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Summary

Memories are a fundamental part of our lives. We use stored information in order to make
decisions and perform activities that require high-order mental processing. Such ability relies
on network mechanisms, involving prominently the hippocampal and parahippocampal
systems, and their interaction with the rest of the brain. The neural computations
underlying memory storage and retrieval are thought to involve highly transient microcircuit
activities that correlate with changes in the excitability of neural circuits. These changes
selectively modulate the signaling between groups of cells across distinct brain circuits,
ultimately supporting the emergence of more globally coordinated activities.

Intracortically-recorded brain signals display a rich variety of such transient activities: brief,
recurring episodes of deflection or oscillatory activities that reflect cooperative neural circuit
mechanisms. These network patterns of activity, also called neural events, span multiple
spatio-temporal scales, and are believed to be basic computing elements during cognitive
processes such as learning and off-line memory consolidation. However, both the large-scale
and microscopic-scale cooperative mechanisms associated with these episodes remain poorly
understood. This knowledge gap arises partly due to methodological limitations of existing
experimental approaches, specifically in measuring simultaneous micro- and macroscopic
aspects of neuronal activity in the brain. Therefore, this dissertation sought to study the
relationship between ongoing spontaneous neural events in the hippocampus, brainstem
and thalamic structures at micro-, meso- and macroscopic scales by combining data from
intracortical recordings, multi-compartmental network models, and functional magnetic
resonance imaging (fMRI).

In the first paper of this dissertation, we investigated the dynamics of neural events in
the hippocampus. We isolated various types of events corresponding to hippocampal
sharp wave-ripples (SWR) –episodes of release of synchronous neuronal activity in CA1,
thought to be critical for memory consolidation– and investigated their neuronal correlates.
Specifically, we investigated whether variations in the local field potential (LFP) signature
reflected differences in the coordination of global neural activity translated into changes of
brain-wide blood-oxygenation-level-dependent (BOLD) fMRI activity. SWR LFP activity
–classified into several subtypes– was indeed associated with distinct neocortical and
subcortical BOLD fMRI activation patterns. Our results suggest that SWR episodes are
highly heterogeneous and may instantiate cortico- and subcortico-hippocampal interactions
of differentiated nature. The interactions at play during each SWR subtype may occur in
support of distinct off-line and waking-related mnemonic processes.
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In the second paper, we investigated the neurophysiological mechanisms underlying SWR
episodes. In this study, we sought to address the role played by CA3 rhythmic input,
as well as the role of CA1 local pyramidal cells and interneurons in SWR emergence.
Using a multi-compartmental model of the CA3-CA1 network, we found that SWR emerge
locally from the driving of CA1 pyramidal cells by local interneurons’ recurrent somatic
inhibition, whereas somatic excitation controls the amount of pyramidal cells involved in
single ripples. Local interactions within CA1 and incoming input from CA3 are largely
frequency-specific, where CA3 coordinates its interactions with CA3 assemblies by gamma,
but not ripple oscillations. Our model reproduces a wide range of characteristics present in
in vivo cellular and LFP activites associated with SWR, offers key insights to precisely
establish the hippocampus-dependent mechanisms underlying memory trace reactivation
and consolidation, and suggests new experimental directions.

In the third paper, we investigated the dynamics of pontogeniculooccipital (PGO) waves
across several brain regions, and specifically their relationship with hippocampal activity.
The link between pontine-thalamic and hippocampal activities has been reported in the
literature, yet, the neurophysiological nature of this selective coupling is not well-understood.
We recorded the activity of the pontine region, lateral geniculate nucleus (LGN) and
hippocampus simultaneously, and found that PGO waves –brief potentials propagating
from pons to LGN and to neocortex– come in two different types. Marked by antagonistic
neuronal population responses, PGO wave types co-occurred with hippocampal events
in a differentiated manner. Type I PGO waves (also referred to as slow-wave sleep-PGO
waves) co-occurred with SWR complexes; whereas type II PGO waves (also referred to as
rapid-eye movement (REM) sleep-PGO waves) co-occurred with highly transient bouts
of theta-like activity in the hippocampus. These results provide the first evidence for
brain state-dependent, transient and long-range interactions likely related to hippocampal-
neocortical, and ponto-geniculo-neocortical functional networks, possibly associated with
distinct memory-related functions.

Altogether, the results of this dissertation support the view that neural events are triggers
or modulators for specific mnemonic processes extending across several global brain
states (namely, slow-wave sleep and REM sleep). These events herald interactions across
networks of several brain domains. Throughout this work I present experimental and
theoretical evidence that distinct subtypes of events –segregated on the basis of their
physiological properties– are likely associated with distinct brain-wide dynamics. Thus,
the local microcircuit activities and the global activity of the brain are tightly intertwined
during neuronal processing across diverse behavioural states. Finally, our results hold
wide implications for existing mechanistic models of hippocampal SWR and PGO waves,
for future large-scale computational models, together with directions for new in vivo
experiments in behaving animals.





Chapter 1

Synopsis

1.1 General motivation of the project

Containing ∼86 billion nerve cells (Azevedo et al., 2009), the brain is one of the most
complicated systems we know of in the universe. Nerve cells are massively interconnected,
establishing numerous interactions that occur many times per second. It is, therefore,
difficult to imagine how with a machinery of such complexity, the human brain is functional
at all. The brain is capable of supporting and regulating all aspects of physiological activity
in the body. In order to account for this large diversity of processes, brain activity displays
a high degree of self-organised coordination, occurring across several large-scale neural
networks. The dynamical states that underlie the interactions in such a complex system
cannot be described in terms of the individual activities of its billions of cells. Indeed,
brains –as many physical systems– undergo transitions between macroscopic states. Thus, a
better understanding may be achieved by monitoring the network-level activity of multiple
processing centres in a concurrent manner.

The organisation of brain activity suggests that processes such as learning and memory
result from the concerted activity of many regions, spanning several states. For instance, it
is well-known that upon changes in neuromodulatory activity the brain can display different
types of activities associated with behavioural states of waking, and the distinct stages
of sleep (Hobson, 2009; Pace-Schott and Hobson, 2002). These activities translate into
distinct dynamical regimes of individual anatomically-coupled networks. Neural patterns
of activity within these subsystems often signal periods of both enduring and transient
changes of neuronal excitability that affect the activity of other sub-structures in a precise
manner (Logothetis, 2015).

A remarkable emerging characteristic of brain networks is oscillatory activity, often referred
to as brain rhythms. These rhythmic activities are highly dependent on the global state
of the brain, and are thought to be crucial for cognitive processing (Pace-Schott and
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Hobson, 2002). During periods of quiescence and slow-wave sleep (SWS), slow oscillations
–prevalent across the neocortex– organise several oscillatory activities occurring in other
subsystems of the brain (Sirota and Buzsaki, 2005). Such activities come in the form
of transient episodes which we call neural events. Neural events include K-complexes,
thalamo-cortical spindles, and population events in the hippocampal CA1 subfield known
as sharp wave-ripples (SWR). K-complexes correspond to large, slow deflections in the
electrical activity associated with bursting cortical neurons. They are temporally coupled
with spindles, and both are correlated with the occurrence of both slow changes in neural
firing and SWR episodes in the hippocampal formation (Siapas and Wilson, 1998; Ji and
Wilson, 2007; Peyrache et al., 2011). Thus, it is clear that the physiology underlying
cognitive processes largely falls within complex-system paradigms. Yet, to date, it remains
incompletely understood.

In my dissertation, I pursued this quest by studying the physiological activity of the brain
associated with learning and memory. In particular, recordings of the electrical potential of
CA1, and across pontine-thalamic-neocortical systems during sleep have provided evidence
for a constellation of neural events critical for memory consolidation (Buzsaki, 2015; Datta,
2006). Our fascination for these spontaneous events is catalysed by their striking correlation
with activity patterns across the whole brain (Logothetis et al., 2012; Logothetis, 2015)
whose properties have become our question generators. Thus, we studied the activity of
the hippocampal CA1, the pontine region and the thalamus during periods associated with
off-line memory consolidation. Specifically, through principled analyses of concurrent multi-
site intracortical recordings, whole-brain fMRI and a series of minimal multi-compartmental
models, we investigated the micro-circuits and brain-wide structures whose activities are
modulated during different types of memory-associated neural events.

1.2 Memory in the brain

Storing information and then using it to guide behaviour is a remarkable ability of the
brain. Decades of investigation have established that the hippocampus plays a central
role in these processes. The link between the hippocampus and memory processes was
first suggested by the seminal work of Scoville and Milner (1957). In their investigation, a
patient known as H.M. was unable to create new episodic memories after bilateral medial
temporal lobe resection, including the resection of both hippocampi. After this study,
accumulating experimental evidence identified the hippocampus as a critical structure for
declarative memory.

A series of later studies attributed a role for spatial memory to the hippocampus of rodents.
O’Keefe and Dostrovsky (1971) observed that a subset of hippocampal neurons selectively
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increased their firing rates as the animals occupied specific locations in an environment.
The existence of these cells, known as place cells, and the observed spatial memory deficits
upon lesion of the hippocampus have led to the proposal that hippocampal activity provides
a cognitive map of the animal’s spatial environment (O’Keefe and Nadel, 1978). Subsequent
research revealed that cells in the hippocampal formation can encode other aspects of
space such as boundaries (Lever et al., 2009), direction of the animal’s head (Taube et al.,
1990a,b), and speed (Kropff et al., 2015). In addition, grid cells found in the medial
entorhinal cortex (MEC) suggest the existence of a spatial code in the form of ‘triangular
coordinates’. This code is thought to be the basis of spatial location represention in absence
of sensory input, and updated by the animal’s movements (Fyhn et al., 2004; Hafting et al.,
2005). Nevertheless, the hippocampus does not only code for spatial properties. Recent
experimental evidence demonstrates that cells in the hippocampal formation are involved
in a repertoire of other representations including contextual information, object recognition
and time (Eichenbaum et al., 1987; Eichenbaum, 2014; Hok et al., 2007; Moita et al., 2003;
Manns and Eichenbaum, 2009).

Whereas the hippocampus is fundamental in encoding declarative memories, the hip-
pocampus alone cannot store stable, long-lasting representations. Indeed, a great body
of evidence suggests that information is stored in the neocortex in the long-term. It is
currently assumed that the role of the hippocampus in enabling the neocortex to acquire
new knowledge can be explained using a two-stage process. Learning trials are first encoded
in the hippocampus during ongoing behaviour. In a second stage, the hippocampus allows
the brain to experience ‘virtual’ training trials, manifested as the spontaneous retrieval
of episodic memory while the brain is in an off-line state, e.g. during periods of calmness
or sleep. This reactivation process of labile memories in hippocampus and neocortex
is thought to potentiate cortico-cortical connections, hence providing the basis for the
formation of new assemblies. This theoretical account is in line with the seminal studies of
Wilson and McNaughton (1994), and Skaggs and McNaughton (1996), where reactivation
of cell pairs was observed during sleep after a spatial experience.

After these studies, increasing experimental evidence demonstrated that after 1 to 2 hours
of a behavioural experience, during periods of calmness or SWS hippocampal CA1 cells
fired brief sequences of action potentials that were also expressed during waking (Lee and
Wilson, 2002). These sequences have several important properties. First, they are often
concurrently replayed in both hippocampus and neocortex (Lee and Wilson, 2002; Ji and
Wilson, 2007). Second, in both hippocampus and neocortex, firing sequences correspond
to series of temporally-compressed versions of place-cell firing sequences played during
wakefulness (Euston et al., 2007). Third, replay occurs in neocortex during periods where
delta oscillations/K-complexes field activities are observed (Peyrache et al., 2009; Johnson
et al., 2010). Finally, hippocampal replay occurs simultaneously with a special pattern of
field activity known as SWR complexes, also occurring within the CA1 subfield (Buzsaki
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et al., 1992; Lee and Wilson, 2002), which are discussed in depth later in this work. Notably,
neocortical reactivation tends to follow that in the hippocampus (including the occurrence
of SWR), suggesting that the hippocampus is driving the neocortex during the reactivation
process (Wierzynski et al., 2009). As consolidation progresses, memories that initially
depend on the hippocampus become distributed in neocortical circuits, possibly displaying
categorical structure, i.e. a form of ‘hierarchical clustering’ of neuronal representations
over time (McClelland et al., 1995).

Whereas these theoretical and experimental advances have been fundamental to our
understanding of memory, how the brain networks interact in order to store and retrieve
complex information remains unknown. The original discovery of SWR episodes and their
intrinsic properties was a critical step towards this understanding (Buzsaki et al., 1992;
Buzsaki, 1986, 2015). Indeed, the reactivation process occurring during hippocampal SWR
is thought to be a convenient mechanism for memory consolidation from a theoretical
perspective. For example, SWR are the most synchronous events in the mammalian brain,
associated with a robust enhancement of excitability in the hippocampal formation, and
behaviourally-relevant spiking content (Mizunuma et al., 2014; Csicsvari et al., 1999; Lee
and Wilson, 2002). These, together with their electrical and intrinsic properties, are thought
to be ideal to induce plasticity in target structures. Furthermore, although it was initially
observed during SWS and quiescence periods, SWR reactivation also occurs during active
behaviour (Foster and Wilson, 2006; Dupret et al., 2010; Singer et al., 2013), indicating
that reactivation during several brain states could support consolidation. The generation
of SWR complexes in various behavioural contexts and brain states likely involves brain-
wide network mechanisms, and as a consequence, SWR-related brain dynamics may vary,
reflecting different types of interactions with cortical and subcortical systems. Furthermore,
a detailed study of SWR and its underlying elementary network activities is fundamental to
understand its physiological mechanisms, and may provide new insights into the mechanisms
of fast oscillatory episodes observed during epilepsy (Karlocai et al., 2014).

In this thesis work, we combined data from a novel multi-modal experimental approach
known as neural-event-triggered functional magnetic resonance imaging (NET-fMRI) with
biophysically-inspired computational models in order to investigate the SWR phenomenon to
a full extent, comprising several spatio-temporal scales. Although most of this investigation
is dedicated to SWR episodes, partly motivated by our first results, we also investigated
the relationship between brainstem and thalamic neuronal activities –more specifically,
that of pontine nuclei and LGN, respectively– and hippocampal neuronal activities during
SWR and non-SWR epochs. In particular, we studied a second type of episode thought
to represent the main drive of glutamatergic discharges during sleep-dependent memory
formation known as pontogeniculooccipital (PGO) waves (Datta, 1997, 2006).

The rest of the introduction is organised as follows: First, I present an overview of the
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anatomy of the hippocampal formation, followed by a brief summary of the physiological
electrical activity of the hippocampus, with emphasis on primates. Finally, I summarise
the main subcortical circuits that modulate hippocampal activity, and provide an overview
of PGO waves and their putative role in memory formation.

1.3 Anatomical organisation of the hippocampal formation

To understand the relationship between the hippocampal circuits’ dynamics and the
emergence of macroscopic brain activity, it is fundamental to have a basic understanding
of the connectivity within the hippocampus, and its anatomical links with the rest of the
brain. Therefore, in this section, I focus on the fundamental aspects of the anatomical
organisation within the hippocampal formation that relate to processing of mnemonic
information.

1.3.1 Structures and connectivity within the hippocampal formation

The hippocampal formation is an elongated, bilateral structure located in the medial
temporal lobe and highly preserved across mammalian species. The hippocampus runs
along a posterior-anterior axis in primates (dorsal/septal to ventral/temporal in rodents).
Its anatomy and physiology are well-preserved with phylogenetic development (Andersen
et al., 2006). This fact has served to unify views on the structure and role of the hippocampus
in primates and humans, with extensive experimental demonstrations in other animal
species such as rodents.

The regions of the hippocampal formation include the dentate gyrus (DG), subiculum,
presubiculum, parasubiculum, entorhinal cortex (EC) and the subfields of the hippocampus
proper (referred to as cornu ammonis, CA fields) (Andersen et al., 2006). In the following
subsections I give an overview of the anatomy of these structures in the rodent, as most
of the existent evidence has been derived from experimental preparations in such animal
species. For extensive reviews on the anatomical details of the hippocampal formation,
the reader is referred to Andersen et al. (2006), van Strien et al. (2009), and Witter and
Amaral (2004).

The rodent hippocampal formation is a C-shaped structure situated in the caudal part
of the brain. The shape of the hippocampal formation is commonly appreciated from its
dorso-ventral (also referred to as septo-temporal) axis. Several of its anatomical properties
vary across its proximo-distal and transverse axes (see Figure 1.1) (Witter et al., 2000).
Each hippocampal subfield is organised in a series of layers formed by oriented pyramidal
cells (Amaral and Witter, 1989). The first layer (from top to bottom in Figure 1.1B) is a
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basal dendritic layer in the CA called stratum oriens (SO), followed by the pyramidal cell
layer (or stratum pyramidale, SP) composed by principal cells and interneurons, and two
other (apical) dendritic layers known as stratum radiatum (SR) and stratum lacunosum-
moleculare (SL-M). In the DG, the first layer is known as hilus composed by interneurons
and so-called mossy fibers, followed by a granule cell layer and a molecular layer that
separates the DG from the hippocampal fissure.

Figure 1.1: (A) Location of the hippocampal formation (bilateral, curved structure in
green) in the rodent brain. The illustration displays the hippocampus, subiculum and
EC (lateral part of the brain). (B) Nissl-stained coronal section (as indicated in A by the
black dotted plane) illustrating the transverse axis of the hippocampus. Abbreviations
are as follows: CA, cornu ammonis; SO, stratum oriens; SP, stratum pyramidale; SR,
stratum radiatum; SL-M, stratum lacunosum-moleculare; f, hippocampal fissure; ML,
molecular layer; GCL, granule cell layer; H, hilus. Scale bar 200 µm. (C) Horizontal
section of the rodent brain (as indicated in A by the red dotted plane) indicating the
location of subiculum and EC. The horizontal slice is useful to depict the connectivity
of the hippocampal formation and the tri-synaptic loop. Arrows indicate synaptic links
between cell populations of each subfield. EC projects to DG/CA3 and CA1 subfields
of the hippocampus through the perforant and temporoamonic pathways, respectively,
targetting the distal dendritic layer of CA subfields (at SL-M). DG projects to CA3 through
the mossy fibers. CA3 and CA1 are coupled by means of so-called Schaffer collaterals.
Finally, the projections between CA1 and subiculum are reciprocal (see also Witter et al.
(2000)), and both subiculum and CA1 project back to EC. Panel A is adapted from the
Allen Mouse Brain Atlas (Brain Explorer 2, Allen Institute for Brain Science), available
online at http://mouse.brain-map.org. Panel C is adapted from Sosa et al. (2016).

The hippocampus is strongly and reciprocally connected to an adjacent system referred

http://mouse.brain-map.org
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to as the parahippocampal region (van Strien et al., 2009). The parahippocampal region
comprises the presubiculum, parasubiculum and EC, together with the perirhinal and
postrhinal cortices. The parahippocampal region is organised in a layered structure, where
each layer receives and sends projections of differentiated nature. For example, the EC
–subdivided into medial (MEC) and lateral (LEC)– receives sensory input that travels into
the hippocampus via the perforant pathway. This pathway consists of projections from
EC layer II to the apical dendrites of DG granule cells (in the molecular layer), and the
SL-M of CA2 and CA3. EC layer III targets subicular neurons and the SL-M of CA1. This
projection –known as temporoammonic (TA) pathway– is organised in the proximo-distal
axis analogous to that of layer II, with the LEC projecting to the proximal and distal
portion of the subiculum and CA1, respectively, and the MEC projecting to the distal and
proximal portion of the subiculum and CA1, respectively (Ito and Schuman, 2012; Gigg,
2006).

Probably the most well-known aspect of the hippocampal anatomical connectivity is the
so-called tri-synaptic circuit. This circuit connects in a feedforward manner the EC to the
DG, DG to CA3, CA3 to CA1, and CA1 back to EC (Ramon y Cajal, 1893; Andersen
et al., 2006). The intra-subfield connectivity of hippocampal structures has been object of
extensive research, given the complexity of its local recurrent connections and long-range
afferents.

1.3.2 Dentate gyrus (DG)

The DG comprises three layers. The molecular layer contains interneurons, and is excitatory-
cell free. The granule cell layer –forming the V- or U-shape of DG– is a densely packed
layer of somata, which borders with the hilus. The main cell types of the DG are the
granule cell and the pyramidal basket cell. Other types of interneurons are also present in
the granule cell layer and the hilus.

The primary excitatory input to the granule cells originates from EC layer II, although they
also receive feedback input from mossy cells (located in the hilus) (Buckmaster et al., 1996).
Mossy fibers form either recurrent or feedforward connections, with virtually no presence
in the molecular layer. Mossy fibers target both CA3 pyramidal cells and interneurons.
DG neurons do not project to any region other than CA3 within the hippocampus or
outside the hippocampus, including the parahippocampal region. Finally, the DG receives
projections from subcortical areas such as the septal nuclei, hypothalamus and brainstem
neuromodulatory inputs (Bland and Oddie, 1998; Vertes, 1982; Vertes et al., 2004).
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1.3.3 Hippocampus proper

The rodent hippocampus, also known as hippocampus proper, is divided into three cornu
ammonis (CA) fields (CA1, CA2 and CA3), each comprising four or five layers. In primates
–including humans– the hippocampus proper is divided into four CA fields, where the
CA4 corresponds to the region between the DG and the most proximal end of CA3. The
layer organisation of the CA fields is very similar, with one somatic layer (SP), one basal
dendritic field (SO) and two apical dendritic layers (SR and SL-M). Notably, CA3 has an
additional dendritic layer –absent in both CA1 and CA2– referred to as stratum lucidum
(SL), corresponding to the region where the DG granule cells contact CA3 synaptically
through the mossy fibers.

The subfields CA3, CA2 and CA1 have different recurrent local connectivity, giving rise to
a repertoire of population activities. These activities can be modulated upon the state of
subcortical and neocortical systems as discussed in Sections 1.4 to 1.6 of this work.

1.3.3.1 CA3 and CA1 networks

The DG granule cells receive primary input from EC via the perforant pathway. These cells
then project to CA3 through the mossy fibers. In contrast to the usual tri-synaptic model,
there are several back-projections from CA3 to the hilus and the inner molecular layer of
DG across the whole septo-temporal axis (van Strien et al., 2009). The only documented
extrahippocampal projection to CA3 is that of the septal nucleus (Bland and Oddie, 1998).

The recurrent nature of the CA3 network is historically well-acknowledged (Lorente de
No, 1934), where recurrent circuits were initially linked to feedback chains of connected
neurons. CA3 pyramidal cell axons have extensive ramifications in stratum oriens and
radiatum of CA3 establishing synaptic contacts with other CA3 partners. The recurrent
(often called associational) connections of CA3 are sometimes locally concentrated. For
example, along its proximo-distal axis (1.1B), cells located proximally in CA3 synapse with
other proximal cells. However, projections from middle and distal CA3 project extensively
throughout the transverse axis of CA3 (Andersen et al., 2006). Experimental evidence
from paired recordings in CA3 pyramidal cells suggests that one pyramidal cell contacts
30-60% other pyramidal cells (Li et al., 1994; Debanne et al., 1995; Pavlidis and Madison,
1999) with postsynaptic potentials of approximately 1 mV (Miles and Wong, 1986) (see
also Ramirez-Villegas et al. (2017b)).

All portions of CA3 contact CA1, being the major input of the latter structure. Synaptic
terminal distribution strongly depends on the spatial location of the CA3 neurons sending
projections. The CA3-CA1 connectivity follows both transverse and oblique orientations
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through CA1. Note that in Figure 1.1C I have drawn the Schaffer pathway as it is
conventional from research papers (from CA3 pointing to SR), however, both SR and SO
of CA1 are targets of CA3 projections (Andersen et al., 2006).

As the reader will see in the computational models of the CA3-CA1 network (Paper 2 of
this dissertation), in sharp contrast to CA3 anatomical connectivity, the CA1 network
does not possess associational connections (for a quantitative estimate see Bezaire and
Soltesz (2013)). The reason for this is that most CA1 axonal projections travel throughout
the extent of the alveus (bordering the deep part of CA1) or SO to the subiculum. It is
possible that CA1 collaterals target interneurons in the basal dendritic fields (such as SL-M
interneurons), although CA1 principal neurons also target other CA1 interneurons such
as peri-somatic basket cells (Takacs et al., 2012; Amaral et al., 1991). This rather ‘odd’
connectivity pattern is the neural basis of population neuronal activities that I investigated
in the second paper of this dissertation. Finally, CA1 pyramidal cells and interneurons are
synaptic targets of EC (layer III) through the TA pathway (Kloosterman et al., 2004; Ito
and Schuman, 2012). The TA pathway contributes to shape the activity of CA1 (Spruston,
2008) depending on the behavioural state of the animal (Sirota et al., 2003; Hahn et al.,
2012), yet its neurophysiological characteristics are not well-understood.

CA1 sends projections to subiculum and EC. The projection of CA1 to subiculum is
topographically organised (Amaral et al., 1991; Gigg, 2006). Proximal CA1 pyramidal
cells target distal subiculum, whereas distal CA1 cells project to proximal subiculum (the
portion closest to CA1). The projection of CA1 to EC terminates in the deep layers of EC.
The proximal part of CA1 projects to MEC, whereas distal CA1 projects to LEC. Finally,
CA1 also sends projections to perirhinal and postrhinal cortices (Witter et al., 2000).

1.3.3.2 CA2

Historically, much of the investigation has focused on CA3, CA1 and DG networks, while
CA2 has received scarce attention. However, recent evidence suggests that CA2 plays an
important role in spatial memory formation and consolidation (Oliva et al., 2016; Kay
et al., 2016). CA2 receives projections from EC layer II via perforant pathway and CA3,
and is the only subfield in the hippocampus that receives input from the supramammilary
nucleus (SuM, located in the hypothalamus) (Vertes and McKenna, 2000; Magloczky et al.,
1994). Like CA3, CA2 neurons have strong associational connections, and send afferents to
CA1 primarily located in SO, but also in SR. CA2 sends axons that back-propagate to
CA3 (Tamamaki et al., 1988; Ishizuka et al., 1990), yet the role of this backpropagation is
unclear.
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1.3.4 Subiculum

The subiculum is the major output structure of the hippocampus, projecting to EC and
perirhinal cortices, retrosplenial area, prefrontal (PFC) and anterior cingulate (ACC)
cortices, and several subcortical structures including the hypothalamus, septal nuclei,
amygdala, nucleus reuniens of the thalamus and nucleus accumbens (O’Mara et al., 2001;
O’Mara, 2005). The CA1 subfield sends its primary projection to the subiculum. The
existence of a subicular oligosynaptic anatomical backprojection to CA1 is supported by
early and recent evidence (Kohler, 1985; Sun et al., 2014). The simultaneously excitatory
and inhibitory subicular projection targets all layers of CA1, where connections return
back to their CA1 cell of origin (Sun et al., 2014).

The inputs and outputs of the subiculum differ along the septo-temporal axis, and along
the proximo-distal axis. The dorsal subiculum mostly targets cortical regions, and receives
afferents from anterior thalamus, medial septum (MS), perirhinal, PFC, visual cortex and
intrahippocampal input from CA1; whereas the ventral subiculum receives inputs mostly
from subcortical structures such as vestibular nuclei and hypothalamic nuclei, sending
return projections to these areas (O’Mara et al., 2001; Gigg, 2006).

1.3.5 Entorhinal cortex (EC)

The EC is a major interface in the flow of information in the hippocampal formation, as it
is the entry point of sensory information and the point of relay of information from the
hippocampus to the neocortex. The EC is a structure comprising six layers: four cellular
ones (II, III, V, VI) and two plexiform ones (I, IV). The EC forms strong associational
connections, originating from both superficial and deep layers. While layers II and III
(superficial layers) project mainly to superficial layers, deep layers project to both superficial
and deep layers (Andersen et al., 2006). Interestingly, this connectivity pattern completes a
loop where the information that arrives to the EC can be relayed back to the hippocampus.
On the basis of anatomical connectivity, the EC is also regionally divided into medial
(MEC) and lateral (LEC) portions. The MEC has been long ascribed to spatial information
processing, while LEC is thought to convey information about objects, cues and odors
(Deshmukh and Knierim, 2011, 2013).

Cells across the EC have been shown to be functionally distinct, thus adding another
dimension of complexity to these circuits. This functional distinction is thought to be the
basis of spatial-navigation neural coding. For instance, grid cells are the most common
subtype (Hafting et al., 2005), found in MEC layers II and III (Zhang et al., 2013), and
have been also found in the human EC (Jacobs et al., 2013). Border cells which exhibit
fields selective to the spatial limits of an environment, and head-direction cells, which are
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selective for the orientation of the head of the animal, comprise another two major groups
of MEC cells (Solstad et al., 2008; Giocomo et al., 2014). As many neurons in the brain,
MEC cells also show mixed selectivity in encoding these aspects of spatial navigation (Sosa
et al., 2016).

The EC receives numerous projections from several areas of the brain, which could allow
for this elaborated spatial processing. These inputs can be divided into two main groups:
inputs to EC superficial layers (I-III), and inputs to EC deep layers (IV-VI). The inputs
to superficial layers are the source of information to the DG, CA and subiculum. These
inputs are thought to be fundamental for memory processing and form the basis of cortico-
hippocampal communication across several behavioural states (Sirota et al., 2003; Isomura
et al., 2006; Hahn et al., 2012; Schomburg et al., 2014). The major cortical inputs to
superficial EC originate from olfactory and piriform cortices, together with polysensory
areas perirhinal and postrhinal. Inputs to deep layers arise from the ACC, insular cortex,
and retrosplenial area, whose activities can be relied back from deep to superficial EC layers
and hence, to the hippocampus. The anatomical organisation of the EC may be partly the
basis of the functional dissociation between ventral and dorsal parts of the hippocampus
(Moser et al., 1995; Henke, 1990), as only the caudal and lateral parts of the EC –which
project to septal hippocampus– are targetted extensively by cortex. Other EC afferents
include insular, temporal, parietal and occipital areas (Andersen et al., 2006). The major
proportion of EC efferents contribute to high-order associational and polysensory cortices.

The anatomical substrates of the hippocampal formation, its highly recurrent intra-field
connectivity and the nature of its afferents are the basis for a wide range of characteristic
electrical activities, which I studied extensively in this dissertation and shall introduce in
the next section.

1.4 Electrical signatures of hippocampal activity. Part I

Recording the neuronal activity of the hippocampus allows us to understand how infor-
mation processing about the outside world takes place in the brain circuits, and how this
highly dynamical process is translated into memories. The principles outlined in this
section, however, apply to any brain circuit under study.

Brain activity can be recorded as electroencephalogram (EEG) using surface electrodes
placed on the scalp, as electrocorticogram using electrodes directly in contact with the
cortical surface, or using electrodes that penetrate the cortical surface, reaching the
extracellular milieu, often referred to as intracortical EEG. Electrophysiological preparations
on unrestrained animals typically use electrodes placed into brain structures of interest
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in order to investigate their function on the basis of an integrated and spatially localised
signal known as mean extracellular field potential (mEFP). The mEFP is a measure of
the electrical activity generated by the various neural processes surrounding the recording
electrode tip (Quian Quiroga and Panzeri, 2013; Buzsaki et al., 2012; Logothetis and
Wandell, 2004).

The electrode –depending on its construction properties– can isolate the activity of single
neurons, i.e. the extracellular signature of their action potentials, also known as single-unit
activity (SUA). These action potentials are markers of the interaction between one cell
and its partner cells, and therefore can be used to study the relationship between the
neural activity of a given cell or a small group of cells, and the behaviour of the animal
during a specific task. Alternatively, an electrode can be used to record the summed
action potentials from hundreds of neurons within one or more subpopulations. This
summed activity is known as multi-unit activity (MUA). Both SUA and MUA reflect
similar processes, however, MUA recordings are less sensitive to electrode placement than
SUA, and MUA represents a larger spatial integration of neuronal activities from which
the activity of single cells is difficult to isolate. Typically, both SUA and MUA –as they
correspond to very fast time-scale processes– can be isolated by high-pass filtering the
mEFP signal using standard digital filtering techniques.

What neural processes do the lower frequencies of the mEFP represent? The low-frequency
activity (up to ca. 330 Hz) of the mEFP signal –known as the local field potential
(LFP)– represents slow fluctuations of the extracellular voltage. The origin of the LFP
is not straightforward, and represents the weighted sum of neural processes present in
the transmembrane currents exerted by individual neurons (Buzsaki et al., 2012). These
microscopic-scale events include synaptic activity (Whittingstall and Logothetis, 2013;
Logothetis and Wandell, 2004), action potentials (Ray and Maunsell, 2011; Schomburg
et al., 2012; Reimann et al., 2013), calcium spikes (Schiller et al., 2000), intrinsic currents
(Llinas, 1988), spike afterpotentials (Reimann et al., 2013; Gustafsson, 1984; Harada and
Takahashi, 1983), gap junctions (Draguhn et al., 1998; Traub and Bibbig, 2000), neuron-glia
interactions (Kang et al., 1998), and ephaptic coupling (Anastassiou et al., 2011).

The LFP also shows some dependence on the neuronal geometry. For instance, pyramidal
cells have long apical dendrites and –in the CA of the hippocampus, for example– lie
oriented perpendicular to the surface of the stratum pyramidale. This so-called ‘open field’
configuration generates dipoles along the neural axis due to the spatially separated active
portion of the membrane from its corresponding return currents. These dipoles contribute
strongly to the LFP. Conversely, this is not the case for radially-symmetric neurons, which
due to geometric cancellation on radially-even arborisations, have a weaker contribution
to the extracellular potential than pyramidal cells (Schomburg et al., 2012). However, in
a strict sense, a ‘closed field’ would only occur when all dendrites are activated at the
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same time, which is not the case in reality (Buzsaki et al., 2012). Furthermore, some
radially-symmetric neurons –such as some hippocampal interneuron subtypes– have the
capacity to pace network oscillatory episodes due to their fast kinetic properties (Schlingloff
et al., 2014; Stark et al., 2014). These activities are likely broadband with predominant
high-frequencies, and may contribute to the shape of the LFP spectrum. Thus, the LFP
should be understood in the specific context of underlying network dynamics.

There is a direct link between transmembrane currents and the dipolar structure of the LFP
(for details the reader is referred to the seminal contributions of Nicholson and Llinas (1971),
Nicholson (1973), and Nicholson and Freeman (1975)). Briefly, the extracellular milieu is
assumed continuous, homogeneous, ohmic (that is, there is no charge accumulation; rather,
there are currents that appear and disappear in the medium), and isotropic (the same
in all directions). The last assumption allows us to express the conductivity as a scalar
quantity σ. The transmembrane currents are distributed along the axis of the cell (parallel
to the dendritic tree), that is, along lines at the cylindrical axes of the neurons (Nicholson
and Llinas, 1971). The field potential is observed at some point of the extracellular
medium. In reality, the observation point is the point in space occupied by the measuring
electrode. Therefore, the potential at that point can be computed as a volume integral
of the transmembrane current that is inversely proportional to the distance between the
current generator and the observation point (that is, the location of the electrode). One
may infer that due to the planar symmetry of the neuronal population in an oriented array
of neurons, current changes mainly occur along the axis of the neuron, vanishing in other
directions (Nicholson and Llinas, 1971).

From the previous physical notions, we can already conclude that the LFP is a highly
integrated measure, reflecting the input to a given cell population, together with its local
active processes and includes the activity of several cellular subtypes. It follows that the
LFP is a key signal to understand neuronal network mechanisms that result from cognitive
processes (e.g. learning and memory, attention, perception) and pathology (e.g. epilepsy,
Alzheimer’s disease). The use of LFP, however, has limitations. Namely, since it reflects
many neuronal processes at the population level happening at a given time point, the
LFP is inherently ambiguous (Einevoll et al., 2013). Consequently, it requires principled
methodological approaches to understand its content, and to turn this understanding
into conclusions about neuronal processing. I argue that –to some extent– it is possible
to decompose the LFP into several biophysically-relevant elementary components. In
particular, the second paper of this dissertation shows that some frequency-dependent
LFP components can be ascribed to dynamical aspects of network-level processing (e.g.
coordinated post-synaptic potentials and spiking currents). In turn, these components
may correlate with activities specific to distinct cell groups, thus reflecting the dynamical
context in which certain neuronal processing occurs (Ramirez-Villegas et al., 2017b).
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1.4.1 Content of the hippocampal LFP

The LFP of the hippocampus reflects the intrinsic dynamics of highly recurrent subcircuits
(see section 1.3). This property provides the hippocampus with the ability to exert a
number of distinct rhythmic activities, varying across hippocampal subfields and with the
behavioural state of the animal. More importantly, rhythms in the hippocampal LFP are
associated with population-level processing of mnemonic information as it will be discussed
in the present subsection of this dissertation.

1.4.2 Place cells and theta rhythm

As mentioned earlier, a notable characteristic of the cells in the rodent hippocampus is their
ability to fire at specific spatial locations. Due to this spatial specificity these (excitatory)
cells are referred to as place cells (O’Keefe and Dostrovsky, 1971). The spatially-tuned
receptive field of a place cell is called place field, and represents the region in which the cell
fires at its maximum, while remaining silent (or almost silent) at other locations. Place
cells fire at specific phase of the hippocampal LFP rhythm known as theta (O’Keefe and
Recce, 1993). The elementary notions about this rhythm that I describe here apply to
rodents. Later on, I generalise them to other animal species, and particularly primates.

Theta is a low frequency –quasi sinusoidal– oscillation in the frequency range 3-12 Hz with
a center frequency of approximately 8 Hz, that dominates the hippocampal field activity
during the locomotor state (Vanderwolf, 1969; O’Keefe and Recce, 1993; Wilson and
McNaughton, 1994), and also during periods of paradoxical (rapid-eye movement, REM)
sleep (Jouvet, 1969). Theta has been long associated with coordination of information
processing within the hippocampus. In particular, with coordinating the activity of place
cells that ultimately encode locations in space (Buzsaki, 2002). For reasons explained
later in this chapter, the physiological significance of theta remains elusive. However, it is
possible that a theta-like low-frequency rhythm (whether transient or sustained) bears a
similar role across several mammalian species (Sosa et al., 2016).

The theta rhythm is thought to be controlled by a chain of linked subcortical structures.
Amongst these, the medial septum/diagonal band of Broca (MS-DB) is thought to play a
critical role. Lesion studies suggest that inactivation of MS-DB abolish theta oscillations
in all cortical targets (Petsche et al., 1962; Bland et al., 1994). MS-DB sends inhibitory
connections onto DG/CA3/CA1 basket cells, whose rhythmic input results in transient
bouts of disinhibition of pyramidal cells. Similarly, cholinergic input into the hippocampus
depolarizes both pyramidal neurons and basket cells promoting their rhythmic discharge
(Bland and Oddie, 1998; Buzsaki, 2002). Thus, the theta phases represent ongoing changes
of excitation and inhibition (Csicsvari et al., 1999). Other structures contributing to the
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theta rhythm are the SuM nucleus (Kocsis and Vertes, 1994; Kirk and McNaughton, 1993),
EC (Kamondi et al., 1998), posterior hypothalamus and the pontine region (Oddie et al.,
1994; Kirk and McNaughton, 1993; Bland et al., 1994; Vertes et al., 1993).

Although the foundations of theta remain somewhat unclear, one may safely conclude that
theta relies on the rhythmic discharge of both inhibitory and excitatory hippocampal cells,
and depends upon local network interactions that can be greatly influenced by the activity
of a chain of subcortical nuclei and the EC. Finally, the interplay between spiking activity,
theta and gamma rhythms may establish the basis of episodic memory encoding in the
brain (Lisman and Idiart, 1995; Lisman, 2005; Schomburg et al., 2014; Fernandez-Ruiz
et al., 2017).

1.4.3 Gamma oscillations

Gamma activities –LFP oscillations in the frequency band 25-100 Hz in rodents– are ex-
pressed by hippocampal circuits during the awake state (locomotion), periods of quiescence,
SWS and REM sleep (Sullivan et al., 2011, 2014; Schomburg et al., 2014). The exact
definition of gamma activity in terms of an explicit frequency range is obscure in the
rodent literature. Ranging from a lower bound of 20 Hz, and reaching an upper bound of
140 Hz, gamma activity seems to contribute to information transfer and to bind neuronal
ensembles (Csicsvari et al., 2003; Schomburg et al., 2014). Hippocampal gamma activity
also comes in different flavors. A low range –known as slow gamma– corresponding to
25-55 Hz (or 20-50 Hz) (Colgin et al., 2009; Sosa et al., 2016), and a high range –or fast
gamma– comprising the frequencies 60-100 Hz (or 50-90 Hz, or 50-140 Hz) (see Colgin
et al. (2009), and Sullivan et al. (2011)).

Evidence suggests that within the hippocampal formation gamma activity is generated
due to the activity of interneurons (Csicsvari et al., 2003; Colgin, 2016; Buzsaki and Wang,
2012) and input from EC (Schomburg et al., 2014). The emergence of gamma correlates
with that of theta, as it is also prominent during awake, locomotor and REM-sleep states.
Furthermore, gamma phase and amplitude are coupled to theta (Colgin et al., 2009; Bragin
et al., 1995).

Whether slow and fast gamma are two network-related activities generated by distinct
mechanisms was an open question until very recently. Recent evidence suggests that
different gamma rhythms are differentially expressed by distinct layers of CA1 (Colgin
et al., 2009; Schomburg et al., 2014). Slow gamma activity –obeying the CA3-related
Schaffer collateral input– is expressed in SR, whereas fast gamma –arising from the EC
layer III or TA pathway– dominates in SL-M. These activities were consistently observed
during locomotion and REM sleep, suggesting common mechanisms of information routing
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during hippocampal theta-related states (Colgin et al., 2009; Schomburg et al., 2014).
Furthermore, subpopulations of CA1 interneurons are differentially activated by CA3- and
EC-related gamma activities (Lasztoczi and Klausberger, 2014).

1.4.4 Sharp wave-ripples (SWR)

In contrast to the regular theta activity during locomotion and paradoxical sleep, the
hippocampus also exerts periods of asynchronous activity, also referred to as large-amplitude
irregular activity (LIA). Unlike theta, LIA displays a pattern of activity covering the entire
LFP spectrum (<330 Hz), rather than a narrow-band, regular rhythm. The hippocampus
displays LIA during periods of awake immobility and SWS, when synchronous activity
occurs only transiently. These transient activities include gamma oscillations (Sullivan
et al., 2011), spindles (Sullivan et al., 2014), and SWR complexes (Buzsaki, 1986; Buzsaki
et al., 1992). SWR episodes have been the focus of enormous attention (the reader is
referred to Buzsaki (2015) for an extensive review), due to their involvement in declarative
memory processes (Girardeau et al., 2009; Nakashiba et al., 2009; van de Ven et al., 2016).

As pointed out earlier in this work, SWR episodes are likely the most synchronous activities
in the brain (Chrobak and Buzsaki, 1994, 1996). When theta-related inhibition from
MS-DB is released in the hippocampus, due to the recurrent nature of the CA3 circuitry,
groups of cells produce irregular, but recurring episodes of highly synchronous activity.
These bursts of activity –associated with gamma-like LFP activity (Sullivan et al., 2011)–
produce a large population-level depolarization in the apical dendritic fields of CA1. The
synchronous, yet massive recruitment of CA1 pyramidal cells and interneurons –with an
estimate of 50000 to 100000 participating neurons– produces a short-lived (50-150 ms)
high frequency oscillation (ca. 150-250 Hz in rodents) known as ripple (Buzsaki et al.,
1992; Csicsvari et al., 1999). SWR episodes are ubiquitous across several mammalian
species, and have been recorded in mice, rats (Buzsaki et al., 1992; Csicsvari et al., 1999;
Sullivan et al., 2011), bats (Ulanovsky and Moss, 2007), rabbits (Nokia et al., 2010), cats
(Kanamori, 1985), monkeys (Skaggs et al., 2007; Logothetis et al., 2012; Leonard et al.,
2015), and humans (Axmacher et al., 2008). This fact has lead to the hypothesis that the
physiological role of these episodes is phylogenetically conserved (Buzsaki, 2015).

In section 1.2, I have discussed that episodic memory is initially encoded in the hippocam-
pus. Furthermore, the structures of the hippocampus may give the brain the ability to
spontaneously retrieve memories. A phenomenon known as replay is thought to underlie
this process. During replay hippocampal cells that were active during previous awake
experience reactivate to form brief snippets of experience-related activity (Wilson and
McNaughton, 1994; Skaggs et al., 1996; Lee and Wilson, 2002). These brief snippets of
activity –in line with theoretical and experimental evidence– must be fast so as to be
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suitable to induce plasticity in neuronal populations of target structures (Euston et al.,
2007). The first demonstration that a spatial-sequence replay occurs simultaneously with
field SWR episodes was established by the study of Lee and Wilson (2002). In their
experiment, rats ran back and forth linear tracks for a reward at each end. During theta,
place cells were selectively activated as the animals traversed the tracks. However, during
off-line periods (i.e. periods of quiescence and SWS) the place cells that fired during
the task were selectively active during SWR episodes, following the same sequence of
place-field activations of the awake experience. This replay, representing an immediate
spatial experience of a rodent, occurs both in the forward and reverse orders in a brain
state-dependent fashion (Diba and Buzsaki, 2007).

The physiological significance of SWR has been demonstrated by several studies, where
selective suppression of SWR episodes was a sufficient condition to impair the animal’s
performance during spatial memory tasks (Girardeau et al., 2009; Nakashiba et al., 2009;
Jadhav et al., 2012; van de Ven et al., 2016; Ego-Stengel and Wilson, 2010; Gerrard et al.,
2008). However, despite the increasing number of studies investigating the role of SWR
and replay, whether memory consolidation and retrieval are a direct consequence of the
SWR phenomenon remains debated (see Carr et al. (2011), Dupret et al. (2010), van de
Ven et al. (2016), Leonard et al. (2015); Leonard and Hoffman (2016)). SWR epochs
form about 10% of the hippocampal LIA during immobility (Buzsaki, 2015), thus, it is
likely that the remaining proportion of activity contributes to encoding and retrieval of
information as well (see Kay et al. (2016)), and that the SWR phenomenon is one part of
(probably the chain of) memory consolidation and retrieval mechanisms.

Recent studies link the occurrence of awake SWR with consolidation of new information.
For instance, van de Ven et al. (2016) found that off-line reactivation is only required when
establishing ensemble patterns representing a novel environment, but not a familiar one.
Furthermore, the reinstatement of the new spatial memory was impaired by suppressing
SWR, but also depended on its initial encoding stage. In another study, Papale et al. (2016)
observed that the occurrence rate of awake SWR diminished after epochs of vicarious trial
and error (VTE), whereas increases of awake SWR rate at reward sites were associated
with decrease in VTE subsequently, at choice points. Furthermore, decreases of VTE with
prevalence of SWR ocurred as animals learned to exploit the learning rule. Altogether, these
studies suggest that SWR that occur during waking –associated with periods of quiescence
or rest at rewarded locations– are important for awake learning processes, whereas already
stabilised memories may not require this mechanism in order to be further strengthened. In
addition, the interplay between theta sequences, VTE and SWR may contribute to states
of deliberation and consolidation processes that could link an experience to its outcome
(Foster and Wilson, 2006; Gupta et al., 2010).
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1.4.5 Neuronal mechanisms of SWR

The underlying neuronal mechanisms of SWR have been the topic of many investigations
(also extensively reviewed in Buzsaki (2015)). However, since the discovery of these transient
episodes (O’Keefe, 1976; Buzsaki, 1986; Buzsaki et al., 1992), these mechanisms are not
well understood. The candidate mechanisms of SWR generation appointed so far by
experimental and theoretical investigations include remote and intrahippocampal network
interactions (Buzsaki et al., 1992; Csicsvari et al., 1999; Sirota et al., 2003; Vandecasteele
et al., 2014), pyramidal neuron-interneuron synaptic interactions (Schlingloff et al., 2014;
Stark et al., 2014), axo-axonal electrical coupling (gap junctions) (Dermietzel and Spray,
1993; Traub and Bibbig, 2000), and ephaptic effects (Ozen et al., 2010; Anastassiou et al.,
2011; Buzsaki, 2015).

There are a series of global circuit mechanisms that permit the emergence of SWR
complexes. These mechanisms include the control of inhibition and glutamate release
within the hippocampus. One of the most extensively studied hippocampal inputs in
relation to this process is that of the MS-DB due to its ability to exert strong influence
on hippocampal neuronal activity (Petsche et al., 1962; Bland et al., 1994; Oddie et al.,
1994). Experimental evidence indicates that cholinergic input to the hippocampus from
MS-DB interferes with SWR emergence. In line with early electrical stimulation and
pharmacological studies (Gray and Ball, 1970; Bland and Bland, 1986; Lawson and Bland,
1993; Oddie et al., 1994), in vivo optogenetic stimulation of MS cholinergic neurons
increases theta oscillations. In addition, this theta enhancement occurs at the expense of a
significant decrease in SWR occurrence even when excitation to septal cholinergic cells is
not sufficiently strong to generate theta (Vandecasteele et al., 2014). Thus, in the absence
of the suppressing effects of distinct neuromodulatory systems –due to the recurrent nature
of the hippocampal circuitry– SWR episodes are ‘released’ in the hippocampus proper. I
discuss the topic of neuromodulatory control of hippocampal circuits more in depth in a
separate subsection of this work (see Subsection 1.6).

SWR-related bursts usually emerge from the CA3a subfield (adjacent to CA2 in the
hippocampus transverse axis), and this synchronous discharge causes depolarization of
CA1 apical dendrites due to CA3c (at the proximal end of CA3, closest to the hilus)
output (Csicsvari et al., 2000). Although this represented the most accepted mechanism of
SWR until very recently, two studies have provided evidence for the role of CA2 in SWR
initiation. Oliva et al. (2016) recorded network and single-cell activity of all structures in
the hippocampus proper (namely, all CA subfields) in vivo, and observed that SWR-related
synchronous activation of CA2 ensembles preceded that of all other CA subfields during
both SWS and waking states. Interestingly, CA2 neurons depolarised the basal dendrites of
CA1 cells that produced an inverse-polarity sharp wave (i.e. a positive field deflection) in
apical dendritic fields of CA1, indicating that different patterns of SWR field activities may
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be co-expressed in CA1 due to the CA2-triggering network. These findings are in line with
those of the first paper of this dissertation, wherein SWR complexes were classified into
distinct putative groups. Notably, I found that one of the groups correspond to a sharp
wave with inverse polarity, whose time-frequency characteristics differ from the ‘classical’
sharp waves reported in other studies.

In addition, a subpopulation of CA2 neurons fires selectively before SWR episodes (Oliva
et al., 2016; Kay et al., 2016). These cells were found in the deep layers of CA2, suggesting
subcircuit anatomical and functional differences (Oliva et al., 2016). Finally, this group of
neurons were suggested to encode location during periods of immobility (Kay et al., 2016).
These observations suggest a role for CA2 during mnemonic processing, and initiation of
SWR episodes.

Experimental observations in trangenic mice suggest that ripples persist after blockade
of CA3 (Nakashiba et al., 2009). However, time-frequency features of CA3-blockade
SWR were largely modified, resulting in a weaker form of oscillation with a lower high
frequency peak (∼110 Hz). Ripple persistence in this scenario leads to the hypothesis
that input may arrive from EC via the TA pathway to the SL-M of CA1, where otherwise
the effectiveness of EC in generating CA1-bursts is limited by CA3 due to the activation
of oriens lacunosum-moleculare (OLM) interneurons during physiological SWR activity
(Buzsaki, 2015).

Another contributor to hippocampal SWR activity may be the subiculum. An in vitro study
–combining electrophysiology and calcium imaging– reported that a subset of subicular
neurons was activated approximately 100 ms before the occurrence of hippocampal SWR
(Norimoto et al., 2013). Surgical resection of the CA1-subiculum projection further revealed
that, while subiculum activities following SWR were abolished, those preceding SWR were
still observed. Altogether, these in vitro data suggest that CA1 circuits may be also
controlled by a subicular-CA1 backprojection, specifically during SWR. However, since CA1
SWR episodes’ rate was not significantly affected upon inactivation of the CA1-subiculum
projection, this input may not be critical for SWR to emerge in the hippocampal network.

The local (CA1) generators of SWR episodes seem to be more controversial than their
remote contributors. The associational CA3 network’s bursting activity is brought to CA1
apical dendrites, wherein a large depolarization can be recorded. What happens in stratum
pyramidale, however, offers more room for debate. The frequency of ripple oscillations in
pyramidal cells is not voltage dependent, suggesting network rather than intrinsic ionic
mechanisms (Ylinen et al., 1995). Several lines of evidence suggest that the interplay
between pyramidal cells and inhibitory cells produces the high-frequency oscillation in CA1.
This excitation-inhibition interaction (E-I model) was suggested by the first experimental
studies and several modeling studies on SWR (Buzsaki et al., 1992; Ylinen et al., 1995;
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Brunel and Wang, 2003; Memmesheimer, 2010). Others, with less popular lines of thought,
argue that ripples may come about by excitation of electrically-coupled pyramidal cells (axo-
axonal gap junctions), while interneurons are relatively passive elements in the rhythmic
discharges (Draguhn et al., 1998; Traub and Bibbig, 2000; Schmitz et al., 2001; Traub
et al., 2012).

Recent experimental evidence offers new insights into the mechanisms of ripple oscillations
in CA1 and CA3 networks. Stark et al. (2014) studied SWR-related CA1 activities
in vivo, whereas Schlingloff et al. (2014) investigated SWR in CA3 in vitro. Although
recordings were done in different hippocampal subfields and experimental conditions, these
studies agreed in many findings. First, both studies concluded that a minimal amount of
excitation is a necessary prerequisite for SWR episodes to emerge. Specifically, Stark and
collaborators observed that SWR-like episodes emerged after applying localised optogenetic
depolarizations to pyramidal cells and interneurons. Second, the role of excitation is
critical, as SWR are aborted upon silencing of pyramidal cells. Third, silencing the
activity of perisomatic interneurons terminates ripples. Notably, this effect was observed by
Schlingloff and collaborators after applying gabazine in vitro, while also observed by Stark
and collaborators by optogenetically silencing parvalbumin (PV)-expressing interneurons.
Thus, ripple oscillations may depend upon a transient regime of synchrony of interacting
pyramidal cells and interneurons. It is hypothesised that SWR underlie both mutual
synaptic inhibition, together with E-I loops. This scenario supports the results obtained in
both studies on the basis of pyramidal cell-related discharges, time-locked and paced by
fast coordinated inhibition, which in turn is ripple-coherent due to the inhibitory-inhibitory
cell connections (Schlingloff et al., 2014). Furthermore, inhibitory-inhibitory synapses may
partly establish the conditions for SWR to emerge upon a transient imbalance of excitatory
activity (Stark et al., 2014; Mizunuma et al., 2014).

Despite the experimental evidence provided by previous studies, it is difficult to establish
a dichotomy between E-I and E-I-I models (for a discussion see Buzsaki (2015)), and to
what extent they are implemented in CA1/CA3 networks (see also the work of Chiovini
et al. (2014), who propose that interneurons have highly resonant firing properties, and
ripples may result from fast dendritic calcium events). Moreover, it is difficult to assess
to what degree silencing interneurons is effective in abolishing SWR, or to what extent
progressively enhanced interneuronal activity would either reduce or enhance ripples and
their physiological time-frequency characteristics.

These questions are investigated in the second paper of this dissertation (Ramirez-Villegas
et al., 2017b). By a series of modeling studies combined with in vivo intracortical data,
we identify frequency-dependent components of SWR. These components rely on network
interactions associated with the incoming CA3 activity onto CA1, and specific firing and
synaptic events of pyramidal cells and perisomatic-targeting interneurons within CA1. Our
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model points to specific neural mechanisms underlying the neurophysiology of peri-SWR
activity, thus establishing a relationship between its LFP and the context of its underlying
network-level activities. The state-of-art controversies on this topic are discussed in the
next subsection of this work.

1.4.5.1 Content of SWR-related LFP

The content of SWR-related LFP –that is asking: what do LFP sharp waves and ripples
represent in terms of underlying neural activity?– remains highly controversial. In general,
fast oscillations in CA1 have stereotypical time-frequency features. These oscillations consist
of brief (∼200 ms) power increases in several frequency bands. Usually, the ‘classical’ SWR
is ascribed to two frequency bands: the sharp wave (<20 Hz) and the ripple (∼150-250 Hz,
in rodents; ∼80-180 Hz in non-human primates). The in vivo distribution of frequencies
in CA3, however, varies reflecting a gamma-like (‘epsilon’) episode (Sullivan et al., 2011;
Oliva et al., 2016). The fact that CA1 and CA3 produce somewhat distinct (and largely
incoherent) fast oscillatory patterns during SWR episodes has led hippocampologists to
theorise possible mechanisms of CA1 sharp waves and ripples. Briefly, the converging
excitatory drive of CA3 over CA1 may be stronger than what CA3 itself can produce
due to collateral-related activity, which could in turn explain the differences in oscillation
frequency.

However, if CA1 ripples are generated de novo after CA3 ripples, the question would
be: how optimal is this strategy for information transfer and coordination between these
hippocampal subfields? In fact, SWR are field episodes, and as such, their power spectral
distribution in the LFP frequencies is largely broad, rather than well-localised. During
most SWR episodes both CA3 and CA1 display a transient, somewhat prominent slow
gamma rhythm (Carr et al., 2012). The observation that this slow gamma rhythm has
an impact in CA1 processing is almost as controversial as its existence, as some authors
have related it to ‘spectral leakage’. However, beyond beliefs, compelling experimental
evidence suggests that SWR-related slow gamma (∼ 30-50 Hz) synchronises CA3 and CA1
and supports memory replay, as CA3-CA1 gamma coherence is predictive of replay quality
(Carr et al., 2012). In addition, gamma may also serve as a clocking mechanism in the
coordination of memory-related activity across the hippocampal network (see also Gillespie
et al. (2016), and Pfeiffer and Foster (2015)).

On the basis of the previous evidence one could expect two main frequency components
conflating in the CA1 SR LFP: a sharp wave deflection and gamma oscillations. Furthermore,
as SWR episodes are release phenomena, it is expected that their associated MUA is elevated.
Ascribed to the high coordination of activity in an exceptionally short time window, the
temporal summation of spiking activity is a significant component in SWR episodes. These
summed events (Schomburg et al., 2012) represent ‘mini-population spikes’ (Buzsaki, 1986),
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and are thought to be responsible for the ‘spiky’ appearance of ripple oscillations.

Furthermore, LFP have been classically associated with synaptic currents in the extracellular
space (Ajmone-Marsan, 1965; Buchwald et al., 1965), to date still used in modelling studies
as a LFP proxy (Taxidis et al., 2012; Mazzoni et al., 2015). Analogously, post-synaptic
currents (PSC) are thought to be a major contributor to the LFP ripple, given the capacity
of summed synaptic events to account for lower LFP frequencies as compared to spikes
(Schomburg et al., 2012). Moreover, synchronised gamma-aminobutyric acid-A (GABA-A)
receptor-mediated currents (therefore inhibitory post-synaptic currents, IPSC) during
ripples may establish a major contribution to the ripple, as ripples are induced even after
blockade of glutamatergic receptors in CA3 (Schlingloff et al., 2014). However, this finding
is seemingly at odds with in vivo and in vitro evidence showing that inhibitory activity
alone cannot produce ripple activity (Stark et al., 2014; Ellender et al., 2010). Both in vivo
and in vitro results can be explained on the basis of a network effect involving the action
of CA1 pyramidal cells. For instance, due to the incoming activity from CA3, pyramidal
cells in CA1 also generate coordinated excitatory post-synaptic currents (EPSC), and CA1
pyramidal cell EPSC contribute to the discharge of inhibitory interneurons.

Although the contribution of these EPSC to the ripple LFP signature is unclear on the basis
of the existent experimental evidence, they may well be a component of ripple oscillations.
In fact, we investigated this question in the second paper of this dissertation, and we show
that not only IPSC due to interneuron activity, but also EPSC onto interneurons by local
pyramidal cells underlie ripple activity. Our results in a way challenge common beliefs,
as interneuronal activity produces a pacing rhythm to the pyramidal cell’s membrane
potentials and constrains the number of SWR-participating cells in CA1. This control of
participation is at the same time further enforced by the action of EPSC onto interneurons
(Ramirez-Villegas et al., 2017b).

