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ABSTRACT 

 
The regulation of gene expression is a complex, multifaceted 

molecular process that controls development, growth and 

environmental adaptation. At its core, gene expression is regulated at 

the level of transcription, however, post-transcriptional mechanisms 

such as alternative pre-mRNA splicing contribute to its fine-tuning. 

While initially believed to be rare in plants, an increasing number of 

examples have demonstrated the importance of alternative splicing in 

diverse processes, including the context of flowering time control.  

 

Plant reproductive success depends in part on the correct onset of 

flowering. Because of its importance, flowering is tightly regulated by 

several antagonistic floral inductive and repressive pathways. Plants 

integrate endogenous and exogenous signals to assess the overall 

environmental conditions and choose accordingly the best time to 

flower. Among the environmental signals perceived by plants, 

ambient temperature has received limited attention. One of the 

processes by which temperature can affect gene expression is 

through alternative splicing during mRNA maturation. The 

thermoregulation of alternative splicing and its contribution to 

flowering time regulation and morphogenesis in Arabidopsis thaliana 

are the focus of my dissertation.  

 

In Chapter 2 I sought to clarify the role of FLM, a MADS domain 

transcription factor involved in flowering time regulation, which is 

characterized by temperature-dependent alternative splicing. FLM 

gives rise to two major isoforms whose role in the control of flowering 
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has been discussed controversially. To investigate the specific 

contribution of these two isoforms I employed CRISPR/Cas9 gene 

editing to introduce targeted deletions in the FLM locus. These novel 

mutant lines lack exons specific for each main isoform, allowing a 

systematic analysis of their contribution to flowering time regulation. 

The results reported here support a central role for FLM-β, the most 

abundant isoform, in repressing the transition to flowering. Moreover, 

I show that FLM-δ, which has been proposed as a regulator of 

flowering induction in recent in vitro studies, does not promote 

flowering in vivo, likely because its endogenous expression levels do 

not reach the required activation threshold. 

 

Plants are highly responsive to temperature fluctuations and are 

capable of modulating organogenesis and growth rate to adapt to 

novel conditions. In chapter 3 I describe the function of a novel, bona 

fide alternative splicing regulator that is essential for correct 

development and morphogenesis of Arabidopsis thaliana at low 

temperature. Loss of function mutations of this gene, which I named 

PORCUPINE (PCP), displayed severe meristem defects when grown 

at 16°C, whereas at 23°C no obvious phenotype was detectable. At 

any developmental stage, by solely changing the temperature, plant 

growth can be arrested or reinitiated. This behavior indicates the 

presence of a mechanism that allows rapid adaptation of growth and 

development to abrupt changes in the ambient temperature. The 

meristem defects detected in the mutants can be largely explained by 

the misregulation of two genes involved in maintaining the stem cell 

fate in the shoot apical meristem, WUSCHEL and CLAVATA3. These 

findings support the importance of temperature-dependent alternative 

splicing in plant morphogenesis and establish PCP as an important 

regulator of environmental adaptation.  
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ZUSAMMENFASSUNG 
 

 
Die Regulation der Genexpression ist ein komplexer und vielseitiger 

molekularer Prozess, der die Entwicklung, das Wachstum und die 

Umweltanpassung kontrolliert. Im Grunde wird Genexpression auf 

Ebene der Transkription reguliert, jedoch tragen posttranskriptionelle 

Mechanismen wie alternatives Pre-mRNA-Spleißen zu ihrer 

Feinabstimmung bei. Während alternatives Spleißen in Pflanzen 

zunächst als selten galt, bestätigt mittlerweile eine wachsende Zahl 

an Beispielen die Wichtigkeit alternativen Spleißens in vielfältigen 

Prozessen, einschließlich im Zusammenhang mit der 

Blühzeitkontrolle. 

 

Der pflanzliche Fortpflanzungserfolg hängt zum Teil vom korrekten 

Beginn der Blüte ab. Wegen ihrer Bedeutung ist die Blüte durch 

mehrere antagonistische florale induktive und repressive Signalwege 

streng reguliert. Pflanzen integrieren endogene und exogene Signale, 

um die Gesamtumgebungsbedingungen einzuschätzen und 

entsprechend den besten Zeitpunkt zum Blühen zu wählen. Unter 

den von Pflanzen wahrgenommenen Umgebungssignalen wurde der 

Umgebungstemperatur bisher nur geringe Aufmerksamkeit 

entgegengebracht. Einer der Prozesse, durch welche die Temperatur 

die Genexpression beeinflussen kann, ist alternatives Spleißen 

während der mRNA-Reifung. Die Thermoregulation des alternativen 

Spleißens und ihr Beitrag zur Blütezeitregulation und Morphogenese 

in Arabidopsis thaliana stehen im Mittelpunkt meiner Doktorarbeit. 

 



	
  6	
  

Kapitel 2 beschäftigt sich mit der Klärung der Rolle von FLM, einem 

MADS-Domänen-Transkriptionsfaktor, der an der Blütezeitregulierung 

beteiligt ist und den temperaturabhängiges alternatives Spleißen 

charakterisiert. FLM bildet zwei Haupt-Isoformen, deren Rolle in der 

Blühzeitkontrolle kontrovers diskutiert wurde. Um den spezifischen 

Beitrag dieser beiden Isoformen zu untersuchen, verwendete ich 

CRISPR / Cas9-Geneditierung, um gezielte Deletionen im FLM-Locus 

einzuführen. Diesen neuartigen Mutantenlinien fehlen die für jede 

Haupt-Isoform spezifischen Exons, so dass eine systematische 

Analyse ihres jeweiligen Beitrags zur Blütezeitregulierung möglich ist. 

Die hier berichteten Ergebnisse unterstützen eine zentrale Rolle für 

FLM-β, die häufigste Isoform, bei der Unterdrückung des Übergangs 

zur Blüte. Darüber hinaus zeige ich, dass FLM-δ, das in neueren in 

vitro Studien als Regulator der Blüteninduktion vorgeschlagen wurde, 

die Blüte in vivo nicht begünstigt, wahrscheinlich, weil seine 

endogenen Expressionsniveaus nicht die erforderliche 

Aktivierungsschwelle erreichen. 

 

Pflanzen reagieren sensibel auf Temperaturschwankungen und sind 

in der Lage, Organogenese und Wachstumsrate zu modulieren, um 

sich an neue Bedingungen anzupassen. In Kapitel 3 beschreibe ich 

die Funktion eines neuartigen, bona fide alternativen Spleißreglers, 

der für die korrekte Entwicklung und Morphogenese von Arabidopsis 

thaliana bei niedriger Temperatur unentbehrlich ist. Nullmutanten 

dieses Gens, das ich PORCUPINE (PCP) genannt habe, zeigen bei 

16°C schwere Meristemdefekte, während bei 23°C kein 

offensichtlicher Phänotyp nachweisbar war. In jedem 

Entwicklungsstadium kann durch bloßes Ändern der Temperatur das 

Pflanzenwachstum angehalten oder wiederhergestellt werden. Dieses 

Verhalten zeigt das Vorhandensein eines Mechanismus an, der eine 

rasche Anpassung von Wachstum und Entwicklung an abrupte 
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Änderungen der Umgebungstemperatur ermöglicht. Die in den 

Mutanten nachgewiesenen Meristemdefekte können weitgehend 

durch die Fehlausrichtung von zwei Genen erklärt werden, die an der 

Aufrechterhaltung des Stammzellschicksals im apikalen Meristem des 

Sprosses beteiligt sind, nämlich WUSCHEL und CLAVATA. Diese 

Erkenntnisse unterstützen die Bedeutung des temperaturabhängigen 

alternativen Spleißens in der Pflanzenmorphogenese und etablieren 

PCP als wichtigen Regulator von Umweltanpassung. 
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CHAPTER 1 
 
The mechanisms regulating expression of flowering time related 
genes and the importance of temperature 
 
 
1.1 INTRODUCTION 
 
 
1.1.1 THE FLOW OF GENETIC INFORMATION 
 

During the last century, the discovery of deoxyribonucleic acid (DNA) 

as the hereditary material containing genetic information has been an 

outstanding achievement for the scientific community. Scientists 

concentrated their subsequent efforts on understanding how genes 

are able to direct synthesis of proteins.  

From the observation that protein synthesis in eukaryotic cells occurs 

in the cytoplasm (Prescott, 1964), and not in the nucleus where the 

chromosomal DNA is located, it was clear that the DNA double helix 

itself could not serve as a template for protein synthesis.  

Instead, another molecule chemically very similar to DNA found very 

abundant in the cytoplasm, the RNA, quickly moved center stage. 

RNA is a long and unbranched molecule that contains 4 types of 

nucleotides linked by phosphodiester bonds like in the DNA. RNA 

differs from DNA for the sugar component (ribose in place of 

deoxyribose) and the replacement of thymine with the closely related 

pyrimidine uracil. Unlike DNA, the RNA is typically found in the cells 

as a single-stranded molecule that often bends on itself to form loops 

and 3D structures and serves as template for protein syntheses 

(Watson et al. 2015). 

The pathway for the flow of genetic information, often seen as the 

central dogma of molecular genetics and biology, was first 
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hypothesized in 1956 and then established in 1970 by Francis Crick. 

The central dogma of molecular biology describes how from a DNA 

template, in a process called transcription, a ribonucleic acid (RNA) 

molecule is synthesized and serves as a template for the protein 

synthesis, or translation. At its core this central dogma is still valid 

today, at least for protein-coding genes (Watson et al. 2015). 

 

The next big question was how the information contained in the 

genome is expressed, and how its expression is regulated. In simple 

organisms like bacteria, a very large fraction of the DNA is used to 

encode proteins. In contrast, in more complex organisms such as 

many plants and animals, the portion of non-coding regions increases 

and only a relatively small portion of the genome is eventually 

translated into proteins (Cooper 2000). It is generally 

assumed/accepted that the non-coding regions of these more 

complex genomes harbor different kinds of regulatory elements that 

are important to regulate gene expression. 

 

In multicellular organisms the regulation of gene expression is 

extremely important as all the cells contain the same genetic 

information, However, this information needs to be expressed in 

different combination at different times or tissues to facilitate growth 

and development and to allow the organisms to react to changes in 

their environment (Watson et al. 2015). 

Since the central dogma has been postulated, we have gained a 

much deep understanding about the biology of living organisms and 

the molecular mechanisms used to regulate gene expression. 

 

In this chapter, I will introduce known regulatory molecular 

mechanisms, particularly at the RNA level, that occur in flowering 

time pathways in the model plant Arabidopsis thaliana. During the 
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switch from vegetative to flowering, major physiological and 

developmental changes occur in plants. The induction of flowering is 

therefore controlled by a large number of genes. These genes form a 

complex regulatory network that enables plants to respond to 

changes in both endogenous and exogenous signals to finely 

regulate the developmental switch from vegetative to flower state 

(Bouchè et al. 2016). 

 

1.1.2 THE MODEL PLANT ARABIDOPSIS THALIANA 

 

Arabidopsis thaliana is a member of the mustard family that for 

several reasons represents a good model to study plant genetics, 

development, and physiology (Somerville and Koornneef 2002). Both, 

the plant itself and its genome, are relatively small. Each plant 

produces in a rapid cycle a large number of seeds, primarily by self-

fertilization that can be easily stored. Arabidopsis thaliana is native to 

Eurasia (Sharbel et al. 2000) and more than a thousand natural 

accessions have been collected from natural population in many 

geographic areas, where they have (presumably) adapted to the local 

climate. Full genomic sequence data are also available for many of 

these accessions, facilitating correlative studies between specific 

phenotypes and sequence polymorphisms (genome wide association 

studies) or vice versa.  

Arabidopsis thaliana is also easy to transform by infiltration with 

disarmed Agrobacterium tumefaciens strains using the so-called 

“flower dip” technique, and crosses between different lines are also 

possible and relatively easy. For all these reasons, and the rich 

literature about flowering time genes and pathways, Arabidopsis 

thaliana is the model organism used for all the experiments in this 

thesis. 
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1.1.3 REGULATION OF FLOWERING TIME 

 

The timing of flowering is extremely important to ensure plants 

reproductive success. During the transition from vegetative to 

reproductive state plants undergo a major physiological change, and 

flowering plants become more susceptible to environmental changes. 

For this reason the transition must be tightly regulated, and plants 

have evolved intricate genetic networks to perceive both endogenous 

and environmental signals. The integrating signals eventually result in 

flowering when overall conditions are at the best to allow progeny to 

develop. 

 

The genetically defined flowering time pathways in Arabidopsis 

thaliana have been well characterized and much of the information 

available on individual genes and their interactions has been 

collected in the Flowering Interactive Database, FLOR-ID (Bouchè et 

al. 2016) (Figure 1.1). The regulation of flowering time in Arabidopsis 

thaliana has also been covered in a number of excellent reviews 

(Srikanth and Schmid 2011, Andrès and Coupland 2012, Song et al. 

2015). I will therefore only briefly summarize the most important 

aspects of flowering time regulation and otherwise refer to these 

reviews for more details. 

An environmental factor used by many (but not all) plant species to 

regulate flowering time are seasonal changes in day length 

(photoperiod). Arabidopsis thaliana is a so called facultative long day 

(LD) plant, meaning that LD promotes flowering but plants will 

ultimately flower even under otherwise non-inductive short day (SD) 

conditions. Interestingly, photoperiod is perceived not at the shoot 

apical meristems (SAM), where flowers are induced, but in the 

phloem companion cells in the leaf vasculature. Here, inductive LD 

results in the stable expression of the CONSTANS (CO) protein, 
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which promotes transcription of FLOWERING LOCUS T (FT) 

(Kobayashi et al. 1999). The FT protein acts as a florigen (long 

distance signal) that travels through the vasculature to the SAM 

where it interacts with the bZIP transcription factor FD to induce 

flowering (Liu et al. 2013; Giakountis and Coupland 2008) (see 1.2.1 

for details on the role of transcriptional regulation in the regulation of 

flowering).  

Temperature is also a major environmental factor regulating flowering 

time. Two aspects of the temperature-controlled regulation of 

flowering can be distinguished: 1) the vernalization pathway, which 

controls the regulation of flowering in response to exposure to a 

prolonged period of cold, i.e. overwintering, and 2) ambient 

temperature, which regulates flowering in response to fluctuation of 

temperatures in the physiological range (Capovilla et al. 2014). 

Interestingly, both vernalization and ambient temperature have been 

shown to modulate FT expression, marking this gene as an important 

flowering time integrator of environmental cues. 

Endogenous cues such as hormones, especially gibberellic acid, 

carbohydrates, and plant age also play important roles in the 

regulation of flowering and are perceived in both leaves as well as at 

the SAM. Several of these signals have been shown to converge on 

SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1), 

which is another important flowering time integrator in Arabidopsis 

thaliana, particularly at the SAM (Lee and Lee 2010). 

Last but not least the so-called autonomous pathway and general 

processes like chromatin modifications, mircroRNA, protein stability 

and control of transcription have also been extensively studied and 

many of its components functions are described in the following 

paragraphs (Spanudakis and Jackson 2014). 
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Figure 1.1: Simplified schematic representation of the contribution of 
the different pathways in regulating flowering time. Each pathway 
contributes to regulate the flower integrators SOC1, FT and FD, which 
eventually trigger the transition to flowering. 
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1.2 MOLECULAR MECHANISMS OF EXPRESSION REGULATION IN 

FLOWERING TIME PATHWAYS 

Because of its importance for plant growth and development, 

flowering time is regulated at multiple levels. However, genes encode 

factors regulating chromatin features, transcription factors, 

transcriptional co-regulators, of RNA processing proteins appear to 

be overrepresented among the “classic” flowering time genes, 

suggesting that the regulation of gene expression plays a pivotal role 

in this process. In the following I will briefly introduce the mechanisms 

that regulate flowering at different levels, using selected flowering 

time genes as examples, finishing with the regulation at the RNA 

level, which is central to this thesis. 

 

1.2.1 REGULATION AT THE CHROMATIN LEVEL 

 

At the most basic level, expression of genes is regulated at the 

chromatin level, which modulates the access of regulatory proteins 

such as transcription factors and RNA polymerases to DNA. The 

basic unit of DNA chromatin packaging is the nucleosome, which 

consists of DNA wrapped around a histone octamer protein complex. 

These nucleosomes are the building blocks for more complex DNA 

structures. Genes located in such highly compact heterochromatic 

regions are in fact rarely transcribed in comparison with genes 

located into more open euchromatic regions (Watson et al. 2015).  

The state of chromatin, heterochromatic vs. euchromatic, is not static 

but is adjusted to ensure genes are expressed at the right time in a 

tissue- and cell-specific manner. Central to this dynamic nature of 

chromatin packaging are modifications at specific amino acid 

residues of histone proteins (Bannister and Kouzarides 2011). By 

recruiting histone modifiers the nucleosomes can be modified in ways 
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that alter the accessibility to one or more genes to the transcriptional 

machinery and other regulatory proteins and therefore either inhibit or 

facilitate transcription. Common examples of chromatin modifications 

are achieved by removing acetyl groups from the histones tails, 

normally carried out by histone deacetylases, or by adding methyl 

groups to them in a process called methylation. Methylations mainly 

occur on the side chains of lysines and arginines, and are carried out 

by histone lysine methyltransferase (HKMT), or arginine 

methyltransferase (Bannister and Kouzarides 2011). 

 

In the flowering time field, the regulation of the FLOWERING LOCUS 

C (FLC) gene provides a great example of regulatory mechanisms at 

the chromatin level in the context of vernalization. In addition, FLC 

expression is also regulated by long non-coding RNAs (lncRNA) as 

discussed later in the chapter. 

As briefly mentioned above (1.1.3), vernalization is the process by 

which prolonged exposure to cold temperatures allows plants to 

flower the next spring. Certain plant species, including the winter 

annual accession of Arabidopsis thaliana, need to experience a 

period of several weeks of non-freezing cold to overcome a block to 

flowering and gain the ability to flower when temperature rises in 

spring (Chouard 1960, Lang 1965). FLC is the primary determinant of 

the vernalization requirement in Arabidopsis thaliana (Bastow et al. 

2004, Michaels and Amasino 1999, Sheldon et al. 2009, Sung and 

Amasino 2004).  

Before exposure to cold, FLC sense mRNA levels are very high, and 

the flowering repression activity of the FLC protein prevents the plant 

from undergoing the flower transition prematurely. High levels of FLC 

are ensured in this phase by FRIGIDA (FRI) and by several players 

involved in the (di- or tri-)methylation on histone 3 (H3) lysine 4 

(H3K4) or on H3K36, chromatin modifications commonly associated 
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with actively transcribed euchromatin (Kouzarides 2007, Wagner and 

Carpenter 2012). Methylation on H3K4 is carried out by the 

ATWDR5a protein (Jiang et al. 2009), and the Arabidopsis 

TRITHORAX-RELATED7 (ATXR7), ATX1, and ATX2 proteins 

(Tamada et al. 2009). In contrast, methylation of H3K36 is mainly 

regulated by SET DOMAIN GROUP 8 (SDG8) (Xu et al. 2008). 

During the exposure to cold, FLC expression is epigenetically 

silenced and this silencing is stably maintained even when plants are 

exposed to warmer spring temperatures after winter. Epigenetic 

silencing of FLC is directed by plant homeodomain (PHD) proteins 

such as VERNALIZATION INSENSITIVE3 (VIN3) (Sung and 

Amasino 2004, Wood et al. 2006), VERNALIZATION5 (VRN5) and 

VIN3-LIKE 2 (VIL2) (Greb et al. 2007, Sung et al. 2006, De Lucia et 

al. 2008), that interact with the Polycomb repressive complex 2 

(PRC2) (De Lucia et al., 2008). The activity of the PHD–PRC2 

complex is responsible for increased trimethylation of histone H3 

lysine 27 (H3K27me3) in the nucleation region of the FLC locus in a 

direct correlation with the length of the cold exposure resulting in 

progressive accumulation of methylation in H3K27 (Angel et al. 2011) 

and eventually in the permanent repression of FLC in vernalized 

vegetative plants. 

 

1.2.2 TRANCRIPTION AND TRANSCRIPTION FACTORS 

 

One outcome of the regulation of DNA accessibility by chromatin 

modifiers is that in a given cell, only certain regions of the genome 

are exposed and can be recognized by DNA binding proteins or more 

likely being transcribed.  

Transcription is the process that expresses the genetic material by 

the production of RNAs, and proceeds through 3 phases called 

initiation, elongation and termination. The process that catalyzes RNA 
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synthesis is carried out principally by the RNA polymerases that can 

initiate the transcription from a DNA template.  

During transcription, certain parts of the genome are selected and 

from one to even thousands of copies are made out of them. The 

choice of the regions to transcribe, and how extensively, is not 

random but finely regulated by specific DNA sequences. These 

include the core promoter needed for the binding to the Pol II 

machinery, and other promoter proximal elements, enhancers, 

silencers and other regulatory sequences that can bind regulatory 

proteins (Watson 2015).   

An important group of proteins that directly interacts with short (often 

palindromic) DNA motives contained within the regulatory regions of 

their target genes are transcription factors (TFs).  

In the Arabidopsis thaliana genome over 2000 TFs are encoded (Jin 

et al. 2013), many of which contribute to developmental programs, 

including the control of flowering time. Depending on their nature TFs 

can either activate or prevent expression of bound genes and are 

consequently referred to as activators or repressors. Often DNA 

binding TFs do not by themselves regulate transcription of nearby 

genes by rather include transcriptional co-regulators that provide the 

activating or repressive activity. 

 

One important transcriptional repressor involved in the regulation of 

flowering is FLC, which has already been introduced as the main 

target of the vernalization pathway (see 1.2.1). The FLC gene 

encodes a MADS domain transcription factor that actively represses 

flowering in non-vernalized winter-annual accessions of Arabidopsis 

thaliana. FLC is predominantly expressed in the shoot or root apices 

and in the vasculature, and regulates flowering at least in part through 

repression of the floral integrator genes FT and SOC1 (Searle et al. 

2006). Several other MADS domain proteins closely related to FLC, 
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MADS AFFECTING FLOWERING 1 (MAF1; also known as 

FLOWERING LOCUS M (FLM)) and MAF2 – MAF5, regulate other 

aspects of flowering. FLC and several of the MAF proteins have been 

shown to interact with a more distantly related MADS protein, SHORT 

VEGETATIVE PHASE (SVP), to form active transcriptional repressor 

complexes (Ratcliffe et al. 2003, Gu et al. 2013, Lee et al. 2013, Posè 

et al. 2013).  

FLM is the main focus of chapter 2, where its role and regulatory 

mechanism are extensively discussed. FLM main isoform is FLM-β, 

which encode for a protein that physically interacts with SVP. The 

complex SVP-FLM-β is more abundant at low ambient temperature, 

and prevents flowering by binding to downstream target genes, like 

SEP3 and SOC1 (Posè et al. 2013). 

 

Once FLC has been epigenetically silenced, floral promoters such as 

the zinc finger transcription factor CONSTANS (CO) and the bZIP TF 

FD can activate flowering. CO mRNA is regulated by the circadian 

clock, a biochemical oscillator entrained by the day-night cycle. 

Several factors concur in CO regulation, which ultimately enables 

plants to discriminate between non-inductive short days (SD), under 

which the CO protein is rapidly degraded, from long day (LD) 

conditions, that allow CO protein to accumulate towards the end of 

the day (Suàrez-Lòpez et al. 2001, Valverde et al. 2004, Laubinger et 

al. 2006). Several lines of evidence indicated that transcriptional 

activation of the principal florigen FLOWERING LOCUS T (FT) under 

inductive day length conditions in leaves is directly mediated by CO 

(Samach et al. 2000). However the demonstration of direct binding of 

DNA by CO has only been recently obtained by Gnesutta and 

colleagues (2017). The authors showed that CO needs to interact 

with two CCAAT-binding transcription factors, NF-YB2 and NF-YC3, 

in a trimer called NF-CO. This trimeric complex can efficiently bind 
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the CORE element of the FT promoter and promotes its transcription 

under LD (Figure 1.2). 

The FT protein, functions as a florigen and moves from the leaf to the 

apex where it interacts with the meristem specific bZIP transcription 

factor FD and 14-3-3 adapter proteins to form a flower activation 

complex (FAC) (Abe et al. 2005, Wigge et al. 2005). This complex 

triggers flowering through the activation of key floral meristem identity 

genes like APETALA 1 (AP1) and SUPPRESSOR OF 

OVEREXPRESSION OF CO 1 (SOC1) (Abe et al. 2005, Wigge et al. 

2005, Taoka et al. 2011). 

 

 

 
 
Figure 1.2: Schematic representation of the contribution of CONSTANS 
(CO) in promoting flowering. In long day conditions (LD) CO expression 
is stimulated by players belonging to the photoperiod pathway. CO 
physically interact with NF-YC3 and NF-YB2 to form the NF-CO complex 
which act as a transcription factor and stimulates the expression of the 
florigen FT. FT moves from the leaves to the apex where by binding with 
its partners FD and 14-3-3 induces the transition to flowering by 
activating downstream target genes such as AP1 and SOC1. These 
genes promote the transition of the shoot meristem from vegetative to 
floral meristem. 
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1.2.3 REGULATIONS ON RNA LEVEL 

 

1.2.3.1 TYPES OF RNA 

 

There exist several different types of RNA in plants, all of which are 

the product of transcription. Three of them are required for protein 

synthesis: the messenger RNA (mRNA), which carries the information 

from the DNA to site of protein synthesis, the ribosomes; the transfer 

RNAs (tRNA), that fold in a well defined 3D conformation and serve 

as adaptors to deliver the amino acids to ribosomes; and finally the 

most abundant RNA type, the ribosomal RNAs (rRNAs), which are 

principal components of the ribosomes themselves (Watson et al. 

