VSR recycling route remains elusive. 

In mammals, MPRs mediate the transport of lysosomal proteins towards the lyso-

some (Gonzalez-Noriega et al., 1980; Sahagian et al., 1981; Hoflack and Kornfeld, 

1985). The CI-MPR binds ligands at the cell surface and transports them to the ly-

sosome. There, ligands are released from the receptors due to the low compart-

mental pH (Gonzalez-Noriega et al., 1980). It was suggested the receptor-medi-

ated transport can only be highly effective if receptors recycle continuously after 

ligand release and can thus go for hundreds of rounds for ligand transport (Rome 

et al., 1979; Gonzalez-Noriega et al., 1980; Sahagian and Neufeld, 1983). Recy-

cling of MPRs was determined after their radioactive labeling (Braulke et al., 1987; 

Duncan and Kornfeld, 1988). This was only possible because a small amount (3-

10%) of both MPRs are accessible at the PM (Braulke et al., 1987; Breuer et al., 

1997). Oligosaccharides of PM-localizing MPRs were labeled with [3H]galactose 

by exogenous galyctosyltransferases. Glycans of endocytosed MPRs were pro-

cessed in the trans-Golgi cisternae, revealing that the CI-MPR and the CD-MPR 

recycle to the TGN (Duncan and Kornfeld, 1988). This strategy, however, was not 

applicable to study recycling of VSRs in plants. PM-localization of VSRs was only 

reported in growing lily and tobacco pollen tubes (Wang et al., 2011) and for over-

expressed citrine-AtVSR4 (Saint-Jean et al., 2010). Therefore, we have envisaged 

a novel strategy to verify VSR recycling. 

To identify the target compartment of the VSR recycling route, a discrimination be-

tween VSRs on the anterograde and VSRs on the retrograde route is necessary. 

For this, we have developed a strategy for a post-translational GFP-labeling of 

VSRs that have reached the TGN/EE since VSRs are expected to conduct further 

ligand transport. With this method, we visualize only recycling receptors. Upon re-

cycling of the GFP-labeled receptors to an upstream target compartment, we trig-

ger their lockdown to block further anterograde transport via the specific interac-

tion of a second nanobody-epitope pair. 

Usually, translational fusions with fluorescent proteins are used to analyze the 

transport of VSRs. However, they become visible directly after synthesis and fold-

ing in the ER and the fluorescent signal persists throughout the lifespan of the pro-

tein. Hence, it is not possible to distinguish between VSRs on the anterograde and 
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VSRs on the retrograde route. A prerequisite to examine the VSR recycling route 

is that VSRs become visible in the TGN/EE earliest. Consequently, we have envis-

aged a system that allows a post-translational labeling of VSRs in the TGN/EE as 

it was also proposed by Robinson and Neuhaus (2016). Thereby, we have taken 

advantage of the TGN as being the EE in plants (Dettmer et al., 2006; Lam et al., 

2007). For this purpose, the GFP-binding nanobody (NbG; (Kubala et al., 2010; 

Künzl et al., 2016)) was fused N-terminally to the full length VSR4 (NbG-VSR). 

Transiently expressed NbG-VSR in tobacco mesophyll protoplasts is then post-

translationally labeled in the TGN/EE with exogenously supplied GFP upon endo-

cytic uptake. The labeling GFP itself is a secretory protein, harvested from the cul-

ture medium of Sec-GFP expressing protoplasts. The harvested GFP is supple-

mented to a second population of protoplasts, expressing NbG-VSR for the endo-

cytic uptake. Because of this post-translational GFP labeling strategy, it is now 

possible to distinguish between VSRs on the anterograde and VSRs on the retro-

grade route, since only new synthesized VSRs that have passed the TGN/EE at 

least once are GFP-labeled and can thus be detected by CLSM. 

First, we tested for compartment specific post-translational labeling by expressing 

RFP-tagged membrane markers fused to the NbG for the ER (NbG-RFP-CNX), the 

cis-Golgi cisternae (Man1-RFP-NbG), the trans-Golgi cisternae (ST-RFP-NbG), the 

TGN/EE (SYP61-RFP-NbG) and for the MVB/LE (NbG-RFP-BP80). Protoplasts ex-

pressing these constructs were incubated with protoplast secreted GFP for the en-

docytic uptake. Endocytosed GFP was trapped in the TGN/EE and the MVB/LE 

due to the nanobody-epitope interaction between the NbG of the membrane 

marker and the endocytosed GFP. In contrast, no GFP labeling occurred in the 

trans- and cis-Golgi cisternae and in the ER. When these membrane markers 

were coexpressed with Sec-GFP, the specific GFP-nanobody-epitope interaction 

occurred and the GFP retained in the cis-/trans-Golgi cisternae or ER, respec-

tively. The results show that a post-translational GFP-labeling is in principle possi-

ble for all NbG-tagged marker proteins. 

Having identified that post-translational GFP-labeling is possible for proteins in the 

TGN/EE, we tested if it is possible to label a full length VSR with endocytosed 

GFP. It was shown recently that a full length VSR that is fluorescently tagged be-

tween the signal peptide and the coding sequence is functional (Saint-Jean et al., 

2010). Accordingly, we tagged a VSR with the GFP-nanobody and a RFP (NbG-
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RFP-VSR) and post-translationally labeled it with endocytosed GFP. Perfect colo-

calizing punctate signals were observed between the red-fluorescent VSR and the 

endocytosed GFP, demonstrating that the post-translational labeling is specific 

and efficient. Next, we wanted to identify the location of the colocalizing punctate 

signals. Therefore, an invisible NbG-tagged VSR (NbG-VSR) was coexpressed with 

RFP-tagged compartmental marker for the ER (RFP-CNX), the cis-Golgi cisternae 

(Man1-RFP), the trans-Golgi cisternae (ST-RFP), the TGN/EE (RFP-SYP61) and 

for the MVB/LE and vacuole (Aleu-RFP). The post-translational GFP-labeled VSR 

colocalized only with the TGN/EE marker leading to the conclusion that GFP-la-

beled VSRs localize under steady state conditions at the TGN/EE. Surprisingly, 

colocalization occurred neither with the MVB/LE and vacuolar marker Aleu-RFP, 

nor with markers for the cis-/trans-Golgi cisternae or the ER. Likewise endogenous 

VSRs were also localized by immunogold labeling in Arabidopsis root cells at the 

TGN/EE, however, labeling was also observed at the MVB/LE (Niemes et al., 

2010b; Stierhof and El Kasmi, 2010; Viotti et al., 2010). 

The steady-state localization at the TGN/EE can be explained by conceptual differ-

ent scenario: either VSRs do not recycle at all as it is assumed for homology-

transmembrane-RING-H2 (RMR) receptors, a receptor family that mediates the 

transport of soluble proteins to the protein storage vacuole (Shen et al., 2011; 

Occhialini et al., 2016), or the TGN/EE is the starting point of the retrograde recy-

cling step of a bidirectional transport system, whereby the anterograde transport is 

faster than the retrograde. In order to test this hypothesis, we aimed a strategy to 

block further anterograde transport of VSRs from the target compartment after re-

cycling. For this, we made use of a second nanobody epitope pair, to build a trap 

for the post-translational labeled and recycled VSR. The mammalian α-synuclein 

nanobody (NbS) recognizes a 23 amino acid linear epitope from α-synuclein (SYN) 

(Guilliams et al., 2013). This epitope (SYN) was fused to red-fluorescent mem-

brane markers which serve as compartment specific membrane anchors (MA-

RFP-NbS). To enable the trap, the SYN epitope was fused to GPF, resulting in the 

dual epitope linker protein GFP-SYN. 

To identify the target compartment of the VSR recycling route, NbG-VSR and MA-

RFP-NbS are coexpressed. Subsequently, the NbG-tagged VSR is post-translation-

ally labeled with the dual epitope linker GFP-SYN in the TGN/EE after its endo-

cytic uptake. Upon recycling of the GFP-SYN-labeled VSR to the upstream donor 
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compartment, the VSR is expected to be locked to the membrane anchor by the 

SYN-nanobody epitope interaction between the SNY epitope of the labeled VSR 

and the SYN-nanobody of the compartment specific membrane anchor. 

To implement such a strategy, it is, however, mandatory to test if the SYN-nano-

body epitope interaction also does occur in the lumen of secretory pathway com-

partments first. Therefore, a quantitative protein transport assay, as described in 

Früholz and Pimpl (2017) (see chapter 7.2), was performed. This time however, 

the SYN epitope was fused to the secretory protein α-amylase (amy-SYN) and the 

NbS to the vacuolar-targeted protein Aleu-RFP, resulting in Aleu-RFP-NbS. After 

the verification that amy-SYN is secreted efficiently into the culture medium, amy-

SYN was coexpressed with different amounts of Aleu-RFP-NbS. Upon coexpres-

sion of the two proteins, the transport of amy-SYN was deviated to the vacuole af-

ter the nanobody-epitope triggered attachment of the vacuolar sorting signal. Next, 

we tested if the SYN-nanobody epitope interaction can also occur in vitro. For this, 

membrane anchors for the ER (NbS-RFP-CNX), the cis-Golgi cisternae (Man1-

RFP-NbS), the trans-Golgi cisternae (ST-RFP-NbS) and the TGN/EE (SYP61-RFP-

NbS) as well as the corresponding RFP-tagged markers (RFP-CNX, Man1-RFP, 

ST-RFP and RFP-SYP61) were bound to RFP beads, magnetic agarose beads 

coupled with a RFP-binding protein that bind RFP-tagged proteins, in a bead bind-

ing assay and incubated under binding conditions (Kirsch et al., 1994; Watanabe 

et al., 2004; Künzl et al., 2016) with protoplast secreted GFP-SYN. Immunoblot 

analysis revealed that GFP-SYN bound to all compartment anchors, whereas no 

interaction occurred in controls were the membrane markers were bound to RFP 

beads. To make sure that the SYN-tagged GFP does not prevent the nanobody-

triggered labeling of the NbG-VSR, in vitro immunoprecipitations were performed. 

HA-tagged NbG-VSRs were bound to HA beads and incubated either with GFP or 

GFP-SYN under binding conditions (Kirsch et al., 1994; Watanabe et al., 2004; 

Künzl et al., 2016). Results show that GFP and GFP-SYN were immunoprecipi-

tated respectively. Additionally, the localization of GFP-SYN labeled NbG-VSR was 

analyzed by CLSM. The GFP-SYN labeled VSR colocalized only with the TGN/EE 

marker and not with markers for the ER, cis-/trans-Golgi or the MVB/LE. The re-

sults underline that the steady state localization of labeled VSRs is not shifted 

when labeling them with the dual epitope linker GFP-SYN. 
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After having shown that the dual epitope linker GFP-SYN is bound by the GFP- 

and the SYN-nanobody, we applied our experimental approach to identify the tar-

get compartment of the VSR recycling route by blocking the anterograde VSR 

transport after recycling. The localization of the GFP-SYN labeled NbG-VSR 

shifted from the TGN/EE to the trans- and cis-Golgi cisternae when coexpressed 

with the trans-Golgi anchor ST-RFP-NbS or the cis-Golgi anchor Man1-RFP-NbS, 

respectively. This colocalization was never observed when the Golgi markers ST-

RFP or Man1-RFP without the NbS for the lockdown were coexpressed. This 

demonstrates that the labeled VSRs were successfully locked in the trans- and 

cis-Golgi cisternae after recycling from the TGN/EE due to the SYN nanobody-

epitope interaction between the labeled VSR and the compartment specific mem-

brane anchor. To confirm that the lockdown of the GFP-SYN labeled VSR did not 

alter the localization of the anchors in the Golgi, protoplasts were incubated with 

Brefeldin A (BFA), a fungal toxin that causes the fusion between the Golgi stack 

and the ER in tobacco (Ritzenthaler et al., 2002). After BFA treatment, the punctae 

from the locked GFP-SYN labeled VSRs and the RFP-tagged Golgi anchors dis-

appeared and signals appeared in the nuclear envelope, demonstrating that the 

lockdown did not alter the localization of the cis-/trans-Golgi cisternae anchors. In 

comparison, a GFP-SYN labeled and recycled VSR was never locked in the ER by 

the ER anchor NbS-RFP-CNX. As control, we coexpressed NbG-VSR and SYP61-

RFP-NbS and labeled subsequently the VSR with the endocytosed dual epitope 

GFP-SYN resulting in a colocalization of the labeled VSR and the TGN/EE anchor. 

The same result was observed when the TGN/EE marker RFP-SYP61 was coex-

pressed. Together, these results identify the cis-Golgi cisternae as the target com-

partment of the VSR recycling route and show that VSRs do not recycle to com-

partments upstream of the Golgi stack.  

We have shown previously that a soluble NbG-tagged LBD of VSR that is an-

chored to the Golgi marker Man1-GFP or ST-GFP by the GFP nanobody-epitope 

interaction can bind the ligand Aleu-RFP (Künzl et al., 2016). Based on this con-

cept, we analyzed if also recycled full length VSRs can reload ligands in the Golgi 

stack, as is assumed for the concept of receptor-mediated transport that includes 

multiple rounds of ligand binding and release. Therefore, we locked a post-transla-

tional GFP-SYN labeled NbG-VSR in the cis-Golgi by the invisible anchor Man1-

NbS after recycling. Additionally, we coexpressed the model ligand Aleu-RFP and 
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a blue fluorescent protein 2 (BFP2)-tagged Golgi marker (Man1-BFP2), to verify 

the Golgi localization of the VSR-ligand interaction. CLSM analysis showed that 

GFP-SYN labeled and recycled VSRs, locked by the cis-Golgi anchor Man1-NbS 

colocalize with the ligand Aleu-RFP and the cis-Golgi marker Man1-BFP2, demon-

strating that recycled VSR bind ligands in the cis-Golgi cisternae. The same result 

was observed when the trans-Golgi anchor ST-NbS was used for the lockdown 

and ST-BFP2 as trans-Golgi marker. However, no colocalization between the la-

beled and locked VSR, the ligand and the Golgi marker occurred in the absence of 

the lockdown when either the NbS-tagged anchor was not coexpressed or when 

the NbG-VSR was labeled with GFP instead of GFP-SYN. In these cases, the 

VSRs localizes to the TGN/EE, a compartments whose environment does not pro-

mote VSR-ligand interaction (Künzl et al., 2016). 

The use of our devised concept for a nanobody-epitope based labeling and track-

ing by the simultaneous use of two different nanobodies allowed us to identify the 

cis-Golgi cisternae as the target compartment of the VSR recycling route and to 

show that VSRs reload ligands after recycling for subsequent rounds of ligand 

transport. Together with our previous work (Künzl et al., 2016), we now postulate a 

new model for the VSR-mediated sorting of soluble vacuolar proteins in the plant 

endomembrane system, which is described in chapter 7.4/Figure 3. 

 

7.4 Closing remarks 

Here, it was possible to decipher the core mechanisms of the VSR-mediated 

transport of soluble vacuolar proteins and to elucidate the implementation of a bidi-

rectional operating receptor transport system in the plant endomembrane system. 

We have proven that the bidirectional VSR-mediated transport does indeed exist 

in plant cells and that it operates between the cis-Golgi cisternae and the TGN/EE. 

Concluding we came up with a revised model for the VSR-mediated transport in 

the plant endomembrane system (Figure 3). 
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Figure 3: Revised model for receptor mediated sorting of soluble vacuolar proteins in the 
plant endomembrane system. Newly synthesized VSRs bind ligands in the early secretory path-
way and transport them to the TGN/EE. There, ligands are released from the VSRs. Next, VSRs 
are recycled back to the cis-Golgi cisternae for further rounds of ligand transport. Post TGN/EE 
transport of soluble proteins like released ligands but also endocytosed proteins occurs independ-
ent of VSRs and leads per default to the lytic vacuole. Transport in this route is mediated by mul-
tivesicular bodies, the late endosomes (MVBs/LEs). They bud off the TGN/EE in a maturation-
based step and confer cargo delivery by the ultimate fusion with the lytic vacuole (LV). (Früholz et 
al., in press) 

 

Newly synthesized VSRs bind soluble vacuolar proteins after their synthesis and 

folding in the early secretory pathway (Watanabe et al., 2004; daSilva et al., 2005; 

Niemes et al., 2010b; Gershlick et al., 2014; Künzl et al., 2016) at neutral pH 

(Martiniere et al., 2013; Shen et al., 2013) and form a receptor-ligand complex. 

This complex is then transported to the TGN/EE were ligands are released (Künzl 

et al., 2016) due to the low pH of this compartment (Martiniere et al., 2013; Shen 

et al., 2013; Luo et al., 2015). The TGN/EE however is the most acidic compart-

ment, with the MVB/LE being more alkaline than the TGN/EE, en route to the vac-

uole because the characteristic V-ATPases which are mainly responsible for the 

acidification localize there (Dettmer et al., 2006) and are absent in the MVBs/LEs 

(Viotti et al., 2013). Therefore, if pH is the driving force that defines binding and re-

lease, it cannot be assumed that an acidity driven release can indeed occur in any 

post-Golgi compartment than the TGN/EE. The identified compartments for ligand 

binding and release are in agreement with the postulated pH dependency for VSR 

ligand interaction in vitro (Kirsch et al., 1994; Cao et al., 2000). Post TGN/EE 

transport of released ligands and endocytosed soluble proteins to the lytic vacuole 
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occurs independently of VSRs and consequently by default. (Künzl et al., 2016). 

This transport occurs via maturation of the MVBs/LEs that bud off the TGN/EE 

(Scheuring et al., 2011; Singh et al., 2014) and finally deliver their cargo to the lytic 

vacuole by fusion (Scheuring et al., 2011). VSRs that have released their ligands 

in the TGN/EE recycle back to the cis-Golgi cisternae, the target compartment of 

the VSR recycling route (Früholz et al., in press) in a retromer-dependent manner 

(Oliviusson et al., 2006; Niemes et al., 2010b). There, VSRs reload ligands for fur-

ther rounds of ligand transport to the TGN/EE (Früholz et al., in press). In this 

case, we assume that synthesized and folded ligands exit the ER passively in 

COPII-coated vesicles, which mediate the transport between the ER and the Golgi 

(Phillipson et al., 2001). 

Assuming that the life span of VSRs exceeds by far the time it takes for a round of 

ligand transport, as reported for the mammalian MPRs (Rome et al., 1979) or the 

LDL receptor (Brown et al., 1983), it is plausible to assume that recycled VSRs 

mainly transport ligands from the cis-Golgi cisternae to the TGN/EE. At the same 

time only a few de novo synthesized VSRs might contribute to this transport during 

their first round of ligand transport. 

Some recent publications from the mammalian field show that the WLM sorting 

motif of CI-MPRs, which is responsible for the recycling from the endosomes to 

the TGN (Seaman, 2007), interacts with the SNX dimers SNX1/2 with SNX5/6 ra-

ther than with the retromer subunit VPS35, as assumed previously (Kvainickas et 

al., 2017; Simonetti et al., 2017). Moreover they show that a VPS35 knock out had 

no effect on the CI-MPR distribution whereas it was shifted from the TGN to the 

endosomal membrane in SNX knockouts suggesting that the SNX dimers mediate 

the retrograde CI-MRP transport from the endosomes to the TGN rather than the 

retromer complex. With regard to these new results from the mammalian field is 

tempting to speculate that also in the plant endomembrane system VSRs might be 

recycled in an SNX-dependent manner rather than in a retromer-dependent man-

ner. However, further experimental work is necessary to proof the speculated in-

volvement of SNX in VSR recycling and it has to be clarified in which transport 

processes retromer is involved. 

Our aforementioned model for the VSR-mediated transport of soluble vacuolar 

proteins proofs that ligands are released in the TGN/EE from the receptors and 

that their subsequent transport occurs by default. Further, VSRs are recycled from 
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this compartment. On the other hand, it was also reported that secretory cargo that 

is transported to the PM also passes the TGN/EE (Viotti et al., 2010). Based on 

these findings the question raises where and how the vacuolar, recycling and se-

cretory route separate in the TGN/EE. It was suggested that two types of 

TGNs/EEs exist, a Golgi-associated TGN were mainly SV bud and a Golgi-inde-

pendent or free TGN where mainly CCVs bud (Kang et al., 2011; Uemura et al., 

2014). Thus, it is tempting to speculate that the SVs of the Golgi-associated TGN 

mediate the transport of secretory proteins to the PM and that the VSR-ligand 

complex persists until the Golgi-associated TGN matures into a Golgi-independent 

TGN. There, the VSR-ligand complex might dissociate, the VSR recycle back to 

the cis-Golgi and the ligands are delivered to the vacuole via maturation of the 

MVBs/LEs that bud off the Golgi-independent TGN (Kang et al., 2011; Robinson 

and Neuhaus, 2016). However, to proof this speculation a more detailed charac-

terization of the TGN/EE is important to determine where the secretory and vacuo-

lar pathway separate.  
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Abstract  

Sorting of soluble vacuolar proteins is of vital importance for plant cells and 

requires that vacuolar sorting receptors (VSRs) bind and release their cargo 

ligands. However, it is controversial, where in the endomembrane system these 

interactions occur. Here, we present an in vivo analysis of VSR-ligand interactions 

for all compartments of the vacuolar transport route. For this, we have developed 

compartment-specific VSR sensors and performed FRET-FLIM analysis to monitor 

for ligand binding. We show that VSRs bind ligands in the ER and in the Golgi, but 

not in the trans-Golgi network/early endosome (TGN/EE) nor in multivesicular late 

endosomes (MVBs/LEs). This implies that post-TGN/EE trafficking of ligands 

towards the vacuole is VSR-independent. We verify this by demonstrating that 

also non-VSR-ligands are delivered to the vacuole from the TGN/EE after 

endocytic uptake. Thus, we postulate that vacuolar sorting receptors transport 

ligands from the ER and the Golgi to the TGN/EE, followed by a VSR-independent 

default flow onwards to the vacuole. 