1.4.5.2 Inhibitory activity during SWR

SWR activity is controlled by the rapid activity of interneurons. Interneurons in the CA1
subfield are extremely diverse (for extensive reviews the reader is referred to Freund and
Buzsaki (1996), Klausberger and Somogyi (2008), and Somogyi et al. (2014)), albeit they
represent ∼11% of the total CA1 cell population (Andersen et al., 2006). As discussed in
the previous subsection, interneurons present a major contribution in shaping the circuit
dynamics during SWR. These contributions partly establish the recruitment pyramidal
cells, and the temporal structure of pyramidal cell firing (Buzsaki, 2015).

The firing of interneurons during SWR is largely dependent on the interneuron subtype.
Amongst hippocampal interneurons, the peri-somatic basket cell has been the most studied
subtype. Similar to peri-somatic basket cells, bistratified cells increase their discharge
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probability sharply during SWR. In contrast, PV-expressing axo-axonic cells and OL-M
cells are largely suppressed during SWR, yet with augmented discharge probability at the
beginning and the end of and SWR event. The suppression of the interneuron subtypes
may provide pyramidal cells with increased excitability necessary for SWR to emerge
and impact target structures (Mizunuma et al., 2014; Ellender et al., 2010), while their
activation may be related to the control of the circuit and SWR emergence over large time
scales (Ellender et al., 2010).

In a recent work, Varga et al. (2014) investigated the impact of distinct subpopulations of
CA1 interneurons in the dynamics of low- and high-frequency oscillations. Their study
suggested that basket, axo-axonic and bistratified cells could be clustered into multiple
functional sub-classes on the basis of their activity, which segregated along specific features
of dendritic structure and somatic location. Notably, ‘fast ripples’ (ripple episodes of
higher frequency peak) were generated upon the selective activation of a specific functional
subtype of bistratified cell, as opposed to basket cells which participated virtually during
every SWR. In addition, a subclass of axo-axonic cells (with somatic location in CA1
SO) showed prominent activity during SWR. The distinct interneuron types established
a rich repertoire of LFP-spike relationships during ripples, highlighting their consistent
rhythmicity (Csicsvari et al., 1999). Overall, this evidence suggests that SWR may be
highly heterogeneous. This heterogeneity may be a result of differential modulation of
subcircuits of interneurons via local or extra-hippocampal inputs (see also the first paper
of this thesis, Ramirez-Villegas et al. (2015), where we discovered that SWR episodes come
in multiple, possibly functionally distinct subtypes).

In addition, there are other subtypes of interneurons thought to contribute to SWR bursts,
but not much is known about them. Basket cells expressing cholecystokinin (CCK) are also
perisomatic. However, unlike PV-expressing basket cells, CCK cells fire at low discharge
rates during SWR, yet they may contribute to pyramidal cell auto-desinhibition (Buzsaki,
2015). So-called ivy cells also present slow discharge rate that appears unaffected during
SWR. Finally, a small group of cells expressing endogenous opioid encephalin (ENK) do not
fire during SWR but exhibit rebound during post-ripple suppression, possibly contributing
to the post-SWR hyperpolarisation (English et al., 2014; Hulse et al., 2016).

Finally, interneurons with long-range axons are thought to control extra-hippocampal
input during periods of LIA by suppressing interneuron targets in the MS, hippocampus,
subiculum and retrohippocampal areas (Klausberger and Somogyi, 2008).
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1.5 Electrical signatures of hippocampal activity. Part II: Beyond
rodents

So far we have reviewed the patterns of electrical activity expressed in the hippocampus of
rodents. Although much less is know about non-human and human primates, several studies
have shown that the general correlates of hippocampal activity in these species follows
similar patterns as that of the rodents. For instance, SWR are observed in both monkeys
and humans (Axmacher et al., 2008; Le Van Quyen et al., 2008; Staresina et al., 2015;
Logothetis et al., 2012), presenting similar cell discharge patterns, but slightly different
LFP time-frequency characteristics such as the high-frequency power spectral density peak
(Logothetis et al., 2012). On the basis of these qualitative similarities, several investigators
have hypothesised that patters of hippocampal activity in primates imply underlying
mechanisms similar to those found in rodents.

1.5.1 Neural correlates of exploratory behaviour: theta rhythm revisited

When I introduced the term theta in this thesis, it was done in the context of rodent
navigation (locomotor state). However, theta oscillations have been ascribed to a number
of other behavioural states in other animals species. Early studies in cats (Bennet et al.,
1973; Bennet, 1970) indicated that the activity of the hippocampus during waking was
dominated by LIA (desynchronisation), except when the animals displayed ‘orienting’
responses, including periods dominated by visual or olfactory search, and other so-called
investigative behaviours. Task-related theta activities were related to attention to cues
required for task exploitation. Thus, depending on the animal species, theta can be a
highly transient event-like low-frequency oscillation (Bennet et al., 1973), or a sustained
oscillatory regime. In fact, there is no consensus on both the behavioural correlates, and
the significance of theta across animal species (Buzsaki, 2002),

The hippocampal circuits of the primate and the dominant rodent model have similar
connectivity between substructures as well as between neuronal types (Andersen et al., 2006).
However, several differences persist between primates and rodents. A notable example
of these differences is that primates do not necessarily require ambulatory behaviour to
explore their environment. Indeed, human and non-human primates are visual animals
par excellence. This fact probably leads to multiple functional differences expressed in
the macroscopic dynamics of the brain, from the activity of subcortical structures that
lead to hippocampal synchronisation to primary and associative cortical structures. For
example, like in the cat, theta-related field activities are observed during visual exploratory
behaviours in monkeys. Jutras et al. (2013) investigated the neuronal activity of the
hippocampus of macaques during visual exploration. As monkeys freely observed novel
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images, a theta-band (3-12 Hz) pattern of activity was present in the hippocampal field
recordings. Notably, these theta oscillations were not sustained, but rather transient
event-like activities, and were predictive of stimulus coding. These results indicate that
the activity of the hippocampus, in addition to visual sensory and associative areas may
act in concert to support nmemonic processing in macaques.

Theta oscillations have been observed in the field activity of the macaque hippocampus
during anaesthesia (Stewart and Fox, 1991), and more recently during awake behaviour
(Leonard et al., 2015). Transient bouts of theta oscillations have been also observed in
humans during virtual spatial nagivation tasks (Ekstrom et al., 2005; Vass et al., 2016;
Aghajan et al., 2016).

1.5.2 SWR and hippocampal-cortical communication

In section 1.4.4, I discussed the behavioural significance of SWR activity at a system level,
in light of current hypotheses of consolidation and recall of spatial memories in rodents
(Carr et al., 2011). Several investigators have tried to address whether similar processes
govern memory consolidation in non-human primates. The occurrence of SWR complexes
in the hippocampus of primates suggests that these events may have similar roles in such
animal species.

Intracortical recordings in behaving macaques have been performed during visual explo-
ration in a recent study in order to advance our current understanding of the activities
of hippocampal circuits during the occurrence of SWR, together with their associated
behavioural correlates (Leonard et al., 2015). This study shows that SWR occur across
distinct behavioural epochs, namely visual exploration (during which the animals are
required to find and select a target object in a visual scene), quiescence (periods with
no sensory stimulation, including SWS) and quiet wakefulness (inactive periods during
wakefulness). In line with rodent investigations, these episodes are observed during epochs
during which the theta rhythm is absent. Furthermore, SWR were shown to occur when
the animal performs visual search.

Exploration-SWR in macaques have similar visual and power-spectral density characteristics
as compared to SWR observed during quiescence and immobility. These episodes selectively
occur at points where memory recall may be required, as suggested by the demonstration
that SWR occur more often when the animals look at familiar scenes as compared to
novel scenes (Leonard and Hoffman, 2016). Overall, these data suggest that SWR may be
instrumental for solving visual-memory tasks in primates, possibly indicating periods of
memory recall, or consolidation processes that could link a visual experience to reward
(Papale et al., 2016).
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Post-experience reactivation of neuronal ensemble activities in hippocampus and neocortex
has been hypothesised to underlie systems memory consolidation (Wilson and McNaughton,
1994; Kudrimoti et al., 1999; Skaggs et al., 1996). Yet, it is unknown how consolidation-
related information is transferred to neocortical ensembles. If the functional organisation
of memory emerges from the concerted activity of several brain areas occurring at multiple
spatio-temporal scales, its operational principles may be better understood on the basis of
the relationship between global and local dynamical aspects of its operations. For instance,
for a recently acquired memory, neocortical reactivation tends to follow hippocampal
reactivation (Wierzynski et al., 2009). Yet, this relationship may change for SWR involved
in memory retrieval (e.g. modulating a coordinated top-down process prompted by high-
order neocortical areas). These aspects could only be mapped on the basis of global
neocortical activities.

The study of Logothetis et al. (2012) offers a glimpse into the complexity of the brain-wide
correlates of SWR in primates. Through a novel experimental methodology combining
concurrent multi-site hippocampal recordings and whole-brain fMRI, Logothetis and
collaborators investigated the regions of the macaque brain whose activity is modulated
during the occurrence of hippocampal neural events. Remarkably, during SWR –unlike
gamma or high-gamma episodes– a large portion of the neocortex, including visual and
associative areas, is activated, while subcortical structures including most diencephalic,
midbrain and brainstem reagions are consistently deactivated (Logothetis et al., 2012).
In addition, the metabolic responses of neocortical and subcortical structures displayed a
variety of time lags, suggesting anti-causal relationships with hippocampal SWR-related
activities. That is, the remarkably concerted and consistent set of brain activations
during SWR is correlated with, but not necessarily an effect of SWR. Furthermore, the
interpretation of peri-event BOLD signals is not straightforward, yet it is likely correlated
with general decreases or increases in MUA of the local circuits, which again deserve careful
consideration. For instance, overall decreases in MUA may give rise to interactions that are
highly selective at the microcircuit level, rather than corresponding to an overall neuronal
‘shut-down’ (Logothetis et al., 2012; Logothetis, 2015).

1.6 Brainstem origin of the hippocampal electrical potential

To understand how subcortical networks modulate hippocampal activity, and how these
interactions may contribute to learning and memory, it is important to grasp some basic
details on the synaptic connectivity, patterns of activity, and how upon manipulation of
some subcortical nuclei, the activity of the hippocampus changes from a synchronised state
to a desynchronised one, and vice-versa. For extensive reviews on these matters, the reader
is referred to Bland and Oddie (1998); Vertes (1982); Vertes et al. (2004).
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The activity of the hippocampus depends largely on the activity of extra-hippocampal
regions, whose synaptic inputs often synchronise hippocampal activity. A major component
of these projections –mostly, part of the ascending cholinergic system in the brain– is a
polysynaptic pathway originating in the pontine region, and terminating in the MS-DB. As
emphasised earlier, the MS-DB distributes inputs to the hippocampal formation inducing
rhythmic theta oscillations on its targets under certain conditions.

Hippocampal synchronisation or theta has been observed during locomotion, paradoxical
sleep, and anaesthesia. The origin of the ascending brainstem-hippocampus pathway is
thought to be located in a subcortical structure known as nucleus reticularis pontis oralis
(RPO). Experimental evidence suggests that electrical stimulation of the RPO is effective in
generating theta oscillations in the hippocampus (Green and Arduini, 1954; Macadar et al.,
1974; Vertes, 1981). The contribution of RPO to the ascending hippocampal-synchronisation
pathway has been confirmed by pharmacological studies using the cholinergic agonist
carbachol (Bland et al., 1994). As a consequence of the enhanced activity of septal
theta-on cells upon RPO carbachol microinfusions, disruption of hippocampal LIA is
observed simultaneously with an increase of theta field activity. Notably, stimulation to
the pedunculopontine tegmental nucleus (PPT) via carbachol can also elicit hippocampal
theta activity (Vertes et al., 1993).

In a similar vein, posterior hypothalamic (PH) cells in the caudal diencephalic area display
augmented discharge with stimulation of the RPO. Notably, the discharge patterns of PH
cells seem to be largely irregular during hippocampal LIA (Kirk et al., 1996). During
stimulation-induced theta, however, PH cells discharge in a regular, tonic manner, unlike
that of SuM and medial mammillary nucleus (MM). Finally, unlike MM, SuM and PH
cells display theta-related activity even after septal procaine infusion, indicating that the
last structures are part of an ascending pons-hippocampus synchronising system, and may
receive limited septal backprojections (Kirk et al., 1996).

1.6.1 The supramammillary (SuM) nucleus

The SuM nucleus is a central piece in the synchronisation of hippocampal activity as
demonstrated by pharmacological and electrical stimulation studies. Microinfusion of
procaine into the SuM nucleus reversibly abolishes both spontaneous and RPO electrical
stimulation-induced theta (Oddie et al., 1994). Procaine microinfusion into the SuM
nucleus also results in reduction of the hippocampal field potential amplitude during LIA
(Oddie et al., 1994).

The SuM nucleus can also exert a direct effect upon its hippocampal targets, namely
CA2/CA3a and DG (Vertes, 1992). For instance, Ohara et al. (2013) studied first-order



44

inputs to DG, and showed that its major afferents originate in the SuM, MS-DB nuclei, and
EC. Ohara et al. (2013) also showed that medial SuM nucleus mainly projected to ventral
DG, and the lateral SuM nucleus to the dorsal part of DG. The SuM-DG projection is both
excitatory (glutamatergic) and inhibitory (GABAergic). Finally, SuM nucleus efferents are
thought to be almost exclusively to hippocampal principal cells (Magloczky et al., 1994).

Overall, this evidence suggests that the SuM nucleus receives projections from brainstem,
upon which theta-related rhythmicity is generated. SuM, in turn strongly targets the
MS-DB, driving septal pacemaking cells (theta-on cells) which drive hippocampal theta
(Pan and McNaughton, 2004). Furthermore, the direct and second-level SuM-hippocampal
projections may have differentiated roles in encoding of information as well as off-line
memory reactivation and consolidation.

1.6.2 Hippocampus under neuromodulation

Other than projections arising from the brainstem cholinergic system, the hippocampus
has direct and relatively dense noradrenergic, serotonergic and dopaminergic innervation
(Andersen et al., 2006). In general, neuromodulators mediate changes to network excitation-
inhibition balance, whose effects control the activity of neural circuits to encode and transfer
information (Zaldivar et al., 2014; Zaldivar, 2016), and are involved in processes such as
memory reactivation, consolidation, as well as awake retrieval (Atherton et al., 2015).

Neuromodulation is known to have both tonic and fast (phasic) effects on both hippocampus
and cortex. For example, neurons in the locus coeruleus (LC) exhibit both phasic and tonic
modes of activity, where phasic activation has been associated with task-related decision
processes, with typical latencies of 15 to 70 ms, followed by a 300 to 700 ms period of
suppression of discharge activity (Aston-Jones and Cohen, 2005). It follows that levels of
extrasynaptic norepinephrine (NE) are linearly related to LC discharges (Berridge and
Waterhouse, 2003; Huang et al., 2007).

A recent study on the effects of neuromodulation on hippocampal circuits, reports that
upon phasic LC stimulation during ripples, both ripple and cortical spindles were transiently
suppressed (for ∼1 to 2 s). Suppression of ripples via ripple-triggered LC stimulation
consistently lead to learning deficits (Novitskaya et al., 2016). This evidence suggests
that hippocampal circuits can be controlled by rapid LC responses. In an in vitro study,
Ul Haq et al. (2012) investigated the noradrenergic system influence on hippocampal
circuits and network events. Through the application of NE, both spontaneous and
high-frequency stimulation-induced SWR episodes were reversibly abolished. Suppressed
SWR activity was paired to the activation of α1 adrenoreceptors. However, SWR rates
and amplitude increased with stimulation of β1 adrenoreceptors via isoproterenol. These
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effects caused reduction on the amplitude of IPSP in cells that were silent during SWR.
In addition, the slow after-hyperpolarisation of pyramidal cells during SWR (English
et al., 2014) was reduced, which may be also associated with increased depolarisation and
input resistance of CA3. Altogether, these data suggests that LC may have differentiated
effects on hippocampal circuits across different brain states, associated with enhanced or
reduced SWR activity, and possibly serving during information coding and memory-related
functions (see also Eschenko and Sara (2008)).

The raphe nucleus is also important for regulating hippocampal activity, and likely also
mnemonic processing in this area. In a recent work, Varga et al. (2009) showed that
selective stimulation of raphe contacts in interneuronal dendritic fields evoked EPSP of
large amplitude and latencies in the order of ∼3 ms. Then, via electrical stimulation
of serotonergic median raphe-hippocampus-projecting neurons, the authors found that a
subset of raphe cells responded with latencies of less than 10 ms, while another subset
responded with latencies in the order of tens of milliseconds, subsequently activating
hippocampal interneurons.

Thus, it is likely that raphe nucleus acts selectively on hippocampal interneurons to
regulate hippocampal network activity (e.g. by silencing SWR-related ‘release’ circuits)
with a subsequent impact on memory reactivation and consolidation (Wang et al., 2015;
Ul Haq et al., 2016). Finally, although highly speculative, the raphe nucleus may also
regulate hippocampal activity with net effects that enhance SWR activity, rather than
just silencing (Ellender et al., 2010). It is possible that fast ripple activity –during which
some interneuronal groups participate selectively (Varga et al., 2014)– is mediated by the
extrahippocampal influence of the raphe nucleus (see also the first two papers of this thesis
Ramirez-Villegas et al. (2015); Ramirez-Villegas et al. (2017b)).

The hippocampus receives projections from dopaminergic neurons in the ventral tegmental
area (VTA), substantia nigra, and LC (Gasbarri et al., 1994). VTA neurons exert elevated
firing in relation to reward or reward-predicting stimuli, and during exposure to previously
unexplored enclosures (McNamara et al., 2014). Hippocampal neuronal ensembles are
more SWR-reactivated after exploration of a new environment (Cheng and Frank, 2008;
McNamara et al., 2014), and after rewarded tasks (Singer and Frank, 2009). This evidence
is likely linked to the idea of a selective neuromodulatory influence in hippocampal circuits
not only may relate specific decisions with their potential outcome (Papale et al., 2016), but
also also bear several information-coding implications (Gupta et al., 2010). Concordantly,
inhibition of VTA using pharmacological manipulations impairs CA1 place-cell stability
(Martig and Mizumori, 2011). Overall, this evidence suggests that VTA dopamine release
enhances hippocampal activity, and thus facilitate synaptic plasticity, which may be
instrumental to stabilise hippocampal memory representations.
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The specific effects of neuromodulatory activity on hippocampal SWR occurring during
awake experience are unknown. SWR may be instrumental for stabilization of memory
traces of locations of the visual/traversing field with particular behavioural relevance, due
to their associated reward or stimulus properties, in line with previous studies in rodents
during spatial exploration (McNamara et al., 2014; Gomperts et al., 2015). Whereas
this hypothesis may appear conflicting with the common assumption that consolidation
is performed during off-line states (but see van de Ven et al. (2016)), the possibility
remains that ‘short-lived off-line states’ are elicited by rapid actions of neuromodulatory
centres (see also Ramirez-Villegas et al. (2015)). For instance, a proportion of VTA neurons
increases firing during SWR episodes during quiet wakefulness, and these increases diminish
during SWS, suggesting that VTA neuromodulation over hippocampal circuits may have
contributions to memory functions in a state-dependent manner (Gomperts et al., 2015).

1.7 Rapid-eye-movement (REM) sleep

Beyond its phenomenological description, the emergence of distinct neural events during
REM sleep has motivated a growing body of research to establish their role in cognitive
processes (Datta, 1997, 2006; Pace-Schott and Hobson, 2002). Are REM sleep-associated
neuronal processes necessary for the formation of new memories, reactivation and retrieval?
Selective inactivation of the brainstem-hippocampus synchronising pathway during REM
sleep provides insight into these questions (Boyce et al., 2016; Mavanji and Datta, 2003;
Mavanji et al., 2004). Thus, we find important reasons to study the physiological activity
of the brain during REM sleep and to examine its putative computations.

REM sleep has been considered a paradoxical brain state (hence my deliberate usage of the
term in this work, after Michel Jouvet). Despite being a state of high behavioural threshold
to arousing external stimuli, forebrain neural activity resembles that of waking states
(Jouvet, 1965). Indeed, initial studies suggested that this brain state is highly active due
to its correlation with EEG fast neocortical activity, subcortical activation, and dreaming
(Datta and MacLean, 2007).

REM sleep is characterised by low-amplitude, fast cortical activity, also referred to as
EEG activation (Jouvet and Michel, 1959; Jouvet et al., 1959b,a). There are a series of
characteristics that make paradoxical sleep a very striking phenomenon. For example,
paradoxical sleep is dominated by muscle atonia with occasional muscle twitches. The
retained high tone of ocular muscles is tightly related to the generation of clusters of
REM in the electrooculogram. Apart from these physiological signs, there are two signs of
brain electorphysiological activity that correlate with the occurrence of paradoxical sleep:
first –as pointed out previously in this dissertation– the theta rhythm is ubiquitous in the
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hippocampal fields (Jouvet and Michel, 1959; Jouvet et al., 1959b,a) and that of related
extrahippocampal structures (Buzsaki, 2002; Bland and Oddie, 1998). Second, spiky field
potential waves can be recorded from the pontine region of rodents, cats, human and
non-human primates. These potentials are observed simultaneously in the LGN, and the
occipital cortex, and are therefore termed pontogeniculooccipital (PGO) waves (Jouvet and
Michel, 1959; Jouvet et al., 1959b; Datta, 1997), reviewed in the next section of this work.

The mechanisms that determine the shift between predominantly external inputs during
waking, to predominantly internal inputs during sleep remain unknown. However, the
states of waking, non-REM sleep, and paradoxical sleep rely on the activity of brainstem
structures (Hobson, 2009). Generally speaking, the brainstem dictates the activity of
forebrain structures by modulating the extent of their activities at a given state. In this
sense, both cholinergic and aminergic (catecholaminergic, serotonergic, and histaminergic)
tones are high during waking and reduced during non-REM sleep. During REM sleep,
however, cholinergic tone is high, co-occurring with aminergic demodulation (Pace-Schott
and Hobson, 2002; Hobson, 2009).

The cellular mechanisms underlying paradoxical sleep are believed to involve a reciprocal
interaction between aminergic and cholinergic neurons (Leonard and Llinas, 1994; Sakai and
Koyama, 1996). Since the pontine aminergic system is highly active during waking, part of
the cholinergic PPT may be inhibited by this action. During paradoxical sleep excitatory
cholinergic-non-cholinergic interactions may enhance the firing of PPT cells. At the same
time, inhibition of LC and raphe is attained by GABAergic mechanisms, contributing to
the release of a proportion of PPT cells from aminergic suppression (Gervasoni et al., 2000;
Nitz and Siegel, 1997).

Experimental evidence suggests that the PPT is causally involved in generating both wake-
fulness and REM sleep (Datta and Siwek, 1997). In line with this suggestion, approximately
60% of the PPT cells are active during both wakefulness and paradoxical sleep, whereas
the remaining group are REM-on cells or wake-on cells. Notably, most PPT cells are active
right before waking, and remain active until few seconds before the end of wakefulness
(Datta and Siwek, 1997).

The temporal organisation of wake, non-REM and REM sleep episodes is highly complex,
and remarkably different across animal species. These brainstem-orchestrated cycles of
activity can impact the excitability of cells across all structures of the brain. Concor-
dantly, recent experimental evidence suggests that non-REM episodes are associated with
progressively increasing firing rates of pyramidal cell and interneuron populations in the
hippocampus. This progressive increase is interrupted by the appearance of REM sleep,
where firing rates are largely decelerated (Grosmark et al., 2012; Montgomery et al., 2008).
On the basis of this large-scale sawtooth pattern, preceding REM-related theta activity
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power correlates with a subsequent increase in population synchrony during non-REM.
Notably, SWR-related synchrony is increased from the early to the late stage of non-REM
sleep (Grosmark et al., 2012).

Another important observation is that acetylcholine release in thalamus is highest dur-
ing waking and REM, and minimum during SWS (Williams et al., 1994). Conversely,
coordinated thalamo-cortical spindles are prominent during SWS, in contrast with the
activated state (Steriade et al., 1985, 1987). Hippocampal REM-theta –although with a
similar field signature– is fundamentally different to sleep spindles (Sullivan et al., 2014).
In addition, theta during REM is also different to theta during waking experience. REM-
theta is characterised by higher theta- and gamma-synchrony between DG and CA3, and
lower gamma-synchrony between CA3 and CA1 subfields, as compared to waking-theta
in rodents (Montgomery et al., 2008). Overall, this evidence suggests that brain activity
during paradoxical sleep is markedly different to that of SWS, and notably, to that during
waking despite the similar cholinergic activation.

1.8 Pontogeniculooccipital (PGO) waves

PGO waves have stood as one of the most striking phenomenological aspects of REM
sleep. PGO waves have been related to multiple putative functions such as sensorimotor
integration, development of the visual system, and learning and memory (Datta, 1997).

PGO waves are phasic potentials co-occurring in the pontine region (ponto), the lateral
geniculate body (LGB) (geniculo), and the occipital cortex (occipital). PGO waves are
biphasic potentials, with a centre frequency of approximately 10 Hz (∼100 ms duration)
and amplitude of 200-300 µV Datta (1997). To date, they have been observed in other
regions of the neocortex and thalamus (Brooks, 1968; Hobson, 1964), oculomotor nuclei
(Brooks and Bizzi, 1963), and the cerebellum (Jouvet, 1965). So far, all studies acknowledge
the pontine region as the ultimate generator of PGO waves (for review see Datta (1997)).

PGO waves are widespread phenomena. Namely, they co-occur across many regions of the
brain. This fact suggests that their occurrence can influence the activity of many brain
subsystems, and therefore PGO waves may be involved in cognitive processing. Classically,
PGO waves have been studied mostly in cats (Jouvet and Michel, 1959; Jouvet et al.,
1959b,a). However, they consistently appear in recordings from non-human (Cohen and
Feldman, 1968; Feldman and Cohen, 1968; Vuillon-Cacciuttolo et al., 1978), and human
primates (McCarley et al., 1983; Fernandez-Mendoza et al., 2009; Lim et al., 2007). Later
studies identified PGO-like waves in rats (Reiner and Morrison, 1980; Marks et al., 1980a;
Farber et al., 1980), which were also observed in subsequent rodent studies both in the
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pons (Datta, 2000; Karashima et al., 2004), and cerebellum (Marks et al., 1980a,b).

PGO waves exhibit a striking variability which seems largely sleep-stage dependent. Several
classical studies suggested that PGO waves come as singlets (singlet PGO waves), or as
clusters containing bouts of several waves in very close temporal proximity (Datta et al.,
1992; Morrison and Pompeiano, 1966). Singlet PGO waves occur during SWS, whereas
clustered ones usually occur during REM sleep. Several observations have led to the
speculation that these two types of activities are different in their physiological nature.
First, singlets are seemingly independent of eye movements, whereas clustered PGO waves
are associated with eye movement bursts (REM) (Morrison and Pompeiano, 1966). Second,
inactivation of vestibular nuclei (sending monosynaptic input to PGO-wave triggering
neurons) abolishes bursts of REM and type II PGO wave activity, while facilitating type I
PGO wave activity with consequent reduction of desynchronized sleep periods (Morrison
and Pompeiano, 1966). Third, pharmacological manipulations upon PGO-generating
circuits via carbachol enhance the activity of cholinergic and PGO burst cells. This
evidence indicates that REM and associated clustered PGO activity may be specifically
mediated by endogenous release of acetylcholine (Datta et al., 1992). Similar effects have
been encountered in experimental preparations by other authors (Quatrochi and Hobson,
1999; Denlinger et al., 1988).

PGO waves are related to episodes of similar electrical signature in the basolateral amygdala,
anterior and posterior cingulate gyrus, dorsal hippocampus, anterior ventral thalamic
nucleus, and sensory motor cortex in the cat brain (Calvo and Fernandez-Guardiola, 1984;
Hobson, 1965). The nature of these potentials is unknown, but may be associated with
the emergence of diverse neuronal events. For instance, paradoxical sleep PGO waves are
associated with, and are known to exert synchronising effects over theta oscillations in
the hippocampus of cats (Karashima et al., 2005), and the hippocampus and amygdala of
rodents (Karashima et al., 2001, 2002, 2004, 2010). Specifically, the appearance of PGO
waves correlates with increases in the amplitude and frequency of theta (Karashima et al.,
2004).

Establishing an equivalence between the sustained theta activity of rats and a correlate in
the primate is a challenging task, as the presence of theta in hippocampal recordings of the
macaque remains debated (see Section 1.5.1 of this thesis). However, I hope to convince the
reader after the third paper of this thesis, that a low-frequency event type (also reported
in Logothetis et al. (2012) under the name of hp-sigma) presents similar correlates to
rodent theta activity. These theta-like episodes co-occur with paradoxical-sleep PGO waves
in a synchronous manner, following similar time courses. Thus, it is possible that the
events observed by Calvo and Fernandez-Guardiola (1984) in cats are indeed bouts of theta
oscillations as they similarly occur in awake monkeys (Leonard et al., 2015; Jutras et al.,
2013), and monkeys under sleep-like conditions (Logothetis et al., 2012; Ramirez-Villegas
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et al., 2017a).

Furthermore, there is no evidence relating SWS PGO waves to the dynamics of forebrain
structures such as the hippocampus. As pointed out earlier, the activity of the hippocampus
during SWS and REM is markedly different, and therefore the mediating (or modulating)
role of PGO waves in this sleep stage over hippocampus may be different to that of
REM-related PGO waves. These activities may serve distinct putative memory-associated
functions. These questions were addressed in the third paper of this thesis (Ramirez-Villegas
et al., 2017a). We show that PGO waves co-occur with hippocampal SWR complexes, as
well as theta-like events in the hippocampus of macaques. These events –although with
similar LFP frequency profiles– are associated with markedly opposite neuronal population
responses across pontine, thalamic and hippocampal regions. Notably, these responses may
correlate with signatures in the global activity of the brain as suggested by earlier work
(Logothetis et al., 2012).

In line with the foregoing, both SWS and REM may be highly favorable states for memory
integration and consolidation of memories (Datta, 2006; Boyce et al., 2016). Similar to
SWR complexes during SWS, the density of PGO-like episodes during post-training REM
in the rodent correlates positively with consolidation, and recall of the learning task (Datta,
2000). The period of transition between SWS and REM is also reported to augment
significantly, together with PGO wave density and time spent in REM during after-learning
sleep (Datta, 2000).

PGO waves have been also reported to boost retention of learned information. Mavanji
and Datta (2003) studied the activity of the pontine region of the rat in relation to
an avoidance task. After learning, a subgroup of animals were administered with a
pontine carbachol injection. Upon this manipulation, REM sleep-related PGO-like episodes
increased significantly above that in control animals, together with a significant improvement
in task performance (Mavanji and Datta, 2003). Similarly, REM sleep deprivation is
correlated with learning deficits in similar learning paradigms, and these deficits can be
prevented by selective activation of the PGO-wave brainstem generator (Datta et al.,
2004). In addition, learning deficits can also be induced when PGO potentials –but not
REM sleep itself– are pharmacologically suppressed (Mavanji et al., 2004). Overall, these
studies suggest that REM sleep, and specifically PGO waves may have a boosting role in
consolidation and integration of memories.

1.8.1 Pontine triggering, transfering, and SWS-selective neurons

PGO wave generation relies on the activity of two different subgroups known as triggering
and transferring neurons. These groups of neurons are located within the parabrachial area
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(PBL). Anatomically, the PBL contains the PPT, the laterodorsal tegmentum, cuneiform
nuclei, and other adjacent nuclei (Datta, 1997).

The PGO-wave triggering elements are located in the caudolateral PBL (C-PBL). This
conjecture comes from the fact that most of C-PBL neurons firings precede the onset of
PGO waves (Datta and Hobson, 1994), and that these neurons’ firing precede that of PBL
cells in the rostral part of the nucleus (R-PBL) (Nelson et al., 1983; Steriade et al., 1990b).
In addition to an increase in REM PGO waves upon carbachol injections in C-PBL (Datta
et al., 1992), lesions to C-PBL eliminate PGO waves in the LGB (Shouse and Siegel, 1992;
Datta and Hobson, 1995).

There is also a group of PBL neurons that is selectively active during SWS. Using immuno-
histochemical techniques, Torterolo et al. (2011) observed a group of cells located in the
C-PBL region selectively active during SWS. This cell cluster was neither cholinergic, nor
(catechol-) aminergic. Rather, the group of cells was ca. 50% GABAergic. In this study,
the number of SWS-immunoreactive PBL cells in their study was positively correlated
with the time spent in SWS by the animals. Whether these activities are associated in
particular with PGO waves is unknown. Yet, although highly speculative, this group of
cells –strikingly located in the PGO-triggering zone– may act in concert with other brain
areas during SWS-associated neural events.

Neurons of the R-PBL –likely both cholinergic (Datta et al., 1992), and catecholaminergic
(Vincent et al., 1986)– are thought to transfer PGO-related activity to the thalamus (Nelson
et al., 1983; Steriade et al., 1990b). During PGO-associated potentials R-PBL responds
with short latency to the discharge of C-PBL neurons (Datta, 1995). The subsequent chain
of depolarisations is thought to occur through long-range connections to the thalamus and
several forebrain structures (Steriade et al., 1990b,a; Datta and Hobson, 1994; Datta et al.,
1989; Ahlsen, 1984; Isaacson et al., 1986; Hallanger et al., 1987).

In summary, PGO activity is controlled by the interaction of several brainstem structures,
likely generated by C-PBL triggering elements, and modulated by aminergic, cholinergic
and GABAergic mechanisms, in addition to inputs from vestibular nuclei (Morrison and
Pompeiano, 1966; Datta and Hobson, 1994).

1.8.2 PGO waves and thalamo-cortical spindles

In this subsection I shall briefly introduce thalamo-cortical spindles. As it is customary,
spindles and related thalamic rhythmic activities can be explained in the context of PGO
waves, and the activation of brainstem cholinergic elements.
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The activity of the thalamus –as likely other forebrain areas– is controlled by brainstem
inputs. PGO waves in thalamus and neocortical EEG activation occur with the suppression
of spindle-generating mechanisms (Hu et al., 1989a,b) which are at play exclusively during
SWS. Thalamic neurons receive direct cholinergic excitation from mesopontine cholinergic
nuclei. Elicited by stimulation of cholinergic receptors, thalamo-cortical cells undergo a
process of disinhibition consequent to the hyperpolarisation of reticular thalamic neurons
(Hu et al., 1989a,b; McCormick and Prince, 1986). As reticular thalamic neurons have
been ascribed a pace-making role during spindle activity, tonic inactivation of these cells
abolishes spindles. Together with hyperpolarisation of reticular neurons, mesopontine
cholinergic neurons also activate thalamocortical neurons, which consequently depolarise
widespread cortical targets (Steriade et al., 1990a). Thus, activated neocortical activity is
fast and has low amplitude at the population level. A similar set of mechanisms may be
in action during arousal, during which the cholinergic tone is also high, and may act in
synergy with activities of other brainstem neuromodulators such as the LC (McCormick
and Prince, 1988).

As opposed to REM, SWS is a brain state of low cholinergic tone. During this state,
neocortical slow oscillations (<1 Hz) correlate with recurrent, coordinated and abrupt
transitions of neuronal activity from a hyperpolarised state (often referred to as down state,
to a depolarised state (often referred to as up state) (Steriade et al., 1993a). Rhythmic
shifts of activity between down and up states have also been observed in striatal (Stern
et al., 1997), hippocampal (Ji and Wilson, 2007), and thalamic neurons (Steriade et al.,
1993b,a; Timofeev and Steriade, 1996). In classical studies, the down-to-up state transition
was often observed to occur in the form a ‘sharp potential’, referred to as K-complex.
K-complexes contribute to both slow oscillations, and delta rhythms.

Spindles –highly oscillatory low-frequency (∼7-14 Hz) events ∼1-2 s in duration– are
commonly observed after the occurrence of K-complexes. The first suggestion regarding
the occurrence of thalamical spindle activity was described by Morison and Bassett (1945),
where spindles were recorded in the intralaminar thalamic region of brainstem-transected,
decorticated cats.

The mechanistic details of spindles were described by a series of studies from Steriade
and collaborators (Steriade et al., 1985, 1987), where abolition of spindle-related rhythmic
activity was observed after disconnecting the thalamic reticular nucleus of cats. Importantly,
the disconnected reticular nucleus preserved its rhythmicity and cell firing properties
after disconnection from cortical and thalamic inputs, whereas thalamo-cortical neurons
displayed single event-like activities. Thus, the time-frequency properties of sleep spindles
are therefore set by the cellular properties of reticular neurons, and the interplay between
excitation and inhibition of glutamatergic thalamo-cortical cells and GABAergic reticular
cells. In addition, the thalamo-cortical loop is important to generate global and possibly
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neocortex-wide synchrony (McCormick and Bal, 1997).

1.9 Summary and aims of the project

The hippocampus is widely and critically involved in learning and memory. Lesions to
the hippocampal formation lead to deficits in the formation of new declarative memories
(Scoville and Milner, 1957). However, the persistence of older (early stabilised) memories
after hippocampus lesions has lead to the hypothesis of a two-stage memory model of
memory consolidation: memory traces are encoded during waking, and subsequently
transferred to the neocortex for long-term storage. In addition, these processes rely on the
coordinated activity of several anatomically- and functionally-coupled subnetworks within
and beyond the hippocampal formation.

The physiological mechanisms by which the brain regulates itself to store memory repre-
sentations remain debated. Nonetheless, the correlative evidence discussed in this thesis
suggests that it partly relies upon emergence of global states, upon the control of several
key structures such as thalamic nuclei and brainstem neuromodulatory systems. Neuromod-
ulatory systems establish the global conditions for reactivation, consolidation and recall
to occur, upon dynamical changes in brain state. Beyond the emergence of neocortical
up and down states, the brain exhibits a complex system-like organisation, marked by
slow changes. Neural patterns of activity during these slow transitions herald changes in
neuronal excitability that affect the collective activity of subsystems, allowing them to
express a variety of patterns of activation. In addition, a given state may exert influences
upon the expression of other states.

A notable example of this dynamics –as discussed along this chapter– is the interplay
between REM and non-REM sleep. REM- and non-REM-related activities seem largely
antagonistic from the viewpoint of the brainstem (Pace-Schott and Hobson, 2002). This
antagonism is also apparent in the activity of forebrain structures. Yet, REM and non-
REM states seem to interact. For instance, REM sleep seems to be largely involved in
determining the excitability of hippocampal cells during subsequent non-REM periods
(Grosmark et al., 2012). Thus, it is likely that not only non-REM sleep-related activities
(Buzsaki et al., 1992; Buzsaki, 1986) are major determinants of mnemonic processing, but
also REM-associated activities (Jouvet and Michel, 1959; Jouvet et al., 1959b,a; Boyce
et al., 2016) are instrumental for similar cognitive demands.

In this dissertation we investigated transient signatures of electrical activity present in the
extracellular field potential of the brain (neural events) that underlie cognitive processes
such as consolidation and retrieval of mnemonic information. For such a purpose, this
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project encompasses the following specific aims, associated with the attached manuscripts:

a. To characterize the meso- and macroscopic dynamics of hippocampal SWR episodes,
and how selective activation of circuits across the brain may exert effects on the electrical
signature of SWR, with a potential subsequent impact in mnemonic processing.

b. To understand the microscopic dynamics of hippocampal SWR episodes. Specifically,
how the underlying structure and physiology of hippocampal networks support the
repertoire of activities that endow the hippocampus with its putative computation
abilities during SWR.

c. To address how excitation-inhibition balance –a marker of the dynamical state of
the network– is altered during the initiation and development of SWR episodes. In
addition, to establish the mesoscopic correlates of these changes present in synaptic
and non-synaptic activities so as to better understand the information provided by the
hippocampal LFP.

d. To understand the meso- and macroscopic dynamics of PGO waves, phasic activities of
pontine origin and landmarks of REM sleep. Specifically, to investigate the relationship
of PGO waves to neuronal ensemble activities in the hippocampus, and how these
long-range multi-structure interactions may impact off-line mnemonic processing.

1.10 Introduction to manuscripts

1.10.1 Paper I: Diversity of sharp wave-ripple LFP signatures reveals differ-
entiated brain-wide dynamical events

Introduction: During epochs of both wakefulness and off-line states, hippocampus and
cortex replay behaviourally-relevant sequences of action potentials. These sequences
–often referred to as reactivations– reflect the animals’ previous and potential spatial
experiences. Transient episodes of highly synchronous activity known as SWR complexes
co-occur with sequence-reactivation within the hippocampus. Although this suggests
that SWR mediate memory processes, the underlying multi-scale dynamics relating to
these episodes remains poorly understood. In this work, we sought to investigate how the
LFP signature of SWR events varies during hippocampal ongoing activity, and whether
the full extent of these electrical variations reflects differences in the coordination of
neuronal activity at multiple spatio-temporal scales.

Materials and Methods: We addressed this question by studying the signature of SWR
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complexes at multiple scales. Specifically, using concurrent multi-site LFP recordings and
functional MRI (fMRI) in anaesthetised macaque monkeys (Macaca Mulatta) together
with clustering techniques, we studied the SWR phenomenon on the basis of variations
of its LFP signature. This decomposition allowed us to identify several SWR subtypes,
which were then characterised in terms of their time-frequency and spike-LFP coupling
features. Subsequently, using fMRI and statistical procedures –inspired by the work
of Logothetis et al. (2012)– we investigated the whole extent of brain areas that are
modulated at times of SWR-subtype occurrence.

Results: The clustering SWR yielded four event subtypes. Notably, these subtypes
were robustly identified across experimental sessions and animals. SWR subtypes
differed on the basis of the temporal sharp wave-to-ripple coupling, and their low-
frequency sharp wave pattern. ‘Classical’ SWR subtypes –those observed in classical
studies– were different with respect to their ‘non-classical’ counterparts in their neuronal
correlates. These differences also included time-frequency and spike-LFP synchronisation
characteristics. SWR-triggered fMRI revealed that ‘classical’ SWR are characterised
by enhanced neocortical activation and subcortical suppression (after Logothetis et al.
(2012)). Furthermore, subcortical down-regulations were almost absent at times of non-
classical SWR subtypes whose ripples occurred close to the trough of their associated
sharp waves. Importantly, ‘non-classical’ SWR were also associated with low levels
of suppression of aminergic neuromodulatory structures, namely LC and dorsal raphe
areas.

Conclusions: Our results indicate that in vivo SWR complexes are significantly diverse.
These –possibly functionally-distinct– SWR subtypes may arise upon complex long-range
subcortical network inputs to the hippocampal formation. Finally, these episodes may
endow the hippocampus with a variety of computing and modulatory abilities associated
with specific memory-related functions both during sleep and wakefulness.

1.10.2 Paper II: Dissection of frequency-dependent spiking and synaptic con-
tributions to in vivo hippocampal sharp wave-ripples

Introduction: SWR –a prominent feature associated with systems memory consolidation–
are neural events resulting from the interaction between neuronal populations across
distinct substructures of the hippocampus. Yet, the role of afferent CA3 inputs and
recurrent CA1 activities in precisely coordinating these events is not well-understood.
This knowledge gap arises partly due to the inherent difficulties in inferring neural
network-level dynamics from population measures such as the LFP. In this work, we
tested the hypothesis that SWR complexes result from frequency-specific contributions of
the population-level extracellular currents exerted by the CA3 network and local groups
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of neurons in CA1. These currents establish well-differentiated network mechanisms
associated with the emergence of sharp waves, and the generation of CA1 ripples.

Materials and Methods: To test this hypothesis, we developed a minimal network model
of multi-compartmental neurons accounting for CA3 and CA1 populations. Using the
line-source approximation (Schomburg et al., 2012), we estimated the LFP activity
of CA3 and CA1 neuronal populations. That is, the weighted contribution of the
transmembrane currents of each simulated cell to a measurement point given by the
location of a ‘virtual’ electrode. Subsequently, we sought to assess the contributions of
pyramidal neuron and interneuron populations to SWR episodes. This assessment was
done on the basis of population-level synaptic and non-synaptic activities. By analysing
the spatial distribution and the timing of these activities relative to the occurrence
of single SWR episodes, we determined whether and how CA3 provides the necessary
input onto CA1 populations in order for SWR to be initiated. Furthermore, we assessed
the role of CA1-associated dendritic and somatic peri-synaptic activities in coordinating
the ripple phenomenon. Finally, by selectively blocking synaptic connections inherent
to the CA1 network, we investigated the extent of synaptic interactions that are critical
for the emergence of SWR complexes.

Results: We found that sharp waves (<20 Hz) and slow-gamma activities (30-55 Hz)
components originate due to CA3 activity impinging onto CA1 stratum radiatum.
Specifically, CA3 input provides the necessary transient modification of E-I balance
initiating the phenomenon, and coordinates its interactions with CA1 assemblies by
gamma, but not the ripple oscillations. Crucially, LFP ripples emerge due to the driving
of inhibitory post-synaptic currents (Gan et al., 2017), whereas excitatory post-synaptic
currents of CA1 pyramidal neurons onto interneurons control the amount of pyramidal
cells participating in single ripples. In line with previous experimental work, we found
that recurrent inhibitory connections, whether I-E or I-I, but not recurrent excitation
onto interneurons, are critical for the emergence of ripple oscillations.

Conclusions: Overall, these results suggest that several elementary components underlie
the ensemble dynamics of physiological SWR activity. These dynamical components
are embedded into the complex electrical signature of SWR, but are differentially
contributed by remote CA3 input and endogenous activity within CA1. Furthermore,
our investigation indicates a previously unknown correlate of concerted excitatory PSC
during SWR, which has been typically ascribed only to coordinated inhibitory PSC. It
is thus likely that interneuronal-network synaptic influences –with notable ripple-pacing
properties– act in concert with pyramidal cell synaptic influences to select the assemblies
that participate during SWR complexes. Finally, together with an unprecedented
reproduction of in vivo experimental findings, this work suggests a relationship between
neuronal activity over meso- and microscopic scales that provides a way for studying
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E-I balance during hippocampal spontaneous activity relying purely on LFP signals.

1.10.3 Paper III: Pontogeniculooccipital (PGO) waves reflect transient com-
petition between brain stem and hippocampus

Introduction: Pontogeniculooccipital (PGO) waves are potentials observed simulta-
neously in the pontine, genicular and neocortical LFP of several mammalian species
during periods of paradoxical sleep. Correlative evidence suggests that these brief
oscillatory episodes are central to learning and memory processes (Mavanji and Datta,
2003; Datta et al., 2004). However, how these phasic widespread events participate
in brain-wide network activities remains unknown. In this work, we investigated the
large-scale interactions between PGO waves, and the activities of the major brain hub
for memory: the hippocampus. We hypothesised that PGO waves –in association with
the concerted activity of several subcortical structures– may partly coordinate activity
within the hippocampus, and hence support off-line information processing.

Materials and Methods: We tested this hypothesis using multi-site extracellular record-
ings from the pons, LGN and hippocampus of anaesthetized macaque monkeys (Macaca
Mulatta, Macaca Fascicularis). PGO waves were identified as low-frequency neural
events that co-occurred simultaneously in pontine and LGN LFP. Through a first series
of experiments, we identified distinct subtypes of PGO activities on the basis of their
oscillatory nature and underlying MUA. Furthermore, we characterised the extracted
PGO wave types across several frequency sub-bands on the basis of band-limited power
(BLP) signals spanning the whole mEFP of the pons and LGN recordings (< 2000
Hz). We then compared the PGO-wave-triggered responses using standard statistical
procedures. Finally, through a second series of experiments, we detected episodes of
synchronous activity co-occurring in pons, LGN and hippocampus, thus corresponding
to PGO waves. Using analogous analysis techniques, we characterised the extent of
hippocampal LFP neuronal events that co-occurred with PGO waves.

Results: We identified two PGO wave types: type I, associated with a significant
MUA decrease around the event occurrence, and type II associated with a significant
MUA increase around the event occurrence. Typically, type I PGO waves exhibited
a single biphasic oscillatory pattern, whereas type II PGO waves displayed multiple
successive field oscillations. Type II PGO waves –likely REM PGO waves– related to the
spontaneous interruption of thalamic spindles, as reported in classical studies (Hu et al.,
1989a,b). Interestingly, the two types of PGO waves co-occurred with hippocampal
neural events. We found that type II PGO waves were coupled to the spontaneous
emergence of hippocampal theta-like oscillations (hp-sigma events, after Logothetis
et al. (2012)), whereas –more strikingly– type I PGO waves were associated with SWR
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complexes. These effects were observed across all animals and experimental sessions in
a consistent manner.

Conclusions: This work establishes an important line of evidence for the field as we
show, for the first time, PGO wave signatures associated with specific off-line and
state-dependent interactions between brainstem, thalamic and hippocampal circuits.
In addition, our data offers insight on a hypothetical competition (or antagonism)
over short time scales between hippocampal-neocortical and ponto-geniculo-neocortical
networks. This competition is likely driven by distinct, possibly antagonistic brain
states and may establish the basis of two global mechanisms whose correspondence may
account for off-line memory consolidation.
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Chapter 3

General Discussion

Memory processes rely on a precise coordination of the activities of several brain circuits.
These interactions span several spatio-temporal scales and seem to be governed by a
high degree of self-organisation throughout multiple stereotypical so-called ‘global’ or
‘macroscopic’ brain sates. This dissertation aimed at better understanding the relationship
between the micro-, meso- and macroscopic dynamics underlying neuronal events in the
hippocampus, brainstem, and thalamus. In particular, I investigated how these events
–encountered locally in the electrical microcircuit activity of these structures– may relate
to: first, the emergence of macroscopic activity throughout all structures of the brain; and
second, the processing of mnemonic information during off-line states.

The specific aims of this dissertation (listed in Section 1.9) were addressed as follows:
the first paper of this dissertation (Ramirez-Villegas et al., 2015) addresses the first aim;
the second paper (Ramirez-Villegas et al., 2017b) addresses the second and third aims;
finally, the third paper (Ramirez-Villegas et al., 2017a) provides evidence toward the last
aim. In the following, our main contributions are discussed on the basis of the existing
literature, with emphasis on how each manuscript filled specific knowledge gaps in the field.
Furthermore, a number of hypotheses, potential interpretations and directions for future
computational and experimental work that were not included in the manuscripts shall be
mentioned, alongside their relationship to state-of-art findings in the field.

3.1 Diversity of SWR complexes and brain-wide dynamics

SWR complexes are paradigmatic episodes of synchronous activity within the hippocampus,
thought to mediate and/or modulate brain-wide processes associated with reactivation,
transfer and consolidation of memories both in rodents (Girardeau et al., 2009; Nakashiba
et al., 2009; van de Ven et al., 2016; Ego-Stengel and Wilson, 2010) and primates (Leonard
and Hoffman, 2016; Axmacher et al., 2008; Staresina et al., 2015). However, the large-scale
mechanisms associated with these episodes and their relationship to the observed SWR
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electrical signature has remained largely unknown. In the first study of this dissertation,
we investigated the system-level properties of hippocampal SWR episodes at multiple
spatio-temporal scales. This knowledge gap arose from experimental limitations, as the
only way to gain insight into the global activity of the brain is to record its activities
at different sites simultaneously. This high-spatial resolution is limited with standard
electrophysiology techniques. In order to address this issue, we used multi-modal recordings,
namely concurrent intracortical electrophysiology with functional MRI (as first reported in
Logothetis et al. (2012)).

In the first paper of this dissertation, we identified distinct subtypes of in vivo SWR
activities. To our knowledge, this is the first time that distinct SWR subtypes are reported.
These event types give rise to several differences that span the local microcircuitry of
the hippocampus, and likely reflect differentiated brain-wide events. On the basis of the
existing literature, these stereotypical variations in SWR signatures had not been yet
reported. Notably, we found a similar result when analysing rodent recordings during
naturalistic sleep preparations (not shown in this dissertation; the data was courtesy of
Dr. Oxana Eschenko, N = 2 rats). Thus, it is likely that the computational roles and
correlates associated with SWR subtypes –like that of SWR in general (Buzsaki, 2015)–
are conserved with phylogenetic development.

Our results agree with a number of in vivo and in vitro studies (Oliva et al., 2016; Kay
et al., 2016; Hofer et al., 2014). Hofer et al. (2014) found that CA3 SWR may come in two
main types: first, with prominent LFP negativity in SR, associated with the usual current
source in SP (Ylinen et al., 1995); and second, with LFP positivity in SR, as a result of a
current sink in SP (possibly stratum lucidum) and a current source in SO. Concordantly,
these episodes present differentiated time-frequency properties as we found in our study.
However, the correspondence between SWR from in vitro preparations and that of in vivo
ones is often difficult to establish (Buzsaki, 2015). In a similar vein, the observations
reported by Hofer et al. (2014) correspond to the electrical activity of CA3, rather than
CA1, as we report. Furthermore, slice preparations have several other limitations. For
instance, neuromodulatory activity generated by brainstem structures may influence the
activity of hippocampal circuits in a state-dependent manner, and such potential influences
are absent in slice preparations. The same would apply for any long-range interaction
between hippocampus and the rest of the brain. Moreover, preparation-specific conditions
may affect dramatically the physiological properties of the observed SWR complexes (Wu
et al., 2005; Maier et al., 2003; Schlingloff et al., 2014). Among others, these factors may
account for the observed differences between CA3 SWR-related LFP in vitro (Reichinnek
et al., 2010; Hajos et al., 2013) and in the intact brain (Oliva et al., 2016; Sullivan et al.,
2011).

The observed SWR-related LFP variability suggests that the extracellular currents in
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CA1 are distributed differently across the cells’ somato-dendritic segments. One possible
explanation –as discussed in the paper– are the differences in recruitment of neuronal
subgroups, specifically non-homogeneously-distributed groups of interneurons in stratum
pyramidale (Mizuseki et al., 2011; Lee et al., 2014). Indeed, the CA3/CA2/CA1 pyramidal
cell layer (SP) of the primate hippocampus presents well-differentiated laminar structure
as compared to that of the rodent (Andersen et al., 2006). In the rodent, PV+ basket cells
evoke greater inhibition in the deep layer of the CA1 stratum pyramidale, and in turn, receive
more excitatory input from CA1 superficial pyramidal cells. PV+ basket cells preferentially
innervate amygdala-projecting pyramidal cells, and are targeted preferentially by PFC-
projecting pyramidal cells (Lee et al., 2014). This highly organised circuit heterogeneity
could contribute to the emergence of many computation modes and differentiated SWR
events, organised into several inhibitory subcircuits.

In addition, the CA2 network could contribute to this variability by triggering specific
SWR subtypes. Recent experimental evidence suggests that CA2 is involved in SWR
initiation (Oliva et al., 2016; Kay et al., 2016). For instance, Oliva et al. (2016) report
that synchronous activity of CA2 cells precedes that of CA3 and CA1 during SWR-related
discharges. SWR were observed following a CA2-CA3-CA1 activation chain, and also as
a consequence of CA2-induced CA1 SO depolarization. In the latter case, a current sink
–corresponding to a negative LFP deflection– was observed in the SO (basal dendrites) and
SP (somatic layer) of CA1, together with a current source –corresponding to a positive
LFP deflection– in SR (apical dendrites). The electrical profile of this event subtype is
similar to that encountered by us (SWR subtype 1 in Ramirez-Villegas et al. (2015)), and
it opens the question as to whether this SWR subtype is generated by the intrinsic activity
of CA2 or as a byproduct of the activation of subcortical-hippocampal projections (Vertes,
1992; Magloczky et al., 1994). Furthermore, it is important to note that CA2 seems more
involved in driving the hippocampal network during waking than during SWS (Oliva et al.,
2016), suggesting that this CA2-induced SWR via CA2-CA1 interaction might play an
influential role in mnemonic processing during waking (see also Hitti and Siegelbaum
(2014)).

Furthermore, in a recent study, two distinct types of SWR episodes were found to be related
to reactivations of trajectory- and immobility-associated hippocampal representations.
These two SWR subtypes –differing in their time-frequency LFP properties– were found
to differentially modulate neocortical populations (Yu et al., 2017). Finally, this waking-
related processing is likely coordinated by brainstem neuromodulatory structures, as waking
is associated with high histaminergic, noradrenergic, serotonergic and cholinergic tones.
The activity of these structures likely establishes the transient network conditions for
hippocampal SWR-related processing to occur (Freund et al., 1990; Yavich et al., 2005;
Varga et al., 2009; Gomperts et al., 2015; McNamara et al., 2014).
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3.1.1 Hippocampal-neocortical interaction during SWR

Our results suggest that, at times of SWR subtype occurrence, patterns of brain-wide
activation change. These changes, heralded by the extent of BOLD up-regulation and
down-regulation, suggest that SWR subtypes may be functionally distinct. Furthermore,
SWR subtypes may themselves be associated with differentiated brain-wide dynamical
events. Brain-wide activations are likely very selective in order to support processing of
distinct mnemonic representations (Hoffman and McNaughton, 2002; Ciocchi et al., 2015),
and may also reflect modulations of the ‘strength’ of hippocampal-cortical communication.
In line with this hypothesis, the ‘snippets’ of activity typically replayed by hippocampus
(exerted previously during theta activity) are temporally coordinated with those occurring
in the neocortex (Euston et al., 2007). Indeed, for a recently-acquired memory, neocortical
reactivation follows that of hippocampus, suggesting hippocampus drives the off-line
reactivation process (Euston et al., 2007; Wierzynski et al., 2009). Recent experimental
evidence supports this view, as hippocampal SWR episodes sometimes co-occur with
cortical neural events with similar dynamics (Khodagholy et al., 2017). These episodes
were found to occur in neocortical associative areas (PFC, PPC and midline cortices), but
not in primary sensory areas. Ripple-associated hippocampal-cortical interactions were
enhanced during sleep following learning, suggesting that ripples in both hippocampus and
neocortex support off-line memory consolidation (Khodagholy et al. (2017), similarly, see
Wilber et al. (2017)).

The hippocampal-cortical temporal relationship may be ‘plastic’, as neocortical reactivation
can pass from lagging hippocampal reactivation, to leading it in well-trained animals (see
Place et al. (2016)). This shift in ‘causal-direction’ is consistent with memory trace retrieval.
Thus, although speculative, it is likely –as hinted by our data– that non-classical SWR
subtypes may be: first, more likely to be encountered during periods of waking; and second,
some SWR signatures may be associated with retrieval of memories, rather than off-line
consolidation per se. This possibility is in agreement with recent experimental data, where
SWR complexes were clustered into distinct classes on the basis of their associated MUA
(Karimi et al., 2017). Interestingly, in this study, distinct patterns of cortical activation
were associated with the occurrence of different SWR classes. Cortical activation tended
to either lead, lag or be coincident with the peak of SWR activity. These results suggest
that the differentiated relationship between hippocampal and cortical activities might
reflect the degree of consolidation of distinct putative memory traces (Karimi et al., 2017).
While this possibility was not systematically explored in our study (Ramirez-Villegas et al.,
2015), there are many ways in which this scenario becomes plausible, resulting in great
computational benefits to memory operations in the hippocampus and neocortex.

According to the two-stage memory model, memory constructs are stored temporally in
the hippocampus, subsequently becoming independent of it. The hippocampal-neocortical
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interaction may provide the system with the ability to express ‘virtual’ learning trials, that
is, the spontaneous reactivation of acquired memories. During this process, hippocampal
ensembles may provide linking patterns to weakly stored patterns (‘weakly interacting’
modules) in neocortex (see Schwindel et al. (2016)). Thus, the possibility remains that
reactivation is partly instantiated by the neocortex (Cowansage et al., 2014; Lesburgueres
et al., 2011), possibly shifting to a leading role as consolidation progresses (see also Teyler
and DiScenna (1986); Teyler and Rudy (2007)). In this scenario, hippocampal activity
can be controlled through interactions with neocortex, which in turn can be subsequently
controlled back by hippocampus in line with retrieval and/or consolidation operations.