2015).  

Besides these three extremely well characterized types of RNA, 

several other types of regulatory RNAs have been discovered more 

recently. 

 

Of the latter, the so-called CRISPR RNA is of high relevance for this 

thesis. In prokaryotes CRISPR-Cas forms an adaptive and heritable 

immune system. DNA from invading phages is incorporated into 

Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR), forming a cluster of characteristic repeating DNA 

sequences interspaced with phage DNA. This clusters are expressed 

and processed to give rise to crRNAs that each consist of a one 

palindromic repeat, plus a short variable sequence obtained from 

phage DNA. crRNAs hybridize with another non-coding RNA, the so-

called tracrRNA, and the RNA hybrid directs an endonuclease, Cas9, 

to destroy foreign phage DNA that infects the cell. The crRNA and 

tracrRNA have been engineered into a single molecule, the so called 

single guide RNA (sgRNA) that (within certain limits) can been 

reprogrammed to target specific DNA sequences, thereby facilitating 
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genome engineering in a wide range of eukaryotic species, including 

Arabidopsis thaliana (Mali et al., 2013; Belhaj et al. 2013). An 

example of the use of the CRISPR-Cas9 system is reported in 

chapter 2 of this thesis. 

 

1.2.3.2 RNA SPLICING 

 

The coding sequence of a protein-coding gene is a series of three-

nucleotide codons that specifies the linear sequence of amino acids 

incorporated in the polypeptide product. However, in the vast majority 

of eukaryotic genes the coding sequences, called exons, are not 

contiguous but periodically interrupted by stretches of non-coding 

sequences, or introns (Watson 2015, Sharp 1994). The result is a 

mosaic of blocks of coding exons and noncoding introns that are 

transcribed in a primary RNA transcript (pre-mRNA). To create the 

mature mRNA that can eventually be translated into proteins, the 

primary transcripts must have their introns removed and the exons 

joined together. The process of intron removal is called RNA splicing 

and must occur with great precision to avoid the loss, or addition, of 

even a single nucleotide to avoid frame shifts in the mRNAs (Sharp 

2005). Introns and exons are defined by specific sequences in the 

pre-mRNA. These sequences are called the 3’ and 5’ splice sites, 

denoting their relative locations at each end of the introns, and a third 

element, the branch site, found within the introns. The most highly 

conserved sequences found within the regulatory sequences are the 

GU in the 5’ splice site, the AG in the 3’ splice site and an A at the 

branch site, but the rest of the sequences vary. The splicing process 

is a sequence of two successive transesterification reactions in which 

phosphodiester bonds within the pre-mRNA are broken and new ones 

are formed. At first, an A in the branch site attacks a G in the 5’ splice 

site, forming a lariat. In the second reaction, the liberated 3’ exon 
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attacks the 3’ splice site. The result of these reactions is the fusion 

between two exons and the release of the intron folded in a lariat 

shape structure (reviewed in Kornblihtt et al., 2013). The described 

splicing process is carried out by a large complex of proteins and 

RNAs called the spliceosome, made up of 5 RNA-protein complexes 

called U1, U2, U4, U5, and U6 snRNPs. Each of these comprises an 

RNA molecule, called the U1 to U6 snRNA, respectively, and a 

number of proteins (Sharp 2005). The spliceosome is a very dynamic 

structure, it assembles on the pre-mRNA at different steps 

recognizing introns and catalyzing their removal. Each subunit joins 

and leaves the complex, performing a particular function. After 

catalyzing the splicing reaction, the spliceosome is disassembled, 

and the spliced mRNA released. By removing from the original RNA 

all of the introns, intron-containing genes may give rise to a unique 

mRNA species. But in many cases, splicing can produce several 

different mRNAs from the same gene by selecting alternative splicing 

sites and therefore splicing the original pre-mRNA in different 

patterns. This process is known as alternative splicing (Syed et al. 

2012). 

1.2.3.3. ALTERNATIVE RNA SPLICING  

Alternative splicing (AS) of RNA is the primary source for eukaryotes 

to expand the functional proteome (Nilsen et al. 2010). Splice variants 

can be divided into the following categories: retained introns (RIs), 

cassette exons (or exon skipping), mutually exclusive exons, 

competing 5' splice sites, and competing 3' splice sites (Syed et al., 

2012) (Figure 1.3). In plants, many RIs were shown to introduce 

premature termination codons or frame shifts. More interestingly are 

maybe cassette exons, which in principle can increase the functional 
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diversity of proteins, especially if the protein domains encoded display 

distinct functional or structural features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Schematic representation of the possible types of alternative 
splicing and the backsplicing, whose products are the circRNAs 
discussed in chapter 1.2.3.5.3 
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As described above, only very short sequences flanking the exons 

are highly conserved. The challenge for the splicing machinery to 

recognize and splice at correct sites is facilitated by other proteins, 

mainly belonging to the SR family or the hnRNPs, which are able to 

recognize specific sequences in the pre-mRNA and target the 

spliceosome accordingly. More details about these players, 

alternative splicing factors, and the occurrence of AS in response to 

environmental stimuli are presented in chapter 3 of this thesis. 

Alternative splicing occurs essentially in all eukaryotes and can have 

severe developmental consequences. For example, in Drosophila 

sex-determination is controlled by a cascade of splicing events, which 

determines whether the fly develops as a male or female. A key exon 

skipping occurs in Sex-lethal (Sxl) in response to X chromosome 

number. In females the inclusion of an alternative ‘poison exon’ 

containing a stop codon is repressed, allowing the expression of full-

length proteins. On the contrary, in males the poison exon is retained 

in the mRNA and a truncated Sxl protein is produced (Bell et al. 

1991). Remarkably, another gene downstream of Sxl, fruitless (fru) is 

also differentially spliced in males and females in order to express a 

specific isoform of Fru only in males. This gene is in fact necessary 

for male courtship behavior, and a mis-splicing is sufficient to 

generate male behavior in females (Demir et al. 2005). 

In plants alternative splicing has been implicated in the regulation 

and/or fine-tuning of the circadian rhythm (Seo et al. 2012, Wang et 

al. 2012, Jones et al. 2012, Marshall et al. 2016), seed maturation 

(Sugliani et al. 2010), abiotic stress response (Liu et al. 2013, Wang 

et al. 2015a), biotic stress response (Xu et al. 2012) or splicing itself 

(Zhang et al. 2009). Several flowering time genes in Arabidopsis are 

also regulated by AS. Two examples are the closely related MADS 

box transcription factors MAF2 and FLM, which are involved in the 

temperature pathway. MAF2 is a flowering repressor that can interact 
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with SVP to bind target genes. By increasing the ambient temperature 

MAF2 preferentially retains an intron, that introduces a premature 

termination codon and results in an inactive isoform (Rosloski et al. 

2012, Airoldi et al. 2015). A second example is given by FLM, whose 

role in flowering time regulation and splicing patterns are extensively 

discussed in chapter 2. 

 

1.2.3.4 NMD 

 

In a process known as translation the information contained within the 

nucleotide sequence of the mRNA is decoded into the linear 

sequence of amino acids of the polypeptide chain, resulting in the 

synthesis of proteins. Eukaryotic cells rely on a mechanism called 

Nonsense-Mediated Decay (NMD) that during translation proofreads 

the mRNAs being translated and monitors their integrity. Transcripts 

containing a premature stop codon (or nonsense codon) are 

recognized and eventually degraded by NMD. The recognition of 

mRNAs with premature stop codons relies on protein complexes that 

are assembled on the mRNA just upstream of each exon–exon 

boundary as a consequence of splicing. When the ribosome 

translates the mRNA, these complexes are displaced as the mRNA 

enters the decoding center of the ribosome. However, if a premature 

stop codon is present in the mRNA, for example due to intron 

retention, the ribosome is released before the displacement of all the 

exon–junction complexes, and a set of RNA degrading proteins is 

recruited. These proteins cleave the mRNA, remove the cap at its 5’ 

end and also its poly-A tail, leaving the mRNA unprotected and target 

of rapid degradation by exonucleases (Reviewed in Lykke-Andersen 

and Jensen 2015). In Arabidopsis thaliana AS coupled by NMD is a 

key regulatory process that regulates FLM expression in different 
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ambient temperatures (Sureshkumar et al. 2016), as discussed in 

chapter 2. 

 

1.2.3.5 NON CANONICAL RNAs 

 

1.2.3.5.1 LONG NONCODING RNAs 

 

A class of non-coding RNAs longer than 200 nucleotides is known as 

long non-coding RNAs (lncRNAs). They can serve many roles in 

processes from translation and splicing to transcriptional regulation 

(Zhu and Wang, 2012) Even though research in this area in plants is 

far behind that in animals (Zhang et al. 2013, Bai et al. 2015), they 

have been characterized in the flowering time pathway and, more 

specifically in the regulation of FLC. As already described above FLC 

undergoes a progressive trimethylation on H3K27 that results in the 

epigenetic silencing of the gene when temperatures rises after 

vernalization. However during the exposure to cold three lncRNAs 

play a role in down regulating FLC: COOLAIR, COLDAIR and 

COLDWRAP (Figure 1.4).  

Transcription of FLC decreases relatively rapidly in response to 

exposure to cold and the non-coding antisense transcripts called 

COOLAIR has been implicated in this process (Swiezewski et al. 

2009). Expression of COOLAIR is upregulated very quickly even after 

a short exposure to cold from a transcription start site immediately 

downstream of the poly-A site of the FLC sense transcript (Marquardt 

et al. 2014). A second cold-induced non-coding transcript from the 

sense strand of FLC, COLDAIR, accumulates later than COOLAIR, 

reaching its maximum levels after 3 weeks of exposure to cold (Heo 

and Sung 2011). COLDAIR is non-polyadenylated, non-spliced and is 

produced from intron 1. It has been found to interact with the histone 

methyltransferase subunit (CLF) (Heo and Sung 2011). Together with 
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the polycomb-binding lncRNA COLDWRAP, which is derived from the 

repressed promoter of FLC, COLDAIR has been suggested to 

coordinate the vernalization-mediated silencing of FLC (Kim and 

Sung 2017). 

 

Figure 1.4: Schematic representation of the FLC intron-exon structure 
and transcript details.  The full length FLC sense transcript is represented 
in green. The group of COOLAIR lncRNA expressed in antisense is 
represented in dark orange, and the sense lncRNAs COLDAIR and 
COLDWRAP are marked in blue and purple, respectively. The 
transcription starting sites represented as arrows whose colors match 
the respective transcripts. 

 
1.2.3.5.2 miRNAs 

 

microRNAs (miRNA) are a group of small regulatory RNAs. miRNAs 

are short RNA molecules ranging from 18 to 24 nucleotides in length. 

They have been shown to regulate gene expression in a number of 

plant developmental processes including flowering time, serving 

either to inhibit or to promote it. 

Plant miRNAs are encoded by MIR genes that are transcribed by 

RNA polymerase II. The primary transcript (pri-miRNA) is processed 

by DICER-LIKE 1 (DCL1) into a precursor miRNA (pre-miRNA) and 
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then subsequently into a miRNA/miRNA* duplex. The duplex consists 

of the guide strand miRNA and a passenger strand (miRNA*) 

(reviewed in Naqvi et al. 2012). The duplex is methylated and 

transported from the nucleus to the cytoplasm where the 

ARGONAUTE 1 (AGO1) protein or its paralogue AGO10 bind to the 

dissociated guide strand and together with accessories proteins form 

the miRNA-induced silencing complex (RISC) (Naqvi et al. 2012). The 

RISC can eventually inhibit expression of target genes in three ways: 

by destruction of the mRNA encoded by the target gene, by inhibiting 

translation of the mRNA, or by inducing chromatin modifications 

within the target gene and thereby silence its transcription. 

Examples of miRNAs involved in flowering time regulation the 

miR156 and miR172 families and their respective targets, the 

SQUAMOSA PROMOTER BINDING-LIKE (SPL) and AP2-like 

transcription factors, that contribute to the regulation of both the 

juvenile and adult phase transition in Arabidopsis thaliana (Wu et al. 

2009, Huijser and Schmid 2011, Yamaguchi and Abe 2012). Several 

genes of the miR156 family are highly expressed in the embryo and 

in young seedlings, but the abundance of mature miR156 declines 

with increasing plant age. miR156 targets 10 of the 16 known SPL 

transcription factors, down-regulating their expression by transcript 

cleavage (Park et al. 2005,  Franco-Zorrilla et al. 2007, Huijser and 

Schmid 2011, Yamaguchi and Abe 2012). The age-dependent 

decrease in miR156 levels is in fact accompanied by a concomitant 

increase in SPL expression (Wu and Poethig 2006; Yamaguchi and 

Abe 2012). SPL3, SPL4 and SPL5, all of which are targeted by 

miR156, have been shown to induce expressions of floral promoters 

like LEAFY (LFY), and AP1, and indirectly, the transition to flowering 

(Wu et al. 2009). However, more recent findings performed in loss of 

function lines suggest a role for SEP3, SEP4 and SEP5 in promoting 

floral meristem identity rather than flowering induction (Xu et al. 
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2016). A second group of target SPLs (SPL9 and SPL15) instead, 

promotes the transition to flowering by inducing the expression of 

miR172 (Wu et al. 2009, Zhu and Helliwell 2011) known to have the 

opposite effect of miR156. SPL9 shows an effect only in LD whereas 

SPL15 loss of function delays flowering regardless the photoperiod 

(Hyun et al. 2016). Target of miR172 are transcripts of six APETALA 

2-like floral repressors (AP2, TARGET OF EAT 1 (TOE1), TOE2, 

TOE3, SCHLAFMÜTZE (SMZ), and SCHNARCHZAPFEN (SNZ) 

(Aukerman and Sakai, 2003; Chen, 2004; Yamaguchi and Abe, 2012) 

that and are repressed by miR172 by translational inhibition or 

transcript cleavage (Aukerman and Sakai 2003, Schwab et al. 2006, 

Fang and Spector 2007). This temporally opposite expression of 

miR156 and miR172 has been suggested to regulate flowering time in 

regards to the plant age. 

 

1.2.3.5.3 circRNAs 

 

Circular RNAs (circRNAs) are a class of hyper-stable single-stranded 

and covalently-closed RNA molecules that arise through a form of 

alternative splicing called backsplicing. Typically, circRNAs are 

formed by circularization of exonic sequences present in the pre-

messenger RNA that undergo exon skipping and are therefore not 

included in the mRNA (Ye et al. 2015). 

They have been identified in all eukaryotic kingdoms of life (Wang 

and Wang 2015), but only recently their regulatory role in Arabidopsis 

thaliana has started to be uncovered. Conn and colleagues (2017) 

reported that circRNAs can be used as bona fide biomarkers of 

functional, exon-skipped AS variants in Arabidopsis thaliana, finding 

evidence for circRNA formation in MADS-box TF superfamily genes 

like SEPALLATA3 (SEP3), SEEDSTICK (STK), and the flowering 
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time genes FLM and FLC. Furthermore, the authors showed a 

mechanism of action for a circRNA derived by the circularization of 

the 6th exon of SEP3. This circRNA can strongly bind to its cognate 

DNA locus, forming an RNA:DNA hybrid, which may physically slow 

transcriptional elongation and thus favor the biogenesis of the exon-

skipped AS variant. 

 

1.3 THE IMPORTANCE OF AMBIENT TEMPERATURE 

 

Changes in ambient temperatures have been found to affect living 

organisms of all kingdoms. For example, among bacteria, the food-

borne pathogen Listeria monocytogenes offers a strikingly example of 

the importance of ambient temperature-dependent regulation. L. 

monocytogenes can survive and replicate in a wide range of 

temperatures and causes severe infections that primarily affect 

immunocompromised individuals and pregnant women (reviewed in 

Cossart and Lecuit, 1998). The large temperature-shifts that exist 

between the outside environment and the host correlates with the 

synthesis of its virulence proteins. Listeria virulence genes are in fact 

maximally expressed at 37°C and almost silent at 30°C (Johannson 

et al. 2002) . Their expression is controlled by PrfA, a 

thermoregulated transcriptional activator. Prfa untranslated mRNA 

folds in a secondary structure masking the ribosome binding region at 

lower temperature. At high temperature the folding conformation 

changes and the ribosome binding site is recognized (Johannson et 

al. 2002).  

Ambient temperature differences also play a significant role in 

development and morphology of plants and animals. For example, 

small changes in temperature play a key role in determining the sex 

of a number of reptiles. In turtles and alligators there is no genetic 

predisposition for the embryos to develop as either male or female. 
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The sex-determining mechanisms are temperature-dependent and 

therefore at the mercy of the ambient conditions affecting egg 

clutches in nests. The exposure to environmental temperature during 

a critical period of the embryonic development determines whether an 

egg develops as male or female (Reviewed in Crain and Guillette 

1998). For example, in many turtle species, such as the European 

pond turtle, Emys obicularis, eggs from cooler nests, below 25°C, 

hatch as all males. On the contrary eggs at temperatures above 30°C 

produces all females broods. The threshold temperature at which the 

sex ratio is even was calculated as 28.5°C (Pieau et al. 1994).  

In plants, growth rate, leaf morphology and also flowering time are 

regulated by ambient temperature. Plants are sessile organisms, 

therefore when temperatures are high, but not so high as to induce a 

heat stress response, a number of morphological changes occur that 

are likely to contribute to adaptive growth acclimation. In Arabidopsis 

thaliana, seedlings elongate the hypocotyl, rosette leaves are fewer, 

smaller and thinner, carry fewer stomata and show hyponastic growth 

(reviewed in Quint et al. 2015). At high ambient temperature plants 

also exhibit a greater transpiration rates, suggesting that 

thermomorphogenic adaptations may contribute to high temperature 

mitigation by enhancing leaf evaporative cooling (Quint et al. 2015). 

All these phenotypes are thought to assist cooling. The bHLH 

transcription factor PHYTOCHROME INTERACTING FACTOR 4 

(PIF4) has been identified as a key regulator of thermomorphogenic 

phenotypes, including hyponasty, hypocotyl and petiole elongation 

(Proveniers and Zanten 2013). PIF4 integrates various environmental 

signals and induces transcriptional changes on its target genes that 

subsequently trigger primarily phytohormone-induced elongation 

responses (reviewed in Quint et al. 2015). 

The responsiveness of flowering to thermal induction varies between 

plant species and also within accessions. In Arabidopsis thaliana, 
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importance of ambient temperature in flowering time is highlighted by 

the fact that a moderate temperature increase from 23°C to 27°C is 

sufficient to induce flowering under an otherwise non-inductive short-

day (SD) photoperiod (Balasubramanian et al., 2006). 

The optimal temperature for Arabidopsis thaliana growth is 22°C to 

23°C (The Arabidopsis Biological Resource Center 2015) and its 

development speed decreases at lower temperatures. However, the 

mechanisms of temperature perception in plants are only partially 

understood but a number of thermoresponsive factors have been 

described (reviewed in Capovilla et al. 2014).  

Thermosensitive chromatin remodeling was the first to be implicated 

in temperature-dependent regulation of flowering time in Arabidopsis 

thaliana. The histone variant H2A.Z is incorporated into nucleosomes 

by a chromatin-remodeling complex that includes ACTIN-RELATED 

PROTEIN6 (ARP6) and PHOTOPERIOD-INSENSITIVE EARLY 

FLOWERING1 (PIE1). This makes DNA less accessible for 

transcription factors and consequently limits gene expression (Talbert 

and Henikoff 2014). In response to increasing ambient temperatures, 

however, H2A.Z nucleosomes are evicted from the DNA, thereby 

enabling binding of PIF4 to the FT promoter, which was proposed to 

contribute to accelerate flowering (Kumar and Wigge 2010, Kumar et 

al. 2012), even though genetic analyses support only a minor role for 

PIF genes in adjusting flowering time, and that GA biosynthesis might 

play a more central role (Galvao et al. 2015).  

Other transcription factors besides PIF4 have also been implicated in 

the temperature-dependent control of flowering time. MADS-box 

genes related to FLC such as SVP, FLM and other MAFs (MAF2, 

MAF3 and MAF4) have been shown to play a central role in 

thermoresponsive flowering (Ratcliffe et al. 2003, Gu et al. 2013, 

Capovilla et al. 2014). At the heart of this regulatory module is SVP, 

which forms repressor complexes with other MADS box transcription 
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factors that repress FT and SOC1 transcription at low temperatures 

but decline in abundance at higher temperatures, relieving repression 

(Lee et al. 2013, Posè et al. 2013). The effects of ambient 

temperature in regulating alternative splicing are exhaustively 

discussed in both chapter 2 and chapter 3.  

 

1.4 CONCLUSIONS AND THESIS PURPOSE 

Alternative splicing is a key mechanism that allows rapid changes in 

transcript expression in fluctuating ambient temperature. In this 

thesis, I present two case studies that provide important insights into 

how AS and temperature can affect two important aspects of plant 

development in Arabidopsis thaliana, flowering time and 

morphogenesis.  

 

In chapter 2 I describe my contribution to better understand the role of 

AS of FLOWERING LOCUS M (FLM) to the regulation of 

temperature-dependent flowering. FLM was already known to 

produce alternative splicing variants whose expression change with 

temperature. The main isoforms were known to regulate flowering 

time in an opposite fashion. I managed to introduce targeted deletions 

in gFLM using CRISPR technology and delete specific exons required 

for the correct expression of the two major isoforms. The aim of the 

project was to investigate the contribution of each isoform in a context 

as close as possible to the WT.  

 

In chapter 3 I present a bona fide AS factor, whose function was 

previously unknown, that has a dramatic temperature dependent 

effect on plant morphology. I named this gene PORCUPINE (PCP), 

after the peculiar phenotype that the knock out mutant shows at low 

temperature.	
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CHAPTER 2 
 
Role of FLM in temperature-dependent flowering 

 

2.1 INTRODUCTION 

 

2.1.1 THE CONTRIBUTION OF TEMPERATURE IN FLOWERING TIME 

REGULATION 

 

The correct timing of the transition from vegetative growth to flowering 

is a crucial decision in the life cycle of plants, and the survival of the 

species in part depends on it. It is therefore not surprising that plants 

constantly monitor endogenous and environmental signals such as 

photoperiod and temperature by an intricate genetic network 

(reviewed in Srikanth and Schmid 2011) to adjust their flowering time. 

Two aspects can be distinguished regarding the contribution of 

temperature to the regulation of flowering time: the response to 

prolonged periods of cold (overwintering, vernalization) and the 

effects of ambient temperature. In Arabidopsis thaliana the 

vernalization response has been extensively explored and the 

epigenetic mechanism silencing the effect of the flowering repressor 

FLC have been described in chapter 1 (and are reviewed in Sheldon 

et al., 2009 and in Song et al., 2012). 

The importance of ambient temperature is highlighted by the finding 

that, in short day photoperiod (non-inductive) a moderate temperature 

increase (from 23°C to 27°C) triggers flowering in A. thaliana 

(Balasubramanian et al., 2006). 

Several MADS-domain transcription factors have been implicated in 

the thermosensory pathway, including SHORT VEGETATIVE PHASE 

(SVP), FLC and other member of its clade such as FLOWERING 

LOCUS M (FLM or MADS AFFECTING FLOWERING 1 (MAF1)), 
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MAF2, MAF3 and MAF4. In rapid-cycling accessions like Col-0 the 

contribution of FLC is quite limited (Blasquez 2003, Lee 2013), 

whereas SVP and FLM assume a more substantial regulatory role in 

this pathway. SVP is a potent floral repressor, its loss of function 

mutant is in fact early flowering and partially temperature-insensitive 

(Lee et al. 2007). SVP is negatively regulated by FCA and FVE (Lee 

et al. 2007) and the SVP protein can physically interact with FLM, 

with which it shares many downstream target genes (Posè et al. 

2013). 

 

In this Chapter I first review briefly the current knowledge about the 

role of FLM in temperature-dependent flowering time and its 

mechanism of action. Then I discuss how my work contributes to a 

deeper understanding of the role of specific isoform of FLM in this 

process. Finally, based on an analysis of different natural accessions 

performed as part of this work and also taking into account previously 

published data, I discuss the role of FLM and its relevance in natural 

strains of A. thaliana. 

 

  

2.1.2 FLOWERING LOCUS M (FLM)  

 

The focus of this Chapter is FLOWERING LOCUS M (FLM, also 

called MADS AFFECTING FLOWERING 1, MAF1), which encodes a 

MADS-box transcription factor related to FLC and is one of the genes 

involved in the thermosensory pathway in A. thaliana. 

By the analysis of loss of function mutants and over-expressing lines 

Scortecci and colleagues (2001) attributed to FLM a role as floral 

repressor. flm mutants flowered earlier than WT in both inductive and 

non-inductive photoperiods, whereas constitutive expression of FLM 

caused delayed flowering. 
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The FLM transcript is regulated by alternative splicing, a common 

mechanism in eukaryotic cells described in chapter 1. Through the 

selection of alternative splice sites different mature mRNAs are 

produced from the FLM primary transcript. Initially 4 alternative 

splicing (AS) variants, FLM-α, FLM-β, FLM-γ and FLM-δ, with 

alternative 2nd/3rd and 8th/9th cassette exons were described in the 

Wassilewskjia (Ws) accession (Scortecci et al., 2001) as potentially 

protein coding transcripts (Figure 2.1). In Col-0 however, only two of 

these 4 isoforms (FLM-β and FLM-δ), which differ in the inclusion of 

the mutually exclusive 2nd and 3rd exon were found (Posé et al., 

2013).  