  



 

Introduction 

Soluble vacuolar proteins and their corresponding vacuolar sorting receptors 

(VSRs) were identified in plants more than twenty years ago1,2. However, the 

mechanism of VSR-mediated sorting as implemented in the plant endomembrane 

system3 is still not yet understood. Vacuolar sorting signals of soluble plant 

proteins are encoded by short peptide motifs within the amino acid sequence1. The 

first VSR was isolated from detergent-solubilised Golgi and clathrin-coated vesicle 

(CCV) fractions at neutral pH using synthetic peptides containing sorting signals5. 

VSRs are type I transmembrane proteins encoded by a gene family unique to 

plants4-6. They bind ligands via a structured N-terminal luminal binding domain 

(LBD) consisting of a protease associated domain, a central domain and three 

epidermal growth factor repeats7,8. VSRs also carry sorting signals for their own 

transport in the cytosolic C-terminus9-11. Based on assumed similarities to the 

lysosomal sorting machinery in mammals concerning receptor localisation and pH 

dependency of ligand binding, it was proposed almost twenty years ago that VSR-

mediated sorting in plants occurs via CCV-facilitated transport from the trans-Golgi 

to a prevacuolar compartment, where ligands dissociate due to the lower pH. 

In the intervening years, major discoveries have challenged this model: the trans-

Golgi network (TGN) in plants was identified as the early endosome (EE)12,13 that 

is distinct from the Golgi stack14. This hybrid structure (TGN/EE) has now been 

shown to be the most acidic compartment en route to the vacuole15-17. The 

TGN/EE harbours the retromer complex necessary for recycling of the VSRs18,19. 

Most important, however, was the demonstration that the TGN/EE is the source for 

the biogenesis of the prevacuolar compartment, the multivesicular late endosome 

(MVB/LE), which confers transport by fusion with the vacuole20. These recent 

findings still await integration into the proposed concept of VSR-mediated sorting. 

In order to determine the compartments that constitute the framework for the bi-

directional receptor transport, it is of paramount importance to firstly identify the 

locations at which VSRs bind or release their ligands.  

To this end, we have developed genetically encoded VSR sensors that allow for 

non-invasive compartment-specific detection of VSR-ligand interactions in vivo. 

We assembled VSR sensors from a soluble LBD of a VSR and a compartment-

specific green fluorescent protein (GFP)-containing membrane markers via 

antibody-epitope interaction. 



 

For this, we utilised the antigen-binding capability of the VHH domain of a heavy-

chain antibody21, termed nanobody (Nb), that was recently raised against GFP in 

alpacas (Lama paco)22,23. Based on the amino acid sequence of this anti-GFP Nb, 

we have generated a coding sequence for the expression of a soluble GFP-

binding LBD fusion protein (LBD-Nb). VSR sensor assembly occurs upon 

coexpression of this LBD-Nb with a compartment-specific membrane marker 

protein that exposes GFP in the compartmental lumen, thereby reconstituting a 

GFP-tagged membrane protein.  

We monitored for VSR-ligand interaction by coexpression of the self-assembling 

sensors with red fluorescent protein (RFP) ligands in a comprehensive approach, 

combining localisation analysis with Förster-resonance energy transfer-

fluorescence lifetime imaging microscopy (FRET-FLIM). We firstly analysed the 

localisation of assembled sensors and the soluble ligands to test whether the 

presence of the sensor results in coaccumulation of ligands, as a preliminary 

indication for VSR-ligand interaction. In the second step, we applied FRET-FLIM to 

either verify or negate VSR-ligand interactions24,25. This is possible since FRET 

occurs only across short distances between 1 and 10 nm, thus allowing to 

differentiate between interaction-dependent and -independent colocalisation of 

proteins24. 

With this novel strategy, we were able to show that VSRs bind ligands only in the 

ER and in the Golgi stack, but not in post-Golgi compartments such as the 

TGN/EE or the MVB/LE. This suggests that post-TGN/EE trafficking of soluble 

proteins towards the vacuole is independent of VSR-ligand interactions. 

Confirmation of this conclusion was provided by identifying the vacuole as being 

the default location for soluble proteins of the endocytic route that merges with the 

biosynthetic vacuolar route at the TGN/EE. Consequently, we postulate a two-

stage process for vacuolar transport of soluble proteins. Firstly, VSRs confer the 

transport of ligands to the TGN/EE, followed by a VSR-independent default flow 

onwards to the vacuole via budding of MVBs/LEs and their fusion with the vacuole. 

 

 

 

 



 

RESULTS 

Compartment-specific targeting via nanobody-mediated protein assembly 

The challenge in using genetically encoded reporters for non-invasive 

compartment-specific analysis in vivo is to achieve their precise targeting26. This is 

particularly true for the analysis of the Golgi stack, the TGN/EE and the MVB/LE, 

since sorting signals specific for these compartments are largely unknown. A 

common targeting strategy is the use of translational fusions between reporter 

domains and membrane marker proteins. This is however subject to topology 

restrictions of the fusion partners and it has to be mentioned that the N-terminal 

LBD of the type I VSRs can only be fused to type I membrane marker proteins27. 

Type I membrane markers, however, are only known for the ER and the MVB/LE 

but neither for the Golgi stack nor the TGN/EE. To overcome these constraints, we 

developed a targeting strategy based on nanobody-mediated protein assembly. To 

demonstrate successful targeting, we have generated a construct consisting of a 

fluorescent LBD fused to an anti-GFP nanobody 23 as a soluble VSR (LBD-RFP-

Nb) that can be used in combination with epitope (GFP)-tagged membrane marker 

proteins to assemble compartment-specific VSR sensors in vivo (Fig. 1a). To rule 

out that the soluble VSR bears intrinsic sorting signals that compromise targeting, 

we first analysed its transport properties (Fig. 1b-d). Fluorescence signals of LBD-

RFP-Nb are largely absent in cells but appear when ER export is prevented by 

Sec12 overproduction28. To test for nanobody-mediated protein assembly in all 

compartments en route to the vacuole, we have expressed the soluble VSR with 

membrane anchors for ER (GFP-CNX), Golgi (Man1-GFP), TGN/EE (SYP61-

GFP) and MVBs/LEs (GFP-BP80; Fig. 1e-i, Supplementary Table 1). In all cases, 

strong red-fluorescence signals from LBD-RFP-Nb become detectable and 

colocalise precisely with the respective anchor due to nanobody-epitope 

interaction at the inner leaflet of the compartmental membrane. This is most 

evident for the colocalising signals at the ring-shaped periphery of the Golgi (Fig. 

1f) and at ring-like MVB/LE structures after treatment with wortmannin (WM)29 

(Fig. 1i). Together, these data show that nanobody-epitope interactions persist in 

the lumen of all compartments along the vacuolar route, irrespective of their 

individual biochemical properties. 

 

 



 

Assembled VSR sensors possess ligand-binding competence 

We have generated a soluble LBD-Nb fusion protein for coexpression with the 

GFP-based membrane anchors. Due to the nanobody-epitope interaction, both 

molecules constitute a green-fluorescent membrane protein, employed as 

compartment-specific VSR sensors. Usage of these sensors together with a red-

fluorescent ligand allows testing for receptor-ligand interactions via sensor-ligand 

colocalisation analysis and via FRET-FLIM as an intensity-independent approach 

to detect FRET24. For this, we used the established model ligand Aleu-RFP. This 

soluble vacuolar reporter carries 24 amino acids from the Petunia thiol protease 

aleurain that contains the sequence-specific vacuolar sorting motif NPIR30. 

Upon coexpression, binding of Aleu-RFP to the anchored LBD of the sensor 

triggers close proximity of the RFP from the ligand and the GFP upstream of the 

LBD within the sensor and thus allows for FRET to occur. In this situation, excited-

stage energy from the donor GFP is transferred to the acceptor RFP of the ligand, 

thereby reducing the fluorescence lifetime of GFP24. Consequently, lack of ligand 

binding does not alter the fluorescence lifetime, even if both fluorophores 

colocalise interaction-independently in the same compartment (Fig. 2a).  

During the course of VSR-mediated sorting, ligand binding is reversible. Therefore, 

we expected to identify compartments en route to the vacuole that either support 

or restrict ligand binding. To rule out that the experiments were compromised by 

differences in the ligand-binding competence of the LBD-Nb in the context of 

different membrane anchors, we first confirmed the ligand-binding capability of all 

VSR sensors in vitro (Fig 2b, Supplementary Fig. 1). For this, we assembled 

sensors in the ER, Golgi, TGN/EE and MVB/LE (Supplementary Fig. 2) and 

immunoprecipitated them by using GFP antibodies in bead-binding assays. For 

direct comparison of their ligand-binding capabilities, we incubated the bead-

bound VSR sensors with the ligand Aleu-RFP30 at binding conditions2. In all cases, 

Aleu-RFP was coprecipitated while secretory Sec-RFP in control experiments was 

not. This demonstrates that all assembled VSR sensors possess ligand-binding 

competence. 

 

VSR-ligand interaction occurs in the ER but not in the MVB/LE 

We have recently shown that placement of LBDs in the lumen of the ER triggers 

accumulation of ligands, suggesting VSR-ligand binding27. Consistently, assembly 



 

of VSR sensors in the ER also retains the ligand Aleu-RFP, preventing vacuolar 

delivery (Fig. 3a,b). To test whether this accumulation is indeed due to VSR-ligand 

interaction, we performed FRET-FLIM. We took advantage of the fact that the ER 

marker GFP-Calnexin (CNX) induces sheet-like ER cisternae without affecting ER 

function31, resulting in an enlarged signal surface facilitating FLIM recording. The 

analysis revealed a highly significant reduction of the GFP lifetime in the presence 

of the ligand, with values well within the range of recently reported protein-protein 

interactions using this pair of fluorophores for FRET-FLIM in plants25. 

In sharp contrast, fluorescence lifetime was not influenced by the ER-localising 

non-ligand RFP-HDEL and the secretory marker Sec-RFP, even if present in the 

ER at high levels upon inhibition of ER export by brefeldin A (BFA), or in the 

absence of the LBD-Nb as binding partner (Fig. 3c, Supplementary Fig. 3a). This 

direct comparison between the model ligand Aleu-RFP with the non-ligands RFP-

HDEL and Sec-RFP (±BFA) reveals that the recorded reduction of fluorescence 

lifetime is specific for VSR-ligand interaction, thus identifying the ER as a 

compartment that promotes VSR-ligand binding. 

Receptor-mediated transport of ligands is completed by their release. With the 

MVB/LE being the last morphologically characterised compartment en route to the 

vacuole, ligands should be released from receptors here at the latest. At steady-

state conditions, Aleu-RFP localises to the MVB/LE in addition to the vacuole, 

which is not altered by the LBD-Nb after sensor assembly (Fig. 3d,e). Therefore, it 

is difficult to judge VSR-ligand interactions in this compartment solely by the 

assessment of localisation. FRET-FLIM analysis however revealed that these 

colocalising ligands do not influence the fluorescence lifetime of the VSR sensor 

(Fig. 3f, Supplementary Fig. 3b). Reduction of fluorescence lifetime of the GFP in 

the sensor can only be triggered in controls by direct attachment of RFP to the 

sensor via nanobody-epitope interaction (LBD-RFP-Nb, compare to Fig. 1h). This 

demonstrates that the VSR sensors do not bind ligands in this compartment. To 

extend the analysis, we applied the drug WM which induces enlargement of 

MVBs/LEs by homotypic fusion29. The resulting ring-like structures now reveal a 

differential distribution, with signals from the VSR sensor being present at the 

limiting membrane while signals from Aleu-RFP locate to the compartmental 

lumen (Fig 3g). This also suggests that ligands do not bind to VSRs in this transit 

compartment towards the vacuole, since this would indeed result in close proximity 



 

of the fluorophores (compare to Fig. 1i). Together, these data demonstrate that 

ligands do interact with the VSR sensors in the ER and that they do not interact in 

the MVB/LE. These findings furthermore reveal that only a combination of 

localisation analysis and FRET-FLIM allows for a reliable assessment of whether a 

given compartment supports or restricts VSR-ligand binding. 

 

VSR-ligand interaction occurs in the Golgi stack but not in the TGN/EE 

Having identified the ER as compartment that supports ligand binding and 

MVBs/LEs as compartments that do not, we next tested Golgi and TGN/EE for 

possible VSR-ligand interactions. The cis-Golgi marker α-mannosidase 1 (Man1)-

GFP does not colocalise with Aleu-RFP, whose punctate signals represent 

MVBs/LEs (Fig. 4a, compare to Fig. 3d,g). Assembly of VSR sensors in the Golgi 

however causes colocalisation of Aleu-RFP with all GFP-labelled VSR sensors 

(Fig. 4b). These colocalising signals appear in addition to the RFP signals from 

punctate MVBs/LEs and the vacuole. The redistribution of Aleu-RFP to the Golgi 

can be emphasised by the employment of transport competitors for the 

endogenous VSRs32, which reduce vacuolar delivery. The competitor HA-BP80, a 

HA-epitope-tagged LBD-deletion mutant of BP80, reduces RFP signals in 

MVBs/LEs and in the vacuole, but does not alter Golgi-colocalisation of the VSR 

sensors with Aleu-RFP (Fig. 4c). The colocalising signals at the inner leaflet of the 

Golgi membrane are similar to the signals previously seen for the LBD-RFP-Nb 

targeted to this compartment (compare to Fig. 1f). This suggests an interaction 

between the sensors and ligands.  

FRET-FLIM analysis revealed a highly significant reduction of the fluorescence 

lifetime of the donor GFP in the VSR sensor (Fig. 4d, Supplementary Fig. 4a). This 

reduction depends on the presence of the LBD, demonstrating that the Golgi-

localisation of Aleu-RFP is caused by interaction with the VSR sensor. We have 

also assessed VSR-ligand interaction in the trans-face of the stack by using the 

trans-Golgi marker sialyltransferase (ST)-GFP for VSR sensor assembly (Fig. 4e). 

Aleu-RFP does also not colocalise with the membrane marker ST-GFP (Fig. 4f). In 

the presence of the LBD-Nb, the distribution pattern of Aleu-RFP shifts, resulting in 

colocalisation of the ligand and sensor (Fig.4g, Supplementary Fig. 4b), 

suggesting an interaction to occur. This was verified by FRET-FLIM analysis (Fig. 



 

4h), revealing that Aleu-RFP causes a highly significant decrease of the 

fluorescence lifetime, which does not occur in the absence of the LBD-Nb. 

The situation in the TGN/EE yields another picture. Here, assembly of VSR 

sensors does not cause colocalisation of the ligand Aleu-RFP (Fig. 5a-c), 

questioning the occurrence of VSR-ligand interactions. FRET-FLIM analysis of the 

TGN/EE-localising VSR sensor revealed that Aleu-RFP does not influence the 

fluorescence lifetime of the sensor, a situation identical to control experiments 

where the non-ligand Sec-RFP was used instead (Fig. 5d, Supplementary Fig. 5). 

To demonstrate that protein-protein interactions can shorten the lifetime in the 

TGN, we attached the red-fluorescent LBD (LBD-RFP-Nb) via nanobody-epitope 

interaction to the membrane anchor SYP61-GFP. This control confirmed the 

assembly of VSR sensors in the TGN/EE as illustrated in Fig. 1g and proves that 

the principle of FRET-FLIM interaction analysis is also applicable to this 

compartment (Fig. 5d).  

Together, these data favour the idea that VSRs and ligands do not interact in the 

TGN/EE. Consequently, it is tempting to speculate that the VSRs in this 

compartment have already released their ligands. This however would imply that 

these VSRs bind ligands upstream of the TGN/EE. To verify this hypothesis, we 

blocked the arrival of the TGN/EE-targeted VSR sensor with the drug BFA, 

causing retention of sensors and ligands in the ER (Fig. 5e). BFA-induced ER 

localisation causes a drastic increase of the fluorescence lifetime of SYP61-GFP-

based sensors, with values being identical to those of ER-targeted GFP-CNX-

based sensors (compare to Fig. 3c). Under these conditions, coexpressed Aleu-

RFP strongly reduces fluorescence lifetime of the SYP61-GFP-based sensor, 

demonstrating ligand binding. This does not occur in the presence of Sec-RFP 

(Fig. 5f, Supplementary Fig. 5). The capability of the TGN/EE-targeted VSR 

sensor to bind ligands in the ER was furthermore confirmed by 

coimmunoprecipitation (Fig. 5g). Here, only BFA-triggered ER-localisation of the 

VSR sensor resulted in coimmunoprecipitation of the ligand Aleu-RFP, which does 

not occur if the sensor localises to the TGN/EE. (Fig. 5g, compare to Fig.3a-c). 

Altogether, our data demonstrate that VSRs bind their ligands very early in the 

secretory pathway and release ligands upon arrival in the TGN/EE.  

 



 

VSRs do not mediate post-TGN/EE transport of soluble proteins to the 

vacuole 

The compartment-specific analysis identified the ER and the Golgi as 

compartments that promote VSR-ligand binding while the TGN/EE and the 

MVB/LE restrict this interaction. This suggests that VSRs do not contribute to the 

post-TGN/EE transport of soluble vacuolar proteins towards the vacuole. 

Receptor-independent transport from the TGN/EE to the vacuole furthermore 

implies that this route does not require sorting signals and is thus the default route 

for soluble proteins. 

To test for this hypothesis, we have developed a strategy to analyse post-TGN/EE 

transport of soluble proteins lacking vacuolar sorting signals. Since these signals 

are required for the VSR-mediated sorting to the TGN/EE via the biosynthetic 

pathway, we took advantage of the early endosomal properties of the TGN/EE and 

targeted soluble proteins to the TGN/EE via the endocytic route. For these 

experiments, we used triple (3x) RFP from the culture medium of 3xRFP-secreting 

protoplasts as a fluorescent reporter protein for endocytic uptake. The use of a 

reporter that was secreted by protoplasts ensures that this reporter does neither 

carry cryptic intrinsic vacuolar sorting signals nor signs of damage that could 

possibly trigger vacuolar degradation via mechanisms of quality control later on 

33,34. 

Incubation of cells expressing cytosolic GFP (Cyt-GFP) with 3xRFP results in 

vacuolar delivery of this reporter (Fig. 6a). Consequently, the endocytosed reporter 

is recovered as soluble protein from cellular extracts and does not cofractionate 

with membranes (Fig 6b). To prove that the reporter reaches the vacuole via the 

TGN/EE and the MVB/LE, we used the protoplast-secreted anti-GFP nanobody 

fusion 3xRFP-Nb, which is also delivered to the vacuole in endocytic uptake 

assays (Fig. 6c). This time however, we used cells expressing GFP-membrane 

anchors either at the cell surface (SYP132-GFP), the TGN/EE (SYP61-GFP) or 

the MVB/LE (GFP-BP80). In all cases, the reporter 3xRFP-Nb colocalised with the 

respective membrane anchor due to nanobody-mediated assembly (Fig. 6d-f), 

demonstrating its transport via the endocytic route. Together, this shows that 

soluble proteins reach the vacuole from the TGN/EE independent of sorting 

receptors, defining the vacuole as being the default location of post-TGN/EE 

transport of soluble proteins. 



 

Discussion 

 

VHH domains of heavy-chain antibodies from camelids, termed nanobodies, are 

the smallest polypeptides capable of epitope-binding35. The specificity of this 

interaction together with their size of only 13 kDa turns an ever increasing number 

of engineered nanobodies into powerful tools for research, diagnostics and 

therapeutics35. Amongst first applications for nanobodies was their use as 

chromobodies22. These fusion proteins between a nanobody and a fluorescent 

protein have been expressed in the cytosol of plant cells, allowing for specific 

detection of proteins by the nanobody-mediated attachment of a fluorescent 

reporter36,37 but also for manipulation of protein function, possibly by masking of 

functional domains of the target protein by reporter-attachment37. 

Here, we have employed an anti-GFP nanobody to develop novel VSR sensors for 

the analysis of VSR-ligand interactions in the lumen of the compartments of the 

endomembrane system. These sensors assemble via nanobody-triggered 

interaction from a soluble LBD-nanobody fusion protein with an epitope-tagged 

compartment-specific membrane anchor. We see this strategy as an approach to 

overcome current limitations with respect to compartment-specific targeting of 

functional protein domains, allowing for the analysis of protein-protein interactions 

in vivo that does not redundantise the analysis of the intricate interaction between 

unmodified full-length VSR and endogenous ligands in the future.  

The use of this system allows now for the first time the direct linkage of the type I 

LBD with type II membrane anchors for the Golgi and the TGN/EE, thus enabling 

the use of the very same sensing protein at different locations, rather than 

employing VSR trafficking mutants that exhibit altered distributions11,16.  