In line with the foregoing, in a recent work, Rothschild et al. (2016) recorded neuronal
activity from the auditory cortex and hippocampus during a sound-guided task, together
with periods of sleep. Sleep-related activation in auditory cortex neurons was found to
precede and predict –to a certain extent– the hippocampal single-cell activity at times
of SWR. Conversely, hippocampal firing patterns during SWR predicted subsequent
auditory cortex single-cell activity. The authors demonstrated that auditory-cue delivery
during sleep biased the activity of auditory cortex, and this activity predicted subsequent
hippocampal single-cell activity. In addition, during post-learning epochs, higher SWR rates
were recorded following a ‘target’ sound, as compared with other task-unrelated sounds,
indicating that the ‘target’ sound became behaviourally relevant, and its presentation was
associated with increased incidence of SWR.

The previous findings are seemingly at odds with evidence reporting learning deficits in
rodents upon medial septum inactivation. In this study, neither the structure of replay,
nor SWR themselves were affected by this manipulation. This suggests that, rather
than experience-related consolidation, SWR-replay reflects formed hippocampal ensembles
(Wang et al., 2016). Nonetheless, SWR enhancement is expected upon medial septum
silencing, as theta-like inhibition and pacemaking to the hippocampus is eliminated by this
manipulation, releasing the network and promoting LIA. It follows that SWR episodes occur
during periods of LIA, necessary for the CA3 network to generate transient synchronous
bursting (Ylinen et al., 1995; Vandecasteele et al., 2014). Furthermore, the fact that
SWR-replay was observed without apparent impact on task performance suggests that
indeed the SWR mechanism may be unrelated to retrieval, which is somewhat contrary
to the hypothesis estabished by Rothschild et al. (2016). However, inactivation of the
medial septum also implies that spatial coding mechanisms are affected, which may explain
both performance deficits and SWR-replay ineffectiveness. Thus, SWR may act more as a
‘modulator’ rather than a ‘mediator’ of activity (Leonard and Hoffman, 2016). Another
possibility is that SWR-replay is necessary for memories in the process of being formed,
rather than early-consolidated or stabilised ones (Kovacs et al., 2016; van de Ven et al.,
2016).
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Finally, both the computational and behavioural roles of SWR subtypes remain to be
addressed in future research, and large-network effects (probing neuromodulation, neocorti-
cal activation and feedback to hippocampus, and control of the brainstem-hippocampus
synchronisation pathway) remain to be demonstrated using more direct methods. The
possibility remains that the collection of SWR events endow hippocampal microcircuits
(and related neocortical and subcortical ones) with distinct modes of selective processing
and routing of information across multiple scales (Ramirez-Villegas et al., 2015).

3.2 Frequency-dependent synaptic and spiking components elabo-
rate the LFP signature of in vivo hippocampal SWR complexes

In the second paper of this dissertation, we identified several network mechanisms associated
with hippocampal SWR complexes by a series of modelling experiments together with in
vivo recordings from the macaque hippocampus. These mechanisms contribute to transient
oscillatory regimes spanning the whole LFP spectrum, and reflect local CA1 strata- and
CA3 subfield-specific activities. Our main conclusions and observations are in line with
recent evidence regarding SWR dynamics, where the model was found to account for an
unparalleled number of observations from in vivo studies (Buzsaki et al., 1992; Csicsvari
et al., 2000; Stark et al., 2014; English et al., 2014; Hulse et al., 2016; Carr et al., 2012;
Sullivan et al., 2011; Gan et al., 2017) (see Ramirez-Villegas et al. (2017b)).

In summary, our results provide major insights into SWR in three main directions. First,
the neural phenomena underlying SWR episodes has been extensively studied (reviewed in
Buzsaki (2015)), yet, there seems to be no agreement in regard to its underlying neuronal
mechanisms. Our results suggest that low-frequency sharp waves and gamma, in addition
to high-frequency ripple and supra-ripple components, constitute the basic frequency-
specific LFP dynamic assets underlying physiological SWR activity. These network-related
activities account for the coordinated activities of the upstream CA3 assemblies, and local
interactions between pyramidal neurons and interneurons in CA1, respectively (Carr et al.,
2012; Gillespie et al., 2016; Buzsaki et al., 1992; Csicsvari et al., 1999; Gan et al., 2017).

Second, in line with the foregoing, our findings reveal the basis for analysing the relation-
ship between neuronal activity at meso- and microscopic scales, instrumental to better
understand the underpinnings of hippocampal LFP, at the time of occurrence of any neural
event. Such an approach relies on filtering the LFP signals into several frequency bands of
interest, and will be useful to study network properties such as E/I balance on the basis of
LFP, without resorting to single unit activity, or activities that could only be recorded in
intracellular preparations (English et al., 2014; Gan et al., 2017; Mizunuma et al., 2014;
Hulse et al., 2016; Maier et al., 2011).
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Third, we generate a number of predictions regarding the synaptic interactions necessary
for the emergence of physiological SWR activity. In particular, we predict that recurrent
synaptic inhibition via perisomatic interactions onto both CA1 interneurons and CA1
pyramidal neurons (in agreement with Stark et al. (2014)), but not synaptic excitation of
CA1 pyramidal neurons onto CA1 interneurons, is critical for SWR emergence. However,
we postulate that synaptic excitation may be instrumental for the inhibitory control of the
circuit, and therefore, may have a strong role in selecting specific assemblies that participate
in single ripples. This finding holds wide implications for the neuronal mechanisms that
establish the spike sequences associated with SWR. For instance, synaptic excitation may
partly determine the off-line replay of behaviourally-relevant spatial exploration trajectories
in rodents (Lee and Wilson, 2002), which is thought to be critical for spatial memory
consolidation (Girardeau et al., 2009; van de Ven et al., 2016), and might be at play
during retrieval of memories associated with visual scenes as suggested by experiments
with primates (Leonard and Hoffman, 2016).

In a recent study, using simultaneous intracellular and extracellular recordings from the
CA1 subfield of rodents, Gan et al. (2017) addressed the question whether temporally
modulated excitation or inhibition underlies SWR complexes. Their observations agree
with the general notion that SWR are a high conductance state (English et al., 2014). Yet,
inhibition dominates over excitation by several-fold in peak conductance ratio, that is, the
inhibition conductance gain is more elevated than that of excitation during SWR occurrence.
While discharges of both pyramidal cell and interneuron populations are locked to the
ripple oscillation (Buzsaki et al., 1992; Ylinen et al., 1995), only the coordinated IPSC –but
not EPSC– were phase-locked to individual ripple cycles (Gan et al., 2017). Finally, using
optogenetic techniques, Gan et al. (2017) discovered that a major contribution to the SWR
phenomenon is provided by PV+ cells, on the basis of changes in the events’ properties such
as duration and number of ripple cycles per SWR, in addition to perturbed IPSC and IPSC-
to-ripple locking properties. The results of this study are in agreement with our modelling
results (Ramirez-Villegas et al., 2017b). However, these results also counter mechanistic
models of SWR established in a number of experimental and theoretical investigations
(Nakashiba et al., 2009; Maier et al., 2011; Draguhn et al., 1998; Memmesheimer, 2010;
Hulse et al., 2016).

The discrepancies with existing mechanistic models of SWR episodes are summarised in
the following remarks. First, phasic inhibition, but not excitation, is positively correlated
with SWR amplitude (Gan et al., 2017). It is worth mentioning that the EPSC recorded
in the study of Gan et al. (2017) are the EPSC generated due to incoming CA3 bursting
into CA1 assemblies (hence, dEPSC, following the notation we use in Ramirez-Villegas
et al. (2017b)). In the same study, it remains ambiguous whether the authors selected the
wide-band SWR amplitude or the ripple (as stated in numerous sections of their paper, in
relation to their Figure 2). However, one can say that SW amplitude and peri-ripple LFP
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power are correlated (see recent findings reported by Ramirez-Villegas et al. (2015); Patel
et al. (2013)), and thus, IPSC may be more correlated to these two than EPSC. However,
the lack of correlation between EPSC and SWR remains striking, because the sum of EPSC
due to synaptic inputs impinging onto CA1 apical dendrites (SR) is represented by the
sharp wave at the LFP level (see Mizunuma et al. (2014)).

Second, the work of Stark et al. (2014) indicates that both excitation and inhibition
play critical roles in the generation of SWR complexes. Indeed, abolishing the inhibitory
activity is related with the emergence of non-physiological high-frequency epileptiform
discharges (Stark et al., 2014; Karlocai et al., 2014), whereas SWR cannot be induced on
the basis of inhibition enhancement (Stark et al. (2014), but see Schlingloff et al. (2014);
Ellender et al. (2010)). Our results are in agreement with these possibilities, as selective
suppression of synaptic inhibition was largely associated with epileptiform-like events (I-E
synapse suppression), and ripple abolishment (I-I synapses suppression). In particular,
selective suppression of I-to-E cell synapses within CA1 prompts the entire pyramidal
cell population to spike in a very synchronous manner (which is somewhat equivalent
to optogenetic silencing of interneurons as performed in Stark et al. (2014)). It follows
that ripples cannot be induced by driving only interneurons to spike (Stark et al., 2014),
even when interneurons themselves are released from synaptic inhibition (Ramirez-Villegas
et al., 2017b). These observations remain conflicting with mechanistic models in which
ripples are coordinated via E-E synapses in CA1 (Hulse et al., 2016; Maier et al., 2011;
Memmesheimer, 2010; Jahnke et al., 2015). The lack of excitatory collaterals in the CA1
subfield anatomy seems also at odds with the previous models (see Bezaire and Soltesz
(2013) for the transverse axis, but see Yang et al. (2014) for the septo-temporal axis).
Furthermore, as we do not consider the influence of axo-axonal electrical coupling between
pyramidal cells, these are not critical for the emergence of SWR in our model (Draguhn
et al., 1998; Traub and Bibbig, 2000) (see also an experimental consideration about these
models in Buzsaki (2015)).

Third, another line of evidence is provided by the work of Maier et al. (2011), where
the authors found ripple-locked PSC. However, contrary to Gan et al. (2017) and our
results, on the basis of their intrinsic properties and intracellular GABAergic transmission
blockade, these currents were determined to be excitatory. At the same time, however, our
model predicts that EPSC (relied by CA3 input) are predictive of low-frequency spectral
power (up to the slow gamma frequencies), whereas IPSC selectively capture both ripple
and supra-ripple spectral power (Ramirez-Villegas et al., 2017b). As mentioned in the
introduction of this dissertation, the equivalence between in vivo and in vitro SWR is
difficult to establish (Buzsaki, 2015). In a similar vein, if ripples are coordinated via EPSC,
there are three possible ways to explain the results of Maier et al. (2011): first, on the basis
of the existence of E-E synapses within CA1 in the transverse axis; second, on the basis
of ripple coordination relied by CA3 inputs; and third, on the basis of E-to-I excitatory
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interactions within CA1. The first possibility is at odds with existent anatomical evidence
indicating that E-E synapses in the transverse axis of CA1 are scarce (Andersen et al., 2006;
Bezaire and Soltesz, 2013). Furthermore, all the existing in vivo experimental evidence
suggests that ripples are generated de novo within CA1, rather than being relayed by CA3
assemblies (Sullivan et al., 2011; Carr et al., 2012; Gillespie et al., 2016). Finally, our results
argue against the third possibility, as we predict that E-I synapses are not critical for the
emergence of SWR complexes (Racz et al., 2009). Furthermore, since interneurons are
more scarce than pyramidal neurons (in our model following a 1:10 ratio, after Andersen
et al. (2006)), the overall contribution of somatic EPSC to the ripple may be rather limited
as compared to that of somatic IPSC as suggested by our results (Ramirez-Villegas et al.,
2017b). Nonetheless, SWR episodes may be modulated by E-E synaptic connections along
the septo-temporal axis of the hippocampus (which might be in line with the findings of
Patel et al. (2013)). The contribution of CA1 collaterals across this long axis (Yang et al.,
2014) to the SWR phenomenon has not been elucidated yet, and therefore, needs to be
addressed in future experimental and theoretical work.

In addition to the aforementioned, further experimental work and extended computational
models are needed to address the contribution of other interneuron types to the SWR
phenomenon (Klausberger et al., 2003), and whether some specific contributions to the
SWR-LFP signature originate from interneuron subtypes other than the PV+ basket cells
considered in our model (see Varga et al. (2014, 2012)). Concordantly, our computational
model predicts that dendritic inhibition may underlie the observed post-SWR hyperpo-
larisation observed in extracellular recordings (Varga et al., 2014; English et al., 2014;
Ramirez-Villegas et al., 2015; Leonard et al., 2015). Yet, this component seems to be
correlated with higher ripple frequency (Ramirez-Villegas et al., 2015) in SWR where
higher dendritic inhibition drive has been suggested to occur (Varga et al., 2014). In line
with these observations, when including dendritic inhibition in our model, we observed
that the magnitude of dendritic IPSC was markedly correlated with the LFP post-ripple
hyperpolarisation (Ramirez-Villegas et al., 2017b). The specific mechanisms of these
inhibitory synapses within the CA1 network and their influence to SWR episodes should
be extensively addressed in future investigations.

3.3 Systems and synaptic memory consolidation: when hippocam-
pus, thalamus and brainstem unite?

In the third paper of this dissertation, we investigated large-scale interactions occurring
between pontine neural circuits, the thalamus (LGN) and hippocampus at times when
physiological PGO wave activity occurs. Through clustering techniques, we identified
two distinct types of PGO waves on the basis of their associated MUA profiles and their
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electrical LFP signatures. These two LFP patterns are in close correspondence with that of
classical findings (Datta et al., 1992; Morrison and Pompeiano, 1966; Quatrochi and Hobson,
1999; Denlinger et al., 1988), where SWS-related PGO waves are known to come mostly in
isolation (as ‘singlets’), whereas REM-related ones are predominantly ‘clustered’, displaying
bouts of several waves. The neurophysiological mechanisms underlying this phenomenon
remain vastly unknown. Yet, we have advanced in establishing their possible computational
roles. Our results indicate that the two types of PGO waves have differentiated impacts over
downstream forebrain targets. These relationships, together with their associated opposite
neuronal population responses are a strong suggestion of distinct brainstem-thalamic and
brain-wide neuronal mechanisms that may be instrumental for off-line memory processing.

PGO waves are widespread phenomena in the mammalian brain (Datta, 1997). The
differentiated physiological nature of singlet and clustered PGO waves was first suggested
by early studies (Datta et al., 1992; Morrison and Pompeiano, 1966). According to these
studies, PGO-wave singlets are independent of eye movements, whereas clustered PGO
waves are associated with eye movement bursts (REM) (Morrison and Pompeiano, 1966).
In the work of Morrison and Pompeiano (1966) (confirmed by the experiments of Perenin
et al. (1972)) inactivation of vestibular nuclei abolished bursts of REM and type II PGO
wave activity, while facilitating type I PGO wave activity with consequent reduction of
paradoxical sleep periods (Morrison and Pompeiano, 1966). Pharmacological manipulations
of PGO-generating circuits by carbachol enhanced the activity of cholinergic and PGO
burst cells. This evidence indicates that REM sleep and associated (typically) clustered
PGO activity occur in a state of endogenous release of acetylcholine (Datta et al., 1992).
The fact that carbachol injections enhanced signs of REM sleep at the ‘expense’ of the time
spent in SWS (Datta et al., 1992), has led to the hypothesis that these sleep states may be
‘antagonistic’ or even ‘competing’. In line with this hypothesis, we discovered that SWS-
related PGO waves are related to transient, significant decreases in neuronal population
activity in the ponto-thalamic network, whereas REM-related ones are associated with
the opposite effect (Ramirez-Villegas et al., 2017a). Thus, ‘clustered’ (type II) PGO
waves may be related with activation of bona fide cholinergic mechanisms, active during
naturalistic paradoxical sleep. In contrast, ‘singlet’ (type I) PGO waves may be associated
with brainstem activities characteristic of SWS, where other population-level mechanisms
may be at play (Torterolo et al., 2011).

It is worth noting that the terms ‘singlet’ and ‘clustered’ PGO waves are used here after
the adopted convention of classical studies. As a matter of fact, a minority of REM-sleep
PGO waves are singlets as well (Steriade et al., 1990b; Datta et al., 1992). However,
although qualitatively similar to SWS PGO waves, these REM-sleep PGO singlets are
associated with increase of pontine neuronal population activities (Steriade et al., 1990b).
Moreover, most isolated or pairs of PGO waves during paradoxical sleep are highly variable
in amplitude, whereas SWS PGO waves seem to fit better a profile of large-amplitude
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biphasic waves (Bowker, 1985). These differences –together with the difficulties related to
establishing ground-truth sleep states in our data– have prompted us to rather use the
MUA as a marker for PGO-wave identity, rather than the ‘oscillatoriness’ of the peri-event
LFP signals (Ramirez-Villegas et al., 2017a). Thus, as supported by our data, one may
safely conclude that SWS-PGO waves usually come as events displaying a single biphasic
pattern, whereas REM-PGO waves in their majority occur as clusters of variable number
of consecutive waves (Datta et al., 1992; Callaway et al., 1987).

In Ramirez-Villegas et al. (2017a), we studied PGO waves and their relationship with
potentials occurring in forebrain areas such as the hippocampus. As discussed throughout
this dissertation, the hippocampus has been markedly related to offline memory consoli-
dation. Furthermore, it is believed that memory processes are partly modulated by the
occurrence of hippocampal SWR during SWS. One question that has received (by far)
scarcer attention in the literature is whether REM-related activities are necessary for such
off-line consolidation processes. In the literature, the term systems consolidation is associ-
ated with broadcasting of information stored temporally in hippocampus to assemblies
where it will be stored in the long-term (in the neocortex) (Battaglia et al., 2011; Carr
et al., 2011; van de Ven et al., 2016; Girardeau et al., 2009; Nakashiba et al., 2009). On
the basis of our findings, this might be just part of the story. One of the key findings of
the third paper of this dissertation is that SWS-PGO waves co-occur with hippocampal
SWR complexes, whereas REM-PGO waves co-occur with bouts of hippocampal theta-like
oscillations. Potentials corresponding to PGO waves seem to be widespread across several
brain domains including the basolateral amygdala, cingulate gyrus, sensory motor cortex
(Calvo and Fernandez-Guardiola, 1984), and ventral and dorsal hippocampus (Calvo and
Fernandez-Guardiola, 1984; Hobson, 1965). The computational role of these potentials is
also critically related to memory consolidation (Mavanji and Datta, 2003; Mavanji et al.,
2004; Datta et al., 2004). Crucially, it is likely that REM-related enhancement of theta
oscillations is also involved in off-line memory processes, which may include strengthening
of representations after SWS-related re-distribution or systems consolidation.

In line with these hypotheses, in a recent study, Boyce et al. (2016), using optogenetic
techniques, selectively silenced medial septum GABAergic neurons during paradoxical sleep
in rodents reducing significantly the power of hippocampal theta oscillations. Strikingly,
optogenetic silencing of MS GABAergic neurons during REM periods was sufficient to erase
subsequent novel-object place recognition and impaired fear contextual memory formation.
These results indicate that REM sleep-related phenomena, specifically the MS GABAergic
input to hippocampus is critical for memory consolidation. Notably, the results of Boyce
et al. (2016) are in line with evidence reviewed earlier in this dissertation on the behavioural
role of PGO-like episodes in rodents (Mavanji and Datta, 2003; Mavanji et al., 2004). In a
similar vein, Siwek et al. (2014) recorded from neurons in the rodent subcoeruleus nucleus
(SubCD) during both sleep and wake after fear conditioning training. As mentioned
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previously in this dissertation, the SubCD is known to be the generator of P-waves in
rodents (Datta, 2006). Damage to the SubCD was sufficient to impair consolidation of fear
conditioning memory, suggesting that the SubCD may be an important memory-promoting
locus (Siwek et al., 2014).

Although highly speculative, it is possible that starting in the brainstem there is a chain of
events that promotes off-line synaptic memory consolidation. P-waves generated within
the brainstem may propagate through the ascending brainstem-hippocampal pathway
influencing the activity of several nuclei, finally reaching the MS-DB and the hippocampal
formation. Experimental evidence indicates that frequency and amplitude of hippocampal
theta are correlated with the emergence of PGO-like potentials in the brainstem of
rodents (Karashima et al., 2002, 2001, 2004). If selective elimination of P-waves or,
alternatively, interruption of this propagation mechanism causes the observed learning
deficits, PGO-related theta enhancement may be necessary for memory formation. The
observed behavioural effect –although corresponding to distinct types of manipulations–
would be likely analogous in both situations (Siwek et al., 2014; Boyce et al., 2016).
This notion further agrees with experimental evidence showing that activation of the
brainstem P-wave generator prevents REM deprivation-related learning impairments in
rodents (Datta et al., 2004). In particular, rats trained in an avoidance task received either
saline or carbachol microinjections in the SubCD. Learning deficits were prominent in
animals that received saline and were selectively REM-sleep deprived; but neither rats that
received SubCD carbachol nor rats that were allowed to sleep naturally presented learning
impairments (Datta et al., 2004).

Our results also suggest that PGO-hippocampal theta coordination occurs in the form of
‘neural events’ in primates. That is, in the form of highly transient increases of hippocampal
low-frequency LFP power (Ramirez-Villegas et al., 2017a). Previous studies in human
and non-human primates do confirm that hippocampal theta has analogous electrical
properties to that found in our anaesthetised model (Jutras et al., 2013; Leonard et al.,
2015; Aghajan et al., 2016; Vass et al., 2016). On top of these characteristic observations,
we showed that hippocampal theta-like episodes in macaques may co-occur with PGO
waves (Ramirez-Villegas et al., 2017a), as also observed in classical studies during episodes
of paradoxical sleep (Datta, 1997; Callaway et al., 1987). Furthermore, our results suggest a
tight relationship between these hippocampal theta episodes and SWR, as they were found
significantly correlated in the time scale of a few seconds. This effect was also captured
by our NET-BLP analysis, where hippocampal theta events were associated with a power
increase of high-frequency oscillations, which was then countered by a sharp power drop
at the time of the event occurrence. These transitions may signal the transition between
SWS-like and REM-like states in our experimental data (Ramirez-Villegas et al., 2017a).

These observations suggest that PGO and hippocampal events are tightly intertwined, and
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may be signatures of possibly competing, yet complementary mechanisms of off-line memory-
related processing. This view is supported by experimental evidence relating episodes of
REM sleep with shaping the excitability of hippocampal ensembles in subsequent periods
of SWS (Grosmark et al., 2012). Grosmark et al. (2012) found a progressive increase in
discharge rates of neuronal populations throughout the development of SWS. This increase
in discharge rates were accompanied by increases in SWR-related discharge toward the end
of a given SWS episode. This SWR-related synchrony may be related to the emergence of
brainstem type I PGO waves, occurring in synchrony with SWR complexes as we found in
our work (Ramirez-Villegas et al., 2017a). Concordantly, PGO-SWR coupling occurred
for ‘classical’ SWR, rather than other SWR subtypes studied previously (Ramirez-Villegas
et al., 2015). Furthermore, upon state transition, the increase in excitation of neuronal
populations is countered by a cell discharge rate deceleration, heralding the initiation
of REM sleep (Grosmark et al., 2012). This activity drop (deceleration) at the onset of
paradoxical sleep is similar to the transition to theta activity in primates found in our
study, where analogously, firing rates were observed to decelerate at the time of event
occurrence. Strikingly, if hippocampal theta power is correlated with subsequent SWS
neuronal synchrony, it is possible that type II PGO-related mechanisms –associated with
this enhancement– subsequently determine hippocampal SWS-associated activity. Thus,
it is possible that the brainstem not only coordinates SWS and REM changes, but also
determines the population excitability of a given state on the basis of the previous state.

Overall, our results suggest that a repertoire of neuronal events may coordinate and
modulate distinct neural networks in a sleep stage-dependent manner. This coordination
may serve several purposes including off-line memory consolidation. Mechanistically
speaking these processes may be largely distributed in time, and prompted by characteristic
interactions between brainstem and forebrain structures. Finally, our data, and the
discussions presented in this subsection of the dissertation bridge the results of SWS-related
research (specifically, on SWR complexes and their putative role in memory formation),
with those of REM-related investigations (specifically, on PGO waves and brainstem
activity-dependent memory formation). The presented event typologies in this work will
permit the characterisation of neuronal events in natural sleep preparations in human
and non-human primates in order to establish the functional role of each event subtype.
Thus, our approach suggests distinct venues for new experiments, and as to generate new
system-level mechanistic insights on pathological brain activity (for example, see Kerber
et al. (2014); Wang et al. (2013); Karlocai et al. (2014); Saito et al. (2014)).
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3.3.1 Systems and synaptic memory consolidation: from molecules to systems-
level neural events

In this subsection of the General Discussion, I discuss the connection between molecular and
systems-level mechanisms of memory consolidation. Whereas this link can be established
on the basis of the current literature in Molecular and Systems Neuroscience, it is not
always straightforward to determine how –from the experimental data presented in this
work– I point to the specific microscopic sub-events that may be associated with distinct
types of neural events, together with the functions they achieve.

In line with the early suggestion of Ramon y Cajal (Ramon y Cajal, 1984), synaptic
connections between neurons can be modified by learning, and anatomical modifications
likely subserve memory storage. Early experimental evidence suggests that the Aplysia
sensory neurons exposed to habituation retract some of their pre-synaptic terminals,
whereas neurons exposed to sensitisation display increased number of pre-synaptic terminals.
Subsequently, motor neurons can remodel to accommodate the extra sensory input (Bailey
and Chen, 1988). The underpinnings of this elementary form of memory depend on the
activation of mechanisms that lead to the release of serotonin onto the sensory neuron,
which in turn increases the concentration of cyclic adenosine monophosphate (cAMP) in
the sensory cell. The cAMP signals the neuron to release more glutamate, thus temporally
strengthening its connection to the motor neuron (Brunelli et al., 1976) (also known as
activity-dependent enhancement of synaptic facilitation; for an extensive review the reader
is referred to Kandel et al. (2014)).

Generally speaking, long-term memory, but not short-term memory formation, requires the
synthesis of new proteins (Lisman et al., 2012). However, proteins themselves are ‘unstable’,
as they come and go in shorter time scales than memory. Thus, in order for long-term
changes to occur, serotonin stimulation needs to be repeated several times, so that the
increase of cAMP persists, causing cAMP-dependent proteins (for instance, the protein
kinase-A, PKA; and mitogen-activated protein kinase, MAPK) to move to the nucleus
of the cell where they activate the gene expression mechanisms required for long-term
memory (Martin et al., 1997).

The mechanisms of synaptic facilitation involve PKA and postsynaptic Ca2+. In particular,
the intermediate phase of consolidation begins with PKA in the presynaptic neuron
mediating an increase of glutamate release. This increase acts in the molecular machinery
of the postsynaptic cell and induces the initial steps of synaptic growth: activation of
glutamate receptors cause release of calcium stored in the postsynaptic cell; then, calcium
leads to the insertion of new copies of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors in the postsynaptic cell (Kandel et al., 2014).
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In the hippocampus, as well as in other brain areas, long-term potentiation (LTP) of
synaptic transmission is widely considered a model of activity-dependent synaptic plasticity
(Kandel et al., 2014). Standard protocols for inducing LTP in the hippocampus come
in two main types: high-frequency stimulation (∼100 Hz) in which several pulses are
delivered (Bliss and Lømo, 1973); and low-frequency stimulation close to the theta-range
delivered in the form of bursts (∼200 Hz) (Staubli and Lynch, 1987). LTP induction has
been documented in different regions of the hippocampus. For instance, in CA1, 100 Hz
stimulation induces a form of LTP dependent on N-methyl-D-aspartate (NMDA) receptor
activation. NMDA receptors require depolarization of the postsynaptic membrane as
well as simultaneous release of glutamate from the pre-synaptic terminal. Thus, NMDA
receptors are functional only at active synapses. Moreover, activated NMDA receptors
produce postsynaptic Ca2+ influx required to produce LTP, and Ca2+ can activate several
molecular signaling pathways (including PKA, MAPK and Ca2+ /calmodulin-dependent
protein kinase II, CaMKII) implicated in LTP and its stabilization (e.g. see Lisman
et al. (2012)). Indeed, deletion of the CaMKII gene in mice triggers severe deficits in
hippocampus-dependent forms of learning (Grant et al., 1992), whereas selective elimination
of NMDA receptors only in the DG leads to a loss of performant-path LTP associated with
pattern discriminability (McHugh et al., 2007).

Recent investigations have sought to identify the source of LTP associated with REM
sleep, which may depend on several specific anatomical pathways. One predominant view
is that such source of sleep-dependent and LTP-inducing stimulation comes from the
structures of the brainstem. That is, the structures that generate and transfer potentials
to forebrain structures via multiple anatomical tracts. Such activity is often associated
with the occurrence of PGO waves, whose transmission has been suggested to be purely
glutamatergic, while at the same time modulated by endogenous release of ACh (Datta,
2006; Steriade et al., 1990a,b). PGO-wave generating cells discharge high-frequency spike
bursts (>500 Hz) on a background of tonically increased firing rates (30-40 Hz) during the
states of pre-REM and REM sleep (Datta and Hobson, 1994). In addition, activation of
PGO-generating cells can be attained by cholinergic agonists, such as carbachol, prompting
changes in the characteristics of PGO waves and increasing the number of bursts in a single
PGO wave (Datta et al., 1992). The effects of cholinergic stimulation-induced potentiation
last for seven to ten days (Datta, 2012).

REM-PGO waves co-occur with hippocampal theta and neocortical activation (Datta, 1997),
in line with increased cholinergic tone, and seem to contribute to the enhancement of theta
activity in both hippocampus and amygdala (Karashima et al., 2005, 2010). This evidence
seems to correspond with the fact that ‘information-specific’ input to the hippocampus
during theta states comes from thalamic and thalamo-cortical systems, where PGO have
been observed in cats and non-human primates (Steriade et al., 1990b; Vuillon-Cacciuttolo
et al., 1978). Concordantly, as punctuated earlier, interruption of the theta-generating



76

pathway in hippocampus during REM sleep correlates with impaired memory retention
(Boyce et al., 2016), and also selective inactivation of pontine PGO-wave generating cells
has been paired to similar memory impairments (Mavanji and Datta, 2003; Mavanji et al.,
2004).

On top of the previous experimental evidence, the findings reported in the third paper
of this dissertation suggest that PGO waves not only co-occur with increases of theta-
like activity in the hippocampus (by analogy to Karashima et al. (2004, 2005)), but
also co-occur –strikingly in almost equal proportion– with hippocampal SWR complexes
(Ramirez-Villegas et al., 2017a). Because of their time-frequency characteristics, SWR
episodes are good candidates to generate plasticity in target structures (in line with brief
>100 Hz stimulation-inducing LTP) (Bliss and Lømo, 1973). Correlative evidence suggests
that SWR are important for early-consolidating memories related to a novel environment,
but not maintenance of memories associated with familiar enclosures (Kovacs et al., 2016;
van de Ven et al., 2016). Moreover, SWR-associated ‘memory replay’ is thought to establish
reinstatement of distinct movement- and immobility-associated experiences in rodents (Yu
et al., 2017; Rothschild et al., 2016).

On the basis of the previous evidence, a PGO-associated input may transiently increase
hippocampal excitability, prompting the emergence of SWR complexes at a higher rate (in
line with Grosmark et al. (2012)). This prediction is also in line with the sharp increase
in pontine MUA likely signaling an increase in glutamatergic neurotransmission at the
time of PGO-wave occurrence. I speculate that such activity would release glutamate
in the hippocampus (and activate NMDA receptors), which could lead to release of
calcium stored in postsynaptic cells; then, calcium could lead to the insertion of new
copies of AMPA receptors in the postsynaptic cells. A similar process may occur in the
neocortex, where sleep spindles, together with ripples in associative cortices, may also bear
a role in triggering or modulating consolidation (Latchoumane et al., 2017; Khodagholy
et al., 2017). The question as to whether PGO activity controls directly or indirectly
the behaviourally-relevant ‘replay’ contents during hippocampal and neocortical ripples
remains to be addressed in future investigations.

As mentioned before, activation of cAMP, Ca2+, PKA, and cAMP response element
binding (CREB) proteins are involved in the induction of gene expressions that lead
to long-term memory formation. Several studies support the idea that activation of
the PGO-wave generator (P-wave generator in rodents) is correlated with increases in
CREB, brain-derived nerve growth factor (BDNF) and activity-regulated cytoskeletal
protein (Arc) in the hippocampus and amygdala. In particular, during the post-training
three-hour sleep recording session, PGO wave density correlated with the time-dependent
levels of CREB, BDNF and Arc in hippocampus, amygdala, and neocortex (specifically
frontal and occipital) (Ulloor and Datta, 2005). Furthermore, selective inactivation of the
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PGO-generating cells of the rat abolished avoidance training-induced expression of the
aforementioned proteins in the hippocampus and amygdala. Notably, the levels of the
proteins fell below baseline control conditions in which the animals were not exposed to
the conditioning stimulus (Ulloor and Datta, 2005). Concordantly, whereas suppression
of PGO-generating cells decreased trial-induced mRNA expression in hippocampus and
amygdala, cholinergic stimulation increased its expression, together with that of Arc and
BDNF (Datta et al., 2008), and test-trial performance (Datta et al., 2004). It is worth
noting that task acquisition was not affected by these experimental manipulations, whose
main effect was only on memory retrieval (Datta et al., 2004, 2008). These results suggest
that memory processing-specific gene activation through protein synthesis may be initiated
or mediated by PGO wave-generating sites. In a similar vein, these data suggest that the
PGO wave generator may signal the primary mechanism for REM sleep-dependent memory
consolidation processes.

3.4 Limitations of this study

Throughout this dissertation I have demonstrated several properties associated with neural
events, that constitute the physiological activity of the hippocampus and other centres in
the intact brain. Our findings reveal how the activity of these brain structures is linked to
naturalistic off-line states, when sleep-dependent memory consolidation processes likely
happen. The function of these off-line states is thought to be recuperative and regulatory
of the brain activity (Tononi and Cirelli, 2014). These regulation processes are instantiated
by changes in brain-wide neuronal excitability, ascribed to the activity of several systems
located in the brainstem that control the global state of the brain. As mentioned in all
papers of this dissertation (Ramirez-Villegas et al., 2017a), all experimental data used
in this project were obtained from anaesthetised preparations. Although many reviewers
have seen this fact as one of the major ‘drawbacks’ of our investigations (Logothetis et al.,
2012; Ramirez-Villegas et al., 2015), none of the results reported here are the product of
fluctuations in the level of anaesthetics in our experiments. This concern likely originates
from a misconception on the effects of several types of anaesthesia in the rodent brain. The
anaesthesia protocols used in our laboratory are based on opioids (Logothetis et al., 2012).
More specifically, remifentanil, a µ-receptor agonist, has been shown to have no effect on
acetylcholine release in the pontine cholinergic cell bodies and cholinergic terminals of
cats (Mortazavi et al., 1999). In the same study, however, opioid-dependent reduction
of acetylcholine levels suggested a µ-receptor modulation that was accompanied with
REM-sleep disruption by other anaesthetic drugs. Importantly, this and similar anaesthesia
protocols have shown to only have mild effects on BOLD fMRI signals, making them
comparable to that of alert monkeys (Goense and Logothetis, 2008; Logothetis et al., 1999,
2001, 2012). Nonetheless, in our experiments we were unable to identify tonic signatures
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corresponding to different sleep stages, as we had no access to ground-truth markers from
naturalistic SWS or REM episodes. These matters remain to be resolved in future research
endeavours.

Although our first results provide specific evidence for the existence of diverse SWR
complexes, it is likely that the detected events are only a fraction of all SWR episodes.
For instance, SWR are known to occur along the whole septo-temporal axis of the rodent
hippocampus (posterior-anterior direction in primates) (Patel et al., 2013). In addition, our
event detection protocol included several stringent refinements –in line with the requests of
anonymous reviewers– that limited the sample of events analysed. The most obvious effect
of event selection is the increase of false-negative rate, as a consequence of an increase in
sensitivity. However, this did not prevented us from detecting distinct SWR subclasses.
Yet, we were unable to ascertain that ‘discarded’ neural events were fundamentally different
in their correlates to the selected ‘bona fide’ ones. Beyond these practical issues, in future
investigations, there is need to develop principled methodologies to detect and classify
events without relying on statistical threshold-based selection (Besserve et al., 2017).

Finally, in the second paper of this dissertation, we devised a simple, multi-compartmental
model of the CA3-CA1 network. The approach of other investigations, however, relies on
morphologically-realistic models (Schomburg et al., 2012; Linden et al., 2011; Reimann
et al., 2013) of several neurons within a neuronal network subfield. One of the questions
that emerges is as to whether such biophysical and anatomical levels of detail are necessary
to observe and understand the basic phenomena underlying neural events in the LFP, while
keeping high biological accountability. There is no definitive answer to this question in the
literature, because under certain conditions the differences seem negligible (see Reimann
et al. (2013), but see Taxidis et al. (2012); Mazzoni et al. (2015); Ramirez-Villegas et al.
(2017b)). Nonetheless, the networks considered in this work can undoubtedly generate
distinct dynamics on the basis of their active components, i.e. the neurons. A myriad of
interneuron subtypes have been identified in the hippocampus (Klausberger and Somogyi,
2008). These interneurons are known to display specific relationships to field activities
such as theta and SWR complexes (Klausberger et al., 2003; Somogyi et al., 2014). In our
model, minimalistically, we only included basket cells, as peri-somatic inhibition seems
critical for the emergence of physiological SWR activity according to recent experimental
evidence (Schlingloff et al., 2014; Stark et al., 2014; Varga et al., 2014; Gan et al., 2017).
Furthermore, we only included CA3 and CA1, while not considering the contribution of
CA2, which is also involved in triggering SWR according to a recent study (Oliva et al.,
2016). It is thus possible that some of the observed SWR neuronal correlates change
upon including other types of interneuronal activity and other hippocampal subfields,
which could also help to better understand other aspects of our experimental observations
(Ramirez-Villegas et al., 2015; Varga et al., 2014).
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3.5 Outlook

In this dissertation I have addressed four main scientific questions, encompassed within
four specific aims (see Section 1.9). I have advanced our understanding on the extent
of the variations in meso- and macroscopic brain dynamics that can be observed during
the occurrence of SWR complexes in the hippocampus of primates. In classical studies,
these episodes were thought to be homogeneous in their temporo-spectral characteristics.
However, not only there are physiological variations of such episodes, but also distinct SWR
subtypes may be associated with functionally distinct wide-brain dynamical events. Our
findings are in agreement with intact-brain experimental preparations in rodents (Oliva
et al., 2016; Karimi et al., 2017; Yu et al., 2017). In addition, our results offer several
venues for new experiments in alert and naturally sleeping animals.

For instance, future experiments could establish the relationship between the neural
correlates of reactivation of remote and new experiences. This question is both beyond
the scope of this dissertation and the primate data available in our laboratory. However,
as mentioned in this General Discussion section, the relationship between hippocampal
and neocortical activations may change as memories become stable and independent of
the hippocampus, where SWR episodes may be useful for modulating the retrieval of
information. The possibility that neocortical associative and high-order areas (such as PFC,
parietal cortex, ACC, PCC etc) are activated before a SWR event occurs was not explored
systematically in our investigation. However, it is reasonable to postulate that neocortex
exerts control over hippocampal ensembles and vice versa, in line with processes of retrieval
and consolidation, respectively (Rothschild et al., 2016; Place et al., 2016; Karimi et al.,
2017). In addition, these processes may be related to SWR episodes with distinct temporo-
spectral profiles as I showed in the first paper of this thesis (Ramirez-Villegas et al., 2015),
possibly occurring across distinct hippocampal SWR activation pathways (Oliva et al.,
2016).

Furthermore, the second paper adds on the current understanding of hippocampal SWR
episodes across microscopic and mesoscopic scales. The model introduced in this paper,
currently stands as the only one in the literature to account for almost all in vivo exper-
imental observations in regard to the dynamics of SWR complexes. Furthermore, from
a more general perspective, many studies use LFP as a population measure in order to
investigate specific brain circuit functions. However, the LFP is a signal with a high degree
of intrinsic ambiguity, reflecting both excitation and inhibition due to complex network
interactions (peri-synaptic activities), active cellular processes, amongst other types of
neuronal interactions (Buzsaki et al., 2012). Understanding the content of the peri-SWR
LFP is challenging and currently there is no agreement on the nature of these contents
amongst hippocampologists. We have provided new insights on how SWR complexes are
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constructed from a neuronal population perspective, and have put forward evidence on the
relationship across multiple scales of neuronal processing associated with SWR episodes.

In a similar vein, we identified several network mechanisms associated with SWR episodes.
We predict that signals of distinct biophysical nature conflating at a specific time can be
associated with specific effectors within a neuronal ensemble. In this sense, in agreement
with previous studies (Carr et al., 2012; Ylinen et al., 1995), we found that CA3 populations
coordinate their activity with CA1 populations by low-frequency activities. The electrical
signature of ripples –in light of our results– is brought about by the concerted action of
IPSC, which were largely associated with variations in ripple power and the time course
of individual ripples. Furthermore, interneuronal firing is concerted at high-frequencies
beyond the ripple itself, a range for which we have coined the term ‘supra-ripple’. In light
of the current literature, the last two results are more or less as controversial than the
SWR-gamma (see Gan et al. (2017), but see Maier et al. (2011)). Moreover, we discovered
that the excitation exerted by CA1 pyramidal cells onto CA1 interneurons (resulting in
somatic EPSC) may be a specific mechanism that controls the feedback inhibitory loop
during SWR and ultimately may determine the specific pyramidal cell assemblies that
participate during individual episodes. These findings indicate that somatic EPSC –possibly
through specific synaptic links between pyramidal neurons and interneurons (Dupret et al.,
2013)– may be necessary for precise behaviourally-relevant SWR memory replay.

Finally, the third paper of this thesis advanced our understanding of PGO waves, and
their relationship to neural events in the hippocampus. In this work, we made two striking
findings. First, PGO waves manifest themselves in distinct types, which are associated with
antagonistic MUA profiles, and distinct peri-event pontine/LGN LFP profiles. Second, PGO
waves are differentially associated with hippocampal episodes, namely, SWS-PGO waves
(type I) co-occur with SWR complexes, whereas REM-PGO waves (type II) are associated
with episodes of hippocampal theta-like oscillations. Investigating the differentiated
brain-wide activities associated with PGO waves remains beyond the scope of this thesis.
Addressing this question requires analysing the concurrent LFP-fMRI recordings, which will
be done in a future investigation. The PGO wave-triggered BOLD maps will likely provide
further insights into the dynamics of these episodes and how they are related to each other
from the viewpoint of the global metabolic activity of neocortical and subcortical domains.
It is also fundamental to further investigate the brainstem-hippocampus synchronisation
pathway with direct methods. The interaction between brainstem and hippocampus could
result from the coordinated action of many pathways including the MS-DB, SuM nucleus
(Vertes, 1992), and several thalamic nuclei (Lara-Vásquez et al., 2016) that are known
to express PGO potentials in cats (Datta, 1997). The fact that both SWS-related and
REM-related neuronal events are markedly associated with memory formation leads to the
question whether the coupling of hippocampal activity with PGO waves, that we address in
the third paper, is indeed critical for such purpose, and whether it relates to behaviourally-
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relevant SWR activity occurring in several association cortices (Khodagholy et al., 2017).
Addressing this question will require extensive multi-structure recordings, possibly with
direct electrical or optogenetic stimulation/suppression of circuits in unrestrained, behaving
animals. I predict that the transition to REM sleep –when SWS-PGO waves co-occur
with hippocampal SWR– marks a period of enhanced memory signaling to neocortical
ensembles, facilitating consolidation of memories. In addition, plastic changes in brain-wide
networks could also occur during REM-related theta in hippocampus, associated with
brainstem-generated PGO wave activity.

3.6 Conclusion

This dissertation provides insights on system-level charactersitics and mechanisms of neural
events: recurring episodes present in the LFP of several brain structures that signal
cooperative microcircuit activities and are thought to underlie cognitive processes such as
memory reactivation, transfer, consolidation and retrieval. Altogether, the results of the
three studies reported and discussed here provide evidence for local circuit operations in
the hippocampus, and the pontine-thalamic-hippocampal system during off-line states, that
likely support mnemonic processing. On the basis of both the theoretical and experimental
approaches of this thesis, I have demonstrated how neuronal activity is coordinated across
multiple spatio-temporal scales and how these scales –at which information is processed–
relate to each other. Importantly, the global activity of the brain at times when neural
events occur is likely associated with the transfer of information between brain subsystems
that are anatomically and functionally connected. Our findings point to specific neural
mechanisms of these processes together with novel brain-wide system-level relationships,
as an important step toward generating a system-level understanding of the hippocampal
system and its interaction with the rest of the brain. Thus, our data and computational
modelling hold wide implications for existing mechanistic models of SWR and PGO waves,
for future large-scale computational models, together with new experimental directions.
In addition, our methodological approaches and results –specifically in the context of the
primate animal model– will be instrumental toward understanding brain activity in humans
under pathological conditions.
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Sharp-wave–ripple (SPW-R) complexes are believed to mediate
memory reactivation, transfer, and consolidation. However, their
underlying neuronal dynamics at multiple scales remains poorly
understood. Using concurrent hippocampal local field potential
(LFP) recordings and functional MRI (fMRI), we study local changes
in neuronal activity during SPW-R episodes and their brain-wide
correlates. Analysis of the temporal alignment between SPW and
ripple components reveals well-differentiated SPW-R subtypes in
the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned
to the positive peak of their SPWs have enhanced neocortical met-
abolic up-regulation. In contrast, ripples occurring at the trough of
their SPWs relate to weaker neocortical up-regulation and absent
subcortical down-regulation, indicating differentiated involvement
of neuromodulatory pathways in the ripple phenomenon mediated
by long-range interactions. To our knowledge, this study provides
the first evidence for the existence of SPW-R subtypes with differ-
entiated CA1 activity andmetabolic correlates in related brain areas,
possibly serving different memory functions.

hippocampus | memory | in vivo electrophysiology | fMRI |
local field potential

Memory processes require mechanisms for large-scale in-
tegration of neuronal activity, in which information pro-

cessing is precisely coordinated at multiple scales. A prominent
example of such phenomenon is the replay of specific sequences
of action potentials of hippocampal and neocortical neurons,
reflecting previous experiences during wakefulness (1–7). Sharp-
wave–ripple (SPW-R) complexes observed in the hippocampal
CA1 local field potential (LFP) mark the reactivation of these
sequences by the simultaneous occurrence of two distinct but
related phenomena: a strong LFP deflection, known as sharp
wave (SPW), and a high-frequency oscillation known as ripple (8,
9). SPW-R episodes are thought to reflect brain-wide processes
mediating memory consolidation (10–13). However, the large-
scale cooperative mechanisms associated to these episodes and
their relationship to the observed SPW-R electrical signature
remain largely unknown. Investigating this relationship is critical
for understanding memory processes at a system level and may
provide new insights into the mechanisms of pathological fast
ripples observed during epilepsy (14).
Although they were initially thought to occur during slow-wave

sleep and quiescence periods, later on SPW-R and sequence
replay were also observed during or shortly after active behavior
(15–17). Moreover, many SPW-Rs occur at path choice points
(18, 19), which are also locations where vicarious trial and error
are reported (20). Thus, reactivation of memory sequences during
SPW-Rs could provide a convenient mechanism not only for con-
solidation of long-term memory (4) but also for quickly recalling
memories during awake state, serving various cognitive functions
(21). The generation of SPW-R complexes in these various contexts
likely involves brain-wide network mechanisms, and as a conse-
quence, SPW-R–related brain dynamics may vary, reflecting dif-
ferent types of interactions with cortical and subcortical systems.
These interactions may in turn affect the underlying dynamics of

hippocampal circuits, thus modifying the observed SPW-R–associ-
ated functional activity at multiple scales.
In this work, we investigate how the LFP signature of SPW-R

events varies during ongoing activity at a given CA1 recording
site, and whether these variations reflect differences in the co-
ordination of neural activity at multiple scales, possibly related to
different functions. We test our hypothesis by studying the SPW-R
correlates at mesoscopic and macroscopic scales. Specifically,
using multisite hippocampal LFP recordings and functional MRI
(fMRI) in anesthetized rhesus monkeys (Macaca mulatta), we
examine the spatiotemporal properties of SPW-R complexes
with a multivariate clustering approach. This approach revealed
that recorded multisite SPW-R LFP activity can be classified in
four subtypes differing in the temporal SPW-to-ripple coupling
and low-frequency SPW pattern. On the one hand, SPW-R–

triggered fMRI statistical maps suggest that ripples synchronized
to the positive peak of their SPWs mark enhanced neocortical
activations. On the other hand, ripples occurring at the trough of
their SPWs reveal weak or absent down-regulation in subcortical
structures, especially in two neuromodulatory structures: dor-
sal raphe nucleus and locus coeruleus. Altogether, our results
show that hippocampal episodes displaying specific SPW tem-
poral patterns and distinct couplings between SPWs and ripples
may instantiate cortico- and subcortico-hippocampal interactions
of different nature, possibly associated with specific memory-
related functions.

Significance

Sharp-wave–ripple (SPW-R) episodes observed in the electrical
activity of mammalian hippocampus are traditionally associated
to memory consolidation during sleep but have been recently
observed during active behavior. Their involvement in various
cognitive functions suggests the existence of SPW-R subtypes
engaged in distinct neuronal activity patterns at multiple scales.
We use concurrent electrophysiological and functional MRI
(fMRI) recordings in macaque monkeys to investigate this hy-
pothesis. We discover several subtypes of SPW-R with distinct
electrophysiological properties. Importantly, fMRI recordings
reveal differences between the large-scale signatures of SPW-R
subtypes, indicating differentiated interactions with neocortex,
and contributions of neuromodulatory pathways to the SPW-R
phenomenon. Understanding the detailed properties of hippo-
campal SPW-Rs at multiple scales will provide new insights on
the function of memory systems.
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Results
Four Subtypes of SPW-R Complexes. To study the variability of SPW-R
complexes, we analyzed extracellular recordings and charac-
terized the temporal and frequency profile of LFPs of the ma-
caque hippocampus. Multicontact recording electrodes were
positioned in CA1 on the basis of high-resolution structural MRI
scans and on-line tracking of stereotypical hippocampal neuronal
response profiles (see Materials and Methods for details). Fig. 1
depicts a schematic representation of the recording configuration
and typical electrode penetration (Fig. 1A), together with an ex-
ample of a typical SPW-R complex signature across multiple
electrode tips (Fig. 1 B andC). SPW-R amplitude, duration (∼100ms)
(Fig. 1B), current source density (CSD) profile (Fig. 1D), and
spectrogram (Fig. 1E) are consistent with previous studies in
macaque monkeys (22). To check the stability of the level of
anesthesia, we monitored the power of hippocampal LFP in the
theta frequency band (4–8 Hz) (23). Each experiment of a given
session was divided into two blocks (5 min each). The distribution
of theta power in these two blocks was assessed by randomly
choosing time intervals of 1 min (for a total of 50 time intervals)
within the block and computing its theta power using Morlet-
wavelet spectrograms (see Materials and Methods). Our analysis
revealed no significant differences between the first block and
second block of each experiment (n = 242 experiments; P > 0.69,
paired-samples permutation t test). Theta activity was thus stable
across experiments of single-recording sessions, reflecting no pu-
tative fluctuations on the anesthesia levels (Fig. S1 A and B).
To study the dynamics of SPW-Rs, we have initially identified

candidate events using the process described in ref. 24, coupled
with several refinements. Briefly, oscillatory events were initially
detected as peaks in the envelope of the broadband LFP (10–250
Hz). Candidate events were clustered on the basis of their spectral
signatures, and only events exhibiting increases in their spectra
above 80 Hz were identified as ripples. Detection of ripples was
further refined by quantifying the Z-scored power in the ripple
frequency band (80–180 Hz) and ripple localization in time. Only
events satisfying stringent localization and power profile criteria
were taken into account for further processing steps (see full
procedure in SI Section A).
To quantify the variability in hippocampal LFP during SPW-R

events, we first compared their spatiotemporal signature. We
asked whether this variability supported the existence of well-
differentiated SPW-R event types, possibly reflecting distinct
microcircuit dynamics and functional roles. As a preliminary
step, we first aligned perievent waveforms with respect to the
averaged ripple power peak across recording sites. We next used
a two-step procedure to cluster the detected and aligned SPW-R

events as illustrated in Fig. S2. The cluster analysis procedure
was performed for each experimental session separately. First,
we grouped the spatiotemporal SPW-R series into 200 repre-
sentative signals using a growing neural gas (GNG) algorithm
(25). Each representative signal is the average of a group of raw
perievent signals with similar time courses (Fig. S2 A and B). It is
worth noting that GNG does not extract particular features of
the signals but represents them solely based on their corre-
sponding time courses in an unsupervised manner. In the second
step (Fig. S2C), we clustered these representative signals based
on their cosine similarity using the normalized cuts algorithm
(26) (see SI Section A for details).
We applied this two-step algorithm to 12 experimental ses-

sions (a total of ∼11,000 detected SPW-R complexes). The re-
sults of the clustering procedure were consistent across all
experimental sessions and animals, and did not vary significantly
due to recording channel selection (the algorithm was amenable
to one or multiple recording channels). However, it was difficult
to determine whether SPW-R complexes were truly clustered or
they only existed as part of some continuum. To address this
question, we devised two procedures: clustering quality analysis,
and cluster consistency analysis (see SI Section A for methodo-
logical details, and Fig. S3). The first analysis revealed that the
population of SPW-R complexes in the CA1 field is best repre-
sented by four LFP signatures. Furthermore, the second pro-
cedure revealed that clustering consistency across experimental
sessions was significantly higher than chance (P < 10−6, t test;
mean value with 95% confidence interval for clustering consis-
tency, 74.17% ± 1.63%).
Fig. 2A depicts the SPW-R LFP grand averages of the

resulting clusters (n = 12 experimental sessions, 4 animals),
showing that ripple oscillations may follow (subtype 1), precede
(subtype 2), or be located at the peak of dendritic depolarization
(subtype 3). Additionally, ripples may be deprived from a clear
SPW depolarization signature (subtype 4). For brevity, we refer
to ripple oscillations located near the peak of the SPW (subtypes
2 and 3) as “classical” (SPW-R patterns with the strongest visual
resemblance to those first reported in ref. 22). The remaining
SPW-Rs (subtypes 1 and 4) will be referred to as “nonclassical.”
In correspondence with each SPW-R subtype, typical raw signal
traces (0.5–300 Hz) are illustrated in Fig. 2B (Top) (monkey i11),
together with their SPW (0–20 Hz) and ripple (80–180 Hz) fil-
tered traces (Fig. 2B, Top and Middle, respectively), a colored
dotted line shows the SD threshold for the event in the ripple
band. Finally, single-event (broadband) Z-scored Morlet-wavelet
spectrograms for every example event are given in Fig. 2B
(Bottom), displaying significant and localized ripple-band power
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Fig. 1. Electrode position, recordings in the hippocampus, and SPW-Rs. (A) Schematic representation of our hippocampal recordings. The diagram of the
electrode position is superimposed on an Inset of the MRI histology atlas (49) indicating the approximate thickness of the pyramidal cell layer in the CA1 field.
(B) Raw multisite LFP traces (0.5–250 Hz). Labels indicate the site targeted by each electrode tip: “sr” for stratum radiatum, “pl” for pyramidal layer. (C) LFP
traces depicted in B filtered in the ripple band (80–180 Hz). (D) Averaged current source density (CSD) maps (50) for SPW (Left) and ripple (Right) for a typical
experimental session (n = 1,020, monkey i11). In the CSD plots, warm colors (red) indicate sources, whereas cold colors (blue) indicate sinks. (E) Averaged
ripple-triggered Morlet-wavelet spectrogram for a typical recording session (n = 1,020, monkey i11).
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increases. We found that results were very consistent from one
experimental session to another. As additional evidence, Fig. S4
shows results from another anesthetized experimental session
(monkey e10). As previous results have shown, single-event rip-
ple band traces and spectrograms show that nonclassical ripples
appear localized in line with our selection criteria (Materials and
Methods), and in good agreement with ripple events reported in
the literature (9, 27). It is worth noting that each SPW-R subtype
occurred concomitantly across all recording sites, displaying little
depth-dependent differences. Furthermore, SPW-R episodes
usually maintained the same polarity across all channels.
In addition to average waveforms, we asked whether SPW-R

subtypes showed differences in the frequency content of peri-
event LFP. Population complex Morlet-wavelet spectrograms
corresponding to each SPW-R type are depicted in Fig. 2C (n =
12 experimental sessions, 4 animals). This time–frequency anal-
ysis shows a clearer low-frequency peak for classical SPW-Rs,
suggesting they have higher-power sharp waves than nonclassical
SPWs. In addition, the spectral profiles at ripple onset extracted
from the middle vertical line of each spectrogram (Fig. 2D) show
that classical ripples have higher frequency peaks [mean values
with 95% confidence intervals, 110.56± 1.09, 127.14± 0.91,
125.35± 0.95, and 115.53± 0.83, respectively; pairwise bootstrapped
Kolmogorov–Smirnov (KS) test, P < 10−6, for the difference be-
tween frequency peaks, Bonferroni corrected] and spectral power
(SI Section B and SI Section C, and Fig. S5; specifically note that Fig.
S5H shows a clear bimodal empirical distribution of the ripple fre-
quency peaks) compared with nonclassical ripples.
A characteristic of our results is the different coupling of av-

erage SPW waveforms to the ripple onset. To quantify precisely
this relationship in individual events, we measured the phase of
the sharp wave (0–20 Hz) at each ripple occurrence. The results,
grouped by SPW-R subtypes, are shown as polar histograms on Fig.
2E. Classical ripple signatures and only one nonclassical signature
(subtype 1, depicted in red) presented statistically significant cou-
pling to the sharp wave (mean values with 95% confidence interval,
−2.9126± 0.060, −0.53± 0.034, and 0.548± 0.025; P < 10−10, per-
muted KS test). In contrast, the nonsignificant coupling of the last

cluster (subtype 4) (mean value with 95% confidence interval,
−0.74± 0.091; P > 0.8, permuted KS test) is attributable to the lack
of clear SPW signature. Notably, ripple-to-SPW coupling was sta-
tistically different among all SPW-R subtypes (P < 0.0001, per-
muted KS test; see also Fig. S5E, where histograms show clear
multimodality). In line with this analysis, the empirical distributions
illustrated in Fig. 2F show mostly positive SPW amplitude distri-
butions for classical SPW-Rs, whereas nonclassical events show
negative distribution or distribution around zero. As illustrated by
Fig. 2 G and H, all SPW-R subtypes have their main spectral sup-
port in the frequency range of 80–180 Hz and have similar ripple
power profiles (Fig. S5). Altogether, these results suggest that SPW-
R subtypes are distinct in several ways, likely reflecting a discrete set
of modes for the underlying hippocampal dynamics (e.g., mediated
by differentiated inputs to CA1), rather than reflecting a continuum
of variations of the same phenomenon. Furthermore, these differ-
ences observed at local scales are further supported by subsequent
analyses on recording sessions from one unanesthetized animal (SI
Section B and Fig. S6).
Some of the SPW-R patterns described here are in close

correspondence with signatures reported in a previous macaque
monkey study (22). Our results extend previous observations on
the variability of the time course of SPW-R complexes across
species (9, 22, 28). In fact, Skaggs et al. (22) suggested that ripple
oscillations come before the largest deflection of SPW in ma-
caque monkeys. Here, we demonstrate that SPWs and ripples
exhibit a variety of couplings. Moreover, our findings show that
SPWs also come in different shapes. In SI Section B, we further
characterize SPWs and ripples of distinct type. In particular, we
report comparable ripple power, and higher ripple peak fre-
quency for classical SPW-Rs with respect to their nonclassical
counterparts (see the overall ripple and SPW statistics across
experimental sessions in Fig. S5). These differences may be re-
lated to changes in neuronal synchrony (recruitment of pyrami-
dal neurons and interneurons) and modifications of the E–I
balance resulting in a higher neuronal excitability during classical
SPW-Rs. Interestingly, we also report that, although subtypes
have comparable rates and appear at similar timescales (Fig. S7
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Fig. 2. Classification of SPW-R complexes across 12 experimental sessions in anesthetized macaque monkeys. (A) Grand averages of ripple power-triggered
SPW-R field potential signatures, from one representative stratum radiatum recording site. Occurrence of the ripple oscillation is marked by dashed lines.
Shaded areas indicate SEM. (B) Representative single-trial events for each subtype. (Top) SPW and related raw signals of each event subtype (monkey i11).
Note that shapes correspond to the average patterns presented in A. (Middle) Filtered, Z-scored LFP in the ripple frequency range (80–180 Hz), illustrating
that all SPW-R classes present a significant power increase in this range. Dashed lines indicate ripple amplitude in SD units. (Bottom) Z-scored single-event
spectrogram of the broadband signal presented in the top rows. (C) Spectrogram grand averages, in correspondence with each of the SPW-R signatures
depicted in A. Averages are computed across all recording sites. (D) Averaged clusterwise spectra. Shaded areas indicate SEM. (E) Phase coupling of the ripple
to the SPW of dendritic depolarization for each cluster. Thick lines indicate the circular mean of the phase-coupling values. (F–H) Empirical distribution of SPW
and ripple subtypes properties. (F) SPW amplitude. (G) Ripple power. (H) Ripple frequency peak. Colors indicate SPW-R subtype.
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A and B), classical sharp waves have larger autocorrelation
density (P < 0.01; t test; n = 12 experimental sessions), suggesting
larger burstiness for these subtypes (Fig. S7C and SI Section B),
and consistent with previous studies reporting that ripples tend to
occur at comparable timescales, in time windows of increased
multiunit spiking activity (29). We now investigate the coupling of
SPW-R signatures to multiunit spiking activity.