 

 
 

Figure 2.1: Schematic representation of the 4 potentially protein coding 
AS variants described in Scortecci et al. 2001 in Ws background.  

 
 
 
FLM has been shown to be alternatively spliced in response to 

ambient temperature and the main isoform appeared reduced after 

thermal shift (Balasubramanian et al. 2006). The identity of the main 

active isoform, as well at the role of a larger splice form that appeared 

after thermal induction described by Balasubramanian and colleagues 

was not known at that time (2006). However, the authors proposed a 

mechanism in which temperature-dependent AS overcame the 

repressive effect of FLM. 
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In 2013 this hypothesis was proven correct by the combined work of 

Posè and colleagues and Lee and colleagues (2013) and FLM-β was 

identified as the main isoform. FLM-β is expressed higher at low 

ambient temperatures and functions as a flower repressor. In fact it 

physically interacts with SVP and controls downstream targets genes 

like SEP3 and SOC1 (Posè et al., 2013; Lee et al., 2013). A second 

protein coding isoform, FLM-δ has been shown to either not respond 

to changes in temperature (Sureshkumar et al. 2016; Lutz et al. 2015; 

Lutz et al. 2017) or to be induced by elevated temperatures (Posé et 

al., 2013). Furthermore, in agreement with the original results 

(Balasubramanian et al. 2006), additional splice variants with 

combinations of intron retention and/or exon skipping, have been 

identified in Col-0, particularly at elevated ambient temperature 

(Sureshkumar et al., 2016 and this study). 

 

In the past 4 years two hypotheses have been proposed to explain 

how the AS of FLM might control flowering time in A. thaliana. The 

first model is based on evidences provided by Lee et al., 2013 and 

Posé et al., 2013. The authors showed that overexpression of FLM-δ 

in both the Col-0 and flm-3 backgrounds leads to premature 

flowering. Furthermore, by an elegant electrophoretic mobility shift 

assay (EMSA) experiment the authors show that FLM-β needs SVP 

for binding DNA, that FLM-δ can compete with FLM-β for binding with 

partners like SVP, and that the SVP-FLM-δ complex is not able to 

bind to and repress target genes. They therefore suggested that FLM-

δ might act as a dominant negative version of FLM that indirectly 

promotes the transition to flowering. The ratio between the two FLM 

isoforms would allow to fine-tune flowering time. 

Alternatively, Sureshkumar and colleagues (2016) suggested that 

increasing ambient temperature induces flowering only by reducing 
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the expression of the repressor FLM-β. The mechanism proposed is 

based on the detection of temperature sensitive splicing sites in FLM 

and an increase of non-canonical isoforms that mostly contain 

premature stop codons other than FLM-δ at high temperature. The 

authors proved that nonsense-mediated decay (Lykke-Andersen and 

Jensen 2015) plays an important role in degrading the non-canonical 

isoforms. 

In both models the relative abundance of the floral repressor FLM-β 

decreases at elevated temperatures but the contribution of FLM-δ in 

the regulation of flowering is more controversial. In this Chapter I 

present how the results obtained during this study contribute to a 

deeper understanding of the role of the FLM isoforms in flowering 

time. 

 

 

2.1.3 CRISPR/Cas9  

 

The CRISPR/Cas system has recently emerged as a powerful new 

approach for genome editing and an efficient alternative to Zinc-finger 

nucleases (ZFNs) and transcription activator-like effector nucleases 

(TALENs) for inducing targeted genetic alterations in plants (Gaj 

2013, Ma et al. 2016). 

CRISPR stands for clustered regulatory interspaced short palindromic 

repeats and in bacteria and Achaea, CRISPR-Cas systems provide 

immunity against invading foreign DNA. Short fragments of invading 

phages are integrated into the CRISPR genomic locus, transcribed as 

pre-crRNA, and subsequently processed into short CRISPR RNA 

(crRNA). These crRNAs anneal to trans-activating crRNAs 

(tracrRNAs) and direct sequence-specific cleavage and silencing of 

pathogenic DNA by Cas proteins. 
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This mechanism has been conveniently engineered and represents 

now a tool to precisely edit DNA sequences in many organisms 

including A. thaliana (Mali et al., 2013; Belhaj et al. 2013). Genome 

editing by CRISPR/Cas9 has three requirements: expression of the 

Cas9 protein, production of guide RNA (gRNA) that complements the 

DNA sequences of the target gene, and the presence of a conserved 

trinucleotide-containing protospacer adjacent motif (PAM) sequence 

upstream of the crRNA-binding region (Figure 2.2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Schematic representation of the Cas9-sgRNA system cutting 
the recognized target sequence adjacent to the PAM sequence motif. 
(Figure adapted from Belhaj et al. 2013) 
 
 
In this work by using simultaneously two sgRNA I introduced targeted 

mutations in the FLM locus with the goal to delete the whole 

sequence of exon 2 or of exon 3 in two separate lines. 

 
2.2 A CRISPR/Cas9 APPROACH TO UNDERSTAND THE 

CONTRIBUTION TO FLOWERING OF THE MAIN FLM ISOFORMS 

  

2.2.1 AIM 

The aim of this chapter was to clarify the role of the two main 

isoforms of FLM in the Col-0 accession in vivo by generating mutant 
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lines with modified endogenous FLM genomic sequence (Figure 2.3). 

For this purpose CRISPR/Cas9 will be used to introduce specific 

mutations directed to delete the 2nd or the 3rd exon of FLM in two lines 

called FLM-ΔE2 and FLM-ΔE3, respectively. Because of the 

engineered FLM genomic sequence the two lines are expected to 

express only one of the two major splicing variants, FLM-β in FLM-

ΔE3 and FLM-δ in FLM-ΔE2. By analyzing the flowering time 

phenotype of the CRISPRs lines in comparison with the WT, the loss 

of function mutant flm-3 and the over-expressing lines it will be 

possible to draw conclusions regarding the contribution of specific 

FLM isoforms to the regulation of flowering time, especially the role of 

FLM-δ, whose role in this process is discussed controversially. 

 

 
Figure 2.3: Schematic representation of the FLM locus in the WT (black) 
and the planned edited locus in the two engineered lines.  

 
 
2.2.2 RESULTS 

 

2.2.2.1 DELETION OF ISOFORM-SPECIFIC FLM CASSETTE EXONS BY 

CRISPR-CAS9 

 

With the aim to understand the contribution of each of the two main 

isoforms, I generated two mutant lines by introducing specific 

mutation directed to delete exon 2 and exon 3, the two exons 

responsible for each major isoform. 
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To generate targeted mutations in FLM genomic sequence in Col-0 

background using CRISPR-Cas9 system I combined the strategy 

reported in (Wang et al. 2015b) of employing EGG CELL1 (EC1.1) 

promoter to express Cas9 in the egg cell (germ line) with the 

convenient mCherry based selection as reported in (Gao et al. 2016) 

to identify Cas9 containing seeds. The sgRNAs were designed in 

regions flanking the 2nd or 3rd exon, respectively, and expressed 

under the control of the U6 promoter. 

 

Using this approach lines lacking the 2nd or 3rd FLM exon were 

obtained (Figure 2.4) 

 

 
 

Figure 2.4: PCR amplification of the FLM genomic region spanning 
intron 1 to exon 4 shows the 57 bp and 64 bp deletions in FLM-ΔE2 and 
FLM-ΔE3, respectively. 

 
 
Sanger sequencing confirmed the presence of a 57 bp deletion that 

covers most of exon 2, normally incorporated in the repressive FLM-β 

splice variant, with the exception of 2 bp at the 5' end and the 2 first 

bp of intron 3 (Figure 2.3). This line is in the following referred to as 

FLM-ΔE2. In contrast, FLM-ΔE3 carries a 64 bp deletion that 

completely covers exon 3, normally found in FLM-δ, and a small 

portion on the flanking introns (Figure 2.5).  

1000

700

500 Col-0 )/0�ǻ(� )/0�ǻ(�
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Figure 2.5: Schematic representation of the FLM locus in the two FLM 
CRISPR lines. The edited FLM-ΔE2 and FLM-ΔE3 lines are represented in 
blue and red, respectively. Close-ups provide detailed information on 
the position of the deletions as determined by Sanger sequencing of 
the CRISPR lines aligned with wild type FLM genomic sequences. The 
sgRNAs are represented by thin lines and the PAM sites are marked by 
grey boxes on the WT sequences. 
 
 
Transgene-free homozygous mutant lines that had lost the Cas9-

sgRNA T-DNA by segregation were obtained in T3 generation. 

In both cases the Cas9 nuclease cut exactly where predicted, three 

bases distant from the PAM regions of the two sgRNAs with 

exception of an additional thymine deleted at the 3’ sgRNA (transition 

between exon 3 and intron 3) in FLM-ΔE3. 

To minimize the risk of artifacts in subsequent analyses due to off-

target mutations I confirmed by Sanger sequencing that the 

sequences of the genes most closely related to FLM, MAF2 to 5, 

were fully intact and did not contain any deletions and/or point 

mutations. 
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2.2.2.2 DIVERSITY OF FLM SPLICE VARIANTS IN COL-0 AND CRISPR 

LINES 

 

In order to investigate the effect of the CRISPR-induced deletions on 

FLM pre-mRNA splicing I amplified the FLM coding sequence by RT-

PCR from Col-0 (control), FLM-ΔE3, and FLM-ΔE2 plants grown at 

16°C, 23°C, and 27°C. 

PCR products were cloned into plasmids and between 34 and 58 

colonies for each line and temperature were analyzed by Sanger 

sequencing (Figure 2.6). 

Figure 2.6: Alternative FLM splice variants detected by Sanger 
sequencing. The sequences present in the isoforms are aligned to the 
annotated FLM gene and grey arrows show the positions of the primers 
used to amplify the cDNA. Stop codons are represented as red stars. 
Isoforms identified in both Col-0 and at least in one of the CRISPR lines 
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are listed as alternative splice forms (ASF) 1 to 31. The identifiers of 
isoforms previously described by Sureshkumar and colleagues 
(Sureshkumar et al. 2016) are given in brackets. 19 new splice variants 
detected only in the CRISPR lines are listed as cASF. The heat map 
shows the frequency of each isoform in Col-0, FLM-ΔE2 and FLM-ΔE3 at 
16°C, 23°C, and 27°C. The heat map legend shows a gradient of white 
to green where 0% of the sequences analyzed is white and 100% is dark 
green. 

 
As expected from the literature (Posé et al. 2013), depending on the 

temperature FLM-β or FLM-δ were preferentially identified in Col-0, 

with FLM-β dominating at low temperature and FLM-δ becoming 

more abundant at 27°C (Figure 2.6 and Table 2.1). In addition, as 

previously reported by Sureshkumar and colleagues (2006) the 

frequency of non-canonical isoforms also increased in Col-0 from 

30% at 16°C to over 50% at 27°C (Table 2.1). 

In FLM-ΔE2 FLM-δ was the most abundant isoform (66-70%) at all 

three temperatures (Figure 2.6 and Table 2.1). Non-canonical splicing 

variants increased from 29% to 34% in total, however, if considered 

individually, each splice form accounted for only 2% to 12% of all 

cloned transcripts (Figure 2.6 and Table 2.1). As expected, FLM-β 

was never detected in this CRISPR line. In contrast, FLM-β was the 

predominant isoform in FLM-ΔE3 at each of the three temperatures, 

whereas FLM-δ could not be detected. By increasing the 

temperature, the frequency of FLM-β decreased from 74% at 16°C to 

a 35% at 27°C, while other isoforms increased from 25% to 64%. 

In total, 31 alternative splice forms (ASF) of FLM were found in Col-0 

and at least one of the mutated lines, while 19 isoforms (cASF1-19) 

were detected exclusively in the CRISPR lines (Figure 2.6). These 

results confirm that FLM-β and FLM-δ are the most abundant single 

FLM isoforms in Col-0. In addition, our findings demonstrate that 

plants with targeted deletion of either the 2nd or 3rd exon of FLM by 

CRIPSR/Cas9 predominantly produce either FLM-β (FLM-ΔE3) or 

FLM-δ (FLM-ΔE2). 
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Table 2.1. Percentage of FLM isoforms analysed in Col-0 and CRISPR 

lines at 16°C, 23°C and 27°C. 

  

Isoform 
Col-0 
16°C 

Col-0 
23°C 

Col-0 
27°C 

FLM-
ΔE2 
16°C 

FLM-
ΔE2 
23°C 

FLM-
ΔE2 
27°C 

FLM-
ΔE3 
16°C 

FLM-
ΔE3 
23°C 

FLM-
ΔE3 
27°C 

FLM-β 41.5 48.8 17.2 - - - 74.4 64.1 35.4 
FLM-δ 26.8 22.0 25.9 70.6 72.7 66.0 - - - 
ASF1 2.4 - - - - - - - - 
ASF2 2.4 - - 2.9 2.3 - - - - 
ASF3 4.9 - - - - - - - - 
ASF4 4.9 9.8 5.2 - - - - - - 
ASF5 4.9 2.4 10.3 - - - - - - 
ASF6 2.4 2.4 - - - - - - - 
ASF7 4.9 4.9 8.6 - - - 7.7 15.4 25.0 
ASF8 2.4 - - - - - - - - 
ASF9 2.4 - 1.7 - - - - - - 

ASF10 - 4.9 - 11.8 11.4 12.8 - - - 
ASF11 - 2.4 - - - - - 2.6 10.4 
ASF12 - 2.4 - - - - - - - 
ASF13 - - 3.4 - - - - - - 
ASF14 - - 1.7 - - - - - - 
ASF15 - - 1.7 - - - - - - 
ASF16 - - 1.7 - - - - - - 
ASF17 - - 1.7 - - - - 2.6 2.1 
ASF18 - - 1.7 - - - - - - 
ASF19 - - 1.7 - - - - - - 
ASF20 - - 1.7 - - - - - - 
ASF21 - - 1.7 - - - - - - 
ASF22 - - 1.7 - - - - - - 
ASF23 - - 5.2 - - 4.3 - - - 
ASF24 - - 1.7 - - - - - - 
ASF25 - - 1.7 - - - 2.6 - - 
ASF26 - - 1.7 - - - - - 2.1 
ASF27 - - 1.7 - - - - - - 
ASF28 - - - 2.9 - - 10.3 2.6 8.3 
ASF29 - - - 2.9 - - - - - 
ASF30 - - - - - 2.1 - - - 
ASF31 - - - - - - - - 2.1 
cASF1 - - - 2.9 - - - - - 
cASF2 - - - 2.9 - - - - - 
cASF3 - - - 2.9 - - - - - 
cASF4 - - - - 4.5 - - - - 
cASF5 - - - - 4.5 - - - - 
cASF6 - - - - 2.3 2.1 - - - 
cASF7 - - - - 2.3 - - - - 
cASF8 - - - - - 4.3 - - - 
cASF9 - - - - - 2.1 - - - 

cASF10 - - - - - 2.1 - - - 
cASF11 - - - - - 2.1 - - - 
cASF12 - - - - - 2.1 - - - 
cASF13 - - - - - - 5.1 5.1 6.3 
cASF14 - - - - - - - 5.1 - 
cASF15 - - - - - - - 2.6 2.1 
cASF16 - - - - - - - - 2.1 
cASF17 - - - - - - - - 2.1 
cASF18 - - - - - - - - 2.1 

% Tot non 
canonical 
isoforms 

31.7 29.3 56.9 29.4 27.3 34.0 25.6 35.9 64.6 

Number of 
colonies 41 41 58 34 44 47 39 39 48 
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2.2.2.3 QUANTIFICATION OF MAJOR FLM ISOFORMS 

  

To measure the relative expression of transcripts containing either the 

2nd or 3rd exon (such as FLM-β and FLM-δ) and reliably quantify them 

I established a multicolor TaqMan assay. 

Primers were designed in conserved regions in exon 1 and exon 4 of 

FLM to be able to use the same primer pair for the amplification of all 

splice variants of interest, thereby minimizing the risk of estimating 

certain isoform expression incorrectly because of differences in 

primer efficiency. The PCR products were detected in the same 

reaction by probes labeled with fluorophores with non-overlapping 

detection range, 6-FAM™ and HEX™2, placed on exons 2 or exon 3, 

respectively (Figure 2.7, Table 2.2). An extra set of primers and a 

probe labeled with CY5®, whose emission spectra is not overlapping 

with the other two fluorophores used in this assay, was used to detect 

expression of UBC21, which was used for normalization purposes 

(Figure 2.7, Table 2.2) 
 

 

 

 

 

 

 

 
 
Figure 2.7: Schematic representation of the TaqMan assay designed to 
detect splice variants with the 2nd exon and 3rd exon of FLM (e.g. FLM-
β and FLM-δ) and the normalization control UBC21. Primers are shown as 
black arrows, probes as black segments. Fluorophores are marked as 
blue (6-FAM™), green (HEX™2), and orange (CY5®). 
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Table 2.2. Oligonucleotides used for TaqMan assay. 

 
Gene Primer Sequence (5’ to 3’) Fluorophore Detection 

(nm) Quencher 

FLM-β 
PROBE G-36620 

CCAAGATCATTGAT
CGTTATGAAATACA
A 

6-FAM™ 515-530 BHQ-1 

FLM-δ 
PROBE G-36229 CGGAGAAACCTCA

ATGTTTTGAACTC HEX™2 560-580 BHQ-1 

FLM 
Forward G-36231 CGCTGTTGTCGTC

GTATCTG    

FLM 
Reverse G-36743 CTAGTAACTCCTTG

TGTGGAAG    

UBC21 
PROBE G-38938 

GGAGTCCTGCTTG
GACGCTTCAGTCT
G 

CY5® 675-690 BHQ-2 

UBC21 
Forward G-38780 CTCCTCAAGTTCG

ATTCTTG    

UBC21 
Reverse G-38783 CCTGAGTCGCAGT

TAAGAGG    

 
 
The multicolor TaqMan assay showed that the abundance of 

transcripts containing the 2nd exon (such as FLM-β) decreased in 

response to increasing temperature in Col-0 (Figure 2.8).  

 

 

Figure 2.8: Relative expression of transcripts containing the 2nd (e.g. 

FLM-β) or the 3rd exon (e.g FLM-δ) measured using the TaqMan assay in 

Col-0, the CRISPR lines, and the flm-3 mutant at 16°C, 23°C, and 27°C. 
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In contrast, the 3rd exon (such as FLM-δ) showed a moderate 

increase (Figure 2.8). A temperature-depended AS of FLM was 

observed also in a transgenic line that expresses the genomic region 

of FLM under the control of the constitutive 35S promoter (Figure 

2.9). These findings confirm previous results (Posé et al. 2013) and 

demonstrate the functionality of the TaqMan assay. 

 
 
 
 
 
 
 
 
Figure 2.9: Quantification of splice 
variants with the 2nd exon and 3rd 
exon of FLM by TaqMan assay in a 
genomic 35S:gFLM overexpression 
line at 16°C, 23°C, and 27°C.  
 
 
 

A weak signal was detected in the flm-3 loss of function mutant 

(Figure 2.8) using the probe against the 2nd exon of FLM. Sanger 

sequencing of the PCR product revealed that this signal originates 

from the amplification of a fragment of MAF2, a gene highly similar in 

sequence to FLM, and indicates that the 2nd exon probe was not 

absolutely gene specific. 

Interestingly, I detected higher levels of exon 3-containing transcripts 

in FLM-ΔE2 than Col-0 at all temperatures (Figure 2.8). This trend 

was even more pronounced in the FLM-ΔE3 plants, which showed 

elevated exon 2 levels (Figure 2.8). Together these findings suggest 

that the basic expression of FLM remains constants regardless of the 

deletion of either exon 2 or exon 3 but affects the relative ratio of the 

splice variants. 
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2.2.2.4 QUANTIFICATION OF THE NON-CANONICAL FLM 

ISOFORMS ASF7 AND ASF10 

 

ASF7 and ASF10 differ from FLM-β and FLM-δ respectively only for 

the retention of the 4th intron, which adds additional amino acids to 

the protein does not cause any shift in the reading frame downstream 

(Figure 2.6). To investigate the possible contribution of these two 

potentially protein-coding non-canonical isoforms to the regulation of 

flowering, I quantified their relative expression using the most specific 

primers possible (Fig. 2.10) and performed real Time PCR using 

SYBR Green technology. Similar to the TaqMan assay described 

above, UBC21 was used for normalization purposes. In agreement 

with previous results, FLM-β was the most abundant isoform and its 

expression was decreasing with increasing temperature (Figure 2.10). 

Furthermore, FLM-δ, was slightly up regulated in warmer temperature 

and could be confirmed as second most abundant isoform. In 

contrast, the relative expression of ASF7 and ASF10 was very low 

when compared to FLM-β (Figure 2.10) suggesting a minor role of 

these two non-canonical isoforms to regulation of flowering in Col-0. 

By analyzing the expression levels, however, I cannot assign a role to 

the two proteins derived from the non-canonical isoforms, which in 

principle could encode for hyperactive proteins with a very strong 

effect. This scenario, albeit unlikely, cannot be excluded.       
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Figure 2.10: Quantification of FLM isoforms by RT-PCR. A. Representation 
of the relevant part of the FLM gene (from Exon 1 to Exon 6) and of the 
introns or exons included in the isoforms FLM-­‐β, FLM-­‐δ, ASF7, and ASF10. 
The primers used for the quantification of each isoform are represented 
as black arrows. B. Relative expression of each isoform at 16°C, 23°C, 
and 27°C. Error bars designate the standard deviation of 3 biological 
replicates. 
 

2.2.2.5 FLOWERING TIME OF FLM DELETION MUTANTS 

 

To investigate the contribution of the different isoform to the 

regulation of flowering I determined the flowering time of the newly 

generated deletion lines FLM-ΔE2 and FLM-ΔE3 in comparison with 

Col-0, the flm-3 loss-of-function mutant and the 35S::gFLM line at 

16°C, 23°C, and 27°C (Figure 2.11).  
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Figure 2.11: Flowering time of flm mutants. A. Representative pictures of 
flm-3, FLM-ΔE2, Col-0, FLM-ΔE3, and 35S::gFLM lines grown at 23°C long 
days. Scale bar: 1 cm. B. Flowering time given as number of leaves 
(dark grey: rosette leaves; light grey: cauline leaves) and days to 
flowering (black) of plants grown at 16°C, 23°C, and 27°C. Error bars 
indicate standard deviation. *P < 0.05; **P < 0.01;***P < 0.001; ****P < 
0.0001; ns, not significant, using Welch’s t-test. 
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Table 2.3. Flowering time of CRISPR lines. 
 

16°C Leaves Cauline 
leaves 

Days n 

flm-3 15.1 ± 1.5 4.2 ± 0.4 36.3 ± 2.3 15 
FLM-ΔE2 15.8 ± 1.7 3.8 ± 1.1 37.5 ± 3.4 14 

Col-0 26.9 ± 2.1 5.4 ± 1.2 49.3 ± 3.7 14 
FLM-ΔE3 33.2 ± 5.2 6 ± 1.6 54.6± 7.3 13 
35S:gFLM 53.4 ± 3.3 10.4 ± 1.7 62.5 ± 4.6 8 

23°C Leaves Cauline 
leaves 

Days n 

flm-3 8.6 ± 1 2.7 ± 0.5 18.8 ± 0.6 16 
FLM-ΔE2 9.5 ± 1 2.9 ± 0.3 18.9 ± 0.5 16 

Col-0 13.1 ± 1.3 3.2 ± 0.7 25.1 ± 2.2 15 
FLM-ΔE3 16.4 ± 2.2 3.6 ± 0.6 27.3 ± 1.6 16 
35S:gFLM 25.2 ± 2.3 4.9 ± 0.7 35.2 ± 1.5 11 

27°C Leaves Cauline 
leaves 

Days n 

flm-3 6.4 ± 0.6 2.4 ± 0.5 14.6 ± 1.4 16 
FLM-ΔE2 7.4 ± 1 2.8 ± 0.4 15.3 ± 1.5 16 

Col-0 7.8 ± 1 2.8 ± 0.4 17.8 ± 1.3 16 
FLM-ΔE3 9.7 ± 0.9 3.1 ± 0.3 20.3 ± 2.6 16 
35S:gFLM 11.3 ± 1.1 2.6 ± 0.5 23.3 ± 2.1 12 

 
n = number of plants analysed per genotype. 
 
 
Similar to previous results (Scortecci et al. 2001), constitutive 

expression of gFLM delayed flowering in all conditions tested, but the 

effect was more pronounced at 16°C than at 23°C or 27°C (Figure 

2.11 and Table 2.3). This is possibly due to the in reduction in exon 2-

containing transcripts relative to exon 3-containing transcripts at 27°C 

(Figure 2.9). 
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FLM-ΔE3 line, which expresses higher level of exon 2-containing 

transcripts (Figure 2.8), was late flowering when compared to Col-0, 

but not as late as the 35S:gFLM plants (Figure 2.11), confirming the 

importance of exon 2 for the repressive function of FLM. 