We demonstrate that VSR-ligand interactions occur in the ER and Golgi, but don’t 

occur in the TGN/EE or MVBs/LEs (Fig. 6g). These data are in agreement with 

previous observations, showing that LBDs, when fused to the ER retrieval signal 

HDEL32,38 or to the transmembrane domain of an ER-marker27, cause 

accumulation of soluble vacuolar proteins. Moreover, VSRs have been initially 

isolated from solubilised Golgi fractions with immobilised sorting signals at neutral 

pH2, which is also found in these compartments15,16. Release of ligands was 

suggested to occur at low pH2 and in combination with the initial localisation of 

VSRs at the Golgi and at prevacuoles, it was suggested that VSRs transport their 



 

ligands between these compartments5. Since then, localisation analysis was 

refined and VSRs were also found in trans-Golgi cisternae39, TGN/EE18,40, 

MVBs/LEs18,29,41 and even at the PM11,42, implying that the sole use of localisation 

data of receptors is insufficient to judge the ligand-binding status of VSRs3. Our 

data show ligand binding of the SYP61-GFP-based sensor in vitro and in vivo. 

However, this depends strictly on its intracellular localisation, with demonstrated 

binding in the ER but the complete lack thereof in the TGN/EE, suggesting that 

ligands have been released in the TGN/EE.  

We employed FRET-FLIM analysis to monitor for VSR-ligand interactions. The 

fluorescence lifetime is an intrinsic property of a fluorophore and depends on the 

environmental pH43, with decreasing pH lowering lifetime. The FLIM data obtained 

for the VSR sensor reveals compartment-specific fluorescence lifetimes, thus 

reflecting on relative compartmental pH. Recorded fluorescence lifetimes were 

longest in the ER, falling off in cis- to trans-Golgi and were shortest in the TGN/EE, 

suggesting that the TGN/EE exhibits a low pH that could have triggered the 

release of the ligand. This is also supported by recently reported pH values for 

intracellular compartments15-17, identifying the TGN/EE with pH values ranging 

from 6.3-5.5 as being the most acidic compartment of the vacuolar route and 

MVBs/LEs possessing either similar15 or an even slightly more alkaline pH16, whilst 

the pH was highest in the ER (pH 7.1-7.5)15-17. Together, our data are in full 

agreement with the originally proposed concept of pH-dependent binding and 

release of ligands2. 

Another key factor modulating VSR-ligand interaction is calcium44, possibly due to 

conformational changes induced by Ca2+-binding to an EGF repeat within the 

LBD7,44. Ca2+ facilitates ligand binding and prevents release, even at a pH of 444, 

showing that Ca2+ supports ligand binding at unfavourable pH3. Experimental data 

on compartmental Ca2+ concentrations are scarce. The presence of Ca2+ pumps in 

the ER and the tonoplast suggests that concentrations are the highest there, with 

an estimate from 50 µM to 5 mM45, falling off to the nanomolar range in 

compartments en route to the vacuole like the Golgi 46. Together, this suggests 

that VSR-mediated sorting depends on an intricate interplay between pH, Ca2+ and 

possibly other factors that differ between the compartments in order to trigger 

ligand binding and release. 



 

Release of ligands in the TGN implies that further anterograde transport of soluble 

proteins to the vacuole is independent of VSRs. This is in full agreement with the 

TGN-localisation of the VSR-recycling retromer complex18,19 and the observation 

that MVBs/LEs originate at the TGN/EE20 and fuse with the vacuole. This scenario 

does not necessitate VSRs for the ligands to be exported from the TGN/EE. 

Consequently, all soluble proteins would share the fate of the very same passive 

vacuolar delivery via the MVB/LE. Indeed, our endocytic uptake assays with 

secreted non-ligand proteins revealed vacuolar delivery after fluid phase 

endocytosis. We have traced the endocytosed reporter in the TGN/EE and the 

MVB/LE, thus confirming the operation of such a passive vacuolar delivery via the 

endocytic pathway. Alternatively, it could be speculated that secreted soluble 

proteins might possess positive sorting information for yet unidentified receptors 

that mediate endocytosis and TGN/EE export. A prerequisite for such a scenario 

however would be that these receptors do not bind the secretory proteins already 

in the TGN/EE to prevent vacuolar delivery prior to reaching the PM. However, 

together with previously reported findings that even endocytosed polystyrene 

beads reach the vacuole via the endocytic route47, it seems justified to postulate 

that the vacuole is the default location for soluble proteins of the endocytic route, 

which consequently does not require a receptor-mediated transport step between 

the TGN/EE and the MVB/LE for vacuolar delivery. 

 

 

METHODS 

 

Plant materials. Nicotiana tabacum L. SR1 was grown on Murashige and Skoog 

medium supplemented with 2% sucrose, 0.5 g/L MES and 0.8 % Agar at pH 5.7 in 

16/8 h light–dark cycles at 22 °C. 

 

Plasmid constructs. All constructs are given in Supplemental Table 1. DNA 

manipulations were performed according to established procedures, using pUC48-

/pGreenII34-based vectors and Escherichia coli MC1061. A anti-GFP nanobody 

(Nb) sequence was generated by reverse-translation of the aa sequence23, 

optimised for Arabidopsis-specific codon-usage (EMBOSS Backtranseq), modified 

with N-/C-terminal HA-/6x-His-tags and chemically-synthesised (GeneArt Gene 



 

Synthesis). LBD-RFP-Nb was assembled from AtVSR4 (GenBank accession 

NM_127036)-LBD, RFP34 and Nb. Compartment-specific anchors uniformly 

carried EGFP (GenBank accession BAQ19368), warranting comparable 

spectroscopical properties. All red-fluorescent reporters are based on monomeric-

RFP34. 3xRFP/3xRFP-Nb carry the N-terminal signal peptide of Sec-RFP. Correct 

localisation of all generated marker/reporter-fluorophore fusions was verified. 

Protoplast isolation and gene expression. Protoplasts were isolated and 

electro-transfected as described49, using the square-wave pulse generator EPI-

2500 (Fischer, Heidelberg). 10-50 ng/µLtransformation plasmid DNA were transfected; 

expression occurred for 18-24 h at 25 °C in the dark.  

 

Biosynthesis of fluorescent reporters. Protoplast-secreted reporters (3xRFP/ 

3xRFP-Nb) for endocytic uptake experiments were obtained from cell-free culture 

medium after expression, harvesting, sonication and clearance, ruling out 

contaminations with reporter-synthesising cells during uptake-experiments. For 

endocytic uptake, populations of protoplasts expressing GFP markers were 

supplemented with cleared reporter-containing medium for 24 h.  

Confocal microscopy and statistical analysis. Imaging was performed using a 

Leica TCS-SP8 CLSM, with a x63 (1.2 NA) water immersion objective. 

Fluorophores were excited (ex) and emission (em) was detected by line switching 

in sequential mode using HyD detectors: CFP (ex/em: 458 nm/464-525 nm), GFP 

(ex/em: 488 nm/496-525 nm), and RFP (ex/em: 561 nm/569-636 nm). Pinholes 

were adjusted to 1 Airy unit for each wavelength. Post-acquisition image-

processing was performed using Adobe Photoshop CS3 (v10.0.1) and CorelDraw 

X6 (v16.0.0.707). Calculation of the linear Pearson’s correlation coefficient (rp) and 

nonlinear Spearman’s rank correlation coefficient (rs) of red and green fluorescent 

signals and ROI selection was performed as previously described, with threshold 

levels set to 10. For statistics, correlation coefficients of 10 individually analysed 

cells per experiment were considered and are given as mean values with standard 

errors of the mean. Statistical significance was calculated using ANOVA, followed 

by Tukey’s HSD test. 

 

Fluorescence lifetime imaging microscopy. Data acquisition was performed 

with a Leica TCS-SP8 equipped with a PicoHarp-300-TCSPC-module, a PDL-808 



 

Sepia multichannel-picosecond pulsed-diode-laser-driver and was analysed using 

SymPhoTime v5.3.2.2 (PicoQuant). GFP was excited with a 470 nm laser (LDH-P-

C-470B) at 40 MHz pulse-frequency. Emission was recorded at 496-525 nm by 

time-correlated single-photon- counting (TCSPC) until reaching a count of 500 

photons per pixel. To calculate fluorescence lifetimes, TCSPC histograms were 

reconvoluted with an instrumental-response-function (IRF) and fitted against a bi-

exponential decay function. Only fittings giving χ2 values between 0.9 and 1.4 

were considered. All fluorescence signals of organellar markers were specifically 

selected with the software’s ‘region of interest’ selection tools to avoid potential 

miscalculations caused by background noise. In case of GFP-BP80, vacuolar 

background fluorescence, as seen in addition to punctate endosomal signals, was 

excluded from lifetime calculations. All selected signals of a cell were recorded 

and calculated as mean lifetime. Per experimental condition, 12-20 cells were 

independently analysed, thus representing a total of more than 200 individual 

Golgi stacks, TGNs/EEs or MVBs/LEs. For statistics, calculated lifetimes of all 

cells were averaged. Error bars indicate standard errors of the mean. Statistical 

significance was calculated as above. 

 

Harvesting, protein extraction and immunoblotting. Cell-free medium was 

harvested after flotation of cells for 5 min at 80 g, using syringes and sealed pre-

punctured tubes. Proteins from medium-samples were precipitated as described50. 

After resealing, cells were diluted 5-fold with 250 mM NaCl and sedimented by 

centrifugation as above. Cells were extracted by sonication in extraction buffer 

(100 mM Tris, pH 7.8, 200 mM NaCl, 1 mM EDTA, 2 % β-mercaptoethanol and 0.2 

% Triton X-100) for PAGE/WB analysis or in 2x binding buffer (40 mM HEPES, 

300 mM NaCl, 2 mM CaCl2, 2 mM MgCl2, pH 7.1) for (Co-)IP/ligand binding 

analysis. Extracts were cleared by centrifugation at 20,000 g for 15 min at 4 °C. 

For SDS-PAGE/WB, all processed samples/beads were finally mixed 1:1 with 2x 

Xtreme loading dye33 and denatured for 5 min at 95 °C. SDS-PAGE/WB was 

performed as described33. Antibodies used: mouse monoclonal anti-GFP (Roche 

11814460001, 1:1,000), rat monoclonal anti-RFP (ChromoTek, 1:1,000) and rat 

monoclonal anti-HA-Peroxidase (Roche 12013819001, 1:2,500). 

 



 

Immunoprecipitation and ligand binding. For IP/Co-IP and binding assays, 

sensors were assembled in vivo (+/- ligands/BFA) and extracted 1:1 in 2x binding 

buffer. Immunoprecipitation was performed overnight with rabbit polyclonal GFP 

antibodies (Life Technologies A6455)-coupled Protein A beads (10001D, Life 

Technologies) at 4 °C. Beads were 3x washed with binding buffer and either 

immediately processed for SDS-PAGE/WB or incubated with Aleu-RFP/Sec-RFP 

(controls), which were in parallel samples transiently expressed and recovered 

from cell extracts/medium as described above, prior to processing for SDS-

PAGE/WB. For cellular fractionation by osmotic shock, cells were resuspended in 

a 4-fold volume of Tris buffer (50 mM Tris, pH 8.0, 1 mM EDTA) and cleared. 

Supernatant (S) was recovered, the membrane pellet (P) was resuspended in the 

initial volume of extraction buffer, and S-/P-samples were processed for SDS-

PAGE/WB. 
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Figure Legends and Tables 

 

Figure 1. Compartment-specific targeting of luminal ligand-binding domains 

(LBDs) in the plant endomembrane system via nanobody-epitope 

interactions. (a) Nanobody (Nb)-mediated sensor assembly by coexpression of 

soluble LBD-RFP-Nb with luminal GFP-epitope-exposing type I/II membrane 

proteins. (b) Immunodetection of LBD-RFP-NB ± Sec12 overproduction in 

cells/medium (C)/(M) using α-HA. Loading control: coexpressed Golgi marker 

ERD2-CFP (α-GFP), mock-transfection (co). (c,d) CLSM analysis of cells from (b). 

Soluble/secreted LBD-RFP-Nb accumulates with ERD2-CFP in the ER upon 

Sec12 overproduction (+Sec12). (e-i) Sensor assembly by coexpression of LBD-

RFP-Nb with the epitope-tagged anchors (e) GFP-CNX (type I) in the ER, (f) 

Man1-GFP (type II) in the Golgi, (g) SYP61-GFP (type II) in the TGN/EE, (h,i) 

GFP-BP80 (type I) in the MVB/LE, and (i) in wortmannin-induced (+WM, 30 µM, 1 

h) ring-like MVB/LE structures (arrowheads). Inlays: c,f-i magnifications; d,e 

cortical sections. Scale bars (µm): 5/2.5 (inlays). 

 

Figure 2. All assembled VSR sensors are ligand-binding competent. (a) 

Principle of compartment-specific VSR-ligand interaction-analysis via FRET-FLIM. 

Expression of GFP-tagged membrane anchors with soluble LBD-Nbs reconstitutes 

fluorescent VSR sensors. Binding of red-fluorescent ligands (Aleu-RFP) leads to 

close proximity and thus FRET, thereby shortening the fluorescence lifetime of 

GFP. (b) Immunoblot revealing ligand-binding capability of all VSR sensors in 

vitro. Sensors were assembled by coexpression of LBD-Nb with either GFP-CNX, 

Man1-GFP, SYP61-GFP, or GFP-BP80 in tobacco protoplasts, 

immunoprecipitated (anti-GFP antibody-coated beads, IP: α-GFP), and incubated 

with Aleu-RFP. Immunoblots (IB) were probed with antibodies to detect anchors 

(α-GFP), LBD-Nb (α-HA) and Aleu-RFP/Sec-RFP (α-RFP). 

 

Figure 3. Analysis of VSR-ligand interaction identifies the ER as 

compartment that favours ligand binding whilst the MVB/LE restricts ligand 

binding.  

(a,b) Assembly of ER-localising VSR sensors from GFP-CNX+LBD-Nb retains 

coexpressed vacuolar Aleu-RFP in the ER. (c) FRET-FLIM reveals Aleu-RFP-



 

triggered FRET/reduced fluorescence lifetime compared to controls expressing 

RFP-HDEL, Sec-RFP, or ΔLBD-Nb. (d,e) Coexpressed Aleu-RFP and GFP-BP80 

colocalise in MVBs/LEs also upon sensor assembly (GFP-BP80+LBD-Nb). (f) 

FRET-FLIM revealing that Aleu-RFP doesn’t trigger FRET/reduce fluorescence 

lifetime of MVB/LE-localising sensors compared to controls with Nb-mediated 

attachment of RFP (LBD-RFP-Nb, see Fig. 1). (g) Differential distribution of GFP-

BP80 and Aleu-RFP in wortmannin-induced ring-like MVB/LE-structures (30 µM, 1 

h) is not altered by sensor assembly (+LBD-Nb). FLIM data are presented as 

mean ± s.e.m. fluorescence lifetime of n=12/17 (c/f) measurements. Significance 

was calculated using ANOVA, followed by Tukey’s HSD test (*** P<0.001 

compared to every other group; NS, not significant). Images (right) showing 

fluorescence intensity/lifetime of sensors. Scale bars (µm): 5/2.5 (inlays). Inlays: 

a,b, cortical section; d,e: magnifications. 

 

Figure 4. The Golgi provides ligand-binding conditions for VSRs. (a) 

Coexpressed cis-Golgi marker Man1-GFP and the soluble vacuolar reporter Aleu-

RFP don’t colocalise. (b) Assembly of Golgi-localised VSR sensors from Man1-

GFP+LBD-Nb retains Aleu-RFP in the Golgi (arrowheads). (c) Golgi retention is 

highlighted by reduction of Aleu-RFP signals in MVBs/LEs and vacuoles by 

coexpression of the VSR-transport competitor HA-BP80. (d) FRET-FLIM analysis 

identifies the Golgi as compartment favouring ligand binding. Coexpression of 

Aleu-RFP causes FRET-triggered decrease of fluorescence lifetime of the sensor, 

which doesn’t occur in the absence of the LBD (ΔLBD-Nb). (e) VSR sensor 

assembly in the trans-Golgi by coexpression of LBD-RFP-Nb with the marker ST-

GFP. (f,g) Golgi retention of Aleu-RFP caused by assembly of VSR sensors from 

ST-GFP+LBD-Nb. (h) FRET-FLIM analysis demonstrates ligand binding in the 

trans-Golgi. Golgi movement was reduced by application of 4 µm LatB 1 h prior to 

FLIM. Data are presented/calculated as in Fig. 3, n=12 measurements. Scale bars 

(µm): 5/2.5 (inlays). Inlays: magnifications. 

 

Figure 5. The TGN/EE does not provide ligand-binding conditions for VSRs.  

(a,b) Aleu-RFP doesn’t colocalise with the TGN/EE marker SYP61-GFPand is not 

retained upon sensor assembly (SYP61-GFP+LBD-Nb). Inlays: magnification. (c) 

Pearson’s (rP) and Spearman’s (rS) correlation (PSC) coefficients of SYP61-



 

GFP/Aleu-RFP signals from a,b, with colocalising SYP61-GFP/LBD-RFP-Nb (see 

Fig. 1g) for comparison. Statistical analysis/annotations as in Fig. 3, n=10 cells, *** 

P<0.001. (d) Aleu-RFP doesn’t trigger FRET/reduce fluorescence lifetime of 

TGN/EE-localising sensors (identical to Sec-RFP in negative controls). FRET is 

triggered in positive controls by attachment of RFP (LBD-RFP-Nb, see Fig. 1). (e) 

BFA-induced ER coaccumulation of sensors (SYP61-GFP+LBD-Nb) and Aleu-

RFP (+BFA). Inlay: cortical section. (f) Coexpression of SYP61-GFP-based 

sensors with Aleu-RFP or Sec-RFP ±BFA. Aleu-RFP triggers FRET/reduces 

fluorescence lifetime only in the presence of BFA due to redistribution of 

sensors/ligands to the binding-favouring ER. Data in d,f are presented/calculated 

as in Fig. 3, n=17/20 (d/f) measurements. TGN/EE movement was reduced by 

application of 4 µm LatB 1 h prior to FLIM. (g) Proteins were expressed as 

indicated (± BFA), sensors were immunoprecipitated (anti-GFP antibody-coated 

beads, IP: α-GFP), and immunoblotted (IB). Total extracts (T) and 

immunoprecipitates (IP) were probed with α-GFP (Anchor), α-HA (LBD-Nb), and α-

RFP (Aleu-RFP/Sec-RFP), revealing ligand binding of SYP61-GFP-based sensors 

in the ER (+BFA, black arrowhead) but not in the TGN/EE (-BFA, white 

arrowhead). For e-g, BFA (36 µM) was applied after transfection. Scale bars (µm): 

5/2.5 (inlays). 

 

Figure 6. Vacuolar delivery of endocytosed soluble proteins does not 

depend on sorting signals. (a) Endocytic uptake and vacuolar delivery of 3xRFP 

by Cyt-GFP-expressing protoplasts. (b) Immunoblot of cellular extracts after 

uptake of 3xRFP, osmotic shock (total proteins, T), and fractionation into 

membrane (M) and soluble (S) fractions identify endocytosed 3xRFP as soluble 

protein (left). Cells expressing the plasma membrane marker RFP-TMD23 served 

as fractionation control (right). (c) Endocytic uptake and vacuolar delivery of 

nanobody-tagged reporter 3xRFP-Nb (compare to a). (d-f) Mapping of the 

transport route to the vacuole by nanobody-mediated anchoring of endocytosed 

3xRFP-Nb in the TGN/EE and MVB/LE. Incubation of cells exposing GFP at (d) 

the surface (SYP132-GFP), (e) the TGN/EE (SYP61-GFP) or (f) the MVB/LE 

(GFP-BP80) with 3xRFP-Nb leads to accumulation of the reporter at the 

corresponding locations, demonstrating that endocytosed non-VSR-ligand 3xRFP-

Nb transits the TGN/EE and MVB/LE en route to the vacuole. Inlays: 



 

magnifications. Scale bars (µm): 5/2.5 (inlays). (g) Concept of sorting and 

transport of soluble vacuolar proteins. The ER and the Golgi provide binding 

conditions (green) for VSR-ligand interaction, while the post-Golgi compartments 

TGN/EE and MVB/LE do not (red). 

 

Supplementary Figure 1. Uncropped immunoblot. Detection of the 

immunoprecipitated compartmental markers GFP-CNX, Man1-GFP, SYP61-GFP, 

and GFP-BP80 as illustrated in Figure 2b. Concentration series (c1-c3) were loaded 

in SDS-PAGE to equalise the amounts of markers for the detection of the 

coexpressed/coimmunoprecipitated LBD-Nb. Sections cut for Figure 2b are 

highlighted by black rectangles. The Immunoblot (IB) was probed with α-GFP. 

 

Supplementary Figure 2. The assembly of VSR sensors does not influence 

the localisation of the membrane anchors. Protoplasts were transfected with 

plasmids encoding for the indicated proteins and incubated 24 h before CLSM 

analysis. (a-d) Sensors were assembled from LBD-Nb and the GFP-tagged 

membrane anchors and localisation was compared to RFP-tagged derivatives of 

the respective compartmental marker. (a) Colocalisation with RFP-CNX in the ER, 

(b) colocalisation with Man1-RFP in the Golgi, (c) colocalisation with RFP-SYP61 

in the TGN/EE, and (d) colocalisation with RFP-BP80 in the MVB/LE. Inlays in a-d: 

magnifications. Scale bars (µm): 5/2.5 µm (inlays). (e) Pearson’s (rP) and 

Spearman’s (rS) correlation (PSC) coefficients calculated for green and red signals 

as shown in a-d demonstrating colocalisation. PSC coefficients are presented as 

mean ± s.e.m (n = 10 individual cells). Statistical significance was calculated using 

ANOVA, followed by Tukey’s HSD test (*** P < 0.001). 