Spike-Field Coherence Reflects Differences in Population Synchrony
During SPW-R Subtypes. Ripples are correlated with single-unit and
multiunit spiking activity from the CA1 pyramidal layer (9, 27). We
asked whether this was the case for the identified SPW-R subtypes.
Using the recorded multiunit spiking activity, we computed peri-
event time histograms (5-ms bins) for each SPW-R subtype across
experimental sessions. For such a purpose, we limited our analysis
to the electrode tip with the largest ripple oscillation power located
in stratum pyramidale (see SI Section A for details). Our first
analysis revealed a significant increase in spiking activity from
baseline (Fig. 3A; n = 12 experimental sessions) concomitant with
the ripple occurrence. Broadly, spiking activity of all SPW-R event
types peaked at the same time.
Ripple events have a characteristic phase relationship to the

firing of participating units (8). We thus asked whether this re-
lationship was the same for differentiated SPW-R subtypes. We
assessed precisely the relationship between multiunit spikes and
LFP phase using cross-correlation. For this analysis, the SPW-R
signal was bandpass filtered in the ripple range (80–180 Hz), and
we used the location of the largest trough of the oscillation as
event onset reference for the cross-correlation. We then com-
puted the ripple trough-triggered perievent time histograms
(bins of 2 ms; n = 12 experimental sessions). Our results not only
indicated that neuronal assemblies increase their discharge
probability (Fig. 3A) during the occurrence of SPW-Rs but also
revealed that unit discharges occur preferentially at the negative
peaks of the ripple oscillations (ripple trough) (Fig. 3B), in
agreement with previous studies in rats (8, 9). This finding was
consistent across all SPW-R event subtypes, displaying virtually
identical cross-correlograms (Fig. 3B, Top). In addition, the av-
erage ripple oscillation signature was almost identical among
SPW-R subtypes.
Differences in the relationship between multiunit spikes and

LFP across SPW-R subtypes may also span over the entire fre-
quency axis, instead of remaining localized to a particular fre-
quency band (such as the ripple range). Hence we further studied
the LFP–spike relationship of SPW-R subtypes using spike-field
coherence (SFC) of each SPW-R cluster across all frequencies
in the [0–200 Hz] range (30) (see SI Section A). We computed
this quantity for the four SPW-R signatures independently,

across all experimental sessions. SFC group results are shown in
Fig. 3C for each SPW-R subtype (n = 12 experimental sessions).
Absolute values reported in Fig. 3C reveal coherency peaks both
in the ripple and sharp-wave frequency bands. Classical SPW-Rs
have the highest coherence values. Furthermore, the ripple-band
peak of coherency of nonclassical events was consistently below
that of classical SPW-Rs, in agreement with previous analyses
(Fig. 2 and Fig. S6).
We further investigated whether spikes had a consistent phase

relationship to LFP at different frequencies. Phase-locking val-
ues and circular mean phase of the coherence maps are reported
in Fig. 3D. Consistent with our preliminary analysis, we found
that multiunit spikes were phase-locked approximately to the
trough of the ripple oscillation (corresponding to a phase of π
radians or 180°; Fig. 3D, middle map plots; mean phase with 95%
circular confidence interval −2.84 ± 0.04 radians or 197.28 ± 2.29°
for subtype 2; −2.62 ± 0.02 radians or 209.78 ± 1.25° degrees for
subtype 3). However, in our SFC result, this relationship holds
more precisely for classical ripples (nonclassical ripples mean phase
with 95% circular confidence interval −2.32 ± 0.04 radians or
227.07 ± 2.29°; −2.52 ± 0.05 radians or 215.61 ± 2.86°; P < 10−3,
paired Kuiper test for the difference between phase couplings of all
ripple subtypes, Bonferroni corrected). This finding most likely
reflects different degrees of neuronal population synchrony 50 ms
around the occurrence of the ripple oscillation for different types
of SPW-R complexes, which may explain the difference between
our preliminary results and those with the SFC. Furthermore, this
finding also suggests that nonclassical episodes represent the ac-
tivity of a less synchronous neuronal population, in agreement with
results in Fig. 3C.
Finally, SFC analysis shows that multiunit spiking activity is

significantly locked to the gamma rhythm. A previous study
showed that a gamma rhythm is ubiquitous in the SPW-R phe-
nomenon (31). Notably, the results of this study suggest that
SWR-related gamma coordinates CA3 and CA1 assemblies, and
could coordinate the reactivation of stored memories. It is worth
noting that, in the present work, we only selected “pure” ripple
events taking into account a signal-to-noise ratio, thus assuring
an almost unimodal ripple band power profile (24) (SI Section
C). To fully account for the possible influence of putative peri-
event gamma oscillations, we considered all detected events,
namely pure and “nonpure” events in two separate groups. In SI
Section C, we show that detailed examination of SPW-R episode-
related gamma oscillations across all detected nonpure events
reveal neither new SPW-R LFP signatures nor distinct electro-
physiological features compared with pure events (see Fig. S8 A–D).
Interestingly, we found a transient increase of power over gamma
frequencies concomitant with the occurrence of pure, nonpure, and
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all SPW-R subtypes (Fig. S8E). These oscillations spread over the
slow- and high-gamma range of 25–75 Hz, with a unimodal
distribution of instantaneous frequencies peaking at ∼50 Hz
(see Fig. S8C, Insets). We found that individual SPW-R epi-
sodes can be predicted—to a certain extent—from this tran-
sient increase in gamma power, but not their specific subtype (Fig.
S8F). Furthermore, in line with our SFC analysis, the relation-
ship between gamma LFP and multiunit spikes displays sig-
nificant differences in phase-coupling and phase-locking value
among SPW-R subtypes, further supporting our hypothesis that
these episode subtypes are functionally different (Fig. S8G).
Importantly, these results demonstrate that our observations
are invariant to SPW-R event detection protocols, and most
likely reflect the intricate hippocampal dynamics. Furthermore,
in line with ref. 31, our data suggest that macaque SPW-Rs are
also mediated by a gamma rhythm (see SI Section C and SI
Section D for further discussion).

Brain-Wide Signatures During Distinct SPW-R Episodes. To investigate
the differentiated signature of each SPW-R subtype on brain-wide
activity, we measured neural event-triggered fMRI (NET-fMRI)
for a set of regions of interest (ROIs) (24). The occurrence of each
SPW-R complex was used as a reference (trigger) to align and
average the time course of the blood oxygenation level-dependent
(BOLD) fMRI signal (seeMaterials and Methods). We defined the
ROIs according to previously established functional specificity
criteria (24). We analyzed the averaged Z-scored BOLD maps for
each experimental session, across four animals. Because classical
SPW-R (subtypes 2 and 3) have virtually identical ripple-triggered
fMRI signature, they were averaged together. First, we tracked
qualitative differences in brain-wide activations for the three re-
maining SPW-R subtypes (subtype 1, subtype 2–3, and subtype 4).

As shown in the population analysis across all experimental
sessions (n = 12 experimental sessions, 4 monkeys, Fig. 4A; see
Fig. S9 A and B for examples in individual animals), the overall
NET-fMRI time courses of all subtypes matches previously
reported observations: cortical up-regulation and subcortical
down-regulation. However, BOLD responses related to classical
SPW-Rs exhibit the largest cortical up-regulations and sub-
cortical down-regulations. In agreement with these observations,
significant differences between BOLD activations of classical
and nonclassical subtypes are observed in both neocortical and
subcortical domains (KS test, P < 0.02; Fig. 4B), with larger
effect over subcortical domains in the case of event subtype 1
(Fig. S9C).
We found no significant deactivation of subcortical structures

associated with SPW-R subtype 1 (t test, Bonferroni-corrected,
P > 0.36), with very low amplitude or no negative deviation from
zero. Interestingly, SPW-R subtype 1 was related to increased
neocortical BOLD responses compared with SPW-R subtype 4,
the last being associated with weak cortical up-regulation, and
subcortical down-regulations qualitatively comparable to that of
subtypes 2–3. The grand average NET-fMRI results are shown in
Fig. 5A for a large number of ROIs. We assessed how subtype 1
and subtype 4 differed from classical SPW-Rs (subtypes 2–3)
in each ROI. Because ROI-associated NET-fMRI responses
exhibit similar shapes across subtypes, presenting differences
mostly in magnitude, we extracted the average NET-fMRI re-
sponse over the full width at half absolute maximum and com-
pared the magnitude of up- or down-regulation for each ROI
across subtypes with univariate statistical tests corrected for multiple
comparisons. We found significantly higher up-regulation during
classical SPW-Rs than during nonclassical SPW-Rs within the hip-
pocampal formation, and in cortical associative areas (posterior
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and anterior cingulate cortex, retrosplenial area, prefrontal, tem-
poral, and parietal cortices) (Fig. 5A).
In support of previous analyses, nonclassical SPW-Rs gave rise

to differences between subcortical down-regulation profiles. De-
tailed statistical analysis of all subcortical ROIs showed that dif-
ferentiated BOLD activations occur in periaqueductal gray (PAG),
thalamus, mesencephalon, locus coeruleus (LC), and dorsal raphe
nucleus (Fig. S10B). The last two areas are neuromodulatory
structures known to exert control on the overall brain state, and
may influence the emergence of SPW-Rs. Notably, we found
that, compared with classical SPW-Rs, subtype 1 (Fig. 5B, red
curves) was associated with weaker deactivation of LC and raphe
[P < 0.002, pairwise Wilcoxon rank-sum test, false-discovery rate
(FDR) corrected with qFDR < 0.05] (Fig. 5B, red bars). In con-
trast, during the occurrence of SPW-R subtype 4, deactivation of
the raphe was comparable to that of classical SPW-Rs (P > 0.1,
Wilcoxon rank-sum test, FDR corrected with qFDR < 0.05), but
LC down-regulation was significantly weaker (P < 0.002, pairwise
Wilcoxon rank-sum test, FDR corrected with qFDR < 0.05) (Fig.
5B, purple bars).

Discussion
In the present study, we identified—for the first time (to the best
of our knowledge)—distinct subtypes of in vivo SPW-R patterns
in a single recording site, displaying qualitative and quantitative
electrophysiological differences. Our procedure reliably clusters
the perievent time series into a number of event subtypes; exam-
ines their characteristic properties, such as their frequency content,
amplitude, and frequency of occurrence; and maps the topology
and dynamics of brain-wide metabolic activity at the time of
event occurrence.
This approach revealed the existence of four hippocampal

SPW-R subtypes with differentiated mesoscopic and brain-wide
dynamics. Subtype identification relied on the presence of a
SPW pattern in the LFP trace and its shape. The characteristics
of SPW patterns and ripple oscillations in the hippocampal CA1
subfield suggested differences in subthreshold activity of the
underlying neural populations. Importantly, such differences at
the mesoscopic level were complemented by differences in brain-
wide signatures mapped with NET-fMRI. Our results demon-
strate significant modulation of two brain-wide networks linked
to hippocampal-dependent memory functions: one involving
associative neocortex, and another one involving subcortical and
specifically neuromodulatory structures.

It is unlikely that our results are an effect of fluctuations in the
levels of anesthesia (in the case of the four anesthetized ani-
mals), because the low-frequency LFP activity over the theta
range was stable over time for each experimental session. Fur-
thermore, the occurrences of SPW-R complex subtypes showed
no apparent clustering in time for different event types and were
comparable to those observed in experimental sessions from one
drug-free animal, recorded during quiet wakefulness.

Identification of Four Subtypes of the SPW-R Phenomenon. We have
demonstrated that hippocampal LFP dynamical variability during
SPW-Rs can be summarized into four typical signatures. Each
signature corresponds to a specific relationship between SPWs and
ripple oscillations: high-frequency oscillations preceding, following,
or coinciding with the peak of the SPW of dendritic depolarization,
as well as high-frequency oscillations with no clear SPW signature.
Such highly structured variability suggests differentiated underlying
neural mechanisms, possibly associated with different memory-
related functions.
Some SPW-R subtypes reported in the present work are in

agreement with recently reported SPW-R signatures in slice
models (32, 33). However, Hofer et al. (32) report only two event
classes based on the SPW polarity in CA3. In contrast, Reichinnek
et al. (33) have also observed two SPW-R event classes, differing
only in SPW amplitude. The discrepancy between previously
reported results and ours may be due to the chosen SPW-R de-
tection protocol, solely based on SPW amplitude and visual in-
spection (33), and also to the limitations inherent to slice models,
unable to reproduce the effect of long-range brain interactions.
The observed variability of LFP profiles during ripples sug-

gests a different spatiotemporal repartition of extracellular
currents in the CA1 microcircuits, possibly resulting from the
differences in the recruitment of—and interactions between—
the underlying neuronal subgroups. Indeed, several inhibitory
and excitatory subgroups of neurons interact during SPW-R
episodes, and their nonhomogenous spatial configuration can
affect the spatial distribution of extracellular activity. For in-
stance, Mizuseki et al. (34) report differential involvement of the
two CA1 pyramidal sublayers, having distinct phase shifting with
respect to the theta rhythm during rapid eye movement (REM)
sleep, and they further indicate that REM shifting cells were more
strongly associated with SPW-R activity, compared with that of
non-REM shifting cells. Whether these two sublayers are differen-
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Fig. 5. Population ripple-triggered NET-fMRI time course in ROIs for each SPW-R subtype. (A) Average BOLD response show differentiated activations (all
experimental sessions) of hippocampus (HP), thalamus (Tha), posterior and anterior cingulate cortices (PCC, ACC), retrosplenial area (RetroSp), and prefrontal
(PFC) and parietal (Par) cortical areas (significant differences are indicated by asterisks). Black-shaded areas indicate SEM. (B) Average NET-fMRI responses (full
width at half-maximum) show differentiated contributions of two neuromodulatory structures, dorsal raphe nucleus (serotonergic) and locus coeruleus
(noradrenergic), to the SPW-R phenomenon (Fig. S10).
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tially involved during SPW-R subtypes and are at the origin of the
observed LFP characteristics remains an open question.
Another candidate for modulating the physiological properties

of SPW-R is the influence of CA3. In particular, gamma oscil-
lations during SPW-R are assumed to play a central role in co-
ordinating CA3 and CA1 cell assemblies during memory replay
(31). We discovered that a gamma rhythm is ubiquitous in all
SPW-R subtypes. Specifically, we found a transient increase in
gamma power concomitant with the occurrence of SPW-R epi-
sodes, and barring the detailed single-unit analysis, we found
similar SWR-gamma correlates as those reported in ref. 31.
Thus, gamma-related mechanisms mediating CA3–CA1 inter-
actions during SPW-R episodes seem to be independent from
the mechanisms generating the SPW-R diversity.
Additional discussion about the possible influence of the re-

cording locations and the local circuits in stratum pyramidale
within CA1 in relation to our results can be found in SI Section
D. Although the above comments discuss modifications of hip-
pocampal neural activity that might explain our LFP observa-
tions, we hypothesize that these changes may in turn result from
the influence of other brain structures.

SPW-R Subtypes Relate to Differentiated Neuromodulatory Activities.
Modulations in amplitude of the BOLD responses in subcortical
domains suggest the involvement of two neuromodulatory struc-
tures directly connected to hippocampus in the SPW-R phenome-
non, namely dorsal raphe nucleus and LC. Due to the transient
nature of the examined neuronal events, the lack of clustering of the
SPW-R subtypes, and their NET-fMRI correlates, it is likely that
our study reflects short-duration “phasic” changes, rather than tonic
neuromodulatory effects spanning over 10 s or larger timescales.
A dense noradrenergic and serotonergic innervation is present

in the hippocampus proper, exerting modulatory effects in the
activity of microcircuits. For instance, LC deactivation is in-
volved in switching cortex and hippocampus to inactive states
(35). However, LC neurons exhibit also phasic modes of activity,
with bursts of activity of 15- to 70-ms duration, followed by a 300-
to 700-ms period of suppression (36). Experimental evidence
suggests that the timescales of interactions between LC and
hippocampus (∼1–2 s) (37) are compatible with the scale of
occurrence of individual ripple episodes. Although the hypothesis
that differentiated SPW-R complexes emerge partly as a result of
LC inputs remains to be tested using more direct methods, it has
been shown that decision making under uncertainty involves LC
(38). Moreover, SPW-Rs are more frequent after task modifi-
cations, such as exposing an animal to a second novel environ-
ment (18).
In addition, nonclassical SPW-R subtypes may mark a differ-

entiated involvement of the ascending serotonergic system. Nota-
bly, raphe projects to several subtypes of hippocampal GABAergic
interneurons and may exert control on the E–I balance over local
circuitry engaged during ripples via fast synapses (39). Moreover,
the capacity of raphe projections to selectively influence well-seg-
regated groups of hippocampal parvalbumin (PV) expressing in-
terneurons has been recently stressed (40), raising the possibility of
serotonergic control of neuronal circuits over timescales spanning
the occurrence of single ripples (∼200 ms). This view is further
supported by a recent study where groups of the three major PV
cell classes are differentially modulated during ripples, suggesting
that fast network episodes involve distinct inhibitory circuits (41),
modulated at timescales at which raphe–hippocampal modulations
may occur.

Hippocampal–Neocortical Interactions May Contribute to SPW-R
Variability. We showed that SPW-R subtypes 1 and 4 (non-
classical SPW-Rs) in the hippocampus consistently led to lesser
activation across different cortical domains compared with SPW-R
subtypes 2 and 3 (classical SPW-Rs). Because our experiments

were performed in anesthetized macaque monkeys without any
previous behavioral training, the robustness of our results across
sessions suggests that these differentiated signatures reflect dif-
ferent types of brain-wide dynamical processes involving memory
traces, not necessarily accounting for differences in memory
content per se.
Differentiated activations were detected in the posterior and

anterior cingulate (PCC, ACC) (42), PFC (43), and parietal
cortices (44). One possible explanation for these results is that
increased cortical activity marks enhanced recurrent interactions
between neocortex and hippocampus during classical SPWs.
Taking into account hippocampal connectivity, two recurrent
mechanisms might account for differentiated SPW-R patterns.
First, entorhinal cortex (EC) input may modulate CA1 activity by
episodes of persistent activity that occur concomitantly with
neocortical up-down state transitions (45). These neocortical–
EC episodes develop at timescales similar to those of a typical
burst of ripples, i.e., series of ripples with relatively short delays.
Second, reentry may also be achieved at the scale of a single
SPW-R event, through projections of medial entorhinal cortex
(MEC) to CA1 stratum lacunosum moleculare (SLM) (46).
Layer-specific activation of MEC would be followed by a local
depolarization of SLM with the delay of a single synapse, thus
influencing the time course of single SPW-Rs (46). In both
scenarios, hippocampal activity could be controlled by recurrent
activity within the local microcircuits and through cortico-hip-
pocampal dialogue. These mechanisms might serve many
purposes, such as volitional reactivation of a set of related
memory traces or controlling the consolidation of new memo-
ries according to their relevance to preexisting memories and
their reward value.

A Repertoire of Memory-Related Brain-Wide Events. To the best of
our knowledge, the present study shows for the first time the
existence of in vivo SPW-R subtypes occurring in the same re-
cording site, and reflecting qualitative differences in brain ac-
tivity within hippocampus and across cortical and subcortical
domains. Processes such as memory reactivation, retrieval, and
consolidation could exploit these brain-wide differences to fulfill
different functions. Locally, the described SPW-R signatures may
be the result of selective interactions between neuronal groups,
involving varying degrees of network synchrony and dynamical
E–I balance. This balance may be mediated by cortico-para-
hippocampal-hippocampal and subcortico-hippocampal interac-
tions. Our results suggest these dynamical properties of local
microcircuits are strongly intertwined with brain-wide interac-
tions during SPW-R, possibly establishing distinct modes of se-
lective processing and routing of information across multiple
scales (SI Section D). The presented pattern classification will
enable the characterization of SPW-Rs in behaving and natural
sleep preparations and establish the functional role of each sub-
type. Finally, our approach could be used to better understand the
underlying mechanisms of epileptiform events and more generally
pathological phenomena (see ref. 47 for a perspective).

Materials and Methods
Surgical Procedures, Electrophysiology, and fMRI Recordings. Experimental
and surgical procedures have been detailed in a previous study (27). In
summary, a total of 242 experiments (10 min each) spread over 12 sessions
were carried out in anesthetized male rhesus monkeys (Macaca mulatta).
Head holders and recording chambers were located stereotaxically based on
high-resolution anatomical MRI scans. Recordings were conducted in the
anterior part of the hippocampus in the right hemisphere of each animal. All
recording hardware, including the electrodes and amplifiers for simulta-
neous fMRI and multisite electrophysiological recordings, was developed at
the Max Planck Institute for Biological Cybernetics. Custom-made, multi-
contact, NMR-compatible recording electrodes were made from a carbon
fiber composite baton with 500-μm diameter (R&G). The 2.6-mm-long tip
grounded down to a diameter of 250 μm. Electrodes contained 10 contacts
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spaced 150 μm apart, with 6–10 targeting the structure of interest. Re-
cording electrodes were positioned around the pyramidal layer of the hip-
pocampal CA1 subfield (8–14 mm anterior of the interaural line). Fine
adjustment of the recording electrode was achieved by intermediate MRI
anatomical scans. Functional imaging was carried out in a vertical 4.7-T
scanner with a 40-cm-diameter bore (BioSpec 47/40v; Bruker BioSpin), in
which each animal was positioned in a custom-made chair [see Logothetis
et al. (24) for details on the gradient coil]. Typically, 22 axial slices were
acquired, covering the entire brain (voxel size, 0.75 × 0.75 × 2 mm3). BOLD
activity was acquired at a resolution of 2 s with two-shot gradient-echo
echo-planar imaging images (repetition time/echo time, 1,000/20 ms;
bandwidth, 150 kHz; flip angle, 53°; field of view, 96 × 96 mm; matrix, 96 ×
96; 2-mm slice thickness). MRI data were analyzed off-line. During all ex-
periments, anesthesia was maintained with remifentanil (0.5–2 μg·kg−1·min−1) in
combination with a fast-acting paralytic mivacurium chloride (5–7 mg·kg−1·h−1),
known to only mildly affect the magnitude and time course of neural and

vascular responses (24, 48). All experimental and surgical procedures were
approved by the local authorities (Regierungspraesidium, Tübingen Referat 35,
Veteriärwesen) and were in full compliance with the guidelines of the European
Community (EUVD 86/609/EEC) for the care and use of laboratory animals.

Processing and Analysis of Neural Data. Analyses of electrophysiology and fMRI
data were performed using MATLAB (The MathWorks). Signal denoising,
electromagnetic interference elimination, and frequency band isolation pro-
cedures have been described in detail in a previous study (24). In SI Section A, we
describe the main signal processing and neuronal data analysis performed on
the denoised broadband extracellular signals (0.05 Hz to 7 kHz).
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SI Section A: Neural Data Analysis Methods
Estimate of Changes in the Level of Anesthesia. The theta LFP band
was used to estimate changes in the level of anesthesia during
individual experimental sessions in anesthetized animals (23, 51).
Raw data experiments were divided into two parts (5 min each).
Signals were filtered in the theta frequency band (4–8 Hz) and
were then rectified using the Hilbert transform and averaged
across recording sites (only for plotting purposes). Spectral power,
on the other hand, was estimated using the nonfiltered signal (0.5–
300 Hz) across 15 frequencies in this band using Morlet-wavelet
spectrograms. Power estimates from 50 randomly chosen time
windows of 1 min were compared statistically using a paired-samples
permutation t test. This statistical test was performed in 242 ex-
periments separately. A P value of 0.05 was considered a statistically
significant difference.

Selection of SPW-R Events. Following a methodology presented in
Logothetis et al. (24), we examined changes of power in the
broadband signal (10–250 Hz). In addition to anatomical criteria,
we classified the electrode recording tips into stratum radiatum
(SR) and stratum pyramidale (PL) tips, based on visual tracking
of oscillations with distinct frequency contents (complex spike
features, ripple or gamma-like high-frequency events and low-
frequency sharp waves) and observing synchronous activity
across recording sites. The broadband signal was rectified, low-
pass filtered at 20 Hz, and then normalized. Candidate events
were detected as epochs during which the signal exceeded a 3.5
SD threshold. Because increases in power may result from os-
cillations occurring in different frequency bands, we clustered
the spectra using nonnegative matrix factorization (NNMF), an
unsupervised algorithm that creates data decompositions for a
user-defined number of components. Stable representation of
the data was achieved using three components, corresponding to
increases over different frequency bands, namely sigma (8–22
Hz), gamma (25–75 Hz), and ripple (80–180 Hz).
Ripple events clustered using the NNMF procedure were

considered “candidate ripples.” All candidate ripple events must
be highly localized in time and distinguish themselves from any
spurious baseline ripple-band activity or brief oscillatory episode.
To ensure that all selected events were genuine ripples, a higher
threshold was applied for ripple event selection. To this end, all
candidate ripples were filtered in the ripple band (80–180 Hz)
with a fourth-order Butterworth bandpass filter. We selected
ripples exceeding a threshold of 5 SD, a higher threshold than
that reported in previous research in rats and monkeys (16, 22,
27, 28, 52). We further refined the procedure with a “ripple time-
localization criterion”: a Gaussian function was fitted to the en-
velope of the signal filtered in the ripple band using nonlinear least
squares (53). Only events with a fitted width of 50 ms≤ σ ≤ 150 ms
and r2 greater than 0.6 (r≥ 0.77) were taken into account for fur-
ther processing.

Clustering of SPW-R LFP Time Series. Cluster analysis was applied to
each experimental session separately. Perievent SPW signal time
courses were used for clustering. After low-pass filtering with a
cutoff frequency of 20 Hz, distortion of waveforms induced by
hardware filtering was corrected by numerical temporal in-
tegration of the wave form (given that our hardware filtering
acted as a temporal derivative in this frequency band). For the
first stage of the clustering approach, the spatiotemporal SPW-R
series were grouped in 200 representative signals using a growing
neural gas (GNG) algorithm (25) (see SI Section B for mathe-

matical details). Each representative signal (also called “node”)
corresponds to the average of a group of raw perievent signals
with similar time courses (reduced pairwise Euclidean distance).
Because representative signals are easier to cluster due to noise
reduction, in the second step, we clustered these representative
signals based on their pairwise cosine similarity matrix using the
normalized cuts algorithm, a clustering technique that creates
partitions in the data by maximizing the overall similarity of the
signals to be included in a given cluster (26). SPW-Rs were sorted
and then averaged across sessions.
This procedure was performed for SPW-R data from each

experimental session (∼11,000 SPW-R complexes) using up to 14
cluster partitions and 200 repetitions. We chose the optimal
number of cluster partitions based on how well separated the
distinct clusters were. We devised a cluster validity measure to
have an objective measure of the clustering quality across clus-
tering partitions. This measure quantifies the ratio of the pair-
wise intracluster similarity to the pairwise intercluster similarity,
in the following referred to as the normalized cuts index (NCI).
In addition, we used well-known clustering quality measures that
typically compare the distances between signals belonging to a
given cluster to those belonging to distinct clusters. Because all
clustering quality values are normalized measures, across-ses-
sions statistics were computed by pulling together the values
obtained for each session (n = 12 experimental sessions). Finally,
we devised a consistency procedure to validate the results of the
clustering (see details below).

The GNG Network. The GNG, originally proposed by Fritzke (25,
54), is an incremental self-organizing network of “codebook”
vectors that fits an arbitrary topology, incorporating a growing
mechanism. Connections between the vectors in the network are
developed dynamically as the number of vectors in the network
grows over time.
The network topology is initialized with randomly generated

codebook vectors connected by edges and covering the input
space (matching the number of dimensions of the input data).
During one iteration of the network’s training stage, a data point
is randomly selected and the closest codebook vector is itera-
tively updated following a simple learning rule:

wjðt+ 1Þ=wj ðtÞ+ «b
�
xμ −wj ðtÞ

�
, [S1]

where wj is the closest codebook vector to the μth input data
point and «b ∈ ½0,1� is a constant learning rate.
The topological arrangement of the network is represented by

edges connecting codebook vectors, thus defining “topological
neighborhoods.” A connection between two nodes is created (or
“strengthen”) if the two nodes happen to be the nearest to a given
input signal. These topological neighborhoods allow us to cluster
the data more easily, because data points with similar time courses
tend to be connected.
GNG is a graph of connected data points (representative

vectors) that grows over time. The insertion policy of the GNG
based on tracking representative vectors with large error variables
along with the establishment of a topological neighborhood ad-
aptation is somewhat equivalent to a stochastic gradient descent
rule: vectors move in the input space together with their topo-
logical neighbors, and new vectors are inserted over large-error
areas, i.e., over areas where the network has not yet fitted ade-
quately the input data (55).
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Clustering the GNG (Connection to Normalized Cuts Criterion). The
codebook vectors obtained by the GNG are clustered as follows:
let GðV ,EÞ be a neural network forming a graph, with codebook
vector as vertices in the set V and edges in the set E. If we add
a weight on each edge, denoted Wij as a function of the cosine
similarity between the codebook vectors i and j being linked by
the edge, we may denote the weighted graph as GðV ,E,W Þ. The
normalized cuts criterion seeks to partition the set of codebook
vectors (vertices of the graph) into several sets, such that we
maximize the fraction of total weights within a group with re-
spect to the total weights of all member nodes in the graph (26,
56). Thus, given a partition of V , ΓK

V = fV1, ..,VKg, the objective
function to maximize is:

«
�
ΓK
V

�
=
1
K

XK
l=1

P
i∈Vl , j∈Vl

W ði, jÞ
P

i∈Vl, j∈V
W ði, jÞ. [S2]

In practice, an N-by-K partition matrix X is used to represent ΓK
V ,

where X = ½X1, ...,XK � and Xði, lÞ= 1 if i∈Vl, i.e., if the codebook
vector i belongs to the cluster Vl; otherwise Xði, lÞ= 0. We can notice
that there is an implicit exclusion constraint on X :X1K = 1N, where
1N denotes a N-by-1 vector of all 1’s. The neural network graph
clustering problem is then formulated as follows:

maximize «
�
ΓK
V

�
=
1
K

XK
l=1

XT
l WXl

XT
l DXl

, [S3]

subject to X ∈ f0,1gNxK

X1K = 1N ,

where D= diagðW1NÞ is the degree matrix, i.e., gathering on its
diagonal the total weight of connections of each codebook vec-
tor. The computational solution of the above problem reduces to
a generalized eigenvalue system.

Validation of the Clustering Procedure. To help determine whether
SPW-R complexes were truly clustered, or they only existed as
part of some continuum, we used two procedures: (i) clustering
quality analysis, and (ii) clustering consistency analysis (see de-
tails below).
i) After running the clustering algorithm for several numbers

of clusters (for up to 14 clusters), we compared the quality of the
outcome quantitatively and qualitatively using clustering quality
indices, together with low-dimensional projections of the original
datasets (via Laplacian Eigenmaps, described in detail in ref. 57),
respectively.
To assess the quality of the outcome of the Normalized Cut

approach, we use the NCI, which corresponds to the value of the
objective function described in Eq. S3 at its optimum (when the
Normalized Cut Algorithm has converged). NCI is used to estimate
the quality of the clustering for different numbers of clusters.
We also assessed the clustering quality using the following

classical indices: silhouette index, Davies–Bouldin (DB) index,
and C index (58). Briefly, the silhouette for each cluster (or
across clusters) is a measure defined in the range [−1, 1] and the
best clustering partition is achieved when the silhouette index
approaches 1. Furthermore, the DB index is a classical index
suited to compact and well-separated clusters; we note that good
clustering partitions are obtained as DB→ 0, because this mea-
sure is the ratio of the intracluster distances to the distances
between the clusters’ barycenters. Finally, the C index compares
the total sum of the pairwise distances in each cluster and the
smallest pairwise distances in the data against an equivalent number

of the largest pairwise distances. An optimal cluster partition is
obtained when C→ 0.
ii) To check the stability of our clustering results, we devised

an internal consistency procedure amenable to single experi-
mental sessions, and several repetitions per session. To this end,
75% of each SPW-R dataset was taken as training set, and the
remaining 25% was taken as test set. Training and test groups
were balanced on the basis of the original cluster labels estab-
lished a priori for the whole dataset, so that the marginal proba-
bilities of ripple types remained equal. Training sets were further
divided in two halves to train two GNGs independently, for each
session. Clustering consistency of both GNGs was then measured
on remaining test set, using the following equation:

Qμ = 1−
1
N

XN
i=1

F
�
xμi − yμi

�
, [S4]

where xμi and yμi are the ith cluster labels of the μth repetition, N
is the total number of signals in the test set, and FðxÞ is described
by the following function:

FðxÞ=
�
0 x= 0
1 otherwise . [S5]

Thus, when the sets cluster labels Xμ = fxμ1, xμ2, ..., xμNg and Y μ =
fyμ1, yμ2, ..., yμNg are identical, the consistency takes value 1 (or
100% consistency).

SPW-R Features and Morlet-Wavelet Spectrograms. Four different
features were computed for each of the SPW-R signatures from
the previous clustering procedure, namely normalized SPW
amplitude, ripple power, number of oscillations exceeding 50% of
the peak of the ripple oscillation, and frequency peak in the ripple
band. Ripple power was computed as the average of the squared,
filtered signal in the ripple band (80–180 Hz). In addition, spectral
analysis was performed using Morlet-wavelet spectrograms. The
spectrograms were Z scored with respect to spectrograms com-
puted using the same number of events with randomized inter-
event intervals. Ripple-band frequency peaks for each event were
extracted using this spectral technique. Barring the number of
oscillations feature, all features and spectra were Z scored with
respect to baseline activity. In addition, we measured correlations
between the aforementioned features using the standard Spearman
rank correlation coefficient; a value of P < 0.05 was considered
a statistically significant correlation.

Multiunit Spikes Analysis. Multiunit spike times were detected by
threshold crossing (3 SD) of the high-pass–filtered extracellular
signal (1,000-Hz cutoff frequency). Single units were not isolated
due to constraints of the recording hardware. Spikes around
each perievent SPW-R signal were pooled together and peri-
event time histograms were computed (bin size, 5 and 2 ms, as
indicated in main text) with respect to random point processes of
the same rate. Thus, only above-baseline activity is reported in
the main text of this work. Perievent cross-correlation analysis
between LFPs and spikes was performed for each event subtype
using the cumulative number of multiunit spike events (9).

Spike-Field Coherence. Spike-field coherence (SFC) was computed
for all recording sites located in the CA1 stratum pyramidale,
across all SPW-R broadband signal events using a tapering
window duration of 200 ms with an increment of 10 ms, using
the Chronux toolbox available at chronux.org (59). This process
outputs a complex-valued matrix F × nt ×M, where nt refers to
the length of the perievent time windows, F is the number of
frequencies (regularly spaced between 0 and 200 Hz), and M is
the total number of ripple events. Complex-valued coefficients of
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this matrix account for the entrainment between LFP and spikes
at particular frequency and time points. Average absolute SFCs
values within the same cluster label were averaged, resulting in
four F × nt absolute coherence matrices. To study the phase-
locking properties of spikes to the LFP, the complex SFC coef-
ficients were also normalized to an absolute value of 1 and the
circular mean of the normalized maps was computed for each
cluster subtype, resulting in phase-locking maps described by
their magnitude [phase-locking value (PLV)] and phase (in the
range ½−π, π� radians).
fMRI Data Processing. Preprocessing of the MRI data has been
described in a previous study (24). Briefly, linear trends were
removed and bandpass filtering (0.01–0.4 Hz) was applied for
temporal noise reduction. Due to the slow nature of the BOLD
signal, we excluded events with overlapped BOLD time courses
in a time window of [−5, 5] s. Maps from different sessions were
computed using Hotelling’s T2 statistic. BOLD activations were
subsequently averaged and compared across triggering SPW-R
events. For qualitative analysis, contrast maps were computed as
the average difference between activations associated with paired
event types across experimental sessions. Statistical significance
for the differences between full-width at half-maximum BOLD
activations was tested later on using the Wilcoxon rank-sum test.
All statistical tests were FDR corrected.

SI Section B: Supporting Results on SPW-R Complexes
Subtypes
Putative Fluctuations on the Anesthesia Level. To check the influ-
ence of the fluctuations of the level of anesthesia on the occur-
rence of event subtypes, event raster plots were superimposed to
the rectified theta-band activity, showing no relationship between
the occurrence of different types of SPW-R episodes and changes
in the theta activity, used as a marker of the level of anesthesia
(Fig. S1A, first two panels for anesthetized animals and third
panel for one unanesthetized animal) (see also main text).

Clustering Quality Analysis. To measure the quality of the SPW-R
clustering partition, we computed four clustering quality mea-
sures: NCI, silhouette index, DB index, and C index. Clustering
quality analysis measures were consistent across experimental
sessions and were put together for population analysis. NCI, on
the one hand, was computed as a quality measure for the GNG
graph clustering procedure across up to 14 partitions to quantify
the optimal number of clusters present in the data. Based on this
analysis, we concluded that the optimal number of clusters is 4
(Fig. S3A). On the other hand, silhouette, DB and C indexes
were used to assess the clustering quality of the raw data points
and compare the quality of the two-stage clustering procedure to
the quality of a single-stage clustering procedure, i.e., clustering
with no neural network as preprocessing stage.
Fig. S3B (Left) illustrates the silhouette indices for our two-

stage clustering methodology, in comparison with the normalized
graph cuts alone and to randomly permuted clusters. Positive
silhouette values are suggestive of good clustering quality, whereas
negative values indicate the opposite. Our two-stage methodology
largely outperforms the normalized graph cuts (P < 10−4, pairwise
Bonferroni-corrected KS test). No significant differences were
found across recording sites. Fig. S3B (Middle) illustrates the
clustering quality assessment using DB indices. As in the previous
case, we compared the two-stage methodology to the normalized
graph cuts alone and to randomly permuted clusters. DB-index
values close to zero indicate a good clustering quality and clusters
are assumed compact and well separated. The two-stage meth-
odology again outperforms the normalized graph cuts (P < 10−5,
pairwise Bonferroni-corrected KS test). No significant differences
were found across recording sites. Finally, Fig. S3B (Right) illus-
trates the C-indices for our two-stage clustering methodology, in

comparison with the normalized graph cuts alone and to randomly
permuted clusters. C-index values close to zero indicate a good
clustering quality, whereas higher values indicate the opposite.
The two-stage methodology was deemed better than normalized
graph cuts alone (P < 10−5, pairwise Bonferroni-corrected KS
test). In all of the previous cases, no significant differences were
found across recording sites (P < 0.1, P < 0.07, and P < 0.4,
respectively).
Finally, a typical GNG similarity matrix is depicted in Fig. S3C;

the matrix is sorted according to the cluster label of each SPW-R
representative. The matrix illustrates the pairwise cosine simi-
larity between SPW-R representatives. Note that SPW-Rs of the
same type remain heavily connected and bear strong similarity
(greater than 0.7; brightest spots in the matrix account for con-
nections between SPW-R representatives), whereas very few,
sparse connections remain between SPW-Rs of distinct type. In
addition, Fig. S3D depicts the Laplacian Eigenmap (58) (2D
representation) of a typical GNG network, where each vertex
corresponds to a SPW-R representative. Edges computed by the
GNG algorithm (SI Section A) are shown as solid black lines.
Note that clusters remain well separated, despite their high di-
mensionality. This result suggests that it is unlikely that distinct
SPW-R signatures are a continuum of variations of the same
phenomenon.

Consistency of the Clustering Procedure. Clustering consistency was
then measured for each experimental session, for a total of 100
repetitions. Session results were averaged individually, and results
were pooled together for population statistics. We found that
clustering consistency across experimental sessions was signifi-
cantly higher than chance (P < 10−6, t test; mean value with 95%
confidence interval for clustering consistency across 12 experi-
mental sessions, 74.17 ± 1.63%).
We next examined the classification changes underlying the

performance of the clustering consistency procedure. More spe-
cifically, we asked which SPW-R categories most of the inconsis-
tently classified SPW-Rs were associated to. We addressed this
question by constructing a “confusion matrix,” averaged across
cross-validations. Our results show that SPW-R subtypes 2 and 3
were inconsistently classified slightly more often than other sub-
types, likely due to their similar time courses (Fig. S3E). Likewise,
the least inconsistently clustered subtype was subtype 1, probably
because its time course is anticorrelated with respect to the time
course of other SPW-R signatures.

Variations in Amplitude, Frequency Content, and Statistics of SPW-R
Events. We compared the four SPW-R types on the basis of
normalized absolute sharp-wave amplitude (Fig. S5A), ripple
power (defined as the average of the squared, filtered signal)
(Fig. S5B), number of oscillations above 20% of the ripple os-
cillation peak (Fig. S5C), and frequency peak of the ripple (band,
80–180 Hz) (Fig. S5D).
This analysis revealed statistically significant differences across

clusters for the Z-scored sharp-wave amplitude (mean values in
Z-score units with 95% confidence intervals, −0.9414± 0.0609,
1.4279± 0.0572, 1.5380± 0.0600, 0.4627± 0.0425, respectively;
pairwise bootstrapped KS test, P < 10−6, Bonferroni corrected)
and frequency peak of the ripple (mean values with 95% confi-
dence intervals, 110.56± 1.09, 127.14± 0.91, 125.35± 0.95, and
115.53± 0.83, respectively; pairwise bootstrapped KS test, P <
10−6, Bonferroni corrected). In contrast, no significant differ-
ences were observed for ripple power (mean values in Z-score units
with 95% confidence intervals, 2.7410± 0.0542, 3.0094± 0.0604,
2.9230± 0.0553, and 2.8120± 0.0436, respectively; pairwise boot-
strapped KS test, P > 0.05, Bonferroni corrected) and the number
of oscillations above 50% of the ripple oscillation peak (mean values
with 95% confidence intervals, 5.4068± 0.0922, 5.7088± 0.0704,
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5.6842± 0.0718, and 5.4615± 0.0681, respectively; pairwise boot-
strapped KS test, P < 0.1).
SPWs and ripples have correlated time courses and correlated

features (28, 31, 60, 61). In particular, we studied the relationship
between ripple power and sharp-wave amplitude and also be-
tween ripple frequency peak and sharp-wave amplitude. We
conducted regression analyses to quantify such relationships.
Consistent with our spectral analysis reported in the main text,
we found that ripple power correlated positively to sharp-wave
amplitude (R = 0.4534; P = 0.0001) and this relationship is ob-
served for each type of SPW-R (Fig. S5 E and F). Analogously,
frequency peak in the ripple band (80–180 Hz) correlated posi-
tively to sharp-wave amplitude (R = 0.3548; P = 0.0001). In all
subtypes, both the ripple-band frequency peak and ripple power
remained relatively localized (Fig. S5 E and F).
In addition to their specific amplitude and frequency proper-

ties, a vast body of evidence suggests that SPW-R events do not
happen randomly (4, 27, 62). First, we examined how different
event types occurred over time. Fig. S7A shows two typical event
raster plots across different experiments of two different exper-
imental sessions. SPW-R events tend to happen with no appar-
ent clustering along the time course of an experimental session.
To examine potential differences in “bursting” behavior, we
computed the autocorrelation density of each event type (Fig.
S7C) and found that classical sharp-wave ripples are autocorre-
lated to a significantly higher extent than other types of sharp-
wave ripples. It is noteworthy that the rate of each event subtype
across experiments is comparable (Fig. S7B).

SPW-R Subtypes in LFP Recordings from One Unanesthetized Animal.
We asked whether the same SPW-R classification would apply for
drug-free animals. In correspondence with each SPW-R pattern
in Fig. 2A, Fig. S6A shows equivalent SPW-R patterns in one
unanesthetized (drug-free) animal (monkey b04), recorded
during quiet wakefulness. Single-event broadband (0.5–300 Hz)
traces show remarkable similarity with those detected in anes-
thetized animals. Single-event ripples and broadband spectral
profiles (Fig. S6B, third and bottom panels, respectively) display
significant power increase in the ripple band. Both SPW and
ripple features were encountered in good agreement with the
anesthetized data (Fig. S6 D and E). Notably, both positive and
negative SPW deflections were prevalent and the spectra of fast
oscillations were localized in the ripple frequency range. Classical
ripples had higher frequency peaks and power as in their anes-
thetized counter parts (mean values in hertz with 95% confidence
intervals, 96.7325± 1.8008, 112.5978± 3.1107, 113.7546± 3.2415,
and 98.7585± 2.3142, respectively; pairwise bootstrapped KS test,
P < 0.001, Bonferroni corrected). However, in this case, both
classical and nonclassical ripples had more localized ripple-band
spectral distributions (Fig. S6F). This effect could be explained by
state-dependent differences between ripples (31). In this case,
quiet wakefulness ripples present lower frequency peak in the
ripple frequency band, compared with off-line–state ripples.

Predicting SPW-R Subtypes from BOLD fMRI Time Courses. To assess
how different these responses were between subtypes, we first
used a multivariate predictive approach. We trained a multiclass
linear SVM classifier (63) to predict the SPW-R subtype using
the time course of all ROIs averaged over a few experiments. The
classifier trained in this way could not distinguish between the
BOLD responses related to subtypes 2 and 3, which have virtually
identical ripple-triggered fMRI signature. We thus pooled them
together for further comparison. We next predicted SPW-R
subtype 1, against subtype 4, against pooled SPW-R subtypes 2 and
3, which resulted in an average of 72.87 ± 6.19% (mean with 95%
confidence interval) cross-validation accuracy. We then quantified
the discriminative power of each ROI by counting the fraction of
time points from each ROI that were attributed a large coefficient

by the classifier for distinguishing between all subtypes. We found
that largest differences between the classical and nonclassical
SPW-R subtypes mostly involve associative cortical areas and
neuromodulatory systems. Furthermore, the largest differences
between subtype 1 and subtype 4 involve solely associative cortical
areas, consistent with previous analysis (Results in the main text).
It is worth noting that the SVM classifier trained in this way is

not in a one-to-one correspondence to predicting the occurrence
of SPW-R complexes from ongoing BOLD fMRI activity.
Addressing such a question goes beyond the scope of the present
work and shall be part of a future investigation.

SI Section C: Supporting Results on SWR-Related Gamma
Oscillations
Since ripple oscillations from CA3 and CA1 are largely inco-
herent (61), it is unlikely that synchronization in this band co-
ordinates the activity in both subfields during memory replay.
Instead, gamma oscillations during SPW-R have been recently
suggested to play this role in a recent study (31). In the following
sections, we address whether such oscillations are present in our
monkey recordings, and how they relate to specific SPW-R
subtypes, possibly reflecting differentiated levels of coordination
between CA3 and CA1.

SPW-R Detection Procedure, “Pure” and “Nonpure” Events. In the
present work, detection of oscillatory events is first performed
using the following procedure [following Logothetis et al. (24)].
Candidate events are detected using the smoothed envelope
of the broad-band LFP signal (10–250 Hz) (we set 3.5 SD as
threshold). Events’ spectral signatures were clustered using the
NMF algorithm as explained in SI Section A, thus establishing
three event groups with distinct spectra. We examined how well
a single factor of the NMF could explain the observed power
spectrum of individual events. For this, we computed a signal-to-
noise (SNR) ratio, defined as the ratio of the sum of the squared
power spectrum values to the sum of the squared difference of
the spectrum, from its projection on a single factor. Events with
unimodal (or close to unimodal spectral distribution) associated
to a factor SNR > 3 were selected as pure events. These events
are the ones reported in the main text of this work, in corre-
spondence with those reported in ref. 24. However, there are not
only ripple events with SNR ≤ 3 but also sigma and gamma
episodes with SNR ≤ 3 that may have substantial power in the
ripple frequency band (80–180 Hz), even at or above a 5 SD
threshold and well localized in time according to our previous
ripple selection criteria. The compound of all detected events
with SNR ≤ 3 that had substantial power in the ripple band are
henceforth referred to as nonpure SPW-R events and were ana-
lyzed separately in the present section of Supporting Information.

Nonpure SPW-Rs Also Come in Four Subtypes. Following the event
detection procedure, we applied the stringent criteria for SPW-R
detection described previously in SI Section A. We next used our
two-step methodology to cluster nonpure SPW-R episodes time
series. We applied the algorithm to the nonpure SPW-Rs of 12
experimental sessions (a total of ∼10,000 nonpure SPW-R com-
plexes were in compliance with our stringent ripple selection crite-
ria). The results of the clustering were consistent across experimental
sessions and animals. Furthermore, our clustering quality analysis
revealed that nonpure SPW-R complexes are best represented by
four LFP signatures (Fig. S8 A and B).
Fig. S8A depicts the nonpure SPW-R LFP grand averages, in

close correspondence with pure SPW-R LFP signatures (n = 12
experimental sessions, 4 animals). Population Morlet-wavelet
spectra for each pure and nonpure SPW-R subtype are depicted
in Fig. S8C. Both pure and nonpure SPW-Rs presented enhanced
power profiles over gamma frequencies (25–75 Hz), where nonpure
events displayed the largest power over such frequency range.
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However, spectral profiles of pure and nonpure events were
remarkably consistent over the SPW and ripple frequency bands.
We found that nonpure classical ripples had higher frequency
peaks (mean values with 95% confidence intervals, 106.90 ±
1.0900, 119.4697 ± 1.0260, 118.2110 ± 1.0985, and 105.1701 ±
0.4481, respectively; pairwise bootstrapped KS test, P < 0.0007
for the difference between frequency peaks, Bonferroni cor-
rected). Notably, nonpure SPW-R complexes presented virtually
the same coupling of the SPW wave form to the ripple onset as
their pure counterparts (see polar histograms on Fig. S8D). We
found that classical ripple signatures and only one nonclassical
signature (subtype 1, depicted in red) presented statistically
significant coupling to the SPW (mean values with 95% confi-
dence interval, −2.9406 ± 0.0292, −0.2535 ± 0.0137, 0.1091 ±
0.0065, and −1.0074 ± 0.1613; and P < 10−6 and P > 0.05 per-
muted KS test for the phase coupling, respectively). Moreover,
ripple-to-SPW coupling was statistically different among all
nonpure SPW-R subtypes (P < 10−6, permuted KS test). We now
investigate the fine properties of nonpure events and the relation
of pure and nonpure SPW-R signatures to the observed gamma
component.

Variations in Amplitude, Frequency Content, and Statistics of Nonpure
SPW-R Events. As in our analysis for pure events, we compared the
four SPW-R types on the basis of the normalized absolute SPW
amplitude, ripple power, and number of oscillations above 20% of
the ripple oscillation peak.
This analysis revealed statistically significant differences across

clusters for the Z-scored SPW amplitude (mean values in Z-score
units with 95% confidence intervals, −0.5537 ± 0.0968, 1.4038 ±
0.0664, 1.2835 ± 0.0831, and 0.0808 ± 0.0341, respectively;
pairwise bootstrapped KS test, P < 10−10, Bonferroni corrected).
However, no significant differences were observed for ripple
power (mean values in Z-score units with 95% confidence in-
tervals, 2.3832 ± 0.0660, 2.6662 ± 0.0470, 2.6976 ± 0.0535, and
2.2102 ± 0.0267, respectively; pairwise bootstrapped KS test, P >
0.05, noncorrected) and the number of oscillations above 50% of
the ripple oscillation peak (mean values with 95% confidence
intervals, 4.9098 ± 0.1042, 5.0149 ± 0.0868, 4.8820 ± 0.0887,
and 4.9462 ± 0.0455, respectively; pairwise bootstrapped KS test,
P > 0.2).
Next, we conducted regression analyses to quantify relation-

ships between ripple power and SPW amplitude and also between
ripple frequency peak and SPW amplitude. In line with the
quantitative analysis performed for pure events, we found that
ripple power and frequency peak in the ripple band (80–180 Hz)
correlated positively to SPW amplitude (R = 0.4534, P = 0.0001;
R = 0.3548, P = 0.0001, respectively).

Transient Increase of Gamma Power (25–75 Hz) During Pure and
Nonpure SPW-R Events. Ripple-triggered spectrograms show that
both pure and nonpure SPW-Rs present somewhat enhanced
power profiles over gamma frequencies (25–75 Hz), in addition
to the expected increases in SPW and ripple frequency bands
(<20 and 80–180 Hz, respectively). To identify the increased
gamma band, we followed the procedure reported in ref. 31 with
a slight modification. We filtered the perievent pure and non-
pure SPW-R signals in the range 15–80 Hz with a fourth-order
Butterworth filter, i.e., covering all of the gamma frequencies
until the beginning of the ripple band. We estimated the in-
stantaneous frequency by measuring the inverse of the time be-
tween the peaks of this signal in a [−0.1 0.1]-s time window
around the occurrence of each event. From this somewhat
broadband signal, we could expect one or various peaks to
emerge (e.g., in the low-gamma band [25–49 Hz], or high-gamma
band [50–79 Hz]) (24). However, we found that pure, nonpure,
and all SPW-R event subtypes presented virtually identical
gamma-band distributions with peaks around 50 Hz (in between

low-gamma and high-gamma; P > 0.4, pairwise permutation KS
test for the comparison between gamma instantaneous frequency
distributions). Notably, pure and nonpure gamma distributions
were largely unimodal (P > 0.4, Hartigan’s dip test) and ranged
from 25 to 80 Hz, approximately (Fig. S8C, Insets). To avoid
conflating gamma with ripple-band oscillations, we performed all
following gamma-band analyses in the 25- to 75-Hz frequency
band, which captures ∼99% of the gamma empirical probability
density function.
Altogether, these results suggest that concomitant with the oc-

currence of the SPW-R complexes, there is an increase in power
over gamma frequencies, in correspondence with previously pub-
lished data (31). We discover, however, that the gamma rhythm is
in the range of 25–75 Hz in macaques, covering the slow- and high-
gamma ranges simultaneously. We now investigate whether this
increase in power is exclusive to SPW-R complexes or it is simply
an effect of ongoing baseline activity intermingled with the oc-
currence of such events.

Occurrence of Pure and Nonpure SPW-R Events Can Be Predicted by
Gamma Power Increases. We asked how systematic is the re-
lationship between gamma-power increases and SPW-R com-
plexes in single trials. To partly address this question, we
computed SWR-triggered gamma-power averages, by bandpass
filtering the raw LFP perievent signal in the range of 25–75 Hz,
and then computed the absolute value of its Hilbert transform.
Gamma power increased significantly above baseline concomi-
tant during both pure and nonpure SPW-R episodes, and pre-
sented its largest increase at the ripple power peak (Fig. S8E).
This analysis revealed that the gamma-power increase was
largely transient, decaying to baseline in about 100 ms from the
ripple peak. Notably, the peak of gamma power was not signif-
icantly different among pure and nonpure events (P > 0.1, KS
test). Furthermore, “classical” SPW-R subtypes presented higher
average peak perievent gamma power compared with “non-
classical” SPW-Rs; however, this difference was not significant
(P > 0.4, pairwise KS test, noncorrected). Thus, increases in
gamma power were transient, concomitant with the occurrence
of SPW-R episodes, and spanning the duration of a single epi-
sode. These results demonstrate that gamma is concurrent with
SPW and does not reflect putative fluctuations of baseline ac-
tivity, nor a gamma tail following SPW-R occurrence.
We next asked whether a power increase over the gamma

frequency range (25–75 Hz) was predictive of the occurrence of a
SPW-R episode. We learned linear SVM classifiers to predict
the presence (or absence) of a SPW-R complex (pure, nonpure,
and SPW-R subtypes were analyzed separately for each experi-
mental session). To this end, periripple gamma-power signals were
intended to be discriminated against surrogate (randomly chosen)
baseline events in time windows of [−0.1 0.1] s around the event.
The classifiers performed significantly above chance, with 66.89 ±
4.03% and 64.22 ± 3.19% (mean with 95% confidence interval,
10-fold cross-validation) prediction accuracy for pure and nonpure
events, respectively (P > 0.3, two-sample t test, for the comparison
between pure and nonpure SPW-R prediction accuracy). We found
no significant difference in the prediction accuracy among SPW-R
subtypes (Fig. S8F), in line with our previous analysis. Furthermore,
individual SPW-R subtypes could not be discriminated from
their underlying gamma-power profiles, resulting in ∼25% pre-
diction accuracy.
These results suggest that gamma oscillations reflect an in-

trinsic mechanism of SPW-R episodes, common to all SPW-Rs
subtypes discovered in this work. This phenomenon is invariant to
event detection protocols, suggesting that it can only be attributed
to network mechanisms underlying SPW-R episodes themselves.
We speculate, in line with observations from a previous study in
rats (31), that SPW-Rs may occur when CA3 gamma rhythm
entrains CA1 assemblies in the macaque hippocampus.
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Gamma Rhythm Modulates Local Multiunit Spiking Activity. The
transient increase in gamma power during SPW-R complexes
covered both slow- and high-gamma frequency ranges (25–75
Hz). If gamma is an intrinsic network rhythm of SPW-R episodes
as our results suggest, it is expected that gamma rhythm modu-
lates the spiking activity of participating neuronal ensembles
during such events within CA1. Indeed, our SFC analysis sug-
gests that spiking activity is locked not only to the ripple and
SPW bands but also to the gamma range. To quantify this re-
lationship, we filtered the perievent SPW-R signals in the range
of 25–75 Hz using a fourth-order bandpass Butterworth filter.
For this analysis, we referred to the recording tip with the largest
gamma power. We computed the largest-gamma-trough–trig-
gered perievent histograms (bins of 2 ms; n = 12 experimental
sessions). Our results revealed that multiunit spiking activity was
phase-locked to the gamma rhythm underlying pure and nonpure
SPW-R complexes. Notably, neuronal discharges occur prefer-
entially at the falling phase or rising phase of gamma (Fig. S8G).
These findings were consistent across all SPW-R subtypes. Im-
portantly, SPW-R subtype-related multiunit spikes showed signifi-
cantly different gamma-rhythm phase preference (mean values with
95% confidence intervals, 2.7941 ± 0.06; 4.5972 ± 0.0882; 3.4514 ±
0.1162; 4.8442 ± 0.0830 radians; P < 10−4, pairwise bootstrapped
KS test). Furthermore, subtypes 2 and 3 presented the largest
PLVs, suggesting that multiunit spikes are more consistently
entrained by the gamma rhythm at a given phase in such cases
(P < 0.0001, pairwise KS test for the comparison between classical
and nonclassical SPW-R subtypes PLV).