FLM-ΔE2 plants, instead, which produce approx. from 2 to 4 folds 

higher levels of FLM-δ  in comparison with the WT, flowered earlier 

than Col-0, particularly at 16°C and 23°C, but never earlier than the 

flm-3 mutant. However, plants expressing the FLM-δ open reading 

frame under the constitutive 35S promoter in the flm-3 background 

flowered significantly earlier than flm-3 control plants at 16°C (Figures 

2.12 and 2.13), confirming previously published results (Posé et al. 

2013).  

 

Taken together, these data indicate that in Col-0 the reduction 

in FLM-β rather than a dominant negative effect of FLM-δ causes 

plants to flower earlier at elevated ambient temperatures. 

Nevertheless FLM-δ can potentially exert a dominant negative effect 

on flowering time when expressed at high levels. It remains to be 

determined whether FLM-δ can contribute to the regulation of 

flowering in more natural settings, in other accessions, or under 

different growth conditions.  
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Figure 2.12: Flowering time 
of 35S::FLM-δ lines. A. 
Flowering time given as 
number of leaves (dark 
grey: rosette leaves; light 
grey: cauline leaves) B. 
Days to flowering (black) of 
plants grown at 16°C. Error 
bars indicate standard 
deviation. **P < 0.01; ***P < 
0.001; ns, not significant, 
using Welch’s t-test. 
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Figure 2.13:  Independent replicate of flowering time of all the FLM 
transgenic lines and mutants considered at 16°C long days. In the 
upper panel the flowering time is given in number of leaves and in the 
lower panel in days to flowering. Error bars indicate standard deviation. 
*P < 0.05; **P < 0.01;***P < 0.001; ****P < 0.0001; ns, not significant, using 
Welch’s t-test.  
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2.2.3 DISCUSSION 

  

In the past years, the contribution of the MADS-domain transcription 

factor FLM in controlling flowering in response to changes in ambient 

temperature has been investigated by several groups. 

At first Scortecci and colleagues identified FLM as floral repressor 

(2001), and Balasubramanian and colleagues (2006) associated FLM 

with the thermal induction of flowering time.  

FLM was already known to be subject to alternative splicing 

(Scortecci et al. 2001), and that temperature could regulate the 

abundance of an active isoform (Balasubramanian et al. 2006). But 

only in 2013 FLM-β was identified as the isoform that functions as a 

flowering repressor and the mechanism of action was revealed (Posé 

et al. 2013; Lee et al. 2013). In 2013, Posè and colleagues proposed 

a model explaining how temperature-dependent alternative splicing 

contributes to the induction of flowering. This model is based on the 

finding that the expression of a second protein coding isoform, FLM-δ, 

is promoted at high temperature. The FLM-δ protein is thought to 

compete with FLM-β for interaction with partners such as SVP, 

resulting in the formation of non-functional complexes and thereby 

indirectly inducing flowering at elevated ambient temperature. 

Evidences for the potential dominant-negative effect of FLM-δ on 

flowering time are largely based on the phenotypes of lines 

expressing this isoform under the constitutive 35S promoter (Posé et 

al. 2013), which is a highly artificial context. More recently, the 

importance of FLM-δ in regulating flowering has been challenged and 

an alternative mechanism has been proposed. Sureshkumar and 

colleagues (2016) show that at elevated temperature the production 

of non-canonical FLM isoforms targeted for degradation by NMD is 

induced and this would explain the consequently reduced level of the 
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functional isoform, FLM-β and therefore the early flowering phenotype 

at high temperatures. 

In this thesis, I established to what extent the two most abundant FLM 

variants, FLM-β and FLM-δ, contribute to the thermosensitive 

regulation of flowering in a system as close as possible to wild type. 

I employed CRISPR/Cas9 to obtain two lines, FLM-ΔE2 and FLM-

ΔE3 carrying a targeted deletion of the 2nd or 3rd exon, respectively. 

The edited lines do not express either FLM-β or FLM-δ (Figure 2.6) 

but the expression of other isoforms and the total expression of FLM 

were not compromised (Figure 2.6). 

Probably as a consequence of the rearrangements on the FLM 

genomic sequence, I detected 19 isoforms in the CRISPR lines that 

were not detectable in Col-0 (Figure 2.6). Alternatively, the depth of 

the Sanger sequencing analysis was simply too low to detect all 

possible splice variants. Irrespectively of the reason, the new 

isoforms were detectable only at low frequency (Table 2.1) and 

contained premature termination codons (PTC) similarly to the 

majority of the isoforms shared with the wild type. For these reasons, 

the CRISPRs lines represent the best compromise to study the 

specific role of isoforms in a WT background. The expression of FLM-

β in the FLM-ΔE3 line was higher than WT but still down regulated in 

response to increasing temperature (Figure 2.9, Table 2.1) just like in 

Col-0. Similarly, FLM-δ expression was higher than in Col-0 in the 

FLM-ΔE2 line at all temperatures.  

In agreement with previous findings (Sureshkumar et al. 2016), I 

detected an increase in the frequency of non-canonical isoforms at 

elevated temperature (Table 2.1) in both wild type and the edited 

lines. Taken together these results strongly suggest that the edited 

lines behave mostly like Col-0 and that even if the relative abundance 

of individual FLM isoforms was changed because of the edited 
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genomic sequence, the overall expression of the FLM gene remained 

constant (Figure 2.8). 

As expected due to the high expression of transcripts containing the 

2nd exon (FLM-β), the FLM-ΔE3 line displayed a significant delay in 

flowering when compared to the wild type but still flowered earlier 

than as the transgenic lines overexpressing gFLM, especially at low 

ambient temperature (Figure 2.11). Constitutive expression of gFLM 

delayed flowering in all conditions tested, which is in agreement with 

a previous report (Scortecci et al., 2001). However, the effect was 

less pronounced at 27°C, possibly due to the concomitant increase of 

exon 3-containing transcripts (Figure 2.9) that might buffer the over-

expression of the functional repressor.  

These findings demonstrate that the contribution of the FLM-β splice 

variant to the regulation of flowering can be investigated in the 

genome-edited line. On a more general level, my results demonstrate 

that CRISPR/Cas9-generated deletions lines can be employed to 

address specific questions regarding the role of specific splice 

variants in plant development.  

Thus, the FLM-ΔE2 CRISPR line should be suited to evaluate the 

contribution of FLM-δ, which is expressed at higher levels in than in 

wild type in all conditions tested, to the regulation of flowering (Figure 

2.8). As expected, the FLM-ΔE2 plants always flowered earlier than 

wild type, which can easily be explained by their inability to produce 

the floral repressor FLM-β, but, surprisingly, never earlier than flm-3 

(Figure 2.11). However, when grown in parallel with the newly 

generated CRISPR lines, two FLM-δ overexpression lines described 

by Posé and colleagues flowered significantly earlier than the loss of 

function mutant (Figure 2.12), confirming the published results (Posé 

et al. 2013). Overall these results indicated that FLM-δ in principle 

has the potential to act as a dominant-negative regulator of flowering 
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time when expressed at non-physiologically high levels. However, in 

Col-0 under the conditions tested, FLM-δ apparently never reaches 

the expression levels required to realize this potential. 

Given that reducing expression of FLM-β is sufficient to promote 

flowering, it remains unclear why the plant invests energy in 

producing a plethora of alternatively spliced transcripts rather than 

just shutting down FLM transcription. A possible explanation would be 

that some of the alternative transcripts produced might play an active 

role in the regulation of flowering. In some conditions the FLM-ΔE2 

lines actually flowered moderately late when compared to flm-3 

(Figure. 2.11) especially at elevated temperature, even though 

no FLM-β expression could be detected (Figure. 2.6). This suggests 

that some FLM isoforms lacking exon 2 might contribute to the 

repression of flowering. 

Within all the non-canonical isoforms detected, ASF7 and ASF10, 

clearly stand out. They have been detected relatively frequently at 

various temperatures in the CRISPR lines and their structures differ 

from FLM-β and FLM-δ, respectively, only by the retention of intron 4. 

The intro retention does not result in a frame shift and ASF7 and 

ASF10 could encode potentially functional proteins (Figure. 2.6). In 

Col-0, however, it seems unlikely that ASF7 and/or ASF10 play a 

major role in the regulation of flowering time since the expression 

levels of these two isoforms were extremely low (Figure. 2.10). 

Together these findings suggest a potential role for FLM in 

contributing to the plasticity of flowering, which could be of relevance 

from an evolutionary perspective. If reducing levels of FLM-β were 

sufficient to promote flowering, the reason why plants invest in 

producing a plethora of alternatively spliced transcripts remains 

elusive. It could be that because of the structure of the FLM 

transcript, evolving temperature-dependent alternative splicing was 

the easiest solution to the problem. Alternatively, maintaining the 
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ability to produce a variety of FLM isoforms could provide flowering 

time plasticity, in fact it seems possible that some of the alternative 

transcripts produced might play an active role in the regulation of 

flowering and be relevant in different accessions. 

 

2.3 FLM IN NATURAL ACCESSIONS OF A. thaliana 

 

2.3.1 INTRODUCTION 

 

2.3.1.1 NATURAL VARIATION  

 

Phenotypic variations within species are very obvious in domestic 

animals like in breeds of cats or dogs. In sessile organism like plants 

instead the environment can greatly influence the final phenotype and 

mask differences due to genetic traits. 

A large collection of Arabidopsis germplasms from different 

geographic areas is available and many of them have been 

completely sequenced (1001 Genomes Consortium 2016). The 

genetic differences underlying phenotypic variation can be uncovered 

by growing these natural accessions under controlled conditions in 

the lab. The differences found between accessions under the same 

conditions are thought to reflect particular adaptations to different 

natural environments and differences in the genetic sequences. 

 

2.3.1.2 FLM IN NATURAL VARIATIONS 

 

The role of FLM in the thermosensory pathway has been previously 

established using two natural strains, Nd-1 (Werner et al. 2004) and 

Ei-6 (Balasubramanian et al. 2006). These two accessions are largely 

temperature-insensitive and display an early flowering phenotype. 
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Using recombinant inbred line populations derived from crosses to 

Col-0 and subsequent QTL mapping the authors identified FLM as 

the causal gene. Interestingly, both accessions contain a conserved 

large deletion in FLM that results in a non-functional protein. 

In 2015, Lutz and colleagues reported that an intronless FLM coding 

sequence under the control of the FLM promoter was unable to 

restore the early flowering phenotype of flm-3. Furthermore, the 

authors identified a site in intron 1 that is required for the correct 

regulation of FLM expression by using a QTL mapping approach. 

They analyzed F2 segregating populations from a cross between Col-

0 and an early flowering Scottish accession, Kil-0, that carries a long 

insertion in the first intron. Subsequent experiments demonstrated 

that the position, rather than the sequence of the insertion is 

responsible for the phenotype, and leads to a down regulation of FLM 

expression in the Kil-0 allele. More recently, other regulatory regions 

in the FLM promoter and non-coding sequences (intron 8) have been 

identified by testing natural alleles data from the 1001 genomes 

project (Lutz et al. 2017). 

 

In this work, I investigated the contribution of splicing isoforms of FLM 

to the regulation of flowering time in different natural accessions of A. 

thaliana. 

 

2.3.2 RESULTS 

 

To address the role of FLM AS in more detail, we investigated to what 

extent the temperature-dependent splicing of FLM pre-mRNA 

observed in Col-0 is conserved within natural accessions of A. 

thaliana. We performed the TaqMan assay previously described in 

this chapter to analyze the expression of transcripts containing either 

the 2nd or 3rd exon (such as FLM-β and FLM-δ) in 53 non-
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vernalization-requiring A. thaliana accessions grown at 16°C, 23°C, 

and 27°C. In addition, we also included 11 non-vernalized winter 

annual accessions in this analysis (Table 2.4). 

 
Table 2.4. List of natural A. thaliana accessions analysed. 

Col-0 like Temperature 
insensitive 

Temperature 
insensitive at high 

temperature 

Veranlization 
requiring 

Col-0 
Oy-0 

Can-0 
Aitba-1 
Ra-0 
KZ-1 

Lag2-2 
Van-0 
ice73 

ice130 
ice120 
Vie-0 
Sei-0 
ice70 
ice75 

ice150 
Tsu-0 
Bor-4 
ice152 
Pu2-7 
Qui-0 

Ey1.5-2 
Sha 

STAR8 
ice71 
Tsu-1 

Rubezhnoe1 
Ru3.1-27 
TuSB30-2 

ice228 
ice1 
Ct-1 
Mt-0 

Nie1-2 

  

C24 
Koch-1 
ice112 
ice50 
ice61 

ice127 
Cvi-0 
Ts-1 
An-1 

 

NFA 8 
Tu V12 

Kil-0 
ice92 

Wal-Has B4 
Fei-0 

HKT2-4 
TuWa1-2 

Jl-3 
 

 ice63 
ice119 
ice60 
ice91 
N13 

Tu Sha9 
ice134 
Yeg-1 
ice181 
ice153 

Lerik1-3 
 



	
   63	
  

 
 
Expression of FLM splice variants containing the 2nd or 3rd exon 

revealed that the majority of accessions, including the 11 

vernalization-requiring accessions, showed a trend similar to that 

observed in Col-0 in (Figure 2.14). 

 
 
Figure 2.14: Expression of FLM isoforms in natural accessions of A. 
thaliana. A. Overall relative expression of transcripts containing the 2nd 
(e.g. FLM-β) or the 3rd (e.g FLM-δ) exon measured using the TaqMan 
assay in 64 natural A. thaliana accessions. B. Mean flowering time in 
days and leaf number of 34 accessions showing Col-0-like temperature-
dependent FLM splicing. C. Mean flowering time in days to flowering 
and leaf number of 9 accessions insensitive to temperature changes 
above 23°C. 
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The mean expression of FLM isoforms containing the 2nd exon (such 

as FLM-β) decreased with higher temperatures whereas the 3rd exon-

containing variants (such as FLM-δ) showed the lowest abundance at 

16°C (Figure 2.14A). Despite this largely consistent trend in FLM 

splicing, four distinct groups of accessions can be discriminated 

based on their flowering time phenotypes among the 53 non-

vernalization-requiring accessions (Table 2.4).  

 

Table 2.5. Flowering time of natural A. thaliana accessions. 
 

Accession TL16 D16 TL23 D23 TL27 D27 n 
Col-0 23.2 ± 2.7 35.3 ± 3.2 13.4 ± 1.5 19.2 ± 1.6 10.4 ± 1.2 15.7 ± 1.8 86 
Can-0 45.9 ± 3.7 52.6 ± 7.4 26.1 ± 6.7 29.6 ± 2.6 14.1 ± 1.8 18.7 ± 3.6 43 
Aitba-1 18.3 ± 2.6 28.5 ± 4.3 19.4 ± 4.1 29.8 ± 4.1 18.3 ± 2.6 28.5 ± 4.3 41 
Ra-0 40.8 ± 5.3 50.5 ± 6.6 12.5 ± 2.1 19.3 ± 4 10.3 ± 1 17.8 ± 2.8 12 
KZ-1 22.8 ± 3.8 64.5 ± 9.3 15.3 ± 2.6 22 ± 2.4 12.8 ± 2.8 26 ± 8.8 12 

Lag2-2 41 ± 14 72 ± 13 14.3 ± 1.3 22.8 ± 2.9 10.3 ± 0.5 17.3 ± 2.2 12 
Van-0 20.3 ± 1.7 33.6 ± 2.5 16.8 ± 3 20.7 ± 1.5 9.7 ± 1.4 17.8 ± 3.7 81 
ice73 50.3 ± 3.5 67 ± 2.6 35.5 ± 9.7 41.8 ± 8.4 29 ± 8 40.8 ± 8.6 11 

ice130 50.3 ± 5.4 71 ± 3.7 41.3 ± 3.1 63.3 ± 
13.6 

34.5 ± 4.9 47.5 ± 7.9 11 

ice120 64.5 ± 2.4 69.8 ± 1.9 60.3 ± 9.3 69.5 ± 6.9 53.7 ± 8.1 57 ± 15.6 11 
Vie-0 76.5 ± 1.3 77.8 ± 8.1 59.7 ± 4.6 65.3 ± 

12.9 
52.5 ± 6.2 78.3 ± 6.5 11 

Oy-0 53.3 ± 7.3 51.7 ± 5.2 20.5 ± 3.2 21.3 ± 1.7 14 ± 1.1 18.6 ± 0.7 85 
Sei-0 16.9 ± 2.6 32.3 ± 2.2 10.6 ± 1.7 16.3 ± 1.4 9.4 ± 1.1 14.6 ± 3.8 85 
ice70 56.5 ± 

15.4 
78.8 ± 
11.3 

55.3 ± 7.2 60.3 ± 4.2 44.3 ± 5.5 52 ± 8.5 11 

ice75 53 ± 4.4 70 ± 6.1 52.5 ± 8.7 58.8 ± 6.9 31 ± 6.4 40.8 ± 8.5 11 
ice150 51 ± 3.6 65.8 ± 2.5 45 ± 10.9 58.3 ± 9.4 41.3 ± 4.9 59 ± 6.7 12 
Tsu-0 53.5 ± 7.8 65.5 ± 7.6 23.8 ± 4.1 26.3 ± 2.2 16.3 ± 1.5 21.5 ± 1.3 12 
Bor-4 63.5 ± 4.7 65 ± 5.4 36 ± 2.2 34.3 ± 1.7 20.5 ± 2.4 21.5 ± 1.3 12 
ice152 50.3 ± 4.9 65.5 ± 4 41.3 ± 3.5 69.3 ± 

14.2 
33.3 ± 4.5 47.7 ± 6 11 

Pu2-7 57.5 ± 9.2 77.5 ± 7.8 42.5 ± 1.7 45.3 ± 6.8 38.3 ± 3.2 47 ± 4 9 
Qui-0 62.8 ± 

10.1 
61.5 ± 9.8 45.3 ± 

17.8 
46.3 ± 
16.6 

34.3 ± 
24.2 

36 ± 23.6 11 

Ey1.5-2 50.7 ± 3.1 71.8 ± 
10.7 

16.5 ± 1.7 23.5 ± 1.9 14 ± 0.8 20 ± 2.2 12 

Sha 19.8 ± 3 44.8 ± 3.2 9.5 ± 0.6 24.5 ± 1.3 8.5 ± 1 19.5 ± 1.7 12 
STAR8 38.5 ± 8.4 49.5 ± 2.6 22 ± 4.7 30.3 ± 5.9 27.3 ± 7.9 36.5 ± 9 12 
ice71 46 ± 10.7 68 ± 12.2 42.8 ± 5.3 47.5 ± 5.7 32.3 ± 3.1 45.3 ± 4.3 12 
Tsu-1 53.3 ± 5.4 66.3 ± 

11.6 
20.8 ± 2.1 25.5 ± 1.9 14.3 ± 1.3 21.3 ± 2.5 12 

Rubezhnoe-1 51 ± 3.2 54.3 ± 3.3 34 ± 12 35.3 ± 8.5 22.8 ± 3.2 28.5 ± 8 12 
Ru3.1-27 42.8 ± 4.1 51 ± 4.8 21 ± 1.8 22 ± 2 15.3 ± 3.4 21 ± 4.1 12 
TuSB30-2 39 ± 2 52.3 ± 2.1 17.8 ± 2.6 25 ± 1.4 12 ± 1.8 21.5 ± 2.4 11 

ice228 62.8 ± 6.5 60.8 ± 4.8 55 ± 2 61.7 ± 7.6 48.5 ± 4.9 96.5 ± 13.4 9 
ice1 64 ± 5.3 64 ± 2 60.7 ± 1.5 69.7 ± 0.6 48 ± 5.7 71 ± 2.8 10 
Ct-1 37 ± 3.4 64 ± 4.8 11.8 ± 1.5 21 ± 2.7 10.8 ± 1 20 ± 0.8 12 
Mt-0 21.8 ± 2.9 40.8 ± 3.6 12 ± 1.4 18.5 ± 1.3 11.3 ± 1.3 17.5 ± 3 12 

Nie1-2 34 ± 8.8 61.3 ± 9.1 15.3 ± 4 22.8 ± 6.3 11.8 ± 2.9 27.8 ± 6.7 12 
C24 23.5 ± 2.9 58.8 ± 4.3 26.25 ± 

8.1 
27.3 ± 3.2 29.25 ± 

3.6 
28.3 ± 1.7 12 

Koch-1 52.75 ± 
3.8 

55 ± 4.4 56.5 ± 2.1 53.5 ± 2.1 50.75 ± 
7.4 

60.3 ± 5.9 12 

ice112 51.75 ± 
6.2 

62.3 ± 5.7 73.3 ± 
16.8 

69 ± 14.4 58.7 ± 1.5 89.3 ± 12.9 10 
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ice50 35.75 ± 
5.9 

61.8 ± 1.7 31.5 ± 5.3 28.3 ± 1.9 30.5 ± 4.2 40.3 ± 14.1 12 

ice61 45 ± 3.6 58.3 ± 1 52.5 ± 1.9 62.3 ± 3.6 41.75 ± 
3.3 

53.8 ± 13.8 12 

ice127 54 ± 14.1 92 ± 17 56 ± 10.6 78.7 ± 2.5 51.25 ± 
8.6 

83.8 ± 6.9 9 

Cvi-0 13.7 ± 2.9 36 ± 3.7 13.7 ± 3 25.5 ± 4.2 13.5 ± 2.4 18 ± 3.3 81 
Ts-1 33.3 ± 5.5 41.7 ± 3.2 31.5 ± 7.8 34.4 ± 

12.1 
34.5 ± 
17.6 

32.7 ± 7.2 83 

An-1 15.25 ± 
1.3 

52.5 ± 2.5 9.75 ± 1 18.5 ± 1.7 11.5 ± 0.6 19 ± 3.2 12 

NFA 8 23.3 ± 5.4 41.5 ± 4.4 10.8 ± 2.5 18.75 ± 
1.9 

10.8 ± 1.7 18.5 ± 4.2 12 

Tu V12 39.3 ± 8.2 47.25 ± 
5.3 

22 ± 6.8 28.75 ± 9 22.5 ± 6.2 30.5 ± 7.8 12 

Kil-0 27 ± 3.3 58 ± 4.5 17.3 ± 1.2 21.3 ± 0.6 17.3 ± 2.2 25.5 ± 4.4 11 
ice92 50.5 ± 2.9 57.5 ± 3.9 28.5 ± 

15.5 
34 ± 9.6 30.8 ± 6.9 35.75 ± 5.7 12 

Wal-Has B4 54 ± 2.8 63.25 ± 3 19.5 ± 1.3 27 ± 3.9 20.8 ± 6.5 29.25 ± 5.4 12 
Fei-0 37 ± 4.2 68 ± 10.9 19 ± 3.4 23.75 ± 

3.3 
18 ± 2.6 24.7 ± 0.6 11 

HKT2-4 41.3 ± 4.8 51.5 ± 3.1 14.3 ± 0.5 21.25 ± 
2.5 

14.8 ± 1.5 20.75 ± 1.7 12 

TuWa1-2 20.3 ± 4.5 41.25 ± 
3.9 

10.5 ± 1 19.75 ± 
0.5 

11.3 ± 0.5 21 ± 1.2 12 

Jl-3 19.5 ± 2.6 39.5 ± 7.7 9.8 ± 1.5 18.5 ± 2.1 9.3 ± 1 14.75 ± 1.7 12 
        

 
TL16, TL23 and TL27, total leaf number at 16°C, 23°C and 27°C; D16, D23 
and D27 days to flowering at 16°C, 23°C and 27°C; n, total number of plants 
analysed per accession. 
 
 
Thirty-five accessions behaved similarly to Col-0, flowering later at 

low temperature and earlier at high temperature, when both the total 

leaf number and days to flowering are considered (Figure 2.14B). To 

this group belong Rubezhnoe1 and Tsu-0, which have previously 

been described as temperature insensitive (Lee et al., 2013). In 

contrast, a group of 9 accessions, including Jl-3 as previously 

described (Lee et al., 2013), were relatively late flowering at 16°C but 

flowered early at both 23°C and 27°C (Figure 2.14C, and Figure 

2.15).  

Furthermore, 10 accessions were categorized as temperature 

insensitive, since they flowered at approximately the same time in 

days to flowering and/or leaf number irrespective of the ambient 

temperature (Figure 2.16). 
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Figure 2.15: Flowering time phenotypes at 16°C, 23°C and 27°C in days 
(upper panel) and leaves (lower panel) of 9 accessions insensitive to 
temperature changes above 23°C. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.16: Detailed 
flowering time 
phenotypes at 16°C, 
23°C and 27°C in leaves 
(left panel) and in days 
(right panel) of 10 
temperature insensitive 
accessions. 
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E1 E9E8E7E6E5E4E3FLM

TS1-FLM v2
TS1-FLM v1

E2

 
This group includes An-1 and Cvi-0, which have previously been 

described as temperature insensitive accessions (Balasubramanian 

et al., 2006; Lee et al., 2013) and Ts-1 that carries an 8 bp deletion in 

exon 2 of FLM, resulting in a frame shift and leading to a premature 

stop codon (Figure 2.17). 

 

 

 
 
 
 
 
Figure 2.17: FLM in Ts-1 carries an 8bp deletion in exon 2. In black the 
annotated Col-0 FLM gene, exons are marked as squares and introns as 
straight lines. The schematic representation of the two splice isoforms 
isolated in Ts-1 carrying the 8bp deletion in exon2 are drawn in grey 
and the close-up show detailed information on the position of the 
deletion obtained by Sanger sequencing. Stop codons are represented 
as red stars. 