 

Supplementary Figure 3. Representative CLSM images of cells analysed by 

FRET-FLIM to asses VSR-ligand binding in the ER and the MVB/LE. (a) FLIM 

data for the ER. The diagram shows the fluorescence lifetimes from Figure 3c plus 

additional controls analysed 6 h after application of 36 µM BFA. The different 

experimental groups are represented by Latin numbers (I-VI). A representative 

image is given for each group ensuring expression of tested fluorescent pairs. (b) 

FLIM data for the MVB/LE. The diagram shows the fluorescence lifetimes from 

Figure 3f. The different experimental groups are represented by Latin numbers (I-



 

IV). A representative image is given for each group ensuring expression of tested 

fluorescent pairs. Scale bars: 5 µm. Statistics: *** P<0.001; NS, not significant. 

 

Supplementary Figure 4. Representative CLSM images of cells analysed by 

FRET-FLIM to asses VSR-ligand binding in the Golgi. (a) FLIM data for the cis-

Golgi. The diagram shows the fluorescence lifetimes from Figure 4d. The different 

experimental groups are represented by Latin numbers (I-IV). A representative 

image is given for each group ensuring expression of tested fluorescent pairs. (b) 

FLIM data for the trans-Golgi. The diagram shows the fluorescence lifetimes from 

Figure 4h. The different experimental groups are represented by Latin numbers (I-

IV). A representative image is given for each group ensuring expression of tested 

fluorescent pairs. Scale bars: 5 µm. Statistics: *** P<0.001; NS, not significant. 

 

Supplementary Figure 5. Representative CLSM images of cells analysed by 

FRET-FLIM to asses VSR-ligand binding in the TGN/EE. (a) The diagram 

shows the fluorescence lifetimes from Figure 5d,f (± BFA) in direct comparison. 

The different experimental groups are represented by Latin numbers (I-IV). A 

representative image is given for each group ensuring expression of tested 

fluorescent pairs. Scale bars: 5 µm. Statistics: *** P<0.001; NS, not significant. 
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Figure 1. Compartment-specific targeting of luminal ligand-binding domains (LBDs) in the plant endomembrane 

system via nanobody-epitope interactions. (a) Nanobody (Nb)-mediated sensor assembly by coexpression of soluble LBD-

RFP-Nb with luminal GFP-epitope-exposing type I/II membrane proteins. (b) Immunodetection of LBD-RFP-NB ± Sec12 

overproduction in cells/medium (C)/(M) using α-HA. Loading control: coexpressed Golgi marker ERD2-CFP (α-GFP), mock-

transfection (co). (c,d) CLSM analysis of cells from (b). Soluble/secreted LBD-RFP-Nb accumulates with ERD2-CFP in the ER 

upon Sec12 overproduction (+Sec12). (e-i) Sensor assembly by coexpression of LBD-RFP-Nb with the epitope-tagged anchors 

(e) GFP-CNX (type I) in the ER, (f) Man1-GFP (type II) in the Golgi, (g) SYP61-GFP (type II) in the TGN/EE, (h,i) GFP-BP80 

(type I) in the MVB/LE, and (i) in wortmannin-induced (+WM, 30 µM, 1 h) ring-like MVB/LE structures (arrowheads). Inlays: c,f-i 

magnifications; d,e cortical sections. Scale bars (µm): 5/2.5 (inlays).



Figure 2

Figure 2. All assembled VSR sensors are ligand-binding competent. (a) Principle of compartment-specific VSR-ligand 

interaction-analysis via FRET-FLIM. Expression of GFP-tagged membrane anchors with soluble LBD-Nbs reconstitutes 

fluorescent VSR sensors. Binding of red-fluorescent ligands (Aleu-RFP) leads to close proximity and thus FRET, thereby 

shortening the fluorescence lifetime of GFP. (b) Immunoblot revealing ligand-binding capability of all VSR sensors in vitro. 

Sensors were assembled by coexpression of LBD-Nb with either GFP-CNX, Man1-GFP, SYP61-GFP, or GFP-BP80 in tobacco 

protoplasts, immunoprecipitated (anti-GFP antibody-coated beads, IP: α-GFP), and incubated with Aleu-RFP. Immunoblots 

(IB) were probed with antibodies to detect anchors (α-GFP), LBD-Nb (α-HA) and Aleu-RFP/Sec-RFP (α-RFP).
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Figure 3. Analysis of VSR-ligand interaction identifies the ER as compartment that favours ligand binding whilst the 

MVB/LE restricts ligand binding. (a,b) Assembly of ER-localising VSR sensors from GFP-CNX+LBD-Nb retains 

coexpressed vacuolar Aleu-RFP in the ER. (c) FRET-FLIM reveals Aleu-RFP-triggered FRET/reduced fluorescence lifetime 

compared to controls expressing RFP-HDEL, Sec-RFP, or ΔLBD-Nb. (d,e) Coexpressed Aleu-RFP and GFP-BP80 colocalise 

in MVBs/LEs also upon sensor assembly (GFP-BP80+LBD-Nb). (f) FRET-FLIM revealing that Aleu-RFP doesn't trigger 

FRET/reduce fluorescence lifetime of MVB/LE-localising sensors compared to controls with Nb-mediated attachment of RFP 

(LBD-RFP-Nb, see Fig. 1). (g) Differential distribution of GFP-BP80 and Aleu-RFP in wortmannin-induced ring-like MVB/LE-

structures (30 µM, 1 h) is not altered by sensor assembly (+LBD-Nb). FLIM data are presented as mean ± s.e.m. fluorescence 

lifetime of n=12/17 (c/f) measurements. Significance was calculated using ANOVA, followed by Tukey's HSD test (*** P<0.001 

compared to every other group; NS, not significant). Images (right) showing fluorescence intensity/lifetime of sensors. Scale bars 

(µm): 5/2.5 (inlays). Inlays: a,b, cortical section; d,e: magnifications.
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Figure 4. The Golgi provides ligand-binding conditions for VSRs. (a) Coexpressed cis-Golgi marker Man1-GFP and the 

soluble vacuolar reporter Aleu-RFP don't colocalise. (b) Assembly of Golgi-localised VSR sensors from Man1-GFP+LBD-Nb 

retains Aleu-RFP in the Golgi (arrowheads). (c) Golgi retention is highlighted by reduction of Aleu-RFP signals in MVBs/LEs and 

vacuoles by coexpression of the VSR-transport competitor HA-BP80. (d) FRET-FLIM analysis identifies the Golgi as 

compartment favouring ligand binding. Coexpression of Aleu-RFP causes FRET-triggered decrease of fluorescence lifetime of 

the sensor, which doesn't occur in the absence of the LBD (ΔLBD-Nb). (e) VSR sensor assembly in the trans-Golgi by 

coexpression of LBD-RFP-Nb with the marker ST-GFP. (f,g) Golgi retention of Aleu-RFP caused by assembly of VSR sensors 

from ST-GFP+LBD-Nb. (h) FRET-FLIM analysis demonstrates ligand binding in the trans-Golgi. Golgi movement was reduced 

by application of 4 µm latrunculin B  1 h prior to FLIM. Data are presented/calculated as in Fig. 3, n=12 measurements. Scale 

bars (µm): 5/2.5 (inlays). Inlays: magnifications.
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Figure 5. The TGN/EE does not provide ligand-binding conditions for VSRs. (a,b) Aleu-RFP doesn't colocalise with the 

TGN/EE marker SYP61-GFPand is not retained upon sensor assembly (SYP61-GFP+LBD-Nb). Inlays: magnification. (c) 

Pearson's (r ) and Spearman's (r ) correlation (PSC) coefficients of SYP61-GFP/Aleu-RFP signals from a,b, with colocalising P S

SYP61-GFP/LBD-RFP-Nb (see Fig. 1g) for comparison. Statistical analysis/annotations as in Fig. 3, n=10 cells, *** P<0.001. (d) 

Aleu-RFP doesn't trigger FRET/reduce fluorescence lifetime of TGN/EE-localising sensors (identical to Sec-RFP in negative 

controls). FRET is triggered in positive controls by attachment of RFP (LBD-RFP-Nb, see Fig. 1). (e) BFA-induced ER 

coaccumulation of sensors (SYP61-GFP+LBD-Nb) and Aleu-RFP (+BFA). Inlay: cortical section. (f) Coexpression of SYP61-

GFP-based sensors with Aleu-RFP or Sec-RFP ±BFA. Aleu-RFP triggers FRET/reduces fluorescence lifetime only in the 

presence of BFA due to redistribution of sensors/ligands to the binding-favouring ER. Data in d,f are presented/calculated as in 

Fig. 3, n=17/20 (d/f) measurements. TGN/EE movement was reduced by application of 4 µm latrunculin B 1 h prior to FLIM. (g) 

Proteins were expressed as indicated (± BFA), sensors were immunoprecipitated (anti-GFP antibody-coated beads, IP: 

α-GFP), and immunoblotted (IB). Total extracts (T) and immunoprecipitates (IP) were probed with α-GFP (Anchor), α-HA (LBD-

Nb), and α-RFP (Aleu-RFP/Sec-RFP), revealing ligand binding of SYP61-GFP-based sensors in the ER (+BFA, black 

arrowhead) but not in the TGN/EE (-BFA, white arrowhead). For e-g, BFA (36 µM) was applied after transfection. Scale bars 



Figure 6

Figure 6. Vacuolar delivery of endocytosed soluble proteins does not depend on sorting signals. (a) Endocytic uptake 

and vacuolar delivery of 3xRFP by Cyt-GFP-expressing protoplasts. (b) Immunoblot of cellular extracts after uptake of 3xRFP, 

osmotic shock (total proteins, T), and fractionation into membrane (M) and soluble (S) fractions identify endocytosed 3xRFP as 

soluble protein (left). Cells expressing the plasma membrane marker RFP-TMD23 served as fractionation control (right). (c) 

Endocytic uptake and vacuolar delivery of nanobody-tagged reporter 3xRFP-Nb (compare to a). (d-f) Mapping of the transport 

route to the vacuole by nanobody-mediated anchoring of endocytosed 3xRFP-Nb in the TGN/EE and MVB/LE. Incubation of 

cells exposing GFP at (d) the surface (SYP132-GFP), (e) the TGN/EE (SYP61-GFP) or (f) the MVB/LE (GFP-BP80) with 

3xRFP-Nb leads to accumulation of the reporter at the corresponding locations, demonstrating that endocytosed non-VSR-

ligand 3xRFP-Nb transits the TGN/EE and MVB/LE en route to the vacuole. Inlays: magnifications. Scale bars (µm): 5/2.5 

(inlays). (g) Concept of sorting and transport of soluble vacuolar proteins. The ER and the Golgi provide binding conditions 

(green) for VSR-ligand interaction, while the post-Golgi compartments TGN/EE and MVB/LE do not (red).
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Supplementary Figure 1
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Supplementary Figure 1. Uncropped immunoblot. Detection of the immunoprecipitated compartmental markers GFP-CNX, 

Man1-GFP, SYP61-GFP, and GFP-BP80 as illustrated in Figure 2b. Concentration series (c1-c3) were loaded in SDS-PAGE to 

equalise the amounts of markers for the detection of the coexpressed/coimmunoprecipitated LBD-Nb. Sections cut for Figure 2b 

are highlighted by black rectangles. The Immunoblot (IB) was probed with α-GFP.
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Supplementary Figure 2. The assembly of VSR sensors does not influence the localisation of the membrane anchors. 

Protoplasts were transfected with plasmids encoding for the indicated proteins and incubated 24 h before CLSM analysis. (a-d) 

Sensors were assembled from LBD-Nb and the GFP-tagged membrane anchors and localisation was compared to RFP-tagged 

derivatives of the respective compartmental marker. (a) Colocalisation with RFP-CNX in the ER, (b) colocalisation with Man1-

RFP in the Golgi, (c) colocalisation with RFP-SYP61 in the TGN/EE, and (d) colocalisation with RFP-BP80 in the MVB/LE. 

Inlays in a-d: magnifications. Scale bars (µm): 5/2.5 µm (inlays). (e) Pearson's (r ) and Spearman's (r ) correlation (PSC) P S

coefficients calculated for green and red signals as shown in a-d demonstrating colocalisation. PSC coefficients are presented 

as mean ± s.e.m (n = 10 individual cells). Statistical significance was calculated using ANOVA, followed by Tukey's HSD test (*** 
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Supplementary Figure 3. Representative CLSM images of cells analysed by FRET-FLIM to assess VSR-ligand 

binding in the ER and the MVB/LE. (a) FLIM data for the ER. The diagram shows the fluorescence lifetimes from Figure 

3c plus additional controls analysed 6 h after application of 36 µM BFA. The different experimental groups are represented 

by Latin numbers (I-VI). A representative image is given for each group ensuring expression of tested fluorescent pairs. (b) 

FLIM data for the MVB/LE. The diagram shows the fluorescence lifetimes from Figure 3f. The different experimental 

groups are represented by Latin numbers (I-IV). A representative image is given for each group ensuring expression of 

tested fluorescent pairs. Scale bars: 5 µm. Statistics: *** P<0.001; NS, not significant.
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Supplementary Figure 4. Representative CLSM images of cells analysed by FRET-FLIM to assess VSR-ligand binding 

in the Golgi. (a) FLIM data for the cis-Golgi. The diagram shows the fluorescence lifetimes from Figure 4d. The different 

experimental groups are represented by Latin numbers (I-IV). A representative image is given for each group ensuring 

expression of tested fluorescent pairs. (b) FLIM data for the trans-Golgi. The diagram shows the fluorescence lifetimes from 

Figure 4h. The different experimental groups are represented by Latin numbers (I-IV). A representative image is given for each 

group ensuring expression of tested fluorescent pairs. Scale bars: 5 µm. Statistics: *** P<0.001; NS, not significant.



Supplementary Figure 5

Supplementary Figure 5. Representative CLSM images of cells analysed by FRET-FLIM to assess VSR-ligand binding 

in the TGN/EE. (a) The diagram shows the fluorescence lifetimes from Figure 5d,f (± BFA) in direct comparison. The different 

experimental groups are represented by Latin numbers (I-IV). A representative image is given for each group ensuring 

expression of tested fluorescent pairs. Scale bars: 5 µm. Statistics: *** P<0.001; NS, not significant.
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Supplementary Table 1 
 Primers Sequence (5’-3’ direction) Template Recipient Vector 

LBD-RFP-Nb (pBL14) LBD_NheI_S AGCTGAGCTAGCATGAA

GCAGCTTCTATGTTA 

first strand cDNA from 

3-day-old A. thaliana 

seedlings 

pCN11; 

modified to contain following 

strategic restriction sites: 

P35S-NheI-CDS-BamHI-T3nos 

LBD_SalI_AS GCTGATGTCGACGCAAG

TGTCATGGTCTCTCA 

mRFP_SalI_S TGCCGGGTCGACATGGC

CTCCTCCGAGGACGT 

pFK121  

mRFP_KpnI_AS TCCTTAGGTACCTGCTCC

AGTGCTGTGGCGGC 

PLUS: anti-GFP nanobody (KpnI/BamHI); chemically synthesised 

LBD-Nb (pFF29) LBD_NheI_S AGCTGAGCTAGCATGAA

GCAGCTTCTATGTTA 

first strand cDNA from 

3-day-old A. thaliana 

seedlings  

pBL14 (see above); 

cut KpnI/NheI 

LBD_KpnI_AS CGTATTGGTACCGCAAGT

GTCATGGTCTCTCA 

∆LBD-Nb (pFK120) Nb_NheI_S AGTCTAGCTAGCGCCATG

TATCCTTATGATGTTCC 

pBL14 (see above) RFP-TMD23 in pCN11; 

cut BamHI/NheI to keep the N-

terminal signal peptide of RFP-

TMD23 

Nb_BamHI_AS TGCTTCGGATCCCTAATG

AT 

Cyt-RFP-Nb (pFF31) mRFP_ClaI_S AGTCTAATCGATGGCCTC

CTCCGAGGACGT 

pBL14 (see above) RFP-TMD23 in pCN11; 

cut BamHI/ClaI 

Nb_BamHI_AS TGCTTCGGATCCCTAATG

AT 

GFP-CNX (pFF4) EGFP_NheI_S GCATGAGCTAGCGCCAT

GGTGAGCAAGGGCGAGG 

pJB132 pFK120 (see above); 

cut BamHI/NheI 

EGFP_NotI_AS AGTCTAGCGGCCGCCCT

TGTACAGCTCGTCCATGC 

CNX-TMD_NotI_S GATCCGGCGGCCGCGAA

CTGATTGAGAAAGCCGA 

pSLH63 

CNX-CT_BamHI_AS TGCTTCGGATCCTCTAGA

GC 

GFP-BP80 (pFF3) BP80a-TMD_NotI_S AGTCTAGCGGCCGCATC

AGTAAGACGGGTTCACA 

pLL383 pFF4 (see above); 

cut BamHI/NotI 

BP80a-

CT_BamHI_AS 

TGCTTCGGATCCCTTAGG

CA 

Man1-GFP (pFF6) Man1_NheI_S GCATGAGCTAGCATGGC

GAGAGGGAGCAGATC 

pBP304 pBL14 (see above);  

cut BamHI/NheI 

Man1_NotI_AS AGTCTAGCGGCCGCCAC

TAGTTCTAGAAAAAGGT 

EGFP_NotI_S AGTCTAGCGGCCGCATG

GTGAGCAAGGGCGAGGA 

pJB132 

EGFP_BamHI_AS AGCTGAGGATCCTTACTT

GTACAGCTCGTCCA 

SYP61-GFP (pFF25) SYP61_NheI_S AGTCTAGCTAGCATGTCT

TCAGCTCAAGATCC 

pDS135 pFF6 (see above); 

cut NotI/NheI 

SYP61_NotI_AS GCTGTAGCGGCCGCCGG

TCAAGAAGACAAGAACGA 

SYP132-GFP (FF13) SYP132_NheI_S AGTCTAGCTAGCATGAAC

GATCTTCTGAAGGG 

RFP-SYP1326 pFF6 (see above); 

cut NotI/NheI 

SYP132_NotI_AS GATCCGGCGGCCGCCAG

CACTCTTGTTTTTCCAAG 

Cyt-RFP (pFK98) mRFP_NheI_S AGTCTAGCTAGCATGGCC

TCCTCCGAGGACG 

pFK121 pGD55; 

cut BamHI/NheI 

mRFP_BamHI_AS AGTCTAGGATCCTTATGC

TCCAGTACTGTGGCGGC 



 

 

    

Sec-RFP (pFF14) SP_XhoI_SalI_S TCGAGATGAAAGCCTTCA

CACTCGCTCTCTTCTTAG

CTCTTTCCCTCTATCTCC

TGCCCAATCCAGCCATGA

CG 

Complementary 

oligonucleotides to 

assemble the coding 

sequence of the GFP-

spo N-terminal signal 

peptide3 

pCN11; 

modified to contain following 

strategic restriction sites: 

P35S-XhoI-CDS-SpeI-T3nos 

SP_SalI_XhoI_AS TCGACGTCATGGCTGGAT

TGGGCAGGAGATAGAGG

GAAAGAGCTAAGAAGAG

AGCGAGTGTGAAGGCTTT

CATC 

mRFP_SalI_S CTCTATGTCGACTATGGC

CTCCTCCGAGGACGT 

pFK121 

mRFP_SpeI_AS AGTCTAACTAGTTTATGC

TCCAGTACTGTGGCGGC 

Aleu-RFP (pFF15) Aleu_XhoI_S AGTCTACTCGAGATGTCT

CGTCTGTCACTCCT 

aleu-GFP7 pFF14 (see above); 

cut SpeI/XhoI 

Aleu_NheI_AS CATTGCGCTAGCGCTTTC

CA 

mRFP_NheI_S CTTTCTGCTAGCGCCATG

GC 

pFK121 

mRFP_SpeI_AS AGTCTAACTAGTTTATGC

TCCAGTACTGTGGCGGC 

3xRFP (pSF70) mRFP_SalI_S TGCCGGGTCGACGATGG

CCTCCTCCGAGGACGT 

pFK121 pFF14 (see above); 

cut SpeI/SalI to keep the N-

terminal signal peptide of 

pFF14 

mRFP_NdeI_AS TTCGGACATATGTGCTCC

AGTACTGTGGCGGC 

mRFP_NdeI_S AGTCTACATATGGCCTCC

TCCGAGGACG 

pFK128 

mRFP_NheI_AS AGTCTAGCTAGCTGCTCC

AGTACTGTGGC 

mRFP_NheI_S GTTGACTGCTAGCGCCAT

GGCCTCCTC 

pFK121 

mRFP_SpeI_AS CTGCAACTAGTTTATGCT

CCAGTACTGTGGCGGC 

3xRFP-Nb (pSF71) mRFP_NheI_S AGTCTAGCTAGCATGGCC

TCCTCCGAGGACG 

pFK121 pSF70 (see above); 

cut HindIII/NheI 

mRFP_KpnI_AS TCCTTAGGTACCTGCTCC

AGTGCTGTGGCGGC 

PLUS: anti-GFP nanobody-T3nos (KpnI/HindIII), subcloned from pBL14 (see 

above) 

RFP-CNX (pLBY13) CNX-TMD_SalI_S AGTCTAGTCGACGGAACT

GATTGAGAAAGCCGAG 

pSLH63 RFP-TMD23 in pCN11; 

cut BamHI/SalI 

CNX-CT_BamHI_AS AGTCTAGGATCCCTAATT

ATCACGTCTCGGTT 

GFP-SYP61 (pFK94) EGFP_NcoI_S AGTCTACCATGGTGAGCA

AGGGCGAGG 

pJB132 pDS135; 

cut ClaI/NcoI 

EGFP_ClaI_AS AGTCTAATCGATGCTCCA

CCCTTGTACAGCTCGTCC

ATGC 

RFP-SYP61 (pML4) mRFP_NheI_S AGTCTAGCTAGCATGGCC

TCCTCCGAGGACG 

pBP304 pGD55; 

cut BamHI/NheI 

mRFP_ClaI_AS GCTGTAATCGATGCGGC

GCCGGTGGAGTGGCGGC 

PLUS: SYP61 (ClaI/BamHI), subcloned from pDS13 5 



   

   

RFP-BP80 (pFK121) BP80a-SP_NheI_S TCCTTAGCTAGCATGAAG

CAGCTTCTGTGTTA 

pJLH213 pGD55; 

cut BamHI/NheI 

BP80a-SP_NotI_AS AGTCTAGCGGCCGCGAG

CCTCGCTAAAAGGGGAA 

mRFP_NotI_S AGTCTAGCGGCCGCATG

GCCTCCTCCGAGGACGT 

pBP304 

mRFP_SalI_AS AGTCTAGTCGACCGGCG

CCGGTGGAGTGGCGGC 

BP80a-TMD_SalI_S GCTGATGTCGACTTTCAC

AAGTGAAATCAGCG 

pLL383 

BP80a-

CT_BamHI_AS 

TGCTTCGGATCCCTTAGG

CA 

HA-BP80 (pFK119) SP_ClaI_S CTCTATATCGATGAGGCT

TT 

pFK120 (see above) pFF3 (see above); 

cut NotI/ClaI 

HA_NotI_AS AGTCTAGCGGCCGCCAG

CATAATCAGGAACATCA 

ST-GFP (pSF83) ST_NheI_S ACTGCAGCTAGCATGATT

CATACCAACTTGAA 

ST-YFP9 pFF03 (see above); 

cut NotI/NheI 

ST_NotI_AS CTAGCAGCGGCCGCGGG

CCACTTTCTCCTGGCTCT 

RFP-HDEL (pFK 123) sp_ClaI_S CTCTATATCGATGAGGCT

TTGTAAATTCACAG 

pFK121  RFP-TMD23 in pCN11; 

cut BamHI/ClaI 

RFP-

HDEL_BamHI_AS 

AGTCTAGGATCCCTAAAG

CTCATCATGTGCTCCAGT

ACTGTGGCG 

Established plasmids used in this study 

Cyt-GFP10 Cytosolic GFP 

ERD2-CFP9 cis-Golgi marker 

Man1-RFP4 cis-Golgi marker 

Sec1211 Guanine nucleotide exchange factor (GEF) for the GTPase Sar1p 
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Abstract 

Over the past decades, quantitative protein transport analyses have been used to 

elucidate the sorting and transport of proteins in the endomembrane system of plants. 