SI Section D: Supporting Discussion
SPW-R episodes may be initiated over relatively localized neu-
ronal circuitry in hippocampus, presenting different spatial ex-
tents and propagation features. Hence, it is expected that SPW-R
phenomena would present some variability. Indeed, a previous
study has reported that SPW-R events propagate along the septo-
temporal axis of the CA1 of rats (28), such that the events de-
tected at a given location may be initiated in another region of this
subfield. SPW-R complexes may be deprived of a clear SPW

pattern, which may indicate a more local spread of neuronal
activity in the hippocampus. Patterns with disparate SPW po-
larity, however, cannot be fully explained in light of the obser-
vations of Patel et al. (28). The similarity of the SPW-R waveforms
as they propagate reported in their work further supports this view.
The patterns observed in the present work may indicate different
localizations of the current sources in the first place (32); possibly
reflecting a different repartition of the activity over the underlying
cell groups.
Previous studies (34, 64) suggest that CA1 pyramidal neurons

from deep and superficial layers form two functionally distinct
groups. A subgroup of CA1 pyramidal cells (located in deep
layers) presents differentiated coupling to intrinsic LFP rhythms
such as theta and gamma. Notably, the coupling of modulated
cells strongly depends on the behavioral state (namely, REM
sleep or awake exploration), suggesting that pyramidal cells from
functionally distinct sublayers can influence targets jointly or dif-
ferentially in a brain state-dependent way. Although modulated
cells during REM sleep respond more strongly to CA3 inputs (34,
64), a parsimonious explanation to our results is that distinct CA1
sublayers may be active during different SPW-R subtypes. Al-
though this question remains open, in this work we show that
SPW-R subtype-related multiunit spiking activity synchronizes dif-
ferently to ripple- and gamma-band LFP oscillations, suggesting
that activity of CA1 subcircuits is differentially organized (64). These
changes are a possible indication of differentiated afferent inputs
from upstream structures originating in both cortical and sub-
cortical domains. For instance, entorhinal cortex may drive more
strongly some of the discovered SPW-R patterns, thus shifting the
coupling between LFP gamma and spikes, which in turn may be
fired mostly by deep sublayer cells (i.e., REM-modulated cells).
The fact that deep and superficial CA1 sublayers have different
targets as suggested by anatomical data (65) is in line with the
hypothesis that SPW-R subtypes may arise from the population
activity of distinct local sublayers, and further supports our hy-
pothesis that SPW-R subtypes are functionally distinct as pointed
out by our fMRI data.
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Monkey i11

Monkey e10

A

Monkey b04

B Exp. session i11es1

4-8 Hz

Subtype 1
Subtype 2
Subtype 3
Subtype 4

Fig. S1. Theta LFP activity during different states. (A) Hilbert-rectified theta (4–8 Hz) frequency band LFP amplitude (blue) with superimposed SPW-R raster
plots. Different colors indicate different SPW-R event subtypes as clustered using the procedure showed in Fig. 2. Two anesthetized animals (monkey i11 and

Legend continued on following page
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monkey e10, Top and Middle) show comparable traces and SPW-R raster plots to one unanesthetized animal (monkey b04, Bottom). (B) Absolute average
spectral power in the theta band as computed using wavelet-Morlet spectrograms is stable over time. Only one example experimental session (monkey i11) is
shown. Error bars indicate SD.

A B C

Fig. S2. Diagram of the SPW-R clustering methodology. (A) Multichannel, raw perievent SPW-Rs are represented by squares. Groups of contiguous colored
squares represent ripple events with similar time courses (Insets). (B) Stage 1 of the clustering procedure builds an intermediate representation of the mul-
tichannel data points by averaging over the groups exemplified in A. (C) Stage 2 of the clustering procedure consists in grouping the representative signals
into four SPW-R subtypes based on pairwise cosine similarities (see Fig. S3 for clustering quality analysis). Dotted, thin black lines mark the center of each
exemplary SPW-R, defined as the peak of power of the ripple-band LFP trace (80–180 Hz).
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Fig. S3. Clustering quality measures and 2D projection of SPW-Rs. (A) Normalized cuts index (NCI) for different cluster partitions. The optimal clustering partition is four, corresponding
to the maximum NCI. Results are computed for 200 runs of the clustering algorithm across all experimental sessions; shaded area indicates SE across experimental sessions. (B) Four-cluster
partition given by the GNG and normalized graph cuts compared with normalized graph cuts alone and to randomly assigned clusters. Clustering quality is evaluated by various measures.
(Left) Silhouette index. (Middle) Davies–Bouldin (DB) index. (Right) C index. Asterisks indicate paired significant differences, according to a two-sample Kolmogorov–Smirnov test (KS test).
On each box, the top and bottom are the 25th and 75th percentiles of the samples, respectively; the line in the middle of each box is the sample median; the dashed lines extending below
and above each box are drawn from the ends of the interquartile ranges to the furthest observation (extreme points); crosses (if any) in the diagrams are the outliers of the samples.
(C) Cosine similarity matrix of a representative GNG, sorted according to the cluster labels (1–4) for a single experimental session. Spots that pop-out denote connected (neighboring)
SPW-R complexes (GNG representative signals). Note that SPW-Rs of a given subtype remain closely connected to each other, whereas connections between clusters remain very sparse.
(D) Two-dimensional projection of the representative GNG in C using Laplacian Eigenmaps. Here, SPW-R complexes (GNG representative signals) are represented by open circles of
different colors. Note that clusters remain relatively well separated in the projection, despite the high dimensionality of the real data. Ripple-triggered LFP averages are indicated
schematically by arrows. (E) Confusion matrix of the cluster consistency procedure. Note that most of the SPW-Rs are classified consistently across experimental sessions (only test datasets
are reported).
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H

Fig. S5. Distribution of SPW-R field potential signatures’ properties. (A) Normalized absolute SPW amplitude. (B) Ripple power. (C) Number of oscillations
above 50% of the maximum ripple oscillation peak. (D) Frequency peak in the ripple band (80–180 Hz). (E) Empirical probability density functions for frequency
peak in the ripple band (80–180 Hz) vs. normalized absolute SPW amplitude; and ripple power vs. normalized absolute SPW amplitude. Histograms were taken
from Fig. 2 F and H and illustrate the empirical probability density functions for each feature. (F) Empirical probability density functions in E, but in absolute
SPW Z-scored values. Correlation values are given at the Top. (G) Empirical probability density function of SPW-to-ripple coupling phase: Raw, mixed density
function (Top); density functions computed for each SPW-R subtype separately (Bottom). (H) Empirical probability density function of ripple frequency peak:
raw density function (Left); density functions computed for each SPW-R subtype. Note that all raw distributions present multiple modes, corresponding to the
discovered SPW-R subtypes. Colors indicate the SPW-R subtypes shown in Fig. 2; asterisks indicate significant differences between clusters for a given feature,

Legend continued on following page
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according to a pairwise bootstrapped Kolmogorov–Smirnov test (KS test). On each box, the top and bottom are the 25th and 75th percentiles of the samples,
respectively; the red dot of each box is the sample median; the dashed lines extending below and above each box are drawn from the ends of the interquartile
ranges to the furthest observation (extreme points); crosses (if any) in the diagrams are the outliers of the samples.
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B C

50 s

Monkey e10

Monkey g10A

Fig. S7. SPW-R events timing dynamics. (A) Typical SPW-R event subtype raster plots. (B) Mean event rate (in events per experiment) for each of the reported
SPW-R clusters. No significant differences were found between clusters, according to a paired Kolmogorov–Smirnov test (KS test). For a detailed description of
the box plots, see legend of Fig. S5. (C) Autocorrelation functions corresponding to each type of SPW-R. Events associated to strong sharp waves (2, 3) exhibit
more autocorrelation than other event types (P < 0.01, t test).
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Fig. S8. Classification of SPW-R complexes across 12 experimental sessions in anesthetized macaque monkeys (nonpure events). (A) Grand averages of ripple
power-triggered SPW-R field potential signatures, from one representative stratum radiatum recording site. Occurrence of the ripple oscillation is marked by
dashed lines. Shaded areas indicate SEM. (B) Normalized cuts index (NCI) for different cluster partitions. The optimal clustering partition is four, corresponding
to the maximum NCI. Results are computed for 200 runs of the clustering algorithm across all experimental sessions; shaded area indicates SE across exper-
imental sessions. (C) Overlaid averaged clusterwise spectra for pure (continuous lines) and nonpure (dashed lines) SPW-Rs. Note that gamma instantaneous
frequency distributions are unimodal and virtually identical (Insets). Shaded areas indicate SEM. (D) Phase coupling of the ripple to the SPW of dendritic
depolarization for each cluster. Thick lines indicate the circular mean of the phase coupling values. (E) SPW-R–triggered gamma power (25–75 Hz) of pure (Top)
and nonpure (Bottom) events reveals nonsignificant differences between SPW-R subtypes. (F) Accuracy of a linear SVM classifier in predicting the occurrence of
a SPW-R complex by its underlying gamma-power signal. Note that performance is significantly above chance. (G) Perievent time histograms of multiunit
spiking activity using bins of 2 ms. Histograms are computed taking the maximum perievent gamma-trough as a reference. Colors indicate SPW-R subtype.

Legend continued on following page
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Box plots: top and bottom are the 25th and 75th percentiles of the samples, respectively; the red dot of each box is the sample median; the dashed lines
extending below and above each box are drawn from the ends of the interquartile ranges to the furthest observation (extreme points); crosses (if any) in the
diagrams are the outliers of the samples.
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Fig. S9. Ripple-triggered NET-fMRI associated with SPW-R subtypes. Averaged BOLD time courses showing differentiated neocortical activations and subcortical deactivations for distinct
event types in Z-score units: (A) Only monkey i11. (B) Only monkey e10. (C) Across 12 experimental sessions, 4 animals. Gray regions in the previous plots represent activations below a 0.3-
Z-score-units threshold. Population contrast maps (Bottom) show differences between subtypes in both neocortical and subcortical domains. Note that subtype 1 relates to the lowest
subcortical down-regulations, whereas subtype 4 presents down-regulation comparable to that of classical SPW-Rs. In A–C, listed ROIs are as follows: Parietal (Par), temporal (Tmp),
prefrontal (PFC) cortical areas, extrastriate occipital areas (XC), posterior and anterior cingulate cortices (PCC, ACC, respectively), retrosplenial area (RetroSp), thalamus (Tha), hippocampus
(HP), periaqueductal gray (PAG), locus coeruleus (LC), and raphe.

Ramirez-Villegas et al. www.pnas.org/cgi/content/short/1518257112 17 of 18



A B

Full-width at half 
minimum average

Cluster 4

Cluster 2/3

Cluster 1

p=0.005

Cluster 1 vs. Cluster 2/3Cluster 4 vs. Cluster 2/3

Fig. S10. Statistical analysis of subcortical structures’ NET-fMRI results. (A) Average over the full width at half-minimum of all subcortical regions, related to
classical (pooled subtypes 2 and 3) and nonclassical (subtypes 1 and 4) SPW-Rs (grayed areas indicate SE). (B) P values from the pairwise Wilcoxon rank-sum test
(note logarithmic scale), showing that differences in subcortical activations relate to locus coeruleus, dorsal raphe nucleus, thalamus, and periaqueductal gray
(PAG). In contrast, modest differences were observed in lateral geniculate nucleus (LGN), ventral tegmental area (VTA), substantia nigra (SN), globus pallidus
(GP), striatum (putamen and caudate nucleus), diagonal band of Broca and medial septum (DB+MS), inferior and superior colliculus (InfCol, SC), pons (Pon-
tReg), cerebellum (Cb), and brainstem. The dashed red line is drawn to indicate a FDR-corrected significance threshold of P = 0.005 (PFDR < 0.05).
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Appendix B

Paper 2

137



 

1 
 

Dissecting the frequency-dependent 1 

network mechanisms of in vivo 2 

hippocampal sharp wave-ripples 3 

 4 

Juan F. Ramirez-Villegas1,2, Konstantin F. Willeke2,5, Nikos K. Logothetis1,4 & Michel Besserve1,3,* 5 

 6 

1Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Ring 7 

8, 72076 Tübingen, Germany 8 

2Graduate School of Neural & Behavioral Sciences, International Max Planck Research School, Eberhard-Karls 9 

University of Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany 10 

3Department of Empirical Inference, Max Planck Institute for Intelligent Systems and Max Planck ETH Center for 11 

Learning Systems, Max Planck Ring 4, 72076 Tübingen, Germany 12 
4Centre for Imaging Sciences, Biomedical Imaging Institute, The University of Manchester, Manchester M13 9PT, 13 

United Kingdom 14 

5Werner-Reichardt Centre for Integrative Neuroscience, Ottfried-Müller-Strasse 25, 72076 Tübingen, Germany 15 

*Lead Contact 16 

 17 

Abstract 18 

Sharp wave-ripples in the hippocampal region CA1 are transient network phenomena thought to organize 19 

the sequential replay of firing patterns for memory consolidation and retrieval. However, the role of afferent 20 

CA3 rhythmic inputs and recurrent CA1 activities in precisely coordinating these events remains debated. 21 

We designed a multi-compartmental model of the CA3-CA1 network able to generate biophysically-22 

realistic dynamics at the cellular and local field potential (LFP) levels. In this model, ripples emerge locally 23 

from the driving of CA1 pyramidal cell by interneurons’ recurrent somatic inhibition, whereas somatic 24 

excitation controls the amount of pyramidal cells involved in each ripple. Furthermore, CA3 input provides 25 

the necessary transient modification of inhibition-excitation balance initiating the phenomenon, and 26 

coordinates its interactions with CA1 assemblies through slow gamma oscillations. As it reproduces a broad 27 

range of characteristics of in vivo activity, this model offers key insights to establish the hippocampal 28 

network mechanisms supporting memory-related functions. 29 
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Introduction 30 

 31 

The hippocampus is essential to the formation of new episodic memories (Scoville and Milner, 1957). Once 32 

encoded, reactivating a specific memory trace likely requires precise network mechanisms to select and 33 

coordinate the activity of the cell assemblies involved (Wilson and McNaughton, 1994). Such mechanisms 34 

are thought to be at play during sharp wave-ripple (SWR) complexes (Lee and Wilson, 2002), transient 35 

episodes occurring in the Local Field Potential (LFP) of the hippocampal CA1 subfield in several 36 

mammalian species (Buzsáki, 2015). SWRs combine a slow potential deflection (the sharp wave, SW) and 37 

a high-frequency oscillation (the ripple) (Ylinen et al., 1995). SWRs have been largely associated with 38 

memory consolidation (Ego-Stengel and Wilson, 2009; Girardeau et al., 2009; Nakashiba et al., 2009; van 39 

de Ven et al., 2016), and neuronal ensemble activities during these episodes indeed correspond to spike 40 

sequences associated with awake exploration (Diba and Buzsáki, 2007; Foster and Wilson, 2006; Karlsson 41 

and Frank, 2009; Lee and Wilson, 2002). Although these phenomena are known to involve neuronal 42 

ensemble interactions within the cornu ammonis hippocampal subfields (Buzsaki et al., 1992; Oliva et al., 43 

2016; Sullivan et al., 2011), the underlying microcircuit dynamics governing them are not yet fully 44 

understood. Specifically, computational and experimental studies have pointed to a number of candidate 45 

mechanisms for hippocampal dynamics during different brain states (Cutsuridis and Hasselmo, 2011; 46 

Memmesheimer, 2010; Schomburg et al., 2012, 2014; Taxidis et al., 2012; Traub and Bibbig, 2000; Wang 47 

and Buzsáki, 1996), but the contribution of these mechanisms and of the variety of neuronal types to the 48 

observed SWR episodes remains elusive. 49 

 50 

In vivo studies suggest that hippocampal SWRs are governed by CA3-ensemble synchronous bursts  51 

(inducers) (Csicsvari et al., 2000), and that of other structures of the hippocampal formation (Chrobak and 52 

Buzsáki, 1996; Isomura et al., 2006; Oliva et al., 2016). Long-range mechanisms also seem to play a role in 53 

the emergence of this phenomenon (Gomperts et al., 2015; McNamara et al., 2014; Wang et al., 2015), and 54 

its temporal variability (Ramirez-Villegas et al., 2015). These fine network-level interactions are 55 

hypothesized to instantiate changes in the observed SWR extracellular signature and shape its time-56 

frequency properties (Carr et al., 2012; Ramirez-Villegas et al., 2015). For instance, recent experimental 57 

evidence suggests that a slow gamma oscillatory component –ubiquitous in several structures of the 58 

hippocampus– coordinates the activity of CA3 and CA1 ensembles (Gillespie et al., 2016), and may be a 59 

clocking signal that underlies coordinated replay of previous experiences (Carr et al., 2012). 60 

 61 

Although remote inputs are partly responsible for the compound of observed CA1 population activities 62 

during SWRs, local CA1 effectors themselves play a major role in shaping physiological SWR activity 63 
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(Schlingloff et al., 2014; Stark et al., 2014). A number of in vivo, in vitro and computational studies have 64 

suggested that interneurons are crucial for the genesis of fast network oscillations (Hajos, 2004; Mann et 65 

al., 2005; Oren et al., 2006; Taxidis et al., 2012; Wang and Buzsáki, 1996; Whittington et al., 1995). In 66 

particular, due to their fast kinetic properties, they are hypothesized to pace ripple oscillations (Ellender et 67 

al., 2010; English et al., 2014; Gan et al., 2017; Stark et al., 2014). SWRs are also associated with increased 68 

excitability of selected principal cells (Ellender et al., 2010; Mizunuma et al., 2014). Excitatory activity is 69 

thought to be controlled by feedback inhibition of fast-spiking perisomatic-targeting interneurons, which in 70 

turn may be controlled by interneuron-interneuron synapses (Stark et al., 2014). In addition, fine time-scale 71 

and strata-specific neuronal interactions within CA1 are likely associated with dynamical changes in 72 

excitation-inhibition (E-I) balance during the time course of SWR complexes (Mizunuma et al., 2014; 73 

Schlingloff et al., 2014). 74 

 75 

In order to understand the neuronal ensemble mechanisms of SWR episodes, we investigated the 76 

relationship between CA3 and CA1 ensemble activity at meso- and microscopic scales. We thus designed 77 

a multi-compartmental model of the CA3-CA1 network that reproduces in vivo intermittent SWR-related 78 

activity in both fields. We performed a detailed frequency analysis of transmembrane activities at the 79 

population level to isolate the network mechanisms at play, and related them to the features of LFP 80 

recordings. We first dissociated the activity caused by upstream CA3 network –locally segregated to CA1 81 

stratum radiatum– from the current signatures originated due to post-synaptic processing of CA1 pyramidal 82 

cells and interneurons. We found that sharp wave (<20 Hz) and slow gamma (30-55 Hz) components 83 

originate due to CA3 activity impinging on CA3 stratum radiatum (Schaffer pathway). A SWR-related 84 

slow gamma activity was generated within CA3 but propagated to CA1’s cell soma, allowing it to 85 

coordinate CA3 and CA1 ensembles. Furthermore, ripple oscillations (80-180 Hz) reflected not only 86 

concerted somatic inhibitory post-synaptic currents (IPSCs) but also synchronous somatic excitatory post-87 

synaptic currents (EPSCs) in CA1, resulting from reciprocal interactions between local pyramidal cells and 88 

interneurons. Finally, the frequency spectrum of CA1 interneuron network dynamics spread largely beyond 89 

the ripple band, resulting in identifiable supra-ripple LFP activity (> 180 Hz). Our findings account for a 90 

large number of experimental studies covering multiple spatio-temporal scales of the phenomenon, and are 91 

compatible with hippocampal LFP recordings from anesthetized rhesus monkeys (Macaca mulatta) 92 

recorded in our laboratory. Overall, this model sheds light on the detailed mechanisms underlying in vivo 93 

SWR genesis and the relationship between neuronal activity at meso- and microscopic scales during these 94 

events. This opens new avenues for the experimental and computational studies of memory retrieval and 95 

consolidation processes at the system level. 96 
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Results 97 

SWR complexes in a simple compartmental model of the macaque CA3-CA1 network 98 

We propose a simple model of the CA3-CA1 network that predicts a number of physiological properties 99 

observed in macaque monkeys’ hippocampal SWR complexes (Logothetis et al., 2012). We modeled two 100 

arrays of neurons accounting for the CA3 and CA1 neuronal populations, respectively. The electrical 101 

properties of cell membranes were modeled across multiple compartments in a similar way to the approach 102 

of Taxidis et al. (2012). Similarly, pyramidal neurons were modeled by the two-compartmental model 103 

proposed by Pinsky & Rinzel (Pinsky and Rinzel, 1994), a simplified version of Traub’s model of the CA3 104 

pyramidal neuron (Traub et al., 1991). In addition, we developed a simplified two-compartment interneuron 105 

on the basis of a model proposed by Traub et al. (1995) that originally consisted of 51 compartments (Traub 106 

and Miles, 1995; Traub et al., 1994). Briefly, our simplification stands on the basis of minimal active ionic 107 

currents (potassium and sodium) in one axo-somatic compartment and one dendrite-like compartment. An 108 

in-depth mathematical description of the model is available in the STAR Methods of this work. CA3 and 109 

CA1 neuron models were considered identical, however, the network connectivity within each field was 110 

different, after well-documented anatomical constraints (Andersen, 2007; Bezaire and Soltesz, 2013). 111 

Whereas CA3 was characterized by strong recurrent auto-associational connections, together with 112 

pyramidal neuron-interneuron connections (Andersen, 2007), CA1 connectivity –inspired by recent 113 

findings– was implemented as a “feedback and reciprocal inhibition” circuit (Stark et al., 2014), dominated 114 

by recurrent inhibition, reciprocal pyramidal cells-interneurons synapses and interneuron-interneuron 115 

synapses (Figure 1A; see also Figure S1A and B for diagrams of the subfield canonical circuits, and the 116 

network; and see STAR Methods for all mathematical details).  117 

 118 

For each hippocampal field we simulated 150 units (135 pyramidal cells and 15 interneurons) in order to 119 

limit computational load. We observed no substantial changes in the results when adding a greater number 120 

of simulated neurons. The hippocampal extracellular potential was computed following previous modeling 121 

work (Nicholson, 1973; Schomburg et al., 2012). The mean extracellular field potential (mEFP; <50 kHz, 122 

sampling time 0.02 ms) signal is considered proportional to the transmembrane currents across cells and 123 

compartments (including capacitive currents). All transmembrane currents from all cells are assumed to 124 

superpose linearly in two simulated multi-site electrodes of 32 tips covering simulated CA1 and CA3 strata 125 

(one electrode per field). In addition to the full mEFP, we divided the mEFP activity into the following 126 

components: the synaptic field potential (LFPsyn) that only accounts for the signature of synaptic currents, 127 

and the active membrane current-dependent field potential (referred here to as LFPt) that accounts for the 128 

remaining (non-synaptic) transmembrane currents (see STAR Methods). LFP signals (<330 Hz) were 129 
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derived from the broad-band mEFP as well as the procedure for detection of oscillatory events are detailed 130 

in STAR Methods. In summary, events were selected based on their elevated ripple band power (greater 131 

than 3 SD). All experiments in the following subsections are computed for 3,250 SWR episodes, obtained 132 

in 25 simulation sessions, unless otherwise specified. 133 

 134 

We first observed that SWR-like episodes can emerge spontaneously from the CA3-CA1 network: Episodes 135 

of short-lived high-frequency oscillations (ripples) on top of a depolarization (< 25 Hz) with visual and 136 

quantitative characteristics consistent with those observed experimentally (exemplary raw LFP traces are 137 

shown in Figure 1B, top subpanels; see also Figure S2A-B, D) (Logothetis et al., 2012; Skaggs et al., 2007). 138 

Notably, both CA1 SWR traces and SWR-related synaptic currents are in correspondence with previous 139 

studies (Ramirez-Villegas et al., 2015; Schlingloff et al., 2014; Stark et al., 2014) (Figure 1B). On average, 140 

full-LFP sharp waves (< 20 Hz) and ripples (80-200 Hz) had durations of 146.59±1.73 ms and 28.46±0.26 141 

ms (roughly 5 complete oscillation periods on average), respectively (mean full-width at half-maximum 142 

with 95% confidence intervals; Figure 1C, top-middle subpanel), with ripples associated with a peak 143 

frequency of 122.07±1.05 Hz (Figure 1C, top-rightmost subpanel). We found that concurrently with the 144 

CA1-SWR, CA3 presents episodes of  field activity in the form of gamma-like episodes (~20-100 Hz) 145 

together with less prominent high-frequency oscillations (>100 Hz) (Figure 1B, bottom subpanel; see also 146 

Figure S2D for the population averaged spectrogram) (Sullivan et al., 2011). In addition, our modeled SWR 147 

episodes display biologically-plausible peri-SWR recruitment of pyramidal cells and interneuron 148 

populations in CA1 (proportion of SWR-participating pyramidal cells and interneurons 0.11±0.001, and 149 

0.72±0.003; Figure 1C, bottom-left subpanel). In particular, SWR episodes correlated with increases in 150 

firing probability of both pyramidal cells and interneurons as demonstrated by Peri-Event Time Histograms 151 

(PETH), and cell discharges were ripple-coherent as illustrated by spike-field coherence (SFC) and detailed 152 

PETH analysis (Figure S2E-2F; Figure 1D, E, respectively). Significant spike-to-LFP locking was observed 153 

at the rising phase of the ripple for interneurons, and at the ripple trough for pyramidal neurons (Figure 1D, 154 

E) (Buzsaki et al., 1992).  155 

 156 

As sharp waves and ripples have correlated features (Hajos et al., 2013; Patel et al., 2013; Ramirez-Villegas 157 

et al., 2015), we also investigated the relationship between ripple power and sharp wave amplitude in our 158 

model. Interestingly, we found that ripple power significantly correlates with sharp-wave amplitude (r=0.37; 159 

p<10-50 bootstrapped statistics), and both SW amplitude and ripple power (Figure 1C, bottom-right 160 

subpanel). These results support that simulated sharp waves and ripples of our model are related phenomena 161 

resulting from CA3 synchronous bursting, and that these episodes –on the basis of their electrical 162 
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properties– reflect well-known properties of in vivo SWR complexes as recorded from primates (Leonard 163 

et al., 2015; Logothetis et al., 2012; Ramirez-Villegas et al., 2015). 164 

 165 

Low- and high-frequency dynamical sources of SWR-associated LFP activity 166 

Local properties of SWR events reveal different degrees of synchrony of participating neuronal populations 167 

to the LFP, as quantified by spike-field coherence (SFC) maps (Figure S2F). Interestingly, SFC not only 168 

shows synchronization of action potentials in the ripple band (80-180 Hz) of the LFP, concomitant with the 169 

SPW activity, but also prominent phase locking of the spiking activity to gamma (25-75 Hz) and beyond 170 

ripple (>180 Hz) LFP frequencies in a magnitude comparable to that of the ripple (80-180 Hz) and SPW 171 

components (<20 Hz) (Figure S2F). This observation suggests that the information contained in peri-event 172 

LFPs about the underlying population activity during SWR may span over the broad-band spectrum, instead 173 

of remaining localized to a particular frequency band (such as the ripple range as it has been classically 174 

assumed). Multiple frequency bands of the SWR spectrum may thus reflect different information about the 175 

underlying network dynamics. These coupling patterns may emerge as a result of a combination of synaptic 176 

current signatures exerted by the axosomatic and dendritic segments of pyramidal cells, the firing of 177 

different cell types (as indicated by Figure 1C) and the incoming excitatory drive from CA3 during SWR 178 

episodes (Carr et al., 2012; Ellender et al., 2010; Stark et al., 2014).  179 

 180 

If peri-event LFP during SWR episodes is a mixture of distinct “dynamical components” reflecting the 181 

activity of different synaptic and transmembrane mechanisms of the network, these components might be 182 

retrieved by separating the currents corresponding to such mechanisms. Thus we sought to determine: first, 183 

whether the model exhibits distinct peri-SWR dynamical components; and second, if present, whether these 184 

components come about by specific extracellular current contributions in the CA1 network. These questions 185 

were addressed by isolating the contribution of each type of synapse to LFPsyn and of each compartment 186 

to LFPt of each cell type. It is worth noting that in all these cases, we simulated the dynamics of the network 187 

with all neuron types and compartments, and we only isolated the non-synaptic and synaptic currents of 188 

each population when computing their corresponding peri-SWR LFP signal. In accordance with our 189 

previous reasoning, the synaptic component of the LFP revealed that low frequencies are predominant in 190 

the dendritic segments of the model. In particular, sharp wave and slow-gamma frequency components 191 

(<50 Hz) arose in such compartments to a larger extent than in somatic ones (p<10-6 Wilcoxon’s ranksum 192 

test, Bonferroni-corrected, for the comparison between somatic and dendritic averaged spectral power, 193 

Figure 2A, bottom-left subpanels; and Figure S3A, leftmost subpanels). Interestingly, ripple-related power 194 

was prominent in IPSC-related potentials of both interneuron-pyramidal cell and interneuron-interneuron 195 

synapses (p<10-6 Wilcoxon’s ranksum test, Bonferroni-corrected for the comparison between somatic and 196 
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dendritic averaged spectral power; Figure 2A top-left and bottom-right subpanels; Figure S3A, rightmost 197 

subpanels). Notably, interneuron-interneuron synaptic currents displayed more widespread influence over 198 

high-frequency LFP activity, reaching supra-ripple (>180 Hz) frequencies (p = 0.026 Wilcoxon’s ranksum 199 

test for the comparison between E-I and I-I supra-ripple-related normalised spectral power; Figure S3B).  200 

 201 

Conversely, analysis of the LFPt indicates that pyramidal cells’ axo-somatic compartments together with 202 

fast-spiking GABAergic interneurons present significant ripple-power (>80 Hz) (Figure 2B, left and bottom 203 

subpanels, respectively). Furthermore, similar to the synaptic component of the LFP (LFPsyn), apical 204 

dendrites (stratum radiatum) elicit increases in SPW and gamma frequency bands for LFPt (Figure 2B, 205 

middle-left subpanel; see bottom-left panel for zero-lag frequency profiles), reflecting transmembrane 206 

currents resulting from the propagation of the CA3 Schaffer inputs. Supra-ripple frequencies (>180 Hz) 207 

originate from the activity of interneurons reflected by the simulated field activity (Figure 2B, bottom-right 208 

panel). Interestingly, the supra-ripple component reaches a frequency peak higher than that of synaptic 209 

currents alone (i.e. somatic IPSCs and EPSCs), which may be attributed to the expression of interneuronal 210 

spiking currents (p<10-6 Wilcoxon’s ranksum test for the comparison between the peri-SWR frequency 211 

peak of pyramidal- and interneuron-associated LFPt; Figure 2C). 212 

 213 

These results show that SWR comprise several dynamical components with distinct spectral signatures. 214 

Notably, these components do not reflect activity independently generated by each modeled compartment 215 

or synapse, since their activities are tightly intertwined due to network-level interactions during the 216 

occurrence of SWR episodes. Next, we examined the laminar distribution of each component in the total 217 

LFPt and LFPsyn.  218 

 219 

Laminar distribution of peri-SWR dynamical components in the full LFP 220 

Due to the non-homogenous repartition of different compartments and synapses across hippocampal layers, 221 

the various spectral profiles associated to these elements should result in non-homogenous distributions of 222 

the LFP power in various bands across laminar recording sites. We thus quantified the spatial contribution 223 

of several representative frequency bands (SW and gamma in the ranges 5-20 Hz and 30-55, respectively; 224 

and ripple and supra-ripple in the ranges 80-180 Hz and 190-300 Hz, respectively) to the power of the 225 

simulated CA1 LFP.  226 

 227 

The power in these bands was computed for all modeled SWR and their spectra were averaged and baseline-228 

subtracted across all simulation sessions (N=25 simulation sessions). The results (Figure 3A) are in good 229 

agreement with our previous analysis: Ripple and supra-ripple components (mean peak frequency with 95% 230 
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confidence interval 136.39 ± 1.69 Hz; 246.02 ± 2.78 Hz, respectively) are significantly segregated to 231 

stratum pyramidale (Figure 3B, bottom subpanels; Figure 3C, bottom subpanels; p<10-5 ranksum test for 232 

the comparison of stratum pyramidale and stratum radiatum LFP power), whereas gamma and sharp-wave 233 

components (mean peak frequency with 95% confidence interval 15.06 ± 0.74 Hz; 36.85 ± 0.56 Hz, 234 

respectively) are mostly observed in the apical dendrites of CA1 (Figure 3B, top subpanels; Figure 3C, top 235 

subpanels; p<0.01 ranksum test for the comparison of stratum pyramidale and stratum radiatum LFP power; 236 

N=25 simulation sessions, 3,250 SWR episodes). Crucially, similar results were obtained when using the 237 

synaptic component of the LFP (LFPsyn) (see also Figure 2A and Figure S3). These results confirm that 238 

the spatial distribution of SWR-associated LFP power across bands reflects the contribution of 239 

differentiated synaptic and transmembrane mechanisms to SWR phenomena. Next, we investigated the 240 

contribution of CA3 input to these mechanisms. 241 

 242 

CA1-associated neuronal correlates of CA3 input 243 

Experimental evidence suggests that the sharp-wave in CA1 LFP represents incoming CA3 synchronous 244 

depolarizations onto the apical dendritic field of CA1. In addition, SWR related CA3 activity presents 245 

spectrogram increases that spread to the ripple-band (see Figure S2D) and followed by CA1 ripples. Thus, 246 

we asked to which extent the activities of CA1 reflect CA3 synaptic input during SWR. In order to address 247 

this question, we used field-PSC coherence analysis between CA3 full LFP and CA1-associated population 248 

synaptic currents. For this purpose, peri-SWR population dendritic EPSCs to pyramidal neurons (dEPSCs), 249 

somatic IPSCs (sIPSCs) and somatic EPSCs to interneurons (sEPSCs) were computed by linear summation 250 

of PSCs across neurons. First, we observed that CA3 field and CA1 dEPSCs were coherent throughout the 251 

broad-band spectrum; that is, over gamma (<100 Hz), and high-frequency oscillations (>100 Hz) (Figure 252 

4A, lower subpanels). Furthermore, CA3 and CA1 (ripple) high-frequencies were largely incoherent for 253 

both pyramidal cells- and interneuron-associated PSCs, but their activity was coordinated in the gamma 254 

band (>25 Hz) (Figure 4A, upper subpanels). These findings suggest that CA3 and CA1 ensembles are 255 

coordinated by gamma activity and not in the ripple band although ripples occur simultaneously (Carr et 256 

al., 2012). 257 

Next, we investigated whether this gamma input would manifest itself in the coordinated dynamics of 258 

populations within CA1. Thus, we divided CA1 pyramidal cells and interneurons into two groups and re-259 

computed the peri-SWR sub-population dEPSCs, sIPSCs and sEPSCs. In line with our reasoning, these 260 

CA1 population PSCs were coherent at ripple frequencies (80-180 Hz) (Figure 4B). Interestingly, we found 261 

that these PSC were also coherent in the gamma range (approximately 50 Hz). Furthermore, whereas the 262 

increase in gamma coherence was more prominent between sEPSCs and sIPSCs, sIPSCs associated with 263 
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interneurons and pyramidal cells were found incoherent in this band (Figure 4B, leftmost subpanel). Overall, 264 

intrinsic CA1 activity, that is the activity that coordinates CA1 ripples, is also modulated at slow gamma 265 

frequencies.  266 

We further checked whether peri-SWR CA3-gamma oscillations were associated with transient increases 267 

in gamma-modulation of spiking activity. We addressed this question by computing CA3 gamma-triggered 268 

time histograms of both CA3 and CA1 spiking activity. We found that both CA3 and CA1 discharges were 269 

coordinated by CA3 gamma LFP (Figure 4C), with CA3 spikes occurring close to the peak of the LFP 270 

gamma oscillation (mean phase with 95% confidence interval -10.37±3.70; Z = 5.3627, p<4.08*10-21, 271 

bootstrapped Rayleigh test; Figure 4D, blue circular histogram), and CA1 spikes occurring almost one-272 

quarter period afterward (mean phase with 95% confidence interval 47.0212±5.57; Z = 4.7598, p<0.0027, 273 

bootstrapped Rayleigh test; Figure 4D, red circular histogram). Furthermore, as expected, both CA1 and 274 

CA3 displayed significantly increased spike modulation depths (see STAR Methods, Quantification and 275 

Statistical Analysis Section) during SWR as compared to that of surrogate (non-SWR) epochs (p<0.01 276 

ranksum test for the comparison between SWR gamma discharge modulation vs. non-SWR gamma 277 

discharge modulation; Figure 4E). Our results suggest that transient gamma oscillatory activity, but not 278 

ripples, may establish a communication channel between CA3 and CA1 in the hippocampus. Furthermore, 279 

SWR-gamma oscillations are highly transient, and modulate both CA3 and CA1 ensemble discharges. 280 

Interestingly, I-E and I-I ensemble interactions in CA1 are clearly coupled in gamma and ripple bands, 281 

suggesting that both rhythms play a role in shaping the underlying sequences of action potentials occurring 282 

during ripples. We next investigated the microscopic determinants of ripple coordination. 283 

Coordinated somatic excitation and inhibition underlie ripple oscillations 284 

SWR episodes are thought to be mediated by precise network E-I balance (Brunel and Wang, 2003). In 285 

particular, ripple dynamics is defined by coordinated synaptic interactions. However, whether ripples are 286 

shaped by the dynamics of EPSCs or IPSCs is still controversial (see (Maier et al., 2011) and the recent 287 

investigation reported in (Gan et al., 2017)). We sought to add more evidence to this question by analyzing 288 

CA1 population dEPSC, sIPSC and sEPSCs. To this end, using a first-order temporal derivative (Gan et al., 289 

2017; Maier et al., 2011), we generated binary signals (point-processes) with the detected 10% largest 290 

synaptic events (see STAR Methods, Quantification and Statistical Analysis Section), then we computed 291 

the PSC-triggered CA1 ripple-band LFP (80-180 Hz) average (Figure 5A displays an example event). This 292 

analysis was performed across all events and simulation sessions. 293 

 294 

Consistent with (Gan et al., 2017), PSC-triggered full-LFP averages revealed that unlike dEPSC, sIPSC 295 

were locked to the ripple oscillation (Figure 5B, top and bottom panels). Crucially, we found that sEPSC 296 
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were also rhythmically locked at ripple frequencies (Figure 5B, middle panel), suggesting that not only 297 

concerted sIPSCs, but also sEPSCs are associated to the ripple oscillation. It is worth noting that the 298 

contribution of sEPSCs to the ripple power of the LFP is low in the simulated CA1 (see Figure S3A), as 299 

connections to interneurons are sparse and excitatory-to-excitatory associational collaterals are absent in 300 

the transverse axis of this hippocampal subfield (Andersen, 2007; Bezaire and Soltesz, 2013). Finally, phase 301 

analysis revealed that sIPSCs occur with largest probability at the rising phase of the ripple (mean phase 302 

with 95% circular confidence interval -81.41±3.95 degrees; Z = 55.29, p < 10-28 bootstrapped Rayleigh test; 303 

Figure 5C, bottom subpanel), whereas sEPSCs tend to occur closer to the trough of the ripple oscillation, 304 

where we expect the peak of glutamatergic neurotransmission to happen, that is, coinciding with the firing 305 

phase of pyramidal cell populations (mean phase with 95% circular confidence interval -127.36±5.43 306 

degrees; Z = 24.82, p < 10-11 bootstrapped Rayleigh test; Figure 5C, middle subpanel). Furthermore, 307 

dEPSCs are not significantly coupled to ripples (Z = 0.023, p < 0.97 bootstrapped Rayleigh test; Figure 5C, 308 

top subpanel). Thus, rhythmic somatic excitation and inhibition, but not dendritic excitation due to CA3 309 

activity, coordinate CA1 ripple oscillations. 310 

 311 

Interneurons pace CA1 membrane potentials during SWR episodes 312 

Previous in vivo and in vitro experimental findings suggest that the activity of interneurons is critical for 313 

the occurrence of SWR complexes (Schlingloff et al., 2014; Stark et al., 2014). Our previous results are in 314 

agreement with this possibility. However, instead of being the sole generators of SWR complexes, it has 315 

been suggested that both pyramidal cells and interneurons are necessary to generate SWR, and that 316 

interneurons have the specific role of pacing activity of pyramidal cells. Yet, this hypothesis has not been 317 

directly demonstrated experimentally. In order to test it in our model, we examine the membrane potentials 318 

of individual CA1 cells and investigate how subthreshold events that do not result in an action potentials  319 

relate to PSCs in the same cell (English et al., 2014; Hulse et al., 2016).  320 

 321 

First, we observed that the fluctuations in membrane potential of CA1 pyramidal cells and interneurons 322 

were correlated with the occurrence of ripples in CA1. The time course of peri-SWR membrane potentials 323 

was composed of three successive parts, reported by previous experimental work (English et al., 2014): a 324 

depolarization due to incoming CA3 activity, a high-frequency oscillation generated by peri-synaptic 325 

activity, and a post-ripple hyperpolarization (Figure 6A; Figure S4A). We next observed that the LFP and 326 

the membrane potential (Vm, see also STAR Methods) had a specific ripple-band phase relationship (Figure 327 

S4B). Detailed quantification of this phase shift revealed that peri-ripple Vm leads the peri-ripple LFP by 328 

approximately 90 degrees (mean phase value with 95% circular confidence interval 85.81±3.35 degrees; Z 329 
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= 18.72, p<3.7*10-11 Bootstrapped Rayleigh test; Figure S4C), reflecting the capacitive coupling between 330 

the membrane potential and the summed membrane currents.  331 

 332 

Given our above analysis of synaptic currents, these last results suggest the membrane potential of 333 

pyramidal cells and interneurons may be paced by population inhibitory and/or excitatory currents. Indeed, 334 

single-cell membrane potentials seem largely modulated by population PSCs (Figure 6A, bottom panel). 335 

Thus, we asked two key questions: first, whether the ripple-band activities of the membrane potentials 336 

correlated to that of the PSCs; and second, whether their time relationship was systematic. To this end, 337 

using again derivative-based methods, we generated binary signals (point-processes) with the detected 338 

largest synaptic events, and the 10% largest Vm positive slope fluctuations occurring in the soma of non-339 

participating cells in the CA1 network during the occurrence of individual ripples (see Figure 6B for a 340 

schema; and STAR Methods for details). We then performed Vm-PSC binary-signals cross-correlation 341 

analysis, averaged across all cells and then across all ripple events. We found that neither sEPSCs, nor 342 

dEPSCs were correlated with Vm of both pyramidal cells and interneurons (Figure 6C, blue and red curves). 343 

Interestingly, only sIPSCs displayed a large correlation with interneurons and pyramidal Vm, with largest 344 

correlation occurring significantly before zero time-lag (p<10-5 bootstrapped sign test; Figure 6C, black 345 

curves and insets), indicating that a sIPSC peak occurs consistently after a peak of Vm fluctuation. These 346 

results suggest that interneuronal discharges and the resulting inhibitory PSCs onto target cells pace both 347 

pyramidal cells and other interneurons by preventing Vm fluctuations to turn into action potentials during 348 

SWR. Furthermore, the peri-ripple peak sIPSC, but not the peri-ripple peak dEPSC was correlated with the 349 

magnitude of post-ripple hyperpolarization (r=-0.6513, p=1.19*10-17; r=-0.1604, p=0.063, respectively, N 350 

= 150 cells; Figure 6E), indicating that local interneuronal activity, but not that incoming CA3 excitation, 351 

affects the magnitude of post-ripple hyperpolarization. As sIPSC amplitude correlates with ripple power, 352 

this result is in line with previous experimental work (English et al., 2014; Gan et al., 2017). In addition, 353 

the spectra of Vm-sIPSC cross-correlations displayed a large power modulation at ripple and supra-ripple 354 

frequencies (Figure 6D, black curve). In turn, Vm-dEPSC cross correlations showed a similar effect over 355 

gamma frequencies, suggesting a gamma-ripple coupling during SWR (Figure 6D, blue curve). 356 

 357 

Dynamics of network excitation-inhibition (E-I) balance  358 

Next, we investigated the relationship between excitatory and inhibitory synaptic currents in order to better 359 

understand the E-I balance dynamics during SWR. We extracted SWR-related excitatory postsynaptic 360 

currents (dEPSCs, sEPSCs) and inhibitory postsynaptic currents (sIPSCs) from the modeled CA1 neuronal 361 

populations during SWR episodes. This allowed us to investigate two types of E-I balance: the exogenous 362 

E-I balance is the ratio of dEPSC to sIPSC activity, and thus focuses on excitation triggered by CA3 afferent 363 
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activity, while the endogenous E-I balance is the ratio of sEPSC to sIPSC, which thus focuses on local 364 

recurrent excitation. While the time course of dEPSCs, sEPSCs and sIPSCs bears some similarity due to 365 

the driving of CA3 input, we found that dEPSCs consistently preceded sIPSCs during the time course of 366 

individual ripples (Figure 7A and its corresponding boxplot in Figure 7C), with the peak of excitation 367 

occurring approximately 6 ms before that of inhibition (mean peak time difference with 95% confidence 368 

interval 5.96 ± 0.3 ms) (see also Gan et al., 2017). Figure 7A shows that dEPSCs’ average amplitude grows 369 

fast as the SWR episode reaches its peak and then decays similarly fast as the ripple episode is dampened 370 

due to increased inhibitory activity. Specifically, the ratio between normalized average dEPSCs and sIPSCs 371 

during individual SWR episodes indicates that, while it is largely inhibited during baseline activity, the 372 

CA1 network presents an instantaneous and fast increase in excitation, later decaying exponentially (Figure 373 

7A, right subpanel).  374 

We also observed that sIPSCs slightly preceded sEPSCs, in good agreement with the fact that interneuronal 375 

discharges precede that of pyramidal cells during SWR episodes (mean PSC-peak time difference with 95% 376 

confidence interval -0.28 ± 0.22 ms) (Figure 7B; see also Figure S2F) (Csicsvari et al., 2000). These results 377 

are in line with the hypothesis that SWR episodes result from a transient imbalance in excitation followed 378 

by an increase in inhibitory responses due to recurrent excitation by CA1 cells. In addition, ripples are 379 

instantiated by sparse local excitatory activity within CA1 that may partly result from interneuron-mediated 380 

enhancement (rebound) as suggested by an sEPSC growth upon the first increase in inhibitory conductance 381 

up to the peak of power of the ripple (Figure 7B, zero lag in the color bar). Upon this first sEPSC increase, 382 

the relationship reverses, as inhibitory activity likely dampens the activity of both pyramidal cells and 383 

interneurons, finally extinguishing the SWR-related activity (trajectory in Figure 7B). We also examined 384 

the ripple-band sIPSCs vs. sEPSCs (i.e. by filtering in the band 70-120 Hz; note that the band definition 385 

changes after the observations in Figure 2A), and concluded that sEPSCs preceded sIPSCs in the ripple-386 

associated phase trajectory (Figure 7D), in contrast to broad band activity. These results are in line with 387 

previous experimental and modeling work suggesting that ripples involve an interplay between excitation 388 

(provided by sEPSC and dEPSC) and inhibition (provided by sIPSC) (Hulse et al., 2016), where ripple- 389 

band excitation precedes ripple-related inhibition (Memmesheimer, 2010). Crucially, in line with this 390 

assumption, E-I balance, but neither individual IPSC nor EPSC amplitude, was predictive of the 391 

participation of individual CA1 pyramidal cells to a SWR events (Figure 7E). 392 

Due to the differential involvement of synaptic currents in the LFP power at various frequency bands, we 393 

reasoned that information about E-I balance may be also inferred from such mesoscopic measurements. 394 

Thus, we sought to determine whether specific frequency bands of the broad-band peri-ripple LFP spectrum 395 

were predictive of the E-I balance, as computed as the ratio of excitation to inhibition. In order to capture 396 



 

13 
 

this information, we trained a linear epsilon-support vector machine (ε-SVM) to regress out E-I balance 397 

from single-event spectrogram values (see STAR Methods for details). The peri-event time-frequency 398 

Morlet wavelet spectrograms (broad-band, 0-300 Hz) of each SWR were used to regress out their 399 

underlying population averaged E-I balance values (i.e. <|dEPSC|> / <|sIPSC)|>, and in a separate 400 

calculation <|sEPSC|> / <|sIPSC)|>). In order to capture differentially the low- and high-frequency 401 

components of the LFP with comparable regression coefficients, we z-scored each peri-SWR spectrogram. 402 

 403 

Interestingly, in line with previous analyses (Figure 4), analysis of regression coefficients reveals that a 404 

large spectral power over CA1-local gamma (>55 Hz), ripple and supra-ripple frequencies is predictive of 405 

a stronger CA1 local inhibitory drive with respect to exogenous excitation (Figure 7F, cold colors), because 406 

a power increase in these bands leads to a decrease in E-I balance. Interestingly, we found that larger 407 

recurrent excitation is more specifically associated with larger ripple band power (Figure 7G, warm colors), 408 

in line with our previous analysis (see Figure 5). Furthermore, sharp wave and slow gamma activity are 409 

related to excitatory components (dEPSCs and sEPSCs) (Figure 7G, see SVM coefficients over low 410 

frequencies). The overall prediction of the SVM across all simulation sessions was associated with a 411 

correlation coefficient r = 0.6712 for dEPSC-to-sIPSC (p=0 for the pooled dataset; 20-fold cross-validation; 412 

N = 25 model sessions; Figure 7F, lower subpanel). Conversely, the overall prediction of the SVM was 413 

associated with a correlation coefficient r = 0.2574 for sEPSC-to-sIPSC (p=3.03*10-45 for the pooled dataset; 414 

20-fold cross-validation; N = 25 model sessions; Figure 7G, lower subpanel). Thus, power spectral 415 

variability of modeled LFP during SWR predicts better exogenous than endogenous E-I balance. However, 416 

the spectral profile of regression coefficients shows that the ripple oscillation is more specifically related to 417 

endogenous E-I balance, further supporting the idea that both local excitation and inhibition are necessary 418 

to shape this rhythm. Our results suggest that although LFP activity is inherently ambiguous, its power 419 

spectrum carries information on elementary network phenomena that shape E-I balance at the local network 420 

level during SWR-associated events.  421 

 422 

Inactivation of phasic excitation of CA1 pyramidal cells onto interneurons enhances SWRs   423 

As shown in the above section, sEPSCs may partly mediate ripple coordination. Thus, we asked whether 424 

these peri-somatic excitatory synapses onto interneurons were required for SWR complexes to occur. We 425 

addressed this question by selectively blocking sEPSCs onto all CA1 interneurons. Surprisingly, this circuit 426 

manipulation did not abolish ripples (Figure 8A, B). Rather, it enhanced their time-frequency characteristics 427 

(e.g., spectral power in the ripple band). SWR generated without sEPSC dynamics were also associated 428 

with larger recruitment of pyramidal cells (from ~10% with upper limit of 15% in control condition, to 429 

~15%, reaching an upper limit of ~30%). Pyramidal cells also tended to display more peri-SWR bursts 430 
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(Figure 8C, D). These findings were in general agreement with previous work, where genetically-431 

suppressed synaptic excitation did not abolish ripples, but somewhat enhanced them, together with SWR-432 

associated burstiness of pyramidal cells (Racz et al., 2009).   433 

In addition, we found that pyramidal cells that were driven to spike had changed E-I balance during sEPSC-434 

blockade with respect to control conditions, displaying less prominent inhibition during sEPSC-blockade 435 

after the phase of enhanced excitation (Figure 8E; p = 0.002, two-sample Kolmogorov-Smirnov test for the 436 

comparison between the two conditions). These results further support enhanced pyramidal cell 437 

participation and a tendency toward bursting during selective blockade of recurrent excitation results from 438 

the suppression of phasic feedback inhibition. Whereas these results suggest that sEPSCs are not causally 439 

involved in the genesis of the ripple oscillation itself, they also suggest that they implement a feedback 440 

inhibition mechanism that guarantees the selection of a sparse subset of pyramidal cell to take part in the 441 

ripple event, and limits the bursting of these cells. This may be key to control the selective emergence of 442 

well-defined cell assemblies associated to memory traces and the associated memory consolidation 443 

mechanisms (Diba and Buzsáki, 2007; Lee and Wilson, 2002). Following the same approach, we further 444 

tested whether selective blockade of the various CA1 synaptic interactions were critical for SWR 445 

emergence. In order to validate that the generation of ripple oscillations requires I-I driven excitation in 446 

addition to inhibition, we investigated the network dynamics when somatic inhibition of excitatory neurons 447 

was blocked. The results (Figure 8F) show that ripples are replaced by high-frequency oscillations 448 

(>200Hz) together with a broad recruitment of the pyramidal cells (only 25 exemplary pyramidal cells are 449 

shown in the plot to ease visualization of individual bursts), supporting that feedback inhibition is needed 450 

to bound the ripple frequency and limit CA1 pyramidal cell participation. We examined two additional 451 

cases: When reciprocal (I-I) inhibition was blocked; and finally, when CA3 input to CA1 was blocked (see 452 

Supplemental Experimental Procedures for details). In both cases, SWR complexes were again abolished. 453 

From the resulting network activities, we can conclude that reciprocal inhibition is needed to control 454 

inhibitory cell participation and dynamics (Figure S5A). Furthermore, in absence of excitatory input from 455 

CA3, CA1 is dominated by gamma activity resulting from I-I interactions (Taxidis et al., 2012; Wang and 456 

Buzsáki, 1996), and limited pyramidal cell participation (Figure S5B).  457 

Comparison to in vivo LFP recordings from the macaque hippocampus 458 

In order to further validate and investigate the dynamics of the discovered SWR-related components, we 459 

used LFP recordings of the CA1 hippocampal subfield of macaque monkeys. Multi-contact recording 460 

electrodes were positioned based on high-resolution anatomical MRI scans and visual assessment of 461 

hippocampal electrical activity. Electrode tips targeted the CA1 stratum radiatum and stratum pyramidale. 462 

Classification of electrode tips was based on visual detection of oscillations (LFP deflections and high-463 
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frequency oscillations), inspection of synchronous spiking activity and high-resolution MRI scans. A 464 

simplified schema of our electrophysiological recordings together with a typical electrode penetration, are 465 

presented in Figure 9A. Time courses and time-frequency characteristics of SWR episodes were in 466 

agreement with our model (Figure 9A) (Logothetis et al., 2012; Ramirez-Villegas et al., 2015).  467 

 468 

The average time course and baseline-subtracted spectrograms of the LFP filtered in previously selected 469 

frequency bands (SW/gamma, ripple and supra-ripple) are depicted in Figure 9B-C (average across N=15 470 

experimental sessions, 4 animals). We then asked how the energy in these bands was distributed across 471 

structures. We then computed peri-SWR power signals for each component (see STAR Methods). Power 472 

profiles were z-scored and peri-event power maxima for each recording channel were extracted. Whereas 473 

the ripple and supra-ripple components have larger power at recording tips putatively located in stratum 474 

pyramidale (Figure 9E rightmost columns; p<0.02, Wilcoxon’s ranksum test for the comparison between 475 

power in stratum radiatum and stratum pyramidale), gamma and SPW power remained evenly distributed 476 

across recording sites (p>0.15, Wilcoxon’s ranksum test for the comparison between power in stratum 477 

radiatum and stratum pyramidale). In comparison to our simulations, these results confirm the somatic 478 

origin of ripple and supra-ripple frequencies. Moreover it suggests a broader spread of low and gamma 479 

frequencies along a dendritic tree that would extend closer to the soma than in the geometric configuration 480 

of our model. However, it is worth noting that the recording configuration in the macaque anterior 481 

hippocampus (that does not guarantee a penetration normal to CA1 strata) may have an effect in identifying 482 

the spatial localization of these sources and their associated power profiles.  483 

 484 

Importantly, like in modeled SWR (Figure S2G), we observed that SWR events recorded experimentally 485 

reveal different degrees of synchrony of participating neuronal populations to the LFP, as quantified by 486 

spike-field coherency (SFC) maps (Figure 9D) (Ramirez-Villegas et al., 2015). Notably, action potentials 487 

synchronize in the ripple (80-180 Hz) and sharp wave (<20 Hz) (Figure 9D, top subpanel). Concordantly, 488 

SFC-phase analysis also shows prominent phase locking of cell discharges to gamma (25-79 Hz) and supra-489 

ripple (>180 Hz) LFP frequencies in a magnitude comparable to that of the ripple and sharp wave 490 

components (<20 Hz) (see group results in Figure 9D; across-sessions average N=15 experimental sessions, 491 

4 animals). 492 

 493 

As supporting analysis, we further characterized the SWR-associated dynamical components in order to 494 

compare both modeled and experimental SWR complexes. We found that sharp wave, gamma, ripple and 495 

supra-ripple components have similar peri-event instantaneous frequencies (Figure S6A). Furthermore, all 496 

dynamical components are associated with power increases above baseline (Figure S6B). Finally, we 497 
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assessed how predictive of SWR occurrence were the power increases in each frequency bands using linear 498 

SVM classifiers (see also STAR Methods and Supplemental Experimental Procedures). The observed 499 

prediction performance across bands (Figure S6C) ranked similarly for experimental and modeled data, 500 

differing significantly from chance level classification.  501 

 502 

Finally, although time and frequency features SWR complexes from our experimental recordings were in 503 

general agreement with modeled ones, in vivo SWRs are often accompanied by a post-ripple low-frequency 504 

hyperpolarization in the LFP (Figure S7A) absent from simulated traces. As such component is present 505 

solely in sharp waves associated with “fast” ripples (Ramirez-Villegas et al., 2015; Varga et al., 2014), we 506 

hypothesized that the post-ripple LFP hyperpolarization, where likely bistratified cells play a key role 507 

(Varga et al., 2014), resulted from dendritic inhibition onto the principal cells of CA1. We tested this 508 

hypothesis by simulating input IPSCs into the dendritic compartments (dIPSCs) of modeled CA1 pyramidal 509 

cells (see Supplemental Experimental Procedures for details). In summary, this resulted in raw LFPs with 510 

intermingled negative deflections, sometimes associated with ripple oscillations despite the low pyramidal 511 

cell participation (3% to 5% of active cells; Figure S7B-C); alongside, we found that during these SWR 512 

episodes, the amplitude of the dIPSCs was precisely timed and correlated with the LFP amplitude decrease 513 

associated with the post-ripple hyperpolarization (Figure S7D-E). Thus, the observed LFP post-ripple 514 

hyperpolarization may be mediated specifically by dendritic inhibition, which can be accounted for by 515 

including more neuronal types into our model. 516 

Discussion 517 

In this study, we presented a biophysical model encompassing a wide-range of specific neural mechanisms 518 

underlying SWR episodes across multiple scales. At the cellular level, we used minimal conductance-based 519 

compartmental neural models, with a single dendritic and synaptic compartment per cell. The modeled 520 

network spanned both CA1 and CA3 hippocampal subfields, with one type of pyramidal cell and one type 521 

of interneuron in each region. This allowed us to dissect dendritic from somatic activities in CA1, associated 522 

with CA3 input and CA1 recurrent activity respectively, and to model the spatio-temporal properties of 523 

LFP in CA1. We observed that CA3-induced dendritic depolarizations manifest themselves by SW and 524 

slow gamma (<55Hz) activity in CA1. Interestingly, coherency analysis revealed that CA3 network 525 

oscillations in the slow gamma band specifically could be observed beyond the dendrites and reach CA1 526 

somatic activity. Local post-synaptic processing in CA1 generated the ripple oscillations and involved both 527 

somatic EPSC and IPSC. Both PSCs seem involved in selecting firing ensembles in CA1, possibly 528 

establishing specific synaptic mechanisms that mediate sequence replay. Our results –validated with in vivo 529 
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recordings from the macaque hippocampus– provide detailed evidence that emergence of SWR activity 530 

depends on elaborated frequency-specific interactions of remote and local neuronal activity in CA1. These 531 

rhythmic activities may be critical for the emergence of in vivo SWR activity, and therefore for the 532 

formation of hippocampus-dependent memory representations, and other memory-related functions such 533 

as retrieval (Carr et al., 2011).  534 

 535 

In vivo CA3-CA1 SWR dynamics predicted by a simple multi-compartment model 536 

The modelling study reported in this work aimed at gaining better understanding on the nature of the SWR 537 

complexes, and the meso- and microscopic scale hippocampal dynamics during these episodes. Notably, 538 

the model network of compartmental neurons predicts several features of SWR dynamics as observed in 539 

vivo in our experimental preparations on macaque monkeys (Logothetis et al., 2012; Ramirez-Villegas et al., 540 