 
 
 
2.3.3 DISCUSSION 

 

Natural accessions are an incredibly valuable source of information 

that makes it possible to explore the ecological relevance of 

mechanisms identified in Col-0. In this thesis, I determined the 

expression of the two FLM isoforms most abundant in Col-0, FLM-

β and FLM-δ, with the aim to test how conserved the AS pattern is in 

natural accessions. 

The temperature-dependent AS of FLM, including the increased 

relative abundance of transcripts containing the 3rd exon (such as 

FLM-δ) at elevated temperatures, seems to be well conserved in most 
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natural accessions tested (Figure 2.14A). However, in this analysis, 

AS of FLM was poorly correlated with flowering of natural accessions, 

which was not entirely unexpected as flowering time is a complex trait 

that is regulated by diverse environmental and endogenous cues. In 

most plants cold temperatures delay flowering, and in fact the 

majority of the rapid cycling accessions with non-functional FRIGIDA 

(FRI) and/or FLC alleles analyzed behaved like Col-0 and showed 

accelerated flowering in response to elevated ambient temperature 

(Figure 2.14B). Nevertheless, even accessions that require 

vernalization to induce flowering (Table 2.4) and that were excluded 

from the phenotyping because of their extremely late flowering, 

displayed the typical AS pattern of FLM when grown at different 

ambient temperatures.  

Several accessions displayed a partial insensitivity to elevated 

temperatures (Figure 2.14C and Figure 2.15) or flowered essentially 

at the same time at all three conditions tested (Figure 2.16). The latter 

include Ts-1, which carries an 8 bp deletion in exon 2 of FLM that 

results in a frame shift and PTC (Figure 2.17) and flowers later than 

Col-0 at the three temperatures considered (Table 2.5). The same 

deletion has been previously described in a different accession, Sf-2 

(Sureshkumar et al. 2016). However, the temperature-insensitivity of 

Ts-1 cannot be attributed directly to this mutation alone. As 

suggested by Sanchez-Bermejo and colleagues (2015), thermal 

response is associated with many genomic regions including SVP, 

the MAF clade genes, FVE, FCA, or potentially other elements still 

uncovered. In addition, temperature-dependent regulation of flowering 

is intimately linked to light signaling as highlighted by the recent 

finding that phytochrome B might act as a temperature sensor in 

plants (Legris et al. 2016; Jung et al. 2016).  

In summary, it can be concluded that in natural accessions the 

temperature-dependent AS splicing of FLM is well conserved. The 
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active isoform, FLM-β  is down regulated in increasing the 

temperature in all the accessions considered. However, in most 

cases the temperature-dependent abundance of the active FLM 

isoform does not correlate with (or even predict) the phenotype. 

Clearly, other players than FLM-β contribute to the flowering time 

phenotype, and additional QTL analyses might be useful to identify 

new thermoregulatory elements.  

 

 

  

2.4 METHODS  

  

2.4.1 PLANT MATERIAL AND GROWTH CONDITIONS 

 

Seeds were surface sterilized with 20 mL of thin bleach and 1 mL of 

37.5% HCl for 4 h followed by 1.5 h in a laminar flow to evaporate 

chlorine gas and stratified in 0.1% agar at 4°C in the dark for 72 h 

before being planted directly on soil. Seeds from natural accessions 

listed in Table 2.4 belong to the 1001 genomes project, and were 

obtained from colleagues at the MPI for Developmental Biology, 

Tuebingen, Germany. flm-3, flm-3 35S:FLM-δ #3, and flm-3 

35S:FLM-δ #43 lines have been previously published (Posé et al. 

2013). Plants were grown in soil in long day conditions (LD, 16 h 

light/8 h dark) at a specified temperature either in Percival chambers 

or in growth rooms. To analyze variation in splicing patterns in 

response to a change in temperature, plants were grown for 9 days at 

23°C LD and then shifted to 16°C, 27°C or kept at 23°C LD for 3 

days. Three pools of 10 seedlings for each line in each temperature 

were collected after the shift at zeitgeber 6 and snap frozen in liquid 

nitrogen. To analyze flowering time, plants were grown at 16°C, 23°C, 
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or 27°C and the days to flower as well as the rosette and cauline leaf 

number were recorded. 

 

2.4.2 RNA-EXTRACTION AND cDNA SYNTHESIS 

 

Total RNA was extracted with TRIzol® reagent or 5:1 acidic 

phenol:chloroform as described (Box et al. 2011). RNA quality was 

determined by using a Nanodrop ND-2000 spectrophotometer 

(Nanodrop Technologies) and only high-quality RNA samples 

(A260/A230>2.0 and A260/A280>1.8) were used for subsequent 

experiments. To remove possible DNA contamination, RNA samples 

were treated with DNaseI (Thermo Scientific) for 30 min at 37°C, 

subsequently inactivated at 65°C with 1ul of 50mM EDTA. 3 µg of 

RNA was used for complementary DNA (cDNA) synthesis using the 

RevertAid First Strand cDNA Synthesis kit in accordance with the 

manufacturer’s instructions (Thermo Scientific). 

 

2.4.3 TAQMAN ASSAY 

 

The multicolor TaqMan analysis was carried out in 384-well plates to 

measure the relative expression of FLM splice variants that contained 

either the 2nd or the 3rd exon. TaqMan technology exploits the 5’ 

nuclease activity of Taq DNA polymerase (Holland et al. 1991) and 

probes designed on the transcript of interest were labeled with 

fluorescent reporters with non-overlapping detection spectra at the 5’ 

and a quencher dye at the 3’ end. Primers and probes are listed in 

Table 2.2, which also includes details about quenchers and detection 

channels. iQTM Multiplex Powermix (BioRad) was used for the PCR 

following the manufacturer’s instructions and PCR was carried out 

using an annealing temperature of 58°C. The exponential 

amplification of the fluorescence intensity was measured and 
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quantified (Lee et al. 1993) using a BioRad C1000 Touch Thermal 

Cycler. The relative expressions were calculated using the delta Ct 

method and performed in technical triplicates for each of the 3 

biological replicats. 

 

 

2.4.4 PLASMID CONSTRUCTION AND PLANT TRANSFORMATION 

 

The two CRISPR/Cas9 vectors used in this study, pGC001 and 

pGC002 were assembled using the GreenGate system 

(Lampropoulos et al. 2013). The final constructs contain the 

pEC1.1::AthCas9:trbcs (assembled from GreenGate modules A: A. 

thaliana pEC1.1; B: A. thaliana codon-optimized Cas9 (Fauser et al. 

2014); and C: rbcs terminator), the sgRNAs listed in Table 2.6 under 

the control of the A. thaliana U6 promoter (GreenGate modules D and 

E), and a pAt2S3::mCherry:tMAS cassette (GreenGate module F) for 

seed selection as described by Gao and colleagues (2016). The 

p35S::gFLM vector (GC003) was also assembled using the 

GreenGate system. For this, the genomic region of FLM, including 

UTRs was amplified from Col-0 seedlings and cloned into the 

GreenGate module C entry vector (Lampropoulos et al. 2013). The 

final GreenGate reaction was performed using modules A: p35S, B: 

empty (pGGB003), the C module carrying the full genomic FLM 

region, D: empty (pGGD002), E: rbcs terminator, and BASTA 

resistance as selection marker (module F; pGGF001). pGGZ001 was 

used as destination vector for all the GreenGate reactions described. 

Plants grown at 23°C were transformed by floral dipping using 

Agrobacterium tumefaciens-mediated gene transfer according to 

standard protocols (Clough and Bent 1998). Transformants were 

selected by fluorescence microscopic identification of mCherry-
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positive seeds as previously reported in Gao et al. (2016) or by 

BASTA selection. 

 
 
Table 2.6. Oligonucleotides used in this work. 
 
Oligonucleotides used for cloning sgRNA constructs 
 

sgRNA Oligo Sequence (5’ -> 3’) 

FLM-E2-5’ G-40172 gTCAATGATCTTGGAAATGCgttttagagctatgctg 
G-40173 GCATTTCCAAGATCATTGAcaatcactacttcgactc 

FLM-E2-3’ G-40174 gCTTAGCTAATTACTTACTAgttttagagctatgctg 
G-40175 TAGTAAGTAATTAGCTAAGcaatcactacttcgactc 

FLM-E3-5’ G-40176 gGCGGTTTTTGGTGTTATGAgttttagagctatgctg 
G-40177 TCATAACACCAAAAACCGCcaatcactacttcgactc 

FLM-E3-3’ G-40178 gAACTCTAGAGAATTAAGTTgttttagagctatgctg 
G-40179 AACTTAATTCTCTAGAGTTcaatcactacttcgactc 

 
Oligonucleotides for PCR to detect FLM deletions 
 

Position Oligo Sequence (5’ -> 3’) 
Intron 1 G-39775 GCACCAGATGATCAGAGTTTCA 
Exon 4 G-28145 GATAATTCTGAATTTTTTCTTCAAGATC 

 
Line PCR product size 

Col-0 652 
FLM-ΔE2 595 
FLM-ΔE3 588 

 
Oligonucleotides for PCR to screen for FLM isoforms 
 

Position Oligo Sequence (5’ -> 3’) 
Exon 1 G-36231 CGCTGTTGTCGTCGTATCTG 
Exon 9 G-28156 CAGCAACGTATTCTTTCCCAT 

 
 
Oligonucleotides for qPCR to quantify specific FLM isoforms 
 

Position Oligo Sequence (5’ -> 3’) 
Exon 1 to Exon 4 G-43257 CTTAGAGCCTTAGATCTTGAAG 
Exon 5 to Exon 4 
Exon 1 to Exon 3 
Exon 4 to Exon 3 
Exon 3 to Exon 4 
Intron 4 

G-43258 
G-43259 
G-43260 
G-43261 
G-2641 

CTTCAAGCTTGCTTTGGACTG 
CCTCCGGTGACGAGATAGAAG 
GAATTTTTTCTTCAAGATCGAG 
GTTTTGAACTCGATCTTGAAG 
GAGGGGAGAAAAATGTGTCG 
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2.4.5 SANGER SEQUENCING OF FLM CLONES 

 

The FLM open reading frame was amplified using primers 5’ 

CGCTGTTGTCGTCGTATCTG 3’ and 5’ 

CAGCAACGTATTCTTTCCCAT 3’ from the same cDNA used for the 

TaqMan assay described above. The PCR products were 

subsequently cloned into pGem®-T Vector System I according to the 

manufacturer’s instructions (Promega) and individual clones were 

sent for Sanger sequencing.  
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CHAPTER 3 
 
PORCUPINE (PCP) regulates development in response to 
temperature variations through alternative splicing in 
Arabidopsis thaliana 
 

3.1 INTRODUCTION 

 

3.1.1 ALTERNATIVE SPLICING FACTORS 

 

As already described in chapter 1, the majority of protein-coding 

genes in eukaryotes contain introns. An essential step in the 

regulation of gene expression is the removal of these introns through 

the splicing of their pre-mRNAs, which needs to occur before mRNAs 

can be transported out of the nucleus (Sharp 2005). 

Only very short sequences at the exon-intron boundaries are highly 

conserved. The challenge for the splicing machinery to recognize the 

correct sites and initiate splicing is facilitated by specialized proteins, 

mainly belonging to the serine/arginine (SR)-rich protein family or the 

heterogeneous nuclear ribonucleoprotein (hnRNP) family (Kornblihtt 

et al. 2013). Some SR proteins work as alternative splicing factors by 

binding near legitimate splice sites, or cis-regulatory sequences, and 

help recruit the splicing machinery to those sites. In contrast, 

members of the hnRNP family bind the newly-transcribed pre-mRNA 

but are unable to recruit the splicing machinery, and consequently 

repress the use of specific splice sites (Watson 2015). Cis-regulatory 

sequences include exonic splicing enhancers (ESEs), exonic splicing 

silencers (ESSs), intronic splicing enhancers (ISEs) and intronic 

splicing silencers (ISSs), depending on their locations and on how 

they affect the usage of a splice site (Kornblihtt et al. 2013) (Figure 

3.1). 



	
   75	
  

The mechanism of RNA splicing and its key players have been 

extensively studied in human and yeast systems, whereas in plants it 

remains comparatively poorly understood. Although the splicing 

mechanisms appear to be overall well conserved between plants and 

animals, incorrect splicing of plant pre-mRNAs in mammalian 

systems (and vice versa) suggests the presence of plant-specific 

characteristics (Lorkovik et al. 2000). 

Genome projects are accelerating the research on splicing-related 

genes in plants. In the Arabidopsis thaliana genome 74 small nuclear 

RNA (snRNA) and 395 genes encoding splicing-related proteins have 

been computationally identified, as potential homologs to animal 

splicing factors (Wang and Brendel 2004). However, for the majority 

of these factors an effective role in AS has not yet been proven in 

plants. 

 
Figure 3.1: The alternative splicing regulatory sequences and factors are 
schematically represented. In the pre-mRNA cis-regulatory sequences, 
both in introns (grey lines) and in exons (yellow) can be recognized by 
regulatory proteins. Intronic or exonic splicing silencers (ISS or ESS) (blue) 
target regulatory components that inhibit the recognition and usage of 
the site by the spliceosome. In contrast, exonic or intronic splicing 
enhancers (ESE or ISE)(orange) associate with components of the 
spliceosome (green) and can mediate exon recognition (Figure 
adapted from Kornblihtt et al. 2013). 
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A characteristic property of AS factors is that they contain a RNA-

recognition motif. Another group of proteins involved in RNA 

metabolism are the Sm proteins, members of a family of small 

proteins. These proteins function in multiple aspects of RNA 

metabolism, included pre-mRNA splicing (Okamoto et al. 2016, Cao 

et al. 2011). In Arabidopsis thaliana 42 Sm genes have been 

identified (Cao et al. 2011). The role of Sm proteins is still largely 

unknown except for a few cases. The most well studied Sm protein is 

SAD1, which controls AS in response to heat stress, drought or 

abscisic acid (Okamoto et al. 2016, Xiong et al. 2001). 

 

3.1.2 TEMPERATURE DEPENDENT ALTERNATIVE SPLICING  

 

One way by which AS can modulate transcript levels is by producing 

new unstable mRNA isoforms that are degraded by nonsense-

mediated decay (NMD) (McGlincy and Smith 2008, Kalyna et al. 

2011). Alternatively, AS can increase the diversity of an organism’s 

proteome by changing or removing functional domains, thereby 

producing protein isoforms with differences in subcellular localization, 

stability, or function (Syed et al. 2012). 

AS is an important mechanism involved in ambient temperature 

responses, and allows plants to adjust their development to 

fluctuations in temperatures (Verhage et al. 2017). Temperature 

changes are reflected by the AS of several plant genes, many of 

which are components of the splicing machinery, whose isoforms in 

turn can affect splicing of downstream genes (Verhage et al. 2017). 

Temperature fluctuations have been shown to trigger differential AS 

both in transcriptome-wide analyses (Leviatan et al. 2013, Verhage et 

al. 2017) as well as in several case studies that include FLM and 

MAF2 (discussed above) and several components of the circadian 

clock (Capovilla et al. 2015).  
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The circadian clock is a central mechanism that enables organisms to 

synchronize biological processes with the day–night-cycle by creating 

oscillations of approx. 24 hours (Salomè and McClung 2004). In 

plants, this mechanism involves several transcriptional repressors 

that form the core of a complex negative feedback machinery. The 

morning-expressed components repress the activity of the evening 

complex, which in turn represses PSEUDO-RESPONSE 

REGULATOR (PRR) genes. These close the three-way circle by 

repressing the morning components (Chow and Kay 2013, Nohales 

and Kay 2016). 

The identity of spliceosome regulators that affect plant clock function 

is only beginning to be elucidated. PROTEIN ARGININE 

METHYLTRANSFERASE 5 (PRMT5) has been shown to regulate the 

AS of PRR9 (Hong et al. 2010, Sanchez et al. 2010). Also some SM-

like (LSM) genes, which encode core components of the 

spliceosomal U6 small nuclear ribonucleoprotein complex, were also 

found to be involved in regulating circadian rhythms (Perez-

Santàngelo et al. 2014). Furthermore, two AS factors have been 

linked to temperature compensation in the clock: GEMIN2, (Schlaen 

et al. 2015), and SNW/SKI-INTERACTING PROTEIN (SKIP) (Wang 

et al. 2012). 

In this chapter I present the role of a Sm protein, which I called 

PORCUPINE (PCP), in regulating AS and its importance in ensuring 

the correct development and morphogenesis at low temperatures. 

3.1.3 MERISTEM AND LATERAL ORGAN DEFECTS 

 

The entire aerial part of the plant is derived from a group of 

undifferentiated cells in the shoot apical meristem (SAM), and a 

correct formation of the SAM is crucial for a normal development. In 

Arabidopsis thaliana the cells of the shoot meristem are organized in 
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three clonally distinct populations, or layers: the outermost epidermal 

L1 layer, the subepidermal L2 layer and the internal layer L3 that 

contains the organizing center (Steeves and Sussex 1989). The SAM 

needs to balance the maintenance of undifferentiated stem cells at its 

center with the repositioning of differentiated cells that will form organ 

primordia. In fact, at the shoot meristem many cell signaling key 

events occur, including the commitment to differentiation, the initiation 

of organ primordia and the establishment of polarities within each 

organ primordium. The breakdown of either of these processes would 

cause a morphological disaster for the plant. Genetic analyses of 

mutants have identified a plethora of genes whose function is 

necessary for SAM establishment or maintenance. 

Key genes for maintaining the stem-cell character of the SAM and 

promote cell differentiation are WUSCHEL (WUS) and the CLAVATA 

genes CLAVATA1 (CLV1), CLV2, and CLV3 (Doerner 2003, Clark 

2001, Sparks et al. 2013, Heidstra and Sabatini 2014). These genes 

form a feedback loop in which the homeodomain transcription factor 

WUS is expressed in the organizing center, and the CLAVATA genes 

(CLV1 and CLV2) in the central zone of the SAM. CLV3 in contrast 

encodes a small ligand whose expression is limited to cells in the L1 

and L2 layer at the tip of the SAM. The CLV3 peptide moves into the 

underlying L3 cells where it binds to CLV1, a LRR receptor kinase 

forming a complex that represses WUS activity (Clark 2001). In the 

L3 cells WUS protein, after being synthesized migrates upwards to 

the stem cells and activates the expression of CLV3 there by binding 

to its promoter (Yadav et al.  2011). 

 

Of particular relevance in later organ formations is the establishment 

of the adaxial-abaxial asymmetry that will define the upper to the 

lower surface of the mature leaves. Many genes have been shown to 



	
   79	
  

be involved in this process, including members of the YABBY gene 

family (Siegfried et al. 1999, Eshed et al. 2004), the KANADI family 

(Eshed et al. 2001), as well as PHABULOSA (PHB), PHAVOLUTA 

(PHV), and REVOLUTA (REV) which encode the class III 

homeodomain-leucine zipper (HD-ZIPIII) proteins (McConnell et al. 

2001), to name just a few. 

 

3.2 AIM 

 

Recent findings suggest that temperature-regulated AS plays a 

critical role in controlling the plant response to variations in 

temperature at the molecular level, allowing quick adaptation to 

changes in environmental conditions (Verhage et al. 2017). How 

variations in temperature regulate AS and the key players in this 

process are, however, still largely unknown. 

Using RNA-seq in combination with phenotyping candidate mutant 

lines I have identified a bona fide AS regulator that is essential for the 

correct development of Arabidopsis thaliana at low temperature. The 

gene, now called PORCUPINE (PCP), encodes a Small nuclear 

ribonucleoprotein family gene (Sm). Here I describe the genetic and 

molecular characterization of the pcp knock out mutant. 

 

3.3 RESULTS 

 

3.3.1 RNA-SEQ ANALYSIS OF TEMPERATURE-DEPENDENT 

ALTERNATIVE SPLICING 

 

Most eukaryotic genes contain introns in the precursor mRNA (pre-

mRNA) that are spliced in order to obtain the mature mRNAs. A 

powerful post-transcriptional mechanism, the alternative splicing, 
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allows the control of gene expressions through the production of 

different mRNAs from the same pre-mRNA (Chapter 1).  

The general mechanism of splicing is well studied in human and 

yeast model organisms. In plants, genome projects are accelerating 

the research on splicing-related genes. 74 small nuclear RNA 

(snRNA) and 395 genes encoding splicing-related proteins have been 

computationally identified in the Arabidopsis genome (Wang and 

Brendel 2004). This list of candidate genes has been created by 

searching the Arabidopsis genome for RNA-binding motifs based on 

homologies with AS factors from other species. However, the majority 

of these genes and their potential role in AS has still not been verified 

experimentally yet. 

To identify factors involved in temperature dependent AS I performed 

a strand-specific RNA-seq in Col-0 seedlings grown in different 

ambient growth conditions. To avoid differences in developmental 

stages, plants were grown at 23°C for 9 days and then shifted to 

16°C, 27°C, or kept at 23°C for 3 additional days. RNA-seq was 

performed in a total of 3 independent biological replicates for each 

temperature, from a pool of 10 seedlings each. RNA-seq data 

analysis (performed by SC; see Material & Methods for details) 

identified among the AS factors reported by Wang and Brendel 2004 

a total of 25 differentially expressed temperature sensitive genes. 

These 25 temperature-responsive AS factors fall into two general 

expression patterns. 10 genes were significantly downregulated in 

response to increasing ambient temperature. The expression levels of 

these genes were highest at 16°C and lowest at 27°C, with an 

intermediate value at 23°C. (Figure 3.2). The remaining 15 

candidates displayed the opposite trend in that they were significantly 

upregulated in increasing temperature and showed the highest 

expression at 27°C and the lowest at 16°C (Figure 3.2). 
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Figure 3.2 Representation of the 25 AS candidates genes significantly 
differentially expressed in Col-0 seedlings. 3 independent biological 
replicates are reported in the Heat map for each of the three 
temperatures considered. Blue colors indicate down regulated genes, 
and shades of red represent up regulated expression. PCP is marked in 
red.    

 
 
To test if any of the AS genes that are differentially expressed in 

response to changes in temperature contribute to Arabidopsis 

development, I obtained T-DNA insertion lines from the stock center. 

Presences of the T-DNA was confirmed in 10 lines (Table 3.1) by 
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genotyping (Material & Methods) and verified insertion lines were 

tested in different environmental conditions.  

 
Table 3.1. T-DNA lines tested 

 
Name Gene T-DNA line 

GRP23 At2g32690 SALK_004764 

rsp35 At4g25500 SALK_118875 

/ At2g18740 SALK_089521 

/ At2g33730 SALK_100059 

SR33 At1g55310 SALK_040864 

sr45a At1g07350 SALK_054457 

SMD3 At1g76300 SALK_025193 

SR30 At1g09140 SALK_055239 

RSZ33 At2g37340 SALK_051523 

RBP45A At5g54900 SALK_041457 

 
 
 
3.3.2 TEMPERATURE-DEPENDENT REGULATION OF DEVELOPMENT 

BY PORCUPINE (PCP) 

 

3.3.2.1. PCP IS REQUIRED FOR DEVELOPMENT AT LOW AMBIENT 

TEMPERATURE 

 

Among the candidates tested, the knock out line for At2g18740 

showed a very strong temperature-dependent developmental defect 

when plants were grown at 16°C but looked essentially like wildtype 

at 23°C (Figure 3.3).  Closer phenotypic analysis of pcp-1 revealed 

strong defects of the shoot apical meristem (SAM) and failure in 

developing properly formed lateral organs (Figure 3.4). 
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Figure 3.3 Representative pictures of Col-0 and pcp-1 (SALK_089521) 
grown at different temperatures. A and B show 35 days old Col-0 (A) 
and pcp (B) plants grown under long day at 16°C. The lower panels (C 
and D) show 25 days old Col-0 (C) and pcp (D) plants grown at 23°C.  
Bars = 1 cm. 
 
Because of the striking “spiky” phenotype of the mutant the gene has 

been named PORCUPINE (PCP). 

Importantly, the pcp-1 allele is recessive, indicating that the 

phenotype is caused by loss-of PCP function. 

qPCR confirmed the temperature-dependent expression of 

At2g18740 (Figure 3.5). 

As previously observed by RNA-seq, expression of PCP was highest 

at 16°C and declined with increasing ambient temperature. The fact 

that PCP is most strongly expressed at low ambient temperature and 

that the pcp-1 mutant displays phenotypic defects only at this 

temperature indicates that PCP function is required for proper plant 

development particularly at this temperature. 
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Figure 3.4 Representative pictures of a 70 days old pcp-1 (SALK_089521) 
plant grown under long day conditions at 16°C. Bar = 0.5 cm. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5 Expression analysis of At2g18740 in Col-0 at three ambient 
temperatures. On the left a boxplot show the relative expression 
obtained from the RNA-seq analysis at 16°C (blue), 23°C (green) and 
27°C (yellow). Black lines indicate median value for each group and 
whiskers represent the minimum and maximum values. The barplot 
show the results obtained from a qPCR analysis on the same biological 
material. Error bars designate the standard deviation of 3 biological 
replicates.  
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3.3.2.2 IDENTIFICATION OF ADDITIONAL pcp MUTANT ALLELES 
 
The findings that PCP expression is regulated by ambient 

temperature and that the pcp-1 mutant displays a strong temperature-

dependent developmental phenotype are very interesting. However, 

these findings do not prove that the T-DNA insertion in the PCP gene 

is causing the phenotype. I therefore obtained and phenotyped three 

additional potential pcp alleles, pcp-2 to pcp-4, from publicly available 

collections of Arabidopsis T-DNA insertion lines (Table 3.2 and Figure 

3.6).  