Here, we have applied our knowledge about transport routes and the corresponding 

sorting signals to establish an in vivo system for testing specific interactions between 

soluble proteins.  

Here, we describe the use of quantitative protein transport assays in tobacco 

mesophyll protoplasts to test for interactions occurring between a GFP-binding 

nanobody and its GFP epitope. For this we use a secreted GFP-tagged α-amylase as 

a reporter together with a vacuolar-targeted RFP-tagged nanobody. The interaction 

between these proteins is then revealed by a transport alteration of the secretory 

reporter due to the interaction-triggered attachment of the vacuolar sorting signal. 

 

 

Key words nanobody-epitope interaction, GFP nanobody, epitope-tagging, 

electrotransfection, α-amylase, enzymatic assay, endomembrane system, secretory 

pathway, secretion index, protoplasts 

  



1. Introduction 

The secretory pathway is of vital importance for all eukaryotic cells, since it 

manufactures, stores and distributes macromolecules, lipids and proteins as cargo to 

intra- and extracellular locations. Probably the best characterized secretory protein in 

plants is the α-amylase from barley (Hordeum vulgare)1. This soluble protein is 

synthesized during seed germination by the cells of the aleurone layer and converts, 

after its secretory transport into the endosperm the accumulated starch into sugars as 

an energy source for the growing embryo. After synthesis and folding in the lumen of 

the endoplasmic reticulum (ER), the soluble α-amylase is exported from the ER and is 

transported along the secretory pathway to the apoplast. Secretion of soluble proteins 

occurs by bulk flow without the presence of sorting signals whilst sorting signals are 

mandatory for a protein to accumulate in the ER or for its selective targeting to 

vacuolar compartments2-9. Therefore, secretory proteins and sorting signals are ideal 

building blocks for the generation of reporter proteins for various intracellular locations 

to elucidate sorting and transport mechanisms in the endomembrane system. The 

most critical aspects here however are the sensitivity of the detection and the 

quantification of the reporter transport. A strategy that meets both requirements is the 

use of reporters that possess intrinsic features like an enzymatic activity. This 

strategy furthermore assures that only functional reporter molecules are detected and 

that the interpretation of the results is not compromised by the detection of reporters 

that have been partially degraded or were erroneously sorted due to quality control 

mechanisms of the cells. 

A reporter that meets all requirements is α-amylase: it is a secretory molecule that is 

transported without any intrinsic sorting signal and it can be detected by its 

endogenous enzymatic activity. Over the past decades, various α-amylase-based 

reporters have been generated and the performed quantitative protein transport 

assays have significantly shaped our current view on the molecular mechanisms of 

protein sorting and transport in plants3, 5, 10-23. 

We have recently generated sensor proteins for compartment-specific analysis of the 

interaction between vacuolar sorting receptors (VSR) and their ligands. These 

sensors assemble in vivo from a compartment-specific transmembrane anchor 

protein and a soluble ligand binding receptor domain. This assembly is driven by the 

specific interaction between a green fluorescent protein (GFP)-binding VHH domain of 

a heavy-chain antibody, termed GFP nanobody (NbG) and its corresponding epitope, 

the GFP24. The development of such experimental strategies requires however 

systems for testing whether protein-protein interactions between soluble proteins 

already occurs during their transit through the endomembrane system. For this, we 

have envisaged a system, in which a protein-protein interaction between a soluble 

secretory protein and a soluble vacuolar protein triggers the vacuolar rerouting of the 



otherwise secreted protein. As a proof of concept, we trigger such a protein-protein 

interaction with the NbG and its GFP-epitope. Heretofore, we have fused GFP to the 

α-amylase, resulting in the secretory reporter α-amylase-GFP whilst the NbG was 

fused to the soluble vacuolar reporter Aleurain-RFP (Aleu-RFP-NbG) that carries a 

sequence-specific vacuolar sorting signal25.  

Here we exemplify the experimental procedure for such a protein-protein interaction 

analysis in vivo, starting with the generation of protoplasts from tobacco mesophyll 

and suspension cultured Arabidopsis and tobacco BY2 cells, their electrotransfection, 

the harvesting of the culture medium and the extraction of the cells for the quantitative 

biochemical transport analyses. We coexpress the secretory reporter α-amylase-GFP 

with the interacting vacuolar protein Aleu-RFP-NbG in a dosage-response experiment 

to characterize the protein-protein interaction by analyzing dose-dependent 

alterations of the transport of the secretory reporter (Fig. 2).  

 

 

2. Materials 

All buffer and solutions are prepared with deionized water and stored at 

room temperature (unless indicated otherwise) 

 

1. Nicotiana tabacum L. SR1 is grown on solid Murashige and Skoog (MS) 

medium at sterile conditions in 16/8 h light-dark cycles at 22 °C in Weck 

“Schmuckform” jars (Weck, Wehr, Germany). 

2. Solid medium for plant growth: MS medium (2.56 mM 2-(N-

morpholino)ethanesulfonic acid (MES), 100 ml/l macro elements stock 

solution (260 mM NH4NO3, 188 mM KNO3, 29.9 mM CaCl2*2H2O, 15 mM 

MgSO4*7H2O, 12.4 mM KH2PO4), 1ml/l micro elements stock solution 

(29.9 mM ZnSO4*7H2O, 100 mM H3BO3, 10 mM MnSO4*H2O, 100.12 µM 

CuSO4*5H2O, 4.99 mM Kl, 105 µM CoCl2*6H2O, 1.03 mM 

Na2MoO4*2H2O), 10 ml/l Fe EDTA stock solution (10.02 mM 

FeSO4*7H2O, 9.03 mM Na2EDTA)), supplemented with 58.4 mM sucrose 

and 8 g/l bacto agar. pH is adjusted with 1 M KOH to 5.7 (see Note 1). 

3. Incubation buffer (IB): 2.56 mM MES, 400 mM sucrose, 4.3 g/l Murashige 

and Skoog Medium - Basal Salt Mixture, 5.1 mM CaCl2*2H2O and 3.12 

mM NH4NO3. pH is adjusted with HCl to 5.7, sterilized with a 0.2 µm 

bottle-top filter and stored at 4 °C. 

4. Enzyme stock solution for protoplast isolation: 2 % (w/v) macerozyme 

R10 and 4 % (w/v) cellulase R10 are dissolved in IB by gentle agitation 

for 30 min, followed by a centrifugation at 3000 xg to sediment insoluble 



particles. The clear supernatant is filter sterilized and 5 ml aliquots are 

kept at -20 °C. 

5. Electrotransfection buffer (EB): 10.1 mM 4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES), 400 mM sucrose, 80.5 mM KCl, and 5.4 

mM CaCl2. The pH is adjusted with HCl to 7.2 and the solution is 

sterilized with a 0.2 µm bottle-top filter and stored at 4°C. 

6. Harvesting solution for protoplasts: 250 mM NaCl. 

7. α-amylase extraction buffer (20X stock solution): 1 M C4H6O5, 1 M NaCl, 

40 mM CaCl2, 0.1 % (w/v) NaN3. pH is adjusted with NaOH to 5.2 (see 

Note 2). 

8. α-amylase substrate solution: α-amylase assay reagent (Megazyme, R-

CAAR4) is dissolved in 10 ml deionized water and stored at -20 °C (see 

Note 2). 

9. Stopping buffer: 1 % (w/v) Trizma base. 

 

 

3. Methods 

3.1. Isolation of tobacco mesophyll protoplasts for electrotransformation 

Isolation of protoplasts is performed at sterile conditions using a lamina-flow 

cabinet at 22 °C. In this procedure, leaves are treated with digestive enzymes to 

release protoplasts, which are then purified and recovered in EB for the 

electrotransfection.  

1. Leaves from six-eight week old tobacco plants are harvested and 

perforated at the lower surface using a derma roller with 1 mm needles 

(Fig 1a, b). Do not use the three youngest leaves from the plants and do 

not use leaves that are moistened with condensed water since such 

material will result in low protoplasts yields. 

2. The midvein is removed with a scalpel blade and the two halves of the 

leaf are transferred to a Petri dish containing 7 ml enzyme solution with 

the perforated side facing the solution. This strategy allows for optimal 

penetration of the leaves with enzyme solution (see Note 3).  

3. Perforate and transfer further leaves to fully cover the surface of the Petri 

dish but avoid overlap of leaves. Usually, 2-3 leaves are used per Petri 

dish for the efficient use of the enzyme solution. Do not fully submerse 

the leaves in the enzyme solution, since this reduces the protoplast yield 

significantly (see Note 4). 



4. The leaves are incubated in the dark for 16 h at 25 °C to allow for gentle 

digestion of the cell walls. 

5. Prior to the protoplast purification, shake the Petri dishes gently without 

submersing the floating leaves to release the protoplasts and incubate for 

further 30 min as above. This short investment of time will significantly 

increase the yield. (Fig 1 c). 

6. Filter the suspension through a sterile 100 µm nylon mesh which was 

moistured before with EB to prevent the protoplasts from sticking to the 

filter.  

7. Transfer the filtered protoplasts into a 50 ml centrifugation tube for further 

purification.  

8. Protoplasts are separated from debris by flotation. Here, the protoplasts 

alive will float on top of the solution, whilst debris remains in the 

underlying solution or form a sediment. Centrifuge the suspension for 15 

minutes at 80 xg at room temperature in a swingout rotor. Allow for 

minimum deceleration to avoid perturbation of the layer of floating 

protoplasts and mixing of protoplasts with the debris of the solution below. 

9. Remove the sediment and the underlying solution and quickly resuspend 

the floating protoplasts in a total volume of 40 ml EB.  

This is done with a long Pasteur pipette that is connected to a peristaltic 

pump. Loss of protoplast can be minimized if the cells are gently pushed 

to create an opening in the layer of the floating cells in the middle of the 

tube. This opening is then used to insert the pipette into the underlying 

solution (see Note 5).  

10. Centrifuge again as before (8) and repeat step 9 until the underlying 

solution is clear. If large amounts of protoplasts are needed, the content 

of multiple centrifugation tubes can be combined to generate a large pool 

of protoplasts. For this, cells should be resuspended in a smaller volume 

e.g. 15 ml prior to transfer into one single tube. This case however will 

require additional washing steps (8,9). 

11. After the last washing step, centrifuge the protoplasts again and estimate 

the volume of the floating cells. Remove the underlying solution as 

described above and resuspend the protoplasts in a 3-fold volume with 

EB to obtain 2-5*106 protoplasts/ml. This protoplast suspension is used 

next for electrotransformation. 

 

3.2. Isolation of protoplasts from suspension-cultured Arabidopsis and 

tobacco BY2 cells 



Protoplasts are isolated from 50 ml suspension cultures three days after sub-

culturing, all steps are carried out at sterile conditions at 22 °C. 

1. Transfer the cell suspension to a 50 ml centrifugation tube and sediment 

the cells at 80 xg for 10 min. 

2. Decant the culture medium, resuspend the cells in a total volume of 40 ml 

with enzyme solution (see Note 3) and distribute the suspension to 4 Petri 

dishes. 

3. Incubate the suspension in the dark for 16 h at 25 °C. 

4. Gently shake the plates and transfer the cell suspension to a 50 ml 

centrifugation tube. 

5. To purify the protoplasts, continue with step 8 of the protocol given above 

for the isolation of mesophyll protoplasts. 

 

3.3. Electrotransformation of protoplasts 

The electrotransformation of the above described protoplasts is performed at 

sterile conditions using a lamina-flow cabinet at 22 °C. 

1. Transfer 500 µl of the protoplast suspension into a semi-micro disposable 

cuvette by using a cut-off blue pipette tip to avoid shearing forces which 

would rapture the protoplasts (Fig 1 d). 

2. Dilute the plasmid DNA in a total volume of 100 µl with EB. Usually, 10 - 

50 ng of plasmid DNA is used per µl transformation reaction. A mock 

transfection that lacks plasmid DNA is used as a negative control.  

3. Transfer the 100 µl diluted plasmid DNA on top of the protoplast 

suspension in the cuvette, mix immediately by gentle shaking and 

incubate for 5 minutes. 

4. Sterilize the hand-held electrode by swirling in a small volume of 99 % 

EtOH and flaming. Cool-down the electrode by gentle dipping in EB prior 

to the transformation. 

5. Gently shake the cuvette again to distribute the floating protoplasts 

homogeneously in the suspension and insert the hand-held electrode (Fig 

1 e). 

6. The protoplasts are transformed by applying a high capacitance square-

wave pulse with 160 V for 10 ms. 

7. Carefully remove the electrode from the cuvette and incubate the 

protoplasts for 15 min without any agitation. 

8. Rinse the electrode by dipping multiple times into deionized water. 

Sterilize and cool the electrode as described in step 4. 



9. Gently pour the cells from the cuvette into a small Petri dish (4.5 cm 

diameter). Immediately rinse the cuvette twice with 1 ml IB buffer to 

recover all protoplasts (Fig 1 f). 

10. Incubate the cells for the expression of the proteins in the dark at 25°C. 

Expression time depends on the respective experiment and can vary 

between 2 h and 48 h. 

 

3.4. Harvesting of the culture medium and cells 

Harvesting of medium and cells and all subsequent procedures do not require 

sterile conditions. Harvesting occurs through centrifugation to separate the living 

protoplasts from the culture medium by floatation. 

1. Prepare 15 ml centrifuge tubes for harvesting by puncturing with a 

glowing hot cannula in the lower conical part of the tube. Smoothen the 

surface around the hole with a scalpel blade and seal the tube again with 

multiple layers of parafilm.  

2. Transfer the cells from the Petri dish into the modified tube and centrifuge 

for 10 minutes at 80 xg at room temperature in a swingout rotor. Allow for 

minimum deceleration to avoid perturbation of the layer of floating living 

protoplasts. 

3. 500 µl of the underlying medium is harvested with an insulin syringe 

through the prepared hole (Fig 1 g). Transfer this medium sample to a 1.5 

ml reaction tube, keep it on ice and immediately seal the tube again with 

multiple layers of parafilm. 

4. The remaining cell suspension is diluted to a total volume of 10 ml with 

the harvesting solution for protoplasts and gently resuspended by 

inverting the centrifugal tube for several times.  

5. Sediment the cells for 7 minutes at 80 xg at room temperature in a 

swingout rotor with moderate deceleration (Fig 1 h). 

6. Remove the supernatant with a Pasteur pipette which is connected to a 

peristaltic pump and freeze the cells at -80 °C. 

7. Centrifuge the medium samples at 20,000 xg for 15 min at 4 °C to 

remove particles and transfer the cleared supernatant into a new reaction 

tube.  

8. Cell samples are defrosted on ice and extracted in a total volume of 250 

µg with 1X α-amylase extraction buffer. 

9. Cell extracts are homogenized by sonication for 3 seconds. 

10. Cell extracts are centrifuged at 20,000 xg for 15 min at 4 °C and the 

supernatant is transferred into a precooled reaction tube and kept on ice. 



3.5. Analysis of the enzymatic α-amylase activity and quantification of 

protein transport  

Enzymatic activity of α-amylase is determined by a single-point 

spectrophotometric assay that measures the release of p-nitrophenolate anions 

after the metabolization of the α-amylase substrate p-nitrophenyl maltoheptaoside 

(BPNPG7) at alkaline conditions. The activity of the α-amylase is calculated as the 

amount of metabolized substrate per minute per milliliter sample.  

Protein transport is quantified by the comparison of the amounts of α-amylase that 

was secreted to the culture medium and the α-amylase that remained in the cells. 

This ratio is defined as the secretion index (SI). 

1. Dilute the samples with α-amylase extraction buffer (see Note 6). 

2. Transfer 30 µl of diluted sample into a 1.5 ml reaction tube (see Note 7, 

8). 

3. Add 30 µl α-amylase substrate solution to the sample, mix carefully by 

pipetting tree times up and down to start the reaction and immediately 

incubate the reaction mix at 40 °C (see Note 9).  

4. The enzymatic reaction is stopped by the addition of 150 µl stopping 

buffer. This increase of pH immediately inhibits the α-amylase and 

triggers the dissociation of the p-nitrophenol to the yellow colored p-

nitrophenolate anion.  

5. Transfer 200 µl of the reaction into a 96-well plate and read the 

absorbance (OD) with a plate reader at 405 nm (see Note 10). 

6. Average the ODs from all duplicates. 

7. Subtract the averaged OD of the blank from the averaged OD of the 

sample to determine the amount of substrate that was metabolized during 

the reaction (𝜟𝑬) (see Note 11). 

𝜟𝑬 = 𝑶𝑫̅̅̅̅̅
𝒔𝒂𝒎𝒑𝒍𝒆 − 𝑶𝑫̅̅̅̅̅

𝒃𝒍𝒂𝒏𝒌  

8. Divide the amount of metabolized substrate by the volume of the 

undiluted sample that was used in the reaction in µl and multiply by 1000 

to calculate the metabolized substrate per milliliter and divide the term by 

the reaction time in minutes to calculate the activity. 

𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 =  

𝜟𝑬
𝒔𝒂𝒎𝒑𝒍𝒆 𝒗𝒐𝒍𝒖𝒎𝒆 [µ𝒍]

∗ 𝟏𝟎𝟎𝟎

𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆 [𝒎𝒊𝒏]
 

9. In order to compare values from medium and cells, values of cell samples 

have to be divided by 10 to compensate for the volume change between 

the expression and extraction. 

10. The total activity is calculated as the sum of activity in the medium and 

the activity in the cells (Fig 2). 

𝒕𝒐𝒕𝒂𝒍 𝒂𝒄𝒊𝒗𝒊𝒕𝒚 = 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 (𝒎𝒆𝒅𝒊𝒖𝒎) + 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 (𝒄𝒆𝒍𝒍𝒔) 



11. Divide the calculated α-amylase activity from the culture medium by the 

calculated α-amylase activity in the cells (Fig 2). 

𝑺𝑰 =
𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 (𝒎𝒆𝒅𝒊𝒖𝒎)

𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 (𝒄𝒆𝒍𝒍𝒔)
 

 

 

4. Notes 

1. All stock solutions for the MS medium are stored at 4 °C. To prepare the 

Fe EDTA stock solution, prepare the iron(II) sulfate (FeSO4*7H2O) 

solution and the sodium EDTA (Na2EDTA) solution separately and mix 

both solution afterwards according to the desired volume. 