2015), by relying on local synaptic interactions between inhibitory and excitatory neurons as suggested by 541 

recently published data (Stark et al., 2014). Simulated LFP recordings were in close correspondence with 542 

experimental data in many respects: LFP traces are a compound of irregular background activity 543 

intermingled with episodes of highly synchronous neuronal activity in the SWR range (<20 Hz concomitant 544 

with 80-180 Hz oscillations) as indicated by spectral analysis. SWR duration, cell participation and ripple-545 

SW correlation are in correspondence with previous investigations (Csicsvari et al., 2000; Logothetis et al., 546 

2012; Patel et al., 2013). During SWR episodes, incoming activity from CA3 was dominated by bursts of 547 

lower frequency associated with LFP gamma-like oscillations (Sullivan et al., 2011). CA3 bursts were not 548 

coherent with the ripple activity in CA1, suggesting the de novo generation of CA1 ripples as supported by 549 

previous experimental studies (Sullivan et al., 2011). Concordantly, CA3 and CA1 activities were only 550 

coordinated by their low frequency LFP, namely, up to the upper bound of the slow gamma band (~55 Hz) 551 

(Carr et al., 2012). Furthermore, the relationship between CA1 spiking activity and peri-event LFPs was 552 

very similar to that of in vivo recordings reported previously (Ramirez-Villegas et al., 2015). Peaks of 553 

coherent activity in relation to spiking activity were found for SW and ripple frequency bands, with 554 

pyramidal neurons’ and interneurons’ spiking activity occurring preferentially close to the trough and at the 555 

rising phase of the ripple oscillation, respectively. 556 

 557 

Dissection of frequency specific sources of peri-SWR LFPs 558 

Our results indicate that gamma and sharp wave components dominate the LFP in stratum radiatum due to 559 

incoming synchronous activity from CA3 and subsequent SW-related dendritic depolarization (Carr et al., 560 

2012). Furthermore, oscillatory activity in the ripple (80-180 Hz) as well as supra-ripple (>180 Hz) 561 

frequency bands originate in stratum pyramidale. Ripple oscillations were present in both interneuronal and 562 

pyramidal currents. In particular, local somatic IPSCs and EPSCs were specifically phase-locked to CA1 563 
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ripple oscillations, but not dendritic EPSCs originating from CA3 input. These results are consistent with 564 

recent in vivo findings (Gan et al., 2017) probing the dynamics of peri-ripple IPSC and EPSC. Interestingly, 565 

these observations differ from in vitro studies (Maier et al., 2011), which have been the basis to ascribe a 566 

key roles to axo-axonic electrical coupling or recurrent synaptic excitatory interactions between pyramidal 567 

neurons in ripple generation (Maier et al., 2003). Furthermore, in this study we found that inhibitory 568 

network activity generates high-frequencies in the LFP power spectrum, spanning largely beyond the ripple 569 

band.  570 

 571 

Ripple oscillogenesis 572 

The involvement of pyramidal cells and interneurons in hippocampal ripple oscillogenesis has been 573 

extensively investigated during the last years (Ellender et al., 2010; English et al., 2014; Hajos, 2004; 574 

Karlocai et al., 2014; Le Van Quyen et al., 2008; Mann et al., 2005; Oren et al., 2006; Schlingloff et al., 575 

2014; Stark et al., 2014). Fast oscillations may come about by strong recurrent excitatory synapses 576 

(Memmesheimer, 2010; Traub and Bibbig, 2000), recurrent inhibition (Brunel and Wang, 2003; Geisler et 577 

al., 2005; Wang and Buzsáki, 1996; Whittington et al., 1995) and the combination of both in form of E-I 578 

loops (Brunel and Wang, 2003; Memmesheimer, 2010; Schomburg et al., 2012; Taxidis et al., 2012). In 579 

line with recent evidence (Ellender et al., 2010; Gan et al., 2017; Schlingloff et al., 2014; Stark et al., 2014), 580 

our modeling experiments suggest that interneuronal activity is of great importance for the occurrence of 581 

physiological SWR activity. Our results indicate that absence of inhibition and inhibitory-inhibitory 582 

synapses is associated with abolishment of ripples (due to interneuron hyperactivity) and induce major 583 

changes in the SWR-associated dynamics beyond physiological regimes, in line with results on interictal 584 

epileptiform discharges (Karlocai et al., 2014).  585 

 586 

Interneurons are likely the fastest control elements of CA1 network activity, with faster spikes than that of 587 

pyramidal cells in addition to high-frequency population peri-synaptic activity. Since ripple activity is only 588 

weakly modulated by incoming somatic EPSCs from CA1 pyramidal neurons, we suggest that interneuronal 589 

populations pace ripple oscillations mediated mainly by fast local interactions with other interneurons. 590 

Indeed, we directly tested this hypothesis, and discovered that ripple-related membrane potentials of 591 

interneurons and pyramidal cells are paced by inhibitory, but not excitatory synaptic events or the 592 

combination of both. This pacing however does not imply that I-I interactions entrain the network at their 593 

own oscillation frequency. In vivo experimental evidence suggests that ripple oscillations cannot emerge 594 

by entraining populations of interneurons alone (Hulse et al., 2016; Stark et al., 2014), which is confirmed 595 

by our own attempt to suppress I-I synaptic interactions in the model, leading to higher frequency 596 

oscillations of low amplitude due to inhibitory activity alone. The excitatory population is thus entrained at 597 
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a lower frequency than the inhibitory network pacing it, and bounds the dominant frequency of the 598 

phenomenon to the ripple band. 599 

 600 

Low-frequency discharges and sEPSC: two ingredients for coordinated sequences replay 601 

SWR have been associated to coordinated sequence replay, and how these sequences are precisely selected 602 

remains a major question. Two features may play a key role in this selection: the CA3 input, and a recurrent 603 

control of the sparsity of excitatory spiking within CA1. In line with experimental studies, although each 604 

pyramidal neuron receives a number of synaptic inputs from CA3 and CA1 neuronal populations, most 605 

CA1 principal cells in our model remain silent during a single SWR burst (Csicsvari et al., 2000). 606 

Interestingly, our analysis suggests that the exogenous E-I balance can determine the participation of each 607 

pyramidal cell to the SWR, and the timing of these components may control spike timing to precisely 608 

represent a replayed sequence, corresponding to a specific memory trace. One element of control of the 609 

exogenous E-I balance is the spatio-temporal pattern of CA3 input. As CA3 is also able to replay precise 610 

sequences (Karlsson and Frank, 2009), its inputs to CA1 may –to some extent– play a role in the selection 611 

of CA1 cells involved in replay. Our model supports this hypothesis, because the CA3 slow gamma activity 612 

modulates specifically the peri-SWR somatic activity in CA1, suggesting slow gamma oscillations could 613 

transiently coordinate the CA3-CA1 network and possibly memory-replay as well. Although the current 614 

experimental evidence favors this possibility (Carr et al., 2012; Gillespie et al., 2016), it remains to be 615 

further tested in an extended version of our model. 616 

 617 

Finally, our results suggest that somatic EPSC onto interneurons have a direct influence on the strength of 618 

the I-to-E feedback inhibition loop, limiting pyramidal cell participation and bursting. Thus, we hypothesize 619 

that somatic EPSC due to pyramidal synaptic collaterals –whereas not critical for SWR emergence– may 620 

be important for generating physiological SWR with their associated replay, by allowing the precise 621 

selection of a small number SWR-participating pyramidal cells. Therefore, these findings hold a key 622 

implication for memory-associated SWR replay, and hence for consolidation and retrieval processes 623 

previously ascribed to SWR complexes (Girardeau et al., 2009; van de Ven et al., 2016). 624 

 625 

LFP correlates of network E-I balance 626 

Due to the frequency specific signature of inhibitory and excitatory mechanisms, SWR modulated E-I 627 

balance can be inferred to a certain extent from the LFP spectral properties. Our results suggest that the 628 

relationship between SW, gamma, ripple and supra-ripple components carries information about CA1 E-I 629 

balance. In particular, the supra-ripple components –to a certain extent– could be a predictor of inhibitory 630 

activity within CA1 during SWR episodes, while slow frequencies reflect the level of exogenous excitation 631 
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from CA3. Interestingly, the ratio between ripple and supra-ripple power relates to endogenous E-I balance 632 

is in line with the idea that CA1 pyramidal cells are necessary to shape ripple oscillations. Furthermore, our 633 

analysis of E-I balance during these episodes and its correspondence with peri-event LFP traces may be 634 

further generalized in a model taking into account a larger number of local populations and exogenous 635 

inputs to CA1. This could bring a better understanding of the mechanisms underlying the already 636 

documented diversity of SWR LFP signatures, as explained in the next subsection. 637 

 638 

Towards brain-wide models of SWR  639 

Indeed, it is worth noting that in this work we did not consider the network mechanisms involved in the 640 

dynamics of distinct subtypes of SWR complexes as reported in our previous work (Ramirez-Villegas et 641 

al., 2015). In this regard, our experimental recordings did not reveal major differences between SWR-642 

subtypes beyond modulations in power and ripple frequency peak (as previously reported in (Ramirez-643 

Villegas et al., 2015); not shown in the current results). Recordings with a greater spatial extent, however, 644 

may help to better understand their correlates and network-level mechanisms (notably, see (Oliva et al., 645 

2016)). Indeed, CA1 activity may be modulated by other structures of the hippocampal formation such as 646 

the CA2 subfield (Kay et al., 2016; Oliva et al., 2016), or entorhinal cortex inputs (Hahn et al., 2012) thus 647 

selectively enhancing or possibly adding other oscillatory components to the extracellular potentials over 648 

distinct spatial locations, likely associated with different neuronal targets. In a similar vein, a recent study 649 

indicates that the three major PV cell classes (basket, bistratified and axo-axonic cells) activate differently 650 

during SWR episodes, suggesting that fast network episodes with distinct electrophysiological 651 

characteristics involve different inhibitory circuits (Varga et al., 2014) . We found support for this 652 

hypothesis with our model by showing the putative effect of bistratified cells on post-ripple 653 

hyperpolarisation. It is likely that differential recruitment of interneurons also depends on long-range 654 

mechanisms involving neocortical and transient changes in subcortical neuromodulatory activity (Varga et 655 

al., 2009), ultimately altering microscopic and mesoscopic SWR dynamics. This could be accounted for in 656 

further extensions of the present model. 657 

 658 

Supplemental Information 659 

Supplemental Information includes ten figures and text accounting for Supplemental Experimental 660 

Procedures. 661 

  662 
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 663 

STAR Methods 664 

Detailed methods are provided in this manuscript and include the following: 665 

- Key resources table 666 

- Contact for reagent and resource sharing 667 

- Experimental model and subject details 668 

- Method details 669 

1- Single neuron models 670 

2- Network models connectivity and synapses 671 

3- Determining unitary-PSP amplitudes 672 

4- Synapse probabilities 673 

5- Estimating the transmembrane currents of the model 674 

6- Non-synaptic transmembrane currents 675 

7- Recording sites and Local Field Potential (LFP) estimation 676 

8- Intracortical electrophysiological recordings 677 

- Quantification and statistical analysis 678 

1- Simulations and SWR event detection 679 

2- Frequency analyses 680 

3- Post-synaptic current analyses 681 

4- Processing of experimental neural data 682 

- Data and software availability 683 
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Figure 1. Neurophysiological nature of SWR complexes revealed by distinct network dynamical 

components. (A) Canonical circuit of the CA1 network illustrating the feedback and reciprocal inhibition 

circuit in line with recent experimental evidence (Stark et al., 2014). (B) Spectrogram, broad-band and 

ripple band-pass filtered trace of the CA1 LFP displaying power increases in the SWR frequency ranges 

(four three subpanels from top to bottom, blue indicate recordings in stratum pyramidale, orange in stratum 

radiatum). Averaged sIPSC and sEPSC and dEPSC (black traces). Changes in the electrical activity of CA1 

co-occur with changes in CA3 (broad band, low- and high-gamma LFP traces in red), displaying gamma-

like oscillatory activities concurrent with CA1 SWR. (C) Statistics of SWR features. Top: full-width at 

half-maximum (FWHM), number of ripple cycles, and ripple peak frequency. Bottom: proportion of peri-

SWR participating pyramidal neurons and interneurons, and correlation between ripple power and sharp 

wave amplitude. (D) Exemplary ripple oscillation (80-180 Hz) and associated raster plot for interneurons 

(black) and pyramidal neurons (red). (E) Peri-event time histograms across SWR complexes at the neuronal 

population level for inhibitory (red) and excitatory neurons (blue). See also Figure S1-S2. 
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Figure 2. The synaptic and non-synaptic LFP concomitants of SWR complexes. (A) Averaged SWR-

triggered spectrograms for the synaptic component of the LFP (LFPsyn) across distinct simulated network 

compartments. (B)-(C) Averaged SWR-triggered spectrograms for the non-synaptic component of the LFP 

(LFPt) for distinct network compartments (i.e. somata; dendrites) and cell types. Spectral profiles (bottom, 

left subpanel) illustrate the difference in frequency peaks, compared in the boxplots in (C). On each box 

the top and bottom are the 25th and 75th percentiles of the samples, respectively; the red dot within each box 

corresponds to the sample median; sample extrema are indicated by the dashed lines below and above each 

box; crosses, if any, correspond to outliers. See also Figure S3. 
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Figure 3. Frequency band decomposition of modeled peri-event SWR complexes and corresponding 

laminar power distribution. (A) Averaged spectrograms and time course profiles associated with modeled 

SWR-related oscillatory components: SW (5-20 Hz; red curve), gamma (30-55 Hz; green curve), ripple 

(80-180 Hz; cyan curve) and supra-ripple (190-300 Hz; violet curve). (B) Averaged power corresponding 

to each oscillatory component, as a function of laminar position (given by the location of recording tips in 

the CA1 model). Power profiles are shown for both strata. (C) Statistical comparison of averaged power 

profiles across recording sites. 
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Figure 4. Neurophysiological correlates of SWR-associated transient gamma oscillations. (A) 

Coherency analysis (baseline coherency-subtracted) in the CA3-CA1 network between CA3 field and CA1 

synaptic currents. The schema of the hippocampus illustrates the synaptic links to ease interpretation. (B) 

Coherency analysis between somatic synaptic currents of CA1. CA1 currents are coordinated in the ripple 

and gamma frequencies, in line with de novo ripple generation. (C) CA3 gamma-triggered CA3 (blue curve) 

and CA1 (red curve) pyramidal cell time histograms illustrating the discharge rate of the populations. (D) 

Circular histograms illustrating the phase relationship of CA3 LFP to CA3 (blue histogram) and CA1 (red 

histogram) cell discharges. (E) CA3 (blue box) and CA1 (red box) modulation depth increases during SWR 

complexes. 
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Figure 5. Ripple coordination via sIPSC and sEPSC, but not dEPSC. (A) Example broad-band (<300 

Hz) and filtered SWR (80-180 Hz) (left subpanels), and its associated population dEPSC (blue curve), 

sEPSC (red curve) and sIPSC (black curve). Dashed lines indicate prominent synaptic events at the 

population level. (B) PSC-triggered ripple-band LFP single trial traces and averages. (C) Circular 

histograms of the ripple phase at synaptic events.  
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Figure 6. Peri-ripple membrane potential pacing by interneurons. (A) Exemplary simulated SWR 

(wide band <300 Hz, light blue trace; ripple band 80-180 Hz, red trace), together with its associated 

population dEPSC (dark blue trace), population sIPSC (black trace), and membrane potential (Vm) of 

several pyramidal neurons (bottom, coloured traces; each trace corresponds to one cell). (B) Schematic of 

the pre-processing step, wherein we obtain binary signals from the local maxima of the absolute PSC and 

membrane potential traces. (C) Cross-correlograms between Vm and PSC binary signals, inhibition (black 

cross-correlogram), but not excitation (blue and red cross-correlograms) paces Vm for both pyramidal cells 

(top subpanel) and interneurons (bottom subpanel). Top-left subplot in top subpanel illustrates a cross-

correlogram between binary singals (point processes) of the same rate, but generated at random. Correlation 

insets show that Vm consistently lags the sIPSC peak, indicating a notable inhibitory control of excitation. 

(D) Power spectral density of dEPSC- and sIPSC-related peri-event cross-correlograms for pyramidal cells 

(blue and black curves, respectively). (E) Raster plot and correlation between peak sIPSC and Vm 

afterhyperpolarization (left subpanel), and sEPSC and Vm afterhyperpolarization (right subpanel) for 

pyramidal cells. See also Figure S4. 
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Figure 7. SWR-related oscillatory components reflect network excitation/inhibition balance. (A) 

Averaged time course of sIPSC vs. dEPSC. (B) Averaged time course of sIPSC vs. sEPSC. (C) Statistics 

of IPSC-to-EPSC peak time difference. Asterisks signify that both peak-time differences are significantly 

different from zero. (D) Phase-plane trajectory accounting for the oscillatory dynamics of sEPSC and sIPSC 

(70-120 Hz, see also Figure 2). (E) PSC and E-I balance statistics for SWR (left column) and baseline (right 

column) for participating (blue) and non-participating (red) neurons. (F) Linear ε-SVM regression 

coefficients of the peri-event broad-band spectrum for predicting E/I balance (dEPSC/sIPSC). Negative 

coefficients account for inhibition, whereas positive coefficients account for excitation. Time zero marks 

the occurrence of the SWR episode (middle subpanel). E/I balance predicted by the SVM as a function of 

the ground-truth network peri-event E/I balance (bottom subpanel). The overall E-I prediction accuracy is 

given by r ≈ 0.6712. (G) Analogous to (F) but for the sEPSC/sIPSC E/I balance. The overall E-I prediction 

accuracy is given by r ≈ 0.2574. 
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Figure 8. Selective inactivation of phasic synaptic excitation of CA1 pyramidal cells onto interneurons 

enhances SWR complexes and increases SWR-associated bursting. (A) Resulting CA1 LFP time course 

upon selective blockade of feedback inhibition onto pyramidal neurons (left schema). Wide-band (<330 

Hz, middle column, top subpanel), high-frequency filtered (80-180 Hz), time-frequency spectrogram and 

peri-event raster plots (right column) correspond with SWR-like events. (B) SWR episode shaded in (A) 

(top traces) and associated PSC (four bottom traces) display signatures similar to that of standard 

conditions. (C) Average burst size across simulated pyramidal cells during blockade of synaptic excitation 

onto interneurons (blue box), and during standard conditions (red box). (D) Proportion of participating 

pyramidal neurons across simulated pyramidal cells during the two conditions in (C). (E) Averaged E-I 

balance across participating (left) and non-participating (right) pyramidal neurons. (F-G) Same as (A-B) 

upon a selective blockade of somatic inhibition onto pyramidal neurons (left schema), displaying very-

high-frequency events (>200 Hz) due to the release of pyramidal cells from inhibition (see peri-ripple 

exemplary raster plots in the bottom, white ticks mark the spike occurrence). See also Figure S5. 
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Figure 9. Electrode position, in vivo extracellular recordings and decomposition of peri-event SWR 

complexes across 15 experimental sessions, 4 animals. (A) Left images depict a T2-weighted (RARE) 

scan showing the electrode position in sagittal and coronal slices, respectively (electrode trajectory is 

marked by red arrows). The diagram (middle) shows a schematic of the electrode penetration in the anterior 

part of the hippocampus. Raw LFP traces (right) show large deflections corresponding to SPWs (top), 

accompanied by high-frequency oscillations (ripples) (bottom). The inset shows an exemplary SWR filtered 

in the frequency bands of interest. (B) Averaged spectrograms and time course profiles associated with each 

identified SWR-related bands: SPW (red curve), gamma (green curve), ripple (cyan curve) and supra-ripple 

(violet curve). Shaded areas indicate standard error of the mean (SEM). (C) Averaged power spectral 

density profiles and statistics of the component-wise peak frequency. (D) Maps of absolute spike-field 

coherence over all SWR episodes (N=15 experimental sessions, 4 animals) (left). Spike-field phase locking 

maps (right). (E) Statistical comparison of averaged power profiles across putative recording sites 

illustrating that power across stratum radiatum and stratum pyramidale differs significantly for ripple and 

supra-ripple components. On each box, the top and bottom are the 25th and 75th percentiles of the samples, 

respectively; the red dot of each box is the sample median; the dashed lines extending below and above 

each box are drawn from the ends of the interquartile ranges to the furthest observation (extreme points). 

Outliers are indicated by crosses. See also Figure S6-S7. 
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/strains

Non-human primate: Macaca Mulatta Silabe ADUEIS (FR); BioPrim (FR) N/A

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/

Chronux Toolbox Partha Mitra https://chronux.org/

Multi-compartmental models MPI for Biol. Cybern., Germany Available upon publication

Anaesthetics

Remifentanil GlaxoSmithKline (GSK) https://www.gsk.com/

Mivacurium chloride GlaxoSmithKline (GSK) https://www.gsk.com/

Other

Carbon �ber (NMR-compatible electrodes) R&G, Waldenbuch, Germany https://www.r-g.de/

16-bit AD card (PCI-6052E) National Instruments https://www.ni.com/

PowerLab 16/30 ADInstruments, Sydney, Australia https://www.adinstruments.com/

Polyether etherketone (head-holders) Ensinger, Inc., Nufringen, Germany https://www.ensinger-inc.com/

Enro�oxacin (antibiotic) (BaytrilTM) Bayer https://www.bayer.com/

Flunixin (analgesic) (Me�osyl) P�zer https://www.p�zer.com/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents and resource may be derected to and will be full�led by
the Lead Contact, Dr. Michel Besserve (michel.besserve@tuebingen.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Male rhesus monkeys were used in this study. MRI-compatible head holders and chambers were made
out of PEEK (TecaPEEK, Ensinger, Inc., Nufringen, Germany), and implanted stereotaxically on the
cranium of four monkeys using standard clinical aseptic techniques. Implants were secured with custom-
made ceramic screws (zirconium oxide; Pfannenstiel, Germany). Postoperatively, animals were placed
in large, specially designed recovery chairs for 3 days, during which they were taken for walks by the
animal caretakers 2 to 3 times per day. The chairs allowed the animals to freely move body and hands,
but prevented them from touching the implants. As a prophylactic measure, antibiotics (enro�oxacin)
and analgesics (�unixin) were administered for 5 days. All surgical procedures were carried out un-
der general balanced anaesthesia, whose induction and maintenance was done by trained and quali-
�ed personnel. Detailed descriptions of our procedures can be also found in the website of our insti-
tute: http://hirnforschung.kyb.mpg.de/en/methoden/. All experimental and surgical procedures were
approved by the local authorities (Regierungspraesidium, Tübingen Referat 35, Veteriärwesen) and were
in full compliance with the guidelines of the European Community (EUVD 86/609/EEC) for the care
and use of laboratory animals.
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1 Single Neuron Models

METHOD DETAILS

1 Single Neuron Models

The models described in this section represent pyramidal neurons and interneurons in the CA3 and
CA1 sub�elds of the hippocampal formation of the macaque monkey. Pyramidal cells, on the one hand,
are modeled by the two-compartmental Pinsky-Rinzel model (Pinsky & Rinzel, 1994). Following their
conventions, all membrane potentials are represented by their deviation from a reference potential of
-60mV, and constants (e.g. reversal potentials) are updated accordingly in the entirety of this paper. On
the other hand, we developed a simpli�ed two-compartment interneuron on the basis of a model proposed
by Traub et al. (1995) originally with 51 compartments (Traub & Miles, 1995). Our simpli�cation stands
on the basis of minimal active ionic currents (potassium and sodium) in one axo-somatic compartment
and one dendrite-like compartment, following the simpli�cation approach of Pinsky & Rinzel (Pinsky &
Rinzel, 1994). For simplicity, interneurons are considered perisomatic basket cells, i.e. targeting only the
axosomatic compartment of pyramidal cells. The two models closely reproduce the �ring properties of
hippocampal cells. Free parameters values are taken as they are in the original models (see also Table S1
and Table S2 for the full list of variables, free parameters and values). All simulations reported in this
work were performed in MATLAB with custom routines. All systems of equations were solved numerically
using the fourth-order Runge-Kutta method with an integration time step of 0.02 ms.

CA1/CA3 Two-compartmental Pyramidal Neuron

Each pyramidal neuron is described by two compartments. The �rst compartment describes the somatic
dynamics and the remaining compartment accounts for dendritic dynamics. The two compartments obey
the following current balance equations:

Cm
dVs
dt

= −IL−S − INa − IK−DR − ISyn−S/p + (gc/p) (Vd − Vs) + Is/p , (1)

Cm
dVd
dt

= −IL−D − ICa − IK−AHP − IK−C − ISyn−D/(1−p) + [gc/(1−p)] (Vs − Vd) + Id/(1−p) , (2)

where Vs and Vd are deviations of the somatic and dendritic membrane potentials from a reference poten-
tial of -60 mV. Is and Id are the injected currents to the somatic and dendritic compartment, respectively.
The parameter p = 0.5 is the proportion of cell area taken by the soma. The membrane capacitance is
Cm = 3µF/cm2. Ca is the intracellular free calcium level (in arbitrary units) in a submembrane portion of
the dendritic compartment. The ionic currents in each equation are described by the following equations
(variable dependencies are omitted for simplicity and clarity):

IL−S = gL· (Vs − EL) , (3)

IL−D = gL· (Vd − EL) , (4)

INa = gNa·m
2
∞·h· (Vs − ENa) , (5)

IK−DR = gK−DR·n· (Vs − EK) , (6)

ICa = gCa·s
2· (Vd − ECa) , (7)

IK−C = gK−C ·c·χ· (Vd − ECa) , (8)

IK−AHP = gK−AHP ·q· (Vd − EK) . (9)

The gating variables h, n, s, c and q take the following forms (variable dependencies are omitted for
simplicity and clarity):

dh

dt
=

1

τh
(h∞ − h) , (10)

dn

dt
=

1

τn
(n∞ − n) , (11)

ds

dt
=

1

τs
(s∞ − s) , (12)
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1 Single Neuron Models

dc

dt
=

1

τc
(c∞ − c) , (13)

dq

dt
=

1

τq
(q∞ − q) . (14)

The equation for Ca is described as follows:

dCa
dt

= −0.13ICa − 0.075Ca . (15)

Finally, the functions m∞, h∞, n∞, s∞, c∞ and q∞ are described by equations of the form y∞ =
αy/(αy+βy) and τy = 1/(αy+βy), where αyand βy parameters take the following forms (variable dependencies
are omitted for simplicity and clarity):

αm =
0.32 (13.1− Vs)

exp [(13.1−Vs)/4]− 1
, (16)

βm =
0.28 (Vs − 40.1)

exp [(Vs−40.1)/5]− 1
, (17)

αn =
0.016 (35.1− Vs)

exp [(35.1−Vs)/5]− 1
, (18)

βn = 0.25·exp (0.5− 0.025Vs) , (19)

αh = 0.128·exp [(17−Vs)/18] , (20)

βh =
4

1 + exp [(40−Vs)/5]
, (21)

αs =
1.6

1 + exp [−0.072 (Vd − 65)]
, (22)

βs =
0.02 (Vd − 51.1)

exp [(Vd−51.1)/5]− 1
, (23)

αc =

{
exp[(Vd−10)/11−(Vd−6.5)/27]

18.975 , Vd ≤ 50

2·exp [(6.5−Vd)/27] , Vd > 50
(24)

βc =

{
2·exp [(6.5−Vd)/27]− αc , Vd ≤ 50

0 , Vd > 50
(25)

αq = min (0.00002Ca, 0.01) , (26)

βq = 0.001 . (27)

The standard maximal conductances (in mS/cm2) of the model are: gL = 0.1, gNa = 30, gK−DR = 15,
gCa = 10, gK−AHP = 0.8, gK−C = 15 (see also Table S2). The reversal potentials (in mV) are: ENa =
120, ECa = 140, EK = −15, EL = 0. Typical values for the coupling parameters are gc = 2.1mS/cm2

and p = 0.5. In addition, the capacitance and the function χ are 3µF/cm2 and χ (Ca) = min (Ca/250, 1),
respectively.

CA1/CA3 Two-compartmental Interneuron

Interneurons are described by a two-compartmental model that obeys the following current balance
equation:

Cm
dVs
dt

= −INa − IK−DR − IL−S − ISyn−S/p + (gc/p) (Vd − Vs) + Is/p (28)

Cm
dVd
dt

= −ICa − IK−C − IL−D − ISyn−D/(1−p) + [gc/(1−p)] (Vs − Vd) + Id/(1−p) (29)

Following the notation of the previous subsection, V is the deviation of the interneuron's membrane
potential from a reference potential of −60mV. Is and Id are the injected currents to the somatic and
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dendritic compartment, respectively. The parameter p = 0.5 is the proportion of cell area taken by the
soma.

The ionic currents in each equation are described by the following equations (variable dependencies are
omitted for simplicity and clarity):

IL−S = gL (Vs − EL) , (30)

IL−D = gL (Vd − EL) , (31)

INa = gNam
2
∞h (Vs − ENa) , (32)

IK−DR = gK−DRn
2 (Vs − EK) , (33)

ICa = gCa·s
2· (Vd − ECa) , (34)

IK−C = gK−C ·c·χ· (Vd − ECa) . (35)

The gating variables h, n, s, and c take the forms described in subsection 2.1, equations (10)-(13). The
equation for Ca writes as

dCa
dt

= −0.13ICa − 0.05Ca , (36)

and the function χ is described by the following equation: χ (Ca) = min (Ca/250, 1). Similar to the case
of the pyramidal neuron, the functions m∞, h∞, n∞, s∞ and c∞ are described by equations of the form
y∞ = αy/(αy+βy) and τy = 1/(αy+βy), where αyand βy parameters are identical to the ones written above for
pyramidal cells. The standard values for the maximal conductances (in mS/cm2) of the interneuron model
are: gL = 0.1, gNa = 100, gK−DR = 135, gCa = 1, gK−C = 8 (see also Table S2). The reversal potentials
(in mV) are: ENa = 115, ECa = 140, EK = −25, EL = 0. Typical values for the coupling parameters are
gc = 2.1mS/cm2 and p = 0.5. In addition, the membrane capacitance is 0.75µF/cm2. Synaptic interactions
throughout the CA3 and CA1 models will be described in detail in the next section.

2 Network Models Connectivity and Synapses

CA3 and CA1 models are considered semi-parallel arrays of two-compartment pyramidal neurons and
single-compartment interneurons (models are described in the previous section). No signi�cant variation
of the networks dynamics was observed varying the number of simulated pyramidal cells and interneuons.
However, we enforce a ratio of 10:1 pyramidal neurons-to-interneurons as it has been estimated for these
hippocampal �elds (Andersen et al., 2006). Single-layer intercellular distance was set to 10µm in all
cases and interneurons were pseudo-randomly distributed in the arrays, enforcing one interneuron every
10 pyramidal neurons on average. For the joint CA3-CA1 network simulations the arrays are assumed
parallel and the distance between them was set to 1mm. Leakage reversal potentials were normally
distributed with a standard deviation of ±2mV and were refreshed every 5 seconds of simulation time.
Finally, all network simulations were limited to 150 units per layer.

CA1/CA3 Network Connectivity

Connections between neurons of the models are assumed Bernoulli trials. The probability of a connection
is assumed dependent on the distance between the neurons, and is modeled with a Gaussian function,
centered in the source cell with a �xed standard deviation:

Pij (xij) = exp

(
−
x2
ij

2σ2
i

)
(37)

where xij is the distance from the center of the source cell i to the center of the jth cell of the array.
The standard deviation of the Gaussian probability distribution changes according to the cell type.
Typically interneurons have narrower range than pyramidal neurons, where σIN = 100µm and σPY =
1mm, respectively. Since auto-synapses are not allowed in the network, we assume Pii = 0. This
connectivity schema holds for all neuron types, except for CA1, where interneurons were enforced to have
stronger inhibitory recurrences by adding a baseline of 0.15 to the probability values. The connectivity
of the models is later on constrained by the modeled synaptic interactions (see below).
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3 Determining unitary-PSP amplitudes

CA1/CA3 Synaptic Interactions

The CA3 network model is characterized by strong, recurrent excitatory connections and excitation-
inhibition (E-I) loops. CA1 synaptic interactions follow a �feedback and recurrent inhibition� model
(Figure S1) (Stark et al., 2014). For simplicity only GABAAreceptor-mediated and AMPA-mediated
synaptic interactions are considered in this model (see also Taxidis et al. (2012); Pinsky & Rinzel (1994)).
The synaptic current is described by

Isyn = gsyns (V − Esyn) , (38)

where the maximum synaptic conductance and the synaptic reversal potentials for AMPA and GABA-A
are gsyn = 0.1µS/cm2, EAMPA

syn = 60mV, and EGABAsyn = −15mV for all neuron types. We assume that s
follows a �rst-order kinetics:

ds

dt
=
∑

k

ϕkH (Vk −Gth)− s

τsyn
, (39)

where H (x) =

{
1 x ≥ 0

0 otherwise
, k is an index that runs over the pre-synaptic neurons, ϕk are the

associated synaptic gains and Gth = 20mV is a threshold to the membrane potential of the pre-synaptic
cells for the synaptic interaction. Note that synaptic parameters change accordingly depending on the
sub�eld (CA3 or CA1) and the neuronal group (interneurons or pyramidal cells) (see also Table S2).

3 Determining unitary-PSP amplitudes

In this model, AMPA synapses target the dendritic compartment of pyramidal cells, wheras they target
interneurons in the peri-somatic region, except the CA3 Scha�er input to CA1. GABAA synapses are al-
ways peri-somatic. . In order to obtain biologically-plausible evoked postsynaptic potentials, we recorded
unitary EPSP and IPSP in networks with only one type of synaptic connection and adjusted the synaptic
gain ϕ to match PSP values reported in the literature. Postsynaptic potentials were identi�ed on the
basis of local maxima after detecting a pre-synaptic spike. PSPs were recorded at a �xed background
membrane potential with the pre-synaptic neuron �ring a single spike. Presynaptic bursts (as for the
Pinsky-Rinzel model) were excluded from the analysis. Pyramidal cells' and interneurons' background
potential was -67.5 mV and -70.1 mV, respectively for CA3, and -69.4 mV and -71.3 mV, respectively for
CA1. PSP-amplitude statistics were made on the basis of an average of 8306 unitary PSPs for each type
of cell-to-cell synaptic interaction in the network. The main observations regarding these experiments
are reported in Table S3.

4 Synapse probabilities

The joint CA3-CA1 network model was simulated with the the full list of network parameters presented
in Table S2. As mentioned before, we assume that neurons representing CA3 and CA1 form two parallel
pools of cells 1mm apart from each other. The two models are coupled by feed-forward connections
mimicking the Sha�er collaterals. The connectivity between CA3 and CA1 cells pools of cells established
previously (varying as a function of sigma in equation (37); CA1/CA3 Network Connectivity subsection)
results in the following averaged synaptic interaction probabilities: CA1 principal neurons and interneu-
rons are targeted by CA3 pyramidal neurons, with an overall targeting probability of 20% (Li et al., 1994).
Likewise, a single CA3 pyramidal neuron targets 35% of the CA3 pyramidal cell population, and 35% of
the CA3 interneurons, whereas CA3 interneurons target CA3 pyramidal neurons with average proportion
of 40%. Interneuron-interneuron synapses occur in a average proportion of 44% of the interneuron pop-
ulation in CA3. Finally, on average, 25% of the pyramidal cell population in CA1 is postsynaptic to a
single CA1 interneuron, and vice versa. There are no pyramidal cell-to-pyramidal cell collaterals in CA1
(Andersen et al., 2006).

5 Estimating the transmembrane currents of the model

Following the early work of Nicholson & Llinas (1971), transmembrane currents -for long, thin dendrites-
are determined by the internal and membrane properties of the neuron and are little in�uenced by the
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6 Non-synaptic transmembrane currents

dynamics of the current once it has entered the extracellular medium. We assume that the dendritic
and somatic compartments are narrow cables (line sources of current) surrounded by a thin sheath of
extracellular medium. The transmembrane current is de�ned as the sum of all currents derived from
solving the equivalent circuit of resistors, capacitors and batteries of each compartment, including the
capacitive current. This de�nition can be reduced to the following general equation:

It = gc (Vm+1 − Vm) =


Cm

∂Vm
∂t

+
∑

j

Ij


 , (40)

where Vm is the membrane potential of the compartment underconsideration, Vm is the membrane poten-
tial of the neighbor compartment, and Ij is the j

th current in the compartment m (including the synaptic
input currents) (Nicholson, 1973; Nicholson & Llinas, 1971).

The transmembrane potentials resulting from the dynamical equations of the model are characteris-
tic complex depolarization events from the model of Pinsky & Rinzel (1994), and the reduced two-
compartmental interneuron model following Traub & Miles (1995). Typically, pyramidal cell and in-
terneuronal spikes occur �rst in the axosomatic compartment and then propagate to the dendritic com-
partment, where a dendritic spike is generated. When this occurs in pyramidal cells, due to the in�uence
of slow dendritic calcium channel activation, a second depolarization event is generated in the axosomatic
compartment, thus becoming a complex bursting event.

Thus, in order to compute the �eld potentials the volume current source density must be known. The
term �current density� corresponds to the fact that the currents are the second spatial derivative of the
membrane potentials. Since our compartments are one-dimensional core conductors with longitudinal
internal resistance Ri (i.e., per unit length), with corresponding extracellular sheath of longitudinal
resistance Re. Customarily we have assumed Re = 0. Cable theory yields the following relations for
the internal current Ii and the transmembrane current density It: Ii = 1/Ri (∂Vm/∂t), and It = −∂Ii/∂z,
where z is the spatial component along the cable compartments. From these steps, the cable equation
(1/Ri) ∂

2Vm/∂z2 − Cm∂Vm/∂t− Ii = 0 is derived. Hence

It (z, t) = − 1

λ2Ri

∂2Vm (z, t)

∂z2
, (41)

where the length constant λ =
√
Rm/(Ri+Re) [Ωcm/Ωcm−1], and the dimensionless spatial component z =

z/λ, following Nicholson & Llinas (1971). This de�nition is equivalent to equation (40) and follows that
there is a current sink (where the current is inward) at the synapse with respect to the extracellular
medium and a current source (where the current is outward) elsewhere.

6 Non-synaptic transmembrane currents

In order to address the contribution of synaptic and non-synaptic currents to the full LFP and their
time-frequency signatures, we used the population PSC (referred to as LFPsyn), and the non-synaptic
currents (referred here to as LFPt). The rationale behind this procedure is to disentangle the peri-
SWR frequency-dependent (spatial) distribution of LFP attributable to synaptic activity, with respect
to internal neuronal dynamics. In order to compute the frequency-dependent signature of each neuron
segment (soma and dendrite) on the peri-SWR LFP we adopted the strategy of separating the LFP into
the aforementioned components. On the basis of equation (40), we compute LFPt as follows:

ILFPt = gc (Vm+1 − Vm)− Isyn =


Cm

∂Vm
∂t

+
∑

j

Iµj


 , (42)

where Iµj is the jth non-synaptic current in the compartment m.

7 Recording sites and Local Field Potential (LFP) estimation

We assumed a recording electrode with neglegible thickness and cells to be line sources of current (Schom-
burg et al., 2012). Cells were regularly spaced horizontally, and disposed around the center of a stratum
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8 Intracortical Electrophysiological Recordings

pyramidale of 100µm thickness, with an axosomatic compartments height of 80µm for both pyramidal
neurons and interneurons (Traub & Miles, 1995). We assumed a total dendritic arbor height of 200µm
corresponding to the CA1 stratum radiatum. Multiple electrode tips (32 sites in total) were set 20µm
apart covering the simulated axosomatic and apical dendritic �elds of CA1 and CA3 in order to mimick
a laminar electrode. Two multi-channel electrodes in such con�guration targeted the center of the CA1
and CA3 array of neurons.

Importantly, in our simulations we sought to assess the contribution of interneurons taking into consid-
eration their increased radial symmetry as compared to pyramidal cells (see Traub et al. (1994), but see
Traub & Miles (1995)). To this end, whereas pyramidal neurons shared a common orientation (long axis
perpendicular to the stratum), each interneuron was randomly rotated by an angle in the range [−π, π].
As this choice minimises the contribution of interneurons to the LFP, it is worth noting, nonetheless, that
introducing these rotations did not have a noticeable e�ect on the computed LFP traces, as the overall
contribution of interneurons to the LFP is lower than that of pyramidal cells, as pyramidal cells outnum-
ber the interneuronal population. Customarily, the simulations could be performed with all neuron types
sharing a common orientation.

We assume a uniform extracellular medium, isotropic and ohmic conductor with resistivity ρ = 333Ωcm.
The potential in the extracellular medium is governed by the Poisson equation ∇2φ = 1/σdξ/dt = −It/σ,
where σ = 1/ρ is the conductivity of the extracellular space [S/m]. The solution of the Poisson equation
leads to an integral that relates the extracellular potential to the radially-�owing volume current density
I (·) distributed over volume u: φ (p′, t) = 1/4πσ

∫ ∫ ∫
u
I(p,t)/|p′−p|dxdydz , for a recording electrode

placed at p′ ≡ (x′, y′, z′) and p ≡ (x, y, z) indicating the position of the volume current density under
consideration. We assume each compatment is a cylinder whose diameter can be neglected with respect
to the distance to the electrode contact. Under these assumption, the potential distribution has a radial
symmetry around the cylinder's axis and the problem can be reparametrized by the radial distance
r from the axis of symmetry and an algebraic �depth� coordinate z along this axis. Moreover, the
volume current density can be turned into a line density, that we assum uniformly distributed along the
cylinder's axis. The expression for extracellular potential thus becomes a single integral, measured over
the compartment's length limits. Let z2 be the algebraic depth of the top of the cylindric compartment,
and let z1 be the algebraic depth of the bottom of the cylinder (such that z2 − z1 = L). At a given
time, the expression for the potential φ (z0, r) at the algebraic depth z0 and a radial distance r is:
φ (z, r) = 1/4πσL

∫ z2
z1

I(t)/
√

(z−z0)2+r2dz. After solving the integral with standard algebraic procedures, we

account for the contribution of all compartments and cells, then the extracellular potential φ (z0, r, t) is

φ (z0, r, t) =
1

4πσ

∑

i

∑

j

Iijt (t)

Lij
ln




√
(z1 − z0)

2
+ r2 − (z1 − z0)

√
(z2 − z0)

2
+ r2 − (z2 − z0)


 , (43)

where the variable Lij is the length and Iijt is the total transmembrane current corresponding to the jth

compartment of the ith cell.

Note that since the neuron models considered in this work are two-compartmental, from equation (40), it
follows that the total absolute somatic transmembrane currents equal the absolute of the total dendritic
transmembrane currents (which also follows the charge conservation principle), leading to a dipolar
distribution of the LFP contribution for each cell.

8 Intracortical Electrophysiological Recordings

Surgical procedures are described in detail elsewhere (Logothetis et al., 2012; Ramirez-Villegas et al.,
2015). Brie�y, a total of 242 experiments (10 minutes each) spread over 15 experimental sessions were
carried out in anesthetized male rhesus monkeys (Macaca mulatta). Head holders and recording chambers
were located stereotaxically based on high-resolution anatomical MRI scans. Recordings were conducted
in the anterior part of the hippocampus in the right hemisphere of each animal. All recording hard-
ware, including the electrodes and ampli�ers, was developed at the Max Planck Institute for Biological
Cybernetics. Custom-made, multi-contact, NMR-compatible recording electrodes were made from a car-
bon �ber composite baton with 500µm diameter (R&G, Waldenbuch, Germany). The 2.6mm long tip
grounded down to a diameter of 250µm. Electrodes contained 10 contacts spaced 150µm apart, with
6-10 targeting the structure of interest. Multi-contact recordings were performed around the pyramidal
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1 Simulations and SWR event detection

layer of the hippocampal CA1 sub�eld (8 to 14 mm anterior of the interaural line). The output signals of
the laminar electrode were then fed into a PowerLab 16/30 system (ADInstruments, Sydney, Austrialia).
Fine adjustment of the recording electrode was achieved by intermediate MRI anatomical scans, in ad-
dition to monitoring acoustically and visually the hippocampal neural signals. During these procedures,
anesthesia was maintained with remifentanil (0.5-2 µg/kg/min) with a fast-acting paralytic mivacurium
chloride (5-7 mg/kg/h), and the physiological state of the animal was monitored continuously and main-
tained tightly within normal limits (38-39oC body temperature, end-tidal CO2 33 mmHg, and oxygen
saturation over 95%) (Logothetis et al., 2012). In addition, electrophysiological recordings were done
with the monkey into the magnet bore for simultaneous acquisition of blood-oxygenation level-dependent
(BOLD) fMRI signals. The fMRI recordings were not analyzed in this work (for details see Logothetis
et al. (2012)). In addition, all neuronal data were analyzed o�ine.

QUANTIFICATION AND STATISTICAL ANALYSIS

1 Simulations and SWR event detection

of modeled data, a total of 500 independent simulations were performed. These 500 simulations were
grouped in a total of 25 simulation sessions, events and spanning a total of 125 seconds. The connectivity
of the model was refreshed each 5 seconds of simulation, yielding similar LFP traces. Events were detected
as increases in the ripple-band power (80-180 Hz) using a threshold proportional to the standard deviation
of the signal (3 SD in this case). Only ripples with more than one oscillation period were selected for
further analysis. A total of 3,250 SWR episodes were detected and analyzed for all results in this work,
unless otherwise speci�ed.

2 Frequency analyses

Spectral analysis and spike-�eld coherence (SFC). Spectral analysis was performed using Morlet-
wavelet spectrograms. Spectrograms were Z-scored with respect to random baseline events. SFC was
computed for all modeled sites located in the CA1 stratum pyramidale, across all SWR broad-band signal
events. This analysis was performed using the Chronux toolbox available at http://chronux.org (tapering
window duration of 200 ms with an increment of 10 ms). Ripple-related SFC maps were averaged and
Z-scored with respect to randomized events. The resulting map was then analyzed in magnitude (absolute
value in the range [0, 1]) and in the form of a composite phase map (in the range [−π, π] rad) with the
phase-locking values (PLV).

CA3 gamma-triggered time histograms, phase analysis and cell discharge modulation in-
dex. CA3-gamma triggered time histograms were made on the basis of the �ltered CA3 LFP (stratum
pyramidale contact with largest amplitude) in the band 35-50 Hz, in order to avoid con�ating or leaked
low-frequency components. Single-trial signals were aligned with respect to the largest gamma trough,
and the LFP-aligned CA3 and CA1 pyramidal spike times were used to produce the histograms (at 1
ms bins resolution). This procedure was performed in a single-session basis, session-wise averages were
computed, and population (across sessions) averages were performed. Furthermore, LFP-to-histogram
phase relationships were computed at the session level, where each time histogram was smoothed �rst
with a Gaussian kernel σ = 15ms in order to reduce high-frequency noise. Histogram local maxima
were detected in a time window of [−0.05, 0.05] s around the largest CA3-gamma trough, the LFP phase
(computed via Hilbert transform) corresponding to each maxima was then used to produce the circular
histograms across all sessions. Statistical testing was performed across sessions using a standard boot-
strapped Rayleigh test. Finally, the modulation indices for both CA3 and CA1 were also computed at
the session level, and de�ned as the di�erence between the peak and the trough of the spike histogram
divided by the sum of the peak and the trough of the spike histogram (after Carr et al. (2012)). An
analogous procedure was followed for surrogate (non-SWR) epochs for statistical comparison with SWR
episodes.

Peri-SWR LFP decomposition by a bank of FIR �lters, laminar power pro�les and component-
wise spectral analysis. We used a bank of �lters to separate the activity of elementary components
of CA1 activity (Figure 3 and 9). To this end, we applied 4th-order Butterwoth �nite impulse response
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3 Post-synaptic current analyses

(FIR) �lters in the frequency ranges where we observe sharp waves, gamma (25-75 Hz), ripples (80-
180 Hz) and supra-ripple (190-300 Hz). Filtered peri-event SWR complexes were aligned to the largest
oscillation trough, and then averaged across sessions. Component-wise spectral analysis was performed
using complex Morlet wavelet spectrograms and then baseline-corrected with respect to random surrogate
events. Spectral power peak frequencies were extracted from these spectrograms. Finally, component-
wise laminar power pro�les were computed as the average of each squared peri-event component in a
time window of ±50 ms around the event occurrence. Population averages were performed on the basis
of the results of each individual experimental or simulation session (N = 15 experimental sessions; M =
25 simulation sessions).

3 Post-synaptic current analyses

Excitation-inhibition balance of single neurons. In this work, we studied the conditions that
lead pyramidal neurons and interneurons to spike during individual SWR episodes. We observed that
in such cases (when neurons spike), incoming EPSCs were precisely timed with respect to IPSCs from
local inhibitory recurrences (Figure 8E of the Main Text). This establishes a transient imbalance in
excitation-inhibition ratio. In order to quantify this e�ect we used the following measure:

EI =
|dEPSC + ε|
|sIPSC + ε| , (44)

where ε = 1. The constant ε was included in order to avoid by-zero division, at the same time, we obtain
a conservative estimate of transient E-I imbalances. In particular, E-I balance above 1 is equivalent
to an imbalance toward excitation, whereas E-I balance below 1 is equivalent to an imbalance toward
inhibition. Note that we observed the two types of imbalances (Figure 8E of the Main Text). Thus, the
global maxima and minima of this measure was obtained for across all cells and events. Then cells were
separated according to SWR-participating and SWR-non-participating for further statistical analysis.

PSC-triggered LFP averages and PSC-LFP phase analysis. PSC-triggered LFP averages were
made on the full LFP (LFPt + LFPsyn) of CA1, and occassionally CA3 in order to disentangle the
coordination mechanisms of CA1 and CA3 ripples, respectively. To this end, a derivative-based method
was used in order to detect the largest PSC (Maier et al., 2011; Gan et al., 2017). Peri-SWR PSC were
averaged across all cells. Next, �rst derivatives were computed to these averages in order to detect the
largest population synaptic events. We marked the extrema of each derivative depending on whether
it was an excitatory or inhibitory current. EPSC were marked in the downward direction (derivative
minima), whereas IPSC in the upward direction (derivative maxima). We computed the LFP averages
on the basis of the 10% maxima. Likewise, results were robust even when only absolute maxima were
considered. Phase values were computed using the Hilbert transform of the ripple-band LFP, and only
the phase value corresponding to PSC-derivative top 10% maxima were taken into account for statistical
analysis. Finally, circular histograms were computed for 25 bins evenly distributed in the unit circle, and
phase locking value was computed as the absolute of the circular mean phase across events.

Computing the relationship between membrane potential (Vm) and LFP. The relationship
between Vm and LFP was assessed on the basis of previous experimental work (Hulse et al., 2016). The
membrane potential (Vm) associated with each cell and the LFP (in stratum pyramidale) were ripple-
band-�ltered (80-180 Hz) using a 4th-order Butterworth �lter. In order to estimate the instantaneous
phase of each signal, we computed the Hilbert transform, and then, computed a PLV in a 25ms window
around the SWR occurrence, according to the following equation: Γnm = 1/N

∑N
t=1 [exp (i4ϕtnm)], where

N is the number of time samples, 4ϕtnm = ϕtn − ϕtm accounts for the di�erence between the phase
estimates of the signal corresponding to the SWR n, and Vm of the cell m. This procedure was carried
out for each cell and event. Cell-wise averaged PLV was then computed by averaging across events.
Finally, circular histograms were computed for 25 bins evenly distributed in the unit circle, and a single
PLV and statistical test was computed as the absolute of the circular mean phase across cells.

Next, in a separate condition, 25 randomly chosen pyramidal cells were injected with hyperpolarizing
currents ranging from -3.5 to -2.5 nA, resulting in resting membrane potentials from -15 to -25 mV. We
then separated these cells from the rest and then computed the ripple Vm-ripple LFP PLV across SWR.
Cell-wise averaged PLV was then computed across all SWR episodes from which circular histograms were
computed.
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4 Processing of experimental neural data

Excitation-inhibition balance regression via linear ε-SVM. For the regression analysis, E-I balance
in CA1 was computed from the maximum peri-ripple dEPSC and sIPSC. Population PSC were computed
as the mean across all CA1 cells. The ratio of the averaged peak IPSC-to-EPSC is referred in this analysis
to as the 'ground-truth' peri-event network E-I balance. We then trained a linear ε-SVM in order to
predict the peri-SWR network E-I balance, based on the broad-band modeled full LFP signal spectrum
(0-300 Hz) at the time of SWR occurrence. Peri-SWR spectrograms were reconstructed on the basis of
their �rst 7 to 15 principal components (retaining an average of 40% to 60% of the variance). For such
a purpose, we performed a 10-fold cross-validation: the data set was partitioned in 10 subsamples (test
sets), and the rest of the data were used as training set. Each test subsample is used only once for testing
the regression model. Finally, we report the averaged performance, resulting from each training/testing
stage. This procedure was carried out for each simulation session, then all predictions were pooled
together for population analysis and scatter plots. Similarly, session-wise SVM weights were computed
according to the following mathematical formalism:

Let x(s) be a matrix with Ns support vectors andM samples, {αi}Ns

i=1 the Lagrange multipliers associated

with the N support vectors, and {xj , dj}Lj=1 be the training sample, where dj corresponds to the E-I

balance to regress out, assigned to the jth M-dimensional data point xj . Here, the M-dimensional data
points are long feature vectors comprising the time and frequency components of the peri-SWR Morlet-
wavelet spectrogram. Since the support vectors are the most di�cult data points to predict, we can
compute a weight w for each feature in order to know how predictive of the E-I balance it is. For the
linear SVM we have

vj = wTxj + b , (45)

and the weights can be retrieved as: w =
∑Ns

i=1 αidix
(s)
i , and b is the bias term.

Selective suppression of synaptic interactions. In this work, we designed a series of interventions
in the CA1 circuitry in order to assess to what extent synaptic excitation or inhibition were necessary for
SWR episodes to emerge. We addressed this issue in four conditions: (1) Blockade of feedback inhibition
onto CA1 pyramidal cells; (2) Blockade of reciprocal inhibition between CA1 interneurons; (3) Blockade
of incoming excitation due to CA3; (4) Blockade of collateral excitation from CA1 pyramidal cells onto
interneurons (see neuron schemas in Figure 8 and Figure S5). Each blockade was attained by setting the
GABA/AMPA (depending on the condition) synaptic weights ϕ for all postsynaptic cells to zero.

4 Processing of experimental neural data

of experimental electrophysiology data were performed using MATLAB (The MathWorks). Signal denois-
ing and frequency band isolation procedures have been described in detail in a previous study (Logothetis
et al., 2012). In the following we describe the main signal processing and analysis performed on the de-
noised broad-band signals (0.05-7 kHz). We examined changes of power in the broad band signal (10-250
Hz). We �rst classi�ed the electrode recording tips into stratum radiatum (SR) and stratum pyramidale
(SP) based on several criteria. We visually tracked oscillations with distinct frequency contents (complex
spike features, ripple or gamma-like high-frequency events and low-frequency sharp-waves) and inspected
synchronous activity across recording sites.

The broad-band signal was recti�ed, low-pass �ltered at 20 Hz and then (z-score) normalized. Candidate
events were detected as epochs during which the signal exceeded a 3.5 SD threshold. Since increases in
power may result from oscillations occurring in di�erent frequency band, we clustered the spectra using
Non-Negative Matrix Factorization (NNMF), an unsupervised algorithm that creates data decompositions
for a user-de�ned number of groups or clusters (Logothetis et al., 2012). Stable representation of the data
was attained by a partition in three clusters, corresponding to power increases over di�erent frequency
bands, namely hp-sigma (8-22 Hz), gamma (25-75 Hz) and ripple (80-180 Hz). Only events with a
signi�cant increase of power in the ripple band (corresponding to SWR complexes) were considered
'candidate ripples', additional criteria such as ripple-associated signal-to-noise ratio were discarded so
essentially all ripples were considered initially. All candidate ripples were �ltered in the ripple band
(80-180 Hz) with a 4th order Butterworth band-pass �lter. We selected ripples exceeding a threshold of
5 SD. We further re�ned the procedure with a 'ripple time-localization criterion' by �tting a Gaussian
function to the envelope of the signal �ltered in the ripple band. Only events with a �tted width of
and greater than 0.6 were considered true ripples and were taken into account for further processing
(Ramirez-Villegas et al., 2015). It should be also clari�ed that other event detection thresholds, such as
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4 Processing of experimental neural data

3.5 SD or 4 SD, did not alter the results reported in this work, demonstrating the robustness and validity
of the results reported here.

Multi-unit spike times of our electrophysiology recordings were detected by threshold-crossing (3 SD) of
the high-pass �ltered extracellular signal (1000 Hz cuto� frequency). Single units were not isolated due to
limitations of the recording hardware, thus all detected spikes were pooled together in a single multi-unit
spike vector in order to compute the SFC as described earlier.

DATA AND SOFTWARE AVAILABILITY

The data included in this article will be available upon request to the Lead Contact of this study, Dr.
Michel Besserve (michel.besserve@tuebingen.mpg.de).

The MATLAB code used to perform the model simulations will be available immediately upon publication
of this article.
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Supplemental Tables

Table S1: Related to STAR Methods. List of dynamical variables in the CA3-CA1 model as described
by Pinsky & Rinzel (1994), and the two-compartment interneuron developed in this work. Current types
apply to both CA3 and CA1 structures.

Neuron Type Dynamical variable Description

Pyramidal cell IL−S Somatic leakage current

INa Inward sodium current

IK−DR Outward delayed-recti�ed potassium current

Vs Somatic potential

Vd Dendritic potential

Is and Id Somatic and dendritic input currents

IL−D Dendritic leakage current

ICa Dendritic inward calcium current

IK−AHP Dendritic (outward) potassium afterhyperpolarization current

IK−C Calcium-activated (outward) potassium current

Isyn−S Somatic synaptic current

Isyn−D Dendritic synaptic current

Interneuron IL−S Somatic leakage current

IL−D Dendritic leakage current

INa Inward sodium current

IK−DR Outward delayed-recti�ed potassium current

Vs Somatic potential

Vd Dendritic potential

Is and Id Somatic and dendritic input currents

ICa Dendritic inward calcium current

IK−C Calcium-activated (outward) potassium current

Isyn−S Somatic synaptic current (GABA-A and/or AMPA)

Isyn−D Dendritic synaptic current (AMPA)

1



Table S2: Related to STAR Methods. List of parameter values of the CA3-CA1 network model studied
in this work across di�erent conditions and neuron types (I: Interneurnons; E: Pyramidal cells).

Neuron type Parameter (structure, units) Standard condition

Pyramidal gNa (CA3/CA1,mS/cm2) 30

gK−DR (CA3/CA1,mS/cm2) 15

gCa (CA3/CA1,mS/cm2) 10

gK−AHP (CA3/CA1,mS/cm2) 0.8

gK−C (CA3/CA1,mS/cm2) 15

gL (CA3/CA1,mS/cm2) 0.1

gC (CA3/CA1,mS/cm2) 2.1

p (CA3/CA1,a.u.) 0.5

Cm (CA3/CA1,µF/cm2) 3

Is (CA1,nA) 0

Is (CA3,nA) 0.8± 0.01

Id (CA1,nA) 0

Id (CA3,nA) 0

ENa (CA3/CA1,mV) 120

ECa (CA3/CA1,mV) 140

EK (CA3/CA1,mV) −15
EL (CA3/CA1,mV) 0

Interneuron gL (CA3/CA1,mS/cm2) 0.1

gNa (CA3/CA1,mS/cm2) 100

gK−DR (CA3/CA1,mS/cm2) 135

gK−C (CA3/CA1,mS/cm2) 8

gCa (CA3/CA1,mS/cm2) 1

Is, Id (CA3/CA1,nA) 0

Cm (CA3/CA1,µF/cm2) 0.75

φ (CA3/CA1,a.u.) 5

ENa (CA3/CA1,mV) 115

ECa (CA3/CA1,mV) 140

EL (CA3/CA1,mV) 0

EK (CA3/CA1,mV) −25
Synaptic interactions Esyn (CA3/CA1,mV) [AMPA, GABA-A] [60,−15]

ϕCA3
ex (CA3,a.u.) [E-E; E-I] [2.5, 1.25]

ϕCA3
inh (CA3,a.u.) [I-E; I-I] [90, 20]

Gth (CA3/CA1,mV) 20

τsyn (CA3/CA1,ms) [AMPA, GABA-A] [2, 5]

gsyn (CA3/CA1,µS/cm2) 0.1

ϕCA1
ex (CA1,a.u.) [E-E; E-I] [0, 0.8]

ϕCA1
inh (CA1,a.u.) [I-E; I-I] [60, 30]

ϕCA3−CA1
ex (CA1,a.u.) - Scha�er [E-E; E-I] [2, 0.8]
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Table S3: Related to STAR Methods. Relation between synaptic parameters and evoked unitary
postsynaptic potentials based on simlations.