 

 
 
Table 3.2. T-DNA lines tested  

 
Name Gene T-DNA line Position Knock out  

pcp-1 At2g18740 SALK_089521 exon 2 YES 

pcp-2 At2g18740 SALK_119088 intron 5 partial 

pcp-3 At2g18740 SALK_017458 5' UTR no 

pcp-4 At2g18740 SALK_022142 promoter no 

 
 

 
Figure 3.6 Schematic representation of PCP (At2g18740). Exons are 
drawn as black boxes, introns as dark grey lines and UTRs as grey boxes. 
The positions of each of the 4 T-DNA lines analyzed are marked with 
triangles.  
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Importantly, pcp-2 (SALK_119088) mutant plants, which carry a T-

DNA insertion in the 5th intron, displayed meristem defects when 

grown at 16°C, even though the phenotype was less severe than 

those observed in the original pcp-1 (Figure 3.7). In contrast, 

SALK_022142 (pcp-3) and SALK_017458 (pcp-4), in which the T-

DNA is inserted in the promoter and 5’UTR of PCP, respectively, did 

not show a phenotype at any of the temperatures tested.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7 Representative pictures of two 70 days old pcp-2 
(SALK_119088) plants grown under long days at 16°C.  Bar = 0.5 cm 
 
The identification of a second independent pcp allele with a similar 

phenotype is a good indication that loss-of PCP is causing the 

temperature-dependent developmental defects that I had observed in 

the original pcp-1 mutant. However, to finally prove that PCP is the 

causal gene I performed a complementation test. 

	
  

3.3.2.3 COMPLEMENTATION OF pcp-1 

 

The standard procedure to test whether a mutation is causal for a 

phenotype is to complement the recessive mutant with a wild type 

allele. To this purpose, I introduced a transgene carrying a genomic 

rescue fragment of PCP including 232 bp sequence upstream of the 

ATG and 423 bp downstream of its stop codon into the pcp-1 mutant, 
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which is fertile and can be directly transformed when grown at 23°C. 

Transformants (T1) were identified by resistance to the BASTA 

herbicide. Importantly, transformants (T1) showed a complete rescue 

of the pcp-1 phenotype when grown at 16°C (Figure 3.8).  

 
Figure 3.8 Representative picture of the Col-0 wild type, the pcp-1 
defective line and the rescued line in pcp-1 background. Plants were 
grown under long day at 16°C for 40 days. Bar = 1 cm 
 

I next tested the expression of PCP in Col-0, pcp-1, the pcp-1 

pPCP:gPCP rescue line, and pcp-2 (SALK_119088) grown at either 

16°C or 23°C by qPCR using the expression of UBC21 for 

normalization purpose. As expected, PCP expression was almost 

undetectable in the strong pcp-1 mutant. PCP was expressed at 

similar levels in Col-0 and the pcp-1 pPCP:gPCP rescue line (Figure 

3.9). Expression of PCP was only reduced to approx. 15-20% of WT 

levels in pcp-2, indicating that this allele is not a RNA-null mutant. 

The remaining expression of PCP detected could explain the weaker 

phenotype of pcp-2 in comparison with pcp-1 at 16°C.  
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Figure 3.9 Expression analysis of PCP (At2g18740) in pcp-1, Col-0, the 
pcp-1 pPCP:gPCP rescued line, and pcp-2. For each line qRT-PCR has 
been performed in plants grown at 16°C (blue) and 23°C (green). Error 
bars indicate standard deviation between 3 biological replicates.  

 

3.3.3 PCP OVEREXPRESSION LINES 

 

Even though PCP has not been characterized in detail, 2 splice 

isoforms have been previously reported for PCP (Ito et al. 2010), to 

which I will refer in this chapter as PCP-α and PCP-β (Figure 3.10).  

 
 

 
Figure 3.10 Schematic representation of the PCP (At2g18740) locus. 
Exons are shown as black boxes, introns as dark grey lines and UTRs as 
grey boxes. The two known isoforms, PCP-α and PCP-β are aligned to 
the gene structure.  
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To test whether both isoform encode functional variants of the PCP 

protein capable of rescuing the pcp-1 loss of function phenotype, I 

introduced the fully spliced CDSs under the ubiquitous 35S promoter 

into the pcp-1 mutant. In addition, the two splice variants were also 

introduced into Col-0 to evaluate the consequences of ubiquitous 

overexpression on plant development. Importantly, I could not detect 

any effect in the overexpressing lines in Col-0 background, 

irrespectively of whether plants were grown at 23°C or at 16°C 

(Figure 3.11).  

 
 
Figure 3.11 Picture of representative individuals of the overexpressing 
lines and Col-0 wild type, grown under long day at 16°C for 52 days 
(upper panel), and grown at 23°C for 22 days (lower panel). 
 
 
Interestingly, the two isoforms had very different effects in pcp-1 

background. PCP-α could almost completely rescue the pcp-1 

phenotype at low temperature. The transformants in fact grew 

normally at the vegetative stage, produced rosette leaves, and even 
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made the switch to reproductive development, producing a stem with 

cauline leaves and flowers. However, pcp-1 35S::PCP-α plants were 

infertile and failed to set seeds (Figure 3.11 and 3.12). In contrast, 

overexpression of PCP-β was not able to suppress any of the 

developmental defects observed in pcp-1 at low temperature (Figure 

3.11) and looked like pcp-1. At 23°C degrees, all the overexpressing 

lines were almost indistinguishable from pcp-1 (Figure 3.11), 

indicating that also in the pcp-1 mutant background, overexpression 

of the PCP isoforms did not negatively affect plant growth and 

development.  

 

 

 
 
 
 
 
 
 
 
Figure 3.12 
Representative picture 
of an overexpressing 
35S::PCP-α line in pcp-
1 background grown 
at 16°C for over 2 
months. A pcp-1 plant 
of the same age and 
grown at the same 
conditions is shown for 
comparison (marked 
with a red arrowhead). 
The defective 
phenotype of pcp-1 is 
mostly restored, in 
pcp-1 35S::PCP-α line, 
but plants fail to set 
seeds. 
 

Transgenes are randomly inserted into the genome during 

transformation. The position in the genome can influence their 
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accessibility and consequently affect their expression. To ensure that 

PCP-α or PCP-β were effectively expressed in the transgenic lines, I 

quantified their expression by qPCR, using UBC21 to normalize the 

results. Importantly, all lines, including pcp-1 35S::PCP-β, which did 

not rescue the pcp-1 phenotype at 16°C, had 15 to 70 times higher 

levels of PCP than Col-0 (Figure 3.13). Interestingly, lines 

overexpressing PCP-α displayed higher PCP levels than those 

overexpressing PCP-β. Whether these differences in overall mRNA 

levels reflect differences in transcription (i.e. due to differences in 

accessibility of the transgenes) or RNA stability (i.e. faster 

degradation of PCP-β mRNA) remains currently unknown. In general, 

however, these findings confirm that PCP-α is the main PCP isoform. 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.13 Expression 
analysis of PCP (At2g18740) 
in Col-0, and the 
overexpressing lines 
35S::PCP-α and 35S::PCP-β in 
pcp-1 and Col-0 
background. For each line 
the test has been performed 
in plants grown at 16°C 
(blue) and 23°C (green). 
Error bars indicate standard 
deviation between 3 
biological replicates. 
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To further investigate if PCP-β might modulate or compete with PCP-

α, I crossed the pcp-1 35S::PCP-α with the pcp-1 35S::PCP-β 

transgenic lines and examined the F1 individuals that carried both 

constructs. All analyzed F1 plants looked similar to the pcp-1 

35S: PCP-α parents, and did not set seeds at 16°C either. Therefore, 

I could only assign a function to PCP-α isoform. 

PCP-α and PCP-β proteins differ only in their C-terminal amino acid 

sequence (Figure 3.14), suggesting that this part of the protein could 

be essential for its function. Alternatively it is also possible that the 

PCP-β transcript is not translated efficiently. To discriminate between 

these two possibilities the relative abundance of the two protein 

isoforms would need to be determined, for example using isoform-

specific antibodies (not available) or reporter lines. 

 

 
Figure 3.14 Alignment of the protein sequences of the two PCP isoforms. 

 
 
 
3.3.4  pcp-1 PHENOTYPES AT DIFFERENT AMBIENT TEMPERATURES  

 

As already described above, pcp-1 shows a very strong 

developmental defect only when grown at low ambient temperatures. 

However, pcp-1 plants display some phenotypes also when grown at 

higher temperatures, and in this sub-chapter I will illustrate all the 

traits that displayed significant differences compared to WT. 
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3.3.4.1 pcp-1 PHENOTYPE AT 16°C 

 

At low ambient temperature most of the pcp-1 plants die at the stage 

illustrated in Figure 3.3. The plants fail in generating properly 

developed leaves, and scanning electron microscopy (SEM) pictures 

reveal interesting details about the leaf-like organs that pcp-1 

produces at low temperature. The most affected organs show 

radialized symmetry. The stomata appear to be mostly properly 

formed, but trichomes frequently have more than 3 branches. (Figure 

3.15) 

 
Figure 3.15 Scanning electron microscopy pictures of the pcp-1 
phenotype at 16°C. A. Overview of the meristem defects and the leaf-
like organs. B,C,D close-up pictures of the radial organs. Stomata are 
usually properly formed (C), but many of the trichomes carry more than 
3 branches (A,B,D). Bars: 600 µm (A), 200 µm (B), 30 µm (C), 100 µm (D).  
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Around 20-30% of individuals grown at 16°C do not die at the stage 

illustrated in Figure 3.3 but instead at approx. 60-70 days of age start 

to develop into small, bushy plants, which do not produce a WT like 

rosette but rather develop more than one shoot at the same time 

(Figure 3.16).  

 
 
Figure 3.16 ~25% of 65-80 days old pcp-1 mutants slowly recover into a 
dwarf and bushy male-sterile plant when grown at 16°C. Bar = 1cm. 
 
In comparison, a WT plant of the same age would be fully grown and 

starting the senescence process (Figure 3.17). 

 
 
 
 
 
 
 
 
 
 
Figure 3.17 Representative picture of 
the comparison between a pcp-1 
mutant starting to develop into the 
bushy plant (left) and a Col-0 plant of 
the same age grown in the same 
conditions (right). Plants are 72 days 
old and were grown at 16°C long day. 
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The lack of a primary shoot in the pcp-1 escapees at 16°C can 

possibly be explained by the fact that the mutant apparently produces 

multiple potential meristems in the “porcupine” stage as seen in cross 

sections of 60 days old plants (Figure 3.18). It seems possible that 

pcp-1 at the time of recovery initiates multiple shoots from this 

reservoir of meristems but fails to determine a main shoot apical 

meristem (SAM).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.18 Cross 
section of the 
meristematic region 
of pcp-1.  A. Cross 
section of a 67 days 
old pcp-1 mutant 
(overview). Red 
arrowheads mark 
potential SAMs. B. 
Cross section of a 67 
days old pcp-1 

mutant 
(magnification) 

multiple potential 
meristems are 
marked with black 
stars. 
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However, none of the pcp-1 escapees at low temperature set seeds 

even when fully grown (Figure 3.19). 

 
 
Figure 3.19 Representative picture of a fully grown pcp-1 grown for over 
3 months at 16°C. Plants fail in setting seeds. Bar = 1cm. 
 
This can be easily explained by the failure of pcp-1 stamens to 

properly elongate (Figure 3.20 A), making it impossible for the 

anthers to reach the stigma at the tip of the carpels. Also, it would 

appear as if these plants do not produce viable pollen grains. 

Consequently, SEM pictures failed to detect grains on the anthers 

(Figure 3.20 B). However, when pollinated manually with Col-0 pollen, 

pcp-1 grown at low temperatures can produce viable seeds, 

indicating that the failure pcp-1 escapees grown at 16°C are female 

fertile. 
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Figure 3.20 Representative SEM picture of a male sterile pcp-1 flower 
grown at 16°C (A). Detailed image of the pollenless anther (B). Bar = 
600 µm (A) and 60 µm (B). 
 

Finally, the developmental defects of pcp-1 are apparently not 

restricted to the shoot. The root apical meristem seems also affected 

and 14 days old pcp-1 seedlings grown at 16°C on MS plates clearly 

show an arrest in root growth when compared with the WT Col-0 

(Figure 3.21).  

 

 

 

 

 

 

Figure 3.21 Representative picture of 4 individual 14 days old pcp-1 
seedlings grown at 16°C (A) and 4 Col-0 seedlings grown in the same 
conditions (B). Bar = 1cm  
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3.3.4.2 pcp-1 PHENOTYPE AT 23°C 

 

At high temperature, the pcp-1 mutant grows similarly to WT. It 

produces leaves in a rosette and in both long days (LD) and short 

days (SD), the timing of flowering is not significantly different from 

Col-0 (using Welch’s t-test) (Figure 3.22).  

 

 
Figure 3.22 Flowering time phenotype measured at 23°C in number of 
leaves (left panel) or in days from germination (right panel) N. of plants 
tested ranges between 8 and 9 for each line in each condition.  

 
Even though no differences were observed in flowering time, other 

rather minor phenotypes were observed at low frequency in pcp-1 

grown at 23°C LD when compared to WT. For example, pcp-1 

displayed a significantly elevated (p value = 1.47*10-4 using Welch’s t-

test) number of seedlings with three cotyledons in comparison with 

the WT (Figure 3.23 A). In the mutant, a significantly increased (p 

value = 0.03 using Welch’s t-test) occurrence of flowers carrying 5 or 
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rarely 6 petals was observed (Figure 3.23 B) together with a disturbed 

phyllotaxis and an uneven distribution of siliques along the stem 

(Figure 3.23 C) (for details on the data collection see the Material & 

Methods section in this chapter). 

 

 

 
Figure 3.23 Developmental phenotypes of pcp-1 grown at 23°C. A. 
Representative picture of a pcp-1 seedling grown at 23°C carrying 3 
cotyledons. B. Representative pictures of pcp-1 inflorescence meristem 
and a flower with 5 petals. Representative picture of a pcp-1 shoot 
grown at 23°C. Siliques are spaced unevenly along the stem and the 
angle between subsequent siliques is frequently incorrect. Bars =1cm. 
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Taken together, these data suggest a minor contribution of PCP to 

plant development even at 23°C. However, the random distribution of 

these events point to a possible regulatory role for PCP rather than a 

constitutive one.  

 

3.3.5 pcp-1 PHENOTYPE IS SENSITIVE TO TEMPERATURE 

FLUCTUATIONS 

 

As already mentioned, when grown at 23°C pcp-1 is overall very 

similar to WT. In order to test in which developmental stages pcp-1 

plants were sensitive to ambient temperature changes I performed 

shifting experiments from low to high temperature and vice versa and 

observed the phenotypes.  

 

When the rosette area is considered, pcp-1 is indistinguishable from 

WT when continuously grown at 23°C (Figure 3.24 A). However, 

when 14-day-old plants were shifted from 23°C to 16°C, WT 

continued to grow normally whereas growth of pcp-1 slowed down 

significantly (Figure 3.24 B), indicating that the pcp-1 mutant is 

actively responding to environmental changes. This further indicates 

that PCP is not only required to establish basic patterns during the 

early seedling stage but is necessary throughout a plant’s live to 

ensure proper growth and development. 
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Figure 3.24 Rosette phenotype of pcp-1. A. Total average area in cm2 

of Col-0 (red) and pcp-1 plants (blue) grown at 23°C. The measurement 
has been performed every day starting from the 14th day after 
germination for 2 weeks until the 27th day after germination. B. Total 
average area in cm2 of Col-0 (red) and pcp-1 plants (blue) of seedlings 
grown at 23°C for the first 13 days after germination and then shifted to 
16°C for 17 more days, until the 30th day after germination. 
 
Importantly, pcp-1 is sensitive to temperatures not only during the 

vegetative stage. For example, male sterility of pcp-1 grown at 16°C 

phenotype is rescued when plants are shifted to more permissive 

temperatures (Figure 3.25 A), and plants grown at 23°C arrest their 

development or turn male sterile when shifted to lower temperatures 

(Figure 3.25 B).  

These results suggest a role for PCP during the whole life cycle and 

that plants can sense and adjust rapidly to changes in ambient 

temperature. 
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Figure 3.25 Representative picture of a pcp-1 shoot grown at 16°C and 
then shifted to 23°C (A), and one of a pcp-1 shoot grown at 23°C and 
then shifted to 16°C (B).  
 

 

3.3.6 MERISTEM DEFECTS IN pcp-1: A ROLE FOR WUS AND CLV3 

 

The entire aerial part of the plant derives from cells in the shoot apical 

meristem (SAM). For this reason the correct formation of the SAM is 

crucial for a normal plant development. The maintenance of the SAM 

is controlled by an intricate feedback loop that involves WUS and 

CLV3. Briefly, WUS is expressed in the organizing center of the SAM 

and establishes stem-cell fate by promoting CLV3 expression in the 

central region of the meristem. CLV3 encodes a mobile peptide that 

represses WUS expression in the underlying cells and promotes cell 

differentiation (Reviewed in Doerner 2003, Clark 2001, Sparks et al. 

2013, Heidstra and Sabatini 2014). To better understand the cause 

for the meristem defects in pcp-1, I investigated the spatial and 

temporal expression of WUS and CLV3 by (semi-) quantitative RT-

PCR and RNA in situ hybridization. 
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qPCR and semi-qPCR performed using RNA extracted from manually 

dissected apices of plants grown at 16°C clearly showed that the 

expression of WUS was elevated in pcp-1 in comparison with Col-0 

(Figure 3.26). Probably not surprisingly because of the regulatory 

feedback loop between the two genes, the expression of CLV3 was 

reduced in the mutant.  

Figure 3.26 Quantification of WUS and CLV3. A. Semi-quantitative PCR 
of WUS and CLV3 performed in 24 days old Col-0 and pcp-1 plants. 3 
biological replicates are shown and amplification of UBC21 is reported 
for comparison. B. Expression analysis of CLV3 and WUS in 12 days old 
Col-0 and pcp-1. Error bars indicate standard deviation between 
biological replicates. In both analyses the RNA has been extracted from 
pools of 15 apices for each biological replicate and 3 biological 
replicates were considered. Plants were grown at 16°C.  

 
These findings suggest that WUS and CLV3 are misexpressed in 

pcp-1, which could in part explain the pcp-1 mutant phenotype. 

Alternatively, the differences observed in WUS and CLV3 expression 
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could reflect differences in the number of cells that express these 

genes, rather than true expression differences.  

To discriminate between these two possibilities, I next analyzed 

expression of WUS and CLV3 in pcp-1 by RNA in situ hybridization. 

The principle behind in situ hybridization is the specific annealing of a 

labeled antisense probe designed on the gene of interest in a fixed 

tissue, followed by the visualization of the probe. This technique can 

at best be considered semi-quantitative, because the intensity of the 

colorimetric reaction used to detect the probe can have biases due to 

practical challenges. However, the signal obtained provides 

information on the spatial activation of a specific gene. 

Using RNA in situ hybridization I examined the spatial expression of 

PCP, WUS, and CLV3 in longitudinal section of fixed apices of Col-0 

or pcp-1 plants grown at 23°C for 9 days or grown at 23°C for 9 days 

and then shifted to 16°C for 3 additional days. The PCP antisense 

probe consistently detects the PCP transcript in the WT but not in the 

pcp-1 mutant, demonstrating the accuracy of the probe and the 

experimental conditions (Figure 3.27). Furthermore, these results 

demonstrate that PCP is expressed in the SAM and leaf primordia. 

As expected, WUS was detected exclusively in the organizing center 

of the SAM, underneath the stem cells in all four samples. In contrast, 

CLV3 expression is more dynamic and its expression domain, which 

in WT can be detected in the apex of the SAM, appears to be shifted 

downwards in pcp-1 at low temperature (Figure 3.27). CLV3 

expression is restricted to the stem cells in pcp-1 at 23°C (Figure 

3.27), suggesting that PCP might participate in the temperature-

dependent spatial control of CLV3 expression. 

Importantly, the shift in CLV3 expression is not always complete in all 

the pcp-1 individuals. In some cases, I could still detect CLV3 in a 

part of the L1 and L2 layers, but the shift downwards can be observed 
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in all the samples analyzed (Figure 3.28) and is also clear in 

horizontal consecutive sections (Figure 3.29). 

 
Figure 3.27 Detection of PCP, WUS, and CLV3 expression domains by 
RNA in situ hybridization in 9 or 12 days old Col-0 and pcp-1 in 
longitudinal section of the apices. 

 
Figure 3.28 Detection 
of CLV3 expression 
domain by in situ 
hybridization in 4 
individual 12 days old 
pcp-1 plants grown 
at 23°C for 9 days 
and shifted to 16°C 
for 3 more days. For 
each sample, 2 

consecutive 
longitudinal sections 
of the apices are 
reported. 
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Figure 3.29 
Detection of CLV3 
expression domain 
by in situ 
hybridization in Col-
0 and two pcp-1 
individuals. Plants 
were grown at 23°C 
for 9 days and 
shifted to 16°C for 3 
days. For each 
sample, all the 

consecutive 
horizontal sections 
of the apices are 
reported, including 
the first slide before 
the tip of the apex 
(marked with a 
black arrowhead) 
and the first slide 
without the CLV3 
signal. In the first 
pcp-1 individual 
(#1) CLV3 signal 
can only be 
detected at a small 
portion of the tip of 
the apex. In the 
second individual 
(#2), the signal 
cannot be 
detected before 
the third 
consecutive slide 
from the tip of the 
apex. 
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To assess the function of PCP in specific areas of the SAM I 

expressed the fully spliced active isoform PCP-α using pWUS and 

pCLV3. Interestingly, in T1 transformants neither of the constructs 

was able to rescue pcp-1 phenotype at 16°C, suggesting that PCP 

needs to be expressed more broadly and has a more general 

upstream role in SAM maintenance. 

The link between PCP and the misexpression of CLV3 or the 

upregulation of WUS has not yet been clarified in detail, but the lack 

of stability in this important loop can certainly explain part of the 

meristem defects affecting pcp-1 at low temperature.  

 
 
3.3.7 A CLOSELY RELATED GENE TO PCP 

 

PCP is part of the Small nuclear ribonucleoprotein (Sm) gene family, 

which in Arabidopsis consists of 42 members. Cao and colleagues 

(2011) have identified a gene, At4g30330, that is particularly closely 

related to PCP and whose amino acid sequence differs from PCP 

only for 2 amino acids (Figure 3.30). 

 

 
Figure 3.30 Alignment of the protein sequences of PCP-α and 
At4g30330. 

 
 
Interestingly, the relative expression of this gene is upregulated in 

increasing the ambient growth conditions, a trend opposite to that 

observed in PCP (Figure 3.31).  
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Figure 3.31 Boxplot showing the relative expression obtained from the 
RNA-seq analysis at 16°C (blue), 23°C (green) and 27°C (yellow) of 
At4g30330. 
 
 
To determine if this PCP-like gene might also participate in the 

temperature-dependent regulation of plant development I isolated two 

T-DNA lines, SALK_139504 and SALK_139760, which both carry 

insertions in the 3’ UTR of At4g30330. Unfortunately, both of these 

lines still expressed At4g30330 at levels similar to Col-0 (Figure 

3.32), indicating that these two lines are not effective knock out 

mutants. Consequently, it was not surprising that neither of these two 

lines displayed a phenotype at any of the temperatures analyzed and 

no function could be assigned to this PCP-like gene. To address the 

function of this gene, true loss-of-function alleles would need to be 

generated, for example by CRISPR/Cas9 genome editing. 
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Figure 3.32 Relative 
expression analysis of 
At4g30330 in pcp-1, Col-
0 and two SALK lines 
carrying an insertion in 
At4g30330 at 16°C (blue) 
and 23°C (green). Error 
bars represent the 
standard deviation 
between the 3 biological 
replicates considered. 
 

 
 
3.3.8 RNA-SEQ AND CANDIDATES GENES  

 

In collaboration with N.D and I.S who analyzed the data, I performed 

RNA-seq of pcp-1 and Col-0 seedlings grown at 16°C and 23°C and 

plants shifted from one temperature to the other as listed in materials 

and methods (chapter 3.5). The aim of this experiment was to identify 

genes regulated by PCP to understand both the origin of the 

developmental defects in the pcp-1 mutants at low ambient 

temperature and the rescuing mechanism coming into play at higher 

temperature. A differential expression (DE) analysis was conducted to 

characterize (i) the genotype effect, (ii) the temperature effect and (iii) 

their possible interaction (see Methods in chapter 3.5). 

 

RNA-seq analysis revealed that the effect of genotype contributes to 

a differential expression of 1440 genes, at a False-Discovery Rate 

(FDR) cutoff of one percent and with expression log2 fold-changes 

greater than 0.5; i.e. when the two backgrounds, pcp-1 and Col-0 are 

compared regardless of in which temperature the plants were grown 

at (Figure 3.33, green circle). With regards to the temperature-specific 

effect, when samples are grouped based on the temperature (either 
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16°C or 23°C) at collection (i.e. after the temperature shift), 

regardless of the genotype or the temperature in which they have 

been sown, 1903 genes were found to be differentially expressed 

(Figure 3.33, orange circle). Finally, when testing the interaction 

between pcp-1 and the final temperature (at the time of sample 

collection), 319 differentially expressed genes were identified (Figure 

3.33, purple circle). 