2. All solutions and reagents for measuring the enzymatic α-amylase activity 

are also available as α-Amylase Assay Kit (K-CERA) from Megazyme, 

Ireland (www.megazyme.com). 

3. Dilute 5 ml of enzyme stock solution with IB to 50 ml, distribute the 

content to 7 Petri dishes and shake the dish gently to cover the bottom of 

the dish. 

4. 7 Petri dishes with perforated leaves are sufficient for 10-12 

electrotransfections. 

5. When removing cell debris and the underlying medium, make sure that 

the peristaltic pump is not started before the tip of the Pasteur pipette is 

below the floating cells. Also make sure, to fully turn off the peristaltic 

pump shorty before the medium is removed completely in order to 

remove the pipette without losing the protoplasts. 

6. Dilute 2.5 ml of 20X α-amylase extraction buffer to a final volume of 50 ml 

with deionized water. 

7. When diluting cell and medium samples with 1X α-amylase extraction 

buffer make sure that you dilute them at least 1:1 to provide optimal 

reaction conditions for the α-amylase 

8. All transfected samples are analyzed in duplicate samples. 

9. The enzymatic reactions are started in 10 to 20 second intervals by the 

addition of the α-amylase substrate. Reactions are stopped after the 

respective reaction time in the same intervals by adding the stopping 

buffer. 

10. If extinction values are higher than 1.2, repeat the assay with a more 

dilute sample or shorten the reaction time. 

11. Samples from mock transfected cells are also subjected to the enzymatic 

assay. These values serve as blanks during the calculation of the α-



amylase activity. This is important, since these blanks account for p-

nitrophenol that was released from the substrate due to thermal decay 

during the incubation time. 
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Figure 1 

 

 

Figure 1 Transient gene expression in Tobacco mesophyll protoplasts. (a) Tobacco 

plant in a Weck jar on solid MS medium. (b) Leaves after perforation with a derma 

roller. (c) Leaves after overnight incubation in enzyme solution. (d) Aliquots of 

protoplast suspension in disposable cuvettes for electrotransfection. (e) Cuvette with 

inserted hand-held electrode. (f) Electrotransfected protoplasts in small Petri dishes 

for gene expression. (g) Harvesting of culture medium with an insulin syringe through 

the prepared hole. (h) Sedimented cells after harvesting. 

  



Figure 2 

 

Figure 2 Quantitative analysis of the protein transport.  

A large pool of protoplasts was divided in 26 aliquots and electrotransfected with 

plasmid DNA (see Table 1 below). For each sample condition, two transfections were 

performed and are given as a dark/bright color pair in the bar chart, whilst two 

aliquots were mock-transfected.  

(α-c) Protoplasts were transfected with plasmids coding for (a) the epitope-tagged 

secretory reporter α-amylase-GFP, (b) the non-epitope-tagged α-amylase or (c), the 

ER-retained α-amylase-HDEL, either alone (-) or were cotransfected with raising 

concentration of plasmids coding for the vacuolar targeted Aleu-RFP-NbG as 

indicated. The secretion indices (SI) of two independent experiments were calculated 

and are given next to each other. (a) The SI of α-amylase-GFP (red) is drastically 

reduced by the coexpressed Aleu-RFP-NbG. This dose-dependent rerouting of the 

secretory reporter reveals the interaction-triggered attachment of the vacuolar sorting 

signal. (b) The SI of α-amylase (blue) is not influenced by the coexpressed Aleu-RFP-

NbG due to the absence of interaction. (c) The secretion index SI of α-amylase-HDEL 

(green) is also not influenced by the coexpressed Aleu-RFP-NbG, also indicating the 

specificity of the interaction shown in (a). 

 

 

 

 

 

 

 



Table 1 

Plasmids used 

 Primers Sequence (5’-3’ 

direction) 

Template Recipient Vector 

Aleu-RFP-NbG (pDV04) PLUS: P35S-Aleu (EcoRI/NheI), subcloned from pFF1524 pCN 26; 

cut BamHI/EcoRI 

RFP_NcoI_S CTAGCGCCATGGCCTC

CTCCGAGGAC 

pFK1226  

RFP_KpnI_AS ATACATGGTACCTGCT

CCAGTACTGTGGCGGC 

PLUS: NbG (KpnI/BamHI), subcloned from pBL1424  

Amy-GFP (pDV05) Amy_NcoI_S CTATAACCATGGCGAA

CAAACACTTGTCCCTC 

pCN126 pCN126; 

cut BamHI/NcoI 

Amy_NotI_AS ATCAACGCGGCCGCCG

ATCTTCTCCCATACGG

CAT 

GFP_NotI_S CCATGAGCGGCCGCAT

GAGTAAAGGAGAAGAA

CT 

GFP-spo13 

GFP-GGGG_BamHI_AS TGCTTCGGATCCCTAT

CCTCCTCCTCCTTTGTA

TAGTTCATCCATGC 

Amy-HDEL (pCN02) PLUS: P35S-Amy-HDEL-T35S (EcoRI/HindIII); subcloned from pAmy-HDEL 3 pCN126; 

cut HindIII/EcoRI 

Established plasmids used in this study 

Amy Secretory reporter10  
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Abstract 

Protein degradation in lytic compartments is crucial for eukaryotic cells. At the heart of this 

process, vacuolar sorting receptors (VSRs) bind soluble hydrolases in the secretory pathway 

and release them into the vacuolar route. Sorting efficiency is suggested to result from 

receptor recycling. However, how and to where plant VSRs recycle remains controversial. 

Here we present a nanobody-epitope interaction-based protein labeling and tracking approach 

to dissect their anterograde and retrograde transport routes in vivo. We employ simultaneously 

two different nanobody-epitope pairs: one for the location-specific post-translational 

fluorescence labeling of receptors and the other pair to trigger their compartment-specific 

lockdown via an endocytosed dual epitope linker protein. We demonstrate VSR-recycling 

from the TGN/EE, thereby identifying the cis-Golgi as the recycling target and show that 

recycled VSRs reload ligands. This is evidence that bidirectional VSR-mediated sorting of 

vacuolar proteins exists and occurs between the Golgi and the TGN/EE. 

 

  



Introduction 

Degradation in lytic compartments is a hallmark of eukaryotic cells. It allows for rapid 

modulations of compartmental protein and lipid compositions as responses to cellular 

communication or environmental cues1, 2, 3, 4. This necessitates constant supply of 

vacuoles/lysosomes with acid hydrolyses by the action of sorting receptors5. Despite its 

significance for viability and development, the core mechanism of vacuolar sorting receptor 

(VSR)-mediated protein transport and its implementation in the plant endomembrane system 

is still controversial5, 6. 

The concept of receptor-mediated protein transport dates back to the discovery of the low-

density lipoprotein receptor and the cation independent (CI)-mannose 6-phosphate receptor 

(MPR) for lysosomal sorting in mammals7, 8, 9. They bind ligands either at the cell surface or 

the TGN and transport them to endosomes, where ligands are released due to low 

compartmental pH8, 10. The key to the efficiency of this transport however, is the continuous 

recycling of receptors after ligand release, allowing receptors to go through hundreds of 

transport-cycles during their life span7, 8, 11, 12, 13.  

The recycling route of MPRs was most elegantly mapped biochemically, by assaying for 

Golgi cisternae-specific glycan processing after receptor labeling with [3H]galactose at the cell 

surface by using exogenous galyctosyltransferases14. However, endogenous VSRs do not 

localize to the cell surface and are thus not amendable to exogenously applied modifying 

enzymes to decipher their function or to trace their transport route in vivo. 

VSRs are type I transmembrane proteins and bind ligands via a luminal ligand-binding domain 

(LBD), whereas their cytosolic tail carries the sorting information for their own 

transportation15, 16, 17, 18, 19, 20, 21, 22, 23. They were originally proposed to transport ligands into 

prevacuoles, nowadays referred to as multivesicular bodies/late endosomes (MVBs/LEs)16, 19, 

21, 24, 25, 26. However, we have recently demonstrated that VSRs bind ligands in the early 

secretory pathway and instead release them in the trans-Golgi network (TGN)27, the early 

endosome (EE) of plants (TGN/EE)28, 29. This raised the fundamental questions as to how to 

where VSRs recycle after ligand release. To address this, we have devised a strategy that 

utilizes the in vivo interaction of two different antibody-epitope pairs. This allows (a) for the 

location-specific green fluorescent protein (GFP)-labeling of VSRs in the TGN/EE and (b) for 

the tracking and lockdown of such labeled VSRs in upstream compartments, upon retrograde 

recycling. For this, we have translationally fused a variable domain of a lama (Lama paco) 



heavy chain antibody (VHH)27, 30, termed nanobody (Nb), that was raised against GFP (NbG)27, 

31 to a VSR (NbG-VSR). The other Nb, which was raised against α-synuclein (NbS)32, was 

fused to compartment-specific membrane marker proteins. Finally, we have designed a dual 

epitope linker protein, which contains the epitopes of both nanobodies and therefore allows for 

both, specific GFP-labeling of the NbG-tagged VSR via the GFP domain and attachment to 

NbS-tagged compartmental marker proteins via the α-synuclein (SYN) epitope. Labeling of 

NbG-VSR in the lumen of the TGN/EE is achieved by incubation of NbG and NbS fusion 

protein-expressing cells with the dual epitope linker protein GFP-SYN, which is endocytosed 

and delivered to the TGN/EE. Using this approach, we have traced GFP-labeled VSRs from 

the TGN/EE back to the cis-Golgi, where we demonstrate their ligand binding capability. 

Together, these data demonstrate the cycling of VSRs between the Golgi stack and the 

TGN/EE.  

 

 

RESULTS 

Post-translational GFP-labeling via endocytosed GFP 

The challenge when analyzing bidirectional protein transport of sorting receptors in live-cell 

imaging studies is to differentiate between anterograde and retrograde transported receptors 

under steady state conditions. This is particularly true when translational fusions between 

receptors and fluorescent proteins are used. Here, fluorescent signals become detectable 

immediately after synthesis and protein folding in the ER and they persist throughout the 

lifespan of the molecule. Consequently, the localization of the receptor does not provide any 

information on its transport direction or ligand status (Fig. 1a). An analysis of receptor 

recycling therefore demands strategies that allow for the specific tracing of those VSRs that 

have released their ligands in the TGN/EE27 and are about to be recycled. This requirement is 

fulfilled if a post-translational labeling strategy is used where signals of the labeled VSRs 

become first detectable in the TGN/EE (Fig. 1b). To achieve this, we have devised an 

approach that accounts for both, the target-specificity of the labeling and the intracellular 

location where the labeling occurs. For this, we have employed a GFP-binding nanobody 

(NbG)27, 31 that is translationally fused to the VSR and we deliver its epitope GFP as the 

fluorescent labeling agent to the TGN/EE via endocytosis. We produced the labeling GFP as a 



secretory protein in another population of tobacco mesophyll protoplasts. The resulting GFP-

containing culture medium is then used for labeling of the cell population that expresses the 

NbG-tagged VSRs. This strict separation between cells that produce the labeling agent GFP 

and cells that are used for the labeling ensures that no newly synthesized VSR on its 

anterograde route is labeled prior to reaching the TGN/EE. 

To develop a compartment-specific post-translational GFP-labeling strategy, we firstly 

decided to employ the established marker proteins α-mannosidase 1 (Man1) for the cis-Golgi, 

sialyltransferase (ST) for the trans-Golgi, SYNTAXIN OF PLANTS (SYP) 61 for the 

TGN/EE, and the luminal ligand binding domain-deprived (ΔLBD) binding protein 80 kDa 

(BP80) from Pisum sativum for MVB/LE in coexpression experiments to discriminate 

between the various punctate signals (Supplementary Fig. 1). Next, we generated and tested 

red fluorescent protein (RFP)-tagged NbG fusion proteins of these markers in tobacco 

mesophyll protoplasts for post-translational labeling in the TGN/EE (SYP61-RFP-NbG), the 

MVB/LE (NbG-RFP-BP80ΔLBD), the trans-Golgi (ST-RFP-NbG), the cis-Golgi (Man1-RFP-

NbG) and the ER (NbG-RFP-Calnexin (CNX). After transfection with the respective marker 

construct, we incubated the cells in GFP-containing culture medium for the endocytic uptake 

of GFP (endocyt GFP) (Fig. 1c-g). Confocal laser-scanning microscopy (CLSM) 

demonstrated that the endocytosed GFP was trapped by the NbG-tagged markers SYP61-RFP-

NbG and NbG-RFP-BP80ΔLBD in the TGN/EE and downstream in the MVB/LE, respectively 

(Fig. 1c,d). In sharp contrast, labeling of the markers in compartments upstream of the 

TGN/EE like the trans-/cis-Golgi (ST-RFP-NbG, Man1-RFP-NbG) or the ER (NbG-RFP-CNX) 

with endocytosed GFP was never observed (Fig. 1e-g). However, post-translational GFP-

labeling based on NbG-epitope interaction is also possible in these compartments, if the 

labeling agent GFP is coexpressed as a secretory protein (Sec-GFP) with the respective NbG-

fusion proteins (Fig. 1h-j). This shows that post-translational GFP-labeling via NbG-epitope 

interaction is applicable to NbG-tagged proteins in all compartments and furthermore 

demonstrates that endocytosed GFP alone does not reach locations upstream of the TGN/EE 

like the cis-/trans-Golgi and the ER. Consequently, this also demonstrates that none of the 

NbG-tagged markers that reside in the ER or the Golgi apparatus, ever reach or cycle through 

the TGN/EE in order to reach their respective steady state distribution. 

 

 



Post-translationally labeled VSRs localize to the TGN/EE 

In the next step, we applied this post-translational GFP-labeling protocol to VSRs (Fig. 2a,b). 

To better judge the labeling efficiency, we tagged a fluorescent VSR33 with the NbG (NbG-

RFP-VSR) and performed post-translational GFP-labeling (Fig. 2b). CLSM-based 

colocalization reveals almost perfectly matching punctate signals of the red NbG-RFP-VSR 

and the green signals from the endocytosed GFP (Fig. 2c,d), demonstrating a high degree of 

labeling efficiency. However, since NbG-RFP-VSR can acquire the labeling GFP only in the 

TGN/EE, this high degree of colocalization furthermore suggests that under steady state 

conditions almost all of the NbG-RFP-VSR molecules had already reached the TGN/EE, at 

least once. 

We have recently demonstrated that VSRs bind their ligands in the ER, in the cis- and trans-

Golgi, but release their ligands in the TGN/EE27. Therefore, we hypothesized that the ligand-

free receptors that were post-translationally labeled with endocytosed GFP in the TGN/EE 

would recycle to an upstream compartment for ligand reloading. In such a scenario, we would 

then expect to detect a population of labeled VSRs in a compartment upstream of the 

TGN/EE. To precisely define the VSR localizations we next post-translationally labeled non-

fluorescent NbG-tagged VSRs (NbG-VSR) with endocytosed GFP and tested for colocalization 

with established red fluorescent compartmental markers (Fig. 2e,f) for the TGN/EE (RFP-

SYP61), the MVB/LE and vacuole (Aleu-RFP), trans- and cis-Golgi (ST-RFP and Man1-RFP, 

respectively) and for the ER (RFP-CNX) in coexpression experiments (Fig. 2g-m). The post-

translationally labeled NbG-VSRs colocalized with the TGN/EE marker (Fig. 2g). 

Surprisingly, the post-translationally labeled NbG-VSRs neither colocalized with the MVB/LE 

and vacuole marker Aleu-RFP (Fig. 2h,i) nor with markers for upstream compartments like 

the trans- and cis-Golgi or the ER (Fig. 2j-m). This steady state localization of NbG-VSR at 

the TGN/EE rather than at the MVB/LE, as is commonly assumed, is not restricted to post-

translationally labeled NbG-VSRs, it is also seen in control experiments using the fluorescent 

full-length receptor fusion protein NbG-RFP-VSR (Supplementary Fig. 2). The differential 

localization of these full-length VSRs and LBD-lacking MVB/LE markers of the RFP/GFP-

BP80ΔLBD type, therefore suggests that the presence of the LBD is required for both, the 

ligand binding capability and for the correct transport of the receptor. 

 

 



Nanobody triggered lockdown of recycled VSRs 

One possible explanation for the TGN/EE-localization of VSRs under steady state conditions 

is that VSRs do not recycle to reload ligands. Such a one-way transport mode was suggested 

for members of the receptor homology region-transmembrane domain-RING-H2 (RMR) 

receptor family, which sort proteins to the protein storage vacuole34. However, considering 

that the TGN/EE is expected to be the recycling point of a bidirectional transport system27, 35, 

the TGN/EE-localization of cycling VSRs may indicate that anterograde transport is faster 

than the subsequent recycling step. To test for his hypothesis, we have devised a strategy that 

allows for the specific detection of recycled receptors in compartments upstream of the 

TGN/EE by blocking their further export and onward forwarding upon completion of 

recycling. For this, we have combined the nanobody-mediated post-translational labeling of 

recycling VSRs in the TGN/EE with an approach for compartment-specific lockdown of these 

labeled VSRs via an antibody-epitope interaction that is triggered by a second nanobody-

epitope pair (Fig. 3a-c). 

Hereto, we translationally fused a nanobody that is directed against the mammalian α-

synuclein (NbS) to red fluorescent compartment-specific membrane markers (CM-RFP-NbS) 

and we fused its corresponding epitope termed SYN, which is a sequence of 23 amino acids, 

to GFP (GFP-SYN). Endocytic uptake of this dual epitope linker as the labeling agent by cells 

coexpressing NbG-VSRs and NbS-tagged compartmental markers was then expected to firstly 

label NbG-VSRs in the TGN/EE and then to trigger an in vivo crosslink between the SYN-

epitope of the GFP-SYN-labeled VSR and the NbS-tagged compartmental marker in the 

compartmental lumen. 

This complex strategy required that we first test whether NbS interacts with the SYN-epitope 

in the lumen of secretory pathway compartments. To this end, we developed an assay for 

analyzing protein-protein interaction in vivo. This assay is based on the simultaneous use of a 

quantifiable soluble secretory reporter with a soluble vacuolar protein, each of which carries 

either the nanobody or the epitope, respectively. In this approach, the interaction occurring 

between the NbS and the epitope triggers the attachment of the vacuolar sorting signal to the 

secretory reporter and consequently, its transport to the lytic vacuole via the vacuolar sorting 

machinery (Fig. 3d,e).  

We therefore tagged the secretory reporter α-amylase from barley (Hordeum vulgare)36 with 

the SYN-epitope (amylase-SYN) and employed the vacuolar reporter Aleu-RFP as a NbS-



fusion protein (Aleu-RFP-NbS). Quantitative transport analysis of the secretory amylase-SYN 

in tobacco mesophyll protoplasts shows that its secretion is drastically reduced by the 

coexpressed vacuolar Aleu-RFP-NbS (Fig. 3f), suggesting an interaction between the NbS and 

the SYN-epitope. In the next step, we tested the functionality of NbS in the context of the 

compartment-specific membrane anchors for the ER, cis- and trans-Golgi and the TGN/EE. 

For this, we fused the NbS to RFP-CNX (NbS-RFP-CNX), Man1-RFP (Man1-RFP-NbS), ST-

RFP (ST-RFP-NbS) and SYP61-RFP (SYP61-RFP-NbS) and verified firstly their correct 

location in colocalization experiments with their respective GFP-tagged counterpart 

(Supplementary Fig. 3). Second, we tested their ability to bind the dual epitope linker GFP-

SYN (Fig. 3g-j). To do this, we immunoprecipitated the above-mentioned marker proteins and 

their NbS-tagged pendants, the anchors, with RFP antibodies in bead-binding assays and 

subjected all of them to the GFP-SYN-containing culture medium from GFP-SYN-secreting 

protoplasts. The immunoblot analysis of the precipitates revealed that all of the NbS-tagged 

anchors coprecipitated the SYN-epitope-tagged GFP, whilst this molecule was absent in 

precipitates from markers lacking the NbS. To rule out that on the other side the SYN-epitope 

from GFP-SYN perturbs the interaction between the GFP-epitope and NbG, we performed 

comparative coimmunprecipitation experiments using bead-bound NbG-VSR with either 

secreted GFP or secreted GFP-SYN, to show that the NbG-VSR binds GFP and GFP-SYN to 

comparable levels (Fig. 3k).  

Finally, we performed colocalization experiments of GFP-SYN-labeled NbG-VSRs with the 

markers for the TGN/EE, trans- and cis-Golgi and the ER, showing that the labeling of NbG-

VSR with GFP-SYN does not alter the localization of the labeled VSR (Supplementary Fig. 

4, compare to Fig. 2). 

Together, these results show that this second NbS-SYN nanobody-epitope pair is suitable for 

triggering a stable linkage between proteins, both in vitro and in vivo. The results also 

demonstrate that each epitope of GFP-SYN is accessible for NbG or NbS interaction. 