Synapse ϕ (a.u.) Unitary PSP (mean±std) (mV) Backgr. Vm (mean±std) (mV)

CA3pyr → CA3pyr

1.5 0.42±0.060 -66.72±0.69
2.1 0.61±0.050 -67.38±0.71
3 0.86±0.050 -67.58±1.07

CA3pyr → CA3int

1 1.62±0.050 -69.8±0.13
1.25 2.07±0.410 -70.13±0.10
1.5 2.37±0.120 -69.9±0.32

CA3int → CA3int

20 1.13±0.004 -70.23±0.003
30 1.43±0.005 -70.60±0.006
35 1.54±0.120 -70.21±0.006

CA3int → CA3pyr

55 0.59±0.090 -67.11±0.77
70 0.76±0.080 -67.30±0.53
85 0.95±0.120 -67.80±0.69

CA1int → CA1int

25 0.38±0.007 -69.08±0.06
35 0.48±0.010 -69.40±0.07
45 0.66±0.010 -69.64±0.06

CA1pyr → CA1int

0.8 1.32±0.007 -71.78±0.02
1.1 1.81±0.010 -71.73±0.03
1.5 2.47±0.010 -71.67±0.04

CA3pyr → CA1pyr (Scha�er)
0.5 0.20±0.020 -69.56±0.17
1 0.42±0.040 -69.23±0.24
2 0.81±0.040 -69.53±0.24

CA3pyr → CA1int (Scha�er)
0.1 0.16±0.004 -71.49±0.01
0.3 0.48±0.010 -71.35±0.02
0.5 0.79±0.030 -71.41±0.07
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Figure S1. CA3 and CA1 network multi-compartmental models. Related to Figure 1. (A) Schematic 

diagram of the possible neuronal interactions between neurons within CA3 and CA1 (left) and their 

equivalent in our multi-compartment model (right). (B) Schema of the multi-compartment model of the 

CA3-CA1 network proposed in this work.  
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Figure S2. The CA3-CA1 network model dynamics during SWR episodes. Related to Figure 1. (A) 

Laminar distribution and two example traces of wide-band full LFP (LFPt + LFPsyn; first three subpanels, 

black trace in stratum pyramidale, red trace in stratum radiatum), ripple band-filtered (80-180) LFP (blue 

trace), and wide band LFP-associated Morlet-wavelet spectrogram of the ongoing LFP activity in a CA1 

network of 150 neurons model exhibiting ripples generated spontaneously (indicated by purple dots on top). 

The channels displayed are representative traces for the center of the simulated stratum pyramidale (black 

line) and stratum radiatum (red line), as indicated by the dotted lines in the top subpanel. (B) Exemplary 

spatial (amplitude) profile of the LFP across recording sites (indicated in (A) top subpanel, by the purple 

arrow). (C) Broad-band SWR average across several detected episodes (N=100 SWR events, inset 

represents ripple band). (D) Population averaged ripple-triggered CA3 spectrogram displaying significant 

increases in power over gamma frequencies (<100 Hz). (E) Spectrogram grand averages associated with 

simulated SWR complexes. The leftmost and rightmost time-frequency spectrograms correspond to the 

SWR signature in stratum pyramidale and stratum radiatum (only LFPt is shown in these plots in order to 

illustrate the difference between strata; for an exemplary full LFP in Figure 1B). (F) Peri-SWR spike time 

histograms for pyramidal cells (blue) and interneurons (red) across modeling sessions (left subpanel) (N = 

25 modeling sessions). Excitatory and inhibitory gains with respect to baseline activity accord with 

experimental evidence (~2-fold for inhibition, ~5-fold for excitation) (Csicsvari et al., 2000).  (G) Spike-

field coherence absolute value (top) and phase-locking maps (bottom) from pyramidal neurons’ spikes (left 

subpanels), and interneuronal spikes (right subpanels). Note that ripple-related pyramidal neuron’s spiking 

occurs at a phase of pi radians, corresponding to the trough of the ripple oscillation. Interestingly, the phase 

profile of the spike-field coherence closely resembles that of experimental data (Figure 9D).  
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Figure S3. Decomposition of the SWR-related synaptic component of the LFP. Related to Figure 2. 

(A) Statistics of the power of LFPsyn across SWR-related components for pyramidal cell- and interneuron-

associated synapses. (B) SWR-triggered spectra of the I-E and I-I synaptic activity (left subpanel), and 

statistics of the z-scored spectral power of I-E and I-I synaptic activity for ripple (80-180 Hz; middle 

subpanel) and supra-ripple (190-300 Hz; right subpanel). 

  



Figure S4
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Figure S4. SWR-associated membrane potential (Vm) dynamics. Related to Figure 6. (A) Exemplary 

simulated membrane potential (curves of various colors; each curve is one exemplary cell); and ripple-

filtered (80-180 Hz) LFP traces (black curve). Grey and red shading indicate detected SWR episodes. A 

zoomed-in view of the red-shaded event is presented in the right side of the panel. (B) Relationship between 

Vm and LFP ripples displays a consistent phase lead of Vm across cells (red curves, each curve is one 

pyramidal cell) with respect to LFP (black thick curves). The averaged Vm-ripple across cells is depicted 

in the bottom plots. Left and right subpanels depict two exemplary ripples. (C) Circular histogram of the 

averaged Vm-LFP phase relationship across all simulated CA1 pyramidal cells (N = 135 cells). Circular 

mean is shown by the red line, the length of the line displays the phase-locking value (close to 1). (D) Same 

as (B), but in independent simulations, for pyramidal cells that received hyperpolarizing currents in the 

interval [-3.5, -2.5] nA (resulting in Vm roughly from -15 mV to -25 mV below resting; N = 25 cells). Cells 

under standard conditions presented the same phase relationship depicted in (B). (E) Same as (C), but for 

pyramidal cells that received hyperpolarizing currents in the interval [-3.5, -2.5] nA.  

  



Figure S5
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Figure S5. Selective inactivation of synaptic excitation and inhibition abolishes SWR complexes. 

Related to Figure 8. (A) Resulting CA1 LFP time course upon a selective blockade of reciprocal 

inhibition between interneurons (left schema). Wide-band (<330 Hz, middle column, top subpanel), high-

frequency filtered and time-frequency spectrogram (middle column, middle subpanels). Note that SWR 

are abolished in these LFP traces, with concomitant reduction of the LFP amplitude due to the negligible 

pyramidal cell participation (see raster plots, bottom panel, white ticks mark the spike occurrence; see 

also magnification of an exemplary deflection in the right subpanel). (B) Same as (A), but upon selective 

blockade of CA3-related Schaffer collateral excitation (left schema). Note that SWR are abolished in 

these LFP traces, with concomitant reduction of the LFP amplitude and prevalent gamma oscillations. 

  



Figure S6
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Figure S6. SWR complexes can be predicted from increases in sharp wave, gamma, ripple and supra-

ripple power in both experimental and simulated SWR complexes. Related to Figure 9.  (A) Empirical 

distributions of the instantaneous frequency of each SWR-associated dynamical component within a 50 ms 

time window around the occurrence of each SWR episode. (B) Dynamical components display above-

baseline power increases concomitant with the occurrence of a SWR episode for both experimental (solid 

line) and simulated (dashed line) CA1 recordings. (C) Linear SVM classification accuracy for the prediction 

of the occurrence of a SWR complex against baseline activity, on the basis of sharp wave (red), gamma 

(green), ripple (cyan) and supra-ripple (violet) power. Blue boxes correspond to the chance-classification 

values, as obtained for shuffled experimental (solid boxes) and simulated (dashed boxes) data. The top and 

bottom of each box are the 25th and 75th percentiles of the samples, respectively; the red dots correspond to 

the sample median; the black lines extending below and above each box reach the sample extrema. Outliers 

are indicated by crosses.  
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Figure S7. Dendritic inhibition underlies LFP SWR afterhyperpolarization. Related to Figure 9. (A) 

In vivo-recorded wide-band (<330 Hz, top) and ripple band-filtered (80-180 Hz, bottom) LFP illustrating 

two out of three exemplary SWR that display post-ripple hyperpolarizations (black arrows). (B) An 

exemplary simulated SWR (dotted line) with inhibition onto CA1 pyramidal cells’ dendrites. Note the 

hyperpolarization (downward potential) of the LFP (red trace, only stratum pyramidale is shown). Both the 

spectrogram and filtered LFP traces display ripple-related signatures (top and bottom panels, respectively). 

(C) LFP-ripples, interneuronal (top) and pyramidal cell discharges (bottom) keep their usual relationship 

as illustrated by the example trace. (D) Expanded version of the LFP trace in (B) (dotted line), depicted 

together with its associated PSC. Note that the LFP-hyperpolarization co-occurs with the rise of dendritic 

IPSC (dIPSC). (E) Scatter plot illustrating that the amplitude of peri-SWR hyperpolarization correlates 

strongly with the maximal amplitude of the population-averaged dIPSC (N = 51 SWR episodes; 18 

simulation experiments). 

 

 

 





Supplemental Experimental Procedures

Juan F. Ramirez-Villegas, Konstantin Willeke, Nikos K. Logothetis & Michel Besserve

Selective inactivation of synaptic excitation and inhibition abol-

ishes SWR complexes

As selective inactivation of pyramidal cells and interneurons interrupts in vivo SWR episodes (Stark
et al., 2014), we investigated whether selective blockade of synaptic activity within the simulated CA1
would present similar e�ects. In order to better understand the action of inhibitory synapses within the
feedback and reciprocal inhibition of CA1, we selectively blocked the reciprocal I-I synapses (Figure S5A).
The overall e�ect of this manipulation was an increase of inhibitory activity, until complete suppression
of pyramidal-cell activity (see the suppression of synaptic currents, and the almost negligible participa-
tion of pyramidal cells in Figure S5A, right subpanels). In a similar vein, SWR activity is abolished,
with a concomitant reduction of the overall LFP amplitude, to resemble less coordinated baseline-like
activity. Synchronous episodes due to CA3-related depolarisations display high-frequencies, re�ected by
interneuron-to-pyramidal sIPSC, and likely caused by CA3 activity in absence of CA1-related synaptic
coordination mechanisms (see also Main Text). Thus, inhibitory control between inhibitory cells is also
critical for the emergence of SWR episodes in our model. Furthermore, it is likely that ripple-band
coordination in CA1 under physiological conditions is achieved by means of both I-I and I-E sIPSC.

Next, we sought to determine whether excitatory synapses from CA3 were critical for generating SWR
complexes. We addressed this question by selectively blocking dESPC. When CA3-inputs were blocked,
we observed abolition of SWR-related activity, together with almost absense of coordinated bursts of
activity in CA1, and LFP activity dominated by gamma oscillations (Figure S5B). However, brief high-
frequency oscillations emerged when CA1 cells participated, but not by interneurons alone (Maier et al.,
2011; Hulse et al., 2016). These episodes were, however, very short in time and displayed an overall
diminished LFP amplitude (Figure S5B). These results accord with previous experimental work, where
selective deactivation of CA3 leads to diminished SWR activity (Nakashiba et al., 2009). In addition, our
results indicate that pyramidal cell activation is required for SWR complexes to be generated, likely due
to the contribution of their active currents toward the LFP of SWR, and the control exerted by inhibition
over excitation.

Comparison of in vivo and simulated LFP dynamic components

In order to further identify each SWR-related component, we estimated the instantaneous frequency of
each of them by measuring the inverse of the time between the component peaks in a [-0.1 0.1] s time
window around the occurrence of each SWR event (Figure S6A). The distribution of instantaneous fre-
quencies across oscillatory components for experimental and modeled SWRs was largely unimodal (p>0.2,
Hartigan's dip test). These results suggest that concomitant with the occurrence of SWR episodes, there
are concomitant gamma and supra-ripple oscillatory sources. Notably, our analysis of these oscillatory
sources is in close correspondence with our previous study (Ramirez-Villegas et al., 2015), reporting
gamma oscillations occurring transiently and concomitantly with SWR episodes in macaques. Notably,
as mentioned in the Main Text of this work, a similar SWR-gamma oscillatory component has been
reported in previous studies in rodents (Carr et al., 2012; Gillespie et al., 2016).

Next, we asked whether the relation between identi�ed gamma, supra-ripple and ripple components is
systematic, in order to further check that gamma and supra-ripple components are not simply an e�ect
of ongoing baseline activity intermingled with the occurrence of SWRs. To this end, raw components
were recti�ed and low-pass �ltered with a 4th-order Butterworth FIR �lter with a cut-o� frequency of
20 Hz. We found that concomitant with the expected signi�cant power increase in SPW and ripple

1



components during each neural event, gamma and supra-ripple components also showed transient and
signi�cant power increases above baseline activity levels (Figure S6B).

We next asked whether power pro�les of oscillatory components were predictive of the occurrence of
individual SWR episodes. For this purpose, we trained linear support vector machine (SVM) classi�ers
in order to predict the presence or absence of an SWR on the basis of its oscillatory sources. Oscillatory
components were treated separately for each experimental and modelling session, wherein SPW, gamma,
ripple and supra-ripple power signals were discriminated against surrogate (randomly chosen) baseline
events in time windows of [-0.1 0.1] s around the detected event. Classi�ers associated to experimental
(and modeled) SPW, gamma, ripple and supra-ripple power performed signi�cantly above chance (p <
10−3 Wilcoxon's signed rank test for the comparison between ground-truth and shu�ed-label classi�cation
accuracies), with 68.79 ± 5.57% (model: 57.71 ± 1.24%), 83.20 ± 3.58% (model: 69.08 ± 1.32%), 97.39 ±
1.43% (model: 96.31 ± 0.53%), and 97.74 ± 2.25% (model: 79.95 ± 1.25%) mean 10-fold cross-validation
accuracy with 95% con�dence interval, respectively (see Figure S6C). These results suggest that apart
from SPW and ripple components, gamma and supra-ripple oscillations are two network dynamical
components inherent to the SWR phenomenon.

Dendritic inhibition underlies peri-SWR hyperpolarization

In experimental recordings, in some cases SWR complexes display a after-hyperpolarization in the LFP
(English et al. (2014); Ramirez-Villegas et al. (2015); see Figure S7A, LFP traces). In our work, by no
modi�cation in the model free-parameters we could attain such an e�ect. This result suggests that SWR
after-hyperpolarization may be determined by a functional concomitant of the CA1 network, captured
by LFP recordings in vivo. As our model is minimal in the number of such functional concomitants,
it displays a rather limited spectrum of SWR activities. These limitations include multiple types of in-
terneurons whose e�ects on the SWR-associated LFP are not well understood. For instance, bistrati�ed
cells likely play a key role in shaping some of the electrical characteristics of SWR complexes. Bistrat-
i�ed cells' axons present notable innervation of pyramidal cells' apical dendrites, and display �ring rate
increases locked to high-frequency ripples (Varga et al., 2014).

We reasoned that such dendritic inhibitory component might well be at least partly responsible for the
SWR after-hyperpolarization. Concordantly, the SWR subtype that displays this e�ect often displays
higher frequency than other types of SWR episodes (Ramirez-Villegas et al., 2015). To test this hypothesis
with minimal modi�cations to the network model (i.e. without modelling the dynamics of bistrati�ed
cells), we injected IPSCs to the apical dendrites of modeled CA1 pyramidal cells, these synapses were
assigned at random to 22% of the postsynaptic cells following the connections of CA3 excitatory Scha�er
inputs (Klausberger & Somogyi, 2008). These dIPSC followed the amplitude and dynamics of their
peri-somatic counterparts. First, we found that this increase in inhibitory drive reduced notably the
participation of pyramidal cells (3 to 5 % of the population was active), however, the raw LFP of the
network displayed intermittent negative de�ections, in some cases associated with ripple oscillations
(Figure S7B). These ripples presented similar relationship to CA1 cell discharges as that of ripples under
standard conditions. Interestingly, the occurrence of this negative de�ection was precisely timed to the
occurrence of the injected dIPSC onto the dendrites of CA1 cells (Figure S7D), and the amplitude of the
dIPSC largely correlated with the LFP SWR-afterhyperpolarization (r=0.9307, p=4.87 ∗ 10−23; N=51
detected SWR complexes across 18 simulation experiments; Figure S7E). These results suggest that the
SWR afterhyperpolarization apparent in experimental LFP may be mediated by dendritic inhibition,
in line with the suggestion that high-frequency ripples may be partly resulting from the activity of
bistrati�ed cells (Varga et al., 2014). In addition, we hypothesize that bistrati�ed cells may contribute
to an enhanced ripple and supra-ripple frequency bands (see also Figure 2B), which may result in ripples
with overall higher frequency.
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Abstract 18 

Pontogeniculooccipital (PGO) waves are phasic potentials observed in electrophysiology recordings 19 

from the pons, lateral geniculate nucleus and occipital cortex of many mammals. Although they are 20 

believed to play a key role in learning and memory, how they participate in brain-wide network 21 

activities remains poorly understood. Using multi-structure intracortical recordings, we study the 22 

pontine and genicular activities associated with PGO waves and relate them to the activities of another 23 

major memory structure: the hippocampus. In line with previous evidence, analysis of ponto-geniculo 24 

field activity revealed two physiologically distinct PGO wave types: type I, having a single biphasic 25 

pattern; and type II, exhibiting multiple oscillatory cycles. Marked by antagonistic neuronal population 26 

responses, PGO wave types also related differentially to hippocampal neural events. Whereas type II 27 

PGO waves are coupled with hippocampal sigma episodes, type I PGO waves co-occur with sharp 28 

wave-ripple (SWR) complexes. Our study provides the first neurophysiological evidence for a brain 29 

state-dependent competition of phasic neuronal activities characteristic of cortico-hippocampal and 30 

ponto-geniculo-neocortical networks, likely associated with distinct memory-related functions. 31 

Keywords: pontogeniculooccipital wave; sleep; memory; hippocampus; in vivo electrophysiology. 32 

  33 



Introduction 34 
Offline states –associated with periods of quiet wakefulness, slow wave sleep (SWS) and rapid-eye-35 

movement (REM) sleep in mammalian species– play a prominent role in sensorimotor integration, 36 

dreaming, learning, and the transfer and consolidation of declarative and procedural memories. The 37 

electrophysiological correlates of these processes are particularly striking. First, during these states, 38 

tonic changes in the neuronal activity are characterized by appearance of synchronous or 39 

desynchronized activity in electroencephalographic recordings (EEG) (Datta and MacLean, 2007). 40 

Second, intracortical recordings reveal concomitant phasic patterns of activity characteristic of offline 41 

states, which often reflect short- and long-range interactions between neuronal populations (Buzsáki, 42 

2015; Sirota and Buzsáki, 2005).  43 

 44 

These phasic physiological episodes of sleep include bi-phasic potentials lasting approximately 100 45 

ms –termed pontogeniculooccipital (PGO) waves– co-occurring in pontine, thalamic nuclei and 46 

occipital cortex of several mammals (Bizzi and Brooks, 1963; Brooks and Bizzi, 1963; Datta, 1997; 47 

Jouvet, 1962; McCarley et al., 1983; Morrison and Bowker, 1975; Reiner and Morrison, 1980), 48 

including human and non-human primates (Cohen and Feldman, 1968; Feldman and Cohen, 1968; 49 

McCarley et al., 1983; Vuillon-Cacciuttolo and Seri, 1978). These waves often occur in isolation 50 

(singlet PGO waves), or as groups with variable number of waves in very close temporal proximity 51 

(clustered PGO waves) (Brooks and Bizzi, 1963; Calvo and Fernandez-Guardiola, 1984; Datta et al., 52 

1992; Morrison and Pompeiano, 1966; Steriade et al., 1990a). Singlet PGO waves have been found 53 

relatively independent of eye movement and prevalent during SWS (often termed SP-state), whereas 54 

clustered ones are typically observed coupled to ocular jerks during fully-developed episodes of 55 

paradoxical sleep (Datta et al., 1992; Steriade et al., 1990a). Correlative evidence from vestibular 56 

inactivation studies suggests that PGO waves with distinct temporal profiles may reflect the action of 57 

distinct microcircuits and possibly large-scale functional networks (Morrison and Pompeiano, 1966). 58 

While REM and SWS sleep episodes are instrumental for learning and memory, the specific role of 59 

PGO waves in these states remains largely unknown. This question arises partly due to the lack of 60 

information on the large-scale mechanisms associated with these episodes. Investigating their system-61 

level properties may thus offer insights regarding their functional role, and ultimately, offer a better 62 

understanding of the function and neural mechanisms of REM sleep. 63 

 64 

Contrasted phasic and tonic activities during SWS and REM sleep are also present in other brain 65 

structures. For instance, hippocampal activity exhibits phasic activities known as sharp wave-ripples 66 

(SWR). SWR are transient episodes representing massive depolarizations of the hippocampal CA1 67 

subfield during SWS, and have been associated with declarative memory consolidation and recall 68 

(Girardeau et al., 2009; Nakashiba et al., 2009). On the other hand, hippocampal activity displays 69 

waking-like activities during REM sleep (Kemp and Kaada, 1975; Vanderwolf, 1969; Vertes, 1982).  70 



 71 

The tone of brainstem neuromodulatory systems greatly influences the shift from predominantly 72 

external input-driven brain activity during waking, to SWS and to REM sleep. Indeed, dopamine- and 73 

acetylcholine-releasing neurons are active during REM together with almost complete aminergic 74 

demodulation (Hobson et al., 1975). Conversely, aminergic tone is highest during wakefulness and 75 

reduces –but is not absent– during SWS (Aston-Jones and Bloom, 1981; Hobson, 2010). In particular, 76 

experimental evidence suggests that serotoninergic firing during SWS is anti-correlated with REM-77 

related activities such as PGO potentials and hippocampal theta activity (Lydic et al., 1983; Maru et 78 

al., 1979; McGinty and Harper, 1976). Thus, SWS- and REM-related hippocampal and pontine 79 

activities are likely related through large-scale network interactions. In line with this hypothesis, 80 

hippocampal SWR have been associated with episodes of metabolic neocortical activation, co-81 

occurring with suppression of pontine, thalamic and occipital activities (Logothetis et al., 2012).  82 

 83 

In this work, we investigate further these large-scale interactions by examining the relationship 84 

between PGO waves and hippocampal activity using electrophysiological methods. Using multi-site 85 

extracellular recordings in anaesthetized macaque monkeys (Macaca mulatta, Macaca fascicularis), 86 

we cluster PGO activities into two distinct subtypes: pons-thalamus-deactivating, type I PGO waves 87 

present a single biphasic pattern, and pons-thalamus-activating, type II PGO waves exhibit multiple 88 

successive biphasic patterns. Pontine- and LGN-multi unit activity (MUA) revealed antagonistic 89 

neuronal population responses suggesting these events reflect distinct circuit processes and are likely 90 

generated during two distinct brain states. In a second set of experiments, pontine and hippocampal 91 

structures were concurrently recorded. In line with our observations in pons and LGN, we found 92 

differentiated couplings of the two types of PGO waves to hippocampal activity. While type II PGO 93 

waves are coupled with hippocampal theta-like episodes, type I PGO waves are associated with 94 

hippocampal SWR complexes. Altogether, our results suggest that PGO waves with distinct LFP 95 

signatures reflect differentiated subcortico-hippocampal interactions. These results show –for the first 96 

time– physiological evidence for competition over short time scales between cortico-hippocampal and 97 

ponto-geniculo-neocortical networks. This competition is likely brain state-dependent and corresponds 98 

to differentially-activated microcircuits accomplishing distinct memory-related functions. 99 

 100 

Results 101 
 102 

Phasic pontine potentials. In order to study PGO waves, we recorded and analysed extracellular 103 

potentials. Laminar recording probes were positioned in the pontine region (approximately in the 104 

anatomical position of the parabrachial nucleus, PBn) and lateral geniculate nucleus (LGN) of 105 

macaque monkeys (Macaca mulatta) on the basis of high-resolution anatomical MRI scans (see 106 

Experimental Procedures for details). Figure 1 shows an anatomical MRI image (coronal section) with 107 



a typical electrode penetration (Figure 1A), together with a schematic representation of the recording 108 

configuration (Figure 1B). Extracellular potentials of both regions display “phasic waves”: brief 109 

episodes (ca. 100 ms) of stereotyped waves occurring in isolation or in bouts of several waves (Figure 110 

1C). We first observed that these phasic waves may occur either in only one of the recorded areas –111 

pons or LGN– (Figure 1C, bottom panel), or co-occur in the recording sites of both structures 112 

displaying similar time courses (Figure 1C, top panel). In the two cases, phasic waves are observed 113 

occurring synchronously over all recording channels located in the same structure, presenting similar 114 

electrical characteristics (Figure S1A-B). As a consequence, we use the LFP signal averaged across all 115 

recording sites from the same structure in order to detect and study ponto-genicular phasic events. 116 

 117 

The general methodology to detect PGO oscillatory events relies on locating peaks in the envelope of 118 

the narrow-band-filtered LFP (5-15 Hz) exceeding a threshold proportional to the signal standard 119 

deviation (a conservative criterion of 4 SD is used). To study the occurrence and dynamics of 120 

coordinated pontine-LGN phasic activity, candidate co-occurring waves were detected across 121 

recording structures. To this end, pontine oscillatory events were initially identified as peaks in the 122 

envelope of pontine LFP, averaged across recording channels. Co-occurring phasic waves were then 123 

defined as peaks in the envelope of the LGN LFP and appearing within a time window of [-0.15, 0.15] 124 

s around the occurrence of a pontine oscillatory event (see also Experimental Procedures). These 125 

events are henceforth referred to as pontogeniculooccipital (PGO) waves, while non-co-occurring ones 126 

(detected only in pons) are referred to as P-waves.  127 

 128 

The proportion of PGO waves in relation to the total number of detected pontine events (both P-waves 129 

and PGO waves) across experimental sessions was 12.17 5.68 % (mean value with 95% confidence 130 

interval, N=6 experimental sessions, 2 animals), using the event detection threshold of 4 SD (see 131 

Supplemental Information for a study of the effect of the event detection threshold). We quantified the 132 

differences between PGO waves and P-waves by comparing their normalized event-triggered spectra. 133 

We found that co-occurring pons-LGN phasic waves have greater power over low frequencies (<20 134 

Hz) (p<10-7, two-sample permutation KS-test for the comparison of peak spectral power, Figure 1E, 135 

normalization was carried out with respect to random surrogate events). This finding likely reflects the 136 

fact that PGO waves with larger power are more reliably detected simultaneously in both structures, 137 

but it may also imply that pontine events need to recruit a larger underlying neuronal population in 138 

order to propagate toward LGN. 139 

 140 

We then asked whether the co-occurrence of phasic potentials corresponded to neuronal field activity 141 

propagating from pons to LGN. We reasoned that this would be the case for PGO waves, as they have 142 

been reported to propagate from the pons to LGN and neocortex in cats (Bizzi and Brooks, 1963; 143 

Calvo and Fernandez-Guardiola, 1984; Datta, 1997). In order to address this question, we examined 144 



the phase relationship between LGN and pontine signals during the occurrence of PGO waves. Phase 145 

lags between LGN and pons were measured from the analytical signal of narrow-band-filtered peri-146 

event LFP (5-15 Hz), across experimental sessions (see Figure 2A for a schema, see also Experimental 147 

Procedures). We found a consistent phase lead of pons relative to LGN across recording sites and 148 

experimental sessions ( 59
x5.7 10p  , 125.94Z  ; Rayleigh test; circular mean value with 95% 149 

confidence interval 1.057±0.095 radians, Figure 2B). These results support further that our detected 150 

phasic events correspond to PGO waves as reported in classical studies (Brooks and Bizzi, 1963; 151 

Jouvet, 1962). For the reminder of the manuscript, we enforce the selectivity of our PGO wave 152 

detection procedure by restricting our analysis to detected events with phase lag within the 99% 153 

circular confidence interval of the mean pons-LGN phase relationship, corresponding to [0.9317 - 154 

1.18026] radians.  155 

 156 

Two physiologically distinct PGO wave subtypes in the macaque pontine/LGN LFP. As PGO 157 

waves have been reported to occur with variable temporal electrical signatures, we quantified the 158 

variability of PGO-wave subtypes present in pontine-LGN recordings of macaque monkeys. 159 

Following the methodology presented in Ramirez-Villegas et al. (2015), we used a two-step algorithm 160 

in order to jointly cluster co-occurring pontine-LGN waves. Since phasic waves occurred 161 

synchronously over all recording channels of either one structure (see Figure S1A), we used as 162 

features the peri-event (-0.3 to 0.3 around the event occurrence) time course of LFP signals averaged 163 

across the recording channels belonging to each structure in order to summarize the spatio-temporal 164 

patterns associated with each single-trial event. We used these time courses to train a growing neural 165 

gas (GNG) algorithm (Fritzke, 1995), which creates a custom number of PGO-wave templates, each 166 

approximating the trial average of a subset of peri-event PGO waves with similar time courses. The 167 

PGO wave templates were then clustered on the basis of their cosine similarity using the Normalized 168 

Cuts algorithm during the second step of the methodology (Shi and Malik, 2000). Implementation 169 

details of the algorithm can be found in (Ramirez-Villegas et al., 2015) as well as the Experimental 170 

Procedures and the Supplemental Information of the present manuscript. 171 

 172 

We applied the algorithm to 6 experimental sessions in a session-wise fashion (2 macaque monkeys, 173 

and a total of 528 detected PGO waves), and partitioned the data into two clusters. The choice of the 174 

number of clusters was based on previous observations that associated periods of SWS- and REM-175 

sleep with PGO waves of distinct densities (i.e. number of contiguous waves) (Chouvet and Gadea-176 

Ciria, 1974; Datta et al., 1992; Morrison and Pompeiano, 1966). We additionally checked whether the 177 

data may be further clustered into three clusters, but this led to an additional cluster containing only 178 

few members and no additional subtype-specific differences in the analysis presented later in this 179 

work. We thus limit this study to the two-cluster case. We found that the first PGO type occurred in 180 

greater proportion than the second PGO type (p=0.01 two-sample KS-test, Figure 2C). Figure 2D 181 



depicts pons- and LGN-triggered LFP averages of the PGO-wave subtypes. Visual inspection of the 182 

time course of type I PGO waves revealed “singlet” PGO waves (PGO waves typically displaying one 183 

biphasic wave), while type II PGO waves presented a more oscillatory behaviour, displaying several 184 

oscillatory cycles. To asses this observation quantitatively, we quantified the number of half periods of 185 

single events across experimental sessions by computing the temporal derivative of the sign of PGO 186 

waves filtered below 20 Hz in a time window of [-0.3 0.3] s around the event occurrence, across 187 

recording sites. To this end, a half period was counted if its absolute peak amplitude was equal or 188 

above 70% of the largest PGO-wave peak. In addition, a criterion of less than 100 ms half-period was 189 

enforced. All individual events across experimental sessions were then pooled for population analysis. 190 

We found that type I PGO waves are predominantly biphasic, whereas type II PGO waves bear larger 191 

variability, typically displaying bouts from 3 to 6 PGO wave half-periods (p<10-20 Wilcoxon’s 192 

ranksum test for the comparison between type I and type II PGO waves; Figure 2E). We assessed the 193 

peri-event power distribution across recorded PBn channels in order to investigate whether PGO wave 194 

types presented distinct spatial profiles. For such a purpose, we computed the power of the LFP signal 195 

in the PGO-frequency band (5-20 Hz) in a peri-event time window of -0.3 to 0.3 s. This analysis 196 

revealed that all PGOs follow the same profile at the spatial resolution of our recordings (see Figure 197 

S2A, for spatial power distribution in two exemplary experimental sessions). Notably, the greatest 198 

power increase is captured by the recording contacts visually classified as PBn, in line with the high-199 

resolution anatomical images. In addition, we provide exemplary raw traces of the two types of PGO 200 

waves in Figure S2B, from exemplary experimental sessions (monkey cm029 and monkey cm031). 201 

The resulting time courses of each PGO type were in correspondence to that of several previous 202 

studies (Brooks, 1968; Jouvet, 1962; Morrison and Bowker, 1975; Nelson et al., 1983). 203 

 204 

We next asked whether PGO-wave types differed in their power-spectral profiles. In order to address 205 

this question, we computed population complex Morlet-wavelet spectrograms thresholded according 206 

to a two-tailed permutation t-test against random, surrogate events (p<0.05) (Figure 2F). In line with 207 

previous studies, we found that PGO waves show significant power increases over the frequency band 208 

0-20 Hz, displaying maximal spectral power at ca. 10 Hz, corresponding to a 100 ms period. However, 209 

analysis of the peri-event power spectral densities revealed no significant differences in power spectral 210 

density peak between type I and type II PGO waves (mean values with 95% confidence intervals 211 

10.0319±0.6821 and 9.7395±0.7646, respectively; p=0.3811 paired KS-test).  212 

 213 

The phase-locking analysis reported in the previous subsection of this manuscript suggests that PGO 214 

waves propagate from the pontine region towards LGN (Figure 2A, B) according to the phase shift 215 

between the two areas in the PGO-wave frequency band (5-20 Hz). However, a significant field-field 216 

relationship may also exist at other frequencies as well. In order to test whether the observed phase 217 

entrainment was specific to the PGO frequency band for both PGO types, we studied the pons-LGN 218 



LFP relationship of PGO wave types by standard field-field coherency (FFC) for all frequencies in the 219 

range [0-200 Hz] (see also Experimental Procedures). As expected, coherograms revealed a significant 220 

increase of absolute coherency in the PGO-wave frequency band (Figure 2G), suggesting a significant 221 

entrainment between the two areas during the occurrence of PGO waves. Moreover, amongst PGO 222 

wave types, type II PGO waves presented the highest coherence magnitude values, although their 223 

difference was deemed non-significant at the population level (p>0.05, two-sided Wilcoxon ranksum 224 

test). The phase of coherency was also consistent with PLV analysis in both PGO types, displaying a 225 

phase lead of pontine peri-event LFP with respect to LGN peri-event LFP (Figure 2G, bottom). We 226 

next investigate whether PGO waves differ in their associated circuit activities by analysing band-227 

limited power signals from pontine-LGN recordings. 228 

 229 

Neural-event-triggered band-limited power (NET-BLP) signals reveal antagonistic neuronal 230 

population signatures of PGO waves. The extracellular signature of PGO waves –like other neural 231 

events in the LFP– partly relates to the peri-synaptic activities of the neuronal populations surrounding 232 

the electrode tip. PGO waves are associated with single-unit activity exhibiting a large variability 233 

(Nelson et al., 1983; Sakai and Jouvet, 1980; Steriade et al., 1990a). The combination of unit activities 234 

resulting from the functional organization of PGO-generating circuits can be observed in the multi-235 

unit activity (MUA) band, which accounts for variations in the magnitude of extracellular spike 236 

potentials integrated over a large region surrounding the electrode. In addition, active biophysical 237 

properties of cells (e.g. active conductances), and afterpotentials associated with somatic and dendritic 238 

spikes may affect the extracellular electrical signature of certain types of episodes (Logothetis, 2008), 239 

in the MUA as well as in various LFP frequency bands (Buzsaki et al., 1988; Buzsáki, 2002). To 240 

investigate the relationship between PGO waves and distinct extracellular field potential sub-bands, 241 

we computed PGO-triggered band-limited power (BLP) signals. Raw signals (<7 kHz) were 242 

subdivided into several frequency bands on the basis of established neuronal correlates of sleep-like 243 

states (Logothetis, 2008). Band definitions were further refined based on observations from previous 244 

studies in macaque monkeys (Logothetis, 2015; Logothetis et al., 2012). Specifically, we assessed 245 

changes in delta [0.05-3 Hz], theta [3.5-8 Hz], spindle [9-15 Hz], sigma [16-29 Hz], slow and high 246 

gamma [30-55 Hz; 56-79 Hz, respectively], ripple [80-200 Hz], high-frequency oscillations [201-324 247 

Hz], a mid-band extracellular field potential (mEFP) band [325-800 Hz] and a MUA band [800-2000 248 

Hz]. 249 

 250 

To measure neural event-triggered BLP (NET-BLP) responses, the occurrence of each PGO wave was 251 

used as a reference (trigger) to align and average the time courses of LFP, HFO and MUA band 252 

signals (see Supplemental Materials for full methodological details). We analysed the averaged, Z-253 

scored NET-BLP for each experimental session, across 2 animals (namely, cm029 and cm031) in order 254 

to check for consistency of the results. After single-session analysis, all experiments corresponding to 255 



each session were pooled for population analysis. Expectedly, our analysis revealed significantly 256 

increased activity for all PGO wave types (in both pons and LGN) in the PGO frequency band (theta 257 

and spindle bands according to the former definition), with a significant tail expanding over sigma 258 

frequencies (p<0.01, one-sample permutation t-test, Bonferroni-corrected) (Figure 3A, B). Conversely, 259 

high-frequency LFP ranges such as gamma (30-79 Hz) and ripple (80-200 Hz) were not significantly 260 

modulated in most cases. Interestingly, NET-BLP signals over frequency ranges beyond LFP were 261 

markedly different across PGO-wave types. Whereas type I PGO waves relate to significant decrease 262 

of high-frequency LFP (201-324 Hz), mEFP (325-800 Hz) and MUA (801-2000 Hz) activities, type II 263 

PGO waves are associated with significant increases over such frequency bands (p<0.01, one-sample 264 

permutation t-test, Bonferroni-corrected; p<0.01, paired-samples permutation t-test for the comparison 265 

between type I and type II PGO waves, Bonferroni-corrected; see Experimental Procedures for details 266 

in the statistical test) (Figure 3C). Notably, significant modulation associated with type II PGO waves 267 

was consistent across pons and LGN for MUA and mEFP. In addition, modulations of MUA 268 

associated with type I and type II PGO waves were consistent in pons and LGN. These findings 269 

indicate differences in the underlying network dynamics associated with the occurrence of PGO 270 

waves. Specifically, these antagonistic responses may be mediated by selective activation or 271 

inactivation of distinct PGO wave-related groups of cells (Steriade et al., 1990a), where also pontine 272 

GABAergic activity may be prevalent together with increased or decreased tones of cholinergic and 273 

aminergic neurons that modulate PGO-triggering neurons (Datta, 1997; see also Torterolo et al., 274 

2011).  275 

 276 

Interestingly, these high frequency effects occur at time ranges beyond the duration of the observed 277 

phasic PGO activity, several seconds prior to PGO onset, and may thus partly reflect more global tonic 278 

dynamical processes (e.g., increases or decreases in cholinergic neuromodulation of pontine circuits). 279 

Next, we quantified the lag of these peri-event BLP responses by computing the time lag at which the 280 

maximal absolute power deviation from baseline was observed, taking as a reference (zero) the 281 

occurrence of the PGO wave. This statistical analysis was performed by evaluating lags in an 282 

experiment-wise manner, pooling together all experimental sessions. The result in Figure 3D 283 

confirmed that population (MUA and HFO) responses lagged by approximately 2 seconds the 284 

occurrence of PGO waves in a large number of experiments, and was significantly negative according 285 

to a sign test. Notably, these results were consistent across distinct individual experiments and 286 

experimental sessions. As additional evidence, Figure S3 displays the BLP analysis for two exemplary 287 

experimental sessions. Note the lagged population responses with respect to the onset of PGO waves 288 

are well-preserved. 289 

 290 

In addition, we also observed a significant tail of activity lagging before the main PGO-related (9-15) 291 

Hz NET-BLP peak at event onset (Figure 3B, indicated by a black arrow). We relate this effect to 292 



evidence from previous studies where thalamic spindle activity was interrupted by stimulation-induced 293 

PGO waves (Hu et al., 1989). We explored this question by excluding the activity in a time window of 294 

[-0.5 0.5] s around the occurrence of PGO waves, and then computing the time lag at which maximal 295 

spindle activity (9-15 Hz) is observed across PGO wave subtypes. We reasoned that such analysis 296 

would provide information as to whether: first, spindle activity is present before observing PGO 297 

waves; second, spindle activity is suppressed; and third, increased MUA activity may be related to 298 

spindles, rather than phasic discharges related to PGO waves themselves. We found that, while type I 299 

PGO waves presented lags distributed around zero (p=0.5 sign test, -0.035±0.575 seconds, mean with 300 

95% confidence interval; Figure 3E, top panel), type II PGO waves presented negative lags (p=0.004 301 

sign test, -0.69±0.46 seconds, mean with 95% confidence interval; Figure 3E, bottom panel). These 302 

results suggest that likely the observed, delayed unit firings that occur before PGO waves may be 303 

related to interrupted spindle activity (see also confidence intervals for the lags of MUA and spindle; 304 

Figure 3D, E).  305 

 306 

As type I and type II PGO waves have been differentially observed during distinct stages of sleep in 307 

previous studies, their field activities may be associated with neuronal subpopulations whose activity 308 

is prevalent solely during SWS or REM, respectively. These sleep regimes have a concomitant effect 309 

on the dynamics of other structures brain-wide such as hippocampus (Datta and MacLean, 2007; 310 

Vertes, 1982). Hence, we now investigate the neural correlates of PGO waves over hippocampal 311 

circuits. 312 

 313 

PGO-wave LFP signatures reveal differentiated interactions with hippocampal neuronal 314 

ensemble activity. Some aspects of the electrical activity of the cat dorsal and ventral hippocampus 315 

have been related to occurrence of PGO phasic potentials. Phasic potentials of variable amplitude 316 

spanning the typical time scale of PGO waves are observed in the hippocampus with increased latency 317 

with respect to thalamic and pontine phasic activities. These phasic potentials may result from 318 

propagation of pontine activity (Calvo and Fernandez-Guardiola, 1984; Hobson, 1965). However, the 319 

relationship of PGO waves to hippocampal dynamics and, in particular, to hippocampal phasic events 320 

is largely unknown.  321 

 322 

In a second set of experiments, laminar recording electrodes were positioned in the PBn and the CA1 323 

(occasionally CA3) subfield in the anterior hippocampus of macaque monkeys on the basis of high-324 

resolution anatomical MRI scans (see Experimental Procedures for details). Figure 4 illustrates 325 

anatomical MRI images (coronal section) with typical electrode penetration in the hippocampal CA3 326 

and the pontine PBn (Figure 4A), together with their corresponding coronal slices in the S-L MRI-327 

histology atlas (Figure 4B). Pontine phasic potentials with similar profiles as those observed 328 

previously in pontine/LGN recordings were also apparent in pontine/hippocampus recordings. 329 



Hippocampal sigma, gamma and ripple episodes were also present throughout all recording sessions, 330 

displaying visual and quantitative characteristics in correspondence with our previous studies (see also 331 

Supplemental Materials and Figure S4) (Logothetis et al., 2012). 332 

 333 

To investigate the relationship between PGO waves and hippocampal events we first detected phasic 334 

waves from pontine recordings using the approach described earlier in this manuscript (see also 335 

Experimental Procedures). Since we do not have LGN recordings in these sessions, whether the 336 

detected pontine events correspond to P-waves (not co-occurring with an LGN pair) or PGO waves 337 

cannot be directly checked. We thus develop a methodology to predict the occurrence of PGO waves 338 

solely from pontine recordings. We addressed this problem using support vector machine (SVM) 339 

classifiers.  340 

 341 

Classifiers were trained over the first series of 6 pontine-LGN experimental sessions using the time 342 

course, spectra and MUA time course (-7 to 7 seconds around event onset) in order to discriminate 343 

between P- and PGO-waves. We first tested the prediction accuracy of the classifiers across pontine-344 

LGN (ground-truth) experimental sessions using a leave-one-out procedure (see Figure S5A for a 345 

schema of this methodological approach). A bootstrapping procedure was used in order to balance the 346 

proportion of P- and PGO-wave event categories in each classification experiment (N=50 bootstraps). 347 

Classification accuracy was then evaluated using a 10-fold cross-validation approach in each balanced 348 

subsample (thus 500 classification assays).  349 

 350 

We first examined the usefulness of the different features (LFP time course, LFP spectra, and MUA 351 

time course) for predicting PGO waves (see Supplemental Materials for an in-depth description). Our 352 

classification experiments revealed that peri-event time courses and spectra were the most informative 353 

features, with chance-level classification performance associated with MUA. Hence we limited our 354 

analyses to time-course and spectral features thereafter (see Figure 4C for a simplified schematic of 355 

the final methodological approach). We first used linear SVM classifiers in order to compute 356 

interpretable weights associated to each time-course and spectral feature in the classification task (see 357 

Supplemental Methods). The SVM weights show the relative contribution of each feature for solving 358 

the classification task. Figure 4E shows that weight increases in the spectra occur over the PGO 359 

frequency range (<20 Hz), but also beyond such a frequency range. Note that power increases around 360 

20 Hz present negative values. This effect can be paired to the fact that PGO waves have more power 361 

over circa 5-20 Hz, in line with our previous analysis (Figure 1E). In addition, a low-frequency (<5 362 

Hz) tail is associated with P-waves, as indicated by a positive weight. 363 

 364 

While a linear classifier is interpretable, relatively low performance could be achieved with such an 365 

approach (ca. 60% cross-validation classification accuracy; see Figure S5D). Using non-linear features 366 



may improve the classification accuracy, because they can capture more complex statistical 367 

relationships in the data. Thus, after training a non-linear SVM (with a Gaussian kernel), we found 368 

that it is possible to improve the prediction performance such that it can be applied to a previously 369 

unknown experimental session dataset with an averaged classification accuracy of 70.99±0.02% (mean 370 

accuracy value with 95% confidence interval; p<10-4 permutation test for the comparison between the 371 

session-wise averaged ground-truth performance and the session-wise empirical distribution of 372 

chance-level performance) (Figure 4D). A typical display of predicted PGO and P-wave episodes from 373 

three independent LFP traces of one exemplary experimental session are illustrated in Figure 4F. Note 374 

that both type I and type II PGO waves are identified by the SVM. All classification procedures and 375 

related experiments are described to a more detailed extent in the Supplemental Materials of this work.  376 

 377 

We then asked whether the PGO waves identified by the classifier were related to distinct types of 378 

hippocampal LFP episodes. To this end, hippocampal events were identified as peaks in the envelope 379 

of a broad-band LFP in the range 10-180 Hz. Candidate events were clustered on the basis of their 380 

spectral signatures (see Experimental Procedures for details). Optimal event separation was obtained 381 

with 3 distinct event types in the ranges 5-20 Hz, 30-75 Hz and 80-180 Hz corresponding to sigma, 382 

gamma and SWR events, respectively (after Logothetis et al., 2012) (see population results in Figure 383 

S4). These hippocampal episodic activities have been associated with mnemonic processes. In 384 

particular, SWR complexes are believed to mediate memory transfer and consolidation (Girardeau et 385 

al., 2009; Nakashiba et al., 2009). Furthermore, hippocampal gamma rhythms are suggested to 386 

dynamically route neural information from parahippocampal structures and CA3 subfield to the CA1 387 

subfield (Colgin et al., 2009). A SWR-related gamma component has been reported to coordinate CA3 388 

and CA1 activities, supporting memory replay (Carr et al., 2012). While gamma and SWR have been 389 

extensively documented (for reviews see Buzsáki, 2015; Colgin and Moser, 2010), less is known 390 

about hippocampal sigma episodes in primates (Logothetis et al., 2012). These events may occur 391 

during periods of paradoxical sleep and may reflect changes in excitability of hippocampal circuits, 392 

likely mediated by brainstem activities and thalamo-neocortical circuits (Grosmark et al., 2012; 393 

Steriade et al., 1990a). 394 

 395 

After identifying hippocampal episodes, we first noticed that episodes classified as PGO waves were 396 

correlated with the occurrence of SWR and sigma episodes. We classified the PGO waves into type I 397 

and type II as reported in previous subsections of this manuscript, and then we studied the co-398 

occurrence of PGO waves with hippocampal events using cross-correlogram analysis (see 399 

Supplemental Methods for methodological details). Clustering of PGO waves was performed in a 400 

session-wise manner following the procedures described in the first subsection of the Supporting 401 

Information. This procedure was performed for (predicted) PGO data of 9 pons-hippocampus 402 

experimental sessions (3 macaque monkeys, namely, cm029, cm031 and k13; and a total of 6544 403 



detected phasic pontine waves, from which 1880 were classified as PGO waves). We first observed 404 

that hippocampal sigma and SWR events co-occurred with PGO waves (see Figure 5A for typical raw 405 

traces). Type I and type II PGO wave-triggered LFP averages across sessions recorded from the 406 

pontine region displayed profiles consistent with that reported earlier in this manuscript (Figure 5B). 407 

We found that hippocampal sigma events co-occurred with type II PGO waves at rates higher than that 408 

of other hippocampal episodes, while SWR showed an analogous effect with type I PGO waves 409 

(Figure 5A for exemplary raw traces). Quantitative analysis of the relationship between these events 410 

was performed by computing paired-event conditional intensities. This point-process measure 411 

quantifies conditional probability estimates based on the counts of two event types encountered in a 412 

time interval and normalised by the rate of the process of reference (occurring at zero lag) (Brillinger, 413 

1976).  We found that occurrence of type I PGO waves was significantly correlated with occurrence of 414 

SWR episodes, while type II PGO showed an analogous effect with respect to sigma events (Figure 415 

5C). Detailed analysis of the time lag at which sigma occurred in relation to PGO waves revealed that 416 

PGO waves and sigma events occur in a synchronous manner, as indicated by a maximal correlation at 417 

zero-lag (Figure 5C, top inset). Furthermore, SWR occurred with a delay of 100 ms with respect to 418 

PGO waves (Figure 5C, bottom inset). The latter result can be paired to the fact that the time reference 419 

for SWR is established by the occurrence of the ripple oscillation, which for ‘classical’ SWR episodes 420 

100 ms before the low-frequency SW deflection. PGO-triggered hippocampus spectra were found in 421 

close correspondence with the typical power spectral distribution of sigma and SWR (Figure 5D). In 422 

addition, we found that gamma events co-occurring with pontine waves were scarce, even at the 423 

reported SVM classification rate (Figure 5B). 424 

 425 

Our results show that type I PGO waves are associated with SWR, while type II PGO waves relate to 426 

hp-sigma episodes. However, whether PGO waves are associated with specific effects over 427 

hippocampal neuronal populations activities is unknown. We hypothesized that PGO-to-hippocampal 428 

events coupling may have concomitant increases or decreases in population activity. Thus, in order to 429 

further study how PGO waves relate to the activity of hippocampal circuits, we investigated the effect 430 

of PGO waves over specific frequency bands of hippocampal extracellular field potential. To this end, 431 

we computed PGO wave-triggered BLP analysis. We computed averaged, Z-scored NET-BLP across 432 

9 experimental sessions, over pooled experiments (n=103 experiments, 1880 detected PGO waves; 3 433 

animals). 434 

 435 

We found again significantly different responses in hippocampus associated with type I and type II 436 

PGO responses, as type I PGO episodes correlated with a consistent and significant increase of ripple 437 

(80-200 Hz), HFO (201-324 Hz), mEFP (325-800 Hz) and MUA (801-2000 Hz) bands in the 438 

hippocampus region (p<0.01, one-sample permutation t-test, Bonferroni-corrected; Figure 6A). 439 

Conversely, type II PGO responses were associated with significant power decrease of hippocampal 440 



ripple, HFO, mEFP and MUA (see Figure 6A for the time course grand-averages). In particular, note 441 

that the activity over high-frequency bands (ripple, mEFP and MUA) is significantly modulated before 442 

the event onset. This increase then terminates in an abrupt drop at event onset in the form of a negative 443 

deflection, contrary to SWR-associated increases over high-frequency bands. These results suggest 444 

that fundamentally different hippocampal population responses may depend upon signatures of 445 

brainstem activity. These activities probably herald a much larger chain of interactions at subcortical 446 

level (e.g., supramammillary nucleus, posterior hypothalamus and medial septum), possibly triggered 447 

by differentiated modulations of pontine circuits. Notably, hippocampal sigma and SWR episodes 448 

occur in an anti-correlated manner as suggested by the events’ auto- and cross-correlations (Figure 449 

S4G). First, auto-correlations indicate that SWR complexes occur in very close temporal proximity 450 

concomitant with increases in population activity during putative neocortical (and hippocampal) up-451 

states (see also Ji and Wilson, 2007). Second, the occurrence of sigma and SWR episodes was largely 452 

anti-correlated, suggesting that increases in sigma rate occur upon suppression of SWR episodes’ rate. 453 

We thus hypothesize that SWR and hp-sigma episodes are signatures of distinct and possibly 454 

antagonistic brain states. 455 

 456 

Since type II PGO waves are paradigmatic activities of REM sleep, their coocurrence with hp-sigma 457 

events suggests that sigma activity may in turn also be prevalent during REM sleep in non-human 458 

primate, instead of theta activity observed in rodent (see also Karashima et al., 2004). These REM 459 

related episodes probably involve changes in the overall level of excitation of hippocampal neuronal 460 

ensembles reflected by cell discharge decreases, contrary to periods of waking and SWS in the 461 

hippocampus (Grosmark et al., 2012; Montgomery et al., 2008). The above PGO-triggered BLP 462 

analysis results confirm a decrease in MUA band activity at type II PGO event onset, following a 463 

moderate and slow increase of activity (Figure 6A). We now try to address these hypotheses by 464 

investigating the relationship between field activity and unit discharges. 465 

 466 

As both SWS- and REM-like field activities are correlated with single- and multi-unit discharges in 467 

CA1, we asked whether ripples and hp-sigma activities presented analogous discharge relationships 468 

(Montgomery et al., 2008; Sullivan et al., 2014). Using the hippocampal multiunit spiking activity, we 469 

computed peri-event time histograms (25-ms bins) for each event type across experimental sessions. 470 

Our analysis was limited to the electrode tip with largest averaged ripple- and sigma-band LFP power 471 

in stratum pyramidale in a time window of [-0.2 0.2] s around event occurrence. Our analysis revealed 472 

a high diversity of peri-event discharges. In agreement with our BLP analysis, at a coarse level (25-ms 473 

bins histograms), sigma episodes displayed diminished multi-unit activity with respect to baseline 474 

activity with a latency of ~100 ms before the event onset (event centre). Following event occurrence, 475 

only a moderate but sharp discharge increase could be noticed (Figure 6B, right panel), possibly 476 

reflecting a rebound of neural activity following inhibition. Furthermore, as previously reported in 477 



many studies, ripples were related to increased probability of multi-unit discharges, with a rapid (~100 478 

ms) above-baseline increase of spike counts at event onset (Figure 6B, left panel).  479 

 480 

Precise peri-event time histogram analysis (1-ms bins) was further performed in order to investigate 481 

the phase relationship of peri-event LFP to the firing of participating units during sigma and SWR 482 

episodes. For this analysis, raw LFP signals were bandpass-filtered in the hp-sigma (5-20 Hz) and 483 

ripple range (80-180 Hz). The location of the largest oscillation trough was set as event onset. Trough-484 

triggered peri-event time histograms showed that unit discharges occur preferentially at the ripple 485 

troughs (Figure 6B, left inset), in line with previous studies in macaques and rats (Buzsaki et al., 1992; 486 

Ramirez-Villegas et al., 2015). Conversely, during hp-sigma events, unit discharges occur at the rising 487 

phase of the oscillation (Figure 6B, right inset). This observation is in striking correspondence with 488 

previous studies in rats, recorded during periods of REM sleep (Montgomery et al., 2008; Sullivan et 489 

al., 2014). Our findings agree with the notion that firing rate deceleration dominates the hippocampus 490 

during REM-associated theta activities (Grosmark et al., 2012; Montgomery et al., 2008). However, in 491 

the activity changes reported in this work, oscillatory REM-like activity (here hypothesized to be 492 

associated with hp-sigma events) occurs in the form of (transient) neural events separated by 493 

desynchronized activity as it has been reported in cats, humans and other monkey studies during 494 

awake behaviour (Bennett, 1970; Ekstrom et al., 2005; Jutras et al., 2013; Leonard et al., 2015). 495 

 496 

Finally, if the detected locking between PGO episodes and hippocampal ones corresponds to 497 

propagating pontine neuronal activity, significant locking would exist between pontine multi-unit 498 

spiking activity and hippocampus field activity during PGO waves. In order to investigate this 499 

question, peri-event time histogram analysis (2-ms bins) was performed between the bandpass-filtered 500 

hippocampal peri-event LFP (5-20 Hz, corresponding to both sharp-wave and hp-sigma ranges) and 501 

the firing of pontine units during PGO episodes. We first observed that pontine discharges occurred 502 

rhythmically, following the time course of sigma episodes. Furthermore, pontine discharge probability 503 

was synchronized to the falling phase of hp-sigma episodes (Figure 6C, right subpanel), establishing a 504 

phase lead of approximately 2 radians (~30 ms) with respect to hp-sigma-related hippocampal 505 

discharges. Conversely, PGO type I-related multiunit discharges probability increased close to the 506 

trough of the SW (Figure 6C, left subpanel), giving rise to a phase lead of approximately 1.2 radians 507 

(~20 ms) with respect to sharp wave-related hippocampal discharges. Our findings thus suggest that 508 

PGO waves propagate to hippocampus likely through poly-synaptic mechanisms and do not appear 509 

correlated to hp-sigma or SWR episodes only as a product of slow mechanisms associated with global 510 

neuromodulation, corresponding to distinct putative sleep stages. 511 

 512 

Our findings suggest that hippocampal LFP event signatures –likely emerging during distinct brain 513 

states and characterized by differentiated pontine field activity– are probably associated with the 514 



activity of distinct brain stem neuronal populations (see also Torterolo et al., 2011), and may be 515 

implicated in mnemonic processes such as memory transfer and consolidation. 516 

 517 

Discussion 518 
In the present study we identified two distinct types of PGO waves on the basis of their electrical LFP 519 

signatures, displaying quantitative and qualitative electrophysiological differences over micro- and 520 

mesoscopic scales. These two LFP patterns are in close correspondence with findings of classical 521 

studies (Bowker, 1985; Datta et al., 1992; Hobson, 1965; Morrison and Pompeiano, 1966). These 522 

studies had identified potential functional differences amongst distinct types of PGO episodes. 523 

Specifically, whereas PGO waves occurring in isolation were observed to a greater extent during SWS 524 

and the transition period between SWS and REM sleep, clustered PGO waves –episodes displaying 525 

series of consecutive LFP deflections– were found in fully-developed episodes of REM sleep. The 526 

physiological nature of these event types –to the best of our knowledge– had remained unexplored. 527 

Adopting the approach originally introduced in our previous work (Ramirez-Villegas et al., 2015), we 528 

clustered peri-event PGO-wave spatio-temporal series into two distinct event subtypes, examine their 529 

temporal and spectral properties, and finally relate their dynamics with activities over thalamic and 530 

limbic structures of the brain (i.e. LGN and hippocampus, respectively). 531 

 532 

Our results demonstrate that these two types of PGO activities establish differentiated relationships 533 

with downstream forebrain targets. These relationships, together with the notable opposite neuronal 534 

population responses associated with PGO-wave subtypes are a strong suggestion of distinct pontine 535 

and brain-wide neuronal mechanisms that may be instrumental for mnemonic processes such as 536 

memory retrieval and consolidation during natural sleep.  537 

 538 

Two physiologically distinct PGO-wave LFP signatures 539 

PGO wave subtypes identified in this work –in correspondence with early studies– differ on the basis 540 

of their temporal waveforms. We found PGO waves with a single or up to two contiguous oscillations 541 