Overall, my results indicate that the predominant gene expression 

differences are due to the combination of pcp-1 genotype and the 

effect of cold temperature, which is in agreement with the 

temperature-dependent nature of the phenotype. Furthermore, 

expression patterns of pcp-1 in warm conditions are more similar to 

the expression patterns occurring in the WT at low temperatures 

rather than in WT at 23°C.  

By the overlap of these three sets (genotype, temperature, and the 

interaction effects) of genes I obtained a list of 47 genes (Figure 3.33) 

that react to both the temperature and the genotype in an antagonistic 

or synergistic way. The goal was in fact to identify genes differentially 

expressed between pcp-1 and Col-0 that also show differences 

between temperatures. Many of the 47 identified genes are involved 

in basic biological processes like transcription regulation (for instance, 

AT1G09250, AT3G02790, AT3G58120), or in temperature 

responses, like LHY, (AT1G01060), ADS1, (AT1G06080) and 

AT5G51440 (Table 3.3).  

In addition, the list also contains CML42 (AT4G20780) and NYC1 

(AT4G13250), genes involved in trichome branching and in 

chlorophyll catabolic process, respectively. The differential expression 

of these genes could explain the dark green phenotype observed in 

pcp-1 young seedlings grown at low temperature and the presence of 

trichomes with more than 3 branches. 
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Taken together, the list of 47 genes affected by both variables - 

genotype, temperature, and their interaction - in the analysis can 

explain part of the downstream ultimate effects on pcp-1 mutants, but 

not their cause. Similar results were obtained when the analysis was 

performed at the transcripts rather than at the gene level. There was 

no evidence of a causal isoform. 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.33. Venn diagram showing the number of differentially 
expressed gene sets for temperature, genotype and their interaction. 
 
 
Table 3.3 List of the 47 genes reacting to genotype and temperature  
 

ID Name Involved in 
AT1G01060 LHY Cold stress 
AT1G02800 CEL2 Cell wall organization 
AT1G06080 ADS1 Cold stress 
AT1G09250 AIF4 Regulation of transcription 
AT1G11850  Unknown 
AT1G14280 PKS2 Hypocotyl photomorphism 
AT1G23020 ATFRO3 Oxidation-reduction process 
AT1G31290 AGO3 Regulation of transcription 
AT1G43800 FTM1 Fatty acid biosynthetic process, oxidation-

reduction process 
AT1G53887  Molecular function in guard cells 
AT1G73805 SARD1 Salicylic acid synthesis 
AT2G02100 LCR64 Defense response 
AT2G03760 ATSOT1 Brassinosteroid metabolic process, defense 

response 
AT2G20590  Biological process in guard cells 
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AT2G21650 RSM1 Early morphogenesis 
AT2G27920 SCPL51 Proteolysis 
AT2G41730  Anaerobic respiration 
AT2G43510 Tl1 Defense response 
AT2G46790 PRR9 Circadian rhythm 
AT2G47000 ABCB4 Auxin efflux and influx 
AT2G47440  Protein folding 
AT3G02790 MBS1 Transcription regulation 
AT3G10200  Methyltransferase activity 
AT3G13080 ABCC3 Transmembrane transport 
AT3G13520 AGP12 Biological process, transmembrane 
AT3G16530  Defense response 
AT3G18290 BTS Zinc ion binding 
AT3G19680  Putative protein 
AT3G25882 NIMIN-2 Systemic acquired resistance 
AT3G46370  Phosphorylation 
AT3G47800  Galactose metabolic process 
AT3G48090 EDS1 Defense response 
AT3G50930 ATBCS1 Cell death 
AT3G51290 APSR1 Phosphate starvation response 
AT3G58120  Regulation of transcription 
AT4G10270  Response to wounding 
AT4G13250 NYC1 Chlorophyll catabolic process 
AT4G15700 GRXS3 Cell redox homeostasis 
AT4G16680  RNA helicase activity 
AT4G20780 CML42 Trichomes branching 
AT4G21730  Unknown 
AT4G22690  Secondary metabolite biosynthetic process 
AT5G45820  Intracellular signal transduction 
AT5G46240 KAT1 Regulation of ion transmembrane transport 
AT5G51440  Response to heat 
AT5G53450 ORG1 Gene expression 
AT5G66080 APD9 Protein defosphorilation 

 
Next, I generated a hand-curated list of 287 genes involved in 

meristem identity and maintenance, in leaf primordia initiation, leaf 

morphology, and genes whose mutants are known for being involved 

in developmental defects based on a literature survey. From these 

287 potential candidates I filtered those whose expression was 

significantly altered between pcp-1 and Col-0, or whose expression 

differs in pcp-1 at different temperatures, especially when the same 

trend was not occurring in the WT at the same conditions. 
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Using this approach I identified three interesting candidate genes for 

further analyses. The first one is BREAST CANCER ASSOCIATED 

RING 1 (BARD1), which encodes a protein known to bind to the WUS 

promoter and whose overexpression represses WUS expression. 

Loss of function mutations in BARD1 cause defects in meristem 

organization due to failure to repress WUS expression (Han et al. 

2008) that are similar to those observed in pcp-1. BARD1 expression 

was significantly lower at 16°C temperatures in the pcp-1 mutant than 

at 23°C (Figure 3.34). In contrast, no significant differences in BARD1 

expression were detected between temperatures in Col-0.  

A second potentially interesting gene is YABBY3 (YAB3), whose 

expression is higher in Col-0 when compared to pcp-1. YAB3 has 

transcription factor activity and is involved in specifying abaxial cell 

fate (Siegfried et al. 1999). However, no significant differences in its 

expression were detected in pcp-1 grown at different temperatures.  

The third potential candidate is AINTEGUMENTA (ANT), which is 

required for control of cell proliferation. Expression was originally 

described to be limited to the chalaza and the floral organ primordia 

(Elliott et al. 1996, Klucher et al. 1996), but AINTEGUMENTA-LIKE 

(AIL) family of transcription factors are expressed in all dividing 

tissues in the plant, where they have central roles in developmental 

processes such as meristem maintenance, organ positioning, and 

growth (Reviewed in Horstman et al. 2014). When the effects of the 

combined loss of function of ANT, AIL6 and AIL7 are investigated in 

the ant-4 ail6-2 ail7-1 triple mutants, the shoot apical meristem 

terminated after the production of a few leaves (Mudunkothge and 

Krizek 2012). Defects in the meristems are associated with reduced 

cell division, stem cell differentiation and altered expression of 

meristem regulators such as WUS, CLV3 and SHOOT 

MERISTEMLESS (STM) (Mudunkothge and Krizek 2012). 
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In this study, ANT expression is higher in WT than in pcp-1, and in 

the mutant its expression is higher in warmer temperature than at 

16°C. 

 

Figure 3.34. Dot plot showing the differential expression of three 
candidate genes between pcp-1 and Col-0 at 16°C. Each dot 
represents a biological replicate.   
 
In addition to the analysis of significant changes in gene expression 

and transcripts abundance presented above, we also performed a 

differential exon usage analysis. We identified 53 and six genes with 

differences in exon usage between mutant and WT at 16°C and 

23°C, respectively. Of these, two genes were differentially spliced 

regardless of the temperature: PCP and U1 SMALL NUCLEAR 

RIBONUCLEOPROTEIN-70K (U1-70K; At3g50670). U1-70K is a 

fundamental component of the spliceosome and is involved in the 

initial definition of the 5′ splice site in both constitutive and alternative 

splicing events (Mount et al. 1983, Black et al. 1985, Rosbash and 

Seraphin 1991). Exon usage for U1-70K differs between pcp-1 and 

Col-0 as well as PCP at both temperatures, suggesting that PCP 
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might regulate splicing on the global scale by modulating U1-70K 

function. 

We also tested the differential splicing events that occurred within 

each genotype between the two temperatures tested, 16°C and 23°C, 

by considering common exons with differential level of expression. In 

WT, we detected statistically significant differences in splicing events 

between 16°C and 23°C in 1867 transcripts, whereas in the pcp-1 

mutant this number was reduced to 22. Only 10 genes were 

differentially spliced regardless of the temperatures. This data 

suggest that PCP has a role in the AS and that its absence cause the 

loss of a great number of splicing events. Interestingly, when the 

overall significant changes in AS events are considered, pcp-1 at 

23°C shows a more similar pattern to Col-0 at 16°C (Figure 3.35). 

 

Figure 3.35. Heat map representative of clusters of expression values of 
significantly differentially used exons between Col-0 and pcp-1 at the 
two temperatures considered.  
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I further performed an initial analysis of two candidates described 

above, BARD1 and U1-70K, to test if dysregulation of these genes 

could contribute to the pcp-1 mutant phenotype. However, my 

preliminary results show that overexpression of BARD1 CDS or U1-

70K CDS under control of the 35S promoter was unable to rescue the 

pcp-1 phenotype at low temperature. For this reason the role of these 

two genes in mediating plant development downstream of PCP is still 

unknown.  

3.4 DISCUSSION 

Plant development and growth are influenced by environmental 

factors that may display high degrees of variability, both in space and 

in time. The ability to modulate specific molecular programs in 

response to changes in the environment results in phenotypic 

plasticity, which is very important to guarantee evolutionary success. 

Plants are highly responsive to temperature fluctuations and are 

capable of modulating organogenesis and growth rate to adapt to 

novel conditions. Recent findings suggest that temperature-regulated 

alternative splicing (AS) plays a critical role in controlling the plant 

response to variations in temperature at the molecular level, allowing 

quick adaptation to the current conditions (Verhage et al. 2017). 

AS, by producing more than one mRNA from the same gene, allows 

organisms to increase the diversity of their transcriptomes and work 

as regulatory mechanism when unstable mRNA are preferentially 

spliced and subsequently degraded. Genome-wide transcriptome 

mapping has shown that in plants the extent of AS ranges between 

42% to 61% (Klepikova et al. 2016, Marquez et al. 2012, Reddy et al. 

2013).  

Some examples of genes involved in temperature-dependent AS in 

the flowering pathway are FLM and MAF2 (Rosloski et al. 2013, Posè 



	
   117	
  

et al. 2013, Airoldi et al. 2015). Many components of the circadian 

clock are also affected in their AS by temperature fluctuations. The 

effects of alternatively spliced isoforms in either flowering time or 

clock genes are well known. In contrast, the splicing factors involved 

in the temperature-dependent AS decisions are largely unknown. 

In this thesis I describe the function of PORCUPINE (PCP), a bona 

fide AS regulator, which is essential for correct development of 

Arabidopsis thaliana at low temperature. 

In plants, genome and transcriptome projects are accelerating the 

research on splicing-related genes. In 2004, 74 small nuclear RNA 

(snRNA) and 395 genes encoding splicing-related proteins were 

computationally identified in the Arabidopsis thaliana genome (Wang 

and Brendel 2004). With the aim to identify thermoresponsive AS 

factors, I first generated RNA-seq libraries from Arabidopsis seedlings 

grown at 16°C, 23°C or 27°C. Subsequently I identified those 

candidates listed in (Wang and Brendel 2004) that were significantly 

and consistently differentially expressed in response to temperature 

changes, eliminating all genes whose expression was not changing 

significantly or changing in complex patterns (for example being 

highly expressed at both 16°C and 27°C in comparison to 23°C). This 

analysis revealed 25 candidates whose role could be relevant at 

either high or low ambient temperature, assuming that transcript 

expression and protein abundance corresponded. Among the 25 

candidates 10 genes were downregulated in increasing the 

temperature and 15 were upregulated (Figure 3.2). Next, I embraced 

a reverse genetics approach aimed to find what phenotypes arise as 

a result of knock out mutations on the candidates and determine their 

role. I first selected 10 candidates (4 up and 6 down regulated in 

temperature increases) (Table 3.1) and determined at the phenotype 

of T-DNA ko mutant lines homozygous for the insertion. All mutants 

were grown at 16°C, 23°C or 27°C together with Col-0 and I observed 
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a striking difference in development in SALK_089521, which carries 

an insertion in At2g18740, specifically at 16°C, whereas no obvious 

phenotype was detectable at 23°C (Figure 3.3). Because of the 

“spiky” phenotype of the mutant, the gene has been named 

PORCUPINE (PCP), and the SALK line pcp-1. To prove PCP as the 

causal gene for the phenotype I tested other available independent T-

DNA lines, finding a second potential allele, SALK_119088 or pcp-2, 

which displayed a similar phenotype (Figure 3.7). Developmental 

defects in pcp-2 at low temperatures were not as extreme as the ones 

observed in pcp-1. In the second allele the knockout was not 

complete but reduced mRNA levels to approx. 15 to 20% in 

comparison to the WT (Figure 3.9). The remaining PCP expression in 

pcp-2 that can explain the phenotype is probably due to the position 

of the T-DNA insertion. In fact in pcp-1 the insertion occurs in the 

second exon, whereas in pcp-2 the insertion occurs in the fifth intron, 

and possibly by splicing a small percentage of fully spliced PCP can 

still be produced. The identification of a second independent allele 

was already a good indication that the loss of PCP was causing the 

phenotype. However, final proof of this was obtained by a 

complementation test, in which a transgene carrying a genomic 

rescue fragment of PCP including its own promoter in pcp-1 

completely rescued the phenotype at 16°C in T1 generation (Figure 

3.8).  

At high temperatures, pcp-1 is almost indistinguishable from the WT, 

and transforming pcp-1 is relatively easy because the mutant grow, 

flowers and sets seeds. However, minor phenotypic anomalies were 

observed also at 23°C. The occurrence of seedling with 3 cotyledons, 

and flowers with 5 (and rarely 6) petals were significantly higher in the 

mutant than in the WT. This could be due to an increase in meristem 

size and clv3 loss of function mutants show in fact similar traits (Clark 

et al. 1995). Furthermore, siliques were unevenly spaced along the 
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shoot in pcp-1, indicating a distorted phyllotaxis (Figure 3.23). Key to 

the establishment of stable phyllotactic patterns is the distribution of 

auxin through the efflux carrier PIN1 (Jönsson et al. 2006), so PCP 

could somehow be involved in regulating one or more players in the 

auxin pathway as well. 

At low temperatures, pcp-1 cotyledons appear darker than in WT, and 

the meristem fails to produce properly developed leaves. In fact, 

some of the most strongly affected leaves show signs of radialization 

(Figure 3.15). The majority of individuals grown at 16°C die in the 

stage pictured in Figure 3.4, however 20-30% of individuals at an age 

of approx. 60-70 days, when a WT would be already starting to 

senest (Figure 3.17), develop into a bushy and dwarf plant that will 

remain male sterile (Figure 3.16). It seems possible that these pcp-1 

escapees at the time of recovery fail to determine a main shoot apical 

meristem (SAM). The lack of a primary shoot in the pcp-1 escapees 

at 16°C can possibly explain the bushy phenotype, and could be dues 

to the fact that the mutant apparently produces multiple potential 

meristems in the “porcupine” stage as seen in cross sections of 60 

days old plants (Figure 3.18). The male sterility instead can be 

explained by the pcp-1 stamens that had short filaments and small 

anthers without pollen grains (Figure 3.20). 

With the aim to test whether both the two known PCP isoforms (Ito et 

al. 2010) encode for functional PCP proteins able to rescue pcp-1 

phenotype, I introduced their fully spliced CDSs under the constitutive 

35S promoter. Interestingly only one of the isoforms, PCP-α was able 

to complement most of the phenotype in pcp-1 background at 16°C, 

but the plants were still male sterile, whereas PCP-β, whose 

transcript differ from PCP-α only at the 3’ end could not rescue the 

pcp-1 phenotype at all (Figure 3.11). 

One hypothesis was that part of the phenotype, like the male sterility 

could be due to lack of the second isoform, PCP-β. Alternatively the 
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35S promoter might not be active enough in reproductive tissues. By 

crossing the two overexpressing lines in pcp-1 background I was 

never able to obtain a fully recovered plant, so the role of PCP-β, if 

any, could not be determined. These results also suggest that the C-

terminal of PCP might be essential for its function. 

Misexpression of a wild-type gene product can also cause mutant 

phenotypes. To evaluate the consequences of ubiquitous 

overexpression of either PCP isoforms I also introduced the 

constructs described above in Col-0 background, but no effect in 

development has been detected irrespectively of the temperature at 

which the primary transformants were grown (Figure 3.11).  

Interestingly, growth can be arrested at any developmental stage by 

shifting pcp-1 mutant plants grown at 23°C to lower temperatures 

(Figure 3.24 and 3.25). Reversely, by exposing the pcp-1 mutants to 

23°C the growth arrest occurred at low temperature can be rescued 

(Figure 3.24). These finding prove that PCP is essential in all 

developmental stages at low temperatures. Furthermore, the fast 

reprogramming suggests the existence of one or more factors that 

are partially redundant with PCP and are able to take over part of 

PCP function at high temperature. A candidate for this function could 

be a gene closely related to PCP, At4g30330, whose amino acid 

sequence differs from that of PCP only in 2 amino acids (Figure 3.30) 

and whose expression has an opposite trend than PCP (Figure 3.31). 

To address the function of this PCP-like gene in the temperature-

dependent regulation of plant development, loss-of-function alleles 

need to be developed, because unfortunately none of the T-DNA 

lines available for this gene are complete knock out lines. 

RNA-Seq analysis on the differential exon usage supports a role for 

PCP in AS regulation. In fact, the number of genes differentially 

spliced across temperatures in pcp-1 mutant drop drastically to just 
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22 in comparison with the WT, where over 1800 genes have been 

identified as temperature-dependent differentially spliced.  

At low temperature, the AS events occurring in pcp-1 and in the WT 

are more similar than they are at warm temperature (Figure 3.35). On 

the contrary, the phenotype differs greatly only at low temperature.  

When gene expression analysis is considered, expression patters of 

pcp-1 at 16°C are very distinct in comparison with the rest of the 

samples. These results suggest that at low temperature only relatively 

few AS events differ between the WT and mutant, but that their 

effects seem to affect a very large number of genes and lead to their 

differential expression first, and eventually to the differences in 

phenotype. Conversely, at high temperature regardless the great 

diversity of AS events between the WT and pcp-1 the final effect on 

the plant is minimal.  

The literature is rich in mutants showing developmental defects in 

lateral organ formation regardless of the temperature conditions. 

Among many others, loss of function of KANADI family genes (Emery 

et al. 2003) cause adaxialization of lateral organs, as do gain-of-

function alleles of members of the class III HD-ZIP gene family, like 

PHAVOLUTA and PHABULOSA (McConnell et al. 2001). However, 

none of the well characterized genes involved in the differentiation of 

the abaxial and adaxial leaf blades was found differentially expressed 

(or spliced) specifically in pcp-1 at low temperature. 

The entire aerial part of the plant derives from cells in the shoot apical 

meristem (SAM), and its correct formation is crucial for normal plant 

development. The maintenance of the SAM is controlled by an 

intricate feedback loop that involves WUS and CLV3, which are 

expressed in the organizing center of the apex or at its tip, 

respectively (Figure 3.27). Probably due to the low representation of 

their expression domains in comparison with the tissues used for the 

RNA-seq experiments (whole seedling) their expression levels did not 
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show significant differences. However interestingly, when RNA was 

extracted from apices and analyzed by qPCR, WUS expression was 

elevated in pcp-1 when compared to WT (Figure 3.26), but no 

substantial differences were found in the dimensions or position of its 

expression domain (Figure 3.27). Conversely, expression of CLV3 

was reduced in the mutant, probably because of the regulatory 

feedback loop between the two genes, and CLV3 expression domain 

appeared shifted downwards in pcp-1 at low ambient temperatures, 

(Figure 3.27). The link between PCP and the misexpression of CLV3 

or the upregulation of WUS has not yet been clarified in detail, but the 

lack of stability in this important loop can certainly explain part of the 

meristem defects affecting pcp-1 at low temperature. 

Taken together, these findings demonstrate the importance of 

temperature-dependent AS in development and establish PCP as an 

important regulator of this process. 

 

3.5 MATERIALS AND METHODS 

 

PLANT MATERIAL AND GROWTH CONDITION 

 

T-DNA lines listed in Table 3.1 and in Table 3.2 were obtained from 

the Nottingham Arabidopsis Stock Centre (NASC). Homozygosity of 

mutants was verified via polymerase chain reaction (PCR) genotyping 

(primers are listed in Table 3.7). Seeds were sterilized and sown as 

previously described in chapter 2.4.1. 

RNA-seq libraries to analyze changes in expression in AS candidates 

in Col-0 were obtained from plants grown for 9 days at 23°C LD and 

then shifted to 16°C, 27°C, or kept at 23°C LD for 3 days. To analyze 

changes in expression and in exon usage in Col-0 and pcp-1 at 16°C 

and 23°C, 9 days old and 12 days old plants were used. Col-0 and 

pcp-1 seedlings were grown at 16°C and at 23°C for nine days and 
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either harvested immediately (9 day samples) or after a plants had 

been shifted to the other temperature for an additional three days (12 

day samples). Three pools (biological replicates, grown at the same 

time) of 10 seedlings each were collected at zeitgeber time 6 and 

snap frozen in liquid nitrogen for each sample. 

To analyze WUS and CLV3 expression, RNA extraction was 

performed on manually dissected apices collected at zeitgeber time 6 

from 12 days old plants grown at 16°C. Three pools of 15 apices 

(biological replicates), were considered for each line (Col-0 and pcp-

1). All plants were all grown in long days (LD) condition in different 

temperatures as reported, with the exception of the flowering time 

phenotyping test of pcp-1 and Col-0 at 23°C that was performed also 

in short days (SD), as described in the results.  

 

TRANSGENIC PLANTS 

 

The genomic sequence of PCP, CDS of PCP-α and PCP-β were 

amplified by PCR using Phusion DNA polymerase (New England 

Biolabs) (Table 3.7), and assembled into a “C” GreenGate module. 

The Green Gate system was employed as described in chapter 2, to 

obtain final vectors. GC004 was obtained with a final GreenGate 

reaction performed using modules A: empty, B: empty, the C module 

carrying the full genomic PCP region including 232 bp sequence 

upstream of the ATG and 423 bp downstream of its stop codon, D: 

empty, E: rbcs terminator, and F: BASTA resistance as selection 

marker. GC005 and GC006 were obtained with a similar reaction 

using the modules: A: p35S, B: empty, the C module carrying the full 

PCP CDS (alpha in GC005 and beta in GC006), D: empty, E: rbcs 

terminator, and F: BASTA resistance as selection marker (module F; 

pGGF001). 

 



	
  124	
  

RT-PCR 

 

RNA extraction, cDNA synthesis, qPCR amplification have been 

performed as described in chapter 2. Expression was normalized 

against UBC21 (Table 3.7). 

 

RNA-SEQ LIBRARIES PREPARATION 

Total RNA was extracted with Qiagen Rneasy Plant kit, treated with 

Dnase, purified with a phenol-chloroform extraction and precipitated 

with ethanol. 1ug of total RNA was used to prepare the libraries with 

the TruSeq Stranded Total RNA library preparation kit (Illumina) 

following the manufacturer’s instruction. The mRNA selection process 

was performed by using rRNA Removal Mix-Plants (RiboZero Plant 

kit, Illumina). As recommended by Illumina, DNA fragments were 

amplified by 15 PCR cycles, and a temperature fragmentation step at 

94 degrees for 2 minutes was used for size selection. Paired-ended 

sequencing was performed on the Hiseq 2000 or Hiseq 3000 

machines operated by the sequencing center at the MPI for 

Developmental Biology. Two of the biological replicates of pcp-1 

grown at 16°C and shifted to 23°C were sequenced twice to increase 

coverage. 

	
  
PRE-PROCESSING OF RNA-SEQ DATA, DIFFERENTIAL EXPRESSION 

AND DIFFERENTIAL USAGE ANALYSES 

 

The data pre-processing was performed following the guidelines 

described here: http://www.epigenesys.eu/en/protocols/bio-

informatics/1283-guidelines-for-rna-seq-data-analysis. Briefly, the 

quality of the raw sequence data was assessed using FastQC 
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(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), v0.11.4. 