 

The cis-Golgi is the target of the VSR-recycling route 

To apply the strategy for nanobody triggered lockdown to the analysis of VSR recycling, we 

have subjected cells that coexpress NbG-tagged VSRs with the above-mentioned NbS-tagged 

anchors to post-translational VSR-labeling using the endocytosed dual epitope linker GFP-

SYN (Fig. 4). First labeling of NbG-VSRs in cells coexpressing the TGN/EE anchor SYP61-



RFP-NbS resulted in almost perfect colocalization of both signals (Fig. 4a), as was seen before 

when the non-tagged TGN/EE marker was used (Fig. 4b). This suggested that the endocytosed 

NbG-VSR-labeling agent GFP-SYN does not generally perturb membrane trafficking events in 

the presence of the NbS-tagged membrane anchor. In the next step, we subjected cells that 

coexpressed the anchors for the upstream compartments to this procedure. Here, the 

localization of the GFP-SYN-labeled NbG-VSRs shifted drastically and now colocalized with 

the trans-Golgi anchor ST-RFP-NbS (Fig. 4c,d, compare to 4b). Likewise, localization of 

GFP-SYN-labeled NbG-VSRs shifted strongly towards the cis-Golgi when the anchor Man1-

RFP-NbS was used for the lockdown of the labeled NbG-VSR (Fig. 4e,f, compare to 4b). The 

colocalization of GFP-SYN-labeled VSRs and the NbS-tagged anchors for the trans- and cis-

Golgi strictly depends on the presence of the second nanobody-epitope pair and was never 

observed when marker pendants without the NbS-tag were used (Fig. 4d,f, compare to 

Supplementary Figs 4 and 5). This suggests, that the VSRs did indeed recycle from the 

TGN/EE to the Golgi stack. To rule out that the GFP-SYN triggered crosslink between NbG-

VSR and ST-RFP-NbS or Man1-RFP-NbS altered the Golgi-localization of the anchors in 

these experiments, we used the fungal toxin brefeldin A (BFA) as a diagnostic tool to confirm 

the Golgi localization of both anchors. In tobacco, BFA causes a fusion between Golgi stacks 

and the ER37 thereby triggering a shift of signals from Golgi anchors to the ER. After BFA-

treatment, the punctate signals from crosslinked GFP-SYN-labeled VSR-cis- and trans-Golgi 

cisternal anchors became detectable in the nuclear envelope (Fig. 4g,h). This demonstrated 

that the lockdown did not alter the localization of the Golgi anchors. In sharp contrast, a 

colocalization between GFP-SYN-labeled NbG-VSRs and the ER anchor NbS-RFP-CNX was 

never observed (Fig. 4i). This, however, indicates that the VSRs do not recycle to upstream 

compartments further than the cis-Golgi. 

 

Recycled VSRs reload ligands in the cis-Golgi 

We have previously used the soluble model ligand Aleu-RFP together with a soluble NbG-

tagged LBD of a VSR that was anchored to a GFP-tagged membrane marker by nanobody-

epitope interaction. There, ligand binding to the anchored LBD in a given compartment was 

visualized through coaccummulation/colocalization of the otherwise passing ligands27. We 

have now extended this visualization concept to the analysis of the ligand-binding capabilities 

of recycled full-length VSRs in the Golgi (Fig. 5a-d).  



Hereto, we performed a cis-Golgi-specific dual-epitope triggered VSR-lockdown in cells, 

coexpressing the vacuolar reporter Aleu-RFP, NbG-VSR, Man1-NbS, which is used for the 

lockdown and Man1-blue fluorescent protein (BFP)2, which serves as neutral marker to verify 

the localization (Fig. 5e). The analysis clearly shows the triple-overlap of the fluorescence 

signals from the vacuolar reporter Aleu-RFP with the recycled GFP-SYN-labeled NbG-tagged 

VSR and the cis-Golgi marker Man1-BFP2, demonstrating the interaction between the 

recycled VSRs and the ligand in the cis-Golgi. The same was also seen when the VSR 

lockdown was performed in the trans-Golgi by using ST-NbS (Supplementary Fig. 6a). In 

sharp contrast, no colocalization between VSRs and ligands are seen in controls without the 

NbS-SYN triggered VSR lockdown: neither in the absence of the NbS-tagged anchor (Fig. 5f, 

Supplementary Fig. 6b) nor in the absence of the SYN-epitope, when GFP is used for the 

labeling instead of GFP-SYN (Fig. 5g, Supplementary Fig. 6c). This was to be expected, 

since “free” labeled VSRs localize to the TGN/EE in these controls (compare to Fig. 2g,i and 

Supplementary Fig. 4a), a compartment that does not provide ligand-binding conditions27. 

 

 

Discussion 

Being only about 125 amino acids long, nanobodies are the smallest entities, capable of 

specific antigen recognition and binding38. Nanobodies are therefore ideally suited for the 

generation of genetically encoded molecular tools for the identification, localization and 

manipulation of protein function in living cells for basic research and applied sciences39, 40. 

We have previously generated VSR-sensors for a compartment-specific analysis of VSR-

ligand interactions27. They self-assemble from soluble VSR_LBD-NbG fusion proteins and 

GFP-tagged compartment-specific membrane anchors. Using this approach, we have 

demonstrated that VSRs bind ligands in the ER, the cis- and the trans-Golgi and ultimately 

release ligands in the TGN/EE27, thereby opening the question about the fate of VSRs after 

this step. The analysis of bidirectional receptor transport and receptor recycling in particular, 

however, is technically most challenging in living cells. It requires molecular tools that permit 

the strict differentiation between VSRs from the anterograde and the retrograde trafficking 

route.  

To overcome these constraints, we have taken advantage of the TGN as also being the EE by 

incubating NbG-VSR-expressing cells with exogenously applied protoplast-secreted GFP to 



trigger compartment-specific labeling of VSRs in the TGN/EE by its endocytic uptake. This 

ensures labeling of only those VSRs that have reached the recycling point, whereas newly 

synthesized VSRs from the anterograde route remain invisible. Most interesting for future 

application however is, the simultaneous use of two different Nb-epitope pairs in vivo. This 

allows for triggering a protein-specific lockdown of recycled NbG-VSRs at NbS-tagged 

membrane proteins by the exogenously applied dual epitope linker peptide GFP-SYN. Using 

this strategy, we demonstrated retrograde VSR recycling to the cis-Golgi as being the most 

distant compartment upstream of the TGN/EE. Together with the fact that VSRs reload 

ligands after recycling, this supports the concept of bidirectional VSR transport. 

Based on our investigations we now present the following concept for the operation of VSR-

mediated vacuolar sorting in the plant endomembrane system (Fig. 6). Newly synthesized 

VSRs bind ligands in the early secretory pathway23, 27, 41, 42 at neutral pH21, 26, 43 and transport 

them to the TGN/EE, where they ultimately release their ligands27, due to a shift in 

compartmental pH. The TGN/EE is the most acidic compartment en route to the vacuole26, 43, 

44, since it harbors characteristic V-ATPases28 that are absent from the MVBs/LEs45, thus 

preventing further acidification. Therefore, the locations for binding and release of ligands are 

in agreement with the initially recorded pH dependency for VSR-ligand interactions in vitro21. 

After release in the TGN/EE, ligands progress without further involvement of VSRs onwards 

to the lytic vacuole by default27. This occurs due to a maturation event of the TGN/EE that 

results in the biogenesis of a MVB/LE46, 47. While fusion of the MVB/LE with the vacuole 

represents the final step in the vacuolar delivery of ligands46 it is unrelated to VSR function. 

VSRs, however, recycle from the TGN/EE back to the cis-Golgi, for ligand reloading and 

renewed rounds of ligand delivery to the TGN/EE. Considering the life span of VSRs greatly 

exceeding the time it takes for a round of transport, it is plausible to assume that cycling VSRs 

bear the brunt of the ligand transport from the Golgi to the TGN/EE with only a minor 

contribution of de novo synthesized VSRs, binding their ligands in the ER. 

 

 

 

 

 

 



Methods 

Plant materials 

Nicotiana tabacum L. SR1 was grown on Murashige and Skoog medium supplemented with 2 

% (w/v) sucrose, 0.5 g L–1 MES and 0.8 % (w/v) Agar at pH 5.7 in 16/8 h light–dark cycles at 

22 °C. 

 

Plasmid constructs 

All constructs are given in Supplementary Table 1. DNA manipulations were performed 

according to established procedures, using pGreenII48-based vectors and Escherichia coli 

MC1061. An anti-SYN nanobody sequence was generated by reverse-translation of the amino 

acid sequence NbSyn87 without the C-terminal 6xHis tag32, optimized for Arabidopsis-

specific codon usage (EMBOSS Backtranseq), modified with an N-terminal HA-tag and 

chemically synthesized (GeneArt Gene Synthesis). The blue fluorescent protein mTagBFP2 

(GenBank AIQ82697.1) was also generated by reverse translation of the amino acid sequence, 

optimized for Arabidopsis-specific codon usage (EMBOSS Backtranseq) and chemically 

synthesized (GeneArt Gene Synthesis). 

All VSR constructs were assembled from AtVSR4 (GenBank accession no. NM_127036) and 

fused to the GFP nanobody27. The red fluorescent compartment specific anchors carry a 

monomeric RFP48. The correct localization of all generated VSR-/marker-fluorophore fusions 

was verified. 

 

Protoplast isolation and gene expression 

Protoplasts were isolated from perforated leafs by over-night incubation in incubation buffer 

(3,05 g L–1 Gamborg B5 Medium, 500 mg L–1 MES, 750 mg L–1 CaCl2·2H2O, 250 mg L–1 

NH4NO3 adjusted to pH 5.7 with KOH) supplemented with 0.2 % w/v macerozyme and 0.4 % 

w/v cellulase) at 25 °C in the dark. They were rebuffered by washing them three times in 50 

mL electrotransfection-buffer (137 g L–1 sucrose, 2.4 g L–1 HEPES, 6 g L–1 KCl, 600 mg L–1 

CaCl2·2H2O adjusted to pH 7.2 with KOH). 150 µL protoplasts in a total volume of 600 µL 

electrotransfection-buffer were electrotransfected with 1–10 µg plasmid DNA using the 

square-wave pulse generator EPI-2,500 (Fischer) applying a pulse at 130 V for 10 ms. After 

transfection, each sample was supplemented with 2 ml incubation buffer and incubated for 18–

24 h at 25 °C in the dark. 



Biosynthesis of fluorescent reporters 

Protoplast-secreted reporters (GFP/GFP-SYN) for endocytic uptake experiments were 

obtained from cell-free culture medium after expression, harvesting, sonication and clearance, 

ruling out contaminations with reporter-synthesizing cells during uptake experiments. For the 

endocytic uptake, populations of protoplasts expressing NbG/NbS-tagged constructs were 

supplemented with cleared reporter-containing medium for 20 h. 

 

Confocal microscopy and statistical analysis 

Image acquisition was performed using a Leica TCS-SP8 confocal laser-scanning microscope, 

equipped with a ×63 (1.2 numerical aperture) water immersion objective. Fluorophores were 

excited (ex) and emission (em) was detected in sequential line scanning mode using HyD 

detectors: mTagBFP2 (ex/em, 405 nm/407-452 nm), GFP (ex/em, 488 nm/496–525 nm) and 

RFP (ex/em, 561 nm/569–636 nm). Pinholes were adjusted to 1 Airy unit for each wavelength. 

Post-acquisition image processing and assembly of figures was performed using Adobe 

Photoshop CS3 and CorelDraw X8. 

The linear Pearson’s correlation coefficient (rP) and the nonlinear Spearman’s rank coefficient 

(rS) of green and red fluorescent signals was calculated with the PSC colocalization plug-in 

(http://www.cpib.ac.uk/~afrench/coloc.html) for ImageJ48. The threshold levels were set to 10. 

For the statistics, 10 individual cells were analyzed and the correlation coefficients are shown 

as mean values with standard errors of the mean. Statistical significance was calculated with R 

using an unpaired, two tailed t-test49. 

 

 

Analysis of the SYN-nanobody epitope interaction 

Cell-free culture medium was harvested after flotation of electrotransfected tobacco 

protoplasts for 5 min at 80 g in sealed pre-punctured tubes, using insulin syringes. Afterwards, 

cells were harvested by addition of 7.5 mL of 250 mM NaCl, sedimentation for 7 min at 80 g, 

followed by removal of the supernatant. The culture medium was cleared by centrifugation at 

20,000 g for 15 min at 4 °C and diluted with α-amylase extraction buffer (50 mM acid malic, 

50 mM sodium chloride, 2 mM calcium chloride, 0.02% (w/v) sodium azide). Cell samples 

were extracted in a total volume of 250 µg with α-amylase extraction buffer, sonicated and 



centrifuged at 20,000 g for 15 min at 4 °C. The supernatant was recovered and employed for 

the reporter assay and SDS-PAGE/Western blot (SDS-PAGE/WB).  

The quantitative reporter transport analysis was performed in samples from the cell extracts 

and the culture medium, using the α-amylase reagent kit (Megazyme R-CAAR4). Individual 

enzymatic assays were started by addition of 30 µl of substrate solution to 30 µl of extracted 

and diluted sample. After incubation at 40 °C, the reaction was stopped by the addition of 150 

µL of 1% w/v Trizma base. 200 µL of the reaction was transferred into a well of a microtitre 

plate to measure absorbance at 405 nm50. 

For SDS-PAGE/WB, samples were mixed 1:1 with freshly prepared 2× Xtreme loading dye 

(900 µL of sample buffer (0.1 % (w/v) bromophenol blue, 5 mM EDTA, 200 mM Tris-HCl, 

pH 8.8, 1 M sucrose) supplemented with 300 µL 10 % w/v SDS and 20 µL of 1 M DTT), 

incubated for 5 min at 95 °C and loaded onto 10 % (w/v) SDS-polyacrylamide gels. After 

electrophoretic separation at 40 mA, proteins were electroblotted onto nitrocellulose 

membranes at 200 mA. For immunodetection, membranes were incubated in blocking solution 

(TBS-T (6.06 g L–1 Trizma base, 8.88 g L–1 NaCl, 0.05 % (v/v) Tween-20), supplemented 

with 5 % (w/v) BSA) for 30 min and then probed with the following antibodies diluted in 

blocking solution: rabbit polyclonal anti-GFP (Life Technologies A6455, 1:10,000), rat 

monoclonal anti-RFP (ChromoTek 5F8, 1:1,000) and rat monoclonal anti-HA–Peroxidase 

(Roche 12013819001, 1:2,500). Uncropped immunoblots are given in Supplementary Fig.7. 

 

Immunoprecipitation 

For anchor-epitope and VSR-epitope interaction anchors/VSRs were expressed in vivo and 

extracted 1:1 in 2× binding buffer (40 mM HEPES, 300 mM NaCl, 2 mM CaCl2, 2 mM 

MgCl2, pH 7.1) with 2% (v/v) CHAPS27. Immunoprecipitation was performed for 1 h with 

RFP-Trap®_MA (ChromoTek, rxns-20) for the anchors and with Pierce™ Anti-HA Magnetic 

Beads (Life Technologies, 88836) for the VSRs at 4°C. Beads were washed three times with 

binding buffer containing 0.4% (v/v) CHAPS and afterwards incubated with GFP-SYN/GFP, 

which were in parallel samples transiently expressed and recovered from the medium, 

overnight at 4 °C. SDS-PAGE/WB was performed as described above. 

 

Data availability 

Data will be available to readers on request 
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Figure Legends  

 

Figure 1. Post-translational GFP-labeling via nanobody-epitope interaction. (a) 

Translational GFP-labeling of VSRs. (b) Post-translational GFP-labeling of a NbG-tagged 

VSR in the TGN/EE by endocytosed GFP. (c-g) Post-translational GFP-labeling of 

compartment-specific NbG-tagged red fluorescent membrane anchors (red) by endocytosed 

GFP (green) in (c) the TGN/EE and (d) the MVB/LE. Endocytosed GFP does not reach (e) the 

trans-Golgi, (f) the cis-Golgi nor (g) the ER. (h-j) Post-translational GFP-labeling by 

coexpression of secreted (Sec)-GFP (green) and NbG-tagged red fluorescent membrane 

anchors (red) for (h) the trans-Golgi, (i) the cis-Golgi and (j) the ER. Insets in (g,j) show 

cortical sections, others show magnifications. Scale bars 10µm, insets 5µm.  

 

Figure 2. Localization of post-translationally labeled NbG-tagged VSRs. (a) Cycling NbG-

tagged red fluorescent VSRs are (b) post-translationally labeled by endocytosed GFP. (c) 

GFP-labeled red fluorescent NbG-tagged VSRs. (d) Pearson’s (rP) and Spearman’s (rS) 

correlation (PSC) coefficients of NbG-RFP-VSRs and labeling GFP. Data are presented as 

average ± s.e.m. of 10 individual cells. The graph shows a representative sample of two 

independent experiments. 



(e,f) Colocalization of post-translationally GFP-labeled non-fluorescent cycling NbG-tagged 

VSRs (NbG-VSR) with red fluorescent compartmental markers (CM) for (g,i) the TGN/EE, 

(h,i) MVBs/LEs and vacuole, (j,l) the trans-/ and (k,l) cis-Golgi and (m) the ER. (i,l) PSC 

coefficients of the labeled NbG-VSR and coexpressed markers RFP-SYP61, Aleu-RFP, Man1-

RFP and ST-RFP are calculated and presented as in (d). Graphs show a representative sample 

of two independent experiments. Labeled NbG-VSRs colocalize with the TGN/EE marker but 

not with markers for MVB/LE and vacuole and the cis-/trans-Golgi. (i) Significance was 

calculated using unpaired, two tailed t-test (n=10, P<0.001, ***, highly significant). Scale bars 

10µm, insets 5µm. Insets show magnifications. 

 

Figure 3. Nanobody triggered lockdown of recycled VSRs. (a) Coexpression of NbG-VSRs 

with red fluorescent NbS-tagged compartmental markers (anchors) and (b) post-translational 

labeling with the dual-epitope GFP-SYN in the TGN/EE to (c) anchor VSRs upon recycling. 

(d,e) NbS-SYN epitope interaction occurs in the endomembrane system. (d) SYN epitope-

tagged secreted amylase (amy-SYN) is (e) rerouted to the lytic vacuole (LV) upon Aleu-RFP-

NbS triggers attachment of the vacuolar sorting signal (Aleu). (f) Coexpression of amy-SYN 

with different amounts of Aleu-RFP-NbS. Upper panel: secretion index (SI); lower panel: 

corresponding immunoblot (α-RFP). (g-j) Co-immunoprecipitations revealing NbS-SYN 

epitope interaction. RFP-tagged markers and anchors for (g) ER, (h) cis-Golgi, (i) trans-Golgi 

and (j) TGN/EE were immunoprecipitated (IP, α-RFP), incubated with GFP-SYN and 

immunoblotted (IB). Total extracts (T) and immunoprecipitates (IP) were probed to detect 

markers, anchors (α-RFP) and co-precipitated GFP-SYN (α-GFP). (k) Co-

immunoprecipitation revealing NbG-GFP epitope interaction. Expressed NbG-VSRs or samples 

from mock-transfected cells were immunoprecipitated (IP, α-HA), incubated with GFP or 

GFP-SYN and immunoblotted (IB). Total extracts (T) and immunoprecipitates (IP) were 

probed to detect VSRs (α-HA) and co-precipitated GFP (white arrowhead) or GFP-SYN 

(black arrowhead) (α-GFP), respectively. 

 

Figure 4 The cis-Golgi stack is the target of VSR recycling. GFP-SYN labeled NbG-VSR is 

locked to the anchors in (a) the TGN/EE (SYP61-RFP-NbS), and after recycling to (c) trans-

Golgi (ST-RFP-NbS) and (e) cis-Golgi (Man1-RFP-NbS) anchors but does not reach (i) the ER 

anchor NbS-GFP-CNX. PSC coefficients of the labeled NbG-VSR with (b) the marker Syp61-



RFP or the anchor Syp61-RFP-NbS, presented/calculated as in (2g) with n=10, P≥0.05, n.s., 

not significant, (d) the marker ST-RFP or the anchor ST-RFP-NbS, presented/calculated as 

above with n=10, P<0.001, ***, highly significant and (f) the marker Man1-RFP or the anchor 

Man1-RFP-NbS, presented/calculated as in (d). Graphs show a representative sample of two 

independent experiments. (g,h) BFA-treatment of samples from (c,e) for 1 h at 20 µM triggers 

fusion of Golgi with ER, verifying Golgi-localization of locked VSRs from (c,e). Scale bars 

10µm, insets 5µm, showing magnifications. 

 

Figure 5. VSRs bind ligands after recycling. (a) Targeted VSR sensors (NbG-LDB) were 

shown to bind Aleu-RFP ligands in the Golgi27 (b) GFP-SYN labeled NbG-VSRs are locked to 

the anchor Man1-NbS in the cis-Golgi, positively identified by the marker Man1-BFP2. 

Ligand-binding of recycled full-length VSRs is assessed by colocalization with ligands (Aleu-

RFP). Controls with cycling VSRs that lack (c) the anchor or (d) the SYN epitope at the 

labeling GFP for the VSR lockdown, result in VSR localization at the TGN/EE, which does 

not promote ligand binding. (e) GFP-SYN labeled NbG-VSRs are locked after recycling in the 

cis-Golgi and colocalize with the Golgi marker Man1-BFP2 and bind the ligand Aleu-RFP, as 

shown by the overlapping signal peaks in the line intensity plot (see b). (f,g) Not locked VSRs 

(see c and d) do not localize to the Golgi and thus do not bind the ligand Aleu-RFP as judged 

by the separated peaks in the line intensity plots. Scale bars 10µm, insets 5µm, showing 

magnifications.  

 

Figure 6. Model for receptor mediated vacuolar sorting in plants. VSRs bind ligands in 

the early secretory pathway and transport them to the TGN/EE. There, the ligands are released 

from the VSR. Next, VSRs are recycled back to the cis-Golgi stack for further rounds of 

ligand transport. Post-TGN/EE transport of released vacuolar cargo ligands but also 

endocytosed proteins occurs independent of VSRs and travel to the lytic vacuole per default. 