(type I PGO waves), and PGO waves with multiple (or temporally clustered) contiguous oscillations 542 

(type II PGO waves). The observed signatures, while similar in their LFP frequency properties, have 543 

different relationships with their associated MUA, are thus likely mediated by distinct neuronal 544 

mechanisms that may reflect competing physiological processes during offline states. Indeed, distinct 545 

types of PGO waves may relate to the activation of distinct pontine neuronal subgroups. For instance, 546 

Steriade et al. (1990a) studied six categories of PGO-related cells in the parabrachial and laterodorsal 547 

tegmental cholinergic nuclei with direct thalamic projections. These categories were related in a 548 

differentiated manner to pontine and thalamic components of PGO waves, with single or bursts of 549 

spikes occurring from 20 to 150 ms prior to these episodes. Notably, cell types presented both phasic 550 

and tonic activity modes characterized by the occurrence of spikes during, before, and after the 551 



occurrence of PGO waves. These cell groups are responsible not only for transfer of PGO-related 552 

potentials upstream, but also for inducing and maintaining episodes of synchronized and 553 

desynchronized sleep (Steriade et al., 1990b).  554 

 555 

In line with this evidence, we found that type II PGO waves were associated with increased MUA. 556 

These activities, however, were relatively slow and presented delays in the order of approximately two 557 

seconds before the event onset in both pontine and LGN regions. These delays were further confirmed 558 

by clustering techniques applied to the peri-PGO wave MUA traces, and visual examination of unit 559 

discharges. We hypothesize that the observed variations in the MUA probably correspond –to a great 560 

extent– to neuromodulatory activity reflecting global brain-state transitions or activation of tonic 561 

cholinergic elements, rather than being contributed by phasic discharges at the time of occurrence of a 562 

PGO wave, such as that of PGO burst cells. We speculate that discharges related to type II PGO waves 563 

may be at least partly contributed by parabrachial cholinergic tonic cells. Experimental evidence 564 

suggests that parabrachial cholinergic tonic cells (Steriade et al., 1990a) are larger than other cell types 565 

(Kang and Kitai, 1990). Moreover, large cells have been found to receive more synaptic drive in a 566 

previous structural study of the cat’s pedunculopontine nucleus, having higher bouton coverage ratios 567 

than small cells (Moriizumi et al., 1989). Notably, these cells are directly implicated in both triggering 568 

and maintaining episodes of paradoxical sleep (Steriade et al., 1990b). Thus, it would be reasonable to 569 

postulate that our observations reflect slow neuronal activities specifically associated with the 570 

occurrence of PGO wave subtypes. In line with this statement, our results suggest that disruption 571 

SWS-related activity such as thalamic spindles occurs before type II PGO waves are generated (Hu et 572 

al., 1989).  573 

 574 

Notably, we discovered that opposite neuronal population signatures in pons and LGN were associated 575 

with distinct PGO wave episodes. This variability may be explained by the influence of neuronal 576 

subpopulations selectively active during either one type of PGO wave. In this regard, using 577 

immunohistochemical techniques, Torterolo et al. (2011) observed a group of cells located in the 578 

caudolateral parabrachial region selectively active during SWS. This cell cluster was neither 579 

cholinergic, nor (catechol-) aminergic, but circa 50% GABAergic in nature. Notably, the number of 580 

SWS-immunoreactive parabrachial cells in their study was positively correlated with the time spent in 581 

SWS by the animals. Whether these activities are associated with particular pontine event types 582 

remained unknown in their study. Interestingly, our data shows that type I PGO waves are related to 583 

significant decrease of MUA. This decrease of activity starts before PGO activity is observed, 584 

suggesting that it may be partly an effect of aminergic modulation of pontine circuits, with consequent 585 

suppression of cholinergic elements. Whether indeed type I PGO waves –likely suppressed during 586 

REM sleep– are partly mediated by GABAergic cell activity in both pons and LGN during SWS 587 

remains to be addressed in future investigations. However, the slow reduction in MUA was often 588 



accompanied by a rapid (phasic) increase at the time of PGO wave occurrence, suggesting that 589 

although the circuit may be suppressed, glutamatergic neurotransmission may be present during the 590 

generation and propagation of these potentials (Datta, 1997; see also Torterolo et al., 2011). 591 

 592 

PGO-wave LFP signatures relate to differentiated interactions with hippocampal neuronal 593 

ensembles.  594 

Part of the present investigation was dedicated to study the relationship between PGO and 595 

hippocampal activities. The activity of the hippocampus has been related to offline memory 596 

consolidation. It is believed that distinct regulatory processes and phasic (event-related) activities such 597 

as SWR complexes and PGO waves, apparent during the expression of both non-REM and REM 598 

sleep, partly mediate such processes. One of the key findings of this work is that PGO wave subtypes 599 

not only present opposite neuronal population responses as evidenced by increases or decreases of 600 

ponto-thalamic MUA, but also they are associated with changes in the hippocampal electrical activity. 601 

On the basis of previous studies (Buzsaki et al., 1992; Logothetis et al., 2012; Skaggs et al., 2007; 602 

Sullivan et al., 2011), we identified hippocampal sigma, gamma and SWR episodes, as they are key 603 

paradigmatic markers of hippocampal off-line activity. Strikingly, we found that type I PGO waves 604 

were associated with SWR complexes, whereas type II PGO waves were linked to hippocampal sigma 605 

episodes. In both cases, the events followed similar LFP time courses, suggesting large-scale network 606 

mechanisms involving pontine nuclei, LGN and hippocampal circuits.  607 

 608 

PGO phasic potentials have been related to episodes in the electrical activity of basolateral amygdala, 609 

anterior and posterior cingulate gyrus, dorsal hippocampus, anterior ventral thalamic nucleus, and 610 

sensory motor cortex in the cat brain (Calvo and Fernandez-Guardiola, 1984; Hobson, 1965). Calvo & 611 

Fernandez-Guardiola (1984) observed potentials of variable amplitude spanning the typical time scale 612 

of PGO waves in the lateral geniculate body, concomitantly with partner episodes in the 613 

aforementioned limbic structures. These PGO-related potentials were increasing in latency with 614 

respect to the leading pontine wave, with hippocampus-related potentials occurring with an 615 

approximate delay of 35 ms. In line with these observations, we found that type II PGO waves lead 616 

hippocampal sigma events for approximately 30 ms, taking an PGO wave center-frequency of 10 Hz 617 

(as demonstrated by detailed spectral analysis). These observations are in line with the fact that type II 618 

PGO waves are coupled with eye movement-related potentials (Morrison and Pompeiano, 1966), 619 

which was the population of PGO episodes analysed in the work of Calvo & Fernandez-Guardiola 620 

(1984). 621 

 622 

Conversely, the underlying nature of type I PGO activity remains unknown. However, evidence from 623 

lesion and pharmacological studies has related PGO potentials to at least two differentiated inputs 624 

impinging upon thalamic nuclei during sleep. One of these inputs is thought to be extravestibular –625 



probably originated in reticular nuclei– and responsible for the modulatory effects upon LGN and 626 

possibly hippocampus associated with type I PGO waves. Vestibular nuclei, in turn, influence the 627 

activity of LGN neurons during the occurrence of bursts of REM that are related to type II PGO 628 

activity. Indeed, inactivation of vestibular nuclei abolishes bursts of REM and type II PGO wave 629 

activity, while facilitating type I PGO wave activity with consequent reduction of desynchronized 630 

sleep periods (Morrison and Pompeiano, 1966). Conversely, pharmacological manipulations upon 631 

PGO-generating circuits via carbachol enhance the activity of cholinergic and PGO burst cells. This 632 

evidence indicates that REM and associated PGO (type II) activity are specifically mediated by 633 

endogenous release of acetylcholine (Datta et al., 1992, 1998). Altogether, in line with our results, 634 

these findings suggest that PGO waves of distinct types, while having a common origin, may have 635 

distinct physiological nature, propagating across distinct pathways in a sleep state-dependent manner.  636 

 637 

In all likelihood, the transient coupling between hippocampus and pontine-LGN assembly activities 638 

over PGO frequencies suggests that PGO waves are ubiquitous over distinct brain domains, and may 639 

establish signatures for selective communication between brainstem, thalamic, limbic and neocortical 640 

structures. The functional purpose of these signatures, however, remains elusive from the current data, 641 

and opens a number of additional questions. First, are hippocampal sigma-episodes present during 642 

different brain states as compared to most SWR complexes? Our data and analyses provide only 643 

indirect evidence to this question, since hippocampal ripples and sigma events occur in an anti-644 

correlated manner. This result demonstrates that SWR and sigma episodes at least occur over distinct 645 

time scales. Furthermore, beyond the inherent limitations of anaesthesia (see also last subsection of the 646 

Discussion), our observations of hippocampal activity and time scales of appearance of sigma and 647 

SWR may support the idea of two global states: an SWS-like state characterized by oscillatory unit 648 

activity spanning the occurrence of multiple putative neocortical and hippocampal up- and down-state 649 

transitions (Ji and Wilson, 2007); and a REM-like state, characterized by more desynchronized 650 

hippocampal unit and LFP activity (Moroni et al., 2007; Tamura et al., 2013), where sigma (theta-like) 651 

episodes are prevalent (Logothetis et al., 2012). These hypotheses accord with vast experimental 652 

evidence relating type I PGO wave activity with periods of synchronized sleep, and type II PGO wave 653 

activity with fully developed episodes of paradoxical sleep (Bowker, 1985; Datta et al., 1992; Hobson, 654 

1965; Morrison and Pompeiano, 1966; Steriade et al., 1990b). 655 

 656 

The hypothesis that antagonistic neural events relate to distinct information routing pathways or 657 

signatures of brain-wide communication during offline states was supported by the concurrent 658 

electrophysiology-fMRI study of Logothetis et al. (2012). In particular, hippocampal SWR episodes 659 

were associated with down-regulation of large portions of subcortex, including both pontine and 660 

thalamic nuclei. Additional metabolic down-regulation was detected in occipital V1, despite the 661 

overall increase of activity of other primary and associative neocortical areas. Yet, the authors 662 



speculated on the possibility of a selective suppression of the REM-sleep-related ponto-geniculo-663 

occipital pathway during SWR episodes occurring during SWS. Our results support this hypothesis, 664 

we suggest that this suppression during SWR and type I PGO waves might be caused by a suppression 665 

of brainstem cholinergic elements. The activation of these elements, in turn, probably reflects type II 666 

PGO waves in a REM sleep-like state, characterized by concomitant lower hippocampal LFP 667 

amplitude. As discussed earlier, this hypothesis is in line with the fact that pontine cholinergic neurons 668 

are associated with disruption of SWS-related thalamo-cortical oscillations and disinhibition from RT 669 

GABAergic neurons of thalamocortical neurons related to periods of synchronized sleep. 670 

 671 

Limitations of this study.  672 

One of the key limitations of this study is the use of opioid anaesthesia in order to induce sleep-like 673 

states in macaque monkeys. While discussion about the effects of anaesthesia on potential mechanisms 674 

related to cognition is perfectly justified, we argue that our anaesthesia protocol had no influence 675 

whatsoever in neither in spontaneous, nor in sensory-evoked neuronal activity. This fact has been 676 

particularly demonstrated in our previous research (Logothetis et al., 2012; Ramirez-Villegas et al., 677 

2015) in which neuronal activities associated with hippocampal circuits (in particular, those associated 678 

with SWS), and brain-wide metabolic regulations remained virtually unaffected by the anaesthetics. In 679 

a similar line, experimental evidence suggests that opioid anaesthesia (remifentanil) does not affect 680 

acetylcholine release in the pontine region of cats (Mortazavi et al., 1999).  In consequence, our 681 

findings establish a link between PGO-related potentials in sleep-like conditions and potentials 682 

observed during multiple stages of natural, drug-free sleep. However, beyond the results reported in 683 

this work, we were unable to track LFP signatures corresponding to different “true” sleep stages. 684 

Although anaesthesia levels remain stable throughout the recording sessions as evident in the multi-685 

structure electrical activity (see also Ramirez-Villegas et al., 2015), we had no access to ground-truth 686 

markers from naturalistic SWS or REM episodes, in order to classify distinct putative sleep stages in 687 

the current anaesthetized model.   688 

 689 

Experimental Procedures 690 
 691 

Surgical procedures and electrophysiology recordings 692 

fMRI and electrophysiological data were collected from three healthy macaque monkeys (Macaca 693 

fascicularis: two females; Macaca mulatta: one female; 4-6 kg).  All experimental and surgical 694 

procedures were approved by the local authorities (Regierungspräsidium, Tübingen, Germany) and 695 

were in full compliance with the guidelines of the European Community (EUVD 86/609/EEC) for the 696 

care and use of laboratory animals.  Details of the surgical procedures and experimental preparation 697 

can be found elsewhere (Logothetis et al., 2012).  In specific, two custom-made recording chambers 698 

were implanted directly on to the skull of each animal under general anesthesia (balanced anesthesia 699 



consisting of isoflurane 1.3% and remifentanil 0.2-0.5 μg/kg/min iv).  The angles of the chamber were 700 

designed to minimize the penetration of blood vessels in deep structures, by combining individual 701 

skull surface, brain and blood vessels extracted from structural MRI and MR angiography volumes.   702 

 703 

The experiments were conducted under general anesthesia maintained with remifentanil (1-3 704 

μg/kg/min iv) in combination with a fast-acting paralytic (mivacurium chloride, 5-7 mg/kg/hr iv).  The 705 

physiological state of the animal was monitored continuously and maintained tightly in normal limits.  706 

Acidosis was prevented by the administration of lactated Ringer’s solution with 2.5% glucose, infused 707 

at 10 ml/kg/hr. 708 

 709 

Concurrent electrophysiological and functional MRI (fMRI) recordings were made following our 710 

previous work (Logothetis et al., 2012). We made measurements in a vertical 4.7 T scanner with a 40 711 

cm diameter bore (BioSpec 47/40v, Bruker BioSpin, Ettlingen, Germany).  A customized quadrature 712 

volume radiofrequency coil was used for imaging of deep brain structures.  Typically, 22 axial slices 713 

were acquired, covering the entire brain. BOLD activity from these slices was acquired at a temporal 714 

resolution of 2 s with two-shot gradient-echo EPI images (repetition time = 1000 ms, echo time = (20) 715 

ms, bandwidth = (150) kHz, flip angle = (60) degrees, FOV = 96 x 96 mm, 2 mm slice thickness). T2-716 

weighted RARE images with the same FOV were obtained using a matrix of 256x256, rare factor of 8, 717 

effective TE of 60 ms, TR of 8500 ms, BW 38 kHz, and 2-4 averages. The anatomical images were 718 

later morphed to match with EPI images, and then the morphed images were used to draw regions of 719 

interest (ROIs).  In order to avoid different image intensities in functional scans, each voxel in the scan 720 

was normalized by dividing by the mean value of all voxels above an intensity threshold and 721 

multiplied by a user value of 1000. 722 

 723 

Custom-made multichannel electrodes (10 contacting sites spaced by 150-250 μm, after Logothetis et 724 

al., 2012) were placed in or close to the parabrachial nucleus (PBn; occasionally in the reticular 725 

pontine nuclei, PnO), in the hippocampus (CA1 or CA3 subfields) and/or in the lateral geniculate 726 

nucleus (LGN), on the basis of high-resolution anatomical MRI scans. A total of 6 experimental 727 

sessions were paired pons-LGN recordings (animals cm029 and cm031), while 9 experimental 728 

sessions were pons-hippocampus ones (animals cm029, cm031 and k13). A detailed description of the 729 

recording and procedures for compensating MRI-gradient interference can be found elsewhere 730 

(Logothetis et al. 2012). 731 

 732 

Processing and analysis of neural data 733 

Analyses of electrophysiology and fMRI data were performed using MATLAB (The MathWorks). 734 

Signal denoising and frequency band isolation procedures have been described in detail in a previous 735 



study (Logothetis et al., 2012). In the following, we describe the main signal processing and analysis 736 

performed on the denoised broad-band LFP signals (0.05 Hz – 7 kHz).  737 

 738 

For PGO event detection, we examined changes of power in the band-pass filtered, averaged LFP 739 

signal (5-15 Hz) of recording electrodes that targeted the pontine region (including the peribrachial 740 

nucleus) and the lateral geniculate nucleus (LGN), respectively. Recordings of the two structures were 741 

analyzed jointly. To this end, the filtered signals were rectified, low-pass filtered at 20 Hz, and then z-742 

score normalized. Initially, pontine waves were detected as epochs during which the resulting signal 743 

exceeded a 4 SD threshold. These events were considered candidate PGO waves. Since PGO waves 744 

are phasic potentials that must occur synchronously in pons, LGN and several other brain domains 745 

(Calvo and Fernandez-Guardiola, 1984), only significant power increases that occurred in both 746 

structures within a time window of [-0.15 0.15] s taking the pontine region as a reference were 747 

selected for further analysis.  748 

 749 

Clustering of PGO waves/MUA time series. PGO waves may occur in isolation or in very close 750 

temporal proximity (clustered PGO waves), displaying between 3 and 6 consecutive LFP deflections 751 

(Morrison & Pompeiano, 1966; Datta et al., 1992). In order to prevent multiple detections, detected 752 

events within 300 ms were considered a single event. Upon event selection (phasic waves propagating 753 

from pons to LGN), perievent PGO waves were clustered according to their temporal electrical 754 

signatures using a two-stage methodology reported in a previous study of our laboratory (Ramirez-755 

Villegas et al., 2015). Briefly, in the first stage, spatio-temporal PGO waves (of a selected LGN and 756 

pons site) were aligned and then grouped into 100 to 200 representative signals using a growing neural 757 

gas (GNG) algorithm (Fritzke, 1995). The GNG generates noise-reduced signal templates 758 

corresponding to the averaged time course of PGO waves that have similar time courses. In the second 759 

stage, the representative signals were clustered based on their pair-wise cosine similarity using the 760 

normalized cuts algorithm, a clustering technique that creates partitions on the data by maximizing the 761 

ratio of summed intra-cluster similarity to summed inter-cluster similarity (Shi and Malik, 2000). Each 762 

PGO-wave dataset was partitioned on the basis of clustering quality analysis (after Ramirez-Villegas 763 

et al., 2015) and also based on findings of classical studies (Datta et al., 1992; Morrison and 764 

Pompeiano, 1966). For the two previous cases, PGO waves were then sorted according to their MUA-765 

responses, and then averaged across experimental sessions.   766 

 767 

Detection of hippocampal events. Following a methodology presented in Logothetis et al. (2012), we 768 

examined changes of power in the broad-band signal (10 – 180 Hz). The broad-band signal was 769 

rectified, low-pass filtered at 20 Hz and then normalized. Candidate events were detected as epochs 770 

during which the signal exceeded a 3.5 SD threshold. Since initially increases in power may result 771 

from oscillations occurring in different frequency bands, we clustered the spectra using a Non-772 



Negative Matrix Factorization (NNMF) algorithm, an unsupervised technique that creates data 773 

decompositions for a user-defined number of groups or clusters. In correspondence with our previous 774 

studies, stable representation of the data was achieved by a partition in three clusters, corresponding to 775 

increases over different frequency bands, namely sigma (8-22 Hz), gamma (25-75 Hz) and ripple (80-776 

180 Hz). These three event types were taken for further analysis without further pre-processing.  777 

 778 

Phase relationship between LGN and pontine region. Phase relationships between recording sites 779 

were retrieved by computing the angle of the Hilbert-transformed LGN/pontine PGO wave-band-780 

filtered (5-20 Hz) signal pairs for single experimental sessions, in the range  , 
. The phase-781 

locking value (PLV) was subsequently computed as: 
 1

1 exp
N t

nm nmt
iN Γ Δ


   

, where N is the 782 

number of time samples, and 
t t t
nm n m  Δ  

 accounts for the difference between the phase 783 

estimates of the signal corresponding to the recording site n and m, respectively. Circular averages 784 

were computed across paired LGN-pontine recording channels. Histograms and event grand-averages 785 

were computed from the resulting single PLV for each PGO wave. 786 

 787 

Spectral analysis and field-field coherence (FFC). Spectral analysis was conducted using Morlet-788 

wavelet spectrograms. The spectrograms were Z-scored with respect to spectrograms obtained from 789 

the same number of events with randomized inter-event intervals.  790 

 791 

FFC was computed for all pairs of recording sites located in the LGN and pontine region, across all 792 

PGO-wave broad-band signal events using a tapering window duration of 200 ms with an increment of 793 

10 ms, using the Chronux toolbox available at http://chronux.org. This process outputs a complex-794 

valued matrix F x n x m x M, where F is the number of frequencies in the broad-band (usually 0-200 795 

Hz), n is the number of time windows, m is the total number of LGN-pontine recording pairs and M is 796 

the total number of PGO waves. Complex-numbered coefficients of this matrix account for the 797 

entrainment between the LFP recorded in one spatial location and the LFP recorded at a second spatial 798 

location, at particular frequency and time points. Taking LGN recordings as a reference, FFC was 799 

applied to pair-wise recording LFP channels across pontine region and LGN. Coherency maps were 800 

then averaged across all couples, resulting in a three-dimensional matrix F x n x M. FFCs with the 801 

same cluster label were averaged, resulting in two F x n matrices. The resulting matrices were then 802 

analysed in magnitude (absolute value in the range [0, 1]) and phase (in the range  , 
). Finally, 803 

quantification of phase lags (and phase histograms) was done as an event-wise phase circular average 804 

below 20 Hz in a time window of 400 ms around the occurrence of a detected (or SVM-predicted) 805 

PGO episode.  806 

 807 



Point-process conditional intensity. In order to compute the conditional intensities related to the 808 

occurrence of events, we consider the time stamps of PGO and hippocampal events stationary point 809 

processes. Then, we compute histogram-type estimates of the auto- and cross-correlation functions of 810 

the (bivariate) point processes corresponding to paired event types. Specifically, suppose that the 811 

process 1 2{ ( ), ( )}N t N t  is given by the events that occur in the interval (0, ]T . For the times of events 812 

of type 1 2{ , ,..., }nS     and the times of events of type 1 2{ , ,..., }mK t t t , the conditional 813 

probability estimates are based on the counts of events S and K that belong to the following set: 814 

 815 

    ,SK j k j kW u j k u s t u s t         ,  (1) 816 
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
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 819 

Hence, JSK are the counts of number of events of type S within a cell of size 2β (i.e. the histogram bin 820 

size, with u being the center of the bin). From this count variable, we get the following probability 821 

estimate: 822 

 823 
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2 ( )
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K
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 825 

To correct for border effects, the following modified estimate is proposed (Brillinger, 1976):  826 

 827 
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T
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 829 

A detailed account on the statistical testing procedure is reported in Supplemental Information, Section 830 

A of this manuscript.  831 

 832 

Band-limited power (BLP) signals. MRI-denoised, raw broad-band (<7 kHz) multi-site signals were 833 

decomposed into various frequency ranges. Band separation and BLP signal calculations were 834 

performed following a two-step methodology. First, raw signals were filtered into a low- and a high-835 

frequency range (<500 Hz, LFR; >100 Hz, HFR) by low- and high-pass 4th-order Butterworth finite 836 

impulse response (FIR) filtering, respectively.  Second, BLP signals were extracted from LFP using a 837 

Kaiser-window filter with a transition band of 1 Hz, a stop-band attenuation of -60 dB and a pass-band 838 

ripple of 0.01 dB. MUA signals were derived using 4th-order Butterworth FIR filters. For all frequency 839 

bands, resulting signals were rectified, low-pass filtered at 4 Hz, and resampled at 660 Hz. Each BLP 840 



signal was tested for significance using a two-tailed permutation t-test (Blair and Karniski, 1993), the 841 

outcome of this test was then Bonferroni-corrected across all frequency bands. 842 

 843 

Frequency bands in this study were determined from EEG studies and were refined on the basis of 844 

recent observations in intracortical recordings in macaques (Elul, 1972; Logothetis, 2008; Logothetis 845 

et al., 2012). Specifically, we assessed changes in delta [0.05-3 Hz], theta [3.5-8 Hz], spindle [9-15 846 

Hz], sigma [16-29 Hz], slow and high gamma [30-55 Hz; 56-79 Hz, respectively], ripple [80-200 Hz], 847 

high-frequency oscillations [201-324 Hz]. Finally, high frequencies were subdivided into a mid-band 848 

extracellular field potential (mEFP) band [325-800 Hz] and a MUA band [801-2000 Hz].  849 

 850 
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Figure Legends 1028 
 1029 

Figure 1. Electrode position, pontine-LGN recordings and co-occurrence of phasic waves in pons and 1030 

LGN of the macaque monkey. (A) T2-weighted (RARE) MRI scan showing the electrode position a 1031 

coronal (left and right panels, fragment) and sagittal (middle panel) slice of monkey cm031. (B) MRI 1032 

images were superimposed on the Saleem-Logothetis (S-L) MRI-histology atlas of the Rhesus 1033 

Monkey brain. The approximate location of the recording electrodes is indicated by a red cross for 1034 

pons and by a red arrow for LGN. Typically the electrode targeted the pons in or around the 1035 

parabrachial nucleus (PBn). (C) Raw multi-site averaged LFP traces (0.5-325 Hz). Labels indicate the 1036 

area targeted by the electrode: ‘LGN’ for lateral geniculate nucleus, ‘PO’ for pontine region. Phasic 1037 

potentials in either pons or LGN may occur in isolation (bottom panel, red dots), or co-occur in the 1038 

two areas (top panel, green dot and dashed line). (D) Number of co-occurring pontine-LGN phasic 1039 

waves over total detected pontine waves across experimental sessions. (E) Averaged, z-scored multi-1040 

taper spectra illustrating the power spectral distribution of co-occurring and non-co-occurring pontine 1041 

phasic waves. Related to Figure S1. 1042 

 1043 

Figure 2. Pontine-LGN phase relationship and classification of PGO waves across 6 experimental 1044 

sessions. (A) Schematic diagram illustrating the phase-locking calculation between the recorded 1045 

structures (pons and LGN). An exemplary time-resolved PLV map is provided to show that phasic 1046 

potentials propagate from pons toward LGN, thus corresponding to PGO waves (bottom panel, 1047 

negative LGN-pons phase-shift). (B) Empirical distribution of pontine-LGN phase lags during PGO 1048 

waves. The average phase corresponds to a time lag of ca. 16 ms. (C) Box plots illustrating the 1049 

statistics of the number of PGO waves over total detected pontine waves across experimental sessions, 1050 

and two identified types of PGO waves. On each box, the top and bottom are the 25th and 75th 1051 

percentiles of the samples, respectively; the red dot in the middle of each box is the sample median; 1052 

the dashed lines are drawn from the ends of the interquartile ranges (25th and 75th percentiles) to the 1053 

extreme points. (D) Grand averages of PGO-wave LFP signatures across pontine (top panel) and LGN 1054 

(bottom panel) peri-event field potentials (recording tips of either one area were first averaged for each 1055 

experimental session). The centre of each PGO wave is marked by dashed lines. Shaded areas indicate 1056 

standard error of the mean (SEM). (E) Proportion of half-period statistics of individual type I and type 1057 

II PGO waves across experimental sessions. The two population statistics differ significantly (p<10-20) 1058 

according to a Wilcoxon’s ranksum test. (F) Complex Morlet-wavelet spectrograms in correspondence 1059 

with each PGO wave subtype and recorded area (pons top row; LGN bottom row as in D). Averages 1060 

are first computed across all pons/LGN recording sites. Thresholding was applied according to a 1061 

permutation statistical test (see Main Text). (G) Averaged PGO-triggered LGN-pons absolute (top 1062 

row) and phase (bottom row) coherograms corresponding to each PGO wave subtype. Absolute and 1063 



phase were computed across all pontine-LGN recording electrode pairs. Phase-maps thresholding was 1064 

applied according to a permutation statistical test (see Main Text). Related to Figure S2. 1065 

 1066 

Figure 3. PGO-wave-triggered band-limited power (BLP) extracellular field potentials. (A) Type I 1067 

PGO wave-triggered BLP signals grand averages in and beyond the LFP frequency range: delta [0.05-1068 

3 Hz], theta [3.5-8 Hz], spindle [9-15 Hz], sigma [16-29 Hz], slow and high gamma [30-55 Hz; 56-79 1069 

Hz, respectively], ripple [80-200 Hz] and high-frequency oscillations [201-324 Hz], mEFP [325-800 1070 

Hz] and MUA [801-2000 Hz]. BLP signals were z-scored and averaged across all pontine/LGN 1071 

domains. Asterisks indicate significant deviation (p<0.01) from zero according to a one-sample 1072 

permutation t-test. Responses in the panels were thresholded at a level p<0.1 only for illustration 1073 

purposes. (B) Type II PGO-wave triggered BLP signals grand averages in the same frequency ranges 1074 

as in panel A. (C) Time courses of BLP modulations in LGN (left subpanels) and pons (right 1075 

subpanels) over spindle [9-15 Hz] and MUA [801-2000 Hz] frequency ranges, across PGO-wave 1076 

subtypes. (D) Pontine (left subpanels) and LGN (right subpanels) PGO-related time delay to maximal 1077 

response over distinct BLP domains, illustrating that mEFP- and MUA-band power signals (325-800 1078 

Hz and 801-2000 Hz, respectively) present significantly delayed maximal responses. As expected, 1079 

PGO-related bands present maximal responses around zero-lag (event occurrence). Colours indicate 1080 

PGO-wave subtypes as indicated in Figure 2. Asterisks indicate a significant deviation from zero 1081 

according to a sign test. (E) LGN spindle-related time delay to maximal response. Vertical (black) bars 1082 

indicate the period excluded from the maximal response lag-analysis. The results illustrate that while 1083 

type II PGO waves are related to significant spindle activity occurring several seconds before the onset 1084 

of the PGO event, type I PGO waves are associated with no spindle activity whatsoever. Note the 1085 

striking correspondence between the delay of type II-related spindle activity and the delay of type II 1086 

maximal MUA activity in LGN (panel E). Related to Figure S3. 1087 

 1088 

Figure 4. Pontine-hippocampus recordings and prediction of PGO waves by SVM classifier. (A) T2-1089 

weighted (RARE) MRI scan showing the electrode position a coronal (left and right panels, fragment) 1090 

and sagittal (middle panel) slice of monkey cm029. (B) MRI images were superimposed on the 1091 

Saleem-Logothetis (S-L) MRI-histology atlas of the Rhesus Monkey brain. The approximate location 1092 

of the recording electrodes is indicated by a red cross for pons and by a red arrow for hippocampus. 1093 

Typically the electrode targeted the pons in or around the parabrachial nucleus (PBn), whilst the 1094 

electrode in hippocampus targeted the CA3 or CA1 subfields at the level of both stratum pyramidale 1095 

and stratum radiatum. (C) Simplified schematic of the methodological approach to predict PGO 1096 

waves, solely from pontine peri-event LFP (candidate P-waves). A detailed illustration of the 1097 

methodology can be found in Figure S5A. (D) Statistics of the leave-one-out procedure across 1098 

experimental sessions show that it is possible to train a non-linear SVM to be applied to a previously 1099 

unknown experimental session with an averaged accuracy of ca. 70%. On each box, the top and 1100 



bottom are the 25th and 75th percentiles of the samples, respectively; the red dot in the middle of each 1101 

box is the sample median; the lines extending from below and above are drawn from the ends of the 1102 

interquartile ranges to the extreme points; red crosses in the diagrams are the outliers of the samples 1103 

(E) Linear SVM-feature weights computed for spectro-temporal features. Distribution of large SVM-1104 

coefficients show that low LFP frequencies (<50 Hz) are the most relevant for solving the 1105 

classification task, as it is apparent both in the spectral (top panel) and time course (bottom panel) 1106 

features. Note that the averaged power spectral density of the temporal weights indicates that PGO 1107 

frequencies are dominant. (F) SVM-predicted PGO waves (indicated by a violet dot) and P-waves 1108 

(indicated by a red dot), superimposed on spatially-averaged pontine (black trace) and LGN (red trace) 1109 

LFP signal (< 325 Hz). Related to Figure S5. 1110 

 1111 

Figure 5. Type I PGO waves are associated with SWR complexes, whereas type II PGO waves are 1112 

related to sigma episodes. (A) Broad-band (< 325 Hz) LFP traces extracted from one exemplary 1113 

experimental session. The traces illustrate co-occurring pontine-hippocampus episodes that can either 1114 

be oscillatory (type II PGO waves) or biphasic in nature (type I PGO waves). Event-wise coupling 1115 

between the two areas is visually traceable from raw data. (B) Grand averages of PGO-wave subtypes 1116 

as retrieved from cluster analysis of the events. The shapes of the grand averages type I and type II 1117 

PGO waves are in correspondence with those found in the first series of pontine-LGN experimental 1118 

sessions. (C) Point-process conditional intensities (cross-correlograms) computed between the 1119 

occurrences of PGO waves and hippocampal sigma, gamma and ripple events. The event of reference 1120 

is the first for each the couple. Cross-correlograms were computed from pooled experiments across 1121 

pons-LGN experimental sessions, at a resolution of 10 ms bins. Asterisks indicate a significant 1122 

relationship (p<0.01, Bonferroni-corrected) at the time of the occurrence of PGO waves, according to 1123 

a permutation test. The plots illustrate that the occurrence of type I PGO waves is significantly 1124 

correlated with occurrence of SWR episodes with a (ripple-related) averaged delay of ~100 ms, 1125 

whereas type II PGO waves show an equivalent effect with respect to sigma events at zero-lag. (D) 1126 

PGO-wave-triggered averaged spectra over hippocampus recording tips. The spectra show increases 1127 

over ripple (80-180 Hz) and sigma (5-20 Hz) frequency ranges, related to type I and type II PGO 1128 

waves, respectively. Related to Figure S4-S6. 1129 

 1130 

Figure 6. PGO wave-triggered hippocampus responses and spike-field relationship. (A) PGO-wave 1131 

triggered BLP signals grand averages in and beyond the LFP frequency range over the hippocampus 1132 

region. Coloured asterisks indicate significant deviation (p<0.01) from zero on the basis of a one-1133 

sample permutation t-test (red for type I and blue for type II PGO waves, as in Figure 2). Coloured 1134 

dashed lines indicate significance for lags different to zero. (B) Peri-event time histogram analysis of 1135 

hippocampal multiunit discharges (25-ms bins) with respect to hippocampal SWR (left subpanel) and 1136 

sigma events (right subpanel). Insets show the trough-triggered hp-sigma (5-20 Hz) and ripple (80-180 1137 



Hz) peri-event time histograms (1-ms bins) responses (rate below baseline levels is subtracted). 1138 

Statistics are made across all detected events and experimental sessions. Note the increased discharge 1139 

probability at the early rising phase of sigma, the late rising phase of the sharp-wave, and at the ripple-1140 

trough. (C) Trough-triggered hp-sigma and sharp-wave (5-20 Hz) peri-event time histograms (1-ms 1141 

bins) of pontine multiunit discharges (right and left subpanels, respectively), showing that discharge 1142 

probability increases at the falling phase of sigma, and close to the trough of the sharp-wave, 1143 

respectively. The inset (left subpanel) shows that hippocampal cells discharges (only those related to 1144 

type I PGO waves) occur at the late rising phase of the sharp-wave. Related to Figure S4 and Figure 1145 

S6. 1146 
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Supplemental Figure Legends 1175 
 1176 

Figure S1. Exemplary P-waves, LGN-waves and PGO waves from pontine-LGN recordings in 1177 

macaques. (A) Raw LFP traces (0-100 Hz) display stereotypical waves (solid lines), occurring with 1178 

high synchrony across recording tips targeting LGN and pontine region. (B) Raw LFP traces (0-100 1179 

Hz) display waves co-occurring in LGN and pontine region, thus corresponding to PGO waves 1180 

(dashed lines). 1181 

 1182 

Figure S2. Laminar power distribution and PGO wave type raw traces. (A) Laminar power profiles of 1183 

PGO waves type I and type II in a [-0.3 0.3] s peri-event time window, illustrating that PGO wave 1184 

subtypes have similar power distributions across recording channels. Note that electrode contacts 1185 

labelled as PBn (close or in PBn) usually capture more power, than those labelled ‘PO’ (pons). On 1186 

each box, the top and bottom are the 25th and 75th percentiles of the samples, respectively; the dot in 1187 

the middle of each box is the sample median; the dashed lines are drawn from the ends of the 1188 

interquartile ranges (25th and 75th percentiles) to the extreme points. Crosses are outliers. (B) Type I 1189 

and type II PGO waves (red and blue dots, respectively) in pons (black) and LGN (blue) raw 1190 

exemplary traces. Note the differences in field signatures, as explained in the Main Text of the present 1191 

manuscript.  1192 

 1193 

Figure S3. PGO-wave-triggered band-limited power (BLP) extracellular field potentials for two 1194 

exemplary experimental sessions. Individual sessions are shown in panels A and B. Type I (left 1195 

subpanels) and type II (right subpanels) PGO wave-triggered BLP signals grand averages across 1196 

distinct frequency bands: delta [0.05-3 Hz], theta [3.5-8 Hz], spindle [9-15 Hz], sigma [16-29 Hz], 1197 

slow and high gamma [30-55 Hz; 56-79 Hz, respectively], ripple [80-200 Hz] and high-frequency 1198 

oscillations [201-324 Hz], mEFP [325-800 Hz] and MUA [801-2000 Hz]. BLP signals were z-scored 1199 

and averaged across all pontine/LGN domains. Responses were thresholded at a level p<0.1 according 1200 

to a permutation t-test only for illustration purposes. The asterisks indicate the bands where p<0.05. 1201 

Note that statistical significance is harder to reach, due to the limited number of experiments per 1202 

individual session. 1203 

 1204 

Figure S4. Hippocampal event features in pontine-hippocampus records of macaque monkeys. (A) 1205 

Sigma- (left panel), gamma- (middle panel) and ripple-triggered (right panel) complex Morlet-wavelet 1206 

power spectrograms. (B) Averaged zero-lag spectral profiles in correspondence with each 1207 

hippocampal event type. Shaded areas indicate SEM. (C) Hippocampal event auto-correlograms 1208 

illustrating that unlike sigma and gamma events, ripple events tend to occur in very close temporal 1209 

proximity. (D) Bivariate distribution of full-width at half-maximum (FWHM) versus frequency peak 1210 



(after Logothetis et al., 2012) (left panel). FWHM (middle panel) and frequency peak (right panel) box 1211 

plots are shown separately. Colours indicate the hippocampal event type shown in B. On each box, the 1212 

top and bottom are the 25th and 75th percentiles of the samples, respectively; the middle line of each 1213 

box is the sample median; the dashed lines extending below and above each box are drawn to the 1214 

extreme points; black crosses in the diagrams are the outliers of the samples. (E) Sigma- (top), 1215 

gamma- (middle) and SWR-triggered (bottom) BLP signals grand averages in and beyond the LFP 1216 

frequency range: delta [0.05-3 Hz], theta [3.5-8 Hz], spindle [9-15 Hz], sigma [16-29 Hz], slow and 1217 

high gamma [30-55 Hz; 56-79 Hz, respectively], ripple [80-200 Hz] and high-frequency oscillations 1218 

[201-324 Hz], mEFP [325-800 Hz] and MUA [801-2000 Hz]. BLP signals were z-scored and 1219 

averaged across all recording tips. Asterisks indicate significant deviation (p<0.01) from zero 1220 

according to a one-sample permutation t-test. All responses were thresholded at a statistical 1221 

significance level p<0.05 and Bonferroni-corrected. (F) Time course grand averages of BLP 1222 

modulations in hippocampus over low-frequencies [3.5-8 Hz] (sharp waves, sigma events), gamma 1223 

[56-79 Hz], ripple [80-200 Hz] and MUA [801-2000 Hz]. Note the prevalent negative modulation over 1224 

high-frequency domains associated with sigma events, as opposed by a consistent increase of activity 1225 

associated with ripple events. (G) Point-process conditional intensities (cross-correlograms) 1226 

accounting for the relationship between the occurrences of sigma, gamma and SWR episodes. 1227 

Conditional intensities were computed from pooled experiments across pons-hippocampus 1228 

experimental sessions, at a resolution of 50 ms bins. Red asterisks indicate a significant relationship 1229 

(p<0.01, Bonferroni-corrected) at the time of the occurrence of sigma (top), gamma (middle) and 1230 

SWR (bottom) events, according to a permutation test. The reference event for computing the intensity 1231 

is indicated by the first event of each pair in the upper-right box. 1232 

 1233 

Figure S5. SVM classifier for the prediction of PGO waves. (A) Diagram of the methodological 1234 

approach. A leave-one-out procedure is implemented in order to predict the occurrence of PGO waves 1235 

from pontine recordings features. Five experimental sessions are used for training the SVM and the 1236 

remaining one is used for testing its prediction accuracy. The classifier is tested using a k-fold cross-1237 

validation approach. (B) Number of PGO waves detected by chance over the total number of detected 1238 

pontine phasic waves, as a function of the event detection thresholds. As the sensitivity of the 1239 

detection raises, putative false detections become scarcer, eventually reaching zero percent. (C) Event-1240 

triggered averages of power (top panels) and broad-band LFP (bottom panels) for P- and PGO-waves 1241 

(left and right columns, respectively). (D) Performance of linear and non-linear SVM classifiers for 1242 

distinct sets of features in a 10-fold cross validation approach (spectra, event time course, MUA and 1243 

spectra plus time), illustrating that spectro-temporal features reach the largest prediction accuracy. 1244 

Note that the non-linear (Gaussian-kernel) SVM outperforms the linear one. (E) Statistics of the leave-1245 

one-out procedure across experimental sessions, show that the classifier trained (and tested) on each 1246 

PGO-wave subtype does not make the performance significantly different (right panel). 1247 



 1248 

Figure S6. Co-occurrence of pontine and hippocampal neural events and SVM-based approach for the 1249 

prediction PGO waves in pons-hippocampus experimental sessions. (A) Exemplary LFP traces of 1250 

pontine and hippocampal activities. Pontine episodes (PGO waves) can co-occur with SWR 1251 

(diamonds, top row) or hp-sigma (circles, bottom row) traces, displaying similar time courses. Arrows 1252 

indicate the occurrence of the ripple oscillation in a LFP trace filtered in the range (80 – 180 Hz). (B) 1253 

Statistics of the testing procedure across pons-LGN experimental sessions show that co-occurring 1254 

pons-hippocampus events may be PGO waves, reaching very similar performance (~65%) as 1255 

compared to the classification assays reported in Figure S5 and Figure 4. (C) Class-prediction label 1256 

consistency illustrates a ca. 71% labelling consistency between the SVM trained from pons-LGN data 1257 

and the SVM trained using pons-hippocampus data (magenta box plots). Consistency across cross-1258 

validations for each classifier (red and blue, respectively) reaches ca. 90%. (D) Spectral profiles of 1259 

SVM-predicted PGO waves and co-occurring P-waves with hippocampus events. Strong correlation 1260 

between the spectra of each category is visually apparent. Labelling consistency between SVM-1261 

predicted PGO waves and co-occurring P-waves with hippocampus events reaches ca. 83% in this 1262 

example. 1263 
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Supporting Information 

Juan F. Ramirez-Villegas, Yusuke Murayama, Henry C. Evrard, Michel Besserve & Nikos K. Logothetis  

SI Section A: Conditioning of neural data 
 

Clustering of PGO-wave LFP spatio-temporal series. Cluster analysis was applied to each 

experimental session separately. Spatially-averaged peri-event PGO-wave signal time courses were used 

for clustering. Thus, we clustered two concomitant LFP traces simultaneously: one corresponding to LGN 

and one corresponding to pons. For the first stage of the clustering approach, the spatio-temporal PGO 

wave series were grouped in a maximum of 80 representative signals using a growing neural gas (GNG) 

algorithm (Fritzke, 1995) (after Ramirez-Villegas et al., 2015). Since representative signals are easier to 

cluster due to average-based noise reduction, these representatives were clustered based on their pairwise 

cosine similarity matrix using the normalized cuts algorithm (Shi and Malik, 2000). PGO waves were 

sorted and then averaged across all sessions. This procedure was performed for PGO data of 6 pontine-

LGN experimental sessions in the first part of the study (2 macaque monkeys, and a total of 528). In the 

second part of this study, the same procedure was performed for predicted PGO waves of 9 pons-

hippocampus experimental sessions (3 macaque monkeys, 1880 predicted PGO waves). For group 

analysis, PGO waves were first sorted in a session-wise manner according to their triggered MUA-

response. This procedure was supported by visual assessment of the LFP- and MUA averaged event-

triggered responses. 

 

Spectral features of PGO waves and hippocampal events. Spectral analysis of PGO waves and 

hippocampal events was performed using Morlet-wavelet spectrograms. All spectrograms were Z-scored 

with respect to spectrograms computed using the same number of events with randomized inter-event 

intervals (i.e. random, baseline events). Sigma, gamma, ripple and PGO frequency peaks of individual 

events were extracted using this spectral technique. In addition, a measure of event time duration was 

computed for hippocampal events (after Logothetis et al., 2012). This measure was computed as the full-

width at half-maximum (FWHM) of the LFP response at the time of event occurrence. Data from distinct 

experimental sessions then was pooled and statistics on population data were displayed and reported. 

 

Prediction of PGO waves exclusively from pontine LFP traces via support vector machine (SVM). 

Non-linear SVM were used in order to predict the occurrence of PGO waves using solely features 



extracted from pontine recordings, across experimental sessions. This problem arises due to the need of 

discriminating PGO waves from P-waves in multi-structure recordings without a recording electrode 

placed in LGN. The classification experiments performed in this work were divided into three stages as 

follows: 

 

1) Prior to data classification, we first devised a procedure for determining the sensitivity of the PGO-

event detection threshold. P-waves were detected using thresholds in the range [2-5] SD. As a candidate 

P-wave was detected, partner waves were detected in LGN in the same range of thresholds. With this 

procedure, we build a matrix displaying the proportion of detected putative PGO waves (co-occurring 

waves across pontine-LGN structures) over the total detected P-waves. In parallel, we ask: what is the 

proportion of putative PGO waves that could be detected by chance? To this end, we select peri-event 

time windows at random matching the rate of the detected “ground-truth” P-waves. We then defined a 

putative false detection as an above-threshold episode detected over a randomly selected time window of 

300 ms. In this step, we seek to determine whether the same or a similar amount of PGO waves could be 

detected at random at a given event detection threshold. Thus, we build a second matrix displaying the 

proportion of detected events by chance over the total “ground-truth” P-waves.  

 

2) Classifiers were learnt over the first series of 6 pontine-LGN experimental sessions and initially using 

the time course, spectra and MUA of propagating and non-propagating pontine-LGN waves. Features 

were extracted as follows: time courses were averaged across pontine recording sites, aligned and 

arranged as peri-event time windows of ±0.4 s around the occurrence of the event. Peri-event z-scored 

multi-taper spectra were computed in this time window and then averaged across pontine recording sites, 

thus accounting for spectral features. Finally, a time window of ±10 s was taken as MUA-band [800-

2000] Hz features. The procedure for computing the MUA is described in the previous subsection of the 

present Supplemental Information. 

 

We first tested the prediction accuracy of the classifiers across pontine-LGN (ground-truth) experimental 

sessions using a leave-one-out procedure (training using 5 experimental sessions, 1 experimental session 

for testing) (see Figure S4A for a schema of this methodological approach). Extensive classification 

experiments were performed initially to determine whether linear or non-linear (Gaussian kernel) SVM 

were appropriate for predicting PGO waves, subject to the event detection threshold of 4 SD. A 

bootstrapping procedure was used in order to balance the proportion of co-occurring and non-co-

occurring event categories in each classification experiment (N=50 bootstraps). Classification 

experiments were then performed using a 10-fold cross-validation approach in each balanced subsample. 



All reported statistics are based on these 500 per-session classification assays. Statistics across sessions 

were only used in order to compare linear vs. non-linear SVM prediction accuracy. 

 

Performance of the non-linear SVM was proven significantly above the linear one. MUA features were 

discarded due to chance-level performance. On the basis of these results, both linear and non-linear SVMs 

were learnt using solely temporo-spectral features. Linear SVMs were instrumental for computing the 

weights associated with each feature in the classification task. SVM-related weights associated with 

spatio-temporal features –i.e. the most discriminative information extracted from candidate PGO waves– 

were computed as follows: 

 

Let ( )sx  be a matrix with sN   support vectors and M time samples,  
1

sN

i i



  be the Lagrange multipliers 

associated to the N support vectors and  
1

,
L

j j j
d


x  be the training sample, where  1,1jd    is the 

desired label class (e.g., 1 for PGO wave; -1 for P-wave) assigned to the thj  M-dimensional data point 

jx . Here, the M -dimensional data points are long feature vectors comprising concatenated time courses 

and spectra each candidate PGO wave. Since the support vectors are the most difficult data points to 

classify, we may compute a weight w for each feature in order to know how discriminative it is for the 

classification task. Note that the more far away from the decision boundary (which is closest to the 

support vectors), the more discriminative a given data point is (which varies linearly with the weight): 

 

T
j jv b w x ,    (1) 

 

where ( )

1

sN s
i i ii

w d


 x  and ( )
01 T sb  w x  for   1sd  . 

 

Note that we do not make any assumption on whether the patters are separable or not. Further, we 

compute the weights during the cross validation procedure and report the statistics across-sessions as 

specified in each plot.  

 

Finally, it is important to test whether the classification accuracy obtained using the final non-linear 

classifier was statistically significant for each experimental session. This question was addressed using 

non-parametric statistical methods. A permutation test was performed by randomly shuffling the 

observations across classes (PGO waves vs. P-waves) and running the SVM prediction using this shuffled 



data. We built an estimation of the null (H0) distribution of classification accuracy values from a total of 

500 randomizations, per experimental session. We then obtained a probability value (p-value) for the 

ground-truth (non-shuffled) classification accuracy accounting for the final statistical significance. This p-

value thus corresponds to the proportion of classification assays that may have surpassed the theoretical 

chance level (50%), by chance (Combrisson and Jerbi, 2015). 

 

3) Upon observing that predicted PGO waves and hippocampal events tend to co-occur at fine timescales, 

we asked whether pontine phasic waves co-occurring with hippocampal events were indeed PGO waves. 

We tested this hypothesis by learning a second non-linear SVM classifier, but instead of training on pons-

LGN experimental sessions, we trained them using pons-hippocampus sessions (N = 9 experimental 

sessions). The classifiers were learnt using the same set of temporo-spectral features considered before, 

extracted solely from pontine LFP traces. Classifiers were tested using the six pons-LGN “ground-truth” 

data sets for the prediction of true PGO waves in an experimental session-wise manner. Cross-validation 

procedures were performed as detailed in the previous section. Statistics across sessions were computed 

using the total of 500 classification assays. Then a grand average was computed together with its 95% 

confidence interval and significance level.  

 

As our results suggest that co-occurring pontine-hippocampus events may be PGO waves, the overall 

classification performance may arise from a combination of misclassified events in addition to some true 

PGO waves. In order to rule out this possibility, SVM prediction consistency was measured on each 

testing subset using the following equation: 
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where ix  and iy  are the i-th predicted labels of the µ-th cross-validation, N is the total number of 

signals in the test set, and  F x  is described by the following function: 
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Thus, when the sets cluster labels  1 2, ,..., NX x x x     and  1 2, , ..., NY y y y     are identical the 

consistency takes value 1 (or 100% consistency). 

 



In a similar vein, we examined the spectral profiles of predicted PGO waves and co-occurring pontine-

hippocampus events, together their pair-wise Spearman correlation coefficient. A level of p<0.05 was 

considered a significant correlation.  

 

Unsupervised cluster analysis of SVM-predicted PGO waves. In order to cluster SVM-predicted PGO 

waves, we used the two-stage clustering technique described previously and cross-correlation analyses. 

 

Clustering was performed in a session-wise manner following the procedures described in the first 

subsection of the Supporting Information. Analogous to the first analyses, PGO wave time series were 

grouped in a maximum of 80 representative signals using the GNG algorithm, which were then clustered 

on the basis of their pairwise cosine similarity matrix using the normalized cuts algorithm. It is worth 

noting that here we used only pontine waves for clustering, since LGN was not recorded. This procedure 

was performed for PGO data of 9 pontine-hippocampus experimental sessions (3 macaque monkeys). 

  

Cross-correlation analysis was carried out by computing the conditional intensities related to the 

occurrence of PGO events as determined by the clustering technique (namely, type I and type II LFP 

activities), as explained in the Main Text of this manuscript. Sigma-, gamma- and ripple-pontine wave 

pairs were assessed statistically by comparing against random surrogate point-processes of the same rate, 

up to several permutations (N = 500 permutations). A two-tailed test under this null distribution was then 

performed in order to compute the significance of the correlation at a given lag.  

SI Section B: Supporting results on hippocampal events and prediction of 
PGO waves 
 

 

Differentiated extracellular field potential signatures of hippocampal neuronal-ensemble events. 

Hippocampal ensemble episodes may be coupled to PGO waves, as suggested a previous study (Calvo 

and Fernandez-Guardiola, 1984). A detailed characterization of hippocampal events may provide clues 

not only about the activity of hippocampal neuronal ensembles, but also will deepen our understanding of 

the relationship between pontine and hippocampal activities during sleep-like states. To this end, we first 

identified candidate hippocampal events using the process described in Logothetis et al. (2012). 

Hippocampal sigma (8-22 Hz; Nσ = 6861 events), gamma (25-75 Hz; Nγ = 6086 events) and ripple (80-

180 Hz; Nρ = 7270 events) episodes were consistently identified across 9 experimental sessions, recorded 

from 3 different animals (Figure S4A-F). 



 

We scrutinized the relationship between hippocampal events and distinct sub-bands at and beyond the 

local field activity. Raw hippocampal extracellular signals (<7 kHz) were subdivided into several 

frequency bands following the rationale of the previous subsection of the present study. The occurrence of 

each hippocampal event was used as a reference to align and average the time courses over LFP, HFO, 

mEFP and MUA domains. We computed averaged, Z-scored NET-BLP for each experimental session, 

across 3 animals (namely, cm029, cm031 and k13). Then, the experiments of 9 experimental sessions 

were pooled for population statistical analysis (n=103 experiments).  

 

In correspondence with each event type, we found significantly increased activity related to hippocampal 

events over frequency bands corresponding to sigma (8-22 Hz), gamma (25-75 Hz) and SWR events (<20 

Hz and 80-180 Hz) (Figure S4E, F; see also Figure S3A-C). Sigma and SWR events also presented 

significant tails conflating with gamma frequencies (p<0.01, one-sample permutation t-test, Bonferroni-

corrected). Furthermore, Figure S4E displays significant power deviations, albeit antagonistic over high-

frequency LFP ranges, mEFP and MUA at the time of occurrence of hippocampal sigma and SWR 

events. While hippocampal sigma episodes are associated with significant suppression of ripple (80-200 

Hz), HFO (201-324 Hz), mEFP (325-800 Hz) and MUA (801-2000 Hz) bands (p<0.01, one-sample 

permutation t-test, Bonferroni-corrected), hippocampal SWR episodes showed the opposite effect, as they 

were characterized by a consistent and significant power increase over these frequency domains (p<0.01, 

one-sample permutation t-test, Bonferroni-corrected). We also observed that increases and decreases of 

power started 2 seconds before the occurrence of each event. These results indicate that hippocampal 

SWR and sigma episodes are associated with distinct microcircuit dynamics. 

 

We reasoned that opposite population responses spanning over a time scale of seconds may indicate that 

the occurrences of sigma and SWR events are (anti-)correlated, thus possibly occurring preferentially 

over distinct time frames. In order to address this question, we computed cross-correlograms taking as 

point-processes the occurrence of sigma, gamma and SPW-R events. Statistical significance was assessed 

against randomized point-processes with the same rate as each individual event type in an experiment-

wise manner, up to several permutations. Sigma-SWR point-process conditional intensities displayed a 

significant drop around the occurrence of the events (p<0.01 permutation test, Bonferroni-corrected; 

Figure S4G, bottom panel). Furthermore, on average, this correlation drop started approximately one 

second before the onset of SPW-R episodes (taking this event type as reference in the correlation). We 

also found event-specific effects in relation to gamma events, which were significantly correlated with 

sigma episodes, while also significantly anti-correlated with the occurrence of SWR episodes (p<0.01 



permutation test, Bonferroni-corrected; Figure S4G, middle and top panels). These results suggest that 

sigma and SWR episodes appear over distinct time scales.  

 

Prediction of PGO waves via SVM. Before attempting to classify the PGO data, our first analysis 

revealed that the rate of chance-level detections decreased as we augmented the detection sensitivity 

(Figure S5B). Based on this procedure, we selected a threshold of 4 SD, accounting for false detections as 

high as 5%. While the selection of the event detection thresholds is highly arbitrary and depends on 

empirical criteria (Patel et al., 2013; Sullivan et al., 2011), 4 SD is a stringent threshold. It is likely that 

the final set of analysed PGO waves in this work is a lower bound of the ground-truth events that occur 

across the recorded structures.  

 

After determining an optimal event detection threshold, classification experiments revealed that peri-

event time courses and spectra were the most informative features. On the basis a linear SVM, PGO wave 

time courses and spectra reported an averaged classification accuracy of circa 60%, with chance-level 

classification performance associated with MUA. Thus, we limited our analyses to time-course and 

spectral features. We next found that non-linear SVM classifiers performed significantly better than linear 

ones, associated with an averaged performance of up to ~70% (p=0.01 paired-samples t-test, Figure S5D, 

right subpanel). However, as mentioned in main text, we used linear SVM classifiers in order to compute 

the weight associated to each time-course and spectral feature in the classification task. Finally, the 

finding that it is possible to train a non-linear SVM classifier such that it can be applied to previously 

unknown data (see Main Text, Results section) led us to speculate that the performance could be driven 

by a specific PGO wave subtype. We reasoned that higher performance could be achieved by training 

(and testing) the classifier with PGO traces of the same subtype. Nonetheless, we found that non-linear 

SVM trained on each PGO-wave subtype did not produce significantly different classification 

performance (Figure S5E; p>0.05 paired-samples t-test for the comparison between type I and type II 

PGO waves, non-corrected).  

 

During subsequent stages, we asked whether co-occurring events in pons and hippocampus field activities 

were PGO waves (see Figure S6A for exemplary traces). As additional evidence, after learning a non-

linear SVM classifier on 6 pons-LGN experimental sessions, we applied the trained classifier to pons-

hippocampus experimental sessions in order to identify which ones amongst the candidate detected phasic 

potentials correspond to true PGO waves in ground-truth pons-LGN experimental sessions. We found that 

co-occurrence of pontine-LGN phasic potentials (PGO waves) could be predicted from pontine-wave 



features computed from co-occurring pontine-hippocampus events, reaching an average of 65.13±0.014% 

(mean value ± 95% confidence interval) cross-validation prediction accuracy (Figure S6B). 

 

In addition, we performed a labeling consistency analysis, and examined the spectral profiles of predicted 

PGO waves and co-occurring pontine-hippocampus events. This procedure revealed that event class 

labels (propagating and non-propagating pontine waves) were largely consistent for pons-LGN and pons-

hippocampus sessions (mean value with 95% confidence interval 71.78±0.005%; Figure S6C). Moreover, 

the averaged spectral profiles of co-occurring pontine-hippocampal events were highly correlated with the 

spectral profiles of the SVM-predicted PGO waves (Spearman correlation coefficient ρ=0.9646 and 

ρ=0.9564, p<10-50; see Figure S6D for an exemplary experimental session).  

 

In addition, we found that labeling consistency was higher when comparing the leave-one-out 

classification assays for a given SVM classifier than across the two distinct SVM classifiers 

(89.32±0.004% for LGN-pons, and 89.52±0.004% for hippocampus-pons sessions; Figure S6D).  On the 

basis of the previous results, we determined that circa 10% of the non-consistently classified PGO events 

are due to variations induced by the cross-validation procedure. Conversely, the additional 15% of non-

consistently labelled candidate PGO waves in pontine-hippocampal sessions may be attributable to the 

event detection protocol, since hippocampal episodes are detected from relatively broad-band signals (10-

180 Hz), while pontine-LGN events are detected from narrow-band signals (5-15 Hz).  
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