Residual ribosomal RNA (rRNA) contamination was assessed and 

filtered using SortMeRNA (v2.1; Kopylova et al. 2012; settings --log --

paired_in --fastx--sam --num_alignments 1) using the rRNA 

sequences provided with SortMeRNA (rfam-5s-database-id98.fasta, 

rfam-5.8s-database-id98.fasta, silva-arc-16s-database-id95.fasta, 

silva-bac-16s-database-id85.fasta, silva-euk-18s-database-id95.fasta, 

silva-arc-23s-database-id98.fasta, silva-bac-23s-database-id98.fasta 

and silva-euk-28s-database-id98.fasta). Data were then filtered to 

remove adapters and trimmed for quality using Trimmomatic (v0.36; 

Bolger et al. 2014; settings TruSeq3-PE-2.fa:2:30:10 

SLIDINGWINDOW:5:20 MINLEN:50). After both filtering steps, 

FastQC was run again to ensure that no technical artefacts were 

introduced. Read counts were obtained using kallisto (v0.43.0, Bray 

et al., 2016) with the parameters quant -b 100 --pseudobam -t 1 --rf-

stranded and using the TAIR10 cDNA sequences as a reference 

(retrieved from the TAIR resource; Berardini et al., 2015). An 

overview of the data, including raw and post-QC read counts and 

pseudo-alignment rates is given in (Table 3.4). The kallisto 

abundance values were imported into R (v3.3.2; R Core Team 2015) 

using the Bioconductor (v3.3; Gentleman et al. 2004) tximport 

package (v.1.2.0; Soneson et al., 2015). For the data quality 

assessment (QA) and visualisation, the read counts were normalised 

using a variance stabilising transformation as implemented in 

DESeq2. The biological relevance of the data - e.g. biological 

replicates similarity - was assessed by Principal Component Analysis 

(PCA) and other visualisations (e.g. heatmaps), using custom R 

scripts. 
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Table 3.4 
	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

SampleID Raw reads 
rRNA 

filtered 
reads 

rRNA 
filtered 
reads 
(%) 

total 
rRNA 5S 5.8S Arc16S Bac16S 18S Arc23S Bac23S 28S 

pcp 9 d 16 
+3 d 23 53035681 11627937 22.1% 77.9% 0.3% 1.1% 12.6% 1.8% 12.3% 21.0% 16.5% 12.3% 

pcp 9 d 16 
+3 d 23 45786931 7817723 17.2% 82.8% 0.3% 1.1% 13.4% 1.9% 13.5% 22.0% 17.3% 13.4% 

pcp 9 d 16 
+3 d 23 50766841 47159758 93.4% 6.6% 0.0% 0.0% 0.1% 0.4% 0.3% 0.3% 5.1% 0.4% 

Col-0 9 d 16 
+3 d 23 42340804 39449470 93.7% 6.3% 0.0% 0.0% 0.1% 0.4% 0.3% 0.3% 4.8% 0.3% 

Col-0 9 d 16 
+3 d 23 44691756 41695015 93.8% 6.2% 0.0% 0.0% 0.1% 0.4% 0.3% 0.3% 4.9% 0.3% 

Col-0 9 d 16 
+3 d 23 47929272 44606754 93.6% 6.4% 0.0% 0.0% 0.1% 0.5% 0.3% 0.3% 4.9% 0.3% 

pcp 9 d 16 54491682 39236937 72.9% 27.1% 0.0% 0.1% 3.6% 0.9% 3.7% 6.5% 8.3% 4.0% 
pcp 9 d 23 49287105 45842509 93.5% 6.5% 0.0% 0.0% 0.2% 0.5% 0.4% 0.4% 4.7% 0.3% 
pcp 9 d 23 51113072 47711449 93.8% 6.2% 0.0% 0.0% 0.1% 0.5% 0.3% 0.3% 4.6% 0.3% 

pcp 9 d 23 46468379 43170260 93.4% 6.6% 0.0% 0.0% 0.2% 0.5% 0.4% 0.4% 4.7% 0.5% 
Col-0  9 d 23 46920425 43713456 93.6% 6.4% 0.0% 0.0% 0.2% 0.5% 0.3% 0.4% 4.6% 0.4% 

Col-0  9 d 23 45107165 42155485 93.9% 6.1% 0.0% 0.0% 0.1% 0.5% 0.3% 0.3% 4.6% 0.3% 
pcp 9 d 16 53164725 49170501 93.2% 6.8% 0.0% 0.0% 0.2% 0.6% 0.3% 0.4% 5.0% 0.3% 

Col-0  9 d 23 44413781 41376115 93.7% 6.4% 0.0% 0.0% 0.1% 0.5% 0.3% 0.4% 4.7% 0.4% 

pcp 9 d 23 
+3 d 16 50307767 46997817 93.9% 6.1% 0.0% 0.0% 0.1% 0.5% 0.3% 0.4% 4.5% 0.4% 

pcp 9 d 23 
+3 d 16 43991403 41048407 93.8% 6.2% 0.0% 0.0% 0.1% 0.5% 0.3% 0.4% 4.5% 0.4% 

pcp 9 d 23 
+3 d 16 42284016 39607745 94.2% 5.9% 0.0% 0.0% 0.1% 0.4% 0.3% 0.3% 4.4% 0.4% 

pcp 9 d 16 50106245 46660048 93.7% 6.3% 0.0% 0.0% 0.1% 0.6% 0.3% 0.2% 4.7% 0.3% 
Col-0 9 d23 

+3 d 16 72150164 67576679 94.1% 5.9% 0.0% 0.0% 0.1% 0.4% 0.3% 0.3% 4.3% 0.4% 

Col-0 9 d23 
+3 d 16 45197701 42364820 94.2% 5.8% 0.0% 0.0% 0.1% 0.5% 0.3% 0.3% 4.3% 0.4% 

Col-0 9 d23 
+3 d 16 36317335 33859594 93.7% 6.3% 0.0% 0.0% 0.2% 0.4% 0.3% 0.5% 4.3% 0.6% 

Col-0  9 d 16 55363396 51696361 94.0% 6.0% 0.0% 0.0% 0.1% 0.4% 0.3% 0.3% 4.6% 0.3% 

Col-0  9 d 16 49071763 45473752 93.3% 6.7% 0.0% 0.0% 0.2% 0.5% 0.4% 0.4% 4.8% 0.4% 
Col-0  9 d 16 51853894 33701711 65.5% 34.5% 0.1% 0.2% 5.3% 1.0% 4.8% 8.8% 9.4% 5.1% 
pcp 9 d 16 

+3 d 23 
resequencing 

21385325
0 91969223 21.5% 78.5% 0.4% 1.1% 13.5% 1.7% 11.6% 21.9% 16.0% 12.2% 

pcp 9 d 16 
+3 d 23 

resequencing 

20167665
5 67509619 16.7% 83.3% 0.4% 1.1% 14.5% 1.7% 12.8% 23.1% 16.6% 13.1% 
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Statistical analysis of gene and transcript differential expression (DE) 

between conditions was performed in R using the Bioconductor 

DESeq2 package (v1.14.1; Love et al. 2014), with the following 

model: ~genotype * temperature to account for both the genotype 

(WT or pcp) and the temperature at harvesting (16 or 23 degrees 

Celsius). FDR adjusted p-values were used to assess significance; a 

common threshold of 1% was used throughout. The DE results at the 

SampleID Trimmed 
reads 

Trimmed 
reads (%) Forward F% Reverse R% Dropped D% Pseudoaligned Pseudoaligned 

% 

pcp 9 d 16 
+3 d 23 2298671 95.9% 67257 2.8% 13269 0.6% 17803 0.7% 1988379 86.5% 

pcp 9 d 16 
+3 d 23 7534015 96.4% 196421 2.5% 40531 0.5% 46756 0.6% 6642387 88.2% 

pcp 9 d 16 
+3 d 23 44237098 93.8% 2273911 4.8% 317313 0.7% 331436 0.7% 38928738 88.0% 

Col-0 9 d 16 
+3 d 23 37110031 94.1% 1787565 4.5% 294934 0.8% 256940 0.7% 32538525 87.7% 

Col-0 9 d 16 
+3 d 23 39269703 94.2% 1858105 4.5% 301396 0.7% 265811 0.6% 34499093 87.9% 

Col-0 9 d 16 
+3 d 23 42039888 94.3% 1965658 4.4% 310786 0.7% 290422 0.7% 36684048 87.3% 

pcp 9 d 16 37107797 94.6% 1733394 4.4% 195520 0.5% 200226 0.5% 30422529 82.0% 
pcp 9 d 23 43342513 94.6% 1887186 4.1% 337974 0.7% 274836 0.6% 37421436 86.3% 
pcp 9 d 23 45079937 94.5% 1984277 4.2% 361164 0.8% 286071 0.6% 38876457 86.2% 
pcp 9 d 23 40688088 94.3% 1836479 4.3% 322598 0.8% 323095 0.8% 35010089 86.0% 

Col-0  9 d 23 41280949 94.4% 1814611 4.2% 325707 0.8% 292189 0.7% 35968439 87.1% 

Col-0  9 d 23 39711012 94.2% 1886627 4.5% 287148 0.7% 270698 0.6% 34598926 87.1% 
pcp 9 d 16 46697998 95.0% 1988502 4.0% 260290 0.5% 223711 0.5% 38628508 82.7% 

Col-0  9 d 23 39108537 94.5% 1703916 4.1% 312705 0.8% 250957 0.6% 34065655 87.1% 
pcp 9 d 23 

+3 d 16 44494944 94.7% 1874164 4.0% 352381 0.8% 276328 0.6% 36979947 83.1% 

pcp 9 d 23 
+3 d 16 38709867 94.3% 1785160 4.4% 287956 0.7% 265424 0.7% 32137462 83.0% 

pcp 9 d 23 
+3 d 16 37491472 94.7% 1591840 4.0% 293842 0.7% 230591 0.6% 31323772 83.5% 

pcp 9 d 16 44585423 95.6% 1643960 3.5% 234231 0.5% 196434 0.4% 37640400 84.4% 
Col-0 9 d23 

+3 d 16 63936637 94.6% 2737213 4.1% 516638 0.8% 386191 0.6% 53686701 84.0% 

Col-0 9 d23 
+3 d 16 40013512 94.5% 1734695 4.1% 322396 0.8% 294217 0.7% 33477685 83.7% 

Col-0 9 d23 
+3 d 16 31923326 94.3% 1456210 4.3% 250801 0.7% 229257 0.7% 27078385 84.8% 

Col-0  9 d 16 49286552 95.3% 1926842 3.7% 250585 0.5% 232382 0.5% 42128124 85.5% 
Col-0  9 d 16 43452324 95.6% 1608700 3.5% 226308 0.5% 186420 0.4% 36335575 83.6% 

Col-0  9 d 16 32144729 95.4% 1233489 3.7% 176973 0.5% 146520 0.4% 27023929 84.1% 
pcp 9 d 16 

+3 d 23 
resequencing 

43815834 96.0% 1291160 2.8% 198506 0.4% 346903 0.8% 37903169 86.5% 

pcp 9 d 16 
+3 d 23 

resequencing 
32423457 96.5% 835965 2.5% 134669 0.4% 198448 0.6% 28546237 88.0% 
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gene and transcript level were compared to identify differential 

transcript usage (DTU). Statistical analysis of differential exon usage 

(DEU) was performed using the R (v3.4.0) Bioconductor (v3.4) 

DEXSeq package (v1.22.0; Anders et al., 2012) with the model: ~ 

sample + exon + condition:exon for four comparisons, where 

condition represented: 1) genotype (pcp vs. WT) at 16 degree 

Celsius, 2) genotype (pcp vs. WT) at 23 degree Celsius, 3) 

temperature (warm vs. cold) for the WT genotype and 4) temperature 

(warm vs. cold) for the pcp genotype. All the expression results were 

generated in R, using custom scripts. The differentially expressed 

genes (DEGs) obtained at the previous step for the temperature 

effect, the genotype effect or their interaction were imported into 

AtGenIE.org (Sundell et al., 2015) and used for Gene Ontology (GO) 

enrichment analyses. GO tree maps were generated using REVIGO 

(Supek et al., 2011) with default settings but for the background 

database that was set to “Arabidopsis thaliana”, and custom R 

scripts. 

 

IN SITU RNA HYBRIDIZATION, HISTOLOGY AND MICROSCOPY 

 

WUS, CLV3, and PCP were amplified by PCR from start to stop 

codons (using primers listed in Table 3.7) and cloned into pGEM-T 

easy (Promega). Digoxigenin-labeled antisense probes were 

synthesized with T7 or SP6 RNA polymerase (Roche). Hydrolysis of 

probes longer than 450 bp (WUS) was performed with a standard 

carbonate reaction at 60°C for 20 minutes as previously described 

(Palatnik et al. 2003). Shoot apices from 9 or 12 days old long-days-

grown plants were manually dissected and fixed in formalin/acetic 

acid/ethanol (1:1:18). Paraplast-embedded material was sectioned to 
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8 µm thickness. Hybridization and detection were performed as 

previously described (Palatnik et al. 2003). 

Scanning electron microscopy (SEM) was performed as previously 

described (Dinneny et al. 2004). Embedding of plant material in JB-4 

media, sectioning and staining with Toluidine Blue was performed as 

previously described (Roeder et al. 2003). 

 

PHENOTYPING 

 

To analyze flowering time, plants were grown at 16°C or 23°C and 

the days to flower as well as the rosette and cauline leaf number were 

recorded. 

To test the occurrence of seedlings with 3 cotyledons and flowers 

with 5 petals, pcp-1 and Col-0 plants were grown at 23°C. 2018 and 

792 seedlings were scored for pcp-1 and Col-0 respectively. The 

number of seedling with 3 cotyledons detected were 64/2018 for pcp-

1 and 1/792 for Col-0 (Table 3.5). To test the occurrence of flowers 

with more than 4 petals 10 plants for each line (pcp-1 and Col-0) were 

considered, and all the flowers developing from the principal shoot 

were analyzed daily. In pcp-1 the total number of flowers considered 

was 287, and 12 of them carried more than 4 petals (11 flowers with 5 

petals and 1 with 6 petals). In Col-0 among a total of 493 flowers 

tested only 1 carried 5 petals (Table 3.6). 

To analyze the growth rate in pcp-1 seedlings, plants were grown at 

23°C or shifted to 16°C after 13 days and Col-0 was included as 

control. A total of 25 plants (20 pcp-1 and 5 Col-0) were kept at 23°C, 

and a total of 29 plants (21 pcp-1 and 8 Col-0) were used for the 

shifting experiment. Images were acquired daily at 14:45 in top view 

using two cameras per tray, which were mounted between the light 

tubes in the growth room. The cameras were equipped with an 

OmniVision OV5647 sensor with a resolution of 5 Megapixels and a 
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focal length of 3.6 mm. Each camera was attached to a Raspberry Pi 

computer (Revision 1.2, Raspberry Pi Foundation, UK), which 

performed the image recording and storage. The image pairs for each 

tray were subsequently merged into one image using transformations 

that were determined previously using a calibration pattern. Images of 

individual plants were extracted using a predefined mask for each 

plant. Segmentation of plant leaves and background was then 

performed in three steps. First, an initial segmentation was performed 

by removing the background voxels by applying a threshold on a and 

b channels in the Lab color space. Second, a GrabCut-based 

automatic postprocessing was applied (Cheng et al. 2015). In the 

third step, unsatisfactory segmentations were manually corrected 

using a graphical user interface where the user could assign 

background and foreground regions in order to improve the GrabCut 

segmentation. The leaf area of each plant was then calculated based 

on the segmented plant images. The image processing pipeline was 

implemented in Python. 

 

Table 3.5 
 
Tracking the number of seedlings in pcp-1-1 and Col-0 with more than 2 
cotyledons. The percentage of seedlings with more than 2 cotyledons is 
reported for each line. 
	
  
Type Pot 2-cotyledons 3-cotyledons Tot Tot seedlings 
pcp-1 1 313 16 330 2018 
pcp-1 2 202 4 206  
pcp-1 3 285 12 297 3-cot seedlings tot 
pcp-1 4 152 6 158 64 
pcp-1 5 211 5 216  
pcp-1 6 104 3 107 % 
pcp-1 7 52 2 54 3.171456888 
pcp-1 8 24 0 24  
pcp-1 9 71 1 72  
pcp-1 10 93 1 94  
pcp-1 11 87 2 89  
pcp-1 12 149 3 152  
pcp-1 13 128 2 130  
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pcp-1 14 82 7 89  
Type Pot 2-cotyledons 3-cotyledons Tot Tot seedlings 
Col-0 1 14 0 14 792 
Col-0 2 7 0 7  
Col-0 3 33 0 33 3-cot seedlings tot 
Col-0 4 24 0 24 1 
Col-0 5 40 0 40  
Col-0 6 43 0 43 % 
Col-0 7 29 0 29 0.126262626 
Col-0 8 203 0 203  
Col-0 9 114 0 114  
Col-0 10 56 0 56  
Col-0 11 63 0 63  
Col-0 12 92 1 93  
Col-0 13 73 0 73  
	
  
	
  
Table 3.6 
 
Tracking the number of petals in pcp-1 and Col-0 flowers. The percentage of 
flowers with more than 4 petals is reported for each line.  
 

pcp-1 flowers 
tested 4 petals 3 petals 5 petals 6 petals tot >4 

p % > 4 p Tot flowers 

pcp-1 plant1 32 32 0 0 0 0 0 287 
pcp-1 plant2 32 32 0 0 0 0 0 Flowers >4p 
pcp-1 plant3 37 36 0 1 0 1 2.702702703 12 
pcp-1 plant4 25 24 0 1 0 1 4 % occurrence 
pcp-1 plant5 27 22 0 5 0 5 18.51851852 4.181184669 
pcp-1 plant6 21 20 0 1 0 1 4.761904762  
pcp-1 plant7 32 31 0 0 1 1 3.125  
pcp-1 plant8 23 22 0 1 0 1 4.347826087  
pcp-1 plant9 29 28 0 1 0 1 3.448275862  

pcp-1 plant10 29 28 0 1 0 1 3.448275862  

Col-0 flowers 
tested 4 petals 3 petals 5 petals 6 petals tot >4 

p % > 4 p Tot flowers 

Col-0 plant1 53 53 0 0 0 0 0 493 
Col-0 plant2 45 44 1 0 0 0 0 Flowers >4p 
Col-0 plant3 52 52 0 0 0 0 0 1 
Col-0 plant4 48 47 0 1 0 1 2.083333333 % occurrence 
Col-0 plant5 28 28 0 0 0 0 0 0.202839757 
Col-0 plant6 57 57 0 0 0 0 0  
Col-0 plant7 54 54 0 0 0 0 0  
Col-0 plant8 52 52 0 0 0 0 0  
Col-0 plant9 51 51 0 0 0 0 0  

Col-0 plant10 53 52 1 0 0 0 0  
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Table 3.7	
  
	
  
Primers used in this chapter 

Oligonucleotides used for CDS amplification  
 

Gene Primer Sequence (5' to 3') Product Hydrolysis 

CLV3 
Forward 

G-42323 
ATGGATTCGAAGAGTTTTCTG 

291 bp no 
CLV3 

Reverse 
G-42324 

TCAAGGGAGCTGAAAGTTGTT 

WUS 

Forward 

G-42325 
ATGGAGCCGCCACAGCATCAG 

879 bp yes 
WUS 

Reverse 
G-42326 

CTAGTTCAGACGTAGCTCAAG 

PCP-α 

Forward 

G-41551 
ATGGCGAGCACCAAAGTTCAAAG 

267 bp no 
PCP-α 

Reverse 

G-41552 
TCACTTTCCCGTGTTCATCATC 

 
Oligonucleotides used for genotyping T-DNA lines 

T-DNA line Primers Sequence (5' to 3') 

SALK_004764 
Forward CTCCTCCTCCTAAACCACCAC 

Reverse TGGTGAACTGATGATTGCATTC 

SALK_118875 
Forward AGAACAATCCACGAAAGCATG 

Reverse TGTTTTGGGATTCTTCAGTGG 

SALK_089521 
Forward CTCCGATTCACCAGACTTGAG 

Reverse GCCGAAGAGAATGACACAATC 

SALK_100059 
Forward CTGAGCTTCATGAGGGTTTTG 

Reverse TGTCGAAGATAATCGGTTTCG 

SALK_040864 
Forward CTGATGCAAAACATCACATGG 

Reverse AATGCTTTGGTTGATACGACG 

SALK_054457 
Forward GACATTAGCGCATTCAAAAGC 

Reverse CCTCTCAACAAGCTCCTGATG 

SALK_025193 
Forward CAACTACCTATGCTGAAGCCG 

Reverse CATTCGAGGCAGCTTAGTCAG 

SALK_055239 
Forward AAAGAAGAAGAGCGTGGAAGC 

Reverse CATTTAAGCTCCCGGGACTAG 

SALK_051523 
Forward ACAGAACCAAAACTATGCCCC 

Reverse GCAAATGTGATCAGAGTGTGC 

SALK_041457 Forward GCACTGAACAGACGTTTAGGC 
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Reverse ATCAAACGGTCCATGTGAGAC 

SALK_119088 
Forward GATTGTGTCATTCTCTTCGGC 

Reverse CGGTCAGTTCACCAAACAAAC 

SALK_017458 
Forward GGCTTACACTAACAGCGTTGG 

Reverse TGCTCAAATAGCCAAATCTGG 

SALK_022142 
Forward TGCTCAAATAGCCAAATCTGG 

Reverse TCGAAGATTCAATGGTTGGAC 

SALK_139504 
Forward CACAAACTCAATGGTGTTCCC 

Reverse GCTTTAACAGAACGTGTTCGG 

SALK_139760 
Forward TCATTGCTATCAATTGGTCCC 

Reverse AATCGTTAATGATCAATGGCG 

 

Universal SALK T-DNA insertion primer (Forward): 

GCGTGGACCGCTTGCTGCAACT 

 
Oligonucleotides used for qPCR amplification   

 
Gene Primer Sequence (5' to 3') 

PCP-α  Forward G-41551 ATGGCGAGCACCAAAGTTCAAAG 

PCP-α  Reverse G-41552 TCACTTTCCCGTGTTCATCATC 

CLV3 Forward G-42323 ATGGATTCGAAGAGTTTTCTG 

CLV3 Reverse G-42324 TCAAGGGAGCTGAAAGTTGTT 

WUS Forward G-43220 AAGCCATATCCCAGCTTCAA 

WUS Reverse G-43221 CCATCCTCCACCTACGTTGT 

UBC21 Forward G-38780 CTCCTCAAGTTCGATTCTTG 

UBC21 Reverse G-38783 CCTGAGTCGCAGTTAAGAGG 

At4g30330 Forward G-43077 AAGCTCGGATTCAGATTTGG 

At4g30330 Reverse G-43078 AAGCAAAATCCGACCAAGTG 
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CHAPTER 4  

 
4.1 CONCLUSIONS 

 

Alternative splicing, the choice of one splice site over another during 

the processing of primary transcripts, is in part affected by 

temperature fluctuations. This thermoregulated alternative splicing 

and its contribution in two important aspects of Arabidopsis thaliana 

development, flowering time and morphogenesis, is the focus of this 

dissertation. 

 

First I clarified the role of FLM, a MADS-domain transcription factor 

known to produce alternative splicing variants in response to changes 

in temperature, in the regulation of flowering. The contribution of the 

main isoforms of FLM in flowering time was controversial, and two 

mechanisms for its action had been proposed. The first model 

proposed that one particular isoform, FLM-δ, which is preferentially 

expressed at high temperatures, acts as a dominant-negative protein 

that competes with the main isoform, FLM-β, for binding with 

interaction partners, thereby indirectly promoting flowering (Posè et 

al. 2013, Lee et al. 2013). The second model rejected an active role 

for FLM-δ in the regulation of flowering. Instead, AS would 

preferentially produce non-canonical isoforms that are subjected to 

NMD at high temperatures, resulting in a decrease in expression of 

the floral repressor FLM-β (Sureshkumar et al. 2016). To investigate 

the role of each main FLM isoform, I deleted the cassette exons that 

distinguish FLM-β and FLM-δ from the genomic FLM locus using 

CRISPR technology.  
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My findings confirm the role of FLM-β as the main isoform that 

represses the transition to flowering. Loss of FLM-β leads to early 

flowering, whereas its over-expression has the opposite effect. In 

contrast, FLM-δ, which in principle has the potential to act as a 

dominant-negative regulator of flowering time, never reaches the 

expression levels required to realize this potential in WT conditions. 

The temperature sensitive AS in FLM could be of relevance from an 

evolutionary perspective. Maintaining the ability to produce a variety 

of FLM isoforms could provide flowering time plasticity, and some of 

the many alternative transcripts produced by this gene, particularly at 

elevated ambient temperature, might play an active role in the 

regulation of flowering and be relevant in different accessions of 

Arabidopsis thaliana or species. This could be a useful advantage, 

given climate change. 

 

In the second part of my dissertation I screened mutant lines in 

Arabidopsis thaliana with the aim to identify putative AS factors that 

controlled plant development in a temperature-dependent manner. 

Using this approach I have identified a bona fide AS regulator, which 

is essential for correct development of Arabidopsis thaliana at low 

temperature, and I phenotypically characterized the loss of function 

mutant. I called this previously uncharacterized gene PORCUPINE 

(PCP) because of the peculiar “spiky” phenotype it displays at low 

temperatures. Mutations of PCP show severe meristem defects only 

when grown at 16°C, while at 23°C no obvious phenotype is 

detectable. Interestingly, growth can be arrested at any 

developmental stage by shifting pcp mutant plants grown at 23°C to 

lower temperatures. Reversely, the phenotype can be rescued by 

exposing pcp mutants that had been grown at low temperatures to 

23°C. This behavior indicates the presence of a mechanism that 

allows adaptation of meristem development to changes in the 
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ambient temperature. RNA-seq analysis supports a role for PCP in 

AS regulation. The shoot apical meristem (SAM) defects observed in 

the mutant can be associated with the misregulation of two genes 

involved in maintaining the stem cell fate in the SAM, WUS and 

CLV3, particularly at low ambient temperatures. Whether the 

misregulation of WUS and CLV3 are causal or rather a consequence 

of a more general disturbance of SAM development in the pcp mutant 

remains to be determined. 

My findings establish PCP as an AS factor involved in regulating 

development in plants. Furthermore, they open up a field of research 

that links temperature regulated morphogenesis with AS, and a new 

function for the Sm genes. 
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