Transport in this route is mediated by multivesicular bodies, the late endosomes (MVBs/LEs). 

They bud off the TGN/EE in a maturation-based step and confer cargo delivery by their 

ultimate fusion with the lytic vacuole (LV). 
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Figure 1. Post-translational GFP-labeling via nanobody-epitope interaction. (a) Translational GFP-labeling of VSRs. (b)

Post-translational GFP-labeling of a Nb -tagged VSR in the TGN/EE by endocytosed GFP. (c-g) Post-translational GFP-G

labeling of compartment-specific Nb -tagged red fluorescent membrane anchors (red) by endocytosed GFP (green) in (c) theG
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Figure 2. Localization of post-translationally labeled 

Nb -tagged VSRs. (a) Cycling Nb -tagged red fluorescent G G

VSRs are (b) post-translationally labeled by endocytosed 

GFP. (c) GFP-labeled red fluorescent Nb -tagged VSRs. (d) G

Pearson's (r ) and Spearman's (r ) correlation (PSC) P S

coefficients of Nb -RFP-VSRs and labeling GFP. Data are G

presented as average ± s.e.m. of 10 individual cells. The 

graph shows a representative sample of two independent 

experiments. (e,f) Colocalization of post-translationally GFP-

labeled non-fluorescent cycling Nb -tagged VSRs (Nb -G G

VSR) with red fluorescent compartmental markers (CM) for 

(g,i) the TGN/EE, (h,i) MVBs/LEs and vacuole, (j,l) the 

trans-/ and (k,l) cis-Golgi and (m) the ER. (i,l) PSC 

coefficients of the labeled Nb -VSR and coexpressed G

markers RFP-SYP61, Aleu-RFP, Man1-RFP and ST-RFP 

are calculated and presented as in (d). Graphs show a 

representative sample of two independent experiments. 

Labeled Nb -VSRs colocalize with the TGN/EE marker but G

not with markers for MVB/LE and vacuole and the cis-/

trans-Golgi. (i) Significance was calculated using unpaired, 

two tailed t-test (n=10, P<0.001, ***, extremely significant). 

Scale bars 10µm, insets 5µm. Insets show magnifications.
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Figure 3. Nanobody-triggered lockdown of recycled 

VSRs. (a) Coexpression of Nb -VSRs with red fluorescent G

Nb -tagged compartmental markers (anchor) and (b) post-S

translational labeling with the dual-epitope GFP-SYN in the 

TGN/EE to (c) anchor VSRs upon recycling. (d,e) Nb -SYN S

epitope interaction occurs in the endomembrane system. (d) 

SYN epitope-tagged secreted amylase (amy-SYN) is (e) 

rerouted to the LV upon Aleu-RFP-Nb  triggers attachment S

of the vacuolar sorting signal (Aleu). (f) Coexpression of 

amy-SYN with different amounts of Aleu-RFP-Nb . Upper S

panel: secretion index (SI); lower panel: corresponding 

immunoblot (α-RFP). (g-j) Co-immunoprecipitations 

revealing Nb -SYN epitope interaction. RFP-tagged markers S

and anchors for (g) ER, (h) cis-Golgi, (i) trans-Golgi and (j) 

TGN/EE were immunoprecipitated (IP, α-RFP), incubated 

with GFP-SYN and immunoblotted (IB). Total extracts (T) 

and immunoprecipitates (IP) were probed to detect markers, 

anchors (α-RFP) and co-precipitated GFP-SYN (α-GFP). (k)

Co-immunoprecipitation revealing Nb -GFP epitope G

interaction. Expressed Nb -VSRs or samples from mock-G

transfected cells were immunoprecipitated (IP, α-HA), 

incubated with GFP or GFP-SYN and immunoblotted (IB). 

Total extracts (T) and immunoprecipitates (IP) were probed 

to detect VSRs (α-HA) and co-precipitated GFP (white 

arrowhead) or GFP-SYN (black arrowhead) (α-GFP), 

respectively.
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Figure 4 The cis-Golgi stack is the target of VSR 

recycling. GFP-SYN labeled Nb -VSR is locked to the G

anchors in (a) the TGN/EE (SYP61-RFP-Nb ), and after S

recycling to (c) trans-Golgi (ST-RFP-Nb ) and (e) cis-Golgi S

(Man1-RFP-Nb ) but does not reach (i) the ER anchor S

Nb -GFP-CNX. PSC coefficients of the labeled Nb -VSR S G

with (b) the marker Syp61-RFP or the anchor 

Syp61-RFP-Nb , presented/calculated as in (2i) with n=10, S

P≥0.05, n.s., not significant, (d) the marker ST-RFP or the 

anchor ST-RFP-Nb , presented/calculated as above with S

n=10, P<0.001, ***, extremely significant and (f) the marker 

Man1-RFP or the anchor Man1-RFP-Nb presented/S, 

calculated as in (d). Graphs show a representative sample 

of two independent experiments. (g,h) BFA-treatment of 

samples from  (c,e) for 1 h at 20 µM triggers fusion of Golgi 

with ER, verifying Golgi-localization of locked VSRs from 

(c,e). Scale bars 10µm, insets 5µm, showing magnifications.
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overlapping signal peaks in the line intensity plot (see b). (f,g) Not locked VSRs (see c and d) do not localize to the Golgi 

and thus do not bind the ligand Aleu-RFP as judged by the separated peaks in the line intensity plots. Scale bars 10µm, 
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Figure 6
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Figure 6. Model for receptor mediated vacuolar sorting in plants. VSRs bind ligands in the early secretory pathway and 

transport them to the TGN/EE. There, the ligands are released from the VSR. Next, VSRs are recycled back to the cis-Golgi 

stack for further rounds of ligand transport. Post-TGN/EE transport of released vacuolar cargo ligands but also endocytosed 

proteins occurs independent of VSRs and travel to the lytic vacuole per default. Transport in this route is mediated by 

multivesicular bodies, the late endosomes (MVBs/LEs). They bud off the TGN/EE in a maturation-based step and confer 

cargo delivery by their ultimate fusion with the lytic vacuole (LV).



Supplementary Figure 1 
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Supplementary Figure 1. Membrane marker proteins to discriminate punctate signals in the MVB/LE, the TGN/EE 

and the cis-/trans-Golgi in colocalization experiments. Comparison of signals for TGN/EE, MVB/LE and cis-/trans-Golgi 

in coexpression experiments. Coexpression of: (a) RFP-SYP61 with GFP-BP80ΔLBD to discriminate TGN/EE from MVB/LE,

(b) RFP-SYP61 with Man1-GFP to discriminate TGN/EE from the trans-Golgi, (c) RFP-SYP61 with ST-GFP to discriminate 

TGN/EE from the trans-Golgi and (d) ST-RFP with Man1-GFP to discriminate between cis- and trans-Golgi. Performed in the

presence of 4 µM latrunculin B (LatB) to avoid Golgi movement during image acquisition. Scale bars 10µm, insets 5µm, 

showing magnifications.



Supplementary Figure 2 
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Supplementary Figure 2. Differential localization of the fluorescent full-length VSR Nb -RFP-VSR and the LBD-G

lacking MVB/LE marker Nb -RFP-BP80ΔLBD. (a) Coexpression of Nb -RFP-BP80ΔLBD with the N-terminal GFP fusion ofG G

SYP61, GFP-SYP61, as marker for the TGN/EE, and (b) with the MVB/LE and vacuolar marker Aleu- blue fluorescent 

(BFP)2 confirms the unaltered MVB/LE localization of the marker Nb -RFP-BP80ΔLBD. (c) In sharp contrast, coexpression G

of Nb -RFP-VSR with GFP-SYP61, and with (d) Aleu-BFP2 confirms the unaltered TGN/EE localization of the receptor G

Nb -RFP-VSR. (e) GFP-SYP61-labeled TGN/EE are clearly distinguishable from Aleu-BFP2-labeled MVB/LE in co-G

expression experiments (compare to Suppl. Fig. 1a).  



Supplementary Figure 3 
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Supplementary Figure 3. Fusion of the Nb  to compartment-specific marker proteins does not alter their S

compartment-specific localization. The localization of red fluorescent Nb -tagged marker proteins is compared to their S

GFP-tagged counterparts. Colocalization of (a) Nb -RFP-CNX with GFP-CNX in the ER, (b) Man1-RFP-Nb  with Man1-GFP S S

in the cis-Golgi stack, (c) ST-RFP-Nb  with ST-GFP in the trans-Golgi stack and (d) SYP61-RFP-Nb  with Syp61-GFP in the S S

TGN/EE. Scale bars 10µm, insets 5µm, showing magnifications. 
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Supplementary Figure 4 
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Supplementary Figure 4. The GFP-SYN labeled Nb -VSR localizes to the TGN/EE under steady state conditions. G

Colocalization of post-translationally GFP-SYN labeled non fluorescent Nb -tagged VSRs with red fluorescent G

compartmental markers for (a) the TGN/EE, (b) the MVB/LE and the vacuole, (c) the trans-Golgi, (d) the cis-Golgi and (e) 

the ER. Scale bars 10µm, insets 5µm, showing magnifications.



Supplementary Figure 5 
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Supplementary Figure 5. The TGN/EE-locked VSR does not colocalize with the coexpressed marker for the 

cis-Golgi. (a,b) Colocalization of post-translationally GFP-SYN labeled non fluorescent Nb -tagged VSRs with the TGN/EE G

membrane anchor SYP61-RFP-Nb  and the marker for the cis-Golgi Man1-BFP2 upon GFP-SYN-triggered lockdown. (a) S

The overlapping signals of the labeled VSR and the TGN/EE membrane anchor (yellow) do not colocalize with the signals of

the Golgi marker (cyan). (b) The colocalizing signals of TGN/EE anchored and the locked VSR persist after BFA treatment, 

whilst the Golgi signal redistributes to the ER, due to the BFA-triggered fusion of these compartments. Cells were treated 

with 20 µM BFA and 50 µM cycloheximide (CHX) for 1 h prior to imaging analysis. Scale bars 10µm, insets 5µm, showing 

magnifications.
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Supplementary Figure 6. VSRs bind ligands in the trans-Golgi after recycling. (a) GFP-SYN labeled Nb -VSRs are G

locked after recycling in the trans-Golgi and colocalize with the trans-Golgi marker ST-BFP2 and bind the ligand Aleu-RFP, 

as shown by the overlapping signal peaks in the line intensity plot (compare to Figure 5b). (b,c) Not locked VSRs (compare

to Figure 5c,d) do not localize to the Golgi and thus do not bind the ligand Aleu-RFP as judged by the separated peaks in the

line intensity plots. Scale bars 10µm, insets 5µm, showing magnifications.
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Supplementary Figure 7. Uncropped immunoblots. (a) Detection of Aleu-RFP-Nb  as illustrated in Figure 3f. Section S

shown in Figure 3f is highlighted with a black rectangle. The immunoblot (IB) was probed with α-RFP. (b-f) Detection of the 

markers/anchors and the dual epitope GFP-SYN as shown in Figure 3g-j. (b) Control using mock transfected protoplasts for 

the immunoprecipitation (IP, α-RFP). Beads were incubated with GFP-SYN and immunoblotted (IB). The total extract (T) and

the immunoprecipitate (IP) was probed with α-GFP to detect GFP-SYN. (c-f) Sections shown in Figure 3g-j are highlighted 

with black rectangles. The immunoblots (IB) were probed to detect markers/anchors (α-RFP) and GFP-SYN (α-GFP). (g) 

Detection of VSRs and epitopes (GFP/GFP-SYN) as shown in Figure 3k. Sections shown in Figure 3k are highlighted with 

black rectangles. The immunoblots (IB) are probed to detect VSRs (α-HA) and GFP/GFP-SYN (α-GFP).
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Supplementary Table 1 
 
 Primers Sequence (5’-3’ direction) Template Recipient Vector 
NbG-RFP-CNX (pDV01) NbG_NheI_S GCTCAGGCTAGCGCTAT

GGACTATAAAGACGACGA
CGACAAAATGGGATCTG
GAGGAATGGCTCA 

pBL14 1 pFF04 1; cut NotI/NheI to keep the N-
terminal signal peptide of 
pFF04 

NbG_NcoI_AS GGCCATCCATGGATGAT
GATGATGATGATGAG 

RFP_NcoI_S CATCATCCATGGATGGCC
TCCTCCGAGGACGT 

pFK12 2 
RFP_NotI_AS GTCACTGCGGCCGCGTG

CTCCAGTACTGTGGCGG
C 

Man1-RFP-NbG (pSF65) RFP_NotI_S GAGGATGCGGCCGCATG
GCCTCCTCCGAGGACGT 

pFK12 2 pFF06 1; cut BamHI/ NotI 
RFP_ClaI_AS CATCATATCGATTGCTCC

AGTACTGTGGCGGC 
FLAG_ClaI_S GAGGACATCGATATGGA

CTATAAAGACGACGA 
pDV01 (see above) 
 

NbG_BamHI_AS GCATGAGGATCCCTAATG
ATGATGATGATGATGAG 

ST-RFP-NbG (pSF128) PLUS: ST (NheI/NotI), subcloned from pSF83 1  pSF65 (see above); 
cut NotI/NheI 

Syp61-RFP-NbG (pSF129) PLUS: Syp61 (NheI/NotI), subcloned from pFF25 1 pSF65 (see above); cut NotI/NheI 
NbG-RFP-BP80ΔLBD 
(pSF130) 

PLUS: BP80 (NotI/BamHI), subcloned from pFF03 1 pDV01 (see above); cut BamHI/NotI 
Sec-GFP (pFK68) GFP_SalI_S CATGACGTCGACTATGAG

TAAAGGAGAAGAAC 
GFP-spo 3 pFF14 1; cut SpeI/SalI to keep the N-

terminal signal peptide of pFF14 GFP-GGGG_SpeI_AS TGCTTCACTAGTCTATCC
TCCTCCTCCTTTGTATAG
TTCATCCATGC 

NbG-RFP-VSR (pSF75) NbG_NheI_S GCTCAGGCTAGCGCTAT
GGACTATAAAGACGACGA
CGACAAAATGGGATCTG
GAGGAATGGCTCA 

pBL14 1 pFF04 1; cut BamHI/NheI to keep the 
N-terminal signal peptide of 
pFF04 

NbG_NcoI_AS  GGCCATCCATGGATGAT
GATGATGATGATGAG 

RFP_NcoI_S CATCATCCATGGATGGCC
TCCTCCGAGGACGT 

pFK12 2 
RFP_NdeI_AS TTCGGCCATATGTGCTCC

AGTACTGTGGCGGC 
VSR_NdeI_S GTGGTTCATATGTTTAAC

GAGGCTCGATTCGT 
first strand cDNA 
from 3-day-old A. 
thaliana seedlings VSR_BamHI_AS CTAGTCGGATCCCTAGG

CACGTTCATCATTCGT 
NbG-VSR (pSF76) NbG_NheI_S GCTCAGGCTAGCGCTAT

GGACTATAAAGACGACGA
CGACAAAATGGGATCTG
GAGGAATGGCTCA 

pBL14 1 pSF75 (see above); cut NdeI/NheI to keep the N-
terminal signal peptide of 
pSF75 

NbG_NdeI_AS GTCCTCCATATGATGATG
ATGATGATGATGAG 

ST-RFP (pSF84) RFP_NotI_S TGGCCCGCGGCCGCATG
GCCTCCTCCGAGGACGT 

pFK44 2  pSF83 1; cut BamHI/NotI 
RFP_BamHI_AS TGCTTCGGATCCTTATGC

TCCAGTACTGTGGC 
Amy-SYN (pSF57) Amy_NcoI_S CTATAACCATGGCGAACA

AACACTTGTCCCTC 
pCN1 2 pCN1 2; cut BamHI/NcoI 

Amy_NotI_AS ATCAACGCGGCCGCCGA
TCTTCTCCCATACGGCAT 

SYN_NotI/BamHI_S GGCCGCGTTGATCCTGA
TAATGAAGCATACGAAAT
GCCTTCTGAAGAAGGCTA
TCAAGATTATGAACCGGA
GGCTTAGG 

Complementary 
oligonucleotides to 
assemble the coding 
sequence of the 
SYN-tag 4 

SYN_NotI/BamHI_AS GATCCCTAAGCCTCCGGT
TCATAATCTTGATAGCCT
TCTTCAGAAGGCATTTCG
TATGCTTCATTATCAGGA
TCAACG 

Aleu-RFP-NbS (pDV02) PLUS: P35S-Aleu (EcoRI/NheI), subcloned from pFF15 1 pCN1 2; cut BamHI/EcoRI RFP_NcoI_S CTAGCGCCATGGCCTCC
TCCGAGGAC 

pFK12 2 
RFP_KpnI_AS ATACATGGTACCTGCTCC

AGTACTGTGGCGGC 
PLUS: NbS (KpnI/BamHI); chemically synthesized   



GFP-SYN (pSF74) GFP_NheI_S GCATGAGCTAGCGCCAT 
GGTGAGCAAGGGCGAGG 

pFF04 1 pFF04 1; cut BamHI/NheI to keep the N-terminal 
signal peptide of pFF04 mEGFP_HindIII_AS GTTGGGGTCTTTGCTAAG

CTTGGACTGGGTGCTCA
G 

mEGFP_HindIII_S CTGAGCACCCAGTCCAA
GCTTAGCAAAGACCCCAA
C 

pFF04 1 

GFP_NotI_AS ATCAACGCGGCCGCCCT
TGTACAGCTCGTCCATGC 

PLUS: SYN (NotI/BamHI), subcloned from pSF57 (see above) 
HA-NbG-VSR (pSF88) HA_NbG_NheI_S CTTTCTGCTAGCGCTATG

TATCCGTATGATGTTCCA
GATTATGCTATGGGATCT
GGAGGAATGGCT 

pBL14 1 pFK120 1; cut BamHI/NheI to keep the N-terminal 
signal peptide of pFK120 

NbG_NdeI_AS GTCCTCCATATGATGATG
ATGATGATGATGAG 

PLUS: VSR4 (NdeI/BamHI), subcloned from pSF56 (see above) 
NbS-RFP-CNX (pDV03) NbS_NheI_S CGATACGCTAGCGCTATG

GACTATAAAGACGACGAC
GACAAAATGCAGGTGCA
GCTGCAGGA 

pDV02, see above pFF04 1; cut NotI/NheI to keep the N-terminal 
signal peptide of pFF04 

NbS_NcoI_AS CGATGACCATGGGCTGC
TCACGGTCACCTGGG 

RFP_NcoI_S AGTCTACCATGGATGGCCTCCTCCGAGGACGT pFK12 2 
RFP_NotI_AS AGTCTAGCGGCCGCCGG

GTGCTCCAGTACTGTG 
Man1-RFP-NbS (pSF78) RFP_NotI_S GAGGATGCGGCCGCATG

GCCTCCTCCGAGGACGT 
pFK12 2 pFF06 1; cut BamHI/NotI 

RFP_KpnI_AS TCCTTAGGTACCTGCTCC
AGTGCTGTGGCGGC 

PLUS: NbS (KpnI/BamHI), subcloned from pDV02 (see above) 
ST-RFP-NbS (pSF82) PLUS: ST (NheI/NotI), subcloned from pSF83 1 pSF78 (see above); NotI/NheI 
Syp61-RFP-NbS (pSF80) PLUS: RFP-NbS (NotI/BamHI), subcloned from pSF78 (see above) pFF25 1; cut BamHI/NotI 
Man1-NbS (pSF85) HA_NotI_S CATGTAGCGGCCGCTAT

CCTTATGATGTTCCTGA 
pDV02, see above pSF78 (see above); 

cut BamHI/NotI 
NbS_BamHI_AS TGCTTCGGATCCCTAGCT

GCTCACGGTCACCTGGG 
Man1-mTagBFP2 (pSF143) PLUS: mTagBFP2 (NotI/BamHI); chemically synthesized pFF06 1; cut BamHI/NotI 
Aleu-mTagBFP2 (pFK106) PLUS: P35S-Aleu (EcoRI/NheI), subcloned from pFF15 1 pDS13 5, cut BamHI/EcoRI mTagBFP2_NheI_S GAAAGCGCTAGCATGTCT

GAACTTATTAAGGA 
pSF143, see above 

mTagBFP2_BamHI_AS TGCTTCGGATCCTTAATT
CAACTTATGTCCCA 

ST-NbS (pSF86) HA_NotI_S CATGTAGCGGCCGCTAT
CCTTATGATGTTCCTGA 

pDV02, see above pSF82 (see above); cut BamHI/NotI 
NbS_BamHI_AS TGCTTCGGATCCCTAGCT

GCTCACGGTCACCTGGG 
ST-mTagBFP2 (pSF142) PLUS: mTagBFP2 (NotI/BamHI); chemically synthesized pSF83 1; cut BamHI/NotI 
Established plasmids used in this study 
RFP-Syp61 1 TGN marker 
Aleu-RFP 1 MVB/LE and vacuolar marker, VSR ligand 
Man1-RFP 6 cis-Golgi marker 
RFP-CNX 1 ER marker 
GFP-CNX 1 ER marker 
Man1-GFP 1 cis-Golgi marker 
ST-GFP 1 trans-Golgi marker 
GFP-Syp61 1 TGN marker 
GFP-BP80ΔLBD 1 MBV/LE marker 
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